]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: introduce for_each_engine_id()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
62106b4f 135 struct i915_ggtt *ggtt = &dev_priv->ggtt;
ca1543be 136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
1c7f4bca 141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
142 if (vma->pin_count)
143 pinned += vma->node.size;
1c7f4bca 144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
62106b4f 149 args->aper_size = dev_priv->ggtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
1c7f4bca 275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
1db6e2e7 492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
62106b4f 810 if (fast_user_write(dev_priv->ggtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1144 struct intel_engine_cs *engine)
094f9a54 1145{
0bc40be8 1146 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1147}
1148
ca5b721e
CW
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
91b0c352 1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1182{
2def4ad9 1183 unsigned long timeout;
ca5b721e
CW
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
2def4ad9 1195
4a570db5 1196 if (req->engine->irq_refcount)
2def4ad9
CW
1197 return -EBUSY;
1198
821485dc
CW
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
ca5b721e 1203 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1204 while (!need_resched()) {
eed29a5b 1205 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1206 return 0;
1207
91b0c352
CW
1208 if (signal_pending_state(state, current))
1209 break;
1210
ca5b721e 1211 if (busywait_stop(timeout, cpu))
2def4ad9 1212 break;
b29c19b6 1213
2def4ad9
CW
1214 cpu_relax_lowlatency();
1215 }
821485dc 1216
eed29a5b 1217 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1218 return 0;
1219
1220 return -EAGAIN;
b29c19b6
CW
1221}
1222
b361237b 1223/**
9c654818
JH
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
f69061be
DV
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
9c654818 1237 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1238 * errno with remaining time filled in timeout argument.
1239 */
9c654818 1240int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1241 unsigned reset_counter,
b29c19b6 1242 bool interruptible,
5ed0bdf2 1243 s64 *timeout,
2e1b8730 1244 struct intel_rps_client *rps)
b361237b 1245{
666796da 1246 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
e2f80391 1247 struct drm_device *dev = engine->dev;
3e31c6c0 1248 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21 1249 const bool irq_test_in_progress =
666796da 1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1252 DEFINE_WAIT(wait);
47e9766d 1253 unsigned long timeout_expire;
e0313db0 1254 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1255 int ret;
1256
9df7575f 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1258
b4716185
CW
1259 if (list_empty(&req->list))
1260 return 0;
1261
1b5a433a 1262 if (i915_gem_request_completed(req, true))
b361237b
CW
1263 return 0;
1264
bb6d1984
CW
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
bb6d1984 1279 }
b361237b 1280
2e1b8730 1281 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1283
74328ee5 1284 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1287 ret = __i915_spin_request(req, state);
2def4ad9
CW
1288 if (ret == 0)
1289 goto out;
1290
e2f80391 1291 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
094f9a54
CW
1296 for (;;) {
1297 struct timer_list timer;
b361237b 1298
e2f80391 1299 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1300
f69061be
DV
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
094f9a54
CW
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
f69061be 1311
1b5a433a 1312 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1313 ret = 0;
1314 break;
1315 }
b361237b 1316
91b0c352 1317 if (signal_pending_state(state, current)) {
094f9a54
CW
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
47e9766d 1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
e2f80391 1328 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1329 unsigned long expire;
1330
094f9a54 1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1332 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1333 mod_timer(&timer, expire);
1334 }
1335
5035c275 1336 io_schedule();
094f9a54 1337
094f9a54
CW
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
168c3f21 1343 if (!irq_test_in_progress)
e2f80391 1344 engine->irq_put(engine);
094f9a54 1345
e2f80391 1346 finish_wait(&engine->irq_queue, &wait);
b361237b 1347
2def4ad9 1348out:
2def4ad9
CW
1349 trace_i915_gem_request_wait_end(req);
1350
b361237b 1351 if (timeout) {
e0313db0 1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1353
1354 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
b361237b
CW
1365 }
1366
094f9a54 1367 return ret;
b361237b
CW
1368}
1369
fcfa423c
JH
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372{
fcfa423c
JH
1373 struct drm_i915_file_private *file_priv;
1374
1375 WARN_ON(!req || !file || req->file_priv);
1376
1377 if (!req || !file)
1378 return -EINVAL;
1379
1380 if (req->file_priv)
1381 return -EINVAL;
1382
fcfa423c
JH
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393}
1394
b4716185
CW
1395static inline void
1396i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397{
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
b4716185
CW
1410}
1411
1412static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413{
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
b4716185
CW
1429 i915_gem_request_unreference(request);
1430}
1431
1432static void
1433__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434{
4a570db5 1435 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451}
1452
b361237b 1453/**
a4b3a571 1454 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1455 * request and object lists appropriately for that event.
1456 */
1457int
a4b3a571 1458i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1459{
a4b3a571
DV
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
b361237b
CW
1463 int ret;
1464
a4b3a571
DV
1465 BUG_ON(req == NULL);
1466
4a570db5 1467 dev = req->engine->dev;
a4b3a571
DV
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
b361237b 1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1472
33196ded 1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1474 if (ret)
1475 return ret;
1476
b4716185
CW
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1479 interruptible, NULL, NULL);
b4716185
CW
1480 if (ret)
1481 return ret;
d26e3af8 1482
b4716185 1483 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1484 return 0;
1485}
1486
b361237b
CW
1487/**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
2e2f351d 1491int
b361237b
CW
1492i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494{
b4716185 1495 int ret, i;
b361237b 1496
b4716185 1497 if (!obj->active)
b361237b
CW
1498 return 0;
1499
b4716185
CW
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
b361237b 1505
4a570db5 1506 i = obj->last_write_req->engine->id;
b4716185
CW
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
666796da 1513 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527}
1528
1529static void
1530i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532{
4a570db5 1533 int ring = req->engine->id;
b4716185
CW
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
b361237b
CW
1541}
1542
3236f57a
CW
1543/* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546static __must_check int
1547i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1548 struct intel_rps_client *rps,
3236f57a
CW
1549 bool readonly)
1550{
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1553 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
f69061be 1554 unsigned reset_counter;
b4716185 1555 int ret, i, n = 0;
3236f57a
CW
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
b4716185 1560 if (!obj->active)
3236f57a
CW
1561 return 0;
1562
33196ded 1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1564 if (ret)
1565 return ret;
1566
f69061be 1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
b4716185
CW
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
666796da 1578 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
b4716185
CW
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
3236f57a 1589 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1592 NULL, rps);
3236f57a
CW
1593 mutex_lock(&dev->struct_mutex);
1594
b4716185
CW
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
3236f57a
CW
1602}
1603
2e1b8730
CW
1604static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605{
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608}
1609
673a394b 1610/**
2ef7eeaa
EA
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1613 */
1614int
1615i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1616 struct drm_file *file)
673a394b
EA
1617{
1618 struct drm_i915_gem_set_domain *args = data;
05394f39 1619 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
673a394b
EA
1622 int ret;
1623
2ef7eeaa 1624 /* Only handle setting domains to types used by the CPU. */
21d509e3 1625 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1626 return -EINVAL;
1627
21d509e3 1628 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
76c1dec1 1637 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1638 if (ret)
76c1dec1 1639 return ret;
1d7cfea1 1640
05394f39 1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1642 if (&obj->base == NULL) {
1d7cfea1
CW
1643 ret = -ENOENT;
1644 goto unlock;
76c1dec1 1645 }
673a394b 1646
3236f57a
CW
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
6e4930f6 1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1652 to_rps_client(file),
6e4930f6 1653 !write_domain);
3236f57a
CW
1654 if (ret)
1655 goto unref;
1656
43566ded 1657 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1659 else
e47c68e9 1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1661
031b698a
DV
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
3236f57a 1667unref:
05394f39 1668 drm_gem_object_unreference(&obj->base);
1d7cfea1 1669unlock:
673a394b
EA
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672}
1673
1674/**
1675 * Called when user space has done writes to this buffer
1676 */
1677int
1678i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1679 struct drm_file *file)
673a394b
EA
1680{
1681 struct drm_i915_gem_sw_finish *args = data;
05394f39 1682 struct drm_i915_gem_object *obj;
673a394b
EA
1683 int ret = 0;
1684
76c1dec1 1685 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1686 if (ret)
76c1dec1 1687 return ret;
1d7cfea1 1688
05394f39 1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1690 if (&obj->base == NULL) {
1d7cfea1
CW
1691 ret = -ENOENT;
1692 goto unlock;
673a394b
EA
1693 }
1694
673a394b 1695 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1696 if (obj->pin_display)
e62b59e4 1697 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1698
05394f39 1699 drm_gem_object_unreference(&obj->base);
1d7cfea1 1700unlock:
673a394b
EA
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703}
1704
1705/**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
34367381
DV
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1721 */
1722int
1723i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1724 struct drm_file *file)
673a394b
EA
1725{
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
673a394b
EA
1728 unsigned long addr;
1729
1816f923
AG
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
05394f39 1736 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1737 if (obj == NULL)
bf79cb91 1738 return -ENOENT;
673a394b 1739
1286ff73
DV
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
6be5ceb0 1748 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1816f923
AG
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
bc9025bd 1764 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771}
1772
de151cf6
JB
1773/**
1774 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1775 * @vma: VMA in question
1776 * @vmf: fault info
de151cf6
JB
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
1789int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790{
05394f39
CW
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
3e31c6c0 1793 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
0f973f27 1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1799
f65c9168
PZ
1800 intel_runtime_pm_get(dev_priv);
1801
de151cf6
JB
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
d9bc7e9f
CW
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
a00b10c3 1809
db53a302
CW
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
6e4930f6
CW
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
eb119bd6
CW
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1823 ret = -EFAULT;
eb119bd6
CW
1824 goto unlock;
1825 }
1826
c5ad54cf 1827 /* Use a partial view if the object is bigger than the aperture. */
62106b4f 1828 if (obj->base.size >= dev_priv->ggtt.mappable_end &&
e7ded2d7 1829 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1830 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1831
c5ad54cf
JL
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1844 if (ret)
1845 goto unlock;
4a684a41 1846
c9839303
CW
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
74898d7e 1850
06d98131 1851 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1852 if (ret)
c9839303 1853 goto unpin;
7d1c4804 1854
b90b91d8 1855 /* Finally, remap it using the new GTT offset */
62106b4f 1856 pfn = dev_priv->ggtt.mappable_base +
c5ad54cf 1857 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1858 pfn >>= PAGE_SHIFT;
de151cf6 1859
c5ad54cf
JL
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
b90b91d8 1869
c5ad54cf
JL
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
c5ad54cf
JL
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
c9839303 1898unpin:
c5ad54cf 1899 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1900unlock:
de151cf6 1901 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1902out:
de151cf6 1903 switch (ret) {
d9bc7e9f 1904 case -EIO:
2232f031
DV
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
045e769a 1915 case -EAGAIN:
571c608d
DV
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
d9bc7e9f 1920 */
c715089f
CW
1921 case 0:
1922 case -ERESTARTSYS:
bed636ab 1923 case -EINTR:
e79e0fe3
DR
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
f65c9168
PZ
1929 ret = VM_FAULT_NOPAGE;
1930 break;
de151cf6 1931 case -ENOMEM:
f65c9168
PZ
1932 ret = VM_FAULT_OOM;
1933 break;
a7c2e1aa 1934 case -ENOSPC:
45d67817 1935 case -EFAULT:
f65c9168
PZ
1936 ret = VM_FAULT_SIGBUS;
1937 break;
de151cf6 1938 default:
a7c2e1aa 1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1940 ret = VM_FAULT_SIGBUS;
1941 break;
de151cf6 1942 }
f65c9168
PZ
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
de151cf6
JB
1946}
1947
901782b2
CW
1948/**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
af901ca1 1952 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
d05ca301 1962void
05394f39 1963i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1964{
6299f992
CW
1965 if (!obj->fault_mappable)
1966 return;
901782b2 1967
6796cb16
DH
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
6299f992 1970 obj->fault_mappable = false;
901782b2
CW
1971}
1972
eedd10f4
CW
1973void
1974i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975{
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980}
1981
0fa87796 1982uint32_t
e28f8711 1983i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1984{
e28f8711 1985 uint32_t gtt_size;
92b88aeb
CW
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
92b88aeb
CW
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1993 gtt_size = 1024*1024;
92b88aeb 1994 else
e28f8711 1995 gtt_size = 512*1024;
92b88aeb 1996
e28f8711
CW
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
92b88aeb 1999
e28f8711 2000 return gtt_size;
92b88aeb
CW
2001}
2002
de151cf6
JB
2003/**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
5e783301 2008 * potential fence register mapping.
