]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: merge get_gtt_alignment/get_unfenced_gtt_alignment()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
166 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
167 args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
42dcedd4
CW
195void *i915_gem_object_alloc(struct drm_device *dev)
196{
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199}
200
201void i915_gem_object_free(struct drm_i915_gem_object *obj)
202{
203 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204 kmem_cache_free(dev_priv->slab, obj);
205}
206
ff72145b
DA
207static int
208i915_gem_create(struct drm_file *file,
209 struct drm_device *dev,
210 uint64_t size,
211 uint32_t *handle_p)
673a394b 212{
05394f39 213 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
214 int ret;
215 u32 handle;
673a394b 216
ff72145b 217 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
218 if (size == 0)
219 return -EINVAL;
673a394b
EA
220
221 /* Allocate the new object */
ff72145b 222 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
223 if (obj == NULL)
224 return -ENOMEM;
225
05394f39 226 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 227 if (ret) {
05394f39
CW
228 drm_gem_object_release(&obj->base);
229 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 230 i915_gem_object_free(obj);
673a394b 231 return ret;
1dfd9754 232 }
673a394b 233
202f2fef 234 /* drop reference from allocate - handle holds it now */
05394f39 235 drm_gem_object_unreference(&obj->base);
202f2fef
CW
236 trace_i915_gem_object_create(obj);
237
ff72145b 238 *handle_p = handle;
673a394b
EA
239 return 0;
240}
241
ff72145b
DA
242int
243i915_gem_dumb_create(struct drm_file *file,
244 struct drm_device *dev,
245 struct drm_mode_create_dumb *args)
246{
247 /* have to work out size/pitch and return them */
ed0291fd 248 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
249 args->size = args->pitch * args->height;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252}
253
254int i915_gem_dumb_destroy(struct drm_file *file,
255 struct drm_device *dev,
256 uint32_t handle)
257{
258 return drm_gem_handle_delete(file, handle);
259}
260
261/**
262 * Creates a new mm object and returns a handle to it.
263 */
264int
265i915_gem_create_ioctl(struct drm_device *dev, void *data,
266 struct drm_file *file)
267{
268 struct drm_i915_gem_create *args = data;
63ed2cb2 269
ff72145b
DA
270 return i915_gem_create(file, dev,
271 args->size, &args->handle);
272}
273
8461d226
DV
274static inline int
275__copy_to_user_swizzled(char __user *cpu_vaddr,
276 const char *gpu_vaddr, int gpu_offset,
277 int length)
278{
279 int ret, cpu_offset = 0;
280
281 while (length > 0) {
282 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283 int this_length = min(cacheline_end - gpu_offset, length);
284 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287 gpu_vaddr + swizzled_gpu_offset,
288 this_length);
289 if (ret)
290 return ret + length;
291
292 cpu_offset += this_length;
293 gpu_offset += this_length;
294 length -= this_length;
295 }
296
297 return 0;
298}
299
8c59967c 300static inline int
4f0c7cfb
BW
301__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302 const char __user *cpu_vaddr,
8c59967c
DV
303 int length)
304{
305 int ret, cpu_offset = 0;
306
307 while (length > 0) {
308 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309 int this_length = min(cacheline_end - gpu_offset, length);
310 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 if (ret)
316 return ret + length;
317
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
323 return 0;
324}
325
d174bd64
DV
326/* Per-page copy function for the shmem pread fastpath.
327 * Flushes invalid cachelines before reading the target if
328 * needs_clflush is set. */
eb01459f 329static int
d174bd64
DV
330shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331 char __user *user_data,
332 bool page_do_bit17_swizzling, bool needs_clflush)
333{
334 char *vaddr;
335 int ret;
336
e7e58eb5 337 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
338 return -EINVAL;
339
340 vaddr = kmap_atomic(page);
341 if (needs_clflush)
342 drm_clflush_virt_range(vaddr + shmem_page_offset,
343 page_length);
344 ret = __copy_to_user_inatomic(user_data,
345 vaddr + shmem_page_offset,
346 page_length);
347 kunmap_atomic(vaddr);
348
f60d7f0c 349 return ret ? -EFAULT : 0;
d174bd64
DV
350}
351
23c18c71
DV
352static void
353shmem_clflush_swizzled_range(char *addr, unsigned long length,
354 bool swizzled)
355{
e7e58eb5 356 if (unlikely(swizzled)) {
23c18c71
DV
357 unsigned long start = (unsigned long) addr;
358 unsigned long end = (unsigned long) addr + length;
359
360 /* For swizzling simply ensure that we always flush both
361 * channels. Lame, but simple and it works. Swizzled
362 * pwrite/pread is far from a hotpath - current userspace
363 * doesn't use it at all. */
364 start = round_down(start, 128);
365 end = round_up(end, 128);
366
367 drm_clflush_virt_range((void *)start, end - start);
368 } else {
369 drm_clflush_virt_range(addr, length);
370 }
371
372}
373
d174bd64
DV
374/* Only difference to the fast-path function is that this can handle bit17
375 * and uses non-atomic copy and kmap functions. */
376static int
377shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378 char __user *user_data,
379 bool page_do_bit17_swizzling, bool needs_clflush)
380{
381 char *vaddr;
382 int ret;
383
384 vaddr = kmap(page);
385 if (needs_clflush)
23c18c71
DV
386 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387 page_length,
388 page_do_bit17_swizzling);
d174bd64
DV
389
390 if (page_do_bit17_swizzling)
391 ret = __copy_to_user_swizzled(user_data,
392 vaddr, shmem_page_offset,
393 page_length);
394 else
395 ret = __copy_to_user(user_data,
396 vaddr + shmem_page_offset,
397 page_length);
398 kunmap(page);
399
f60d7f0c 400 return ret ? - EFAULT : 0;
d174bd64
DV
401}
402
eb01459f 403static int
dbf7bff0
DV
404i915_gem_shmem_pread(struct drm_device *dev,
405 struct drm_i915_gem_object *obj,
406 struct drm_i915_gem_pread *args,
407 struct drm_file *file)
eb01459f 408{
8461d226 409 char __user *user_data;
eb01459f 410 ssize_t remain;
8461d226 411 loff_t offset;
eb2c0c81 412 int shmem_page_offset, page_length, ret = 0;
8461d226 413 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 414 int prefaulted = 0;
8489731c 415 int needs_clflush = 0;
9da3da66
CW
416 struct scatterlist *sg;
417 int i;
eb01459f 418
8461d226 419 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
420 remain = args->size;
421
8461d226 422 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 423
8489731c
DV
424 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425 /* If we're not in the cpu read domain, set ourself into the gtt
426 * read domain and manually flush cachelines (if required). This
427 * optimizes for the case when the gpu will dirty the data
428 * anyway again before the next pread happens. */
429 if (obj->cache_level == I915_CACHE_NONE)
430 needs_clflush = 1;
6c085a72
CW
431 if (obj->gtt_space) {
432 ret = i915_gem_object_set_to_gtt_domain(obj, false);
433 if (ret)
434 return ret;
435 }
8489731c 436 }
eb01459f 437
f60d7f0c
CW
438 ret = i915_gem_object_get_pages(obj);
439 if (ret)
440 return ret;
441
442 i915_gem_object_pin_pages(obj);
443
8461d226 444 offset = args->offset;
eb01459f 445
9da3da66 446 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
447 struct page *page;
448
9da3da66
CW
449 if (i < offset >> PAGE_SHIFT)
450 continue;
451
452 if (remain <= 0)
453 break;
454
eb01459f
EA
455 /* Operation in this page
456 *
eb01459f 457 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
458 * page_length = bytes to copy for this page
459 */
c8cbbb8b 460 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
461 page_length = remain;
462 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 464
9da3da66 465 page = sg_page(sg);
8461d226
DV
466 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467 (page_to_phys(page) & (1 << 17)) != 0;
468
d174bd64
DV
469 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470 user_data, page_do_bit17_swizzling,
471 needs_clflush);
472 if (ret == 0)
473 goto next_page;
dbf7bff0 474
dbf7bff0
DV
475 mutex_unlock(&dev->struct_mutex);
476
96d79b52 477 if (!prefaulted) {
f56f821f 478 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
479 /* Userspace is tricking us, but we've already clobbered
480 * its pages with the prefault and promised to write the
481 * data up to the first fault. Hence ignore any errors
482 * and just continue. */
483 (void)ret;
484 prefaulted = 1;
485 }
eb01459f 486
d174bd64
DV
487 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488 user_data, page_do_bit17_swizzling,
489 needs_clflush);
eb01459f 490
dbf7bff0 491 mutex_lock(&dev->struct_mutex);
f60d7f0c 492
dbf7bff0 493next_page:
e5281ccd 494 mark_page_accessed(page);
e5281ccd 495
f60d7f0c 496 if (ret)
8461d226 497 goto out;
8461d226 498
eb01459f 499 remain -= page_length;
8461d226 500 user_data += page_length;
eb01459f
EA
501 offset += page_length;
502 }
503
4f27b75d 504out:
f60d7f0c
CW
505 i915_gem_object_unpin_pages(obj);
506
eb01459f
EA
507 return ret;
508}
509
673a394b
EA
510/**
511 * Reads data from the object referenced by handle.
512 *
513 * On error, the contents of *data are undefined.
514 */
515int
516i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 517 struct drm_file *file)
673a394b
EA
518{
519 struct drm_i915_gem_pread *args = data;
05394f39 520 struct drm_i915_gem_object *obj;
35b62a89 521 int ret = 0;
673a394b 522
51311d0a
CW
523 if (args->size == 0)
524 return 0;
525
526 if (!access_ok(VERIFY_WRITE,
527 (char __user *)(uintptr_t)args->data_ptr,
528 args->size))
529 return -EFAULT;
530
4f27b75d 531 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 532 if (ret)
4f27b75d 533 return ret;
673a394b 534
05394f39 535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 536 if (&obj->base == NULL) {
1d7cfea1
CW
537 ret = -ENOENT;
538 goto unlock;
4f27b75d 539 }
673a394b 540
7dcd2499 541 /* Bounds check source. */
05394f39
CW
542 if (args->offset > obj->base.size ||
543 args->size > obj->base.size - args->offset) {
ce9d419d 544 ret = -EINVAL;
35b62a89 545 goto out;
ce9d419d
CW
546 }
547
1286ff73
DV
548 /* prime objects have no backing filp to GEM pread/pwrite
549 * pages from.
550 */
551 if (!obj->base.filp) {
552 ret = -EINVAL;
553 goto out;
554 }
555
db53a302
CW
556 trace_i915_gem_object_pread(obj, args->offset, args->size);
557
dbf7bff0 558 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 559
35b62a89 560out:
05394f39 561 drm_gem_object_unreference(&obj->base);
1d7cfea1 562unlock:
4f27b75d 563 mutex_unlock(&dev->struct_mutex);
eb01459f 564 return ret;
673a394b
EA
565}
566
0839ccb8
KP
567/* This is the fast write path which cannot handle
568 * page faults in the source data
9b7530cc 569 */
0839ccb8
KP
570
571static inline int
572fast_user_write(struct io_mapping *mapping,
573 loff_t page_base, int page_offset,
574 char __user *user_data,
575 int length)
9b7530cc 576{
4f0c7cfb
BW
577 void __iomem *vaddr_atomic;
578 void *vaddr;
0839ccb8 579 unsigned long unwritten;
9b7530cc 580
3e4d3af5 581 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
582 /* We can use the cpu mem copy function because this is X86. */
583 vaddr = (void __force*)vaddr_atomic + page_offset;
584 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 585 user_data, length);
3e4d3af5 586 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 587 return unwritten;
0839ccb8
KP
588}
589
3de09aa3
EA
590/**
591 * This is the fast pwrite path, where we copy the data directly from the
592 * user into the GTT, uncached.
593 */
673a394b 594static int
05394f39
CW
595i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596 struct drm_i915_gem_object *obj,
3de09aa3 597 struct drm_i915_gem_pwrite *args,
05394f39 598 struct drm_file *file)
673a394b 599{
0839ccb8 600 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 601 ssize_t remain;
0839ccb8 602 loff_t offset, page_base;
673a394b 603 char __user *user_data;
935aaa69
DV
604 int page_offset, page_length, ret;
605
86a1ee26 606 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
607 if (ret)
608 goto out;
609
610 ret = i915_gem_object_set_to_gtt_domain(obj, true);
611 if (ret)
612 goto out_unpin;
613
614 ret = i915_gem_object_put_fence(obj);
615 if (ret)
616 goto out_unpin;
673a394b
EA
617
618 user_data = (char __user *) (uintptr_t) args->data_ptr;
619 remain = args->size;
673a394b 620
05394f39 621 offset = obj->gtt_offset + args->offset;
673a394b
EA
622
623 while (remain > 0) {
624 /* Operation in this page
625 *
0839ccb8
KP
626 * page_base = page offset within aperture
627 * page_offset = offset within page
628 * page_length = bytes to copy for this page
673a394b 629 */
c8cbbb8b
CW
630 page_base = offset & PAGE_MASK;
631 page_offset = offset_in_page(offset);
0839ccb8
KP
632 page_length = remain;
633 if ((page_offset + remain) > PAGE_SIZE)
634 page_length = PAGE_SIZE - page_offset;
635
0839ccb8 636 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
637 * source page isn't available. Return the error and we'll
638 * retry in the slow path.
