]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Reorder submitting the requests to ELSP
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee
AS
65static int
66insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
d98c52cf 107 if (!i915_reset_in_progress(error))
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0 115 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 116 !i915_reset_in_progress(error),
1f83fee0 117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
d98c52cf
CW
123 } else {
124 return 0;
0a6759c6 125 }
30dbf0c0
CW
126}
127
54cf91dc 128int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 129{
fac5e23e 130 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
131 int ret;
132
33196ded 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
76c1dec1
CW
141 return 0;
142}
30dbf0c0 143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
72e96d64 148 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 150 struct drm_i915_gem_get_aperture *args = data;
ca1543be 151 struct i915_vma *vma;
6299f992 152 size_t pinned;
5a125c3c 153
6299f992 154 pinned = 0;
73aa808f 155 mutex_lock(&dev->struct_mutex);
1c7f4bca 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 157 if (i915_vma_is_pinned(vma))
ca1543be 158 pinned += vma->node.size;
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
72e96d64 164 args->aper_size = ggtt->base.total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
6a2c4232
CW
170static int
171i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 172{
93c76a3d 173 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
00731155 178
6a2c4232
CW
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
09cbfeaf 195 put_page(page);
6a2c4232
CW
196 vaddr += PAGE_SIZE;
197 }
198
c033666a 199 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
00731155 213
6a2c4232
CW
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
6a2c4232
CW
218 return 0;
219}
220
221static void
222i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223{
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 227
6a2c4232 228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 229 if (WARN_ON(ret)) {
6a2c4232
CW
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
6a2c4232
CW
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
93c76a3d 240 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
09cbfeaf 260 put_page(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
6a2c4232
CW
268}
269
270static void
271i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272{
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274}
275
276static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280};
281
35a9611c 282int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
02bef8f9
CW
286 int ret;
287
288 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 289
02bef8f9
CW
290 /* Closed vma are removed from the obj->vma_list - but they may
291 * still have an active binding on the object. To remove those we
292 * must wait for all rendering to complete to the object (as unbinding
293 * must anyway), and retire the requests.
aa653a68 294 */
02bef8f9
CW
295 ret = i915_gem_object_wait_rendering(obj, false);
296 if (ret)
297 return ret;
298
299 i915_gem_retire_requests(to_i915(obj->base.dev));
300
aa653a68
CW
301 while ((vma = list_first_entry_or_null(&obj->vma_list,
302 struct i915_vma,
303 obj_link))) {
304 list_move_tail(&vma->obj_link, &still_in_list);
305 ret = i915_vma_unbind(vma);
306 if (ret)
307 break;
308 }
309 list_splice(&still_in_list, &obj->vma_list);
310
311 return ret;
312}
313
00e60f26
CW
314/**
315 * Ensures that all rendering to the object has completed and the object is
316 * safe to unbind from the GTT or access from the CPU.
317 * @obj: i915 gem object
318 * @readonly: waiting for just read access or read-write access
319 */
320int
321i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 bool readonly)
323{
324 struct reservation_object *resv;
325 struct i915_gem_active *active;
326 unsigned long active_mask;
327 int idx;
328
329 lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331 if (!readonly) {
332 active = obj->last_read;
333 active_mask = i915_gem_object_get_active(obj);
334 } else {
335 active_mask = 1;
336 active = &obj->last_write;
337 }
338
339 for_each_active(active_mask, idx) {
340 int ret;
341
342 ret = i915_gem_active_wait(&active[idx],
343 &obj->base.dev->struct_mutex);
344 if (ret)
345 return ret;
346 }
347
348 resv = i915_gem_object_get_dmabuf_resv(obj);
349 if (resv) {
350 long err;
351
352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 MAX_SCHEDULE_TIMEOUT);
354 if (err < 0)
355 return err;
356 }
357
358 return 0;
359}
360
b8f9096d
CW
361/* A nonblocking variant of the above wait. Must be called prior to
362 * acquiring the mutex for the object, as the object state may change
363 * during this call. A reference must be held by the caller for the object.
00e60f26
CW
364 */
365static __must_check int
b8f9096d
CW
366__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 struct intel_rps_client *rps,
368 bool readonly)
00e60f26 369{
00e60f26
CW
370 struct i915_gem_active *active;
371 unsigned long active_mask;
b8f9096d 372 int idx;
00e60f26 373
b8f9096d 374 active_mask = __I915_BO_ACTIVE(obj);
00e60f26
CW
375 if (!active_mask)
376 return 0;
377
378 if (!readonly) {
379 active = obj->last_read;
380 } else {
381 active_mask = 1;
382 active = &obj->last_write;
383 }
384
b8f9096d
CW
385 for_each_active(active_mask, idx) {
386 int ret;
00e60f26 387
b8f9096d
CW
388 ret = i915_gem_active_wait_unlocked(&active[idx],
389 true, NULL, rps);
390 if (ret)
391 return ret;
00e60f26
CW
392 }
393
b8f9096d 394 return 0;
00e60f26
CW
395}
396
397static struct intel_rps_client *to_rps_client(struct drm_file *file)
398{
399 struct drm_i915_file_private *fpriv = file->driver_priv;
400
401 return &fpriv->rps;
402}
403
00731155
CW
404int
405i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
406 int align)
407{
408 drm_dma_handle_t *phys;
6a2c4232 409 int ret;
00731155
CW
410
411 if (obj->phys_handle) {
412 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
413 return -EBUSY;
414
415 return 0;
416 }
417
418 if (obj->madv != I915_MADV_WILLNEED)
419 return -EFAULT;
420
421 if (obj->base.filp == NULL)
422 return -EINVAL;
423
4717ca9e
CW
424 ret = i915_gem_object_unbind(obj);
425 if (ret)
426 return ret;
427
428 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
429 if (ret)
430 return ret;
431
00731155
CW
432 /* create a new object */
433 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
434 if (!phys)
435 return -ENOMEM;
436
00731155 437 obj->phys_handle = phys;
6a2c4232
CW
438 obj->ops = &i915_gem_phys_ops;
439
440 return i915_gem_object_get_pages(obj);
00731155
CW
441}
442
443static int
444i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pwrite *args,
446 struct drm_file *file_priv)
447{
448 struct drm_device *dev = obj->base.dev;
449 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 450 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 451 int ret = 0;
6a2c4232
CW
452
453 /* We manually control the domain here and pretend that it
454 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
455 */
456 ret = i915_gem_object_wait_rendering(obj, false);
457 if (ret)
458 return ret;
00731155 459
77a0d1ca 460 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
461 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
462 unsigned long unwritten;
463
464 /* The physical object once assigned is fixed for the lifetime
465 * of the obj, so we can safely drop the lock and continue
466 * to access vaddr.
467 */
468 mutex_unlock(&dev->struct_mutex);
469 unwritten = copy_from_user(vaddr, user_data, args->size);
470 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
471 if (unwritten) {
472 ret = -EFAULT;
473 goto out;
474 }
00731155
CW
475 }
476
6a2c4232 477 drm_clflush_virt_range(vaddr, args->size);
c033666a 478 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
479
480out:
de152b62 481 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 482 return ret;
00731155
CW
483}
484
42dcedd4
CW
485void *i915_gem_object_alloc(struct drm_device *dev)
486{
fac5e23e 487 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 488 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
489}
490
491void i915_gem_object_free(struct drm_i915_gem_object *obj)
492{
fac5e23e 493 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 494 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
495}
496
ff72145b
DA
497static int
498i915_gem_create(struct drm_file *file,
499 struct drm_device *dev,
500 uint64_t size,
501 uint32_t *handle_p)
673a394b 502{
05394f39 503 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
504 int ret;
505 u32 handle;
673a394b 506
ff72145b 507 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
508 if (size == 0)
509 return -EINVAL;
673a394b
EA
510
511 /* Allocate the new object */
d37cd8a8 512 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
513 if (IS_ERR(obj))
514 return PTR_ERR(obj);
673a394b 515
05394f39 516 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 517 /* drop reference from allocate - handle holds it now */
34911fd3 518 i915_gem_object_put_unlocked(obj);
d861e338
DV
519 if (ret)
520 return ret;
202f2fef 521
ff72145b 522 *handle_p = handle;
673a394b
EA
523 return 0;
524}
525
ff72145b
DA
526int
527i915_gem_dumb_create(struct drm_file *file,
528 struct drm_device *dev,
529 struct drm_mode_create_dumb *args)
530{
531 /* have to work out size/pitch and return them */
de45eaf7 532 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
533 args->size = args->pitch * args->height;
534 return i915_gem_create(file, dev,
da6b51d0 535 args->size, &args->handle);
ff72145b
DA
536}
537
ff72145b
DA
538/**
539 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
540 * @dev: drm device pointer
541 * @data: ioctl data blob
542 * @file: drm file pointer
ff72145b
DA
543 */
544int
545i915_gem_create_ioctl(struct drm_device *dev, void *data,
546 struct drm_file *file)
547{
548 struct drm_i915_gem_create *args = data;
63ed2cb2 549
ff72145b 550 return i915_gem_create(file, dev,
da6b51d0 551 args->size, &args->handle);
ff72145b
DA
552}
553
8461d226
DV
554static inline int
555__copy_to_user_swizzled(char __user *cpu_vaddr,
556 const char *gpu_vaddr, int gpu_offset,
557 int length)
558{
559 int ret, cpu_offset = 0;
560
561 while (length > 0) {
562 int cacheline_end = ALIGN(gpu_offset + 1, 64);
563 int this_length = min(cacheline_end - gpu_offset, length);
564 int swizzled_gpu_offset = gpu_offset ^ 64;
565
566 ret = __copy_to_user(cpu_vaddr + cpu_offset,
567 gpu_vaddr + swizzled_gpu_offset,
568 this_length);
569 if (ret)
570 return ret + length;
571
572 cpu_offset += this_length;
573 gpu_offset += this_length;
574 length -= this_length;
575 }
576
577 return 0;
578}
579
8c59967c 580static inline int
4f0c7cfb
BW
581__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
582 const char __user *cpu_vaddr,
8c59967c
DV
583 int length)
584{
585 int ret, cpu_offset = 0;
586
587 while (length > 0) {
588 int cacheline_end = ALIGN(gpu_offset + 1, 64);
589 int this_length = min(cacheline_end - gpu_offset, length);
590 int swizzled_gpu_offset = gpu_offset ^ 64;
591
592 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
593 cpu_vaddr + cpu_offset,
594 this_length);
595 if (ret)
596 return ret + length;
597
598 cpu_offset += this_length;
599 gpu_offset += this_length;
600 length -= this_length;
601 }
602
603 return 0;
604}
605
4c914c0c
BV
606/*
607 * Pins the specified object's pages and synchronizes the object with
608 * GPU accesses. Sets needs_clflush to non-zero if the caller should
609 * flush the object from the CPU cache.
610 */
611int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 612 unsigned int *needs_clflush)
4c914c0c
BV
613{
614 int ret;
615
616 *needs_clflush = 0;
617
43394c7d
CW
618 if (!i915_gem_object_has_struct_page(obj))
619 return -ENODEV;
4c914c0c 620
c13d87ea
CW
621 ret = i915_gem_object_wait_rendering(obj, true);
622 if (ret)
623 return ret;
624
9764951e
CW
625 ret = i915_gem_object_get_pages(obj);
626 if (ret)
627 return ret;
628
629 i915_gem_object_pin_pages(obj);
630
a314d5cb
CW
631 i915_gem_object_flush_gtt_write_domain(obj);
632
43394c7d
CW
633 /* If we're not in the cpu read domain, set ourself into the gtt
634 * read domain and manually flush cachelines (if required). This
635 * optimizes for the case when the gpu will dirty the data
636 * anyway again before the next pread happens.
637 */
638 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
639 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
640 obj->cache_level);
43394c7d 641
43394c7d
CW
642 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
643 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
644 if (ret)
645 goto err_unpin;
646
43394c7d 647 *needs_clflush = 0;
4c914c0c
BV
648 }
649
9764951e 650 /* return with the pages pinned */
43394c7d 651 return 0;
9764951e
CW
652
653err_unpin:
654 i915_gem_object_unpin_pages(obj);
655 return ret;
43394c7d
CW
656}
657
658int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
659 unsigned int *needs_clflush)
660{
661 int ret;
662
663 *needs_clflush = 0;
664 if (!i915_gem_object_has_struct_page(obj))
665 return -ENODEV;
666
667 ret = i915_gem_object_wait_rendering(obj, false);
668 if (ret)
669 return ret;
670
9764951e
CW
671 ret = i915_gem_object_get_pages(obj);
672 if (ret)
673 return ret;
674
675 i915_gem_object_pin_pages(obj);
676
a314d5cb
CW
677 i915_gem_object_flush_gtt_write_domain(obj);
678
43394c7d
CW
679 /* If we're not in the cpu write domain, set ourself into the
680 * gtt write domain and manually flush cachelines (as required).
681 * This optimizes for the case when the gpu will use the data
682 * right away and we therefore have to clflush anyway.
683 */
684 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
685 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
686
687 /* Same trick applies to invalidate partially written cachelines read
688 * before writing.
689 */
690 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
691 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
692 obj->cache_level);
693
43394c7d
CW
694 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
695 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
696 if (ret)
697 goto err_unpin;
698
43394c7d
CW
699 *needs_clflush = 0;
700 }
701
702 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
703 obj->cache_dirty = true;
704
705 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
706 obj->dirty = 1;
9764951e 707 /* return with the pages pinned */
43394c7d 708 return 0;
9764951e
CW
709
710err_unpin:
711 i915_gem_object_unpin_pages(obj);
712 return ret;
4c914c0c
BV
713}
714
d174bd64
DV
715/* Per-page copy function for the shmem pread fastpath.
716 * Flushes invalid cachelines before reading the target if
717 * needs_clflush is set. */
eb01459f 718static int
d174bd64
DV
719shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
720 char __user *user_data,
721 bool page_do_bit17_swizzling, bool needs_clflush)
722{
723 char *vaddr;
724 int ret;
725
e7e58eb5 726 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
727 return -EINVAL;
728
729 vaddr = kmap_atomic(page);
730 if (needs_clflush)
731 drm_clflush_virt_range(vaddr + shmem_page_offset,
732 page_length);
733 ret = __copy_to_user_inatomic(user_data,
734 vaddr + shmem_page_offset,
735 page_length);
736 kunmap_atomic(vaddr);
737
f60d7f0c 738 return ret ? -EFAULT : 0;
d174bd64
DV
739}
740
23c18c71
DV
741static void
742shmem_clflush_swizzled_range(char *addr, unsigned long length,
743 bool swizzled)
744{
e7e58eb5 745 if (unlikely(swizzled)) {
23c18c71
DV
746 unsigned long start = (unsigned long) addr;
747 unsigned long end = (unsigned long) addr + length;
748
749 /* For swizzling simply ensure that we always flush both
750 * channels. Lame, but simple and it works. Swizzled
751 * pwrite/pread is far from a hotpath - current userspace
752 * doesn't use it at all. */
753 start = round_down(start, 128);
754 end = round_up(end, 128);
755
756 drm_clflush_virt_range((void *)start, end - start);
757 } else {
758 drm_clflush_virt_range(addr, length);
759 }
760
761}
762
d174bd64
DV
763/* Only difference to the fast-path function is that this can handle bit17
764 * and uses non-atomic copy and kmap functions. */
765static int
766shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
767 char __user *user_data,
768 bool page_do_bit17_swizzling, bool needs_clflush)
769{
770 char *vaddr;
771 int ret;
772
773 vaddr = kmap(page);
774 if (needs_clflush)
23c18c71
DV
775 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
776 page_length,
777 page_do_bit17_swizzling);
d174bd64
DV
778
779 if (page_do_bit17_swizzling)
780 ret = __copy_to_user_swizzled(user_data,
781 vaddr, shmem_page_offset,
782 page_length);
783 else
784 ret = __copy_to_user(user_data,
785 vaddr + shmem_page_offset,
786 page_length);
787 kunmap(page);
788
f60d7f0c 789 return ret ? - EFAULT : 0;
d174bd64
DV
790}
791
b50a5371
AS
792static inline unsigned long
793slow_user_access(struct io_mapping *mapping,
794 uint64_t page_base, int page_offset,
795 char __user *user_data,
796 unsigned long length, bool pwrite)
797{
798 void __iomem *ioaddr;
799 void *vaddr;
800 uint64_t unwritten;
801
802 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
803 /* We can use the cpu mem copy function because this is X86. */
804 vaddr = (void __force *)ioaddr + page_offset;
805 if (pwrite)
806 unwritten = __copy_from_user(vaddr, user_data, length);
807 else
808 unwritten = __copy_to_user(user_data, vaddr, length);
809
810 io_mapping_unmap(ioaddr);
811 return unwritten;
812}
813
814static int
815i915_gem_gtt_pread(struct drm_device *dev,
816 struct drm_i915_gem_object *obj, uint64_t size,
817 uint64_t data_offset, uint64_t data_ptr)
818{
fac5e23e 819 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371 820 struct i915_ggtt *ggtt = &dev_priv->ggtt;
058d88c4 821 struct i915_vma *vma;
b50a5371
AS
822 struct drm_mm_node node;
823 char __user *user_data;
824 uint64_t remain;
825 uint64_t offset;
826 int ret;
827
058d88c4 828 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
18034584
CW
829 if (!IS_ERR(vma)) {
830 node.start = i915_ggtt_offset(vma);
831 node.allocated = false;
49ef5294 832 ret = i915_vma_put_fence(vma);
18034584
CW
833 if (ret) {
834 i915_vma_unpin(vma);
835 vma = ERR_PTR(ret);
836 }
837 }
058d88c4 838 if (IS_ERR(vma)) {
b50a5371
AS
839 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
840 if (ret)
841 goto out;
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret) {
845 remove_mappable_node(&node);
846 goto out;
847 }
848
849 i915_gem_object_pin_pages(obj);
b50a5371
AS
850 }
851
852 ret = i915_gem_object_set_to_gtt_domain(obj, false);
853 if (ret)
854 goto out_unpin;
855
856 user_data = u64_to_user_ptr(data_ptr);
857 remain = size;
858 offset = data_offset;
859
860 mutex_unlock(&dev->struct_mutex);
861 if (likely(!i915.prefault_disable)) {
862 ret = fault_in_multipages_writeable(user_data, remain);
863 if (ret) {
864 mutex_lock(&dev->struct_mutex);
865 goto out_unpin;
866 }
867 }
868
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * page_base = page offset within aperture
873 * page_offset = offset within page
874 * page_length = bytes to copy for this page
875 */
876 u32 page_base = node.start;
877 unsigned page_offset = offset_in_page(offset);
878 unsigned page_length = PAGE_SIZE - page_offset;
879 page_length = remain < page_length ? remain : page_length;
880 if (node.allocated) {
881 wmb();
882 ggtt->base.insert_page(&ggtt->base,
883 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
884 node.start,
885 I915_CACHE_NONE, 0);
886 wmb();
887 } else {
888 page_base += offset & PAGE_MASK;
889 }
890 /* This is a slow read/write as it tries to read from
891 * and write to user memory which may result into page
892 * faults, and so we cannot perform this under struct_mutex.
