]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/bdw: Clean up execlist queue items in retire_work
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
79e53945
JB
162int
163i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
79e53945 165{
93d18799 166 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 167 struct drm_i915_gem_init *args = data;
2021746e 168
7bb6fb8d
DV
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
2021746e
CW
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
79e53945 175
f534bc0b
DV
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
79e53945 180 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
93d18799 183 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
184 mutex_unlock(&dev->struct_mutex);
185
2021746e 186 return 0;
673a394b
EA
187}
188
5a125c3c
EA
189int
190i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 191 struct drm_file *file)
5a125c3c 192{
73aa808f 193 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 194 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
5a125c3c 197
6299f992 198 pinned = 0;
73aa808f 199 mutex_lock(&dev->struct_mutex);
35c20a60 200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 201 if (i915_gem_obj_is_pinned(obj))
f343c5f6 202 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 203 mutex_unlock(&dev->struct_mutex);
5a125c3c 204
853ba5d2 205 args->aper_size = dev_priv->gtt.base.total;
0206e353 206 args->aper_available_size = args->aper_size - pinned;
6299f992 207
5a125c3c
EA
208 return 0;
209}
210
6a2c4232
CW
211static int
212i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 213{
6a2c4232
CW
214 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
215 char *vaddr = obj->phys_handle->vaddr;
216 struct sg_table *st;
217 struct scatterlist *sg;
218 int i;
00731155 219
6a2c4232
CW
220 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
221 return -EINVAL;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page;
225 char *src;
226
227 page = shmem_read_mapping_page(mapping, i);
228 if (IS_ERR(page))
229 return PTR_ERR(page);
230
231 src = kmap_atomic(page);
232 memcpy(vaddr, src, PAGE_SIZE);
233 drm_clflush_virt_range(vaddr, PAGE_SIZE);
234 kunmap_atomic(src);
235
236 page_cache_release(page);
237 vaddr += PAGE_SIZE;
238 }
239
240 i915_gem_chipset_flush(obj->base.dev);
241
242 st = kmalloc(sizeof(*st), GFP_KERNEL);
243 if (st == NULL)
244 return -ENOMEM;
245
246 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
247 kfree(st);
248 return -ENOMEM;
249 }
250
251 sg = st->sgl;
252 sg->offset = 0;
253 sg->length = obj->base.size;
00731155 254
6a2c4232
CW
255 sg_dma_address(sg) = obj->phys_handle->busaddr;
256 sg_dma_len(sg) = obj->base.size;
257
258 obj->pages = st;
259 obj->has_dma_mapping = true;
260 return 0;
261}
262
263static void
264i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
265{
266 int ret;
267
268 BUG_ON(obj->madv == __I915_MADV_PURGED);
269
270 ret = i915_gem_object_set_to_cpu_domain(obj, true);
271 if (ret) {
272 /* In the event of a disaster, abandon all caches and
273 * hope for the best.
274 */
275 WARN_ON(ret != -EIO);
276 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
277 }
278
279 if (obj->madv == I915_MADV_DONTNEED)
280 obj->dirty = 0;
281
282 if (obj->dirty) {
00731155 283 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 284 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
285 int i;
286
287 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
288 struct page *page;
289 char *dst;
290
291 page = shmem_read_mapping_page(mapping, i);
292 if (IS_ERR(page))
293 continue;
294
295 dst = kmap_atomic(page);
296 drm_clflush_virt_range(vaddr, PAGE_SIZE);
297 memcpy(dst, vaddr, PAGE_SIZE);
298 kunmap_atomic(dst);
299
300 set_page_dirty(page);
301 if (obj->madv == I915_MADV_WILLNEED)
00731155 302 mark_page_accessed(page);
6a2c4232 303 page_cache_release(page);
00731155
CW
304 vaddr += PAGE_SIZE;
305 }
6a2c4232 306 obj->dirty = 0;
00731155
CW
307 }
308
6a2c4232
CW
309 sg_free_table(obj->pages);
310 kfree(obj->pages);
311
312 obj->has_dma_mapping = false;
313}
314
315static void
316i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
317{
318 drm_pci_free(obj->base.dev, obj->phys_handle);
319}
320
321static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
322 .get_pages = i915_gem_object_get_pages_phys,
323 .put_pages = i915_gem_object_put_pages_phys,
324 .release = i915_gem_object_release_phys,
325};
326
327static int
328drop_pages(struct drm_i915_gem_object *obj)
329{
330 struct i915_vma *vma, *next;
331 int ret;
332
333 drm_gem_object_reference(&obj->base);
334 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
335 if (i915_vma_unbind(vma))
336 break;
337
338 ret = i915_gem_object_put_pages(obj);
339 drm_gem_object_unreference(&obj->base);
340
341 return ret;
00731155
CW
342}
343
344int
345i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
346 int align)
347{
348 drm_dma_handle_t *phys;
6a2c4232 349 int ret;
00731155
CW
350
351 if (obj->phys_handle) {
352 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
353 return -EBUSY;
354
355 return 0;
356 }
357
358 if (obj->madv != I915_MADV_WILLNEED)
359 return -EFAULT;
360
361 if (obj->base.filp == NULL)
362 return -EINVAL;
363
6a2c4232
CW
364 ret = drop_pages(obj);
365 if (ret)
366 return ret;
367
00731155
CW
368 /* create a new object */
369 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
370 if (!phys)
371 return -ENOMEM;
372
00731155 373 obj->phys_handle = phys;
6a2c4232
CW
374 obj->ops = &i915_gem_phys_ops;
375
376 return i915_gem_object_get_pages(obj);
00731155
CW
377}
378
379static int
380i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
381 struct drm_i915_gem_pwrite *args,
382 struct drm_file *file_priv)
383{
384 struct drm_device *dev = obj->base.dev;
385 void *vaddr = obj->phys_handle->vaddr + args->offset;
386 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
387 int ret;
388
389 /* We manually control the domain here and pretend that it
390 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
391 */
392 ret = i915_gem_object_wait_rendering(obj, false);
393 if (ret)
394 return ret;
00731155
CW
395
396 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
397 unsigned long unwritten;
398
399 /* The physical object once assigned is fixed for the lifetime
400 * of the obj, so we can safely drop the lock and continue
401 * to access vaddr.
402 */
403 mutex_unlock(&dev->struct_mutex);
404 unwritten = copy_from_user(vaddr, user_data, args->size);
405 mutex_lock(&dev->struct_mutex);
406 if (unwritten)
407 return -EFAULT;
408 }
409
6a2c4232 410 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
411 i915_gem_chipset_flush(dev);
412 return 0;
413}
414
42dcedd4
CW
415void *i915_gem_object_alloc(struct drm_device *dev)
416{
417 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 418 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
419}
420
421void i915_gem_object_free(struct drm_i915_gem_object *obj)
422{
423 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
424 kmem_cache_free(dev_priv->slab, obj);
425}
426
ff72145b
DA
427static int
428i915_gem_create(struct drm_file *file,
429 struct drm_device *dev,
430 uint64_t size,
431 uint32_t *handle_p)
673a394b 432{
05394f39 433 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
434 int ret;
435 u32 handle;
673a394b 436
ff72145b 437 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
438 if (size == 0)
439 return -EINVAL;
673a394b
EA
440
441 /* Allocate the new object */
ff72145b 442 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
443 if (obj == NULL)
444 return -ENOMEM;
445
05394f39 446 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 447 /* drop reference from allocate - handle holds it now */
d861e338
DV
448 drm_gem_object_unreference_unlocked(&obj->base);
449 if (ret)
450 return ret;
202f2fef 451
ff72145b 452 *handle_p = handle;
673a394b
EA
453 return 0;
454}
455
ff72145b
DA
456int
457i915_gem_dumb_create(struct drm_file *file,
458 struct drm_device *dev,
459 struct drm_mode_create_dumb *args)
460{
461 /* have to work out size/pitch and return them */
de45eaf7 462 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
463 args->size = args->pitch * args->height;
464 return i915_gem_create(file, dev,
465 args->size, &args->handle);
466}
467
ff72145b
DA
468/**
469 * Creates a new mm object and returns a handle to it.
470 */
471int
472i915_gem_create_ioctl(struct drm_device *dev, void *data,
473 struct drm_file *file)
474{
475 struct drm_i915_gem_create *args = data;
63ed2cb2 476
ff72145b
DA
477 return i915_gem_create(file, dev,
478 args->size, &args->handle);
479}
480
8461d226
DV
481static inline int
482__copy_to_user_swizzled(char __user *cpu_vaddr,
483 const char *gpu_vaddr, int gpu_offset,
484 int length)
485{
486 int ret, cpu_offset = 0;
487
488 while (length > 0) {
489 int cacheline_end = ALIGN(gpu_offset + 1, 64);
490 int this_length = min(cacheline_end - gpu_offset, length);
491 int swizzled_gpu_offset = gpu_offset ^ 64;
492
493 ret = __copy_to_user(cpu_vaddr + cpu_offset,
494 gpu_vaddr + swizzled_gpu_offset,
495 this_length);
496 if (ret)
497 return ret + length;
498
499 cpu_offset += this_length;
500 gpu_offset += this_length;
501 length -= this_length;
502 }
503
504 return 0;
505}
506
8c59967c 507static inline int
4f0c7cfb
BW
508__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
509 const char __user *cpu_vaddr,
8c59967c
DV
510 int length)
511{
512 int ret, cpu_offset = 0;
513
514 while (length > 0) {
515 int cacheline_end = ALIGN(gpu_offset + 1, 64);
516 int this_length = min(cacheline_end - gpu_offset, length);
517 int swizzled_gpu_offset = gpu_offset ^ 64;
518
519 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
520 cpu_vaddr + cpu_offset,
521 this_length);
522 if (ret)
523 return ret + length;
524
525 cpu_offset += this_length;
526 gpu_offset += this_length;
527 length -= this_length;
528 }
529
530 return 0;
531}
532
4c914c0c
BV
533/*
534 * Pins the specified object's pages and synchronizes the object with
535 * GPU accesses. Sets needs_clflush to non-zero if the caller should
536 * flush the object from the CPU cache.
537 */
538int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
539 int *needs_clflush)
540{
541 int ret;
542
543 *needs_clflush = 0;
544
545 if (!obj->base.filp)
546 return -EINVAL;
547
548 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
549 /* If we're not in the cpu read domain, set ourself into the gtt
550 * read domain and manually flush cachelines (if required). This
551 * optimizes for the case when the gpu will dirty the data
552 * anyway again before the next pread happens. */
553 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
554 obj->cache_level);
555 ret = i915_gem_object_wait_rendering(obj, true);
556 if (ret)
557 return ret;
c8725f3d
CW
558
559 i915_gem_object_retire(obj);
4c914c0c
BV
560 }
561
562 ret = i915_gem_object_get_pages(obj);
563 if (ret)
564 return ret;
565
566 i915_gem_object_pin_pages(obj);
567
568 return ret;
569}
570
d174bd64
DV
571/* Per-page copy function for the shmem pread fastpath.
572 * Flushes invalid cachelines before reading the target if
573 * needs_clflush is set. */
eb01459f 574static int
d174bd64
DV
575shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
576 char __user *user_data,
577 bool page_do_bit17_swizzling, bool needs_clflush)
578{
579 char *vaddr;
580 int ret;
581
e7e58eb5 582 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
583 return -EINVAL;
584
585 vaddr = kmap_atomic(page);
586 if (needs_clflush)
587 drm_clflush_virt_range(vaddr + shmem_page_offset,
588 page_length);
589 ret = __copy_to_user_inatomic(user_data,
590 vaddr + shmem_page_offset,
591 page_length);
592 kunmap_atomic(vaddr);
593
f60d7f0c 594 return ret ? -EFAULT : 0;
d174bd64
DV
595}
596
23c18c71
DV
597static void
598shmem_clflush_swizzled_range(char *addr, unsigned long length,
599 bool swizzled)
600{
e7e58eb5 601 if (unlikely(swizzled)) {
23c18c71
DV
602 unsigned long start = (unsigned long) addr;
603 unsigned long end = (unsigned long) addr + length;
604
605 /* For swizzling simply ensure that we always flush both
606 * channels. Lame, but simple and it works. Swizzled
607 * pwrite/pread is far from a hotpath - current userspace
608 * doesn't use it at all. */
609 start = round_down(start, 128);
610 end = round_up(end, 128);
611
612 drm_clflush_virt_range((void *)start, end - start);
613 } else {
614 drm_clflush_virt_range(addr, length);
615 }
616
617}
618
d174bd64
DV
619/* Only difference to the fast-path function is that this can handle bit17
620 * and uses non-atomic copy and kmap functions. */
621static int
622shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
623 char __user *user_data,
624 bool page_do_bit17_swizzling, bool needs_clflush)
625{
626 char *vaddr;
627 int ret;
628
629 vaddr = kmap(page);
630 if (needs_clflush)
23c18c71
DV
631 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
632 page_length,
633 page_do_bit17_swizzling);
d174bd64
DV
634
635 if (page_do_bit17_swizzling)
636 ret = __copy_to_user_swizzled(user_data,
637 vaddr, shmem_page_offset,
638 page_length);
639 else
640 ret = __copy_to_user(user_data,
641 vaddr + shmem_page_offset,
642 page_length);
643 kunmap(page);
644
f60d7f0c 645 return ret ? - EFAULT : 0;
d174bd64
DV
646}
647
eb01459f 648static int
dbf7bff0
DV
649i915_gem_shmem_pread(struct drm_device *dev,
650 struct drm_i915_gem_object *obj,
651 struct drm_i915_gem_pread *args,
652 struct drm_file *file)
eb01459f 653{
8461d226 654 char __user *user_data;
eb01459f 655 ssize_t remain;
8461d226 656 loff_t offset;
eb2c0c81 657 int shmem_page_offset, page_length, ret = 0;
8461d226 658 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 659 int prefaulted = 0;
8489731c 660 int needs_clflush = 0;
67d5a50c 661 struct sg_page_iter sg_iter;
eb01459f 662
2bb4629a 663 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
664 remain = args->size;
665
8461d226 666 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 667
4c914c0c 668 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
669 if (ret)
670 return ret;
671
8461d226 672 offset = args->offset;
eb01459f 673
67d5a50c
ID
674 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
675 offset >> PAGE_SHIFT) {
2db76d7c 676 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
677
678 if (remain <= 0)
679 break;
680
eb01459f
EA
681 /* Operation in this page
682 *
eb01459f 683 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
684 * page_length = bytes to copy for this page
685 */
c8cbbb8b 686 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
687 page_length = remain;
688 if ((shmem_page_offset + page_length) > PAGE_SIZE)
689 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 690
8461d226
DV
691 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
692 (page_to_phys(page) & (1 << 17)) != 0;
693
d174bd64
DV
694 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
695 user_data, page_do_bit17_swizzling,
696 needs_clflush);
697 if (ret == 0)
698 goto next_page;
dbf7bff0 699
dbf7bff0
DV
700 mutex_unlock(&dev->struct_mutex);
701
d330a953 702 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 703 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
704 /* Userspace is tricking us, but we've already clobbered
705 * its pages with the prefault and promised to write the
706 * data up to the first fault. Hence ignore any errors
707 * and just continue. */
708 (void)ret;
709 prefaulted = 1;
710 }
eb01459f 711
d174bd64
DV
712 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
713 user_data, page_do_bit17_swizzling,
714 needs_clflush);
eb01459f 715
dbf7bff0 716 mutex_lock(&dev->struct_mutex);
f60d7f0c 717
f60d7f0c 718 if (ret)
8461d226 719 goto out;
8461d226 720
17793c9a 721next_page:
eb01459f 722 remain -= page_length;
8461d226 723 user_data += page_length;
eb01459f
EA
724 offset += page_length;
725 }
726
4f27b75d 727out:
f60d7f0c
CW
728 i915_gem_object_unpin_pages(obj);
729
eb01459f
EA
730 return ret;
731}
732
673a394b
EA
733/**
734 * Reads data from the object referenced by handle.
735 *
736 * On error, the contents of *data are undefined.
737 */
738int
739i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 740 struct drm_file *file)
673a394b
EA
741{
742 struct drm_i915_gem_pread *args = data;
05394f39 743 struct drm_i915_gem_object *obj;
35b62a89 744 int ret = 0;
673a394b 745
51311d0a
CW
746 if (args->size == 0)
747 return 0;
748
749 if (!access_ok(VERIFY_WRITE,
2bb4629a 750 to_user_ptr(args->data_ptr),
51311d0a
CW
751 args->size))
752 return -EFAULT;
753
4f27b75d 754 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 755 if (ret)
4f27b75d 756 return ret;
673a394b 757
05394f39 758 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 759 if (&obj->base == NULL) {
1d7cfea1
CW
760 ret = -ENOENT;
761 goto unlock;
4f27b75d 762 }
673a394b 763
7dcd2499 764 /* Bounds check source. */
05394f39
CW
765 if (args->offset > obj->base.size ||
766 args->size > obj->base.size - args->offset) {
ce9d419d 767 ret = -EINVAL;
35b62a89 768 goto out;
ce9d419d
CW
769 }
770
1286ff73
DV
771 /* prime objects have no backing filp to GEM pread/pwrite
772 * pages from.
773 */
774 if (!obj->base.filp) {
775 ret = -EINVAL;
776 goto out;
777 }
778
db53a302
CW
779 trace_i915_gem_object_pread(obj, args->offset, args->size);
780
dbf7bff0 781 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 782
35b62a89 783out:
05394f39 784 drm_gem_object_unreference(&obj->base);
1d7cfea1 785unlock:
4f27b75d 786 mutex_unlock(&dev->struct_mutex);
eb01459f 787 return ret;
673a394b
EA
788}
789
0839ccb8
KP
790/* This is the fast write path which cannot handle
791 * page faults in the source data
9b7530cc 792 */
0839ccb8
KP
793
794static inline int
795fast_user_write(struct io_mapping *mapping,
796 loff_t page_base, int page_offset,
797 char __user *user_data,
798 int length)
9b7530cc 799{
4f0c7cfb
BW
800 void __iomem *vaddr_atomic;
801 void *vaddr;
0839ccb8 802 unsigned long unwritten;
9b7530cc 803
3e4d3af5 804 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
805 /* We can use the cpu mem copy function because this is X86. */
806 vaddr = (void __force*)vaddr_atomic + page_offset;
807 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 808 user_data, length);
3e4d3af5 809 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 810 return unwritten;
0839ccb8
KP
811}
812
3de09aa3
EA
813/**
814 * This is the fast pwrite path, where we copy the data directly from the
815 * user into the GTT, uncached.
816 */
673a394b 817static int
05394f39
CW
818i915_gem_gtt_pwrite_fast(struct drm_device *dev,
819 struct drm_i915_gem_object *obj,
3de09aa3 820 struct drm_i915_gem_pwrite *args,
05394f39 821 struct drm_file *file)
673a394b 822{
3e31c6c0 823 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 824 ssize_t remain;
0839ccb8 825 loff_t offset, page_base;
673a394b 826 char __user *user_data;
935aaa69
DV
827 int page_offset, page_length, ret;
828
1ec9e26d 829 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
830 if (ret)
831 goto out;
832
833 ret = i915_gem_object_set_to_gtt_domain(obj, true);
834 if (ret)
835 goto out_unpin;
836
837 ret = i915_gem_object_put_fence(obj);
838 if (ret)
839 goto out_unpin;
673a394b 840
2bb4629a 841 user_data = to_user_ptr(args->data_ptr);
673a394b 842 remain = args->size;
673a394b 843
f343c5f6 844 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
845
846 while (remain > 0) {
847 /* Operation in this page
848 *
0839ccb8
KP
849 * page_base = page offset within aperture
850 * page_offset = offset within page
851 * page_length = bytes to copy for this page
673a394b 852 */
c8cbbb8b
CW
853 page_base = offset & PAGE_MASK;
854 page_offset = offset_in_page(offset);
0839ccb8
KP
855 page_length = remain;
856 if ((page_offset + remain) > PAGE_SIZE)
857 page_length = PAGE_SIZE - page_offset;
858
0839ccb8 859 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
860 * source page isn't available. Return the error and we'll
861 * retry in the slow path.
0839ccb8 862 */
5d4545ae 863 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
864 page_offset, user_data, page_length)) {
865 ret = -EFAULT;
866 goto out_unpin;
867 }
673a394b 868
0839ccb8
KP
869 remain -= page_length;
870 user_data += page_length;
871 offset += page_length;
673a394b 872 }
673a394b 873
935aaa69 874out_unpin:
d7f46fc4 875 i915_gem_object_ggtt_unpin(obj);
935aaa69 876out:
3de09aa3 877 return ret;
673a394b
EA
878}
879
d174bd64
DV
880/* Per-page copy function for the shmem pwrite fastpath.