0839ccb8 639 */
fbd5a26d 640 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
641 page_offset, user_data, page_length)) {
642 ret = -EFAULT;
643 goto out_unpin;
644 }
673a394b 645
0839ccb8
KP
646 remain -= page_length;
647 user_data += page_length;
648 offset += page_length;
673a394b 649 }
673a394b 650
935aaa69
DV
651out_unpin:
652 i915_gem_object_unpin(obj);
653out:
3de09aa3 654 return ret;
673a394b
EA
655}
656
d174bd64
DV
657/* Per-page copy function for the shmem pwrite fastpath.
658 * Flushes invalid cachelines before writing to the target if
659 * needs_clflush_before is set and flushes out any written cachelines after
660 * writing if needs_clflush is set. */
3043c60c 661static int
d174bd64
DV
662shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663 char __user *user_data,
664 bool page_do_bit17_swizzling,
665 bool needs_clflush_before,
666 bool needs_clflush_after)
673a394b 667{
d174bd64 668 char *vaddr;
673a394b 669 int ret;
3de09aa3 670
e7e58eb5 671 if (unlikely(page_do_bit17_swizzling))
d174bd64 672 return -EINVAL;
3de09aa3 673
d174bd64
DV
674 vaddr = kmap_atomic(page);
675 if (needs_clflush_before)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679 user_data,
680 page_length);
681 if (needs_clflush_after)
682 drm_clflush_virt_range(vaddr + shmem_page_offset,
683 page_length);
684 kunmap_atomic(vaddr);
3de09aa3 685
755d2218 686 return ret ? -EFAULT : 0;
3de09aa3
EA
687}
688
d174bd64
DV
689/* Only difference to the fast-path function is that this can handle bit17
690 * and uses non-atomic copy and kmap functions. */
3043c60c 691static int
d174bd64
DV
692shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693 char __user *user_data,
694 bool page_do_bit17_swizzling,
695 bool needs_clflush_before,
696 bool needs_clflush_after)
673a394b 697{
d174bd64
DV
698 char *vaddr;
699 int ret;
e5281ccd 700
d174bd64 701 vaddr = kmap(page);
e7e58eb5 702 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
703 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704 page_length,
705 page_do_bit17_swizzling);
d174bd64
DV
706 if (page_do_bit17_swizzling)
707 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
708 user_data,
709 page_length);
d174bd64
DV
710 else
711 ret = __copy_from_user(vaddr + shmem_page_offset,
712 user_data,
713 page_length);
714 if (needs_clflush_after)
23c18c71
DV
715 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716 page_length,
717 page_do_bit17_swizzling);
d174bd64 718 kunmap(page);
40123c1f 719
755d2218 720 return ret ? -EFAULT : 0;
40123c1f
EA
721}
722
40123c1f 723static int
e244a443
DV
724i915_gem_shmem_pwrite(struct drm_device *dev,
725 struct drm_i915_gem_object *obj,
726 struct drm_i915_gem_pwrite *args,
727 struct drm_file *file)
40123c1f 728{
40123c1f 729 ssize_t remain;
8c59967c
DV
730 loff_t offset;
731 char __user *user_data;
eb2c0c81 732 int shmem_page_offset, page_length, ret = 0;
8c59967c 733 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 734 int hit_slowpath = 0;
58642885
DV
735 int needs_clflush_after = 0;
736 int needs_clflush_before = 0;
9da3da66
CW
737 int i;
738 struct scatterlist *sg;
40123c1f 739
8c59967c 740 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
741 remain = args->size;
742
8c59967c 743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 744
58642885
DV
745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746 /* If we're not in the cpu write domain, set ourself into the gtt
747 * write domain and manually flush cachelines (if required). This
748 * optimizes for the case when the gpu will use the data
749 * right away and we therefore have to clflush anyway. */
750 if (obj->cache_level == I915_CACHE_NONE)
751 needs_clflush_after = 1;
6c085a72
CW
752 if (obj->gtt_space) {
753 ret = i915_gem_object_set_to_gtt_domain(obj, true);
754 if (ret)
755 return ret;
756 }
58642885
DV
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
755d2218
CW
764 ret = i915_gem_object_get_pages(obj);
765 if (ret)
766 return ret;
767
768 i915_gem_object_pin_pages(obj);
769
673a394b 770 offset = args->offset;
05394f39 771 obj->dirty = 1;
673a394b 772
9da3da66 773 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 774 struct page *page;
58642885 775 int partial_cacheline_write;
e5281ccd 776
9da3da66
CW
777 if (i < offset >> PAGE_SHIFT)
778 continue;
779
780 if (remain <= 0)
781 break;
782
40123c1f
EA
783 /* Operation in this page
784 *
40123c1f 785 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
786 * page_length = bytes to copy for this page
787 */
c8cbbb8b 788 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
789
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 793
58642885
DV
794 /* If we don't overwrite a cacheline completely we need to be
795 * careful to have up-to-date data by first clflushing. Don't
796 * overcomplicate things and flush the entire patch. */
797 partial_cacheline_write = needs_clflush_before &&
798 ((shmem_page_offset | page_length)
799 & (boot_cpu_data.x86_clflush_size - 1));
800
9da3da66 801 page = sg_page(sg);
8c59967c
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
e244a443
DV
811
812 hit_slowpath = 1;
e244a443 813 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
40123c1f 818
e244a443 819 mutex_lock(&dev->struct_mutex);
755d2218 820
e244a443 821next_page:
e5281ccd
CW
822 set_page_dirty(page);
823 mark_page_accessed(page);
e5281ccd 824
755d2218 825 if (ret)
8c59967c 826 goto out;
8c59967c 827
40123c1f 828 remain -= page_length;
8c59967c 829 user_data += page_length;
40123c1f 830 offset += page_length;
673a394b
EA
831 }
832
fbd5a26d 833out:
755d2218
CW
834 i915_gem_object_unpin_pages(obj);
835
e244a443 836 if (hit_slowpath) {
8dcf015e
DV
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 844 i915_gem_clflush_object(obj);
e76e9aeb 845 i915_gem_chipset_flush(dev);
e244a443 846 }
8c59967c 847 }
673a394b 848
58642885 849 if (needs_clflush_after)
e76e9aeb 850 i915_gem_chipset_flush(dev);
58642885 851
40123c1f 852 return ret;
673a394b
EA
853}
854
855/**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860int
861i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 862 struct drm_file *file)
673a394b
EA
863{
864 struct drm_i915_gem_pwrite *args = data;
05394f39 865 struct drm_i915_gem_object *obj;
51311d0a
CW
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
872 (char __user *)(uintptr_t)args->data_ptr,
873 args->size))
874 return -EFAULT;
875
f56f821f
DV
876 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877 args->size);
51311d0a
CW
878 if (ret)
879 return -EFAULT;
673a394b 880
fbd5a26d 881 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 882 if (ret)
fbd5a26d 883 return ret;
1d7cfea1 884
05394f39 885 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 886 if (&obj->base == NULL) {
1d7cfea1
CW
887 ret = -ENOENT;
888 goto unlock;
fbd5a26d 889 }
673a394b 890
7dcd2499 891 /* Bounds check destination. */
05394f39
CW
892 if (args->offset > obj->base.size ||
893 args->size > obj->base.size - args->offset) {
ce9d419d 894 ret = -EINVAL;
35b62a89 895 goto out;
ce9d419d
CW
896 }
897
1286ff73
DV
898 /* prime objects have no backing filp to GEM pread/pwrite
899 * pages from.
900 */
901 if (!obj->base.filp) {
902 ret = -EINVAL;
903 goto out;
904 }
905
db53a302
CW
906 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
935aaa69 908 ret = -EFAULT;
673a394b
EA
909 /* We can only do the GTT pwrite on untiled buffers, as otherwise
910 * it would end up going through the fenced access, and we'll get
911 * different detiling behavior between reading and writing.
912 * pread/pwrite currently are reading and writing from the CPU
913 * perspective, requiring manual detiling by the client.
914 */
5c0480f2 915 if (obj->phys_obj) {
fbd5a26d 916 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
917 goto out;
918 }
919
86a1ee26 920 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 921 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 922 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 923 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
924 /* Note that the gtt paths might fail with non-page-backed user
925 * pointers (e.g. gtt mappings when moving data between
926 * textures). Fallback to the shmem path in that case. */
fbd5a26d 927 }
673a394b 928
86a1ee26 929 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 930 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 931
35b62a89 932out:
05394f39 933 drm_gem_object_unreference(&obj->base);
1d7cfea1 934unlock:
fbd5a26d 935 mutex_unlock(&dev->struct_mutex);
673a394b
EA
936 return ret;
937}
938
b361237b
CW
939int
940i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941 bool interruptible)
942{
943 if (atomic_read(&dev_priv->mm.wedged)) {
944 struct completion *x = &dev_priv->error_completion;
945 bool recovery_complete;
946 unsigned long flags;
947
948 /* Give the error handler a chance to run. */
949 spin_lock_irqsave(&x->wait.lock, flags);
950 recovery_complete = x->done > 0;
951 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
958 /* Recovery complete, but still wedged means reset failure. */
959 if (recovery_complete)
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966}
967
968/*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972static int
973i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974{
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
980 if (seqno == ring->outstanding_lazy_request)
981 ret = i915_add_request(ring, NULL, NULL);
982
983 return ret;
984}
985
986/**
987 * __wait_seqno - wait until execution of seqno has finished
988 * @ring: the ring expected to report seqno
989 * @seqno: duh!
990 * @interruptible: do an interruptible wait (normally yes)
991 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992 *
993 * Returns 0 if the seqno was found within the alloted time. Else returns the
994 * errno with remaining time filled in timeout argument.
995 */
996static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997 bool interruptible, struct timespec *timeout)
998{
999 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000 struct timespec before, now, wait_time={1,0};
1001 unsigned long timeout_jiffies;
1002 long end;
1003 bool wait_forever = true;
1004 int ret;
1005
1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007 return 0;
1008
1009 trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011 if (timeout != NULL) {
1012 wait_time = *timeout;
1013 wait_forever = false;
1014 }
1015
1016 timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018 if (WARN_ON(!ring->irq_get(ring)))
1019 return -ENODEV;
1020
1021 /* Record current time in case interrupted by signal, or wedged * */
1022 getrawmonotonic(&before);
1023
1024#define EXIT_COND \
1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026 atomic_read(&dev_priv->mm.wedged))
1027 do {
1028 if (interruptible)
1029 end = wait_event_interruptible_timeout(ring->irq_queue,
1030 EXIT_COND,
1031 timeout_jiffies);
1032 else
1033 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034 timeout_jiffies);
1035
1036 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037 if (ret)
1038 end = ret;
1039 } while (end == 0 && wait_forever);
1040
1041 getrawmonotonic(&now);
1042
1043 ring->irq_put(ring);
1044 trace_i915_gem_request_wait_end(ring, seqno);
1045#undef EXIT_COND
1046
1047 if (timeout) {
1048 struct timespec sleep_time = timespec_sub(now, before);
1049 *timeout = timespec_sub(*timeout, sleep_time);
1050 }
1051
1052 switch (end) {
1053 case -EIO:
1054 case -EAGAIN: /* Wedged */
1055 case -ERESTARTSYS: /* Signal */
1056 return (int)end;
1057 case 0: /* Timeout */
1058 if (timeout)
1059 set_normalized_timespec(timeout, 0, 0);
1060 return -ETIME;
1061 default: /* Completed */
1062 WARN_ON(end < 0); /* We're not aware of other errors */
1063 return 0;
1064 }
1065}
1066
1067/**
1068 * Waits for a sequence number to be signaled, and cleans up the
1069 * request and object lists appropriately for that event.
1070 */
1071int
1072i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073{
1074 struct drm_device *dev = ring->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076 bool interruptible = dev_priv->mm.interruptible;
1077 int ret;
1078
1079 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080 BUG_ON(seqno == 0);
1081
1082 ret = i915_gem_check_wedge(dev_priv, interruptible);
1083 if (ret)
1084 return ret;
1085
1086 ret = i915_gem_check_olr(ring, seqno);
1087 if (ret)
1088 return ret;
1089
1090 return __wait_seqno(ring, seqno, interruptible, NULL);
1091}
1092
1093/**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097static __must_check int
1098i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100{
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125}
1126
3236f57a
CW
1127/* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130static __must_check int
1131i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133{
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
1137 u32 seqno;
1138 int ret;
1139
1140 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141 BUG_ON(!dev_priv->mm.interruptible);
1142
1143 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144 if (seqno == 0)
1145 return 0;
1146
1147 ret = i915_gem_check_wedge(dev_priv, true);
1148 if (ret)
1149 return ret;
1150
1151 ret = i915_gem_check_olr(ring, seqno);
1152 if (ret)
1153 return ret;
1154
1155 mutex_unlock(&dev->struct_mutex);
1156 ret = __wait_seqno(ring, seqno, true, NULL);
1157 mutex_lock(&dev->struct_mutex);
1158
1159 i915_gem_retire_requests_ring(ring);
1160
1161 /* Manually manage the write flush as we may have not yet
1162 * retired the buffer.