893 */
f7bbe788 894 if (slow_user_access(&ggtt->mappable, page_base,
b50a5371
AS
895 page_offset, user_data,
896 page_length, false)) {
897 ret = -EFAULT;
898 break;
899 }
900
901 remain -= page_length;
902 user_data += page_length;
903 offset += page_length;
904 }
905
906 mutex_lock(&dev->struct_mutex);
907 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
908 /* The user has modified the object whilst we tried
909 * reading from it, and we now have no idea what domain
910 * the pages should be in. As we have just been touching
911 * them directly, flush everything back to the GTT
912 * domain.
913 */
914 ret = i915_gem_object_set_to_gtt_domain(obj, false);
915 }
916
917out_unpin:
918 if (node.allocated) {
919 wmb();
920 ggtt->base.clear_range(&ggtt->base,
921 node.start, node.size,
922 true);
923 i915_gem_object_unpin_pages(obj);
924 remove_mappable_node(&node);
925 } else {
058d88c4 926 i915_vma_unpin(vma);
b50a5371
AS
927 }
928out:
929 return ret;
930}
931
eb01459f 932static int
dbf7bff0
DV
933i915_gem_shmem_pread(struct drm_device *dev,
934 struct drm_i915_gem_object *obj,
935 struct drm_i915_gem_pread *args,
936 struct drm_file *file)
eb01459f 937{
8461d226 938 char __user *user_data;
eb01459f 939 ssize_t remain;
8461d226 940 loff_t offset;
eb2c0c81 941 int shmem_page_offset, page_length, ret = 0;
8461d226 942 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 943 int prefaulted = 0;
8489731c 944 int needs_clflush = 0;
67d5a50c 945 struct sg_page_iter sg_iter;
eb01459f 946
4c914c0c 947 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
948 if (ret)
949 return ret;
950
43394c7d
CW
951 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952 user_data = u64_to_user_ptr(args->data_ptr);
8461d226 953 offset = args->offset;
43394c7d 954 remain = args->size;
eb01459f 955
67d5a50c
ID
956 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
957 offset >> PAGE_SHIFT) {
2db76d7c 958 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
959
960 if (remain <= 0)
961 break;
962
eb01459f
EA
963 /* Operation in this page
964 *
eb01459f 965 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
966 * page_length = bytes to copy for this page
967 */
c8cbbb8b 968 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
969 page_length = remain;
970 if ((shmem_page_offset + page_length) > PAGE_SIZE)
971 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 972
8461d226
DV
973 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
974 (page_to_phys(page) & (1 << 17)) != 0;
975
d174bd64
DV
976 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 needs_clflush);
979 if (ret == 0)
980 goto next_page;
dbf7bff0 981
dbf7bff0
DV
982 mutex_unlock(&dev->struct_mutex);
983
d330a953 984 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 985 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
986 /* Userspace is tricking us, but we've already clobbered
987 * its pages with the prefault and promised to write the
988 * data up to the first fault. Hence ignore any errors
989 * and just continue. */
990 (void)ret;
991 prefaulted = 1;
992 }
eb01459f 993
d174bd64
DV
994 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
995 user_data, page_do_bit17_swizzling,
996 needs_clflush);
eb01459f 997
dbf7bff0 998 mutex_lock(&dev->struct_mutex);
f60d7f0c 999
f60d7f0c 1000 if (ret)
8461d226 1001 goto out;
8461d226 1002
17793c9a 1003next_page:
eb01459f 1004 remain -= page_length;
8461d226 1005 user_data += page_length;
eb01459f
EA
1006 offset += page_length;
1007 }
1008
4f27b75d 1009out:
43394c7d 1010 i915_gem_obj_finish_shmem_access(obj);
f60d7f0c 1011
eb01459f
EA
1012 return ret;
1013}
1014
673a394b
EA
1015/**
1016 * Reads data from the object referenced by handle.
14bb2c11
TU
1017 * @dev: drm device pointer
1018 * @data: ioctl data blob
1019 * @file: drm file pointer
673a394b
EA
1020 *
1021 * On error, the contents of *data are undefined.
1022 */
1023int
1024i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1025 struct drm_file *file)
673a394b
EA
1026{
1027 struct drm_i915_gem_pread *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
35b62a89 1029 int ret = 0;
673a394b 1030
51311d0a
CW
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_WRITE,
3ed605bc 1035 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
03ac0642 1039 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1040 if (!obj)
1041 return -ENOENT;
673a394b 1042
7dcd2499 1043 /* Bounds check source. */
05394f39
CW
1044 if (args->offset > obj->base.size ||
1045 args->size > obj->base.size - args->offset) {
ce9d419d 1046 ret = -EINVAL;
258a5ede 1047 goto err;
ce9d419d
CW
1048 }
1049
db53a302
CW
1050 trace_i915_gem_object_pread(obj, args->offset, args->size);
1051
258a5ede
CW
1052 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1053 if (ret)
1054 goto err;
1055
1056 ret = i915_mutex_lock_interruptible(dev);
1057 if (ret)
1058 goto err;
1059
dbf7bff0 1060 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 1061
b50a5371 1062 /* pread for non shmem backed objects */
1dd5b6f2
CW
1063 if (ret == -EFAULT || ret == -ENODEV) {
1064 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
1065 ret = i915_gem_gtt_pread(dev, obj, args->size,
1066 args->offset, args->data_ptr);
1dd5b6f2
CW
1067 intel_runtime_pm_put(to_i915(dev));
1068 }
b50a5371 1069
f8c417cd 1070 i915_gem_object_put(obj);
4f27b75d 1071 mutex_unlock(&dev->struct_mutex);
258a5ede
CW
1072
1073 return ret;
1074
1075err:
1076 i915_gem_object_put_unlocked(obj);
eb01459f 1077 return ret;
673a394b
EA
1078}
1079
0839ccb8
KP
1080/* This is the fast write path which cannot handle
1081 * page faults in the source data
9b7530cc 1082 */
0839ccb8
KP
1083
1084static inline int
1085fast_user_write(struct io_mapping *mapping,
1086 loff_t page_base, int page_offset,
1087 char __user *user_data,
1088 int length)
9b7530cc 1089{
4f0c7cfb
BW
1090 void __iomem *vaddr_atomic;
1091 void *vaddr;
0839ccb8 1092 unsigned long unwritten;
9b7530cc 1093
3e4d3af5 1094 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
1095 /* We can use the cpu mem copy function because this is X86. */
1096 vaddr = (void __force*)vaddr_atomic + page_offset;
1097 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 1098 user_data, length);
3e4d3af5 1099 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 1100 return unwritten;
0839ccb8
KP
1101}
1102
3de09aa3
EA
1103/**
1104 * This is the fast pwrite path, where we copy the data directly from the
1105 * user into the GTT, uncached.
62f90b38 1106 * @i915: i915 device private data
14bb2c11
TU
1107 * @obj: i915 gem object
1108 * @args: pwrite arguments structure
1109 * @file: drm file pointer
3de09aa3 1110 */
673a394b 1111static int
4f1959ee 1112i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 1113 struct drm_i915_gem_object *obj,
3de09aa3 1114 struct drm_i915_gem_pwrite *args,
05394f39 1115 struct drm_file *file)
673a394b 1116{
4f1959ee 1117 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1118 struct drm_device *dev = obj->base.dev;
058d88c4 1119 struct i915_vma *vma;
4f1959ee
AS
1120 struct drm_mm_node node;
1121 uint64_t remain, offset;
673a394b 1122 char __user *user_data;
4f1959ee 1123 int ret;
b50a5371
AS
1124 bool hit_slow_path = false;
1125
3e510a8e 1126 if (i915_gem_object_is_tiled(obj))
b50a5371 1127 return -EFAULT;
935aaa69 1128
058d88c4 1129 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1130 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1131 if (!IS_ERR(vma)) {
1132 node.start = i915_ggtt_offset(vma);
1133 node.allocated = false;
49ef5294 1134 ret = i915_vma_put_fence(vma);
18034584
CW
1135 if (ret) {
1136 i915_vma_unpin(vma);
1137 vma = ERR_PTR(ret);
1138 }
1139 }
058d88c4 1140 if (IS_ERR(vma)) {
4f1959ee
AS
1141 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1142 if (ret)
1143 goto out;
1144
1145 ret = i915_gem_object_get_pages(obj);
1146 if (ret) {
1147 remove_mappable_node(&node);
1148 goto out;
1149 }
1150
1151 i915_gem_object_pin_pages(obj);
4f1959ee 1152 }
935aaa69
DV
1153
1154 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1155 if (ret)
1156 goto out_unpin;
1157
b19482d7 1158 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4f1959ee 1159 obj->dirty = true;
063e4e6b 1160
4f1959ee
AS
1161 user_data = u64_to_user_ptr(args->data_ptr);
1162 offset = args->offset;
1163 remain = args->size;
1164 while (remain) {
673a394b
EA
1165 /* Operation in this page
1166 *
0839ccb8
KP
1167 * page_base = page offset within aperture
1168 * page_offset = offset within page
1169 * page_length = bytes to copy for this page
673a394b 1170 */
4f1959ee
AS
1171 u32 page_base = node.start;
1172 unsigned page_offset = offset_in_page(offset);
1173 unsigned page_length = PAGE_SIZE - page_offset;
1174 page_length = remain < page_length ? remain : page_length;
1175 if (node.allocated) {
1176 wmb(); /* flush the write before we modify the GGTT */
1177 ggtt->base.insert_page(&ggtt->base,
1178 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1179 node.start, I915_CACHE_NONE, 0);
1180 wmb(); /* flush modifications to the GGTT (insert_page) */
1181 } else {
1182 page_base += offset & PAGE_MASK;
1183 }
0839ccb8 1184 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1185 * source page isn't available. Return the error and we'll
1186 * retry in the slow path.
b50a5371
AS
1187 * If the object is non-shmem backed, we retry again with the
1188 * path that handles page fault.
0839ccb8 1189 */
f7bbe788 1190 if (fast_user_write(&ggtt->mappable, page_base,
935aaa69 1191 page_offset, user_data, page_length)) {
b50a5371
AS
1192 hit_slow_path = true;
1193 mutex_unlock(&dev->struct_mutex);
f7bbe788 1194 if (slow_user_access(&ggtt->mappable,
b50a5371
AS
1195 page_base,
1196 page_offset, user_data,
1197 page_length, true)) {
1198 ret = -EFAULT;
1199 mutex_lock(&dev->struct_mutex);
1200 goto out_flush;
1201 }
1202
1203 mutex_lock(&dev->struct_mutex);
935aaa69 1204 }
673a394b 1205
0839ccb8
KP
1206 remain -= page_length;
1207 user_data += page_length;
1208 offset += page_length;
673a394b 1209 }
673a394b 1210
063e4e6b 1211out_flush:
b50a5371
AS
1212 if (hit_slow_path) {
1213 if (ret == 0 &&
1214 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1215 /* The user has modified the object whilst we tried
1216 * reading from it, and we now have no idea what domain
1217 * the pages should be in. As we have just been touching
1218 * them directly, flush everything back to the GTT
1219 * domain.
1220 */
1221 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1222 }
1223 }
1224
b19482d7 1225 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
935aaa69 1226out_unpin:
4f1959ee
AS
1227 if (node.allocated) {
1228 wmb();
1229 ggtt->base.clear_range(&ggtt->base,
1230 node.start, node.size,
1231 true);
1232 i915_gem_object_unpin_pages(obj);
1233 remove_mappable_node(&node);
1234 } else {
058d88c4 1235 i915_vma_unpin(vma);
4f1959ee 1236 }
935aaa69 1237out:
3de09aa3 1238 return ret;
673a394b
EA
1239}
1240
d174bd64
DV
1241/* Per-page copy function for the shmem pwrite fastpath.
1242 * Flushes invalid cachelines before writing to the target if
1243 * needs_clflush_before is set and flushes out any written cachelines after
1244 * writing if needs_clflush is set. */
3043c60c 1245static int
d174bd64
DV
1246shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1247 char __user *user_data,
1248 bool page_do_bit17_swizzling,
1249 bool needs_clflush_before,
1250 bool needs_clflush_after)
673a394b 1251{
d174bd64 1252 char *vaddr;
673a394b 1253 int ret;
3de09aa3 1254
e7e58eb5 1255 if (unlikely(page_do_bit17_swizzling))
d174bd64 1256 return -EINVAL;
3de09aa3 1257
d174bd64
DV
1258 vaddr = kmap_atomic(page);
1259 if (needs_clflush_before)
1260 drm_clflush_virt_range(vaddr + shmem_page_offset,
1261 page_length);
c2831a94
CW
1262 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1263 user_data, page_length);
d174bd64
DV
1264 if (needs_clflush_after)
1265 drm_clflush_virt_range(vaddr + shmem_page_offset,
1266 page_length);
1267 kunmap_atomic(vaddr);
3de09aa3 1268
755d2218 1269 return ret ? -EFAULT : 0;
3de09aa3
EA
1270}
1271
d174bd64
DV
1272/* Only difference to the fast-path function is that this can handle bit17
1273 * and uses non-atomic copy and kmap functions. */
3043c60c 1274static int
d174bd64
DV
1275shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1276 char __user *user_data,
1277 bool page_do_bit17_swizzling,
1278 bool needs_clflush_before,
1279 bool needs_clflush_after)
673a394b 1280{
d174bd64
DV
1281 char *vaddr;
1282 int ret;
e5281ccd 1283
d174bd64 1284 vaddr = kmap(page);
e7e58eb5 1285 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1286 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1287 page_length,
1288 page_do_bit17_swizzling);
d174bd64
DV
1289 if (page_do_bit17_swizzling)
1290 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1291 user_data,
1292 page_length);
d174bd64
DV
1293 else
1294 ret = __copy_from_user(vaddr + shmem_page_offset,
1295 user_data,
1296 page_length);
1297 if (needs_clflush_after)
23c18c71
DV
1298 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1299 page_length,
1300 page_do_bit17_swizzling);
d174bd64 1301 kunmap(page);
40123c1f 1302
755d2218 1303 return ret ? -EFAULT : 0;
40123c1f
EA
1304}
1305
40123c1f 1306static int
e244a443
DV
1307i915_gem_shmem_pwrite(struct drm_device *dev,
1308 struct drm_i915_gem_object *obj,
1309 struct drm_i915_gem_pwrite *args,
1310 struct drm_file *file)
40123c1f 1311{
40123c1f 1312 ssize_t remain;
8c59967c
DV
1313 loff_t offset;
1314 char __user *user_data;
eb2c0c81 1315 int shmem_page_offset, page_length, ret = 0;
8c59967c 1316 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1317 int hit_slowpath = 0;
43394c7d 1318 unsigned int needs_clflush;
67d5a50c 1319 struct sg_page_iter sg_iter;
40123c1f 1320
43394c7d 1321 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
755d2218
CW
1322 if (ret)
1323 return ret;
1324
43394c7d
CW
1325 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1326 user_data = u64_to_user_ptr(args->data_ptr);
673a394b 1327 offset = args->offset;
43394c7d 1328 remain = args->size;
673a394b 1329
67d5a50c
ID
1330 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1331 offset >> PAGE_SHIFT) {
2db76d7c 1332 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1333 int partial_cacheline_write;
e5281ccd 1334
9da3da66
CW
1335 if (remain <= 0)
1336 break;
1337
40123c1f
EA
1338 /* Operation in this page
1339 *
40123c1f 1340 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1341 * page_length = bytes to copy for this page
1342 */
c8cbbb8b 1343 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1344
1345 page_length = remain;
1346 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1347 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1348
58642885
DV
1349 /* If we don't overwrite a cacheline completely we need to be
1350 * careful to have up-to-date data by first clflushing. Don't
1351 * overcomplicate things and flush the entire patch. */
43394c7d 1352 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
58642885
DV
1353 ((shmem_page_offset | page_length)
1354 & (boot_cpu_data.x86_clflush_size - 1));
1355
8c59967c
DV
1356 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1357 (page_to_phys(page) & (1 << 17)) != 0;
1358
d174bd64
DV
1359 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1360 user_data, page_do_bit17_swizzling,
1361 partial_cacheline_write,
43394c7d 1362 needs_clflush & CLFLUSH_AFTER);
d174bd64
DV
1363 if (ret == 0)
1364 goto next_page;
e244a443
DV
1365
1366 hit_slowpath = 1;
e244a443 1367 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1368 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1369 user_data, page_do_bit17_swizzling,
1370 partial_cacheline_write,
43394c7d 1371 needs_clflush & CLFLUSH_AFTER);
40123c1f 1372
e244a443 1373 mutex_lock(&dev->struct_mutex);
755d2218 1374
755d2218 1375 if (ret)
8c59967c 1376 goto out;
8c59967c 1377
17793c9a 1378next_page:
40123c1f 1379 remain -= page_length;
8c59967c 1380 user_data += page_length;
40123c1f 1381 offset += page_length;
673a394b
EA
1382 }
1383
fbd5a26d 1384out:
43394c7d 1385 i915_gem_obj_finish_shmem_access(obj);
755d2218 1386
e244a443 1387 if (hit_slowpath) {
8dcf015e
DV
1388 /*
1389 * Fixup: Flush cpu caches in case we didn't flush the dirty
1390 * cachelines in-line while writing and the object moved
1391 * out of the cpu write domain while we've dropped the lock.
1392 */
43394c7d 1393 if (!(needs_clflush & CLFLUSH_AFTER) &&
8dcf015e 1394 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1395 if (i915_gem_clflush_object(obj, obj->pin_display))
43394c7d 1396 needs_clflush |= CLFLUSH_AFTER;
e244a443 1397 }
8c59967c 1398 }
673a394b 1399
43394c7d 1400 if (needs_clflush & CLFLUSH_AFTER)
c033666a 1401 i915_gem_chipset_flush(to_i915(dev));
58642885 1402
de152b62 1403 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1404 return ret;
673a394b
EA
1405}
1406
1407/**
1408 * Writes data to the object referenced by handle.
14bb2c11
TU
1409 * @dev: drm device
1410 * @data: ioctl data blob
1411 * @file: drm file
673a394b
EA
1412 *
1413 * On error, the contents of the buffer that were to be modified are undefined.
