]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: range-restricted eviction support
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88{
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91}
92
93static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95{
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98}
99
100static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102{
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105}
106
107static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112}
113
30dbf0c0
CW
114int
115i915_gem_check_is_wedged(struct drm_device *dev)
116{
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142}
143
76c1dec1
CW
144static int i915_mutex_lock_interruptible(struct drm_device *dev)
145{
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
23bc5982 162 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
163 return 0;
164}
30dbf0c0 165
7d1c4804
CW
166static inline bool
167i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168{
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172}
173
73aa808f
CW
174int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
79e53945 176 unsigned long end)
673a394b
EA
177{
178 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 179
79e53945
JB
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
183 return -EINVAL;
184 }
185
79e53945
JB
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
673a394b 188
73aa808f 189 dev_priv->mm.gtt_total = end - start;
a6e0aa42 190 dev_priv->mm.gtt_mappable_end = end;
79e53945
JB
191
192 return 0;
193}
673a394b 194
79e53945
JB
195int
196i915_gem_init_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file_priv)
198{
199 struct drm_i915_gem_init *args = data;
200 int ret;
201
202 mutex_lock(&dev->struct_mutex);
203 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
204 mutex_unlock(&dev->struct_mutex);
205
79e53945 206 return ret;
673a394b
EA
207}
208
5a125c3c
EA
209int
210i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
211 struct drm_file *file_priv)
212{
73aa808f 213 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 214 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
215
216 if (!(dev->driver->driver_features & DRIVER_GEM))
217 return -ENODEV;
218
73aa808f
CW
219 mutex_lock(&dev->struct_mutex);
220 args->aper_size = dev_priv->mm.gtt_total;
221 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
222 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
223
224 return 0;
225}
226
673a394b
EA
227
228/**
229 * Creates a new mm object and returns a handle to it.
230 */
231int
232i915_gem_create_ioctl(struct drm_device *dev, void *data,
233 struct drm_file *file_priv)
234{
235 struct drm_i915_gem_create *args = data;
236 struct drm_gem_object *obj;
a1a2d1d3
PP
237 int ret;
238 u32 handle;
673a394b
EA
239
240 args->size = roundup(args->size, PAGE_SIZE);
241
242 /* Allocate the new object */
ac52bc56 243 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
244 if (obj == NULL)
245 return -ENOMEM;
246
247 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 248 if (ret) {
202f2fef
CW
249 drm_gem_object_release(obj);
250 i915_gem_info_remove_obj(dev->dev_private, obj->size);
251 kfree(obj);
673a394b 252 return ret;
1dfd9754 253 }
673a394b 254
202f2fef
CW
255 /* drop reference from allocate - handle holds it now */
256 drm_gem_object_unreference(obj);
257 trace_i915_gem_object_create(obj);
258
1dfd9754 259 args->handle = handle;
673a394b
EA
260 return 0;
261}
262
eb01459f
EA
263static inline int
264fast_shmem_read(struct page **pages,
265 loff_t page_base, int page_offset,
266 char __user *data,
267 int length)
268{
b5e4feb6 269 char *vaddr;
4f27b75d 270 int ret;
eb01459f 271
3e4d3af5 272 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
4f27b75d 273 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
3e4d3af5 274 kunmap_atomic(vaddr);
eb01459f 275
4f27b75d 276 return ret;
eb01459f
EA
277}
278
280b713b
EA
279static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
280{
281 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 282 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
283
284 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
285 obj_priv->tiling_mode != I915_TILING_NONE;
286}
287
99a03df5 288static inline void
40123c1f
EA
289slow_shmem_copy(struct page *dst_page,
290 int dst_offset,
291 struct page *src_page,
292 int src_offset,
293 int length)
294{
295 char *dst_vaddr, *src_vaddr;
296
99a03df5
CW
297 dst_vaddr = kmap(dst_page);
298 src_vaddr = kmap(src_page);
40123c1f
EA
299
300 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
301
99a03df5
CW
302 kunmap(src_page);
303 kunmap(dst_page);
40123c1f
EA
304}
305
99a03df5 306static inline void
280b713b
EA
307slow_shmem_bit17_copy(struct page *gpu_page,
308 int gpu_offset,
309 struct page *cpu_page,
310 int cpu_offset,
311 int length,
312 int is_read)
313{
314 char *gpu_vaddr, *cpu_vaddr;
315
316 /* Use the unswizzled path if this page isn't affected. */
317 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
318 if (is_read)
319 return slow_shmem_copy(cpu_page, cpu_offset,
320 gpu_page, gpu_offset, length);
321 else
322 return slow_shmem_copy(gpu_page, gpu_offset,
323 cpu_page, cpu_offset, length);
324 }
325
99a03df5
CW
326 gpu_vaddr = kmap(gpu_page);
327 cpu_vaddr = kmap(cpu_page);
280b713b
EA
328
329 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
330 * XORing with the other bits (A9 for Y, A9 and A10 for X)
331 */
332 while (length > 0) {
333 int cacheline_end = ALIGN(gpu_offset + 1, 64);
334 int this_length = min(cacheline_end - gpu_offset, length);
335 int swizzled_gpu_offset = gpu_offset ^ 64;
336
337 if (is_read) {
338 memcpy(cpu_vaddr + cpu_offset,
339 gpu_vaddr + swizzled_gpu_offset,
340 this_length);
341 } else {
342 memcpy(gpu_vaddr + swizzled_gpu_offset,
343 cpu_vaddr + cpu_offset,
344 this_length);
345 }
346 cpu_offset += this_length;
347 gpu_offset += this_length;
348 length -= this_length;
349 }
350
99a03df5
CW
351 kunmap(cpu_page);
352 kunmap(gpu_page);
280b713b
EA
353}
354
eb01459f
EA
355/**
356 * This is the fast shmem pread path, which attempts to copy_from_user directly
357 * from the backing pages of the object to the user's address space. On a
358 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
359 */
360static int
361i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
362 struct drm_i915_gem_pread *args,
363 struct drm_file *file_priv)
364{
23010e43 365 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
366 ssize_t remain;
367 loff_t offset, page_base;
368 char __user *user_data;
369 int page_offset, page_length;
eb01459f
EA
370
371 user_data = (char __user *) (uintptr_t) args->data_ptr;
372 remain = args->size;
373
23010e43 374 obj_priv = to_intel_bo(obj);
eb01459f
EA
375 offset = args->offset;
376
377 while (remain > 0) {
378 /* Operation in this page
379 *
380 * page_base = page offset within aperture
381 * page_offset = offset within page
382 * page_length = bytes to copy for this page
383 */
384 page_base = (offset & ~(PAGE_SIZE-1));
385 page_offset = offset & (PAGE_SIZE-1);
386 page_length = remain;
387 if ((page_offset + remain) > PAGE_SIZE)
388 page_length = PAGE_SIZE - page_offset;
389
4f27b75d
CW
390 if (fast_shmem_read(obj_priv->pages,
391 page_base, page_offset,
392 user_data, page_length))
393 return -EFAULT;
eb01459f
EA
394
395 remain -= page_length;
396 user_data += page_length;
397 offset += page_length;
398 }
399
4f27b75d 400 return 0;
eb01459f
EA
401}
402
07f73f69
CW
403static int
404i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
405{
406 int ret;
407
4bdadb97 408 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
409
410 /* If we've insufficient memory to map in the pages, attempt
411 * to make some space by throwing out some old buffers.
412 */
413 if (ret == -ENOMEM) {
414 struct drm_device *dev = obj->dev;
07f73f69 415
0108a3ed 416 ret = i915_gem_evict_something(dev, obj->size,
a6e0aa42
DV
417 i915_gem_get_gtt_alignment(obj),
418 false);
07f73f69
CW
419 if (ret)
420 return ret;
421
4bdadb97 422 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
423 }
424
425 return ret;
426}
427
eb01459f
EA
428/**
429 * This is the fallback shmem pread path, which allocates temporary storage
430 * in kernel space to copy_to_user into outside of the struct_mutex, so we
431 * can copy out of the object's backing pages while holding the struct mutex
432 * and not take page faults.
433 */
434static int
435i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
436 struct drm_i915_gem_pread *args,
437 struct drm_file *file_priv)
438{
23010e43 439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
440 struct mm_struct *mm = current->mm;
441 struct page **user_pages;
442 ssize_t remain;
443 loff_t offset, pinned_pages, i;
444 loff_t first_data_page, last_data_page, num_pages;
445 int shmem_page_index, shmem_page_offset;
446 int data_page_index, data_page_offset;
447 int page_length;
448 int ret;
449 uint64_t data_ptr = args->data_ptr;
280b713b 450 int do_bit17_swizzling;
eb01459f
EA
451
452 remain = args->size;
453
454 /* Pin the user pages containing the data. We can't fault while
455 * holding the struct mutex, yet we want to hold it while
456 * dereferencing the user data.
457 */
458 first_data_page = data_ptr / PAGE_SIZE;
459 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
460 num_pages = last_data_page - first_data_page + 1;
461
4f27b75d 462 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
463 if (user_pages == NULL)
464 return -ENOMEM;
465
4f27b75d 466 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
467 down_read(&mm->mmap_sem);
468 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 469 num_pages, 1, 0, user_pages, NULL);
eb01459f 470 up_read(&mm->mmap_sem);
4f27b75d 471 mutex_lock(&dev->struct_mutex);
eb01459f
EA
472 if (pinned_pages < num_pages) {
473 ret = -EFAULT;
4f27b75d 474 goto out;
eb01459f
EA
475 }
476
4f27b75d
CW
477 ret = i915_gem_object_set_cpu_read_domain_range(obj,
478 args->offset,
479 args->size);
07f73f69 480 if (ret)
4f27b75d 481 goto out;
eb01459f 482
4f27b75d 483 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 484
23010e43 485 obj_priv = to_intel_bo(obj);
eb01459f
EA
486 offset = args->offset;
487
488 while (remain > 0) {
489 /* Operation in this page
490 *
491 * shmem_page_index = page number within shmem file
492 * shmem_page_offset = offset within page in shmem file
493 * data_page_index = page number in get_user_pages return
494 * data_page_offset = offset with data_page_index page.
495 * page_length = bytes to copy for this page
496 */
497 shmem_page_index = offset / PAGE_SIZE;
498 shmem_page_offset = offset & ~PAGE_MASK;
499 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
500 data_page_offset = data_ptr & ~PAGE_MASK;
501
502 page_length = remain;
503 if ((shmem_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - shmem_page_offset;
505 if ((data_page_offset + page_length) > PAGE_SIZE)
506 page_length = PAGE_SIZE - data_page_offset;
507
280b713b 508 if (do_bit17_swizzling) {
99a03df5 509 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 510 shmem_page_offset,
99a03df5
CW
511 user_pages[data_page_index],
512 data_page_offset,
513 page_length,
514 1);
515 } else {
516 slow_shmem_copy(user_pages[data_page_index],
517 data_page_offset,
518 obj_priv->pages[shmem_page_index],
519 shmem_page_offset,
520 page_length);
280b713b 521 }
eb01459f
EA
522
523 remain -= page_length;
524 data_ptr += page_length;
525 offset += page_length;
526 }
527
4f27b75d 528out:
eb01459f
EA
529 for (i = 0; i < pinned_pages; i++) {
530 SetPageDirty(user_pages[i]);
531 page_cache_release(user_pages[i]);
532 }
8e7d2b2c 533 drm_free_large(user_pages);
eb01459f
EA
534
535 return ret;
536}
537
673a394b
EA
538/**
539 * Reads data from the object referenced by handle.
540 *
541 * On error, the contents of *data are undefined.
542 */
543int
544i915_gem_pread_ioctl(struct drm_device *dev, void *data,
545 struct drm_file *file_priv)
546{
547 struct drm_i915_gem_pread *args = data;
548 struct drm_gem_object *obj;
549 struct drm_i915_gem_object *obj_priv;
35b62a89 550 int ret = 0;
673a394b 551
4f27b75d 552 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 553 if (ret)
4f27b75d 554 return ret;
673a394b
EA
555
556 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
557 if (obj == NULL) {
558 ret = -ENOENT;
559 goto unlock;
4f27b75d 560 }
23010e43 561 obj_priv = to_intel_bo(obj);
673a394b 562
7dcd2499
CW
563 /* Bounds check source. */
564 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 565 ret = -EINVAL;
35b62a89 566 goto out;
ce9d419d
CW
567 }
568
35b62a89
CW
569 if (args->size == 0)
570 goto out;
571
ce9d419d
CW
572 if (!access_ok(VERIFY_WRITE,
573 (char __user *)(uintptr_t)args->data_ptr,
574 args->size)) {
575 ret = -EFAULT;
35b62a89 576 goto out;
673a394b
EA
577 }
578
b5e4feb6
CW
579 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
580 args->size);
581 if (ret) {
582 ret = -EFAULT;
583 goto out;
280b713b 584 }
673a394b 585
4f27b75d
CW
586 ret = i915_gem_object_get_pages_or_evict(obj);
587 if (ret)
588 goto out;
589
590 ret = i915_gem_object_set_cpu_read_domain_range(obj,
591 args->offset,
592 args->size);
593 if (ret)
594 goto out_put;
595
596 ret = -EFAULT;
597 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 598 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
599 if (ret == -EFAULT)
600 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 601
4f27b75d
CW
602out_put:
603 i915_gem_object_put_pages(obj);
35b62a89 604out:
4f27b75d 605 drm_gem_object_unreference(obj);
1d7cfea1 606unlock:
4f27b75d 607 mutex_unlock(&dev->struct_mutex);
eb01459f 608 return ret;
673a394b
EA
609}
610
0839ccb8
KP
611/* This is the fast write path which cannot handle
612 * page faults in the source data
9b7530cc 613 */
0839ccb8
KP
614
615static inline int
616fast_user_write(struct io_mapping *mapping,
617 loff_t page_base, int page_offset,
618 char __user *user_data,
619 int length)
9b7530cc 620{
9b7530cc 621 char *vaddr_atomic;
0839ccb8 622 unsigned long unwritten;
9b7530cc 623
3e4d3af5 624 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
625 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
626 user_data, length);
3e4d3af5 627 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 628 return unwritten;
0839ccb8
KP
629}
630
631/* Here's the write path which can sleep for
632 * page faults
633 */
634
ab34c226 635static inline void
3de09aa3
EA
636slow_kernel_write(struct io_mapping *mapping,
637 loff_t gtt_base, int gtt_offset,
638 struct page *user_page, int user_offset,
639 int length)
0839ccb8 640{
ab34c226
CW
641 char __iomem *dst_vaddr;
642 char *src_vaddr;
0839ccb8 643
ab34c226
CW
644 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
645 src_vaddr = kmap(user_page);
646
647 memcpy_toio(dst_vaddr + gtt_offset,
648 src_vaddr + user_offset,
649 length);
650
651 kunmap(user_page);
652 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
653}
654
40123c1f
EA
655static inline int
656fast_shmem_write(struct page **pages,
657 loff_t page_base, int page_offset,
658 char __user *data,
659 int length)
660{
b5e4feb6 661 char *vaddr;
fbd5a26d 662 int ret;
40123c1f 663
3e4d3af5 664 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
fbd5a26d 665 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
3e4d3af5 666 kunmap_atomic(vaddr);
40123c1f 667
fbd5a26d 668 return ret;
40123c1f
EA
669}
670
3de09aa3
EA
671/**
672 * This is the fast pwrite path, where we copy the data directly from the
673 * user into the GTT, uncached.
674 */
673a394b 675static int
3de09aa3
EA
676i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
677 struct drm_i915_gem_pwrite *args,
678 struct drm_file *file_priv)
673a394b 679{
23010e43 680 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 681 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 682 ssize_t remain;
0839ccb8 683 loff_t offset, page_base;
673a394b 684 char __user *user_data;
0839ccb8 685 int page_offset, page_length;
673a394b
EA
686
687 user_data = (char __user *) (uintptr_t) args->data_ptr;
688 remain = args->size;
673a394b 689
23010e43 690 obj_priv = to_intel_bo(obj);
673a394b 691 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
692
693 while (remain > 0) {
694 /* Operation in this page
695 *
0839ccb8
KP
696 * page_base = page offset within aperture
697 * page_offset = offset within page
698 * page_length = bytes to copy for this page
673a394b 699 */
0839ccb8
KP
700 page_base = (offset & ~(PAGE_SIZE-1));
701 page_offset = offset & (PAGE_SIZE-1);
702 page_length = remain;
703 if ((page_offset + remain) > PAGE_SIZE)
704 page_length = PAGE_SIZE - page_offset;
705
0839ccb8 706 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
707 * source page isn't available. Return the error and we'll
708 * retry in the slow path.
0839ccb8 709 */
fbd5a26d
CW
710 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
711 page_offset, user_data, page_length))
712
713 return -EFAULT;
673a394b 714
0839ccb8
KP
715 remain -= page_length;
716 user_data += page_length;
717 offset += page_length;
673a394b 718 }
673a394b 719
fbd5a26d 720 return 0;
673a394b
EA
721}
722
3de09aa3
EA
723/**
724 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
725 * the memory and maps it using kmap_atomic for copying.
726 *
727 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
728 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
729 */
3043c60c 730static int
3de09aa3
EA
731i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
732 struct drm_i915_gem_pwrite *args,
733 struct drm_file *file_priv)
673a394b 734{
23010e43 735 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
736 drm_i915_private_t *dev_priv = dev->dev_private;
737 ssize_t remain;
738 loff_t gtt_page_base, offset;
739 loff_t first_data_page, last_data_page, num_pages;
740 loff_t pinned_pages, i;
741 struct page **user_pages;
742 struct mm_struct *mm = current->mm;
743 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 744 int ret;
3de09aa3
EA
745 uint64_t data_ptr = args->data_ptr;
746
747 remain = args->size;
748
749 /* Pin the user pages containing the data. We can't fault while
750 * holding the struct mutex, and all of the pwrite implementations
751 * want to hold it while dereferencing the user data.
752 */
753 first_data_page = data_ptr / PAGE_SIZE;
754 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
755 num_pages = last_data_page - first_data_page + 1;
756
fbd5a26d 757 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
758 if (user_pages == NULL)
759 return -ENOMEM;
760
fbd5a26d 761 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
762 down_read(&mm->mmap_sem);
763 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
764 num_pages, 0, 0, user_pages, NULL);
765 up_read(&mm->mmap_sem);
fbd5a26d 766 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
767 if (pinned_pages < num_pages) {
768 ret = -EFAULT;
769 goto out_unpin_pages;
770 }
673a394b 771
3de09aa3
EA
772 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
773 if (ret)
fbd5a26d 774 goto out_unpin_pages;
3de09aa3 775
23010e43 776 obj_priv = to_intel_bo(obj);
3de09aa3
EA
777 offset = obj_priv->gtt_offset + args->offset;
778
779 while (remain > 0) {
780 /* Operation in this page
781 *
782 * gtt_page_base = page offset within aperture
783 * gtt_page_offset = offset within page in aperture
784 * data_page_index = page number in get_user_pages return
785 * data_page_offset = offset with data_page_index page.
