]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Document our internal limit on object size
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee
AS
65static int
66insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 85 u64 size)
73aa808f 86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 94 u64 size)
73aa808f 95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
d98c52cf 107 if (!i915_reset_in_progress(error))
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0 115 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 116 !i915_reset_in_progress(error),
1f83fee0 117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
d98c52cf
CW
123 } else {
124 return 0;
0a6759c6 125 }
30dbf0c0
CW
126}
127
54cf91dc 128int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 129{
fac5e23e 130 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
131 int ret;
132
33196ded 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
76c1dec1
CW
141 return 0;
142}
30dbf0c0 143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
72e96d64 148 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 150 struct drm_i915_gem_get_aperture *args = data;
ca1543be 151 struct i915_vma *vma;
6299f992 152 size_t pinned;
5a125c3c 153
6299f992 154 pinned = 0;
73aa808f 155 mutex_lock(&dev->struct_mutex);
1c7f4bca 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 157 if (i915_vma_is_pinned(vma))
ca1543be 158 pinned += vma->node.size;
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
72e96d64 164 args->aper_size = ggtt->base.total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
6a2c4232
CW
170static int
171i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 172{
93c76a3d 173 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
00731155 178
6a2c4232
CW
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
09cbfeaf 195 put_page(page);
6a2c4232
CW
196 vaddr += PAGE_SIZE;
197 }
198
c033666a 199 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
00731155 213
6a2c4232
CW
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
6a2c4232
CW
218 return 0;
219}
220
221static void
222i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223{
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 227
6a2c4232 228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 229 if (WARN_ON(ret)) {
6a2c4232
CW
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
6a2c4232
CW
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
93c76a3d 240 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
09cbfeaf 260 put_page(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
6a2c4232
CW
268}
269
270static void
271i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272{
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274}
275
276static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280};
281
35a9611c 282int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
02bef8f9
CW
286 int ret;
287
288 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 289
02bef8f9
CW
290 /* Closed vma are removed from the obj->vma_list - but they may
291 * still have an active binding on the object. To remove those we
292 * must wait for all rendering to complete to the object (as unbinding
293 * must anyway), and retire the requests.
aa653a68 294 */
02bef8f9
CW
295 ret = i915_gem_object_wait_rendering(obj, false);
296 if (ret)
297 return ret;
298
299 i915_gem_retire_requests(to_i915(obj->base.dev));
300
aa653a68
CW
301 while ((vma = list_first_entry_or_null(&obj->vma_list,
302 struct i915_vma,
303 obj_link))) {
304 list_move_tail(&vma->obj_link, &still_in_list);
305 ret = i915_vma_unbind(vma);
306 if (ret)
307 break;
308 }
309 list_splice(&still_in_list, &obj->vma_list);
310
311 return ret;
312}
313
00e60f26
CW
314/**
315 * Ensures that all rendering to the object has completed and the object is
316 * safe to unbind from the GTT or access from the CPU.
317 * @obj: i915 gem object
318 * @readonly: waiting for just read access or read-write access
319 */
320int
321i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 bool readonly)
323{
324 struct reservation_object *resv;
325 struct i915_gem_active *active;
326 unsigned long active_mask;
327 int idx;
328
329 lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331 if (!readonly) {
332 active = obj->last_read;
333 active_mask = i915_gem_object_get_active(obj);
334 } else {
335 active_mask = 1;
336 active = &obj->last_write;
337 }
338
339 for_each_active(active_mask, idx) {
340 int ret;
341
342 ret = i915_gem_active_wait(&active[idx],
343 &obj->base.dev->struct_mutex);
344 if (ret)
345 return ret;
346 }
347
348 resv = i915_gem_object_get_dmabuf_resv(obj);
349 if (resv) {
350 long err;
351
352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 MAX_SCHEDULE_TIMEOUT);
354 if (err < 0)
355 return err;
356 }
357
358 return 0;
359}
360
b8f9096d
CW
361/* A nonblocking variant of the above wait. Must be called prior to
362 * acquiring the mutex for the object, as the object state may change
363 * during this call. A reference must be held by the caller for the object.
00e60f26
CW
364 */
365static __must_check int
b8f9096d
CW
366__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 struct intel_rps_client *rps,
368 bool readonly)
00e60f26 369{
00e60f26
CW
370 struct i915_gem_active *active;
371 unsigned long active_mask;
b8f9096d 372 int idx;
00e60f26 373
b8f9096d 374 active_mask = __I915_BO_ACTIVE(obj);
00e60f26
CW
375 if (!active_mask)
376 return 0;
377
378 if (!readonly) {
379 active = obj->last_read;
380 } else {
381 active_mask = 1;
382 active = &obj->last_write;
383 }
384
b8f9096d
CW
385 for_each_active(active_mask, idx) {
386 int ret;
00e60f26 387
b8f9096d 388 ret = i915_gem_active_wait_unlocked(&active[idx],
ea746f36
CW
389 I915_WAIT_INTERRUPTIBLE,
390 NULL, rps);
b8f9096d
CW
391 if (ret)
392 return ret;
00e60f26
CW
393 }
394
b8f9096d 395 return 0;
00e60f26
CW
396}
397
398static struct intel_rps_client *to_rps_client(struct drm_file *file)
399{
400 struct drm_i915_file_private *fpriv = file->driver_priv;
401
402 return &fpriv->rps;
403}
404
00731155
CW
405int
406i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407 int align)
408{
409 drm_dma_handle_t *phys;
6a2c4232 410 int ret;
00731155
CW
411
412 if (obj->phys_handle) {
413 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414 return -EBUSY;
415
416 return 0;
417 }
418
419 if (obj->madv != I915_MADV_WILLNEED)
420 return -EFAULT;
421
422 if (obj->base.filp == NULL)
423 return -EINVAL;
424
4717ca9e
CW
425 ret = i915_gem_object_unbind(obj);
426 if (ret)
427 return ret;
428
429 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
430 if (ret)
431 return ret;
432
00731155
CW
433 /* create a new object */
434 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435 if (!phys)
436 return -ENOMEM;
437
00731155 438 obj->phys_handle = phys;
6a2c4232
CW
439 obj->ops = &i915_gem_phys_ops;
440
441 return i915_gem_object_get_pages(obj);
00731155
CW
442}
443
444static int
445i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446 struct drm_i915_gem_pwrite *args,
447 struct drm_file *file_priv)
448{
449 struct drm_device *dev = obj->base.dev;
450 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 451 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 452 int ret = 0;
6a2c4232
CW
453
454 /* We manually control the domain here and pretend that it
455 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456 */
457 ret = i915_gem_object_wait_rendering(obj, false);
458 if (ret)
459 return ret;
00731155 460
77a0d1ca 461 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
462 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463 unsigned long unwritten;
464
465 /* The physical object once assigned is fixed for the lifetime
466 * of the obj, so we can safely drop the lock and continue
467 * to access vaddr.
468 */
469 mutex_unlock(&dev->struct_mutex);
470 unwritten = copy_from_user(vaddr, user_data, args->size);
471 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
472 if (unwritten) {
473 ret = -EFAULT;
474 goto out;
475 }
00731155
CW
476 }
477
6a2c4232 478 drm_clflush_virt_range(vaddr, args->size);
c033666a 479 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
480
481out:
de152b62 482 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 483 return ret;
00731155
CW
484}
485
42dcedd4
CW
486void *i915_gem_object_alloc(struct drm_device *dev)
487{
fac5e23e 488 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 489 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
490}
491
492void i915_gem_object_free(struct drm_i915_gem_object *obj)
493{
fac5e23e 494 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 495 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
496}
497
ff72145b
DA
498static int
499i915_gem_create(struct drm_file *file,
500 struct drm_device *dev,
501 uint64_t size,
502 uint32_t *handle_p)
673a394b 503{
05394f39 504 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
505 int ret;
506 u32 handle;
673a394b 507
ff72145b 508 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
509 if (size == 0)
510 return -EINVAL;
673a394b
EA
511
512 /* Allocate the new object */
d37cd8a8 513 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
514 if (IS_ERR(obj))
515 return PTR_ERR(obj);
673a394b 516
05394f39 517 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 518 /* drop reference from allocate - handle holds it now */
34911fd3 519 i915_gem_object_put_unlocked(obj);
d861e338
DV
520 if (ret)
521 return ret;
202f2fef 522
ff72145b 523 *handle_p = handle;
673a394b
EA
524 return 0;
525}
526
ff72145b
DA
527int
528i915_gem_dumb_create(struct drm_file *file,
529 struct drm_device *dev,
530 struct drm_mode_create_dumb *args)
531{
532 /* have to work out size/pitch and return them */
de45eaf7 533 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
534 args->size = args->pitch * args->height;
535 return i915_gem_create(file, dev,
da6b51d0 536 args->size, &args->handle);
ff72145b
DA
537}
538
ff72145b
DA
539/**
540 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
541 * @dev: drm device pointer
542 * @data: ioctl data blob
543 * @file: drm file pointer
ff72145b
DA
544 */
545int
546i915_gem_create_ioctl(struct drm_device *dev, void *data,
547 struct drm_file *file)
548{
549 struct drm_i915_gem_create *args = data;
63ed2cb2 550
ff72145b 551 return i915_gem_create(file, dev,
da6b51d0 552 args->size, &args->handle);
ff72145b
DA
553}
554
8461d226
DV
555static inline int
556__copy_to_user_swizzled(char __user *cpu_vaddr,
557 const char *gpu_vaddr, int gpu_offset,
558 int length)
559{
560 int ret, cpu_offset = 0;
561
562 while (length > 0) {
563 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564 int this_length = min(cacheline_end - gpu_offset, length);
565 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568 gpu_vaddr + swizzled_gpu_offset,
569 this_length);
570 if (ret)
571 return ret + length;
572
573 cpu_offset += this_length;
574 gpu_offset += this_length;
575 length -= this_length;
576 }
577
578 return 0;
579}
580
8c59967c 581static inline int
4f0c7cfb
BW
582__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583 const char __user *cpu_vaddr,
8c59967c
DV
584 int length)
585{
586 int ret, cpu_offset = 0;
587
588 while (length > 0) {
589 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590 int this_length = min(cacheline_end - gpu_offset, length);
591 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594 cpu_vaddr + cpu_offset,
595 this_length);
596 if (ret)
597 return ret + length;
598
599 cpu_offset += this_length;
600 gpu_offset += this_length;
601 length -= this_length;
602 }
603
604 return 0;
605}
606
4c914c0c
BV
607/*
608 * Pins the specified object's pages and synchronizes the object with
609 * GPU accesses. Sets needs_clflush to non-zero if the caller should
610 * flush the object from the CPU cache.
611 */
612int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 613 unsigned int *needs_clflush)
4c914c0c
BV
614{
615 int ret;
616
617 *needs_clflush = 0;
618
43394c7d
CW
619 if (!i915_gem_object_has_struct_page(obj))
620 return -ENODEV;
4c914c0c 621
c13d87ea
CW
622 ret = i915_gem_object_wait_rendering(obj, true);
623 if (ret)
624 return ret;
625
9764951e
CW
626 ret = i915_gem_object_get_pages(obj);
627 if (ret)
628 return ret;
629
630 i915_gem_object_pin_pages(obj);
631
a314d5cb
CW
632 i915_gem_object_flush_gtt_write_domain(obj);
633
43394c7d
CW
634 /* If we're not in the cpu read domain, set ourself into the gtt
635 * read domain and manually flush cachelines (if required). This
636 * optimizes for the case when the gpu will dirty the data
637 * anyway again before the next pread happens.
638 */
639 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
640 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641 obj->cache_level);
43394c7d 642
43394c7d
CW
643 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
645 if (ret)
646 goto err_unpin;
647
43394c7d 648 *needs_clflush = 0;
4c914c0c
BV
649 }
650
9764951e 651 /* return with the pages pinned */
43394c7d 652 return 0;
9764951e
CW
653
654err_unpin:
655 i915_gem_object_unpin_pages(obj);
656 return ret;
43394c7d
CW
657}
658
659int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660 unsigned int *needs_clflush)
661{
662 int ret;
663
664 *needs_clflush = 0;
665 if (!i915_gem_object_has_struct_page(obj))
666 return -ENODEV;
667
668 ret = i915_gem_object_wait_rendering(obj, false);
669 if (ret)
670 return ret;
671
9764951e
CW
672 ret = i915_gem_object_get_pages(obj);
673 if (ret)
674 return ret;
675
676 i915_gem_object_pin_pages(obj);
677
a314d5cb
CW
678 i915_gem_object_flush_gtt_write_domain(obj);
679
43394c7d
CW
680 /* If we're not in the cpu write domain, set ourself into the
681 * gtt write domain and manually flush cachelines (as required).
682 * This optimizes for the case when the gpu will use the data
683 * right away and we therefore have to clflush anyway.
684 */
685 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688 /* Same trick applies to invalidate partially written cachelines read
689 * before writing.
690 */
691 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693 obj->cache_level);
694
43394c7d
CW
695 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
697 if (ret)
698 goto err_unpin;
699
43394c7d
CW
700 *needs_clflush = 0;
701 }
702
703 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704 obj->cache_dirty = true;
705
706 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707 obj->dirty = 1;
9764951e 708 /* return with the pages pinned */
43394c7d 709 return 0;
9764951e
CW
710
711err_unpin:
712 i915_gem_object_unpin_pages(obj);
713 return ret;
4c914c0c
BV
714}
715
d174bd64
DV
716/* Per-page copy function for the shmem pread fastpath.
717 * Flushes invalid cachelines before reading the target if
718 * needs_clflush is set. */
eb01459f 719static int
d174bd64
DV
720shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721 char __user *user_data,
722 bool page_do_bit17_swizzling, bool needs_clflush)
723{
724 char *vaddr;
725 int ret;
726
e7e58eb5 727 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
728 return -EINVAL;
729
730 vaddr = kmap_atomic(page);
731 if (needs_clflush)
732 drm_clflush_virt_range(vaddr + shmem_page_offset,
733 page_length);
734 ret = __copy_to_user_inatomic(user_data,
735 vaddr + shmem_page_offset,
736 page_length);
737 kunmap_atomic(vaddr);
738
f60d7f0c 739 return ret ? -EFAULT : 0;
d174bd64
DV
740}
741
23c18c71
DV
742static void
743shmem_clflush_swizzled_range(char *addr, unsigned long length,
744 bool swizzled)
745{
e7e58eb5 746 if (unlikely(swizzled)) {
23c18c71
DV
747 unsigned long start = (unsigned long) addr;
748 unsigned long end = (unsigned long) addr + length;
749
750 /* For swizzling simply ensure that we always flush both
751 * channels. Lame, but simple and it works. Swizzled
752 * pwrite/pread is far from a hotpath - current userspace
753 * doesn't use it at all. */
754 start = round_down(start, 128);
755 end = round_up(end, 128);
756
757 drm_clflush_virt_range((void *)start, end - start);
758 } else {
759 drm_clflush_virt_range(addr, length);
760 }
761
762}
763
d174bd64
DV
764/* Only difference to the fast-path function is that this can handle bit17
765 * and uses non-atomic copy and kmap functions. */
766static int
767shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768 char __user *user_data,
769 bool page_do_bit17_swizzling, bool needs_clflush)
770{
771 char *vaddr;
772 int ret;
773
774 vaddr = kmap(page);
775 if (needs_clflush)
23c18c71
DV
776 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777 page_length,
778 page_do_bit17_swizzling);
d174bd64
DV
779
780 if (page_do_bit17_swizzling)
781 ret = __copy_to_user_swizzled(user_data,
782 vaddr, shmem_page_offset,
783 page_length);
784 else
785 ret = __copy_to_user(user_data,
786 vaddr + shmem_page_offset,
787 page_length);
788 kunmap(page);
789
f60d7f0c 790 return ret ? - EFAULT : 0;
d174bd64
DV
791}
792
b50a5371
AS
793static inline unsigned long
794slow_user_access(struct io_mapping *mapping,
795 uint64_t page_base, int page_offset,
796 char __user *user_data,
797 unsigned long length, bool pwrite)
798{
799 void __iomem *ioaddr;
800 void *vaddr;
801 uint64_t unwritten;
802
803 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804 /* We can use the cpu mem copy function because this is X86. */
805 vaddr = (void __force *)ioaddr + page_offset;
806 if (pwrite)
807 unwritten = __copy_from_user(vaddr, user_data, length);
808 else
809 unwritten = __copy_to_user(user_data, vaddr, length);
810
811 io_mapping_unmap(ioaddr);
812 return unwritten;
813}
814
815static int
816i915_gem_gtt_pread(struct drm_device *dev,
817 struct drm_i915_gem_object *obj, uint64_t size,
818 uint64_t data_offset, uint64_t data_ptr)
819{
fac5e23e 820 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371 821 struct i915_ggtt *ggtt = &dev_priv->ggtt;
058d88c4 822 struct i915_vma *vma;
b50a5371
AS
823 struct drm_mm_node node;
824 char __user *user_data;
825 uint64_t remain;
826 uint64_t offset;
827 int ret;
828
058d88c4 829 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
18034584
CW
830 if (!IS_ERR(vma)) {
831 node.start = i915_ggtt_offset(vma);
832 node.allocated = false;
49ef5294 833 ret = i915_vma_put_fence(vma);
18034584
CW
834 if (ret) {
835 i915_vma_unpin(vma);
836 vma = ERR_PTR(ret);
837 }
838 }
058d88c4 839 if (IS_ERR(vma)) {
b50a5371
AS
840 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841 if (ret)
842 goto out;
843
844 ret = i915_gem_object_get_pages(obj);
845 if (ret) {
846 remove_mappable_node(&node);
847 goto out;
848 }
849
850 i915_gem_object_pin_pages(obj);
b50a5371
AS
851 }
852
853 ret = i915_gem_object_set_to_gtt_domain(obj, false);
854 if (ret)
855 goto out_unpin;
856
857 user_data = u64_to_user_ptr(data_ptr);
858 remain = size;
859 offset = data_offset;
860
861 mutex_unlock(&dev->struct_mutex);
862 if (likely(!i915.prefault_disable)) {
863 ret = fault_in_multipages_writeable(user_data, remain);
864 if (ret) {
865 mutex_lock(&dev->struct_mutex);
866 goto out_unpin;
867 }
868 }
869
870 while (remain > 0) {
871 /* Operation in this page
872 *
873 * page_base = page offset within aperture
874 * page_offset = offset within page
875 * page_length = bytes to copy for this page
876 */
877 u32 page_base = node.start;
878 unsigned page_offset = offset_in_page(offset);
879 unsigned page_length = PAGE_SIZE - page_offset;
880 page_length = remain < page_length ? remain : page_length;
881 if (node.allocated) {
882 wmb();
883 ggtt->base.insert_page(&ggtt->base,
884 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885 node.start,
886 I915_CACHE_NONE, 0);
887 wmb();
888 } else {
889 page_base += offset & PAGE_MASK;
890 }
891 /* This is a slow read/write as it tries to read from
892 * and write to user memory which may result into page
893 * faults, and so we cannot perform this under struct_mutex.