881 * Flushes invalid cachelines before writing to the target if
882 * needs_clflush_before is set and flushes out any written cachelines after
883 * writing if needs_clflush is set. */
3043c60c 884static int
d174bd64
DV
885shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
886 char __user *user_data,
887 bool page_do_bit17_swizzling,
888 bool needs_clflush_before,
889 bool needs_clflush_after)
673a394b 890{
d174bd64 891 char *vaddr;
673a394b 892 int ret;
3de09aa3 893
e7e58eb5 894 if (unlikely(page_do_bit17_swizzling))
d174bd64 895 return -EINVAL;
3de09aa3 896
d174bd64
DV
897 vaddr = kmap_atomic(page);
898 if (needs_clflush_before)
899 drm_clflush_virt_range(vaddr + shmem_page_offset,
900 page_length);
c2831a94
CW
901 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
902 user_data, page_length);
d174bd64
DV
903 if (needs_clflush_after)
904 drm_clflush_virt_range(vaddr + shmem_page_offset,
905 page_length);
906 kunmap_atomic(vaddr);
3de09aa3 907
755d2218 908 return ret ? -EFAULT : 0;
3de09aa3
EA
909}
910
d174bd64
DV
911/* Only difference to the fast-path function is that this can handle bit17
912 * and uses non-atomic copy and kmap functions. */
3043c60c 913static int
d174bd64
DV
914shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
915 char __user *user_data,
916 bool page_do_bit17_swizzling,
917 bool needs_clflush_before,
918 bool needs_clflush_after)
673a394b 919{
d174bd64
DV
920 char *vaddr;
921 int ret;
e5281ccd 922
d174bd64 923 vaddr = kmap(page);
e7e58eb5 924 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
925 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
926 page_length,
927 page_do_bit17_swizzling);
d174bd64
DV
928 if (page_do_bit17_swizzling)
929 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
930 user_data,
931 page_length);
d174bd64
DV
932 else
933 ret = __copy_from_user(vaddr + shmem_page_offset,
934 user_data,
935 page_length);
936 if (needs_clflush_after)
23c18c71
DV
937 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
938 page_length,
939 page_do_bit17_swizzling);
d174bd64 940 kunmap(page);
40123c1f 941
755d2218 942 return ret ? -EFAULT : 0;
40123c1f
EA
943}
944
40123c1f 945static int
e244a443
DV
946i915_gem_shmem_pwrite(struct drm_device *dev,
947 struct drm_i915_gem_object *obj,
948 struct drm_i915_gem_pwrite *args,
949 struct drm_file *file)
40123c1f 950{
40123c1f 951 ssize_t remain;
8c59967c
DV
952 loff_t offset;
953 char __user *user_data;
eb2c0c81 954 int shmem_page_offset, page_length, ret = 0;
8c59967c 955 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 956 int hit_slowpath = 0;
58642885
DV
957 int needs_clflush_after = 0;
958 int needs_clflush_before = 0;
67d5a50c 959 struct sg_page_iter sg_iter;
40123c1f 960
2bb4629a 961 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
962 remain = args->size;
963
8c59967c 964 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 965
58642885
DV
966 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
967 /* If we're not in the cpu write domain, set ourself into the gtt
968 * write domain and manually flush cachelines (if required). This
969 * optimizes for the case when the gpu will use the data
970 * right away and we therefore have to clflush anyway. */
2c22569b 971 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
972 ret = i915_gem_object_wait_rendering(obj, false);
973 if (ret)
974 return ret;
c8725f3d
CW
975
976 i915_gem_object_retire(obj);
58642885 977 }
c76ce038
CW
978 /* Same trick applies to invalidate partially written cachelines read
979 * before writing. */
980 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
981 needs_clflush_before =
982 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 983
755d2218
CW
984 ret = i915_gem_object_get_pages(obj);
985 if (ret)
986 return ret;
987
988 i915_gem_object_pin_pages(obj);
989
673a394b 990 offset = args->offset;
05394f39 991 obj->dirty = 1;
673a394b 992
67d5a50c
ID
993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
994 offset >> PAGE_SHIFT) {
2db76d7c 995 struct page *page = sg_page_iter_page(&sg_iter);
58642885 996 int partial_cacheline_write;
e5281ccd 997
9da3da66
CW
998 if (remain <= 0)
999 break;
1000
40123c1f
EA
1001 /* Operation in this page
1002 *
40123c1f 1003 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1004 * page_length = bytes to copy for this page
1005 */
c8cbbb8b 1006 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1007
1008 page_length = remain;
1009 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1010 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1011
58642885
DV
1012 /* If we don't overwrite a cacheline completely we need to be
1013 * careful to have up-to-date data by first clflushing. Don't
1014 * overcomplicate things and flush the entire patch. */
1015 partial_cacheline_write = needs_clflush_before &&
1016 ((shmem_page_offset | page_length)
1017 & (boot_cpu_data.x86_clflush_size - 1));
1018
8c59967c
DV
1019 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1020 (page_to_phys(page) & (1 << 17)) != 0;
1021
d174bd64
DV
1022 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1023 user_data, page_do_bit17_swizzling,
1024 partial_cacheline_write,
1025 needs_clflush_after);
1026 if (ret == 0)
1027 goto next_page;
e244a443
DV
1028
1029 hit_slowpath = 1;
e244a443 1030 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1031 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1032 user_data, page_do_bit17_swizzling,
1033 partial_cacheline_write,
1034 needs_clflush_after);
40123c1f 1035
e244a443 1036 mutex_lock(&dev->struct_mutex);
755d2218 1037
755d2218 1038 if (ret)
8c59967c 1039 goto out;
8c59967c 1040
17793c9a 1041next_page:
40123c1f 1042 remain -= page_length;
8c59967c 1043 user_data += page_length;
40123c1f 1044 offset += page_length;
673a394b
EA
1045 }
1046
fbd5a26d 1047out:
755d2218
CW
1048 i915_gem_object_unpin_pages(obj);
1049
e244a443 1050 if (hit_slowpath) {
8dcf015e
DV
1051 /*
1052 * Fixup: Flush cpu caches in case we didn't flush the dirty
1053 * cachelines in-line while writing and the object moved
1054 * out of the cpu write domain while we've dropped the lock.
1055 */
1056 if (!needs_clflush_after &&
1057 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1058 if (i915_gem_clflush_object(obj, obj->pin_display))
1059 i915_gem_chipset_flush(dev);
e244a443 1060 }
8c59967c 1061 }
673a394b 1062
58642885 1063 if (needs_clflush_after)
e76e9aeb 1064 i915_gem_chipset_flush(dev);
58642885 1065
40123c1f 1066 return ret;
673a394b
EA
1067}
1068
1069/**
1070 * Writes data to the object referenced by handle.
1071 *
1072 * On error, the contents of the buffer that were to be modified are undefined.
1073 */
1074int
1075i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1076 struct drm_file *file)
673a394b
EA
1077{
1078 struct drm_i915_gem_pwrite *args = data;
05394f39 1079 struct drm_i915_gem_object *obj;
51311d0a
CW
1080 int ret;
1081
1082 if (args->size == 0)
1083 return 0;
1084
1085 if (!access_ok(VERIFY_READ,
2bb4629a 1086 to_user_ptr(args->data_ptr),
51311d0a
CW
1087 args->size))
1088 return -EFAULT;
1089
d330a953 1090 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1091 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1092 args->size);
1093 if (ret)
1094 return -EFAULT;
1095 }
673a394b 1096
fbd5a26d 1097 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1098 if (ret)
fbd5a26d 1099 return ret;
1d7cfea1 1100
05394f39 1101 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1102 if (&obj->base == NULL) {
1d7cfea1
CW
1103 ret = -ENOENT;
1104 goto unlock;
fbd5a26d 1105 }
673a394b 1106
7dcd2499 1107 /* Bounds check destination. */
05394f39
CW
1108 if (args->offset > obj->base.size ||
1109 args->size > obj->base.size - args->offset) {
ce9d419d 1110 ret = -EINVAL;
35b62a89 1111 goto out;
ce9d419d
CW
1112 }
1113
1286ff73
DV
1114 /* prime objects have no backing filp to GEM pread/pwrite
1115 * pages from.
1116 */
1117 if (!obj->base.filp) {
1118 ret = -EINVAL;
1119 goto out;
1120 }
1121
db53a302
CW
1122 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1123
935aaa69 1124 ret = -EFAULT;
673a394b
EA
1125 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1126 * it would end up going through the fenced access, and we'll get
1127 * different detiling behavior between reading and writing.
1128 * pread/pwrite currently are reading and writing from the CPU
1129 * perspective, requiring manual detiling by the client.
1130 */
2c22569b
CW
1131 if (obj->tiling_mode == I915_TILING_NONE &&
1132 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1133 cpu_write_needs_clflush(obj)) {
fbd5a26d 1134 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1135 /* Note that the gtt paths might fail with non-page-backed user
1136 * pointers (e.g. gtt mappings when moving data between
1137 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1138 }
673a394b 1139
6a2c4232
CW
1140 if (ret == -EFAULT || ret == -ENOSPC) {
1141 if (obj->phys_handle)
1142 ret = i915_gem_phys_pwrite(obj, args, file);
1143 else
1144 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1145 }
5c0480f2 1146
35b62a89 1147out:
05394f39 1148 drm_gem_object_unreference(&obj->base);
1d7cfea1 1149unlock:
fbd5a26d 1150 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1151 return ret;
1152}
1153
b361237b 1154int
33196ded 1155i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1156 bool interruptible)
1157{
1f83fee0 1158 if (i915_reset_in_progress(error)) {
b361237b
CW
1159 /* Non-interruptible callers can't handle -EAGAIN, hence return
1160 * -EIO unconditionally for these. */
1161 if (!interruptible)
1162 return -EIO;
1163
1f83fee0
DV
1164 /* Recovery complete, but the reset failed ... */
1165 if (i915_terminally_wedged(error))
b361237b
CW
1166 return -EIO;
1167
6689c167
MA
1168 /*
1169 * Check if GPU Reset is in progress - we need intel_ring_begin
1170 * to work properly to reinit the hw state while the gpu is
1171 * still marked as reset-in-progress. Handle this with a flag.
1172 */
1173 if (!error->reload_in_reset)
1174 return -EAGAIN;
b361237b
CW
1175 }
1176
1177 return 0;
1178}
1179
1180/*
1181 * Compare seqno against outstanding lazy request. Emit a request if they are
1182 * equal.
1183 */
84c33a64 1184int
a4872ba6 1185i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1186{
1187 int ret;
1188
1189 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1190
1191 ret = 0;
1823521d 1192 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1193 ret = i915_add_request(ring, NULL);
b361237b
CW
1194
1195 return ret;
1196}
1197
094f9a54
CW
1198static void fake_irq(unsigned long data)
1199{
1200 wake_up_process((struct task_struct *)data);
1201}
1202
1203static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1204 struct intel_engine_cs *ring)
094f9a54
CW
1205{
1206 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1207}
1208
b29c19b6
CW
1209static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1210{
1211 if (file_priv == NULL)
1212 return true;
1213
1214 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1215}
1216
b361237b 1217/**
16e9a21f 1218 * __i915_wait_seqno - wait until execution of seqno has finished
b361237b
CW
1219 * @ring: the ring expected to report seqno
1220 * @seqno: duh!
f69061be 1221 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1222 * @interruptible: do an interruptible wait (normally yes)
1223 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1224 *
f69061be
DV
1225 * Note: It is of utmost importance that the passed in seqno and reset_counter
1226 * values have been read by the caller in an smp safe manner. Where read-side
1227 * locks are involved, it is sufficient to read the reset_counter before
1228 * unlocking the lock that protects the seqno. For lockless tricks, the
1229 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1230 * inserted.
1231 *
b361237b
CW
1232 * Returns 0 if the seqno was found within the alloted time. Else returns the
1233 * errno with remaining time filled in timeout argument.
1234 */
16e9a21f 1235int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1236 unsigned reset_counter,
b29c19b6 1237 bool interruptible,
5ed0bdf2 1238 s64 *timeout,
b29c19b6 1239 struct drm_i915_file_private *file_priv)
b361237b 1240{
3d13ef2e 1241 struct drm_device *dev = ring->dev;
3e31c6c0 1242 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1243 const bool irq_test_in_progress =
1244 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1245 DEFINE_WAIT(wait);
47e9766d 1246 unsigned long timeout_expire;
5ed0bdf2 1247 s64 before, now;
b361237b
CW
1248 int ret;
1249
9df7575f 1250 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1251
b361237b
CW
1252 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1253 return 0;
1254
5ed0bdf2 1255 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1256
ec5cc0f9 1257 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1258 gen6_rps_boost(dev_priv);
1259 if (file_priv)
1260 mod_delayed_work(dev_priv->wq,
1261 &file_priv->mm.idle_work,
1262 msecs_to_jiffies(100));
1263 }
1264
168c3f21 1265 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1266 return -ENODEV;
1267
094f9a54
CW
1268 /* Record current time in case interrupted by signal, or wedged */
1269 trace_i915_gem_request_wait_begin(ring, seqno);
5ed0bdf2 1270 before = ktime_get_raw_ns();
094f9a54
CW
1271 for (;;) {
1272 struct timer_list timer;
b361237b 1273
094f9a54
CW
1274 prepare_to_wait(&ring->irq_queue, &wait,
1275 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1276
f69061be
DV
1277 /* We need to check whether any gpu reset happened in between
1278 * the caller grabbing the seqno and now ... */
094f9a54
CW
1279 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1280 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1281 * is truely gone. */
1282 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1283 if (ret == 0)
1284 ret = -EAGAIN;
1285 break;
1286 }
f69061be 1287
094f9a54
CW
1288 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1289 ret = 0;
1290 break;
1291 }
b361237b 1292
094f9a54
CW
1293 if (interruptible && signal_pending(current)) {
1294 ret = -ERESTARTSYS;
1295 break;
1296 }
1297
47e9766d 1298 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1299 ret = -ETIME;
1300 break;
1301 }
1302
1303 timer.function = NULL;
1304 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1305 unsigned long expire;
1306
094f9a54 1307 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1308 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1309 mod_timer(&timer, expire);
1310 }
1311
5035c275 1312 io_schedule();
094f9a54 1313
094f9a54
CW
1314 if (timer.function) {
1315 del_singleshot_timer_sync(&timer);
1316 destroy_timer_on_stack(&timer);
1317 }
1318 }
5ed0bdf2 1319 now = ktime_get_raw_ns();
094f9a54 1320 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1321
168c3f21
MK
1322 if (!irq_test_in_progress)
1323 ring->irq_put(ring);
094f9a54
CW
1324
1325 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1326
1327 if (timeout) {
5ed0bdf2
TG
1328 s64 tres = *timeout - (now - before);
1329
1330 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1331 }
1332
094f9a54 1333 return ret;
b361237b
CW
1334}
1335
1336/**
1337 * Waits for a sequence number to be signaled, and cleans up the
1338 * request and object lists appropriately for that event.
1339 */
1340int
a4872ba6 1341i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1342{
1343 struct drm_device *dev = ring->dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 bool interruptible = dev_priv->mm.interruptible;
16e9a21f 1346 unsigned reset_counter;
b361237b
CW
1347 int ret;
1348
1349 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1350 BUG_ON(seqno == 0);
1351
33196ded 1352 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1353 if (ret)
1354 return ret;
1355
1356 ret = i915_gem_check_olr(ring, seqno);
1357 if (ret)
1358 return ret;
1359
16e9a21f
ACO
1360 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1361 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1362 NULL, NULL);
b361237b
CW
1363}
1364
d26e3af8 1365static int
8e639549 1366i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1367{
c8725f3d
CW
1368 if (!obj->active)
1369 return 0;
d26e3af8
CW
1370
1371 /* Manually manage the write flush as we may have not yet
1372 * retired the buffer.
1373 *
1374 * Note that the last_write_seqno is always the earlier of
1375 * the two (read/write) seqno, so if we haved successfully waited,
1376 * we know we have passed the last write.
1377 */
1378 obj->last_write_seqno = 0;
d26e3af8
CW
1379
1380 return 0;
1381}
1382
b361237b
CW
1383/**
1384 * Ensures that all rendering to the object has completed and the object is
1385 * safe to unbind from the GTT or access from the CPU.
1386 */
1387static __must_check int
1388i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1389 bool readonly)
1390{
a4872ba6 1391 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1392 u32 seqno;
1393 int ret;
1394
1395 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1396 if (seqno == 0)
1397 return 0;
1398
1399 ret = i915_wait_seqno(ring, seqno);
1400 if (ret)
1401 return ret;
1402
8e639549 1403 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1404}
1405
3236f57a
CW
1406/* A nonblocking variant of the above wait. This is a highly dangerous routine
1407 * as the object state may change during this call.
1408 */
1409static __must_check int
1410i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1411 struct drm_i915_file_private *file_priv,
3236f57a
CW
1412 bool readonly)
1413{
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1416 struct intel_engine_cs *ring = obj->ring;
f69061be 1417 unsigned reset_counter;
3236f57a
CW
1418 u32 seqno;
1419 int ret;
1420
1421 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1422 BUG_ON(!dev_priv->mm.interruptible);
1423
1424 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1425 if (seqno == 0)
1426 return 0;
1427
33196ded 1428 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1429 if (ret)
1430 return ret;
1431
1432 ret = i915_gem_check_olr(ring, seqno);
1433 if (ret)
1434 return ret;
1435
f69061be 1436 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1437 mutex_unlock(&dev->struct_mutex);
16e9a21f
ACO
1438 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1439 file_priv);
3236f57a 1440 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1441 if (ret)
1442 return ret;
3236f57a 1443
8e639549 1444 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1445}
1446
673a394b 1447/**
2ef7eeaa
EA
1448 * Called when user space prepares to use an object with the CPU, either
1449 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1450 */
1451int
1452i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1453 struct drm_file *file)
673a394b
EA
1454{
1455 struct drm_i915_gem_set_domain *args = data;
05394f39 1456 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1457 uint32_t read_domains = args->read_domains;
1458 uint32_t write_domain = args->write_domain;
673a394b
EA
1459 int ret;
1460
2ef7eeaa 1461 /* Only handle setting domains to types used by the CPU. */
21d509e3 1462 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1463 return -EINVAL;
1464
21d509e3 1465 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1466 return -EINVAL;
1467
1468 /* Having something in the write domain implies it's in the read
1469 * domain, and only that read domain. Enforce that in the request.
1470 */
1471 if (write_domain != 0 && read_domains != write_domain)
1472 return -EINVAL;
1473
76c1dec1 1474 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1475 if (ret)
76c1dec1 1476 return ret;
1d7cfea1 1477
05394f39 1478 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1479 if (&obj->base == NULL) {
1d7cfea1
CW
1480 ret = -ENOENT;
1481 goto unlock;
76c1dec1 1482 }
673a394b 1483
3236f57a
CW
1484 /* Try to flush the object off the GPU without holding the lock.
1485 * We will repeat the flush holding the lock in the normal manner
1486 * to catch cases where we are gazumped.
1487 */
6e4930f6
CW
1488 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1489 file->driver_priv,
1490 !write_domain);
3236f57a
CW
1491 if (ret)
1492 goto unref;
1493
2ef7eeaa
EA
1494 if (read_domains & I915_GEM_DOMAIN_GTT) {
1495 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1496
1497 /* Silently promote "you're not bound, there was nothing to do"
1498 * to success, since the client was just asking us to
1499 * make sure everything was done.
1500 */
1501 if (ret == -EINVAL)
1502 ret = 0;
2ef7eeaa 1503 } else {
e47c68e9 1504 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1505 }
1506
3236f57a 1507unref:
05394f39 1508 drm_gem_object_unreference(&obj->base);
1d7cfea1 1509unlock:
673a394b
EA
1510 mutex_unlock(&dev->struct_mutex);
1511 return ret;
1512}
1513
1514/**
1515 * Called when user space has done writes to this buffer
1516 */
1517int
1518i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1519 struct drm_file *file)
673a394b
EA
1520{
1521 struct drm_i915_gem_sw_finish *args = data;
05394f39 1522 struct drm_i915_gem_object *obj;
673a394b
EA
1523 int ret = 0;
1524
76c1dec1 1525 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1526 if (ret)
76c1dec1 1527 return ret;
1d7cfea1 1528
05394f39 1529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1530 if (&obj->base == NULL) {
1d7cfea1
CW
1531 ret = -ENOENT;
1532 goto unlock;
673a394b
EA
1533 }
1534
673a394b 1535 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1536 if (obj->pin_display)
1537 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1538
05394f39 1539 drm_gem_object_unreference(&obj->base);
1d7cfea1 1540unlock:
673a394b
EA
1541 mutex_unlock(&dev->struct_mutex);
1542 return ret;
1543}
1544
1545/**
1546 * Maps the contents of an object, returning the address it is mapped
1547 * into.
