]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: pass which operation triggered the frontbuffer tracking
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
2cfcd32a 35#include <linux/oom.h>
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
5a125c3c
EA
156int
157i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 158 struct drm_file *file)
5a125c3c 159{
73aa808f 160 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 161 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
5a125c3c 164
6299f992 165 pinned = 0;
73aa808f 166 mutex_lock(&dev->struct_mutex);
35c20a60 167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 168 if (i915_gem_obj_is_pinned(obj))
f343c5f6 169 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 170 mutex_unlock(&dev->struct_mutex);
5a125c3c 171
853ba5d2 172 args->aper_size = dev_priv->gtt.base.total;
0206e353 173 args->aper_available_size = args->aper_size - pinned;
6299f992 174
5a125c3c
EA
175 return 0;
176}
177
6a2c4232
CW
178static int
179i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 180{
6a2c4232
CW
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
00731155 186
6a2c4232
CW
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
00731155 221
6a2c4232
CW
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228}
229
230static void
231i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232{
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 236
6a2c4232
CW
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
00731155 250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 251 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
00731155 269 mark_page_accessed(page);
6a2c4232 270 page_cache_release(page);
00731155
CW
271 vaddr += PAGE_SIZE;
272 }
6a2c4232 273 obj->dirty = 0;
00731155
CW
274 }
275
6a2c4232
CW
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280}
281
282static void
283i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284{
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286}
287
288static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292};
293
294static int
295drop_pages(struct drm_i915_gem_object *obj)
296{
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
00731155
CW
309}
310
311int
312i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314{
315 drm_dma_handle_t *phys;
6a2c4232 316 int ret;
00731155
CW
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
6a2c4232
CW
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
00731155
CW
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
00731155 340 obj->phys_handle = phys;
6a2c4232
CW
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
00731155
CW
344}
345
346static int
347i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350{
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
354 int ret;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
00731155
CW
362
363 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364 unsigned long unwritten;
365
366 /* The physical object once assigned is fixed for the lifetime
367 * of the obj, so we can safely drop the lock and continue
368 * to access vaddr.
369 */
370 mutex_unlock(&dev->struct_mutex);
371 unwritten = copy_from_user(vaddr, user_data, args->size);
372 mutex_lock(&dev->struct_mutex);
373 if (unwritten)
374 return -EFAULT;
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
378 i915_gem_chipset_flush(dev);
379 return 0;
380}
381
42dcedd4
CW
382void *i915_gem_object_alloc(struct drm_device *dev)
383{
384 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 385 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
386}
387
388void i915_gem_object_free(struct drm_i915_gem_object *obj)
389{
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->slab, obj);
392}
393
ff72145b
DA
394static int
395i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
398 uint32_t *handle_p)
673a394b 399{
05394f39 400 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
401 int ret;
402 u32 handle;
673a394b 403
ff72145b 404 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
405 if (size == 0)
406 return -EINVAL;
673a394b
EA
407
408 /* Allocate the new object */
ff72145b 409 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
410 if (obj == NULL)
411 return -ENOMEM;
412
05394f39 413 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 414 /* drop reference from allocate - handle holds it now */
d861e338
DV
415 drm_gem_object_unreference_unlocked(&obj->base);
416 if (ret)
417 return ret;
202f2fef 418
ff72145b 419 *handle_p = handle;
673a394b
EA
420 return 0;
421}
422
ff72145b
DA
423int
424i915_gem_dumb_create(struct drm_file *file,
425 struct drm_device *dev,
426 struct drm_mode_create_dumb *args)
427{
428 /* have to work out size/pitch and return them */
de45eaf7 429 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
430 args->size = args->pitch * args->height;
431 return i915_gem_create(file, dev,
da6b51d0 432 args->size, &args->handle);
ff72145b
DA
433}
434
ff72145b
DA
435/**
436 * Creates a new mm object and returns a handle to it.
437 */
438int
439i915_gem_create_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file)
441{
442 struct drm_i915_gem_create *args = data;
63ed2cb2 443
ff72145b 444 return i915_gem_create(file, dev,
da6b51d0 445 args->size, &args->handle);
ff72145b
DA
446}
447
8461d226
DV
448static inline int
449__copy_to_user_swizzled(char __user *cpu_vaddr,
450 const char *gpu_vaddr, int gpu_offset,
451 int length)
452{
453 int ret, cpu_offset = 0;
454
455 while (length > 0) {
456 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457 int this_length = min(cacheline_end - gpu_offset, length);
458 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461 gpu_vaddr + swizzled_gpu_offset,
462 this_length);
463 if (ret)
464 return ret + length;
465
466 cpu_offset += this_length;
467 gpu_offset += this_length;
468 length -= this_length;
469 }
470
471 return 0;
472}
473
8c59967c 474static inline int
4f0c7cfb
BW
475__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476 const char __user *cpu_vaddr,
8c59967c
DV
477 int length)
478{
479 int ret, cpu_offset = 0;
480
481 while (length > 0) {
482 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483 int this_length = min(cacheline_end - gpu_offset, length);
484 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487 cpu_vaddr + cpu_offset,
488 this_length);
489 if (ret)
490 return ret + length;
491
492 cpu_offset += this_length;
493 gpu_offset += this_length;
494 length -= this_length;
495 }
496
497 return 0;
498}
499
4c914c0c
BV
500/*
501 * Pins the specified object's pages and synchronizes the object with
502 * GPU accesses. Sets needs_clflush to non-zero if the caller should
503 * flush the object from the CPU cache.
504 */
505int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506 int *needs_clflush)
507{
508 int ret;
509
510 *needs_clflush = 0;
511
512 if (!obj->base.filp)
513 return -EINVAL;
514
515 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516 /* If we're not in the cpu read domain, set ourself into the gtt
517 * read domain and manually flush cachelines (if required). This
518 * optimizes for the case when the gpu will dirty the data
519 * anyway again before the next pread happens. */
520 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521 obj->cache_level);
522 ret = i915_gem_object_wait_rendering(obj, true);
523 if (ret)
524 return ret;
c8725f3d
CW
525
526 i915_gem_object_retire(obj);
4c914c0c
BV
527 }
528
529 ret = i915_gem_object_get_pages(obj);
530 if (ret)
531 return ret;
532
533 i915_gem_object_pin_pages(obj);
534
535 return ret;
536}
537
d174bd64
DV
538/* Per-page copy function for the shmem pread fastpath.
539 * Flushes invalid cachelines before reading the target if
540 * needs_clflush is set. */
eb01459f 541static int
d174bd64
DV
542shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543 char __user *user_data,
544 bool page_do_bit17_swizzling, bool needs_clflush)
545{
546 char *vaddr;
547 int ret;
548
e7e58eb5 549 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
550 return -EINVAL;
551
552 vaddr = kmap_atomic(page);
553 if (needs_clflush)
554 drm_clflush_virt_range(vaddr + shmem_page_offset,
555 page_length);
556 ret = __copy_to_user_inatomic(user_data,
557 vaddr + shmem_page_offset,
558 page_length);
559 kunmap_atomic(vaddr);
560
f60d7f0c 561 return ret ? -EFAULT : 0;
d174bd64
DV
562}
563
23c18c71
DV
564static void
565shmem_clflush_swizzled_range(char *addr, unsigned long length,
566 bool swizzled)
567{
e7e58eb5 568 if (unlikely(swizzled)) {
23c18c71
DV
569 unsigned long start = (unsigned long) addr;
570 unsigned long end = (unsigned long) addr + length;
571
572 /* For swizzling simply ensure that we always flush both
573 * channels. Lame, but simple and it works. Swizzled
574 * pwrite/pread is far from a hotpath - current userspace
575 * doesn't use it at all. */
576 start = round_down(start, 128);
577 end = round_up(end, 128);
578
579 drm_clflush_virt_range((void *)start, end - start);
580 } else {
581 drm_clflush_virt_range(addr, length);
582 }
583
584}
585
d174bd64
DV
586/* Only difference to the fast-path function is that this can handle bit17
587 * and uses non-atomic copy and kmap functions. */
588static int
589shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590 char __user *user_data,
591 bool page_do_bit17_swizzling, bool needs_clflush)
592{
593 char *vaddr;
594 int ret;
595
596 vaddr = kmap(page);
597 if (needs_clflush)
23c18c71
DV
598 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599 page_length,
600 page_do_bit17_swizzling);
d174bd64
DV
601
602 if (page_do_bit17_swizzling)
603 ret = __copy_to_user_swizzled(user_data,
604 vaddr, shmem_page_offset,
605 page_length);
606 else
607 ret = __copy_to_user(user_data,
608 vaddr + shmem_page_offset,
609 page_length);
610 kunmap(page);
611
f60d7f0c 612 return ret ? - EFAULT : 0;
d174bd64
DV
613}
614
eb01459f 615static int
dbf7bff0
DV
616i915_gem_shmem_pread(struct drm_device *dev,
617 struct drm_i915_gem_object *obj,
618 struct drm_i915_gem_pread *args,
619 struct drm_file *file)
eb01459f 620{
8461d226 621 char __user *user_data;
eb01459f 622 ssize_t remain;
8461d226 623 loff_t offset;
eb2c0c81 624 int shmem_page_offset, page_length, ret = 0;
8461d226 625 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 626 int prefaulted = 0;
8489731c 627 int needs_clflush = 0;
67d5a50c 628 struct sg_page_iter sg_iter;
eb01459f 629
2bb4629a 630 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
631 remain = args->size;
632
8461d226 633 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 634
4c914c0c 635 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
636 if (ret)
637 return ret;
638
8461d226 639 offset = args->offset;
eb01459f 640
67d5a50c
ID
641 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
642 offset >> PAGE_SHIFT) {
2db76d7c 643 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
644
645 if (remain <= 0)
646 break;
647
eb01459f
EA
648 /* Operation in this page
649 *
eb01459f 650 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
651 * page_length = bytes to copy for this page
652 */
c8cbbb8b 653 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
654 page_length = remain;
655 if ((shmem_page_offset + page_length) > PAGE_SIZE)
656 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 657
8461d226
DV
658 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
659 (page_to_phys(page) & (1 << 17)) != 0;
660
d174bd64
DV
661 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
662 user_data, page_do_bit17_swizzling,
663 needs_clflush);
664 if (ret == 0)
665 goto next_page;
dbf7bff0 666
dbf7bff0
DV
667 mutex_unlock(&dev->struct_mutex);
668
d330a953 669 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 670 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
671 /* Userspace is tricking us, but we've already clobbered
672 * its pages with the prefault and promised to write the
673 * data up to the first fault. Hence ignore any errors
674 * and just continue. */
675 (void)ret;
676 prefaulted = 1;
677 }
eb01459f 678
d174bd64
DV
679 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
680 user_data, page_do_bit17_swizzling,
681 needs_clflush);
eb01459f 682
dbf7bff0 683 mutex_lock(&dev->struct_mutex);
f60d7f0c 684
f60d7f0c 685 if (ret)
8461d226 686 goto out;
8461d226 687
17793c9a 688next_page:
eb01459f 689 remain -= page_length;
8461d226 690 user_data += page_length;
eb01459f
EA
691 offset += page_length;
692 }
693
4f27b75d 694out:
f60d7f0c
CW
695 i915_gem_object_unpin_pages(obj);
696
eb01459f
EA
697 return ret;
698}
699
673a394b
EA
700/**
701 * Reads data from the object referenced by handle.
702 *
703 * On error, the contents of *data are undefined.
704 */
705int
706i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 707 struct drm_file *file)
673a394b
EA
708{
709 struct drm_i915_gem_pread *args = data;
05394f39 710 struct drm_i915_gem_object *obj;
35b62a89 711 int ret = 0;
673a394b 712
51311d0a
CW
713 if (args->size == 0)
714 return 0;
715
716 if (!access_ok(VERIFY_WRITE,
2bb4629a 717 to_user_ptr(args->data_ptr),
51311d0a
CW
718 args->size))
719 return -EFAULT;
720
4f27b75d 721 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 722 if (ret)
4f27b75d 723 return ret;
673a394b 724
05394f39 725 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 726 if (&obj->base == NULL) {
1d7cfea1
CW
727 ret = -ENOENT;
728 goto unlock;
4f27b75d 729 }
673a394b 730
7dcd2499 731 /* Bounds check source. */
05394f39
CW
732 if (args->offset > obj->base.size ||
733 args->size > obj->base.size - args->offset) {
ce9d419d 734 ret = -EINVAL;
35b62a89 735 goto out;
ce9d419d
CW
736 }
737
1286ff73
DV
738 /* prime objects have no backing filp to GEM pread/pwrite
739 * pages from.
740 */
741 if (!obj->base.filp) {
742 ret = -EINVAL;
743 goto out;
744 }
745
db53a302
CW
746 trace_i915_gem_object_pread(obj, args->offset, args->size);
747
dbf7bff0 748 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 749
35b62a89 750out:
05394f39 751 drm_gem_object_unreference(&obj->base);
1d7cfea1 752unlock:
4f27b75d 753 mutex_unlock(&dev->struct_mutex);
eb01459f 754 return ret;
673a394b
EA
755}
756
0839ccb8
KP
757/* This is the fast write path which cannot handle
758 * page faults in the source data
9b7530cc 759 */
0839ccb8
KP
760
761static inline int
762fast_user_write(struct io_mapping *mapping,
763 loff_t page_base, int page_offset,
764 char __user *user_data,
765 int length)
9b7530cc 766{
4f0c7cfb
BW
767 void __iomem *vaddr_atomic;
768 void *vaddr;
0839ccb8 769 unsigned long unwritten;
9b7530cc 770
3e4d3af5 771 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
772 /* We can use the cpu mem copy function because this is X86. */
773 vaddr = (void __force*)vaddr_atomic + page_offset;
774 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 775 user_data, length);
3e4d3af5 776 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 777 return unwritten;
0839ccb8
KP
778}
779
3de09aa3
EA
780/**
781 * This is the fast pwrite path, where we copy the data directly from the
782 * user into the GTT, uncached.
783 */
673a394b 784static int
05394f39
CW
785i915_gem_gtt_pwrite_fast(struct drm_device *dev,
786 struct drm_i915_gem_object *obj,
3de09aa3 787 struct drm_i915_gem_pwrite *args,
05394f39 788 struct drm_file *file)
673a394b 789{
3e31c6c0 790 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 791 ssize_t remain;
0839ccb8 792 loff_t offset, page_base;
673a394b 793 char __user *user_data;
935aaa69
DV
794 int page_offset, page_length, ret;
795
1ec9e26d 796 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
797 if (ret)
798 goto out;
799
800 ret = i915_gem_object_set_to_gtt_domain(obj, true);
801 if (ret)
802 goto out_unpin;
803
804 ret = i915_gem_object_put_fence(obj);
805 if (ret)
806 goto out_unpin;
673a394b 807
2bb4629a 808 user_data = to_user_ptr(args->data_ptr);
673a394b 809 remain = args->size;
673a394b 810
f343c5f6 811 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
812
813 while (remain > 0) {
814 /* Operation in this page
815 *
0839ccb8
KP
816 * page_base = page offset within aperture
817 * page_offset = offset within page
818 * page_length = bytes to copy for this page
673a394b 819 */
c8cbbb8b
CW
820 page_base = offset & PAGE_MASK;
821 page_offset = offset_in_page(offset);
0839ccb8
KP
822 page_length = remain;
823 if ((page_offset + remain) > PAGE_SIZE)
824 page_length = PAGE_SIZE - page_offset;
825
0839ccb8 826 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
827 * source page isn't available. Return the error and we'll
828 * retry in the slow path.
0839ccb8 829 */
5d4545ae 830 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
831 page_offset, user_data, page_length)) {
832 ret = -EFAULT;
833 goto out_unpin;
834 }
673a394b 835
0839ccb8
KP
836 remain -= page_length;
837 user_data += page_length;
838 offset += page_length;
673a394b 839 }
673a394b 840
935aaa69 841out_unpin:
d7f46fc4 842 i915_gem_object_ggtt_unpin(obj);
935aaa69 843out:
3de09aa3 844 return ret;
673a394b
EA
845}
846
d174bd64
DV
847/* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
3043c60c 851static int
d174bd64
DV
852shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
673a394b 857{
d174bd64 858 char *vaddr;
673a394b 859 int ret;
3de09aa3 860
e7e58eb5 861 if (unlikely(page_do_bit17_swizzling))
d174bd64 862 return -EINVAL;
3de09aa3 863
d174bd64
DV
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
c2831a94
CW
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
d174bd64
DV
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
3de09aa3 874
755d2218 875 return ret ? -EFAULT : 0;
3de09aa3
EA
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
3043c60c 880static int
d174bd64
DV
881shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
673a394b 886{
d174bd64
DV
887 char *vaddr;
888 int ret;
e5281ccd 889
d174bd64 890 vaddr = kmap(page);
e7e58eb5 891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
d174bd64
DV
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
897 user_data,
898 page_length);
d174bd64
DV
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
23c18c71
DV
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
d174bd64 907 kunmap(page);
40123c1f 908
755d2218 909 return ret ? -EFAULT : 0;
40123c1f
EA
910}
911
40123c1f 912static int
e244a443
DV
913i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
40123c1f 917{
40123c1f 918 ssize_t remain;
8c59967c
DV
919 loff_t offset;
920 char __user *user_data;
eb2c0c81 921 int shmem_page_offset, page_length, ret = 0;
8c59967c 922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 923 int hit_slowpath = 0;
58642885
DV
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
67d5a50c 926 struct sg_page_iter sg_iter;
40123c1f 927
2bb4629a 928 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
929 remain = args->size;
930
8c59967c 931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 932
58642885
DV
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
2c22569b 938 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
c8725f3d
CW
942
943 i915_gem_object_retire(obj);
58642885 944 }
c76ce038
CW
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 950
755d2218
CW
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 i915_gem_object_pin_pages(obj);
956
673a394b 957 offset = args->offset;
05394f39 958 obj->dirty = 1;
673a394b 959
67d5a50c
ID
960 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
961 offset >> PAGE_SHIFT) {
2db76d7c 962 struct page *page = sg_page_iter_page(&sg_iter);
58642885 963 int partial_cacheline_write;
e5281ccd 964
9da3da66
CW
965 if (remain <= 0)
966 break;
967
40123c1f
EA
968 /* Operation in this page
969 *
40123c1f 970 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
971 * page_length = bytes to copy for this page
972 */
c8cbbb8b 973 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
974
975 page_length = remain;
976 if ((shmem_page_offset + page_length) > PAGE_SIZE)
977 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 978
58642885
DV
979 /* If we don't overwrite a cacheline completely we need to be
980 * careful to have up-to-date data by first clflushing. Don't
981 * overcomplicate things and flush the entire patch. */
982 partial_cacheline_write = needs_clflush_before &&
983 ((shmem_page_offset | page_length)
984 & (boot_cpu_data.x86_clflush_size - 1));
985
8c59967c
DV
986 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
987 (page_to_phys(page) & (1 << 17)) != 0;
988
d174bd64
DV
989 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
990 user_data, page_do_bit17_swizzling,
991 partial_cacheline_write,
992 needs_clflush_after);
993 if (ret == 0)
994 goto next_page;
e244a443
DV
995
996 hit_slowpath = 1;
e244a443 997 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
998 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
999 user_data, page_do_bit17_swizzling,
1000 partial_cacheline_write,
1001 needs_clflush_after);
40123c1f 1002
e244a443 1003 mutex_lock(&dev->struct_mutex);
755d2218 1004
755d2218 1005 if (ret)
8c59967c 1006 goto out;
8c59967c 1007
17793c9a 1008next_page:
40123c1f 1009 remain -= page_length;
8c59967c 1010 user_data += page_length;
40123c1f 1011 offset += page_length;
673a394b
EA
1012 }
1013
fbd5a26d 1014out:
755d2218
CW
1015 i915_gem_object_unpin_pages(obj);
1016
e244a443 1017 if (hit_slowpath) {
8dcf015e
DV
1018 /*
1019 * Fixup: Flush cpu caches in case we didn't flush the dirty
1020 * cachelines in-line while writing and the object moved
1021 * out of the cpu write domain while we've dropped the lock.