786 * page_length = bytes to copy for this page
787 */
788 gtt_page_base = offset & PAGE_MASK;
789 gtt_page_offset = offset & ~PAGE_MASK;
790 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
791 data_page_offset = data_ptr & ~PAGE_MASK;
792
793 page_length = remain;
794 if ((gtt_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - gtt_page_offset;
796 if ((data_page_offset + page_length) > PAGE_SIZE)
797 page_length = PAGE_SIZE - data_page_offset;
798
ab34c226
CW
799 slow_kernel_write(dev_priv->mm.gtt_mapping,
800 gtt_page_base, gtt_page_offset,
801 user_pages[data_page_index],
802 data_page_offset,
803 page_length);
3de09aa3
EA
804
805 remain -= page_length;
806 offset += page_length;
807 data_ptr += page_length;
808 }
809
3de09aa3
EA
810out_unpin_pages:
811 for (i = 0; i < pinned_pages; i++)
812 page_cache_release(user_pages[i]);
8e7d2b2c 813 drm_free_large(user_pages);
3de09aa3
EA
814
815 return ret;
816}
817
40123c1f
EA
818/**
819 * This is the fast shmem pwrite path, which attempts to directly
820 * copy_from_user into the kmapped pages backing the object.
821 */
3043c60c 822static int
40123c1f
EA
823i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
824 struct drm_i915_gem_pwrite *args,
825 struct drm_file *file_priv)
673a394b 826{
23010e43 827 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
828 ssize_t remain;
829 loff_t offset, page_base;
830 char __user *user_data;
831 int page_offset, page_length;
40123c1f
EA
832
833 user_data = (char __user *) (uintptr_t) args->data_ptr;
834 remain = args->size;
673a394b 835
23010e43 836 obj_priv = to_intel_bo(obj);
40123c1f
EA
837 offset = args->offset;
838 obj_priv->dirty = 1;
839
840 while (remain > 0) {
841 /* Operation in this page
842 *
843 * page_base = page offset within aperture
844 * page_offset = offset within page
845 * page_length = bytes to copy for this page
846 */
847 page_base = (offset & ~(PAGE_SIZE-1));
848 page_offset = offset & (PAGE_SIZE-1);
849 page_length = remain;
850 if ((page_offset + remain) > PAGE_SIZE)
851 page_length = PAGE_SIZE - page_offset;
852
fbd5a26d 853 if (fast_shmem_write(obj_priv->pages,
40123c1f 854 page_base, page_offset,
fbd5a26d
CW
855 user_data, page_length))
856 return -EFAULT;
40123c1f
EA
857
858 remain -= page_length;
859 user_data += page_length;
860 offset += page_length;
861 }
862
fbd5a26d 863 return 0;
40123c1f
EA
864}
865
866/**
867 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
868 * the memory and maps it using kmap_atomic for copying.
869 *
870 * This avoids taking mmap_sem for faulting on the user's address while the
871 * struct_mutex is held.
872 */
873static int
874i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
875 struct drm_i915_gem_pwrite *args,
876 struct drm_file *file_priv)
877{
23010e43 878 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
879 struct mm_struct *mm = current->mm;
880 struct page **user_pages;
881 ssize_t remain;
882 loff_t offset, pinned_pages, i;
883 loff_t first_data_page, last_data_page, num_pages;
884 int shmem_page_index, shmem_page_offset;
885 int data_page_index, data_page_offset;
886 int page_length;
887 int ret;
888 uint64_t data_ptr = args->data_ptr;
280b713b 889 int do_bit17_swizzling;
40123c1f
EA
890
891 remain = args->size;
892
893 /* Pin the user pages containing the data. We can't fault while
894 * holding the struct mutex, and all of the pwrite implementations
895 * want to hold it while dereferencing the user data.
896 */
897 first_data_page = data_ptr / PAGE_SIZE;
898 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
899 num_pages = last_data_page - first_data_page + 1;
900
4f27b75d 901 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
902 if (user_pages == NULL)
903 return -ENOMEM;
904
fbd5a26d 905 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
906 down_read(&mm->mmap_sem);
907 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
908 num_pages, 0, 0, user_pages, NULL);
909 up_read(&mm->mmap_sem);
fbd5a26d 910 mutex_lock(&dev->struct_mutex);
40123c1f
EA
911 if (pinned_pages < num_pages) {
912 ret = -EFAULT;
fbd5a26d 913 goto out;
673a394b
EA
914 }
915
fbd5a26d 916 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 917 if (ret)
fbd5a26d 918 goto out;
40123c1f 919
fbd5a26d 920 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 921
23010e43 922 obj_priv = to_intel_bo(obj);
673a394b 923 offset = args->offset;
40123c1f 924 obj_priv->dirty = 1;
673a394b 925
40123c1f
EA
926 while (remain > 0) {
927 /* Operation in this page
928 *
929 * shmem_page_index = page number within shmem file
930 * shmem_page_offset = offset within page in shmem file
931 * data_page_index = page number in get_user_pages return
932 * data_page_offset = offset with data_page_index page.
933 * page_length = bytes to copy for this page
934 */
935 shmem_page_index = offset / PAGE_SIZE;
936 shmem_page_offset = offset & ~PAGE_MASK;
937 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
938 data_page_offset = data_ptr & ~PAGE_MASK;
939
940 page_length = remain;
941 if ((shmem_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - shmem_page_offset;
943 if ((data_page_offset + page_length) > PAGE_SIZE)
944 page_length = PAGE_SIZE - data_page_offset;
945
280b713b 946 if (do_bit17_swizzling) {
99a03df5 947 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
948 shmem_page_offset,
949 user_pages[data_page_index],
950 data_page_offset,
99a03df5
CW
951 page_length,
952 0);
953 } else {
954 slow_shmem_copy(obj_priv->pages[shmem_page_index],
955 shmem_page_offset,
956 user_pages[data_page_index],
957 data_page_offset,
958 page_length);
280b713b 959 }
40123c1f
EA
960
961 remain -= page_length;
962 data_ptr += page_length;
963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
40123c1f
EA
967 for (i = 0; i < pinned_pages; i++)
968 page_cache_release(user_pages[i]);
8e7d2b2c 969 drm_free_large(user_pages);
673a394b 970
40123c1f 971 return ret;
673a394b
EA
972}
973
974/**
975 * Writes data to the object referenced by handle.
976 *
977 * On error, the contents of the buffer that were to be modified are undefined.
978 */
979int
980i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 981 struct drm_file *file)
673a394b
EA
982{
983 struct drm_i915_gem_pwrite *args = data;
984 struct drm_gem_object *obj;
985 struct drm_i915_gem_object *obj_priv;
986 int ret = 0;
987
fbd5a26d 988 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 989 if (ret)
fbd5a26d 990 return ret;
1d7cfea1
CW
991
992 obj = drm_gem_object_lookup(dev, file, args->handle);
993 if (obj == NULL) {
994 ret = -ENOENT;
995 goto unlock;
fbd5a26d 996 }
23010e43 997 obj_priv = to_intel_bo(obj);
673a394b 998
fbd5a26d 999
7dcd2499
CW
1000 /* Bounds check destination. */
1001 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1002 ret = -EINVAL;
35b62a89 1003 goto out;
ce9d419d
CW
1004 }
1005
35b62a89
CW
1006 if (args->size == 0)
1007 goto out;
1008
ce9d419d
CW
1009 if (!access_ok(VERIFY_READ,
1010 (char __user *)(uintptr_t)args->data_ptr,
1011 args->size)) {
1012 ret = -EFAULT;
35b62a89 1013 goto out;
673a394b
EA
1014 }
1015
b5e4feb6
CW
1016 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1017 args->size);
1018 if (ret) {
1019 ret = -EFAULT;
1020 goto out;
673a394b
EA
1021 }
1022
1023 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1024 * it would end up going through the fenced access, and we'll get
1025 * different detiling behavior between reading and writing.
1026 * pread/pwrite currently are reading and writing from the CPU
1027 * perspective, requiring manual detiling by the client.
1028 */
71acb5eb 1029 if (obj_priv->phys_obj)
fbd5a26d 1030 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1031 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1032 obj_priv->gtt_space &&
9b8c4a0b 1033 obj->write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d
CW
1034 ret = i915_gem_object_pin(obj, 0);
1035 if (ret)
1036 goto out;
1037
1038 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1039 if (ret)
1040 goto out_unpin;
1041
1042 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1043 if (ret == -EFAULT)
1044 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1045
1046out_unpin:
1047 i915_gem_object_unpin(obj);
40123c1f 1048 } else {
fbd5a26d
CW
1049 ret = i915_gem_object_get_pages_or_evict(obj);
1050 if (ret)
1051 goto out;
673a394b 1052
fbd5a26d
CW
1053 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1054 if (ret)
1055 goto out_put;
673a394b 1056
fbd5a26d
CW
1057 ret = -EFAULT;
1058 if (!i915_gem_object_needs_bit17_swizzle(obj))
1059 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1060 if (ret == -EFAULT)
1061 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1062
1063out_put:
1064 i915_gem_object_put_pages(obj);
1065 }
673a394b 1066
35b62a89 1067out:
fbd5a26d 1068 drm_gem_object_unreference(obj);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
1074/**
2ef7eeaa
EA
1075 * Called when user space prepares to use an object with the CPU, either
1076 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1077 */
1078int
1079i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1080 struct drm_file *file_priv)
1081{
a09ba7fa 1082 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1083 struct drm_i915_gem_set_domain *args = data;
1084 struct drm_gem_object *obj;
652c393a 1085 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1086 uint32_t read_domains = args->read_domains;
1087 uint32_t write_domain = args->write_domain;
673a394b
EA
1088 int ret;
1089
1090 if (!(dev->driver->driver_features & DRIVER_GEM))
1091 return -ENODEV;
1092
2ef7eeaa 1093 /* Only handle setting domains to types used by the CPU. */
21d509e3 1094 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1095 return -EINVAL;
1096
21d509e3 1097 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1098 return -EINVAL;
1099
1100 /* Having something in the write domain implies it's in the read
1101 * domain, and only that read domain. Enforce that in the request.
1102 */
1103 if (write_domain != 0 && read_domains != write_domain)
1104 return -EINVAL;
1105
76c1dec1 1106 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1107 if (ret)
76c1dec1 1108 return ret;
1d7cfea1 1109
673a394b 1110 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1111 if (obj == NULL) {
1112 ret = -ENOENT;
1113 goto unlock;
76c1dec1 1114 }
23010e43 1115 obj_priv = to_intel_bo(obj);
673a394b 1116
652c393a
JB
1117 intel_mark_busy(dev, obj);
1118
2ef7eeaa
EA
1119 if (read_domains & I915_GEM_DOMAIN_GTT) {
1120 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1121
a09ba7fa
EA
1122 /* Update the LRU on the fence for the CPU access that's
1123 * about to occur.
1124 */
1125 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1126 struct drm_i915_fence_reg *reg =
1127 &dev_priv->fence_regs[obj_priv->fence_reg];
1128 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1129 &dev_priv->mm.fence_list);
1130 }
1131
02354392
EA
1132 /* Silently promote "you're not bound, there was nothing to do"
1133 * to success, since the client was just asking us to
1134 * make sure everything was done.
1135 */
1136 if (ret == -EINVAL)
1137 ret = 0;
2ef7eeaa 1138 } else {
e47c68e9 1139 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1140 }
1141
7d1c4804
CW
1142 /* Maintain LRU order of "inactive" objects */
1143 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1144 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1145
673a394b 1146 drm_gem_object_unreference(obj);
1d7cfea1 1147unlock:
673a394b
EA
1148 mutex_unlock(&dev->struct_mutex);
1149 return ret;
1150}
1151
1152/**
1153 * Called when user space has done writes to this buffer
1154 */
1155int
1156i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1157 struct drm_file *file_priv)
1158{
1159 struct drm_i915_gem_sw_finish *args = data;
1160 struct drm_gem_object *obj;
673a394b
EA
1161 int ret = 0;
1162
1163 if (!(dev->driver->driver_features & DRIVER_GEM))
1164 return -ENODEV;
1165
76c1dec1 1166 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1167 if (ret)
76c1dec1 1168 return ret;
1d7cfea1 1169
673a394b
EA
1170 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1171 if (obj == NULL) {
1d7cfea1
CW
1172 ret = -ENOENT;
1173 goto unlock;
673a394b
EA
1174 }
1175
673a394b 1176 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1177 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1178 i915_gem_object_flush_cpu_write_domain(obj);
1179
673a394b 1180 drm_gem_object_unreference(obj);
1d7cfea1 1181unlock:
673a394b
EA
1182 mutex_unlock(&dev->struct_mutex);
1183 return ret;
1184}
1185
1186/**
1187 * Maps the contents of an object, returning the address it is mapped
1188 * into.
1189 *
1190 * While the mapping holds a reference on the contents of the object, it doesn't
1191 * imply a ref on the object itself.
1192 */
1193int
1194i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1195 struct drm_file *file_priv)
1196{
1197 struct drm_i915_gem_mmap *args = data;
1198 struct drm_gem_object *obj;
1199 loff_t offset;
1200 unsigned long addr;
1201
1202 if (!(dev->driver->driver_features & DRIVER_GEM))
1203 return -ENODEV;
1204
1205 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1206 if (obj == NULL)
bf79cb91 1207 return -ENOENT;
673a394b
EA
1208
1209 offset = args->offset;
1210
1211 down_write(&current->mm->mmap_sem);
1212 addr = do_mmap(obj->filp, 0, args->size,
1213 PROT_READ | PROT_WRITE, MAP_SHARED,
1214 args->offset);
1215 up_write(&current->mm->mmap_sem);
bc9025bd 1216 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1217 if (IS_ERR((void *)addr))
1218 return addr;
1219
1220 args->addr_ptr = (uint64_t) addr;
1221
1222 return 0;
1223}
1224
de151cf6
JB
1225/**
1226 * i915_gem_fault - fault a page into the GTT
1227 * vma: VMA in question
1228 * vmf: fault info
1229 *
1230 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1231 * from userspace. The fault handler takes care of binding the object to
1232 * the GTT (if needed), allocating and programming a fence register (again,
1233 * only if needed based on whether the old reg is still valid or the object
1234 * is tiled) and inserting a new PTE into the faulting process.
1235 *
1236 * Note that the faulting process may involve evicting existing objects
1237 * from the GTT and/or fence registers to make room. So performance may
1238 * suffer if the GTT working set is large or there are few fence registers
1239 * left.
1240 */
1241int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1242{
1243 struct drm_gem_object *obj = vma->vm_private_data;
1244 struct drm_device *dev = obj->dev;
7d1c4804 1245 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1246 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1247 pgoff_t page_offset;
1248 unsigned long pfn;
1249 int ret = 0;
0f973f27 1250 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1251
1252 /* We don't use vmf->pgoff since that has the fake offset */
1253 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1254 PAGE_SHIFT;
1255
1256 /* Now bind it into the GTT if needed */
1257 mutex_lock(&dev->struct_mutex);
1258 if (!obj_priv->gtt_space) {
e67b8ce1 1259 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1260 if (ret)
1261 goto unlock;
07f4f3e8 1262
07f4f3e8 1263 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1264 if (ret)
1265 goto unlock;
de151cf6
JB
1266 }
1267
1268 /* Need a new fence register? */
a09ba7fa 1269 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1270 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1271 if (ret)
1272 goto unlock;
d9ddcb96 1273 }
de151cf6 1274
7d1c4804 1275 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1276 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1277
de151cf6
JB
1278 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1279 page_offset;
1280
1281 /* Finally, remap it using the new GTT offset */
1282 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1283unlock:
de151cf6
JB
1284 mutex_unlock(&dev->struct_mutex);
1285
1286 switch (ret) {
c715089f
CW
1287 case 0:
1288 case -ERESTARTSYS:
1289 return VM_FAULT_NOPAGE;
de151cf6
JB
1290 case -ENOMEM:
1291 case -EAGAIN:
1292 return VM_FAULT_OOM;
de151cf6 1293 default:
c715089f 1294 return VM_FAULT_SIGBUS;
de151cf6
JB
1295 }
1296}
1297
1298/**
1299 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1300 * @obj: obj in question
1301 *
1302 * GEM memory mapping works by handing back to userspace a fake mmap offset
1303 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1304 * up the object based on the offset and sets up the various memory mapping
1305 * structures.
1306 *
1307 * This routine allocates and attaches a fake offset for @obj.
1308 */
1309static int
1310i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1311{
1312 struct drm_device *dev = obj->dev;
1313 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1314 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1315 struct drm_map_list *list;
f77d390c 1316 struct drm_local_map *map;
de151cf6
JB
1317 int ret = 0;
1318
1319 /* Set the object up for mmap'ing */
1320 list = &obj->map_list;
9a298b2a 1321 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1322 if (!list->map)
1323 return -ENOMEM;
1324
1325 map = list->map;
1326 map->type = _DRM_GEM;
1327 map->size = obj->size;
1328 map->handle = obj;
1329
1330 /* Get a DRM GEM mmap offset allocated... */
1331 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1332 obj->size / PAGE_SIZE, 0, 0);
1333 if (!list->file_offset_node) {
1334 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1335 ret = -ENOSPC;
de151cf6
JB
1336 goto out_free_list;
1337 }
1338
1339 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1340 obj->size / PAGE_SIZE, 0);
1341 if (!list->file_offset_node) {
1342 ret = -ENOMEM;
1343 goto out_free_list;
1344 }
1345
1346 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1347 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1348 if (ret) {
de151cf6
JB
1349 DRM_ERROR("failed to add to map hash\n");
1350 goto out_free_mm;
1351 }
1352
1353 /* By now we should be all set, any drm_mmap request on the offset
1354 * below will get to our mmap & fault handler */
1355 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1356
1357 return 0;
1358
1359out_free_mm:
1360 drm_mm_put_block(list->file_offset_node);
1361out_free_list:
9a298b2a 1362 kfree(list->map);
de151cf6
JB
1363
1364 return ret;
1365}
1366
901782b2
CW
1367/**
1368 * i915_gem_release_mmap - remove physical page mappings
1369 * @obj: obj in question
1370 *
af901ca1 1371 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1372 * relinquish ownership of the pages back to the system.
1373 *
1374 * It is vital that we remove the page mapping if we have mapped a tiled
1375 * object through the GTT and then lose the fence register due to
1376 * resource pressure. Similarly if the object has been moved out of the
1377 * aperture, than pages mapped into userspace must be revoked. Removing the
1378 * mapping will then trigger a page fault on the next user access, allowing
1379 * fixup by i915_gem_fault().
1380 */
d05ca301 1381void
901782b2
CW
1382i915_gem_release_mmap(struct drm_gem_object *obj)
1383{
1384 struct drm_device *dev = obj->dev;
23010e43 1385 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1386
1387 if (dev->dev_mapping)
1388 unmap_mapping_range(dev->dev_mapping,
1389 obj_priv->mmap_offset, obj->size, 1);
1390}
1391
ab00b3e5
JB
1392static void
1393i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1394{
1395 struct drm_device *dev = obj->dev;
23010e43 1396 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1397 struct drm_gem_mm *mm = dev->mm_private;
1398 struct drm_map_list *list;
1399
1400 list = &obj->map_list;
1401 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1402
1403 if (list->file_offset_node) {
1404 drm_mm_put_block(list->file_offset_node);
1405 list->file_offset_node = NULL;
1406 }
1407
1408 if (list->map) {
9a298b2a 1409 kfree(list->map);
ab00b3e5
JB
1410 list->map = NULL;
1411 }
1412
1413 obj_priv->mmap_offset = 0;
1414}
1415
de151cf6
JB
1416/**
1417 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1418 * @obj: object to check
1419 *
1420 * Return the required GTT alignment for an object, taking into account
1421 * potential fence register mapping if needed.
1422 */
1423static uint32_t
1424i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1425{
1426 struct drm_device *dev = obj->dev;
23010e43 1427 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1428 int start, i;
1429
1430 /*
1431 * Minimum alignment is 4k (GTT page size), but might be greater
1432 * if a fence register is needed for the object.