1414 */
1415int
1416i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1417 struct drm_file *file)
673a394b 1418{
fac5e23e 1419 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1420 struct drm_i915_gem_pwrite *args = data;
05394f39 1421 struct drm_i915_gem_object *obj;
51311d0a
CW
1422 int ret;
1423
1424 if (args->size == 0)
1425 return 0;
1426
1427 if (!access_ok(VERIFY_READ,
3ed605bc 1428 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1429 args->size))
1430 return -EFAULT;
1431
d330a953 1432 if (likely(!i915.prefault_disable)) {
3ed605bc 1433 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1434 args->size);
1435 if (ret)
1436 return -EFAULT;
1437 }
673a394b 1438
03ac0642 1439 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1440 if (!obj)
1441 return -ENOENT;
673a394b 1442
7dcd2499 1443 /* Bounds check destination. */
05394f39
CW
1444 if (args->offset > obj->base.size ||
1445 args->size > obj->base.size - args->offset) {
ce9d419d 1446 ret = -EINVAL;
258a5ede 1447 goto err;
ce9d419d
CW
1448 }
1449
db53a302
CW
1450 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1451
258a5ede
CW
1452 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1453 if (ret)
1454 goto err;
1455
1456 intel_runtime_pm_get(dev_priv);
1457
1458 ret = i915_mutex_lock_interruptible(dev);
1459 if (ret)
1460 goto err_rpm;
1461
935aaa69 1462 ret = -EFAULT;
673a394b
EA
1463 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1464 * it would end up going through the fenced access, and we'll get
1465 * different detiling behavior between reading and writing.
1466 * pread/pwrite currently are reading and writing from the CPU
1467 * perspective, requiring manual detiling by the client.
1468 */
6eae0059
CW
1469 if (!i915_gem_object_has_struct_page(obj) ||
1470 cpu_write_needs_clflush(obj)) {
4f1959ee 1471 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1472 /* Note that the gtt paths might fail with non-page-backed user
1473 * pointers (e.g. gtt mappings when moving data between
1474 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1475 }
673a394b 1476
d1054ee4 1477 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1478 if (obj->phys_handle)
1479 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1480 else
43394c7d 1481 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
6a2c4232 1482 }
5c0480f2 1483
f8c417cd 1484 i915_gem_object_put(obj);
fbd5a26d 1485 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1486 intel_runtime_pm_put(dev_priv);
1487
673a394b 1488 return ret;
258a5ede
CW
1489
1490err_rpm:
1491 intel_runtime_pm_put(dev_priv);
1492err:
1493 i915_gem_object_put_unlocked(obj);
1494 return ret;
673a394b
EA
1495}
1496
d243ad82 1497static inline enum fb_op_origin
aeecc969
CW
1498write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1499{
50349247
CW
1500 return (domain == I915_GEM_DOMAIN_GTT ?
1501 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1502}
1503
673a394b 1504/**
2ef7eeaa
EA
1505 * Called when user space prepares to use an object with the CPU, either
1506 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1507 * @dev: drm device
1508 * @data: ioctl data blob
1509 * @file: drm file
673a394b
EA
1510 */
1511int
1512i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1513 struct drm_file *file)
673a394b
EA
1514{
1515 struct drm_i915_gem_set_domain *args = data;
05394f39 1516 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1517 uint32_t read_domains = args->read_domains;
1518 uint32_t write_domain = args->write_domain;
673a394b
EA
1519 int ret;
1520
2ef7eeaa 1521 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1522 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1523 return -EINVAL;
1524
1525 /* Having something in the write domain implies it's in the read
1526 * domain, and only that read domain. Enforce that in the request.
1527 */
1528 if (write_domain != 0 && read_domains != write_domain)
1529 return -EINVAL;
1530
03ac0642 1531 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1532 if (!obj)
1533 return -ENOENT;
673a394b 1534
3236f57a
CW
1535 /* Try to flush the object off the GPU without holding the lock.
1536 * We will repeat the flush holding the lock in the normal manner
1537 * to catch cases where we are gazumped.
1538 */
b8f9096d
CW
1539 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1540 if (ret)
1541 goto err;
1542
1543 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1544 if (ret)
b8f9096d 1545 goto err;
3236f57a 1546
43566ded 1547 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1548 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1549 else
e47c68e9 1550 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1551
031b698a 1552 if (write_domain != 0)
aeecc969 1553 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1554
f8c417cd 1555 i915_gem_object_put(obj);
673a394b
EA
1556 mutex_unlock(&dev->struct_mutex);
1557 return ret;
b8f9096d
CW
1558
1559err:
1560 i915_gem_object_put_unlocked(obj);
1561 return ret;
673a394b
EA
1562}
1563
1564/**
1565 * Called when user space has done writes to this buffer
14bb2c11
TU
1566 * @dev: drm device
1567 * @data: ioctl data blob
1568 * @file: drm file
673a394b
EA
1569 */
1570int
1571i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1572 struct drm_file *file)
673a394b
EA
1573{
1574 struct drm_i915_gem_sw_finish *args = data;
05394f39 1575 struct drm_i915_gem_object *obj;
c21724cc 1576 int err = 0;
1d7cfea1 1577
03ac0642 1578 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1579 if (!obj)
1580 return -ENOENT;
673a394b 1581
673a394b 1582 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1583 if (READ_ONCE(obj->pin_display)) {
1584 err = i915_mutex_lock_interruptible(dev);
1585 if (!err) {
1586 i915_gem_object_flush_cpu_write_domain(obj);
1587 mutex_unlock(&dev->struct_mutex);
1588 }
1589 }
e47c68e9 1590
c21724cc
CW
1591 i915_gem_object_put_unlocked(obj);
1592 return err;
673a394b
EA
1593}
1594
1595/**
14bb2c11
TU
1596 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1597 * it is mapped to.
1598 * @dev: drm device
1599 * @data: ioctl data blob
1600 * @file: drm file
673a394b
EA
1601 *
1602 * While the mapping holds a reference on the contents of the object, it doesn't
1603 * imply a ref on the object itself.
34367381
DV
1604 *
1605 * IMPORTANT:
1606 *
1607 * DRM driver writers who look a this function as an example for how to do GEM
1608 * mmap support, please don't implement mmap support like here. The modern way
1609 * to implement DRM mmap support is with an mmap offset ioctl (like
1610 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1611 * That way debug tooling like valgrind will understand what's going on, hiding
1612 * the mmap call in a driver private ioctl will break that. The i915 driver only
1613 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1614 */
1615int
1616i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1617 struct drm_file *file)
673a394b
EA
1618{
1619 struct drm_i915_gem_mmap *args = data;
03ac0642 1620 struct drm_i915_gem_object *obj;
673a394b
EA
1621 unsigned long addr;
1622
1816f923
AG
1623 if (args->flags & ~(I915_MMAP_WC))
1624 return -EINVAL;
1625
568a58e5 1626 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1627 return -ENODEV;
1628
03ac0642
CW
1629 obj = i915_gem_object_lookup(file, args->handle);
1630 if (!obj)
bf79cb91 1631 return -ENOENT;
673a394b 1632
1286ff73
DV
1633 /* prime objects have no backing filp to GEM mmap
1634 * pages from.
1635 */
03ac0642 1636 if (!obj->base.filp) {
34911fd3 1637 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1638 return -EINVAL;
1639 }
1640
03ac0642 1641 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1642 PROT_READ | PROT_WRITE, MAP_SHARED,
1643 args->offset);
1816f923
AG
1644 if (args->flags & I915_MMAP_WC) {
1645 struct mm_struct *mm = current->mm;
1646 struct vm_area_struct *vma;
1647
80a89a5e 1648 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1649 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1650 return -EINTR;
1651 }
1816f923
AG
1652 vma = find_vma(mm, addr);
1653 if (vma)
1654 vma->vm_page_prot =
1655 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1656 else
1657 addr = -ENOMEM;
1658 up_write(&mm->mmap_sem);
aeecc969
CW
1659
1660 /* This may race, but that's ok, it only gets set */
50349247 1661 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1662 }
34911fd3 1663 i915_gem_object_put_unlocked(obj);
673a394b
EA
1664 if (IS_ERR((void *)addr))
1665 return addr;
1666
1667 args->addr_ptr = (uint64_t) addr;
1668
1669 return 0;
1670}
1671
03af84fe
CW
1672static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1673{
1674 u64 size;
1675
1676 size = i915_gem_object_get_stride(obj);
1677 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1678
1679 return size >> PAGE_SHIFT;
1680}
1681
4cc69075
CW
1682/**
1683 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1684 *
1685 * A history of the GTT mmap interface:
1686 *
1687 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1688 * aligned and suitable for fencing, and still fit into the available
1689 * mappable space left by the pinned display objects. A classic problem
1690 * we called the page-fault-of-doom where we would ping-pong between
1691 * two objects that could not fit inside the GTT and so the memcpy
1692 * would page one object in at the expense of the other between every
1693 * single byte.
1694 *
1695 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1696 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1697 * object is too large for the available space (or simply too large
1698 * for the mappable aperture!), a view is created instead and faulted
1699 * into userspace. (This view is aligned and sized appropriately for
1700 * fenced access.)
1701 *
1702 * Restrictions:
1703 *
1704 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1705 * hangs on some architectures, corruption on others. An attempt to service
1706 * a GTT page fault from a snoopable object will generate a SIGBUS.
1707 *
1708 * * the object must be able to fit into RAM (physical memory, though no
1709 * limited to the mappable aperture).
1710 *
1711 *
1712 * Caveats:
1713 *
1714 * * a new GTT page fault will synchronize rendering from the GPU and flush
1715 * all data to system memory. Subsequent access will not be synchronized.
1716 *
1717 * * all mappings are revoked on runtime device suspend.
1718 *
1719 * * there are only 8, 16 or 32 fence registers to share between all users
1720 * (older machines require fence register for display and blitter access
1721 * as well). Contention of the fence registers will cause the previous users
1722 * to be unmapped and any new access will generate new page faults.
1723 *
1724 * * running out of memory while servicing a fault may generate a SIGBUS,
1725 * rather than the expected SIGSEGV.
1726 */
1727int i915_gem_mmap_gtt_version(void)
1728{
1729 return 1;
1730}
1731
de151cf6
JB
1732/**
1733 * i915_gem_fault - fault a page into the GTT
058d88c4 1734 * @area: CPU VMA in question
d9072a3e 1735 * @vmf: fault info
de151cf6
JB
1736 *
1737 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1738 * from userspace. The fault handler takes care of binding the object to
1739 * the GTT (if needed), allocating and programming a fence register (again,
1740 * only if needed based on whether the old reg is still valid or the object
1741 * is tiled) and inserting a new PTE into the faulting process.
1742 *
1743 * Note that the faulting process may involve evicting existing objects
1744 * from the GTT and/or fence registers to make room. So performance may
1745 * suffer if the GTT working set is large or there are few fence registers
1746 * left.
4cc69075
CW
1747 *
1748 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1749 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1750 */
058d88c4 1751int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1752{
03af84fe 1753#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1754 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1755 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1756 struct drm_i915_private *dev_priv = to_i915(dev);
1757 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1758 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1759 struct i915_vma *vma;
de151cf6 1760 pgoff_t page_offset;
82118877 1761 unsigned int flags;
b8f9096d 1762 int ret;
f65c9168 1763
de151cf6 1764 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1765 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1766 PAGE_SHIFT;
1767
db53a302
CW
1768 trace_i915_gem_object_fault(obj, page_offset, true, write);
1769
6e4930f6 1770 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1771 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1772 * repeat the flush holding the lock in the normal manner to catch cases
1773 * where we are gazumped.
1774 */
b8f9096d 1775 ret = __unsafe_wait_rendering(obj, NULL, !write);
6e4930f6 1776 if (ret)
b8f9096d
CW
1777 goto err;
1778
1779 intel_runtime_pm_get(dev_priv);
1780
1781 ret = i915_mutex_lock_interruptible(dev);
1782 if (ret)
1783 goto err_rpm;
6e4930f6 1784
eb119bd6
CW
1785 /* Access to snoopable pages through the GTT is incoherent. */
1786 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1787 ret = -EFAULT;
b8f9096d 1788 goto err_unlock;
eb119bd6
CW
1789 }
1790
82118877
CW
1791 /* If the object is smaller than a couple of partial vma, it is
1792 * not worth only creating a single partial vma - we may as well
1793 * clear enough space for the full object.
1794 */
1795 flags = PIN_MAPPABLE;
1796 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1797 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1798
a61007a8 1799 /* Now pin it into the GTT as needed */
82118877 1800 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1801 if (IS_ERR(vma)) {
1802 struct i915_ggtt_view view;
03af84fe
CW
1803 unsigned int chunk_size;
1804
a61007a8 1805 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1806 chunk_size = MIN_CHUNK_PAGES;
1807 if (i915_gem_object_is_tiled(obj))
1808 chunk_size = max(chunk_size, tile_row_pages(obj));
e7ded2d7 1809
c5ad54cf
JL
1810 memset(&view, 0, sizeof(view));
1811 view.type = I915_GGTT_VIEW_PARTIAL;
1812 view.params.partial.offset = rounddown(page_offset, chunk_size);
1813 view.params.partial.size =
a61007a8 1814 min_t(unsigned int, chunk_size,
058d88c4 1815 (area->vm_end - area->vm_start) / PAGE_SIZE -
c5ad54cf 1816 view.params.partial.offset);
c5ad54cf 1817
aa136d9d
CW
1818 /* If the partial covers the entire object, just create a
1819 * normal VMA.
1820 */
1821 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1822 view.type = I915_GGTT_VIEW_NORMAL;
1823
50349247
CW
1824 /* Userspace is now writing through an untracked VMA, abandon
1825 * all hope that the hardware is able to track future writes.
1826 */
1827 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1828
a61007a8
CW
1829 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1830 }
058d88c4
CW
1831 if (IS_ERR(vma)) {
1832 ret = PTR_ERR(vma);
b8f9096d 1833 goto err_unlock;
058d88c4 1834 }
4a684a41 1835
c9839303
CW
1836 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1837 if (ret)
b8f9096d 1838 goto err_unpin;
74898d7e 1839
49ef5294 1840 ret = i915_vma_get_fence(vma);
d9e86c0e 1841 if (ret)
b8f9096d 1842 goto err_unpin;
7d1c4804 1843
b90b91d8 1844 /* Finally, remap it using the new GTT offset */
c58305af
CW
1845 ret = remap_io_mapping(area,
1846 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1847 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1848 min_t(u64, vma->size, area->vm_end - area->vm_start),
1849 &ggtt->mappable);
1850 if (ret)
1851 goto err_unpin;
a61007a8
CW
1852
1853 obj->fault_mappable = true;
b8f9096d 1854err_unpin:
058d88c4 1855 __i915_vma_unpin(vma);
b8f9096d 1856err_unlock:
de151cf6 1857 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1858err_rpm:
1859 intel_runtime_pm_put(dev_priv);
1860err:
de151cf6 1861 switch (ret) {
d9bc7e9f 1862 case -EIO:
2232f031
DV
1863 /*
1864 * We eat errors when the gpu is terminally wedged to avoid
1865 * userspace unduly crashing (gl has no provisions for mmaps to
1866 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1867 * and so needs to be reported.
1868 */
1869 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1870 ret = VM_FAULT_SIGBUS;
1871 break;
1872 }
045e769a 1873 case -EAGAIN:
571c608d
DV
1874 /*
1875 * EAGAIN means the gpu is hung and we'll wait for the error
1876 * handler to reset everything when re-faulting in
1877 * i915_mutex_lock_interruptible.
d9bc7e9f 1878 */
c715089f
CW
1879 case 0:
1880 case -ERESTARTSYS:
bed636ab 1881 case -EINTR:
e79e0fe3
DR
1882 case -EBUSY:
1883 /*
1884 * EBUSY is ok: this just means that another thread
1885 * already did the job.
1886 */
f65c9168
PZ
1887 ret = VM_FAULT_NOPAGE;
1888 break;
de151cf6 1889 case -ENOMEM:
f65c9168
PZ
1890 ret = VM_FAULT_OOM;
1891 break;
a7c2e1aa 1892 case -ENOSPC:
45d67817 1893 case -EFAULT:
f65c9168
PZ
1894 ret = VM_FAULT_SIGBUS;
1895 break;
de151cf6 1896 default:
a7c2e1aa 1897 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1898 ret = VM_FAULT_SIGBUS;
1899 break;
de151cf6 1900 }
f65c9168 1901 return ret;
de151cf6
JB
1902}
1903
901782b2
CW
1904/**
1905 * i915_gem_release_mmap - remove physical page mappings
1906 * @obj: obj in question
1907 *
af901ca1 1908 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1909 * relinquish ownership of the pages back to the system.
1910 *
1911 * It is vital that we remove the page mapping if we have mapped a tiled
1912 * object through the GTT and then lose the fence register due to
1913 * resource pressure. Similarly if the object has been moved out of the
1914 * aperture, than pages mapped into userspace must be revoked. Removing the
1915 * mapping will then trigger a page fault on the next user access, allowing
1916 * fixup by i915_gem_fault().
1917 */
d05ca301 1918void
05394f39 1919i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1920{
349f2ccf
CW
1921 /* Serialisation between user GTT access and our code depends upon
1922 * revoking the CPU's PTE whilst the mutex is held. The next user
1923 * pagefault then has to wait until we release the mutex.
1924 */
1925 lockdep_assert_held(&obj->base.dev->struct_mutex);
1926
6299f992
CW
1927 if (!obj->fault_mappable)
1928 return;
901782b2 1929
6796cb16
DH
1930 drm_vma_node_unmap(&obj->base.vma_node,
1931 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1932
1933 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1934 * memory transactions from userspace before we return. The TLB
1935 * flushing implied above by changing the PTE above *should* be
1936 * sufficient, an extra barrier here just provides us with a bit
1937 * of paranoid documentation about our requirement to serialise
1938 * memory writes before touching registers / GSM.
1939 */
1940 wmb();
1941
6299f992 1942 obj->fault_mappable = false;
901782b2
CW
1943}
1944
eedd10f4
CW
1945void
1946i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1947{
1948 struct drm_i915_gem_object *obj;
1949
1950 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1951 i915_gem_release_mmap(obj);
1952}
1953
ad1a7d20
CW
1954/**
1955 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1956 * @dev_priv: i915 device
ad1a7d20
CW
1957 * @size: object size
1958 * @tiling_mode: tiling mode
1959 *
1960 * Return the required global GTT size for an object, taking into account
1961 * potential fence register mapping.
1962 */
a9f1481f
CW
1963u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1964 u64 size, int tiling_mode)
92b88aeb 1965{
ad1a7d20 1966 u64 ggtt_size;
92b88aeb 1967
ad1a7d20
CW
1968 GEM_BUG_ON(size == 0);
1969
a9f1481f 1970 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1971 tiling_mode == I915_TILING_NONE)
1972 return size;
92b88aeb
CW
1973
1974 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1975 if (IS_GEN3(dev_priv))
ad1a7d20 1976 ggtt_size = 1024*1024;
92b88aeb 1977 else
ad1a7d20 1978 ggtt_size = 512*1024;
92b88aeb 1979
ad1a7d20
CW
1980 while (ggtt_size < size)
1981 ggtt_size <<= 1;
92b88aeb 1982
ad1a7d20 1983 return ggtt_size;
92b88aeb
CW
1984}
1985
de151cf6 1986/**
ad1a7d20 1987 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1988 * @dev_priv: i915 device
14bb2c11
TU
1989 * @size: object size
1990 * @tiling_mode: tiling mode
ad1a7d20 1991 * @fenced: is fenced alignment required or not
de151cf6 1992 *
ad1a7d20 1993 * Return the required global GTT alignment for an object, taking into account
5e783301 1994 * potential fence register mapping.
de151cf6 1995 */
a9f1481f 1996u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1997 int tiling_mode, bool fenced)
de151cf6 1998{
ad1a7d20
CW
1999 GEM_BUG_ON(size == 0);
2000
de151cf6
JB
2001 /*
2002 * Minimum alignment is 4k (GTT page size), but might be greater
2003 * if a fence register is needed for the object.