1022 */
1023 if (!needs_clflush_after &&
1024 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1025 if (i915_gem_clflush_object(obj, obj->pin_display))
1026 i915_gem_chipset_flush(dev);
e244a443 1027 }
8c59967c 1028 }
673a394b 1029
58642885 1030 if (needs_clflush_after)
e76e9aeb 1031 i915_gem_chipset_flush(dev);
58642885 1032
40123c1f 1033 return ret;
673a394b
EA
1034}
1035
1036/**
1037 * Writes data to the object referenced by handle.
1038 *
1039 * On error, the contents of the buffer that were to be modified are undefined.
1040 */
1041int
1042i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1043 struct drm_file *file)
673a394b 1044{
5d77d9c5 1045 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1046 struct drm_i915_gem_pwrite *args = data;
05394f39 1047 struct drm_i915_gem_object *obj;
51311d0a
CW
1048 int ret;
1049
1050 if (args->size == 0)
1051 return 0;
1052
1053 if (!access_ok(VERIFY_READ,
2bb4629a 1054 to_user_ptr(args->data_ptr),
51311d0a
CW
1055 args->size))
1056 return -EFAULT;
1057
d330a953 1058 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1059 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060 args->size);
1061 if (ret)
1062 return -EFAULT;
1063 }
673a394b 1064
5d77d9c5
ID
1065 intel_runtime_pm_get(dev_priv);
1066
fbd5a26d 1067 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1068 if (ret)
5d77d9c5 1069 goto put_rpm;
1d7cfea1 1070
05394f39 1071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1072 if (&obj->base == NULL) {
1d7cfea1
CW
1073 ret = -ENOENT;
1074 goto unlock;
fbd5a26d 1075 }
673a394b 1076
7dcd2499 1077 /* Bounds check destination. */
05394f39
CW
1078 if (args->offset > obj->base.size ||
1079 args->size > obj->base.size - args->offset) {
ce9d419d 1080 ret = -EINVAL;
35b62a89 1081 goto out;
ce9d419d
CW
1082 }
1083
1286ff73
DV
1084 /* prime objects have no backing filp to GEM pread/pwrite
1085 * pages from.
1086 */
1087 if (!obj->base.filp) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
db53a302
CW
1092 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
935aaa69 1094 ret = -EFAULT;
673a394b
EA
1095 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096 * it would end up going through the fenced access, and we'll get
1097 * different detiling behavior between reading and writing.
1098 * pread/pwrite currently are reading and writing from the CPU
1099 * perspective, requiring manual detiling by the client.
1100 */
2c22569b
CW
1101 if (obj->tiling_mode == I915_TILING_NONE &&
1102 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103 cpu_write_needs_clflush(obj)) {
fbd5a26d 1104 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1105 /* Note that the gtt paths might fail with non-page-backed user
1106 * pointers (e.g. gtt mappings when moving data between
1107 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1108 }
673a394b 1109
6a2c4232
CW
1110 if (ret == -EFAULT || ret == -ENOSPC) {
1111 if (obj->phys_handle)
1112 ret = i915_gem_phys_pwrite(obj, args, file);
1113 else
1114 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115 }
5c0480f2 1116
35b62a89 1117out:
05394f39 1118 drm_gem_object_unreference(&obj->base);
1d7cfea1 1119unlock:
fbd5a26d 1120 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1121put_rpm:
1122 intel_runtime_pm_put(dev_priv);
1123
673a394b
EA
1124 return ret;
1125}
1126
b361237b 1127int
33196ded 1128i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1129 bool interruptible)
1130{
1f83fee0 1131 if (i915_reset_in_progress(error)) {
b361237b
CW
1132 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133 * -EIO unconditionally for these. */
1134 if (!interruptible)
1135 return -EIO;
1136
1f83fee0
DV
1137 /* Recovery complete, but the reset failed ... */
1138 if (i915_terminally_wedged(error))
b361237b
CW
1139 return -EIO;
1140
6689c167
MA
1141 /*
1142 * Check if GPU Reset is in progress - we need intel_ring_begin
1143 * to work properly to reinit the hw state while the gpu is
1144 * still marked as reset-in-progress. Handle this with a flag.
1145 */
1146 if (!error->reload_in_reset)
1147 return -EAGAIN;
b361237b
CW
1148 }
1149
1150 return 0;
1151}
1152
1153/*
b6660d59 1154 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1155 */
84c33a64 1156int
b6660d59 1157i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1158{
1159 int ret;
1160
b6660d59 1161 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1162
1163 ret = 0;
b6660d59 1164 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1165 ret = i915_add_request(req->ring);
b361237b
CW
1166
1167 return ret;
1168}
1169
094f9a54
CW
1170static void fake_irq(unsigned long data)
1171{
1172 wake_up_process((struct task_struct *)data);
1173}
1174
1175static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1176 struct intel_engine_cs *ring)
094f9a54
CW
1177{
1178 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1179}
1180
b29c19b6
CW
1181static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1182{
1183 if (file_priv == NULL)
1184 return true;
1185
1186 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1187}
1188
b361237b 1189/**
9c654818
JH
1190 * __i915_wait_request - wait until execution of request has finished
1191 * @req: duh!
1192 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1193 * @interruptible: do an interruptible wait (normally yes)
1194 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1195 *
f69061be
DV
1196 * Note: It is of utmost importance that the passed in seqno and reset_counter
1197 * values have been read by the caller in an smp safe manner. Where read-side
1198 * locks are involved, it is sufficient to read the reset_counter before
1199 * unlocking the lock that protects the seqno. For lockless tricks, the
1200 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1201 * inserted.
1202 *
9c654818 1203 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1204 * errno with remaining time filled in timeout argument.
1205 */
9c654818 1206int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1207 unsigned reset_counter,
b29c19b6 1208 bool interruptible,
5ed0bdf2 1209 s64 *timeout,
b29c19b6 1210 struct drm_i915_file_private *file_priv)
b361237b 1211{
9c654818 1212 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1213 struct drm_device *dev = ring->dev;
3e31c6c0 1214 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1215 const bool irq_test_in_progress =
1216 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1217 DEFINE_WAIT(wait);
47e9766d 1218 unsigned long timeout_expire;
5ed0bdf2 1219 s64 before, now;
b361237b
CW
1220 int ret;
1221
9df7575f 1222 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1223
1b5a433a 1224 if (i915_gem_request_completed(req, true))
b361237b
CW
1225 return 0;
1226
7bd0e226
DV
1227 timeout_expire = timeout ?
1228 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1229
ec5cc0f9 1230 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1231 gen6_rps_boost(dev_priv);
1232 if (file_priv)
1233 mod_delayed_work(dev_priv->wq,
1234 &file_priv->mm.idle_work,
1235 msecs_to_jiffies(100));
1236 }
1237
168c3f21 1238 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1239 return -ENODEV;
1240
094f9a54 1241 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1242 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1243 before = ktime_get_raw_ns();
094f9a54
CW
1244 for (;;) {
1245 struct timer_list timer;
b361237b 1246
094f9a54
CW
1247 prepare_to_wait(&ring->irq_queue, &wait,
1248 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1249
f69061be
DV
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
094f9a54
CW
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
f69061be 1260
1b5a433a 1261 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1262 ret = 0;
1263 break;
1264 }
b361237b 1265
094f9a54
CW
1266 if (interruptible && signal_pending(current)) {
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
47e9766d 1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1278 unsigned long expire;
1279
094f9a54 1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1282 mod_timer(&timer, expire);
1283 }
1284
5035c275 1285 io_schedule();
094f9a54 1286
094f9a54
CW
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
5ed0bdf2 1292 now = ktime_get_raw_ns();
74328ee5 1293 trace_i915_gem_request_wait_end(req);
b361237b 1294
168c3f21
MK
1295 if (!irq_test_in_progress)
1296 ring->irq_put(ring);
094f9a54
CW
1297
1298 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1299
1300 if (timeout) {
5ed0bdf2
TG
1301 s64 tres = *timeout - (now - before);
1302
1303 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1304
1305 /*
1306 * Apparently ktime isn't accurate enough and occasionally has a
1307 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1308 * things up to make the test happy. We allow up to 1 jiffy.
1309 *
1310 * This is a regrssion from the timespec->ktime conversion.
1311 */
1312 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1313 *timeout = 0;
b361237b
CW
1314 }
1315
094f9a54 1316 return ret;
b361237b
CW
1317}
1318
1319/**
a4b3a571 1320 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1321 * request and object lists appropriately for that event.
1322 */
1323int
a4b3a571 1324i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1325{
a4b3a571
DV
1326 struct drm_device *dev;
1327 struct drm_i915_private *dev_priv;
1328 bool interruptible;
16e9a21f 1329 unsigned reset_counter;
b361237b
CW
1330 int ret;
1331
a4b3a571
DV
1332 BUG_ON(req == NULL);
1333
1334 dev = req->ring->dev;
1335 dev_priv = dev->dev_private;
1336 interruptible = dev_priv->mm.interruptible;
1337
b361237b 1338 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1339
33196ded 1340 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1341 if (ret)
1342 return ret;
1343
a4b3a571 1344 ret = i915_gem_check_olr(req);
b361237b
CW
1345 if (ret)
1346 return ret;
1347
16e9a21f 1348 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1349 i915_gem_request_reference(req);
9c654818
JH
1350 ret = __i915_wait_request(req, reset_counter,
1351 interruptible, NULL, NULL);
a4b3a571
DV
1352 i915_gem_request_unreference(req);
1353 return ret;
b361237b
CW
1354}
1355
d26e3af8 1356static int
8e639549 1357i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1358{
c8725f3d
CW
1359 if (!obj->active)
1360 return 0;
d26e3af8
CW
1361
1362 /* Manually manage the write flush as we may have not yet
1363 * retired the buffer.
1364 *
97b2a6a1
JH
1365 * Note that the last_write_req is always the earlier of
1366 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1367 * we know we have passed the last write.
1368 */
97b2a6a1 1369 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1370
1371 return 0;
1372}
1373
b361237b
CW
1374/**
1375 * Ensures that all rendering to the object has completed and the object is
1376 * safe to unbind from the GTT or access from the CPU.
1377 */
1378static __must_check int
1379i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1380 bool readonly)
1381{
97b2a6a1 1382 struct drm_i915_gem_request *req;
b361237b
CW
1383 int ret;
1384
97b2a6a1
JH
1385 req = readonly ? obj->last_write_req : obj->last_read_req;
1386 if (!req)
b361237b
CW
1387 return 0;
1388
a4b3a571 1389 ret = i915_wait_request(req);
b361237b
CW
1390 if (ret)
1391 return ret;
1392
8e639549 1393 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1394}
1395
3236f57a
CW
1396/* A nonblocking variant of the above wait. This is a highly dangerous routine
1397 * as the object state may change during this call.
1398 */
1399static __must_check int
1400i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1401 struct drm_i915_file_private *file_priv,
3236f57a
CW
1402 bool readonly)
1403{
97b2a6a1 1404 struct drm_i915_gem_request *req;
3236f57a
CW
1405 struct drm_device *dev = obj->base.dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1407 unsigned reset_counter;
3236f57a
CW
1408 int ret;
1409
1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411 BUG_ON(!dev_priv->mm.interruptible);
1412
97b2a6a1
JH
1413 req = readonly ? obj->last_write_req : obj->last_read_req;
1414 if (!req)
3236f57a
CW
1415 return 0;
1416
33196ded 1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1418 if (ret)
1419 return ret;
1420
b6660d59 1421 ret = i915_gem_check_olr(req);
3236f57a
CW
1422 if (ret)
1423 return ret;
1424
f69061be 1425 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1426 i915_gem_request_reference(req);
3236f57a 1427 mutex_unlock(&dev->struct_mutex);
9c654818 1428 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1429 mutex_lock(&dev->struct_mutex);
ff865885 1430 i915_gem_request_unreference(req);
d26e3af8
CW
1431 if (ret)
1432 return ret;
3236f57a 1433
8e639549 1434 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1435}
1436
673a394b 1437/**
2ef7eeaa
EA
1438 * Called when user space prepares to use an object with the CPU, either
1439 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1440 */
1441int
1442i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1443 struct drm_file *file)
673a394b
EA
1444{
1445 struct drm_i915_gem_set_domain *args = data;
05394f39 1446 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1447 uint32_t read_domains = args->read_domains;
1448 uint32_t write_domain = args->write_domain;
673a394b
EA
1449 int ret;
1450
2ef7eeaa 1451 /* Only handle setting domains to types used by the CPU. */
21d509e3 1452 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1453 return -EINVAL;
1454
21d509e3 1455 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1456 return -EINVAL;
1457
1458 /* Having something in the write domain implies it's in the read
1459 * domain, and only that read domain. Enforce that in the request.
1460 */
1461 if (write_domain != 0 && read_domains != write_domain)
1462 return -EINVAL;
1463
76c1dec1 1464 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1465 if (ret)
76c1dec1 1466 return ret;
1d7cfea1 1467
05394f39 1468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1469 if (&obj->base == NULL) {
1d7cfea1
CW
1470 ret = -ENOENT;
1471 goto unlock;
76c1dec1 1472 }
673a394b 1473
3236f57a
CW
1474 /* Try to flush the object off the GPU without holding the lock.
1475 * We will repeat the flush holding the lock in the normal manner
1476 * to catch cases where we are gazumped.
1477 */
6e4930f6
CW
1478 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479 file->driver_priv,
1480 !write_domain);
3236f57a
CW
1481 if (ret)
1482 goto unref;
1483
43566ded 1484 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1485 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1486 else
e47c68e9 1487 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1488
3236f57a 1489unref:
05394f39 1490 drm_gem_object_unreference(&obj->base);
1d7cfea1 1491unlock:
673a394b
EA
1492 mutex_unlock(&dev->struct_mutex);
1493 return ret;
1494}
1495
1496/**
1497 * Called when user space has done writes to this buffer
1498 */
1499int
1500i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1501 struct drm_file *file)
673a394b
EA
1502{
1503 struct drm_i915_gem_sw_finish *args = data;
05394f39 1504 struct drm_i915_gem_object *obj;
673a394b
EA
1505 int ret = 0;
1506
76c1dec1 1507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1508 if (ret)
76c1dec1 1509 return ret;
1d7cfea1 1510
05394f39 1511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1512 if (&obj->base == NULL) {
1d7cfea1
CW
1513 ret = -ENOENT;
1514 goto unlock;
673a394b
EA
1515 }
1516
673a394b 1517 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1518 if (obj->pin_display)
e62b59e4 1519 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1520
05394f39 1521 drm_gem_object_unreference(&obj->base);
1d7cfea1 1522unlock:
673a394b
EA
1523 mutex_unlock(&dev->struct_mutex);
1524 return ret;
1525}
1526
1527/**
1528 * Maps the contents of an object, returning the address it is mapped
1529 * into.
1530 *
1531 * While the mapping holds a reference on the contents of the object, it doesn't
1532 * imply a ref on the object itself.
34367381
DV
1533 *
1534 * IMPORTANT:
1535 *
1536 * DRM driver writers who look a this function as an example for how to do GEM
1537 * mmap support, please don't implement mmap support like here. The modern way
1538 * to implement DRM mmap support is with an mmap offset ioctl (like
1539 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1540 * That way debug tooling like valgrind will understand what's going on, hiding
1541 * the mmap call in a driver private ioctl will break that. The i915 driver only
1542 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1543 */
1544int
1545i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1546 struct drm_file *file)
673a394b
EA
1547{
1548 struct drm_i915_gem_mmap *args = data;
1549 struct drm_gem_object *obj;
673a394b
EA
1550 unsigned long addr;
1551
1816f923
AG
1552 if (args->flags & ~(I915_MMAP_WC))
1553 return -EINVAL;
1554
1555 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1556 return -ENODEV;
1557
05394f39 1558 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1559 if (obj == NULL)
bf79cb91 1560 return -ENOENT;
673a394b 1561
1286ff73
DV
1562 /* prime objects have no backing filp to GEM mmap
1563 * pages from.
1564 */
1565 if (!obj->filp) {
1566 drm_gem_object_unreference_unlocked(obj);
1567 return -EINVAL;
1568 }
1569
6be5ceb0 1570 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1571 PROT_READ | PROT_WRITE, MAP_SHARED,
1572 args->offset);
1816f923
AG
1573 if (args->flags & I915_MMAP_WC) {
1574 struct mm_struct *mm = current->mm;
1575 struct vm_area_struct *vma;
1576
1577 down_write(&mm->mmap_sem);
1578 vma = find_vma(mm, addr);
1579 if (vma)
1580 vma->vm_page_prot =
1581 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1582 else
1583 addr = -ENOMEM;
1584 up_write(&mm->mmap_sem);
1585 }
bc9025bd 1586 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1587 if (IS_ERR((void *)addr))
1588 return addr;
1589
1590 args->addr_ptr = (uint64_t) addr;
1591
1592 return 0;
1593}
1594
de151cf6
JB
1595/**
1596 * i915_gem_fault - fault a page into the GTT
1597 * vma: VMA in question
1598 * vmf: fault info
1599 *
1600 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1601 * from userspace. The fault handler takes care of binding the object to
1602 * the GTT (if needed), allocating and programming a fence register (again,
1603 * only if needed based on whether the old reg is still valid or the object
1604 * is tiled) and inserting a new PTE into the faulting process.
1605 *
1606 * Note that the faulting process may involve evicting existing objects
1607 * from the GTT and/or fence registers to make room. So performance may
1608 * suffer if the GTT working set is large or there are few fence registers
1609 * left.
1610 */
1611int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1612{
05394f39
CW
1613 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1614 struct drm_device *dev = obj->base.dev;
3e31c6c0 1615 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1616 pgoff_t page_offset;
1617 unsigned long pfn;
1618 int ret = 0;
0f973f27 1619 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1620
f65c9168
PZ
1621 intel_runtime_pm_get(dev_priv);
1622
de151cf6
JB
1623 /* We don't use vmf->pgoff since that has the fake offset */
1624 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1625 PAGE_SHIFT;
1626
d9bc7e9f
CW
1627 ret = i915_mutex_lock_interruptible(dev);
1628 if (ret)
1629 goto out;
a00b10c3 1630
db53a302
CW
1631 trace_i915_gem_object_fault(obj, page_offset, true, write);
1632
6e4930f6
CW
1633 /* Try to flush the object off the GPU first without holding the lock.
1634 * Upon reacquiring the lock, we will perform our sanity checks and then
1635 * repeat the flush holding the lock in the normal manner to catch cases
1636 * where we are gazumped.