894 */
f7bbe788 895 if (slow_user_access(&ggtt->mappable, page_base,
b50a5371
AS
896 page_offset, user_data,
897 page_length, false)) {
898 ret = -EFAULT;
899 break;
900 }
901
902 remain -= page_length;
903 user_data += page_length;
904 offset += page_length;
905 }
906
907 mutex_lock(&dev->struct_mutex);
908 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909 /* The user has modified the object whilst we tried
910 * reading from it, and we now have no idea what domain
911 * the pages should be in. As we have just been touching
912 * them directly, flush everything back to the GTT
913 * domain.
914 */
915 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916 }
917
918out_unpin:
919 if (node.allocated) {
920 wmb();
921 ggtt->base.clear_range(&ggtt->base,
4fb84d99 922 node.start, node.size);
b50a5371
AS
923 i915_gem_object_unpin_pages(obj);
924 remove_mappable_node(&node);
925 } else {
058d88c4 926 i915_vma_unpin(vma);
b50a5371
AS
927 }
928out:
929 return ret;
930}
931
eb01459f 932static int
dbf7bff0
DV
933i915_gem_shmem_pread(struct drm_device *dev,
934 struct drm_i915_gem_object *obj,
935 struct drm_i915_gem_pread *args,
936 struct drm_file *file)
eb01459f 937{
8461d226 938 char __user *user_data;
eb01459f 939 ssize_t remain;
8461d226 940 loff_t offset;
eb2c0c81 941 int shmem_page_offset, page_length, ret = 0;
8461d226 942 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 943 int prefaulted = 0;
8489731c 944 int needs_clflush = 0;
67d5a50c 945 struct sg_page_iter sg_iter;
eb01459f 946
4c914c0c 947 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
948 if (ret)
949 return ret;
950
43394c7d
CW
951 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952 user_data = u64_to_user_ptr(args->data_ptr);
8461d226 953 offset = args->offset;
43394c7d 954 remain = args->size;
eb01459f 955
67d5a50c
ID
956 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
957 offset >> PAGE_SHIFT) {
2db76d7c 958 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
959
960 if (remain <= 0)
961 break;
962
eb01459f
EA
963 /* Operation in this page
964 *
eb01459f 965 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
966 * page_length = bytes to copy for this page
967 */
c8cbbb8b 968 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
969 page_length = remain;
970 if ((shmem_page_offset + page_length) > PAGE_SIZE)
971 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 972
8461d226
DV
973 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
974 (page_to_phys(page) & (1 << 17)) != 0;
975
d174bd64
DV
976 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 needs_clflush);
979 if (ret == 0)
980 goto next_page;
dbf7bff0 981
dbf7bff0
DV
982 mutex_unlock(&dev->struct_mutex);
983
d330a953 984 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 985 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
986 /* Userspace is tricking us, but we've already clobbered
987 * its pages with the prefault and promised to write the
988 * data up to the first fault. Hence ignore any errors
989 * and just continue. */
990 (void)ret;
991 prefaulted = 1;
992 }
eb01459f 993
d174bd64
DV
994 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
995 user_data, page_do_bit17_swizzling,
996 needs_clflush);
eb01459f 997
dbf7bff0 998 mutex_lock(&dev->struct_mutex);
f60d7f0c 999
f60d7f0c 1000 if (ret)
8461d226 1001 goto out;
8461d226 1002
17793c9a 1003next_page:
eb01459f 1004 remain -= page_length;
8461d226 1005 user_data += page_length;
eb01459f
EA
1006 offset += page_length;
1007 }
1008
4f27b75d 1009out:
43394c7d 1010 i915_gem_obj_finish_shmem_access(obj);
f60d7f0c 1011
eb01459f
EA
1012 return ret;
1013}
1014
673a394b
EA
1015/**
1016 * Reads data from the object referenced by handle.
14bb2c11
TU
1017 * @dev: drm device pointer
1018 * @data: ioctl data blob
1019 * @file: drm file pointer
673a394b
EA
1020 *
1021 * On error, the contents of *data are undefined.
1022 */
1023int
1024i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1025 struct drm_file *file)
673a394b
EA
1026{
1027 struct drm_i915_gem_pread *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
35b62a89 1029 int ret = 0;
673a394b 1030
51311d0a
CW
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_WRITE,
3ed605bc 1035 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
03ac0642 1039 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1040 if (!obj)
1041 return -ENOENT;
673a394b 1042
7dcd2499 1043 /* Bounds check source. */
05394f39
CW
1044 if (args->offset > obj->base.size ||
1045 args->size > obj->base.size - args->offset) {
ce9d419d 1046 ret = -EINVAL;
258a5ede 1047 goto err;
ce9d419d
CW
1048 }
1049
db53a302
CW
1050 trace_i915_gem_object_pread(obj, args->offset, args->size);
1051
258a5ede
CW
1052 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1053 if (ret)
1054 goto err;
1055
1056 ret = i915_mutex_lock_interruptible(dev);
1057 if (ret)
1058 goto err;
1059
dbf7bff0 1060 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 1061
b50a5371 1062 /* pread for non shmem backed objects */
1dd5b6f2
CW
1063 if (ret == -EFAULT || ret == -ENODEV) {
1064 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
1065 ret = i915_gem_gtt_pread(dev, obj, args->size,
1066 args->offset, args->data_ptr);
1dd5b6f2
CW
1067 intel_runtime_pm_put(to_i915(dev));
1068 }
b50a5371 1069
f8c417cd 1070 i915_gem_object_put(obj);
4f27b75d 1071 mutex_unlock(&dev->struct_mutex);
258a5ede
CW
1072
1073 return ret;
1074
1075err:
1076 i915_gem_object_put_unlocked(obj);
eb01459f 1077 return ret;
673a394b
EA
1078}
1079
0839ccb8
KP
1080/* This is the fast write path which cannot handle
1081 * page faults in the source data
9b7530cc 1082 */
0839ccb8
KP
1083
1084static inline int
1085fast_user_write(struct io_mapping *mapping,
1086 loff_t page_base, int page_offset,
1087 char __user *user_data,
1088 int length)
9b7530cc 1089{
4f0c7cfb
BW
1090 void __iomem *vaddr_atomic;
1091 void *vaddr;
0839ccb8 1092 unsigned long unwritten;
9b7530cc 1093
3e4d3af5 1094 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
1095 /* We can use the cpu mem copy function because this is X86. */
1096 vaddr = (void __force*)vaddr_atomic + page_offset;
1097 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 1098 user_data, length);
3e4d3af5 1099 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 1100 return unwritten;
0839ccb8
KP
1101}
1102
3de09aa3
EA
1103/**
1104 * This is the fast pwrite path, where we copy the data directly from the
1105 * user into the GTT, uncached.
62f90b38 1106 * @i915: i915 device private data
14bb2c11
TU
1107 * @obj: i915 gem object
1108 * @args: pwrite arguments structure
1109 * @file: drm file pointer
3de09aa3 1110 */
673a394b 1111static int
4f1959ee 1112i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 1113 struct drm_i915_gem_object *obj,
3de09aa3 1114 struct drm_i915_gem_pwrite *args,
05394f39 1115 struct drm_file *file)
673a394b 1116{
4f1959ee 1117 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1118 struct drm_device *dev = obj->base.dev;
058d88c4 1119 struct i915_vma *vma;
4f1959ee
AS
1120 struct drm_mm_node node;
1121 uint64_t remain, offset;
673a394b 1122 char __user *user_data;
4f1959ee 1123 int ret;
b50a5371
AS
1124 bool hit_slow_path = false;
1125
3e510a8e 1126 if (i915_gem_object_is_tiled(obj))
b50a5371 1127 return -EFAULT;
935aaa69 1128
058d88c4 1129 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1130 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1131 if (!IS_ERR(vma)) {
1132 node.start = i915_ggtt_offset(vma);
1133 node.allocated = false;
49ef5294 1134 ret = i915_vma_put_fence(vma);
18034584
CW
1135 if (ret) {
1136 i915_vma_unpin(vma);
1137 vma = ERR_PTR(ret);
1138 }
1139 }
058d88c4 1140 if (IS_ERR(vma)) {
4f1959ee
AS
1141 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1142 if (ret)
1143 goto out;
1144
1145 ret = i915_gem_object_get_pages(obj);
1146 if (ret) {
1147 remove_mappable_node(&node);
1148 goto out;
1149 }
1150
1151 i915_gem_object_pin_pages(obj);
4f1959ee 1152 }
935aaa69
DV
1153
1154 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1155 if (ret)
1156 goto out_unpin;
1157
b19482d7 1158 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4f1959ee 1159 obj->dirty = true;
063e4e6b 1160
4f1959ee
AS
1161 user_data = u64_to_user_ptr(args->data_ptr);
1162 offset = args->offset;
1163 remain = args->size;
1164 while (remain) {
673a394b
EA
1165 /* Operation in this page
1166 *
0839ccb8
KP
1167 * page_base = page offset within aperture
1168 * page_offset = offset within page
1169 * page_length = bytes to copy for this page
673a394b 1170 */
4f1959ee
AS
1171 u32 page_base = node.start;
1172 unsigned page_offset = offset_in_page(offset);
1173 unsigned page_length = PAGE_SIZE - page_offset;
1174 page_length = remain < page_length ? remain : page_length;
1175 if (node.allocated) {
1176 wmb(); /* flush the write before we modify the GGTT */
1177 ggtt->base.insert_page(&ggtt->base,
1178 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1179 node.start, I915_CACHE_NONE, 0);
1180 wmb(); /* flush modifications to the GGTT (insert_page) */
1181 } else {
1182 page_base += offset & PAGE_MASK;
1183 }
0839ccb8 1184 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1185 * source page isn't available. Return the error and we'll
1186 * retry in the slow path.
b50a5371
AS
1187 * If the object is non-shmem backed, we retry again with the
1188 * path that handles page fault.
0839ccb8 1189 */
f7bbe788 1190 if (fast_user_write(&ggtt->mappable, page_base,
935aaa69 1191 page_offset, user_data, page_length)) {
b50a5371
AS
1192 hit_slow_path = true;
1193 mutex_unlock(&dev->struct_mutex);
f7bbe788 1194 if (slow_user_access(&ggtt->mappable,
b50a5371
AS
1195 page_base,
1196 page_offset, user_data,
1197 page_length, true)) {
1198 ret = -EFAULT;
1199 mutex_lock(&dev->struct_mutex);
1200 goto out_flush;
1201 }
1202
1203 mutex_lock(&dev->struct_mutex);
935aaa69 1204 }
673a394b 1205
0839ccb8
KP
1206 remain -= page_length;
1207 user_data += page_length;
1208 offset += page_length;
673a394b 1209 }
673a394b 1210
063e4e6b 1211out_flush:
b50a5371
AS
1212 if (hit_slow_path) {
1213 if (ret == 0 &&
1214 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1215 /* The user has modified the object whilst we tried
1216 * reading from it, and we now have no idea what domain
1217 * the pages should be in. As we have just been touching
1218 * them directly, flush everything back to the GTT
1219 * domain.
1220 */
1221 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1222 }
1223 }
1224
b19482d7 1225 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
935aaa69 1226out_unpin:
4f1959ee
AS
1227 if (node.allocated) {
1228 wmb();
1229 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1230 node.start, node.size);
4f1959ee
AS
1231 i915_gem_object_unpin_pages(obj);
1232 remove_mappable_node(&node);
1233 } else {
058d88c4 1234 i915_vma_unpin(vma);
4f1959ee 1235 }
935aaa69 1236out:
3de09aa3 1237 return ret;
673a394b
EA
1238}
1239
d174bd64
DV
1240/* Per-page copy function for the shmem pwrite fastpath.
1241 * Flushes invalid cachelines before writing to the target if
1242 * needs_clflush_before is set and flushes out any written cachelines after
1243 * writing if needs_clflush is set. */
3043c60c 1244static int
d174bd64
DV
1245shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1246 char __user *user_data,
1247 bool page_do_bit17_swizzling,
1248 bool needs_clflush_before,
1249 bool needs_clflush_after)
673a394b 1250{
d174bd64 1251 char *vaddr;
673a394b 1252 int ret;
3de09aa3 1253
e7e58eb5 1254 if (unlikely(page_do_bit17_swizzling))
d174bd64 1255 return -EINVAL;
3de09aa3 1256
d174bd64
DV
1257 vaddr = kmap_atomic(page);
1258 if (needs_clflush_before)
1259 drm_clflush_virt_range(vaddr + shmem_page_offset,
1260 page_length);
c2831a94
CW
1261 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1262 user_data, page_length);
d174bd64
DV
1263 if (needs_clflush_after)
1264 drm_clflush_virt_range(vaddr + shmem_page_offset,
1265 page_length);
1266 kunmap_atomic(vaddr);
3de09aa3 1267
755d2218 1268 return ret ? -EFAULT : 0;
3de09aa3
EA
1269}
1270
d174bd64
DV
1271/* Only difference to the fast-path function is that this can handle bit17
1272 * and uses non-atomic copy and kmap functions. */
3043c60c 1273static int
d174bd64
DV
1274shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1275 char __user *user_data,
1276 bool page_do_bit17_swizzling,
1277 bool needs_clflush_before,
1278 bool needs_clflush_after)
673a394b 1279{
d174bd64
DV
1280 char *vaddr;
1281 int ret;
e5281ccd 1282
d174bd64 1283 vaddr = kmap(page);
e7e58eb5 1284 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1285 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1286 page_length,
1287 page_do_bit17_swizzling);
d174bd64
DV
1288 if (page_do_bit17_swizzling)
1289 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1290 user_data,
1291 page_length);
d174bd64
DV
1292 else
1293 ret = __copy_from_user(vaddr + shmem_page_offset,
1294 user_data,
1295 page_length);
1296 if (needs_clflush_after)
23c18c71
DV
1297 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1298 page_length,
1299 page_do_bit17_swizzling);
d174bd64 1300 kunmap(page);
40123c1f 1301
755d2218 1302 return ret ? -EFAULT : 0;
40123c1f
EA
1303}
1304
40123c1f 1305static int
e244a443
DV
1306i915_gem_shmem_pwrite(struct drm_device *dev,
1307 struct drm_i915_gem_object *obj,
1308 struct drm_i915_gem_pwrite *args,
1309 struct drm_file *file)
40123c1f 1310{
40123c1f 1311 ssize_t remain;
8c59967c
DV
1312 loff_t offset;
1313 char __user *user_data;
eb2c0c81 1314 int shmem_page_offset, page_length, ret = 0;
8c59967c 1315 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1316 int hit_slowpath = 0;
43394c7d 1317 unsigned int needs_clflush;
67d5a50c 1318 struct sg_page_iter sg_iter;
40123c1f 1319
43394c7d 1320 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
755d2218
CW
1321 if (ret)
1322 return ret;
1323
43394c7d
CW
1324 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1325 user_data = u64_to_user_ptr(args->data_ptr);
673a394b 1326 offset = args->offset;
43394c7d 1327 remain = args->size;
673a394b 1328
67d5a50c
ID
1329 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1330 offset >> PAGE_SHIFT) {
2db76d7c 1331 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1332 int partial_cacheline_write;
e5281ccd 1333
9da3da66
CW
1334 if (remain <= 0)
1335 break;
1336
40123c1f
EA
1337 /* Operation in this page
1338 *
40123c1f 1339 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1340 * page_length = bytes to copy for this page
1341 */
c8cbbb8b 1342 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1343
1344 page_length = remain;
1345 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1346 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1347
58642885
DV
1348 /* If we don't overwrite a cacheline completely we need to be
1349 * careful to have up-to-date data by first clflushing. Don't
1350 * overcomplicate things and flush the entire patch. */
43394c7d 1351 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
58642885
DV
1352 ((shmem_page_offset | page_length)
1353 & (boot_cpu_data.x86_clflush_size - 1));
1354
8c59967c
DV
1355 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1356 (page_to_phys(page) & (1 << 17)) != 0;
1357
d174bd64
DV
1358 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1359 user_data, page_do_bit17_swizzling,
1360 partial_cacheline_write,
43394c7d 1361 needs_clflush & CLFLUSH_AFTER);
d174bd64
DV
1362 if (ret == 0)
1363 goto next_page;
e244a443
DV
1364
1365 hit_slowpath = 1;
e244a443 1366 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1367 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1368 user_data, page_do_bit17_swizzling,
1369 partial_cacheline_write,
43394c7d 1370 needs_clflush & CLFLUSH_AFTER);
40123c1f 1371
e244a443 1372 mutex_lock(&dev->struct_mutex);
755d2218 1373
755d2218 1374 if (ret)
8c59967c 1375 goto out;
8c59967c 1376
17793c9a 1377next_page:
40123c1f 1378 remain -= page_length;
8c59967c 1379 user_data += page_length;
40123c1f 1380 offset += page_length;
673a394b
EA
1381 }
1382
fbd5a26d 1383out:
43394c7d 1384 i915_gem_obj_finish_shmem_access(obj);
755d2218 1385
e244a443 1386 if (hit_slowpath) {
8dcf015e
DV
1387 /*
1388 * Fixup: Flush cpu caches in case we didn't flush the dirty
1389 * cachelines in-line while writing and the object moved
1390 * out of the cpu write domain while we've dropped the lock.
1391 */
43394c7d 1392 if (!(needs_clflush & CLFLUSH_AFTER) &&
8dcf015e 1393 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1394 if (i915_gem_clflush_object(obj, obj->pin_display))
43394c7d 1395 needs_clflush |= CLFLUSH_AFTER;
e244a443 1396 }
8c59967c 1397 }
673a394b 1398
43394c7d 1399 if (needs_clflush & CLFLUSH_AFTER)
c033666a 1400 i915_gem_chipset_flush(to_i915(dev));
58642885 1401
de152b62 1402 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1403 return ret;
673a394b
EA
1404}
1405
1406/**
1407 * Writes data to the object referenced by handle.
14bb2c11
TU
1408 * @dev: drm device
1409 * @data: ioctl data blob
1410 * @file: drm file
673a394b
EA
1411 *
1412 * On error, the contents of the buffer that were to be modified are undefined.
1413 */
1414int
1415i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1416 struct drm_file *file)
673a394b 1417{
fac5e23e 1418 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1419 struct drm_i915_gem_pwrite *args = data;
05394f39 1420 struct drm_i915_gem_object *obj;
51311d0a
CW
1421 int ret;
1422
1423 if (args->size == 0)
1424 return 0;
1425
1426 if (!access_ok(VERIFY_READ,
3ed605bc 1427 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1428 args->size))
1429 return -EFAULT;
1430
d330a953 1431 if (likely(!i915.prefault_disable)) {
3ed605bc 1432 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1433 args->size);
1434 if (ret)
1435 return -EFAULT;
1436 }
673a394b 1437
03ac0642 1438 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1439 if (!obj)
1440 return -ENOENT;
673a394b 1441
7dcd2499 1442 /* Bounds check destination. */
05394f39
CW
1443 if (args->offset > obj->base.size ||
1444 args->size > obj->base.size - args->offset) {
ce9d419d 1445 ret = -EINVAL;
258a5ede 1446 goto err;
ce9d419d
CW
1447 }
1448
db53a302
CW
1449 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1450
258a5ede
CW
1451 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1452 if (ret)
1453 goto err;
1454
1455 intel_runtime_pm_get(dev_priv);
1456
1457 ret = i915_mutex_lock_interruptible(dev);
1458 if (ret)
1459 goto err_rpm;
1460
935aaa69 1461 ret = -EFAULT;
673a394b
EA
1462 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1463 * it would end up going through the fenced access, and we'll get
1464 * different detiling behavior between reading and writing.