de151cf6 2009 */
d865110c
ID
2010uint32_t
2011i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
de151cf6 2013{
de151cf6
JB
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
d865110c 2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2019 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2020 return 4096;
2021
a00b10c3
CW
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
e28f8711 2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2027}
2028
d8cb5086
CW
2029static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030{
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
0de23977 2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2035 return 0;
2036
da494d7c
DV
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
d8cb5086
CW
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
da494d7c 2041 goto out;
d8cb5086
CW
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
21ab4e74
CW
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
da494d7c 2057 goto out;
d8cb5086
CW
2058
2059 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
d8cb5086
CW
2065}
2066
2067static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068{
d8cb5086
CW
2069 drm_gem_free_mmap_offset(&obj->base);
2070}
2071
da6b51d0 2072int
ff72145b
DA
2073i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
da6b51d0 2075 uint32_t handle,
ff72145b 2076 uint64_t *offset)
de151cf6 2077{
05394f39 2078 struct drm_i915_gem_object *obj;
de151cf6
JB
2079 int ret;
2080
76c1dec1 2081 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2082 if (ret)
76c1dec1 2083 return ret;
de151cf6 2084
ff72145b 2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2086 if (&obj->base == NULL) {
1d7cfea1
CW
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
de151cf6 2090
05394f39 2091 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2093 ret = -EFAULT;
1d7cfea1 2094 goto out;
ab18282d
CW
2095 }
2096
d8cb5086
CW
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
de151cf6 2100
0de23977 2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2102
1d7cfea1 2103out:
05394f39 2104 drm_gem_object_unreference(&obj->base);
1d7cfea1 2105unlock:
de151cf6 2106 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2107 return ret;
de151cf6
JB
2108}
2109
ff72145b
DA
2110/**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125int
2126i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128{
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
da6b51d0 2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2132}
2133
225067ee
DV
2134/* Immediately discard the backing storage */
2135static void
2136i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2137{
4d6294bf 2138 i915_gem_object_free_mmap_offset(obj);
1286ff73 2139
4d6294bf
CW
2140 if (obj->base.filp == NULL)
2141 return;
e5281ccd 2142
225067ee
DV
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
5537252b 2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2149 obj->madv = __I915_MADV_PURGED;
2150}
e5281ccd 2151
5537252b
CW
2152/* Try to discard unwanted pages */
2153static void
2154i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2155{
5537252b
CW
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2170}
2171
5cdf5881 2172static void
05394f39 2173i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2174{
90797e6d
ID
2175 struct sg_page_iter sg_iter;
2176 int ret;
1286ff73 2177
05394f39 2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2179
6c085a72
CW
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2c22569b 2186 i915_gem_clflush_object(obj, true);
6c085a72
CW
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
e2273302
ID
2190 i915_gem_gtt_finish_object(obj);
2191
6dacfd2f 2192 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
05394f39
CW
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
3ef94daa 2197
90797e6d 2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2199 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2200
05394f39 2201 if (obj->dirty)
9da3da66 2202 set_page_dirty(page);
3ef94daa 2203
05394f39 2204 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2205 mark_page_accessed(page);
3ef94daa 2206
9da3da66 2207 page_cache_release(page);
3ef94daa 2208 }
05394f39 2209 obj->dirty = 0;
673a394b 2210
9da3da66
CW
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
37e680a1 2213}
6c085a72 2214
dd624afd 2215int
37e680a1
CW
2216i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217{
2218 const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2f745ad3 2220 if (obj->pages == NULL)
37e680a1
CW
2221 return 0;
2222
a5570178
CW
2223 if (obj->pages_pin_count)
2224 return -EBUSY;
2225
9843877d 2226 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2227
a2165e31
CW
2228 /* ->put_pages might need to allocate memory for the bit17 swizzle
2229 * array, hence protect them from being reaped by removing them from gtt
2230 * lists early. */
35c20a60 2231 list_del(&obj->global_list);
a2165e31 2232
37e680a1 2233 ops->put_pages(obj);
05394f39 2234 obj->pages = NULL;
37e680a1 2235
5537252b 2236 i915_gem_object_invalidate(obj);
6c085a72
CW
2237
2238 return 0;
2239}
2240
37e680a1 2241static int
6c085a72 2242i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2243{
6c085a72 2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2245 int page_count, i;
2246 struct address_space *mapping;
9da3da66
CW
2247 struct sg_table *st;
2248 struct scatterlist *sg;
90797e6d 2249 struct sg_page_iter sg_iter;
e5281ccd 2250 struct page *page;
90797e6d 2251 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2252 int ret;
6c085a72 2253 gfp_t gfp;
e5281ccd 2254
6c085a72
CW
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
9da3da66
CW
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
05394f39 2266 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2268 kfree(st);
e5281ccd 2269 return -ENOMEM;
9da3da66 2270 }
e5281ccd 2271
9da3da66
CW
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
496ad9aa 2277 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
6c085a72
CW
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
21ab4e74
CW
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
6c085a72
CW
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
6c085a72 2297 i915_gem_shrink_all(dev_priv);
f461d1be 2298 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
6c085a72 2301 goto err_pages;
e2273302 2302 }
6c085a72 2303 }
426729dc
KRW
2304#ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311#endif
90797e6d
ID
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
3bbbe706
DV
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2324 }
426729dc
KRW
2325#ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327#endif
2328 sg_mark_end(sg);
74ce6b6c
CW
2329 obj->pages = st;
2330
e2273302
ID
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
6dacfd2f 2335 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
656bfa3a
DV
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
e5281ccd
CW
2342 return 0;
2343
2344err_pages:
90797e6d
ID
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2347 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2348 sg_free_table(st);
2349 kfree(st);
0820baf3
CW
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
e2273302
ID
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
673a394b
EA
2363}
2364
37e680a1
CW
2365/* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372int
2373i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374{
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2f745ad3 2379 if (obj->pages)
37e680a1
CW
2380 return 0;
2381
43e28f09 2382 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2384 return -EFAULT;
43e28f09
CW
2385 }
2386
a5570178
CW
2387 BUG_ON(obj->pages_pin_count);
2388
37e680a1
CW
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
35c20a60 2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
37e680a1 2398 return 0;
673a394b
EA
2399}
2400
b4716185 2401void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2402 struct drm_i915_gem_request *req)
673a394b 2403{
b4716185 2404 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2405 struct intel_engine_cs *engine;
b2af0376 2406
666796da 2407 engine = i915_gem_request_get_engine(req);
673a394b
EA
2408
2409 /* Add a reference if we're newly entering the active list. */
b4716185 2410 if (obj->active == 0)
05394f39 2411 drm_gem_object_reference(&obj->base);
666796da 2412 obj->active |= intel_engine_flag(engine);
e35a41de 2413
117897f4 2414 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2415 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2416
1c7f4bca 2417 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2418}
2419
b4716185
CW
2420static void
2421i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2422{
b4716185 2423 RQ_BUG_ON(obj->last_write_req == NULL);
666796da 2424 RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2425
2426 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2427 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2428}
2429
caea7476 2430static void
b4716185 2431i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2432{
feb822cf 2433 struct i915_vma *vma;
ce44b0ea 2434
b4716185
CW
2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
117897f4 2438 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
4a570db5 2441 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2442 i915_gem_object_retire__write(obj);
2443
2444 obj->active &= ~(1 << ring);
2445 if (obj->active)
2446 return;
caea7476 2447
6c246959
CW
2448 /* Bump our place on the bound list to keep it roughly in LRU order
2449 * so that we don't steal from recently used but inactive objects
2450 * (unless we are forced to ofc!)
2451 */
2452 list_move_tail(&obj->global_list,
2453 &to_i915(obj->base.dev)->mm.bound_list);
2454
1c7f4bca
CW
2455 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2456 if (!list_empty(&vma->vm_link))
2457 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2458 }
caea7476 2459
97b2a6a1 2460 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2461 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2462}
2463
9d773091 2464static int
fca26bb4 2465i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2466{
9d773091 2467 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2468 struct intel_engine_cs *engine;
9d773091 2469 int ret, i, j;
53d227f2 2470
107f27a5 2471 /* Carefully retire all requests without writing to the rings */
666796da
TU
2472 for_each_engine(engine, dev_priv, i) {
2473 ret = intel_engine_idle(engine);
107f27a5
CW
2474 if (ret)
2475 return ret;
9d773091 2476 }
9d773091 2477 i915_gem_retire_requests(dev);
107f27a5
CW
2478
2479 /* Finally reset hw state */
666796da 2480 for_each_engine(engine, dev_priv, i) {
e2f80391 2481 intel_ring_init_seqno(engine, seqno);
498d2ac1 2482
e2f80391
TU
2483 for (j = 0; j < ARRAY_SIZE(engine->semaphore.sync_seqno); j++)
2484 engine->semaphore.sync_seqno[j] = 0;
9d773091 2485 }
53d227f2 2486
9d773091 2487 return 0;
53d227f2
DV
2488}
2489
fca26bb4
MK
2490int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491{
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 int ret;
2494
2495 if (seqno == 0)
2496 return -EINVAL;
2497
2498 /* HWS page needs to be set less than what we
2499 * will inject to ring
2500 */
2501 ret = i915_gem_init_seqno(dev, seqno - 1);
2502 if (ret)
2503 return ret;
2504
2505 /* Carefully set the last_seqno value so that wrap
2506 * detection still works
2507 */
2508 dev_priv->next_seqno = seqno;
2509 dev_priv->last_seqno = seqno - 1;
2510 if (dev_priv->last_seqno == 0)
2511 dev_priv->last_seqno--;
2512
2513 return 0;
2514}
2515
9d773091
CW
2516int
2517i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2518{
9d773091
CW
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 /* reserve 0 for non-seqno */
2522 if (dev_priv->next_seqno == 0) {
fca26bb4 2523 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2524 if (ret)
2525 return ret;
53d227f2 2526
9d773091
CW
2527 dev_priv->next_seqno = 1;
2528 }
53d227f2 2529
f72b3435 2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2531 return 0;
53d227f2
DV
2532}
2533
bf7dc5b7
JH
2534/*
2535 * NB: This function is not allowed to fail. Doing so would mean the the
2536 * request is not being tracked for completion but the work itself is
2537 * going to happen on the hardware. This would be a Bad Thing(tm).
2538 */
75289874 2539void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2540 struct drm_i915_gem_object *obj,
2541 bool flush_caches)
673a394b 2542{
e2f80391 2543 struct intel_engine_cs *engine;
75289874 2544 struct drm_i915_private *dev_priv;
48e29f55 2545 struct intel_ringbuffer *ringbuf;
6d3d8274 2546 u32 request_start;
3cce469c
CW
2547 int ret;
2548
48e29f55 2549 if (WARN_ON(request == NULL))
bf7dc5b7 2550 return;
48e29f55 2551
4a570db5 2552 engine = request->engine;
39dabecd 2553 dev_priv = request->i915;
75289874
JH
2554 ringbuf = request->ringbuf;
2555
29b1b415
JH
2556 /*
2557 * To ensure that this call will not fail, space for its emissions
2558 * should already have been reserved in the ring buffer. Let the ring
2559 * know that it is time to use that space up.
2560 */
2561 intel_ring_reserved_space_use(ringbuf);
2562
48e29f55 2563 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2564 /*
2565 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 * after having emitted the batchbuffer command. Hence we need to fix
2567 * things up similar to emitting the lazy request. The difference here
2568 * is that the flush _must_ happen before the next request, no matter
2569 * what.
2570 */
5b4a60c2
JH
2571 if (flush_caches) {
2572 if (i915.enable_execlists)
4866d729 2573 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2574 else
4866d729 2575 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2576 /* Not allowed to fail! */
2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 }
cc889e0f 2579
a71d8d94
CW
2580 /* Record the position of the start of the request so that
2581 * should we detect the updated seqno part-way through the
2582 * GPU processing the request, we never over-estimate the
2583 * position of the head.
2584 */
6d3d8274 2585 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2586
bf7dc5b7 2587 if (i915.enable_execlists)
e2f80391 2588 ret = engine->emit_request(request);
bf7dc5b7 2589 else {
e2f80391 2590 ret = engine->add_request(request);
53292cdb
MT
2591
2592 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2593 }
bf7dc5b7
JH
2594 /* Not allowed to fail! */
2595 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2596
7d736f4f 2597 request->head = request_start;
7d736f4f
MK
2598
2599 /* Whilst this request exists, batch_obj will be on the
2600 * active_list, and so will hold the active reference. Only when this
2601 * request is retired will the the batch_obj be moved onto the
2602 * inactive_list and lose its active reference. Hence we do not need
2603 * to explicitly hold another reference here.
2604 */
9a7e0c2a 2605 request->batch_obj = obj;
0e50e96b 2606
673a394b 2607 request->emitted_jiffies = jiffies;
e2f80391
TU
2608 request->previous_seqno = engine->last_submitted_seqno;
2609 engine->last_submitted_seqno = request->seqno;
2610 list_add_tail(&request->list, &engine->request_list);
673a394b 2611
74328ee5 2612 trace_i915_gem_request_add(request);
db53a302 2613
e2f80391 2614 i915_queue_hangcheck(engine->dev);
10cd45b6 2615
87255483
DV
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->mm.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 intel_mark_busy(dev_priv->dev);
cc889e0f 2620
29b1b415
JH
2621 /* Sanity check that the reserved size was large enough. */
2622 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2623}
2624
939fd762 2625static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2626 const struct intel_context *ctx)
be62acb4 2627{
44e2c070 2628 unsigned long elapsed;
be62acb4 2629
44e2c070
MK
2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632 if (ctx->hang_stats.banned)
be62acb4
MK
2633 return true;
2634
676fa572
CW
2635 if (ctx->hang_stats.ban_period_seconds &&
2636 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2637 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2638 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2639 return true;
88b4aa87
MK
2640 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 if (i915_stop_ring_allow_warn(dev_priv))
2642 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2643 return true;
3fac8978 2644 }
be62acb4
MK
2645 }
2646
2647 return false;
2648}
2649
939fd762 2650static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2651 struct intel_context *ctx,
b6b0fac0 2652 const bool guilty)
aa60c664 2653{
44e2c070
MK
2654 struct i915_ctx_hang_stats *hs;
2655
2656 if (WARN_ON(!ctx))
2657 return;
aa60c664 2658
44e2c070
MK
2659 hs = &ctx->hang_stats;
2660
2661 if (guilty) {
939fd762 2662 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2663 hs->batch_active++;
2664 hs->guilty_ts = get_seconds();
2665 } else {
2666 hs->batch_pending++;
aa60c664
MK
2667 }
2668}
2669
abfe262a
JH
2670void i915_gem_request_free(struct kref *req_ref)
2671{
2672 struct drm_i915_gem_request *req = container_of(req_ref,
2673 typeof(*req), ref);
2674 struct intel_context *ctx = req->ctx;
2675
fcfa423c
JH
2676 if (req->file_priv)
2677 i915_gem_request_remove_from_client(req);
2678
0794aed3 2679 if (ctx) {
e28e404c 2680 if (i915.enable_execlists && ctx != req->i915->kernel_context)
4a570db5 2681 intel_lr_context_unpin(ctx, req->engine);
abfe262a 2682
dcb4c12a
OM
2683 i915_gem_context_unreference(ctx);
2684 }
abfe262a 2685
efab6d8d 2686 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2687}
2688
26827088 2689static inline int
0bc40be8 2690__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2691 struct intel_context *ctx,
2692 struct drm_i915_gem_request **req_out)
6689cb2b 2693{
0bc40be8 2694 struct drm_i915_private *dev_priv = to_i915(engine->dev);
eed29a5b 2695 struct drm_i915_gem_request *req;
6689cb2b 2696 int ret;
6689cb2b 2697
217e46b5
JH
2698 if (!req_out)
2699 return -EINVAL;
2700
bccca494 2701 *req_out = NULL;
6689cb2b 2702
eed29a5b
DV
2703 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2704 if (req == NULL)
6689cb2b
JH
2705 return -ENOMEM;
2706
0bc40be8 2707 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
9a0c1e27
CW
2708 if (ret)
2709 goto err;
6689cb2b 2710
40e895ce
JH
2711 kref_init(&req->ref);
2712 req->i915 = dev_priv;
4a570db5 2713 req->engine = engine;
40e895ce
JH
2714 req->ctx = ctx;
2715 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2716
2717 if (i915.enable_execlists)
40e895ce 2718 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2719 else
eed29a5b 2720 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2721 if (ret) {
2722 i915_gem_context_unreference(req->ctx);
9a0c1e27 2723 goto err;
40e895ce 2724 }
6689cb2b 2725
29b1b415
JH
2726 /*
2727 * Reserve space in the ring buffer for all the commands required to
2728 * eventually emit this request. This is to guarantee that the
2729 * i915_add_request() call can't fail. Note that the reserve may need
2730 * to be redone if the request is not actually submitted straight
2731 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2732 */
ccd98fe4
JH
2733 if (i915.enable_execlists)
2734 ret = intel_logical_ring_reserve_space(req);
2735 else
2736 ret = intel_ring_reserve_space(req);
2737 if (ret) {
2738 /*
2739 * At this point, the request is fully allocated even if not
2740 * fully prepared. Thus it can be cleaned up using the proper
2741 * free code.