1637 */
1638 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1639 if (ret)
1640 goto unlock;
1641
eb119bd6
CW
1642 /* Access to snoopable pages through the GTT is incoherent. */
1643 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1644 ret = -EFAULT;
eb119bd6
CW
1645 goto unlock;
1646 }
1647
d9bc7e9f 1648 /* Now bind it into the GTT if needed */
1ec9e26d 1649 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1650 if (ret)
1651 goto unlock;
4a684a41 1652
c9839303
CW
1653 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1654 if (ret)
1655 goto unpin;
74898d7e 1656
06d98131 1657 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1658 if (ret)
c9839303 1659 goto unpin;
7d1c4804 1660
b90b91d8 1661 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1662 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1663 pfn >>= PAGE_SHIFT;
de151cf6 1664
b90b91d8 1665 if (!obj->fault_mappable) {
beff0d0f
VS
1666 unsigned long size = min_t(unsigned long,
1667 vma->vm_end - vma->vm_start,
1668 obj->base.size);
b90b91d8
CW
1669 int i;
1670
beff0d0f 1671 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1672 ret = vm_insert_pfn(vma,
1673 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1674 pfn + i);
1675 if (ret)
1676 break;
1677 }
1678
1679 obj->fault_mappable = true;
1680 } else
1681 ret = vm_insert_pfn(vma,
1682 (unsigned long)vmf->virtual_address,
1683 pfn + page_offset);
c9839303 1684unpin:
d7f46fc4 1685 i915_gem_object_ggtt_unpin(obj);
c715089f 1686unlock:
de151cf6 1687 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1688out:
de151cf6 1689 switch (ret) {
d9bc7e9f 1690 case -EIO:
2232f031
DV
1691 /*
1692 * We eat errors when the gpu is terminally wedged to avoid
1693 * userspace unduly crashing (gl has no provisions for mmaps to
1694 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1695 * and so needs to be reported.
1696 */
1697 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1698 ret = VM_FAULT_SIGBUS;
1699 break;
1700 }
045e769a 1701 case -EAGAIN:
571c608d
DV
1702 /*
1703 * EAGAIN means the gpu is hung and we'll wait for the error
1704 * handler to reset everything when re-faulting in
1705 * i915_mutex_lock_interruptible.
d9bc7e9f 1706 */
c715089f
CW
1707 case 0:
1708 case -ERESTARTSYS:
bed636ab 1709 case -EINTR:
e79e0fe3
DR
1710 case -EBUSY:
1711 /*
1712 * EBUSY is ok: this just means that another thread
1713 * already did the job.
1714 */
f65c9168
PZ
1715 ret = VM_FAULT_NOPAGE;
1716 break;
de151cf6 1717 case -ENOMEM:
f65c9168
PZ
1718 ret = VM_FAULT_OOM;
1719 break;
a7c2e1aa 1720 case -ENOSPC:
45d67817 1721 case -EFAULT:
f65c9168
PZ
1722 ret = VM_FAULT_SIGBUS;
1723 break;
de151cf6 1724 default:
a7c2e1aa 1725 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1726 ret = VM_FAULT_SIGBUS;
1727 break;
de151cf6 1728 }
f65c9168
PZ
1729
1730 intel_runtime_pm_put(dev_priv);
1731 return ret;
de151cf6
JB
1732}
1733
901782b2
CW
1734/**
1735 * i915_gem_release_mmap - remove physical page mappings
1736 * @obj: obj in question
1737 *
af901ca1 1738 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1739 * relinquish ownership of the pages back to the system.
1740 *
1741 * It is vital that we remove the page mapping if we have mapped a tiled
1742 * object through the GTT and then lose the fence register due to
1743 * resource pressure. Similarly if the object has been moved out of the
1744 * aperture, than pages mapped into userspace must be revoked. Removing the
1745 * mapping will then trigger a page fault on the next user access, allowing
1746 * fixup by i915_gem_fault().
1747 */
d05ca301 1748void
05394f39 1749i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1750{
6299f992
CW
1751 if (!obj->fault_mappable)
1752 return;
901782b2 1753
6796cb16
DH
1754 drm_vma_node_unmap(&obj->base.vma_node,
1755 obj->base.dev->anon_inode->i_mapping);
6299f992 1756 obj->fault_mappable = false;
901782b2
CW
1757}
1758
eedd10f4
CW
1759void
1760i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1761{
1762 struct drm_i915_gem_object *obj;
1763
1764 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1765 i915_gem_release_mmap(obj);
1766}
1767
0fa87796 1768uint32_t
e28f8711 1769i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1770{
e28f8711 1771 uint32_t gtt_size;
92b88aeb
CW
1772
1773 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1774 tiling_mode == I915_TILING_NONE)
1775 return size;
92b88aeb
CW
1776
1777 /* Previous chips need a power-of-two fence region when tiling */
1778 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1779 gtt_size = 1024*1024;
92b88aeb 1780 else
e28f8711 1781 gtt_size = 512*1024;
92b88aeb 1782
e28f8711
CW
1783 while (gtt_size < size)
1784 gtt_size <<= 1;
92b88aeb 1785
e28f8711 1786 return gtt_size;
92b88aeb
CW
1787}
1788
de151cf6
JB
1789/**
1790 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1791 * @obj: object to check
1792 *
1793 * Return the required GTT alignment for an object, taking into account
5e783301 1794 * potential fence register mapping.
de151cf6 1795 */
d865110c
ID
1796uint32_t
1797i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1798 int tiling_mode, bool fenced)
de151cf6 1799{
de151cf6
JB
1800 /*
1801 * Minimum alignment is 4k (GTT page size), but might be greater
1802 * if a fence register is needed for the object.
1803 */
d865110c 1804 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1805 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1806 return 4096;
1807
a00b10c3
CW
1808 /*
1809 * Previous chips need to be aligned to the size of the smallest
1810 * fence register that can contain the object.
1811 */
e28f8711 1812 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1813}
1814
d8cb5086
CW
1815static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1816{
1817 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1818 int ret;
1819
0de23977 1820 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1821 return 0;
1822
da494d7c
DV
1823 dev_priv->mm.shrinker_no_lock_stealing = true;
1824
d8cb5086
CW
1825 ret = drm_gem_create_mmap_offset(&obj->base);
1826 if (ret != -ENOSPC)
da494d7c 1827 goto out;
d8cb5086
CW
1828
1829 /* Badly fragmented mmap space? The only way we can recover
1830 * space is by destroying unwanted objects. We can't randomly release
1831 * mmap_offsets as userspace expects them to be persistent for the
1832 * lifetime of the objects. The closest we can is to release the
1833 * offsets on purgeable objects by truncating it and marking it purged,
1834 * which prevents userspace from ever using that object again.
1835 */
21ab4e74
CW
1836 i915_gem_shrink(dev_priv,
1837 obj->base.size >> PAGE_SHIFT,
1838 I915_SHRINK_BOUND |
1839 I915_SHRINK_UNBOUND |
1840 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1841 ret = drm_gem_create_mmap_offset(&obj->base);
1842 if (ret != -ENOSPC)
da494d7c 1843 goto out;
d8cb5086
CW
1844
1845 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1846 ret = drm_gem_create_mmap_offset(&obj->base);
1847out:
1848 dev_priv->mm.shrinker_no_lock_stealing = false;
1849
1850 return ret;
d8cb5086
CW
1851}
1852
1853static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1854{
d8cb5086
CW
1855 drm_gem_free_mmap_offset(&obj->base);
1856}
1857
da6b51d0 1858int
ff72145b
DA
1859i915_gem_mmap_gtt(struct drm_file *file,
1860 struct drm_device *dev,
da6b51d0 1861 uint32_t handle,
ff72145b 1862 uint64_t *offset)
de151cf6 1863{
da761a6e 1864 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1865 struct drm_i915_gem_object *obj;
de151cf6
JB
1866 int ret;
1867
76c1dec1 1868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1869 if (ret)
76c1dec1 1870 return ret;
de151cf6 1871
ff72145b 1872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1873 if (&obj->base == NULL) {
1d7cfea1
CW
1874 ret = -ENOENT;
1875 goto unlock;
1876 }
de151cf6 1877
5d4545ae 1878 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1879 ret = -E2BIG;
ff56b0bc 1880 goto out;
da761a6e
CW
1881 }
1882
05394f39 1883 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1884 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1885 ret = -EFAULT;
1d7cfea1 1886 goto out;
ab18282d
CW
1887 }
1888
d8cb5086
CW
1889 ret = i915_gem_object_create_mmap_offset(obj);
1890 if (ret)
1891 goto out;
de151cf6 1892
0de23977 1893 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1894
1d7cfea1 1895out:
05394f39 1896 drm_gem_object_unreference(&obj->base);
1d7cfea1 1897unlock:
de151cf6 1898 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1899 return ret;
de151cf6
JB
1900}
1901
ff72145b
DA
1902/**
1903 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1904 * @dev: DRM device
1905 * @data: GTT mapping ioctl data
1906 * @file: GEM object info
1907 *
1908 * Simply returns the fake offset to userspace so it can mmap it.
1909 * The mmap call will end up in drm_gem_mmap(), which will set things
1910 * up so we can get faults in the handler above.
1911 *
1912 * The fault handler will take care of binding the object into the GTT
1913 * (since it may have been evicted to make room for something), allocating
1914 * a fence register, and mapping the appropriate aperture address into
1915 * userspace.
1916 */
1917int
1918i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1919 struct drm_file *file)
1920{
1921 struct drm_i915_gem_mmap_gtt *args = data;
1922
da6b51d0 1923 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1924}
1925
5537252b
CW
1926static inline int
1927i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1928{
1929 return obj->madv == I915_MADV_DONTNEED;
1930}
1931
225067ee
DV
1932/* Immediately discard the backing storage */
1933static void
1934i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1935{
4d6294bf 1936 i915_gem_object_free_mmap_offset(obj);
1286ff73 1937
4d6294bf
CW
1938 if (obj->base.filp == NULL)
1939 return;
e5281ccd 1940
225067ee
DV
1941 /* Our goal here is to return as much of the memory as
1942 * is possible back to the system as we are called from OOM.
1943 * To do this we must instruct the shmfs to drop all of its
1944 * backing pages, *now*.
1945 */
5537252b 1946 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1947 obj->madv = __I915_MADV_PURGED;
1948}
e5281ccd 1949
5537252b
CW
1950/* Try to discard unwanted pages */
1951static void
1952i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1953{
5537252b
CW
1954 struct address_space *mapping;
1955
1956 switch (obj->madv) {
1957 case I915_MADV_DONTNEED:
1958 i915_gem_object_truncate(obj);
1959 case __I915_MADV_PURGED:
1960 return;
1961 }
1962
1963 if (obj->base.filp == NULL)
1964 return;
1965
1966 mapping = file_inode(obj->base.filp)->i_mapping,
1967 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1968}
1969
5cdf5881 1970static void
05394f39 1971i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1972{
90797e6d
ID
1973 struct sg_page_iter sg_iter;
1974 int ret;
1286ff73 1975
05394f39 1976 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1977
6c085a72
CW
1978 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1979 if (ret) {
1980 /* In the event of a disaster, abandon all caches and
1981 * hope for the best.
1982 */
1983 WARN_ON(ret != -EIO);
2c22569b 1984 i915_gem_clflush_object(obj, true);
6c085a72
CW
1985 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1986 }
1987
6dacfd2f 1988 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1989 i915_gem_object_save_bit_17_swizzle(obj);
1990
05394f39
CW
1991 if (obj->madv == I915_MADV_DONTNEED)
1992 obj->dirty = 0;
3ef94daa 1993
90797e6d 1994 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1995 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1996
05394f39 1997 if (obj->dirty)
9da3da66 1998 set_page_dirty(page);
3ef94daa 1999
05394f39 2000 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2001 mark_page_accessed(page);
3ef94daa 2002
9da3da66 2003 page_cache_release(page);
3ef94daa 2004 }
05394f39 2005 obj->dirty = 0;
673a394b 2006
9da3da66
CW
2007 sg_free_table(obj->pages);
2008 kfree(obj->pages);
37e680a1 2009}
6c085a72 2010
dd624afd 2011int
37e680a1
CW
2012i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2013{
2014 const struct drm_i915_gem_object_ops *ops = obj->ops;
2015
2f745ad3 2016 if (obj->pages == NULL)
37e680a1
CW
2017 return 0;
2018
a5570178
CW
2019 if (obj->pages_pin_count)
2020 return -EBUSY;
2021
9843877d 2022 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2023
a2165e31
CW
2024 /* ->put_pages might need to allocate memory for the bit17 swizzle
2025 * array, hence protect them from being reaped by removing them from gtt
2026 * lists early. */
35c20a60 2027 list_del(&obj->global_list);
a2165e31 2028
37e680a1 2029 ops->put_pages(obj);
05394f39 2030 obj->pages = NULL;
37e680a1 2031
5537252b 2032 i915_gem_object_invalidate(obj);
6c085a72
CW
2033
2034 return 0;
2035}
2036
21ab4e74
CW
2037unsigned long
2038i915_gem_shrink(struct drm_i915_private *dev_priv,
2039 long target, unsigned flags)
6c085a72 2040{
60a53727
CW
2041 const struct {
2042 struct list_head *list;
2043 unsigned int bit;
2044 } phases[] = {
2045 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2046 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2047 { NULL, 0 },
2048 }, *phase;
d9973b43 2049 unsigned long count = 0;
6c085a72 2050
57094f82 2051 /*
c8725f3d 2052 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2053 * (due to retiring requests) we have to strictly process only
2054 * one element of the list at the time, and recheck the list
2055 * on every iteration.
c8725f3d
CW
2056 *
2057 * In particular, we must hold a reference whilst removing the
2058 * object as we may end up waiting for and/or retiring the objects.
2059 * This might release the final reference (held by the active list)
2060 * and result in the object being freed from under us. This is
2061 * similar to the precautions the eviction code must take whilst
2062 * removing objects.
2063 *
2064 * Also note that although these lists do not hold a reference to
2065 * the object we can safely grab one here: The final object
2066 * unreferencing and the bound_list are both protected by the
2067 * dev->struct_mutex and so we won't ever be able to observe an
2068 * object on the bound_list with a reference count equals 0.
57094f82 2069 */
60a53727 2070 for (phase = phases; phase->list; phase++) {
21ab4e74 2071 struct list_head still_in_list;
c8725f3d 2072
60a53727
CW
2073 if ((flags & phase->bit) == 0)
2074 continue;
80dcfdbd 2075
21ab4e74 2076 INIT_LIST_HEAD(&still_in_list);
60a53727 2077 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2078 struct drm_i915_gem_object *obj;
2079 struct i915_vma *vma, *v;
57094f82 2080
60a53727 2081 obj = list_first_entry(phase->list,
21ab4e74
CW
2082 typeof(*obj), global_list);
2083 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2084
60a53727
CW
2085 if (flags & I915_SHRINK_PURGEABLE &&
2086 !i915_gem_object_is_purgeable(obj))
21ab4e74 2087 continue;
57094f82 2088
21ab4e74 2089 drm_gem_object_reference(&obj->base);
80dcfdbd 2090
60a53727
CW
2091 /* For the unbound phase, this should be a no-op! */
2092 list_for_each_entry_safe(vma, v,
2093 &obj->vma_list, vma_link)
21ab4e74
CW
2094 if (i915_vma_unbind(vma))
2095 break;
57094f82 2096
21ab4e74
CW
2097 if (i915_gem_object_put_pages(obj) == 0)
2098 count += obj->base.size >> PAGE_SHIFT;
2099
2100 drm_gem_object_unreference(&obj->base);
2101 }
60a53727 2102 list_splice(&still_in_list, phase->list);
6c085a72
CW
2103 }
2104
2105 return count;
2106}
2107
d9973b43 2108static unsigned long
6c085a72
CW
2109i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2110{
6c085a72 2111 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2112 return i915_gem_shrink(dev_priv, LONG_MAX,
2113 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2114}
2115
37e680a1 2116static int
6c085a72 2117i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2118{
6c085a72 2119 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2120 int page_count, i;
2121 struct address_space *mapping;
9da3da66
CW
2122 struct sg_table *st;
2123 struct scatterlist *sg;
90797e6d 2124 struct sg_page_iter sg_iter;
e5281ccd 2125 struct page *page;
90797e6d 2126 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2127 gfp_t gfp;
e5281ccd 2128
6c085a72
CW
2129 /* Assert that the object is not currently in any GPU domain. As it
2130 * wasn't in the GTT, there shouldn't be any way it could have been in
2131 * a GPU cache
2132 */
2133 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
9da3da66
CW
2136 st = kmalloc(sizeof(*st), GFP_KERNEL);
2137 if (st == NULL)
2138 return -ENOMEM;
2139
05394f39 2140 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2141 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2142 kfree(st);
e5281ccd 2143 return -ENOMEM;
9da3da66 2144 }
e5281ccd 2145
9da3da66
CW
2146 /* Get the list of pages out of our struct file. They'll be pinned
2147 * at this point until we release them.
2148 *
2149 * Fail silently without starting the shrinker
2150 */
496ad9aa 2151 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2152 gfp = mapping_gfp_mask(mapping);
caf49191 2153 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2154 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2155 sg = st->sgl;
2156 st->nents = 0;
2157 for (i = 0; i < page_count; i++) {
6c085a72
CW
2158 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2159 if (IS_ERR(page)) {
21ab4e74
CW
2160 i915_gem_shrink(dev_priv,
2161 page_count,
2162 I915_SHRINK_BOUND |
2163 I915_SHRINK_UNBOUND |
2164 I915_SHRINK_PURGEABLE);
6c085a72
CW
2165 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2166 }
2167 if (IS_ERR(page)) {
2168 /* We've tried hard to allocate the memory by reaping
2169 * our own buffer, now let the real VM do its job and
2170 * go down in flames if truly OOM.
2171 */
6c085a72 2172 i915_gem_shrink_all(dev_priv);
f461d1be 2173 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2174 if (IS_ERR(page))
2175 goto err_pages;
6c085a72 2176 }
426729dc
KRW
2177#ifdef CONFIG_SWIOTLB
2178 if (swiotlb_nr_tbl()) {
2179 st->nents++;
2180 sg_set_page(sg, page, PAGE_SIZE, 0);
2181 sg = sg_next(sg);
2182 continue;
2183 }
2184#endif
90797e6d
ID
2185 if (!i || page_to_pfn(page) != last_pfn + 1) {
2186 if (i)
2187 sg = sg_next(sg);
2188 st->nents++;
2189 sg_set_page(sg, page, PAGE_SIZE, 0);
2190 } else {
2191 sg->length += PAGE_SIZE;
2192 }
2193 last_pfn = page_to_pfn(page);
3bbbe706
DV
2194
2195 /* Check that the i965g/gm workaround works. */
2196 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2197 }
426729dc
KRW
2198#ifdef CONFIG_SWIOTLB
2199 if (!swiotlb_nr_tbl())
2200#endif
2201 sg_mark_end(sg);
74ce6b6c
CW
2202 obj->pages = st;
2203
6dacfd2f 2204 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2205 i915_gem_object_do_bit_17_swizzle(obj);
2206
656bfa3a
DV
2207 if (obj->tiling_mode != I915_TILING_NONE &&
2208 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2209 i915_gem_object_pin_pages(obj);
2210
e5281ccd
CW
2211 return 0;
2212
2213err_pages:
90797e6d
ID
2214 sg_mark_end(sg);
2215 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2216 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2217 sg_free_table(st);
2218 kfree(st);
0820baf3
CW
2219
2220 /* shmemfs first checks if there is enough memory to allocate the page
2221 * and reports ENOSPC should there be insufficient, along with the usual
2222 * ENOMEM for a genuine allocation failure.
2223 *
2224 * We use ENOSPC in our driver to mean that we have run out of aperture
2225 * space and so want to translate the error from shmemfs back to our
2226 * usual understanding of ENOMEM.