1548 *
1549 * While the mapping holds a reference on the contents of the object, it doesn't
1550 * imply a ref on the object itself.
34367381
DV
1551 *
1552 * IMPORTANT:
1553 *
1554 * DRM driver writers who look a this function as an example for how to do GEM
1555 * mmap support, please don't implement mmap support like here. The modern way
1556 * to implement DRM mmap support is with an mmap offset ioctl (like
1557 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1558 * That way debug tooling like valgrind will understand what's going on, hiding
1559 * the mmap call in a driver private ioctl will break that. The i915 driver only
1560 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1561 */
1562int
1563i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1564 struct drm_file *file)
673a394b
EA
1565{
1566 struct drm_i915_gem_mmap *args = data;
1567 struct drm_gem_object *obj;
673a394b
EA
1568 unsigned long addr;
1569
05394f39 1570 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1571 if (obj == NULL)
bf79cb91 1572 return -ENOENT;
673a394b 1573
1286ff73
DV
1574 /* prime objects have no backing filp to GEM mmap
1575 * pages from.
1576 */
1577 if (!obj->filp) {
1578 drm_gem_object_unreference_unlocked(obj);
1579 return -EINVAL;
1580 }
1581
6be5ceb0 1582 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1583 PROT_READ | PROT_WRITE, MAP_SHARED,
1584 args->offset);
bc9025bd 1585 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1586 if (IS_ERR((void *)addr))
1587 return addr;
1588
1589 args->addr_ptr = (uint64_t) addr;
1590
1591 return 0;
1592}
1593
de151cf6
JB
1594/**
1595 * i915_gem_fault - fault a page into the GTT
1596 * vma: VMA in question
1597 * vmf: fault info
1598 *
1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600 * from userspace. The fault handler takes care of binding the object to
1601 * the GTT (if needed), allocating and programming a fence register (again,
1602 * only if needed based on whether the old reg is still valid or the object
1603 * is tiled) and inserting a new PTE into the faulting process.
1604 *
1605 * Note that the faulting process may involve evicting existing objects
1606 * from the GTT and/or fence registers to make room. So performance may
1607 * suffer if the GTT working set is large or there are few fence registers
1608 * left.
1609 */
1610int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611{
05394f39
CW
1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 struct drm_device *dev = obj->base.dev;
3e31c6c0 1614 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1615 pgoff_t page_offset;
1616 unsigned long pfn;
1617 int ret = 0;
0f973f27 1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1619
f65c9168
PZ
1620 intel_runtime_pm_get(dev_priv);
1621
de151cf6
JB
1622 /* We don't use vmf->pgoff since that has the fake offset */
1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 PAGE_SHIFT;
1625
d9bc7e9f
CW
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 goto out;
a00b10c3 1629
db53a302
CW
1630 trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
6e4930f6
CW
1632 /* Try to flush the object off the GPU first without holding the lock.
1633 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 * repeat the flush holding the lock in the normal manner to catch cases
1635 * where we are gazumped.
1636 */
1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 if (ret)
1639 goto unlock;
1640
eb119bd6
CW
1641 /* Access to snoopable pages through the GTT is incoherent. */
1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1643 ret = -EFAULT;
eb119bd6
CW
1644 goto unlock;
1645 }
1646
d9bc7e9f 1647 /* Now bind it into the GTT if needed */
1ec9e26d 1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1649 if (ret)
1650 goto unlock;
4a684a41 1651
c9839303
CW
1652 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 if (ret)
1654 goto unpin;
74898d7e 1655
06d98131 1656 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1657 if (ret)
c9839303 1658 goto unpin;
7d1c4804 1659
b90b91d8 1660 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 pfn >>= PAGE_SHIFT;
de151cf6 1663
b90b91d8 1664 if (!obj->fault_mappable) {
beff0d0f
VS
1665 unsigned long size = min_t(unsigned long,
1666 vma->vm_end - vma->vm_start,
1667 obj->base.size);
b90b91d8
CW
1668 int i;
1669
beff0d0f 1670 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 pfn + i);
1674 if (ret)
1675 break;
1676 }
1677
1678 obj->fault_mappable = true;
1679 } else
1680 ret = vm_insert_pfn(vma,
1681 (unsigned long)vmf->virtual_address,
1682 pfn + page_offset);
c9839303 1683unpin:
d7f46fc4 1684 i915_gem_object_ggtt_unpin(obj);
c715089f 1685unlock:
de151cf6 1686 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1687out:
de151cf6 1688 switch (ret) {
d9bc7e9f 1689 case -EIO:
2232f031
DV
1690 /*
1691 * We eat errors when the gpu is terminally wedged to avoid
1692 * userspace unduly crashing (gl has no provisions for mmaps to
1693 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 * and so needs to be reported.
1695 */
1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1697 ret = VM_FAULT_SIGBUS;
1698 break;
1699 }
045e769a 1700 case -EAGAIN:
571c608d
DV
1701 /*
1702 * EAGAIN means the gpu is hung and we'll wait for the error
1703 * handler to reset everything when re-faulting in
1704 * i915_mutex_lock_interruptible.
d9bc7e9f 1705 */
c715089f
CW
1706 case 0:
1707 case -ERESTARTSYS:
bed636ab 1708 case -EINTR:
e79e0fe3
DR
1709 case -EBUSY:
1710 /*
1711 * EBUSY is ok: this just means that another thread
1712 * already did the job.
1713 */
f65c9168
PZ
1714 ret = VM_FAULT_NOPAGE;
1715 break;
de151cf6 1716 case -ENOMEM:
f65c9168
PZ
1717 ret = VM_FAULT_OOM;
1718 break;
a7c2e1aa 1719 case -ENOSPC:
45d67817 1720 case -EFAULT:
f65c9168
PZ
1721 ret = VM_FAULT_SIGBUS;
1722 break;
de151cf6 1723 default:
a7c2e1aa 1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1725 ret = VM_FAULT_SIGBUS;
1726 break;
de151cf6 1727 }
f65c9168
PZ
1728
1729 intel_runtime_pm_put(dev_priv);
1730 return ret;
de151cf6
JB
1731}
1732
901782b2
CW
1733/**
1734 * i915_gem_release_mmap - remove physical page mappings
1735 * @obj: obj in question
1736 *
af901ca1 1737 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1738 * relinquish ownership of the pages back to the system.
1739 *
1740 * It is vital that we remove the page mapping if we have mapped a tiled
1741 * object through the GTT and then lose the fence register due to
1742 * resource pressure. Similarly if the object has been moved out of the
1743 * aperture, than pages mapped into userspace must be revoked. Removing the
1744 * mapping will then trigger a page fault on the next user access, allowing
1745 * fixup by i915_gem_fault().
1746 */
d05ca301 1747void
05394f39 1748i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1749{
6299f992
CW
1750 if (!obj->fault_mappable)
1751 return;
901782b2 1752
6796cb16
DH
1753 drm_vma_node_unmap(&obj->base.vma_node,
1754 obj->base.dev->anon_inode->i_mapping);
6299f992 1755 obj->fault_mappable = false;
901782b2
CW
1756}
1757
eedd10f4
CW
1758void
1759i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760{
1761 struct drm_i915_gem_object *obj;
1762
1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 i915_gem_release_mmap(obj);
1765}
1766
0fa87796 1767uint32_t
e28f8711 1768i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1769{
e28f8711 1770 uint32_t gtt_size;
92b88aeb
CW
1771
1772 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1773 tiling_mode == I915_TILING_NONE)
1774 return size;
92b88aeb
CW
1775
1776 /* Previous chips need a power-of-two fence region when tiling */
1777 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1778 gtt_size = 1024*1024;
92b88aeb 1779 else
e28f8711 1780 gtt_size = 512*1024;
92b88aeb 1781
e28f8711
CW
1782 while (gtt_size < size)
1783 gtt_size <<= 1;
92b88aeb 1784
e28f8711 1785 return gtt_size;
92b88aeb
CW
1786}
1787
de151cf6
JB
1788/**
1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790 * @obj: object to check
1791 *
1792 * Return the required GTT alignment for an object, taking into account
5e783301 1793 * potential fence register mapping.
de151cf6 1794 */
d865110c
ID
1795uint32_t
1796i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 int tiling_mode, bool fenced)
de151cf6 1798{
de151cf6
JB
1799 /*
1800 * Minimum alignment is 4k (GTT page size), but might be greater
1801 * if a fence register is needed for the object.
1802 */
d865110c 1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1804 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1805 return 4096;
1806
a00b10c3
CW
1807 /*
1808 * Previous chips need to be aligned to the size of the smallest
1809 * fence register that can contain the object.
1810 */
e28f8711 1811 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1812}
1813
d8cb5086
CW
1814static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815{
1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 int ret;
1818
0de23977 1819 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1820 return 0;
1821
da494d7c
DV
1822 dev_priv->mm.shrinker_no_lock_stealing = true;
1823
d8cb5086
CW
1824 ret = drm_gem_create_mmap_offset(&obj->base);
1825 if (ret != -ENOSPC)
da494d7c 1826 goto out;
d8cb5086
CW
1827
1828 /* Badly fragmented mmap space? The only way we can recover
1829 * space is by destroying unwanted objects. We can't randomly release
1830 * mmap_offsets as userspace expects them to be persistent for the
1831 * lifetime of the objects. The closest we can is to release the
1832 * offsets on purgeable objects by truncating it and marking it purged,
1833 * which prevents userspace from ever using that object again.
1834 */
21ab4e74
CW
1835 i915_gem_shrink(dev_priv,
1836 obj->base.size >> PAGE_SHIFT,
1837 I915_SHRINK_BOUND |
1838 I915_SHRINK_UNBOUND |
1839 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1840 ret = drm_gem_create_mmap_offset(&obj->base);
1841 if (ret != -ENOSPC)
da494d7c 1842 goto out;
d8cb5086
CW
1843
1844 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1845 ret = drm_gem_create_mmap_offset(&obj->base);
1846out:
1847 dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849 return ret;
d8cb5086
CW
1850}
1851
1852static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853{
d8cb5086
CW
1854 drm_gem_free_mmap_offset(&obj->base);
1855}
1856
de151cf6 1857int
ff72145b
DA
1858i915_gem_mmap_gtt(struct drm_file *file,
1859 struct drm_device *dev,
1860 uint32_t handle,
1861 uint64_t *offset)
de151cf6 1862{
da761a6e 1863 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1864 struct drm_i915_gem_object *obj;
de151cf6
JB
1865 int ret;
1866
76c1dec1 1867 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1868 if (ret)
76c1dec1 1869 return ret;
de151cf6 1870
ff72145b 1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1872 if (&obj->base == NULL) {
1d7cfea1
CW
1873 ret = -ENOENT;
1874 goto unlock;
1875 }
de151cf6 1876
5d4545ae 1877 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1878 ret = -E2BIG;
ff56b0bc 1879 goto out;
da761a6e
CW
1880 }
1881
05394f39 1882 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1884 ret = -EFAULT;
1d7cfea1 1885 goto out;
ab18282d
CW
1886 }
1887
d8cb5086
CW
1888 ret = i915_gem_object_create_mmap_offset(obj);
1889 if (ret)
1890 goto out;
de151cf6 1891
0de23977 1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1893
1d7cfea1 1894out:
05394f39 1895 drm_gem_object_unreference(&obj->base);
1d7cfea1 1896unlock:
de151cf6 1897 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1898 return ret;
de151cf6
JB
1899}
1900
ff72145b
DA
1901/**
1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903 * @dev: DRM device
1904 * @data: GTT mapping ioctl data
1905 * @file: GEM object info
1906 *
1907 * Simply returns the fake offset to userspace so it can mmap it.
1908 * The mmap call will end up in drm_gem_mmap(), which will set things
1909 * up so we can get faults in the handler above.
1910 *
1911 * The fault handler will take care of binding the object into the GTT
1912 * (since it may have been evicted to make room for something), allocating
1913 * a fence register, and mapping the appropriate aperture address into
1914 * userspace.
1915 */
1916int
1917i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 struct drm_file *file)
1919{
1920 struct drm_i915_gem_mmap_gtt *args = data;
1921
ff72145b
DA
1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923}
1924
5537252b
CW
1925static inline int
1926i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927{
1928 return obj->madv == I915_MADV_DONTNEED;
1929}
1930
225067ee
DV
1931/* Immediately discard the backing storage */
1932static void
1933i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1934{
4d6294bf 1935 i915_gem_object_free_mmap_offset(obj);
1286ff73 1936
4d6294bf
CW
1937 if (obj->base.filp == NULL)
1938 return;
e5281ccd 1939
225067ee
DV
1940 /* Our goal here is to return as much of the memory as
1941 * is possible back to the system as we are called from OOM.
1942 * To do this we must instruct the shmfs to drop all of its
1943 * backing pages, *now*.
1944 */
5537252b 1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1946 obj->madv = __I915_MADV_PURGED;
1947}
e5281ccd 1948
5537252b
CW
1949/* Try to discard unwanted pages */
1950static void
1951i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1952{
5537252b
CW
1953 struct address_space *mapping;
1954
1955 switch (obj->madv) {
1956 case I915_MADV_DONTNEED:
1957 i915_gem_object_truncate(obj);
1958 case __I915_MADV_PURGED:
1959 return;
1960 }
1961
1962 if (obj->base.filp == NULL)
1963 return;
1964
1965 mapping = file_inode(obj->base.filp)->i_mapping,
1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1967}
1968
5cdf5881 1969static void
05394f39 1970i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1971{
90797e6d
ID
1972 struct sg_page_iter sg_iter;
1973 int ret;
1286ff73 1974
05394f39 1975 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1976
6c085a72
CW
1977 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 if (ret) {
1979 /* In the event of a disaster, abandon all caches and
1980 * hope for the best.
1981 */
1982 WARN_ON(ret != -EIO);
2c22569b 1983 i915_gem_clflush_object(obj, true);
6c085a72
CW
1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 }
1986
6dacfd2f 1987 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1988 i915_gem_object_save_bit_17_swizzle(obj);
1989
05394f39
CW
1990 if (obj->madv == I915_MADV_DONTNEED)
1991 obj->dirty = 0;
3ef94daa 1992
90797e6d 1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1994 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1995
05394f39 1996 if (obj->dirty)
9da3da66 1997 set_page_dirty(page);
3ef94daa 1998
05394f39 1999 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2000 mark_page_accessed(page);
3ef94daa 2001
9da3da66 2002 page_cache_release(page);
3ef94daa 2003 }
05394f39 2004 obj->dirty = 0;
673a394b 2005
9da3da66
CW
2006 sg_free_table(obj->pages);
2007 kfree(obj->pages);
37e680a1 2008}
6c085a72 2009
dd624afd 2010int
37e680a1
CW
2011i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012{
2013 const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2f745ad3 2015 if (obj->pages == NULL)
37e680a1
CW
2016 return 0;
2017
a5570178
CW
2018 if (obj->pages_pin_count)
2019 return -EBUSY;
2020
9843877d 2021 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2022
a2165e31
CW
2023 /* ->put_pages might need to allocate memory for the bit17 swizzle
2024 * array, hence protect them from being reaped by removing them from gtt
2025 * lists early. */
35c20a60 2026 list_del(&obj->global_list);
a2165e31 2027
37e680a1 2028 ops->put_pages(obj);
05394f39 2029 obj->pages = NULL;
37e680a1 2030
5537252b 2031 i915_gem_object_invalidate(obj);
6c085a72
CW
2032
2033 return 0;
2034}
2035
21ab4e74
CW
2036unsigned long
2037i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 long target, unsigned flags)
6c085a72 2039{
60a53727
CW
2040 const struct {
2041 struct list_head *list;
2042 unsigned int bit;
2043 } phases[] = {
2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 { NULL, 0 },
2047 }, *phase;
d9973b43 2048 unsigned long count = 0;
6c085a72 2049
57094f82 2050 /*
c8725f3d 2051 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2052 * (due to retiring requests) we have to strictly process only
2053 * one element of the list at the time, and recheck the list
2054 * on every iteration.
c8725f3d
CW
2055 *
2056 * In particular, we must hold a reference whilst removing the
2057 * object as we may end up waiting for and/or retiring the objects.
2058 * This might release the final reference (held by the active list)
2059 * and result in the object being freed from under us. This is
2060 * similar to the precautions the eviction code must take whilst
2061 * removing objects.
2062 *
2063 * Also note that although these lists do not hold a reference to
2064 * the object we can safely grab one here: The final object
2065 * unreferencing and the bound_list are both protected by the
2066 * dev->struct_mutex and so we won't ever be able to observe an
2067 * object on the bound_list with a reference count equals 0.
57094f82 2068 */
60a53727 2069 for (phase = phases; phase->list; phase++) {
21ab4e74 2070 struct list_head still_in_list;
c8725f3d 2071
60a53727
CW
2072 if ((flags & phase->bit) == 0)
2073 continue;
80dcfdbd 2074
21ab4e74 2075 INIT_LIST_HEAD(&still_in_list);
60a53727 2076 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2077 struct drm_i915_gem_object *obj;
2078 struct i915_vma *vma, *v;
57094f82 2079
60a53727 2080 obj = list_first_entry(phase->list,
21ab4e74
CW
2081 typeof(*obj), global_list);
2082 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2083
60a53727
CW
2084 if (flags & I915_SHRINK_PURGEABLE &&
2085 !i915_gem_object_is_purgeable(obj))
21ab4e74 2086 continue;
57094f82 2087
21ab4e74 2088 drm_gem_object_reference(&obj->base);
80dcfdbd 2089
60a53727
CW
2090 /* For the unbound phase, this should be a no-op! */
2091 list_for_each_entry_safe(vma, v,
2092 &obj->vma_list, vma_link)
21ab4e74
CW
2093 if (i915_vma_unbind(vma))
2094 break;
57094f82 2095
21ab4e74
CW
2096 if (i915_gem_object_put_pages(obj) == 0)
2097 count += obj->base.size >> PAGE_SHIFT;
2098
2099 drm_gem_object_unreference(&obj->base);
2100 }
60a53727 2101 list_splice(&still_in_list, phase->list);
6c085a72
CW
2102 }
2103
2104 return count;
2105}
2106
d9973b43 2107static unsigned long
6c085a72
CW
2108i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109{
6c085a72 2110 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2111 return i915_gem_shrink(dev_priv, LONG_MAX,
2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2113}
2114
37e680a1 2115static int
6c085a72 2116i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2117{
6c085a72 2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2119 int page_count, i;
2120 struct address_space *mapping;
9da3da66
CW
2121 struct sg_table *st;
2122 struct scatterlist *sg;
90797e6d 2123 struct sg_page_iter sg_iter;
e5281ccd 2124 struct page *page;
90797e6d 2125 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2126 gfp_t gfp;
e5281ccd 2127
6c085a72
CW
2128 /* Assert that the object is not currently in any GPU domain. As it
2129 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 * a GPU cache
2131 */
2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
9da3da66
CW
2135 st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 if (st == NULL)
2137 return -ENOMEM;
2138
05394f39 2139 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2141 kfree(st);
e5281ccd 2142 return -ENOMEM;
9da3da66 2143 }
e5281ccd 2144
9da3da66
CW
2145 /* Get the list of pages out of our struct file. They'll be pinned
2146 * at this point until we release them.