2004 */
a9f1481f 2005 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2006 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2007 return 4096;
2008
a00b10c3
CW
2009 /*
2010 * Previous chips need to be aligned to the size of the smallest
2011 * fence register that can contain the object.
2012 */
a9f1481f 2013 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2014}
2015
d8cb5086
CW
2016static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2017{
fac5e23e 2018 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2019 int err;
da494d7c 2020
f3f6184c
CW
2021 err = drm_gem_create_mmap_offset(&obj->base);
2022 if (!err)
2023 return 0;
d8cb5086 2024
f3f6184c
CW
2025 /* We can idle the GPU locklessly to flush stale objects, but in order
2026 * to claim that space for ourselves, we need to take the big
2027 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2028 */
f3f6184c
CW
2029 err = i915_gem_wait_for_idle(dev_priv, true);
2030 if (err)
2031 return err;
2032
2033 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2034 if (!err) {
2035 i915_gem_retire_requests(dev_priv);
2036 err = drm_gem_create_mmap_offset(&obj->base);
2037 mutex_unlock(&dev_priv->drm.struct_mutex);
2038 }
da494d7c 2039
f3f6184c 2040 return err;
d8cb5086
CW
2041}
2042
2043static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2044{
d8cb5086
CW
2045 drm_gem_free_mmap_offset(&obj->base);
2046}
2047
da6b51d0 2048int
ff72145b
DA
2049i915_gem_mmap_gtt(struct drm_file *file,
2050 struct drm_device *dev,
da6b51d0 2051 uint32_t handle,
ff72145b 2052 uint64_t *offset)
de151cf6 2053{
05394f39 2054 struct drm_i915_gem_object *obj;
de151cf6
JB
2055 int ret;
2056
03ac0642 2057 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2058 if (!obj)
2059 return -ENOENT;
ab18282d 2060
d8cb5086 2061 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2062 if (ret == 0)
2063 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2064
f3f6184c 2065 i915_gem_object_put_unlocked(obj);
1d7cfea1 2066 return ret;
de151cf6
JB
2067}
2068
ff72145b
DA
2069/**
2070 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2071 * @dev: DRM device
2072 * @data: GTT mapping ioctl data
2073 * @file: GEM object info
2074 *
2075 * Simply returns the fake offset to userspace so it can mmap it.
2076 * The mmap call will end up in drm_gem_mmap(), which will set things
2077 * up so we can get faults in the handler above.
2078 *
2079 * The fault handler will take care of binding the object into the GTT
2080 * (since it may have been evicted to make room for something), allocating
2081 * a fence register, and mapping the appropriate aperture address into
2082 * userspace.
2083 */
2084int
2085i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2086 struct drm_file *file)
2087{
2088 struct drm_i915_gem_mmap_gtt *args = data;
2089
da6b51d0 2090 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2091}
2092
225067ee
DV
2093/* Immediately discard the backing storage */
2094static void
2095i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2096{
4d6294bf 2097 i915_gem_object_free_mmap_offset(obj);
1286ff73 2098
4d6294bf
CW
2099 if (obj->base.filp == NULL)
2100 return;
e5281ccd 2101
225067ee
DV
2102 /* Our goal here is to return as much of the memory as
2103 * is possible back to the system as we are called from OOM.
2104 * To do this we must instruct the shmfs to drop all of its
2105 * backing pages, *now*.
2106 */
5537252b 2107 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2108 obj->madv = __I915_MADV_PURGED;
2109}
e5281ccd 2110
5537252b
CW
2111/* Try to discard unwanted pages */
2112static void
2113i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2114{
5537252b
CW
2115 struct address_space *mapping;
2116
2117 switch (obj->madv) {
2118 case I915_MADV_DONTNEED:
2119 i915_gem_object_truncate(obj);
2120 case __I915_MADV_PURGED:
2121 return;
2122 }
2123
2124 if (obj->base.filp == NULL)
2125 return;
2126
93c76a3d 2127 mapping = obj->base.filp->f_mapping,
5537252b 2128 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2129}
2130
5cdf5881 2131static void
05394f39 2132i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2133{
85d1225e
DG
2134 struct sgt_iter sgt_iter;
2135 struct page *page;
90797e6d 2136 int ret;
1286ff73 2137
05394f39 2138 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2139
6c085a72 2140 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2141 if (WARN_ON(ret)) {
6c085a72
CW
2142 /* In the event of a disaster, abandon all caches and
2143 * hope for the best.
2144 */
2c22569b 2145 i915_gem_clflush_object(obj, true);
6c085a72
CW
2146 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2147 }
2148
e2273302
ID
2149 i915_gem_gtt_finish_object(obj);
2150
6dacfd2f 2151 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2152 i915_gem_object_save_bit_17_swizzle(obj);
2153
05394f39
CW
2154 if (obj->madv == I915_MADV_DONTNEED)
2155 obj->dirty = 0;
3ef94daa 2156
85d1225e 2157 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2158 if (obj->dirty)
9da3da66 2159 set_page_dirty(page);
3ef94daa 2160
05394f39 2161 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2162 mark_page_accessed(page);
3ef94daa 2163
09cbfeaf 2164 put_page(page);
3ef94daa 2165 }
05394f39 2166 obj->dirty = 0;
673a394b 2167
9da3da66
CW
2168 sg_free_table(obj->pages);
2169 kfree(obj->pages);
37e680a1 2170}
6c085a72 2171
dd624afd 2172int
37e680a1
CW
2173i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2174{
2175 const struct drm_i915_gem_object_ops *ops = obj->ops;
2176
2f745ad3 2177 if (obj->pages == NULL)
37e680a1
CW
2178 return 0;
2179
a5570178
CW
2180 if (obj->pages_pin_count)
2181 return -EBUSY;
2182
15717de2 2183 GEM_BUG_ON(obj->bind_count);
3e123027 2184
a2165e31
CW
2185 /* ->put_pages might need to allocate memory for the bit17 swizzle
2186 * array, hence protect them from being reaped by removing them from gtt
2187 * lists early. */
35c20a60 2188 list_del(&obj->global_list);
a2165e31 2189
0a798eb9 2190 if (obj->mapping) {
4b30cb23
CW
2191 void *ptr;
2192
2193 ptr = ptr_mask_bits(obj->mapping);
2194 if (is_vmalloc_addr(ptr))
2195 vunmap(ptr);
fb8621d3 2196 else
4b30cb23
CW
2197 kunmap(kmap_to_page(ptr));
2198
0a798eb9
CW
2199 obj->mapping = NULL;
2200 }
2201
37e680a1 2202 ops->put_pages(obj);
05394f39 2203 obj->pages = NULL;
37e680a1 2204
5537252b 2205 i915_gem_object_invalidate(obj);
6c085a72
CW
2206
2207 return 0;
2208}
2209
37e680a1 2210static int
6c085a72 2211i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2212{
fac5e23e 2213 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2214 int page_count, i;
2215 struct address_space *mapping;
9da3da66
CW
2216 struct sg_table *st;
2217 struct scatterlist *sg;
85d1225e 2218 struct sgt_iter sgt_iter;
e5281ccd 2219 struct page *page;
90797e6d 2220 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2221 int ret;
6c085a72 2222 gfp_t gfp;
e5281ccd 2223
6c085a72
CW
2224 /* Assert that the object is not currently in any GPU domain. As it
2225 * wasn't in the GTT, there shouldn't be any way it could have been in
2226 * a GPU cache
2227 */
2228 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2229 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2230
9da3da66
CW
2231 st = kmalloc(sizeof(*st), GFP_KERNEL);
2232 if (st == NULL)
2233 return -ENOMEM;
2234
05394f39 2235 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2236 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2237 kfree(st);
e5281ccd 2238 return -ENOMEM;
9da3da66 2239 }
e5281ccd 2240
9da3da66
CW
2241 /* Get the list of pages out of our struct file. They'll be pinned
2242 * at this point until we release them.
2243 *
2244 * Fail silently without starting the shrinker
2245 */
93c76a3d 2246 mapping = obj->base.filp->f_mapping;
c62d2555 2247 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2248 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2249 sg = st->sgl;
2250 st->nents = 0;
2251 for (i = 0; i < page_count; i++) {
6c085a72
CW
2252 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2253 if (IS_ERR(page)) {
21ab4e74
CW
2254 i915_gem_shrink(dev_priv,
2255 page_count,
2256 I915_SHRINK_BOUND |
2257 I915_SHRINK_UNBOUND |
2258 I915_SHRINK_PURGEABLE);
6c085a72
CW
2259 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2260 }
2261 if (IS_ERR(page)) {
2262 /* We've tried hard to allocate the memory by reaping
2263 * our own buffer, now let the real VM do its job and
2264 * go down in flames if truly OOM.
2265 */
6c085a72 2266 i915_gem_shrink_all(dev_priv);
f461d1be 2267 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2268 if (IS_ERR(page)) {
2269 ret = PTR_ERR(page);
6c085a72 2270 goto err_pages;
e2273302 2271 }
6c085a72 2272 }
426729dc
KRW
2273#ifdef CONFIG_SWIOTLB
2274 if (swiotlb_nr_tbl()) {
2275 st->nents++;
2276 sg_set_page(sg, page, PAGE_SIZE, 0);
2277 sg = sg_next(sg);
2278 continue;
2279 }
2280#endif
90797e6d
ID
2281 if (!i || page_to_pfn(page) != last_pfn + 1) {
2282 if (i)
2283 sg = sg_next(sg);
2284 st->nents++;
2285 sg_set_page(sg, page, PAGE_SIZE, 0);
2286 } else {
2287 sg->length += PAGE_SIZE;
2288 }
2289 last_pfn = page_to_pfn(page);
3bbbe706
DV
2290
2291 /* Check that the i965g/gm workaround works. */
2292 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2293 }
426729dc
KRW
2294#ifdef CONFIG_SWIOTLB
2295 if (!swiotlb_nr_tbl())
2296#endif
2297 sg_mark_end(sg);
74ce6b6c
CW
2298 obj->pages = st;
2299
e2273302
ID
2300 ret = i915_gem_gtt_prepare_object(obj);
2301 if (ret)
2302 goto err_pages;
2303
6dacfd2f 2304 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2305 i915_gem_object_do_bit_17_swizzle(obj);
2306
3e510a8e 2307 if (i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
2308 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2309 i915_gem_object_pin_pages(obj);
2310
e5281ccd
CW
2311 return 0;
2312
2313err_pages:
90797e6d 2314 sg_mark_end(sg);
85d1225e
DG
2315 for_each_sgt_page(page, sgt_iter, st)
2316 put_page(page);
9da3da66
CW
2317 sg_free_table(st);
2318 kfree(st);
0820baf3
CW
2319
2320 /* shmemfs first checks if there is enough memory to allocate the page
2321 * and reports ENOSPC should there be insufficient, along with the usual
2322 * ENOMEM for a genuine allocation failure.
2323 *
2324 * We use ENOSPC in our driver to mean that we have run out of aperture
2325 * space and so want to translate the error from shmemfs back to our
2326 * usual understanding of ENOMEM.
2327 */
e2273302
ID
2328 if (ret == -ENOSPC)
2329 ret = -ENOMEM;
2330
2331 return ret;
673a394b
EA
2332}
2333
37e680a1
CW
2334/* Ensure that the associated pages are gathered from the backing storage
2335 * and pinned into our object. i915_gem_object_get_pages() may be called
2336 * multiple times before they are released by a single call to
2337 * i915_gem_object_put_pages() - once the pages are no longer referenced
2338 * either as a result of memory pressure (reaping pages under the shrinker)
2339 * or as the object is itself released.
2340 */
2341int
2342i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2343{
fac5e23e 2344 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2345 const struct drm_i915_gem_object_ops *ops = obj->ops;
2346 int ret;
2347
2f745ad3 2348 if (obj->pages)
37e680a1
CW
2349 return 0;
2350
43e28f09 2351 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2352 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2353 return -EFAULT;
43e28f09
CW
2354 }
2355
a5570178
CW
2356 BUG_ON(obj->pages_pin_count);
2357
37e680a1
CW
2358 ret = ops->get_pages(obj);
2359 if (ret)
2360 return ret;
2361
35c20a60 2362 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2363
2364 obj->get_page.sg = obj->pages->sgl;
2365 obj->get_page.last = 0;
2366
37e680a1 2367 return 0;
673a394b
EA
2368}
2369
dd6034c6 2370/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2371static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2372 enum i915_map_type type)
dd6034c6
DG
2373{
2374 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2375 struct sg_table *sgt = obj->pages;
85d1225e
DG
2376 struct sgt_iter sgt_iter;
2377 struct page *page;
b338fa47
DG
2378 struct page *stack_pages[32];
2379 struct page **pages = stack_pages;
dd6034c6 2380 unsigned long i = 0;
d31d7cb1 2381 pgprot_t pgprot;
dd6034c6
DG
2382 void *addr;
2383
2384 /* A single page can always be kmapped */
d31d7cb1 2385 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2386 return kmap(sg_page(sgt->sgl));
2387
b338fa47
DG
2388 if (n_pages > ARRAY_SIZE(stack_pages)) {
2389 /* Too big for stack -- allocate temporary array instead */
2390 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2391 if (!pages)
2392 return NULL;
2393 }
dd6034c6 2394
85d1225e
DG
2395 for_each_sgt_page(page, sgt_iter, sgt)
2396 pages[i++] = page;
dd6034c6
DG
2397
2398 /* Check that we have the expected number of pages */
2399 GEM_BUG_ON(i != n_pages);
2400
d31d7cb1
CW
2401 switch (type) {
2402 case I915_MAP_WB:
2403 pgprot = PAGE_KERNEL;
2404 break;
2405 case I915_MAP_WC:
2406 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2407 break;
2408 }
2409 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2410
b338fa47
DG
2411 if (pages != stack_pages)
2412 drm_free_large(pages);
dd6034c6
DG
2413
2414 return addr;
2415}
2416
2417/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2418void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2419 enum i915_map_type type)
0a798eb9 2420{
d31d7cb1
CW
2421 enum i915_map_type has_type;
2422 bool pinned;
2423 void *ptr;
0a798eb9
CW
2424 int ret;
2425
2426 lockdep_assert_held(&obj->base.dev->struct_mutex);
d31d7cb1 2427 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9
CW
2428
2429 ret = i915_gem_object_get_pages(obj);
2430 if (ret)
2431 return ERR_PTR(ret);
2432
2433 i915_gem_object_pin_pages(obj);
d31d7cb1 2434 pinned = obj->pages_pin_count > 1;
0a798eb9 2435
d31d7cb1
CW
2436 ptr = ptr_unpack_bits(obj->mapping, has_type);
2437 if (ptr && has_type != type) {
2438 if (pinned) {
2439 ret = -EBUSY;
2440 goto err;
0a798eb9 2441 }
d31d7cb1
CW
2442
2443 if (is_vmalloc_addr(ptr))
2444 vunmap(ptr);
2445 else
2446 kunmap(kmap_to_page(ptr));
2447
2448 ptr = obj->mapping = NULL;
0a798eb9
CW
2449 }
2450
d31d7cb1
CW
2451 if (!ptr) {
2452 ptr = i915_gem_object_map(obj, type);
2453 if (!ptr) {
2454 ret = -ENOMEM;
2455 goto err;
2456 }
2457
2458 obj->mapping = ptr_pack_bits(ptr, type);
2459 }
2460
2461 return ptr;
2462
2463err:
2464 i915_gem_object_unpin_pages(obj);
2465 return ERR_PTR(ret);
0a798eb9
CW
2466}
2467
b4716185 2468static void
fa545cbf
CW
2469i915_gem_object_retire__write(struct i915_gem_active *active,
2470 struct drm_i915_gem_request *request)
e2d05a8b 2471{
fa545cbf
CW
2472 struct drm_i915_gem_object *obj =
2473 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2474
de152b62 2475 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2476}
2477
caea7476 2478static void
fa545cbf
CW
2479i915_gem_object_retire__read(struct i915_gem_active *active,
2480 struct drm_i915_gem_request *request)
ce44b0ea 2481{
fa545cbf
CW
2482 int idx = request->engine->id;
2483 struct drm_i915_gem_object *obj =
2484 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2485
573adb39 2486 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2487
573adb39
CW
2488 i915_gem_object_clear_active(obj, idx);
2489 if (i915_gem_object_is_active(obj))
b4716185 2490 return;
caea7476 2491
6c246959
CW
2492 /* Bump our place on the bound list to keep it roughly in LRU order
2493 * so that we don't steal from recently used but inactive objects
2494 * (unless we are forced to ofc!)
2495 */
b0decaf7
CW
2496 if (obj->bind_count)
2497 list_move_tail(&obj->global_list,
2498 &request->i915->mm.bound_list);
caea7476 2499
f8c417cd 2500 i915_gem_object_put(obj);
c8725f3d
CW
2501}
2502
7b4d3a16 2503static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2504{
44e2c070 2505 unsigned long elapsed;
be62acb4 2506
44e2c070 2507 if (ctx->hang_stats.banned)
be62acb4
MK
2508 return true;
2509
7b4d3a16 2510 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2511 if (ctx->hang_stats.ban_period_seconds &&
2512 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2513 DRM_DEBUG("context hanging too fast, banning!\n");
2514 return true;
be62acb4
MK
2515 }
2516
2517 return false;
2518}
2519
7b4d3a16 2520static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2521 const bool guilty)
aa60c664 2522{
7b4d3a16 2523 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2524
2525 if (guilty) {
7b4d3a16 2526 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2527 hs->batch_active++;
2528 hs->guilty_ts = get_seconds();
2529 } else {
2530 hs->batch_pending++;
aa60c664
MK
2531 }
2532}
2533
8d9fc7fd 2534struct drm_i915_gem_request *
0bc40be8 2535i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2536{
4db080f9
CW
2537 struct drm_i915_gem_request *request;
2538
f69a02c9
CW
2539 /* We are called by the error capture and reset at a random
2540 * point in time. In particular, note that neither is crucially
2541 * ordered with an interrupt. After a hang, the GPU is dead and we
2542 * assume that no more writes can happen (we waited long enough for
2543 * all writes that were in transaction to be flushed) - adding an
2544 * extra delay for a recent interrupt is pointless. Hence, we do
2545 * not need an engine->irq_seqno_barrier() before the seqno reads.