1433 */
a6c45cf0 1434 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1435 return 4096;
1436
1437 /*
1438 * Previous chips need to be aligned to the size of the smallest
1439 * fence register that can contain the object.
1440 */
a6c45cf0 1441 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1442 start = 1024*1024;
1443 else
1444 start = 512*1024;
1445
1446 for (i = start; i < obj->size; i <<= 1)
1447 ;
1448
1449 return i;
1450}
1451
1452/**
1453 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1454 * @dev: DRM device
1455 * @data: GTT mapping ioctl data
1456 * @file_priv: GEM object info
1457 *
1458 * Simply returns the fake offset to userspace so it can mmap it.
1459 * The mmap call will end up in drm_gem_mmap(), which will set things
1460 * up so we can get faults in the handler above.
1461 *
1462 * The fault handler will take care of binding the object into the GTT
1463 * (since it may have been evicted to make room for something), allocating
1464 * a fence register, and mapping the appropriate aperture address into
1465 * userspace.
1466 */
1467int
1468i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1469 struct drm_file *file_priv)
1470{
1471 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1472 struct drm_gem_object *obj;
1473 struct drm_i915_gem_object *obj_priv;
1474 int ret;
1475
1476 if (!(dev->driver->driver_features & DRIVER_GEM))
1477 return -ENODEV;
1478
76c1dec1 1479 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1480 if (ret)
76c1dec1 1481 return ret;
de151cf6 1482
1d7cfea1
CW
1483 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1484 if (obj == NULL) {
1485 ret = -ENOENT;
1486 goto unlock;
1487 }
23010e43 1488 obj_priv = to_intel_bo(obj);
de151cf6 1489
ab18282d
CW
1490 if (obj_priv->madv != I915_MADV_WILLNEED) {
1491 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1492 ret = -EINVAL;
1493 goto out;
ab18282d
CW
1494 }
1495
de151cf6
JB
1496 if (!obj_priv->mmap_offset) {
1497 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1498 if (ret)
1499 goto out;
de151cf6
JB
1500 }
1501
1502 args->offset = obj_priv->mmap_offset;
1503
de151cf6
JB
1504 /*
1505 * Pull it into the GTT so that we have a page list (makes the
1506 * initial fault faster and any subsequent flushing possible).
1507 */
1508 if (!obj_priv->agp_mem) {
e67b8ce1 1509 ret = i915_gem_object_bind_to_gtt(obj, 0);
1d7cfea1
CW
1510 if (ret)
1511 goto out;
de151cf6
JB
1512 }
1513
1d7cfea1 1514out:
de151cf6 1515 drm_gem_object_unreference(obj);
1d7cfea1 1516unlock:
de151cf6 1517 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1518 return ret;
de151cf6
JB
1519}
1520
5cdf5881 1521static void
856fa198 1522i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1523{
23010e43 1524 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1525 int page_count = obj->size / PAGE_SIZE;
1526 int i;
1527
856fa198 1528 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1529 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1530
856fa198
EA
1531 if (--obj_priv->pages_refcount != 0)
1532 return;
673a394b 1533
280b713b
EA
1534 if (obj_priv->tiling_mode != I915_TILING_NONE)
1535 i915_gem_object_save_bit_17_swizzle(obj);
1536
3ef94daa 1537 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1538 obj_priv->dirty = 0;
3ef94daa
CW
1539
1540 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1541 if (obj_priv->dirty)
1542 set_page_dirty(obj_priv->pages[i]);
1543
1544 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1545 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1546
1547 page_cache_release(obj_priv->pages[i]);
1548 }
673a394b
EA
1549 obj_priv->dirty = 0;
1550
8e7d2b2c 1551 drm_free_large(obj_priv->pages);
856fa198 1552 obj_priv->pages = NULL;
673a394b
EA
1553}
1554
a56ba56c
CW
1555static uint32_t
1556i915_gem_next_request_seqno(struct drm_device *dev,
1557 struct intel_ring_buffer *ring)
1558{
1559 drm_i915_private_t *dev_priv = dev->dev_private;
1560
1561 ring->outstanding_lazy_request = true;
1562 return dev_priv->next_seqno;
1563}
1564
673a394b 1565static void
617dbe27 1566i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1567 struct intel_ring_buffer *ring)
673a394b
EA
1568{
1569 struct drm_device *dev = obj->dev;
69dc4987 1570 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1571 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1572 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1573
852835f3
ZN
1574 BUG_ON(ring == NULL);
1575 obj_priv->ring = ring;
673a394b
EA
1576
1577 /* Add a reference if we're newly entering the active list. */
1578 if (!obj_priv->active) {
1579 drm_gem_object_reference(obj);
1580 obj_priv->active = 1;
1581 }
e35a41de 1582
673a394b 1583 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1584 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1585 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1586 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1587}
1588
ce44b0ea
EA
1589static void
1590i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1591{
1592 struct drm_device *dev = obj->dev;
1593 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1594 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1595
1596 BUG_ON(!obj_priv->active);
69dc4987
CW
1597 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1598 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1599 obj_priv->last_rendering_seqno = 0;
1600}
673a394b 1601
963b4836
CW
1602/* Immediately discard the backing storage */
1603static void
1604i915_gem_object_truncate(struct drm_gem_object *obj)
1605{
23010e43 1606 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1607 struct inode *inode;
963b4836 1608
ae9fed6b
CW
1609 /* Our goal here is to return as much of the memory as
1610 * is possible back to the system as we are called from OOM.
1611 * To do this we must instruct the shmfs to drop all of its
1612 * backing pages, *now*. Here we mirror the actions taken
1613 * when by shmem_delete_inode() to release the backing store.
1614 */
bb6baf76 1615 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1616 truncate_inode_pages(inode->i_mapping, 0);
1617 if (inode->i_op->truncate_range)
1618 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1619
1620 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1621}
1622
1623static inline int
1624i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1625{
1626 return obj_priv->madv == I915_MADV_DONTNEED;
1627}
1628
673a394b
EA
1629static void
1630i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1631{
1632 struct drm_device *dev = obj->dev;
1633 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1634 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1635
673a394b 1636 if (obj_priv->pin_count != 0)
69dc4987 1637 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1638 else
69dc4987
CW
1639 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1640 list_del_init(&obj_priv->ring_list);
673a394b 1641
99fcb766
DV
1642 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1643
ce44b0ea 1644 obj_priv->last_rendering_seqno = 0;
852835f3 1645 obj_priv->ring = NULL;
673a394b
EA
1646 if (obj_priv->active) {
1647 obj_priv->active = 0;
1648 drm_gem_object_unreference(obj);
1649 }
23bc5982 1650 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1651}
1652
63560396
DV
1653static void
1654i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1655 uint32_t flush_domains,
852835f3 1656 struct intel_ring_buffer *ring)
63560396
DV
1657{
1658 drm_i915_private_t *dev_priv = dev->dev_private;
1659 struct drm_i915_gem_object *obj_priv, *next;
1660
1661 list_for_each_entry_safe(obj_priv, next,
64193406 1662 &ring->gpu_write_list,
63560396 1663 gpu_write_list) {
a8089e84 1664 struct drm_gem_object *obj = &obj_priv->base;
63560396 1665
64193406 1666 if (obj->write_domain & flush_domains) {
63560396
DV
1667 uint32_t old_write_domain = obj->write_domain;
1668
1669 obj->write_domain = 0;
1670 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1671 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1672
1673 /* update the fence lru list */
007cc8ac
DV
1674 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1675 struct drm_i915_fence_reg *reg =
1676 &dev_priv->fence_regs[obj_priv->fence_reg];
1677 list_move_tail(&reg->lru_list,
63560396 1678 &dev_priv->mm.fence_list);
007cc8ac 1679 }
63560396
DV
1680
1681 trace_i915_gem_object_change_domain(obj,
1682 obj->read_domains,
1683 old_write_domain);
1684 }
1685 }
1686}
8187a2b7 1687
3cce469c 1688int
8a1a49f9 1689i915_add_request(struct drm_device *dev,
f787a5f5 1690 struct drm_file *file,
8dc5d147 1691 struct drm_i915_gem_request *request,
8a1a49f9 1692 struct intel_ring_buffer *ring)
673a394b
EA
1693{
1694 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1695 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1696 uint32_t seqno;
1697 int was_empty;
3cce469c
CW
1698 int ret;
1699
1700 BUG_ON(request == NULL);
673a394b 1701
f787a5f5
CW
1702 if (file != NULL)
1703 file_priv = file->driver_priv;
b962442e 1704
3cce469c
CW
1705 ret = ring->add_request(ring, &seqno);
1706 if (ret)
1707 return ret;
673a394b 1708
a56ba56c 1709 ring->outstanding_lazy_request = false;
673a394b
EA
1710
1711 request->seqno = seqno;
852835f3 1712 request->ring = ring;
673a394b 1713 request->emitted_jiffies = jiffies;
852835f3
ZN
1714 was_empty = list_empty(&ring->request_list);
1715 list_add_tail(&request->list, &ring->request_list);
1716
f787a5f5 1717 if (file_priv) {
1c25595f 1718 spin_lock(&file_priv->mm.lock);
f787a5f5 1719 request->file_priv = file_priv;
b962442e 1720 list_add_tail(&request->client_list,
f787a5f5 1721 &file_priv->mm.request_list);
1c25595f 1722 spin_unlock(&file_priv->mm.lock);
b962442e 1723 }
673a394b 1724
f65d9421 1725 if (!dev_priv->mm.suspended) {
b3b079db
CW
1726 mod_timer(&dev_priv->hangcheck_timer,
1727 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1728 if (was_empty)
b3b079db
CW
1729 queue_delayed_work(dev_priv->wq,
1730 &dev_priv->mm.retire_work, HZ);
f65d9421 1731 }
3cce469c 1732 return 0;
673a394b
EA
1733}
1734
1735/**
1736 * Command execution barrier
1737 *
1738 * Ensures that all commands in the ring are finished
1739 * before signalling the CPU
1740 */
8a1a49f9 1741static void
852835f3 1742i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1743{
673a394b 1744 uint32_t flush_domains = 0;
673a394b
EA
1745
1746 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1747 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1748 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1749
78501eac 1750 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1751}
1752
f787a5f5
CW
1753static inline void
1754i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1755{
1c25595f 1756 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1757
1c25595f
CW
1758 if (!file_priv)
1759 return;
1c5d22f7 1760
1c25595f
CW
1761 spin_lock(&file_priv->mm.lock);
1762 list_del(&request->client_list);
1763 request->file_priv = NULL;
1764 spin_unlock(&file_priv->mm.lock);
673a394b 1765}
673a394b 1766
dfaae392
CW
1767static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1768 struct intel_ring_buffer *ring)
9375e446 1769{
dfaae392
CW
1770 while (!list_empty(&ring->request_list)) {
1771 struct drm_i915_gem_request *request;
673a394b 1772
dfaae392
CW
1773 request = list_first_entry(&ring->request_list,
1774 struct drm_i915_gem_request,
1775 list);
de151cf6 1776
dfaae392 1777 list_del(&request->list);
f787a5f5 1778 i915_gem_request_remove_from_client(request);
dfaae392
CW
1779 kfree(request);
1780 }
673a394b 1781
dfaae392 1782 while (!list_empty(&ring->active_list)) {
9375e446
CW
1783 struct drm_i915_gem_object *obj_priv;
1784
dfaae392 1785 obj_priv = list_first_entry(&ring->active_list,
9375e446 1786 struct drm_i915_gem_object,
69dc4987 1787 ring_list);
9375e446
CW
1788
1789 obj_priv->base.write_domain = 0;
dfaae392 1790 list_del_init(&obj_priv->gpu_write_list);
9375e446 1791 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1792 }
1793}
1794
069efc1d 1795void i915_gem_reset(struct drm_device *dev)
673a394b 1796{
77f01230
CW
1797 struct drm_i915_private *dev_priv = dev->dev_private;
1798 struct drm_i915_gem_object *obj_priv;
069efc1d 1799 int i;
673a394b 1800
dfaae392 1801 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1802 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1803 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1804
1805 /* Remove anything from the flushing lists. The GPU cache is likely
1806 * to be lost on reset along with the data, so simply move the
1807 * lost bo to the inactive list.
1808 */
1809 while (!list_empty(&dev_priv->mm.flushing_list)) {
1810 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1811 struct drm_i915_gem_object,
69dc4987 1812 mm_list);
dfaae392
CW
1813
1814 obj_priv->base.write_domain = 0;
1815 list_del_init(&obj_priv->gpu_write_list);
1816 i915_gem_object_move_to_inactive(&obj_priv->base);
1817 }
1818
1819 /* Move everything out of the GPU domains to ensure we do any
1820 * necessary invalidation upon reuse.
1821 */
77f01230
CW
1822 list_for_each_entry(obj_priv,
1823 &dev_priv->mm.inactive_list,
69dc4987 1824 mm_list)
77f01230
CW
1825 {
1826 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1827 }
069efc1d
CW
1828
1829 /* The fence registers are invalidated so clear them out */
1830 for (i = 0; i < 16; i++) {
1831 struct drm_i915_fence_reg *reg;
1832
1833 reg = &dev_priv->fence_regs[i];
1834 if (!reg->obj)
1835 continue;
1836
1837 i915_gem_clear_fence_reg(reg->obj);
1838 }
673a394b
EA
1839}
1840
1841/**
1842 * This function clears the request list as sequence numbers are passed.
1843 */
b09a1fec
CW
1844static void
1845i915_gem_retire_requests_ring(struct drm_device *dev,
1846 struct intel_ring_buffer *ring)
673a394b
EA
1847{
1848 drm_i915_private_t *dev_priv = dev->dev_private;
1849 uint32_t seqno;
1850
b84d5f0c
CW
1851 if (!ring->status_page.page_addr ||
1852 list_empty(&ring->request_list))
6c0594a3
KW
1853 return;
1854
23bc5982 1855 WARN_ON(i915_verify_lists(dev));
673a394b 1856
78501eac 1857 seqno = ring->get_seqno(ring);
852835f3 1858 while (!list_empty(&ring->request_list)) {
673a394b 1859 struct drm_i915_gem_request *request;
673a394b 1860
852835f3 1861 request = list_first_entry(&ring->request_list,
673a394b
EA
1862 struct drm_i915_gem_request,
1863 list);
673a394b 1864
dfaae392 1865 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1866 break;
1867
1868 trace_i915_gem_request_retire(dev, request->seqno);
1869
1870 list_del(&request->list);
f787a5f5 1871 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1872 kfree(request);
1873 }
673a394b 1874
b84d5f0c
CW
1875 /* Move any buffers on the active list that are no longer referenced
1876 * by the ringbuffer to the flushing/inactive lists as appropriate.
1877 */
1878 while (!list_empty(&ring->active_list)) {
1879 struct drm_gem_object *obj;
1880 struct drm_i915_gem_object *obj_priv;
1881
1882 obj_priv = list_first_entry(&ring->active_list,
1883 struct drm_i915_gem_object,
69dc4987 1884 ring_list);
673a394b 1885
dfaae392 1886 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1887 break;
b84d5f0c
CW
1888
1889 obj = &obj_priv->base;
b84d5f0c
CW
1890 if (obj->write_domain != 0)
1891 i915_gem_object_move_to_flushing(obj);
1892 else
1893 i915_gem_object_move_to_inactive(obj);
673a394b 1894 }
9d34e5db
CW
1895
1896 if (unlikely (dev_priv->trace_irq_seqno &&
1897 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1898 ring->user_irq_put(ring);
9d34e5db
CW
1899 dev_priv->trace_irq_seqno = 0;
1900 }
23bc5982
CW
1901
1902 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1903}
1904
b09a1fec
CW
1905void
1906i915_gem_retire_requests(struct drm_device *dev)
1907{
1908 drm_i915_private_t *dev_priv = dev->dev_private;
1909
be72615b
CW
1910 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1911 struct drm_i915_gem_object *obj_priv, *tmp;
1912
1913 /* We must be careful that during unbind() we do not
1914 * accidentally infinitely recurse into retire requests.
1915 * Currently:
1916 * retire -> free -> unbind -> wait -> retire_ring
1917 */
1918 list_for_each_entry_safe(obj_priv, tmp,
1919 &dev_priv->mm.deferred_free_list,
69dc4987 1920 mm_list)
be72615b
CW
1921 i915_gem_free_object_tail(&obj_priv->base);
1922 }
1923
b09a1fec 1924 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1925 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 1926 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
1927}
1928
75ef9da2 1929static void
673a394b
EA
1930i915_gem_retire_work_handler(struct work_struct *work)
1931{
1932 drm_i915_private_t *dev_priv;
1933 struct drm_device *dev;
1934
1935 dev_priv = container_of(work, drm_i915_private_t,
1936 mm.retire_work.work);
1937 dev = dev_priv->dev;
1938
891b48cf
CW
1939 /* Come back later if the device is busy... */
1940 if (!mutex_trylock(&dev->struct_mutex)) {
1941 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1942 return;
1943 }
1944
b09a1fec 1945 i915_gem_retire_requests(dev);
d1b851fc 1946
6dbe2772 1947 if (!dev_priv->mm.suspended &&
d1b851fc 1948 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
1949 !list_empty(&dev_priv->bsd_ring.request_list) ||
1950 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 1951 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1952 mutex_unlock(&dev->struct_mutex);
1953}
1954
5a5a0c64 1955int
852835f3 1956i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1957 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1958{
1959 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1960 u32 ier;
673a394b
EA
1961 int ret = 0;
1962
1963 BUG_ON(seqno == 0);
1964
ba1234d1 1965 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
1966 return -EAGAIN;
1967
a56ba56c 1968 if (ring->outstanding_lazy_request) {
3cce469c
CW
1969 struct drm_i915_gem_request *request;
1970
1971 request = kzalloc(sizeof(*request), GFP_KERNEL);
1972 if (request == NULL)
e35a41de 1973 return -ENOMEM;
3cce469c
CW
1974
1975 ret = i915_add_request(dev, NULL, request, ring);
1976 if (ret) {
1977 kfree(request);
1978 return ret;
1979 }
1980
1981 seqno = request->seqno;
e35a41de 1982 }
a56ba56c 1983 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 1984
78501eac 1985 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 1986 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1987 ier = I915_READ(DEIER) | I915_READ(GTIER);
1988 else
1989 ier = I915_READ(IER);
802c7eb6
JB
1990 if (!ier) {
1991 DRM_ERROR("something (likely vbetool) disabled "
1992 "interrupts, re-enabling\n");
1993 i915_driver_irq_preinstall(dev);
1994 i915_driver_irq_postinstall(dev);
1995 }
1996
1c5d22f7
CW
1997 trace_i915_gem_request_wait_begin(dev, seqno);
1998
b2223497 1999 ring->waiting_seqno = seqno;
78501eac 2000 ring->user_irq_get(ring);
48764bf4 2001 if (interruptible)
852835f3 2002 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2003 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2004 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2005 else
852835f3 2006 wait_event(ring->irq_queue,
78501eac 2007 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2008 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2009
78501eac 2010 ring->user_irq_put(ring);
b2223497 2011 ring->waiting_seqno = 0;
1c5d22f7
CW
2012
2013 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2014 }
ba1234d1 2015 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2016 ret = -EAGAIN;
673a394b
EA
2017
2018 if (ret && ret != -ERESTARTSYS)
8bff917c 2019 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2020 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2021 dev_priv->next_seqno);
673a394b
EA
2022
2023 /* Directly dispatch request retiring. While we have the work queue
2024 * to handle this, the waiter on a request often wants an associated
2025 * buffer to have made it to the inactive list, and we would need
2026 * a separate wait queue to handle that.