2147 *
2148 * Fail silently without starting the shrinker
2149 */
496ad9aa 2150 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2151 gfp = mapping_gfp_mask(mapping);
caf49191 2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2153 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
6c085a72
CW
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
21ab4e74
CW
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
6c085a72
CW
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
6c085a72 2171 i915_gem_shrink_all(dev_priv);
f461d1be 2172 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2173 if (IS_ERR(page))
2174 goto err_pages;
6c085a72 2175 }
426729dc
KRW
2176#ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183#endif
90797e6d
ID
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
3bbbe706
DV
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2196 }
426729dc
KRW
2197#ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199#endif
2200 sg_mark_end(sg);
74ce6b6c
CW
2201 obj->pages = st;
2202
6dacfd2f 2203 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2204 i915_gem_object_do_bit_17_swizzle(obj);
2205
2206 return 0;
2207
2208err_pages:
90797e6d
ID
2209 sg_mark_end(sg);
2210 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2211 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2212 sg_free_table(st);
2213 kfree(st);
0820baf3
CW
2214
2215 /* shmemfs first checks if there is enough memory to allocate the page
2216 * and reports ENOSPC should there be insufficient, along with the usual
2217 * ENOMEM for a genuine allocation failure.
2218 *
2219 * We use ENOSPC in our driver to mean that we have run out of aperture
2220 * space and so want to translate the error from shmemfs back to our
2221 * usual understanding of ENOMEM.
2222 */
2223 if (PTR_ERR(page) == -ENOSPC)
2224 return -ENOMEM;
2225 else
2226 return PTR_ERR(page);
673a394b
EA
2227}
2228
37e680a1
CW
2229/* Ensure that the associated pages are gathered from the backing storage
2230 * and pinned into our object. i915_gem_object_get_pages() may be called
2231 * multiple times before they are released by a single call to
2232 * i915_gem_object_put_pages() - once the pages are no longer referenced
2233 * either as a result of memory pressure (reaping pages under the shrinker)
2234 * or as the object is itself released.
2235 */
2236int
2237i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2238{
2239 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2240 const struct drm_i915_gem_object_ops *ops = obj->ops;
2241 int ret;
2242
2f745ad3 2243 if (obj->pages)
37e680a1
CW
2244 return 0;
2245
43e28f09 2246 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2247 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2248 return -EFAULT;
43e28f09
CW
2249 }
2250
a5570178
CW
2251 BUG_ON(obj->pages_pin_count);
2252
37e680a1
CW
2253 ret = ops->get_pages(obj);
2254 if (ret)
2255 return ret;
2256
35c20a60 2257 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2258 return 0;
673a394b
EA
2259}
2260
e2d05a8b 2261static void
05394f39 2262i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2263 struct intel_engine_cs *ring)
673a394b 2264{
9d773091 2265 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2266
852835f3 2267 BUG_ON(ring == NULL);
02978ff5
CW
2268 if (obj->ring != ring && obj->last_write_seqno) {
2269 /* Keep the seqno relative to the current ring */
2270 obj->last_write_seqno = seqno;
2271 }
05394f39 2272 obj->ring = ring;
673a394b
EA
2273
2274 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2275 if (!obj->active) {
2276 drm_gem_object_reference(&obj->base);
2277 obj->active = 1;
673a394b 2278 }
e35a41de 2279
05394f39 2280 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2281
0201f1ec 2282 obj->last_read_seqno = seqno;
caea7476
CW
2283}
2284
e2d05a8b 2285void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2286 struct intel_engine_cs *ring)
e2d05a8b
BW
2287{
2288 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2289 return i915_gem_object_move_to_active(vma->obj, ring);
2290}
2291
caea7476 2292static void
caea7476 2293i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2294{
ca191b13 2295 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2296 struct i915_address_space *vm;
2297 struct i915_vma *vma;
ce44b0ea 2298
65ce3027 2299 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2300 BUG_ON(!obj->active);
caea7476 2301
feb822cf
BW
2302 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2303 vma = i915_gem_obj_to_vma(obj, vm);
2304 if (vma && !list_empty(&vma->mm_list))
2305 list_move_tail(&vma->mm_list, &vm->inactive_list);
2306 }
caea7476 2307
f99d7069
DV
2308 intel_fb_obj_flush(obj, true);
2309
65ce3027 2310 list_del_init(&obj->ring_list);
caea7476
CW
2311 obj->ring = NULL;
2312
65ce3027
CW
2313 obj->last_read_seqno = 0;
2314 obj->last_write_seqno = 0;
2315 obj->base.write_domain = 0;
2316
2317 obj->last_fenced_seqno = 0;
caea7476
CW
2318
2319 obj->active = 0;
2320 drm_gem_object_unreference(&obj->base);
2321
2322 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2323}
673a394b 2324
c8725f3d
CW
2325static void
2326i915_gem_object_retire(struct drm_i915_gem_object *obj)
2327{
a4872ba6 2328 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2329
2330 if (ring == NULL)
2331 return;
2332
2333 if (i915_seqno_passed(ring->get_seqno(ring, true),
2334 obj->last_read_seqno))
2335 i915_gem_object_move_to_inactive(obj);
2336}
2337
9d773091 2338static int
fca26bb4 2339i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2340{
9d773091 2341 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2342 struct intel_engine_cs *ring;
9d773091 2343 int ret, i, j;
53d227f2 2344
107f27a5 2345 /* Carefully retire all requests without writing to the rings */
9d773091 2346 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2347 ret = intel_ring_idle(ring);
2348 if (ret)
2349 return ret;
9d773091 2350 }
9d773091 2351 i915_gem_retire_requests(dev);
107f27a5
CW
2352
2353 /* Finally reset hw state */
9d773091 2354 for_each_ring(ring, dev_priv, i) {
fca26bb4 2355 intel_ring_init_seqno(ring, seqno);
498d2ac1 2356
ebc348b2
BW
2357 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2358 ring->semaphore.sync_seqno[j] = 0;
9d773091 2359 }
53d227f2 2360
9d773091 2361 return 0;
53d227f2
DV
2362}
2363
fca26bb4
MK
2364int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2365{
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 int ret;
2368
2369 if (seqno == 0)
2370 return -EINVAL;
2371
2372 /* HWS page needs to be set less than what we
2373 * will inject to ring
2374 */
2375 ret = i915_gem_init_seqno(dev, seqno - 1);
2376 if (ret)
2377 return ret;
2378
2379 /* Carefully set the last_seqno value so that wrap
2380 * detection still works
2381 */
2382 dev_priv->next_seqno = seqno;
2383 dev_priv->last_seqno = seqno - 1;
2384 if (dev_priv->last_seqno == 0)
2385 dev_priv->last_seqno--;
2386
2387 return 0;
2388}
2389
9d773091
CW
2390int
2391i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2392{
9d773091
CW
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394
2395 /* reserve 0 for non-seqno */
2396 if (dev_priv->next_seqno == 0) {
fca26bb4 2397 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2398 if (ret)
2399 return ret;
53d227f2 2400
9d773091
CW
2401 dev_priv->next_seqno = 1;
2402 }
53d227f2 2403
f72b3435 2404 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2405 return 0;
53d227f2
DV
2406}
2407
a4872ba6 2408int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2409 struct drm_file *file,
7d736f4f 2410 struct drm_i915_gem_object *obj,
0025c077 2411 u32 *out_seqno)
673a394b 2412{
3e31c6c0 2413 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2414 struct drm_i915_gem_request *request;
48e29f55 2415 struct intel_ringbuffer *ringbuf;
7d736f4f 2416 u32 request_ring_position, request_start;
3cce469c
CW
2417 int ret;
2418
48e29f55
OM
2419 request = ring->preallocated_lazy_request;
2420 if (WARN_ON(request == NULL))
2421 return -ENOMEM;
2422
2423 if (i915.enable_execlists) {
2424 struct intel_context *ctx = request->ctx;
2425 ringbuf = ctx->engine[ring->id].ringbuf;
2426 } else
2427 ringbuf = ring->buffer;
2428
2429 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2430 /*
2431 * Emit any outstanding flushes - execbuf can fail to emit the flush
2432 * after having emitted the batchbuffer command. Hence we need to fix
2433 * things up similar to emitting the lazy request. The difference here
2434 * is that the flush _must_ happen before the next request, no matter
2435 * what.
2436 */
48e29f55
OM
2437 if (i915.enable_execlists) {
2438 ret = logical_ring_flush_all_caches(ringbuf);
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = intel_ring_flush_all_caches(ring);
2443 if (ret)
2444 return ret;
2445 }
cc889e0f 2446
a71d8d94
CW
2447 /* Record the position of the start of the request so that
2448 * should we detect the updated seqno part-way through the
2449 * GPU processing the request, we never over-estimate the
2450 * position of the head.
2451 */
48e29f55 2452 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2453
48e29f55
OM
2454 if (i915.enable_execlists) {
2455 ret = ring->emit_request(ringbuf);
2456 if (ret)
2457 return ret;
2458 } else {
2459 ret = ring->add_request(ring);
2460 if (ret)
2461 return ret;
2462 }
673a394b 2463
9d773091 2464 request->seqno = intel_ring_get_seqno(ring);
852835f3 2465 request->ring = ring;
7d736f4f 2466 request->head = request_start;
a71d8d94 2467 request->tail = request_ring_position;
7d736f4f
MK
2468
2469 /* Whilst this request exists, batch_obj will be on the
2470 * active_list, and so will hold the active reference. Only when this
2471 * request is retired will the the batch_obj be moved onto the
2472 * inactive_list and lose its active reference. Hence we do not need
2473 * to explicitly hold another reference here.
2474 */
9a7e0c2a 2475 request->batch_obj = obj;
0e50e96b 2476
48e29f55
OM
2477 if (!i915.enable_execlists) {
2478 /* Hold a reference to the current context so that we can inspect
2479 * it later in case a hangcheck error event fires.
2480 */
2481 request->ctx = ring->last_context;
2482 if (request->ctx)
2483 i915_gem_context_reference(request->ctx);
2484 }
0e50e96b 2485
673a394b 2486 request->emitted_jiffies = jiffies;
852835f3 2487 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2488 request->file_priv = NULL;
852835f3 2489
db53a302
CW
2490 if (file) {
2491 struct drm_i915_file_private *file_priv = file->driver_priv;
2492
1c25595f 2493 spin_lock(&file_priv->mm.lock);
f787a5f5 2494 request->file_priv = file_priv;
b962442e 2495 list_add_tail(&request->client_list,
f787a5f5 2496 &file_priv->mm.request_list);
1c25595f 2497 spin_unlock(&file_priv->mm.lock);
b962442e 2498 }
673a394b 2499
9d773091 2500 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2501 ring->outstanding_lazy_seqno = 0;
3c0e234c 2502 ring->preallocated_lazy_request = NULL;
db53a302 2503
db1b76ca 2504 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2505 i915_queue_hangcheck(ring->dev);
2506
f62a0076
CW
2507 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2508 queue_delayed_work(dev_priv->wq,
2509 &dev_priv->mm.retire_work,
2510 round_jiffies_up_relative(HZ));
2511 intel_mark_busy(dev_priv->dev);
f65d9421 2512 }
cc889e0f 2513
acb868d3 2514 if (out_seqno)
9d773091 2515 *out_seqno = request->seqno;
3cce469c 2516 return 0;
673a394b
EA
2517}
2518
f787a5f5
CW
2519static inline void
2520i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2521{
1c25595f 2522 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2523
1c25595f
CW
2524 if (!file_priv)
2525 return;
1c5d22f7 2526
1c25595f 2527 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2528 list_del(&request->client_list);
2529 request->file_priv = NULL;
1c25595f 2530 spin_unlock(&file_priv->mm.lock);
673a394b 2531}
673a394b 2532
939fd762 2533static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2534 const struct intel_context *ctx)
be62acb4 2535{
44e2c070 2536 unsigned long elapsed;
be62acb4 2537
44e2c070
MK
2538 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2539
2540 if (ctx->hang_stats.banned)
be62acb4
MK
2541 return true;
2542
2543 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2544 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2545 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2546 return true;
88b4aa87
MK
2547 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2548 if (i915_stop_ring_allow_warn(dev_priv))
2549 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2550 return true;
3fac8978 2551 }
be62acb4
MK
2552 }
2553
2554 return false;
2555}
2556
939fd762 2557static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2558 struct intel_context *ctx,
b6b0fac0 2559 const bool guilty)
aa60c664 2560{
44e2c070
MK
2561 struct i915_ctx_hang_stats *hs;
2562
2563 if (WARN_ON(!ctx))
2564 return;
aa60c664 2565
44e2c070
MK
2566 hs = &ctx->hang_stats;
2567
2568 if (guilty) {
939fd762 2569 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2570 hs->batch_active++;
2571 hs->guilty_ts = get_seconds();
2572 } else {
2573 hs->batch_pending++;
aa60c664
MK
2574 }
2575}
2576
0e50e96b
MK
2577static void i915_gem_free_request(struct drm_i915_gem_request *request)
2578{
2579 list_del(&request->list);
2580 i915_gem_request_remove_from_client(request);
2581
2582 if (request->ctx)
2583 i915_gem_context_unreference(request->ctx);
2584
2585 kfree(request);
2586}
2587
8d9fc7fd 2588struct drm_i915_gem_request *
a4872ba6 2589i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2590{
4db080f9 2591 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2592 u32 completed_seqno;
2593
2594 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2595
2596 list_for_each_entry(request, &ring->request_list, list) {
2597 if (i915_seqno_passed(completed_seqno, request->seqno))
2598 continue;
aa60c664 2599
b6b0fac0 2600 return request;
4db080f9 2601 }
b6b0fac0
MK
2602
2603 return NULL;
2604}
2605
2606static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2607 struct intel_engine_cs *ring)
b6b0fac0
MK
2608{
2609 struct drm_i915_gem_request *request;
2610 bool ring_hung;
2611
8d9fc7fd 2612 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2613
2614 if (request == NULL)
2615 return;
2616
2617 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2618
939fd762 2619 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2620
2621 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2622 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2623}
aa60c664 2624
4db080f9 2625static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2626 struct intel_engine_cs *ring)
4db080f9 2627{
dfaae392 2628 while (!list_empty(&ring->active_list)) {
05394f39 2629 struct drm_i915_gem_object *obj;
9375e446 2630
05394f39
CW
2631 obj = list_first_entry(&ring->active_list,
2632 struct drm_i915_gem_object,
2633 ring_list);
9375e446 2634
05394f39 2635 i915_gem_object_move_to_inactive(obj);
673a394b 2636 }
1d62beea
BW
2637
2638 /*
2639 * We must free the requests after all the corresponding objects have
2640 * been moved off active lists. Which is the same order as the normal
2641 * retire_requests function does. This is important if object hold
2642 * implicit references on things like e.g. ppgtt address spaces through
2643 * the request.
2644 */
2645 while (!list_empty(&ring->request_list)) {
2646 struct drm_i915_gem_request *request;
2647
2648 request = list_first_entry(&ring->request_list,
2649 struct drm_i915_gem_request,
2650 list);
2651
2652 i915_gem_free_request(request);
2653 }
e3efda49 2654
cc9130be
OM
2655 while (!list_empty(&ring->execlist_queue)) {
2656 struct intel_ctx_submit_request *submit_req;
2657
2658 submit_req = list_first_entry(&ring->execlist_queue,
2659 struct intel_ctx_submit_request,
2660 execlist_link);
2661 list_del(&submit_req->execlist_link);
2662 intel_runtime_pm_put(dev_priv);
2663 i915_gem_context_unreference(submit_req->ctx);
2664 kfree(submit_req);
2665 }
2666
e3efda49
CW
2667 /* These may not have been flush before the reset, do so now */
2668 kfree(ring->preallocated_lazy_request);
2669 ring->preallocated_lazy_request = NULL;
2670 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2671}
2672
19b2dbde 2673void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2674{
2675 struct drm_i915_private *dev_priv = dev->dev_private;
2676 int i;
2677
4b9de737 2678 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2679 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2680
94a335db
DV
2681 /*
2682 * Commit delayed tiling changes if we have an object still
2683 * attached to the fence, otherwise just clear the fence.
2684 */
2685 if (reg->obj) {
2686 i915_gem_object_update_fence(reg->obj, reg,
2687 reg->obj->tiling_mode);
2688 } else {
2689 i915_gem_write_fence(dev, i, NULL);
2690 }
312817a3
CW
2691 }
2692}
2693
069efc1d 2694void i915_gem_reset(struct drm_device *dev)
673a394b 2695{
77f01230 2696 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2697 struct intel_engine_cs *ring;
1ec14ad3 2698 int i;
673a394b 2699
4db080f9
CW
2700 /*
2701 * Before we free the objects from the requests, we need to inspect
2702 * them for finding the guilty party. As the requests only borrow
2703 * their reference to the objects, the inspection must be done first.
2704 */
2705 for_each_ring(ring, dev_priv, i)
2706 i915_gem_reset_ring_status(dev_priv, ring);
2707
b4519513 2708 for_each_ring(ring, dev_priv, i)
4db080f9 2709 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2710
acce9ffa
BW
2711 i915_gem_context_reset(dev);
2712
19b2dbde 2713 i915_gem_restore_fences(dev);
673a394b
EA
2714}
2715
2716/**
2717 * This function clears the request list as sequence numbers are passed.
2718 */
1cf0ba14 2719void
a4872ba6 2720i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2721{
673a394b
EA
2722 uint32_t seqno;
2723
db53a302 2724 if (list_empty(&ring->request_list))
6c0594a3
KW
2725 return;
2726
db53a302 2727 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2728
b2eadbc8 2729 seqno = ring->get_seqno(ring, true);
1ec14ad3 2730
e9103038
CW
2731 /* Move any buffers on the active list that are no longer referenced
2732 * by the ringbuffer to the flushing/inactive lists as appropriate,
2733 * before we free the context associated with the requests.
2734 */
2735 while (!list_empty(&ring->active_list)) {
2736 struct drm_i915_gem_object *obj;
2737
2738 obj = list_first_entry(&ring->active_list,
2739 struct drm_i915_gem_object,
2740 ring_list);
2741
2742 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2743 break;
2744
2745 i915_gem_object_move_to_inactive(obj);
2746 }
2747
2748
852835f3 2749 while (!list_empty(&ring->request_list)) {
673a394b 2750 struct drm_i915_gem_request *request;
48e29f55 2751 struct intel_ringbuffer *ringbuf;
673a394b 2752
852835f3 2753 request = list_first_entry(&ring->request_list,
673a394b
EA
2754 struct drm_i915_gem_request,
2755 list);
673a394b 2756
dfaae392 2757 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2758 break;
2759
db53a302 2760 trace_i915_gem_request_retire(ring, request->seqno);
48e29f55
OM
2761
2762 /* This is one of the few common intersection points
2763 * between legacy ringbuffer submission and execlists:
2764 * we need to tell them apart in order to find the correct
2765 * ringbuffer to which the request belongs to.
2766 */
2767 if (i915.enable_execlists) {
2768 struct intel_context *ctx = request->ctx;
2769 ringbuf = ctx->engine[ring->id].ringbuf;
2770 } else
2771 ringbuf = ring->buffer;
2772
a71d8d94
CW
2773 /* We know the GPU must have read the request to have
2774 * sent us the seqno + interrupt, so use the position
2775 * of tail of the request to update the last known position
2776 * of the GPU head.
2777 */
48e29f55 2778 ringbuf->last_retired_head = request->tail;
b84d5f0c 2779
0e50e96b 2780 i915_gem_free_request(request);
b84d5f0c 2781 }
673a394b 2782
db53a302
CW
2783 if (unlikely(ring->trace_irq_seqno &&
2784 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2785 ring->irq_put(ring);
db53a302 2786 ring->trace_irq_seqno = 0;
9d34e5db 2787 }
23bc5982 2788
db53a302 2789 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2790}
2791
b29c19b6 2792bool
b09a1fec
CW
2793i915_gem_retire_requests(struct drm_device *dev)
2794{
3e31c6c0 2795 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2796 struct intel_engine_cs *ring;
b29c19b6 2797 bool idle = true;
1ec14ad3 2798 int i;
b09a1fec 2799
b29c19b6 2800 for_each_ring(ring, dev_priv, i) {
b4519513 2801 i915_gem_retire_requests_ring(ring);
b29c19b6 2802 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2803 if (i915.enable_execlists) {
2804 unsigned long flags;
2805
2806 spin_lock_irqsave(&ring->execlist_lock, flags);
2807 idle &= list_empty(&ring->execlist_queue);
2808 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2809
2810 intel_execlists_retire_requests(ring);
2811 }
b29c19b6
CW
2812 }
2813
2814 if (idle)
2815 mod_delayed_work(dev_priv->wq,
2816 &dev_priv->mm.idle_work,
2817 msecs_to_jiffies(100));
2818
2819 return idle;
b09a1fec
CW
2820}
2821
75ef9da2 2822static void
673a394b
EA
2823i915_gem_retire_work_handler(struct work_struct *work)
2824{
b29c19b6
CW
2825 struct drm_i915_private *dev_priv =
2826 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2827 struct drm_device *dev = dev_priv->dev;
0a58705b 2828 bool idle;
673a394b 2829
891b48cf 2830 /* Come back later if the device is busy... */
b29c19b6
CW
2831 idle = false;
2832 if (mutex_trylock(&dev->struct_mutex)) {
2833 idle = i915_gem_retire_requests(dev);
2834 mutex_unlock(&dev->struct_mutex);
673a394b 2835 }
b29c19b6 2836 if (!idle)
bcb45086
CW
2837 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2838 round_jiffies_up_relative(HZ));
b29c19b6 2839}
0a58705b 2840
b29c19b6
CW
2841static void
2842i915_gem_idle_work_handler(struct work_struct *work)
2843{
2844 struct drm_i915_private *dev_priv =
2845 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2846
2847 intel_mark_idle(dev_priv->dev);
673a394b
EA
2848}
2849
30dfebf3
DV
2850/**
2851 * Ensures that an object will eventually get non-busy by flushing any required
2852 * write domains, emitting any outstanding lazy request and retiring and
2853 * completed requests.