2742 */
2743 i915_gem_request_cancel(req);
2744 return ret;
2745 }
29b1b415 2746
bccca494 2747 *req_out = req;
6689cb2b 2748 return 0;
9a0c1e27
CW
2749
2750err:
2751 kmem_cache_free(dev_priv->requests, req);
2752 return ret;
0e50e96b
MK
2753}
2754
26827088
DG
2755/**
2756 * i915_gem_request_alloc - allocate a request structure
2757 *
2758 * @engine: engine that we wish to issue the request on.
2759 * @ctx: context that the request will be associated with.
2760 * This can be NULL if the request is not directly related to
2761 * any specific user context, in which case this function will
2762 * choose an appropriate context to use.
2763 *
2764 * Returns a pointer to the allocated request if successful,
2765 * or an error code if not.
2766 */
2767struct drm_i915_gem_request *
2768i915_gem_request_alloc(struct intel_engine_cs *engine,
2769 struct intel_context *ctx)
2770{
2771 struct drm_i915_gem_request *req;
2772 int err;
2773
2774 if (ctx == NULL)
ed54c1a1 2775 ctx = to_i915(engine->dev)->kernel_context;
26827088
DG
2776 err = __i915_gem_request_alloc(engine, ctx, &req);
2777 return err ? ERR_PTR(err) : req;
2778}
2779
29b1b415
JH
2780void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2781{
2782 intel_ring_reserved_space_cancel(req->ringbuf);
2783
2784 i915_gem_request_unreference(req);
2785}
2786
8d9fc7fd 2787struct drm_i915_gem_request *
0bc40be8 2788i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2789{
4db080f9
CW
2790 struct drm_i915_gem_request *request;
2791
0bc40be8 2792 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2793 if (i915_gem_request_completed(request, false))
4db080f9 2794 continue;
aa60c664 2795
b6b0fac0 2796 return request;
4db080f9 2797 }
b6b0fac0
MK
2798
2799 return NULL;
2800}
2801
666796da 2802static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2803 struct intel_engine_cs *engine)
b6b0fac0
MK
2804{
2805 struct drm_i915_gem_request *request;
2806 bool ring_hung;
2807
0bc40be8 2808 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2809
2810 if (request == NULL)
2811 return;
2812
0bc40be8 2813 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2814
939fd762 2815 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2816
0bc40be8 2817 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2818 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2819}
aa60c664 2820
666796da 2821static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2822 struct intel_engine_cs *engine)
4db080f9 2823{
608c1a52
CW
2824 struct intel_ringbuffer *buffer;
2825
0bc40be8 2826 while (!list_empty(&engine->active_list)) {
05394f39 2827 struct drm_i915_gem_object *obj;
9375e446 2828
0bc40be8 2829 obj = list_first_entry(&engine->active_list,
05394f39 2830 struct drm_i915_gem_object,
117897f4 2831 engine_list[engine->id]);
9375e446 2832
0bc40be8 2833 i915_gem_object_retire__read(obj, engine->id);
673a394b 2834 }
1d62beea 2835
dcb4c12a
OM
2836 /*
2837 * Clear the execlists queue up before freeing the requests, as those
2838 * are the ones that keep the context and ringbuffer backing objects
2839 * pinned in place.
2840 */
dcb4c12a 2841
7de1691a 2842 if (i915.enable_execlists) {
0bc40be8 2843 spin_lock_irq(&engine->execlist_lock);
1197b4f2 2844
c5baa566 2845 /* list_splice_tail_init checks for empty lists */
0bc40be8
TU
2846 list_splice_tail_init(&engine->execlist_queue,
2847 &engine->execlist_retired_req_list);
1197b4f2 2848
0bc40be8
TU
2849 spin_unlock_irq(&engine->execlist_lock);
2850 intel_execlists_retire_requests(engine);
dcb4c12a
OM
2851 }
2852
1d62beea
BW
2853 /*
2854 * We must free the requests after all the corresponding objects have
2855 * been moved off active lists. Which is the same order as the normal
2856 * retire_requests function does. This is important if object hold
2857 * implicit references on things like e.g. ppgtt address spaces through
2858 * the request.
2859 */
0bc40be8 2860 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2861 struct drm_i915_gem_request *request;
2862
0bc40be8 2863 request = list_first_entry(&engine->request_list,
1d62beea
BW
2864 struct drm_i915_gem_request,
2865 list);
2866
b4716185 2867 i915_gem_request_retire(request);
1d62beea 2868 }
608c1a52
CW
2869
2870 /* Having flushed all requests from all queues, we know that all
2871 * ringbuffers must now be empty. However, since we do not reclaim
2872 * all space when retiring the request (to prevent HEADs colliding
2873 * with rapid ringbuffer wraparound) the amount of available space
2874 * upon reset is less than when we start. Do one more pass over
2875 * all the ringbuffers to reset last_retired_head.
2876 */
0bc40be8 2877 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2878 buffer->last_retired_head = buffer->tail;
2879 intel_ring_update_space(buffer);
2880 }
673a394b
EA
2881}
2882
069efc1d 2883void i915_gem_reset(struct drm_device *dev)
673a394b 2884{
77f01230 2885 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2886 struct intel_engine_cs *engine;
1ec14ad3 2887 int i;
673a394b 2888
4db080f9
CW
2889 /*
2890 * Before we free the objects from the requests, we need to inspect
2891 * them for finding the guilty party. As the requests only borrow
2892 * their reference to the objects, the inspection must be done first.
2893 */
666796da
TU
2894 for_each_engine(engine, dev_priv, i)
2895 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2896
666796da
TU
2897 for_each_engine(engine, dev_priv, i)
2898 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2899
acce9ffa
BW
2900 i915_gem_context_reset(dev);
2901
19b2dbde 2902 i915_gem_restore_fences(dev);
b4716185
CW
2903
2904 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2905}
2906
2907/**
2908 * This function clears the request list as sequence numbers are passed.
2909 */
1cf0ba14 2910void
0bc40be8 2911i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2912{
0bc40be8 2913 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2914
832a3aad
CW
2915 /* Retire requests first as we use it above for the early return.
2916 * If we retire requests last, we may use a later seqno and so clear
2917 * the requests lists without clearing the active list, leading to
2918 * confusion.
e9103038 2919 */
0bc40be8 2920 while (!list_empty(&engine->request_list)) {
673a394b 2921 struct drm_i915_gem_request *request;
673a394b 2922
0bc40be8 2923 request = list_first_entry(&engine->request_list,
673a394b
EA
2924 struct drm_i915_gem_request,
2925 list);
673a394b 2926
1b5a433a 2927 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2928 break;
2929
b4716185 2930 i915_gem_request_retire(request);
b84d5f0c 2931 }
673a394b 2932
832a3aad
CW
2933 /* Move any buffers on the active list that are no longer referenced
2934 * by the ringbuffer to the flushing/inactive lists as appropriate,
2935 * before we free the context associated with the requests.
2936 */
0bc40be8 2937 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2938 struct drm_i915_gem_object *obj;
2939
0bc40be8
TU
2940 obj = list_first_entry(&engine->active_list,
2941 struct drm_i915_gem_object,
117897f4 2942 engine_list[engine->id]);
832a3aad 2943
0bc40be8 2944 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2945 break;
2946
0bc40be8 2947 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2948 }
2949
0bc40be8
TU
2950 if (unlikely(engine->trace_irq_req &&
2951 i915_gem_request_completed(engine->trace_irq_req, true))) {
2952 engine->irq_put(engine);
2953 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2954 }
23bc5982 2955
0bc40be8 2956 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
2957}
2958
b29c19b6 2959bool
b09a1fec
CW
2960i915_gem_retire_requests(struct drm_device *dev)
2961{
3e31c6c0 2962 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2963 struct intel_engine_cs *engine;
b29c19b6 2964 bool idle = true;
1ec14ad3 2965 int i;
b09a1fec 2966
666796da 2967 for_each_engine(engine, dev_priv, i) {
e2f80391
TU
2968 i915_gem_retire_requests_ring(engine);
2969 idle &= list_empty(&engine->request_list);
c86ee3a9 2970 if (i915.enable_execlists) {
e2f80391
TU
2971 spin_lock_irq(&engine->execlist_lock);
2972 idle &= list_empty(&engine->execlist_queue);
2973 spin_unlock_irq(&engine->execlist_lock);
c86ee3a9 2974
e2f80391 2975 intel_execlists_retire_requests(engine);
c86ee3a9 2976 }
b29c19b6
CW
2977 }
2978
2979 if (idle)
2980 mod_delayed_work(dev_priv->wq,
2981 &dev_priv->mm.idle_work,
2982 msecs_to_jiffies(100));
2983
2984 return idle;
b09a1fec
CW
2985}
2986
75ef9da2 2987static void
673a394b
EA
2988i915_gem_retire_work_handler(struct work_struct *work)
2989{
b29c19b6
CW
2990 struct drm_i915_private *dev_priv =
2991 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2992 struct drm_device *dev = dev_priv->dev;
0a58705b 2993 bool idle;
673a394b 2994
891b48cf 2995 /* Come back later if the device is busy... */
b29c19b6
CW
2996 idle = false;
2997 if (mutex_trylock(&dev->struct_mutex)) {
2998 idle = i915_gem_retire_requests(dev);
2999 mutex_unlock(&dev->struct_mutex);
673a394b 3000 }
b29c19b6 3001 if (!idle)
bcb45086
CW
3002 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3003 round_jiffies_up_relative(HZ));
b29c19b6 3004}
0a58705b 3005
b29c19b6
CW
3006static void
3007i915_gem_idle_work_handler(struct work_struct *work)
3008{
3009 struct drm_i915_private *dev_priv =
3010 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3011 struct drm_device *dev = dev_priv->dev;
423795cb
CW
3012 struct intel_engine_cs *ring;
3013 int i;
b29c19b6 3014
666796da 3015 for_each_engine(ring, dev_priv, i)
423795cb
CW
3016 if (!list_empty(&ring->request_list))
3017 return;
35c94185 3018
30ecad77
DV
3019 /* we probably should sync with hangcheck here, using cancel_work_sync.
3020 * Also locking seems to be fubar here, ring->request_list is protected
3021 * by dev->struct_mutex. */
3022
35c94185
CW
3023 intel_mark_idle(dev);
3024
3025 if (mutex_trylock(&dev->struct_mutex)) {
e2f80391 3026 struct intel_engine_cs *engine;
35c94185
CW
3027 int i;
3028
666796da 3029 for_each_engine(engine, dev_priv, i)
e2f80391 3030 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3031
35c94185
CW
3032 mutex_unlock(&dev->struct_mutex);
3033 }
673a394b
EA
3034}
3035
30dfebf3
DV
3036/**
3037 * Ensures that an object will eventually get non-busy by flushing any required
3038 * write domains, emitting any outstanding lazy request and retiring and
3039 * completed requests.
3040 */
3041static int
3042i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3043{
a5ac0f90 3044 int i;
b4716185
CW
3045
3046 if (!obj->active)
3047 return 0;
30dfebf3 3048
666796da 3049 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3050 struct drm_i915_gem_request *req;
41c52415 3051
b4716185
CW
3052 req = obj->last_read_req[i];
3053 if (req == NULL)
3054 continue;
3055
3056 if (list_empty(&req->list))
3057 goto retire;
3058
b4716185
CW
3059 if (i915_gem_request_completed(req, true)) {
3060 __i915_gem_request_retire__upto(req);
3061retire:
3062 i915_gem_object_retire__read(obj, i);
3063 }
30dfebf3
DV
3064 }
3065
3066 return 0;
3067}
3068
23ba4fd0
BW
3069/**
3070 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3071 * @DRM_IOCTL_ARGS: standard ioctl arguments
3072 *
3073 * Returns 0 if successful, else an error is returned with the remaining time in
3074 * the timeout parameter.