2027 */
2028 if (ret == 0)
b09a1fec 2029 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2030
2031 return ret;
2032}
2033
48764bf4
DV
2034/**
2035 * Waits for a sequence number to be signaled, and cleans up the
2036 * request and object lists appropriately for that event.
2037 */
2038static int
852835f3 2039i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2040 struct intel_ring_buffer *ring)
48764bf4 2041{
852835f3 2042 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2043}
2044
20f0cd55 2045static void
9220434a 2046i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2047 struct drm_file *file_priv,
9220434a
CW
2048 struct intel_ring_buffer *ring,
2049 uint32_t invalidate_domains,
2050 uint32_t flush_domains)
2051{
78501eac 2052 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2053 i915_gem_process_flushing_list(dev, flush_domains, ring);
2054}
2055
8187a2b7
ZN
2056static void
2057i915_gem_flush(struct drm_device *dev,
c78ec30b 2058 struct drm_file *file_priv,
8187a2b7 2059 uint32_t invalidate_domains,
9220434a
CW
2060 uint32_t flush_domains,
2061 uint32_t flush_rings)
8187a2b7
ZN
2062{
2063 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2064
8187a2b7
ZN
2065 if (flush_domains & I915_GEM_DOMAIN_CPU)
2066 drm_agp_chipset_flush(dev);
8bff917c 2067
9220434a
CW
2068 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2069 if (flush_rings & RING_RENDER)
c78ec30b 2070 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2071 &dev_priv->render_ring,
2072 invalidate_domains, flush_domains);
2073 if (flush_rings & RING_BSD)
c78ec30b 2074 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2075 &dev_priv->bsd_ring,
2076 invalidate_domains, flush_domains);
549f7365
CW
2077 if (flush_rings & RING_BLT)
2078 i915_gem_flush_ring(dev, file_priv,
2079 &dev_priv->blt_ring,
2080 invalidate_domains, flush_domains);
9220434a 2081 }
8187a2b7
ZN
2082}
2083
673a394b
EA
2084/**
2085 * Ensures that all rendering to the object has completed and the object is
2086 * safe to unbind from the GTT or access from the CPU.
2087 */
2088static int
2cf34d7b
CW
2089i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2090 bool interruptible)
673a394b
EA
2091{
2092 struct drm_device *dev = obj->dev;
23010e43 2093 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2094 int ret;
2095
e47c68e9
EA
2096 /* This function only exists to support waiting for existing rendering,
2097 * not for emitting required flushes.
673a394b 2098 */
e47c68e9 2099 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2100
2101 /* If there is rendering queued on the buffer being evicted, wait for
2102 * it.
2103 */
2104 if (obj_priv->active) {
2cf34d7b
CW
2105 ret = i915_do_wait_request(dev,
2106 obj_priv->last_rendering_seqno,
2107 interruptible,
2108 obj_priv->ring);
2109 if (ret)
673a394b
EA
2110 return ret;
2111 }
2112
2113 return 0;
2114}
2115
2116/**
2117 * Unbinds an object from the GTT aperture.
2118 */
0f973f27 2119int
673a394b
EA
2120i915_gem_object_unbind(struct drm_gem_object *obj)
2121{
2122 struct drm_device *dev = obj->dev;
73aa808f 2123 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2124 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2125 int ret = 0;
2126
673a394b
EA
2127 if (obj_priv->gtt_space == NULL)
2128 return 0;
2129
2130 if (obj_priv->pin_count != 0) {
2131 DRM_ERROR("Attempting to unbind pinned buffer\n");
2132 return -EINVAL;
2133 }
2134
5323fd04
EA
2135 /* blow away mappings if mapped through GTT */
2136 i915_gem_release_mmap(obj);
2137
673a394b
EA
2138 /* Move the object to the CPU domain to ensure that
2139 * any possible CPU writes while it's not in the GTT
2140 * are flushed when we go to remap it. This will
2141 * also ensure that all pending GPU writes are finished
2142 * before we unbind.
2143 */
e47c68e9 2144 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2145 if (ret == -ERESTARTSYS)
673a394b 2146 return ret;
8dc1775d
CW
2147 /* Continue on if we fail due to EIO, the GPU is hung so we
2148 * should be safe and we need to cleanup or else we might
2149 * cause memory corruption through use-after-free.
2150 */
812ed492
CW
2151 if (ret) {
2152 i915_gem_clflush_object(obj);
2153 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2154 }
673a394b 2155
96b47b65
DV
2156 /* release the fence reg _after_ flushing */
2157 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2158 i915_gem_clear_fence_reg(obj);
2159
73aa808f
CW
2160 drm_unbind_agp(obj_priv->agp_mem);
2161 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2162
856fa198 2163 i915_gem_object_put_pages(obj);
a32808c0 2164 BUG_ON(obj_priv->pages_refcount);
673a394b 2165
73aa808f 2166 i915_gem_info_remove_gtt(dev_priv, obj->size);
69dc4987 2167 list_del_init(&obj_priv->mm_list);
673a394b 2168
73aa808f
CW
2169 drm_mm_put_block(obj_priv->gtt_space);
2170 obj_priv->gtt_space = NULL;
9af90d19 2171 obj_priv->gtt_offset = 0;
673a394b 2172
963b4836
CW
2173 if (i915_gem_object_is_purgeable(obj_priv))
2174 i915_gem_object_truncate(obj);
2175
1c5d22f7
CW
2176 trace_i915_gem_object_unbind(obj);
2177
8dc1775d 2178 return ret;
673a394b
EA
2179}
2180
a56ba56c
CW
2181static int i915_ring_idle(struct drm_device *dev,
2182 struct intel_ring_buffer *ring)
2183{
64193406
CW
2184 if (list_empty(&ring->gpu_write_list))
2185 return 0;
2186
a56ba56c
CW
2187 i915_gem_flush_ring(dev, NULL, ring,
2188 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2189 return i915_wait_request(dev,
2190 i915_gem_next_request_seqno(dev, ring),
2191 ring);
2192}
2193
b47eb4a2 2194int
4df2faf4
DV
2195i915_gpu_idle(struct drm_device *dev)
2196{
2197 drm_i915_private_t *dev_priv = dev->dev_private;
2198 bool lists_empty;
852835f3 2199 int ret;
4df2faf4 2200
d1b851fc
ZN
2201 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2202 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
2203 list_empty(&dev_priv->bsd_ring.active_list) &&
2204 list_empty(&dev_priv->blt_ring.active_list));
4df2faf4
DV
2205 if (lists_empty)
2206 return 0;
2207
2208 /* Flush everything onto the inactive list. */
a56ba56c 2209 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2210 if (ret)
2211 return ret;
d1b851fc 2212
87acb0a5
CW
2213 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2214 if (ret)
2215 return ret;
d1b851fc 2216
549f7365
CW
2217 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2218 if (ret)
2219 return ret;
4df2faf4 2220
8a1a49f9 2221 return 0;
4df2faf4
DV
2222}
2223
5cdf5881 2224static int
4bdadb97
CW
2225i915_gem_object_get_pages(struct drm_gem_object *obj,
2226 gfp_t gfpmask)
673a394b 2227{
23010e43 2228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2229 int page_count, i;
2230 struct address_space *mapping;
2231 struct inode *inode;
2232 struct page *page;
673a394b 2233
778c3544
DV
2234 BUG_ON(obj_priv->pages_refcount
2235 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2236
856fa198 2237 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2238 return 0;
2239
2240 /* Get the list of pages out of our struct file. They'll be pinned
2241 * at this point until we release them.
2242 */
2243 page_count = obj->size / PAGE_SIZE;
856fa198 2244 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2245 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2246 if (obj_priv->pages == NULL) {
856fa198 2247 obj_priv->pages_refcount--;
673a394b
EA
2248 return -ENOMEM;
2249 }
2250
2251 inode = obj->filp->f_path.dentry->d_inode;
2252 mapping = inode->i_mapping;
2253 for (i = 0; i < page_count; i++) {
4bdadb97 2254 page = read_cache_page_gfp(mapping, i,
985b823b 2255 GFP_HIGHUSER |
4bdadb97 2256 __GFP_COLD |
cd9f040d 2257 __GFP_RECLAIMABLE |
4bdadb97 2258 gfpmask);
1f2b1013
CW
2259 if (IS_ERR(page))
2260 goto err_pages;
2261
856fa198 2262 obj_priv->pages[i] = page;
673a394b 2263 }
280b713b
EA
2264
2265 if (obj_priv->tiling_mode != I915_TILING_NONE)
2266 i915_gem_object_do_bit_17_swizzle(obj);
2267
673a394b 2268 return 0;
1f2b1013
CW
2269
2270err_pages:
2271 while (i--)
2272 page_cache_release(obj_priv->pages[i]);
2273
2274 drm_free_large(obj_priv->pages);
2275 obj_priv->pages = NULL;
2276 obj_priv->pages_refcount--;
2277 return PTR_ERR(page);
673a394b
EA
2278}
2279
4e901fdc
EA
2280static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2281{
2282 struct drm_gem_object *obj = reg->obj;
2283 struct drm_device *dev = obj->dev;
2284 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2285 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2286 int regnum = obj_priv->fence_reg;
2287 uint64_t val;
2288
2289 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2290 0xfffff000) << 32;
2291 val |= obj_priv->gtt_offset & 0xfffff000;
2292 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2293 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2294
2295 if (obj_priv->tiling_mode == I915_TILING_Y)
2296 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2297 val |= I965_FENCE_REG_VALID;
2298
2299 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2300}
2301
de151cf6
JB
2302static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2303{
2304 struct drm_gem_object *obj = reg->obj;
2305 struct drm_device *dev = obj->dev;
2306 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2307 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2308 int regnum = obj_priv->fence_reg;
2309 uint64_t val;
2310
2311 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2312 0xfffff000) << 32;
2313 val |= obj_priv->gtt_offset & 0xfffff000;
2314 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2315 if (obj_priv->tiling_mode == I915_TILING_Y)
2316 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2317 val |= I965_FENCE_REG_VALID;
2318
2319 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2320}
2321
2322static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2323{
2324 struct drm_gem_object *obj = reg->obj;
2325 struct drm_device *dev = obj->dev;
2326 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2327 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2328 int regnum = obj_priv->fence_reg;
0f973f27 2329 int tile_width;
dc529a4f 2330 uint32_t fence_reg, val;
de151cf6
JB
2331 uint32_t pitch_val;
2332
2333 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2334 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2335 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2336 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2337 return;
2338 }
2339
0f973f27
JB
2340 if (obj_priv->tiling_mode == I915_TILING_Y &&
2341 HAS_128_BYTE_Y_TILING(dev))
2342 tile_width = 128;
de151cf6 2343 else
0f973f27
JB
2344 tile_width = 512;
2345
2346 /* Note: pitch better be a power of two tile widths */
2347 pitch_val = obj_priv->stride / tile_width;
2348 pitch_val = ffs(pitch_val) - 1;
de151cf6 2349
c36a2a6d
DV
2350 if (obj_priv->tiling_mode == I915_TILING_Y &&
2351 HAS_128_BYTE_Y_TILING(dev))
2352 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2353 else
2354 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2355
de151cf6
JB
2356 val = obj_priv->gtt_offset;
2357 if (obj_priv->tiling_mode == I915_TILING_Y)
2358 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2359 val |= I915_FENCE_SIZE_BITS(obj->size);
2360 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2361 val |= I830_FENCE_REG_VALID;
2362
dc529a4f
EA
2363 if (regnum < 8)
2364 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2365 else
2366 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2367 I915_WRITE(fence_reg, val);
de151cf6
JB
2368}
2369
2370static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2371{
2372 struct drm_gem_object *obj = reg->obj;
2373 struct drm_device *dev = obj->dev;
2374 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2375 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2376 int regnum = obj_priv->fence_reg;
2377 uint32_t val;
2378 uint32_t pitch_val;
8d7773a3 2379 uint32_t fence_size_bits;
de151cf6 2380
8d7773a3 2381 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2382 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2383 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2384 __func__, obj_priv->gtt_offset);
de151cf6
JB
2385 return;
2386 }
2387
e76a16de
EA
2388 pitch_val = obj_priv->stride / 128;
2389 pitch_val = ffs(pitch_val) - 1;
2390 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2391
de151cf6
JB
2392 val = obj_priv->gtt_offset;
2393 if (obj_priv->tiling_mode == I915_TILING_Y)
2394 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2395 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2396 WARN_ON(fence_size_bits & ~0x00000f00);
2397 val |= fence_size_bits;
de151cf6
JB
2398 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2399 val |= I830_FENCE_REG_VALID;
2400
2401 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2402}
2403
2cf34d7b
CW
2404static int i915_find_fence_reg(struct drm_device *dev,
2405 bool interruptible)
ae3db24a
DV
2406{
2407 struct drm_i915_fence_reg *reg = NULL;
2408 struct drm_i915_gem_object *obj_priv = NULL;
2409 struct drm_i915_private *dev_priv = dev->dev_private;
2410 struct drm_gem_object *obj = NULL;
2411 int i, avail, ret;
2412
2413 /* First try to find a free reg */
2414 avail = 0;
2415 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2416 reg = &dev_priv->fence_regs[i];
2417 if (!reg->obj)
2418 return i;
2419
23010e43 2420 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2421 if (!obj_priv->pin_count)
2422 avail++;
2423 }
2424
2425 if (avail == 0)
2426 return -ENOSPC;
2427
2428 /* None available, try to steal one or wait for a user to finish */
2429 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2430 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2431 lru_list) {
2432 obj = reg->obj;
2433 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2434
2435 if (obj_priv->pin_count)
2436 continue;
2437
2438 /* found one! */
2439 i = obj_priv->fence_reg;
2440 break;
2441 }
2442
2443 BUG_ON(i == I915_FENCE_REG_NONE);
2444
2445 /* We only have a reference on obj from the active list. put_fence_reg
2446 * might drop that one, causing a use-after-free in it. So hold a
2447 * private reference to obj like the other callers of put_fence_reg
2448 * (set_tiling ioctl) do. */
2449 drm_gem_object_reference(obj);
2cf34d7b 2450 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2451 drm_gem_object_unreference(obj);
2452 if (ret != 0)
2453 return ret;
2454
2455 return i;
2456}
2457
de151cf6
JB
2458/**
2459 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2460 * @obj: object to map through a fence reg
2461 *
2462 * When mapping objects through the GTT, userspace wants to be able to write
2463 * to them without having to worry about swizzling if the object is tiled.
2464 *
2465 * This function walks the fence regs looking for a free one for @obj,
2466 * stealing one if it can't find any.
2467 *
2468 * It then sets up the reg based on the object's properties: address, pitch
2469 * and tiling format.
2470 */
8c4b8c3f 2471int
2cf34d7b
CW
2472i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2473 bool interruptible)
de151cf6
JB
2474{
2475 struct drm_device *dev = obj->dev;
79e53945 2476 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2477 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2478 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2479 int ret;
de151cf6 2480
a09ba7fa
EA
2481 /* Just update our place in the LRU if our fence is getting used. */
2482 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2483 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2484 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2485 return 0;
2486 }
2487
de151cf6
JB
2488 switch (obj_priv->tiling_mode) {
2489 case I915_TILING_NONE:
2490 WARN(1, "allocating a fence for non-tiled object?\n");
2491 break;
2492 case I915_TILING_X:
0f973f27
JB
2493 if (!obj_priv->stride)
2494 return -EINVAL;
2495 WARN((obj_priv->stride & (512 - 1)),
2496 "object 0x%08x is X tiled but has non-512B pitch\n",
2497 obj_priv->gtt_offset);
de151cf6
JB
2498 break;
2499 case I915_TILING_Y:
0f973f27
JB
2500 if (!obj_priv->stride)
2501 return -EINVAL;
2502 WARN((obj_priv->stride & (128 - 1)),
2503 "object 0x%08x is Y tiled but has non-128B pitch\n",
2504 obj_priv->gtt_offset);
de151cf6
JB
2505 break;
2506 }
2507
2cf34d7b 2508 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2509 if (ret < 0)
2510 return ret;
de151cf6 2511
ae3db24a
DV
2512 obj_priv->fence_reg = ret;
2513 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2514 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2515
de151cf6
JB
2516 reg->obj = obj;
2517
e259befd
CW
2518 switch (INTEL_INFO(dev)->gen) {
2519 case 6:
4e901fdc 2520 sandybridge_write_fence_reg(reg);
e259befd
CW
2521 break;
2522 case 5:
2523 case 4:
de151cf6 2524 i965_write_fence_reg(reg);
e259befd
CW
2525 break;
2526 case 3:
de151cf6 2527 i915_write_fence_reg(reg);
e259befd
CW
2528 break;
2529 case 2:
de151cf6 2530 i830_write_fence_reg(reg);
e259befd
CW
2531 break;
2532 }
d9ddcb96 2533
ae3db24a
DV
2534 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2535 obj_priv->tiling_mode);
1c5d22f7 2536
d9ddcb96 2537 return 0;
de151cf6
JB
2538}
2539
2540/**
2541 * i915_gem_clear_fence_reg - clear out fence register info
2542 * @obj: object to clear
2543 *
2544 * Zeroes out the fence register itself and clears out the associated
2545 * data structures in dev_priv and obj_priv.
2546 */
2547static void
2548i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2549{
2550 struct drm_device *dev = obj->dev;
79e53945 2551 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2552 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2553 struct drm_i915_fence_reg *reg =
2554 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2555 uint32_t fence_reg;
de151cf6 2556
e259befd
CW
2557 switch (INTEL_INFO(dev)->gen) {
2558 case 6:
4e901fdc
EA
2559 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2560 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2561 break;
2562 case 5:
2563 case 4:
de151cf6 2564 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2565 break;
2566 case 3:
9b74f734 2567 if (obj_priv->fence_reg >= 8)
e259befd 2568 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2569 else
e259befd
CW
2570 case 2:
2571 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2572
2573 I915_WRITE(fence_reg, 0);
e259befd 2574 break;
dc529a4f 2575 }
de151cf6 2576
007cc8ac 2577 reg->obj = NULL;
de151cf6 2578 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2579 list_del_init(&reg->lru_list);
de151cf6
JB
2580}
2581
52dc7d32
CW
2582/**
2583 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2584 * to the buffer to finish, and then resets the fence register.
2585 * @obj: tiled object holding a fence register.
2cf34d7b 2586 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2587 *
2588 * Zeroes out the fence register itself and clears out the associated
2589 * data structures in dev_priv and obj_priv.
2590 */
2591int
2cf34d7b
CW
2592i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2593 bool interruptible)
52dc7d32
CW
2594{
2595 struct drm_device *dev = obj->dev;
53640e1d 2596 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2597 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2598 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2599
2600 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2601 return 0;
2602
10ae9bd2
DV
2603 /* If we've changed tiling, GTT-mappings of the object
2604 * need to re-fault to ensure that the correct fence register
2605 * setup is in place.
2606 */
2607 i915_gem_release_mmap(obj);
2608
52dc7d32
CW
2609 /* On the i915, GPU access to tiled buffers is via a fence,
2610 * therefore we must wait for any outstanding access to complete
2611 * before clearing the fence.
2612 */
53640e1d
CW
2613 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2614 if (reg->gpu) {
52dc7d32
CW
2615 int ret;
2616
2cf34d7b 2617 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2618 if (ret)
2dafb1e0
CW
2619 return ret;
2620
2cf34d7b 2621 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2622 if (ret)
52dc7d32 2623 return ret;
53640e1d
CW
2624
2625 reg->gpu = false;
52dc7d32
CW
2626 }
2627
4a726612 2628 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2629 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2630
2631 return 0;
2632}
2633
673a394b
EA
2634/**
2635 * Finds free space in the GTT aperture and binds the object there.