2854 */
2855static int
2856i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2857{
2858 int ret;
2859
2860 if (obj->active) {
0201f1ec 2861 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2862 if (ret)
2863 return ret;
2864
30dfebf3
DV
2865 i915_gem_retire_requests_ring(obj->ring);
2866 }
2867
2868 return 0;
2869}
2870
23ba4fd0
BW
2871/**
2872 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2873 * @DRM_IOCTL_ARGS: standard ioctl arguments
2874 *
2875 * Returns 0 if successful, else an error is returned with the remaining time in
2876 * the timeout parameter.
2877 * -ETIME: object is still busy after timeout
2878 * -ERESTARTSYS: signal interrupted the wait
2879 * -ENONENT: object doesn't exist
2880 * Also possible, but rare:
2881 * -EAGAIN: GPU wedged
2882 * -ENOMEM: damn
2883 * -ENODEV: Internal IRQ fail
2884 * -E?: The add request failed
2885 *
2886 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2887 * non-zero timeout parameter the wait ioctl will wait for the given number of
2888 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2889 * without holding struct_mutex the object may become re-busied before this
2890 * function completes. A similar but shorter * race condition exists in the busy
2891 * ioctl
2892 */
2893int
2894i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2895{
3e31c6c0 2896 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2897 struct drm_i915_gem_wait *args = data;
2898 struct drm_i915_gem_object *obj;
a4872ba6 2899 struct intel_engine_cs *ring = NULL;
f69061be 2900 unsigned reset_counter;
23ba4fd0
BW
2901 u32 seqno = 0;
2902 int ret = 0;
2903
11b5d511
DV
2904 if (args->flags != 0)
2905 return -EINVAL;
2906
23ba4fd0
BW
2907 ret = i915_mutex_lock_interruptible(dev);
2908 if (ret)
2909 return ret;
2910
2911 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2912 if (&obj->base == NULL) {
2913 mutex_unlock(&dev->struct_mutex);
2914 return -ENOENT;
2915 }
2916
30dfebf3
DV
2917 /* Need to make sure the object gets inactive eventually. */
2918 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2919 if (ret)
2920 goto out;
2921
2922 if (obj->active) {
0201f1ec 2923 seqno = obj->last_read_seqno;
23ba4fd0
BW
2924 ring = obj->ring;
2925 }
2926
2927 if (seqno == 0)
2928 goto out;
2929
23ba4fd0 2930 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2931 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2932 */
5ed0bdf2 2933 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2934 ret = -ETIME;
2935 goto out;
2936 }
2937
2938 drm_gem_object_unreference(&obj->base);
f69061be 2939 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2940 mutex_unlock(&dev->struct_mutex);
2941
16e9a21f
ACO
2942 return __i915_wait_seqno(ring, seqno, reset_counter, true,
2943 &args->timeout_ns, file->driver_priv);
23ba4fd0
BW
2944
2945out:
2946 drm_gem_object_unreference(&obj->base);
2947 mutex_unlock(&dev->struct_mutex);
2948 return ret;
2949}
2950
5816d648
BW
2951/**
2952 * i915_gem_object_sync - sync an object to a ring.
2953 *
2954 * @obj: object which may be in use on another ring.
2955 * @to: ring we wish to use the object on. May be NULL.
2956 *
2957 * This code is meant to abstract object synchronization with the GPU.
2958 * Calling with NULL implies synchronizing the object with the CPU
2959 * rather than a particular GPU ring.
2960 *
2961 * Returns 0 if successful, else propagates up the lower layer error.
2962 */
2911a35b
BW
2963int
2964i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2965 struct intel_engine_cs *to)
2911a35b 2966{
a4872ba6 2967 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2968 u32 seqno;
2969 int ret, idx;
2970
2971 if (from == NULL || to == from)
2972 return 0;
2973
5816d648 2974 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2975 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2976
2977 idx = intel_ring_sync_index(from, to);
2978
0201f1ec 2979 seqno = obj->last_read_seqno;
ddd4dbc6
RV
2980 /* Optimization: Avoid semaphore sync when we are sure we already
2981 * waited for an object with higher seqno */
ebc348b2 2982 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2983 return 0;
2984
b4aca010
BW
2985 ret = i915_gem_check_olr(obj->ring, seqno);
2986 if (ret)
2987 return ret;
2911a35b 2988
b52b89da 2989 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2990 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2991 if (!ret)
7b01e260
MK
2992 /* We use last_read_seqno because sync_to()
2993 * might have just caused seqno wrap under
2994 * the radar.
2995 */
ebc348b2 2996 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2997
e3a5a225 2998 return ret;
2911a35b
BW
2999}
3000
b5ffc9bc
CW
3001static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3002{
3003 u32 old_write_domain, old_read_domains;
3004
b5ffc9bc
CW
3005 /* Force a pagefault for domain tracking on next user access */
3006 i915_gem_release_mmap(obj);
3007
b97c3d9c
KP
3008 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3009 return;
3010
97c809fd
CW
3011 /* Wait for any direct GTT access to complete */
3012 mb();
3013
b5ffc9bc
CW
3014 old_read_domains = obj->base.read_domains;
3015 old_write_domain = obj->base.write_domain;
3016
3017 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3018 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3019
3020 trace_i915_gem_object_change_domain(obj,
3021 old_read_domains,
3022 old_write_domain);
3023}
3024
07fe0b12 3025int i915_vma_unbind(struct i915_vma *vma)
673a394b 3026{
07fe0b12 3027 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3028 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3029 int ret;
673a394b 3030
07fe0b12 3031 if (list_empty(&vma->vma_link))
673a394b
EA
3032 return 0;
3033
0ff501cb
DV
3034 if (!drm_mm_node_allocated(&vma->node)) {
3035 i915_gem_vma_destroy(vma);
0ff501cb
DV
3036 return 0;
3037 }
433544bd 3038
d7f46fc4 3039 if (vma->pin_count)
31d8d651 3040 return -EBUSY;
673a394b 3041
c4670ad0
CW
3042 BUG_ON(obj->pages == NULL);
3043
a8198eea 3044 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3045 if (ret)
a8198eea
CW
3046 return ret;
3047 /* Continue on if we fail due to EIO, the GPU is hung so we
3048 * should be safe and we need to cleanup or else we might
3049 * cause memory corruption through use-after-free.
3050 */
3051
1d1ef21d
CW
3052 /* Throw away the active reference before moving to the unbound list */
3053 i915_gem_object_retire(obj);
3054
8b1bc9b4
DV
3055 if (i915_is_ggtt(vma->vm)) {
3056 i915_gem_object_finish_gtt(obj);
5323fd04 3057
8b1bc9b4
DV
3058 /* release the fence reg _after_ flushing */
3059 ret = i915_gem_object_put_fence(obj);
3060 if (ret)
3061 return ret;
3062 }
96b47b65 3063
07fe0b12 3064 trace_i915_vma_unbind(vma);
db53a302 3065
6f65e29a
BW
3066 vma->unbind_vma(vma);
3067
64bf9303 3068 list_del_init(&vma->mm_list);
5cacaac7 3069 if (i915_is_ggtt(vma->vm))
e6a84468 3070 obj->map_and_fenceable = false;
673a394b 3071
2f633156
BW
3072 drm_mm_remove_node(&vma->node);
3073 i915_gem_vma_destroy(vma);
3074
3075 /* Since the unbound list is global, only move to that list if
b93dab6e 3076 * no more VMAs exist. */
9490edb5
AR
3077 if (list_empty(&obj->vma_list)) {
3078 i915_gem_gtt_finish_object(obj);
2f633156 3079 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3080 }
673a394b 3081
70903c3b
CW
3082 /* And finally now the object is completely decoupled from this vma,
3083 * we can drop its hold on the backing storage and allow it to be
3084 * reaped by the shrinker.
3085 */
3086 i915_gem_object_unpin_pages(obj);
3087
88241785 3088 return 0;
54cf91dc
CW
3089}
3090
b2da9fe5 3091int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3092{
3e31c6c0 3093 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3094 struct intel_engine_cs *ring;
1ec14ad3 3095 int ret, i;
4df2faf4 3096
4df2faf4 3097 /* Flush everything onto the inactive list. */
b4519513 3098 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3099 if (!i915.enable_execlists) {
3100 ret = i915_switch_context(ring, ring->default_context);
3101 if (ret)
3102 return ret;
3103 }
b6c7488d 3104
3e960501 3105 ret = intel_ring_idle(ring);
1ec14ad3
CW
3106 if (ret)
3107 return ret;
3108 }
4df2faf4 3109
8a1a49f9 3110 return 0;
4df2faf4
DV
3111}
3112
9ce079e4
CW
3113static void i965_write_fence_reg(struct drm_device *dev, int reg,
3114 struct drm_i915_gem_object *obj)
de151cf6 3115{
3e31c6c0 3116 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3117 int fence_reg;
3118 int fence_pitch_shift;
de151cf6 3119
56c844e5
ID
3120 if (INTEL_INFO(dev)->gen >= 6) {
3121 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3122 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3123 } else {
3124 fence_reg = FENCE_REG_965_0;
3125 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3126 }
3127
d18b9619
CW
3128 fence_reg += reg * 8;
3129
3130 /* To w/a incoherency with non-atomic 64-bit register updates,
3131 * we split the 64-bit update into two 32-bit writes. In order
3132 * for a partial fence not to be evaluated between writes, we
3133 * precede the update with write to turn off the fence register,
3134 * and only enable the fence as the last step.
3135 *
3136 * For extra levels of paranoia, we make sure each step lands
3137 * before applying the next step.
3138 */
3139 I915_WRITE(fence_reg, 0);
3140 POSTING_READ(fence_reg);
3141
9ce079e4 3142 if (obj) {
f343c5f6 3143 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3144 uint64_t val;
de151cf6 3145
f343c5f6 3146 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3147 0xfffff000) << 32;
f343c5f6 3148 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3149 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3150 if (obj->tiling_mode == I915_TILING_Y)
3151 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3152 val |= I965_FENCE_REG_VALID;
c6642782 3153
d18b9619
CW
3154 I915_WRITE(fence_reg + 4, val >> 32);
3155 POSTING_READ(fence_reg + 4);
3156
3157 I915_WRITE(fence_reg + 0, val);
3158 POSTING_READ(fence_reg);
3159 } else {
3160 I915_WRITE(fence_reg + 4, 0);
3161 POSTING_READ(fence_reg + 4);
3162 }
de151cf6
JB
3163}
3164
9ce079e4
CW
3165static void i915_write_fence_reg(struct drm_device *dev, int reg,
3166 struct drm_i915_gem_object *obj)
de151cf6 3167{
3e31c6c0 3168 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3169 u32 val;
de151cf6 3170
9ce079e4 3171 if (obj) {
f343c5f6 3172 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3173 int pitch_val;
3174 int tile_width;
c6642782 3175
f343c5f6 3176 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3177 (size & -size) != size ||
f343c5f6
BW
3178 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3179 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3180 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3181
9ce079e4
CW
3182 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3183 tile_width = 128;
3184 else
3185 tile_width = 512;
3186
3187 /* Note: pitch better be a power of two tile widths */
3188 pitch_val = obj->stride / tile_width;
3189 pitch_val = ffs(pitch_val) - 1;
3190
f343c5f6 3191 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3192 if (obj->tiling_mode == I915_TILING_Y)
3193 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3194 val |= I915_FENCE_SIZE_BITS(size);
3195 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3196 val |= I830_FENCE_REG_VALID;
3197 } else
3198 val = 0;
3199
3200 if (reg < 8)
3201 reg = FENCE_REG_830_0 + reg * 4;
3202 else
3203 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3204
3205 I915_WRITE(reg, val);
3206 POSTING_READ(reg);
de151cf6
JB
3207}
3208
9ce079e4
CW
3209static void i830_write_fence_reg(struct drm_device *dev, int reg,
3210 struct drm_i915_gem_object *obj)
de151cf6 3211{
3e31c6c0 3212 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3213 uint32_t val;
de151cf6 3214
9ce079e4 3215 if (obj) {
f343c5f6 3216 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3217 uint32_t pitch_val;
de151cf6 3218
f343c5f6 3219 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3220 (size & -size) != size ||
f343c5f6
BW
3221 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3222 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3223 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3224
9ce079e4
CW
3225 pitch_val = obj->stride / 128;
3226 pitch_val = ffs(pitch_val) - 1;
de151cf6 3227
f343c5f6 3228 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3229 if (obj->tiling_mode == I915_TILING_Y)
3230 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3231 val |= I830_FENCE_SIZE_BITS(size);
3232 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3233 val |= I830_FENCE_REG_VALID;
3234 } else
3235 val = 0;
c6642782 3236
9ce079e4
CW
3237 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3238 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3239}
3240
d0a57789
CW
3241inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3242{
3243 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3244}
3245
9ce079e4
CW
3246static void i915_gem_write_fence(struct drm_device *dev, int reg,
3247 struct drm_i915_gem_object *obj)
3248{
d0a57789
CW
3249 struct drm_i915_private *dev_priv = dev->dev_private;
3250
3251 /* Ensure that all CPU reads are completed before installing a fence
3252 * and all writes before removing the fence.
3253 */
3254 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3255 mb();
3256
94a335db
DV
3257 WARN(obj && (!obj->stride || !obj->tiling_mode),
3258 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3259 obj->stride, obj->tiling_mode);
3260
9ce079e4 3261 switch (INTEL_INFO(dev)->gen) {
01209dd5 3262 case 9:
5ab31333 3263 case 8:
9ce079e4 3264 case 7:
56c844e5 3265 case 6:
9ce079e4
CW
3266 case 5:
3267 case 4: i965_write_fence_reg(dev, reg, obj); break;
3268 case 3: i915_write_fence_reg(dev, reg, obj); break;
3269 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3270 default: BUG();
9ce079e4 3271 }
d0a57789
CW
3272
3273 /* And similarly be paranoid that no direct access to this region
3274 * is reordered to before the fence is installed.
3275 */
3276 if (i915_gem_object_needs_mb(obj))
3277 mb();
de151cf6
JB
3278}
3279
61050808
CW
3280static inline int fence_number(struct drm_i915_private *dev_priv,
3281 struct drm_i915_fence_reg *fence)
3282{
3283 return fence - dev_priv->fence_regs;
3284}
3285
3286static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3287 struct drm_i915_fence_reg *fence,
3288 bool enable)
3289{
2dc8aae0 3290 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3291 int reg = fence_number(dev_priv, fence);
3292
3293 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3294
3295 if (enable) {
46a0b638 3296 obj->fence_reg = reg;
61050808
CW
3297 fence->obj = obj;
3298 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3299 } else {
3300 obj->fence_reg = I915_FENCE_REG_NONE;
3301 fence->obj = NULL;
3302 list_del_init(&fence->lru_list);
3303 }
94a335db 3304 obj->fence_dirty = false;
61050808
CW
3305}
3306
d9e86c0e 3307static int
d0a57789 3308i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3309{
1c293ea3 3310 if (obj->last_fenced_seqno) {
86d5bc37 3311 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3312 if (ret)
3313 return ret;
d9e86c0e
CW
3314
3315 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3316 }
3317
3318 return 0;
3319}
3320
3321int
3322i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3323{
61050808 3324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3325 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3326 int ret;
3327
d0a57789 3328 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3329 if (ret)
3330 return ret;
3331
61050808
CW
3332 if (obj->fence_reg == I915_FENCE_REG_NONE)
3333 return 0;
d9e86c0e 3334
f9c513e9
CW
3335 fence = &dev_priv->fence_regs[obj->fence_reg];
3336
aff10b30
DV
3337 if (WARN_ON(fence->pin_count))
3338 return -EBUSY;
3339
61050808 3340 i915_gem_object_fence_lost(obj);
f9c513e9 3341 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3342
3343 return 0;
3344}
3345
3346static struct drm_i915_fence_reg *
a360bb1a 3347i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3348{
ae3db24a 3349 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3350 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3351 int i;
ae3db24a
DV
3352
3353 /* First try to find a free reg */
d9e86c0e 3354 avail = NULL;
ae3db24a
DV
3355 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3356 reg = &dev_priv->fence_regs[i];
3357 if (!reg->obj)
d9e86c0e 3358 return reg;
ae3db24a 3359
1690e1eb 3360 if (!reg->pin_count)
d9e86c0e 3361 avail = reg;
ae3db24a
DV
3362 }
3363
d9e86c0e 3364 if (avail == NULL)
5dce5b93 3365 goto deadlock;
ae3db24a
DV
3366
3367 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3368 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3369 if (reg->pin_count)
ae3db24a
DV
3370 continue;
3371
8fe301ad 3372 return reg;
ae3db24a
DV
3373 }
3374
5dce5b93
CW
3375deadlock:
3376 /* Wait for completion of pending flips which consume fences */
3377 if (intel_has_pending_fb_unpin(dev))
3378 return ERR_PTR(-EAGAIN);
3379
3380 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3381}
3382
de151cf6 3383/**
9a5a53b3 3384 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3385 * @obj: object to map through a fence reg
3386 *
3387 * When mapping objects through the GTT, userspace wants to be able to write
3388 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3389 * This function walks the fence regs looking for a free one for @obj,
3390 * stealing one if it can't find any.
3391 *
3392 * It then sets up the reg based on the object's properties: address, pitch
3393 * and tiling format.
9a5a53b3
CW
3394 *
3395 * For an untiled surface, this removes any existing fence.
de151cf6 3396 */
8c4b8c3f 3397int
06d98131 3398i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3399{
05394f39 3400 struct drm_device *dev = obj->base.dev;
79e53945 3401 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3402 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3403 struct drm_i915_fence_reg *reg;
ae3db24a 3404 int ret;
de151cf6 3405
14415745
CW
3406 /* Have we updated the tiling parameters upon the object and so
3407 * will need to serialise the write to the associated fence register?
3408 */
5d82e3e6 3409 if (obj->fence_dirty) {
d0a57789 3410 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3411 if (ret)
3412 return ret;
3413 }
9a5a53b3 3414
d9e86c0e 3415 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3416 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3417 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3418 if (!obj->fence_dirty) {
14415745
CW
3419 list_move_tail(&reg->lru_list,
3420 &dev_priv->mm.fence_list);
3421 return 0;
3422 }
3423 } else if (enable) {
e6a84468
CW
3424 if (WARN_ON(!obj->map_and_fenceable))
3425 return -EINVAL;
3426
14415745 3427 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3428 if (IS_ERR(reg))
3429 return PTR_ERR(reg);
d9e86c0e 3430
14415745
CW
3431 if (reg->obj) {
3432 struct drm_i915_gem_object *old = reg->obj;
3433
d0a57789 3434 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3435 if (ret)
3436 return ret;
3437
14415745 3438 i915_gem_object_fence_lost(old);
29c5a587 3439 }
14415745 3440 } else
a09ba7fa 3441 return 0;
a09ba7fa 3442
14415745 3443 i915_gem_object_update_fence(obj, reg, enable);
14415745 3444
9ce079e4 3445 return 0;
de151cf6
JB
3446}
3447
4144f9b5 3448static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3449 unsigned long cache_level)
3450{
4144f9b5 3451 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3452 struct drm_mm_node *other;
3453
4144f9b5
CW
3454 /*
3455 * On some machines we have to be careful when putting differing types
3456 * of snoopable memory together to avoid the prefetcher crossing memory
3457 * domains and dying. During vm initialisation, we decide whether or not
3458 * these constraints apply and set the drm_mm.color_adjust
3459 * appropriately.