2227 */
2228 if (PTR_ERR(page) == -ENOSPC)
2229 return -ENOMEM;
2230 else
2231 return PTR_ERR(page);
673a394b
EA
2232}
2233
37e680a1
CW
2234/* Ensure that the associated pages are gathered from the backing storage
2235 * and pinned into our object. i915_gem_object_get_pages() may be called
2236 * multiple times before they are released by a single call to
2237 * i915_gem_object_put_pages() - once the pages are no longer referenced
2238 * either as a result of memory pressure (reaping pages under the shrinker)
2239 * or as the object is itself released.
2240 */
2241int
2242i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2243{
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 const struct drm_i915_gem_object_ops *ops = obj->ops;
2246 int ret;
2247
2f745ad3 2248 if (obj->pages)
37e680a1
CW
2249 return 0;
2250
43e28f09 2251 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2252 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2253 return -EFAULT;
43e28f09
CW
2254 }
2255
a5570178
CW
2256 BUG_ON(obj->pages_pin_count);
2257
37e680a1
CW
2258 ret = ops->get_pages(obj);
2259 if (ret)
2260 return ret;
2261
35c20a60 2262 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2263 return 0;
673a394b
EA
2264}
2265
e2d05a8b 2266static void
05394f39 2267i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2268 struct intel_engine_cs *ring)
673a394b 2269{
41c52415
JH
2270 struct drm_i915_gem_request *req;
2271 struct intel_engine_cs *old_ring;
617dbe27 2272
852835f3 2273 BUG_ON(ring == NULL);
41c52415
JH
2274
2275 req = intel_ring_get_request(ring);
2276 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2277
2278 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2279 /* Keep the request relative to the current ring */
2280 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2281 }
673a394b
EA
2282
2283 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2284 if (!obj->active) {
2285 drm_gem_object_reference(&obj->base);
2286 obj->active = 1;
673a394b 2287 }
e35a41de 2288
05394f39 2289 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2290
97b2a6a1 2291 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2292}
2293
e2d05a8b 2294void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2295 struct intel_engine_cs *ring)
e2d05a8b
BW
2296{
2297 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2298 return i915_gem_object_move_to_active(vma->obj, ring);
2299}
2300
caea7476 2301static void
caea7476 2302i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2303{
feb822cf 2304 struct i915_vma *vma;
ce44b0ea 2305
65ce3027 2306 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2307 BUG_ON(!obj->active);
caea7476 2308
fe14d5f4
TU
2309 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2310 if (!list_empty(&vma->mm_list))
2311 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2312 }
caea7476 2313
f99d7069
DV
2314 intel_fb_obj_flush(obj, true);
2315
65ce3027 2316 list_del_init(&obj->ring_list);
caea7476 2317
97b2a6a1
JH
2318 i915_gem_request_assign(&obj->last_read_req, NULL);
2319 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2320 obj->base.write_domain = 0;
2321
97b2a6a1 2322 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2323
2324 obj->active = 0;
2325 drm_gem_object_unreference(&obj->base);
2326
2327 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2328}
673a394b 2329
c8725f3d
CW
2330static void
2331i915_gem_object_retire(struct drm_i915_gem_object *obj)
2332{
41c52415 2333 if (obj->last_read_req == NULL)
c8725f3d
CW
2334 return;
2335
1b5a433a 2336 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2337 i915_gem_object_move_to_inactive(obj);
2338}
2339
9d773091 2340static int
fca26bb4 2341i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2342{
9d773091 2343 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2344 struct intel_engine_cs *ring;
9d773091 2345 int ret, i, j;
53d227f2 2346
107f27a5 2347 /* Carefully retire all requests without writing to the rings */
9d773091 2348 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2349 ret = intel_ring_idle(ring);
2350 if (ret)
2351 return ret;
9d773091 2352 }
9d773091 2353 i915_gem_retire_requests(dev);
107f27a5
CW
2354
2355 /* Finally reset hw state */
9d773091 2356 for_each_ring(ring, dev_priv, i) {
fca26bb4 2357 intel_ring_init_seqno(ring, seqno);
498d2ac1 2358
ebc348b2
BW
2359 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2360 ring->semaphore.sync_seqno[j] = 0;
9d773091 2361 }
53d227f2 2362
9d773091 2363 return 0;
53d227f2
DV
2364}
2365
fca26bb4
MK
2366int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2367{
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 int ret;
2370
2371 if (seqno == 0)
2372 return -EINVAL;
2373
2374 /* HWS page needs to be set less than what we
2375 * will inject to ring
2376 */
2377 ret = i915_gem_init_seqno(dev, seqno - 1);
2378 if (ret)
2379 return ret;
2380
2381 /* Carefully set the last_seqno value so that wrap
2382 * detection still works
2383 */
2384 dev_priv->next_seqno = seqno;
2385 dev_priv->last_seqno = seqno - 1;
2386 if (dev_priv->last_seqno == 0)
2387 dev_priv->last_seqno--;
2388
2389 return 0;
2390}
2391
9d773091
CW
2392int
2393i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2394{
9d773091
CW
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397 /* reserve 0 for non-seqno */
2398 if (dev_priv->next_seqno == 0) {
fca26bb4 2399 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2400 if (ret)
2401 return ret;
53d227f2 2402
9d773091
CW
2403 dev_priv->next_seqno = 1;
2404 }
53d227f2 2405
f72b3435 2406 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2407 return 0;
53d227f2
DV
2408}
2409
a4872ba6 2410int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2411 struct drm_file *file,
9400ae5c 2412 struct drm_i915_gem_object *obj)
673a394b 2413{
3e31c6c0 2414 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2415 struct drm_i915_gem_request *request;
48e29f55 2416 struct intel_ringbuffer *ringbuf;
6d3d8274 2417 u32 request_start;
3cce469c
CW
2418 int ret;
2419
6259cead 2420 request = ring->outstanding_lazy_request;
48e29f55
OM
2421 if (WARN_ON(request == NULL))
2422 return -ENOMEM;
2423
2424 if (i915.enable_execlists) {
21076372 2425 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2426 } else
2427 ringbuf = ring->buffer;
2428
2429 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2430 /*
2431 * Emit any outstanding flushes - execbuf can fail to emit the flush
2432 * after having emitted the batchbuffer command. Hence we need to fix
2433 * things up similar to emitting the lazy request. The difference here
2434 * is that the flush _must_ happen before the next request, no matter
2435 * what.
2436 */
48e29f55 2437 if (i915.enable_execlists) {
21076372 2438 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = intel_ring_flush_all_caches(ring);
2443 if (ret)
2444 return ret;
2445 }
cc889e0f 2446
a71d8d94
CW
2447 /* Record the position of the start of the request so that
2448 * should we detect the updated seqno part-way through the
2449 * GPU processing the request, we never over-estimate the
2450 * position of the head.
2451 */
6d3d8274 2452 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2453
48e29f55 2454 if (i915.enable_execlists) {
72f95afa 2455 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2456 if (ret)
2457 return ret;
2458 } else {
2459 ret = ring->add_request(ring);
2460 if (ret)
2461 return ret;
2462 }
673a394b 2463
7d736f4f 2464 request->head = request_start;
6d3d8274 2465 request->tail = intel_ring_get_tail(ringbuf);
7d736f4f
MK
2466
2467 /* Whilst this request exists, batch_obj will be on the
2468 * active_list, and so will hold the active reference. Only when this
2469 * request is retired will the the batch_obj be moved onto the
2470 * inactive_list and lose its active reference. Hence we do not need
2471 * to explicitly hold another reference here.
2472 */
9a7e0c2a 2473 request->batch_obj = obj;
0e50e96b 2474
48e29f55
OM
2475 if (!i915.enable_execlists) {
2476 /* Hold a reference to the current context so that we can inspect
2477 * it later in case a hangcheck error event fires.
2478 */
2479 request->ctx = ring->last_context;
2480 if (request->ctx)
2481 i915_gem_context_reference(request->ctx);
2482 }
0e50e96b 2483
673a394b 2484 request->emitted_jiffies = jiffies;
852835f3 2485 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2486 request->file_priv = NULL;
852835f3 2487
db53a302
CW
2488 if (file) {
2489 struct drm_i915_file_private *file_priv = file->driver_priv;
2490
1c25595f 2491 spin_lock(&file_priv->mm.lock);
f787a5f5 2492 request->file_priv = file_priv;
b962442e 2493 list_add_tail(&request->client_list,
f787a5f5 2494 &file_priv->mm.request_list);
1c25595f 2495 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2496
2497 request->pid = get_pid(task_pid(current));
b962442e 2498 }
673a394b 2499
74328ee5 2500 trace_i915_gem_request_add(request);
6259cead 2501 ring->outstanding_lazy_request = NULL;
db53a302 2502
87255483 2503 i915_queue_hangcheck(ring->dev);
10cd45b6 2504
87255483
DV
2505 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2506 queue_delayed_work(dev_priv->wq,
2507 &dev_priv->mm.retire_work,
2508 round_jiffies_up_relative(HZ));
2509 intel_mark_busy(dev_priv->dev);
cc889e0f 2510
3cce469c 2511 return 0;
673a394b
EA
2512}
2513
f787a5f5
CW
2514static inline void
2515i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2516{
1c25595f 2517 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2518
1c25595f
CW
2519 if (!file_priv)
2520 return;
1c5d22f7 2521
1c25595f 2522 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2523 list_del(&request->client_list);
2524 request->file_priv = NULL;
1c25595f 2525 spin_unlock(&file_priv->mm.lock);
673a394b 2526}
673a394b 2527
939fd762 2528static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2529 const struct intel_context *ctx)
be62acb4 2530{
44e2c070 2531 unsigned long elapsed;
be62acb4 2532
44e2c070
MK
2533 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2534
2535 if (ctx->hang_stats.banned)
be62acb4
MK
2536 return true;
2537
676fa572
CW
2538 if (ctx->hang_stats.ban_period_seconds &&
2539 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2540 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2541 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2542 return true;
88b4aa87
MK
2543 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2544 if (i915_stop_ring_allow_warn(dev_priv))
2545 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2546 return true;
3fac8978 2547 }
be62acb4
MK
2548 }
2549
2550 return false;
2551}
2552
939fd762 2553static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2554 struct intel_context *ctx,
b6b0fac0 2555 const bool guilty)
aa60c664 2556{
44e2c070
MK
2557 struct i915_ctx_hang_stats *hs;
2558
2559 if (WARN_ON(!ctx))
2560 return;
aa60c664 2561
44e2c070
MK
2562 hs = &ctx->hang_stats;
2563
2564 if (guilty) {
939fd762 2565 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2566 hs->batch_active++;
2567 hs->guilty_ts = get_seconds();
2568 } else {
2569 hs->batch_pending++;
aa60c664
MK
2570 }
2571}
2572
0e50e96b
MK
2573static void i915_gem_free_request(struct drm_i915_gem_request *request)
2574{
2575 list_del(&request->list);
2576 i915_gem_request_remove_from_client(request);
2577
071c92de
MK
2578 put_pid(request->pid);
2579
abfe262a
JH
2580 i915_gem_request_unreference(request);
2581}
2582
2583void i915_gem_request_free(struct kref *req_ref)
2584{
2585 struct drm_i915_gem_request *req = container_of(req_ref,
2586 typeof(*req), ref);
2587 struct intel_context *ctx = req->ctx;
2588
0794aed3
TD
2589 if (ctx) {
2590 if (i915.enable_execlists) {
abfe262a 2591 struct intel_engine_cs *ring = req->ring;
0e50e96b 2592
0794aed3
TD
2593 if (ctx != ring->default_context)
2594 intel_lr_context_unpin(ring, ctx);
2595 }
abfe262a 2596
dcb4c12a
OM
2597 i915_gem_context_unreference(ctx);
2598 }
abfe262a
JH
2599
2600 kfree(req);
0e50e96b
MK
2601}
2602
8d9fc7fd 2603struct drm_i915_gem_request *
a4872ba6 2604i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2605{
4db080f9
CW
2606 struct drm_i915_gem_request *request;
2607
2608 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2609 if (i915_gem_request_completed(request, false))
4db080f9 2610 continue;
aa60c664 2611
b6b0fac0 2612 return request;
4db080f9 2613 }
b6b0fac0
MK
2614
2615 return NULL;
2616}
2617
2618static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2619 struct intel_engine_cs *ring)
b6b0fac0
MK
2620{
2621 struct drm_i915_gem_request *request;
2622 bool ring_hung;
2623
8d9fc7fd 2624 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2625
2626 if (request == NULL)
2627 return;
2628
2629 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2630
939fd762 2631 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2632
2633 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2634 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2635}
aa60c664 2636
4db080f9 2637static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2638 struct intel_engine_cs *ring)
4db080f9 2639{
dfaae392 2640 while (!list_empty(&ring->active_list)) {
05394f39 2641 struct drm_i915_gem_object *obj;
9375e446 2642
05394f39
CW
2643 obj = list_first_entry(&ring->active_list,
2644 struct drm_i915_gem_object,
2645 ring_list);
9375e446 2646
05394f39 2647 i915_gem_object_move_to_inactive(obj);
673a394b 2648 }
1d62beea 2649
dcb4c12a
OM
2650 /*
2651 * Clear the execlists queue up before freeing the requests, as those
2652 * are the ones that keep the context and ringbuffer backing objects
2653 * pinned in place.
2654 */
2655 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2656 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2657
2658 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2659 struct drm_i915_gem_request,
dcb4c12a
OM
2660 execlist_link);
2661 list_del(&submit_req->execlist_link);
2662 intel_runtime_pm_put(dev_priv);
1197b4f2
MK
2663
2664 if (submit_req->ctx != ring->default_context)
2665 intel_lr_context_unpin(ring, submit_req->ctx);
2666
b3a38998 2667 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2668 }
2669
1d62beea
BW
2670 /*
2671 * We must free the requests after all the corresponding objects have
2672 * been moved off active lists. Which is the same order as the normal
2673 * retire_requests function does. This is important if object hold
2674 * implicit references on things like e.g. ppgtt address spaces through
2675 * the request.
2676 */
2677 while (!list_empty(&ring->request_list)) {
2678 struct drm_i915_gem_request *request;
2679
2680 request = list_first_entry(&ring->request_list,
2681 struct drm_i915_gem_request,
2682 list);
2683
2684 i915_gem_free_request(request);
2685 }
e3efda49 2686
6259cead
JH
2687 /* This may not have been flushed before the reset, so clean it now */
2688 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2689}
2690
19b2dbde 2691void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2692{
2693 struct drm_i915_private *dev_priv = dev->dev_private;
2694 int i;
2695
4b9de737 2696 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2697 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2698
94a335db
DV
2699 /*
2700 * Commit delayed tiling changes if we have an object still
2701 * attached to the fence, otherwise just clear the fence.
2702 */
2703 if (reg->obj) {
2704 i915_gem_object_update_fence(reg->obj, reg,
2705 reg->obj->tiling_mode);
2706 } else {
2707 i915_gem_write_fence(dev, i, NULL);
2708 }
312817a3
CW
2709 }
2710}
2711
069efc1d 2712void i915_gem_reset(struct drm_device *dev)
673a394b 2713{
77f01230 2714 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2715 struct intel_engine_cs *ring;
1ec14ad3 2716 int i;
673a394b 2717
4db080f9
CW
2718 /*
2719 * Before we free the objects from the requests, we need to inspect
2720 * them for finding the guilty party. As the requests only borrow
2721 * their reference to the objects, the inspection must be done first.
2722 */
2723 for_each_ring(ring, dev_priv, i)
2724 i915_gem_reset_ring_status(dev_priv, ring);
2725
b4519513 2726 for_each_ring(ring, dev_priv, i)
4db080f9 2727 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2728
acce9ffa
BW
2729 i915_gem_context_reset(dev);
2730
19b2dbde 2731 i915_gem_restore_fences(dev);
673a394b
EA
2732}
2733
2734/**
2735 * This function clears the request list as sequence numbers are passed.
2736 */
1cf0ba14 2737void
a4872ba6 2738i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2739{
db53a302 2740 if (list_empty(&ring->request_list))
6c0594a3
KW
2741 return;
2742
db53a302 2743 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2744
e9103038
CW
2745 /* Move any buffers on the active list that are no longer referenced
2746 * by the ringbuffer to the flushing/inactive lists as appropriate,
2747 * before we free the context associated with the requests.
2748 */
2749 while (!list_empty(&ring->active_list)) {
2750 struct drm_i915_gem_object *obj;
2751
2752 obj = list_first_entry(&ring->active_list,
2753 struct drm_i915_gem_object,
2754 ring_list);
2755
1b5a433a 2756 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2757 break;
2758
2759 i915_gem_object_move_to_inactive(obj);
2760 }
2761
2762
852835f3 2763 while (!list_empty(&ring->request_list)) {
673a394b 2764 struct drm_i915_gem_request *request;
673a394b 2765
852835f3 2766 request = list_first_entry(&ring->request_list,
673a394b
EA
2767 struct drm_i915_gem_request,
2768 list);
673a394b 2769
1b5a433a 2770 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2771 break;
2772
74328ee5 2773 trace_i915_gem_request_retire(request);
48e29f55 2774
a71d8d94
CW
2775 /* We know the GPU must have read the request to have
2776 * sent us the seqno + interrupt, so use the position
2777 * of tail of the request to update the last known position
2778 * of the GPU head.
2779 */
98e1bd4a 2780 request->ringbuf->last_retired_head = request->postfix;
b84d5f0c 2781
0e50e96b 2782 i915_gem_free_request(request);
b84d5f0c 2783 }
673a394b 2784
581c26e8
JH
2785 if (unlikely(ring->trace_irq_req &&
2786 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2787 ring->irq_put(ring);
581c26e8 2788 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2789 }
23bc5982 2790
db53a302 2791 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2792}
2793
b29c19b6 2794bool
b09a1fec
CW
2795i915_gem_retire_requests(struct drm_device *dev)
2796{
3e31c6c0 2797 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2798 struct intel_engine_cs *ring;
b29c19b6 2799 bool idle = true;
1ec14ad3 2800 int i;
b09a1fec 2801
b29c19b6 2802 for_each_ring(ring, dev_priv, i) {
b4519513 2803 i915_gem_retire_requests_ring(ring);
b29c19b6 2804 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2805 if (i915.enable_execlists) {
2806 unsigned long flags;
2807
2808 spin_lock_irqsave(&ring->execlist_lock, flags);
2809 idle &= list_empty(&ring->execlist_queue);
2810 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2811
2812 intel_execlists_retire_requests(ring);
2813 }
b29c19b6
CW
2814 }
2815
2816 if (idle)
2817 mod_delayed_work(dev_priv->wq,
2818 &dev_priv->mm.idle_work,
2819 msecs_to_jiffies(100));
2820
2821 return idle;
b09a1fec
CW
2822}
2823
75ef9da2 2824static void
673a394b
EA
2825i915_gem_retire_work_handler(struct work_struct *work)
2826{
b29c19b6
CW
2827 struct drm_i915_private *dev_priv =
2828 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2829 struct drm_device *dev = dev_priv->dev;
0a58705b 2830 bool idle;
673a394b 2831
891b48cf 2832 /* Come back later if the device is busy... */
b29c19b6
CW
2833 idle = false;
2834 if (mutex_trylock(&dev->struct_mutex)) {
2835 idle = i915_gem_retire_requests(dev);
2836 mutex_unlock(&dev->struct_mutex);
673a394b 2837 }
b29c19b6 2838 if (!idle)
bcb45086
CW
2839 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2840 round_jiffies_up_relative(HZ));
b29c19b6 2841}
0a58705b 2842
b29c19b6
CW
2843static void
2844i915_gem_idle_work_handler(struct work_struct *work)
2845{
2846 struct drm_i915_private *dev_priv =
2847 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2848
2849 intel_mark_idle(dev_priv->dev);
673a394b
EA
2850}
2851
30dfebf3
DV
2852/**
2853 * Ensures that an object will eventually get non-busy by flushing any required
2854 * write domains, emitting any outstanding lazy request and retiring and
2855 * completed requests.