2636 */
2637static int
2638i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2639{
2640 struct drm_device *dev = obj->dev;
2641 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2642 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2643 struct drm_mm_node *free_space;
4bdadb97 2644 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2645 int ret;
673a394b 2646
bb6baf76 2647 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2648 DRM_ERROR("Attempting to bind a purgeable object\n");
2649 return -EINVAL;
2650 }
2651
673a394b 2652 if (alignment == 0)
0f973f27 2653 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2654 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2655 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2656 return -EINVAL;
2657 }
2658
654fc607
CW
2659 /* If the object is bigger than the entire aperture, reject it early
2660 * before evicting everything in a vain attempt to find space.
2661 */
73aa808f 2662 if (obj->size > dev_priv->mm.gtt_total) {
654fc607
CW
2663 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2664 return -E2BIG;
2665 }
2666
673a394b
EA
2667 search_free:
2668 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2669 obj->size, alignment, 0);
9af90d19 2670 if (free_space != NULL)
673a394b
EA
2671 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2672 alignment);
673a394b
EA
2673 if (obj_priv->gtt_space == NULL) {
2674 /* If the gtt is empty and we're still having trouble
2675 * fitting our object in, we're out of memory.
2676 */
a6e0aa42 2677 ret = i915_gem_evict_something(dev, obj->size, alignment, true);
9731129c 2678 if (ret)
673a394b 2679 return ret;
9731129c 2680
673a394b
EA
2681 goto search_free;
2682 }
2683
4bdadb97 2684 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2685 if (ret) {
2686 drm_mm_put_block(obj_priv->gtt_space);
2687 obj_priv->gtt_space = NULL;
07f73f69
CW
2688
2689 if (ret == -ENOMEM) {
2690 /* first try to clear up some space from the GTT */
0108a3ed 2691 ret = i915_gem_evict_something(dev, obj->size,
a6e0aa42 2692 alignment, true);
07f73f69 2693 if (ret) {
07f73f69 2694 /* now try to shrink everyone else */
4bdadb97
CW
2695 if (gfpmask) {
2696 gfpmask = 0;
2697 goto search_free;
07f73f69
CW
2698 }
2699
2700 return ret;
2701 }
2702
2703 goto search_free;
2704 }
2705
673a394b
EA
2706 return ret;
2707 }
2708
673a394b
EA
2709 /* Create an AGP memory structure pointing at our pages, and bind it
2710 * into the GTT.
2711 */
2712 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2713 obj_priv->pages,
07f73f69 2714 obj->size >> PAGE_SHIFT,
9af90d19 2715 obj_priv->gtt_space->start,
ba1eb1d8 2716 obj_priv->agp_type);
673a394b 2717 if (obj_priv->agp_mem == NULL) {
856fa198 2718 i915_gem_object_put_pages(obj);
673a394b
EA
2719 drm_mm_put_block(obj_priv->gtt_space);
2720 obj_priv->gtt_space = NULL;
07f73f69 2721
a6e0aa42 2722 ret = i915_gem_evict_something(dev, obj->size, alignment, true);
9731129c 2723 if (ret)
07f73f69 2724 return ret;
07f73f69
CW
2725
2726 goto search_free;
673a394b 2727 }
673a394b 2728
bf1a1092 2729 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2730 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
73aa808f 2731 i915_gem_info_add_gtt(dev_priv, obj->size);
bf1a1092 2732
673a394b
EA
2733 /* Assert that the object is not currently in any GPU domain. As it
2734 * wasn't in the GTT, there shouldn't be any way it could have been in
2735 * a GPU cache
2736 */
21d509e3
CW
2737 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2738 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2739
9af90d19 2740 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1c5d22f7
CW
2741 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2742
673a394b
EA
2743 return 0;
2744}
2745
2746void
2747i915_gem_clflush_object(struct drm_gem_object *obj)
2748{
23010e43 2749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2750
2751 /* If we don't have a page list set up, then we're not pinned
2752 * to GPU, and we can ignore the cache flush because it'll happen
2753 * again at bind time.
2754 */
856fa198 2755 if (obj_priv->pages == NULL)
673a394b
EA
2756 return;
2757
1c5d22f7 2758 trace_i915_gem_object_clflush(obj);
cfa16a0d 2759
856fa198 2760 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2761}
2762
e47c68e9 2763/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2764static int
ba3d8d74
DV
2765i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2766 bool pipelined)
e47c68e9
EA
2767{
2768 struct drm_device *dev = obj->dev;
1c5d22f7 2769 uint32_t old_write_domain;
e47c68e9
EA
2770
2771 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2772 return 0;
e47c68e9
EA
2773
2774 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2775 old_write_domain = obj->write_domain;
c78ec30b 2776 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2777 to_intel_bo(obj)->ring,
2778 0, obj->write_domain);
48b956c5 2779 BUG_ON(obj->write_domain);
1c5d22f7
CW
2780
2781 trace_i915_gem_object_change_domain(obj,
2782 obj->read_domains,
2783 old_write_domain);
ba3d8d74
DV
2784
2785 if (pipelined)
2786 return 0;
2787
2cf34d7b 2788 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2789}
2790
2791/** Flushes the GTT write domain for the object if it's dirty. */
2792static void
2793i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2794{
1c5d22f7
CW
2795 uint32_t old_write_domain;
2796
e47c68e9
EA
2797 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2798 return;
2799
2800 /* No actual flushing is required for the GTT write domain. Writes
2801 * to it immediately go to main memory as far as we know, so there's
2802 * no chipset flush. It also doesn't land in render cache.
2803 */
1c5d22f7 2804 old_write_domain = obj->write_domain;
e47c68e9 2805 obj->write_domain = 0;
1c5d22f7
CW
2806
2807 trace_i915_gem_object_change_domain(obj,
2808 obj->read_domains,
2809 old_write_domain);
e47c68e9
EA
2810}
2811
2812/** Flushes the CPU write domain for the object if it's dirty. */
2813static void
2814i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2815{
2816 struct drm_device *dev = obj->dev;
1c5d22f7 2817 uint32_t old_write_domain;
e47c68e9
EA
2818
2819 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2820 return;
2821
2822 i915_gem_clflush_object(obj);
2823 drm_agp_chipset_flush(dev);
1c5d22f7 2824 old_write_domain = obj->write_domain;
e47c68e9 2825 obj->write_domain = 0;
1c5d22f7
CW
2826
2827 trace_i915_gem_object_change_domain(obj,
2828 obj->read_domains,
2829 old_write_domain);
e47c68e9
EA
2830}
2831
2ef7eeaa
EA
2832/**
2833 * Moves a single object to the GTT read, and possibly write domain.
2834 *
2835 * This function returns when the move is complete, including waiting on
2836 * flushes to occur.
2837 */
79e53945 2838int
2ef7eeaa
EA
2839i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2840{
23010e43 2841 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2842 uint32_t old_write_domain, old_read_domains;
e47c68e9 2843 int ret;
2ef7eeaa 2844
02354392
EA
2845 /* Not valid to be called on unbound objects. */
2846 if (obj_priv->gtt_space == NULL)
2847 return -EINVAL;
2848
ba3d8d74 2849 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2850 if (ret != 0)
2851 return ret;
2852
7213342d 2853 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2854
ba3d8d74 2855 if (write) {
2cf34d7b 2856 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2857 if (ret)
2858 return ret;
ba3d8d74 2859 }
e47c68e9 2860
1c5d22f7
CW
2861 old_write_domain = obj->write_domain;
2862 old_read_domains = obj->read_domains;
2863
e47c68e9
EA
2864 /* It should now be out of any other write domains, and we can update
2865 * the domain values for our changes.
2866 */
2867 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2868 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2869 if (write) {
7213342d 2870 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2871 obj->write_domain = I915_GEM_DOMAIN_GTT;
2872 obj_priv->dirty = 1;
2ef7eeaa
EA
2873 }
2874
1c5d22f7
CW
2875 trace_i915_gem_object_change_domain(obj,
2876 old_read_domains,
2877 old_write_domain);
2878
e47c68e9
EA
2879 return 0;
2880}
2881
b9241ea3
ZW
2882/*
2883 * Prepare buffer for display plane. Use uninterruptible for possible flush
2884 * wait, as in modesetting process we're not supposed to be interrupted.
2885 */
2886int
48b956c5
CW
2887i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2888 bool pipelined)
b9241ea3 2889{
23010e43 2890 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2891 uint32_t old_read_domains;
b9241ea3
ZW
2892 int ret;
2893
2894 /* Not valid to be called on unbound objects. */
2895 if (obj_priv->gtt_space == NULL)
2896 return -EINVAL;
2897
ced270fa 2898 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2899 if (ret)
2900 return ret;
b9241ea3 2901
ced270fa
CW
2902 /* Currently, we are always called from an non-interruptible context. */
2903 if (!pipelined) {
2904 ret = i915_gem_object_wait_rendering(obj, false);
2905 if (ret)
b9241ea3
ZW
2906 return ret;
2907 }
2908
b118c1e3
CW
2909 i915_gem_object_flush_cpu_write_domain(obj);
2910
b9241ea3 2911 old_read_domains = obj->read_domains;
c78ec30b 2912 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2913
2914 trace_i915_gem_object_change_domain(obj,
2915 old_read_domains,
ba3d8d74 2916 obj->write_domain);
b9241ea3
ZW
2917
2918 return 0;
2919}
2920
e47c68e9
EA
2921/**
2922 * Moves a single object to the CPU read, and possibly write domain.
2923 *
2924 * This function returns when the move is complete, including waiting on
2925 * flushes to occur.
2926 */
2927static int
2928i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2929{
1c5d22f7 2930 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2931 int ret;
2932
ba3d8d74 2933 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2934 if (ret != 0)
2935 return ret;
2ef7eeaa 2936
e47c68e9 2937 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2938
e47c68e9
EA
2939 /* If we have a partially-valid cache of the object in the CPU,
2940 * finish invalidating it and free the per-page flags.
2ef7eeaa 2941 */
e47c68e9 2942 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2943
7213342d 2944 if (write) {
2cf34d7b 2945 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2946 if (ret)
2947 return ret;
2948 }
2949
1c5d22f7
CW
2950 old_write_domain = obj->write_domain;
2951 old_read_domains = obj->read_domains;
2952
e47c68e9
EA
2953 /* Flush the CPU cache if it's still invalid. */
2954 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2955 i915_gem_clflush_object(obj);
2ef7eeaa 2956
e47c68e9 2957 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2958 }
2959
2960 /* It should now be out of any other write domains, and we can update
2961 * the domain values for our changes.
2962 */
e47c68e9
EA
2963 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2964
2965 /* If we're writing through the CPU, then the GPU read domains will
2966 * need to be invalidated at next use.
2967 */
2968 if (write) {
c78ec30b 2969 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2970 obj->write_domain = I915_GEM_DOMAIN_CPU;
2971 }
2ef7eeaa 2972
1c5d22f7
CW
2973 trace_i915_gem_object_change_domain(obj,
2974 old_read_domains,
2975 old_write_domain);
2976
2ef7eeaa
EA
2977 return 0;
2978}
2979
673a394b
EA
2980/*
2981 * Set the next domain for the specified object. This
2982 * may not actually perform the necessary flushing/invaliding though,
2983 * as that may want to be batched with other set_domain operations
2984 *
2985 * This is (we hope) the only really tricky part of gem. The goal
2986 * is fairly simple -- track which caches hold bits of the object
2987 * and make sure they remain coherent. A few concrete examples may
2988 * help to explain how it works. For shorthand, we use the notation
2989 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2990 * a pair of read and write domain masks.
2991 *
2992 * Case 1: the batch buffer
2993 *
2994 * 1. Allocated
2995 * 2. Written by CPU
2996 * 3. Mapped to GTT
2997 * 4. Read by GPU
2998 * 5. Unmapped from GTT
2999 * 6. Freed
3000 *
3001 * Let's take these a step at a time
3002 *
3003 * 1. Allocated
3004 * Pages allocated from the kernel may still have
3005 * cache contents, so we set them to (CPU, CPU) always.
3006 * 2. Written by CPU (using pwrite)
3007 * The pwrite function calls set_domain (CPU, CPU) and
3008 * this function does nothing (as nothing changes)
3009 * 3. Mapped by GTT
3010 * This function asserts that the object is not
3011 * currently in any GPU-based read or write domains
3012 * 4. Read by GPU
3013 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3014 * As write_domain is zero, this function adds in the
3015 * current read domains (CPU+COMMAND, 0).
3016 * flush_domains is set to CPU.
3017 * invalidate_domains is set to COMMAND
3018 * clflush is run to get data out of the CPU caches
3019 * then i915_dev_set_domain calls i915_gem_flush to
3020 * emit an MI_FLUSH and drm_agp_chipset_flush
3021 * 5. Unmapped from GTT
3022 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3023 * flush_domains and invalidate_domains end up both zero
3024 * so no flushing/invalidating happens
3025 * 6. Freed
3026 * yay, done
3027 *
3028 * Case 2: The shared render buffer
3029 *
3030 * 1. Allocated
3031 * 2. Mapped to GTT
3032 * 3. Read/written by GPU
3033 * 4. set_domain to (CPU,CPU)
3034 * 5. Read/written by CPU
3035 * 6. Read/written by GPU
3036 *
3037 * 1. Allocated
3038 * Same as last example, (CPU, CPU)
3039 * 2. Mapped to GTT
3040 * Nothing changes (assertions find that it is not in the GPU)
3041 * 3. Read/written by GPU
3042 * execbuffer calls set_domain (RENDER, RENDER)
3043 * flush_domains gets CPU
3044 * invalidate_domains gets GPU
3045 * clflush (obj)
3046 * MI_FLUSH and drm_agp_chipset_flush
3047 * 4. set_domain (CPU, CPU)
3048 * flush_domains gets GPU
3049 * invalidate_domains gets CPU
3050 * wait_rendering (obj) to make sure all drawing is complete.
3051 * This will include an MI_FLUSH to get the data from GPU
3052 * to memory
3053 * clflush (obj) to invalidate the CPU cache
3054 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3055 * 5. Read/written by CPU
3056 * cache lines are loaded and dirtied
3057 * 6. Read written by GPU
3058 * Same as last GPU access
3059 *
3060 * Case 3: The constant buffer
3061 *
3062 * 1. Allocated
3063 * 2. Written by CPU
3064 * 3. Read by GPU
3065 * 4. Updated (written) by CPU again
3066 * 5. Read by GPU
3067 *
3068 * 1. Allocated
3069 * (CPU, CPU)
3070 * 2. Written by CPU
3071 * (CPU, CPU)
3072 * 3. Read by GPU
3073 * (CPU+RENDER, 0)
3074 * flush_domains = CPU
3075 * invalidate_domains = RENDER
3076 * clflush (obj)
3077 * MI_FLUSH
3078 * drm_agp_chipset_flush
3079 * 4. Updated (written) by CPU again
3080 * (CPU, CPU)
3081 * flush_domains = 0 (no previous write domain)
3082 * invalidate_domains = 0 (no new read domains)
3083 * 5. Read by GPU
3084 * (CPU+RENDER, 0)
3085 * flush_domains = CPU
3086 * invalidate_domains = RENDER
3087 * clflush (obj)
3088 * MI_FLUSH
3089 * drm_agp_chipset_flush
3090 */
c0d90829 3091static void
b6651458
CW
3092i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3093 struct intel_ring_buffer *ring)
673a394b
EA
3094{
3095 struct drm_device *dev = obj->dev;
9220434a 3096 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3097 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3098 uint32_t invalidate_domains = 0;
3099 uint32_t flush_domains = 0;
652c393a 3100
673a394b
EA
3101 /*
3102 * If the object isn't moving to a new write domain,
3103 * let the object stay in multiple read domains
3104 */
8b0e378a
EA
3105 if (obj->pending_write_domain == 0)
3106 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3107
3108 /*
3109 * Flush the current write domain if
3110 * the new read domains don't match. Invalidate
3111 * any read domains which differ from the old
3112 * write domain
3113 */
8b0e378a
EA
3114 if (obj->write_domain &&
3115 obj->write_domain != obj->pending_read_domains) {
673a394b 3116 flush_domains |= obj->write_domain;
8b0e378a
EA
3117 invalidate_domains |=
3118 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3119 }
3120 /*
3121 * Invalidate any read caches which may have
3122 * stale data. That is, any new read domains.
3123 */
8b0e378a 3124 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3125 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3126 i915_gem_clflush_object(obj);
673a394b 3127
efbeed96
EA
3128 /* The actual obj->write_domain will be updated with
3129 * pending_write_domain after we emit the accumulated flush for all
3130 * of our domain changes in execbuffers (which clears objects'
3131 * write_domains). So if we have a current write domain that we
3132 * aren't changing, set pending_write_domain to that.
3133 */
3134 if (flush_domains == 0 && obj->pending_write_domain == 0)
3135 obj->pending_write_domain = obj->write_domain;
673a394b
EA
3136
3137 dev->invalidate_domains |= invalidate_domains;
3138 dev->flush_domains |= flush_domains;
b6651458 3139 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3140 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3141 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3142 dev_priv->mm.flush_rings |= ring->id;
673a394b
EA
3143}
3144
3145/**
e47c68e9 3146 * Moves the object from a partially CPU read to a full one.
673a394b 3147 *
e47c68e9
EA
3148 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3149 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3150 */
e47c68e9
EA
3151static void
3152i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3153{
23010e43 3154 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3155
e47c68e9
EA
3156 if (!obj_priv->page_cpu_valid)
3157 return;
3158
3159 /* If we're partially in the CPU read domain, finish moving it in.
3160 */
3161 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3162 int i;
3163
3164 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3165 if (obj_priv->page_cpu_valid[i])
3166 continue;
856fa198 3167 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3168 }
e47c68e9
EA
3169 }
3170
3171 /* Free the page_cpu_valid mappings which are now stale, whether
3172 * or not we've got I915_GEM_DOMAIN_CPU.
3173 */
9a298b2a 3174 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3175 obj_priv->page_cpu_valid = NULL;
3176}
3177
3178/**
3179 * Set the CPU read domain on a range of the object.
3180 *
3181 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3182 * not entirely valid. The page_cpu_valid member of the object flags which
3183 * pages have been flushed, and will be respected by
3184 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3185 * of the whole object.
3186 *
3187 * This function returns when the move is complete, including waiting on
3188 * flushes to occur.
3189 */
3190static int
3191i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3192 uint64_t offset, uint64_t size)
3193{
23010e43 3194 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3195 uint32_t old_read_domains;
e47c68e9 3196 int i, ret;
673a394b 3197
e47c68e9
EA
3198 if (offset == 0 && size == obj->size)
3199 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3200
ba3d8d74 3201 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3202 if (ret != 0)
6a47baa6 3203 return ret;
e47c68e9
EA
3204 i915_gem_object_flush_gtt_write_domain(obj);
3205
3206 /* If we're already fully in the CPU read domain, we're done. */
3207 if (obj_priv->page_cpu_valid == NULL &&
3208 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3209 return 0;
673a394b 3210
e47c68e9
EA
3211 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3212 * newly adding I915_GEM_DOMAIN_CPU
3213 */
673a394b 3214 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3215 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3216 GFP_KERNEL);
e47c68e9
EA
3217 if (obj_priv->page_cpu_valid == NULL)
3218 return -ENOMEM;
3219 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3220 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3221
3222 /* Flush the cache on any pages that are still invalid from the CPU's
3223 * perspective.