42d6ab48 3460 */
4144f9b5 3461 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3462 return true;
3463
c6cfb325 3464 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3465 return true;
3466
3467 if (list_empty(&gtt_space->node_list))
3468 return true;
3469
3470 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3471 if (other->allocated && !other->hole_follows && other->color != cache_level)
3472 return false;
3473
3474 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3475 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3476 return false;
3477
3478 return true;
3479}
3480
673a394b
EA
3481/**
3482 * Finds free space in the GTT aperture and binds the object there.
3483 */
262de145 3484static struct i915_vma *
07fe0b12
BW
3485i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3486 struct i915_address_space *vm,
3487 unsigned alignment,
d23db88c 3488 uint64_t flags)
673a394b 3489{
05394f39 3490 struct drm_device *dev = obj->base.dev;
3e31c6c0 3491 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3492 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3493 unsigned long start =
3494 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3495 unsigned long end =
1ec9e26d 3496 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3497 struct i915_vma *vma;
07f73f69 3498 int ret;
673a394b 3499
e28f8711
CW
3500 fence_size = i915_gem_get_gtt_size(dev,
3501 obj->base.size,
3502 obj->tiling_mode);
3503 fence_alignment = i915_gem_get_gtt_alignment(dev,
3504 obj->base.size,
d865110c 3505 obj->tiling_mode, true);
e28f8711 3506 unfenced_alignment =
d865110c 3507 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3508 obj->base.size,
3509 obj->tiling_mode, false);
a00b10c3 3510
673a394b 3511 if (alignment == 0)
1ec9e26d 3512 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3513 unfenced_alignment;
1ec9e26d 3514 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3515 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3516 return ERR_PTR(-EINVAL);
673a394b
EA
3517 }
3518
1ec9e26d 3519 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3520
654fc607
CW
3521 /* If the object is bigger than the entire aperture, reject it early
3522 * before evicting everything in a vain attempt to find space.
3523 */
d23db88c
CW
3524 if (obj->base.size > end) {
3525 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3526 obj->base.size,
1ec9e26d 3527 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3528 end);
262de145 3529 return ERR_PTR(-E2BIG);
654fc607
CW
3530 }
3531
37e680a1 3532 ret = i915_gem_object_get_pages(obj);
6c085a72 3533 if (ret)
262de145 3534 return ERR_PTR(ret);
6c085a72 3535
fbdda6fb
CW
3536 i915_gem_object_pin_pages(obj);
3537
accfef2e 3538 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3539 if (IS_ERR(vma))
bc6bc15b 3540 goto err_unpin;
2f633156 3541
0a9ae0d7 3542search_free:
07fe0b12 3543 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3544 size, alignment,
d23db88c
CW
3545 obj->cache_level,
3546 start, end,
62347f9e
LK
3547 DRM_MM_SEARCH_DEFAULT,
3548 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3549 if (ret) {
f6cd1f15 3550 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3551 obj->cache_level,
3552 start, end,
3553 flags);
dc9dd7a2
CW
3554 if (ret == 0)
3555 goto search_free;
9731129c 3556
bc6bc15b 3557 goto err_free_vma;
673a394b 3558 }
4144f9b5 3559 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3560 ret = -EINVAL;
bc6bc15b 3561 goto err_remove_node;
673a394b
EA
3562 }
3563
74163907 3564 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3565 if (ret)
bc6bc15b 3566 goto err_remove_node;
673a394b 3567
35c20a60 3568 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3569 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3570
1ec9e26d 3571 trace_i915_vma_bind(vma, flags);
8ea99c92 3572 vma->bind_vma(vma, obj->cache_level,
c826c449 3573 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
8ea99c92 3574
262de145 3575 return vma;
2f633156 3576
bc6bc15b 3577err_remove_node:
6286ef9b 3578 drm_mm_remove_node(&vma->node);
bc6bc15b 3579err_free_vma:
2f633156 3580 i915_gem_vma_destroy(vma);
262de145 3581 vma = ERR_PTR(ret);
bc6bc15b 3582err_unpin:
2f633156 3583 i915_gem_object_unpin_pages(obj);
262de145 3584 return vma;
673a394b
EA
3585}
3586
000433b6 3587bool
2c22569b
CW
3588i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3589 bool force)
673a394b 3590{
673a394b
EA
3591 /* If we don't have a page list set up, then we're not pinned
3592 * to GPU, and we can ignore the cache flush because it'll happen
3593 * again at bind time.
3594 */
05394f39 3595 if (obj->pages == NULL)
000433b6 3596 return false;
673a394b 3597
769ce464
ID
3598 /*
3599 * Stolen memory is always coherent with the GPU as it is explicitly
3600 * marked as wc by the system, or the system is cache-coherent.
3601 */
6a2c4232 3602 if (obj->stolen || obj->phys_handle)
000433b6 3603 return false;
769ce464 3604
9c23f7fc
CW
3605 /* If the GPU is snooping the contents of the CPU cache,
3606 * we do not need to manually clear the CPU cache lines. However,
3607 * the caches are only snooped when the render cache is
3608 * flushed/invalidated. As we always have to emit invalidations
3609 * and flushes when moving into and out of the RENDER domain, correct
3610 * snooping behaviour occurs naturally as the result of our domain
3611 * tracking.
3612 */
2c22569b 3613 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3614 return false;
9c23f7fc 3615
1c5d22f7 3616 trace_i915_gem_object_clflush(obj);
9da3da66 3617 drm_clflush_sg(obj->pages);
000433b6
CW
3618
3619 return true;
e47c68e9
EA
3620}
3621
3622/** Flushes the GTT write domain for the object if it's dirty. */
3623static void
05394f39 3624i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3625{
1c5d22f7
CW
3626 uint32_t old_write_domain;
3627
05394f39 3628 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3629 return;
3630
63256ec5 3631 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3632 * to it immediately go to main memory as far as we know, so there's
3633 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3634 *
3635 * However, we do have to enforce the order so that all writes through
3636 * the GTT land before any writes to the device, such as updates to
3637 * the GATT itself.
e47c68e9 3638 */
63256ec5
CW
3639 wmb();
3640
05394f39
CW
3641 old_write_domain = obj->base.write_domain;
3642 obj->base.write_domain = 0;
1c5d22f7 3643
f99d7069
DV
3644 intel_fb_obj_flush(obj, false);
3645
1c5d22f7 3646 trace_i915_gem_object_change_domain(obj,
05394f39 3647 obj->base.read_domains,
1c5d22f7 3648 old_write_domain);
e47c68e9
EA
3649}
3650
3651/** Flushes the CPU write domain for the object if it's dirty. */
3652static void
2c22569b
CW
3653i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3654 bool force)
e47c68e9 3655{
1c5d22f7 3656 uint32_t old_write_domain;
e47c68e9 3657
05394f39 3658 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3659 return;
3660
000433b6
CW
3661 if (i915_gem_clflush_object(obj, force))
3662 i915_gem_chipset_flush(obj->base.dev);
3663
05394f39
CW
3664 old_write_domain = obj->base.write_domain;
3665 obj->base.write_domain = 0;
1c5d22f7 3666
f99d7069
DV
3667 intel_fb_obj_flush(obj, false);
3668
1c5d22f7 3669 trace_i915_gem_object_change_domain(obj,
05394f39 3670 obj->base.read_domains,
1c5d22f7 3671 old_write_domain);
e47c68e9
EA
3672}
3673
2ef7eeaa
EA
3674/**
3675 * Moves a single object to the GTT read, and possibly write domain.
3676 *
3677 * This function returns when the move is complete, including waiting on
3678 * flushes to occur.
3679 */
79e53945 3680int
2021746e 3681i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3682{
3e31c6c0 3683 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3684 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3685 uint32_t old_write_domain, old_read_domains;
e47c68e9 3686 int ret;
2ef7eeaa 3687
02354392 3688 /* Not valid to be called on unbound objects. */
dc8cd1e7 3689 if (vma == NULL)
02354392
EA
3690 return -EINVAL;
3691
8d7e3de1
CW
3692 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3693 return 0;
3694
0201f1ec 3695 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3696 if (ret)
3697 return ret;
3698
c8725f3d 3699 i915_gem_object_retire(obj);
2c22569b 3700 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3701
d0a57789
CW
3702 /* Serialise direct access to this object with the barriers for
3703 * coherent writes from the GPU, by effectively invalidating the
3704 * GTT domain upon first access.
3705 */
3706 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3707 mb();
3708
05394f39
CW
3709 old_write_domain = obj->base.write_domain;
3710 old_read_domains = obj->base.read_domains;
1c5d22f7 3711
e47c68e9
EA
3712 /* It should now be out of any other write domains, and we can update
3713 * the domain values for our changes.
3714 */
05394f39
CW
3715 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3716 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3717 if (write) {
05394f39
CW
3718 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3719 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3720 obj->dirty = 1;
2ef7eeaa
EA
3721 }
3722
f99d7069
DV
3723 if (write)
3724 intel_fb_obj_invalidate(obj, NULL);
3725
1c5d22f7
CW
3726 trace_i915_gem_object_change_domain(obj,
3727 old_read_domains,
3728 old_write_domain);
3729
8325a09d 3730 /* And bump the LRU for this access */
dc8cd1e7
CW
3731 if (i915_gem_object_is_inactive(obj))
3732 list_move_tail(&vma->mm_list,
3733 &dev_priv->gtt.base.inactive_list);
8325a09d 3734
e47c68e9
EA
3735 return 0;
3736}
3737
e4ffd173
CW
3738int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3739 enum i915_cache_level cache_level)
3740{
7bddb01f 3741 struct drm_device *dev = obj->base.dev;
df6f783a 3742 struct i915_vma *vma, *next;
e4ffd173
CW
3743 int ret;
3744
3745 if (obj->cache_level == cache_level)
3746 return 0;
3747
d7f46fc4 3748 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3749 DRM_DEBUG("can not change the cache level of pinned objects\n");
3750 return -EBUSY;
3751 }
3752
df6f783a 3753 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3754 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3755 ret = i915_vma_unbind(vma);
3089c6f2
BW
3756 if (ret)
3757 return ret;
3089c6f2 3758 }
42d6ab48
CW
3759 }
3760
3089c6f2 3761 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3762 ret = i915_gem_object_finish_gpu(obj);
3763 if (ret)
3764 return ret;
3765
3766 i915_gem_object_finish_gtt(obj);
3767
3768 /* Before SandyBridge, you could not use tiling or fence
3769 * registers with snooped memory, so relinquish any fences
3770 * currently pointing to our region in the aperture.
3771 */
42d6ab48 3772 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3773 ret = i915_gem_object_put_fence(obj);
3774 if (ret)
3775 return ret;
3776 }
3777
6f65e29a 3778 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3779 if (drm_mm_node_allocated(&vma->node))
3780 vma->bind_vma(vma, cache_level,
aff43766 3781 vma->bound & GLOBAL_BIND);
e4ffd173
CW
3782 }
3783
2c22569b
CW
3784 list_for_each_entry(vma, &obj->vma_list, vma_link)
3785 vma->node.color = cache_level;
3786 obj->cache_level = cache_level;
3787
3788 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3789 u32 old_read_domains, old_write_domain;
3790
3791 /* If we're coming from LLC cached, then we haven't
3792 * actually been tracking whether the data is in the
3793 * CPU cache or not, since we only allow one bit set
3794 * in obj->write_domain and have been skipping the clflushes.
3795 * Just set it to the CPU cache for now.
3796 */
c8725f3d 3797 i915_gem_object_retire(obj);
e4ffd173 3798 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3799
3800 old_read_domains = obj->base.read_domains;
3801 old_write_domain = obj->base.write_domain;
3802
3803 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3804 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3805
3806 trace_i915_gem_object_change_domain(obj,
3807 old_read_domains,
3808 old_write_domain);
3809 }
3810
e4ffd173
CW
3811 return 0;
3812}
3813
199adf40
BW
3814int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3815 struct drm_file *file)
e6994aee 3816{
199adf40 3817 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3818 struct drm_i915_gem_object *obj;
3819 int ret;
3820
3821 ret = i915_mutex_lock_interruptible(dev);
3822 if (ret)
3823 return ret;
3824
3825 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3826 if (&obj->base == NULL) {
3827 ret = -ENOENT;
3828 goto unlock;
3829 }
3830
651d794f
CW
3831 switch (obj->cache_level) {
3832 case I915_CACHE_LLC:
3833 case I915_CACHE_L3_LLC:
3834 args->caching = I915_CACHING_CACHED;
3835 break;
3836
4257d3ba
CW
3837 case I915_CACHE_WT:
3838 args->caching = I915_CACHING_DISPLAY;
3839 break;
3840
651d794f
CW
3841 default:
3842 args->caching = I915_CACHING_NONE;
3843 break;
3844 }
e6994aee
CW
3845
3846 drm_gem_object_unreference(&obj->base);
3847unlock:
3848 mutex_unlock(&dev->struct_mutex);
3849 return ret;
3850}
3851
199adf40
BW
3852int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3853 struct drm_file *file)
e6994aee 3854{
199adf40 3855 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3856 struct drm_i915_gem_object *obj;
3857 enum i915_cache_level level;
3858 int ret;
3859
199adf40
BW
3860 switch (args->caching) {
3861 case I915_CACHING_NONE:
e6994aee
CW
3862 level = I915_CACHE_NONE;
3863 break;
199adf40 3864 case I915_CACHING_CACHED:
e6994aee
CW
3865 level = I915_CACHE_LLC;
3866 break;
4257d3ba
CW
3867 case I915_CACHING_DISPLAY:
3868 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3869 break;
e6994aee
CW
3870 default:
3871 return -EINVAL;
3872 }
3873
3bc2913e
BW
3874 ret = i915_mutex_lock_interruptible(dev);
3875 if (ret)
3876 return ret;
3877
e6994aee
CW
3878 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3879 if (&obj->base == NULL) {
3880 ret = -ENOENT;
3881 goto unlock;
3882 }
3883
3884 ret = i915_gem_object_set_cache_level(obj, level);
3885
3886 drm_gem_object_unreference(&obj->base);
3887unlock:
3888 mutex_unlock(&dev->struct_mutex);
3889 return ret;
3890}
3891
cc98b413
CW
3892static bool is_pin_display(struct drm_i915_gem_object *obj)
3893{
19656430
OM
3894 struct i915_vma *vma;
3895
19656430
OM
3896 vma = i915_gem_obj_to_ggtt(obj);
3897 if (!vma)
3898 return false;
3899
cc98b413
CW
3900 /* There are 3 sources that pin objects:
3901 * 1. The display engine (scanouts, sprites, cursors);
3902 * 2. Reservations for execbuffer;
3903 * 3. The user.
3904 *
3905 * We can ignore reservations as we hold the struct_mutex and
3906 * are only called outside of the reservation path. The user
3907 * can only increment pin_count once, and so if after
3908 * subtracting the potential reference by the user, any pin_count
3909 * remains, it must be due to another use by the display engine.
3910 */
19656430 3911 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3912}
3913
b9241ea3 3914/*
2da3b9b9
CW
3915 * Prepare buffer for display plane (scanout, cursors, etc).
3916 * Can be called from an uninterruptible phase (modesetting) and allows
3917 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3918 */
3919int
2da3b9b9
CW
3920i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3921 u32 alignment,
a4872ba6 3922 struct intel_engine_cs *pipelined)
b9241ea3 3923{
2da3b9b9 3924 u32 old_read_domains, old_write_domain;
19656430 3925 bool was_pin_display;
b9241ea3
ZW
3926 int ret;
3927
0be73284 3928 if (pipelined != obj->ring) {
2911a35b
BW
3929 ret = i915_gem_object_sync(obj, pipelined);
3930 if (ret)
b9241ea3
ZW
3931 return ret;
3932 }
3933
cc98b413
CW
3934 /* Mark the pin_display early so that we account for the
3935 * display coherency whilst setting up the cache domains.
3936 */
19656430 3937 was_pin_display = obj->pin_display;
cc98b413
CW
3938 obj->pin_display = true;
3939
a7ef0640
EA
3940 /* The display engine is not coherent with the LLC cache on gen6. As
3941 * a result, we make sure that the pinning that is about to occur is
3942 * done with uncached PTEs. This is lowest common denominator for all
3943 * chipsets.
3944 *
3945 * However for gen6+, we could do better by using the GFDT bit instead
3946 * of uncaching, which would allow us to flush all the LLC-cached data
3947 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3948 */
651d794f
CW
3949 ret = i915_gem_object_set_cache_level(obj,
3950 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3951 if (ret)
cc98b413 3952 goto err_unpin_display;
a7ef0640 3953
2da3b9b9
CW
3954 /* As the user may map the buffer once pinned in the display plane
3955 * (e.g. libkms for the bootup splash), we have to ensure that we
3956 * always use map_and_fenceable for all scanout buffers.
3957 */
1ec9e26d 3958 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3959 if (ret)
cc98b413 3960 goto err_unpin_display;
2da3b9b9 3961
2c22569b 3962 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3963
2da3b9b9 3964 old_write_domain = obj->base.write_domain;
05394f39 3965 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3966
3967 /* It should now be out of any other write domains, and we can update
3968 * the domain values for our changes.
3969 */
e5f1d962 3970 obj->base.write_domain = 0;
05394f39 3971 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3972
3973 trace_i915_gem_object_change_domain(obj,
3974 old_read_domains,
2da3b9b9 3975 old_write_domain);
b9241ea3
ZW
3976
3977 return 0;
cc98b413
CW
3978
3979err_unpin_display:
19656430
OM
3980 WARN_ON(was_pin_display != is_pin_display(obj));
3981 obj->pin_display = was_pin_display;
cc98b413
CW
3982 return ret;
3983}
3984
3985void
3986i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3987{
d7f46fc4 3988 i915_gem_object_ggtt_unpin(obj);
cc98b413 3989 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3990}
3991
85345517 3992int
a8198eea 3993i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3994{
88241785
CW
3995 int ret;
3996
a8198eea 3997 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3998 return 0;
3999
0201f1ec 4000 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4001 if (ret)
4002 return ret;
4003
a8198eea
CW
4004 /* Ensure that we invalidate the GPU's caches and TLBs. */
4005 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4006 return 0;
85345517
CW
4007}
4008
e47c68e9
EA
4009/**
4010 * Moves a single object to the CPU read, and possibly write domain.
4011 *
4012 * This function returns when the move is complete, including waiting on
4013 * flushes to occur.
4014 */
dabdfe02 4015int
919926ae 4016i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4017{
1c5d22f7 4018 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4019 int ret;
4020
8d7e3de1
CW
4021 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4022 return 0;
4023
0201f1ec 4024 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4025 if (ret)
4026 return ret;
4027
c8725f3d 4028 i915_gem_object_retire(obj);
e47c68e9 4029 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4030
05394f39
CW
4031 old_write_domain = obj->base.write_domain;
4032 old_read_domains = obj->base.read_domains;
1c5d22f7 4033
e47c68e9 4034 /* Flush the CPU cache if it's still invalid. */
05394f39 4035 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4036 i915_gem_clflush_object(obj, false);
2ef7eeaa 4037
05394f39 4038 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4039 }
4040
4041 /* It should now be out of any other write domains, and we can update
4042 * the domain values for our changes.
4043 */
05394f39 4044 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4045
4046 /* If we're writing through the CPU, then the GPU read domains will
4047 * need to be invalidated at next use.
4048 */
4049 if (write) {
05394f39
CW
4050 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4051 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4052 }
2ef7eeaa 4053
f99d7069
DV
4054 if (write)
4055 intel_fb_obj_invalidate(obj, NULL);
4056
1c5d22f7
CW
4057 trace_i915_gem_object_change_domain(obj,
4058 old_read_domains,
4059 old_write_domain);
4060
2ef7eeaa
EA
4061 return 0;
4062}
4063
673a394b
EA
4064/* Throttle our rendering by waiting until the ring has completed our requests
4065 * emitted over 20 msec ago.
4066 *
b962442e
EA
4067 * Note that if we were to use the current jiffies each time around the loop,
4068 * we wouldn't escape the function with any frames outstanding if the time to
4069 * render a frame was over 20ms.
4070 *
673a394b
EA
4071 * This should get us reasonable parallelism between CPU and GPU but also
4072 * relatively low latency when blocking on a particular request to finish.