1465 * pread/pwrite currently are reading and writing from the CPU
1466 * perspective, requiring manual detiling by the client.
1467 */
6eae0059
CW
1468 if (!i915_gem_object_has_struct_page(obj) ||
1469 cpu_write_needs_clflush(obj)) {
4f1959ee 1470 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1471 /* Note that the gtt paths might fail with non-page-backed user
1472 * pointers (e.g. gtt mappings when moving data between
1473 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1474 }
673a394b 1475
d1054ee4 1476 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1477 if (obj->phys_handle)
1478 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1479 else
43394c7d 1480 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
6a2c4232 1481 }
5c0480f2 1482
f8c417cd 1483 i915_gem_object_put(obj);
fbd5a26d 1484 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1485 intel_runtime_pm_put(dev_priv);
1486
673a394b 1487 return ret;
258a5ede
CW
1488
1489err_rpm:
1490 intel_runtime_pm_put(dev_priv);
1491err:
1492 i915_gem_object_put_unlocked(obj);
1493 return ret;
673a394b
EA
1494}
1495
d243ad82 1496static inline enum fb_op_origin
aeecc969
CW
1497write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1498{
50349247
CW
1499 return (domain == I915_GEM_DOMAIN_GTT ?
1500 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1501}
1502
673a394b 1503/**
2ef7eeaa
EA
1504 * Called when user space prepares to use an object with the CPU, either
1505 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1506 * @dev: drm device
1507 * @data: ioctl data blob
1508 * @file: drm file
673a394b
EA
1509 */
1510int
1511i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1512 struct drm_file *file)
673a394b
EA
1513{
1514 struct drm_i915_gem_set_domain *args = data;
05394f39 1515 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1516 uint32_t read_domains = args->read_domains;
1517 uint32_t write_domain = args->write_domain;
673a394b
EA
1518 int ret;
1519
2ef7eeaa 1520 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1521 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1522 return -EINVAL;
1523
1524 /* Having something in the write domain implies it's in the read
1525 * domain, and only that read domain. Enforce that in the request.
1526 */
1527 if (write_domain != 0 && read_domains != write_domain)
1528 return -EINVAL;
1529
03ac0642 1530 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1531 if (!obj)
1532 return -ENOENT;
673a394b 1533
3236f57a
CW
1534 /* Try to flush the object off the GPU without holding the lock.
1535 * We will repeat the flush holding the lock in the normal manner
1536 * to catch cases where we are gazumped.
1537 */
b8f9096d
CW
1538 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1539 if (ret)
1540 goto err;
1541
1542 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1543 if (ret)
b8f9096d 1544 goto err;
3236f57a 1545
43566ded 1546 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1547 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1548 else
e47c68e9 1549 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1550
031b698a 1551 if (write_domain != 0)
aeecc969 1552 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1553
f8c417cd 1554 i915_gem_object_put(obj);
673a394b
EA
1555 mutex_unlock(&dev->struct_mutex);
1556 return ret;
b8f9096d
CW
1557
1558err:
1559 i915_gem_object_put_unlocked(obj);
1560 return ret;
673a394b
EA
1561}
1562
1563/**
1564 * Called when user space has done writes to this buffer
14bb2c11
TU
1565 * @dev: drm device
1566 * @data: ioctl data blob
1567 * @file: drm file
673a394b
EA
1568 */
1569int
1570i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1571 struct drm_file *file)
673a394b
EA
1572{
1573 struct drm_i915_gem_sw_finish *args = data;
05394f39 1574 struct drm_i915_gem_object *obj;
c21724cc 1575 int err = 0;
1d7cfea1 1576
03ac0642 1577 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1578 if (!obj)
1579 return -ENOENT;
673a394b 1580
673a394b 1581 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1582 if (READ_ONCE(obj->pin_display)) {
1583 err = i915_mutex_lock_interruptible(dev);
1584 if (!err) {
1585 i915_gem_object_flush_cpu_write_domain(obj);
1586 mutex_unlock(&dev->struct_mutex);
1587 }
1588 }
e47c68e9 1589
c21724cc
CW
1590 i915_gem_object_put_unlocked(obj);
1591 return err;
673a394b
EA
1592}
1593
1594/**
14bb2c11
TU
1595 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1596 * it is mapped to.
1597 * @dev: drm device
1598 * @data: ioctl data blob
1599 * @file: drm file
673a394b
EA
1600 *
1601 * While the mapping holds a reference on the contents of the object, it doesn't
1602 * imply a ref on the object itself.
34367381
DV
1603 *
1604 * IMPORTANT:
1605 *
1606 * DRM driver writers who look a this function as an example for how to do GEM
1607 * mmap support, please don't implement mmap support like here. The modern way
1608 * to implement DRM mmap support is with an mmap offset ioctl (like
1609 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1610 * That way debug tooling like valgrind will understand what's going on, hiding
1611 * the mmap call in a driver private ioctl will break that. The i915 driver only
1612 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1613 */
1614int
1615i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1616 struct drm_file *file)
673a394b
EA
1617{
1618 struct drm_i915_gem_mmap *args = data;
03ac0642 1619 struct drm_i915_gem_object *obj;
673a394b
EA
1620 unsigned long addr;
1621
1816f923
AG
1622 if (args->flags & ~(I915_MMAP_WC))
1623 return -EINVAL;
1624
568a58e5 1625 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1626 return -ENODEV;
1627
03ac0642
CW
1628 obj = i915_gem_object_lookup(file, args->handle);
1629 if (!obj)
bf79cb91 1630 return -ENOENT;
673a394b 1631
1286ff73
DV
1632 /* prime objects have no backing filp to GEM mmap
1633 * pages from.
1634 */
03ac0642 1635 if (!obj->base.filp) {
34911fd3 1636 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1637 return -EINVAL;
1638 }
1639
03ac0642 1640 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1641 PROT_READ | PROT_WRITE, MAP_SHARED,
1642 args->offset);
1816f923
AG
1643 if (args->flags & I915_MMAP_WC) {
1644 struct mm_struct *mm = current->mm;
1645 struct vm_area_struct *vma;
1646
80a89a5e 1647 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1648 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1649 return -EINTR;
1650 }
1816f923
AG
1651 vma = find_vma(mm, addr);
1652 if (vma)
1653 vma->vm_page_prot =
1654 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1655 else
1656 addr = -ENOMEM;
1657 up_write(&mm->mmap_sem);
aeecc969
CW
1658
1659 /* This may race, but that's ok, it only gets set */
50349247 1660 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1661 }
34911fd3 1662 i915_gem_object_put_unlocked(obj);
673a394b
EA
1663 if (IS_ERR((void *)addr))
1664 return addr;
1665
1666 args->addr_ptr = (uint64_t) addr;
1667
1668 return 0;
1669}
1670
03af84fe
CW
1671static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1672{
1673 u64 size;
1674
1675 size = i915_gem_object_get_stride(obj);
1676 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1677
1678 return size >> PAGE_SHIFT;
1679}
1680
4cc69075
CW
1681/**
1682 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1683 *
1684 * A history of the GTT mmap interface:
1685 *
1686 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1687 * aligned and suitable for fencing, and still fit into the available
1688 * mappable space left by the pinned display objects. A classic problem
1689 * we called the page-fault-of-doom where we would ping-pong between
1690 * two objects that could not fit inside the GTT and so the memcpy
1691 * would page one object in at the expense of the other between every
1692 * single byte.
1693 *
1694 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1695 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1696 * object is too large for the available space (or simply too large
1697 * for the mappable aperture!), a view is created instead and faulted
1698 * into userspace. (This view is aligned and sized appropriately for
1699 * fenced access.)
1700 *
1701 * Restrictions:
1702 *
1703 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1704 * hangs on some architectures, corruption on others. An attempt to service
1705 * a GTT page fault from a snoopable object will generate a SIGBUS.
1706 *
1707 * * the object must be able to fit into RAM (physical memory, though no
1708 * limited to the mappable aperture).
1709 *
1710 *
1711 * Caveats:
1712 *
1713 * * a new GTT page fault will synchronize rendering from the GPU and flush
1714 * all data to system memory. Subsequent access will not be synchronized.
1715 *
1716 * * all mappings are revoked on runtime device suspend.
1717 *
1718 * * there are only 8, 16 or 32 fence registers to share between all users
1719 * (older machines require fence register for display and blitter access
1720 * as well). Contention of the fence registers will cause the previous users
1721 * to be unmapped and any new access will generate new page faults.
1722 *
1723 * * running out of memory while servicing a fault may generate a SIGBUS,
1724 * rather than the expected SIGSEGV.
1725 */
1726int i915_gem_mmap_gtt_version(void)
1727{
1728 return 1;
1729}
1730
de151cf6
JB
1731/**
1732 * i915_gem_fault - fault a page into the GTT
058d88c4 1733 * @area: CPU VMA in question
d9072a3e 1734 * @vmf: fault info
de151cf6
JB
1735 *
1736 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1737 * from userspace. The fault handler takes care of binding the object to
1738 * the GTT (if needed), allocating and programming a fence register (again,
1739 * only if needed based on whether the old reg is still valid or the object
1740 * is tiled) and inserting a new PTE into the faulting process.
1741 *
1742 * Note that the faulting process may involve evicting existing objects
1743 * from the GTT and/or fence registers to make room. So performance may
1744 * suffer if the GTT working set is large or there are few fence registers
1745 * left.
4cc69075
CW
1746 *
1747 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1748 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1749 */
058d88c4 1750int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1751{
03af84fe 1752#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1753 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1754 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1755 struct drm_i915_private *dev_priv = to_i915(dev);
1756 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1757 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1758 struct i915_vma *vma;
de151cf6 1759 pgoff_t page_offset;
82118877 1760 unsigned int flags;
b8f9096d 1761 int ret;
f65c9168 1762
de151cf6 1763 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1764 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1765 PAGE_SHIFT;
1766
db53a302
CW
1767 trace_i915_gem_object_fault(obj, page_offset, true, write);
1768
6e4930f6 1769 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1770 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1771 * repeat the flush holding the lock in the normal manner to catch cases
1772 * where we are gazumped.
1773 */
b8f9096d 1774 ret = __unsafe_wait_rendering(obj, NULL, !write);
6e4930f6 1775 if (ret)
b8f9096d
CW
1776 goto err;
1777
1778 intel_runtime_pm_get(dev_priv);
1779
1780 ret = i915_mutex_lock_interruptible(dev);
1781 if (ret)
1782 goto err_rpm;
6e4930f6 1783
eb119bd6
CW
1784 /* Access to snoopable pages through the GTT is incoherent. */
1785 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1786 ret = -EFAULT;
b8f9096d 1787 goto err_unlock;
eb119bd6
CW
1788 }
1789
82118877
CW
1790 /* If the object is smaller than a couple of partial vma, it is
1791 * not worth only creating a single partial vma - we may as well
1792 * clear enough space for the full object.
1793 */
1794 flags = PIN_MAPPABLE;
1795 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1796 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1797
a61007a8 1798 /* Now pin it into the GTT as needed */
82118877 1799 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1800 if (IS_ERR(vma)) {
1801 struct i915_ggtt_view view;
03af84fe
CW
1802 unsigned int chunk_size;
1803
a61007a8 1804 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1805 chunk_size = MIN_CHUNK_PAGES;
1806 if (i915_gem_object_is_tiled(obj))
1807 chunk_size = max(chunk_size, tile_row_pages(obj));
e7ded2d7 1808
c5ad54cf
JL
1809 memset(&view, 0, sizeof(view));
1810 view.type = I915_GGTT_VIEW_PARTIAL;
1811 view.params.partial.offset = rounddown(page_offset, chunk_size);
1812 view.params.partial.size =
a61007a8 1813 min_t(unsigned int, chunk_size,
908b1232 1814 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1815
aa136d9d
CW
1816 /* If the partial covers the entire object, just create a
1817 * normal VMA.
1818 */
1819 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1820 view.type = I915_GGTT_VIEW_NORMAL;
1821
50349247
CW
1822 /* Userspace is now writing through an untracked VMA, abandon
1823 * all hope that the hardware is able to track future writes.
1824 */
1825 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1826
a61007a8
CW
1827 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1828 }
058d88c4
CW
1829 if (IS_ERR(vma)) {
1830 ret = PTR_ERR(vma);
b8f9096d 1831 goto err_unlock;
058d88c4 1832 }
4a684a41 1833
c9839303
CW
1834 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1835 if (ret)
b8f9096d 1836 goto err_unpin;
74898d7e 1837
49ef5294 1838 ret = i915_vma_get_fence(vma);
d9e86c0e 1839 if (ret)
b8f9096d 1840 goto err_unpin;
7d1c4804 1841
b90b91d8 1842 /* Finally, remap it using the new GTT offset */
c58305af
CW
1843 ret = remap_io_mapping(area,
1844 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1845 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1846 min_t(u64, vma->size, area->vm_end - area->vm_start),
1847 &ggtt->mappable);
1848 if (ret)
1849 goto err_unpin;
a61007a8
CW
1850
1851 obj->fault_mappable = true;
b8f9096d 1852err_unpin:
058d88c4 1853 __i915_vma_unpin(vma);
b8f9096d 1854err_unlock:
de151cf6 1855 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1856err_rpm:
1857 intel_runtime_pm_put(dev_priv);
1858err:
de151cf6 1859 switch (ret) {
d9bc7e9f 1860 case -EIO:
2232f031
DV
1861 /*
1862 * We eat errors when the gpu is terminally wedged to avoid
1863 * userspace unduly crashing (gl has no provisions for mmaps to
1864 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1865 * and so needs to be reported.
1866 */
1867 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1868 ret = VM_FAULT_SIGBUS;
1869 break;
1870 }
045e769a 1871 case -EAGAIN:
571c608d
DV
1872 /*
1873 * EAGAIN means the gpu is hung and we'll wait for the error
1874 * handler to reset everything when re-faulting in
1875 * i915_mutex_lock_interruptible.
d9bc7e9f 1876 */
c715089f
CW
1877 case 0:
1878 case -ERESTARTSYS:
bed636ab 1879 case -EINTR:
e79e0fe3
DR
1880 case -EBUSY:
1881 /*
1882 * EBUSY is ok: this just means that another thread
1883 * already did the job.
1884 */
f65c9168
PZ
1885 ret = VM_FAULT_NOPAGE;
1886 break;
de151cf6 1887 case -ENOMEM:
f65c9168
PZ
1888 ret = VM_FAULT_OOM;
1889 break;
a7c2e1aa 1890 case -ENOSPC:
45d67817 1891 case -EFAULT:
f65c9168
PZ
1892 ret = VM_FAULT_SIGBUS;
1893 break;
de151cf6 1894 default:
a7c2e1aa 1895 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1896 ret = VM_FAULT_SIGBUS;
1897 break;
de151cf6 1898 }
f65c9168 1899 return ret;
de151cf6
JB
1900}
1901
901782b2
CW
1902/**
1903 * i915_gem_release_mmap - remove physical page mappings
1904 * @obj: obj in question
1905 *
af901ca1 1906 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1907 * relinquish ownership of the pages back to the system.
1908 *
1909 * It is vital that we remove the page mapping if we have mapped a tiled
1910 * object through the GTT and then lose the fence register due to
1911 * resource pressure. Similarly if the object has been moved out of the
1912 * aperture, than pages mapped into userspace must be revoked. Removing the
1913 * mapping will then trigger a page fault on the next user access, allowing
1914 * fixup by i915_gem_fault().
1915 */
d05ca301 1916void
05394f39 1917i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1918{
349f2ccf
CW
1919 /* Serialisation between user GTT access and our code depends upon
1920 * revoking the CPU's PTE whilst the mutex is held. The next user
1921 * pagefault then has to wait until we release the mutex.
1922 */
1923 lockdep_assert_held(&obj->base.dev->struct_mutex);
1924
6299f992
CW
1925 if (!obj->fault_mappable)
1926 return;
901782b2 1927
6796cb16
DH
1928 drm_vma_node_unmap(&obj->base.vma_node,
1929 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1930
1931 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1932 * memory transactions from userspace before we return. The TLB
1933 * flushing implied above by changing the PTE above *should* be
1934 * sufficient, an extra barrier here just provides us with a bit
1935 * of paranoid documentation about our requirement to serialise
1936 * memory writes before touching registers / GSM.
1937 */
1938 wmb();
1939
6299f992 1940 obj->fault_mappable = false;
901782b2
CW
1941}
1942
eedd10f4
CW
1943void
1944i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1945{
1946 struct drm_i915_gem_object *obj;
1947
1948 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1949 i915_gem_release_mmap(obj);
1950}
1951
ad1a7d20
CW
1952/**
1953 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1954 * @dev_priv: i915 device
ad1a7d20
CW
1955 * @size: object size
1956 * @tiling_mode: tiling mode
1957 *
1958 * Return the required global GTT size for an object, taking into account
1959 * potential fence register mapping.
1960 */
a9f1481f
CW
1961u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1962 u64 size, int tiling_mode)
92b88aeb 1963{
ad1a7d20 1964 u64 ggtt_size;
92b88aeb 1965
ad1a7d20
CW
1966 GEM_BUG_ON(size == 0);
1967
a9f1481f 1968 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1969 tiling_mode == I915_TILING_NONE)
1970 return size;
92b88aeb
CW
1971
1972 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1973 if (IS_GEN3(dev_priv))
ad1a7d20 1974 ggtt_size = 1024*1024;
92b88aeb 1975 else
ad1a7d20 1976 ggtt_size = 512*1024;
92b88aeb 1977
ad1a7d20
CW
1978 while (ggtt_size < size)
1979 ggtt_size <<= 1;
92b88aeb 1980
ad1a7d20 1981 return ggtt_size;
92b88aeb
CW
1982}
1983
de151cf6 1984/**
ad1a7d20 1985 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1986 * @dev_priv: i915 device
14bb2c11
TU
1987 * @size: object size
1988 * @tiling_mode: tiling mode
ad1a7d20 1989 * @fenced: is fenced alignment required or not
de151cf6 1990 *
ad1a7d20 1991 * Return the required global GTT alignment for an object, taking into account
5e783301 1992 * potential fence register mapping.
de151cf6 1993 */
a9f1481f 1994u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1995 int tiling_mode, bool fenced)
de151cf6 1996{
ad1a7d20
CW
1997 GEM_BUG_ON(size == 0);
1998
de151cf6
JB
1999 /*
2000 * Minimum alignment is 4k (GTT page size), but might be greater
2001 * if a fence register is needed for the object.
2002 */
a9f1481f 2003 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2004 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2005 return 4096;
2006
a00b10c3
CW
2007 /*
2008 * Previous chips need to be aligned to the size of the smallest
2009 * fence register that can contain the object.