2546 */
efdf7c06 2547 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2548 if (i915_gem_request_completed(request))
4db080f9 2549 continue;
aa60c664 2550
b6b0fac0 2551 return request;
4db080f9 2552 }
b6b0fac0
MK
2553
2554 return NULL;
2555}
2556
7b4d3a16 2557static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2558{
2559 struct drm_i915_gem_request *request;
2560 bool ring_hung;
2561
0bc40be8 2562 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2563 if (request == NULL)
2564 return;
2565
0bc40be8 2566 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2567
7b4d3a16 2568 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2569 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2570 i915_set_reset_status(request->ctx, false);
4db080f9 2571}
aa60c664 2572
7b4d3a16 2573static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2574{
dcff85c8 2575 struct drm_i915_gem_request *request;
7e37f889 2576 struct intel_ring *ring;
608c1a52 2577
c4b0930b
CW
2578 /* Mark all pending requests as complete so that any concurrent
2579 * (lockless) lookup doesn't try and wait upon the request as we
2580 * reset it.
2581 */
87b723a1 2582 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2583
dcb4c12a
OM
2584 /*
2585 * Clear the execlists queue up before freeing the requests, as those
2586 * are the ones that keep the context and ringbuffer backing objects
2587 * pinned in place.
2588 */
dcb4c12a 2589
7de1691a 2590 if (i915.enable_execlists) {
27af5eea
TU
2591 /* Ensure irq handler finishes or is cancelled. */
2592 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2593
e39d42fa 2594 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2595 }
2596
1d62beea
BW
2597 /*
2598 * We must free the requests after all the corresponding objects have
2599 * been moved off active lists. Which is the same order as the normal
2600 * retire_requests function does. This is important if object hold
2601 * implicit references on things like e.g. ppgtt address spaces through
2602 * the request.
2603 */
87b723a1
CW
2604 request = i915_gem_active_raw(&engine->last_request,
2605 &engine->i915->drm.struct_mutex);
dcff85c8 2606 if (request)
05235c53 2607 i915_gem_request_retire_upto(request);
dcff85c8 2608 GEM_BUG_ON(intel_engine_is_active(engine));
608c1a52
CW
2609
2610 /* Having flushed all requests from all queues, we know that all
2611 * ringbuffers must now be empty. However, since we do not reclaim
2612 * all space when retiring the request (to prevent HEADs colliding
2613 * with rapid ringbuffer wraparound) the amount of available space
2614 * upon reset is less than when we start. Do one more pass over
2615 * all the ringbuffers to reset last_retired_head.
2616 */
7e37f889
CW
2617 list_for_each_entry(ring, &engine->buffers, link) {
2618 ring->last_retired_head = ring->tail;
2619 intel_ring_update_space(ring);
608c1a52 2620 }
2ed53a94 2621
b913b33c 2622 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2623}
2624
069efc1d 2625void i915_gem_reset(struct drm_device *dev)
673a394b 2626{
fac5e23e 2627 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2628 struct intel_engine_cs *engine;
673a394b 2629
4db080f9
CW
2630 /*
2631 * Before we free the objects from the requests, we need to inspect
2632 * them for finding the guilty party. As the requests only borrow
2633 * their reference to the objects, the inspection must be done first.
2634 */
b4ac5afc 2635 for_each_engine(engine, dev_priv)
7b4d3a16 2636 i915_gem_reset_engine_status(engine);
4db080f9 2637
b4ac5afc 2638 for_each_engine(engine, dev_priv)
7b4d3a16 2639 i915_gem_reset_engine_cleanup(engine);
b913b33c 2640 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2641
acce9ffa
BW
2642 i915_gem_context_reset(dev);
2643
19b2dbde 2644 i915_gem_restore_fences(dev);
673a394b
EA
2645}
2646
75ef9da2 2647static void
673a394b
EA
2648i915_gem_retire_work_handler(struct work_struct *work)
2649{
b29c19b6 2650 struct drm_i915_private *dev_priv =
67d97da3 2651 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2652 struct drm_device *dev = &dev_priv->drm;
673a394b 2653
891b48cf 2654 /* Come back later if the device is busy... */
b29c19b6 2655 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2656 i915_gem_retire_requests(dev_priv);
b29c19b6 2657 mutex_unlock(&dev->struct_mutex);
673a394b 2658 }
67d97da3
CW
2659
2660 /* Keep the retire handler running until we are finally idle.
2661 * We do not need to do this test under locking as in the worst-case
2662 * we queue the retire worker once too often.
2663 */
c9615613
CW
2664 if (READ_ONCE(dev_priv->gt.awake)) {
2665 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2666 queue_delayed_work(dev_priv->wq,
2667 &dev_priv->gt.retire_work,
bcb45086 2668 round_jiffies_up_relative(HZ));
c9615613 2669 }
b29c19b6 2670}
0a58705b 2671
b29c19b6
CW
2672static void
2673i915_gem_idle_work_handler(struct work_struct *work)
2674{
2675 struct drm_i915_private *dev_priv =
67d97da3 2676 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2677 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2678 struct intel_engine_cs *engine;
67d97da3
CW
2679 bool rearm_hangcheck;
2680
2681 if (!READ_ONCE(dev_priv->gt.awake))
2682 return;
2683
2684 if (READ_ONCE(dev_priv->gt.active_engines))
2685 return;
2686
2687 rearm_hangcheck =
2688 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2689
2690 if (!mutex_trylock(&dev->struct_mutex)) {
2691 /* Currently busy, come back later */
2692 mod_delayed_work(dev_priv->wq,
2693 &dev_priv->gt.idle_work,
2694 msecs_to_jiffies(50));
2695 goto out_rearm;
2696 }
2697
2698 if (dev_priv->gt.active_engines)
2699 goto out_unlock;
b29c19b6 2700
b4ac5afc 2701 for_each_engine(engine, dev_priv)
67d97da3 2702 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2703
67d97da3
CW
2704 GEM_BUG_ON(!dev_priv->gt.awake);
2705 dev_priv->gt.awake = false;
2706 rearm_hangcheck = false;
30ecad77 2707
67d97da3
CW
2708 if (INTEL_GEN(dev_priv) >= 6)
2709 gen6_rps_idle(dev_priv);
2710 intel_runtime_pm_put(dev_priv);
2711out_unlock:
2712 mutex_unlock(&dev->struct_mutex);
b29c19b6 2713
67d97da3
CW
2714out_rearm:
2715 if (rearm_hangcheck) {
2716 GEM_BUG_ON(!dev_priv->gt.awake);
2717 i915_queue_hangcheck(dev_priv);
35c94185 2718 }
673a394b
EA
2719}
2720
b1f788c6
CW
2721void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2722{
2723 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2724 struct drm_i915_file_private *fpriv = file->driver_priv;
2725 struct i915_vma *vma, *vn;
2726
2727 mutex_lock(&obj->base.dev->struct_mutex);
2728 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2729 if (vma->vm->file == fpriv)
2730 i915_vma_close(vma);
2731 mutex_unlock(&obj->base.dev->struct_mutex);
2732}
2733
23ba4fd0
BW
2734/**
2735 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2736 * @dev: drm device pointer
2737 * @data: ioctl data blob
2738 * @file: drm file pointer
23ba4fd0
BW
2739 *
2740 * Returns 0 if successful, else an error is returned with the remaining time in
2741 * the timeout parameter.
2742 * -ETIME: object is still busy after timeout
2743 * -ERESTARTSYS: signal interrupted the wait
2744 * -ENONENT: object doesn't exist
2745 * Also possible, but rare:
2746 * -EAGAIN: GPU wedged
2747 * -ENOMEM: damn
2748 * -ENODEV: Internal IRQ fail
2749 * -E?: The add request failed
2750 *
2751 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2752 * non-zero timeout parameter the wait ioctl will wait for the given number of
2753 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2754 * without holding struct_mutex the object may become re-busied before this
2755 * function completes. A similar but shorter * race condition exists in the busy
2756 * ioctl
2757 */
2758int
2759i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2760{
2761 struct drm_i915_gem_wait *args = data;
033d549b 2762 struct intel_rps_client *rps = to_rps_client(file);
23ba4fd0 2763 struct drm_i915_gem_object *obj;
033d549b
CW
2764 unsigned long active;
2765 int idx, ret = 0;
23ba4fd0 2766
11b5d511
DV
2767 if (args->flags != 0)
2768 return -EINVAL;
2769
03ac0642 2770 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2771 if (!obj)
23ba4fd0 2772 return -ENOENT;
23ba4fd0 2773
033d549b
CW
2774 active = __I915_BO_ACTIVE(obj);
2775 for_each_active(active, idx) {
2776 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2777 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
2778 timeout, rps);
2779 if (ret)
2780 break;
b4716185
CW
2781 }
2782
033d549b 2783 i915_gem_object_put_unlocked(obj);
ff865885 2784 return ret;
23ba4fd0
BW
2785}
2786
b4716185 2787static int
fa545cbf 2788__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2789 struct drm_i915_gem_request *from)
b4716185 2790{
b4716185
CW
2791 int ret;
2792
8e637178 2793 if (to->engine == from->engine)
b4716185
CW
2794 return 0;
2795
39df9190 2796 if (!i915.semaphores) {
776f3236
CW
2797 ret = i915_wait_request(from,
2798 from->i915->mm.interruptible,
2799 NULL,
2800 NO_WAITBOOST);
b4716185
CW
2801 if (ret)
2802 return ret;
b4716185 2803 } else {
8e637178 2804 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2805 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2806 return 0;
2807
8e637178 2808 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2809 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2810 if (ret)
2811 return ret;
2812
ddf07be7 2813 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2814 }
2815
2816 return 0;
2817}
2818
5816d648
BW
2819/**
2820 * i915_gem_object_sync - sync an object to a ring.
2821 *
2822 * @obj: object which may be in use on another ring.
8e637178 2823 * @to: request we are wishing to use
5816d648
BW
2824 *
2825 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2826 * Conceptually we serialise writes between engines inside the GPU.
2827 * We only allow one engine to write into a buffer at any time, but
2828 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2829 *
2830 * - If there is an outstanding write request to the object, the new
2831 * request must wait for it to complete (either CPU or in hw, requests
2832 * on the same ring will be naturally ordered).
2833 *
2834 * - If we are a write request (pending_write_domain is set), the new
2835 * request must wait for outstanding read requests to complete.
5816d648
BW
2836 *
2837 * Returns 0 if successful, else propagates up the lower layer error.
2838 */
2911a35b
BW
2839int
2840i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2841 struct drm_i915_gem_request *to)
2911a35b 2842{
8cac6f6c
CW
2843 struct i915_gem_active *active;
2844 unsigned long active_mask;
2845 int idx;
41c52415 2846
8cac6f6c 2847 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2848
573adb39 2849 active_mask = i915_gem_object_get_active(obj);
8cac6f6c
CW
2850 if (!active_mask)
2851 return 0;
27c01aae 2852
8cac6f6c
CW
2853 if (obj->base.pending_write_domain) {
2854 active = obj->last_read;
b4716185 2855 } else {
8cac6f6c
CW
2856 active_mask = 1;
2857 active = &obj->last_write;
b4716185 2858 }
8cac6f6c
CW
2859
2860 for_each_active(active_mask, idx) {
2861 struct drm_i915_gem_request *request;
2862 int ret;
2863
2864 request = i915_gem_active_peek(&active[idx],
2865 &obj->base.dev->struct_mutex);
2866 if (!request)
2867 continue;
2868
fa545cbf 2869 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2870 if (ret)
2871 return ret;
2872 }
2911a35b 2873
b4716185 2874 return 0;
2911a35b
BW
2875}
2876
8ef8561f
CW
2877static void __i915_vma_iounmap(struct i915_vma *vma)
2878{
20dfbde4 2879 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2880
2881 if (vma->iomap == NULL)
2882 return;
2883
2884 io_mapping_unmap(vma->iomap);
2885 vma->iomap = NULL;
2886}
2887
df0e9a28 2888int i915_vma_unbind(struct i915_vma *vma)
673a394b 2889{
07fe0b12 2890 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2891 unsigned long active;
43e28f09 2892 int ret;
673a394b 2893
b0decaf7
CW
2894 /* First wait upon any activity as retiring the request may
2895 * have side-effects such as unpinning or even unbinding this vma.
2896 */
2897 active = i915_vma_get_active(vma);
df0e9a28 2898 if (active) {
b0decaf7
CW
2899 int idx;
2900
b1f788c6
CW
2901 /* When a closed VMA is retired, it is unbound - eek.
2902 * In order to prevent it from being recursively closed,
2903 * take a pin on the vma so that the second unbind is
2904 * aborted.
2905 */
20dfbde4 2906 __i915_vma_pin(vma);
b1f788c6 2907
b0decaf7
CW
2908 for_each_active(active, idx) {
2909 ret = i915_gem_active_retire(&vma->last_read[idx],
2910 &vma->vm->dev->struct_mutex);
2911 if (ret)
b1f788c6 2912 break;
b0decaf7
CW
2913 }
2914
20dfbde4 2915 __i915_vma_unpin(vma);
b1f788c6
CW
2916 if (ret)
2917 return ret;
2918
b0decaf7
CW
2919 GEM_BUG_ON(i915_vma_is_active(vma));
2920 }
2921
20dfbde4 2922 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2923 return -EBUSY;
2924
b1f788c6
CW
2925 if (!drm_mm_node_allocated(&vma->node))
2926 goto destroy;
433544bd 2927
15717de2
CW
2928 GEM_BUG_ON(obj->bind_count == 0);
2929 GEM_BUG_ON(!obj->pages);
c4670ad0 2930
05a20d09 2931 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2932 /* release the fence reg _after_ flushing */
49ef5294 2933 ret = i915_vma_put_fence(vma);
8b1bc9b4
DV
2934 if (ret)
2935 return ret;
8ef8561f 2936
cd3127d6
CW
2937 /* Force a pagefault for domain tracking on next user access */
2938 i915_gem_release_mmap(obj);
2939
8ef8561f 2940 __i915_vma_iounmap(vma);
05a20d09 2941 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2942 }
96b47b65 2943
50e046b6
CW
2944 if (likely(!vma->vm->closed)) {
2945 trace_i915_vma_unbind(vma);
2946 vma->vm->unbind_vma(vma);
2947 }
3272db53 2948 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2949
50e046b6
CW
2950 drm_mm_remove_node(&vma->node);
2951 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2952
05a20d09
CW
2953 if (vma->pages != obj->pages) {
2954 GEM_BUG_ON(!vma->pages);
2955 sg_free_table(vma->pages);
2956 kfree(vma->pages);
fe14d5f4 2957 }
247177dd 2958 vma->pages = NULL;
673a394b 2959
2f633156 2960 /* Since the unbound list is global, only move to that list if
b93dab6e 2961 * no more VMAs exist. */
15717de2
CW
2962 if (--obj->bind_count == 0)
2963 list_move_tail(&obj->global_list,
2964 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2965
70903c3b
CW
2966 /* And finally now the object is completely decoupled from this vma,
2967 * we can drop its hold on the backing storage and allow it to be
2968 * reaped by the shrinker.
2969 */
2970 i915_gem_object_unpin_pages(obj);
2971
b1f788c6 2972destroy:
3272db53 2973 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2974 i915_vma_destroy(vma);
2975
88241785 2976 return 0;
54cf91dc
CW
2977}
2978
dcff85c8
CW
2979int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2980 bool interruptible)
4df2faf4 2981{
e2f80391 2982 struct intel_engine_cs *engine;
b4ac5afc 2983 int ret;
4df2faf4 2984
b4ac5afc 2985 for_each_engine(engine, dev_priv) {
62e63007
CW
2986 if (engine->last_context == NULL)
2987 continue;
2988
dcff85c8 2989 ret = intel_engine_idle(engine, interruptible);
1ec14ad3
CW
2990 if (ret)
2991 return ret;
2992 }
4df2faf4 2993
8a1a49f9 2994 return 0;
4df2faf4
DV
2995}
2996
4144f9b5 2997static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2998 unsigned long cache_level)
2999{
4144f9b5 3000 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3001 struct drm_mm_node *other;
3002
4144f9b5
CW
3003 /*
3004 * On some machines we have to be careful when putting differing types
3005 * of snoopable memory together to avoid the prefetcher crossing memory
3006 * domains and dying. During vm initialisation, we decide whether or not
3007 * these constraints apply and set the drm_mm.color_adjust
3008 * appropriately.
42d6ab48 3009 */
4144f9b5 3010 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3011 return true;
3012
c6cfb325 3013 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3014 return true;
3015
3016 if (list_empty(&gtt_space->node_list))
3017 return true;
3018
3019 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3020 if (other->allocated && !other->hole_follows && other->color != cache_level)
3021 return false;
3022
3023 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3024 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3025 return false;
3026
3027 return true;
3028}
3029
673a394b 3030/**
59bfa124
CW
3031 * i915_vma_insert - finds a slot for the vma in its address space
3032 * @vma: the vma
91b2db6f 3033 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 3034 * @alignment: required alignment
14bb2c11 3035 * @flags: mask of PIN_* flags to use
59bfa124
CW
3036 *
3037 * First we try to allocate some free space that meets the requirements for
3038 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3039 * preferrably the oldest idle entry to make room for the new VMA.
3040 *
3041 * Returns:
3042 * 0 on success, negative error code otherwise.
673a394b 3043 */
59bfa124
CW
3044static int
3045i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3046{
59bfa124
CW
3047 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3048 struct drm_i915_gem_object *obj = vma->obj;
de180033 3049 u64 start, end;
07f73f69 3050 int ret;
673a394b 3051
3272db53 3052 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3053 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3054
3055 size = max(size, vma->size);
3056 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3057 size = i915_gem_get_ggtt_size(dev_priv, size,
3058 i915_gem_object_get_tiling(obj));
de180033 3059
d8923dcf
CW
3060 alignment = max(max(alignment, vma->display_alignment),
3061 i915_gem_get_ggtt_alignment(dev_priv, size,
3062 i915_gem_object_get_tiling(obj),
3063 flags & PIN_MAPPABLE));
a00b10c3 3064
101b506a 3065 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3066
3067 end = vma->vm->total;
101b506a 3068 if (flags & PIN_MAPPABLE)
91b2db6f 3069 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3070 if (flags & PIN_ZONE_4G)
48ea1e32 3071 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3072
91e6711e
JL
3073 /* If binding the object/GGTT view requires more space than the entire
3074 * aperture has, reject it early before evicting everything in a vain
3075 * attempt to find space.