1163 */
1164 if (obj->last_write_seqno &&
1165 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168 }
1169
1170 return ret;
1171}
1172
673a394b 1173/**
2ef7eeaa
EA
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1176 */
1177int
1178i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1179 struct drm_file *file)
673a394b
EA
1180{
1181 struct drm_i915_gem_set_domain *args = data;
05394f39 1182 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
673a394b
EA
1185 int ret;
1186
2ef7eeaa 1187 /* Only handle setting domains to types used by the CPU. */
21d509e3 1188 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1189 return -EINVAL;
1190
21d509e3 1191 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
76c1dec1 1200 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1201 if (ret)
76c1dec1 1202 return ret;
1d7cfea1 1203
05394f39 1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1205 if (&obj->base == NULL) {
1d7cfea1
CW
1206 ret = -ENOENT;
1207 goto unlock;
76c1dec1 1208 }
673a394b 1209
3236f57a
CW
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
2ef7eeaa
EA
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
2ef7eeaa 1227 } else {
e47c68e9 1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1229 }
1230
3236f57a 1231unref:
05394f39 1232 drm_gem_object_unreference(&obj->base);
1d7cfea1 1233unlock:
673a394b
EA
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236}
1237
1238/**
1239 * Called when user space has done writes to this buffer
1240 */
1241int
1242i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1243 struct drm_file *file)
673a394b
EA
1244{
1245 struct drm_i915_gem_sw_finish *args = data;
05394f39 1246 struct drm_i915_gem_object *obj;
673a394b
EA
1247 int ret = 0;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
673a394b
EA
1257 }
1258
673a394b 1259 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1260 if (obj->pin_count)
e47c68e9
EA
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
05394f39 1263 drm_gem_object_unreference(&obj->base);
1d7cfea1 1264unlock:
673a394b
EA
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267}
1268
1269/**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276int
1277i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1278 struct drm_file *file)
673a394b
EA
1279{
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
673a394b
EA
1282 unsigned long addr;
1283
05394f39 1284 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1285 if (obj == NULL)
bf79cb91 1286 return -ENOENT;
673a394b 1287
1286ff73
DV
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
6be5ceb0 1296 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
bc9025bd 1299 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306}
1307
de151cf6
JB
1308/**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325{
05394f39
CW
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
7d1c4804 1328 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
0f973f27 1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
d9bc7e9f
CW
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
a00b10c3 1341
db53a302
CW
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
eb119bd6
CW
1344 /* Access to snoopable pages through the GTT is incoherent. */
1345 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346 ret = -EINVAL;
1347 goto unlock;
1348 }
1349
d9bc7e9f 1350 /* Now bind it into the GTT if needed */
c9839303
CW
1351 ret = i915_gem_object_pin(obj, 0, true, false);
1352 if (ret)
1353 goto unlock;
4a684a41 1354
c9839303
CW
1355 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356 if (ret)
1357 goto unpin;
74898d7e 1358
06d98131 1359 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1360 if (ret)
c9839303 1361 goto unpin;
7d1c4804 1362
6299f992
CW
1363 obj->fault_mappable = true;
1364
dd2757f8 1365 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1366 page_offset;
1367
1368 /* Finally, remap it using the new GTT offset */
1369 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1370unpin:
1371 i915_gem_object_unpin(obj);
c715089f 1372unlock:
de151cf6 1373 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1374out:
de151cf6 1375 switch (ret) {
d9bc7e9f 1376 case -EIO:
a9340cca
DV
1377 /* If this -EIO is due to a gpu hang, give the reset code a
1378 * chance to clean up the mess. Otherwise return the proper
1379 * SIGBUS. */
1380 if (!atomic_read(&dev_priv->mm.wedged))
1381 return VM_FAULT_SIGBUS;
045e769a 1382 case -EAGAIN:
d9bc7e9f
CW
1383 /* Give the error handler a chance to run and move the
1384 * objects off the GPU active list. Next time we service the
1385 * fault, we should be able to transition the page into the
1386 * GTT without touching the GPU (and so avoid further
1387 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388 * with coherency, just lost writes.
1389 */
045e769a 1390 set_need_resched();
c715089f
CW
1391 case 0:
1392 case -ERESTARTSYS:
bed636ab 1393 case -EINTR:
e79e0fe3
DR
1394 case -EBUSY:
1395 /*
1396 * EBUSY is ok: this just means that another thread
1397 * already did the job.
1398 */
c715089f 1399 return VM_FAULT_NOPAGE;
de151cf6 1400 case -ENOMEM:
de151cf6 1401 return VM_FAULT_OOM;
a7c2e1aa
DV
1402 case -ENOSPC:
1403 return VM_FAULT_SIGBUS;
de151cf6 1404 default:
a7c2e1aa 1405 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1406 return VM_FAULT_SIGBUS;
de151cf6
JB
1407 }
1408}
1409
901782b2
CW
1410/**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
af901ca1 1414 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
d05ca301 1424void
05394f39 1425i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1426{
6299f992
CW
1427 if (!obj->fault_mappable)
1428 return;
901782b2 1429
f6e47884
CW
1430 if (obj->base.dev->dev_mapping)
1431 unmap_mapping_range(obj->base.dev->dev_mapping,
1432 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433 obj->base.size, 1);
fb7d516a 1434
6299f992 1435 obj->fault_mappable = false;
901782b2
CW
1436}
1437
92b88aeb 1438static uint32_t
e28f8711 1439i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1440{
e28f8711 1441 uint32_t gtt_size;
92b88aeb
CW
1442
1443 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1444 tiling_mode == I915_TILING_NONE)
1445 return size;
92b88aeb
CW
1446
1447 /* Previous chips need a power-of-two fence region when tiling */
1448 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1449 gtt_size = 1024*1024;
92b88aeb 1450 else
e28f8711 1451 gtt_size = 512*1024;
92b88aeb 1452
e28f8711
CW
1453 while (gtt_size < size)
1454 gtt_size <<= 1;
92b88aeb 1455
e28f8711 1456 return gtt_size;
92b88aeb
CW
1457}
1458
de151cf6
JB
1459/**
1460 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461 * @obj: object to check
1462 *
1463 * Return the required GTT alignment for an object, taking into account
5e783301 1464 * potential fence register mapping.
de151cf6 1465 */
d865110c
ID
1466uint32_t
1467i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1468 int tiling_mode, bool fenced)
de151cf6 1469{
de151cf6
JB
1470 /*
1471 * Minimum alignment is 4k (GTT page size), but might be greater
1472 * if a fence register is needed for the object.
1473 */
d865110c 1474 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1475 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1476 return 4096;
1477
a00b10c3
CW
1478 /*
1479 * Previous chips need to be aligned to the size of the smallest
1480 * fence register that can contain the object.
1481 */
e28f8711 1482 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1483}
1484
d8cb5086
CW
1485static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1486{
1487 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1488 int ret;
1489
1490 if (obj->base.map_list.map)
1491 return 0;
1492
da494d7c
DV
1493 dev_priv->mm.shrinker_no_lock_stealing = true;
1494
d8cb5086
CW
1495 ret = drm_gem_create_mmap_offset(&obj->base);
1496 if (ret != -ENOSPC)
da494d7c 1497 goto out;
d8cb5086
CW
1498
1499 /* Badly fragmented mmap space? The only way we can recover
1500 * space is by destroying unwanted objects. We can't randomly release
1501 * mmap_offsets as userspace expects them to be persistent for the
1502 * lifetime of the objects. The closest we can is to release the
1503 * offsets on purgeable objects by truncating it and marking it purged,
1504 * which prevents userspace from ever using that object again.
1505 */
1506 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1507 ret = drm_gem_create_mmap_offset(&obj->base);
1508 if (ret != -ENOSPC)
da494d7c 1509 goto out;
d8cb5086
CW
1510
1511 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1512 ret = drm_gem_create_mmap_offset(&obj->base);
1513out:
1514 dev_priv->mm.shrinker_no_lock_stealing = false;
1515
1516 return ret;
d8cb5086
CW
1517}
1518
1519static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1520{
1521 if (!obj->base.map_list.map)
1522 return;
1523
1524 drm_gem_free_mmap_offset(&obj->base);
1525}
1526
de151cf6 1527int
ff72145b
DA
1528i915_gem_mmap_gtt(struct drm_file *file,
1529 struct drm_device *dev,
1530 uint32_t handle,
1531 uint64_t *offset)
de151cf6 1532{
da761a6e 1533 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1534 struct drm_i915_gem_object *obj;
de151cf6
JB
1535 int ret;
1536
76c1dec1 1537 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1538 if (ret)
76c1dec1 1539 return ret;
de151cf6 1540
ff72145b 1541 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1542 if (&obj->base == NULL) {
1d7cfea1
CW
1543 ret = -ENOENT;
1544 goto unlock;
1545 }
de151cf6 1546
05394f39 1547 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1548 ret = -E2BIG;
ff56b0bc 1549 goto out;
da761a6e
CW
1550 }
1551
05394f39 1552 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1553 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1554 ret = -EINVAL;
1555 goto out;
ab18282d
CW
1556 }
1557
d8cb5086
CW
1558 ret = i915_gem_object_create_mmap_offset(obj);
1559 if (ret)
1560 goto out;
de151cf6 1561
ff72145b 1562 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1563
1d7cfea1 1564out:
05394f39 1565 drm_gem_object_unreference(&obj->base);
1d7cfea1 1566unlock:
de151cf6 1567 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1568 return ret;
de151cf6
JB
1569}
1570
ff72145b
DA
1571/**
1572 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1573 * @dev: DRM device
1574 * @data: GTT mapping ioctl data
1575 * @file: GEM object info
1576 *
1577 * Simply returns the fake offset to userspace so it can mmap it.
1578 * The mmap call will end up in drm_gem_mmap(), which will set things
1579 * up so we can get faults in the handler above.
1580 *
1581 * The fault handler will take care of binding the object into the GTT
1582 * (since it may have been evicted to make room for something), allocating
1583 * a fence register, and mapping the appropriate aperture address into
1584 * userspace.
1585 */
1586int
1587i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1588 struct drm_file *file)
1589{
1590 struct drm_i915_gem_mmap_gtt *args = data;
1591
ff72145b
DA
1592 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1593}
1594
225067ee
DV
1595/* Immediately discard the backing storage */
1596static void
1597i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1598{
e5281ccd 1599 struct inode *inode;
e5281ccd 1600
4d6294bf 1601 i915_gem_object_free_mmap_offset(obj);
1286ff73 1602
4d6294bf
CW
1603 if (obj->base.filp == NULL)
1604 return;
e5281ccd 1605
225067ee
DV
1606 /* Our goal here is to return as much of the memory as
1607 * is possible back to the system as we are called from OOM.
1608 * To do this we must instruct the shmfs to drop all of its
1609 * backing pages, *now*.
1610 */
05394f39 1611 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1612 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1613
225067ee
DV
1614 obj->madv = __I915_MADV_PURGED;
1615}
e5281ccd 1616
225067ee
DV
1617static inline int
1618i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1619{
1620 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1621}
1622
5cdf5881 1623static void
05394f39 1624i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1625{
05394f39 1626 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1627 struct scatterlist *sg;
6c085a72 1628 int ret, i;
1286ff73 1629
05394f39 1630 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1631
6c085a72
CW
1632 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633 if (ret) {
1634 /* In the event of a disaster, abandon all caches and
1635 * hope for the best.
1636 */
1637 WARN_ON(ret != -EIO);
1638 i915_gem_clflush_object(obj);
1639 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640 }
1641
6dacfd2f 1642 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1643 i915_gem_object_save_bit_17_swizzle(obj);
1644
05394f39
CW
1645 if (obj->madv == I915_MADV_DONTNEED)
1646 obj->dirty = 0;
3ef94daa 1647
9da3da66
CW
1648 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1649 struct page *page = sg_page(sg);
1650
05394f39 1651 if (obj->dirty)
9da3da66 1652 set_page_dirty(page);
3ef94daa 1653
05394f39 1654 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1655 mark_page_accessed(page);
3ef94daa 1656
9da3da66 1657 page_cache_release(page);
3ef94daa 1658 }
05394f39 1659 obj->dirty = 0;
673a394b 1660
9da3da66
CW
1661 sg_free_table(obj->pages);
1662 kfree(obj->pages);
37e680a1 1663}
6c085a72 1664
37e680a1
CW
1665static int
1666i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667{
1668 const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
2f745ad3 1670 if (obj->pages == NULL)
37e680a1
CW
1671 return 0;
1672
1673 BUG_ON(obj->gtt_space);
6c085a72 1674
a5570178
CW
1675 if (obj->pages_pin_count)
1676 return -EBUSY;
1677
a2165e31
CW
1678 /* ->put_pages might need to allocate memory for the bit17 swizzle
1679 * array, hence protect them from being reaped by removing them from gtt
1680 * lists early. */
1681 list_del(&obj->gtt_list);
1682
37e680a1 1683 ops->put_pages(obj);
05394f39 1684 obj->pages = NULL;
37e680a1 1685
6c085a72
CW
1686 if (i915_gem_object_is_purgeable(obj))
1687 i915_gem_object_truncate(obj);
1688
1689 return 0;
1690}
1691
1692static long
1693i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1694{
1695 struct drm_i915_gem_object *obj, *next;
1696 long count = 0;
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.unbound_list,
1700 gtt_list) {
1701 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1702 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1703 count += obj->base.size >> PAGE_SHIFT;
1704 if (count >= target)
1705 return count;
1706 }
1707 }
1708
1709 list_for_each_entry_safe(obj, next,
1710 &dev_priv->mm.inactive_list,
1711 mm_list) {
1712 if (i915_gem_object_is_purgeable(obj) &&
1713 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1714 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1715 count += obj->base.size >> PAGE_SHIFT;
1716 if (count >= target)
1717 return count;
1718 }
1719 }
1720
1721 return count;
1722}
1723
1724static void
1725i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1726{
1727 struct drm_i915_gem_object *obj, *next;
1728
1729 i915_gem_evict_everything(dev_priv->dev);
1730
1731 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1732 i915_gem_object_put_pages(obj);
225067ee
DV
1733}
1734
37e680a1 1735static int
6c085a72 1736i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1737{
6c085a72 1738 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1739 int page_count, i;
1740 struct address_space *mapping;
9da3da66
CW
1741 struct sg_table *st;
1742 struct scatterlist *sg;
e5281ccd 1743 struct page *page;
6c085a72 1744 gfp_t gfp;
e5281ccd 1745
6c085a72
CW
1746 /* Assert that the object is not currently in any GPU domain. As it
1747 * wasn't in the GTT, there shouldn't be any way it could have been in
1748 * a GPU cache
1749 */
1750 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1751 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1752
9da3da66
CW
1753 st = kmalloc(sizeof(*st), GFP_KERNEL);
1754 if (st == NULL)
1755 return -ENOMEM;
1756
05394f39 1757 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1758 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1759 sg_free_table(st);
1760 kfree(st);
e5281ccd 1761 return -ENOMEM;
9da3da66 1762 }
e5281ccd 1763
9da3da66
CW
1764 /* Get the list of pages out of our struct file. They'll be pinned
1765 * at this point until we release them.