3075 * -ETIME: object is still busy after timeout
3076 * -ERESTARTSYS: signal interrupted the wait
3077 * -ENONENT: object doesn't exist
3078 * Also possible, but rare:
3079 * -EAGAIN: GPU wedged
3080 * -ENOMEM: damn
3081 * -ENODEV: Internal IRQ fail
3082 * -E?: The add request failed
3083 *
3084 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3085 * non-zero timeout parameter the wait ioctl will wait for the given number of
3086 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3087 * without holding struct_mutex the object may become re-busied before this
3088 * function completes. A similar but shorter * race condition exists in the busy
3089 * ioctl
3090 */
3091int
3092i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3093{
3e31c6c0 3094 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3095 struct drm_i915_gem_wait *args = data;
3096 struct drm_i915_gem_object *obj;
666796da 3097 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
f69061be 3098 unsigned reset_counter;
b4716185
CW
3099 int i, n = 0;
3100 int ret;
23ba4fd0 3101
11b5d511
DV
3102 if (args->flags != 0)
3103 return -EINVAL;
3104
23ba4fd0
BW
3105 ret = i915_mutex_lock_interruptible(dev);
3106 if (ret)
3107 return ret;
3108
3109 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3110 if (&obj->base == NULL) {
3111 mutex_unlock(&dev->struct_mutex);
3112 return -ENOENT;
3113 }
3114
30dfebf3
DV
3115 /* Need to make sure the object gets inactive eventually. */
3116 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3117 if (ret)
3118 goto out;
3119
b4716185 3120 if (!obj->active)
97b2a6a1 3121 goto out;
23ba4fd0 3122
23ba4fd0 3123 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3124 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3125 */
762e4583 3126 if (args->timeout_ns == 0) {
23ba4fd0
BW
3127 ret = -ETIME;
3128 goto out;
3129 }
3130
3131 drm_gem_object_unreference(&obj->base);
f69061be 3132 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185 3133
666796da 3134 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3135 if (obj->last_read_req[i] == NULL)
3136 continue;
3137
3138 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3139 }
3140
23ba4fd0
BW
3141 mutex_unlock(&dev->struct_mutex);
3142
b4716185
CW
3143 for (i = 0; i < n; i++) {
3144 if (ret == 0)
3145 ret = __i915_wait_request(req[i], reset_counter, true,
3146 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3147 to_rps_client(file));
b4716185
CW
3148 i915_gem_request_unreference__unlocked(req[i]);
3149 }
ff865885 3150 return ret;
23ba4fd0
BW
3151
3152out:
3153 drm_gem_object_unreference(&obj->base);
3154 mutex_unlock(&dev->struct_mutex);
3155 return ret;
3156}
3157
b4716185
CW
3158static int
3159__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3160 struct intel_engine_cs *to,
91af127f
JH
3161 struct drm_i915_gem_request *from_req,
3162 struct drm_i915_gem_request **to_req)
b4716185
CW
3163{
3164 struct intel_engine_cs *from;
3165 int ret;
3166
666796da 3167 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3168 if (to == from)
3169 return 0;
3170
91af127f 3171 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3172 return 0;
3173
b4716185 3174 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3175 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3176 ret = __i915_wait_request(from_req,
a6f766f3
CW
3177 atomic_read(&i915->gpu_error.reset_counter),
3178 i915->mm.interruptible,
3179 NULL,
3180 &i915->rps.semaphores);
b4716185
CW
3181 if (ret)
3182 return ret;
3183
91af127f 3184 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3185 } else {
3186 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3187 u32 seqno = i915_gem_request_get_seqno(from_req);
3188
3189 WARN_ON(!to_req);
b4716185
CW
3190
3191 if (seqno <= from->semaphore.sync_seqno[idx])
3192 return 0;
3193
91af127f 3194 if (*to_req == NULL) {
26827088
DG
3195 struct drm_i915_gem_request *req;
3196
3197 req = i915_gem_request_alloc(to, NULL);
3198 if (IS_ERR(req))
3199 return PTR_ERR(req);
3200
3201 *to_req = req;
91af127f
JH
3202 }
3203
599d924c
JH
3204 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3205 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3206 if (ret)
3207 return ret;
3208
3209 /* We use last_read_req because sync_to()
3210 * might have just caused seqno wrap under
3211 * the radar.
3212 */
3213 from->semaphore.sync_seqno[idx] =
3214 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3215 }
3216
3217 return 0;
3218}
3219
5816d648
BW
3220/**
3221 * i915_gem_object_sync - sync an object to a ring.
3222 *
3223 * @obj: object which may be in use on another ring.
3224 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3225 * @to_req: request we wish to use the object for. See below.
3226 * This will be allocated and returned if a request is
3227 * required but not passed in.
5816d648
BW
3228 *
3229 * This code is meant to abstract object synchronization with the GPU.
3230 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3231 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3232 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3233 * into a buffer at any time, but multiple readers. To ensure each has
3234 * a coherent view of memory, we must:
3235 *
3236 * - If there is an outstanding write request to the object, the new
3237 * request must wait for it to complete (either CPU or in hw, requests
3238 * on the same ring will be naturally ordered).
3239 *
3240 * - If we are a write request (pending_write_domain is set), the new
3241 * request must wait for outstanding read requests to complete.
5816d648 3242 *
91af127f
JH
3243 * For CPU synchronisation (NULL to) no request is required. For syncing with
3244 * rings to_req must be non-NULL. However, a request does not have to be
3245 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3246 * request will be allocated automatically and returned through *to_req. Note
3247 * that it is not guaranteed that commands will be emitted (because the system
3248 * might already be idle). Hence there is no need to create a request that
3249 * might never have any work submitted. Note further that if a request is
3250 * returned in *to_req, it is the responsibility of the caller to submit
3251 * that request (after potentially adding more work to it).
3252 *
5816d648
BW
3253 * Returns 0 if successful, else propagates up the lower layer error.
3254 */
2911a35b
BW
3255int
3256i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3257 struct intel_engine_cs *to,
3258 struct drm_i915_gem_request **to_req)
2911a35b 3259{
b4716185 3260 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3261 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3262 int ret, i, n;
41c52415 3263
b4716185 3264 if (!obj->active)
2911a35b
BW
3265 return 0;
3266
b4716185
CW
3267 if (to == NULL)
3268 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3269
b4716185
CW
3270 n = 0;
3271 if (readonly) {
3272 if (obj->last_write_req)
3273 req[n++] = obj->last_write_req;
3274 } else {
666796da 3275 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3276 if (obj->last_read_req[i])
3277 req[n++] = obj->last_read_req[i];
3278 }
3279 for (i = 0; i < n; i++) {
91af127f 3280 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3281 if (ret)
3282 return ret;
3283 }
2911a35b 3284
b4716185 3285 return 0;
2911a35b
BW
3286}
3287
b5ffc9bc
CW
3288static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3289{
3290 u32 old_write_domain, old_read_domains;
3291
b5ffc9bc
CW
3292 /* Force a pagefault for domain tracking on next user access */
3293 i915_gem_release_mmap(obj);
3294
b97c3d9c
KP
3295 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3296 return;
3297
97c809fd
CW
3298 /* Wait for any direct GTT access to complete */
3299 mb();
3300
b5ffc9bc
CW
3301 old_read_domains = obj->base.read_domains;
3302 old_write_domain = obj->base.write_domain;
3303
3304 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3305 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3306
3307 trace_i915_gem_object_change_domain(obj,
3308 old_read_domains,
3309 old_write_domain);
3310}
3311
e9f24d5f 3312static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3313{
07fe0b12 3314 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3315 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3316 int ret;
673a394b 3317
1c7f4bca 3318 if (list_empty(&vma->obj_link))
673a394b
EA
3319 return 0;
3320
0ff501cb
DV
3321 if (!drm_mm_node_allocated(&vma->node)) {
3322 i915_gem_vma_destroy(vma);
0ff501cb
DV
3323 return 0;
3324 }
433544bd 3325
d7f46fc4 3326 if (vma->pin_count)
31d8d651 3327 return -EBUSY;
673a394b 3328
c4670ad0
CW
3329 BUG_ON(obj->pages == NULL);
3330
e9f24d5f
TU
3331 if (wait) {
3332 ret = i915_gem_object_wait_rendering(obj, false);
3333 if (ret)
3334 return ret;
3335 }
a8198eea 3336
596c5923 3337 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3338 i915_gem_object_finish_gtt(obj);
5323fd04 3339
8b1bc9b4
DV
3340 /* release the fence reg _after_ flushing */
3341 ret = i915_gem_object_put_fence(obj);
3342 if (ret)
3343 return ret;
3344 }
96b47b65 3345
07fe0b12 3346 trace_i915_vma_unbind(vma);
db53a302 3347
777dc5bb 3348 vma->vm->unbind_vma(vma);
5e562f1d 3349 vma->bound = 0;
6f65e29a 3350
1c7f4bca 3351 list_del_init(&vma->vm_link);
596c5923 3352 if (vma->is_ggtt) {
fe14d5f4
TU
3353 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3354 obj->map_and_fenceable = false;
3355 } else if (vma->ggtt_view.pages) {
3356 sg_free_table(vma->ggtt_view.pages);
3357 kfree(vma->ggtt_view.pages);
fe14d5f4 3358 }
016a65a3 3359 vma->ggtt_view.pages = NULL;
fe14d5f4 3360 }
673a394b 3361
2f633156
BW
3362 drm_mm_remove_node(&vma->node);
3363 i915_gem_vma_destroy(vma);
3364
3365 /* Since the unbound list is global, only move to that list if
b93dab6e 3366 * no more VMAs exist. */
e2273302 3367 if (list_empty(&obj->vma_list))
2f633156 3368 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3369
70903c3b
CW
3370 /* And finally now the object is completely decoupled from this vma,
3371 * we can drop its hold on the backing storage and allow it to be
3372 * reaped by the shrinker.
3373 */
3374 i915_gem_object_unpin_pages(obj);
3375
88241785 3376 return 0;
54cf91dc
CW
3377}
3378
e9f24d5f
TU
3379int i915_vma_unbind(struct i915_vma *vma)
3380{
3381 return __i915_vma_unbind(vma, true);
3382}
3383
3384int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3385{
3386 return __i915_vma_unbind(vma, false);
3387}
3388
b2da9fe5 3389int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3390{
3e31c6c0 3391 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3392 struct intel_engine_cs *engine;
1ec14ad3 3393 int ret, i;
4df2faf4 3394
4df2faf4 3395 /* Flush everything onto the inactive list. */
666796da 3396 for_each_engine(engine, dev_priv, i) {
ecdb5fd8 3397 if (!i915.enable_execlists) {
73cfa865
JH
3398 struct drm_i915_gem_request *req;
3399
e2f80391 3400 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3401 if (IS_ERR(req))
3402 return PTR_ERR(req);
73cfa865 3403
ba01cc93 3404 ret = i915_switch_context(req);
73cfa865
JH
3405 if (ret) {
3406 i915_gem_request_cancel(req);
3407 return ret;
3408 }
3409
75289874 3410 i915_add_request_no_flush(req);
ecdb5fd8 3411 }
b6c7488d 3412
666796da 3413 ret = intel_engine_idle(engine);
1ec14ad3
CW
3414 if (ret)
3415 return ret;
3416 }
4df2faf4 3417
b4716185 3418 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3419 return 0;
4df2faf4
DV
3420}
3421
4144f9b5 3422static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3423 unsigned long cache_level)
3424{
4144f9b5 3425 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3426 struct drm_mm_node *other;
3427
4144f9b5
CW
3428 /*
3429 * On some machines we have to be careful when putting differing types
3430 * of snoopable memory together to avoid the prefetcher crossing memory
3431 * domains and dying. During vm initialisation, we decide whether or not
3432 * these constraints apply and set the drm_mm.color_adjust
3433 * appropriately.
42d6ab48 3434 */
4144f9b5 3435 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3436 return true;
3437
c6cfb325 3438 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3439 return true;
3440
3441 if (list_empty(&gtt_space->node_list))
3442 return true;
3443
3444 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3445 if (other->allocated && !other->hole_follows && other->color != cache_level)
3446 return false;
3447
3448 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3449 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3450 return false;
3451
3452 return true;
3453}
3454
673a394b 3455/**
91e6711e
JL
3456 * Finds free space in the GTT aperture and binds the object or a view of it
3457 * there.
673a394b 3458 */
262de145 3459static struct i915_vma *
07fe0b12
BW
3460i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3461 struct i915_address_space *vm,
ec7adb6e 3462 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3463 unsigned alignment,
ec7adb6e 3464 uint64_t flags)
673a394b 3465{
05394f39 3466 struct drm_device *dev = obj->base.dev;
3e31c6c0 3467 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3468 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3469 u32 search_flag, alloc_flag;
3470 u64 start, end;
65bd342f 3471 u64 size, fence_size;
2f633156 3472 struct i915_vma *vma;
07f73f69 3473 int ret;
673a394b 3474
91e6711e
JL
3475 if (i915_is_ggtt(vm)) {
3476 u32 view_size;
3477
3478 if (WARN_ON(!ggtt_view))
3479 return ERR_PTR(-EINVAL);
ec7adb6e 3480
91e6711e
JL
3481 view_size = i915_ggtt_view_size(obj, ggtt_view);
3482
3483 fence_size = i915_gem_get_gtt_size(dev,
3484 view_size,
3485 obj->tiling_mode);
3486 fence_alignment = i915_gem_get_gtt_alignment(dev,
3487 view_size,
3488 obj->tiling_mode,
3489 true);
3490 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3491 view_size,
3492 obj->tiling_mode,
3493 false);
3494 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3495 } else {
3496 fence_size = i915_gem_get_gtt_size(dev,
3497 obj->base.size,
3498 obj->tiling_mode);
3499 fence_alignment = i915_gem_get_gtt_alignment(dev,
3500 obj->base.size,
3501 obj->tiling_mode,
3502 true);
3503 unfenced_alignment =
3504 i915_gem_get_gtt_alignment(dev,
3505 obj->base.size,
3506 obj->tiling_mode,
3507 false);
3508 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3509 }
a00b10c3 3510
101b506a
MT
3511 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3512 end = vm->total;
3513 if (flags & PIN_MAPPABLE)
62106b4f 3514 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3515 if (flags & PIN_ZONE_4G)
48ea1e32 3516 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3517
673a394b 3518 if (alignment == 0)
1ec9e26d 3519 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3520 unfenced_alignment;
1ec9e26d 3521 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3522 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3523 ggtt_view ? ggtt_view->type : 0,
3524 alignment);
262de145 3525 return ERR_PTR(-EINVAL);
673a394b
EA
3526 }
3527
91e6711e
JL
3528 /* If binding the object/GGTT view requires more space than the entire
3529 * aperture has, reject it early before evicting everything in a vain
3530 * attempt to find space.