2856 */
2857static int
2858i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2859{
41c52415 2860 struct intel_engine_cs *ring;
30dfebf3
DV
2861 int ret;
2862
2863 if (obj->active) {
41c52415
JH
2864 ring = i915_gem_request_get_ring(obj->last_read_req);
2865
b6660d59 2866 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2867 if (ret)
2868 return ret;
2869
41c52415 2870 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2871 }
2872
2873 return 0;
2874}
2875
23ba4fd0
BW
2876/**
2877 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2878 * @DRM_IOCTL_ARGS: standard ioctl arguments
2879 *
2880 * Returns 0 if successful, else an error is returned with the remaining time in
2881 * the timeout parameter.
2882 * -ETIME: object is still busy after timeout
2883 * -ERESTARTSYS: signal interrupted the wait
2884 * -ENONENT: object doesn't exist
2885 * Also possible, but rare:
2886 * -EAGAIN: GPU wedged
2887 * -ENOMEM: damn
2888 * -ENODEV: Internal IRQ fail
2889 * -E?: The add request failed
2890 *
2891 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2892 * non-zero timeout parameter the wait ioctl will wait for the given number of
2893 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2894 * without holding struct_mutex the object may become re-busied before this
2895 * function completes. A similar but shorter * race condition exists in the busy
2896 * ioctl
2897 */
2898int
2899i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2900{
3e31c6c0 2901 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2902 struct drm_i915_gem_wait *args = data;
2903 struct drm_i915_gem_object *obj;
ff865885 2904 struct drm_i915_gem_request *req;
f69061be 2905 unsigned reset_counter;
23ba4fd0
BW
2906 int ret = 0;
2907
11b5d511
DV
2908 if (args->flags != 0)
2909 return -EINVAL;
2910
23ba4fd0
BW
2911 ret = i915_mutex_lock_interruptible(dev);
2912 if (ret)
2913 return ret;
2914
2915 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2916 if (&obj->base == NULL) {
2917 mutex_unlock(&dev->struct_mutex);
2918 return -ENOENT;
2919 }
2920
30dfebf3
DV
2921 /* Need to make sure the object gets inactive eventually. */
2922 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2923 if (ret)
2924 goto out;
2925
97b2a6a1
JH
2926 if (!obj->active || !obj->last_read_req)
2927 goto out;
23ba4fd0 2928
ff865885 2929 req = obj->last_read_req;
23ba4fd0 2930
23ba4fd0 2931 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2932 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2933 */
5ed0bdf2 2934 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2935 ret = -ETIME;
2936 goto out;
2937 }
2938
2939 drm_gem_object_unreference(&obj->base);
f69061be 2940 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2941 i915_gem_request_reference(req);
23ba4fd0
BW
2942 mutex_unlock(&dev->struct_mutex);
2943
9c654818
JH
2944 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2945 file->driver_priv);
ff865885
JH
2946 mutex_lock(&dev->struct_mutex);
2947 i915_gem_request_unreference(req);
2948 mutex_unlock(&dev->struct_mutex);
2949 return ret;
23ba4fd0
BW
2950
2951out:
2952 drm_gem_object_unreference(&obj->base);
2953 mutex_unlock(&dev->struct_mutex);
2954 return ret;
2955}
2956
5816d648
BW
2957/**
2958 * i915_gem_object_sync - sync an object to a ring.
2959 *
2960 * @obj: object which may be in use on another ring.
2961 * @to: ring we wish to use the object on. May be NULL.
2962 *
2963 * This code is meant to abstract object synchronization with the GPU.
2964 * Calling with NULL implies synchronizing the object with the CPU
2965 * rather than a particular GPU ring.
2966 *
2967 * Returns 0 if successful, else propagates up the lower layer error.
2968 */
2911a35b
BW
2969int
2970i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2971 struct intel_engine_cs *to)
2911a35b 2972{
41c52415 2973 struct intel_engine_cs *from;
2911a35b
BW
2974 u32 seqno;
2975 int ret, idx;
2976
41c52415
JH
2977 from = i915_gem_request_get_ring(obj->last_read_req);
2978
2911a35b
BW
2979 if (from == NULL || to == from)
2980 return 0;
2981
5816d648 2982 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2983 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2984
2985 idx = intel_ring_sync_index(from, to);
2986
97b2a6a1 2987 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2988 /* Optimization: Avoid semaphore sync when we are sure we already
2989 * waited for an object with higher seqno */
ebc348b2 2990 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2991 return 0;
2992
b6660d59 2993 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
2994 if (ret)
2995 return ret;
2911a35b 2996
74328ee5 2997 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 2998 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2999 if (!ret)
97b2a6a1 3000 /* We use last_read_req because sync_to()
7b01e260
MK
3001 * might have just caused seqno wrap under
3002 * the radar.
3003 */
97b2a6a1
JH
3004 from->semaphore.sync_seqno[idx] =
3005 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3006
e3a5a225 3007 return ret;
2911a35b
BW
3008}
3009
b5ffc9bc
CW
3010static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3011{
3012 u32 old_write_domain, old_read_domains;
3013
b5ffc9bc
CW
3014 /* Force a pagefault for domain tracking on next user access */
3015 i915_gem_release_mmap(obj);
3016
b97c3d9c
KP
3017 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3018 return;
3019
97c809fd
CW
3020 /* Wait for any direct GTT access to complete */
3021 mb();
3022
b5ffc9bc
CW
3023 old_read_domains = obj->base.read_domains;
3024 old_write_domain = obj->base.write_domain;
3025
3026 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3027 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3028
3029 trace_i915_gem_object_change_domain(obj,
3030 old_read_domains,
3031 old_write_domain);
3032}
3033
07fe0b12 3034int i915_vma_unbind(struct i915_vma *vma)
673a394b 3035{
07fe0b12 3036 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3038 int ret;
673a394b 3039
07fe0b12 3040 if (list_empty(&vma->vma_link))
673a394b
EA
3041 return 0;
3042
0ff501cb
DV
3043 if (!drm_mm_node_allocated(&vma->node)) {
3044 i915_gem_vma_destroy(vma);
0ff501cb
DV
3045 return 0;
3046 }
433544bd 3047
d7f46fc4 3048 if (vma->pin_count)
31d8d651 3049 return -EBUSY;
673a394b 3050
c4670ad0
CW
3051 BUG_ON(obj->pages == NULL);
3052
a8198eea 3053 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3054 if (ret)
a8198eea
CW
3055 return ret;
3056 /* Continue on if we fail due to EIO, the GPU is hung so we
3057 * should be safe and we need to cleanup or else we might
3058 * cause memory corruption through use-after-free.
3059 */
3060
fe14d5f4
TU
3061 if (i915_is_ggtt(vma->vm) &&
3062 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3063 i915_gem_object_finish_gtt(obj);
5323fd04 3064
8b1bc9b4
DV
3065 /* release the fence reg _after_ flushing */
3066 ret = i915_gem_object_put_fence(obj);
3067 if (ret)
3068 return ret;
3069 }
96b47b65 3070
07fe0b12 3071 trace_i915_vma_unbind(vma);
db53a302 3072
6f65e29a
BW
3073 vma->unbind_vma(vma);
3074
64bf9303 3075 list_del_init(&vma->mm_list);
fe14d5f4
TU
3076 if (i915_is_ggtt(vma->vm)) {
3077 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3078 obj->map_and_fenceable = false;
3079 } else if (vma->ggtt_view.pages) {
3080 sg_free_table(vma->ggtt_view.pages);
3081 kfree(vma->ggtt_view.pages);
3082 vma->ggtt_view.pages = NULL;
3083 }
3084 }
673a394b 3085
2f633156
BW
3086 drm_mm_remove_node(&vma->node);
3087 i915_gem_vma_destroy(vma);
3088
3089 /* Since the unbound list is global, only move to that list if
b93dab6e 3090 * no more VMAs exist. */
9490edb5 3091 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3092 /* Throw away the active reference before
3093 * moving to the unbound list. */
3094 i915_gem_object_retire(obj);
3095
9490edb5 3096 i915_gem_gtt_finish_object(obj);
2f633156 3097 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3098 }
673a394b 3099
70903c3b
CW
3100 /* And finally now the object is completely decoupled from this vma,
3101 * we can drop its hold on the backing storage and allow it to be
3102 * reaped by the shrinker.
3103 */
3104 i915_gem_object_unpin_pages(obj);
3105
88241785 3106 return 0;
54cf91dc
CW
3107}
3108
b2da9fe5 3109int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3110{
3e31c6c0 3111 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3112 struct intel_engine_cs *ring;
1ec14ad3 3113 int ret, i;
4df2faf4 3114
4df2faf4 3115 /* Flush everything onto the inactive list. */
b4519513 3116 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3117 if (!i915.enable_execlists) {
3118 ret = i915_switch_context(ring, ring->default_context);
3119 if (ret)
3120 return ret;
3121 }
b6c7488d 3122
3e960501 3123 ret = intel_ring_idle(ring);
1ec14ad3
CW
3124 if (ret)
3125 return ret;
3126 }
4df2faf4 3127
8a1a49f9 3128 return 0;
4df2faf4
DV
3129}
3130
9ce079e4
CW
3131static void i965_write_fence_reg(struct drm_device *dev, int reg,
3132 struct drm_i915_gem_object *obj)
de151cf6 3133{
3e31c6c0 3134 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3135 int fence_reg;
3136 int fence_pitch_shift;
de151cf6 3137
56c844e5
ID
3138 if (INTEL_INFO(dev)->gen >= 6) {
3139 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3140 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3141 } else {
3142 fence_reg = FENCE_REG_965_0;
3143 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3144 }
3145
d18b9619
CW
3146 fence_reg += reg * 8;
3147
3148 /* To w/a incoherency with non-atomic 64-bit register updates,
3149 * we split the 64-bit update into two 32-bit writes. In order
3150 * for a partial fence not to be evaluated between writes, we
3151 * precede the update with write to turn off the fence register,
3152 * and only enable the fence as the last step.
3153 *
3154 * For extra levels of paranoia, we make sure each step lands
3155 * before applying the next step.
3156 */
3157 I915_WRITE(fence_reg, 0);
3158 POSTING_READ(fence_reg);
3159
9ce079e4 3160 if (obj) {
f343c5f6 3161 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3162 uint64_t val;
de151cf6 3163
af1a7301
BP
3164 /* Adjust fence size to match tiled area */
3165 if (obj->tiling_mode != I915_TILING_NONE) {
3166 uint32_t row_size = obj->stride *
3167 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3168 size = (size / row_size) * row_size;
3169 }
3170
f343c5f6 3171 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3172 0xfffff000) << 32;
f343c5f6 3173 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3174 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3175 if (obj->tiling_mode == I915_TILING_Y)
3176 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3177 val |= I965_FENCE_REG_VALID;
c6642782 3178
d18b9619
CW
3179 I915_WRITE(fence_reg + 4, val >> 32);
3180 POSTING_READ(fence_reg + 4);
3181
3182 I915_WRITE(fence_reg + 0, val);
3183 POSTING_READ(fence_reg);
3184 } else {
3185 I915_WRITE(fence_reg + 4, 0);
3186 POSTING_READ(fence_reg + 4);
3187 }
de151cf6
JB
3188}
3189
9ce079e4
CW
3190static void i915_write_fence_reg(struct drm_device *dev, int reg,
3191 struct drm_i915_gem_object *obj)
de151cf6 3192{
3e31c6c0 3193 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3194 u32 val;
de151cf6 3195
9ce079e4 3196 if (obj) {
f343c5f6 3197 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3198 int pitch_val;
3199 int tile_width;
c6642782 3200
f343c5f6 3201 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3202 (size & -size) != size ||
f343c5f6
BW
3203 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3204 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3205 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3206
9ce079e4
CW
3207 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3208 tile_width = 128;
3209 else
3210 tile_width = 512;
3211
3212 /* Note: pitch better be a power of two tile widths */
3213 pitch_val = obj->stride / tile_width;
3214 pitch_val = ffs(pitch_val) - 1;
3215
f343c5f6 3216 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3217 if (obj->tiling_mode == I915_TILING_Y)
3218 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3219 val |= I915_FENCE_SIZE_BITS(size);
3220 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3221 val |= I830_FENCE_REG_VALID;
3222 } else
3223 val = 0;
3224
3225 if (reg < 8)
3226 reg = FENCE_REG_830_0 + reg * 4;
3227 else
3228 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3229
3230 I915_WRITE(reg, val);
3231 POSTING_READ(reg);
de151cf6
JB
3232}
3233
9ce079e4
CW
3234static void i830_write_fence_reg(struct drm_device *dev, int reg,
3235 struct drm_i915_gem_object *obj)
de151cf6 3236{
3e31c6c0 3237 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3238 uint32_t val;
de151cf6 3239
9ce079e4 3240 if (obj) {
f343c5f6 3241 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3242 uint32_t pitch_val;
de151cf6 3243
f343c5f6 3244 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3245 (size & -size) != size ||
f343c5f6
BW
3246 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3247 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3248 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3249
9ce079e4
CW
3250 pitch_val = obj->stride / 128;
3251 pitch_val = ffs(pitch_val) - 1;
de151cf6 3252
f343c5f6 3253 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3254 if (obj->tiling_mode == I915_TILING_Y)
3255 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3256 val |= I830_FENCE_SIZE_BITS(size);
3257 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3258 val |= I830_FENCE_REG_VALID;
3259 } else
3260 val = 0;
c6642782 3261
9ce079e4
CW
3262 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3263 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3264}
3265
d0a57789
CW
3266inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3267{
3268 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3269}
3270
9ce079e4
CW
3271static void i915_gem_write_fence(struct drm_device *dev, int reg,
3272 struct drm_i915_gem_object *obj)
3273{
d0a57789
CW
3274 struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276 /* Ensure that all CPU reads are completed before installing a fence
3277 * and all writes before removing the fence.
3278 */
3279 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3280 mb();
3281
94a335db
DV
3282 WARN(obj && (!obj->stride || !obj->tiling_mode),
3283 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3284 obj->stride, obj->tiling_mode);
3285
ce38ab05
RV
3286 if (IS_GEN2(dev))
3287 i830_write_fence_reg(dev, reg, obj);
3288 else if (IS_GEN3(dev))
3289 i915_write_fence_reg(dev, reg, obj);
3290 else if (INTEL_INFO(dev)->gen >= 4)
3291 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3292
3293 /* And similarly be paranoid that no direct access to this region
3294 * is reordered to before the fence is installed.
3295 */
3296 if (i915_gem_object_needs_mb(obj))
3297 mb();
de151cf6
JB
3298}
3299
61050808
CW
3300static inline int fence_number(struct drm_i915_private *dev_priv,
3301 struct drm_i915_fence_reg *fence)
3302{
3303 return fence - dev_priv->fence_regs;
3304}
3305
3306static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3307 struct drm_i915_fence_reg *fence,
3308 bool enable)
3309{
2dc8aae0 3310 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3311 int reg = fence_number(dev_priv, fence);
3312
3313 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3314
3315 if (enable) {
46a0b638 3316 obj->fence_reg = reg;
61050808
CW
3317 fence->obj = obj;
3318 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3319 } else {
3320 obj->fence_reg = I915_FENCE_REG_NONE;
3321 fence->obj = NULL;
3322 list_del_init(&fence->lru_list);
3323 }
94a335db 3324 obj->fence_dirty = false;
61050808
CW
3325}
3326
d9e86c0e 3327static int
d0a57789 3328i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3329{
97b2a6a1 3330 if (obj->last_fenced_req) {
a4b3a571 3331 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3332 if (ret)
3333 return ret;
d9e86c0e 3334
97b2a6a1 3335 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3336 }
3337
3338 return 0;
3339}
3340
3341int
3342i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3343{
61050808 3344 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3345 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3346 int ret;
3347
d0a57789 3348 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3349 if (ret)
3350 return ret;
3351
61050808
CW
3352 if (obj->fence_reg == I915_FENCE_REG_NONE)
3353 return 0;
d9e86c0e 3354
f9c513e9
CW
3355 fence = &dev_priv->fence_regs[obj->fence_reg];
3356
aff10b30
DV
3357 if (WARN_ON(fence->pin_count))
3358 return -EBUSY;
3359
61050808 3360 i915_gem_object_fence_lost(obj);
f9c513e9 3361 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3362
3363 return 0;
3364}
3365
3366static struct drm_i915_fence_reg *
a360bb1a 3367i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3368{
ae3db24a 3369 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3370 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3371 int i;
ae3db24a
DV
3372
3373 /* First try to find a free reg */
d9e86c0e 3374 avail = NULL;
ae3db24a
DV
3375 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3376 reg = &dev_priv->fence_regs[i];
3377 if (!reg->obj)
d9e86c0e 3378 return reg;
ae3db24a 3379
1690e1eb 3380 if (!reg->pin_count)
d9e86c0e 3381 avail = reg;
ae3db24a
DV
3382 }
3383
d9e86c0e 3384 if (avail == NULL)
5dce5b93 3385 goto deadlock;
ae3db24a
DV
3386
3387 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3388 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3389 if (reg->pin_count)
ae3db24a
DV
3390 continue;
3391
8fe301ad 3392 return reg;
ae3db24a
DV
3393 }
3394
5dce5b93
CW
3395deadlock:
3396 /* Wait for completion of pending flips which consume fences */
3397 if (intel_has_pending_fb_unpin(dev))
3398 return ERR_PTR(-EAGAIN);
3399
3400 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3401}
3402
de151cf6 3403/**
9a5a53b3 3404 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3405 * @obj: object to map through a fence reg
3406 *
3407 * When mapping objects through the GTT, userspace wants to be able to write
3408 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3409 * This function walks the fence regs looking for a free one for @obj,
3410 * stealing one if it can't find any.
3411 *
3412 * It then sets up the reg based on the object's properties: address, pitch
3413 * and tiling format.
9a5a53b3
CW
3414 *
3415 * For an untiled surface, this removes any existing fence.
de151cf6 3416 */
8c4b8c3f 3417int
06d98131 3418i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3419{
05394f39 3420 struct drm_device *dev = obj->base.dev;
79e53945 3421 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3422 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3423 struct drm_i915_fence_reg *reg;
ae3db24a 3424 int ret;
de151cf6 3425
14415745
CW
3426 /* Have we updated the tiling parameters upon the object and so
3427 * will need to serialise the write to the associated fence register?