1766 *
1767 * Fail silently without starting the shrinker
1768 */
6c085a72
CW
1769 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1770 gfp = mapping_gfp_mask(mapping);
caf49191 1771 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1772 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1773 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1774 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1775 if (IS_ERR(page)) {
1776 i915_gem_purge(dev_priv, page_count);
1777 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1778 }
1779 if (IS_ERR(page)) {
1780 /* We've tried hard to allocate the memory by reaping
1781 * our own buffer, now let the real VM do its job and
1782 * go down in flames if truly OOM.
1783 */
caf49191 1784 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1785 gfp |= __GFP_IO | __GFP_WAIT;
1786
1787 i915_gem_shrink_all(dev_priv);
1788 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1789 if (IS_ERR(page))
1790 goto err_pages;
1791
caf49191 1792 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1793 gfp &= ~(__GFP_IO | __GFP_WAIT);
1794 }
e5281ccd 1795
9da3da66 1796 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1797 }
1798
74ce6b6c
CW
1799 obj->pages = st;
1800
6dacfd2f 1801 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1802 i915_gem_object_do_bit_17_swizzle(obj);
1803
1804 return 0;
1805
1806err_pages:
9da3da66
CW
1807 for_each_sg(st->sgl, sg, i, page_count)
1808 page_cache_release(sg_page(sg));
1809 sg_free_table(st);
1810 kfree(st);
e5281ccd 1811 return PTR_ERR(page);
673a394b
EA
1812}
1813
37e680a1
CW
1814/* Ensure that the associated pages are gathered from the backing storage
1815 * and pinned into our object. i915_gem_object_get_pages() may be called
1816 * multiple times before they are released by a single call to
1817 * i915_gem_object_put_pages() - once the pages are no longer referenced
1818 * either as a result of memory pressure (reaping pages under the shrinker)
1819 * or as the object is itself released.
1820 */
1821int
1822i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1823{
1824 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1825 const struct drm_i915_gem_object_ops *ops = obj->ops;
1826 int ret;
1827
2f745ad3 1828 if (obj->pages)
37e680a1
CW
1829 return 0;
1830
a5570178
CW
1831 BUG_ON(obj->pages_pin_count);
1832
37e680a1
CW
1833 ret = ops->get_pages(obj);
1834 if (ret)
1835 return ret;
1836
1837 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1838 return 0;
673a394b
EA
1839}
1840
54cf91dc 1841void
05394f39 1842i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1843 struct intel_ring_buffer *ring)
673a394b 1844{
05394f39 1845 struct drm_device *dev = obj->base.dev;
69dc4987 1846 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1847 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1848
852835f3 1849 BUG_ON(ring == NULL);
05394f39 1850 obj->ring = ring;
673a394b
EA
1851
1852 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1853 if (!obj->active) {
1854 drm_gem_object_reference(&obj->base);
1855 obj->active = 1;
673a394b 1856 }
e35a41de 1857
673a394b 1858 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1859 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1860 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1861
0201f1ec 1862 obj->last_read_seqno = seqno;
caea7476 1863
7dd49065 1864 if (obj->fenced_gpu_access) {
caea7476 1865 obj->last_fenced_seqno = seqno;
caea7476 1866
7dd49065
CW
1867 /* Bump MRU to take account of the delayed flush */
1868 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1869 struct drm_i915_fence_reg *reg;
1870
1871 reg = &dev_priv->fence_regs[obj->fence_reg];
1872 list_move_tail(&reg->lru_list,
1873 &dev_priv->mm.fence_list);
1874 }
caea7476
CW
1875 }
1876}
1877
1878static void
caea7476 1879i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1880{
05394f39 1881 struct drm_device *dev = obj->base.dev;
caea7476 1882 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1883
65ce3027 1884 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1885 BUG_ON(!obj->active);
caea7476 1886
f047e395
CW
1887 if (obj->pin_count) /* are we a framebuffer? */
1888 intel_mark_fb_idle(obj);
caea7476 1889
1b50247a 1890 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1891
65ce3027 1892 list_del_init(&obj->ring_list);
caea7476
CW
1893 obj->ring = NULL;
1894
65ce3027
CW
1895 obj->last_read_seqno = 0;
1896 obj->last_write_seqno = 0;
1897 obj->base.write_domain = 0;
1898
1899 obj->last_fenced_seqno = 0;
caea7476 1900 obj->fenced_gpu_access = false;
caea7476
CW
1901
1902 obj->active = 0;
1903 drm_gem_object_unreference(&obj->base);
1904
1905 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1906}
673a394b 1907
9d773091 1908static int
fca26bb4 1909i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1910{
9d773091
CW
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912 struct intel_ring_buffer *ring;
1913 int ret, i, j;
53d227f2 1914
107f27a5 1915 /* Carefully retire all requests without writing to the rings */
9d773091 1916 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1917 ret = intel_ring_idle(ring);
1918 if (ret)
1919 return ret;
9d773091 1920 }
9d773091 1921 i915_gem_retire_requests(dev);
107f27a5
CW
1922
1923 /* Finally reset hw state */
9d773091 1924 for_each_ring(ring, dev_priv, i) {
fca26bb4 1925 intel_ring_init_seqno(ring, seqno);
498d2ac1 1926
9d773091
CW
1927 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1928 ring->sync_seqno[j] = 0;
1929 }
53d227f2 1930
9d773091 1931 return 0;
53d227f2
DV
1932}
1933
fca26bb4
MK
1934int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1935{
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937 int ret;
1938
1939 if (seqno == 0)
1940 return -EINVAL;
1941
1942 /* HWS page needs to be set less than what we
1943 * will inject to ring
1944 */
1945 ret = i915_gem_init_seqno(dev, seqno - 1);
1946 if (ret)
1947 return ret;
1948
1949 /* Carefully set the last_seqno value so that wrap
1950 * detection still works
1951 */
1952 dev_priv->next_seqno = seqno;
1953 dev_priv->last_seqno = seqno - 1;
1954 if (dev_priv->last_seqno == 0)
1955 dev_priv->last_seqno--;
1956
1957 return 0;
1958}
1959
9d773091
CW
1960int
1961i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1962{
9d773091
CW
1963 struct drm_i915_private *dev_priv = dev->dev_private;
1964
1965 /* reserve 0 for non-seqno */
1966 if (dev_priv->next_seqno == 0) {
fca26bb4 1967 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1968 if (ret)
1969 return ret;
53d227f2 1970
9d773091
CW
1971 dev_priv->next_seqno = 1;
1972 }
53d227f2 1973
f72b3435 1974 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 1975 return 0;
53d227f2
DV
1976}
1977
3cce469c 1978int
db53a302 1979i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1980 struct drm_file *file,
acb868d3 1981 u32 *out_seqno)
673a394b 1982{
db53a302 1983 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1984 struct drm_i915_gem_request *request;
a71d8d94 1985 u32 request_ring_position;
673a394b 1986 int was_empty;
3cce469c
CW
1987 int ret;
1988
cc889e0f
DV
1989 /*
1990 * Emit any outstanding flushes - execbuf can fail to emit the flush
1991 * after having emitted the batchbuffer command. Hence we need to fix
1992 * things up similar to emitting the lazy request. The difference here
1993 * is that the flush _must_ happen before the next request, no matter
1994 * what.
1995 */
a7b9761d
CW
1996 ret = intel_ring_flush_all_caches(ring);
1997 if (ret)
1998 return ret;
cc889e0f 1999
acb868d3
CW
2000 request = kmalloc(sizeof(*request), GFP_KERNEL);
2001 if (request == NULL)
2002 return -ENOMEM;
cc889e0f 2003
673a394b 2004
a71d8d94
CW
2005 /* Record the position of the start of the request so that
2006 * should we detect the updated seqno part-way through the
2007 * GPU processing the request, we never over-estimate the
2008 * position of the head.
2009 */
2010 request_ring_position = intel_ring_get_tail(ring);
2011
9d773091 2012 ret = ring->add_request(ring);
3bb73aba
CW
2013 if (ret) {
2014 kfree(request);
2015 return ret;
2016 }
673a394b 2017
9d773091 2018 request->seqno = intel_ring_get_seqno(ring);
852835f3 2019 request->ring = ring;
a71d8d94 2020 request->tail = request_ring_position;
673a394b 2021 request->emitted_jiffies = jiffies;
852835f3
ZN
2022 was_empty = list_empty(&ring->request_list);
2023 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2024 request->file_priv = NULL;
852835f3 2025
db53a302
CW
2026 if (file) {
2027 struct drm_i915_file_private *file_priv = file->driver_priv;
2028
1c25595f 2029 spin_lock(&file_priv->mm.lock);
f787a5f5 2030 request->file_priv = file_priv;
b962442e 2031 list_add_tail(&request->client_list,
f787a5f5 2032 &file_priv->mm.request_list);
1c25595f 2033 spin_unlock(&file_priv->mm.lock);
b962442e 2034 }
673a394b 2035
9d773091 2036 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2037 ring->outstanding_lazy_request = 0;
db53a302 2038
f65d9421 2039 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2040 if (i915_enable_hangcheck) {
2041 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2042 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2043 }
f047e395 2044 if (was_empty) {
b3b079db 2045 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2046 &dev_priv->mm.retire_work,
2047 round_jiffies_up_relative(HZ));
f047e395
CW
2048 intel_mark_busy(dev_priv->dev);
2049 }
f65d9421 2050 }
cc889e0f 2051
acb868d3 2052 if (out_seqno)
9d773091 2053 *out_seqno = request->seqno;
3cce469c 2054 return 0;
673a394b
EA
2055}
2056
f787a5f5
CW
2057static inline void
2058i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2059{
1c25595f 2060 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2061
1c25595f
CW
2062 if (!file_priv)
2063 return;
1c5d22f7 2064
1c25595f 2065 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2066 if (request->file_priv) {
2067 list_del(&request->client_list);
2068 request->file_priv = NULL;
2069 }
1c25595f 2070 spin_unlock(&file_priv->mm.lock);
673a394b 2071}
673a394b 2072
dfaae392
CW
2073static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2074 struct intel_ring_buffer *ring)
9375e446 2075{
dfaae392
CW
2076 while (!list_empty(&ring->request_list)) {
2077 struct drm_i915_gem_request *request;
673a394b 2078
dfaae392
CW
2079 request = list_first_entry(&ring->request_list,
2080 struct drm_i915_gem_request,
2081 list);
de151cf6 2082
dfaae392 2083 list_del(&request->list);
f787a5f5 2084 i915_gem_request_remove_from_client(request);
dfaae392
CW
2085 kfree(request);
2086 }
673a394b 2087
dfaae392 2088 while (!list_empty(&ring->active_list)) {
05394f39 2089 struct drm_i915_gem_object *obj;
9375e446 2090
05394f39
CW
2091 obj = list_first_entry(&ring->active_list,
2092 struct drm_i915_gem_object,
2093 ring_list);
9375e446 2094
05394f39 2095 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2096 }
2097}
2098
312817a3
CW
2099static void i915_gem_reset_fences(struct drm_device *dev)
2100{
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 int i;
2103
4b9de737 2104 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2105 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2106
ada726c7 2107 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2108
ada726c7
CW
2109 if (reg->obj)
2110 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2111
ada726c7
CW
2112 reg->pin_count = 0;
2113 reg->obj = NULL;
2114 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2115 }
ada726c7
CW
2116
2117 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2118}
2119
069efc1d 2120void i915_gem_reset(struct drm_device *dev)
673a394b 2121{
77f01230 2122 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2123 struct drm_i915_gem_object *obj;
b4519513 2124 struct intel_ring_buffer *ring;
1ec14ad3 2125 int i;
673a394b 2126
b4519513
CW
2127 for_each_ring(ring, dev_priv, i)
2128 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2129
dfaae392
CW
2130 /* Move everything out of the GPU domains to ensure we do any
2131 * necessary invalidation upon reuse.
2132 */
05394f39 2133 list_for_each_entry(obj,
77f01230 2134 &dev_priv->mm.inactive_list,
69dc4987 2135 mm_list)
77f01230 2136 {
05394f39 2137 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2138 }
069efc1d
CW
2139
2140 /* The fence registers are invalidated so clear them out */
312817a3 2141 i915_gem_reset_fences(dev);
673a394b
EA
2142}
2143
2144/**
2145 * This function clears the request list as sequence numbers are passed.