654fc607 3531 */
91e6711e 3532 if (size > end) {
65bd342f 3533 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3534 ggtt_view ? ggtt_view->type : 0,
3535 size,
1ec9e26d 3536 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3537 end);
262de145 3538 return ERR_PTR(-E2BIG);
654fc607
CW
3539 }
3540
37e680a1 3541 ret = i915_gem_object_get_pages(obj);
6c085a72 3542 if (ret)
262de145 3543 return ERR_PTR(ret);
6c085a72 3544
fbdda6fb
CW
3545 i915_gem_object_pin_pages(obj);
3546
ec7adb6e
JL
3547 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3548 i915_gem_obj_lookup_or_create_vma(obj, vm);
3549
262de145 3550 if (IS_ERR(vma))
bc6bc15b 3551 goto err_unpin;
2f633156 3552
506a8e87
CW
3553 if (flags & PIN_OFFSET_FIXED) {
3554 uint64_t offset = flags & PIN_OFFSET_MASK;
3555
3556 if (offset & (alignment - 1) || offset + size > end) {
3557 ret = -EINVAL;
3558 goto err_free_vma;
3559 }
3560 vma->node.start = offset;
3561 vma->node.size = size;
3562 vma->node.color = obj->cache_level;
3563 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3564 if (ret) {
3565 ret = i915_gem_evict_for_vma(vma);
3566 if (ret == 0)
3567 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3568 }
3569 if (ret)
3570 goto err_free_vma;
101b506a 3571 } else {
506a8e87
CW
3572 if (flags & PIN_HIGH) {
3573 search_flag = DRM_MM_SEARCH_BELOW;
3574 alloc_flag = DRM_MM_CREATE_TOP;
3575 } else {
3576 search_flag = DRM_MM_SEARCH_DEFAULT;
3577 alloc_flag = DRM_MM_CREATE_DEFAULT;
3578 }
101b506a 3579
0a9ae0d7 3580search_free:
506a8e87
CW
3581 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3582 size, alignment,
3583 obj->cache_level,
3584 start, end,
3585 search_flag,
3586 alloc_flag);
3587 if (ret) {
3588 ret = i915_gem_evict_something(dev, vm, size, alignment,
3589 obj->cache_level,
3590 start, end,
3591 flags);
3592 if (ret == 0)
3593 goto search_free;
9731129c 3594
506a8e87
CW
3595 goto err_free_vma;
3596 }
673a394b 3597 }
4144f9b5 3598 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3599 ret = -EINVAL;
bc6bc15b 3600 goto err_remove_node;
673a394b
EA
3601 }
3602
fe14d5f4 3603 trace_i915_vma_bind(vma, flags);
0875546c 3604 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3605 if (ret)
e2273302 3606 goto err_remove_node;
fe14d5f4 3607
35c20a60 3608 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3609 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3610
262de145 3611 return vma;
2f633156 3612
bc6bc15b 3613err_remove_node:
6286ef9b 3614 drm_mm_remove_node(&vma->node);
bc6bc15b 3615err_free_vma:
2f633156 3616 i915_gem_vma_destroy(vma);
262de145 3617 vma = ERR_PTR(ret);
bc6bc15b 3618err_unpin:
2f633156 3619 i915_gem_object_unpin_pages(obj);
262de145 3620 return vma;
673a394b
EA
3621}
3622
000433b6 3623bool
2c22569b
CW
3624i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3625 bool force)
673a394b 3626{
673a394b
EA
3627 /* If we don't have a page list set up, then we're not pinned
3628 * to GPU, and we can ignore the cache flush because it'll happen
3629 * again at bind time.
3630 */
05394f39 3631 if (obj->pages == NULL)
000433b6 3632 return false;
673a394b 3633
769ce464
ID
3634 /*
3635 * Stolen memory is always coherent with the GPU as it is explicitly
3636 * marked as wc by the system, or the system is cache-coherent.
3637 */
6a2c4232 3638 if (obj->stolen || obj->phys_handle)
000433b6 3639 return false;
769ce464 3640
9c23f7fc
CW
3641 /* If the GPU is snooping the contents of the CPU cache,
3642 * we do not need to manually clear the CPU cache lines. However,
3643 * the caches are only snooped when the render cache is
3644 * flushed/invalidated. As we always have to emit invalidations
3645 * and flushes when moving into and out of the RENDER domain, correct
3646 * snooping behaviour occurs naturally as the result of our domain
3647 * tracking.
3648 */
0f71979a
CW
3649 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3650 obj->cache_dirty = true;
000433b6 3651 return false;
0f71979a 3652 }
9c23f7fc 3653
1c5d22f7 3654 trace_i915_gem_object_clflush(obj);
9da3da66 3655 drm_clflush_sg(obj->pages);
0f71979a 3656 obj->cache_dirty = false;
000433b6
CW
3657
3658 return true;
e47c68e9
EA
3659}
3660
3661/** Flushes the GTT write domain for the object if it's dirty. */
3662static void
05394f39 3663i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3664{
1c5d22f7
CW
3665 uint32_t old_write_domain;
3666
05394f39 3667 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3668 return;
3669
63256ec5 3670 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3671 * to it immediately go to main memory as far as we know, so there's
3672 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3673 *
3674 * However, we do have to enforce the order so that all writes through
3675 * the GTT land before any writes to the device, such as updates to
3676 * the GATT itself.
e47c68e9 3677 */
63256ec5
CW
3678 wmb();
3679
05394f39
CW
3680 old_write_domain = obj->base.write_domain;
3681 obj->base.write_domain = 0;
1c5d22f7 3682
de152b62 3683 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3684
1c5d22f7 3685 trace_i915_gem_object_change_domain(obj,
05394f39 3686 obj->base.read_domains,
1c5d22f7 3687 old_write_domain);
e47c68e9
EA
3688}
3689
3690/** Flushes the CPU write domain for the object if it's dirty. */
3691static void
e62b59e4 3692i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3693{
1c5d22f7 3694 uint32_t old_write_domain;
e47c68e9 3695
05394f39 3696 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3697 return;
3698
e62b59e4 3699 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3700 i915_gem_chipset_flush(obj->base.dev);
3701
05394f39
CW
3702 old_write_domain = obj->base.write_domain;
3703 obj->base.write_domain = 0;
1c5d22f7 3704
de152b62 3705 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3706
1c5d22f7 3707 trace_i915_gem_object_change_domain(obj,
05394f39 3708 obj->base.read_domains,
1c5d22f7 3709 old_write_domain);
e47c68e9
EA
3710}
3711
2ef7eeaa
EA
3712/**
3713 * Moves a single object to the GTT read, and possibly write domain.
3714 *
3715 * This function returns when the move is complete, including waiting on
3716 * flushes to occur.
3717 */
79e53945 3718int
2021746e 3719i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3720{
1c5d22f7 3721 uint32_t old_write_domain, old_read_domains;
43566ded 3722 struct i915_vma *vma;
e47c68e9 3723 int ret;
2ef7eeaa 3724
8d7e3de1
CW
3725 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3726 return 0;
3727
0201f1ec 3728 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3729 if (ret)
3730 return ret;
3731
43566ded
CW
3732 /* Flush and acquire obj->pages so that we are coherent through
3733 * direct access in memory with previous cached writes through
3734 * shmemfs and that our cache domain tracking remains valid.
3735 * For example, if the obj->filp was moved to swap without us
3736 * being notified and releasing the pages, we would mistakenly
3737 * continue to assume that the obj remained out of the CPU cached
3738 * domain.
3739 */
3740 ret = i915_gem_object_get_pages(obj);
3741 if (ret)
3742 return ret;
3743
e62b59e4 3744 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3745
d0a57789
CW
3746 /* Serialise direct access to this object with the barriers for
3747 * coherent writes from the GPU, by effectively invalidating the
3748 * GTT domain upon first access.
3749 */
3750 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3751 mb();
3752
05394f39
CW
3753 old_write_domain = obj->base.write_domain;
3754 old_read_domains = obj->base.read_domains;
1c5d22f7 3755
e47c68e9
EA
3756 /* It should now be out of any other write domains, and we can update
3757 * the domain values for our changes.
3758 */
05394f39
CW
3759 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3760 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3761 if (write) {
05394f39
CW
3762 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3763 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3764 obj->dirty = 1;
2ef7eeaa
EA
3765 }
3766
1c5d22f7
CW
3767 trace_i915_gem_object_change_domain(obj,
3768 old_read_domains,
3769 old_write_domain);
3770
8325a09d 3771 /* And bump the LRU for this access */
43566ded
CW
3772 vma = i915_gem_obj_to_ggtt(obj);
3773 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3774 list_move_tail(&vma->vm_link,
62106b4f 3775 &to_i915(obj->base.dev)->ggtt.base.inactive_list);
8325a09d 3776
e47c68e9
EA
3777 return 0;
3778}
3779
ef55f92a
CW
3780/**
3781 * Changes the cache-level of an object across all VMA.
3782 *
3783 * After this function returns, the object will be in the new cache-level
3784 * across all GTT and the contents of the backing storage will be coherent,
3785 * with respect to the new cache-level. In order to keep the backing storage
3786 * coherent for all users, we only allow a single cache level to be set
3787 * globally on the object and prevent it from being changed whilst the
3788 * hardware is reading from the object. That is if the object is currently
3789 * on the scanout it will be set to uncached (or equivalent display
3790 * cache coherency) and all non-MOCS GPU access will also be uncached so
3791 * that all direct access to the scanout remains coherent.
3792 */
e4ffd173
CW
3793int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3794 enum i915_cache_level cache_level)
3795{
7bddb01f 3796 struct drm_device *dev = obj->base.dev;
df6f783a 3797 struct i915_vma *vma, *next;
ef55f92a 3798 bool bound = false;
ed75a55b 3799 int ret = 0;
e4ffd173
CW
3800
3801 if (obj->cache_level == cache_level)
ed75a55b 3802 goto out;
e4ffd173 3803
ef55f92a
CW
3804 /* Inspect the list of currently bound VMA and unbind any that would
3805 * be invalid given the new cache-level. This is principally to
3806 * catch the issue of the CS prefetch crossing page boundaries and
3807 * reading an invalid PTE on older architectures.
3808 */
1c7f4bca 3809 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3810 if (!drm_mm_node_allocated(&vma->node))
3811 continue;
3812
3813 if (vma->pin_count) {
3814 DRM_DEBUG("can not change the cache level of pinned objects\n");
3815 return -EBUSY;
3816 }
3817
4144f9b5 3818 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3819 ret = i915_vma_unbind(vma);
3089c6f2
BW
3820 if (ret)
3821 return ret;
ef55f92a
CW
3822 } else
3823 bound = true;
42d6ab48
CW
3824 }
3825
ef55f92a
CW
3826 /* We can reuse the existing drm_mm nodes but need to change the
3827 * cache-level on the PTE. We could simply unbind them all and
3828 * rebind with the correct cache-level on next use. However since
3829 * we already have a valid slot, dma mapping, pages etc, we may as
3830 * rewrite the PTE in the belief that doing so tramples upon less
3831 * state and so involves less work.
3832 */
3833 if (bound) {
3834 /* Before we change the PTE, the GPU must not be accessing it.
3835 * If we wait upon the object, we know that all the bound
3836 * VMA are no longer active.
3837 */
2e2f351d 3838 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3839 if (ret)
3840 return ret;
3841
ef55f92a
CW
3842 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3843 /* Access to snoopable pages through the GTT is
3844 * incoherent and on some machines causes a hard
3845 * lockup. Relinquish the CPU mmaping to force
3846 * userspace to refault in the pages and we can
3847 * then double check if the GTT mapping is still
3848 * valid for that pointer access.
3849 */
3850 i915_gem_release_mmap(obj);
3851
3852 /* As we no longer need a fence for GTT access,
3853 * we can relinquish it now (and so prevent having
3854 * to steal a fence from someone else on the next
3855 * fence request). Note GPU activity would have
3856 * dropped the fence as all snoopable access is
3857 * supposed to be linear.
3858 */
e4ffd173
CW
3859 ret = i915_gem_object_put_fence(obj);
3860 if (ret)
3861 return ret;
ef55f92a
CW
3862 } else {
3863 /* We either have incoherent backing store and
3864 * so no GTT access or the architecture is fully
3865 * coherent. In such cases, existing GTT mmaps
3866 * ignore the cache bit in the PTE and we can
3867 * rewrite it without confusing the GPU or having
3868 * to force userspace to fault back in its mmaps.
3869 */
e4ffd173
CW
3870 }
3871
1c7f4bca 3872 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3873 if (!drm_mm_node_allocated(&vma->node))
3874 continue;
3875
3876 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3877 if (ret)
3878 return ret;
3879 }
e4ffd173
CW
3880 }
3881
1c7f4bca 3882 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3883 vma->node.color = cache_level;
3884 obj->cache_level = cache_level;
3885
ed75a55b 3886out:
ef55f92a
CW
3887 /* Flush the dirty CPU caches to the backing storage so that the
3888 * object is now coherent at its new cache level (with respect
3889 * to the access domain).
3890 */
0f71979a
CW
3891 if (obj->cache_dirty &&
3892 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3893 cpu_write_needs_clflush(obj)) {
3894 if (i915_gem_clflush_object(obj, true))
3895 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3896 }
3897
e4ffd173
CW
3898 return 0;
3899}
3900
199adf40
BW
3901int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3902 struct drm_file *file)
e6994aee 3903{
199adf40 3904 struct drm_i915_gem_caching *args = data;
e6994aee 3905 struct drm_i915_gem_object *obj;
e6994aee
CW
3906
3907 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3908 if (&obj->base == NULL)
3909 return -ENOENT;
e6994aee 3910
651d794f
CW
3911 switch (obj->cache_level) {
3912 case I915_CACHE_LLC:
3913 case I915_CACHE_L3_LLC:
3914 args->caching = I915_CACHING_CACHED;
3915 break;
3916
4257d3ba
CW
3917 case I915_CACHE_WT:
3918 args->caching = I915_CACHING_DISPLAY;
3919 break;
3920
651d794f
CW
3921 default:
3922 args->caching = I915_CACHING_NONE;
3923 break;
3924 }
e6994aee 3925
432be69d
CW
3926 drm_gem_object_unreference_unlocked(&obj->base);
3927 return 0;
e6994aee
CW
3928}
3929
199adf40
BW
3930int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3931 struct drm_file *file)
e6994aee 3932{
fd0fe6ac 3933 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3934 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3935 struct drm_i915_gem_object *obj;
3936 enum i915_cache_level level;
3937 int ret;
3938
199adf40
BW
3939 switch (args->caching) {
3940 case I915_CACHING_NONE:
e6994aee
CW
3941 level = I915_CACHE_NONE;
3942 break;
199adf40 3943 case I915_CACHING_CACHED:
e5756c10
ID
3944 /*
3945 * Due to a HW issue on BXT A stepping, GPU stores via a
3946 * snooped mapping may leave stale data in a corresponding CPU
3947 * cacheline, whereas normally such cachelines would get
3948 * invalidated.
3949 */
ca377809 3950 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3951 return -ENODEV;
3952
e6994aee
CW
3953 level = I915_CACHE_LLC;
3954 break;
4257d3ba
CW
3955 case I915_CACHING_DISPLAY:
3956 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3957 break;
e6994aee
CW
3958 default:
3959 return -EINVAL;
3960 }
3961
fd0fe6ac
ID
3962 intel_runtime_pm_get(dev_priv);
3963
3bc2913e
BW
3964 ret = i915_mutex_lock_interruptible(dev);
3965 if (ret)
fd0fe6ac 3966 goto rpm_put;
3bc2913e 3967
e6994aee
CW
3968 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3969 if (&obj->base == NULL) {
3970 ret = -ENOENT;
3971 goto unlock;
3972 }
3973
3974 ret = i915_gem_object_set_cache_level(obj, level);
3975
3976 drm_gem_object_unreference(&obj->base);
3977unlock:
3978 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3979rpm_put:
3980 intel_runtime_pm_put(dev_priv);
3981
e6994aee
CW
3982 return ret;
3983}
3984
b9241ea3 3985/*
2da3b9b9
CW
3986 * Prepare buffer for display plane (scanout, cursors, etc).