654fc607 3076 */
91e6711e 3077 if (size > end) {
de180033 3078 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3079 size, obj->base.size,
1ec9e26d 3080 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3081 end);
59bfa124 3082 return -E2BIG;
654fc607
CW
3083 }
3084
37e680a1 3085 ret = i915_gem_object_get_pages(obj);
6c085a72 3086 if (ret)
59bfa124 3087 return ret;
6c085a72 3088
fbdda6fb
CW
3089 i915_gem_object_pin_pages(obj);
3090
506a8e87 3091 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3092 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3093 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3094 ret = -EINVAL;
de180033 3095 goto err_unpin;
506a8e87 3096 }
de180033 3097
506a8e87
CW
3098 vma->node.start = offset;
3099 vma->node.size = size;
3100 vma->node.color = obj->cache_level;
de180033 3101 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3102 if (ret) {
3103 ret = i915_gem_evict_for_vma(vma);
3104 if (ret == 0)
de180033
CW
3105 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3106 if (ret)
3107 goto err_unpin;
506a8e87 3108 }
101b506a 3109 } else {
de180033
CW
3110 u32 search_flag, alloc_flag;
3111
506a8e87
CW
3112 if (flags & PIN_HIGH) {
3113 search_flag = DRM_MM_SEARCH_BELOW;
3114 alloc_flag = DRM_MM_CREATE_TOP;
3115 } else {
3116 search_flag = DRM_MM_SEARCH_DEFAULT;
3117 alloc_flag = DRM_MM_CREATE_DEFAULT;
3118 }
101b506a 3119
954c4691
CW
3120 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3121 * so we know that we always have a minimum alignment of 4096.
3122 * The drm_mm range manager is optimised to return results
3123 * with zero alignment, so where possible use the optimal
3124 * path.
3125 */
3126 if (alignment <= 4096)
3127 alignment = 0;
3128
0a9ae0d7 3129search_free:
de180033
CW
3130 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3131 &vma->node,
506a8e87
CW
3132 size, alignment,
3133 obj->cache_level,
3134 start, end,
3135 search_flag,
3136 alloc_flag);
3137 if (ret) {
de180033 3138 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3139 obj->cache_level,
3140 start, end,
3141 flags);
3142 if (ret == 0)
3143 goto search_free;
9731129c 3144
de180033 3145 goto err_unpin;
506a8e87 3146 }
673a394b 3147 }
37508589 3148 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3149
35c20a60 3150 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3151 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3152 obj->bind_count++;
bf1a1092 3153
59bfa124 3154 return 0;
2f633156 3155
bc6bc15b 3156err_unpin:
2f633156 3157 i915_gem_object_unpin_pages(obj);
59bfa124 3158 return ret;
673a394b
EA
3159}
3160
000433b6 3161bool
2c22569b
CW
3162i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3163 bool force)
673a394b 3164{
673a394b
EA
3165 /* If we don't have a page list set up, then we're not pinned
3166 * to GPU, and we can ignore the cache flush because it'll happen
3167 * again at bind time.
3168 */
05394f39 3169 if (obj->pages == NULL)
000433b6 3170 return false;
673a394b 3171
769ce464
ID
3172 /*
3173 * Stolen memory is always coherent with the GPU as it is explicitly
3174 * marked as wc by the system, or the system is cache-coherent.
3175 */
6a2c4232 3176 if (obj->stolen || obj->phys_handle)
000433b6 3177 return false;
769ce464 3178
9c23f7fc
CW
3179 /* If the GPU is snooping the contents of the CPU cache,
3180 * we do not need to manually clear the CPU cache lines. However,
3181 * the caches are only snooped when the render cache is
3182 * flushed/invalidated. As we always have to emit invalidations
3183 * and flushes when moving into and out of the RENDER domain, correct
3184 * snooping behaviour occurs naturally as the result of our domain
3185 * tracking.
3186 */
0f71979a
CW
3187 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3188 obj->cache_dirty = true;
000433b6 3189 return false;
0f71979a 3190 }
9c23f7fc 3191
1c5d22f7 3192 trace_i915_gem_object_clflush(obj);
9da3da66 3193 drm_clflush_sg(obj->pages);
0f71979a 3194 obj->cache_dirty = false;
000433b6
CW
3195
3196 return true;
e47c68e9
EA
3197}
3198
3199/** Flushes the GTT write domain for the object if it's dirty. */
3200static void
05394f39 3201i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3202{
3b5724d7 3203 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3204
05394f39 3205 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3206 return;
3207
63256ec5 3208 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3209 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3210 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3211 *
3212 * However, we do have to enforce the order so that all writes through
3213 * the GTT land before any writes to the device, such as updates to
3214 * the GATT itself.
3b5724d7
CW
3215 *
3216 * We also have to wait a bit for the writes to land from the GTT.
3217 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3218 * timing. This issue has only been observed when switching quickly
3219 * between GTT writes and CPU reads from inside the kernel on recent hw,
3220 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3221 * system agents we cannot reproduce this behaviour).
e47c68e9 3222 */
63256ec5 3223 wmb();
3b5724d7
CW
3224 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3225 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
63256ec5 3226
d243ad82 3227 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3228
b0dc465f 3229 obj->base.write_domain = 0;
1c5d22f7 3230 trace_i915_gem_object_change_domain(obj,
05394f39 3231 obj->base.read_domains,
b0dc465f 3232 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3233}
3234
3235/** Flushes the CPU write domain for the object if it's dirty. */
3236static void
e62b59e4 3237i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3238{
05394f39 3239 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3240 return;
3241
e62b59e4 3242 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3243 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3244
de152b62 3245 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3246
b0dc465f 3247 obj->base.write_domain = 0;
1c5d22f7 3248 trace_i915_gem_object_change_domain(obj,
05394f39 3249 obj->base.read_domains,
b0dc465f 3250 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3251}
3252
383d5823
CW
3253static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3254{
3255 struct i915_vma *vma;
3256
3257 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3258 if (!i915_vma_is_ggtt(vma))
3259 continue;
3260
3261 if (i915_vma_is_active(vma))
3262 continue;
3263
3264 if (!drm_mm_node_allocated(&vma->node))
3265 continue;
3266
3267 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3268 }
3269}
3270
2ef7eeaa
EA
3271/**
3272 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3273 * @obj: object to act on
3274 * @write: ask for write access or read only
2ef7eeaa
EA
3275 *
3276 * This function returns when the move is complete, including waiting on
3277 * flushes to occur.
3278 */
79e53945 3279int
2021746e 3280i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3281{
1c5d22f7 3282 uint32_t old_write_domain, old_read_domains;
e47c68e9 3283 int ret;
2ef7eeaa 3284
0201f1ec 3285 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3286 if (ret)
3287 return ret;
3288
c13d87ea
CW
3289 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3290 return 0;
3291
43566ded
CW
3292 /* Flush and acquire obj->pages so that we are coherent through
3293 * direct access in memory with previous cached writes through
3294 * shmemfs and that our cache domain tracking remains valid.
3295 * For example, if the obj->filp was moved to swap without us
3296 * being notified and releasing the pages, we would mistakenly
3297 * continue to assume that the obj remained out of the CPU cached
3298 * domain.
3299 */
3300 ret = i915_gem_object_get_pages(obj);
3301 if (ret)
3302 return ret;
3303
e62b59e4 3304 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3305
d0a57789
CW
3306 /* Serialise direct access to this object with the barriers for
3307 * coherent writes from the GPU, by effectively invalidating the
3308 * GTT domain upon first access.
3309 */
3310 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3311 mb();
3312
05394f39
CW
3313 old_write_domain = obj->base.write_domain;
3314 old_read_domains = obj->base.read_domains;
1c5d22f7 3315
e47c68e9
EA
3316 /* It should now be out of any other write domains, and we can update
3317 * the domain values for our changes.
3318 */
05394f39
CW
3319 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3320 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3321 if (write) {
05394f39
CW
3322 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3323 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3324 obj->dirty = 1;
2ef7eeaa
EA
3325 }
3326
1c5d22f7
CW
3327 trace_i915_gem_object_change_domain(obj,
3328 old_read_domains,
3329 old_write_domain);
3330
8325a09d 3331 /* And bump the LRU for this access */
383d5823 3332 i915_gem_object_bump_inactive_ggtt(obj);
8325a09d 3333
e47c68e9
EA
3334 return 0;
3335}
3336
ef55f92a
CW
3337/**
3338 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3339 * @obj: object to act on
3340 * @cache_level: new cache level to set for the object
ef55f92a
CW
3341 *
3342 * After this function returns, the object will be in the new cache-level
3343 * across all GTT and the contents of the backing storage will be coherent,
3344 * with respect to the new cache-level. In order to keep the backing storage
3345 * coherent for all users, we only allow a single cache level to be set
3346 * globally on the object and prevent it from being changed whilst the
3347 * hardware is reading from the object. That is if the object is currently
3348 * on the scanout it will be set to uncached (or equivalent display
3349 * cache coherency) and all non-MOCS GPU access will also be uncached so
3350 * that all direct access to the scanout remains coherent.
3351 */
e4ffd173
CW
3352int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3353 enum i915_cache_level cache_level)
3354{
aa653a68 3355 struct i915_vma *vma;
ed75a55b 3356 int ret = 0;
e4ffd173
CW
3357
3358 if (obj->cache_level == cache_level)
ed75a55b 3359 goto out;
e4ffd173 3360
ef55f92a
CW
3361 /* Inspect the list of currently bound VMA and unbind any that would
3362 * be invalid given the new cache-level. This is principally to
3363 * catch the issue of the CS prefetch crossing page boundaries and
3364 * reading an invalid PTE on older architectures.
3365 */
aa653a68
CW
3366restart:
3367 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3368 if (!drm_mm_node_allocated(&vma->node))
3369 continue;
3370
20dfbde4 3371 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3372 DRM_DEBUG("can not change the cache level of pinned objects\n");
3373 return -EBUSY;
3374 }
3375
aa653a68
CW
3376 if (i915_gem_valid_gtt_space(vma, cache_level))
3377 continue;
3378
3379 ret = i915_vma_unbind(vma);
3380 if (ret)
3381 return ret;
3382
3383 /* As unbinding may affect other elements in the
3384 * obj->vma_list (due to side-effects from retiring
3385 * an active vma), play safe and restart the iterator.
3386 */
3387 goto restart;
42d6ab48
CW
3388 }
3389
ef55f92a
CW
3390 /* We can reuse the existing drm_mm nodes but need to change the
3391 * cache-level on the PTE. We could simply unbind them all and
3392 * rebind with the correct cache-level on next use. However since
3393 * we already have a valid slot, dma mapping, pages etc, we may as
3394 * rewrite the PTE in the belief that doing so tramples upon less
3395 * state and so involves less work.
3396 */
15717de2 3397 if (obj->bind_count) {
ef55f92a
CW
3398 /* Before we change the PTE, the GPU must not be accessing it.
3399 * If we wait upon the object, we know that all the bound
3400 * VMA are no longer active.
3401 */
2e2f351d 3402 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3403 if (ret)
3404 return ret;
3405
aa653a68 3406 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3407 /* Access to snoopable pages through the GTT is
3408 * incoherent and on some machines causes a hard
3409 * lockup. Relinquish the CPU mmaping to force
3410 * userspace to refault in the pages and we can
3411 * then double check if the GTT mapping is still
3412 * valid for that pointer access.
3413 */
3414 i915_gem_release_mmap(obj);
3415
3416 /* As we no longer need a fence for GTT access,
3417 * we can relinquish it now (and so prevent having
3418 * to steal a fence from someone else on the next
3419 * fence request). Note GPU activity would have
3420 * dropped the fence as all snoopable access is
3421 * supposed to be linear.
3422 */
49ef5294
CW
3423 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3424 ret = i915_vma_put_fence(vma);
3425 if (ret)
3426 return ret;
3427 }
ef55f92a
CW
3428 } else {
3429 /* We either have incoherent backing store and
3430 * so no GTT access or the architecture is fully
3431 * coherent. In such cases, existing GTT mmaps
3432 * ignore the cache bit in the PTE and we can
3433 * rewrite it without confusing the GPU or having
3434 * to force userspace to fault back in its mmaps.
3435 */
e4ffd173
CW
3436 }
3437
1c7f4bca 3438 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3439 if (!drm_mm_node_allocated(&vma->node))
3440 continue;
3441
3442 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3443 if (ret)
3444 return ret;
3445 }
e4ffd173
CW
3446 }
3447
1c7f4bca 3448 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3449 vma->node.color = cache_level;
3450 obj->cache_level = cache_level;
3451
ed75a55b 3452out:
ef55f92a
CW
3453 /* Flush the dirty CPU caches to the backing storage so that the
3454 * object is now coherent at its new cache level (with respect
3455 * to the access domain).
3456 */
b50a5371 3457 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3458 if (i915_gem_clflush_object(obj, true))
c033666a 3459 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3460 }
3461
e4ffd173
CW
3462 return 0;
3463}
3464
199adf40
BW
3465int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3466 struct drm_file *file)
e6994aee 3467{
199adf40 3468 struct drm_i915_gem_caching *args = data;
e6994aee 3469 struct drm_i915_gem_object *obj;
e6994aee 3470
03ac0642
CW
3471 obj = i915_gem_object_lookup(file, args->handle);
3472 if (!obj)
432be69d 3473 return -ENOENT;
e6994aee 3474
651d794f
CW
3475 switch (obj->cache_level) {
3476 case I915_CACHE_LLC:
3477 case I915_CACHE_L3_LLC:
3478 args->caching = I915_CACHING_CACHED;
3479 break;
3480
4257d3ba
CW
3481 case I915_CACHE_WT:
3482 args->caching = I915_CACHING_DISPLAY;
3483 break;
3484
651d794f
CW
3485 default:
3486 args->caching = I915_CACHING_NONE;
3487 break;
3488 }
e6994aee 3489
34911fd3 3490 i915_gem_object_put_unlocked(obj);
432be69d 3491 return 0;
e6994aee
CW
3492}
3493
199adf40
BW
3494int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3495 struct drm_file *file)
e6994aee 3496{
fac5e23e 3497 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3498 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3499 struct drm_i915_gem_object *obj;
3500 enum i915_cache_level level;
3501 int ret;
3502
199adf40
BW
3503 switch (args->caching) {
3504 case I915_CACHING_NONE:
e6994aee
CW
3505 level = I915_CACHE_NONE;
3506 break;
199adf40 3507 case I915_CACHING_CACHED:
e5756c10
ID
3508 /*
3509 * Due to a HW issue on BXT A stepping, GPU stores via a
3510 * snooped mapping may leave stale data in a corresponding CPU
3511 * cacheline, whereas normally such cachelines would get
3512 * invalidated.
3513 */
ca377809 3514 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3515 return -ENODEV;
3516
e6994aee
CW
3517 level = I915_CACHE_LLC;
3518 break;
4257d3ba
CW
3519 case I915_CACHING_DISPLAY:
3520 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3521 break;
e6994aee
CW
3522 default:
3523 return -EINVAL;
3524 }
3525
fd0fe6ac
ID
3526 intel_runtime_pm_get(dev_priv);
3527
3bc2913e
BW
3528 ret = i915_mutex_lock_interruptible(dev);
3529 if (ret)
fd0fe6ac 3530 goto rpm_put;
3bc2913e 3531
03ac0642
CW
3532 obj = i915_gem_object_lookup(file, args->handle);
3533 if (!obj) {
e6994aee
CW
3534 ret = -ENOENT;
3535 goto unlock;
3536 }
3537
3538 ret = i915_gem_object_set_cache_level(obj, level);
3539
f8c417cd 3540 i915_gem_object_put(obj);
e6994aee
CW
3541unlock:
3542 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3543rpm_put:
3544 intel_runtime_pm_put(dev_priv);
3545
e6994aee
CW
3546 return ret;
3547}
3548
b9241ea3 3549/*
2da3b9b9
CW
3550 * Prepare buffer for display plane (scanout, cursors, etc).
3551 * Can be called from an uninterruptible phase (modesetting) and allows
3552 * any flushes to be pipelined (for pageflips).
b9241ea3 3553 */
058d88c4 3554struct i915_vma *
2da3b9b9
CW
3555i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3556 u32 alignment,
e6617330 3557 const struct i915_ggtt_view *view)
b9241ea3 3558{
058d88c4 3559 struct i915_vma *vma;
2da3b9b9 3560 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3561 int ret;
3562
cc98b413
CW
3563 /* Mark the pin_display early so that we account for the
3564 * display coherency whilst setting up the cache domains.
3565 */
8a0c39b1 3566 obj->pin_display++;
cc98b413 3567
a7ef0640
EA
3568 /* The display engine is not coherent with the LLC cache on gen6. As
3569 * a result, we make sure that the pinning that is about to occur is
3570 * done with uncached PTEs. This is lowest common denominator for all
3571 * chipsets.
3572 *
3573 * However for gen6+, we could do better by using the GFDT bit instead
3574 * of uncaching, which would allow us to flush all the LLC-cached data
3575 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3576 */
651d794f
CW
3577 ret = i915_gem_object_set_cache_level(obj,
3578 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3579 if (ret) {
3580 vma = ERR_PTR(ret);
cc98b413 3581 goto err_unpin_display;
058d88c4 3582 }
a7ef0640 3583
2da3b9b9
CW
3584 /* As the user may map the buffer once pinned in the display plane
3585 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3586 * always use map_and_fenceable for all scanout buffers. However,
3587 * it may simply be too big to fit into mappable, in which case
3588 * put it anyway and hope that userspace can cope (but always first
3589 * try to preserve the existing ABI).
2da3b9b9 3590 */
2efb813d
CW
3591 vma = ERR_PTR(-ENOSPC);
3592 if (view->type == I915_GGTT_VIEW_NORMAL)
3593 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3594 PIN_MAPPABLE | PIN_NONBLOCK);
3595 if (IS_ERR(vma))
3596 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
058d88c4 3597 if (IS_ERR(vma))
cc98b413 3598 goto err_unpin_display;
2da3b9b9 3599
d8923dcf
CW
3600 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3601
058d88c4
CW
3602 WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3603
e62b59e4 3604 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3605
2da3b9b9 3606 old_write_domain = obj->base.write_domain;
05394f39 3607 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3608
3609 /* It should now be out of any other write domains, and we can update
3610 * the domain values for our changes.
3611 */
e5f1d962 3612 obj->base.write_domain = 0;
05394f39 3613 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3614
3615 trace_i915_gem_object_change_domain(obj,
3616 old_read_domains,
2da3b9b9 3617 old_write_domain);
b9241ea3 3618
058d88c4 3619 return vma;
cc98b413
CW
3620
3621err_unpin_display:
8a0c39b1 3622 obj->pin_display--;
058d88c4 3623 return vma;
cc98b413
CW
3624}
3625
3626void
058d88c4 3627i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3628{
058d88c4 3629 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3630 return;
3631
d8923dcf
CW
3632 if (--vma->obj->pin_display == 0)
3633 vma->display_alignment = 0;
e6617330 3634
383d5823
CW
3635 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3636 if (!i915_vma_is_active(vma))
3637 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3638
058d88c4
CW
3639 i915_vma_unpin(vma);
3640 WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
b9241ea3
ZW
3641}
3642
e47c68e9
EA
3643/**
3644 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3645 * @obj: object to act on
3646 * @write: requesting write or read-only access
e47c68e9
EA
3647 *
3648 * This function returns when the move is complete, including waiting on
3649 * flushes to occur.