2146 */
a71d8d94 2147void
db53a302 2148i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2149{
673a394b
EA
2150 uint32_t seqno;
2151
db53a302 2152 if (list_empty(&ring->request_list))
6c0594a3
KW
2153 return;
2154
db53a302 2155 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2156
b2eadbc8 2157 seqno = ring->get_seqno(ring, true);
1ec14ad3 2158
852835f3 2159 while (!list_empty(&ring->request_list)) {
673a394b 2160 struct drm_i915_gem_request *request;
673a394b 2161
852835f3 2162 request = list_first_entry(&ring->request_list,
673a394b
EA
2163 struct drm_i915_gem_request,
2164 list);
673a394b 2165
dfaae392 2166 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2167 break;
2168
db53a302 2169 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2170 /* We know the GPU must have read the request to have
2171 * sent us the seqno + interrupt, so use the position
2172 * of tail of the request to update the last known position
2173 * of the GPU head.
2174 */
2175 ring->last_retired_head = request->tail;
b84d5f0c
CW
2176
2177 list_del(&request->list);
f787a5f5 2178 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2179 kfree(request);
2180 }
673a394b 2181
b84d5f0c
CW
2182 /* Move any buffers on the active list that are no longer referenced
2183 * by the ringbuffer to the flushing/inactive lists as appropriate.
2184 */
2185 while (!list_empty(&ring->active_list)) {
05394f39 2186 struct drm_i915_gem_object *obj;
b84d5f0c 2187
0206e353 2188 obj = list_first_entry(&ring->active_list,
05394f39
CW
2189 struct drm_i915_gem_object,
2190 ring_list);
673a394b 2191
0201f1ec 2192 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2193 break;
b84d5f0c 2194
65ce3027 2195 i915_gem_object_move_to_inactive(obj);
673a394b 2196 }
9d34e5db 2197
db53a302
CW
2198 if (unlikely(ring->trace_irq_seqno &&
2199 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2200 ring->irq_put(ring);
db53a302 2201 ring->trace_irq_seqno = 0;
9d34e5db 2202 }
23bc5982 2203
db53a302 2204 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2205}
2206
b09a1fec
CW
2207void
2208i915_gem_retire_requests(struct drm_device *dev)
2209{
2210 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2211 struct intel_ring_buffer *ring;
1ec14ad3 2212 int i;
b09a1fec 2213
b4519513
CW
2214 for_each_ring(ring, dev_priv, i)
2215 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2216}
2217
75ef9da2 2218static void
673a394b
EA
2219i915_gem_retire_work_handler(struct work_struct *work)
2220{
2221 drm_i915_private_t *dev_priv;
2222 struct drm_device *dev;
b4519513 2223 struct intel_ring_buffer *ring;
0a58705b
CW
2224 bool idle;
2225 int i;
673a394b
EA
2226
2227 dev_priv = container_of(work, drm_i915_private_t,
2228 mm.retire_work.work);
2229 dev = dev_priv->dev;
2230
891b48cf
CW
2231 /* Come back later if the device is busy... */
2232 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2233 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2234 round_jiffies_up_relative(HZ));
891b48cf
CW
2235 return;
2236 }
673a394b 2237
b09a1fec 2238 i915_gem_retire_requests(dev);
673a394b 2239
0a58705b
CW
2240 /* Send a periodic flush down the ring so we don't hold onto GEM
2241 * objects indefinitely.
673a394b 2242 */
0a58705b 2243 idle = true;
b4519513 2244 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2245 if (ring->gpu_caches_dirty)
2246 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2247
2248 idle &= list_empty(&ring->request_list);
673a394b
EA
2249 }
2250
0a58705b 2251 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2252 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253 round_jiffies_up_relative(HZ));
f047e395
CW
2254 if (idle)
2255 intel_mark_idle(dev);
0a58705b 2256
673a394b 2257 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2258}
2259
30dfebf3
DV
2260/**
2261 * Ensures that an object will eventually get non-busy by flushing any required
2262 * write domains, emitting any outstanding lazy request and retiring and
2263 * completed requests.
2264 */
2265static int
2266i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2267{
2268 int ret;
2269
2270 if (obj->active) {
0201f1ec 2271 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2272 if (ret)
2273 return ret;
2274
30dfebf3
DV
2275 i915_gem_retire_requests_ring(obj->ring);
2276 }
2277
2278 return 0;
2279}
2280
23ba4fd0
BW
2281/**
2282 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2283 * @DRM_IOCTL_ARGS: standard ioctl arguments
2284 *
2285 * Returns 0 if successful, else an error is returned with the remaining time in
2286 * the timeout parameter.
2287 * -ETIME: object is still busy after timeout
2288 * -ERESTARTSYS: signal interrupted the wait
2289 * -ENONENT: object doesn't exist
2290 * Also possible, but rare:
2291 * -EAGAIN: GPU wedged
2292 * -ENOMEM: damn
2293 * -ENODEV: Internal IRQ fail
2294 * -E?: The add request failed
2295 *
2296 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2297 * non-zero timeout parameter the wait ioctl will wait for the given number of
2298 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2299 * without holding struct_mutex the object may become re-busied before this
2300 * function completes. A similar but shorter * race condition exists in the busy
2301 * ioctl
2302 */
2303int
2304i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2305{
2306 struct drm_i915_gem_wait *args = data;
2307 struct drm_i915_gem_object *obj;
2308 struct intel_ring_buffer *ring = NULL;
eac1f14f 2309 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2310 u32 seqno = 0;
2311 int ret = 0;
2312
eac1f14f
BW
2313 if (args->timeout_ns >= 0) {
2314 timeout_stack = ns_to_timespec(args->timeout_ns);
2315 timeout = &timeout_stack;
2316 }
23ba4fd0
BW
2317
2318 ret = i915_mutex_lock_interruptible(dev);
2319 if (ret)
2320 return ret;
2321
2322 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2323 if (&obj->base == NULL) {
2324 mutex_unlock(&dev->struct_mutex);
2325 return -ENOENT;
2326 }
2327
30dfebf3
DV
2328 /* Need to make sure the object gets inactive eventually. */
2329 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2330 if (ret)
2331 goto out;
2332
2333 if (obj->active) {
0201f1ec 2334 seqno = obj->last_read_seqno;
23ba4fd0
BW
2335 ring = obj->ring;
2336 }
2337
2338 if (seqno == 0)
2339 goto out;
2340
23ba4fd0
BW
2341 /* Do this after OLR check to make sure we make forward progress polling
2342 * on this IOCTL with a 0 timeout (like busy ioctl)
2343 */
2344 if (!args->timeout_ns) {
2345 ret = -ETIME;
2346 goto out;
2347 }
2348
2349 drm_gem_object_unreference(&obj->base);
2350 mutex_unlock(&dev->struct_mutex);
2351
eac1f14f
BW
2352 ret = __wait_seqno(ring, seqno, true, timeout);
2353 if (timeout) {
2354 WARN_ON(!timespec_valid(timeout));
2355 args->timeout_ns = timespec_to_ns(timeout);
2356 }
23ba4fd0
BW
2357 return ret;
2358
2359out:
2360 drm_gem_object_unreference(&obj->base);
2361 mutex_unlock(&dev->struct_mutex);
2362 return ret;
2363}
2364
5816d648
BW
2365/**
2366 * i915_gem_object_sync - sync an object to a ring.
2367 *
2368 * @obj: object which may be in use on another ring.
2369 * @to: ring we wish to use the object on. May be NULL.
2370 *
2371 * This code is meant to abstract object synchronization with the GPU.
2372 * Calling with NULL implies synchronizing the object with the CPU
2373 * rather than a particular GPU ring.
2374 *
2375 * Returns 0 if successful, else propagates up the lower layer error.
2376 */
2911a35b
BW
2377int
2378i915_gem_object_sync(struct drm_i915_gem_object *obj,
2379 struct intel_ring_buffer *to)
2380{
2381 struct intel_ring_buffer *from = obj->ring;
2382 u32 seqno;
2383 int ret, idx;
2384
2385 if (from == NULL || to == from)
2386 return 0;
2387
5816d648 2388 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2389 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2390
2391 idx = intel_ring_sync_index(from, to);
2392
0201f1ec 2393 seqno = obj->last_read_seqno;
2911a35b
BW
2394 if (seqno <= from->sync_seqno[idx])
2395 return 0;
2396
b4aca010
BW
2397 ret = i915_gem_check_olr(obj->ring, seqno);
2398 if (ret)
2399 return ret;
2911a35b 2400
1500f7ea 2401 ret = to->sync_to(to, from, seqno);
e3a5a225 2402 if (!ret)
7b01e260
MK
2403 /* We use last_read_seqno because sync_to()
2404 * might have just caused seqno wrap under
2405 * the radar.
2406 */
2407 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2408
e3a5a225 2409 return ret;
2911a35b
BW
2410}
2411
b5ffc9bc
CW
2412static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2413{
2414 u32 old_write_domain, old_read_domains;
2415
b5ffc9bc
CW
2416 /* Act a barrier for all accesses through the GTT */
2417 mb();
2418
2419 /* Force a pagefault for domain tracking on next user access */
2420 i915_gem_release_mmap(obj);
2421
b97c3d9c
KP
2422 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2423 return;
2424
b5ffc9bc
CW
2425 old_read_domains = obj->base.read_domains;
2426 old_write_domain = obj->base.write_domain;
2427
2428 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2429 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2430
2431 trace_i915_gem_object_change_domain(obj,
2432 old_read_domains,
2433 old_write_domain);
2434}
2435
673a394b
EA
2436/**
2437 * Unbinds an object from the GTT aperture.
2438 */
0f973f27 2439int
05394f39 2440i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2441{
7bddb01f 2442 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2443 int ret = 0;
2444
05394f39 2445 if (obj->gtt_space == NULL)
673a394b
EA
2446 return 0;
2447
31d8d651
CW
2448 if (obj->pin_count)
2449 return -EBUSY;
673a394b 2450
c4670ad0
CW
2451 BUG_ON(obj->pages == NULL);
2452
a8198eea 2453 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2454 if (ret)
a8198eea
CW
2455 return ret;
2456 /* Continue on if we fail due to EIO, the GPU is hung so we
2457 * should be safe and we need to cleanup or else we might
2458 * cause memory corruption through use-after-free.