3987 * Can be called from an uninterruptible phase (modesetting) and allows
3988 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3989 */
3990int
2da3b9b9
CW
3991i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3992 u32 alignment,
e6617330 3993 const struct i915_ggtt_view *view)
b9241ea3 3994{
2da3b9b9 3995 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3996 int ret;
3997
cc98b413
CW
3998 /* Mark the pin_display early so that we account for the
3999 * display coherency whilst setting up the cache domains.
4000 */
8a0c39b1 4001 obj->pin_display++;
cc98b413 4002
a7ef0640
EA
4003 /* The display engine is not coherent with the LLC cache on gen6. As
4004 * a result, we make sure that the pinning that is about to occur is
4005 * done with uncached PTEs. This is lowest common denominator for all
4006 * chipsets.
4007 *
4008 * However for gen6+, we could do better by using the GFDT bit instead
4009 * of uncaching, which would allow us to flush all the LLC-cached data
4010 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4011 */
651d794f
CW
4012 ret = i915_gem_object_set_cache_level(obj,
4013 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4014 if (ret)
cc98b413 4015 goto err_unpin_display;
a7ef0640 4016
2da3b9b9
CW
4017 /* As the user may map the buffer once pinned in the display plane
4018 * (e.g. libkms for the bootup splash), we have to ensure that we
4019 * always use map_and_fenceable for all scanout buffers.
4020 */
50470bb0
TU
4021 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4022 view->type == I915_GGTT_VIEW_NORMAL ?
4023 PIN_MAPPABLE : 0);
2da3b9b9 4024 if (ret)
cc98b413 4025 goto err_unpin_display;
2da3b9b9 4026
e62b59e4 4027 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4028
2da3b9b9 4029 old_write_domain = obj->base.write_domain;
05394f39 4030 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4031
4032 /* It should now be out of any other write domains, and we can update
4033 * the domain values for our changes.
4034 */
e5f1d962 4035 obj->base.write_domain = 0;
05394f39 4036 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4037
4038 trace_i915_gem_object_change_domain(obj,
4039 old_read_domains,
2da3b9b9 4040 old_write_domain);
b9241ea3
ZW
4041
4042 return 0;
cc98b413
CW
4043
4044err_unpin_display:
8a0c39b1 4045 obj->pin_display--;
cc98b413
CW
4046 return ret;
4047}
4048
4049void
e6617330
TU
4050i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4051 const struct i915_ggtt_view *view)
cc98b413 4052{
8a0c39b1
TU
4053 if (WARN_ON(obj->pin_display == 0))
4054 return;
4055
e6617330
TU
4056 i915_gem_object_ggtt_unpin_view(obj, view);
4057
8a0c39b1 4058 obj->pin_display--;
b9241ea3
ZW
4059}
4060
e47c68e9
EA
4061/**
4062 * Moves a single object to the CPU read, and possibly write domain.
4063 *
4064 * This function returns when the move is complete, including waiting on
4065 * flushes to occur.
4066 */
dabdfe02 4067int
919926ae 4068i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4069{
1c5d22f7 4070 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4071 int ret;
4072
8d7e3de1
CW
4073 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4074 return 0;
4075
0201f1ec 4076 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4077 if (ret)
4078 return ret;
4079
e47c68e9 4080 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4081
05394f39
CW
4082 old_write_domain = obj->base.write_domain;
4083 old_read_domains = obj->base.read_domains;
1c5d22f7 4084
e47c68e9 4085 /* Flush the CPU cache if it's still invalid. */
05394f39 4086 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4087 i915_gem_clflush_object(obj, false);
2ef7eeaa 4088
05394f39 4089 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4090 }
4091
4092 /* It should now be out of any other write domains, and we can update
4093 * the domain values for our changes.
4094 */
05394f39 4095 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4096
4097 /* If we're writing through the CPU, then the GPU read domains will
4098 * need to be invalidated at next use.
4099 */
4100 if (write) {
05394f39
CW
4101 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4102 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4103 }
2ef7eeaa 4104
1c5d22f7
CW
4105 trace_i915_gem_object_change_domain(obj,
4106 old_read_domains,
4107 old_write_domain);
4108
2ef7eeaa
EA
4109 return 0;
4110}
4111
673a394b
EA
4112/* Throttle our rendering by waiting until the ring has completed our requests
4113 * emitted over 20 msec ago.
4114 *
b962442e
EA
4115 * Note that if we were to use the current jiffies each time around the loop,
4116 * we wouldn't escape the function with any frames outstanding if the time to
4117 * render a frame was over 20ms.
4118 *
673a394b
EA
4119 * This should get us reasonable parallelism between CPU and GPU but also
4120 * relatively low latency when blocking on a particular request to finish.
4121 */
40a5f0de 4122static int
f787a5f5 4123i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4124{
f787a5f5
CW
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4127 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4128 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4129 unsigned reset_counter;
f787a5f5 4130 int ret;
93533c29 4131
308887aa
DV
4132 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4133 if (ret)
4134 return ret;
4135
4136 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4137 if (ret)
4138 return ret;
e110e8d6 4139
1c25595f 4140 spin_lock(&file_priv->mm.lock);
f787a5f5 4141 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4142 if (time_after_eq(request->emitted_jiffies, recent_enough))
4143 break;
40a5f0de 4144
fcfa423c
JH
4145 /*
4146 * Note that the request might not have been submitted yet.
4147 * In which case emitted_jiffies will be zero.
4148 */
4149 if (!request->emitted_jiffies)
4150 continue;
4151
54fb2411 4152 target = request;
b962442e 4153 }
f69061be 4154 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4155 if (target)
4156 i915_gem_request_reference(target);
1c25595f 4157 spin_unlock(&file_priv->mm.lock);
40a5f0de 4158
54fb2411 4159 if (target == NULL)
f787a5f5 4160 return 0;
2bc43b5c 4161
9c654818 4162 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4163 if (ret == 0)
4164 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4165
41037f9f 4166 i915_gem_request_unreference__unlocked(target);
ff865885 4167
40a5f0de
EA
4168 return ret;
4169}
4170
d23db88c
CW
4171static bool
4172i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4173{
4174 struct drm_i915_gem_object *obj = vma->obj;
4175
4176 if (alignment &&
4177 vma->node.start & (alignment - 1))
4178 return true;
4179
4180 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4181 return true;
4182
4183 if (flags & PIN_OFFSET_BIAS &&
4184 vma->node.start < (flags & PIN_OFFSET_MASK))
4185 return true;
4186
506a8e87
CW
4187 if (flags & PIN_OFFSET_FIXED &&
4188 vma->node.start != (flags & PIN_OFFSET_MASK))
4189 return true;
4190
d23db88c
CW
4191 return false;
4192}
4193
d0710abb
CW
4194void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4195{
4196 struct drm_i915_gem_object *obj = vma->obj;
4197 bool mappable, fenceable;
4198 u32 fence_size, fence_alignment;
4199
4200 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4201 obj->base.size,
4202 obj->tiling_mode);
4203 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4204 obj->base.size,
4205 obj->tiling_mode,
4206 true);
4207
4208 fenceable = (vma->node.size == fence_size &&
4209 (vma->node.start & (fence_alignment - 1)) == 0);
4210
4211 mappable = (vma->node.start + fence_size <=
62106b4f 4212 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4213
4214 obj->map_and_fenceable = mappable && fenceable;
4215}
4216
ec7adb6e
JL
4217static int
4218i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4219 struct i915_address_space *vm,
4220 const struct i915_ggtt_view *ggtt_view,
4221 uint32_t alignment,
4222 uint64_t flags)
673a394b 4223{
6e7186af 4224 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4225 struct i915_vma *vma;
ef79e17c 4226 unsigned bound;
673a394b
EA
4227 int ret;
4228
6e7186af
BW
4229 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4230 return -ENODEV;
4231
bf3d149b 4232 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4233 return -EINVAL;
07fe0b12 4234
c826c449
CW
4235 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4236 return -EINVAL;
4237
ec7adb6e
JL
4238 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4239 return -EINVAL;
4240
4241 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4242 i915_gem_obj_to_vma(obj, vm);
4243
4244 if (IS_ERR(vma))
4245 return PTR_ERR(vma);
4246
07fe0b12 4247 if (vma) {
d7f46fc4
BW
4248 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4249 return -EBUSY;
4250
d23db88c 4251 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4252 WARN(vma->pin_count,
ec7adb6e 4253 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4254 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4255 " obj->map_and_fenceable=%d\n",
ec7adb6e 4256 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4257 upper_32_bits(vma->node.start),
4258 lower_32_bits(vma->node.start),
fe14d5f4 4259 alignment,
d23db88c 4260 !!(flags & PIN_MAPPABLE),
05394f39 4261 obj->map_and_fenceable);
07fe0b12 4262 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4263 if (ret)
4264 return ret;
8ea99c92
DV
4265
4266 vma = NULL;
ac0c6b5a
CW
4267 }
4268 }
4269
ef79e17c 4270 bound = vma ? vma->bound : 0;
8ea99c92 4271 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4272 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4273 flags);
262de145
DV
4274 if (IS_ERR(vma))
4275 return PTR_ERR(vma);
0875546c
DV
4276 } else {
4277 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4278 if (ret)
4279 return ret;
4280 }
74898d7e 4281
91e6711e
JL
4282 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4283 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4284 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4285 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4286 }
ef79e17c 4287
8ea99c92 4288 vma->pin_count++;
673a394b
EA
4289 return 0;
4290}
4291
ec7adb6e
JL
4292int
4293i915_gem_object_pin(struct drm_i915_gem_object *obj,
4294 struct i915_address_space *vm,
4295 uint32_t alignment,
4296 uint64_t flags)
4297{
4298 return i915_gem_object_do_pin(obj, vm,
4299 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4300 alignment, flags);
4301}
4302
4303int
4304i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4305 const struct i915_ggtt_view *view,
4306 uint32_t alignment,
4307 uint64_t flags)
4308{
4309 if (WARN_ONCE(!view, "no view specified"))
4310 return -EINVAL;
4311
4312 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4313 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4314}
4315
673a394b 4316void
e6617330
TU
4317i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4318 const struct i915_ggtt_view *view)
673a394b 4319{
e6617330 4320 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4321
d7f46fc4 4322 BUG_ON(!vma);
e6617330 4323 WARN_ON(vma->pin_count == 0);
9abc4648 4324 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4325
30154650 4326 --vma->pin_count;
673a394b
EA
4327}
4328
673a394b
EA
4329int
4330i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4331 struct drm_file *file)
673a394b
EA
4332{
4333 struct drm_i915_gem_busy *args = data;
05394f39 4334 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4335 int ret;
4336
76c1dec1 4337 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4338 if (ret)
76c1dec1 4339 return ret;
673a394b 4340
05394f39 4341 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4342 if (&obj->base == NULL) {
1d7cfea1
CW
4343 ret = -ENOENT;
4344 goto unlock;
673a394b 4345 }
d1b851fc 4346
0be555b6
CW
4347 /* Count all active objects as busy, even if they are currently not used
4348 * by the gpu. Users of this interface expect objects to eventually
4349 * become non-busy without any further actions, therefore emit any
4350 * necessary flushes here.
c4de0a5d 4351 */
30dfebf3 4352 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4353 if (ret)
4354 goto unref;
0be555b6 4355
426960be
CW
4356 args->busy = 0;
4357 if (obj->active) {
4358 int i;
4359
666796da 4360 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4361 struct drm_i915_gem_request *req;
4362
4363 req = obj->last_read_req[i];
4364 if (req)
4a570db5 4365 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4366 }
4367 if (obj->last_write_req)
4a570db5 4368 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4369 }
673a394b 4370
b4716185 4371unref:
05394f39 4372 drm_gem_object_unreference(&obj->base);
1d7cfea1 4373unlock:
673a394b 4374 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4375 return ret;
673a394b
EA
4376}
4377
4378int
4379i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4380 struct drm_file *file_priv)
4381{
0206e353 4382 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4383}
4384
3ef94daa
CW
4385int
4386i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4387 struct drm_file *file_priv)
4388{
656bfa3a 4389 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4390 struct drm_i915_gem_madvise *args = data;
05394f39 4391 struct drm_i915_gem_object *obj;
76c1dec1 4392 int ret;
3ef94daa
CW
4393
4394 switch (args->madv) {
4395 case I915_MADV_DONTNEED:
4396 case I915_MADV_WILLNEED:
4397 break;
4398 default:
4399 return -EINVAL;
4400 }
4401
1d7cfea1
CW
4402 ret = i915_mutex_lock_interruptible(dev);
4403 if (ret)
4404 return ret;
4405
05394f39 4406 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4407 if (&obj->base == NULL) {
1d7cfea1
CW
4408 ret = -ENOENT;
4409 goto unlock;
3ef94daa 4410 }
3ef94daa 4411
d7f46fc4 4412 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4413 ret = -EINVAL;
4414 goto out;
3ef94daa
CW
4415 }
4416
656bfa3a
DV
4417 if (obj->pages &&
4418 obj->tiling_mode != I915_TILING_NONE &&
4419 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4420 if (obj->madv == I915_MADV_WILLNEED)
4421 i915_gem_object_unpin_pages(obj);
4422 if (args->madv == I915_MADV_WILLNEED)
4423 i915_gem_object_pin_pages(obj);
4424 }
4425
05394f39
CW
4426 if (obj->madv != __I915_MADV_PURGED)
4427 obj->madv = args->madv;
3ef94daa 4428
6c085a72 4429 /* if the object is no longer attached, discard its backing storage */
be6a0376 4430 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4431 i915_gem_object_truncate(obj);
4432
05394f39 4433 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4434
1d7cfea1 4435out:
05394f39 4436 drm_gem_object_unreference(&obj->base);
1d7cfea1 4437unlock:
3ef94daa 4438 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4439 return ret;
3ef94daa
CW
4440}
4441
37e680a1
CW
4442void i915_gem_object_init(struct drm_i915_gem_object *obj,
4443 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4444{
b4716185
CW
4445 int i;
4446
35c20a60 4447 INIT_LIST_HEAD(&obj->global_list);
666796da 4448 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4449 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4450 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4451 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4452 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4453
37e680a1
CW
4454 obj->ops = ops;
4455
0327d6ba
CW
4456 obj->fence_reg = I915_FENCE_REG_NONE;
4457 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4458
4459 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4460}
4461
37e680a1 4462static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4463 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4464 .get_pages = i915_gem_object_get_pages_gtt,
4465 .put_pages = i915_gem_object_put_pages_gtt,
4466};
4467
05394f39
CW
4468struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4469 size_t size)
ac52bc56 4470{
c397b908 4471 struct drm_i915_gem_object *obj;
5949eac4 4472 struct address_space *mapping;
1a240d4d 4473 gfp_t mask;
ac52bc56 4474
42dcedd4 4475 obj = i915_gem_object_alloc(dev);
c397b908
DV
4476 if (obj == NULL)
4477 return NULL;
673a394b 4478
c397b908 4479 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4480 i915_gem_object_free(obj);
c397b908
DV
4481 return NULL;
4482 }
673a394b 4483
bed1ea95
CW
4484 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4485 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4486 /* 965gm cannot relocate objects above 4GiB. */
4487 mask &= ~__GFP_HIGHMEM;
4488 mask |= __GFP_DMA32;
4489 }
4490
496ad9aa 4491 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4492 mapping_set_gfp_mask(mapping, mask);
5949eac4 4493
37e680a1 4494 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4495
c397b908
DV
4496 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4497 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4498
3d29b842
ED
4499 if (HAS_LLC(dev)) {
4500 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4501 * cache) for about a 10% performance improvement
4502 * compared to uncached. Graphics requests other than
4503 * display scanout are coherent with the CPU in
4504 * accessing this cache. This means in this mode we
4505 * don't need to clflush on the CPU side, and on the
4506 * GPU side we only need to flush internal caches to
4507 * get data visible to the CPU.