3650 */
dabdfe02 3651int
919926ae 3652i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3653{
1c5d22f7 3654 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3655 int ret;
3656
0201f1ec 3657 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3658 if (ret)
3659 return ret;
3660
c13d87ea
CW
3661 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3662 return 0;
3663
e47c68e9 3664 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3665
05394f39
CW
3666 old_write_domain = obj->base.write_domain;
3667 old_read_domains = obj->base.read_domains;
1c5d22f7 3668
e47c68e9 3669 /* Flush the CPU cache if it's still invalid. */
05394f39 3670 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3671 i915_gem_clflush_object(obj, false);
2ef7eeaa 3672
05394f39 3673 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3674 }
3675
3676 /* It should now be out of any other write domains, and we can update
3677 * the domain values for our changes.
3678 */
05394f39 3679 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3680
3681 /* If we're writing through the CPU, then the GPU read domains will
3682 * need to be invalidated at next use.
3683 */
3684 if (write) {
05394f39
CW
3685 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3686 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3687 }
2ef7eeaa 3688
1c5d22f7
CW
3689 trace_i915_gem_object_change_domain(obj,
3690 old_read_domains,
3691 old_write_domain);
3692
2ef7eeaa
EA
3693 return 0;
3694}
3695
673a394b
EA
3696/* Throttle our rendering by waiting until the ring has completed our requests
3697 * emitted over 20 msec ago.
3698 *
b962442e
EA
3699 * Note that if we were to use the current jiffies each time around the loop,
3700 * we wouldn't escape the function with any frames outstanding if the time to
3701 * render a frame was over 20ms.
3702 *
673a394b
EA
3703 * This should get us reasonable parallelism between CPU and GPU but also
3704 * relatively low latency when blocking on a particular request to finish.
3705 */
40a5f0de 3706static int
f787a5f5 3707i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3708{
fac5e23e 3709 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3710 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3711 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3712 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3713 int ret;
93533c29 3714
308887aa
DV
3715 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3716 if (ret)
3717 return ret;
3718
f4457ae7
CW
3719 /* ABI: return -EIO if already wedged */
3720 if (i915_terminally_wedged(&dev_priv->gpu_error))
3721 return -EIO;
e110e8d6 3722
1c25595f 3723 spin_lock(&file_priv->mm.lock);
f787a5f5 3724 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3725 if (time_after_eq(request->emitted_jiffies, recent_enough))
3726 break;
40a5f0de 3727
fcfa423c
JH
3728 /*
3729 * Note that the request might not have been submitted yet.
3730 * In which case emitted_jiffies will be zero.
3731 */
3732 if (!request->emitted_jiffies)
3733 continue;
3734
54fb2411 3735 target = request;
b962442e 3736 }
ff865885 3737 if (target)
e8a261ea 3738 i915_gem_request_get(target);
1c25595f 3739 spin_unlock(&file_priv->mm.lock);
40a5f0de 3740
54fb2411 3741 if (target == NULL)
f787a5f5 3742 return 0;
2bc43b5c 3743
776f3236 3744 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3745 i915_gem_request_put(target);
ff865885 3746
40a5f0de
EA
3747 return ret;
3748}
3749
d23db88c 3750static bool
91b2db6f 3751i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3752{
59bfa124
CW
3753 if (!drm_mm_node_allocated(&vma->node))
3754 return false;
3755
91b2db6f
CW
3756 if (vma->node.size < size)
3757 return true;
3758
3759 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3760 return true;
3761
05a20d09 3762 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3763 return true;
3764
3765 if (flags & PIN_OFFSET_BIAS &&
3766 vma->node.start < (flags & PIN_OFFSET_MASK))
3767 return true;
3768
506a8e87
CW
3769 if (flags & PIN_OFFSET_FIXED &&
3770 vma->node.start != (flags & PIN_OFFSET_MASK))
3771 return true;
3772
d23db88c
CW
3773 return false;
3774}
3775
d0710abb
CW
3776void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3777{
3778 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3779 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3780 bool mappable, fenceable;
3781 u32 fence_size, fence_alignment;
3782
a9f1481f 3783 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3784 vma->size,
3e510a8e 3785 i915_gem_object_get_tiling(obj));
a9f1481f 3786 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3787 vma->size,
3e510a8e 3788 i915_gem_object_get_tiling(obj),
ad1a7d20 3789 true);
d0710abb
CW
3790
3791 fenceable = (vma->node.size == fence_size &&
3792 (vma->node.start & (fence_alignment - 1)) == 0);
3793
3794 mappable = (vma->node.start + fence_size <=
a9f1481f 3795 dev_priv->ggtt.mappable_end);
d0710abb 3796
05a20d09
CW
3797 if (mappable && fenceable)
3798 vma->flags |= I915_VMA_CAN_FENCE;
3799 else
3800 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3801}
3802
305bc234
CW
3803int __i915_vma_do_pin(struct i915_vma *vma,
3804 u64 size, u64 alignment, u64 flags)
673a394b 3805{
305bc234 3806 unsigned int bound = vma->flags;
673a394b
EA
3807 int ret;
3808
59bfa124 3809 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3810 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3811
305bc234
CW
3812 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3813 ret = -EBUSY;
3814 goto err;
3815 }
ac0c6b5a 3816
de895082 3817 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3818 ret = i915_vma_insert(vma, size, alignment, flags);
3819 if (ret)
3820 goto err;
fe14d5f4 3821 }
74898d7e 3822
59bfa124 3823 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3824 if (ret)
59bfa124 3825 goto err;
3b16525c 3826
3272db53 3827 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3828 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3829
3b16525c 3830 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3831 return 0;
673a394b 3832
59bfa124
CW
3833err:
3834 __i915_vma_unpin(vma);
3835 return ret;
ec7adb6e
JL
3836}
3837
058d88c4 3838struct i915_vma *
ec7adb6e
JL
3839i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3840 const struct i915_ggtt_view *view,
91b2db6f 3841 u64 size,
2ffffd0f
CW
3842 u64 alignment,
3843 u64 flags)
ec7adb6e 3844{
058d88c4 3845 struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
59bfa124
CW
3846 struct i915_vma *vma;
3847 int ret;
72e96d64 3848
058d88c4 3849 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3850 if (IS_ERR(vma))
058d88c4 3851 return vma;
59bfa124
CW
3852
3853 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3854 if (flags & PIN_NONBLOCK &&
3855 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3856 return ERR_PTR(-ENOSPC);
59bfa124
CW
3857
3858 WARN(i915_vma_is_pinned(vma),
3859 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3860 " offset=%08x, req.alignment=%llx,"
3861 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3862 i915_ggtt_offset(vma), alignment,
59bfa124 3863 !!(flags & PIN_MAPPABLE),
05a20d09 3864 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3865 ret = i915_vma_unbind(vma);
3866 if (ret)
058d88c4 3867 return ERR_PTR(ret);
59bfa124
CW
3868 }
3869
058d88c4
CW
3870 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3871 if (ret)
3872 return ERR_PTR(ret);
ec7adb6e 3873
058d88c4 3874 return vma;
673a394b
EA
3875}
3876
edf6b76f 3877static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3878{
3879 /* Note that we could alias engines in the execbuf API, but
3880 * that would be very unwise as it prevents userspace from
3881 * fine control over engine selection. Ahem.
3882 *
3883 * This should be something like EXEC_MAX_ENGINE instead of
3884 * I915_NUM_ENGINES.
3885 */
3886 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3887 return 0x10000 << id;
3888}
3889
3890static __always_inline unsigned int __busy_write_id(unsigned int id)
3891{
70cb472c
CW
3892 /* The uABI guarantees an active writer is also amongst the read
3893 * engines. This would be true if we accessed the activity tracking
3894 * under the lock, but as we perform the lookup of the object and
3895 * its activity locklessly we can not guarantee that the last_write
3896 * being active implies that we have set the same engine flag from
3897 * last_read - hence we always set both read and write busy for
3898 * last_write.
3899 */
3900 return id | __busy_read_flag(id);
3fdc13c7
CW
3901}
3902
edf6b76f 3903static __always_inline unsigned int
3fdc13c7
CW
3904__busy_set_if_active(const struct i915_gem_active *active,
3905 unsigned int (*flag)(unsigned int id))
3906{
1255501d 3907 struct drm_i915_gem_request *request;
3fdc13c7 3908
1255501d
CW
3909 request = rcu_dereference(active->request);
3910 if (!request || i915_gem_request_completed(request))
3911 return 0;
3fdc13c7 3912
1255501d
CW
3913 /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3914 * discussion of how to handle the race correctly, but for reporting
3915 * the busy state we err on the side of potentially reporting the
3916 * wrong engine as being busy (but we guarantee that the result
3917 * is at least self-consistent).
3918 *
3919 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3920 * whilst we are inspecting it, even under the RCU read lock as we are.
3921 * This means that there is a small window for the engine and/or the
3922 * seqno to have been overwritten. The seqno will always be in the
3923 * future compared to the intended, and so we know that if that
3924 * seqno is idle (on whatever engine) our request is idle and the
3925 * return 0 above is correct.
3926 *
3927 * The issue is that if the engine is switched, it is just as likely
3928 * to report that it is busy (but since the switch happened, we know
3929 * the request should be idle). So there is a small chance that a busy
3930 * result is actually the wrong engine.
3931 *
3932 * So why don't we care?
3933 *
3934 * For starters, the busy ioctl is a heuristic that is by definition
3935 * racy. Even with perfect serialisation in the driver, the hardware
3936 * state is constantly advancing - the state we report to the user
3937 * is stale.
3938 *
3939 * The critical information for the busy-ioctl is whether the object
3940 * is idle as userspace relies on that to detect whether its next
3941 * access will stall, or if it has missed submitting commands to
3942 * the hardware allowing the GPU to stall. We never generate a
3943 * false-positive for idleness, thus busy-ioctl is reliable at the
3944 * most fundamental level, and we maintain the guarantee that a
3945 * busy object left to itself will eventually become idle (and stay
3946 * idle!).
3947 *
3948 * We allow ourselves the leeway of potentially misreporting the busy
3949 * state because that is an optimisation heuristic that is constantly
3950 * in flux. Being quickly able to detect the busy/idle state is much
3951 * more important than accurate logging of exactly which engines were
3952 * busy.
3953 *
3954 * For accuracy in reporting the engine, we could use
3955 *
3956 * result = 0;
3957 * request = __i915_gem_active_get_rcu(active);
3958 * if (request) {
3959 * if (!i915_gem_request_completed(request))
3960 * result = flag(request->engine->exec_id);
3961 * i915_gem_request_put(request);
3962 * }
3963 *
3964 * but that still remains susceptible to both hardware and userspace
3965 * races. So we accept making the result of that race slightly worse,
3966 * given the rarity of the race and its low impact on the result.
3967 */
3968 return flag(READ_ONCE(request->engine->exec_id));
3fdc13c7
CW
3969}
3970
edf6b76f 3971static __always_inline unsigned int
3fdc13c7
CW
3972busy_check_reader(const struct i915_gem_active *active)
3973{
3974 return __busy_set_if_active(active, __busy_read_flag);
3975}
3976
edf6b76f 3977static __always_inline unsigned int
3fdc13c7
CW
3978busy_check_writer(const struct i915_gem_active *active)
3979{
3980 return __busy_set_if_active(active, __busy_write_id);
3981}
3982
673a394b
EA
3983int
3984i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3985 struct drm_file *file)
673a394b
EA
3986{
3987 struct drm_i915_gem_busy *args = data;
05394f39 3988 struct drm_i915_gem_object *obj;
3fdc13c7 3989 unsigned long active;
673a394b 3990
03ac0642 3991 obj = i915_gem_object_lookup(file, args->handle);
3fdc13c7
CW
3992 if (!obj)
3993 return -ENOENT;
d1b851fc 3994
426960be 3995 args->busy = 0;
3fdc13c7
CW
3996 active = __I915_BO_ACTIVE(obj);
3997 if (active) {
3998 int idx;
426960be 3999
3fdc13c7
CW
4000 /* Yes, the lookups are intentionally racy.
4001 *
4002 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
4003 * to regard the value as stale and as our ABI guarantees
4004 * forward progress, we confirm the status of each active
4005 * request with the hardware.
4006 *
4007 * Even though we guard the pointer lookup by RCU, that only
4008 * guarantees that the pointer and its contents remain
4009 * dereferencable and does *not* mean that the request we
4010 * have is the same as the one being tracked by the object.
4011 *
4012 * Consider that we lookup the request just as it is being
4013 * retired and freed. We take a local copy of the pointer,
4014 * but before we add its engine into the busy set, the other
4015 * thread reallocates it and assigns it to a task on another
1255501d
CW
4016 * engine with a fresh and incomplete seqno. Guarding against
4017 * that requires careful serialisation and reference counting,
4018 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4019 * instead we expect that if the result is busy, which engines
4020 * are busy is not completely reliable - we only guarantee
4021 * that the object was busy.
3fdc13c7
CW
4022 */
4023 rcu_read_lock();
4024
4025 for_each_active(active, idx)
4026 args->busy |= busy_check_reader(&obj->last_read[idx]);
4027
4028 /* For ABI sanity, we only care that the write engine is in
70cb472c
CW
4029 * the set of read engines. This should be ensured by the
4030 * ordering of setting last_read/last_write in
4031 * i915_vma_move_to_active(), and then in reverse in retire.
4032 * However, for good measure, we always report the last_write
4033 * request as a busy read as well as being a busy write.
3fdc13c7
CW
4034 *
4035 * We don't care that the set of active read/write engines
4036 * may change during construction of the result, as it is
4037 * equally liable to change before userspace can inspect
4038 * the result.
4039 */
4040 args->busy |= busy_check_writer(&obj->last_write);
4041
4042 rcu_read_unlock();
426960be 4043 }
673a394b 4044
3fdc13c7
CW
4045 i915_gem_object_put_unlocked(obj);
4046 return 0;
673a394b
EA
4047}
4048
4049int
4050i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4051 struct drm_file *file_priv)
4052{
0206e353 4053 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4054}
4055
3ef94daa
CW
4056int
4057i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4058 struct drm_file *file_priv)
4059{
fac5e23e 4060 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4061 struct drm_i915_gem_madvise *args = data;
05394f39 4062 struct drm_i915_gem_object *obj;
76c1dec1 4063 int ret;
3ef94daa
CW
4064
4065 switch (args->madv) {
4066 case I915_MADV_DONTNEED:
4067 case I915_MADV_WILLNEED:
4068 break;
4069 default:
4070 return -EINVAL;
4071 }
4072
1d7cfea1
CW
4073 ret = i915_mutex_lock_interruptible(dev);
4074 if (ret)
4075 return ret;
4076
03ac0642
CW
4077 obj = i915_gem_object_lookup(file_priv, args->handle);
4078 if (!obj) {
1d7cfea1
CW
4079 ret = -ENOENT;
4080 goto unlock;
3ef94daa 4081 }
3ef94daa 4082
656bfa3a 4083 if (obj->pages &&
3e510a8e 4084 i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
4085 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4086 if (obj->madv == I915_MADV_WILLNEED)
4087 i915_gem_object_unpin_pages(obj);
4088 if (args->madv == I915_MADV_WILLNEED)
4089 i915_gem_object_pin_pages(obj);
4090 }
4091
05394f39
CW
4092 if (obj->madv != __I915_MADV_PURGED)
4093 obj->madv = args->madv;
3ef94daa 4094
6c085a72 4095 /* if the object is no longer attached, discard its backing storage */
be6a0376 4096 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4097 i915_gem_object_truncate(obj);
4098
05394f39 4099 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4100
f8c417cd 4101 i915_gem_object_put(obj);
1d7cfea1 4102unlock:
3ef94daa 4103 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4104 return ret;
3ef94daa
CW
4105}
4106
37e680a1
CW
4107void i915_gem_object_init(struct drm_i915_gem_object *obj,
4108 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4109{
b4716185
CW
4110 int i;
4111
35c20a60 4112 INIT_LIST_HEAD(&obj->global_list);
666796da 4113 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
4114 init_request_active(&obj->last_read[i],
4115 i915_gem_object_retire__read);
4116 init_request_active(&obj->last_write,
4117 i915_gem_object_retire__write);
b25cb2f8 4118 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4119 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4120 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4121
37e680a1
CW
4122 obj->ops = ops;
4123
50349247 4124 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
0327d6ba 4125 obj->madv = I915_MADV_WILLNEED;
0327d6ba 4126
f19ec8cb 4127 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4128}
4129
37e680a1 4130static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4131 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4132 .get_pages = i915_gem_object_get_pages_gtt,
4133 .put_pages = i915_gem_object_put_pages_gtt,
4134};
4135
d37cd8a8 4136struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4137 size_t size)
ac52bc56 4138{
c397b908 4139 struct drm_i915_gem_object *obj;
5949eac4 4140 struct address_space *mapping;
1a240d4d 4141 gfp_t mask;
fe3db79b 4142 int ret;
ac52bc56 4143
42dcedd4 4144 obj = i915_gem_object_alloc(dev);
c397b908 4145 if (obj == NULL)
fe3db79b 4146 return ERR_PTR(-ENOMEM);
673a394b 4147
fe3db79b
CW
4148 ret = drm_gem_object_init(dev, &obj->base, size);
4149 if (ret)
4150 goto fail;
673a394b 4151
bed1ea95
CW
4152 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4153 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4154 /* 965gm cannot relocate objects above 4GiB. */
4155 mask &= ~__GFP_HIGHMEM;
4156 mask |= __GFP_DMA32;
4157 }
4158
93c76a3d 4159 mapping = obj->base.filp->f_mapping;
bed1ea95 4160 mapping_set_gfp_mask(mapping, mask);
5949eac4 4161
37e680a1 4162 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4163
c397b908
DV
4164 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4165 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4166
3d29b842
ED
4167 if (HAS_LLC(dev)) {
4168 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4169 * cache) for about a 10% performance improvement
4170 * compared to uncached. Graphics requests other than
4171 * display scanout are coherent with the CPU in
4172 * accessing this cache. This means in this mode we
4173 * don't need to clflush on the CPU side, and on the
4174 * GPU side we only need to flush internal caches to
4175 * get data visible to the CPU.
4176 *
4177 * However, we maintain the display planes as UC, and so
4178 * need to rebind when first used as such.
4179 */
4180 obj->cache_level = I915_CACHE_LLC;
4181 } else
4182 obj->cache_level = I915_CACHE_NONE;
4183
d861e338
DV
4184 trace_i915_gem_object_create(obj);
4185
05394f39 4186 return obj;
fe3db79b
CW
4187
4188fail:
4189 i915_gem_object_free(obj);
4190
4191 return ERR_PTR(ret);
c397b908
DV
4192}
4193
340fbd8c
CW
4194static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4195{
4196 /* If we are the last user of the backing storage (be it shmemfs
4197 * pages or stolen etc), we know that the pages are going to be
4198 * immediately released. In this case, we can then skip copying
4199 * back the contents from the GPU.