2459 */
2460
b5ffc9bc 2461 i915_gem_object_finish_gtt(obj);
5323fd04 2462
96b47b65 2463 /* release the fence reg _after_ flushing */
d9e86c0e 2464 ret = i915_gem_object_put_fence(obj);
1488fc08 2465 if (ret)
d9e86c0e 2466 return ret;
96b47b65 2467
db53a302
CW
2468 trace_i915_gem_object_unbind(obj);
2469
74898d7e
DV
2470 if (obj->has_global_gtt_mapping)
2471 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2472 if (obj->has_aliasing_ppgtt_mapping) {
2473 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2474 obj->has_aliasing_ppgtt_mapping = 0;
2475 }
74163907 2476 i915_gem_gtt_finish_object(obj);
7bddb01f 2477
6c085a72
CW
2478 list_del(&obj->mm_list);
2479 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2480 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2481 obj->map_and_fenceable = true;
673a394b 2482
05394f39
CW
2483 drm_mm_put_block(obj->gtt_space);
2484 obj->gtt_space = NULL;
2485 obj->gtt_offset = 0;
673a394b 2486
88241785 2487 return 0;
54cf91dc
CW
2488}
2489
b2da9fe5 2490int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2491{
2492 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2493 struct intel_ring_buffer *ring;
1ec14ad3 2494 int ret, i;
4df2faf4 2495
4df2faf4 2496 /* Flush everything onto the inactive list. */
b4519513 2497 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2498 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2499 if (ret)
2500 return ret;
2501
3e960501 2502 ret = intel_ring_idle(ring);
1ec14ad3
CW
2503 if (ret)
2504 return ret;
2505 }
4df2faf4 2506
8a1a49f9 2507 return 0;
4df2faf4
DV
2508}
2509
9ce079e4
CW
2510static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2511 struct drm_i915_gem_object *obj)
4e901fdc 2512{
4e901fdc 2513 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2514 uint64_t val;
2515
9ce079e4
CW
2516 if (obj) {
2517 u32 size = obj->gtt_space->size;
4e901fdc 2518
9ce079e4
CW
2519 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2520 0xfffff000) << 32;
2521 val |= obj->gtt_offset & 0xfffff000;
2522 val |= (uint64_t)((obj->stride / 128) - 1) <<
2523 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2524
9ce079e4
CW
2525 if (obj->tiling_mode == I915_TILING_Y)
2526 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2527 val |= I965_FENCE_REG_VALID;
2528 } else
2529 val = 0;
c6642782 2530
9ce079e4
CW
2531 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2532 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2533}
2534
9ce079e4
CW
2535static void i965_write_fence_reg(struct drm_device *dev, int reg,
2536 struct drm_i915_gem_object *obj)
de151cf6 2537{
de151cf6 2538 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2539 uint64_t val;
2540
9ce079e4
CW
2541 if (obj) {
2542 u32 size = obj->gtt_space->size;
de151cf6 2543
9ce079e4
CW
2544 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2545 0xfffff000) << 32;
2546 val |= obj->gtt_offset & 0xfffff000;
2547 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2548 if (obj->tiling_mode == I915_TILING_Y)
2549 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2550 val |= I965_FENCE_REG_VALID;
2551 } else
2552 val = 0;
c6642782 2553
9ce079e4
CW
2554 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2555 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2556}
2557
9ce079e4
CW
2558static void i915_write_fence_reg(struct drm_device *dev, int reg,
2559 struct drm_i915_gem_object *obj)
de151cf6 2560{
de151cf6 2561 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2562 u32 val;
de151cf6 2563
9ce079e4
CW
2564 if (obj) {
2565 u32 size = obj->gtt_space->size;
2566 int pitch_val;
2567 int tile_width;
c6642782 2568
9ce079e4
CW
2569 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2570 (size & -size) != size ||
2571 (obj->gtt_offset & (size - 1)),
2572 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2573 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2574
9ce079e4
CW
2575 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2576 tile_width = 128;
2577 else
2578 tile_width = 512;
2579
2580 /* Note: pitch better be a power of two tile widths */
2581 pitch_val = obj->stride / tile_width;
2582 pitch_val = ffs(pitch_val) - 1;
2583
2584 val = obj->gtt_offset;
2585 if (obj->tiling_mode == I915_TILING_Y)
2586 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2587 val |= I915_FENCE_SIZE_BITS(size);
2588 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2589 val |= I830_FENCE_REG_VALID;
2590 } else
2591 val = 0;
2592
2593 if (reg < 8)
2594 reg = FENCE_REG_830_0 + reg * 4;
2595 else
2596 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2597
2598 I915_WRITE(reg, val);
2599 POSTING_READ(reg);
de151cf6
JB
2600}
2601
9ce079e4
CW
2602static void i830_write_fence_reg(struct drm_device *dev, int reg,
2603 struct drm_i915_gem_object *obj)
de151cf6 2604{
de151cf6 2605 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2606 uint32_t val;
de151cf6 2607
9ce079e4
CW
2608 if (obj) {
2609 u32 size = obj->gtt_space->size;
2610 uint32_t pitch_val;
de151cf6 2611
9ce079e4
CW
2612 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2613 (size & -size) != size ||
2614 (obj->gtt_offset & (size - 1)),
2615 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2616 obj->gtt_offset, size);
e76a16de 2617
9ce079e4
CW
2618 pitch_val = obj->stride / 128;
2619 pitch_val = ffs(pitch_val) - 1;
de151cf6 2620
9ce079e4
CW
2621 val = obj->gtt_offset;
2622 if (obj->tiling_mode == I915_TILING_Y)
2623 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2624 val |= I830_FENCE_SIZE_BITS(size);
2625 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2626 val |= I830_FENCE_REG_VALID;
2627 } else
2628 val = 0;
c6642782 2629
9ce079e4
CW
2630 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2631 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2632}
2633
2634static void i915_gem_write_fence(struct drm_device *dev, int reg,
2635 struct drm_i915_gem_object *obj)
2636{
2637 switch (INTEL_INFO(dev)->gen) {
2638 case 7:
2639 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2640 case 5:
2641 case 4: i965_write_fence_reg(dev, reg, obj); break;
2642 case 3: i915_write_fence_reg(dev, reg, obj); break;
2643 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2644 default: BUG();
9ce079e4 2645 }
de151cf6
JB
2646}
2647
61050808
CW
2648static inline int fence_number(struct drm_i915_private *dev_priv,
2649 struct drm_i915_fence_reg *fence)
2650{
2651 return fence - dev_priv->fence_regs;
2652}
2653
2654static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2655 struct drm_i915_fence_reg *fence,
2656 bool enable)
2657{
2658 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2659 int reg = fence_number(dev_priv, fence);
2660
2661 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2662
2663 if (enable) {
2664 obj->fence_reg = reg;
2665 fence->obj = obj;
2666 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2667 } else {
2668 obj->fence_reg = I915_FENCE_REG_NONE;
2669 fence->obj = NULL;
2670 list_del_init(&fence->lru_list);
2671 }
2672}
2673
d9e86c0e 2674static int
a360bb1a 2675i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2676{
1c293ea3 2677 if (obj->last_fenced_seqno) {
86d5bc37 2678 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2679 if (ret)
2680 return ret;
d9e86c0e
CW
2681
2682 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2683 }
2684
63256ec5
CW
2685 /* Ensure that all CPU reads are completed before installing a fence
2686 * and all writes before removing the fence.
2687 */
2688 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2689 mb();
2690
86d5bc37 2691 obj->fenced_gpu_access = false;
d9e86c0e
CW
2692 return 0;
2693}
2694
2695int
2696i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2697{
61050808 2698 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2699 int ret;
2700
a360bb1a 2701 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2702 if (ret)
2703 return ret;
2704
61050808
CW
2705 if (obj->fence_reg == I915_FENCE_REG_NONE)
2706 return 0;
d9e86c0e 2707
61050808
CW
2708 i915_gem_object_update_fence(obj,
2709 &dev_priv->fence_regs[obj->fence_reg],
2710 false);
2711 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2712
2713 return 0;
2714}
2715
2716static struct drm_i915_fence_reg *
a360bb1a 2717i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2718{
ae3db24a 2719 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2720 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2721 int i;
ae3db24a
DV
2722
2723 /* First try to find a free reg */
d9e86c0e 2724 avail = NULL;
ae3db24a
DV
2725 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2726 reg = &dev_priv->fence_regs[i];
2727 if (!reg->obj)
d9e86c0e 2728 return reg;
ae3db24a 2729
1690e1eb 2730 if (!reg->pin_count)
d9e86c0e 2731 avail = reg;
ae3db24a
DV
2732 }
2733
d9e86c0e
CW
2734 if (avail == NULL)
2735 return NULL;
ae3db24a
DV
2736
2737 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2738 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2739 if (reg->pin_count)
ae3db24a
DV
2740 continue;
2741
8fe301ad 2742 return reg;
ae3db24a
DV
2743 }
2744
8fe301ad 2745 return NULL;
ae3db24a
DV
2746}
2747
de151cf6 2748/**
9a5a53b3 2749 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2750 * @obj: object to map through a fence reg
2751 *
2752 * When mapping objects through the GTT, userspace wants to be able to write
2753 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2754 * This function walks the fence regs looking for a free one for @obj,
2755 * stealing one if it can't find any.
2756 *
2757 * It then sets up the reg based on the object's properties: address, pitch
2758 * and tiling format.
9a5a53b3
CW
2759 *
2760 * For an untiled surface, this removes any existing fence.
de151cf6 2761 */
8c4b8c3f 2762int
06d98131 2763i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2764{
05394f39 2765 struct drm_device *dev = obj->base.dev;
79e53945 2766 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2767 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2768 struct drm_i915_fence_reg *reg;
ae3db24a 2769 int ret;
de151cf6 2770
14415745
CW
2771 /* Have we updated the tiling parameters upon the object and so
2772 * will need to serialise the write to the associated fence register?
2773 */
5d82e3e6 2774 if (obj->fence_dirty) {
14415745
CW
2775 ret = i915_gem_object_flush_fence(obj);
2776 if (ret)
2777 return ret;
2778 }
9a5a53b3 2779
d9e86c0e 2780 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2781 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2782 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2783 if (!obj->fence_dirty) {
14415745
CW
2784 list_move_tail(&reg->lru_list,
2785 &dev_priv->mm.fence_list);
2786 return 0;
2787 }
2788 } else if (enable) {
2789 reg = i915_find_fence_reg(dev);
2790 if (reg == NULL)
2791 return -EDEADLK;
d9e86c0e 2792
14415745
CW
2793 if (reg->obj) {
2794 struct drm_i915_gem_object *old = reg->obj;
2795
2796 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2797 if (ret)
2798 return ret;
2799
14415745 2800 i915_gem_object_fence_lost(old);
29c5a587 2801 }
14415745 2802 } else
a09ba7fa 2803 return 0;
a09ba7fa 2804
14415745 2805 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2806 obj->fence_dirty = false;
14415745 2807
9ce079e4 2808 return 0;
de151cf6
JB
2809}
2810
42d6ab48
CW
2811static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2812 struct drm_mm_node *gtt_space,
2813 unsigned long cache_level)
2814{
2815 struct drm_mm_node *other;
2816
2817 /* On non-LLC machines we have to be careful when putting differing
2818 * types of snoopable memory together to avoid the prefetcher
4239ca77 2819 * crossing memory domains and dying.
42d6ab48
CW
2820 */
2821 if (HAS_LLC(dev))
2822 return true;
2823
2824 if (gtt_space == NULL)
2825 return true;
2826
2827 if (list_empty(&gtt_space->node_list))
2828 return true;
2829
2830 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2831 if (other->allocated && !other->hole_follows && other->color != cache_level)
2832 return false;
2833
2834 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2835 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2836 return false;
2837
2838 return true;
2839}
2840
2841static void i915_gem_verify_gtt(struct drm_device *dev)
2842{
2843#if WATCH_GTT
2844 struct drm_i915_private *dev_priv = dev->dev_private;
2845 struct drm_i915_gem_object *obj;
2846 int err = 0;
2847
2848 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2849 if (obj->gtt_space == NULL) {
2850 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2851 err++;
2852 continue;
2853 }
2854
2855 if (obj->cache_level != obj->gtt_space->color) {
2856 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2857 obj->gtt_space->start,
2858 obj->gtt_space->start + obj->gtt_space->size,
2859 obj->cache_level,
2860 obj->gtt_space->color);
2861 err++;
2862 continue;
2863 }
2864
2865 if (!i915_gem_valid_gtt_space(dev,
2866 obj->gtt_space,
2867 obj->cache_level)) {
2868 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2869 obj->gtt_space->start,
2870 obj->gtt_space->start + obj->gtt_space->size,
2871 obj->cache_level);
2872 err++;
2873 continue;
2874 }
2875 }
2876
2877 WARN_ON(err);
2878#endif
2879}
2880
673a394b
EA
2881/**
2882 * Finds free space in the GTT aperture and binds the object there.
2883 */
2884static int
05394f39 2885i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2886 unsigned alignment,
86a1ee26
CW
2887 bool map_and_fenceable,
2888 bool nonblocking)
673a394b 2889{
05394f39 2890 struct drm_device *dev = obj->base.dev;
673a394b 2891 drm_i915_private_t *dev_priv = dev->dev_private;
dc9dd7a2 2892 struct drm_mm_node *node;
5e783301 2893 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2894 bool mappable, fenceable;
07f73f69 2895 int ret;
673a394b 2896
05394f39 2897 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2898 DRM_ERROR("Attempting to bind a purgeable object\n");
2899 return -EINVAL;
2900 }
2901
e28f8711
CW
2902 fence_size = i915_gem_get_gtt_size(dev,
2903 obj->base.size,
2904 obj->tiling_mode);
2905 fence_alignment = i915_gem_get_gtt_alignment(dev,
2906 obj->base.size,
d865110c 2907 obj->tiling_mode, true);
e28f8711 2908 unfenced_alignment =
d865110c 2909 i915_gem_get_gtt_alignment(dev,
e28f8711 2910 obj->base.size,
d865110c 2911 obj->tiling_mode, false);
a00b10c3 2912
673a394b 2913 if (alignment == 0)
5e783301
DV
2914 alignment = map_and_fenceable ? fence_alignment :
2915 unfenced_alignment;
75e9e915 2916 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2917 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2918 return -EINVAL;
2919 }
2920
05394f39 2921 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2922
654fc607
CW
2923 /* If the object is bigger than the entire aperture, reject it early
2924 * before evicting everything in a vain attempt to find space.
2925 */
05394f39 2926 if (obj->base.size >
75e9e915 2927 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2928 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2929 return -E2BIG;
2930 }
2931
37e680a1 2932 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2933 if (ret)
2934 return ret;
2935
fbdda6fb
CW
2936 i915_gem_object_pin_pages(obj);
2937
dc9dd7a2
CW
2938 node = kzalloc(sizeof(*node), GFP_KERNEL);
2939 if (node == NULL) {
2940 i915_gem_object_unpin_pages(obj);
2941 return -ENOMEM;
2942 }
2943
673a394b 2944 search_free:
75e9e915 2945 if (map_and_fenceable)
dc9dd7a2
CW
2946 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2947 size, alignment, obj->cache_level,
2948 0, dev_priv->mm.gtt_mappable_end);
920afa77 2949 else
dc9dd7a2
CW
2950 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2951 size, alignment, obj->cache_level);
2952 if (ret) {
75e9e915 2953 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2954 obj->cache_level,
86a1ee26
CW
2955 map_and_fenceable,
2956 nonblocking);
dc9dd7a2
CW
2957 if (ret == 0)
2958 goto search_free;
9731129c 2959
dc9dd7a2
CW
2960 i915_gem_object_unpin_pages(obj);
2961 kfree(node);
2962 return ret;
673a394b 2963 }
dc9dd7a2 2964 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
fbdda6fb 2965 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2966 drm_mm_put_block(node);
42d6ab48 2967 return -EINVAL;
673a394b
EA
2968 }
2969
74163907 2970 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2971 if (ret) {
fbdda6fb 2972 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2973 drm_mm_put_block(node);
6c085a72 2974 return ret;
673a394b 2975 }
673a394b 2976
6c085a72 2977 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2978 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2979
dc9dd7a2
CW
2980 obj->gtt_space = node;
2981 obj->gtt_offset = node->start;
1c5d22f7 2982
75e9e915 2983 fenceable =
dc9dd7a2
CW
2984 node->size == fence_size &&
2985 (node->start & (fence_alignment - 1)) == 0;
a00b10c3 2986
75e9e915 2987 mappable =
05394f39 2988 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2989
05394f39 2990 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2991
fbdda6fb 2992 i915_gem_object_unpin_pages(obj);
db53a302 2993 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2994 i915_gem_verify_gtt(dev);
673a394b
EA
2995 return 0;
2996}
2997
2998void
05394f39 2999i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3000{
673a394b
EA
3001 /* If we don't have a page list set up, then we're not pinned
3002 * to GPU, and we can ignore the cache flush because it'll happen
3003 * again at bind time.