4508 *
4509 * However, we maintain the display planes as UC, and so
4510 * need to rebind when first used as such.
4511 */
4512 obj->cache_level = I915_CACHE_LLC;
4513 } else
4514 obj->cache_level = I915_CACHE_NONE;
4515
d861e338
DV
4516 trace_i915_gem_object_create(obj);
4517
05394f39 4518 return obj;
c397b908
DV
4519}
4520
340fbd8c
CW
4521static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4522{
4523 /* If we are the last user of the backing storage (be it shmemfs
4524 * pages or stolen etc), we know that the pages are going to be
4525 * immediately released. In this case, we can then skip copying
4526 * back the contents from the GPU.
4527 */
4528
4529 if (obj->madv != I915_MADV_WILLNEED)
4530 return false;
4531
4532 if (obj->base.filp == NULL)
4533 return true;
4534
4535 /* At first glance, this looks racy, but then again so would be
4536 * userspace racing mmap against close. However, the first external
4537 * reference to the filp can only be obtained through the
4538 * i915_gem_mmap_ioctl() which safeguards us against the user
4539 * acquiring such a reference whilst we are in the middle of
4540 * freeing the object.
4541 */
4542 return atomic_long_read(&obj->base.filp->f_count) == 1;
4543}
4544
1488fc08 4545void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4546{
1488fc08 4547 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4548 struct drm_device *dev = obj->base.dev;
3e31c6c0 4549 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4550 struct i915_vma *vma, *next;
673a394b 4551
f65c9168
PZ
4552 intel_runtime_pm_get(dev_priv);
4553
26e12f89
CW
4554 trace_i915_gem_object_destroy(obj);
4555
1c7f4bca 4556 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4557 int ret;
4558
4559 vma->pin_count = 0;
4560 ret = i915_vma_unbind(vma);
07fe0b12
BW
4561 if (WARN_ON(ret == -ERESTARTSYS)) {
4562 bool was_interruptible;
1488fc08 4563
07fe0b12
BW
4564 was_interruptible = dev_priv->mm.interruptible;
4565 dev_priv->mm.interruptible = false;
1488fc08 4566
07fe0b12 4567 WARN_ON(i915_vma_unbind(vma));
1488fc08 4568
07fe0b12
BW
4569 dev_priv->mm.interruptible = was_interruptible;
4570 }
1488fc08
CW
4571 }
4572
1d64ae71
BW
4573 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4574 * before progressing. */
4575 if (obj->stolen)
4576 i915_gem_object_unpin_pages(obj);
4577
a071fa00
DV
4578 WARN_ON(obj->frontbuffer_bits);
4579
656bfa3a
DV
4580 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4581 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4582 obj->tiling_mode != I915_TILING_NONE)
4583 i915_gem_object_unpin_pages(obj);
4584
401c29f6
BW
4585 if (WARN_ON(obj->pages_pin_count))
4586 obj->pages_pin_count = 0;
340fbd8c 4587 if (discard_backing_storage(obj))
5537252b 4588 obj->madv = I915_MADV_DONTNEED;
37e680a1 4589 i915_gem_object_put_pages(obj);
d8cb5086 4590 i915_gem_object_free_mmap_offset(obj);
de151cf6 4591
9da3da66
CW
4592 BUG_ON(obj->pages);
4593
2f745ad3
CW
4594 if (obj->base.import_attach)
4595 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4596
5cc9ed4b
CW
4597 if (obj->ops->release)
4598 obj->ops->release(obj);
4599
05394f39
CW
4600 drm_gem_object_release(&obj->base);
4601 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4602
05394f39 4603 kfree(obj->bit_17);
42dcedd4 4604 i915_gem_object_free(obj);
f65c9168
PZ
4605
4606 intel_runtime_pm_put(dev_priv);
673a394b
EA
4607}
4608
ec7adb6e
JL
4609struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4610 struct i915_address_space *vm)
e656a6cb
DV
4611{
4612 struct i915_vma *vma;
1c7f4bca 4613 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4614 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4615 vma->vm == vm)
e656a6cb 4616 return vma;
ec7adb6e
JL
4617 }
4618 return NULL;
4619}
4620
4621struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4622 const struct i915_ggtt_view *view)
4623{
4624 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4625 struct i915_vma *vma;
e656a6cb 4626
ec7adb6e
JL
4627 if (WARN_ONCE(!view, "no view specified"))
4628 return ERR_PTR(-EINVAL);
4629
1c7f4bca 4630 list_for_each_entry(vma, &obj->vma_list, obj_link)
9abc4648
JL
4631 if (vma->vm == ggtt &&
4632 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4633 return vma;
e656a6cb
DV
4634 return NULL;
4635}
4636
2f633156
BW
4637void i915_gem_vma_destroy(struct i915_vma *vma)
4638{
4639 WARN_ON(vma->node.allocated);
aaa05667
CW
4640
4641 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4642 if (!list_empty(&vma->exec_list))
4643 return;
4644
596c5923
CW
4645 if (!vma->is_ggtt)
4646 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4647
1c7f4bca 4648 list_del(&vma->obj_link);
b93dab6e 4649
e20d2ab7 4650 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4651}
4652
e3efda49 4653static void
117897f4 4654i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4655{
4656 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4657 struct intel_engine_cs *engine;
e3efda49
CW
4658 int i;
4659
666796da 4660 for_each_engine(engine, dev_priv, i)
117897f4 4661 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4662}
4663
29105ccc 4664int
45c5f202 4665i915_gem_suspend(struct drm_device *dev)
29105ccc 4666{
3e31c6c0 4667 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4668 int ret = 0;
28dfe52a 4669
45c5f202 4670 mutex_lock(&dev->struct_mutex);
b2da9fe5 4671 ret = i915_gpu_idle(dev);
f7403347 4672 if (ret)
45c5f202 4673 goto err;
f7403347 4674
b2da9fe5 4675 i915_gem_retire_requests(dev);
673a394b 4676
117897f4 4677 i915_gem_stop_engines(dev);
45c5f202
CW
4678 mutex_unlock(&dev->struct_mutex);
4679
737b1506 4680 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4681 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4682 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4683
bdcf120b
CW
4684 /* Assert that we sucessfully flushed all the work and
4685 * reset the GPU back to its idle, low power state.
4686 */
4687 WARN_ON(dev_priv->mm.busy);
4688
673a394b 4689 return 0;
45c5f202
CW
4690
4691err:
4692 mutex_unlock(&dev->struct_mutex);
4693 return ret;
673a394b
EA
4694}
4695
6909a666 4696int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4697{
4a570db5 4698 struct intel_engine_cs *engine = req->engine;
e2f80391 4699 struct drm_device *dev = engine->dev;
3e31c6c0 4700 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4701 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4702 int i, ret;
b9524a1e 4703
040d2baa 4704 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4705 return 0;
b9524a1e 4706
5fb9de1a 4707 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4708 if (ret)
4709 return ret;
b9524a1e 4710
c3787e2e
BW
4711 /*
4712 * Note: We do not worry about the concurrent register cacheline hang
4713 * here because no other code should access these registers other than
4714 * at initialization time.
4715 */
6fa1c5f1 4716 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
e2f80391
TU
4717 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4718 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4719 intel_ring_emit(engine, remap_info[i]);
b9524a1e
BW
4720 }
4721
e2f80391 4722 intel_ring_advance(engine);
b9524a1e 4723
c3787e2e 4724 return ret;
b9524a1e
BW
4725}
4726
f691e2f4
DV
4727void i915_gem_init_swizzling(struct drm_device *dev)
4728{
3e31c6c0 4729 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4730
11782b02 4731 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4732 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4733 return;
4734
4735 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4736 DISP_TILE_SURFACE_SWIZZLING);
4737
11782b02
DV
4738 if (IS_GEN5(dev))
4739 return;
4740
f691e2f4
DV
4741 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4742 if (IS_GEN6(dev))
6b26c86d 4743 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4744 else if (IS_GEN7(dev))
6b26c86d 4745 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4746 else if (IS_GEN8(dev))
4747 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4748 else
4749 BUG();
f691e2f4 4750}
e21af88d 4751
81e7f200
VS
4752static void init_unused_ring(struct drm_device *dev, u32 base)
4753{
4754 struct drm_i915_private *dev_priv = dev->dev_private;
4755
4756 I915_WRITE(RING_CTL(base), 0);
4757 I915_WRITE(RING_HEAD(base), 0);
4758 I915_WRITE(RING_TAIL(base), 0);
4759 I915_WRITE(RING_START(base), 0);
4760}
4761
4762static void init_unused_rings(struct drm_device *dev)
4763{
4764 if (IS_I830(dev)) {
4765 init_unused_ring(dev, PRB1_BASE);
4766 init_unused_ring(dev, SRB0_BASE);
4767 init_unused_ring(dev, SRB1_BASE);
4768 init_unused_ring(dev, SRB2_BASE);
4769 init_unused_ring(dev, SRB3_BASE);
4770 } else if (IS_GEN2(dev)) {
4771 init_unused_ring(dev, SRB0_BASE);
4772 init_unused_ring(dev, SRB1_BASE);
4773 } else if (IS_GEN3(dev)) {
4774 init_unused_ring(dev, PRB1_BASE);
4775 init_unused_ring(dev, PRB2_BASE);
4776 }
4777}
4778
117897f4 4779int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4780{
4fc7c971 4781 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4782 int ret;
68f95ba9 4783
5c1143bb 4784 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4785 if (ret)
b6913e4b 4786 return ret;
68f95ba9
CW
4787
4788 if (HAS_BSD(dev)) {
5c1143bb 4789 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4790 if (ret)
4791 goto cleanup_render_ring;
d1b851fc 4792 }
68f95ba9 4793
d39398f5 4794 if (HAS_BLT(dev)) {
549f7365
CW
4795 ret = intel_init_blt_ring_buffer(dev);
4796 if (ret)
4797 goto cleanup_bsd_ring;
4798 }
4799
9a8a2213
BW
4800 if (HAS_VEBOX(dev)) {
4801 ret = intel_init_vebox_ring_buffer(dev);
4802 if (ret)
4803 goto cleanup_blt_ring;
4804 }
4805
845f74a7
ZY
4806 if (HAS_BSD2(dev)) {
4807 ret = intel_init_bsd2_ring_buffer(dev);
4808 if (ret)
4809 goto cleanup_vebox_ring;
4810 }
9a8a2213 4811
4fc7c971
BW
4812 return 0;
4813
9a8a2213 4814cleanup_vebox_ring:
117897f4 4815 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4816cleanup_blt_ring:
117897f4 4817 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4818cleanup_bsd_ring:
117897f4 4819 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4820cleanup_render_ring:
117897f4 4821 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4822
4823 return ret;
4824}
4825
4826int
4827i915_gem_init_hw(struct drm_device *dev)
4828{
3e31c6c0 4829 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4830 struct intel_engine_cs *engine;
4ad2fd88 4831 int ret, i, j;
4fc7c971
BW
4832
4833 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4834 return -EIO;
4835
5e4f5189
CW
4836 /* Double layer security blanket, see i915_gem_init() */
4837 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4838
59124506 4839 if (dev_priv->ellc_size)
05e21cc4 4840 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4841
0bf21347
VS
4842 if (IS_HASWELL(dev))
4843 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4844 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4845
88a2b2a3 4846 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4847 if (IS_IVYBRIDGE(dev)) {
4848 u32 temp = I915_READ(GEN7_MSG_CTL);
4849 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4850 I915_WRITE(GEN7_MSG_CTL, temp);
4851 } else if (INTEL_INFO(dev)->gen >= 7) {
4852 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4853 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4854 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4855 }
88a2b2a3
BW
4856 }
4857
4fc7c971
BW
4858 i915_gem_init_swizzling(dev);
4859
d5abdfda
DV
4860 /*
4861 * At least 830 can leave some of the unused rings
4862 * "active" (ie. head != tail) after resume which
4863 * will prevent c3 entry. Makes sure all unused rings
4864 * are totally idle.