2010 */
a9f1481f 2011 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2012}
2013
d8cb5086
CW
2014static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2015{
fac5e23e 2016 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2017 int err;
da494d7c 2018
f3f6184c
CW
2019 err = drm_gem_create_mmap_offset(&obj->base);
2020 if (!err)
2021 return 0;
d8cb5086 2022
f3f6184c
CW
2023 /* We can idle the GPU locklessly to flush stale objects, but in order
2024 * to claim that space for ourselves, we need to take the big
2025 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2026 */
ea746f36 2027 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2028 if (err)
2029 return err;
2030
2031 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2032 if (!err) {
2033 i915_gem_retire_requests(dev_priv);
2034 err = drm_gem_create_mmap_offset(&obj->base);
2035 mutex_unlock(&dev_priv->drm.struct_mutex);
2036 }
da494d7c 2037
f3f6184c 2038 return err;
d8cb5086
CW
2039}
2040
2041static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2042{
d8cb5086
CW
2043 drm_gem_free_mmap_offset(&obj->base);
2044}
2045
da6b51d0 2046int
ff72145b
DA
2047i915_gem_mmap_gtt(struct drm_file *file,
2048 struct drm_device *dev,
da6b51d0 2049 uint32_t handle,
ff72145b 2050 uint64_t *offset)
de151cf6 2051{
05394f39 2052 struct drm_i915_gem_object *obj;
de151cf6
JB
2053 int ret;
2054
03ac0642 2055 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2056 if (!obj)
2057 return -ENOENT;
ab18282d 2058
d8cb5086 2059 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2060 if (ret == 0)
2061 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2062
f3f6184c 2063 i915_gem_object_put_unlocked(obj);
1d7cfea1 2064 return ret;
de151cf6
JB
2065}
2066
ff72145b
DA
2067/**
2068 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2069 * @dev: DRM device
2070 * @data: GTT mapping ioctl data
2071 * @file: GEM object info
2072 *
2073 * Simply returns the fake offset to userspace so it can mmap it.
2074 * The mmap call will end up in drm_gem_mmap(), which will set things
2075 * up so we can get faults in the handler above.
2076 *
2077 * The fault handler will take care of binding the object into the GTT
2078 * (since it may have been evicted to make room for something), allocating
2079 * a fence register, and mapping the appropriate aperture address into
2080 * userspace.
2081 */
2082int
2083i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2084 struct drm_file *file)
2085{
2086 struct drm_i915_gem_mmap_gtt *args = data;
2087
da6b51d0 2088 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2089}
2090
225067ee
DV
2091/* Immediately discard the backing storage */
2092static void
2093i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2094{
4d6294bf 2095 i915_gem_object_free_mmap_offset(obj);
1286ff73 2096
4d6294bf
CW
2097 if (obj->base.filp == NULL)
2098 return;
e5281ccd 2099
225067ee
DV
2100 /* Our goal here is to return as much of the memory as
2101 * is possible back to the system as we are called from OOM.
2102 * To do this we must instruct the shmfs to drop all of its
2103 * backing pages, *now*.
2104 */
5537252b 2105 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2106 obj->madv = __I915_MADV_PURGED;
2107}
e5281ccd 2108
5537252b
CW
2109/* Try to discard unwanted pages */
2110static void
2111i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2112{
5537252b
CW
2113 struct address_space *mapping;
2114
2115 switch (obj->madv) {
2116 case I915_MADV_DONTNEED:
2117 i915_gem_object_truncate(obj);
2118 case __I915_MADV_PURGED:
2119 return;
2120 }
2121
2122 if (obj->base.filp == NULL)
2123 return;
2124
93c76a3d 2125 mapping = obj->base.filp->f_mapping,
5537252b 2126 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2127}
2128
5cdf5881 2129static void
05394f39 2130i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2131{
85d1225e
DG
2132 struct sgt_iter sgt_iter;
2133 struct page *page;
90797e6d 2134 int ret;
1286ff73 2135
05394f39 2136 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2137
6c085a72 2138 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2139 if (WARN_ON(ret)) {
6c085a72
CW
2140 /* In the event of a disaster, abandon all caches and
2141 * hope for the best.
2142 */
2c22569b 2143 i915_gem_clflush_object(obj, true);
6c085a72
CW
2144 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2145 }
2146
e2273302
ID
2147 i915_gem_gtt_finish_object(obj);
2148
6dacfd2f 2149 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2150 i915_gem_object_save_bit_17_swizzle(obj);
2151
05394f39
CW
2152 if (obj->madv == I915_MADV_DONTNEED)
2153 obj->dirty = 0;
3ef94daa 2154
85d1225e 2155 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2156 if (obj->dirty)
9da3da66 2157 set_page_dirty(page);
3ef94daa 2158
05394f39 2159 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2160 mark_page_accessed(page);
3ef94daa 2161
09cbfeaf 2162 put_page(page);
3ef94daa 2163 }
05394f39 2164 obj->dirty = 0;
673a394b 2165
9da3da66
CW
2166 sg_free_table(obj->pages);
2167 kfree(obj->pages);
37e680a1 2168}
6c085a72 2169
dd624afd 2170int
37e680a1
CW
2171i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2172{
2173 const struct drm_i915_gem_object_ops *ops = obj->ops;
2174
2f745ad3 2175 if (obj->pages == NULL)
37e680a1
CW
2176 return 0;
2177
a5570178
CW
2178 if (obj->pages_pin_count)
2179 return -EBUSY;
2180
15717de2 2181 GEM_BUG_ON(obj->bind_count);
3e123027 2182
a2165e31
CW
2183 /* ->put_pages might need to allocate memory for the bit17 swizzle
2184 * array, hence protect them from being reaped by removing them from gtt
2185 * lists early. */
35c20a60 2186 list_del(&obj->global_list);
a2165e31 2187
0a798eb9 2188 if (obj->mapping) {
4b30cb23
CW
2189 void *ptr;
2190
2191 ptr = ptr_mask_bits(obj->mapping);
2192 if (is_vmalloc_addr(ptr))
2193 vunmap(ptr);
fb8621d3 2194 else
4b30cb23
CW
2195 kunmap(kmap_to_page(ptr));
2196
0a798eb9
CW
2197 obj->mapping = NULL;
2198 }
2199
37e680a1 2200 ops->put_pages(obj);
05394f39 2201 obj->pages = NULL;
37e680a1 2202
5537252b 2203 i915_gem_object_invalidate(obj);
6c085a72
CW
2204
2205 return 0;
2206}
2207
871dfbd6
CW
2208static unsigned long swiotlb_max_size(void)
2209{
2210#if IS_ENABLED(CONFIG_SWIOTLB)
2211 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2212#else
2213 return 0;
2214#endif
2215}
2216
37e680a1 2217static int
6c085a72 2218i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2219{
fac5e23e 2220 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2221 int page_count, i;
2222 struct address_space *mapping;
9da3da66
CW
2223 struct sg_table *st;
2224 struct scatterlist *sg;
85d1225e 2225 struct sgt_iter sgt_iter;
e5281ccd 2226 struct page *page;
90797e6d 2227 unsigned long last_pfn = 0; /* suppress gcc warning */
871dfbd6 2228 unsigned long max_segment;
e2273302 2229 int ret;
6c085a72 2230 gfp_t gfp;
e5281ccd 2231
6c085a72
CW
2232 /* Assert that the object is not currently in any GPU domain. As it
2233 * wasn't in the GTT, there shouldn't be any way it could have been in
2234 * a GPU cache
2235 */
2236 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2237 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2238
871dfbd6
CW
2239 max_segment = swiotlb_max_size();
2240 if (!max_segment)
2241 max_segment = obj->base.size;
2242
9da3da66
CW
2243 st = kmalloc(sizeof(*st), GFP_KERNEL);
2244 if (st == NULL)
2245 return -ENOMEM;
2246
05394f39 2247 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2248 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2249 kfree(st);
e5281ccd 2250 return -ENOMEM;
9da3da66 2251 }
e5281ccd 2252
9da3da66
CW
2253 /* Get the list of pages out of our struct file. They'll be pinned
2254 * at this point until we release them.
2255 *
2256 * Fail silently without starting the shrinker
2257 */
93c76a3d 2258 mapping = obj->base.filp->f_mapping;
c62d2555 2259 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2260 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2261 sg = st->sgl;
2262 st->nents = 0;
2263 for (i = 0; i < page_count; i++) {
6c085a72
CW
2264 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2265 if (IS_ERR(page)) {
21ab4e74
CW
2266 i915_gem_shrink(dev_priv,
2267 page_count,
2268 I915_SHRINK_BOUND |
2269 I915_SHRINK_UNBOUND |
2270 I915_SHRINK_PURGEABLE);
6c085a72
CW
2271 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2272 }
2273 if (IS_ERR(page)) {
2274 /* We've tried hard to allocate the memory by reaping
2275 * our own buffer, now let the real VM do its job and
2276 * go down in flames if truly OOM.
2277 */
f461d1be 2278 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2279 if (IS_ERR(page)) {
2280 ret = PTR_ERR(page);
6c085a72 2281 goto err_pages;
e2273302 2282 }
6c085a72 2283 }
871dfbd6
CW
2284 if (!i ||
2285 sg->length >= max_segment ||
2286 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2287 if (i)
2288 sg = sg_next(sg);
2289 st->nents++;
2290 sg_set_page(sg, page, PAGE_SIZE, 0);
2291 } else {
2292 sg->length += PAGE_SIZE;
2293 }
2294 last_pfn = page_to_pfn(page);
3bbbe706
DV
2295
2296 /* Check that the i965g/gm workaround works. */
2297 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2298 }
871dfbd6 2299 if (sg) /* loop terminated early; short sg table */
426729dc 2300 sg_mark_end(sg);
74ce6b6c
CW
2301 obj->pages = st;
2302
e2273302
ID
2303 ret = i915_gem_gtt_prepare_object(obj);
2304 if (ret)
2305 goto err_pages;
2306
6dacfd2f 2307 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2308 i915_gem_object_do_bit_17_swizzle(obj);
2309
3e510a8e 2310 if (i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
2311 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2312 i915_gem_object_pin_pages(obj);
2313
e5281ccd
CW
2314 return 0;
2315
2316err_pages:
90797e6d 2317 sg_mark_end(sg);
85d1225e
DG
2318 for_each_sgt_page(page, sgt_iter, st)
2319 put_page(page);
9da3da66
CW
2320 sg_free_table(st);
2321 kfree(st);
0820baf3
CW
2322
2323 /* shmemfs first checks if there is enough memory to allocate the page
2324 * and reports ENOSPC should there be insufficient, along with the usual
2325 * ENOMEM for a genuine allocation failure.
2326 *
2327 * We use ENOSPC in our driver to mean that we have run out of aperture
2328 * space and so want to translate the error from shmemfs back to our
2329 * usual understanding of ENOMEM.
2330 */
e2273302
ID
2331 if (ret == -ENOSPC)
2332 ret = -ENOMEM;
2333
2334 return ret;
673a394b
EA
2335}
2336
37e680a1
CW
2337/* Ensure that the associated pages are gathered from the backing storage
2338 * and pinned into our object. i915_gem_object_get_pages() may be called
2339 * multiple times before they are released by a single call to
2340 * i915_gem_object_put_pages() - once the pages are no longer referenced
2341 * either as a result of memory pressure (reaping pages under the shrinker)
2342 * or as the object is itself released.
2343 */
2344int
2345i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2346{
fac5e23e 2347 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2348 const struct drm_i915_gem_object_ops *ops = obj->ops;
2349 int ret;
2350
2f745ad3 2351 if (obj->pages)
37e680a1
CW
2352 return 0;
2353
43e28f09 2354 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2355 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2356 return -EFAULT;
43e28f09
CW
2357 }
2358
a5570178
CW
2359 BUG_ON(obj->pages_pin_count);
2360
37e680a1
CW
2361 ret = ops->get_pages(obj);
2362 if (ret)
2363 return ret;
2364
35c20a60 2365 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2366
2367 obj->get_page.sg = obj->pages->sgl;
2368 obj->get_page.last = 0;
2369
37e680a1 2370 return 0;
673a394b
EA
2371}
2372
dd6034c6 2373/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2374static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2375 enum i915_map_type type)
dd6034c6
DG
2376{
2377 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2378 struct sg_table *sgt = obj->pages;
85d1225e
DG
2379 struct sgt_iter sgt_iter;
2380 struct page *page;
b338fa47
DG
2381 struct page *stack_pages[32];
2382 struct page **pages = stack_pages;
dd6034c6 2383 unsigned long i = 0;
d31d7cb1 2384 pgprot_t pgprot;
dd6034c6
DG
2385 void *addr;
2386
2387 /* A single page can always be kmapped */
d31d7cb1 2388 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2389 return kmap(sg_page(sgt->sgl));
2390
b338fa47
DG
2391 if (n_pages > ARRAY_SIZE(stack_pages)) {
2392 /* Too big for stack -- allocate temporary array instead */
2393 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2394 if (!pages)
2395 return NULL;
2396 }
dd6034c6 2397
85d1225e
DG
2398 for_each_sgt_page(page, sgt_iter, sgt)
2399 pages[i++] = page;
dd6034c6
DG
2400
2401 /* Check that we have the expected number of pages */
2402 GEM_BUG_ON(i != n_pages);
2403
d31d7cb1
CW
2404 switch (type) {
2405 case I915_MAP_WB:
2406 pgprot = PAGE_KERNEL;
2407 break;
2408 case I915_MAP_WC:
2409 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2410 break;
2411 }
2412 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2413
b338fa47
DG
2414 if (pages != stack_pages)
2415 drm_free_large(pages);
dd6034c6
DG
2416
2417 return addr;
2418}
2419
2420/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2421void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2422 enum i915_map_type type)
0a798eb9 2423{
d31d7cb1
CW
2424 enum i915_map_type has_type;
2425 bool pinned;
2426 void *ptr;
0a798eb9
CW
2427 int ret;
2428
2429 lockdep_assert_held(&obj->base.dev->struct_mutex);
d31d7cb1 2430 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9
CW
2431
2432 ret = i915_gem_object_get_pages(obj);
2433 if (ret)
2434 return ERR_PTR(ret);
2435
2436 i915_gem_object_pin_pages(obj);
d31d7cb1 2437 pinned = obj->pages_pin_count > 1;
0a798eb9 2438
d31d7cb1
CW
2439 ptr = ptr_unpack_bits(obj->mapping, has_type);
2440 if (ptr && has_type != type) {
2441 if (pinned) {
2442 ret = -EBUSY;
2443 goto err;
0a798eb9 2444 }
d31d7cb1
CW
2445
2446 if (is_vmalloc_addr(ptr))
2447 vunmap(ptr);
2448 else
2449 kunmap(kmap_to_page(ptr));
2450
2451 ptr = obj->mapping = NULL;
0a798eb9
CW
2452 }
2453
d31d7cb1
CW
2454 if (!ptr) {
2455 ptr = i915_gem_object_map(obj, type);
2456 if (!ptr) {
2457 ret = -ENOMEM;
2458 goto err;
2459 }
2460
2461 obj->mapping = ptr_pack_bits(ptr, type);
2462 }
2463
2464 return ptr;
2465
2466err:
2467 i915_gem_object_unpin_pages(obj);
2468 return ERR_PTR(ret);
0a798eb9
CW
2469}
2470
b4716185 2471static void
fa545cbf
CW
2472i915_gem_object_retire__write(struct i915_gem_active *active,
2473 struct drm_i915_gem_request *request)
e2d05a8b 2474{
fa545cbf
CW
2475 struct drm_i915_gem_object *obj =
2476 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2477
de152b62 2478 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2479}
2480
caea7476 2481static void
fa545cbf
CW
2482i915_gem_object_retire__read(struct i915_gem_active *active,
2483 struct drm_i915_gem_request *request)
ce44b0ea 2484{
fa545cbf
CW
2485 int idx = request->engine->id;
2486 struct drm_i915_gem_object *obj =
2487 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2488
573adb39 2489 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2490
573adb39
CW
2491 i915_gem_object_clear_active(obj, idx);
2492 if (i915_gem_object_is_active(obj))
b4716185 2493 return;
caea7476 2494
6c246959
CW
2495 /* Bump our place on the bound list to keep it roughly in LRU order
2496 * so that we don't steal from recently used but inactive objects
2497 * (unless we are forced to ofc!)
2498 */
b0decaf7
CW
2499 if (obj->bind_count)
2500 list_move_tail(&obj->global_list,
2501 &request->i915->mm.bound_list);
caea7476 2502
f8c417cd 2503 i915_gem_object_put(obj);
c8725f3d
CW
2504}
2505
7b4d3a16 2506static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2507{
44e2c070 2508 unsigned long elapsed;
be62acb4 2509
44e2c070 2510 if (ctx->hang_stats.banned)
be62acb4
MK
2511 return true;
2512
7b4d3a16 2513 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2514 if (ctx->hang_stats.ban_period_seconds &&
2515 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2516 DRM_DEBUG("context hanging too fast, banning!\n");
2517 return true;
be62acb4
MK
2518 }
2519
2520 return false;
2521}
2522
7b4d3a16 2523static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2524 const bool guilty)
aa60c664 2525{
7b4d3a16 2526 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2527
2528 if (guilty) {
7b4d3a16 2529 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2530 hs->batch_active++;
2531 hs->guilty_ts = get_seconds();
2532 } else {
2533 hs->batch_pending++;
aa60c664
MK
2534 }
2535}
2536
8d9fc7fd 2537struct drm_i915_gem_request *
0bc40be8 2538i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2539{
4db080f9
CW
2540 struct drm_i915_gem_request *request;
2541
f69a02c9
CW
2542 /* We are called by the error capture and reset at a random
2543 * point in time. In particular, note that neither is crucially
2544 * ordered with an interrupt. After a hang, the GPU is dead and we
2545 * assume that no more writes can happen (we waited long enough for
2546 * all writes that were in transaction to be flushed) - adding an
2547 * extra delay for a recent interrupt is pointless. Hence, we do
2548 * not need an engine->irq_seqno_barrier() before the seqno reads.
2549 */
efdf7c06 2550 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2551 if (i915_gem_request_completed(request))
4db080f9 2552 continue;
aa60c664 2553
5590af3e
CW
2554 if (!i915_sw_fence_done(&request->submit))
2555 break;
2556
b6b0fac0 2557 return request;
4db080f9 2558 }
b6b0fac0
MK
2559
2560 return NULL;
2561}
2562
821ed7df
CW
2563static void reset_request(struct drm_i915_gem_request *request)
2564{
2565 void *vaddr = request->ring->vaddr;
2566 u32 head;
2567
2568 /* As this request likely depends on state from the lost
2569 * context, clear out all the user operations leaving the
2570 * breadcrumb at the end (so we get the fence notifications).
2571 */
2572 head = request->head;
2573 if (request->postfix < head) {
2574 memset(vaddr + head, 0, request->ring->size - head);
2575 head = 0;
2576 }
2577 memset(vaddr + head, 0, request->postfix - head);
2578}
2579
2580static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2581{
2582 struct drm_i915_gem_request *request;
821ed7df 2583 struct i915_gem_context *incomplete_ctx;
b6b0fac0
MK
2584 bool ring_hung;
2585
821ed7df
CW
2586 if (engine->irq_seqno_barrier)
2587 engine->irq_seqno_barrier(engine);
2588
0bc40be8 2589 request = i915_gem_find_active_request(engine);
821ed7df 2590 if (!request)
b6b0fac0
MK
2591 return;
2592
0bc40be8 2593 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
77c60701
CW
2594 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2595 ring_hung = false;
2596
7b4d3a16 2597 i915_set_reset_status(request->ctx, ring_hung);
821ed7df
CW
2598 if (!ring_hung)
2599 return;
2600
2601 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2602 engine->name, request->fence.seqno);
2603
2604 /* Setup the CS to resume from the breadcrumb of the hung request */
2605 engine->reset_hw(engine, request);
2606
2607 /* Users of the default context do not rely on logical state
2608 * preserved between batches. They have to emit full state on
2609 * every batch and so it is safe to execute queued requests following
2610 * the hang.