3224 */
e47c68e9
EA
3225 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3226 i++) {
673a394b
EA
3227 if (obj_priv->page_cpu_valid[i])
3228 continue;
3229
856fa198 3230 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3231
3232 obj_priv->page_cpu_valid[i] = 1;
3233 }
3234
e47c68e9
EA
3235 /* It should now be out of any other write domains, and we can update
3236 * the domain values for our changes.
3237 */
3238 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3239
1c5d22f7 3240 old_read_domains = obj->read_domains;
e47c68e9
EA
3241 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3242
1c5d22f7
CW
3243 trace_i915_gem_object_change_domain(obj,
3244 old_read_domains,
3245 obj->write_domain);
3246
673a394b
EA
3247 return 0;
3248}
3249
673a394b
EA
3250/**
3251 * Pin an object to the GTT and evaluate the relocations landing in it.
3252 */
3253static int
9af90d19
CW
3254i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3255 struct drm_file *file_priv,
3256 struct drm_i915_gem_exec_object2 *entry)
673a394b 3257{
9af90d19 3258 struct drm_device *dev = obj->base.dev;
0839ccb8 3259 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3260 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3261 struct drm_gem_object *target_obj = NULL;
3262 uint32_t target_handle = 0;
3263 int i, ret = 0;
673a394b 3264
2549d6c2 3265 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3266 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3267 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3268 uint32_t target_offset;
673a394b 3269
9af90d19
CW
3270 if (__copy_from_user_inatomic(&reloc,
3271 user_relocs+i,
3272 sizeof(reloc))) {
3273 ret = -EFAULT;
3274 break;
76446cac 3275 }
76446cac 3276
9af90d19
CW
3277 if (reloc.target_handle != target_handle) {
3278 drm_gem_object_unreference(target_obj);
673a394b 3279
9af90d19
CW
3280 target_obj = drm_gem_object_lookup(dev, file_priv,
3281 reloc.target_handle);
3282 if (target_obj == NULL) {
3283 ret = -ENOENT;
3284 break;
3285 }
3286
3287 target_handle = reloc.target_handle;
673a394b 3288 }
9af90d19 3289 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3290
8542a0bb
CW
3291#if WATCH_RELOC
3292 DRM_INFO("%s: obj %p offset %08x target %d "
3293 "read %08x write %08x gtt %08x "
3294 "presumed %08x delta %08x\n",
3295 __func__,
3296 obj,
2549d6c2
CW
3297 (int) reloc.offset,
3298 (int) reloc.target_handle,
3299 (int) reloc.read_domains,
3300 (int) reloc.write_domain,
9af90d19 3301 (int) target_offset,
2549d6c2
CW
3302 (int) reloc.presumed_offset,
3303 reloc.delta);
8542a0bb
CW
3304#endif
3305
673a394b
EA
3306 /* The target buffer should have appeared before us in the
3307 * exec_object list, so it should have a GTT space bound by now.
3308 */
9af90d19 3309 if (target_offset == 0) {
673a394b 3310 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3311 reloc.target_handle);
9af90d19
CW
3312 ret = -EINVAL;
3313 break;
673a394b
EA
3314 }
3315
8542a0bb 3316 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3317 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3318 DRM_ERROR("reloc with multiple write domains: "
3319 "obj %p target %d offset %d "
3320 "read %08x write %08x",
2549d6c2
CW
3321 obj, reloc.target_handle,
3322 (int) reloc.offset,
3323 reloc.read_domains,
3324 reloc.write_domain);
9af90d19
CW
3325 ret = -EINVAL;
3326 break;
16edd550 3327 }
2549d6c2
CW
3328 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3329 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3330 DRM_ERROR("reloc with read/write CPU domains: "
3331 "obj %p target %d offset %d "
3332 "read %08x write %08x",
2549d6c2
CW
3333 obj, reloc.target_handle,
3334 (int) reloc.offset,
3335 reloc.read_domains,
3336 reloc.write_domain);
9af90d19
CW
3337 ret = -EINVAL;
3338 break;
e47c68e9 3339 }
2549d6c2
CW
3340 if (reloc.write_domain && target_obj->pending_write_domain &&
3341 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3342 DRM_ERROR("Write domain conflict: "
3343 "obj %p target %d offset %d "
3344 "new %08x old %08x\n",
2549d6c2
CW
3345 obj, reloc.target_handle,
3346 (int) reloc.offset,
3347 reloc.write_domain,
673a394b 3348 target_obj->pending_write_domain);
9af90d19
CW
3349 ret = -EINVAL;
3350 break;
673a394b
EA
3351 }
3352
2549d6c2 3353 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3354 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3355
3356 /* If the relocation already has the right value in it, no
3357 * more work needs to be done.
3358 */
9af90d19 3359 if (target_offset == reloc.presumed_offset)
673a394b 3360 continue;
673a394b 3361
8542a0bb 3362 /* Check that the relocation address is valid... */
9af90d19 3363 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3364 DRM_ERROR("Relocation beyond object bounds: "
3365 "obj %p target %d offset %d size %d.\n",
2549d6c2 3366 obj, reloc.target_handle,
9af90d19
CW
3367 (int) reloc.offset, (int) obj->base.size);
3368 ret = -EINVAL;
3369 break;
8542a0bb 3370 }
2549d6c2 3371 if (reloc.offset & 3) {
8542a0bb
CW
3372 DRM_ERROR("Relocation not 4-byte aligned: "
3373 "obj %p target %d offset %d.\n",
2549d6c2
CW
3374 obj, reloc.target_handle,
3375 (int) reloc.offset);
9af90d19
CW
3376 ret = -EINVAL;
3377 break;
8542a0bb
CW
3378 }
3379
3380 /* and points to somewhere within the target object. */
2549d6c2 3381 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3382 DRM_ERROR("Relocation beyond target object bounds: "
3383 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3384 obj, reloc.target_handle,
3385 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3386 ret = -EINVAL;
3387 break;
673a394b
EA
3388 }
3389
9af90d19
CW
3390 reloc.delta += target_offset;
3391 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3392 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3393 char *vaddr;
673a394b 3394
c48c43e4 3395 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3396 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3397 kunmap_atomic(vaddr);
f0c43d9b
CW
3398 } else {
3399 uint32_t __iomem *reloc_entry;
3400 void __iomem *reloc_page;
b962442e 3401
9af90d19
CW
3402 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3403 if (ret)
3404 break;
b962442e 3405
f0c43d9b 3406 /* Map the page containing the relocation we're going to perform. */
9af90d19 3407 reloc.offset += obj->gtt_offset;
f0c43d9b 3408 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3409 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3410 reloc_entry = (uint32_t __iomem *)
3411 (reloc_page + (reloc.offset & ~PAGE_MASK));
3412 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3413 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3414 }
b962442e 3415
b5dc608c
CW
3416 /* and update the user's relocation entry */
3417 reloc.presumed_offset = target_offset;
3418 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3419 &reloc.presumed_offset,
3420 sizeof(reloc.presumed_offset))) {
3421 ret = -EFAULT;
3422 break;
3423 }
b962442e 3424 }
b962442e 3425
9af90d19 3426 drm_gem_object_unreference(target_obj);
673a394b
EA
3427 return ret;
3428}
3429
40a5f0de 3430static int
9af90d19
CW
3431i915_gem_execbuffer_pin(struct drm_device *dev,
3432 struct drm_file *file,
3433 struct drm_gem_object **object_list,
3434 struct drm_i915_gem_exec_object2 *exec_list,
3435 int count)
40a5f0de 3436{
9af90d19
CW
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 int ret, i, retry;
40a5f0de 3439
9af90d19
CW
3440 /* attempt to pin all of the buffers into the GTT */
3441 for (retry = 0; retry < 2; retry++) {
3442 ret = 0;
3443 for (i = 0; i < count; i++) {
3444 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3445 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3446 bool need_fence =
3447 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3448 obj->tiling_mode != I915_TILING_NONE;
3449
3450 /* Check fence reg constraints and rebind if necessary */
3451 if (need_fence &&
3452 !i915_gem_object_fence_offset_ok(&obj->base,
3453 obj->tiling_mode)) {
3454 ret = i915_gem_object_unbind(&obj->base);
3455 if (ret)
3456 break;
3457 }
40a5f0de 3458
9af90d19
CW
3459 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3460 if (ret)
3461 break;
40a5f0de 3462
9af90d19
CW
3463 /*
3464 * Pre-965 chips need a fence register set up in order
3465 * to properly handle blits to/from tiled surfaces.
3466 */
3467 if (need_fence) {
3468 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3469 if (ret) {
3470 i915_gem_object_unpin(&obj->base);
3471 break;
3472 }
40a5f0de 3473
9af90d19
CW
3474 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3475 }
40a5f0de 3476
9af90d19 3477 entry->offset = obj->gtt_offset;
40a5f0de
EA
3478 }
3479
9af90d19
CW
3480 while (i--)
3481 i915_gem_object_unpin(object_list[i]);
3482
3483 if (ret == 0)
3484 break;
673a394b 3485
9af90d19
CW
3486 if (ret != -ENOSPC || retry)
3487 return ret;
3488
3489 ret = i915_gem_evict_everything(dev);
3490 if (ret)
3491 return ret;
40a5f0de
EA
3492 }
3493
2bc43b5c 3494 return 0;
40a5f0de
EA
3495}
3496
673a394b
EA
3497/* Throttle our rendering by waiting until the ring has completed our requests
3498 * emitted over 20 msec ago.
3499 *
b962442e
EA
3500 * Note that if we were to use the current jiffies each time around the loop,
3501 * we wouldn't escape the function with any frames outstanding if the time to
3502 * render a frame was over 20ms.
3503 *
673a394b
EA
3504 * This should get us reasonable parallelism between CPU and GPU but also
3505 * relatively low latency when blocking on a particular request to finish.
3506 */
40a5f0de 3507static int
f787a5f5 3508i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3509{
f787a5f5
CW
3510 struct drm_i915_private *dev_priv = dev->dev_private;
3511 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3512 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3513 struct drm_i915_gem_request *request;
3514 struct intel_ring_buffer *ring = NULL;
3515 u32 seqno = 0;
3516 int ret;
93533c29 3517
1c25595f 3518 spin_lock(&file_priv->mm.lock);
f787a5f5 3519 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3520 if (time_after_eq(request->emitted_jiffies, recent_enough))
3521 break;
40a5f0de 3522
f787a5f5
CW
3523 ring = request->ring;
3524 seqno = request->seqno;
b962442e 3525 }
1c25595f 3526 spin_unlock(&file_priv->mm.lock);
40a5f0de 3527
f787a5f5
CW
3528 if (seqno == 0)
3529 return 0;
2bc43b5c 3530
f787a5f5 3531 ret = 0;
78501eac 3532 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3533 /* And wait for the seqno passing without holding any locks and
3534 * causing extra latency for others. This is safe as the irq
3535 * generation is designed to be run atomically and so is
3536 * lockless.
3537 */
78501eac 3538 ring->user_irq_get(ring);
f787a5f5 3539 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3540 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3541 || atomic_read(&dev_priv->mm.wedged));
78501eac 3542 ring->user_irq_put(ring);
40a5f0de 3543
f787a5f5
CW
3544 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3545 ret = -EIO;
40a5f0de
EA
3546 }
3547
f787a5f5
CW
3548 if (ret == 0)
3549 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3550
3551 return ret;
3552}
3553
83d60795 3554static int
2549d6c2
CW
3555i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3556 uint64_t exec_offset)
83d60795
CW
3557{
3558 uint32_t exec_start, exec_len;
3559
3560 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3561 exec_len = (uint32_t) exec->batch_len;
3562
3563 if ((exec_start | exec_len) & 0x7)
3564 return -EINVAL;
3565
3566 if (!exec_start)
3567 return -EINVAL;
3568
3569 return 0;
3570}
3571
6b95a207 3572static int
2549d6c2
CW
3573validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3574 int count)
6b95a207 3575{
2549d6c2 3576 int i;
6b95a207 3577
2549d6c2
CW
3578 for (i = 0; i < count; i++) {
3579 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3580 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3581
2549d6c2
CW
3582 if (!access_ok(VERIFY_READ, ptr, length))
3583 return -EFAULT;
40a5f0de 3584
b5dc608c
CW
3585 /* we may also need to update the presumed offsets */
3586 if (!access_ok(VERIFY_WRITE, ptr, length))
3587 return -EFAULT;
3588
2549d6c2
CW
3589 if (fault_in_pages_readable(ptr, length))
3590 return -EFAULT;
6b95a207 3591 }
6b95a207 3592
83d60795 3593 return 0;
6b95a207
KH
3594}
3595
8dc5d147 3596static int
76446cac 3597i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3598 struct drm_file *file,
76446cac
JB
3599 struct drm_i915_gem_execbuffer2 *args,
3600 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3601{
3602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3603 struct drm_gem_object **object_list = NULL;
3604 struct drm_gem_object *batch_obj;
201361a5 3605 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3606 struct drm_i915_gem_request *request = NULL;
9af90d19 3607 int ret, i, flips;
673a394b 3608 uint64_t exec_offset;
673a394b 3609
852835f3
ZN
3610 struct intel_ring_buffer *ring = NULL;
3611
30dbf0c0
CW
3612 ret = i915_gem_check_is_wedged(dev);
3613 if (ret)
3614 return ret;
3615
2549d6c2
CW
3616 ret = validate_exec_list(exec_list, args->buffer_count);
3617 if (ret)
3618 return ret;
3619
673a394b
EA
3620#if WATCH_EXEC
3621 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3622 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3623#endif
549f7365
CW
3624 switch (args->flags & I915_EXEC_RING_MASK) {
3625 case I915_EXEC_DEFAULT:
3626 case I915_EXEC_RENDER:
3627 ring = &dev_priv->render_ring;
3628 break;
3629 case I915_EXEC_BSD:
d1b851fc 3630 if (!HAS_BSD(dev)) {
549f7365 3631 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3632 return -EINVAL;
3633 }
3634 ring = &dev_priv->bsd_ring;
549f7365
CW
3635 break;
3636 case I915_EXEC_BLT:
3637 if (!HAS_BLT(dev)) {
3638 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3639 return -EINVAL;
3640 }
3641 ring = &dev_priv->blt_ring;
3642 break;
3643 default:
3644 DRM_ERROR("execbuf with unknown ring: %d\n",
3645 (int)(args->flags & I915_EXEC_RING_MASK));
3646 return -EINVAL;
d1b851fc
ZN
3647 }
3648
4f481ed2
EA
3649 if (args->buffer_count < 1) {
3650 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3651 return -EINVAL;
3652 }
c8e0f93a 3653 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3654 if (object_list == NULL) {
3655 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3656 args->buffer_count);
3657 ret = -ENOMEM;
3658 goto pre_mutex_err;
3659 }
673a394b 3660
201361a5 3661 if (args->num_cliprects != 0) {
9a298b2a
EA
3662 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3663 GFP_KERNEL);
a40e8d31
OA
3664 if (cliprects == NULL) {
3665 ret = -ENOMEM;
201361a5 3666 goto pre_mutex_err;
a40e8d31 3667 }
201361a5
EA
3668
3669 ret = copy_from_user(cliprects,
3670 (struct drm_clip_rect __user *)
3671 (uintptr_t) args->cliprects_ptr,
3672 sizeof(*cliprects) * args->num_cliprects);
3673 if (ret != 0) {
3674 DRM_ERROR("copy %d cliprects failed: %d\n",
3675 args->num_cliprects, ret);
c877cdce 3676 ret = -EFAULT;
201361a5
EA
3677 goto pre_mutex_err;
3678 }
3679 }
3680
8dc5d147
CW
3681 request = kzalloc(sizeof(*request), GFP_KERNEL);
3682 if (request == NULL) {
3683 ret = -ENOMEM;
40a5f0de 3684 goto pre_mutex_err;
8dc5d147 3685 }
40a5f0de 3686
76c1dec1
CW
3687 ret = i915_mutex_lock_interruptible(dev);
3688 if (ret)
a198bc80 3689 goto pre_mutex_err;
673a394b
EA
3690
3691 if (dev_priv->mm.suspended) {
673a394b 3692 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3693 ret = -EBUSY;
3694 goto pre_mutex_err;
673a394b
EA
3695 }
3696
ac94a962 3697 /* Look up object handles */
673a394b 3698 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3699 struct drm_i915_gem_object *obj_priv;
3700
9af90d19 3701 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3702 exec_list[i].handle);
3703 if (object_list[i] == NULL) {
3704 DRM_ERROR("Invalid object handle %d at index %d\n",
3705 exec_list[i].handle, i);
0ce907f8
CW
3706 /* prevent error path from reading uninitialized data */
3707 args->buffer_count = i + 1;
bf79cb91 3708 ret = -ENOENT;
673a394b
EA
3709 goto err;
3710 }
b70d11da 3711
23010e43 3712 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3713 if (obj_priv->in_execbuffer) {
3714 DRM_ERROR("Object %p appears more than once in object list\n",
3715 object_list[i]);
0ce907f8
CW
3716 /* prevent error path from reading uninitialized data */
3717 args->buffer_count = i + 1;
bf79cb91 3718 ret = -EINVAL;
b70d11da
KH
3719 goto err;
3720 }
3721 obj_priv->in_execbuffer = true;
ac94a962 3722 }
673a394b 3723
9af90d19
CW
3724 /* Move the objects en-masse into the GTT, evicting if necessary. */
3725 ret = i915_gem_execbuffer_pin(dev, file,
3726 object_list, exec_list,
3727 args->buffer_count);
3728 if (ret)
3729 goto err;
ac94a962 3730
9af90d19
CW
3731 /* The objects are in their final locations, apply the relocations. */
3732 for (i = 0; i < args->buffer_count; i++) {
3733 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3734 obj->base.pending_read_domains = 0;
3735 obj->base.pending_write_domain = 0;
3736 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3737 if (ret)
ac94a962 3738 goto err;
673a394b
EA
3739 }
3740
3741 /* Set the pending read domains for the batch buffer to COMMAND */
3742 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3743 if (batch_obj->pending_write_domain) {
3744 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3745 ret = -EINVAL;
3746 goto err;
3747 }
3748 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3749
9af90d19
CW
3750 /* Sanity check the batch buffer */
3751 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3752 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3753 if (ret != 0) {
3754 DRM_ERROR("execbuf with invalid offset/length\n");
3755 goto err;
3756 }
3757
646f0f6e
KP
3758 /* Zero the global flush/invalidate flags. These
3759 * will be modified as new domains are computed
3760 * for each object
3761 */
3762 dev->invalidate_domains = 0;
3763 dev->flush_domains = 0;
9220434a 3764 dev_priv->mm.flush_rings = 0;
7e318e18
CW
3765 for (i = 0; i < args->buffer_count; i++)
3766 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
673a394b 3767
646f0f6e
KP
3768 if (dev->invalidate_domains | dev->flush_domains) {
3769#if WATCH_EXEC
3770 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3771 __func__,
3772 dev->invalidate_domains,
3773 dev->flush_domains);
3774#endif
9af90d19 3775 i915_gem_flush(dev, file,
646f0f6e 3776 dev->invalidate_domains,
9220434a
CW
3777 dev->flush_domains,
3778 dev_priv->mm.flush_rings);
646f0f6e 3779 }
673a394b 3780
673a394b
EA
3781#if WATCH_COHERENCY
3782 for (i = 0; i < args->buffer_count; i++) {
3783 i915_gem_object_check_coherency(object_list[i],
3784 exec_list[i].handle);
3785 }
3786#endif
3787
673a394b 3788#if WATCH_EXEC
6911a9b8 3789 i915_gem_dump_object(batch_obj,
673a394b
EA
3790 args->batch_len,
3791 __func__,
3792 ~0);
3793#endif
3794
e59f2bac
CW
3795 /* Check for any pending flips. As we only maintain a flip queue depth
3796 * of 1, we can simply insert a WAIT for the next display flip prior
3797 * to executing the batch and avoid stalling the CPU.