4865 */
4866 init_unused_rings(dev);
4867
ed54c1a1 4868 BUG_ON(!dev_priv->kernel_context);
90638cc1 4869
4ad2fd88
JH
4870 ret = i915_ppgtt_init_hw(dev);
4871 if (ret) {
4872 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4873 goto out;
4874 }
4875
4876 /* Need to do basic initialisation of all rings first: */
666796da 4877 for_each_engine(engine, dev_priv, i) {
e2f80391 4878 ret = engine->init_hw(engine);
35a57ffb 4879 if (ret)
5e4f5189 4880 goto out;
35a57ffb 4881 }
99433931 4882
33a732f4 4883 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4884 if (HAS_GUC_UCODE(dev)) {
4885 ret = intel_guc_ucode_load(dev);
4886 if (ret) {
9f9e539f
DV
4887 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4888 ret = -EIO;
4889 goto out;
87bcdd2e 4890 }
33a732f4
AD
4891 }
4892
e84fe803
NH
4893 /*
4894 * Increment the next seqno by 0x100 so we have a visible break
4895 * on re-initialisation
4896 */
4897 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4898 if (ret)
4899 goto out;
4900
4ad2fd88 4901 /* Now it is safe to go back round and do everything else: */
666796da 4902 for_each_engine(engine, dev_priv, i) {
dc4be607
JH
4903 struct drm_i915_gem_request *req;
4904
e2f80391 4905 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
4906 if (IS_ERR(req)) {
4907 ret = PTR_ERR(req);
117897f4 4908 i915_gem_cleanup_engines(dev);
dc4be607
JH
4909 goto out;
4910 }
4911
e2f80391 4912 if (engine->id == RCS) {
4ad2fd88 4913 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4914 i915_gem_l3_remap(req, j);
4ad2fd88 4915 }
c3787e2e 4916
b3dd6b96 4917 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4918 if (ret && ret != -EIO) {
4919 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4920 i915_gem_request_cancel(req);
117897f4 4921 i915_gem_cleanup_engines(dev);
4ad2fd88
JH
4922 goto out;
4923 }
82460d97 4924
b3dd6b96 4925 ret = i915_gem_context_enable(req);
90638cc1
JH
4926 if (ret && ret != -EIO) {
4927 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4928 i915_gem_request_cancel(req);
117897f4 4929 i915_gem_cleanup_engines(dev);
90638cc1
JH
4930 goto out;
4931 }
dc4be607 4932
75289874 4933 i915_add_request_no_flush(req);
b7c36d25 4934 }
e21af88d 4935
5e4f5189
CW
4936out:
4937 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4938 return ret;
8187a2b7
ZN
4939}
4940
1070a42b
CW
4941int i915_gem_init(struct drm_device *dev)
4942{
4943 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4944 int ret;
4945
127f1003
OM
4946 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4947 i915.enable_execlists);
4948
1070a42b 4949 mutex_lock(&dev->struct_mutex);
d62b4892 4950
a83014d3 4951 if (!i915.enable_execlists) {
f3dc74c0 4952 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4953 dev_priv->gt.init_engines = i915_gem_init_engines;
4954 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4955 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4956 } else {
f3dc74c0 4957 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4958 dev_priv->gt.init_engines = intel_logical_rings_init;
4959 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4960 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4961 }
4962
5e4f5189
CW
4963 /* This is just a security blanket to placate dragons.
4964 * On some systems, we very sporadically observe that the first TLBs
4965 * used by the CS may be stale, despite us poking the TLB reset. If
4966 * we hold the forcewake during initialisation these problems
4967 * just magically go away.
4968 */
4969 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4970
6c5566a8 4971 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4972 if (ret)
4973 goto out_unlock;
6c5566a8 4974
d7e5008f 4975 i915_gem_init_global_gtt(dev);
d62b4892 4976
2fa48d8d 4977 ret = i915_gem_context_init(dev);
7bcc3777
JN
4978 if (ret)
4979 goto out_unlock;
2fa48d8d 4980
117897f4 4981 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4982 if (ret)
7bcc3777 4983 goto out_unlock;
2fa48d8d 4984
1070a42b 4985 ret = i915_gem_init_hw(dev);
60990320
CW
4986 if (ret == -EIO) {
4987 /* Allow ring initialisation to fail by marking the GPU as
4988 * wedged. But we only want to do this where the GPU is angry,
4989 * for all other failure, such as an allocation failure, bail.
4990 */
4991 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4992 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4993 ret = 0;
1070a42b 4994 }
7bcc3777
JN
4995
4996out_unlock:
5e4f5189 4997 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4998 mutex_unlock(&dev->struct_mutex);
1070a42b 4999
60990320 5000 return ret;
1070a42b
CW
5001}
5002
8187a2b7 5003void
117897f4 5004i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 5005{
3e31c6c0 5006 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5007 struct intel_engine_cs *engine;
1ec14ad3 5008 int i;
8187a2b7 5009
666796da 5010 for_each_engine(engine, dev_priv, i)
117897f4 5011 dev_priv->gt.cleanup_engine(engine);
a647828a 5012
ee4b6faf
MK
5013 if (i915.enable_execlists)
5014 /*
5015 * Neither the BIOS, ourselves or any other kernel
5016 * expects the system to be in execlists mode on startup,
5017 * so we need to reset the GPU back to legacy mode.
5018 */
5019 intel_gpu_reset(dev, ALL_ENGINES);
8187a2b7
ZN
5020}
5021
64193406 5022static void
666796da 5023init_engine_lists(struct intel_engine_cs *engine)
64193406 5024{
0bc40be8
TU
5025 INIT_LIST_HEAD(&engine->active_list);
5026 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
5027}
5028
40ae4e16
ID
5029void
5030i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5031{
5032 struct drm_device *dev = dev_priv->dev;
5033
5034 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5035 !IS_CHERRYVIEW(dev_priv))
5036 dev_priv->num_fence_regs = 32;
5037 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5038 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5039 dev_priv->num_fence_regs = 16;
5040 else
5041 dev_priv->num_fence_regs = 8;
5042
5043 if (intel_vgpu_active(dev))
5044 dev_priv->num_fence_regs =
5045 I915_READ(vgtif_reg(avail_rs.fence_num));
5046
5047 /* Initialize fence registers to zero */
5048 i915_gem_restore_fences(dev);
5049
5050 i915_gem_detect_bit_6_swizzle(dev);
5051}
5052
673a394b 5053void
d64aa096 5054i915_gem_load_init(struct drm_device *dev)
673a394b 5055{
3e31c6c0 5056 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5057 int i;
5058
efab6d8d 5059 dev_priv->objects =
42dcedd4
CW
5060 kmem_cache_create("i915_gem_object",
5061 sizeof(struct drm_i915_gem_object), 0,
5062 SLAB_HWCACHE_ALIGN,
5063 NULL);
e20d2ab7
CW
5064 dev_priv->vmas =
5065 kmem_cache_create("i915_gem_vma",
5066 sizeof(struct i915_vma), 0,
5067 SLAB_HWCACHE_ALIGN,
5068 NULL);
efab6d8d
CW
5069 dev_priv->requests =
5070 kmem_cache_create("i915_gem_request",
5071 sizeof(struct drm_i915_gem_request), 0,
5072 SLAB_HWCACHE_ALIGN,
5073 NULL);
673a394b 5074
fc8c067e 5075 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5076 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5077 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5078 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5079 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5080 for (i = 0; i < I915_NUM_ENGINES; i++)
5081 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5082 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5083 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5084 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5085 i915_gem_retire_work_handler);
b29c19b6
CW
5086 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5087 i915_gem_idle_work_handler);
1f83fee0 5088 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5089
72bfa19c
CW
5090 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5091
e84fe803
NH
5092 /*
5093 * Set initial sequence number for requests.
5094 * Using this number allows the wraparound to happen early,
5095 * catching any obvious problems.
5096 */
5097 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5098 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5099
19b2dbde 5100 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5101
6b95a207 5102 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5103
ce453d81
CW
5104 dev_priv->mm.interruptible = true;
5105
f99d7069 5106 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5107}
71acb5eb 5108
d64aa096
ID
5109void i915_gem_load_cleanup(struct drm_device *dev)
5110{
5111 struct drm_i915_private *dev_priv = to_i915(dev);
5112
5113 kmem_cache_destroy(dev_priv->requests);
5114 kmem_cache_destroy(dev_priv->vmas);
5115 kmem_cache_destroy(dev_priv->objects);
5116}
5117
f787a5f5 5118void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5119{
f787a5f5 5120 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5121
5122 /* Clean up our request list when the client is going away, so that
5123 * later retire_requests won't dereference our soon-to-be-gone
5124 * file_priv.
5125 */
1c25595f 5126 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5127 while (!list_empty(&file_priv->mm.request_list)) {
5128 struct drm_i915_gem_request *request;
5129
5130 request = list_first_entry(&file_priv->mm.request_list,
5131 struct drm_i915_gem_request,
5132 client_list);
5133 list_del(&request->client_list);
5134 request->file_priv = NULL;
5135 }
1c25595f 5136 spin_unlock(&file_priv->mm.lock);
b29c19b6 5137
2e1b8730 5138 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5139 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5140 list_del(&file_priv->rps.link);
8d3afd7d 5141 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5142 }
b29c19b6
CW
5143}
5144
5145int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5146{
5147 struct drm_i915_file_private *file_priv;
e422b888 5148 int ret;
b29c19b6
CW
5149
5150 DRM_DEBUG_DRIVER("\n");
5151
5152 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5153 if (!file_priv)
5154 return -ENOMEM;
5155
5156 file->driver_priv = file_priv;
5157 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5158 file_priv->file = file;
2e1b8730 5159 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5160
5161 spin_lock_init(&file_priv->mm.lock);
5162 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5163
de1add36
TU
5164 file_priv->bsd_ring = -1;
5165
e422b888
BW
5166 ret = i915_gem_context_open(dev, file);
5167 if (ret)
5168 kfree(file_priv);
b29c19b6 5169
e422b888 5170 return ret;
b29c19b6
CW
5171}
5172
b680c37a
DV
5173/**
5174 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5175 * @old: current GEM buffer for the frontbuffer slots
5176 * @new: new GEM buffer for the frontbuffer slots
5177 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5178 *
5179 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5180 * from @old and setting them in @new. Both @old and @new can be NULL.
5181 */
a071fa00
DV
5182void i915_gem_track_fb(struct drm_i915_gem_object *old,
5183 struct drm_i915_gem_object *new,
5184 unsigned frontbuffer_bits)
5185{
5186 if (old) {
5187 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5188 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5189 old->frontbuffer_bits &= ~frontbuffer_bits;
5190 }
5191
5192 if (new) {
5193 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5194 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5195 new->frontbuffer_bits |= frontbuffer_bits;
5196 }
5197}
5198
a70a3148 5199/* All the new VM stuff */
088e0df4
MT
5200u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5201 struct i915_address_space *vm)
a70a3148
BW
5202{
5203 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5204 struct i915_vma *vma;
5205
896ab1a5 5206 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5207
1c7f4bca 5208 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5209 if (vma->is_ggtt &&
ec7adb6e
JL
5210 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5211 continue;
5212 if (vma->vm == vm)
a70a3148 5213 return vma->node.start;
a70a3148 5214 }
ec7adb6e 5215
f25748ea
DV
5216 WARN(1, "%s vma for this object not found.\n",
5217 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5218 return -1;
5219}
5220
088e0df4
MT
5221u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5222 const struct i915_ggtt_view *view)
a70a3148 5223{
ec7adb6e 5224 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5225 struct i915_vma *vma;
5226
1c7f4bca 5227 list_for_each_entry(vma, &o->vma_list, obj_link)
9abc4648
JL
5228 if (vma->vm == ggtt &&
5229 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5230 return vma->node.start;
5231
5678ad73 5232 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5233 return -1;
5234}
5235
5236bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5237 struct i915_address_space *vm)
5238{
5239 struct i915_vma *vma;
5240
1c7f4bca 5241 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5242 if (vma->is_ggtt &&
ec7adb6e
JL
5243 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5244 continue;
5245 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5246 return true;
5247 }
5248
5249 return false;
5250}
5251
5252bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5253 const struct i915_ggtt_view *view)
ec7adb6e
JL
5254{
5255 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5256 struct i915_vma *vma;
5257
1c7f4bca 5258 list_for_each_entry(vma, &o->vma_list, obj_link)
ec7adb6e 5259 if (vma->vm == ggtt &&
9abc4648 5260 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5261 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5262 return true;
5263
5264 return false;
5265}
5266
5267bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5268{
5a1d5eb0 5269 struct i915_vma *vma;
a70a3148 5270
1c7f4bca 5271 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5272 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5273 return true;
5274
5275 return false;
5276}
5277
5278unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5279 struct i915_address_space *vm)
5280{
5281 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5282 struct i915_vma *vma;
5283
896ab1a5 5284 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5285
5286 BUG_ON(list_empty(&o->vma_list));
5287
1c7f4bca 5288 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5289 if (vma->is_ggtt &&
ec7adb6e
JL
5290 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5291 continue;
a70a3148
BW
5292 if (vma->vm == vm)
5293 return vma->node.size;
ec7adb6e 5294 }
a70a3148
BW
5295 return 0;
5296}
5297
ec7adb6e 5298bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5299{
5300 struct i915_vma *vma;
1c7f4bca 5301 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5302 if (vma->pin_count > 0)
5303 return true;
a6631ae1 5304
ec7adb6e 5305 return false;
5c2abbea 5306}
ea70299d 5307
033908ae
DG
5308/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5309struct page *
5310i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5311{
5312 struct page *page;
5313
5314 /* Only default objects have per-page dirty tracking */
de472664 5315 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5316 return NULL;
5317
5318 page = i915_gem_object_get_page(obj, n);
5319 set_page_dirty(page);
5320 return page;
5321}
5322
ea70299d
DG
5323/* Allocate a new GEM object and fill it with the supplied data */
5324struct drm_i915_gem_object *
5325i915_gem_object_create_from_data(struct drm_device *dev,
5326 const void *data, size_t size)
5327{
5328 struct drm_i915_gem_object *obj;
5329 struct sg_table *sg;
5330 size_t bytes;
5331 int ret;
5332
5333 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5334 if (IS_ERR_OR_NULL(obj))
5335 return obj;
5336
5337 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5338 if (ret)
5339 goto fail;
5340
5341 ret = i915_gem_object_get_pages(obj);
5342 if (ret)
5343 goto fail;
5344
5345 i915_gem_object_pin_pages(obj);
5346 sg = obj->pages;
5347 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5348 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5349 i915_gem_object_unpin_pages(obj);
5350
5351 if (WARN_ON(bytes != size)) {
5352 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5353 ret = -EFAULT;
5354 goto fail;
5355 }
5356
5357 return obj;
5358
5359fail:
5360 drm_gem_object_unreference(&obj->base);
5361 return ERR_PTR(ret);
5362}