3428 */
5d82e3e6 3429 if (obj->fence_dirty) {
d0a57789 3430 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3431 if (ret)
3432 return ret;
3433 }
9a5a53b3 3434
d9e86c0e 3435 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3436 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3437 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3438 if (!obj->fence_dirty) {
14415745
CW
3439 list_move_tail(&reg->lru_list,
3440 &dev_priv->mm.fence_list);
3441 return 0;
3442 }
3443 } else if (enable) {
e6a84468
CW
3444 if (WARN_ON(!obj->map_and_fenceable))
3445 return -EINVAL;
3446
14415745 3447 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3448 if (IS_ERR(reg))
3449 return PTR_ERR(reg);
d9e86c0e 3450
14415745
CW
3451 if (reg->obj) {
3452 struct drm_i915_gem_object *old = reg->obj;
3453
d0a57789 3454 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3455 if (ret)
3456 return ret;
3457
14415745 3458 i915_gem_object_fence_lost(old);
29c5a587 3459 }
14415745 3460 } else
a09ba7fa 3461 return 0;
a09ba7fa 3462
14415745 3463 i915_gem_object_update_fence(obj, reg, enable);
14415745 3464
9ce079e4 3465 return 0;
de151cf6
JB
3466}
3467
4144f9b5 3468static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3469 unsigned long cache_level)
3470{
4144f9b5 3471 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3472 struct drm_mm_node *other;
3473
4144f9b5
CW
3474 /*
3475 * On some machines we have to be careful when putting differing types
3476 * of snoopable memory together to avoid the prefetcher crossing memory
3477 * domains and dying. During vm initialisation, we decide whether or not
3478 * these constraints apply and set the drm_mm.color_adjust
3479 * appropriately.
42d6ab48 3480 */
4144f9b5 3481 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3482 return true;
3483
c6cfb325 3484 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3485 return true;
3486
3487 if (list_empty(&gtt_space->node_list))
3488 return true;
3489
3490 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3491 if (other->allocated && !other->hole_follows && other->color != cache_level)
3492 return false;
3493
3494 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3495 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3496 return false;
3497
3498 return true;
3499}
3500
673a394b
EA
3501/**
3502 * Finds free space in the GTT aperture and binds the object there.
3503 */
262de145 3504static struct i915_vma *
07fe0b12
BW
3505i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3506 struct i915_address_space *vm,
3507 unsigned alignment,
fe14d5f4
TU
3508 uint64_t flags,
3509 const struct i915_ggtt_view *view)
673a394b 3510{
05394f39 3511 struct drm_device *dev = obj->base.dev;
3e31c6c0 3512 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3513 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3514 unsigned long start =
3515 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3516 unsigned long end =
1ec9e26d 3517 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3518 struct i915_vma *vma;
07f73f69 3519 int ret;
673a394b 3520
e28f8711
CW
3521 fence_size = i915_gem_get_gtt_size(dev,
3522 obj->base.size,
3523 obj->tiling_mode);
3524 fence_alignment = i915_gem_get_gtt_alignment(dev,
3525 obj->base.size,
d865110c 3526 obj->tiling_mode, true);
e28f8711 3527 unfenced_alignment =
d865110c 3528 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3529 obj->base.size,
3530 obj->tiling_mode, false);
a00b10c3 3531
673a394b 3532 if (alignment == 0)
1ec9e26d 3533 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3534 unfenced_alignment;
1ec9e26d 3535 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3536 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3537 return ERR_PTR(-EINVAL);
673a394b
EA
3538 }
3539
1ec9e26d 3540 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3541
654fc607
CW
3542 /* If the object is bigger than the entire aperture, reject it early
3543 * before evicting everything in a vain attempt to find space.
3544 */
d23db88c
CW
3545 if (obj->base.size > end) {
3546 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3547 obj->base.size,
1ec9e26d 3548 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3549 end);
262de145 3550 return ERR_PTR(-E2BIG);
654fc607
CW
3551 }
3552
37e680a1 3553 ret = i915_gem_object_get_pages(obj);
6c085a72 3554 if (ret)
262de145 3555 return ERR_PTR(ret);
6c085a72 3556
fbdda6fb
CW
3557 i915_gem_object_pin_pages(obj);
3558
fe14d5f4 3559 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
262de145 3560 if (IS_ERR(vma))
bc6bc15b 3561 goto err_unpin;
2f633156 3562
0a9ae0d7 3563search_free:
07fe0b12 3564 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3565 size, alignment,
d23db88c
CW
3566 obj->cache_level,
3567 start, end,
62347f9e
LK
3568 DRM_MM_SEARCH_DEFAULT,
3569 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3570 if (ret) {
f6cd1f15 3571 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3572 obj->cache_level,
3573 start, end,
3574 flags);
dc9dd7a2
CW
3575 if (ret == 0)
3576 goto search_free;
9731129c 3577
bc6bc15b 3578 goto err_free_vma;
673a394b 3579 }
4144f9b5 3580 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3581 ret = -EINVAL;
bc6bc15b 3582 goto err_remove_node;
673a394b
EA
3583 }
3584
74163907 3585 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3586 if (ret)
bc6bc15b 3587 goto err_remove_node;
673a394b 3588
fe14d5f4
TU
3589 trace_i915_vma_bind(vma, flags);
3590 ret = i915_vma_bind(vma, obj->cache_level,
3591 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3592 if (ret)
3593 goto err_finish_gtt;
3594
35c20a60 3595 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3596 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3597
262de145 3598 return vma;
2f633156 3599
fe14d5f4
TU
3600err_finish_gtt:
3601 i915_gem_gtt_finish_object(obj);
bc6bc15b 3602err_remove_node:
6286ef9b 3603 drm_mm_remove_node(&vma->node);
bc6bc15b 3604err_free_vma:
2f633156 3605 i915_gem_vma_destroy(vma);
262de145 3606 vma = ERR_PTR(ret);
bc6bc15b 3607err_unpin:
2f633156 3608 i915_gem_object_unpin_pages(obj);
262de145 3609 return vma;
673a394b
EA
3610}
3611
000433b6 3612bool
2c22569b
CW
3613i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3614 bool force)
673a394b 3615{
673a394b
EA
3616 /* If we don't have a page list set up, then we're not pinned
3617 * to GPU, and we can ignore the cache flush because it'll happen
3618 * again at bind time.
3619 */
05394f39 3620 if (obj->pages == NULL)
000433b6 3621 return false;
673a394b 3622
769ce464
ID
3623 /*
3624 * Stolen memory is always coherent with the GPU as it is explicitly
3625 * marked as wc by the system, or the system is cache-coherent.
3626 */
6a2c4232 3627 if (obj->stolen || obj->phys_handle)
000433b6 3628 return false;
769ce464 3629
9c23f7fc
CW
3630 /* If the GPU is snooping the contents of the CPU cache,
3631 * we do not need to manually clear the CPU cache lines. However,
3632 * the caches are only snooped when the render cache is
3633 * flushed/invalidated. As we always have to emit invalidations
3634 * and flushes when moving into and out of the RENDER domain, correct
3635 * snooping behaviour occurs naturally as the result of our domain
3636 * tracking.
3637 */
0f71979a
CW
3638 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3639 obj->cache_dirty = true;
000433b6 3640 return false;
0f71979a 3641 }
9c23f7fc 3642
1c5d22f7 3643 trace_i915_gem_object_clflush(obj);
9da3da66 3644 drm_clflush_sg(obj->pages);
0f71979a 3645 obj->cache_dirty = false;
000433b6
CW
3646
3647 return true;
e47c68e9
EA
3648}
3649
3650/** Flushes the GTT write domain for the object if it's dirty. */
3651static void
05394f39 3652i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3653{
1c5d22f7
CW
3654 uint32_t old_write_domain;
3655
05394f39 3656 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3657 return;
3658
63256ec5 3659 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3660 * to it immediately go to main memory as far as we know, so there's
3661 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3662 *
3663 * However, we do have to enforce the order so that all writes through
3664 * the GTT land before any writes to the device, such as updates to
3665 * the GATT itself.
e47c68e9 3666 */
63256ec5
CW
3667 wmb();
3668
05394f39
CW
3669 old_write_domain = obj->base.write_domain;
3670 obj->base.write_domain = 0;
1c5d22f7 3671
f99d7069
DV
3672 intel_fb_obj_flush(obj, false);
3673
1c5d22f7 3674 trace_i915_gem_object_change_domain(obj,
05394f39 3675 obj->base.read_domains,
1c5d22f7 3676 old_write_domain);
e47c68e9
EA
3677}
3678
3679/** Flushes the CPU write domain for the object if it's dirty. */
3680static void
e62b59e4 3681i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3682{
1c5d22f7 3683 uint32_t old_write_domain;
e47c68e9 3684
05394f39 3685 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3686 return;
3687
e62b59e4 3688 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3689 i915_gem_chipset_flush(obj->base.dev);
3690
05394f39
CW
3691 old_write_domain = obj->base.write_domain;
3692 obj->base.write_domain = 0;
1c5d22f7 3693
f99d7069
DV
3694 intel_fb_obj_flush(obj, false);
3695
1c5d22f7 3696 trace_i915_gem_object_change_domain(obj,
05394f39 3697 obj->base.read_domains,
1c5d22f7 3698 old_write_domain);
e47c68e9
EA
3699}
3700
2ef7eeaa
EA
3701/**
3702 * Moves a single object to the GTT read, and possibly write domain.
3703 *
3704 * This function returns when the move is complete, including waiting on
3705 * flushes to occur.
3706 */
79e53945 3707int
2021746e 3708i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3709{
1c5d22f7 3710 uint32_t old_write_domain, old_read_domains;
43566ded 3711 struct i915_vma *vma;
e47c68e9 3712 int ret;
2ef7eeaa 3713
8d7e3de1
CW
3714 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3715 return 0;
3716
0201f1ec 3717 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3718 if (ret)
3719 return ret;
3720
c8725f3d 3721 i915_gem_object_retire(obj);
43566ded
CW
3722
3723 /* Flush and acquire obj->pages so that we are coherent through
3724 * direct access in memory with previous cached writes through
3725 * shmemfs and that our cache domain tracking remains valid.
3726 * For example, if the obj->filp was moved to swap without us
3727 * being notified and releasing the pages, we would mistakenly
3728 * continue to assume that the obj remained out of the CPU cached
3729 * domain.
3730 */
3731 ret = i915_gem_object_get_pages(obj);
3732 if (ret)
3733 return ret;
3734
e62b59e4 3735 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3736
d0a57789
CW
3737 /* Serialise direct access to this object with the barriers for
3738 * coherent writes from the GPU, by effectively invalidating the
3739 * GTT domain upon first access.
3740 */
3741 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3742 mb();
3743
05394f39
CW
3744 old_write_domain = obj->base.write_domain;
3745 old_read_domains = obj->base.read_domains;
1c5d22f7 3746
e47c68e9
EA
3747 /* It should now be out of any other write domains, and we can update
3748 * the domain values for our changes.
3749 */
05394f39
CW
3750 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3751 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3752 if (write) {
05394f39
CW
3753 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3754 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3755 obj->dirty = 1;
2ef7eeaa
EA
3756 }
3757
f99d7069 3758 if (write)
a4001f1b 3759 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
f99d7069 3760
1c5d22f7
CW
3761 trace_i915_gem_object_change_domain(obj,
3762 old_read_domains,
3763 old_write_domain);
3764
8325a09d 3765 /* And bump the LRU for this access */
43566ded
CW
3766 vma = i915_gem_obj_to_ggtt(obj);
3767 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3768 list_move_tail(&vma->mm_list,
43566ded 3769 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3770
e47c68e9
EA
3771 return 0;
3772}
3773
e4ffd173
CW
3774int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3775 enum i915_cache_level cache_level)
3776{
7bddb01f 3777 struct drm_device *dev = obj->base.dev;
df6f783a 3778 struct i915_vma *vma, *next;
e4ffd173
CW
3779 int ret;
3780
3781 if (obj->cache_level == cache_level)
3782 return 0;
3783
d7f46fc4 3784 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3785 DRM_DEBUG("can not change the cache level of pinned objects\n");
3786 return -EBUSY;
3787 }
3788
df6f783a 3789 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3790 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3791 ret = i915_vma_unbind(vma);
3089c6f2
BW
3792 if (ret)
3793 return ret;
3089c6f2 3794 }
42d6ab48
CW
3795 }
3796
3089c6f2 3797 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3798 ret = i915_gem_object_finish_gpu(obj);
3799 if (ret)
3800 return ret;
3801
3802 i915_gem_object_finish_gtt(obj);
3803
3804 /* Before SandyBridge, you could not use tiling or fence
3805 * registers with snooped memory, so relinquish any fences
3806 * currently pointing to our region in the aperture.
3807 */
42d6ab48 3808 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3809 ret = i915_gem_object_put_fence(obj);
3810 if (ret)
3811 return ret;
3812 }
3813
6f65e29a 3814 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3815 if (drm_mm_node_allocated(&vma->node)) {
3816 ret = i915_vma_bind(vma, cache_level,
3817 vma->bound & GLOBAL_BIND);
3818 if (ret)
3819 return ret;
3820 }
e4ffd173
CW
3821 }
3822
2c22569b
CW
3823 list_for_each_entry(vma, &obj->vma_list, vma_link)
3824 vma->node.color = cache_level;
3825 obj->cache_level = cache_level;
3826
0f71979a
CW
3827 if (obj->cache_dirty &&
3828 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3829 cpu_write_needs_clflush(obj)) {
3830 if (i915_gem_clflush_object(obj, true))
3831 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3832 }
3833
e4ffd173
CW
3834 return 0;
3835}
3836
199adf40
BW
3837int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3838 struct drm_file *file)
e6994aee 3839{
199adf40 3840 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3841 struct drm_i915_gem_object *obj;
3842 int ret;
3843
3844 ret = i915_mutex_lock_interruptible(dev);
3845 if (ret)
3846 return ret;
3847
3848 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3849 if (&obj->base == NULL) {
3850 ret = -ENOENT;
3851 goto unlock;
3852 }
3853
651d794f
CW
3854 switch (obj->cache_level) {
3855 case I915_CACHE_LLC:
3856 case I915_CACHE_L3_LLC:
3857 args->caching = I915_CACHING_CACHED;
3858 break;
3859
4257d3ba
CW
3860 case I915_CACHE_WT:
3861 args->caching = I915_CACHING_DISPLAY;
3862 break;
3863
651d794f
CW
3864 default:
3865 args->caching = I915_CACHING_NONE;
3866 break;
3867 }
e6994aee
CW
3868
3869 drm_gem_object_unreference(&obj->base);
3870unlock:
3871 mutex_unlock(&dev->struct_mutex);
3872 return ret;
3873}
3874
199adf40
BW
3875int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3876 struct drm_file *file)
e6994aee 3877{
199adf40 3878 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3879 struct drm_i915_gem_object *obj;
3880 enum i915_cache_level level;
3881 int ret;
3882
199adf40
BW
3883 switch (args->caching) {
3884 case I915_CACHING_NONE:
e6994aee
CW
3885 level = I915_CACHE_NONE;
3886 break;
199adf40 3887 case I915_CACHING_CACHED:
e6994aee
CW
3888 level = I915_CACHE_LLC;
3889 break;
4257d3ba
CW
3890 case I915_CACHING_DISPLAY:
3891 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3892 break;
e6994aee
CW
3893 default:
3894 return -EINVAL;
3895 }
3896
3bc2913e
BW
3897 ret = i915_mutex_lock_interruptible(dev);
3898 if (ret)
3899 return ret;
3900
e6994aee
CW
3901 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3902 if (&obj->base == NULL) {
3903 ret = -ENOENT;
3904 goto unlock;
3905 }
3906
3907 ret = i915_gem_object_set_cache_level(obj, level);
3908
3909 drm_gem_object_unreference(&obj->base);
3910unlock:
3911 mutex_unlock(&dev->struct_mutex);
3912 return ret;
3913}
3914
cc98b413
CW
3915static bool is_pin_display(struct drm_i915_gem_object *obj)
3916{
19656430
OM
3917 struct i915_vma *vma;
3918
19656430
OM
3919 vma = i915_gem_obj_to_ggtt(obj);
3920 if (!vma)
3921 return false;
3922
4feb7659 3923 /* There are 2 sources that pin objects:
cc98b413
CW
3924 * 1. The display engine (scanouts, sprites, cursors);
3925 * 2. Reservations for execbuffer;
cc98b413
CW
3926 *
3927 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3928 * are only called outside of the reservation path.
cc98b413 3929 */
4feb7659 3930 return vma->pin_count;
cc98b413
CW
3931}
3932
b9241ea3 3933/*
2da3b9b9
CW
3934 * Prepare buffer for display plane (scanout, cursors, etc).
3935 * Can be called from an uninterruptible phase (modesetting) and allows
3936 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3937 */
3938int
2da3b9b9
CW
3939i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3940 u32 alignment,
a4872ba6 3941 struct intel_engine_cs *pipelined)
b9241ea3 3942{
2da3b9b9 3943 u32 old_read_domains, old_write_domain;
19656430 3944 bool was_pin_display;
b9241ea3
ZW
3945 int ret;
3946
41c52415 3947 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3948 ret = i915_gem_object_sync(obj, pipelined);
3949 if (ret)
b9241ea3
ZW
3950 return ret;
3951 }
3952
cc98b413
CW
3953 /* Mark the pin_display early so that we account for the
3954 * display coherency whilst setting up the cache domains.
3955 */
19656430 3956 was_pin_display = obj->pin_display;
cc98b413
CW
3957 obj->pin_display = true;
3958
a7ef0640
EA
3959 /* The display engine is not coherent with the LLC cache on gen6. As
3960 * a result, we make sure that the pinning that is about to occur is
3961 * done with uncached PTEs. This is lowest common denominator for all
3962 * chipsets.
3963 *
3964 * However for gen6+, we could do better by using the GFDT bit instead
3965 * of uncaching, which would allow us to flush all the LLC-cached data
3966 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3967 */
651d794f
CW
3968 ret = i915_gem_object_set_cache_level(obj,
3969 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3970 if (ret)
cc98b413 3971 goto err_unpin_display;
a7ef0640 3972
2da3b9b9
CW
3973 /* As the user may map the buffer once pinned in the display plane
3974 * (e.g. libkms for the bootup splash), we have to ensure that we
3975 * always use map_and_fenceable for all scanout buffers.
3976 */
1ec9e26d 3977 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3978 if (ret)
cc98b413 3979 goto err_unpin_display;
2da3b9b9 3980
e62b59e4 3981 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3982
2da3b9b9 3983 old_write_domain = obj->base.write_domain;
05394f39 3984 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3985
3986 /* It should now be out of any other write domains, and we can update
3987 * the domain values for our changes.
3988 */
e5f1d962 3989 obj->base.write_domain = 0;
05394f39 3990 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3991
3992 trace_i915_gem_object_change_domain(obj,
3993 old_read_domains,
2da3b9b9 3994 old_write_domain);
b9241ea3
ZW
3995
3996 return 0;
cc98b413
CW
3997
3998err_unpin_display:
19656430
OM
3999 WARN_ON(was_pin_display != is_pin_display(obj));
4000 obj->pin_display = was_pin_display;
cc98b413
CW
4001 return ret;
4002}
4003
4004void
4005i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4006{
d7f46fc4 4007 i915_gem_object_ggtt_unpin(obj);
cc98b413 4008 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4009}
4010
85345517 4011int
a8198eea 4012i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4013{
88241785
CW
4014 int ret;
4015
a8198eea 4016 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4017 return 0;
4018
0201f1ec 4019 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4020 if (ret)
4021 return ret;
4022
a8198eea
CW
4023 /* Ensure that we invalidate the GPU's caches and TLBs. */
4024 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4025 return 0;
85345517
CW
4026}
4027
e47c68e9
EA
4028/**
4029 * Moves a single object to the CPU read, and possibly write domain.
4030 *
4031 * This function returns when the move is complete, including waiting on
4032 * flushes to occur.