2611 *
2612 * Other contexts preserve state, now corrupt. We want to skip all
2613 * queued requests that reference the corrupt context.
2614 */
2615 incomplete_ctx = request->ctx;
2616 if (i915_gem_context_is_default(incomplete_ctx))
2617 return;
2618
efdf7c06 2619 list_for_each_entry_continue(request, &engine->request_list, link)
821ed7df
CW
2620 if (request->ctx == incomplete_ctx)
2621 reset_request(request);
4db080f9 2622}
aa60c664 2623
821ed7df 2624void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2625{
821ed7df 2626 struct intel_engine_cs *engine;
3b3f1650 2627 enum intel_engine_id id;
608c1a52 2628
821ed7df
CW
2629 i915_gem_retire_requests(dev_priv);
2630
3b3f1650 2631 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2632 i915_gem_reset_engine(engine);
2633
2634 i915_gem_restore_fences(&dev_priv->drm);
f2a91d1a
CW
2635
2636 if (dev_priv->gt.awake) {
2637 intel_sanitize_gt_powersave(dev_priv);
2638 intel_enable_gt_powersave(dev_priv);
2639 if (INTEL_GEN(dev_priv) >= 6)
2640 gen6_rps_busy(dev_priv);
2641 }
821ed7df
CW
2642}
2643
2644static void nop_submit_request(struct drm_i915_gem_request *request)
2645{
2646}
2647
2648static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2649{
2650 engine->submit_request = nop_submit_request;
70c2a24d 2651
c4b0930b
CW
2652 /* Mark all pending requests as complete so that any concurrent
2653 * (lockless) lookup doesn't try and wait upon the request as we
2654 * reset it.
2655 */
87b723a1 2656 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2657
dcb4c12a
OM
2658 /*
2659 * Clear the execlists queue up before freeing the requests, as those
2660 * are the ones that keep the context and ringbuffer backing objects
2661 * pinned in place.
2662 */
dcb4c12a 2663
7de1691a 2664 if (i915.enable_execlists) {
70c2a24d
CW
2665 spin_lock(&engine->execlist_lock);
2666 INIT_LIST_HEAD(&engine->execlist_queue);
2667 i915_gem_request_put(engine->execlist_port[0].request);
2668 i915_gem_request_put(engine->execlist_port[1].request);
2669 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2670 spin_unlock(&engine->execlist_lock);
dcb4c12a
OM
2671 }
2672
b913b33c 2673 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2674}
2675
821ed7df 2676void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
673a394b 2677{
e2f80391 2678 struct intel_engine_cs *engine;
3b3f1650 2679 enum intel_engine_id id;
673a394b 2680
821ed7df
CW
2681 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2682 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2683
821ed7df 2684 i915_gem_context_lost(dev_priv);
3b3f1650 2685 for_each_engine(engine, dev_priv, id)
821ed7df 2686 i915_gem_cleanup_engine(engine);
b913b33c 2687 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2688
821ed7df 2689 i915_gem_retire_requests(dev_priv);
673a394b
EA
2690}
2691
75ef9da2 2692static void
673a394b
EA
2693i915_gem_retire_work_handler(struct work_struct *work)
2694{
b29c19b6 2695 struct drm_i915_private *dev_priv =
67d97da3 2696 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2697 struct drm_device *dev = &dev_priv->drm;
673a394b 2698
891b48cf 2699 /* Come back later if the device is busy... */
b29c19b6 2700 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2701 i915_gem_retire_requests(dev_priv);
b29c19b6 2702 mutex_unlock(&dev->struct_mutex);
673a394b 2703 }
67d97da3
CW
2704
2705 /* Keep the retire handler running until we are finally idle.
2706 * We do not need to do this test under locking as in the worst-case
2707 * we queue the retire worker once too often.
2708 */
c9615613
CW
2709 if (READ_ONCE(dev_priv->gt.awake)) {
2710 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2711 queue_delayed_work(dev_priv->wq,
2712 &dev_priv->gt.retire_work,
bcb45086 2713 round_jiffies_up_relative(HZ));
c9615613 2714 }
b29c19b6 2715}
0a58705b 2716
b29c19b6
CW
2717static void
2718i915_gem_idle_work_handler(struct work_struct *work)
2719{
2720 struct drm_i915_private *dev_priv =
67d97da3 2721 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2722 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2723 struct intel_engine_cs *engine;
3b3f1650 2724 enum intel_engine_id id;
67d97da3
CW
2725 bool rearm_hangcheck;
2726
2727 if (!READ_ONCE(dev_priv->gt.awake))
2728 return;
2729
2730 if (READ_ONCE(dev_priv->gt.active_engines))
2731 return;
2732
2733 rearm_hangcheck =
2734 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2735
2736 if (!mutex_trylock(&dev->struct_mutex)) {
2737 /* Currently busy, come back later */
2738 mod_delayed_work(dev_priv->wq,
2739 &dev_priv->gt.idle_work,
2740 msecs_to_jiffies(50));
2741 goto out_rearm;
2742 }
2743
2744 if (dev_priv->gt.active_engines)
2745 goto out_unlock;
b29c19b6 2746
3b3f1650 2747 for_each_engine(engine, dev_priv, id)
67d97da3 2748 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2749
67d97da3
CW
2750 GEM_BUG_ON(!dev_priv->gt.awake);
2751 dev_priv->gt.awake = false;
2752 rearm_hangcheck = false;
30ecad77 2753
67d97da3
CW
2754 if (INTEL_GEN(dev_priv) >= 6)
2755 gen6_rps_idle(dev_priv);
2756 intel_runtime_pm_put(dev_priv);
2757out_unlock:
2758 mutex_unlock(&dev->struct_mutex);
b29c19b6 2759
67d97da3
CW
2760out_rearm:
2761 if (rearm_hangcheck) {
2762 GEM_BUG_ON(!dev_priv->gt.awake);
2763 i915_queue_hangcheck(dev_priv);
35c94185 2764 }
673a394b
EA
2765}
2766
b1f788c6
CW
2767void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2768{
2769 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2770 struct drm_i915_file_private *fpriv = file->driver_priv;
2771 struct i915_vma *vma, *vn;
2772
2773 mutex_lock(&obj->base.dev->struct_mutex);
2774 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2775 if (vma->vm->file == fpriv)
2776 i915_vma_close(vma);
2777 mutex_unlock(&obj->base.dev->struct_mutex);
2778}
2779
23ba4fd0
BW
2780/**
2781 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2782 * @dev: drm device pointer
2783 * @data: ioctl data blob
2784 * @file: drm file pointer
23ba4fd0
BW
2785 *
2786 * Returns 0 if successful, else an error is returned with the remaining time in
2787 * the timeout parameter.
2788 * -ETIME: object is still busy after timeout
2789 * -ERESTARTSYS: signal interrupted the wait
2790 * -ENONENT: object doesn't exist
2791 * Also possible, but rare:
2792 * -EAGAIN: GPU wedged
2793 * -ENOMEM: damn
2794 * -ENODEV: Internal IRQ fail
2795 * -E?: The add request failed
2796 *
2797 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2798 * non-zero timeout parameter the wait ioctl will wait for the given number of
2799 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2800 * without holding struct_mutex the object may become re-busied before this
2801 * function completes. A similar but shorter * race condition exists in the busy
2802 * ioctl
2803 */
2804int
2805i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2806{
2807 struct drm_i915_gem_wait *args = data;
033d549b 2808 struct intel_rps_client *rps = to_rps_client(file);
23ba4fd0 2809 struct drm_i915_gem_object *obj;
033d549b
CW
2810 unsigned long active;
2811 int idx, ret = 0;
23ba4fd0 2812
11b5d511
DV
2813 if (args->flags != 0)
2814 return -EINVAL;
2815
03ac0642 2816 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2817 if (!obj)
23ba4fd0 2818 return -ENOENT;
23ba4fd0 2819
033d549b
CW
2820 active = __I915_BO_ACTIVE(obj);
2821 for_each_active(active, idx) {
2822 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
ea746f36
CW
2823 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2824 I915_WAIT_INTERRUPTIBLE,
033d549b
CW
2825 timeout, rps);
2826 if (ret)
2827 break;
b4716185
CW
2828 }
2829
033d549b 2830 i915_gem_object_put_unlocked(obj);
ff865885 2831 return ret;
23ba4fd0
BW
2832}
2833
8ef8561f
CW
2834static void __i915_vma_iounmap(struct i915_vma *vma)
2835{
20dfbde4 2836 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2837
2838 if (vma->iomap == NULL)
2839 return;
2840
2841 io_mapping_unmap(vma->iomap);
2842 vma->iomap = NULL;
2843}
2844
df0e9a28 2845int i915_vma_unbind(struct i915_vma *vma)
673a394b 2846{
07fe0b12 2847 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2848 unsigned long active;
43e28f09 2849 int ret;
673a394b 2850
b0decaf7
CW
2851 /* First wait upon any activity as retiring the request may
2852 * have side-effects such as unpinning or even unbinding this vma.
2853 */
2854 active = i915_vma_get_active(vma);
df0e9a28 2855 if (active) {
b0decaf7
CW
2856 int idx;
2857
b1f788c6
CW
2858 /* When a closed VMA is retired, it is unbound - eek.
2859 * In order to prevent it from being recursively closed,
2860 * take a pin on the vma so that the second unbind is
2861 * aborted.
2862 */
20dfbde4 2863 __i915_vma_pin(vma);
b1f788c6 2864
b0decaf7
CW
2865 for_each_active(active, idx) {
2866 ret = i915_gem_active_retire(&vma->last_read[idx],
2867 &vma->vm->dev->struct_mutex);
2868 if (ret)
b1f788c6 2869 break;
b0decaf7
CW
2870 }
2871
20dfbde4 2872 __i915_vma_unpin(vma);
b1f788c6
CW
2873 if (ret)
2874 return ret;
2875
b0decaf7
CW
2876 GEM_BUG_ON(i915_vma_is_active(vma));
2877 }
2878
20dfbde4 2879 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2880 return -EBUSY;
2881
b1f788c6
CW
2882 if (!drm_mm_node_allocated(&vma->node))
2883 goto destroy;
433544bd 2884
15717de2
CW
2885 GEM_BUG_ON(obj->bind_count == 0);
2886 GEM_BUG_ON(!obj->pages);
c4670ad0 2887
05a20d09 2888 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2889 /* release the fence reg _after_ flushing */
49ef5294 2890 ret = i915_vma_put_fence(vma);
8b1bc9b4
DV
2891 if (ret)
2892 return ret;
8ef8561f 2893
cd3127d6
CW
2894 /* Force a pagefault for domain tracking on next user access */
2895 i915_gem_release_mmap(obj);
2896
8ef8561f 2897 __i915_vma_iounmap(vma);
05a20d09 2898 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2899 }
96b47b65 2900
50e046b6
CW
2901 if (likely(!vma->vm->closed)) {
2902 trace_i915_vma_unbind(vma);
2903 vma->vm->unbind_vma(vma);
2904 }
3272db53 2905 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2906
50e046b6
CW
2907 drm_mm_remove_node(&vma->node);
2908 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2909
05a20d09
CW
2910 if (vma->pages != obj->pages) {
2911 GEM_BUG_ON(!vma->pages);
2912 sg_free_table(vma->pages);
2913 kfree(vma->pages);
fe14d5f4 2914 }
247177dd 2915 vma->pages = NULL;
673a394b 2916
2f633156 2917 /* Since the unbound list is global, only move to that list if
b93dab6e 2918 * no more VMAs exist. */
15717de2
CW
2919 if (--obj->bind_count == 0)
2920 list_move_tail(&obj->global_list,
2921 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2922
70903c3b
CW
2923 /* And finally now the object is completely decoupled from this vma,
2924 * we can drop its hold on the backing storage and allow it to be
2925 * reaped by the shrinker.
2926 */
2927 i915_gem_object_unpin_pages(obj);
2928
b1f788c6 2929destroy:
3272db53 2930 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2931 i915_vma_destroy(vma);
2932
88241785 2933 return 0;
54cf91dc
CW
2934}
2935
dcff85c8 2936int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
ea746f36 2937 unsigned int flags)
4df2faf4 2938{
e2f80391 2939 struct intel_engine_cs *engine;
3b3f1650 2940 enum intel_engine_id id;
b4ac5afc 2941 int ret;
4df2faf4 2942
3b3f1650 2943 for_each_engine(engine, dev_priv, id) {
62e63007
CW
2944 if (engine->last_context == NULL)
2945 continue;
2946
ea746f36 2947 ret = intel_engine_idle(engine, flags);
1ec14ad3
CW
2948 if (ret)
2949 return ret;
2950 }
4df2faf4 2951
8a1a49f9 2952 return 0;
4df2faf4
DV
2953}
2954
4144f9b5 2955static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2956 unsigned long cache_level)
2957{
4144f9b5 2958 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
2959 struct drm_mm_node *other;
2960
4144f9b5
CW
2961 /*
2962 * On some machines we have to be careful when putting differing types
2963 * of snoopable memory together to avoid the prefetcher crossing memory
2964 * domains and dying. During vm initialisation, we decide whether or not
2965 * these constraints apply and set the drm_mm.color_adjust
2966 * appropriately.
42d6ab48 2967 */
4144f9b5 2968 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
2969 return true;
2970
c6cfb325 2971 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2972 return true;
2973
2974 if (list_empty(&gtt_space->node_list))
2975 return true;
2976
2977 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2978 if (other->allocated && !other->hole_follows && other->color != cache_level)
2979 return false;
2980
2981 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2982 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2983 return false;
2984
2985 return true;
2986}
2987
673a394b 2988/**
59bfa124
CW
2989 * i915_vma_insert - finds a slot for the vma in its address space
2990 * @vma: the vma
91b2db6f 2991 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 2992 * @alignment: required alignment
14bb2c11 2993 * @flags: mask of PIN_* flags to use
59bfa124
CW
2994 *
2995 * First we try to allocate some free space that meets the requirements for
2996 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2997 * preferrably the oldest idle entry to make room for the new VMA.
2998 *
2999 * Returns:
3000 * 0 on success, negative error code otherwise.
673a394b 3001 */
59bfa124
CW
3002static int
3003i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3004{
59bfa124
CW
3005 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3006 struct drm_i915_gem_object *obj = vma->obj;
de180033 3007 u64 start, end;
07f73f69 3008 int ret;
673a394b 3009
3272db53 3010 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3011 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3012
3013 size = max(size, vma->size);
3014 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3015 size = i915_gem_get_ggtt_size(dev_priv, size,
3016 i915_gem_object_get_tiling(obj));
de180033 3017
d8923dcf
CW
3018 alignment = max(max(alignment, vma->display_alignment),
3019 i915_gem_get_ggtt_alignment(dev_priv, size,
3020 i915_gem_object_get_tiling(obj),
3021 flags & PIN_MAPPABLE));
a00b10c3 3022
101b506a 3023 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3024
3025 end = vma->vm->total;
101b506a 3026 if (flags & PIN_MAPPABLE)
91b2db6f 3027 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3028 if (flags & PIN_ZONE_4G)
48ea1e32 3029 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3030
91e6711e
JL
3031 /* If binding the object/GGTT view requires more space than the entire
3032 * aperture has, reject it early before evicting everything in a vain
3033 * attempt to find space.
654fc607 3034 */
91e6711e 3035 if (size > end) {
de180033 3036 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3037 size, obj->base.size,
1ec9e26d 3038 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3039 end);
59bfa124 3040 return -E2BIG;
654fc607
CW
3041 }
3042
37e680a1 3043 ret = i915_gem_object_get_pages(obj);
6c085a72 3044 if (ret)
59bfa124 3045 return ret;
6c085a72 3046
fbdda6fb
CW
3047 i915_gem_object_pin_pages(obj);
3048
506a8e87 3049 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3050 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3051 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3052 ret = -EINVAL;
de180033 3053 goto err_unpin;
506a8e87 3054 }
de180033 3055
506a8e87
CW
3056 vma->node.start = offset;
3057 vma->node.size = size;
3058 vma->node.color = obj->cache_level;
de180033 3059 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3060 if (ret) {
3061 ret = i915_gem_evict_for_vma(vma);
3062 if (ret == 0)
de180033
CW
3063 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3064 if (ret)
3065 goto err_unpin;
506a8e87 3066 }
101b506a 3067 } else {
de180033
CW
3068 u32 search_flag, alloc_flag;
3069
506a8e87
CW
3070 if (flags & PIN_HIGH) {
3071 search_flag = DRM_MM_SEARCH_BELOW;
3072 alloc_flag = DRM_MM_CREATE_TOP;
3073 } else {
3074 search_flag = DRM_MM_SEARCH_DEFAULT;
3075 alloc_flag = DRM_MM_CREATE_DEFAULT;
3076 }
101b506a 3077
954c4691
CW
3078 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3079 * so we know that we always have a minimum alignment of 4096.
3080 * The drm_mm range manager is optimised to return results
3081 * with zero alignment, so where possible use the optimal
3082 * path.
3083 */
3084 if (alignment <= 4096)
3085 alignment = 0;
3086
0a9ae0d7 3087search_free:
de180033
CW
3088 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3089 &vma->node,
506a8e87
CW
3090 size, alignment,
3091 obj->cache_level,
3092 start, end,
3093 search_flag,
3094 alloc_flag);
3095 if (ret) {
de180033 3096 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3097 obj->cache_level,
3098 start, end,
3099 flags);
3100 if (ret == 0)
3101 goto search_free;
9731129c 3102
de180033 3103 goto err_unpin;
506a8e87 3104 }
ad16d2ed
CW
3105
3106 GEM_BUG_ON(vma->node.start < start);
3107 GEM_BUG_ON(vma->node.start + vma->node.size > end);
673a394b 3108 }
37508589 3109 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3110
35c20a60 3111 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3112 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3113 obj->bind_count++;
bf1a1092 3114
59bfa124 3115 return 0;
2f633156 3116
bc6bc15b 3117err_unpin:
2f633156 3118 i915_gem_object_unpin_pages(obj);
59bfa124 3119 return ret;
673a394b
EA
3120}
3121
000433b6 3122bool
2c22569b
CW
3123i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3124 bool force)
673a394b 3125{
673a394b
EA
3126 /* If we don't have a page list set up, then we're not pinned
3127 * to GPU, and we can ignore the cache flush because it'll happen
3128 * again at bind time.
3129 */
05394f39 3130 if (obj->pages == NULL)
000433b6 3131 return false;
673a394b 3132
769ce464
ID
3133 /*
3134 * Stolen memory is always coherent with the GPU as it is explicitly
3135 * marked as wc by the system, or the system is cache-coherent.
3136 */
6a2c4232 3137 if (obj->stolen || obj->phys_handle)
000433b6 3138 return false;
769ce464 3139
9c23f7fc
CW
3140 /* If the GPU is snooping the contents of the CPU cache,
3141 * we do not need to manually clear the CPU cache lines. However,
3142 * the caches are only snooped when the render cache is
3143 * flushed/invalidated. As we always have to emit invalidations
3144 * and flushes when moving into and out of the RENDER domain, correct
3145 * snooping behaviour occurs naturally as the result of our domain
3146 * tracking.