4200 */
4201
4202 if (obj->madv != I915_MADV_WILLNEED)
4203 return false;
4204
4205 if (obj->base.filp == NULL)
4206 return true;
4207
4208 /* At first glance, this looks racy, but then again so would be
4209 * userspace racing mmap against close. However, the first external
4210 * reference to the filp can only be obtained through the
4211 * i915_gem_mmap_ioctl() which safeguards us against the user
4212 * acquiring such a reference whilst we are in the middle of
4213 * freeing the object.
4214 */
4215 return atomic_long_read(&obj->base.filp->f_count) == 1;
4216}
4217
1488fc08 4218void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4219{
1488fc08 4220 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4221 struct drm_device *dev = obj->base.dev;
fac5e23e 4222 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4223 struct i915_vma *vma, *next;
673a394b 4224
f65c9168
PZ
4225 intel_runtime_pm_get(dev_priv);
4226
26e12f89
CW
4227 trace_i915_gem_object_destroy(obj);
4228
b1f788c6
CW
4229 /* All file-owned VMA should have been released by this point through
4230 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4231 * However, the object may also be bound into the global GTT (e.g.
4232 * older GPUs without per-process support, or for direct access through
4233 * the GTT either for the user or for scanout). Those VMA still need to
4234 * unbound now.
4235 */
1c7f4bca 4236 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4237 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4238 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4239 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4240 i915_vma_close(vma);
1488fc08 4241 }
15717de2 4242 GEM_BUG_ON(obj->bind_count);
1488fc08 4243
1d64ae71
BW
4244 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4245 * before progressing. */
4246 if (obj->stolen)
4247 i915_gem_object_unpin_pages(obj);
4248
faf5bf0a 4249 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4250
656bfa3a
DV
4251 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4252 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
3e510a8e 4253 i915_gem_object_is_tiled(obj))
656bfa3a
DV
4254 i915_gem_object_unpin_pages(obj);
4255
401c29f6
BW
4256 if (WARN_ON(obj->pages_pin_count))
4257 obj->pages_pin_count = 0;
340fbd8c 4258 if (discard_backing_storage(obj))
5537252b 4259 obj->madv = I915_MADV_DONTNEED;
37e680a1 4260 i915_gem_object_put_pages(obj);
de151cf6 4261
9da3da66
CW
4262 BUG_ON(obj->pages);
4263
2f745ad3
CW
4264 if (obj->base.import_attach)
4265 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4266
5cc9ed4b
CW
4267 if (obj->ops->release)
4268 obj->ops->release(obj);
4269
05394f39
CW
4270 drm_gem_object_release(&obj->base);
4271 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4272
05394f39 4273 kfree(obj->bit_17);
42dcedd4 4274 i915_gem_object_free(obj);
f65c9168
PZ
4275
4276 intel_runtime_pm_put(dev_priv);
673a394b
EA
4277}
4278
dcff85c8 4279int i915_gem_suspend(struct drm_device *dev)
29105ccc 4280{
fac5e23e 4281 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4282 int ret;
28dfe52a 4283
54b4f68f
CW
4284 intel_suspend_gt_powersave(dev_priv);
4285
45c5f202 4286 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4287
4288 /* We have to flush all the executing contexts to main memory so
4289 * that they can saved in the hibernation image. To ensure the last
4290 * context image is coherent, we have to switch away from it. That
4291 * leaves the dev_priv->kernel_context still active when
4292 * we actually suspend, and its image in memory may not match the GPU
4293 * state. Fortunately, the kernel_context is disposable and we do
4294 * not rely on its state.
4295 */
4296 ret = i915_gem_switch_to_kernel_context(dev_priv);
4297 if (ret)
4298 goto err;
4299
dcff85c8 4300 ret = i915_gem_wait_for_idle(dev_priv, true);
f7403347 4301 if (ret)
45c5f202 4302 goto err;
f7403347 4303
c033666a 4304 i915_gem_retire_requests(dev_priv);
673a394b 4305
b2e862d0 4306 i915_gem_context_lost(dev_priv);
45c5f202
CW
4307 mutex_unlock(&dev->struct_mutex);
4308
737b1506 4309 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4310 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4311 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4312
bdcf120b
CW
4313 /* Assert that we sucessfully flushed all the work and
4314 * reset the GPU back to its idle, low power state.
4315 */
67d97da3 4316 WARN_ON(dev_priv->gt.awake);
bdcf120b 4317
673a394b 4318 return 0;
45c5f202
CW
4319
4320err:
4321 mutex_unlock(&dev->struct_mutex);
4322 return ret;
673a394b
EA
4323}
4324
5ab57c70
CW
4325void i915_gem_resume(struct drm_device *dev)
4326{
4327 struct drm_i915_private *dev_priv = to_i915(dev);
4328
4329 mutex_lock(&dev->struct_mutex);
4330 i915_gem_restore_gtt_mappings(dev);
4331
4332 /* As we didn't flush the kernel context before suspend, we cannot
4333 * guarantee that the context image is complete. So let's just reset
4334 * it and start again.
4335 */
4336 if (i915.enable_execlists)
4337 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4338
4339 mutex_unlock(&dev->struct_mutex);
4340}
4341
f691e2f4
DV
4342void i915_gem_init_swizzling(struct drm_device *dev)
4343{
fac5e23e 4344 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4345
11782b02 4346 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4347 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4348 return;
4349
4350 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4351 DISP_TILE_SURFACE_SWIZZLING);
4352
11782b02
DV
4353 if (IS_GEN5(dev))
4354 return;
4355
f691e2f4
DV
4356 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4357 if (IS_GEN6(dev))
6b26c86d 4358 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4359 else if (IS_GEN7(dev))
6b26c86d 4360 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4361 else if (IS_GEN8(dev))
4362 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4363 else
4364 BUG();
f691e2f4 4365}
e21af88d 4366
81e7f200
VS
4367static void init_unused_ring(struct drm_device *dev, u32 base)
4368{
fac5e23e 4369 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4370
4371 I915_WRITE(RING_CTL(base), 0);
4372 I915_WRITE(RING_HEAD(base), 0);
4373 I915_WRITE(RING_TAIL(base), 0);
4374 I915_WRITE(RING_START(base), 0);
4375}
4376
4377static void init_unused_rings(struct drm_device *dev)
4378{
4379 if (IS_I830(dev)) {
4380 init_unused_ring(dev, PRB1_BASE);
4381 init_unused_ring(dev, SRB0_BASE);
4382 init_unused_ring(dev, SRB1_BASE);
4383 init_unused_ring(dev, SRB2_BASE);
4384 init_unused_ring(dev, SRB3_BASE);
4385 } else if (IS_GEN2(dev)) {
4386 init_unused_ring(dev, SRB0_BASE);
4387 init_unused_ring(dev, SRB1_BASE);
4388 } else if (IS_GEN3(dev)) {
4389 init_unused_ring(dev, PRB1_BASE);
4390 init_unused_ring(dev, PRB2_BASE);
4391 }
4392}
4393
4fc7c971
BW
4394int
4395i915_gem_init_hw(struct drm_device *dev)
4396{
fac5e23e 4397 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4398 struct intel_engine_cs *engine;
d200cda6 4399 int ret;
4fc7c971 4400
5e4f5189
CW
4401 /* Double layer security blanket, see i915_gem_init() */
4402 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4403
3accaf7e 4404 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4405 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4406
0bf21347
VS
4407 if (IS_HASWELL(dev))
4408 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4409 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4410
88a2b2a3 4411 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4412 if (IS_IVYBRIDGE(dev)) {
4413 u32 temp = I915_READ(GEN7_MSG_CTL);
4414 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4415 I915_WRITE(GEN7_MSG_CTL, temp);
4416 } else if (INTEL_INFO(dev)->gen >= 7) {
4417 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4418 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4419 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4420 }
88a2b2a3
BW
4421 }
4422
4fc7c971
BW
4423 i915_gem_init_swizzling(dev);
4424
d5abdfda
DV
4425 /*
4426 * At least 830 can leave some of the unused rings
4427 * "active" (ie. head != tail) after resume which
4428 * will prevent c3 entry. Makes sure all unused rings
4429 * are totally idle.
4430 */
4431 init_unused_rings(dev);
4432
ed54c1a1 4433 BUG_ON(!dev_priv->kernel_context);
90638cc1 4434
4ad2fd88
JH
4435 ret = i915_ppgtt_init_hw(dev);
4436 if (ret) {
4437 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4438 goto out;
4439 }
4440
4441 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4442 for_each_engine(engine, dev_priv) {
e2f80391 4443 ret = engine->init_hw(engine);
35a57ffb 4444 if (ret)
5e4f5189 4445 goto out;
35a57ffb 4446 }
99433931 4447
0ccdacf6
PA
4448 intel_mocs_init_l3cc_table(dev);
4449
33a732f4 4450 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4451 ret = intel_guc_setup(dev);
4452 if (ret)
4453 goto out;
33a732f4 4454
5e4f5189
CW
4455out:
4456 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4457 return ret;
8187a2b7
ZN
4458}
4459
39df9190
CW
4460bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4461{
4462 if (INTEL_INFO(dev_priv)->gen < 6)
4463 return false;
4464
4465 /* TODO: make semaphores and Execlists play nicely together */
4466 if (i915.enable_execlists)
4467 return false;
4468
4469 if (value >= 0)
4470 return value;
4471
4472#ifdef CONFIG_INTEL_IOMMU
4473 /* Enable semaphores on SNB when IO remapping is off */
4474 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4475 return false;
4476#endif
4477
4478 return true;
4479}
4480
1070a42b
CW
4481int i915_gem_init(struct drm_device *dev)
4482{
fac5e23e 4483 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4484 int ret;
4485
1070a42b 4486 mutex_lock(&dev->struct_mutex);
d62b4892 4487
a83014d3 4488 if (!i915.enable_execlists) {
7e37f889 4489 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4490 } else {
117897f4 4491 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4492 }
4493
5e4f5189
CW
4494 /* This is just a security blanket to placate dragons.
4495 * On some systems, we very sporadically observe that the first TLBs
4496 * used by the CS may be stale, despite us poking the TLB reset. If
4497 * we hold the forcewake during initialisation these problems
4498 * just magically go away.
4499 */
4500 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4501
72778cb2 4502 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4503
4504 ret = i915_gem_init_ggtt(dev_priv);
4505 if (ret)
4506 goto out_unlock;
d62b4892 4507
2fa48d8d 4508 ret = i915_gem_context_init(dev);
7bcc3777
JN
4509 if (ret)
4510 goto out_unlock;
2fa48d8d 4511
8b3e2d36 4512 ret = intel_engines_init(dev);
35a57ffb 4513 if (ret)
7bcc3777 4514 goto out_unlock;
2fa48d8d 4515
1070a42b 4516 ret = i915_gem_init_hw(dev);
60990320 4517 if (ret == -EIO) {
7e21d648 4518 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4519 * wedged. But we only want to do this where the GPU is angry,
4520 * for all other failure, such as an allocation failure, bail.
4521 */
4522 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4523 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4524 ret = 0;
1070a42b 4525 }
7bcc3777
JN
4526
4527out_unlock:
5e4f5189 4528 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4529 mutex_unlock(&dev->struct_mutex);
1070a42b 4530
60990320 4531 return ret;
1070a42b
CW
4532}
4533
8187a2b7 4534void
117897f4 4535i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4536{
fac5e23e 4537 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4538 struct intel_engine_cs *engine;
8187a2b7 4539
b4ac5afc 4540 for_each_engine(engine, dev_priv)
117897f4 4541 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4542}
4543
64193406 4544static void
666796da 4545init_engine_lists(struct intel_engine_cs *engine)
64193406 4546{
0bc40be8 4547 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4548}
4549
40ae4e16
ID
4550void
4551i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4552{
91c8a326 4553 struct drm_device *dev = &dev_priv->drm;
49ef5294 4554 int i;
40ae4e16
ID
4555
4556 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4557 !IS_CHERRYVIEW(dev_priv))
4558 dev_priv->num_fence_regs = 32;
4559 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4560 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4561 dev_priv->num_fence_regs = 16;
4562 else
4563 dev_priv->num_fence_regs = 8;
4564
c033666a 4565 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4566 dev_priv->num_fence_regs =
4567 I915_READ(vgtif_reg(avail_rs.fence_num));
4568
4569 /* Initialize fence registers to zero */
49ef5294
CW
4570 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4571 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4572
4573 fence->i915 = dev_priv;
4574 fence->id = i;
4575 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4576 }
40ae4e16
ID
4577 i915_gem_restore_fences(dev);
4578
4579 i915_gem_detect_bit_6_swizzle(dev);
4580}
4581
673a394b 4582void
d64aa096 4583i915_gem_load_init(struct drm_device *dev)
673a394b 4584{
fac5e23e 4585 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4586 int i;
4587
efab6d8d 4588 dev_priv->objects =
42dcedd4
CW
4589 kmem_cache_create("i915_gem_object",
4590 sizeof(struct drm_i915_gem_object), 0,
4591 SLAB_HWCACHE_ALIGN,
4592 NULL);
e20d2ab7
CW
4593 dev_priv->vmas =
4594 kmem_cache_create("i915_gem_vma",
4595 sizeof(struct i915_vma), 0,
4596 SLAB_HWCACHE_ALIGN,
4597 NULL);
efab6d8d
CW
4598 dev_priv->requests =
4599 kmem_cache_create("i915_gem_request",
4600 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4601 SLAB_HWCACHE_ALIGN |
4602 SLAB_RECLAIM_ACCOUNT |
4603 SLAB_DESTROY_BY_RCU,
efab6d8d 4604 NULL);
673a394b 4605
a33afea5 4606 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4607 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4608 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4609 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4610 for (i = 0; i < I915_NUM_ENGINES; i++)
4611 init_engine_lists(&dev_priv->engine[i]);
67d97da3 4612 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4613 i915_gem_retire_work_handler);
67d97da3 4614 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4615 i915_gem_idle_work_handler);
1f15b76f 4616 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4617 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4618
72bfa19c
CW
4619 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4620
6b95a207 4621 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4622
ce453d81
CW
4623 dev_priv->mm.interruptible = true;
4624
6f633402
JL
4625 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4626
b5add959 4627 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4628}
71acb5eb 4629
d64aa096
ID
4630void i915_gem_load_cleanup(struct drm_device *dev)
4631{
4632 struct drm_i915_private *dev_priv = to_i915(dev);
4633
4634 kmem_cache_destroy(dev_priv->requests);
4635 kmem_cache_destroy(dev_priv->vmas);
4636 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4637
4638 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4639 rcu_barrier();
d64aa096
ID
4640}
4641
461fb99c
CW
4642int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4643{
4644 struct drm_i915_gem_object *obj;
4645
4646 /* Called just before we write the hibernation image.
4647 *
4648 * We need to update the domain tracking to reflect that the CPU
4649 * will be accessing all the pages to create and restore from the
4650 * hibernation, and so upon restoration those pages will be in the
4651 * CPU domain.
4652 *
4653 * To make sure the hibernation image contains the latest state,
4654 * we update that state just before writing out the image.
4655 */
4656
4657 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4658 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4659 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4660 }
4661
4662 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4663 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4664 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4665 }
4666
4667 return 0;
4668}
4669
f787a5f5 4670void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4671{
f787a5f5 4672 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4673 struct drm_i915_gem_request *request;
b962442e
EA
4674
4675 /* Clean up our request list when the client is going away, so that
4676 * later retire_requests won't dereference our soon-to-be-gone
4677 * file_priv.
4678 */
1c25595f 4679 spin_lock(&file_priv->mm.lock);
15f7bbc7 4680 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4681 request->file_priv = NULL;
1c25595f 4682 spin_unlock(&file_priv->mm.lock);
b29c19b6 4683
2e1b8730 4684 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4685 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4686 list_del(&file_priv->rps.link);
8d3afd7d 4687 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4688 }
b29c19b6
CW
4689}
4690
4691int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4692{
4693 struct drm_i915_file_private *file_priv;
e422b888 4694 int ret;
b29c19b6
CW
4695
4696 DRM_DEBUG_DRIVER("\n");
4697
4698 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4699 if (!file_priv)
4700 return -ENOMEM;
4701
4702 file->driver_priv = file_priv;
f19ec8cb 4703 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4704 file_priv->file = file;
2e1b8730 4705 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4706
4707 spin_lock_init(&file_priv->mm.lock);
4708 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4709
c80ff16e 4710 file_priv->bsd_engine = -1;
de1add36 4711
e422b888
BW
4712 ret = i915_gem_context_open(dev, file);
4713 if (ret)
4714 kfree(file_priv);
b29c19b6 4715
e422b888 4716 return ret;
b29c19b6
CW
4717}
4718
b680c37a
DV
4719/**
4720 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4721 * @old: current GEM buffer for the frontbuffer slots
4722 * @new: new GEM buffer for the frontbuffer slots
4723 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4724 *
4725 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4726 * from @old and setting them in @new. Both @old and @new can be NULL.
4727 */
a071fa00
DV
4728void i915_gem_track_fb(struct drm_i915_gem_object *old,
4729 struct drm_i915_gem_object *new,
4730 unsigned frontbuffer_bits)
4731{
faf5bf0a
CW
4732 /* Control of individual bits within the mask are guarded by
4733 * the owning plane->mutex, i.e. we can never see concurrent
4734 * manipulation of individual bits. But since the bitfield as a whole
4735 * is updated using RMW, we need to use atomics in order to update
4736 * the bits.
4737 */
4738 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4739 sizeof(atomic_t) * BITS_PER_BYTE);
4740
a071fa00 4741 if (old) {
faf5bf0a
CW
4742 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4743 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4744 }
4745
4746 if (new) {
faf5bf0a
CW
4747 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4748 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4749 }
4750}
4751
033908ae
DG
4752/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4753struct page *
4754i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4755{
4756 struct page *page;
4757
4758 /* Only default objects have per-page dirty tracking */
b9bcd14a 4759 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4760 return NULL;
4761
4762 page = i915_gem_object_get_page(obj, n);
4763 set_page_dirty(page);
4764 return page;
4765}
4766
ea70299d
DG
4767/* Allocate a new GEM object and fill it with the supplied data */
4768struct drm_i915_gem_object *
4769i915_gem_object_create_from_data(struct drm_device *dev,
4770 const void *data, size_t size)
4771{
4772 struct drm_i915_gem_object *obj;
4773 struct sg_table *sg;
4774 size_t bytes;
4775 int ret;
4776
d37cd8a8 4777 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4778 if (IS_ERR(obj))
ea70299d
DG
4779 return obj;
4780
4781 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4782 if (ret)
4783 goto fail;
4784
4785 ret = i915_gem_object_get_pages(obj);
4786 if (ret)
4787 goto fail;
4788
4789 i915_gem_object_pin_pages(obj);
4790 sg = obj->pages;
4791 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4792 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4793 i915_gem_object_unpin_pages(obj);
4794
4795 if (WARN_ON(bytes != size)) {
4796 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4797 ret = -EFAULT;
4798 goto fail;
4799 }
4800
4801 return obj;
4802
4803fail:
f8c417cd 4804 i915_gem_object_put(obj);
ea70299d
DG
4805 return ERR_PTR(ret);
4806}