4033 */
dabdfe02 4034int
919926ae 4035i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4036{
1c5d22f7 4037 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4038 int ret;
4039
8d7e3de1
CW
4040 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4041 return 0;
4042
0201f1ec 4043 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4044 if (ret)
4045 return ret;
4046
c8725f3d 4047 i915_gem_object_retire(obj);
e47c68e9 4048 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4049
05394f39
CW
4050 old_write_domain = obj->base.write_domain;
4051 old_read_domains = obj->base.read_domains;
1c5d22f7 4052
e47c68e9 4053 /* Flush the CPU cache if it's still invalid. */
05394f39 4054 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4055 i915_gem_clflush_object(obj, false);
2ef7eeaa 4056
05394f39 4057 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4058 }
4059
4060 /* It should now be out of any other write domains, and we can update
4061 * the domain values for our changes.
4062 */
05394f39 4063 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4064
4065 /* If we're writing through the CPU, then the GPU read domains will
4066 * need to be invalidated at next use.
4067 */
4068 if (write) {
05394f39
CW
4069 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4070 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4071 }
2ef7eeaa 4072
f99d7069 4073 if (write)
a4001f1b 4074 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
f99d7069 4075
1c5d22f7
CW
4076 trace_i915_gem_object_change_domain(obj,
4077 old_read_domains,
4078 old_write_domain);
4079
2ef7eeaa
EA
4080 return 0;
4081}
4082
673a394b
EA
4083/* Throttle our rendering by waiting until the ring has completed our requests
4084 * emitted over 20 msec ago.
4085 *
b962442e
EA
4086 * Note that if we were to use the current jiffies each time around the loop,
4087 * we wouldn't escape the function with any frames outstanding if the time to
4088 * render a frame was over 20ms.
4089 *
673a394b
EA
4090 * This should get us reasonable parallelism between CPU and GPU but also
4091 * relatively low latency when blocking on a particular request to finish.
4092 */
40a5f0de 4093static int
f787a5f5 4094i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4095{
f787a5f5
CW
4096 struct drm_i915_private *dev_priv = dev->dev_private;
4097 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4098 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4099 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4100 unsigned reset_counter;
f787a5f5 4101 int ret;
93533c29 4102
308887aa
DV
4103 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4104 if (ret)
4105 return ret;
4106
4107 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4108 if (ret)
4109 return ret;
e110e8d6 4110
1c25595f 4111 spin_lock(&file_priv->mm.lock);
f787a5f5 4112 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4113 if (time_after_eq(request->emitted_jiffies, recent_enough))
4114 break;
40a5f0de 4115
54fb2411 4116 target = request;
b962442e 4117 }
f69061be 4118 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4119 if (target)
4120 i915_gem_request_reference(target);
1c25595f 4121 spin_unlock(&file_priv->mm.lock);
40a5f0de 4122
54fb2411 4123 if (target == NULL)
f787a5f5 4124 return 0;
2bc43b5c 4125
9c654818 4126 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4127 if (ret == 0)
4128 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4129
ff865885
JH
4130 mutex_lock(&dev->struct_mutex);
4131 i915_gem_request_unreference(target);
4132 mutex_unlock(&dev->struct_mutex);
4133
40a5f0de
EA
4134 return ret;
4135}
4136
d23db88c
CW
4137static bool
4138i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4139{
4140 struct drm_i915_gem_object *obj = vma->obj;
4141
4142 if (alignment &&
4143 vma->node.start & (alignment - 1))
4144 return true;
4145
4146 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4147 return true;
4148
4149 if (flags & PIN_OFFSET_BIAS &&
4150 vma->node.start < (flags & PIN_OFFSET_MASK))
4151 return true;
4152
4153 return false;
4154}
4155
673a394b 4156int
fe14d5f4
TU
4157i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4158 struct i915_address_space *vm,
4159 uint32_t alignment,
4160 uint64_t flags,
4161 const struct i915_ggtt_view *view)
673a394b 4162{
6e7186af 4163 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4164 struct i915_vma *vma;
ef79e17c 4165 unsigned bound;
673a394b
EA
4166 int ret;
4167
6e7186af
BW
4168 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4169 return -ENODEV;
4170
bf3d149b 4171 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4172 return -EINVAL;
07fe0b12 4173
c826c449
CW
4174 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4175 return -EINVAL;
4176
fe14d5f4 4177 vma = i915_gem_obj_to_vma_view(obj, vm, view);
07fe0b12 4178 if (vma) {
d7f46fc4
BW
4179 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4180 return -EBUSY;
4181
d23db88c 4182 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4183 WARN(vma->pin_count,
ae7d49d8 4184 "bo is already pinned with incorrect alignment:"
f343c5f6 4185 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4186 " obj->map_and_fenceable=%d\n",
fe14d5f4
TU
4187 i915_gem_obj_offset_view(obj, vm, view->type),
4188 alignment,
d23db88c 4189 !!(flags & PIN_MAPPABLE),
05394f39 4190 obj->map_and_fenceable);
07fe0b12 4191 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4192 if (ret)
4193 return ret;
8ea99c92
DV
4194
4195 vma = NULL;
ac0c6b5a
CW
4196 }
4197 }
4198
ef79e17c 4199 bound = vma ? vma->bound : 0;
8ea99c92 4200 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
fe14d5f4
TU
4201 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4202 flags, view);
262de145
DV
4203 if (IS_ERR(vma))
4204 return PTR_ERR(vma);
22c344e9 4205 }
76446cac 4206
fe14d5f4
TU
4207 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4208 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4209 if (ret)
4210 return ret;
4211 }
74898d7e 4212
ef79e17c
CW
4213 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4214 bool mappable, fenceable;
4215 u32 fence_size, fence_alignment;
4216
4217 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4218 obj->base.size,
4219 obj->tiling_mode);
4220 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4221 obj->base.size,
4222 obj->tiling_mode,
4223 true);
4224
4225 fenceable = (vma->node.size == fence_size &&
4226 (vma->node.start & (fence_alignment - 1)) == 0);
4227
e8dec1dd 4228 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4229 dev_priv->gtt.mappable_end);
4230
4231 obj->map_and_fenceable = mappable && fenceable;
4232 }
4233
4234 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4235
8ea99c92 4236 vma->pin_count++;
1ec9e26d
DV
4237 if (flags & PIN_MAPPABLE)
4238 obj->pin_mappable |= true;
673a394b
EA
4239
4240 return 0;
4241}
4242
4243void
d7f46fc4 4244i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4245{
d7f46fc4 4246 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4247
d7f46fc4
BW
4248 BUG_ON(!vma);
4249 BUG_ON(vma->pin_count == 0);
4250 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4251
4252 if (--vma->pin_count == 0)
6299f992 4253 obj->pin_mappable = false;
673a394b
EA
4254}
4255
d8ffa60b
DV
4256bool
4257i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4258{
4259 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4260 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4261 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4262
4263 WARN_ON(!ggtt_vma ||
4264 dev_priv->fence_regs[obj->fence_reg].pin_count >
4265 ggtt_vma->pin_count);
4266 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4267 return true;
4268 } else
4269 return false;
4270}
4271
4272void
4273i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4274{
4275 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4276 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4277 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4278 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4279 }
4280}
4281
673a394b
EA
4282int
4283i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4284 struct drm_file *file)
673a394b
EA
4285{
4286 struct drm_i915_gem_busy *args = data;
05394f39 4287 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4288 int ret;
4289
76c1dec1 4290 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4291 if (ret)
76c1dec1 4292 return ret;
673a394b 4293
05394f39 4294 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4295 if (&obj->base == NULL) {
1d7cfea1
CW
4296 ret = -ENOENT;
4297 goto unlock;
673a394b 4298 }
d1b851fc 4299
0be555b6
CW
4300 /* Count all active objects as busy, even if they are currently not used
4301 * by the gpu. Users of this interface expect objects to eventually
4302 * become non-busy without any further actions, therefore emit any
4303 * necessary flushes here.
c4de0a5d 4304 */
30dfebf3 4305 ret = i915_gem_object_flush_active(obj);
0be555b6 4306
30dfebf3 4307 args->busy = obj->active;
41c52415
JH
4308 if (obj->last_read_req) {
4309 struct intel_engine_cs *ring;
e9808edd 4310 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4311 ring = i915_gem_request_get_ring(obj->last_read_req);
4312 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4313 }
673a394b 4314
05394f39 4315 drm_gem_object_unreference(&obj->base);
1d7cfea1 4316unlock:
673a394b 4317 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4318 return ret;
673a394b
EA
4319}
4320
4321int
4322i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4323 struct drm_file *file_priv)
4324{
0206e353 4325 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4326}
4327
3ef94daa
CW
4328int
4329i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4330 struct drm_file *file_priv)
4331{
656bfa3a 4332 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4333 struct drm_i915_gem_madvise *args = data;
05394f39 4334 struct drm_i915_gem_object *obj;
76c1dec1 4335 int ret;
3ef94daa
CW
4336
4337 switch (args->madv) {
4338 case I915_MADV_DONTNEED:
4339 case I915_MADV_WILLNEED:
4340 break;
4341 default:
4342 return -EINVAL;
4343 }
4344
1d7cfea1
CW
4345 ret = i915_mutex_lock_interruptible(dev);
4346 if (ret)
4347 return ret;
4348
05394f39 4349 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4350 if (&obj->base == NULL) {
1d7cfea1
CW
4351 ret = -ENOENT;
4352 goto unlock;
3ef94daa 4353 }
3ef94daa 4354
d7f46fc4 4355 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4356 ret = -EINVAL;
4357 goto out;
3ef94daa
CW
4358 }
4359
656bfa3a
DV
4360 if (obj->pages &&
4361 obj->tiling_mode != I915_TILING_NONE &&
4362 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4363 if (obj->madv == I915_MADV_WILLNEED)
4364 i915_gem_object_unpin_pages(obj);
4365 if (args->madv == I915_MADV_WILLNEED)
4366 i915_gem_object_pin_pages(obj);
4367 }
4368
05394f39
CW
4369 if (obj->madv != __I915_MADV_PURGED)
4370 obj->madv = args->madv;
3ef94daa 4371
6c085a72
CW
4372 /* if the object is no longer attached, discard its backing storage */
4373 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4374 i915_gem_object_truncate(obj);
4375
05394f39 4376 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4377
1d7cfea1 4378out:
05394f39 4379 drm_gem_object_unreference(&obj->base);
1d7cfea1 4380unlock:
3ef94daa 4381 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4382 return ret;
3ef94daa
CW
4383}
4384
37e680a1
CW
4385void i915_gem_object_init(struct drm_i915_gem_object *obj,
4386 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4387{
35c20a60 4388 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4389 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4390 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4391 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4392 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4393
37e680a1
CW
4394 obj->ops = ops;
4395
0327d6ba
CW
4396 obj->fence_reg = I915_FENCE_REG_NONE;
4397 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4398
4399 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4400}
4401
37e680a1
CW
4402static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4403 .get_pages = i915_gem_object_get_pages_gtt,
4404 .put_pages = i915_gem_object_put_pages_gtt,
4405};
4406
05394f39
CW
4407struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4408 size_t size)
ac52bc56 4409{
c397b908 4410 struct drm_i915_gem_object *obj;
5949eac4 4411 struct address_space *mapping;
1a240d4d 4412 gfp_t mask;
ac52bc56 4413
42dcedd4 4414 obj = i915_gem_object_alloc(dev);
c397b908
DV
4415 if (obj == NULL)
4416 return NULL;
673a394b 4417
c397b908 4418 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4419 i915_gem_object_free(obj);
c397b908
DV
4420 return NULL;
4421 }
673a394b 4422
bed1ea95
CW
4423 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4424 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4425 /* 965gm cannot relocate objects above 4GiB. */
4426 mask &= ~__GFP_HIGHMEM;
4427 mask |= __GFP_DMA32;
4428 }
4429
496ad9aa 4430 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4431 mapping_set_gfp_mask(mapping, mask);
5949eac4 4432
37e680a1 4433 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4434
c397b908
DV
4435 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4436 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4437
3d29b842
ED
4438 if (HAS_LLC(dev)) {
4439 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4440 * cache) for about a 10% performance improvement
4441 * compared to uncached. Graphics requests other than
4442 * display scanout are coherent with the CPU in
4443 * accessing this cache. This means in this mode we
4444 * don't need to clflush on the CPU side, and on the
4445 * GPU side we only need to flush internal caches to
4446 * get data visible to the CPU.
4447 *
4448 * However, we maintain the display planes as UC, and so
4449 * need to rebind when first used as such.
4450 */
4451 obj->cache_level = I915_CACHE_LLC;
4452 } else
4453 obj->cache_level = I915_CACHE_NONE;
4454
d861e338
DV
4455 trace_i915_gem_object_create(obj);
4456
05394f39 4457 return obj;
c397b908
DV
4458}
4459
340fbd8c
CW
4460static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4461{
4462 /* If we are the last user of the backing storage (be it shmemfs
4463 * pages or stolen etc), we know that the pages are going to be
4464 * immediately released. In this case, we can then skip copying
4465 * back the contents from the GPU.
4466 */
4467
4468 if (obj->madv != I915_MADV_WILLNEED)
4469 return false;
4470
4471 if (obj->base.filp == NULL)
4472 return true;
4473
4474 /* At first glance, this looks racy, but then again so would be
4475 * userspace racing mmap against close. However, the first external
4476 * reference to the filp can only be obtained through the
4477 * i915_gem_mmap_ioctl() which safeguards us against the user
4478 * acquiring such a reference whilst we are in the middle of
4479 * freeing the object.
4480 */
4481 return atomic_long_read(&obj->base.filp->f_count) == 1;
4482}
4483
1488fc08 4484void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4485{
1488fc08 4486 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4487 struct drm_device *dev = obj->base.dev;
3e31c6c0 4488 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4489 struct i915_vma *vma, *next;
673a394b 4490
f65c9168
PZ
4491 intel_runtime_pm_get(dev_priv);
4492
26e12f89
CW
4493 trace_i915_gem_object_destroy(obj);
4494
07fe0b12 4495 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4496 int ret;
4497
4498 vma->pin_count = 0;
4499 ret = i915_vma_unbind(vma);
07fe0b12
BW
4500 if (WARN_ON(ret == -ERESTARTSYS)) {
4501 bool was_interruptible;
1488fc08 4502
07fe0b12
BW
4503 was_interruptible = dev_priv->mm.interruptible;
4504 dev_priv->mm.interruptible = false;
1488fc08 4505
07fe0b12 4506 WARN_ON(i915_vma_unbind(vma));
1488fc08 4507
07fe0b12
BW
4508 dev_priv->mm.interruptible = was_interruptible;
4509 }
1488fc08
CW
4510 }
4511
1d64ae71
BW
4512 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4513 * before progressing. */
4514 if (obj->stolen)
4515 i915_gem_object_unpin_pages(obj);
4516
a071fa00
DV
4517 WARN_ON(obj->frontbuffer_bits);
4518
656bfa3a
DV
4519 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4520 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4521 obj->tiling_mode != I915_TILING_NONE)
4522 i915_gem_object_unpin_pages(obj);
4523
401c29f6
BW
4524 if (WARN_ON(obj->pages_pin_count))
4525 obj->pages_pin_count = 0;
340fbd8c 4526 if (discard_backing_storage(obj))
5537252b 4527 obj->madv = I915_MADV_DONTNEED;
37e680a1 4528 i915_gem_object_put_pages(obj);
d8cb5086 4529 i915_gem_object_free_mmap_offset(obj);
de151cf6 4530
9da3da66
CW
4531 BUG_ON(obj->pages);
4532
2f745ad3
CW
4533 if (obj->base.import_attach)
4534 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4535
5cc9ed4b
CW
4536 if (obj->ops->release)
4537 obj->ops->release(obj);
4538
05394f39
CW
4539 drm_gem_object_release(&obj->base);
4540 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4541
05394f39 4542 kfree(obj->bit_17);
42dcedd4 4543 i915_gem_object_free(obj);
f65c9168
PZ
4544
4545 intel_runtime_pm_put(dev_priv);
673a394b
EA
4546}
4547
fe14d5f4
TU
4548struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4549 struct i915_address_space *vm,
4550 const struct i915_ggtt_view *view)
e656a6cb
DV
4551{
4552 struct i915_vma *vma;
4553 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4 4554 if (vma->vm == vm && vma->ggtt_view.type == view->type)
e656a6cb
DV
4555 return vma;
4556
4557 return NULL;
4558}
4559
2f633156
BW
4560void i915_gem_vma_destroy(struct i915_vma *vma)
4561{
b9d06dd9 4562 struct i915_address_space *vm = NULL;
2f633156 4563 WARN_ON(vma->node.allocated);
aaa05667
CW
4564
4565 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4566 if (!list_empty(&vma->exec_list))
4567 return;
4568
b9d06dd9 4569 vm = vma->vm;
b9d06dd9 4570
841cd773
DV
4571 if (!i915_is_ggtt(vm))
4572 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4573
8b9c2b94 4574 list_del(&vma->vma_link);
b93dab6e 4575
2f633156
BW
4576 kfree(vma);
4577}
4578
e3efda49
CW
4579static void
4580i915_gem_stop_ringbuffers(struct drm_device *dev)
4581{
4582 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4583 struct intel_engine_cs *ring;
e3efda49
CW
4584 int i;
4585
4586 for_each_ring(ring, dev_priv, i)
a83014d3 4587 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4588}
4589
29105ccc 4590int
45c5f202 4591i915_gem_suspend(struct drm_device *dev)
29105ccc 4592{
3e31c6c0 4593 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4594 int ret = 0;
28dfe52a 4595
45c5f202 4596 mutex_lock(&dev->struct_mutex);
b2da9fe5 4597 ret = i915_gpu_idle(dev);
f7403347 4598 if (ret)
45c5f202 4599 goto err;
f7403347 4600
b2da9fe5 4601 i915_gem_retire_requests(dev);
673a394b 4602
e3efda49 4603 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4604 mutex_unlock(&dev->struct_mutex);
4605
737b1506 4606 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4607 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4608 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4609
bdcf120b
CW
4610 /* Assert that we sucessfully flushed all the work and
4611 * reset the GPU back to its idle, low power state.
4612 */
4613 WARN_ON(dev_priv->mm.busy);
4614
673a394b 4615 return 0;
45c5f202
CW
4616
4617err:
4618 mutex_unlock(&dev->struct_mutex);
4619 return ret;
673a394b
EA
4620}
4621
a4872ba6 4622int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4623{
c3787e2e 4624 struct drm_device *dev = ring->dev;
3e31c6c0 4625 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4626 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4627 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4628 int i, ret;
b9524a1e 4629
040d2baa 4630 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4631 return 0;
b9524a1e 4632
c3787e2e
BW
4633 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4634 if (ret)
4635 return ret;
b9524a1e 4636
c3787e2e
BW
4637 /*
4638 * Note: We do not worry about the concurrent register cacheline hang
4639 * here because no other code should access these registers other than
4640 * at initialization time.