3147 */
0f71979a
CW
3148 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3149 obj->cache_dirty = true;
000433b6 3150 return false;
0f71979a 3151 }
9c23f7fc 3152
1c5d22f7 3153 trace_i915_gem_object_clflush(obj);
9da3da66 3154 drm_clflush_sg(obj->pages);
0f71979a 3155 obj->cache_dirty = false;
000433b6
CW
3156
3157 return true;
e47c68e9
EA
3158}
3159
3160/** Flushes the GTT write domain for the object if it's dirty. */
3161static void
05394f39 3162i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3163{
3b5724d7 3164 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3165
05394f39 3166 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3167 return;
3168
63256ec5 3169 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3170 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3171 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3172 *
3173 * However, we do have to enforce the order so that all writes through
3174 * the GTT land before any writes to the device, such as updates to
3175 * the GATT itself.
3b5724d7
CW
3176 *
3177 * We also have to wait a bit for the writes to land from the GTT.
3178 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3179 * timing. This issue has only been observed when switching quickly
3180 * between GTT writes and CPU reads from inside the kernel on recent hw,
3181 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3182 * system agents we cannot reproduce this behaviour).
e47c68e9 3183 */
63256ec5 3184 wmb();
3b5724d7 3185 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3186 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3187
d243ad82 3188 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3189
b0dc465f 3190 obj->base.write_domain = 0;
1c5d22f7 3191 trace_i915_gem_object_change_domain(obj,
05394f39 3192 obj->base.read_domains,
b0dc465f 3193 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3194}
3195
3196/** Flushes the CPU write domain for the object if it's dirty. */
3197static void
e62b59e4 3198i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3199{
05394f39 3200 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3201 return;
3202
e62b59e4 3203 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3204 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3205
de152b62 3206 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3207
b0dc465f 3208 obj->base.write_domain = 0;
1c5d22f7 3209 trace_i915_gem_object_change_domain(obj,
05394f39 3210 obj->base.read_domains,
b0dc465f 3211 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3212}
3213
383d5823
CW
3214static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3215{
3216 struct i915_vma *vma;
3217
3218 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3219 if (!i915_vma_is_ggtt(vma))
3220 continue;
3221
3222 if (i915_vma_is_active(vma))
3223 continue;
3224
3225 if (!drm_mm_node_allocated(&vma->node))
3226 continue;
3227
3228 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3229 }
3230}
3231
2ef7eeaa
EA
3232/**
3233 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3234 * @obj: object to act on
3235 * @write: ask for write access or read only
2ef7eeaa
EA
3236 *
3237 * This function returns when the move is complete, including waiting on
3238 * flushes to occur.
3239 */
79e53945 3240int
2021746e 3241i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3242{
1c5d22f7 3243 uint32_t old_write_domain, old_read_domains;
e47c68e9 3244 int ret;
2ef7eeaa 3245
0201f1ec 3246 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3247 if (ret)
3248 return ret;
3249
c13d87ea
CW
3250 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3251 return 0;
3252
43566ded
CW
3253 /* Flush and acquire obj->pages so that we are coherent through
3254 * direct access in memory with previous cached writes through
3255 * shmemfs and that our cache domain tracking remains valid.
3256 * For example, if the obj->filp was moved to swap without us
3257 * being notified and releasing the pages, we would mistakenly
3258 * continue to assume that the obj remained out of the CPU cached
3259 * domain.
3260 */
3261 ret = i915_gem_object_get_pages(obj);
3262 if (ret)
3263 return ret;
3264
e62b59e4 3265 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3266
d0a57789
CW
3267 /* Serialise direct access to this object with the barriers for
3268 * coherent writes from the GPU, by effectively invalidating the
3269 * GTT domain upon first access.
3270 */
3271 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3272 mb();
3273
05394f39
CW
3274 old_write_domain = obj->base.write_domain;
3275 old_read_domains = obj->base.read_domains;
1c5d22f7 3276
e47c68e9
EA
3277 /* It should now be out of any other write domains, and we can update
3278 * the domain values for our changes.
3279 */
05394f39
CW
3280 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3281 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3282 if (write) {
05394f39
CW
3283 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3284 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3285 obj->dirty = 1;
2ef7eeaa
EA
3286 }
3287
1c5d22f7
CW
3288 trace_i915_gem_object_change_domain(obj,
3289 old_read_domains,
3290 old_write_domain);
3291
8325a09d 3292 /* And bump the LRU for this access */
383d5823 3293 i915_gem_object_bump_inactive_ggtt(obj);
8325a09d 3294
e47c68e9
EA
3295 return 0;
3296}
3297
ef55f92a
CW
3298/**
3299 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3300 * @obj: object to act on
3301 * @cache_level: new cache level to set for the object
ef55f92a
CW
3302 *
3303 * After this function returns, the object will be in the new cache-level
3304 * across all GTT and the contents of the backing storage will be coherent,
3305 * with respect to the new cache-level. In order to keep the backing storage
3306 * coherent for all users, we only allow a single cache level to be set
3307 * globally on the object and prevent it from being changed whilst the
3308 * hardware is reading from the object. That is if the object is currently
3309 * on the scanout it will be set to uncached (or equivalent display
3310 * cache coherency) and all non-MOCS GPU access will also be uncached so
3311 * that all direct access to the scanout remains coherent.
3312 */
e4ffd173
CW
3313int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3314 enum i915_cache_level cache_level)
3315{
aa653a68 3316 struct i915_vma *vma;
ed75a55b 3317 int ret = 0;
e4ffd173
CW
3318
3319 if (obj->cache_level == cache_level)
ed75a55b 3320 goto out;
e4ffd173 3321
ef55f92a
CW
3322 /* Inspect the list of currently bound VMA and unbind any that would
3323 * be invalid given the new cache-level. This is principally to
3324 * catch the issue of the CS prefetch crossing page boundaries and
3325 * reading an invalid PTE on older architectures.
3326 */
aa653a68
CW
3327restart:
3328 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3329 if (!drm_mm_node_allocated(&vma->node))
3330 continue;
3331
20dfbde4 3332 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3333 DRM_DEBUG("can not change the cache level of pinned objects\n");
3334 return -EBUSY;
3335 }
3336
aa653a68
CW
3337 if (i915_gem_valid_gtt_space(vma, cache_level))
3338 continue;
3339
3340 ret = i915_vma_unbind(vma);
3341 if (ret)
3342 return ret;
3343
3344 /* As unbinding may affect other elements in the
3345 * obj->vma_list (due to side-effects from retiring
3346 * an active vma), play safe and restart the iterator.
3347 */
3348 goto restart;
42d6ab48
CW
3349 }
3350
ef55f92a
CW
3351 /* We can reuse the existing drm_mm nodes but need to change the
3352 * cache-level on the PTE. We could simply unbind them all and
3353 * rebind with the correct cache-level on next use. However since
3354 * we already have a valid slot, dma mapping, pages etc, we may as
3355 * rewrite the PTE in the belief that doing so tramples upon less
3356 * state and so involves less work.
3357 */
15717de2 3358 if (obj->bind_count) {
ef55f92a
CW
3359 /* Before we change the PTE, the GPU must not be accessing it.
3360 * If we wait upon the object, we know that all the bound
3361 * VMA are no longer active.
3362 */
2e2f351d 3363 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3364 if (ret)
3365 return ret;
3366
aa653a68 3367 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3368 /* Access to snoopable pages through the GTT is
3369 * incoherent and on some machines causes a hard
3370 * lockup. Relinquish the CPU mmaping to force
3371 * userspace to refault in the pages and we can
3372 * then double check if the GTT mapping is still
3373 * valid for that pointer access.
3374 */
3375 i915_gem_release_mmap(obj);
3376
3377 /* As we no longer need a fence for GTT access,
3378 * we can relinquish it now (and so prevent having
3379 * to steal a fence from someone else on the next
3380 * fence request). Note GPU activity would have
3381 * dropped the fence as all snoopable access is
3382 * supposed to be linear.
3383 */
49ef5294
CW
3384 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3385 ret = i915_vma_put_fence(vma);
3386 if (ret)
3387 return ret;
3388 }
ef55f92a
CW
3389 } else {
3390 /* We either have incoherent backing store and
3391 * so no GTT access or the architecture is fully
3392 * coherent. In such cases, existing GTT mmaps
3393 * ignore the cache bit in the PTE and we can
3394 * rewrite it without confusing the GPU or having
3395 * to force userspace to fault back in its mmaps.
3396 */
e4ffd173
CW
3397 }
3398
1c7f4bca 3399 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3400 if (!drm_mm_node_allocated(&vma->node))
3401 continue;
3402
3403 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3404 if (ret)
3405 return ret;
3406 }
e4ffd173
CW
3407 }
3408
1c7f4bca 3409 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3410 vma->node.color = cache_level;
3411 obj->cache_level = cache_level;
3412
ed75a55b 3413out:
ef55f92a
CW
3414 /* Flush the dirty CPU caches to the backing storage so that the
3415 * object is now coherent at its new cache level (with respect
3416 * to the access domain).
3417 */
b50a5371 3418 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3419 if (i915_gem_clflush_object(obj, true))
c033666a 3420 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3421 }
3422
e4ffd173
CW
3423 return 0;
3424}
3425
199adf40
BW
3426int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3427 struct drm_file *file)
e6994aee 3428{
199adf40 3429 struct drm_i915_gem_caching *args = data;
e6994aee 3430 struct drm_i915_gem_object *obj;
e6994aee 3431
03ac0642
CW
3432 obj = i915_gem_object_lookup(file, args->handle);
3433 if (!obj)
432be69d 3434 return -ENOENT;
e6994aee 3435
651d794f
CW
3436 switch (obj->cache_level) {
3437 case I915_CACHE_LLC:
3438 case I915_CACHE_L3_LLC:
3439 args->caching = I915_CACHING_CACHED;
3440 break;
3441
4257d3ba
CW
3442 case I915_CACHE_WT:
3443 args->caching = I915_CACHING_DISPLAY;
3444 break;
3445
651d794f
CW
3446 default:
3447 args->caching = I915_CACHING_NONE;
3448 break;
3449 }
e6994aee 3450
34911fd3 3451 i915_gem_object_put_unlocked(obj);
432be69d 3452 return 0;
e6994aee
CW
3453}
3454
199adf40
BW
3455int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3456 struct drm_file *file)
e6994aee 3457{
fac5e23e 3458 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3459 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3460 struct drm_i915_gem_object *obj;
3461 enum i915_cache_level level;
3462 int ret;
3463
199adf40
BW
3464 switch (args->caching) {
3465 case I915_CACHING_NONE:
e6994aee
CW
3466 level = I915_CACHE_NONE;
3467 break;
199adf40 3468 case I915_CACHING_CACHED:
e5756c10
ID
3469 /*
3470 * Due to a HW issue on BXT A stepping, GPU stores via a
3471 * snooped mapping may leave stale data in a corresponding CPU
3472 * cacheline, whereas normally such cachelines would get
3473 * invalidated.
3474 */
ca377809 3475 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3476 return -ENODEV;
3477
e6994aee
CW
3478 level = I915_CACHE_LLC;
3479 break;
4257d3ba 3480 case I915_CACHING_DISPLAY:
8652744b 3481 level = HAS_WT(dev_priv) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3482 break;
e6994aee
CW
3483 default:
3484 return -EINVAL;
3485 }
3486
fd0fe6ac
ID
3487 intel_runtime_pm_get(dev_priv);
3488
3bc2913e
BW
3489 ret = i915_mutex_lock_interruptible(dev);
3490 if (ret)
fd0fe6ac 3491 goto rpm_put;
3bc2913e 3492
03ac0642
CW
3493 obj = i915_gem_object_lookup(file, args->handle);
3494 if (!obj) {
e6994aee
CW
3495 ret = -ENOENT;
3496 goto unlock;
3497 }
3498
3499 ret = i915_gem_object_set_cache_level(obj, level);
3500
f8c417cd 3501 i915_gem_object_put(obj);
e6994aee
CW
3502unlock:
3503 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3504rpm_put:
3505 intel_runtime_pm_put(dev_priv);
3506
e6994aee
CW
3507 return ret;
3508}
3509
b9241ea3 3510/*
2da3b9b9
CW
3511 * Prepare buffer for display plane (scanout, cursors, etc).
3512 * Can be called from an uninterruptible phase (modesetting) and allows
3513 * any flushes to be pipelined (for pageflips).
b9241ea3 3514 */
058d88c4 3515struct i915_vma *
2da3b9b9
CW
3516i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3517 u32 alignment,
e6617330 3518 const struct i915_ggtt_view *view)
b9241ea3 3519{
058d88c4 3520 struct i915_vma *vma;
2da3b9b9 3521 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3522 int ret;
3523
cc98b413
CW
3524 /* Mark the pin_display early so that we account for the
3525 * display coherency whilst setting up the cache domains.
3526 */
8a0c39b1 3527 obj->pin_display++;
cc98b413 3528
a7ef0640
EA
3529 /* The display engine is not coherent with the LLC cache on gen6. As
3530 * a result, we make sure that the pinning that is about to occur is
3531 * done with uncached PTEs. This is lowest common denominator for all
3532 * chipsets.
3533 *
3534 * However for gen6+, we could do better by using the GFDT bit instead
3535 * of uncaching, which would allow us to flush all the LLC-cached data
3536 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3537 */
651d794f 3538 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3539 HAS_WT(to_i915(obj->base.dev)) ?
3540 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3541 if (ret) {
3542 vma = ERR_PTR(ret);
cc98b413 3543 goto err_unpin_display;
058d88c4 3544 }
a7ef0640 3545
2da3b9b9
CW
3546 /* As the user may map the buffer once pinned in the display plane
3547 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3548 * always use map_and_fenceable for all scanout buffers. However,
3549 * it may simply be too big to fit into mappable, in which case
3550 * put it anyway and hope that userspace can cope (but always first
3551 * try to preserve the existing ABI).
2da3b9b9 3552 */
2efb813d
CW
3553 vma = ERR_PTR(-ENOSPC);
3554 if (view->type == I915_GGTT_VIEW_NORMAL)
3555 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3556 PIN_MAPPABLE | PIN_NONBLOCK);
3557 if (IS_ERR(vma))
3558 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
058d88c4 3559 if (IS_ERR(vma))
cc98b413 3560 goto err_unpin_display;
2da3b9b9 3561
d8923dcf
CW
3562 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3563
058d88c4
CW
3564 WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3565
e62b59e4 3566 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3567
2da3b9b9 3568 old_write_domain = obj->base.write_domain;
05394f39 3569 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3570
3571 /* It should now be out of any other write domains, and we can update
3572 * the domain values for our changes.
3573 */
e5f1d962 3574 obj->base.write_domain = 0;
05394f39 3575 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3576
3577 trace_i915_gem_object_change_domain(obj,
3578 old_read_domains,
2da3b9b9 3579 old_write_domain);
b9241ea3 3580
058d88c4 3581 return vma;
cc98b413
CW
3582
3583err_unpin_display:
8a0c39b1 3584 obj->pin_display--;
058d88c4 3585 return vma;
cc98b413
CW
3586}
3587
3588void
058d88c4 3589i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3590{
058d88c4 3591 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3592 return;
3593
d8923dcf
CW
3594 if (--vma->obj->pin_display == 0)
3595 vma->display_alignment = 0;
e6617330 3596
383d5823
CW
3597 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3598 if (!i915_vma_is_active(vma))
3599 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3600
058d88c4
CW
3601 i915_vma_unpin(vma);
3602 WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
b9241ea3
ZW
3603}
3604
e47c68e9
EA
3605/**
3606 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3607 * @obj: object to act on
3608 * @write: requesting write or read-only access
e47c68e9
EA
3609 *
3610 * This function returns when the move is complete, including waiting on
3611 * flushes to occur.
3612 */
dabdfe02 3613int
919926ae 3614i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3615{
1c5d22f7 3616 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3617 int ret;
3618
0201f1ec 3619 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3620 if (ret)
3621 return ret;
3622
c13d87ea
CW
3623 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3624 return 0;
3625
e47c68e9 3626 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3627
05394f39
CW
3628 old_write_domain = obj->base.write_domain;
3629 old_read_domains = obj->base.read_domains;
1c5d22f7 3630
e47c68e9 3631 /* Flush the CPU cache if it's still invalid. */
05394f39 3632 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3633 i915_gem_clflush_object(obj, false);
2ef7eeaa 3634
05394f39 3635 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3636 }
3637
3638 /* It should now be out of any other write domains, and we can update
3639 * the domain values for our changes.
3640 */
05394f39 3641 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3642
3643 /* If we're writing through the CPU, then the GPU read domains will
3644 * need to be invalidated at next use.
3645 */
3646 if (write) {
05394f39
CW
3647 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3648 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3649 }
2ef7eeaa 3650
1c5d22f7
CW
3651 trace_i915_gem_object_change_domain(obj,
3652 old_read_domains,
3653 old_write_domain);
3654
2ef7eeaa
EA
3655 return 0;
3656}
3657
673a394b
EA
3658/* Throttle our rendering by waiting until the ring has completed our requests
3659 * emitted over 20 msec ago.
3660 *
b962442e
EA
3661 * Note that if we were to use the current jiffies each time around the loop,
3662 * we wouldn't escape the function with any frames outstanding if the time to
3663 * render a frame was over 20ms.
3664 *
673a394b
EA
3665 * This should get us reasonable parallelism between CPU and GPU but also
3666 * relatively low latency when blocking on a particular request to finish.
3667 */
40a5f0de 3668static int
f787a5f5 3669i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3670{
fac5e23e 3671 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3672 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3673 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3674 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3675 int ret;
93533c29 3676
308887aa
DV
3677 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3678 if (ret)
3679 return ret;
3680
f4457ae7
CW
3681 /* ABI: return -EIO if already wedged */
3682 if (i915_terminally_wedged(&dev_priv->gpu_error))
3683 return -EIO;
e110e8d6 3684
1c25595f 3685 spin_lock(&file_priv->mm.lock);
f787a5f5 3686 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3687 if (time_after_eq(request->emitted_jiffies, recent_enough))
3688 break;
40a5f0de 3689
fcfa423c
JH
3690 /*
3691 * Note that the request might not have been submitted yet.
3692 * In which case emitted_jiffies will be zero.