3798 */
3799 flips = 0;
3800 for (i = 0; i < args->buffer_count; i++) {
3801 if (object_list[i]->write_domain)
3802 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3803 }
3804 if (flips) {
3805 int plane, flip_mask;
3806
3807 for (plane = 0; flips >> plane; plane++) {
3808 if (((flips >> plane) & 1) == 0)
3809 continue;
3810
3811 if (plane)
3812 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3813 else
3814 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3815
e1f99ce6
CW
3816 ret = intel_ring_begin(ring, 2);
3817 if (ret)
3818 goto err;
3819
78501eac
CW
3820 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3821 intel_ring_emit(ring, MI_NOOP);
3822 intel_ring_advance(ring);
e59f2bac
CW
3823 }
3824 }
3825
673a394b 3826 /* Exec the batchbuffer */
78501eac 3827 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3828 if (ret) {
3829 DRM_ERROR("dispatch failed %d\n", ret);
3830 goto err;
3831 }
3832
673a394b
EA
3833 for (i = 0; i < args->buffer_count; i++) {
3834 struct drm_gem_object *obj = object_list[i];
673a394b 3835
7e318e18
CW
3836 obj->read_domains = obj->pending_read_domains;
3837 obj->write_domain = obj->pending_write_domain;
3838
617dbe27 3839 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3840 if (obj->write_domain) {
3841 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3842 obj_priv->dirty = 1;
3843 list_move_tail(&obj_priv->gpu_write_list,
64193406 3844 &ring->gpu_write_list);
7e318e18
CW
3845 intel_mark_busy(dev, obj);
3846 }
3847
3848 trace_i915_gem_object_change_domain(obj,
3849 obj->read_domains,
3850 obj->write_domain);
673a394b 3851 }
673a394b 3852
7e318e18
CW
3853 /*
3854 * Ensure that the commands in the batch buffer are
3855 * finished before the interrupt fires
3856 */
3857 i915_retire_commands(dev, ring);
3858
3cce469c
CW
3859 if (i915_add_request(dev, file, request, ring))
3860 ring->outstanding_lazy_request = true;
3861 else
3862 request = NULL;
673a394b 3863
673a394b 3864err:
b70d11da 3865 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3866 if (object_list[i] == NULL)
3867 break;
3868
3869 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3870 drm_gem_object_unreference(object_list[i]);
b70d11da 3871 }
673a394b 3872
673a394b
EA
3873 mutex_unlock(&dev->struct_mutex);
3874
93533c29 3875pre_mutex_err:
8e7d2b2c 3876 drm_free_large(object_list);
9a298b2a 3877 kfree(cliprects);
8dc5d147 3878 kfree(request);
673a394b
EA
3879
3880 return ret;
3881}
3882
76446cac
JB
3883/*
3884 * Legacy execbuffer just creates an exec2 list from the original exec object
3885 * list array and passes it to the real function.
3886 */
3887int
3888i915_gem_execbuffer(struct drm_device *dev, void *data,
3889 struct drm_file *file_priv)
3890{
3891 struct drm_i915_gem_execbuffer *args = data;
3892 struct drm_i915_gem_execbuffer2 exec2;
3893 struct drm_i915_gem_exec_object *exec_list = NULL;
3894 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3895 int ret, i;
3896
3897#if WATCH_EXEC
3898 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3899 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3900#endif
3901
3902 if (args->buffer_count < 1) {
3903 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3904 return -EINVAL;
3905 }
3906
3907 /* Copy in the exec list from userland */
3908 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3909 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3910 if (exec_list == NULL || exec2_list == NULL) {
3911 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3912 args->buffer_count);
3913 drm_free_large(exec_list);
3914 drm_free_large(exec2_list);
3915 return -ENOMEM;
3916 }
3917 ret = copy_from_user(exec_list,
3918 (struct drm_i915_relocation_entry __user *)
3919 (uintptr_t) args->buffers_ptr,
3920 sizeof(*exec_list) * args->buffer_count);
3921 if (ret != 0) {
3922 DRM_ERROR("copy %d exec entries failed %d\n",
3923 args->buffer_count, ret);
3924 drm_free_large(exec_list);
3925 drm_free_large(exec2_list);
3926 return -EFAULT;
3927 }
3928
3929 for (i = 0; i < args->buffer_count; i++) {
3930 exec2_list[i].handle = exec_list[i].handle;
3931 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3932 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3933 exec2_list[i].alignment = exec_list[i].alignment;
3934 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3935 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3936 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3937 else
3938 exec2_list[i].flags = 0;
3939 }
3940
3941 exec2.buffers_ptr = args->buffers_ptr;
3942 exec2.buffer_count = args->buffer_count;
3943 exec2.batch_start_offset = args->batch_start_offset;
3944 exec2.batch_len = args->batch_len;
3945 exec2.DR1 = args->DR1;
3946 exec2.DR4 = args->DR4;
3947 exec2.num_cliprects = args->num_cliprects;
3948 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3949 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3950
3951 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3952 if (!ret) {
3953 /* Copy the new buffer offsets back to the user's exec list. */
3954 for (i = 0; i < args->buffer_count; i++)
3955 exec_list[i].offset = exec2_list[i].offset;
3956 /* ... and back out to userspace */
3957 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3958 (uintptr_t) args->buffers_ptr,
3959 exec_list,
3960 sizeof(*exec_list) * args->buffer_count);
3961 if (ret) {
3962 ret = -EFAULT;
3963 DRM_ERROR("failed to copy %d exec entries "
3964 "back to user (%d)\n",
3965 args->buffer_count, ret);
3966 }
76446cac
JB
3967 }
3968
3969 drm_free_large(exec_list);
3970 drm_free_large(exec2_list);
3971 return ret;
3972}
3973
3974int
3975i915_gem_execbuffer2(struct drm_device *dev, void *data,
3976 struct drm_file *file_priv)
3977{
3978 struct drm_i915_gem_execbuffer2 *args = data;
3979 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3980 int ret;
3981
3982#if WATCH_EXEC
3983 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3984 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3985#endif
3986
3987 if (args->buffer_count < 1) {
3988 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3989 return -EINVAL;
3990 }
3991
3992 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3993 if (exec2_list == NULL) {
3994 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3995 args->buffer_count);
3996 return -ENOMEM;
3997 }
3998 ret = copy_from_user(exec2_list,
3999 (struct drm_i915_relocation_entry __user *)
4000 (uintptr_t) args->buffers_ptr,
4001 sizeof(*exec2_list) * args->buffer_count);
4002 if (ret != 0) {
4003 DRM_ERROR("copy %d exec entries failed %d\n",
4004 args->buffer_count, ret);
4005 drm_free_large(exec2_list);
4006 return -EFAULT;
4007 }
4008
4009 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4010 if (!ret) {
4011 /* Copy the new buffer offsets back to the user's exec list. */
4012 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4013 (uintptr_t) args->buffers_ptr,
4014 exec2_list,
4015 sizeof(*exec2_list) * args->buffer_count);
4016 if (ret) {
4017 ret = -EFAULT;
4018 DRM_ERROR("failed to copy %d exec entries "
4019 "back to user (%d)\n",
4020 args->buffer_count, ret);
4021 }
4022 }
4023
4024 drm_free_large(exec2_list);
4025 return ret;
4026}
4027
673a394b
EA
4028int
4029i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4030{
4031 struct drm_device *dev = obj->dev;
f13d3f73 4032 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4033 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4034 int ret;
4035
778c3544 4036 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4037 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4038
4039 if (obj_priv->gtt_space != NULL) {
4040 if (alignment == 0)
4041 alignment = i915_gem_get_gtt_alignment(obj);
4042 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4043 WARN(obj_priv->pin_count,
4044 "bo is already pinned with incorrect alignment:"
4045 " offset=%x, req.alignment=%x\n",
4046 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4047 ret = i915_gem_object_unbind(obj);
4048 if (ret)
4049 return ret;
4050 }
4051 }
4052
673a394b
EA
4053 if (obj_priv->gtt_space == NULL) {
4054 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4055 if (ret)
673a394b 4056 return ret;
22c344e9 4057 }
76446cac 4058
673a394b
EA
4059 obj_priv->pin_count++;
4060
4061 /* If the object is not active and not pending a flush,
4062 * remove it from the inactive list
4063 */
4064 if (obj_priv->pin_count == 1) {
73aa808f 4065 i915_gem_info_add_pin(dev_priv, obj->size);
f13d3f73 4066 if (!obj_priv->active)
69dc4987 4067 list_move_tail(&obj_priv->mm_list,
f13d3f73 4068 &dev_priv->mm.pinned_list);
673a394b 4069 }
673a394b 4070
23bc5982 4071 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4072 return 0;
4073}
4074
4075void
4076i915_gem_object_unpin(struct drm_gem_object *obj)
4077{
4078 struct drm_device *dev = obj->dev;
4079 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4080 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4081
23bc5982 4082 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4083 obj_priv->pin_count--;
4084 BUG_ON(obj_priv->pin_count < 0);
4085 BUG_ON(obj_priv->gtt_space == NULL);
4086
4087 /* If the object is no longer pinned, and is
4088 * neither active nor being flushed, then stick it on
4089 * the inactive list
4090 */
4091 if (obj_priv->pin_count == 0) {
f13d3f73 4092 if (!obj_priv->active)
69dc4987 4093 list_move_tail(&obj_priv->mm_list,
673a394b 4094 &dev_priv->mm.inactive_list);
73aa808f 4095 i915_gem_info_remove_pin(dev_priv, obj->size);
673a394b 4096 }
23bc5982 4097 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4098}
4099
4100int
4101i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4102 struct drm_file *file_priv)
4103{
4104 struct drm_i915_gem_pin *args = data;
4105 struct drm_gem_object *obj;
4106 struct drm_i915_gem_object *obj_priv;
4107 int ret;
4108
1d7cfea1
CW
4109 ret = i915_mutex_lock_interruptible(dev);
4110 if (ret)
4111 return ret;
673a394b
EA
4112
4113 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4114 if (obj == NULL) {
1d7cfea1
CW
4115 ret = -ENOENT;
4116 goto unlock;
673a394b 4117 }
23010e43 4118 obj_priv = to_intel_bo(obj);
673a394b 4119
bb6baf76
CW
4120 if (obj_priv->madv != I915_MADV_WILLNEED) {
4121 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4122 ret = -EINVAL;
4123 goto out;
3ef94daa
CW
4124 }
4125
79e53945
JB
4126 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4127 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4128 args->handle);
1d7cfea1
CW
4129 ret = -EINVAL;
4130 goto out;
79e53945
JB
4131 }
4132
4133 obj_priv->user_pin_count++;
4134 obj_priv->pin_filp = file_priv;
4135 if (obj_priv->user_pin_count == 1) {
4136 ret = i915_gem_object_pin(obj, args->alignment);
1d7cfea1
CW
4137 if (ret)
4138 goto out;
673a394b
EA
4139 }
4140
4141 /* XXX - flush the CPU caches for pinned objects
4142 * as the X server doesn't manage domains yet
4143 */
e47c68e9 4144 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4145 args->offset = obj_priv->gtt_offset;
1d7cfea1 4146out:
673a394b 4147 drm_gem_object_unreference(obj);
1d7cfea1 4148unlock:
673a394b 4149 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4150 return ret;
673a394b
EA
4151}
4152
4153int
4154i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4155 struct drm_file *file_priv)
4156{
4157 struct drm_i915_gem_pin *args = data;
4158 struct drm_gem_object *obj;
79e53945 4159 struct drm_i915_gem_object *obj_priv;
76c1dec1 4160 int ret;
673a394b 4161
1d7cfea1
CW
4162 ret = i915_mutex_lock_interruptible(dev);
4163 if (ret)
4164 return ret;
673a394b
EA
4165
4166 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4167 if (obj == NULL) {
1d7cfea1
CW
4168 ret = -ENOENT;
4169 goto unlock;
673a394b 4170 }
23010e43 4171 obj_priv = to_intel_bo(obj);
76c1dec1 4172
79e53945
JB
4173 if (obj_priv->pin_filp != file_priv) {
4174 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4175 args->handle);
1d7cfea1
CW
4176 ret = -EINVAL;
4177 goto out;
79e53945
JB
4178 }
4179 obj_priv->user_pin_count--;
4180 if (obj_priv->user_pin_count == 0) {
4181 obj_priv->pin_filp = NULL;
4182 i915_gem_object_unpin(obj);
4183 }
673a394b 4184
1d7cfea1 4185out:
673a394b 4186 drm_gem_object_unreference(obj);
1d7cfea1 4187unlock:
673a394b 4188 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4189 return ret;
673a394b
EA
4190}
4191
4192int
4193i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4194 struct drm_file *file_priv)
4195{
4196 struct drm_i915_gem_busy *args = data;
4197 struct drm_gem_object *obj;
4198 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4199 int ret;
4200
76c1dec1 4201 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4202 if (ret)
76c1dec1 4203 return ret;
673a394b 4204
673a394b
EA
4205 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4206 if (obj == NULL) {
1d7cfea1
CW
4207 ret = -ENOENT;
4208 goto unlock;
673a394b 4209 }
1d7cfea1 4210 obj_priv = to_intel_bo(obj);
d1b851fc 4211
0be555b6
CW
4212 /* Count all active objects as busy, even if they are currently not used
4213 * by the gpu. Users of this interface expect objects to eventually
4214 * become non-busy without any further actions, therefore emit any
4215 * necessary flushes here.
c4de0a5d 4216 */
0be555b6
CW
4217 args->busy = obj_priv->active;
4218 if (args->busy) {
4219 /* Unconditionally flush objects, even when the gpu still uses this
4220 * object. Userspace calling this function indicates that it wants to
4221 * use this buffer rather sooner than later, so issuing the required
4222 * flush earlier is beneficial.
4223 */
c78ec30b
CW
4224 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4225 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4226 obj_priv->ring,
4227 0, obj->write_domain);
0be555b6
CW
4228
4229 /* Update the active list for the hardware's current position.
4230 * Otherwise this only updates on a delayed timer or when irqs
4231 * are actually unmasked, and our working set ends up being
4232 * larger than required.
4233 */
4234 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4235
4236 args->busy = obj_priv->active;
4237 }
673a394b
EA
4238
4239 drm_gem_object_unreference(obj);
1d7cfea1 4240unlock:
673a394b 4241 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4242 return ret;
673a394b
EA
4243}
4244
4245int
4246i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4247 struct drm_file *file_priv)
4248{
4249 return i915_gem_ring_throttle(dev, file_priv);
4250}
4251
3ef94daa
CW
4252int
4253i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4254 struct drm_file *file_priv)
4255{
4256 struct drm_i915_gem_madvise *args = data;
4257 struct drm_gem_object *obj;
4258 struct drm_i915_gem_object *obj_priv;
76c1dec1 4259 int ret;
3ef94daa
CW
4260
4261 switch (args->madv) {
4262 case I915_MADV_DONTNEED:
4263 case I915_MADV_WILLNEED:
4264 break;
4265 default:
4266 return -EINVAL;
4267 }
4268
1d7cfea1
CW
4269 ret = i915_mutex_lock_interruptible(dev);
4270 if (ret)
4271 return ret;
4272
3ef94daa
CW
4273 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4274 if (obj == NULL) {
1d7cfea1
CW
4275 ret = -ENOENT;
4276 goto unlock;
3ef94daa 4277 }
23010e43 4278 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4279
4280 if (obj_priv->pin_count) {
1d7cfea1
CW
4281 ret = -EINVAL;
4282 goto out;
3ef94daa
CW
4283 }
4284
bb6baf76
CW
4285 if (obj_priv->madv != __I915_MADV_PURGED)
4286 obj_priv->madv = args->madv;
3ef94daa 4287
2d7ef395
CW
4288 /* if the object is no longer bound, discard its backing storage */
4289 if (i915_gem_object_is_purgeable(obj_priv) &&
4290 obj_priv->gtt_space == NULL)
4291 i915_gem_object_truncate(obj);
4292
bb6baf76
CW
4293 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4294
1d7cfea1 4295out:
3ef94daa 4296 drm_gem_object_unreference(obj);
1d7cfea1 4297unlock:
3ef94daa 4298 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4299 return ret;
3ef94daa
CW
4300}
4301
ac52bc56
DV
4302struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4303 size_t size)
4304{
73aa808f 4305 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4306 struct drm_i915_gem_object *obj;
ac52bc56 4307
c397b908
DV
4308 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4309 if (obj == NULL)
4310 return NULL;
673a394b 4311
c397b908
DV
4312 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4313 kfree(obj);
4314 return NULL;
4315 }
673a394b 4316
73aa808f
CW
4317 i915_gem_info_add_obj(dev_priv, size);
4318
c397b908
DV
4319 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4320 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4321
c397b908 4322 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4323 obj->base.driver_private = NULL;
c397b908 4324 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4325 INIT_LIST_HEAD(&obj->mm_list);
4326 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4327 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4328 obj->madv = I915_MADV_WILLNEED;
de151cf6 4329
c397b908
DV
4330 return &obj->base;
4331}
4332
4333int i915_gem_init_object(struct drm_gem_object *obj)
4334{
4335 BUG();
de151cf6 4336
673a394b
EA
4337 return 0;
4338}
4339
be72615b 4340static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4341{
de151cf6 4342 struct drm_device *dev = obj->dev;
be72615b 4343 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4344 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4345 int ret;
673a394b 4346
be72615b
CW
4347 ret = i915_gem_object_unbind(obj);
4348 if (ret == -ERESTARTSYS) {
69dc4987 4349 list_move(&obj_priv->mm_list,
be72615b
CW
4350 &dev_priv->mm.deferred_free_list);
4351 return;
4352 }
673a394b 4353
7e616158
CW
4354 if (obj_priv->mmap_offset)
4355 i915_gem_free_mmap_offset(obj);
de151cf6 4356
c397b908 4357 drm_gem_object_release(obj);
73aa808f 4358 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4359
9a298b2a 4360 kfree(obj_priv->page_cpu_valid);
280b713b 4361 kfree(obj_priv->bit_17);
c397b908 4362 kfree(obj_priv);
673a394b
EA
4363}
4364
be72615b
CW
4365void i915_gem_free_object(struct drm_gem_object *obj)
4366{
4367 struct drm_device *dev = obj->dev;
4368 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4369
4370 trace_i915_gem_object_destroy(obj);
4371
4372 while (obj_priv->pin_count > 0)
4373 i915_gem_object_unpin(obj);
4374
4375 if (obj_priv->phys_obj)
4376 i915_gem_detach_phys_object(dev, obj);
4377
4378 i915_gem_free_object_tail(obj);
4379}
4380
29105ccc
CW
4381int
4382i915_gem_idle(struct drm_device *dev)
4383{
4384 drm_i915_private_t *dev_priv = dev->dev_private;
4385 int ret;
28dfe52a 4386
29105ccc 4387 mutex_lock(&dev->struct_mutex);
1c5d22f7 4388
87acb0a5 4389 if (dev_priv->mm.suspended) {
29105ccc
CW
4390 mutex_unlock(&dev->struct_mutex);
4391 return 0;
28dfe52a
EA
4392 }
4393
29105ccc 4394 ret = i915_gpu_idle(dev);
6dbe2772
KP
4395 if (ret) {
4396 mutex_unlock(&dev->struct_mutex);
673a394b 4397 return ret;
6dbe2772 4398 }
673a394b 4399
29105ccc
CW
4400 /* Under UMS, be paranoid and evict. */
4401 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4402 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4403 if (ret) {
4404 mutex_unlock(&dev->struct_mutex);
4405 return ret;
4406 }
4407 }
4408
4409 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4410 * We need to replace this with a semaphore, or something.