4641 */
b9524a1e 4642 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4643 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4644 intel_ring_emit(ring, reg_base + i);
4645 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4646 }
4647
c3787e2e 4648 intel_ring_advance(ring);
b9524a1e 4649
c3787e2e 4650 return ret;
b9524a1e
BW
4651}
4652
f691e2f4
DV
4653void i915_gem_init_swizzling(struct drm_device *dev)
4654{
3e31c6c0 4655 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4656
11782b02 4657 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4658 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4659 return;
4660
4661 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4662 DISP_TILE_SURFACE_SWIZZLING);
4663
11782b02
DV
4664 if (IS_GEN5(dev))
4665 return;
4666
f691e2f4
DV
4667 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4668 if (IS_GEN6(dev))
6b26c86d 4669 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4670 else if (IS_GEN7(dev))
6b26c86d 4671 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4672 else if (IS_GEN8(dev))
4673 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4674 else
4675 BUG();
f691e2f4 4676}
e21af88d 4677
67b1b571
CW
4678static bool
4679intel_enable_blt(struct drm_device *dev)
4680{
4681 if (!HAS_BLT(dev))
4682 return false;
4683
4684 /* The blitter was dysfunctional on early prototypes */
4685 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4686 DRM_INFO("BLT not supported on this pre-production hardware;"
4687 " graphics performance will be degraded.\n");
4688 return false;
4689 }
4690
4691 return true;
4692}
4693
81e7f200
VS
4694static void init_unused_ring(struct drm_device *dev, u32 base)
4695{
4696 struct drm_i915_private *dev_priv = dev->dev_private;
4697
4698 I915_WRITE(RING_CTL(base), 0);
4699 I915_WRITE(RING_HEAD(base), 0);
4700 I915_WRITE(RING_TAIL(base), 0);
4701 I915_WRITE(RING_START(base), 0);
4702}
4703
4704static void init_unused_rings(struct drm_device *dev)
4705{
4706 if (IS_I830(dev)) {
4707 init_unused_ring(dev, PRB1_BASE);
4708 init_unused_ring(dev, SRB0_BASE);
4709 init_unused_ring(dev, SRB1_BASE);
4710 init_unused_ring(dev, SRB2_BASE);
4711 init_unused_ring(dev, SRB3_BASE);
4712 } else if (IS_GEN2(dev)) {
4713 init_unused_ring(dev, SRB0_BASE);
4714 init_unused_ring(dev, SRB1_BASE);
4715 } else if (IS_GEN3(dev)) {
4716 init_unused_ring(dev, PRB1_BASE);
4717 init_unused_ring(dev, PRB2_BASE);
4718 }
4719}
4720
a83014d3 4721int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4722{
4fc7c971 4723 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4724 int ret;
68f95ba9 4725
5c1143bb 4726 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4727 if (ret)
b6913e4b 4728 return ret;
68f95ba9
CW
4729
4730 if (HAS_BSD(dev)) {
5c1143bb 4731 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4732 if (ret)
4733 goto cleanup_render_ring;
d1b851fc 4734 }
68f95ba9 4735
67b1b571 4736 if (intel_enable_blt(dev)) {
549f7365
CW
4737 ret = intel_init_blt_ring_buffer(dev);
4738 if (ret)
4739 goto cleanup_bsd_ring;
4740 }
4741
9a8a2213
BW
4742 if (HAS_VEBOX(dev)) {
4743 ret = intel_init_vebox_ring_buffer(dev);
4744 if (ret)
4745 goto cleanup_blt_ring;
4746 }
4747
845f74a7
ZY
4748 if (HAS_BSD2(dev)) {
4749 ret = intel_init_bsd2_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_vebox_ring;
4752 }
9a8a2213 4753
99433931 4754 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4755 if (ret)
845f74a7 4756 goto cleanup_bsd2_ring;
4fc7c971
BW
4757
4758 return 0;
4759
845f74a7
ZY
4760cleanup_bsd2_ring:
4761 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4762cleanup_vebox_ring:
4763 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4764cleanup_blt_ring:
4765 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4766cleanup_bsd_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4768cleanup_render_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4770
4771 return ret;
4772}
4773
4774int
4775i915_gem_init_hw(struct drm_device *dev)
4776{
3e31c6c0 4777 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4778 struct intel_engine_cs *ring;
35a85ac6 4779 int ret, i;
4fc7c971
BW
4780
4781 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4782 return -EIO;
4783
59124506 4784 if (dev_priv->ellc_size)
05e21cc4 4785 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4786
0bf21347
VS
4787 if (IS_HASWELL(dev))
4788 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4789 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4790
88a2b2a3 4791 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4792 if (IS_IVYBRIDGE(dev)) {
4793 u32 temp = I915_READ(GEN7_MSG_CTL);
4794 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4795 I915_WRITE(GEN7_MSG_CTL, temp);
4796 } else if (INTEL_INFO(dev)->gen >= 7) {
4797 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4798 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4799 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4800 }
88a2b2a3
BW
4801 }
4802
4fc7c971
BW
4803 i915_gem_init_swizzling(dev);
4804
d5abdfda
DV
4805 /*
4806 * At least 830 can leave some of the unused rings
4807 * "active" (ie. head != tail) after resume which
4808 * will prevent c3 entry. Makes sure all unused rings
4809 * are totally idle.
4810 */
4811 init_unused_rings(dev);
4812
35a57ffb
DV
4813 for_each_ring(ring, dev_priv, i) {
4814 ret = ring->init_hw(ring);
4815 if (ret)
4816 return ret;
4817 }
99433931 4818
c3787e2e
BW
4819 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4820 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4821
f48a0165 4822 ret = i915_ppgtt_init_hw(dev);
60990320 4823 if (ret && ret != -EIO) {
f48a0165 4824 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 4825 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4826 }
4827
f48a0165 4828 ret = i915_gem_context_enable(dev_priv);
82460d97 4829 if (ret && ret != -EIO) {
f48a0165 4830 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 4831 i915_gem_cleanup_ringbuffer(dev);
f48a0165
DW
4832
4833 return ret;
b7c36d25 4834 }
e21af88d 4835
2fa48d8d 4836 return ret;
8187a2b7
ZN
4837}
4838
1070a42b
CW
4839int i915_gem_init(struct drm_device *dev)
4840{
4841 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4842 int ret;
4843
127f1003
OM
4844 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4845 i915.enable_execlists);
4846
1070a42b 4847 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4848
4849 if (IS_VALLEYVIEW(dev)) {
4850 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4851 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4852 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4853 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4854 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4855 }
4856
a83014d3
OM
4857 if (!i915.enable_execlists) {
4858 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4859 dev_priv->gt.init_rings = i915_gem_init_rings;
4860 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4861 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4862 } else {
4863 dev_priv->gt.do_execbuf = intel_execlists_submission;
4864 dev_priv->gt.init_rings = intel_logical_rings_init;
4865 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4866 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4867 }
4868
6c5566a8 4869 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4870 if (ret)
4871 goto out_unlock;
6c5566a8 4872
d7e5008f 4873 i915_gem_init_global_gtt(dev);
d62b4892 4874
2fa48d8d 4875 ret = i915_gem_context_init(dev);
7bcc3777
JN
4876 if (ret)
4877 goto out_unlock;
2fa48d8d 4878
35a57ffb
DV
4879 ret = dev_priv->gt.init_rings(dev);
4880 if (ret)
7bcc3777 4881 goto out_unlock;
2fa48d8d 4882
1070a42b 4883 ret = i915_gem_init_hw(dev);
60990320
CW
4884 if (ret == -EIO) {
4885 /* Allow ring initialisation to fail by marking the GPU as
4886 * wedged. But we only want to do this where the GPU is angry,
4887 * for all other failure, such as an allocation failure, bail.
4888 */
4889 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4890 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4891 ret = 0;
1070a42b 4892 }
7bcc3777
JN
4893
4894out_unlock:
60990320 4895 mutex_unlock(&dev->struct_mutex);
1070a42b 4896
60990320 4897 return ret;
1070a42b
CW
4898}
4899
8187a2b7
ZN
4900void
4901i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4902{
3e31c6c0 4903 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4904 struct intel_engine_cs *ring;
1ec14ad3 4905 int i;
8187a2b7 4906
b4519513 4907 for_each_ring(ring, dev_priv, i)
a83014d3 4908 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4909}
4910
64193406 4911static void
a4872ba6 4912init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4913{
4914 INIT_LIST_HEAD(&ring->active_list);
4915 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4916}
4917
7e0d96bc
BW
4918void i915_init_vm(struct drm_i915_private *dev_priv,
4919 struct i915_address_space *vm)
fc8c067e 4920{
7e0d96bc
BW
4921 if (!i915_is_ggtt(vm))
4922 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4923 vm->dev = dev_priv->dev;
4924 INIT_LIST_HEAD(&vm->active_list);
4925 INIT_LIST_HEAD(&vm->inactive_list);
4926 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4927 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4928}
4929
673a394b
EA
4930void
4931i915_gem_load(struct drm_device *dev)
4932{
3e31c6c0 4933 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4934 int i;
4935
4936 dev_priv->slab =
4937 kmem_cache_create("i915_gem_object",
4938 sizeof(struct drm_i915_gem_object), 0,
4939 SLAB_HWCACHE_ALIGN,
4940 NULL);
673a394b 4941
fc8c067e
BW
4942 INIT_LIST_HEAD(&dev_priv->vm_list);
4943 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4944
a33afea5 4945 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4946 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4947 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4948 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4949 for (i = 0; i < I915_NUM_RINGS; i++)
4950 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4951 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4952 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4953 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4954 i915_gem_retire_work_handler);
b29c19b6
CW
4955 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4956 i915_gem_idle_work_handler);
1f83fee0 4957 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4958
72bfa19c
CW
4959 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4960
42b5aeab
VS
4961 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4962 dev_priv->num_fence_regs = 32;
4963 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4964 dev_priv->num_fence_regs = 16;
4965 else
4966 dev_priv->num_fence_regs = 8;
4967
eb82289a
YZ
4968 if (intel_vgpu_active(dev))
4969 dev_priv->num_fence_regs =
4970 I915_READ(vgtif_reg(avail_rs.fence_num));
4971
b5aa8a0f 4972 /* Initialize fence registers to zero */
19b2dbde
CW
4973 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4974 i915_gem_restore_fences(dev);
10ed13e4 4975
673a394b 4976 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4977 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4978
ce453d81
CW
4979 dev_priv->mm.interruptible = true;
4980
ceabbba5
CW
4981 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4982 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4983 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4984 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4985
4986 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4987 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069 4988
78a42377
BV
4989 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
4990
f99d7069 4991 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4992}
71acb5eb 4993
f787a5f5 4994void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4995{
f787a5f5 4996 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4997
b29c19b6
CW
4998 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4999
b962442e
EA
5000 /* Clean up our request list when the client is going away, so that
5001 * later retire_requests won't dereference our soon-to-be-gone
5002 * file_priv.
5003 */
1c25595f 5004 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5005 while (!list_empty(&file_priv->mm.request_list)) {
5006 struct drm_i915_gem_request *request;
5007
5008 request = list_first_entry(&file_priv->mm.request_list,
5009 struct drm_i915_gem_request,
5010 client_list);
5011 list_del(&request->client_list);
5012 request->file_priv = NULL;
5013 }
1c25595f 5014 spin_unlock(&file_priv->mm.lock);
b962442e 5015}
31169714 5016
b29c19b6
CW
5017static void
5018i915_gem_file_idle_work_handler(struct work_struct *work)
5019{
5020 struct drm_i915_file_private *file_priv =
5021 container_of(work, typeof(*file_priv), mm.idle_work.work);
5022
5023 atomic_set(&file_priv->rps_wait_boost, false);
5024}
5025
5026int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5027{
5028 struct drm_i915_file_private *file_priv;
e422b888 5029 int ret;
b29c19b6
CW
5030
5031 DRM_DEBUG_DRIVER("\n");
5032
5033 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5034 if (!file_priv)
5035 return -ENOMEM;
5036
5037 file->driver_priv = file_priv;
5038 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5039 file_priv->file = file;
b29c19b6
CW
5040
5041 spin_lock_init(&file_priv->mm.lock);
5042 INIT_LIST_HEAD(&file_priv->mm.request_list);
5043 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5044 i915_gem_file_idle_work_handler);
5045
e422b888
BW
5046 ret = i915_gem_context_open(dev, file);
5047 if (ret)
5048 kfree(file_priv);
b29c19b6 5049
e422b888 5050 return ret;
b29c19b6
CW
5051}
5052
b680c37a
DV
5053/**
5054 * i915_gem_track_fb - update frontbuffer tracking
5055 * old: current GEM buffer for the frontbuffer slots
5056 * new: new GEM buffer for the frontbuffer slots
5057 * frontbuffer_bits: bitmask of frontbuffer slots
5058 *
5059 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5060 * from @old and setting them in @new. Both @old and @new can be NULL.
5061 */
a071fa00
DV
5062void i915_gem_track_fb(struct drm_i915_gem_object *old,
5063 struct drm_i915_gem_object *new,
5064 unsigned frontbuffer_bits)
5065{
5066 if (old) {
5067 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5068 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5069 old->frontbuffer_bits &= ~frontbuffer_bits;
5070 }
5071
5072 if (new) {
5073 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5074 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5075 new->frontbuffer_bits |= frontbuffer_bits;
5076 }
5077}
5078
5774506f
CW
5079static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5080{
5081 if (!mutex_is_locked(mutex))
5082 return false;
5083
a5094051 5084#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5774506f
CW
5085 return mutex->owner == task;
5086#else
5087 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5088 return false;
5089#endif
5090}
5091
b453c4db
CW
5092static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5093{
5094 if (!mutex_trylock(&dev->struct_mutex)) {
5095 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5096 return false;
5097
5098 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5099 return false;
5100
5101 *unlock = false;
5102 } else
5103 *unlock = true;
5104
5105 return true;
5106}
5107
ceabbba5
CW
5108static int num_vma_bound(struct drm_i915_gem_object *obj)
5109{
5110 struct i915_vma *vma;
5111 int count = 0;
5112
5113 list_for_each_entry(vma, &obj->vma_list, vma_link)
5114 if (drm_mm_node_allocated(&vma->node))
5115 count++;
5116
5117 return count;
5118}
5119
7dc19d5a 5120static unsigned long
ceabbba5 5121i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5122{
17250b71 5123 struct drm_i915_private *dev_priv =
ceabbba5 5124 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5125 struct drm_device *dev = dev_priv->dev;
6c085a72 5126 struct drm_i915_gem_object *obj;
7dc19d5a 5127 unsigned long count;
b453c4db 5128 bool unlock;
17250b71 5129
b453c4db
CW
5130 if (!i915_gem_shrinker_lock(dev, &unlock))
5131 return 0;
31169714 5132
7dc19d5a 5133 count = 0;
35c20a60 5134 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5135 if (obj->pages_pin_count == 0)
7dc19d5a 5136 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5137
5138 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5139 if (!i915_gem_obj_is_pinned(obj) &&
5140 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5141 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5142 }
17250b71 5143
5774506f
CW
5144 if (unlock)
5145 mutex_unlock(&dev->struct_mutex);
d9973b43 5146
7dc19d5a 5147 return count;
31169714 5148}
a70a3148
BW
5149
5150/* All the new VM stuff */
fe14d5f4
TU
5151unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5152 struct i915_address_space *vm,
5153 enum i915_ggtt_view_type view)
a70a3148
BW
5154{
5155 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5156 struct i915_vma *vma;
5157
896ab1a5 5158 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5159
a70a3148 5160 list_for_each_entry(vma, &o->vma_list, vma_link) {
fe14d5f4 5161 if (vma->vm == vm && vma->ggtt_view.type == view)
a70a3148
BW
5162 return vma->node.start;
5163
5164 }
f25748ea
DV
5165 WARN(1, "%s vma for this object not found.\n",
5166 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5167 return -1;
5168}
5169
fe14d5f4
TU
5170bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5171 struct i915_address_space *vm,
5172 enum i915_ggtt_view_type view)
a70a3148
BW
5173{
5174 struct i915_vma *vma;
5175
5176 list_for_each_entry(vma, &o->vma_list, vma_link)
fe14d5f4
TU
5177 if (vma->vm == vm &&
5178 vma->ggtt_view.type == view &&
5179 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5180 return true;
5181
5182 return false;
5183}
5184
5185bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5186{
5a1d5eb0 5187 struct i915_vma *vma;
a70a3148 5188
5a1d5eb0
CW
5189 list_for_each_entry(vma, &o->vma_list, vma_link)
5190 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5191 return true;
5192
5193 return false;
5194}
5195
5196unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5197 struct i915_address_space *vm)
5198{
5199 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5200 struct i915_vma *vma;
5201
896ab1a5 5202 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5203
5204 BUG_ON(list_empty(&o->vma_list));
5205
5206 list_for_each_entry(vma, &o->vma_list, vma_link)
5207 if (vma->vm == vm)
5208 return vma->node.size;
5209
5210 return 0;
5211}
5212
7dc19d5a 5213static unsigned long
ceabbba5 5214i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5215{
5216 struct drm_i915_private *dev_priv =
ceabbba5 5217 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5218 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5219 unsigned long freed;
b453c4db 5220 bool unlock;
7dc19d5a 5221
b453c4db
CW
5222 if (!i915_gem_shrinker_lock(dev, &unlock))
5223 return SHRINK_STOP;
7dc19d5a 5224
21ab4e74
CW
5225 freed = i915_gem_shrink(dev_priv,
5226 sc->nr_to_scan,
5227 I915_SHRINK_BOUND |
5228 I915_SHRINK_UNBOUND |
5229 I915_SHRINK_PURGEABLE);
d9973b43 5230 if (freed < sc->nr_to_scan)
21ab4e74
CW
5231 freed += i915_gem_shrink(dev_priv,
5232 sc->nr_to_scan - freed,
5233 I915_SHRINK_BOUND |
5234 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5235 if (unlock)
5236 mutex_unlock(&dev->struct_mutex);
d9973b43 5237
7dc19d5a
DC
5238 return freed;
5239}
5c2abbea 5240
2cfcd32a
CW
5241static int
5242i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5243{
5244 struct drm_i915_private *dev_priv =
5245 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5246 struct drm_device *dev = dev_priv->dev;
5247 struct drm_i915_gem_object *obj;
5248 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5249 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5250 bool was_interruptible;
5251 bool unlock;
5252
a1db2fa7 5253 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5254 schedule_timeout_killable(1);
a1db2fa7
CW
5255 if (fatal_signal_pending(current))
5256 return NOTIFY_DONE;
5257 }
2cfcd32a
CW
5258 if (timeout == 0) {
5259 pr_err("Unable to purge GPU memory due lock contention.\n");
5260 return NOTIFY_DONE;
5261 }
5262
5263 was_interruptible = dev_priv->mm.interruptible;
5264 dev_priv->mm.interruptible = false;
5265
005445c5 5266 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5267
5268 dev_priv->mm.interruptible = was_interruptible;
5269
5270 /* Because we may be allocating inside our own driver, we cannot
5271 * assert that there are no objects with pinned pages that are not
5272 * being pointed to by hardware.
5273 */
5274 unbound = bound = pinned = 0;
5275 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5276 if (!obj->base.filp) /* not backed by a freeable object */
5277 continue;
5278
5279 if (obj->pages_pin_count)
5280 pinned += obj->base.size;
5281 else
5282 unbound += obj->base.size;
5283 }
5284 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5285 if (!obj->base.filp)
5286 continue;
5287
5288 if (obj->pages_pin_count)
5289 pinned += obj->base.size;
5290 else
5291 bound += obj->base.size;
5292 }
5293
5294 if (unlock)
5295 mutex_unlock(&dev->struct_mutex);
5296
bb9059d3
CW
5297 if (freed_pages || unbound || bound)
5298 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5299 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5300 if (unbound || bound)
5301 pr_err("%lu and %lu bytes still available in the "
5302 "bound and unbound GPU page lists.\n",
5303 bound, unbound);
5304
005445c5 5305 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5306 return NOTIFY_DONE;
5307}
5308
5c2abbea
BW
5309struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5310{
f7635669 5311 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5c2abbea
BW
5312 struct i915_vma *vma;
5313
fe14d5f4
TU
5314 list_for_each_entry(vma, &obj->vma_list, vma_link)
5315 if (vma->vm == ggtt &&
5316 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
f7635669 5317 return vma;
5c2abbea 5318
f7635669 5319 return NULL;
5c2abbea 5320}