3004 */
05394f39 3005 if (obj->pages == NULL)
673a394b
EA
3006 return;
3007
9c23f7fc
CW
3008 /* If the GPU is snooping the contents of the CPU cache,
3009 * we do not need to manually clear the CPU cache lines. However,
3010 * the caches are only snooped when the render cache is
3011 * flushed/invalidated. As we always have to emit invalidations
3012 * and flushes when moving into and out of the RENDER domain, correct
3013 * snooping behaviour occurs naturally as the result of our domain
3014 * tracking.
3015 */
3016 if (obj->cache_level != I915_CACHE_NONE)
3017 return;
3018
1c5d22f7 3019 trace_i915_gem_object_clflush(obj);
cfa16a0d 3020
9da3da66 3021 drm_clflush_sg(obj->pages);
e47c68e9
EA
3022}
3023
3024/** Flushes the GTT write domain for the object if it's dirty. */
3025static void
05394f39 3026i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3027{
1c5d22f7
CW
3028 uint32_t old_write_domain;
3029
05394f39 3030 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3031 return;
3032
63256ec5 3033 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3034 * to it immediately go to main memory as far as we know, so there's
3035 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3036 *
3037 * However, we do have to enforce the order so that all writes through
3038 * the GTT land before any writes to the device, such as updates to
3039 * the GATT itself.
e47c68e9 3040 */
63256ec5
CW
3041 wmb();
3042
05394f39
CW
3043 old_write_domain = obj->base.write_domain;
3044 obj->base.write_domain = 0;
1c5d22f7
CW
3045
3046 trace_i915_gem_object_change_domain(obj,
05394f39 3047 obj->base.read_domains,
1c5d22f7 3048 old_write_domain);
e47c68e9
EA
3049}
3050
3051/** Flushes the CPU write domain for the object if it's dirty. */
3052static void
05394f39 3053i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3054{
1c5d22f7 3055 uint32_t old_write_domain;
e47c68e9 3056
05394f39 3057 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3058 return;
3059
3060 i915_gem_clflush_object(obj);
e76e9aeb 3061 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3062 old_write_domain = obj->base.write_domain;
3063 obj->base.write_domain = 0;
1c5d22f7
CW
3064
3065 trace_i915_gem_object_change_domain(obj,
05394f39 3066 obj->base.read_domains,
1c5d22f7 3067 old_write_domain);
e47c68e9
EA
3068}
3069
2ef7eeaa
EA
3070/**
3071 * Moves a single object to the GTT read, and possibly write domain.
3072 *
3073 * This function returns when the move is complete, including waiting on
3074 * flushes to occur.
3075 */
79e53945 3076int
2021746e 3077i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3078{
8325a09d 3079 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3080 uint32_t old_write_domain, old_read_domains;
e47c68e9 3081 int ret;
2ef7eeaa 3082
02354392 3083 /* Not valid to be called on unbound objects. */
05394f39 3084 if (obj->gtt_space == NULL)
02354392
EA
3085 return -EINVAL;
3086
8d7e3de1
CW
3087 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3088 return 0;
3089
0201f1ec 3090 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3091 if (ret)
3092 return ret;
3093
7213342d 3094 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3095
05394f39
CW
3096 old_write_domain = obj->base.write_domain;
3097 old_read_domains = obj->base.read_domains;
1c5d22f7 3098
e47c68e9
EA
3099 /* It should now be out of any other write domains, and we can update
3100 * the domain values for our changes.
3101 */
05394f39
CW
3102 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3103 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3104 if (write) {
05394f39
CW
3105 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3106 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3107 obj->dirty = 1;
2ef7eeaa
EA
3108 }
3109
1c5d22f7
CW
3110 trace_i915_gem_object_change_domain(obj,
3111 old_read_domains,
3112 old_write_domain);
3113
8325a09d
CW
3114 /* And bump the LRU for this access */
3115 if (i915_gem_object_is_inactive(obj))
3116 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3117
e47c68e9
EA
3118 return 0;
3119}
3120
e4ffd173
CW
3121int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3122 enum i915_cache_level cache_level)
3123{
7bddb01f
DV
3124 struct drm_device *dev = obj->base.dev;
3125 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3126 int ret;
3127
3128 if (obj->cache_level == cache_level)
3129 return 0;
3130
3131 if (obj->pin_count) {
3132 DRM_DEBUG("can not change the cache level of pinned objects\n");
3133 return -EBUSY;
3134 }
3135
42d6ab48
CW
3136 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3137 ret = i915_gem_object_unbind(obj);
3138 if (ret)
3139 return ret;
3140 }
3141
e4ffd173
CW
3142 if (obj->gtt_space) {
3143 ret = i915_gem_object_finish_gpu(obj);
3144 if (ret)
3145 return ret;
3146
3147 i915_gem_object_finish_gtt(obj);
3148
3149 /* Before SandyBridge, you could not use tiling or fence
3150 * registers with snooped memory, so relinquish any fences
3151 * currently pointing to our region in the aperture.
3152 */
42d6ab48 3153 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3154 ret = i915_gem_object_put_fence(obj);
3155 if (ret)
3156 return ret;
3157 }
3158
74898d7e
DV
3159 if (obj->has_global_gtt_mapping)
3160 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3161 if (obj->has_aliasing_ppgtt_mapping)
3162 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3163 obj, cache_level);
42d6ab48
CW
3164
3165 obj->gtt_space->color = cache_level;
e4ffd173
CW
3166 }
3167
3168 if (cache_level == I915_CACHE_NONE) {
3169 u32 old_read_domains, old_write_domain;
3170
3171 /* If we're coming from LLC cached, then we haven't
3172 * actually been tracking whether the data is in the
3173 * CPU cache or not, since we only allow one bit set
3174 * in obj->write_domain and have been skipping the clflushes.
3175 * Just set it to the CPU cache for now.
3176 */
3177 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3178 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3179
3180 old_read_domains = obj->base.read_domains;
3181 old_write_domain = obj->base.write_domain;
3182
3183 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3184 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3185
3186 trace_i915_gem_object_change_domain(obj,
3187 old_read_domains,
3188 old_write_domain);
3189 }
3190
3191 obj->cache_level = cache_level;
42d6ab48 3192 i915_gem_verify_gtt(dev);
e4ffd173
CW
3193 return 0;
3194}
3195
199adf40
BW
3196int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3197 struct drm_file *file)
e6994aee 3198{
199adf40 3199 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3200 struct drm_i915_gem_object *obj;
3201 int ret;
3202
3203 ret = i915_mutex_lock_interruptible(dev);
3204 if (ret)
3205 return ret;
3206
3207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3208 if (&obj->base == NULL) {
3209 ret = -ENOENT;
3210 goto unlock;
3211 }
3212
199adf40 3213 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3214
3215 drm_gem_object_unreference(&obj->base);
3216unlock:
3217 mutex_unlock(&dev->struct_mutex);
3218 return ret;
3219}
3220
199adf40
BW
3221int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3222 struct drm_file *file)
e6994aee 3223{
199adf40 3224 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3225 struct drm_i915_gem_object *obj;
3226 enum i915_cache_level level;
3227 int ret;
3228
199adf40
BW
3229 switch (args->caching) {
3230 case I915_CACHING_NONE:
e6994aee
CW
3231 level = I915_CACHE_NONE;
3232 break;
199adf40 3233 case I915_CACHING_CACHED:
e6994aee
CW
3234 level = I915_CACHE_LLC;
3235 break;
3236 default:
3237 return -EINVAL;
3238 }
3239
3bc2913e
BW
3240 ret = i915_mutex_lock_interruptible(dev);
3241 if (ret)
3242 return ret;
3243
e6994aee
CW
3244 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3245 if (&obj->base == NULL) {
3246 ret = -ENOENT;
3247 goto unlock;
3248 }
3249
3250 ret = i915_gem_object_set_cache_level(obj, level);
3251
3252 drm_gem_object_unreference(&obj->base);
3253unlock:
3254 mutex_unlock(&dev->struct_mutex);
3255 return ret;
3256}
3257
b9241ea3 3258/*
2da3b9b9
CW
3259 * Prepare buffer for display plane (scanout, cursors, etc).
3260 * Can be called from an uninterruptible phase (modesetting) and allows
3261 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3262 */
3263int
2da3b9b9
CW
3264i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3265 u32 alignment,
919926ae 3266 struct intel_ring_buffer *pipelined)
b9241ea3 3267{
2da3b9b9 3268 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3269 int ret;
3270
0be73284 3271 if (pipelined != obj->ring) {
2911a35b
BW
3272 ret = i915_gem_object_sync(obj, pipelined);
3273 if (ret)
b9241ea3
ZW
3274 return ret;
3275 }
3276
a7ef0640
EA
3277 /* The display engine is not coherent with the LLC cache on gen6. As
3278 * a result, we make sure that the pinning that is about to occur is
3279 * done with uncached PTEs. This is lowest common denominator for all
3280 * chipsets.
3281 *
3282 * However for gen6+, we could do better by using the GFDT bit instead
3283 * of uncaching, which would allow us to flush all the LLC-cached data
3284 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3285 */
3286 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3287 if (ret)
3288 return ret;
3289
2da3b9b9
CW
3290 /* As the user may map the buffer once pinned in the display plane
3291 * (e.g. libkms for the bootup splash), we have to ensure that we
3292 * always use map_and_fenceable for all scanout buffers.
3293 */
86a1ee26 3294 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3295 if (ret)
3296 return ret;
3297
b118c1e3
CW
3298 i915_gem_object_flush_cpu_write_domain(obj);
3299
2da3b9b9 3300 old_write_domain = obj->base.write_domain;
05394f39 3301 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3302
3303 /* It should now be out of any other write domains, and we can update
3304 * the domain values for our changes.
3305 */
e5f1d962 3306 obj->base.write_domain = 0;
05394f39 3307 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3308
3309 trace_i915_gem_object_change_domain(obj,
3310 old_read_domains,
2da3b9b9 3311 old_write_domain);
b9241ea3
ZW
3312
3313 return 0;
3314}
3315
85345517 3316int
a8198eea 3317i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3318{
88241785
CW
3319 int ret;
3320
a8198eea 3321 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3322 return 0;
3323
0201f1ec 3324 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3325 if (ret)
3326 return ret;
3327
a8198eea
CW
3328 /* Ensure that we invalidate the GPU's caches and TLBs. */
3329 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3330 return 0;
85345517
CW
3331}
3332
e47c68e9
EA
3333/**
3334 * Moves a single object to the CPU read, and possibly write domain.
3335 *
3336 * This function returns when the move is complete, including waiting on
3337 * flushes to occur.
3338 */
dabdfe02 3339int
919926ae 3340i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3341{
1c5d22f7 3342 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3343 int ret;
3344
8d7e3de1
CW
3345 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3346 return 0;
3347
0201f1ec 3348 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3349 if (ret)
3350 return ret;
3351
e47c68e9 3352 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3353
05394f39
CW
3354 old_write_domain = obj->base.write_domain;
3355 old_read_domains = obj->base.read_domains;
1c5d22f7 3356
e47c68e9 3357 /* Flush the CPU cache if it's still invalid. */
05394f39 3358 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3359 i915_gem_clflush_object(obj);
2ef7eeaa 3360
05394f39 3361 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3362 }
3363
3364 /* It should now be out of any other write domains, and we can update
3365 * the domain values for our changes.
3366 */
05394f39 3367 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3368
3369 /* If we're writing through the CPU, then the GPU read domains will
3370 * need to be invalidated at next use.
3371 */
3372 if (write) {
05394f39
CW
3373 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3374 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3375 }
2ef7eeaa 3376
1c5d22f7
CW
3377 trace_i915_gem_object_change_domain(obj,
3378 old_read_domains,
3379 old_write_domain);
3380
2ef7eeaa
EA
3381 return 0;
3382}
3383
673a394b
EA
3384/* Throttle our rendering by waiting until the ring has completed our requests
3385 * emitted over 20 msec ago.
3386 *
b962442e
EA
3387 * Note that if we were to use the current jiffies each time around the loop,
3388 * we wouldn't escape the function with any frames outstanding if the time to
3389 * render a frame was over 20ms.
3390 *
673a394b
EA
3391 * This should get us reasonable parallelism between CPU and GPU but also
3392 * relatively low latency when blocking on a particular request to finish.