3693 */
3694 if (!request->emitted_jiffies)
3695 continue;
3696
54fb2411 3697 target = request;
b962442e 3698 }
ff865885 3699 if (target)
e8a261ea 3700 i915_gem_request_get(target);
1c25595f 3701 spin_unlock(&file_priv->mm.lock);
40a5f0de 3702
54fb2411 3703 if (target == NULL)
f787a5f5 3704 return 0;
2bc43b5c 3705
ea746f36 3706 ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
e8a261ea 3707 i915_gem_request_put(target);
ff865885 3708
40a5f0de
EA
3709 return ret;
3710}
3711
d23db88c 3712static bool
91b2db6f 3713i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3714{
59bfa124
CW
3715 if (!drm_mm_node_allocated(&vma->node))
3716 return false;
3717
91b2db6f
CW
3718 if (vma->node.size < size)
3719 return true;
3720
3721 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3722 return true;
3723
05a20d09 3724 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3725 return true;
3726
3727 if (flags & PIN_OFFSET_BIAS &&
3728 vma->node.start < (flags & PIN_OFFSET_MASK))
3729 return true;
3730
506a8e87
CW
3731 if (flags & PIN_OFFSET_FIXED &&
3732 vma->node.start != (flags & PIN_OFFSET_MASK))
3733 return true;
3734
d23db88c
CW
3735 return false;
3736}
3737
d0710abb
CW
3738void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3739{
3740 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3741 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3742 bool mappable, fenceable;
3743 u32 fence_size, fence_alignment;
3744
a9f1481f 3745 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3746 vma->size,
3e510a8e 3747 i915_gem_object_get_tiling(obj));
a9f1481f 3748 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3749 vma->size,
3e510a8e 3750 i915_gem_object_get_tiling(obj),
ad1a7d20 3751 true);
d0710abb
CW
3752
3753 fenceable = (vma->node.size == fence_size &&
3754 (vma->node.start & (fence_alignment - 1)) == 0);
3755
3756 mappable = (vma->node.start + fence_size <=
a9f1481f 3757 dev_priv->ggtt.mappable_end);
d0710abb 3758
05a20d09
CW
3759 if (mappable && fenceable)
3760 vma->flags |= I915_VMA_CAN_FENCE;
3761 else
3762 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3763}
3764
305bc234
CW
3765int __i915_vma_do_pin(struct i915_vma *vma,
3766 u64 size, u64 alignment, u64 flags)
673a394b 3767{
305bc234 3768 unsigned int bound = vma->flags;
673a394b
EA
3769 int ret;
3770
59bfa124 3771 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3772 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3773
305bc234
CW
3774 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3775 ret = -EBUSY;
3776 goto err;
3777 }
ac0c6b5a 3778
de895082 3779 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3780 ret = i915_vma_insert(vma, size, alignment, flags);
3781 if (ret)
3782 goto err;
fe14d5f4 3783 }
74898d7e 3784
59bfa124 3785 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3786 if (ret)
59bfa124 3787 goto err;
3b16525c 3788
3272db53 3789 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3790 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3791
3b16525c 3792 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3793 return 0;
673a394b 3794
59bfa124
CW
3795err:
3796 __i915_vma_unpin(vma);
3797 return ret;
ec7adb6e
JL
3798}
3799
058d88c4 3800struct i915_vma *
ec7adb6e
JL
3801i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3802 const struct i915_ggtt_view *view,
91b2db6f 3803 u64 size,
2ffffd0f
CW
3804 u64 alignment,
3805 u64 flags)
ec7adb6e 3806{
ad16d2ed
CW
3807 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3808 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3809 struct i915_vma *vma;
3810 int ret;
72e96d64 3811
058d88c4 3812 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3813 if (IS_ERR(vma))
058d88c4 3814 return vma;
59bfa124
CW
3815
3816 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3817 if (flags & PIN_NONBLOCK &&
3818 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3819 return ERR_PTR(-ENOSPC);
59bfa124 3820
ad16d2ed
CW
3821 if (flags & PIN_MAPPABLE) {
3822 u32 fence_size;
3823
3824 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3825 i915_gem_object_get_tiling(obj));
3826 /* If the required space is larger than the available
3827 * aperture, we will not able to find a slot for the
3828 * object and unbinding the object now will be in
3829 * vain. Worse, doing so may cause us to ping-pong
3830 * the object in and out of the Global GTT and
3831 * waste a lot of cycles under the mutex.
3832 */
3833 if (fence_size > dev_priv->ggtt.mappable_end)
3834 return ERR_PTR(-E2BIG);
3835
3836 /* If NONBLOCK is set the caller is optimistically
3837 * trying to cache the full object within the mappable
3838 * aperture, and *must* have a fallback in place for
3839 * situations where we cannot bind the object. We
3840 * can be a little more lax here and use the fallback
3841 * more often to avoid costly migrations of ourselves
3842 * and other objects within the aperture.
3843 *
3844 * Half-the-aperture is used as a simple heuristic.
3845 * More interesting would to do search for a free
3846 * block prior to making the commitment to unbind.
3847 * That caters for the self-harm case, and with a
3848 * little more heuristics (e.g. NOFAULT, NOEVICT)
3849 * we could try to minimise harm to others.
3850 */
3851 if (flags & PIN_NONBLOCK &&
3852 fence_size > dev_priv->ggtt.mappable_end / 2)
3853 return ERR_PTR(-ENOSPC);
3854 }
3855
59bfa124
CW
3856 WARN(i915_vma_is_pinned(vma),
3857 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3858 " offset=%08x, req.alignment=%llx,"
3859 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3860 i915_ggtt_offset(vma), alignment,
59bfa124 3861 !!(flags & PIN_MAPPABLE),
05a20d09 3862 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3863 ret = i915_vma_unbind(vma);
3864 if (ret)
058d88c4 3865 return ERR_PTR(ret);
59bfa124
CW
3866 }
3867
058d88c4
CW
3868 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3869 if (ret)
3870 return ERR_PTR(ret);
ec7adb6e 3871
058d88c4 3872 return vma;
673a394b
EA
3873}
3874
edf6b76f 3875static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3876{
3877 /* Note that we could alias engines in the execbuf API, but
3878 * that would be very unwise as it prevents userspace from
3879 * fine control over engine selection. Ahem.
3880 *
3881 * This should be something like EXEC_MAX_ENGINE instead of
3882 * I915_NUM_ENGINES.
3883 */
3884 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3885 return 0x10000 << id;
3886}
3887
3888static __always_inline unsigned int __busy_write_id(unsigned int id)
3889{
70cb472c
CW
3890 /* The uABI guarantees an active writer is also amongst the read
3891 * engines. This would be true if we accessed the activity tracking
3892 * under the lock, but as we perform the lookup of the object and
3893 * its activity locklessly we can not guarantee that the last_write
3894 * being active implies that we have set the same engine flag from
3895 * last_read - hence we always set both read and write busy for
3896 * last_write.
3897 */
3898 return id | __busy_read_flag(id);
3fdc13c7
CW
3899}
3900
edf6b76f 3901static __always_inline unsigned int
3fdc13c7
CW
3902__busy_set_if_active(const struct i915_gem_active *active,
3903 unsigned int (*flag)(unsigned int id))
3904{
1255501d 3905 struct drm_i915_gem_request *request;
3fdc13c7 3906
1255501d
CW
3907 request = rcu_dereference(active->request);
3908 if (!request || i915_gem_request_completed(request))
3909 return 0;
3fdc13c7 3910
1255501d
CW
3911 /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3912 * discussion of how to handle the race correctly, but for reporting
3913 * the busy state we err on the side of potentially reporting the
3914 * wrong engine as being busy (but we guarantee that the result
3915 * is at least self-consistent).
3916 *
3917 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3918 * whilst we are inspecting it, even under the RCU read lock as we are.
3919 * This means that there is a small window for the engine and/or the
3920 * seqno to have been overwritten. The seqno will always be in the
3921 * future compared to the intended, and so we know that if that
3922 * seqno is idle (on whatever engine) our request is idle and the
3923 * return 0 above is correct.
3924 *
3925 * The issue is that if the engine is switched, it is just as likely
3926 * to report that it is busy (but since the switch happened, we know
3927 * the request should be idle). So there is a small chance that a busy
3928 * result is actually the wrong engine.
3929 *
3930 * So why don't we care?
3931 *
3932 * For starters, the busy ioctl is a heuristic that is by definition
3933 * racy. Even with perfect serialisation in the driver, the hardware
3934 * state is constantly advancing - the state we report to the user
3935 * is stale.
3936 *
3937 * The critical information for the busy-ioctl is whether the object
3938 * is idle as userspace relies on that to detect whether its next
3939 * access will stall, or if it has missed submitting commands to
3940 * the hardware allowing the GPU to stall. We never generate a
3941 * false-positive for idleness, thus busy-ioctl is reliable at the
3942 * most fundamental level, and we maintain the guarantee that a
3943 * busy object left to itself will eventually become idle (and stay
3944 * idle!).
3945 *
3946 * We allow ourselves the leeway of potentially misreporting the busy
3947 * state because that is an optimisation heuristic that is constantly
3948 * in flux. Being quickly able to detect the busy/idle state is much
3949 * more important than accurate logging of exactly which engines were
3950 * busy.
3951 *
3952 * For accuracy in reporting the engine, we could use
3953 *
3954 * result = 0;
3955 * request = __i915_gem_active_get_rcu(active);
3956 * if (request) {
3957 * if (!i915_gem_request_completed(request))
3958 * result = flag(request->engine->exec_id);
3959 * i915_gem_request_put(request);
3960 * }
3961 *
3962 * but that still remains susceptible to both hardware and userspace
3963 * races. So we accept making the result of that race slightly worse,
3964 * given the rarity of the race and its low impact on the result.
3965 */
3966 return flag(READ_ONCE(request->engine->exec_id));
3fdc13c7
CW
3967}
3968
edf6b76f 3969static __always_inline unsigned int
3fdc13c7
CW
3970busy_check_reader(const struct i915_gem_active *active)
3971{
3972 return __busy_set_if_active(active, __busy_read_flag);
3973}
3974
edf6b76f 3975static __always_inline unsigned int
3fdc13c7
CW
3976busy_check_writer(const struct i915_gem_active *active)
3977{
3978 return __busy_set_if_active(active, __busy_write_id);
3979}
3980
673a394b
EA
3981int
3982i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3983 struct drm_file *file)
673a394b
EA
3984{
3985 struct drm_i915_gem_busy *args = data;
05394f39 3986 struct drm_i915_gem_object *obj;
3fdc13c7 3987 unsigned long active;
673a394b 3988
03ac0642 3989 obj = i915_gem_object_lookup(file, args->handle);
3fdc13c7
CW
3990 if (!obj)
3991 return -ENOENT;
d1b851fc 3992
426960be 3993 args->busy = 0;
3fdc13c7
CW
3994 active = __I915_BO_ACTIVE(obj);
3995 if (active) {
3996 int idx;
426960be 3997
3fdc13c7
CW
3998 /* Yes, the lookups are intentionally racy.
3999 *
4000 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
4001 * to regard the value as stale and as our ABI guarantees
4002 * forward progress, we confirm the status of each active
4003 * request with the hardware.
4004 *
4005 * Even though we guard the pointer lookup by RCU, that only
4006 * guarantees that the pointer and its contents remain
4007 * dereferencable and does *not* mean that the request we
4008 * have is the same as the one being tracked by the object.
4009 *
4010 * Consider that we lookup the request just as it is being
4011 * retired and freed. We take a local copy of the pointer,
4012 * but before we add its engine into the busy set, the other
4013 * thread reallocates it and assigns it to a task on another
1255501d
CW
4014 * engine with a fresh and incomplete seqno. Guarding against
4015 * that requires careful serialisation and reference counting,
4016 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4017 * instead we expect that if the result is busy, which engines
4018 * are busy is not completely reliable - we only guarantee
4019 * that the object was busy.
3fdc13c7
CW
4020 */
4021 rcu_read_lock();
4022
4023 for_each_active(active, idx)
4024 args->busy |= busy_check_reader(&obj->last_read[idx]);
4025
4026 /* For ABI sanity, we only care that the write engine is in
70cb472c
CW
4027 * the set of read engines. This should be ensured by the
4028 * ordering of setting last_read/last_write in
4029 * i915_vma_move_to_active(), and then in reverse in retire.
4030 * However, for good measure, we always report the last_write
4031 * request as a busy read as well as being a busy write.
3fdc13c7
CW
4032 *
4033 * We don't care that the set of active read/write engines
4034 * may change during construction of the result, as it is
4035 * equally liable to change before userspace can inspect
4036 * the result.
4037 */
4038 args->busy |= busy_check_writer(&obj->last_write);
4039
4040 rcu_read_unlock();
426960be 4041 }
673a394b 4042
3fdc13c7
CW
4043 i915_gem_object_put_unlocked(obj);
4044 return 0;
673a394b
EA
4045}
4046
4047int
4048i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4049 struct drm_file *file_priv)
4050{
0206e353 4051 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4052}
4053
3ef94daa
CW
4054int
4055i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4056 struct drm_file *file_priv)
4057{
fac5e23e 4058 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4059 struct drm_i915_gem_madvise *args = data;
05394f39 4060 struct drm_i915_gem_object *obj;
76c1dec1 4061 int ret;
3ef94daa
CW
4062
4063 switch (args->madv) {
4064 case I915_MADV_DONTNEED:
4065 case I915_MADV_WILLNEED:
4066 break;
4067 default:
4068 return -EINVAL;
4069 }
4070
1d7cfea1
CW
4071 ret = i915_mutex_lock_interruptible(dev);
4072 if (ret)
4073 return ret;
4074
03ac0642
CW
4075 obj = i915_gem_object_lookup(file_priv, args->handle);
4076 if (!obj) {
1d7cfea1
CW
4077 ret = -ENOENT;
4078 goto unlock;
3ef94daa 4079 }
3ef94daa 4080
656bfa3a 4081 if (obj->pages &&
3e510a8e 4082 i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
4083 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4084 if (obj->madv == I915_MADV_WILLNEED)
4085 i915_gem_object_unpin_pages(obj);
4086 if (args->madv == I915_MADV_WILLNEED)
4087 i915_gem_object_pin_pages(obj);
4088 }
4089
05394f39
CW
4090 if (obj->madv != __I915_MADV_PURGED)
4091 obj->madv = args->madv;
3ef94daa 4092
6c085a72 4093 /* if the object is no longer attached, discard its backing storage */
be6a0376 4094 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4095 i915_gem_object_truncate(obj);
4096
05394f39 4097 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4098
f8c417cd 4099 i915_gem_object_put(obj);
1d7cfea1 4100unlock:
3ef94daa 4101 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4102 return ret;
3ef94daa
CW
4103}
4104
37e680a1
CW
4105void i915_gem_object_init(struct drm_i915_gem_object *obj,
4106 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4107{
b4716185
CW
4108 int i;
4109
35c20a60 4110 INIT_LIST_HEAD(&obj->global_list);
666796da 4111 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
4112 init_request_active(&obj->last_read[i],
4113 i915_gem_object_retire__read);
4114 init_request_active(&obj->last_write,
4115 i915_gem_object_retire__write);
b25cb2f8 4116 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4117 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4118 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4119
37e680a1
CW
4120 obj->ops = ops;
4121
50349247 4122 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
0327d6ba 4123 obj->madv = I915_MADV_WILLNEED;
0327d6ba 4124
f19ec8cb 4125 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4126}
4127
37e680a1 4128static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4129 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4130 .get_pages = i915_gem_object_get_pages_gtt,
4131 .put_pages = i915_gem_object_put_pages_gtt,
4132};
4133
b4bcbe2a
CW
4134/* Note we don't consider signbits :| */
4135#define overflows_type(x, T) \
4136 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4137
4138struct drm_i915_gem_object *
4139i915_gem_object_create(struct drm_device *dev, u64 size)
ac52bc56 4140{
c397b908 4141 struct drm_i915_gem_object *obj;
5949eac4 4142 struct address_space *mapping;
1a240d4d 4143 gfp_t mask;
fe3db79b 4144 int ret;
ac52bc56 4145
b4bcbe2a
CW
4146 /* There is a prevalence of the assumption that we fit the object's
4147 * page count inside a 32bit _signed_ variable. Let's document this and
4148 * catch if we ever need to fix it. In the meantime, if you do spot
4149 * such a local variable, please consider fixing!
4150 */
4151 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4152 return ERR_PTR(-E2BIG);
4153
4154 if (overflows_type(size, obj->base.size))
4155 return ERR_PTR(-E2BIG);
4156
42dcedd4 4157 obj = i915_gem_object_alloc(dev);
c397b908 4158 if (obj == NULL)
fe3db79b 4159 return ERR_PTR(-ENOMEM);
673a394b 4160
fe3db79b
CW
4161 ret = drm_gem_object_init(dev, &obj->base, size);
4162 if (ret)
4163 goto fail;
673a394b 4164
bed1ea95
CW
4165 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4166 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4167 /* 965gm cannot relocate objects above 4GiB. */
4168 mask &= ~__GFP_HIGHMEM;
4169 mask |= __GFP_DMA32;
4170 }
4171
93c76a3d 4172 mapping = obj->base.filp->f_mapping;
bed1ea95 4173 mapping_set_gfp_mask(mapping, mask);
5949eac4 4174
37e680a1 4175 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4176
c397b908
DV
4177 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4178 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4179
3d29b842
ED
4180 if (HAS_LLC(dev)) {
4181 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4182 * cache) for about a 10% performance improvement
4183 * compared to uncached. Graphics requests other than
4184 * display scanout are coherent with the CPU in
4185 * accessing this cache. This means in this mode we
4186 * don't need to clflush on the CPU side, and on the
4187 * GPU side we only need to flush internal caches to
4188 * get data visible to the CPU.
4189 *
4190 * However, we maintain the display planes as UC, and so
4191 * need to rebind when first used as such.
4192 */
4193 obj->cache_level = I915_CACHE_LLC;
4194 } else
4195 obj->cache_level = I915_CACHE_NONE;
4196
d861e338
DV
4197 trace_i915_gem_object_create(obj);
4198
05394f39 4199 return obj;
fe3db79b
CW
4200
4201fail:
4202 i915_gem_object_free(obj);
4203
4204 return ERR_PTR(ret);
c397b908
DV
4205}
4206
340fbd8c
CW
4207static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4208{
4209 /* If we are the last user of the backing storage (be it shmemfs
4210 * pages or stolen etc), we know that the pages are going to be
4211 * immediately released. In this case, we can then skip copying
4212 * back the contents from the GPU.
4213 */
4214
4215 if (obj->madv != I915_MADV_WILLNEED)
4216 return false;
4217
4218 if (obj->base.filp == NULL)
4219 return true;
4220
4221 /* At first glance, this looks racy, but then again so would be
4222 * userspace racing mmap against close. However, the first external
4223 * reference to the filp can only be obtained through the
4224 * i915_gem_mmap_ioctl() which safeguards us against the user
4225 * acquiring such a reference whilst we are in the middle of
4226 * freeing the object.
4227 */
4228 return atomic_long_read(&obj->base.filp->f_count) == 1;
4229}
4230
1488fc08 4231void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4232{
1488fc08 4233 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4234 struct drm_device *dev = obj->base.dev;
fac5e23e 4235 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4236 struct i915_vma *vma, *next;
673a394b 4237
f65c9168
PZ
4238 intel_runtime_pm_get(dev_priv);
4239
26e12f89
CW
4240 trace_i915_gem_object_destroy(obj);
4241
b1f788c6
CW
4242 /* All file-owned VMA should have been released by this point through
4243 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4244 * However, the object may also be bound into the global GTT (e.g.
4245 * older GPUs without per-process support, or for direct access through
4246 * the GTT either for the user or for scanout). Those VMA still need to
4247 * unbound now.