4073 */
40a5f0de 4074static int
f787a5f5 4075i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4076{
f787a5f5
CW
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4078 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4079 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 4080 struct drm_i915_gem_request *request;
a4872ba6 4081 struct intel_engine_cs *ring = NULL;
f69061be 4082 unsigned reset_counter;
f787a5f5
CW
4083 u32 seqno = 0;
4084 int ret;
93533c29 4085
308887aa
DV
4086 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4087 if (ret)
4088 return ret;
4089
4090 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4091 if (ret)
4092 return ret;
e110e8d6 4093
1c25595f 4094 spin_lock(&file_priv->mm.lock);
f787a5f5 4095 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4096 if (time_after_eq(request->emitted_jiffies, recent_enough))
4097 break;
40a5f0de 4098
f787a5f5
CW
4099 ring = request->ring;
4100 seqno = request->seqno;
b962442e 4101 }
f69061be 4102 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4103 spin_unlock(&file_priv->mm.lock);
40a5f0de 4104
f787a5f5
CW
4105 if (seqno == 0)
4106 return 0;
2bc43b5c 4107
16e9a21f 4108 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4109 if (ret == 0)
4110 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4111
4112 return ret;
4113}
4114
d23db88c
CW
4115static bool
4116i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4117{
4118 struct drm_i915_gem_object *obj = vma->obj;
4119
4120 if (alignment &&
4121 vma->node.start & (alignment - 1))
4122 return true;
4123
4124 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4125 return true;
4126
4127 if (flags & PIN_OFFSET_BIAS &&
4128 vma->node.start < (flags & PIN_OFFSET_MASK))
4129 return true;
4130
4131 return false;
4132}
4133
673a394b 4134int
05394f39 4135i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4136 struct i915_address_space *vm,
05394f39 4137 uint32_t alignment,
d23db88c 4138 uint64_t flags)
673a394b 4139{
6e7186af 4140 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4141 struct i915_vma *vma;
ef79e17c 4142 unsigned bound;
673a394b
EA
4143 int ret;
4144
6e7186af
BW
4145 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4146 return -ENODEV;
4147
bf3d149b 4148 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4149 return -EINVAL;
07fe0b12 4150
c826c449
CW
4151 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4152 return -EINVAL;
4153
07fe0b12 4154 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4155 if (vma) {
d7f46fc4
BW
4156 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4157 return -EBUSY;
4158
d23db88c 4159 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4160 WARN(vma->pin_count,
ae7d49d8 4161 "bo is already pinned with incorrect alignment:"
f343c5f6 4162 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4163 " obj->map_and_fenceable=%d\n",
07fe0b12 4164 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4165 !!(flags & PIN_MAPPABLE),
05394f39 4166 obj->map_and_fenceable);
07fe0b12 4167 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4168 if (ret)
4169 return ret;
8ea99c92
DV
4170
4171 vma = NULL;
ac0c6b5a
CW
4172 }
4173 }
4174
ef79e17c 4175 bound = vma ? vma->bound : 0;
8ea99c92 4176 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4177 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4178 if (IS_ERR(vma))
4179 return PTR_ERR(vma);
22c344e9 4180 }
76446cac 4181
aff43766 4182 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
8ea99c92 4183 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4184
ef79e17c
CW
4185 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4186 bool mappable, fenceable;
4187 u32 fence_size, fence_alignment;
4188
4189 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4190 obj->base.size,
4191 obj->tiling_mode);
4192 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4193 obj->base.size,
4194 obj->tiling_mode,
4195 true);
4196
4197 fenceable = (vma->node.size == fence_size &&
4198 (vma->node.start & (fence_alignment - 1)) == 0);
4199
4200 mappable = (vma->node.start + obj->base.size <=
4201 dev_priv->gtt.mappable_end);
4202
4203 obj->map_and_fenceable = mappable && fenceable;
4204 }
4205
4206 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4207
8ea99c92 4208 vma->pin_count++;
1ec9e26d
DV
4209 if (flags & PIN_MAPPABLE)
4210 obj->pin_mappable |= true;
673a394b
EA
4211
4212 return 0;
4213}
4214
4215void
d7f46fc4 4216i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4217{
d7f46fc4 4218 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4219
d7f46fc4
BW
4220 BUG_ON(!vma);
4221 BUG_ON(vma->pin_count == 0);
4222 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4223
4224 if (--vma->pin_count == 0)
6299f992 4225 obj->pin_mappable = false;
673a394b
EA
4226}
4227
d8ffa60b
DV
4228bool
4229i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4230{
4231 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4232 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4233 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4234
4235 WARN_ON(!ggtt_vma ||
4236 dev_priv->fence_regs[obj->fence_reg].pin_count >
4237 ggtt_vma->pin_count);
4238 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4239 return true;
4240 } else
4241 return false;
4242}
4243
4244void
4245i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4246{
4247 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4248 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4249 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4250 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4251 }
4252}
4253
673a394b
EA
4254int
4255i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4256 struct drm_file *file)
673a394b
EA
4257{
4258 struct drm_i915_gem_pin *args = data;
05394f39 4259 struct drm_i915_gem_object *obj;
673a394b
EA
4260 int ret;
4261
02f6bccc
DV
4262 if (INTEL_INFO(dev)->gen >= 6)
4263 return -ENODEV;
4264
1d7cfea1
CW
4265 ret = i915_mutex_lock_interruptible(dev);
4266 if (ret)
4267 return ret;
673a394b 4268
05394f39 4269 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4270 if (&obj->base == NULL) {
1d7cfea1
CW
4271 ret = -ENOENT;
4272 goto unlock;
673a394b 4273 }
673a394b 4274
05394f39 4275 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4276 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4277 ret = -EFAULT;
1d7cfea1 4278 goto out;
3ef94daa
CW
4279 }
4280
05394f39 4281 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4282 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4283 args->handle);
1d7cfea1
CW
4284 ret = -EINVAL;
4285 goto out;
79e53945
JB
4286 }
4287
aa5f8021
DV
4288 if (obj->user_pin_count == ULONG_MAX) {
4289 ret = -EBUSY;
4290 goto out;
4291 }
4292
93be8788 4293 if (obj->user_pin_count == 0) {
1ec9e26d 4294 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4295 if (ret)
4296 goto out;
673a394b
EA
4297 }
4298
93be8788
CW
4299 obj->user_pin_count++;
4300 obj->pin_filp = file;
4301
f343c5f6 4302 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4303out:
05394f39 4304 drm_gem_object_unreference(&obj->base);
1d7cfea1 4305unlock:
673a394b 4306 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4307 return ret;
673a394b
EA
4308}
4309
4310int
4311i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4312 struct drm_file *file)
673a394b
EA
4313{
4314 struct drm_i915_gem_pin *args = data;
05394f39 4315 struct drm_i915_gem_object *obj;
76c1dec1 4316 int ret;
673a394b 4317
1d7cfea1
CW
4318 ret = i915_mutex_lock_interruptible(dev);
4319 if (ret)
4320 return ret;
673a394b 4321
05394f39 4322 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4323 if (&obj->base == NULL) {
1d7cfea1
CW
4324 ret = -ENOENT;
4325 goto unlock;
673a394b 4326 }
76c1dec1 4327
05394f39 4328 if (obj->pin_filp != file) {
bd9b6a4e 4329 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4330 args->handle);
1d7cfea1
CW
4331 ret = -EINVAL;
4332 goto out;
79e53945 4333 }
05394f39
CW
4334 obj->user_pin_count--;
4335 if (obj->user_pin_count == 0) {
4336 obj->pin_filp = NULL;
d7f46fc4 4337 i915_gem_object_ggtt_unpin(obj);
79e53945 4338 }
673a394b 4339
1d7cfea1 4340out:
05394f39 4341 drm_gem_object_unreference(&obj->base);
1d7cfea1 4342unlock:
673a394b 4343 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4344 return ret;
673a394b
EA
4345}
4346
4347int
4348i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4349 struct drm_file *file)
673a394b
EA
4350{
4351 struct drm_i915_gem_busy *args = data;
05394f39 4352 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4353 int ret;
4354
76c1dec1 4355 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4356 if (ret)
76c1dec1 4357 return ret;
673a394b 4358
05394f39 4359 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4360 if (&obj->base == NULL) {
1d7cfea1
CW
4361 ret = -ENOENT;
4362 goto unlock;
673a394b 4363 }
d1b851fc 4364
0be555b6
CW
4365 /* Count all active objects as busy, even if they are currently not used
4366 * by the gpu. Users of this interface expect objects to eventually
4367 * become non-busy without any further actions, therefore emit any
4368 * necessary flushes here.
c4de0a5d 4369 */
30dfebf3 4370 ret = i915_gem_object_flush_active(obj);
0be555b6 4371
30dfebf3 4372 args->busy = obj->active;
e9808edd
CW
4373 if (obj->ring) {
4374 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4375 args->busy |= intel_ring_flag(obj->ring) << 16;
4376 }
673a394b 4377
05394f39 4378 drm_gem_object_unreference(&obj->base);
1d7cfea1 4379unlock:
673a394b 4380 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4381 return ret;
673a394b
EA
4382}
4383
4384int
4385i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4386 struct drm_file *file_priv)
4387{
0206e353 4388 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4389}
4390
3ef94daa
CW
4391int
4392i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4393 struct drm_file *file_priv)
4394{
4395 struct drm_i915_gem_madvise *args = data;
05394f39 4396 struct drm_i915_gem_object *obj;
76c1dec1 4397 int ret;
3ef94daa
CW
4398
4399 switch (args->madv) {
4400 case I915_MADV_DONTNEED:
4401 case I915_MADV_WILLNEED:
4402 break;
4403 default:
4404 return -EINVAL;
4405 }
4406
1d7cfea1
CW
4407 ret = i915_mutex_lock_interruptible(dev);
4408 if (ret)
4409 return ret;
4410
05394f39 4411 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4412 if (&obj->base == NULL) {
1d7cfea1
CW
4413 ret = -ENOENT;
4414 goto unlock;
3ef94daa 4415 }
3ef94daa 4416
d7f46fc4 4417 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4418 ret = -EINVAL;
4419 goto out;
3ef94daa
CW
4420 }
4421
05394f39
CW
4422 if (obj->madv != __I915_MADV_PURGED)
4423 obj->madv = args->madv;
3ef94daa 4424
6c085a72
CW
4425 /* if the object is no longer attached, discard its backing storage */
4426 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4427 i915_gem_object_truncate(obj);
4428
05394f39 4429 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4430
1d7cfea1 4431out:
05394f39 4432 drm_gem_object_unreference(&obj->base);
1d7cfea1 4433unlock:
3ef94daa 4434 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4435 return ret;
3ef94daa
CW
4436}
4437
37e680a1
CW
4438void i915_gem_object_init(struct drm_i915_gem_object *obj,
4439 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4440{
35c20a60 4441 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4442 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4443 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4444 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4445
37e680a1
CW
4446 obj->ops = ops;
4447
0327d6ba
CW
4448 obj->fence_reg = I915_FENCE_REG_NONE;
4449 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4450
4451 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4452}
4453
37e680a1
CW
4454static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4455 .get_pages = i915_gem_object_get_pages_gtt,
4456 .put_pages = i915_gem_object_put_pages_gtt,
4457};
4458
05394f39
CW
4459struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4460 size_t size)
ac52bc56 4461{
c397b908 4462 struct drm_i915_gem_object *obj;
5949eac4 4463 struct address_space *mapping;
1a240d4d 4464 gfp_t mask;
ac52bc56 4465
42dcedd4 4466 obj = i915_gem_object_alloc(dev);
c397b908
DV
4467 if (obj == NULL)
4468 return NULL;
673a394b 4469
c397b908 4470 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4471 i915_gem_object_free(obj);
c397b908
DV
4472 return NULL;
4473 }
673a394b 4474
bed1ea95
CW
4475 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4476 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4477 /* 965gm cannot relocate objects above 4GiB. */
4478 mask &= ~__GFP_HIGHMEM;
4479 mask |= __GFP_DMA32;
4480 }
4481
496ad9aa 4482 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4483 mapping_set_gfp_mask(mapping, mask);
5949eac4 4484
37e680a1 4485 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4486
c397b908
DV
4487 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4488 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4489
3d29b842
ED
4490 if (HAS_LLC(dev)) {
4491 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4492 * cache) for about a 10% performance improvement
4493 * compared to uncached. Graphics requests other than
4494 * display scanout are coherent with the CPU in
4495 * accessing this cache. This means in this mode we
4496 * don't need to clflush on the CPU side, and on the
4497 * GPU side we only need to flush internal caches to
4498 * get data visible to the CPU.
4499 *
4500 * However, we maintain the display planes as UC, and so
4501 * need to rebind when first used as such.
4502 */
4503 obj->cache_level = I915_CACHE_LLC;
4504 } else
4505 obj->cache_level = I915_CACHE_NONE;
4506
d861e338
DV
4507 trace_i915_gem_object_create(obj);
4508
05394f39 4509 return obj;
c397b908
DV
4510}
4511
340fbd8c
CW
4512static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4513{
4514 /* If we are the last user of the backing storage (be it shmemfs
4515 * pages or stolen etc), we know that the pages are going to be
4516 * immediately released. In this case, we can then skip copying
4517 * back the contents from the GPU.
4518 */
4519
4520 if (obj->madv != I915_MADV_WILLNEED)
4521 return false;
4522
4523 if (obj->base.filp == NULL)
4524 return true;
4525
4526 /* At first glance, this looks racy, but then again so would be
4527 * userspace racing mmap against close. However, the first external
4528 * reference to the filp can only be obtained through the
4529 * i915_gem_mmap_ioctl() which safeguards us against the user
4530 * acquiring such a reference whilst we are in the middle of
4531 * freeing the object.
4532 */
4533 return atomic_long_read(&obj->base.filp->f_count) == 1;
4534}
4535
1488fc08 4536void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4537{
1488fc08 4538 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4539 struct drm_device *dev = obj->base.dev;
3e31c6c0 4540 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4541 struct i915_vma *vma, *next;
673a394b 4542
f65c9168
PZ
4543 intel_runtime_pm_get(dev_priv);
4544
26e12f89
CW
4545 trace_i915_gem_object_destroy(obj);
4546
07fe0b12 4547 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4548 int ret;
4549
4550 vma->pin_count = 0;
4551 ret = i915_vma_unbind(vma);
07fe0b12
BW
4552 if (WARN_ON(ret == -ERESTARTSYS)) {
4553 bool was_interruptible;
1488fc08 4554
07fe0b12
BW
4555 was_interruptible = dev_priv->mm.interruptible;
4556 dev_priv->mm.interruptible = false;
1488fc08 4557
07fe0b12 4558 WARN_ON(i915_vma_unbind(vma));
1488fc08 4559
07fe0b12
BW
4560 dev_priv->mm.interruptible = was_interruptible;
4561 }
1488fc08
CW
4562 }
4563
1d64ae71
BW
4564 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4565 * before progressing. */
4566 if (obj->stolen)
4567 i915_gem_object_unpin_pages(obj);
4568
a071fa00
DV
4569 WARN_ON(obj->frontbuffer_bits);
4570
401c29f6
BW
4571 if (WARN_ON(obj->pages_pin_count))
4572 obj->pages_pin_count = 0;
340fbd8c 4573 if (discard_backing_storage(obj))
5537252b 4574 obj->madv = I915_MADV_DONTNEED;
37e680a1 4575 i915_gem_object_put_pages(obj);
d8cb5086 4576 i915_gem_object_free_mmap_offset(obj);
de151cf6 4577
9da3da66
CW
4578 BUG_ON(obj->pages);
4579
2f745ad3
CW
4580 if (obj->base.import_attach)
4581 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4582
5cc9ed4b
CW
4583 if (obj->ops->release)
4584 obj->ops->release(obj);
4585
05394f39
CW
4586 drm_gem_object_release(&obj->base);
4587 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4588
05394f39 4589 kfree(obj->bit_17);
42dcedd4 4590 i915_gem_object_free(obj);
f65c9168
PZ
4591
4592 intel_runtime_pm_put(dev_priv);
673a394b
EA
4593}
4594
e656a6cb 4595struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4596 struct i915_address_space *vm)
e656a6cb
DV
4597{
4598 struct i915_vma *vma;
4599 list_for_each_entry(vma, &obj->vma_list, vma_link)
4600 if (vma->vm == vm)
4601 return vma;
4602
4603 return NULL;
4604}
4605
2f633156
BW
4606void i915_gem_vma_destroy(struct i915_vma *vma)
4607{
b9d06dd9 4608 struct i915_address_space *vm = NULL;
2f633156 4609 WARN_ON(vma->node.allocated);
aaa05667
CW
4610
4611 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4612 if (!list_empty(&vma->exec_list))
4613 return;
4614
b9d06dd9 4615 vm = vma->vm;
b9d06dd9 4616
841cd773
DV
4617 if (!i915_is_ggtt(vm))
4618 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4619
8b9c2b94 4620 list_del(&vma->vma_link);
b93dab6e 4621
2f633156
BW
4622 kfree(vma);
4623}
4624
e3efda49
CW
4625static void
4626i915_gem_stop_ringbuffers(struct drm_device *dev)
4627{
4628 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4629 struct intel_engine_cs *ring;
e3efda49
CW
4630 int i;
4631
4632 for_each_ring(ring, dev_priv, i)
a83014d3 4633 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4634}
4635
29105ccc 4636int
45c5f202 4637i915_gem_suspend(struct drm_device *dev)
29105ccc 4638{
3e31c6c0 4639 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4640 int ret = 0;
28dfe52a 4641
45c5f202 4642 mutex_lock(&dev->struct_mutex);
f7403347 4643 if (dev_priv->ums.mm_suspended)
45c5f202 4644 goto err;
28dfe52a 4645
b2da9fe5 4646 ret = i915_gpu_idle(dev);
f7403347 4647 if (ret)
45c5f202 4648 goto err;
f7403347 4649
b2da9fe5 4650 i915_gem_retire_requests(dev);
673a394b 4651
29105ccc 4652 /* Under UMS, be paranoid and evict. */
a39d7efc 4653 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4654 i915_gem_evict_everything(dev);
29105ccc 4655
29105ccc 4656 i915_kernel_lost_context(dev);
e3efda49 4657 i915_gem_stop_ringbuffers(dev);
29105ccc 4658
45c5f202
CW
4659 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4660 * We need to replace this with a semaphore, or something.
4661 * And not confound ums.mm_suspended!
4662 */
4663 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4664 DRIVER_MODESET);
4665 mutex_unlock(&dev->struct_mutex);
4666
4667 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4668 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4669 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4670
673a394b 4671 return 0;
45c5f202
CW
4672
4673err:
4674 mutex_unlock(&dev->struct_mutex);
4675 return ret;
673a394b
EA
4676}
4677
a4872ba6 4678int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4679{
c3787e2e 4680 struct drm_device *dev = ring->dev;
3e31c6c0 4681 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4682 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4683 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4684 int i, ret;
b9524a1e 4685
040d2baa 4686 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4687 return 0;
b9524a1e 4688
c3787e2e
BW
4689 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4690 if (ret)
4691 return ret;
b9524a1e 4692
c3787e2e
BW
4693 /*
4694 * Note: We do not worry about the concurrent register cacheline hang
4695 * here because no other code should access these registers other than
4696 * at initialization time.