4411 * And not confound mm.suspended!
4412 */
4413 dev_priv->mm.suspended = 1;
bc0c7f14 4414 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4415
4416 i915_kernel_lost_context(dev);
6dbe2772 4417 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4418
6dbe2772
KP
4419 mutex_unlock(&dev->struct_mutex);
4420
29105ccc
CW
4421 /* Cancel the retire work handler, which should be idle now. */
4422 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4423
673a394b
EA
4424 return 0;
4425}
4426
e552eb70
JB
4427/*
4428 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4429 * over cache flushing.
4430 */
8187a2b7 4431static int
e552eb70
JB
4432i915_gem_init_pipe_control(struct drm_device *dev)
4433{
4434 drm_i915_private_t *dev_priv = dev->dev_private;
4435 struct drm_gem_object *obj;
4436 struct drm_i915_gem_object *obj_priv;
4437 int ret;
4438
34dc4d44 4439 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4440 if (obj == NULL) {
4441 DRM_ERROR("Failed to allocate seqno page\n");
4442 ret = -ENOMEM;
4443 goto err;
4444 }
4445 obj_priv = to_intel_bo(obj);
4446 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4447
4448 ret = i915_gem_object_pin(obj, 4096);
4449 if (ret)
4450 goto err_unref;
4451
4452 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4453 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4454 if (dev_priv->seqno_page == NULL)
4455 goto err_unpin;
4456
4457 dev_priv->seqno_obj = obj;
4458 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4459
4460 return 0;
4461
4462err_unpin:
4463 i915_gem_object_unpin(obj);
4464err_unref:
4465 drm_gem_object_unreference(obj);
4466err:
4467 return ret;
4468}
4469
8187a2b7
ZN
4470
4471static void
e552eb70
JB
4472i915_gem_cleanup_pipe_control(struct drm_device *dev)
4473{
4474 drm_i915_private_t *dev_priv = dev->dev_private;
4475 struct drm_gem_object *obj;
4476 struct drm_i915_gem_object *obj_priv;
4477
4478 obj = dev_priv->seqno_obj;
4479 obj_priv = to_intel_bo(obj);
4480 kunmap(obj_priv->pages[0]);
4481 i915_gem_object_unpin(obj);
4482 drm_gem_object_unreference(obj);
4483 dev_priv->seqno_obj = NULL;
4484
4485 dev_priv->seqno_page = NULL;
673a394b
EA
4486}
4487
8187a2b7
ZN
4488int
4489i915_gem_init_ringbuffer(struct drm_device *dev)
4490{
4491 drm_i915_private_t *dev_priv = dev->dev_private;
4492 int ret;
68f95ba9 4493
8187a2b7
ZN
4494 if (HAS_PIPE_CONTROL(dev)) {
4495 ret = i915_gem_init_pipe_control(dev);
4496 if (ret)
4497 return ret;
4498 }
68f95ba9 4499
5c1143bb 4500 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4501 if (ret)
4502 goto cleanup_pipe_control;
4503
4504 if (HAS_BSD(dev)) {
5c1143bb 4505 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4506 if (ret)
4507 goto cleanup_render_ring;
d1b851fc 4508 }
68f95ba9 4509
549f7365
CW
4510 if (HAS_BLT(dev)) {
4511 ret = intel_init_blt_ring_buffer(dev);
4512 if (ret)
4513 goto cleanup_bsd_ring;
4514 }
4515
6f392d54
CW
4516 dev_priv->next_seqno = 1;
4517
68f95ba9
CW
4518 return 0;
4519
549f7365 4520cleanup_bsd_ring:
78501eac 4521 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4522cleanup_render_ring:
78501eac 4523 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4524cleanup_pipe_control:
4525 if (HAS_PIPE_CONTROL(dev))
4526 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4527 return ret;
4528}
4529
4530void
4531i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4532{
4533 drm_i915_private_t *dev_priv = dev->dev_private;
4534
78501eac
CW
4535 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4536 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4537 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4538 if (HAS_PIPE_CONTROL(dev))
4539 i915_gem_cleanup_pipe_control(dev);
4540}
4541
673a394b
EA
4542int
4543i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4544 struct drm_file *file_priv)
4545{
4546 drm_i915_private_t *dev_priv = dev->dev_private;
4547 int ret;
4548
79e53945
JB
4549 if (drm_core_check_feature(dev, DRIVER_MODESET))
4550 return 0;
4551
ba1234d1 4552 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4553 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4554 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4555 }
4556
673a394b 4557 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4558 dev_priv->mm.suspended = 0;
4559
4560 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4561 if (ret != 0) {
4562 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4563 return ret;
d816f6ac 4564 }
9bb2d6f9 4565
69dc4987 4566 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4567 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4568 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4569 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4570 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4571 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4572 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4573 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4574 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4575 mutex_unlock(&dev->struct_mutex);
dbb19d30 4576
5f35308b
CW
4577 ret = drm_irq_install(dev);
4578 if (ret)
4579 goto cleanup_ringbuffer;
dbb19d30 4580
673a394b 4581 return 0;
5f35308b
CW
4582
4583cleanup_ringbuffer:
4584 mutex_lock(&dev->struct_mutex);
4585 i915_gem_cleanup_ringbuffer(dev);
4586 dev_priv->mm.suspended = 1;
4587 mutex_unlock(&dev->struct_mutex);
4588
4589 return ret;
673a394b
EA
4590}
4591
4592int
4593i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4594 struct drm_file *file_priv)
4595{
79e53945
JB
4596 if (drm_core_check_feature(dev, DRIVER_MODESET))
4597 return 0;
4598
dbb19d30 4599 drm_irq_uninstall(dev);
e6890f6f 4600 return i915_gem_idle(dev);
673a394b
EA
4601}
4602
4603void
4604i915_gem_lastclose(struct drm_device *dev)
4605{
4606 int ret;
673a394b 4607
e806b495
EA
4608 if (drm_core_check_feature(dev, DRIVER_MODESET))
4609 return;
4610
6dbe2772
KP
4611 ret = i915_gem_idle(dev);
4612 if (ret)
4613 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4614}
4615
64193406
CW
4616static void
4617init_ring_lists(struct intel_ring_buffer *ring)
4618{
4619 INIT_LIST_HEAD(&ring->active_list);
4620 INIT_LIST_HEAD(&ring->request_list);
4621 INIT_LIST_HEAD(&ring->gpu_write_list);
4622}
4623
673a394b
EA
4624void
4625i915_gem_load(struct drm_device *dev)
4626{
b5aa8a0f 4627 int i;
673a394b
EA
4628 drm_i915_private_t *dev_priv = dev->dev_private;
4629
69dc4987 4630 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4631 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4632 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4633 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4635 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4636 init_ring_lists(&dev_priv->render_ring);
4637 init_ring_lists(&dev_priv->bsd_ring);
4638 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4639 for (i = 0; i < 16; i++)
4640 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4641 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4642 i915_gem_retire_work_handler);
30dbf0c0 4643 init_completion(&dev_priv->error_completion);
31169714
CW
4644 spin_lock(&shrink_list_lock);
4645 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4646 spin_unlock(&shrink_list_lock);
4647
94400120
DA
4648 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4649 if (IS_GEN3(dev)) {
4650 u32 tmp = I915_READ(MI_ARB_STATE);
4651 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4652 /* arb state is a masked write, so set bit + bit in mask */
4653 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4654 I915_WRITE(MI_ARB_STATE, tmp);
4655 }
4656 }
4657
de151cf6 4658 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4659 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4660 dev_priv->fence_reg_start = 3;
de151cf6 4661
a6c45cf0 4662 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4663 dev_priv->num_fence_regs = 16;
4664 else
4665 dev_priv->num_fence_regs = 8;
4666
b5aa8a0f 4667 /* Initialize fence registers to zero */
a6c45cf0
CW
4668 switch (INTEL_INFO(dev)->gen) {
4669 case 6:
4670 for (i = 0; i < 16; i++)
4671 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4672 break;
4673 case 5:
4674 case 4:
b5aa8a0f
GH
4675 for (i = 0; i < 16; i++)
4676 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4677 break;
4678 case 3:
b5aa8a0f
GH
4679 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4680 for (i = 0; i < 8; i++)
4681 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4682 case 2:
4683 for (i = 0; i < 8; i++)
4684 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4685 break;
b5aa8a0f 4686 }
673a394b 4687 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4688 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4689}
71acb5eb
DA
4690
4691/*
4692 * Create a physically contiguous memory object for this object
4693 * e.g. for cursor + overlay regs
4694 */
995b6762
CW
4695static int i915_gem_init_phys_object(struct drm_device *dev,
4696 int id, int size, int align)
71acb5eb
DA
4697{
4698 drm_i915_private_t *dev_priv = dev->dev_private;
4699 struct drm_i915_gem_phys_object *phys_obj;
4700 int ret;
4701
4702 if (dev_priv->mm.phys_objs[id - 1] || !size)
4703 return 0;
4704
9a298b2a 4705 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4706 if (!phys_obj)
4707 return -ENOMEM;
4708
4709 phys_obj->id = id;
4710
6eeefaf3 4711 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4712 if (!phys_obj->handle) {
4713 ret = -ENOMEM;
4714 goto kfree_obj;
4715 }
4716#ifdef CONFIG_X86
4717 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4718#endif
4719
4720 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4721
4722 return 0;
4723kfree_obj:
9a298b2a 4724 kfree(phys_obj);
71acb5eb
DA
4725 return ret;
4726}
4727
995b6762 4728static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4729{
4730 drm_i915_private_t *dev_priv = dev->dev_private;
4731 struct drm_i915_gem_phys_object *phys_obj;
4732
4733 if (!dev_priv->mm.phys_objs[id - 1])
4734 return;
4735
4736 phys_obj = dev_priv->mm.phys_objs[id - 1];
4737 if (phys_obj->cur_obj) {
4738 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4739 }
4740
4741#ifdef CONFIG_X86
4742 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4743#endif
4744 drm_pci_free(dev, phys_obj->handle);
4745 kfree(phys_obj);
4746 dev_priv->mm.phys_objs[id - 1] = NULL;
4747}
4748
4749void i915_gem_free_all_phys_object(struct drm_device *dev)
4750{
4751 int i;
4752
260883c8 4753 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4754 i915_gem_free_phys_object(dev, i);
4755}
4756
4757void i915_gem_detach_phys_object(struct drm_device *dev,
4758 struct drm_gem_object *obj)
4759{
4760 struct drm_i915_gem_object *obj_priv;
4761 int i;
4762 int ret;
4763 int page_count;
4764
23010e43 4765 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4766 if (!obj_priv->phys_obj)
4767 return;
4768
4bdadb97 4769 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4770 if (ret)
4771 goto out;
4772
4773 page_count = obj->size / PAGE_SIZE;
4774
4775 for (i = 0; i < page_count; i++) {
3e4d3af5 4776 char *dst = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4777 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4778
4779 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4780 kunmap_atomic(dst);
71acb5eb 4781 }
856fa198 4782 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4783 drm_agp_chipset_flush(dev);
d78b47b9
CW
4784
4785 i915_gem_object_put_pages(obj);
71acb5eb
DA
4786out:
4787 obj_priv->phys_obj->cur_obj = NULL;
4788 obj_priv->phys_obj = NULL;
4789}
4790
4791int
4792i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4793 struct drm_gem_object *obj,
4794 int id,
4795 int align)
71acb5eb
DA
4796{
4797 drm_i915_private_t *dev_priv = dev->dev_private;
4798 struct drm_i915_gem_object *obj_priv;
4799 int ret = 0;
4800 int page_count;
4801 int i;
4802
4803 if (id > I915_MAX_PHYS_OBJECT)
4804 return -EINVAL;
4805
23010e43 4806 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4807
4808 if (obj_priv->phys_obj) {
4809 if (obj_priv->phys_obj->id == id)
4810 return 0;
4811 i915_gem_detach_phys_object(dev, obj);
4812 }
4813
71acb5eb
DA
4814 /* create a new object */
4815 if (!dev_priv->mm.phys_objs[id - 1]) {
4816 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4817 obj->size, align);
71acb5eb 4818 if (ret) {
aeb565df 4819 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4820 goto out;
4821 }
4822 }
4823
4824 /* bind to the object */
4825 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4826 obj_priv->phys_obj->cur_obj = obj;
4827
4bdadb97 4828 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4829 if (ret) {
4830 DRM_ERROR("failed to get page list\n");
4831 goto out;
4832 }
4833
4834 page_count = obj->size / PAGE_SIZE;
4835
4836 for (i = 0; i < page_count; i++) {
3e4d3af5 4837 char *src = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4838 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4839
4840 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4841 kunmap_atomic(src);
71acb5eb
DA
4842 }
4843
d78b47b9
CW
4844 i915_gem_object_put_pages(obj);
4845
71acb5eb
DA
4846 return 0;
4847out:
4848 return ret;
4849}
4850
4851static int
4852i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4853 struct drm_i915_gem_pwrite *args,
4854 struct drm_file *file_priv)
4855{
23010e43 4856 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4857 void *obj_addr;
4858 int ret;
4859 char __user *user_data;
4860
4861 user_data = (char __user *) (uintptr_t) args->data_ptr;
4862 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4863
44d98a61 4864 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4865 ret = copy_from_user(obj_addr, user_data, args->size);
4866 if (ret)
4867 return -EFAULT;
4868
4869 drm_agp_chipset_flush(dev);
4870 return 0;
4871}
b962442e 4872
f787a5f5 4873void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4874{
f787a5f5 4875 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4876
4877 /* Clean up our request list when the client is going away, so that
4878 * later retire_requests won't dereference our soon-to-be-gone
4879 * file_priv.
4880 */
1c25595f 4881 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4882 while (!list_empty(&file_priv->mm.request_list)) {
4883 struct drm_i915_gem_request *request;
4884
4885 request = list_first_entry(&file_priv->mm.request_list,
4886 struct drm_i915_gem_request,
4887 client_list);
4888 list_del(&request->client_list);
4889 request->file_priv = NULL;
4890 }
1c25595f 4891 spin_unlock(&file_priv->mm.lock);
b962442e 4892}
31169714 4893
1637ef41
CW
4894static int
4895i915_gpu_is_active(struct drm_device *dev)
4896{
4897 drm_i915_private_t *dev_priv = dev->dev_private;
4898 int lists_empty;
4899
1637ef41 4900 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
87acb0a5 4901 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
4902 list_empty(&dev_priv->bsd_ring.active_list) &&
4903 list_empty(&dev_priv->blt_ring.active_list);
1637ef41
CW
4904
4905 return !lists_empty;
4906}
4907
31169714 4908static int
7f8275d0 4909i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4910{
4911 drm_i915_private_t *dev_priv, *next_dev;
4912 struct drm_i915_gem_object *obj_priv, *next_obj;
4913 int cnt = 0;
4914 int would_deadlock = 1;
4915
4916 /* "fast-path" to count number of available objects */
4917 if (nr_to_scan == 0) {
4918 spin_lock(&shrink_list_lock);
4919 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4920 struct drm_device *dev = dev_priv->dev;
4921
4922 if (mutex_trylock(&dev->struct_mutex)) {
4923 list_for_each_entry(obj_priv,
4924 &dev_priv->mm.inactive_list,
69dc4987 4925 mm_list)
31169714
CW
4926 cnt++;
4927 mutex_unlock(&dev->struct_mutex);
4928 }
4929 }
4930 spin_unlock(&shrink_list_lock);
4931
4932 return (cnt / 100) * sysctl_vfs_cache_pressure;
4933 }
4934
4935 spin_lock(&shrink_list_lock);
4936
1637ef41 4937rescan:
31169714
CW
4938 /* first scan for clean buffers */
4939 list_for_each_entry_safe(dev_priv, next_dev,
4940 &shrink_list, mm.shrink_list) {
4941 struct drm_device *dev = dev_priv->dev;
4942
4943 if (! mutex_trylock(&dev->struct_mutex))
4944 continue;
4945
4946 spin_unlock(&shrink_list_lock);
b09a1fec 4947 i915_gem_retire_requests(dev);
31169714
CW
4948
4949 list_for_each_entry_safe(obj_priv, next_obj,
4950 &dev_priv->mm.inactive_list,
69dc4987 4951 mm_list) {
31169714 4952 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4953 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4954 if (--nr_to_scan <= 0)
4955 break;
4956 }
4957 }
4958
4959 spin_lock(&shrink_list_lock);
4960 mutex_unlock(&dev->struct_mutex);
4961
963b4836
CW
4962 would_deadlock = 0;
4963
31169714
CW
4964 if (nr_to_scan <= 0)
4965 break;
4966 }
4967
4968 /* second pass, evict/count anything still on the inactive list */
4969 list_for_each_entry_safe(dev_priv, next_dev,
4970 &shrink_list, mm.shrink_list) {
4971 struct drm_device *dev = dev_priv->dev;
4972
4973 if (! mutex_trylock(&dev->struct_mutex))
4974 continue;
4975
4976 spin_unlock(&shrink_list_lock);
4977
4978 list_for_each_entry_safe(obj_priv, next_obj,
4979 &dev_priv->mm.inactive_list,
69dc4987 4980 mm_list) {
31169714 4981 if (nr_to_scan > 0) {
a8089e84 4982 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4983 nr_to_scan--;
4984 } else
4985 cnt++;
4986 }
4987
4988 spin_lock(&shrink_list_lock);
4989 mutex_unlock(&dev->struct_mutex);
4990
4991 would_deadlock = 0;
4992 }
4993
1637ef41
CW
4994 if (nr_to_scan) {
4995 int active = 0;
4996
4997 /*
4998 * We are desperate for pages, so as a last resort, wait
4999 * for the GPU to finish and discard whatever we can.
5000 * This has a dramatic impact to reduce the number of
5001 * OOM-killer events whilst running the GPU aggressively.
5002 */
5003 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5004 struct drm_device *dev = dev_priv->dev;
5005
5006 if (!mutex_trylock(&dev->struct_mutex))
5007 continue;
5008
5009 spin_unlock(&shrink_list_lock);
5010
5011 if (i915_gpu_is_active(dev)) {
5012 i915_gpu_idle(dev);
5013 active++;
5014 }
5015
5016 spin_lock(&shrink_list_lock);
5017 mutex_unlock(&dev->struct_mutex);
5018 }
5019
5020 if (active)
5021 goto rescan;
5022 }
5023
31169714
CW
5024 spin_unlock(&shrink_list_lock);
5025
5026 if (would_deadlock)
5027 return -1;
5028 else if (cnt > 0)
5029 return (cnt / 100) * sysctl_vfs_cache_pressure;
5030 else
5031 return 0;
5032}
5033
5034static struct shrinker shrinker = {
5035 .shrink = i915_gem_shrink,
5036 .seeks = DEFAULT_SEEKS,
5037};
5038
5039__init void
5040i915_gem_shrinker_init(void)
5041{
5042 register_shrinker(&shrinker);
5043}
5044
5045__exit void
5046i915_gem_shrinker_exit(void)
5047{
5048 unregister_shrinker(&shrinker);
5049}