4248 */
1c7f4bca 4249 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4250 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4251 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4252 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4253 i915_vma_close(vma);
1488fc08 4254 }
15717de2 4255 GEM_BUG_ON(obj->bind_count);
1488fc08 4256
1d64ae71
BW
4257 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4258 * before progressing. */
4259 if (obj->stolen)
4260 i915_gem_object_unpin_pages(obj);
4261
faf5bf0a 4262 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4263
656bfa3a
DV
4264 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4265 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
3e510a8e 4266 i915_gem_object_is_tiled(obj))
656bfa3a
DV
4267 i915_gem_object_unpin_pages(obj);
4268
401c29f6
BW
4269 if (WARN_ON(obj->pages_pin_count))
4270 obj->pages_pin_count = 0;
340fbd8c 4271 if (discard_backing_storage(obj))
5537252b 4272 obj->madv = I915_MADV_DONTNEED;
37e680a1 4273 i915_gem_object_put_pages(obj);
de151cf6 4274
9da3da66
CW
4275 BUG_ON(obj->pages);
4276
2f745ad3
CW
4277 if (obj->base.import_attach)
4278 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4279
5cc9ed4b
CW
4280 if (obj->ops->release)
4281 obj->ops->release(obj);
4282
05394f39
CW
4283 drm_gem_object_release(&obj->base);
4284 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4285
05394f39 4286 kfree(obj->bit_17);
42dcedd4 4287 i915_gem_object_free(obj);
f65c9168
PZ
4288
4289 intel_runtime_pm_put(dev_priv);
673a394b
EA
4290}
4291
dcff85c8 4292int i915_gem_suspend(struct drm_device *dev)
29105ccc 4293{
fac5e23e 4294 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4295 int ret;
28dfe52a 4296
54b4f68f
CW
4297 intel_suspend_gt_powersave(dev_priv);
4298
45c5f202 4299 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4300
4301 /* We have to flush all the executing contexts to main memory so
4302 * that they can saved in the hibernation image. To ensure the last
4303 * context image is coherent, we have to switch away from it. That
4304 * leaves the dev_priv->kernel_context still active when
4305 * we actually suspend, and its image in memory may not match the GPU
4306 * state. Fortunately, the kernel_context is disposable and we do
4307 * not rely on its state.
4308 */
4309 ret = i915_gem_switch_to_kernel_context(dev_priv);
4310 if (ret)
4311 goto err;
4312
22dd3bb9
CW
4313 ret = i915_gem_wait_for_idle(dev_priv,
4314 I915_WAIT_INTERRUPTIBLE |
4315 I915_WAIT_LOCKED);
f7403347 4316 if (ret)
45c5f202 4317 goto err;
f7403347 4318
c033666a 4319 i915_gem_retire_requests(dev_priv);
673a394b 4320
b2e862d0 4321 i915_gem_context_lost(dev_priv);
45c5f202
CW
4322 mutex_unlock(&dev->struct_mutex);
4323
737b1506 4324 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4325 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4326 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4327
bdcf120b
CW
4328 /* Assert that we sucessfully flushed all the work and
4329 * reset the GPU back to its idle, low power state.
4330 */
67d97da3 4331 WARN_ON(dev_priv->gt.awake);
bdcf120b 4332
1c777c5d
ID
4333 /*
4334 * Neither the BIOS, ourselves or any other kernel
4335 * expects the system to be in execlists mode on startup,
4336 * so we need to reset the GPU back to legacy mode. And the only
4337 * known way to disable logical contexts is through a GPU reset.
4338 *
4339 * So in order to leave the system in a known default configuration,
4340 * always reset the GPU upon unload and suspend. Afterwards we then
4341 * clean up the GEM state tracking, flushing off the requests and
4342 * leaving the system in a known idle state.
4343 *
4344 * Note that is of the upmost importance that the GPU is idle and
4345 * all stray writes are flushed *before* we dismantle the backing
4346 * storage for the pinned objects.
4347 *
4348 * However, since we are uncertain that resetting the GPU on older
4349 * machines is a good idea, we don't - just in case it leaves the
4350 * machine in an unusable condition.
4351 */
4352 if (HAS_HW_CONTEXTS(dev)) {
4353 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4354 WARN_ON(reset && reset != -ENODEV);
4355 }
4356
673a394b 4357 return 0;
45c5f202
CW
4358
4359err:
4360 mutex_unlock(&dev->struct_mutex);
4361 return ret;
673a394b
EA
4362}
4363
5ab57c70
CW
4364void i915_gem_resume(struct drm_device *dev)
4365{
4366 struct drm_i915_private *dev_priv = to_i915(dev);
4367
4368 mutex_lock(&dev->struct_mutex);
4369 i915_gem_restore_gtt_mappings(dev);
4370
4371 /* As we didn't flush the kernel context before suspend, we cannot
4372 * guarantee that the context image is complete. So let's just reset
4373 * it and start again.
4374 */
821ed7df 4375 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4376
4377 mutex_unlock(&dev->struct_mutex);
4378}
4379
f691e2f4
DV
4380void i915_gem_init_swizzling(struct drm_device *dev)
4381{
fac5e23e 4382 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4383
11782b02 4384 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4385 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4386 return;
4387
4388 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4389 DISP_TILE_SURFACE_SWIZZLING);
4390
5db94019 4391 if (IS_GEN5(dev_priv))
11782b02
DV
4392 return;
4393
f691e2f4 4394 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4395 if (IS_GEN6(dev_priv))
6b26c86d 4396 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4397 else if (IS_GEN7(dev_priv))
6b26c86d 4398 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4399 else if (IS_GEN8(dev_priv))
31a5336e 4400 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4401 else
4402 BUG();
f691e2f4 4403}
e21af88d 4404
50a0bc90 4405static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4406{
81e7f200
VS
4407 I915_WRITE(RING_CTL(base), 0);
4408 I915_WRITE(RING_HEAD(base), 0);
4409 I915_WRITE(RING_TAIL(base), 0);
4410 I915_WRITE(RING_START(base), 0);
4411}
4412
50a0bc90 4413static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4414{
50a0bc90
TU
4415 if (IS_I830(dev_priv)) {
4416 init_unused_ring(dev_priv, PRB1_BASE);
4417 init_unused_ring(dev_priv, SRB0_BASE);
4418 init_unused_ring(dev_priv, SRB1_BASE);
4419 init_unused_ring(dev_priv, SRB2_BASE);
4420 init_unused_ring(dev_priv, SRB3_BASE);
4421 } else if (IS_GEN2(dev_priv)) {
4422 init_unused_ring(dev_priv, SRB0_BASE);
4423 init_unused_ring(dev_priv, SRB1_BASE);
4424 } else if (IS_GEN3(dev_priv)) {
4425 init_unused_ring(dev_priv, PRB1_BASE);
4426 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4427 }
4428}
4429
4fc7c971
BW
4430int
4431i915_gem_init_hw(struct drm_device *dev)
4432{
fac5e23e 4433 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4434 struct intel_engine_cs *engine;
3b3f1650 4435 enum intel_engine_id id;
d200cda6 4436 int ret;
4fc7c971 4437
5e4f5189
CW
4438 /* Double layer security blanket, see i915_gem_init() */
4439 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4440
3accaf7e 4441 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4442 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4443
772c2a51 4444 if (IS_HASWELL(dev_priv))
50a0bc90 4445 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4446 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4447
6e266956 4448 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4449 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4450 u32 temp = I915_READ(GEN7_MSG_CTL);
4451 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4452 I915_WRITE(GEN7_MSG_CTL, temp);
4453 } else if (INTEL_INFO(dev)->gen >= 7) {
4454 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4455 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4456 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4457 }
88a2b2a3
BW
4458 }
4459
4fc7c971
BW
4460 i915_gem_init_swizzling(dev);
4461
d5abdfda
DV
4462 /*
4463 * At least 830 can leave some of the unused rings
4464 * "active" (ie. head != tail) after resume which
4465 * will prevent c3 entry. Makes sure all unused rings
4466 * are totally idle.
4467 */
50a0bc90 4468 init_unused_rings(dev_priv);
d5abdfda 4469
ed54c1a1 4470 BUG_ON(!dev_priv->kernel_context);
90638cc1 4471
4ad2fd88
JH
4472 ret = i915_ppgtt_init_hw(dev);
4473 if (ret) {
4474 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4475 goto out;
4476 }
4477
4478 /* Need to do basic initialisation of all rings first: */
3b3f1650 4479 for_each_engine(engine, dev_priv, id) {
e2f80391 4480 ret = engine->init_hw(engine);
35a57ffb 4481 if (ret)
5e4f5189 4482 goto out;
35a57ffb 4483 }
99433931 4484
0ccdacf6
PA
4485 intel_mocs_init_l3cc_table(dev);
4486
33a732f4 4487 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4488 ret = intel_guc_setup(dev);
4489 if (ret)
4490 goto out;
33a732f4 4491
5e4f5189
CW
4492out:
4493 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4494 return ret;
8187a2b7
ZN
4495}
4496
39df9190
CW
4497bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4498{
4499 if (INTEL_INFO(dev_priv)->gen < 6)
4500 return false;
4501
4502 /* TODO: make semaphores and Execlists play nicely together */
4503 if (i915.enable_execlists)
4504 return false;
4505
4506 if (value >= 0)
4507 return value;
4508
4509#ifdef CONFIG_INTEL_IOMMU
4510 /* Enable semaphores on SNB when IO remapping is off */
4511 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4512 return false;
4513#endif
4514
4515 return true;
4516}
4517
1070a42b
CW
4518int i915_gem_init(struct drm_device *dev)
4519{
fac5e23e 4520 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4521 int ret;
4522
1070a42b 4523 mutex_lock(&dev->struct_mutex);
d62b4892 4524
a83014d3 4525 if (!i915.enable_execlists) {
821ed7df 4526 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4527 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4528 } else {
821ed7df 4529 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4530 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4531 }
4532
5e4f5189
CW
4533 /* This is just a security blanket to placate dragons.
4534 * On some systems, we very sporadically observe that the first TLBs
4535 * used by the CS may be stale, despite us poking the TLB reset. If
4536 * we hold the forcewake during initialisation these problems
4537 * just magically go away.
4538 */
4539 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4540
72778cb2 4541 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4542
4543 ret = i915_gem_init_ggtt(dev_priv);
4544 if (ret)
4545 goto out_unlock;
d62b4892 4546
2fa48d8d 4547 ret = i915_gem_context_init(dev);
7bcc3777
JN
4548 if (ret)
4549 goto out_unlock;
2fa48d8d 4550
8b3e2d36 4551 ret = intel_engines_init(dev);
35a57ffb 4552 if (ret)
7bcc3777 4553 goto out_unlock;
2fa48d8d 4554
1070a42b 4555 ret = i915_gem_init_hw(dev);
60990320 4556 if (ret == -EIO) {
7e21d648 4557 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4558 * wedged. But we only want to do this where the GPU is angry,
4559 * for all other failure, such as an allocation failure, bail.
4560 */
4561 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4562 i915_gem_set_wedged(dev_priv);
60990320 4563 ret = 0;
1070a42b 4564 }
7bcc3777
JN
4565
4566out_unlock:
5e4f5189 4567 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4568 mutex_unlock(&dev->struct_mutex);
1070a42b 4569
60990320 4570 return ret;
1070a42b
CW
4571}
4572
8187a2b7 4573void
117897f4 4574i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4575{
fac5e23e 4576 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4577 struct intel_engine_cs *engine;
3b3f1650 4578 enum intel_engine_id id;
8187a2b7 4579
3b3f1650 4580 for_each_engine(engine, dev_priv, id)
117897f4 4581 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4582}
4583
40ae4e16
ID
4584void
4585i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4586{
91c8a326 4587 struct drm_device *dev = &dev_priv->drm;
49ef5294 4588 int i;
40ae4e16
ID
4589
4590 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4591 !IS_CHERRYVIEW(dev_priv))
4592 dev_priv->num_fence_regs = 32;
4593 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4594 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4595 dev_priv->num_fence_regs = 16;
4596 else
4597 dev_priv->num_fence_regs = 8;
4598
c033666a 4599 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4600 dev_priv->num_fence_regs =
4601 I915_READ(vgtif_reg(avail_rs.fence_num));
4602
4603 /* Initialize fence registers to zero */
49ef5294
CW
4604 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4605 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4606
4607 fence->i915 = dev_priv;
4608 fence->id = i;
4609 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4610 }
40ae4e16
ID
4611 i915_gem_restore_fences(dev);
4612
4613 i915_gem_detect_bit_6_swizzle(dev);
4614}
4615
673a394b 4616void
d64aa096 4617i915_gem_load_init(struct drm_device *dev)
673a394b 4618{
fac5e23e 4619 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4 4620
efab6d8d 4621 dev_priv->objects =
42dcedd4
CW
4622 kmem_cache_create("i915_gem_object",
4623 sizeof(struct drm_i915_gem_object), 0,
4624 SLAB_HWCACHE_ALIGN,
4625 NULL);
e20d2ab7
CW
4626 dev_priv->vmas =
4627 kmem_cache_create("i915_gem_vma",
4628 sizeof(struct i915_vma), 0,
4629 SLAB_HWCACHE_ALIGN,
4630 NULL);
efab6d8d
CW
4631 dev_priv->requests =
4632 kmem_cache_create("i915_gem_request",
4633 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4634 SLAB_HWCACHE_ALIGN |
4635 SLAB_RECLAIM_ACCOUNT |
4636 SLAB_DESTROY_BY_RCU,
efab6d8d 4637 NULL);
673a394b 4638
a33afea5 4639 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4640 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4641 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4642 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
67d97da3 4643 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4644 i915_gem_retire_work_handler);
67d97da3 4645 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4646 i915_gem_idle_work_handler);
1f15b76f 4647 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4648 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4649
72bfa19c
CW
4650 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4651
6b95a207 4652 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4653
ce453d81
CW
4654 dev_priv->mm.interruptible = true;
4655
6f633402
JL
4656 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4657
b5add959 4658 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4659}
71acb5eb 4660
d64aa096
ID
4661void i915_gem_load_cleanup(struct drm_device *dev)
4662{
4663 struct drm_i915_private *dev_priv = to_i915(dev);
4664
4665 kmem_cache_destroy(dev_priv->requests);
4666 kmem_cache_destroy(dev_priv->vmas);
4667 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4668
4669 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4670 rcu_barrier();
d64aa096
ID
4671}
4672
6a800eab
CW
4673int i915_gem_freeze(struct drm_i915_private *dev_priv)
4674{
4675 intel_runtime_pm_get(dev_priv);
4676
4677 mutex_lock(&dev_priv->drm.struct_mutex);
4678 i915_gem_shrink_all(dev_priv);
4679 mutex_unlock(&dev_priv->drm.struct_mutex);
4680
4681 intel_runtime_pm_put(dev_priv);
4682
4683 return 0;
4684}
4685
461fb99c
CW
4686int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4687{
4688 struct drm_i915_gem_object *obj;
7aab2d53
CW
4689 struct list_head *phases[] = {
4690 &dev_priv->mm.unbound_list,
4691 &dev_priv->mm.bound_list,
4692 NULL
4693 }, **p;
461fb99c
CW
4694
4695 /* Called just before we write the hibernation image.
4696 *
4697 * We need to update the domain tracking to reflect that the CPU
4698 * will be accessing all the pages to create and restore from the
4699 * hibernation, and so upon restoration those pages will be in the
4700 * CPU domain.
4701 *
4702 * To make sure the hibernation image contains the latest state,
4703 * we update that state just before writing out the image.
7aab2d53
CW
4704 *
4705 * To try and reduce the hibernation image, we manually shrink
4706 * the objects as well.
461fb99c
CW
4707 */
4708
6a800eab
CW
4709 mutex_lock(&dev_priv->drm.struct_mutex);
4710 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4711
7aab2d53
CW
4712 for (p = phases; *p; p++) {
4713 list_for_each_entry(obj, *p, global_list) {
4714 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4715 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4716 }
461fb99c 4717 }
6a800eab 4718 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4719
4720 return 0;
4721}
4722
f787a5f5 4723void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4724{
f787a5f5 4725 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4726 struct drm_i915_gem_request *request;
b962442e
EA
4727
4728 /* Clean up our request list when the client is going away, so that
4729 * later retire_requests won't dereference our soon-to-be-gone
4730 * file_priv.
4731 */
1c25595f 4732 spin_lock(&file_priv->mm.lock);
15f7bbc7 4733 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4734 request->file_priv = NULL;
1c25595f 4735 spin_unlock(&file_priv->mm.lock);
b29c19b6 4736
2e1b8730 4737 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4738 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4739 list_del(&file_priv->rps.link);
8d3afd7d 4740 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4741 }
b29c19b6
CW
4742}
4743
4744int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4745{
4746 struct drm_i915_file_private *file_priv;
e422b888 4747 int ret;
b29c19b6
CW
4748
4749 DRM_DEBUG_DRIVER("\n");
4750
4751 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4752 if (!file_priv)
4753 return -ENOMEM;
4754
4755 file->driver_priv = file_priv;
f19ec8cb 4756 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4757 file_priv->file = file;
2e1b8730 4758 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4759
4760 spin_lock_init(&file_priv->mm.lock);
4761 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4762
c80ff16e 4763 file_priv->bsd_engine = -1;
de1add36 4764
e422b888
BW
4765 ret = i915_gem_context_open(dev, file);
4766 if (ret)
4767 kfree(file_priv);
b29c19b6 4768
e422b888 4769 return ret;
b29c19b6
CW
4770}
4771
b680c37a
DV
4772/**
4773 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4774 * @old: current GEM buffer for the frontbuffer slots
4775 * @new: new GEM buffer for the frontbuffer slots
4776 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4777 *
4778 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4779 * from @old and setting them in @new. Both @old and @new can be NULL.
4780 */
a071fa00
DV
4781void i915_gem_track_fb(struct drm_i915_gem_object *old,
4782 struct drm_i915_gem_object *new,
4783 unsigned frontbuffer_bits)
4784{
faf5bf0a
CW
4785 /* Control of individual bits within the mask are guarded by
4786 * the owning plane->mutex, i.e. we can never see concurrent
4787 * manipulation of individual bits. But since the bitfield as a whole
4788 * is updated using RMW, we need to use atomics in order to update
4789 * the bits.
4790 */
4791 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4792 sizeof(atomic_t) * BITS_PER_BYTE);
4793
a071fa00 4794 if (old) {
faf5bf0a
CW
4795 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4796 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4797 }
4798
4799 if (new) {
faf5bf0a
CW
4800 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4801 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4802 }
4803}
4804
033908ae
DG
4805/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4806struct page *
4807i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4808{
4809 struct page *page;
4810
4811 /* Only default objects have per-page dirty tracking */
b9bcd14a 4812 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4813 return NULL;
4814
4815 page = i915_gem_object_get_page(obj, n);
4816 set_page_dirty(page);
4817 return page;
4818}
4819
ea70299d
DG
4820/* Allocate a new GEM object and fill it with the supplied data */
4821struct drm_i915_gem_object *
4822i915_gem_object_create_from_data(struct drm_device *dev,
4823 const void *data, size_t size)
4824{
4825 struct drm_i915_gem_object *obj;
4826 struct sg_table *sg;
4827 size_t bytes;
4828 int ret;
4829
d37cd8a8 4830 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4831 if (IS_ERR(obj))
ea70299d
DG
4832 return obj;
4833
4834 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4835 if (ret)
4836 goto fail;
4837
4838 ret = i915_gem_object_get_pages(obj);
4839 if (ret)
4840 goto fail;
4841
4842 i915_gem_object_pin_pages(obj);
4843 sg = obj->pages;
4844 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4845 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4846 i915_gem_object_unpin_pages(obj);
4847
4848 if (WARN_ON(bytes != size)) {
4849 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4850 ret = -EFAULT;
4851 goto fail;
4852 }
4853
4854 return obj;
4855
4856fail:
f8c417cd 4857 i915_gem_object_put(obj);
ea70299d
DG
4858 return ERR_PTR(ret);
4859}