4697 */
b9524a1e 4698 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4699 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4700 intel_ring_emit(ring, reg_base + i);
4701 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4702 }
4703
c3787e2e 4704 intel_ring_advance(ring);
b9524a1e 4705
c3787e2e 4706 return ret;
b9524a1e
BW
4707}
4708
f691e2f4
DV
4709void i915_gem_init_swizzling(struct drm_device *dev)
4710{
3e31c6c0 4711 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4712
11782b02 4713 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4714 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4715 return;
4716
4717 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4718 DISP_TILE_SURFACE_SWIZZLING);
4719
11782b02
DV
4720 if (IS_GEN5(dev))
4721 return;
4722
f691e2f4
DV
4723 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4724 if (IS_GEN6(dev))
6b26c86d 4725 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4726 else if (IS_GEN7(dev))
6b26c86d 4727 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4728 else if (IS_GEN8(dev))
4729 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4730 else
4731 BUG();
f691e2f4 4732}
e21af88d 4733
67b1b571
CW
4734static bool
4735intel_enable_blt(struct drm_device *dev)
4736{
4737 if (!HAS_BLT(dev))
4738 return false;
4739
4740 /* The blitter was dysfunctional on early prototypes */
4741 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4742 DRM_INFO("BLT not supported on this pre-production hardware;"
4743 " graphics performance will be degraded.\n");
4744 return false;
4745 }
4746
4747 return true;
4748}
4749
81e7f200
VS
4750static void init_unused_ring(struct drm_device *dev, u32 base)
4751{
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753
4754 I915_WRITE(RING_CTL(base), 0);
4755 I915_WRITE(RING_HEAD(base), 0);
4756 I915_WRITE(RING_TAIL(base), 0);
4757 I915_WRITE(RING_START(base), 0);
4758}
4759
4760static void init_unused_rings(struct drm_device *dev)
4761{
4762 if (IS_I830(dev)) {
4763 init_unused_ring(dev, PRB1_BASE);
4764 init_unused_ring(dev, SRB0_BASE);
4765 init_unused_ring(dev, SRB1_BASE);
4766 init_unused_ring(dev, SRB2_BASE);
4767 init_unused_ring(dev, SRB3_BASE);
4768 } else if (IS_GEN2(dev)) {
4769 init_unused_ring(dev, SRB0_BASE);
4770 init_unused_ring(dev, SRB1_BASE);
4771 } else if (IS_GEN3(dev)) {
4772 init_unused_ring(dev, PRB1_BASE);
4773 init_unused_ring(dev, PRB2_BASE);
4774 }
4775}
4776
a83014d3 4777int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4778{
4fc7c971 4779 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4780 int ret;
68f95ba9 4781
81e7f200
VS
4782 /*
4783 * At least 830 can leave some of the unused rings
4784 * "active" (ie. head != tail) after resume which
4785 * will prevent c3 entry. Makes sure all unused rings
4786 * are totally idle.
4787 */
4788 init_unused_rings(dev);
4789
5c1143bb 4790 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4791 if (ret)
b6913e4b 4792 return ret;
68f95ba9
CW
4793
4794 if (HAS_BSD(dev)) {
5c1143bb 4795 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4796 if (ret)
4797 goto cleanup_render_ring;
d1b851fc 4798 }
68f95ba9 4799
67b1b571 4800 if (intel_enable_blt(dev)) {
549f7365
CW
4801 ret = intel_init_blt_ring_buffer(dev);
4802 if (ret)
4803 goto cleanup_bsd_ring;
4804 }
4805
9a8a2213
BW
4806 if (HAS_VEBOX(dev)) {
4807 ret = intel_init_vebox_ring_buffer(dev);
4808 if (ret)
4809 goto cleanup_blt_ring;
4810 }
4811
845f74a7
ZY
4812 if (HAS_BSD2(dev)) {
4813 ret = intel_init_bsd2_ring_buffer(dev);
4814 if (ret)
4815 goto cleanup_vebox_ring;
4816 }
9a8a2213 4817
99433931 4818 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4819 if (ret)
845f74a7 4820 goto cleanup_bsd2_ring;
4fc7c971
BW
4821
4822 return 0;
4823
845f74a7
ZY
4824cleanup_bsd2_ring:
4825 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4826cleanup_vebox_ring:
4827 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4828cleanup_blt_ring:
4829 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4830cleanup_bsd_ring:
4831 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4832cleanup_render_ring:
4833 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4834
4835 return ret;
4836}
4837
4838int
4839i915_gem_init_hw(struct drm_device *dev)
4840{
3e31c6c0 4841 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4842 int ret, i;
4fc7c971
BW
4843
4844 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4845 return -EIO;
4846
59124506 4847 if (dev_priv->ellc_size)
05e21cc4 4848 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4849
0bf21347
VS
4850 if (IS_HASWELL(dev))
4851 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4852 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4853
88a2b2a3 4854 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4855 if (IS_IVYBRIDGE(dev)) {
4856 u32 temp = I915_READ(GEN7_MSG_CTL);
4857 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4858 I915_WRITE(GEN7_MSG_CTL, temp);
4859 } else if (INTEL_INFO(dev)->gen >= 7) {
4860 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4861 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4862 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4863 }
88a2b2a3
BW
4864 }
4865
4fc7c971
BW
4866 i915_gem_init_swizzling(dev);
4867
a83014d3 4868 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4869 if (ret)
4870 return ret;
4871
c3787e2e
BW
4872 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4873 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4874
254f965c 4875 /*
2fa48d8d
BW
4876 * XXX: Contexts should only be initialized once. Doing a switch to the
4877 * default context switch however is something we'd like to do after
4878 * reset or thaw (the latter may not actually be necessary for HW, but
4879 * goes with our code better). Context switching requires rings (for
4880 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4881 */
2fa48d8d 4882 ret = i915_gem_context_enable(dev_priv);
60990320 4883 if (ret && ret != -EIO) {
2fa48d8d 4884 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4885 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4886
4887 return ret;
4888 }
4889
4890 ret = i915_ppgtt_init_hw(dev);
4891 if (ret && ret != -EIO) {
4892 DRM_ERROR("PPGTT enable failed %d\n", ret);
4893 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4894 }
e21af88d 4895
2fa48d8d 4896 return ret;
8187a2b7
ZN
4897}
4898
1070a42b
CW
4899int i915_gem_init(struct drm_device *dev)
4900{
4901 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4902 int ret;
4903
127f1003
OM
4904 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4905 i915.enable_execlists);
4906
1070a42b 4907 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4908
4909 if (IS_VALLEYVIEW(dev)) {
4910 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4911 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4912 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4913 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4914 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4915 }
4916
a83014d3
OM
4917 if (!i915.enable_execlists) {
4918 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4919 dev_priv->gt.init_rings = i915_gem_init_rings;
4920 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4921 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4922 } else {
4923 dev_priv->gt.do_execbuf = intel_execlists_submission;
4924 dev_priv->gt.init_rings = intel_logical_rings_init;
4925 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4926 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4927 }
4928
6c5566a8
DV
4929 ret = i915_gem_init_userptr(dev);
4930 if (ret) {
4931 mutex_unlock(&dev->struct_mutex);
4932 return ret;
4933 }
4934
d7e5008f 4935 i915_gem_init_global_gtt(dev);
d62b4892 4936
2fa48d8d 4937 ret = i915_gem_context_init(dev);
e3848694
MK
4938 if (ret) {
4939 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4940 return ret;
e3848694 4941 }
2fa48d8d 4942
1070a42b 4943 ret = i915_gem_init_hw(dev);
60990320
CW
4944 if (ret == -EIO) {
4945 /* Allow ring initialisation to fail by marking the GPU as
4946 * wedged. But we only want to do this where the GPU is angry,
4947 * for all other failure, such as an allocation failure, bail.
4948 */
4949 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4950 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4951 ret = 0;
1070a42b 4952 }
60990320 4953 mutex_unlock(&dev->struct_mutex);
1070a42b 4954
53ca26ca
DV
4955 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4956 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4957 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4958 return ret;
1070a42b
CW
4959}
4960
8187a2b7
ZN
4961void
4962i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4963{
3e31c6c0 4964 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4965 struct intel_engine_cs *ring;
1ec14ad3 4966 int i;
8187a2b7 4967
b4519513 4968 for_each_ring(ring, dev_priv, i)
a83014d3 4969 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4970}
4971
673a394b
EA
4972int
4973i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4974 struct drm_file *file_priv)
4975{
db1b76ca 4976 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4977 int ret;
673a394b 4978
79e53945
JB
4979 if (drm_core_check_feature(dev, DRIVER_MODESET))
4980 return 0;
4981
1f83fee0 4982 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4983 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4984 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4985 }
4986
673a394b 4987 mutex_lock(&dev->struct_mutex);
db1b76ca 4988 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4989
f691e2f4 4990 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4991 if (ret != 0) {
4992 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4993 return ret;
d816f6ac 4994 }
9bb2d6f9 4995
5cef07e1 4996 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4997
bb0f1b5c 4998 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4999 if (ret)
5000 goto cleanup_ringbuffer;
e090c53b 5001 mutex_unlock(&dev->struct_mutex);
dbb19d30 5002
673a394b 5003 return 0;
5f35308b
CW
5004
5005cleanup_ringbuffer:
5f35308b 5006 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 5007 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
5008 mutex_unlock(&dev->struct_mutex);
5009
5010 return ret;
673a394b
EA
5011}
5012
5013int
5014i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5015 struct drm_file *file_priv)
5016{
79e53945
JB
5017 if (drm_core_check_feature(dev, DRIVER_MODESET))
5018 return 0;
5019
e090c53b 5020 mutex_lock(&dev->struct_mutex);
dbb19d30 5021 drm_irq_uninstall(dev);
e090c53b 5022 mutex_unlock(&dev->struct_mutex);
db1b76ca 5023
45c5f202 5024 return i915_gem_suspend(dev);
673a394b
EA
5025}
5026
5027void
5028i915_gem_lastclose(struct drm_device *dev)
5029{
5030 int ret;
673a394b 5031
e806b495
EA
5032 if (drm_core_check_feature(dev, DRIVER_MODESET))
5033 return;
5034
45c5f202 5035 ret = i915_gem_suspend(dev);
6dbe2772
KP
5036 if (ret)
5037 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
5038}
5039
64193406 5040static void
a4872ba6 5041init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5042{
5043 INIT_LIST_HEAD(&ring->active_list);
5044 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5045}
5046
7e0d96bc
BW
5047void i915_init_vm(struct drm_i915_private *dev_priv,
5048 struct i915_address_space *vm)
fc8c067e 5049{
7e0d96bc
BW
5050 if (!i915_is_ggtt(vm))
5051 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5052 vm->dev = dev_priv->dev;
5053 INIT_LIST_HEAD(&vm->active_list);
5054 INIT_LIST_HEAD(&vm->inactive_list);
5055 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5056 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5057}
5058
673a394b
EA
5059void
5060i915_gem_load(struct drm_device *dev)
5061{
3e31c6c0 5062 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5063 int i;
5064
5065 dev_priv->slab =
5066 kmem_cache_create("i915_gem_object",
5067 sizeof(struct drm_i915_gem_object), 0,
5068 SLAB_HWCACHE_ALIGN,
5069 NULL);
673a394b 5070
fc8c067e
BW
5071 INIT_LIST_HEAD(&dev_priv->vm_list);
5072 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5073
a33afea5 5074 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5075 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5076 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5077 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5078 for (i = 0; i < I915_NUM_RINGS; i++)
5079 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5080 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5081 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5082 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5083 i915_gem_retire_work_handler);
b29c19b6
CW
5084 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5085 i915_gem_idle_work_handler);
1f83fee0 5086 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5087
94400120 5088 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 5089 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
5090 I915_WRITE(MI_ARB_STATE,
5091 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
5092 }
5093
72bfa19c
CW
5094 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5095
de151cf6 5096 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
5097 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5098 dev_priv->fence_reg_start = 3;
de151cf6 5099
42b5aeab
VS
5100 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5101 dev_priv->num_fence_regs = 32;
5102 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5103 dev_priv->num_fence_regs = 16;
5104 else
5105 dev_priv->num_fence_regs = 8;
5106
b5aa8a0f 5107 /* Initialize fence registers to zero */
19b2dbde
CW
5108 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5109 i915_gem_restore_fences(dev);
10ed13e4 5110
673a394b 5111 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5112 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5113
ce453d81
CW
5114 dev_priv->mm.interruptible = true;
5115
ceabbba5
CW
5116 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5117 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5118 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5119 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5120
5121 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5122 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
5123
5124 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5125}
71acb5eb 5126
f787a5f5 5127void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5128{
f787a5f5 5129 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5130
b29c19b6
CW
5131 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5132
b962442e
EA
5133 /* Clean up our request list when the client is going away, so that
5134 * later retire_requests won't dereference our soon-to-be-gone
5135 * file_priv.
5136 */
1c25595f 5137 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5138 while (!list_empty(&file_priv->mm.request_list)) {
5139 struct drm_i915_gem_request *request;
5140
5141 request = list_first_entry(&file_priv->mm.request_list,
5142 struct drm_i915_gem_request,
5143 client_list);
5144 list_del(&request->client_list);
5145 request->file_priv = NULL;
5146 }
1c25595f 5147 spin_unlock(&file_priv->mm.lock);
b962442e 5148}
31169714 5149
b29c19b6
CW
5150static void
5151i915_gem_file_idle_work_handler(struct work_struct *work)
5152{
5153 struct drm_i915_file_private *file_priv =
5154 container_of(work, typeof(*file_priv), mm.idle_work.work);
5155
5156 atomic_set(&file_priv->rps_wait_boost, false);
5157}
5158
5159int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5160{
5161 struct drm_i915_file_private *file_priv;
e422b888 5162 int ret;
b29c19b6
CW
5163
5164 DRM_DEBUG_DRIVER("\n");
5165
5166 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5167 if (!file_priv)
5168 return -ENOMEM;
5169
5170 file->driver_priv = file_priv;
5171 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5172 file_priv->file = file;
b29c19b6
CW
5173
5174 spin_lock_init(&file_priv->mm.lock);
5175 INIT_LIST_HEAD(&file_priv->mm.request_list);
5176 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5177 i915_gem_file_idle_work_handler);
5178
e422b888
BW
5179 ret = i915_gem_context_open(dev, file);
5180 if (ret)
5181 kfree(file_priv);
b29c19b6 5182
e422b888 5183 return ret;
b29c19b6
CW
5184}
5185
b680c37a
DV
5186/**
5187 * i915_gem_track_fb - update frontbuffer tracking
5188 * old: current GEM buffer for the frontbuffer slots
5189 * new: new GEM buffer for the frontbuffer slots
5190 * frontbuffer_bits: bitmask of frontbuffer slots
5191 *
5192 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5193 * from @old and setting them in @new. Both @old and @new can be NULL.
5194 */
a071fa00
DV
5195void i915_gem_track_fb(struct drm_i915_gem_object *old,
5196 struct drm_i915_gem_object *new,
5197 unsigned frontbuffer_bits)
5198{
5199 if (old) {
5200 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5201 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5202 old->frontbuffer_bits &= ~frontbuffer_bits;
5203 }
5204
5205 if (new) {
5206 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5207 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5208 new->frontbuffer_bits |= frontbuffer_bits;
5209 }
5210}
5211
5774506f
CW
5212static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5213{
5214 if (!mutex_is_locked(mutex))
5215 return false;
5216
5217#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5218 return mutex->owner == task;
5219#else
5220 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5221 return false;
5222#endif
5223}
5224
b453c4db
CW
5225static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5226{
5227 if (!mutex_trylock(&dev->struct_mutex)) {
5228 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5229 return false;
5230
5231 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5232 return false;
5233
5234 *unlock = false;
5235 } else
5236 *unlock = true;
5237
5238 return true;
5239}
5240
ceabbba5
CW
5241static int num_vma_bound(struct drm_i915_gem_object *obj)
5242{
5243 struct i915_vma *vma;
5244 int count = 0;
5245
5246 list_for_each_entry(vma, &obj->vma_list, vma_link)
5247 if (drm_mm_node_allocated(&vma->node))
5248 count++;
5249
5250 return count;
5251}
5252
7dc19d5a 5253static unsigned long
ceabbba5 5254i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5255{
17250b71 5256 struct drm_i915_private *dev_priv =
ceabbba5 5257 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5258 struct drm_device *dev = dev_priv->dev;
6c085a72 5259 struct drm_i915_gem_object *obj;
7dc19d5a 5260 unsigned long count;
b453c4db 5261 bool unlock;
17250b71 5262
b453c4db
CW
5263 if (!i915_gem_shrinker_lock(dev, &unlock))
5264 return 0;
31169714 5265
7dc19d5a 5266 count = 0;
35c20a60 5267 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5268 if (obj->pages_pin_count == 0)
7dc19d5a 5269 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5270
5271 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5272 if (!i915_gem_obj_is_pinned(obj) &&
5273 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5274 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5275 }
17250b71 5276
5774506f
CW
5277 if (unlock)
5278 mutex_unlock(&dev->struct_mutex);
d9973b43 5279
7dc19d5a 5280 return count;
31169714 5281}
a70a3148
BW
5282
5283/* All the new VM stuff */
5284unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5285 struct i915_address_space *vm)
5286{
5287 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5288 struct i915_vma *vma;
5289
896ab1a5 5290 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5291
a70a3148
BW
5292 list_for_each_entry(vma, &o->vma_list, vma_link) {
5293 if (vma->vm == vm)
5294 return vma->node.start;
5295
5296 }
f25748ea
DV
5297 WARN(1, "%s vma for this object not found.\n",
5298 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5299 return -1;
5300}
5301
5302bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5303 struct i915_address_space *vm)
5304{
5305 struct i915_vma *vma;
5306
5307 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5308 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5309 return true;
5310
5311 return false;
5312}
5313
5314bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5315{
5a1d5eb0 5316 struct i915_vma *vma;
a70a3148 5317
5a1d5eb0
CW
5318 list_for_each_entry(vma, &o->vma_list, vma_link)
5319 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5320 return true;
5321
5322 return false;
5323}
5324
5325unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5326 struct i915_address_space *vm)
5327{
5328 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5329 struct i915_vma *vma;
5330
896ab1a5 5331 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5332
5333 BUG_ON(list_empty(&o->vma_list));
5334
5335 list_for_each_entry(vma, &o->vma_list, vma_link)
5336 if (vma->vm == vm)
5337 return vma->node.size;
5338
5339 return 0;
5340}
5341
7dc19d5a 5342static unsigned long
ceabbba5 5343i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5344{
5345 struct drm_i915_private *dev_priv =
ceabbba5 5346 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5347 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5348 unsigned long freed;
b453c4db 5349 bool unlock;
7dc19d5a 5350
b453c4db
CW
5351 if (!i915_gem_shrinker_lock(dev, &unlock))
5352 return SHRINK_STOP;
7dc19d5a 5353
21ab4e74
CW
5354 freed = i915_gem_shrink(dev_priv,
5355 sc->nr_to_scan,
5356 I915_SHRINK_BOUND |
5357 I915_SHRINK_UNBOUND |
5358 I915_SHRINK_PURGEABLE);
d9973b43 5359 if (freed < sc->nr_to_scan)
21ab4e74
CW
5360 freed += i915_gem_shrink(dev_priv,
5361 sc->nr_to_scan - freed,
5362 I915_SHRINK_BOUND |
5363 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5364 if (unlock)
5365 mutex_unlock(&dev->struct_mutex);
d9973b43 5366
7dc19d5a
DC
5367 return freed;
5368}
5c2abbea 5369
2cfcd32a
CW
5370static int
5371i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5372{
5373 struct drm_i915_private *dev_priv =
5374 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5375 struct drm_device *dev = dev_priv->dev;
5376 struct drm_i915_gem_object *obj;
5377 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5378 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5379 bool was_interruptible;
5380 bool unlock;
5381
a1db2fa7 5382 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5383 schedule_timeout_killable(1);
a1db2fa7
CW
5384 if (fatal_signal_pending(current))
5385 return NOTIFY_DONE;
5386 }
2cfcd32a
CW
5387 if (timeout == 0) {
5388 pr_err("Unable to purge GPU memory due lock contention.\n");
5389 return NOTIFY_DONE;
5390 }
5391
5392 was_interruptible = dev_priv->mm.interruptible;
5393 dev_priv->mm.interruptible = false;
5394
005445c5 5395 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5396
5397 dev_priv->mm.interruptible = was_interruptible;
5398
5399 /* Because we may be allocating inside our own driver, we cannot
5400 * assert that there are no objects with pinned pages that are not
5401 * being pointed to by hardware.
5402 */
5403 unbound = bound = pinned = 0;
5404 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5405 if (!obj->base.filp) /* not backed by a freeable object */
5406 continue;
5407
5408 if (obj->pages_pin_count)
5409 pinned += obj->base.size;
5410 else
5411 unbound += obj->base.size;
5412 }
5413 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5414 if (!obj->base.filp)
5415 continue;
5416
5417 if (obj->pages_pin_count)
5418 pinned += obj->base.size;
5419 else
5420 bound += obj->base.size;
5421 }
5422
5423 if (unlock)
5424 mutex_unlock(&dev->struct_mutex);
5425
bb9059d3
CW
5426 if (freed_pages || unbound || bound)
5427 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5428 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5429 if (unbound || bound)
5430 pr_err("%lu and %lu bytes still available in the "
5431 "bound and unbound GPU page lists.\n",
5432 bound, unbound);
5433
005445c5 5434 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5435 return NOTIFY_DONE;
5436}
5437
5c2abbea
BW
5438struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5439{
5440 struct i915_vma *vma;
5441
5c2abbea 5442 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5443 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5444 return NULL;
5445
5446 return vma;
5447}