3393 */
40a5f0de 3394static int
f787a5f5 3395i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3396{
f787a5f5
CW
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3399 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3400 struct drm_i915_gem_request *request;
3401 struct intel_ring_buffer *ring = NULL;
3402 u32 seqno = 0;
3403 int ret;
93533c29 3404
e110e8d6
CW
3405 if (atomic_read(&dev_priv->mm.wedged))
3406 return -EIO;
3407
1c25595f 3408 spin_lock(&file_priv->mm.lock);
f787a5f5 3409 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3410 if (time_after_eq(request->emitted_jiffies, recent_enough))
3411 break;
40a5f0de 3412
f787a5f5
CW
3413 ring = request->ring;
3414 seqno = request->seqno;
b962442e 3415 }
1c25595f 3416 spin_unlock(&file_priv->mm.lock);
40a5f0de 3417
f787a5f5
CW
3418 if (seqno == 0)
3419 return 0;
2bc43b5c 3420
5c81fe85 3421 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3422 if (ret == 0)
3423 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3424
3425 return ret;
3426}
3427
673a394b 3428int
05394f39
CW
3429i915_gem_object_pin(struct drm_i915_gem_object *obj,
3430 uint32_t alignment,
86a1ee26
CW
3431 bool map_and_fenceable,
3432 bool nonblocking)
673a394b 3433{
673a394b
EA
3434 int ret;
3435
7e81a42e
CW
3436 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3437 return -EBUSY;
ac0c6b5a 3438
05394f39
CW
3439 if (obj->gtt_space != NULL) {
3440 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3441 (map_and_fenceable && !obj->map_and_fenceable)) {
3442 WARN(obj->pin_count,
ae7d49d8 3443 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3444 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3445 " obj->map_and_fenceable=%d\n",
05394f39 3446 obj->gtt_offset, alignment,
75e9e915 3447 map_and_fenceable,
05394f39 3448 obj->map_and_fenceable);
ac0c6b5a
CW
3449 ret = i915_gem_object_unbind(obj);
3450 if (ret)
3451 return ret;
3452 }
3453 }
3454
05394f39 3455 if (obj->gtt_space == NULL) {
8742267a
CW
3456 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3457
a00b10c3 3458 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3459 map_and_fenceable,
3460 nonblocking);
9731129c 3461 if (ret)
673a394b 3462 return ret;
8742267a
CW
3463
3464 if (!dev_priv->mm.aliasing_ppgtt)
3465 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3466 }
76446cac 3467
74898d7e
DV
3468 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3469 i915_gem_gtt_bind_object(obj, obj->cache_level);
3470
1b50247a 3471 obj->pin_count++;
6299f992 3472 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3473
3474 return 0;
3475}
3476
3477void
05394f39 3478i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3479{
05394f39
CW
3480 BUG_ON(obj->pin_count == 0);
3481 BUG_ON(obj->gtt_space == NULL);
673a394b 3482
1b50247a 3483 if (--obj->pin_count == 0)
6299f992 3484 obj->pin_mappable = false;
673a394b
EA
3485}
3486
3487int
3488i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3489 struct drm_file *file)
673a394b
EA
3490{
3491 struct drm_i915_gem_pin *args = data;
05394f39 3492 struct drm_i915_gem_object *obj;
673a394b
EA
3493 int ret;
3494
1d7cfea1
CW
3495 ret = i915_mutex_lock_interruptible(dev);
3496 if (ret)
3497 return ret;
673a394b 3498
05394f39 3499 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3500 if (&obj->base == NULL) {
1d7cfea1
CW
3501 ret = -ENOENT;
3502 goto unlock;
673a394b 3503 }
673a394b 3504
05394f39 3505 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3506 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3507 ret = -EINVAL;
3508 goto out;
3ef94daa
CW
3509 }
3510
05394f39 3511 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3512 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3513 args->handle);
1d7cfea1
CW
3514 ret = -EINVAL;
3515 goto out;
79e53945
JB
3516 }
3517
05394f39
CW
3518 obj->user_pin_count++;
3519 obj->pin_filp = file;
3520 if (obj->user_pin_count == 1) {
86a1ee26 3521 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3522 if (ret)
3523 goto out;
673a394b
EA
3524 }
3525
3526 /* XXX - flush the CPU caches for pinned objects
3527 * as the X server doesn't manage domains yet
3528 */
e47c68e9 3529 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3530 args->offset = obj->gtt_offset;
1d7cfea1 3531out:
05394f39 3532 drm_gem_object_unreference(&obj->base);
1d7cfea1 3533unlock:
673a394b 3534 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3535 return ret;
673a394b
EA
3536}
3537
3538int
3539i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3540 struct drm_file *file)
673a394b
EA
3541{
3542 struct drm_i915_gem_pin *args = data;
05394f39 3543 struct drm_i915_gem_object *obj;
76c1dec1 3544 int ret;
673a394b 3545
1d7cfea1
CW
3546 ret = i915_mutex_lock_interruptible(dev);
3547 if (ret)
3548 return ret;
673a394b 3549
05394f39 3550 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3551 if (&obj->base == NULL) {
1d7cfea1
CW
3552 ret = -ENOENT;
3553 goto unlock;
673a394b 3554 }
76c1dec1 3555
05394f39 3556 if (obj->pin_filp != file) {
79e53945
JB
3557 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3558 args->handle);
1d7cfea1
CW
3559 ret = -EINVAL;
3560 goto out;
79e53945 3561 }
05394f39
CW
3562 obj->user_pin_count--;
3563 if (obj->user_pin_count == 0) {
3564 obj->pin_filp = NULL;
79e53945
JB
3565 i915_gem_object_unpin(obj);
3566 }
673a394b 3567
1d7cfea1 3568out:
05394f39 3569 drm_gem_object_unreference(&obj->base);
1d7cfea1 3570unlock:
673a394b 3571 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3572 return ret;
673a394b
EA
3573}
3574
3575int
3576i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3577 struct drm_file *file)
673a394b
EA
3578{
3579 struct drm_i915_gem_busy *args = data;
05394f39 3580 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3581 int ret;
3582
76c1dec1 3583 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3584 if (ret)
76c1dec1 3585 return ret;
673a394b 3586
05394f39 3587 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3588 if (&obj->base == NULL) {
1d7cfea1
CW
3589 ret = -ENOENT;
3590 goto unlock;
673a394b 3591 }
d1b851fc 3592
0be555b6
CW
3593 /* Count all active objects as busy, even if they are currently not used
3594 * by the gpu. Users of this interface expect objects to eventually
3595 * become non-busy without any further actions, therefore emit any
3596 * necessary flushes here.
c4de0a5d 3597 */
30dfebf3 3598 ret = i915_gem_object_flush_active(obj);
0be555b6 3599
30dfebf3 3600 args->busy = obj->active;
e9808edd
CW
3601 if (obj->ring) {
3602 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3603 args->busy |= intel_ring_flag(obj->ring) << 16;
3604 }
673a394b 3605
05394f39 3606 drm_gem_object_unreference(&obj->base);
1d7cfea1 3607unlock:
673a394b 3608 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3609 return ret;
673a394b
EA
3610}
3611
3612int
3613i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3614 struct drm_file *file_priv)
3615{
0206e353 3616 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3617}
3618
3ef94daa
CW
3619int
3620i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3621 struct drm_file *file_priv)
3622{
3623 struct drm_i915_gem_madvise *args = data;
05394f39 3624 struct drm_i915_gem_object *obj;
76c1dec1 3625 int ret;
3ef94daa
CW
3626
3627 switch (args->madv) {
3628 case I915_MADV_DONTNEED:
3629 case I915_MADV_WILLNEED:
3630 break;
3631 default:
3632 return -EINVAL;
3633 }
3634
1d7cfea1
CW
3635 ret = i915_mutex_lock_interruptible(dev);
3636 if (ret)
3637 return ret;
3638
05394f39 3639 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3640 if (&obj->base == NULL) {
1d7cfea1
CW
3641 ret = -ENOENT;
3642 goto unlock;
3ef94daa 3643 }
3ef94daa 3644
05394f39 3645 if (obj->pin_count) {
1d7cfea1
CW
3646 ret = -EINVAL;
3647 goto out;
3ef94daa
CW
3648 }
3649
05394f39
CW
3650 if (obj->madv != __I915_MADV_PURGED)
3651 obj->madv = args->madv;
3ef94daa 3652
6c085a72
CW
3653 /* if the object is no longer attached, discard its backing storage */
3654 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3655 i915_gem_object_truncate(obj);
3656
05394f39 3657 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3658
1d7cfea1 3659out:
05394f39 3660 drm_gem_object_unreference(&obj->base);
1d7cfea1 3661unlock:
3ef94daa 3662 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3663 return ret;
3ef94daa
CW
3664}
3665
37e680a1
CW
3666void i915_gem_object_init(struct drm_i915_gem_object *obj,
3667 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3668{
0327d6ba
CW
3669 INIT_LIST_HEAD(&obj->mm_list);
3670 INIT_LIST_HEAD(&obj->gtt_list);
3671 INIT_LIST_HEAD(&obj->ring_list);
3672 INIT_LIST_HEAD(&obj->exec_list);
3673
37e680a1
CW
3674 obj->ops = ops;
3675
0327d6ba
CW
3676 obj->fence_reg = I915_FENCE_REG_NONE;
3677 obj->madv = I915_MADV_WILLNEED;
3678 /* Avoid an unnecessary call to unbind on the first bind. */
3679 obj->map_and_fenceable = true;
3680
3681 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3682}
3683
37e680a1
CW
3684static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3685 .get_pages = i915_gem_object_get_pages_gtt,
3686 .put_pages = i915_gem_object_put_pages_gtt,
3687};
3688
05394f39
CW
3689struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3690 size_t size)
ac52bc56 3691{
c397b908 3692 struct drm_i915_gem_object *obj;
5949eac4 3693 struct address_space *mapping;
1a240d4d 3694 gfp_t mask;
ac52bc56 3695
42dcedd4 3696 obj = i915_gem_object_alloc(dev);
c397b908
DV
3697 if (obj == NULL)
3698 return NULL;
673a394b 3699
c397b908 3700 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3701 i915_gem_object_free(obj);
c397b908
DV
3702 return NULL;
3703 }
673a394b 3704
bed1ea95
CW
3705 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3706 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3707 /* 965gm cannot relocate objects above 4GiB. */
3708 mask &= ~__GFP_HIGHMEM;
3709 mask |= __GFP_DMA32;
3710 }
3711
5949eac4 3712 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3713 mapping_set_gfp_mask(mapping, mask);
5949eac4 3714
37e680a1 3715 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3716
c397b908
DV
3717 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3718 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3719
3d29b842
ED
3720 if (HAS_LLC(dev)) {
3721 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3722 * cache) for about a 10% performance improvement
3723 * compared to uncached. Graphics requests other than
3724 * display scanout are coherent with the CPU in
3725 * accessing this cache. This means in this mode we
3726 * don't need to clflush on the CPU side, and on the
3727 * GPU side we only need to flush internal caches to
3728 * get data visible to the CPU.
3729 *
3730 * However, we maintain the display planes as UC, and so
3731 * need to rebind when first used as such.
3732 */
3733 obj->cache_level = I915_CACHE_LLC;
3734 } else
3735 obj->cache_level = I915_CACHE_NONE;
3736
05394f39 3737 return obj;
c397b908
DV
3738}
3739
3740int i915_gem_init_object(struct drm_gem_object *obj)
3741{
3742 BUG();
de151cf6 3743
673a394b
EA
3744 return 0;
3745}
3746
1488fc08 3747void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3748{
1488fc08 3749 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3750 struct drm_device *dev = obj->base.dev;
be72615b 3751 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3752
26e12f89
CW
3753 trace_i915_gem_object_destroy(obj);
3754
1488fc08
CW
3755 if (obj->phys_obj)
3756 i915_gem_detach_phys_object(dev, obj);
3757
3758 obj->pin_count = 0;
3759 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3760 bool was_interruptible;
3761
3762 was_interruptible = dev_priv->mm.interruptible;
3763 dev_priv->mm.interruptible = false;
3764
3765 WARN_ON(i915_gem_object_unbind(obj));
3766
3767 dev_priv->mm.interruptible = was_interruptible;
3768 }
3769
a5570178 3770 obj->pages_pin_count = 0;
37e680a1 3771 i915_gem_object_put_pages(obj);
d8cb5086 3772 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3773 i915_gem_object_release_stolen(obj);
de151cf6 3774
9da3da66
CW
3775 BUG_ON(obj->pages);
3776
2f745ad3
CW
3777 if (obj->base.import_attach)
3778 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3779
05394f39
CW
3780 drm_gem_object_release(&obj->base);
3781 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3782
05394f39 3783 kfree(obj->bit_17);
42dcedd4 3784 i915_gem_object_free(obj);
673a394b
EA
3785}
3786
29105ccc
CW
3787int
3788i915_gem_idle(struct drm_device *dev)
3789{
3790 drm_i915_private_t *dev_priv = dev->dev_private;
3791 int ret;
28dfe52a 3792
29105ccc 3793 mutex_lock(&dev->struct_mutex);
1c5d22f7 3794
87acb0a5 3795 if (dev_priv->mm.suspended) {
29105ccc
CW
3796 mutex_unlock(&dev->struct_mutex);
3797 return 0;
28dfe52a
EA
3798 }
3799
b2da9fe5 3800 ret = i915_gpu_idle(dev);
6dbe2772
KP
3801 if (ret) {
3802 mutex_unlock(&dev->struct_mutex);
673a394b 3803 return ret;
6dbe2772 3804 }
b2da9fe5 3805 i915_gem_retire_requests(dev);
673a394b 3806
29105ccc 3807 /* Under UMS, be paranoid and evict. */
a39d7efc 3808 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3809 i915_gem_evict_everything(dev);
29105ccc 3810
312817a3
CW
3811 i915_gem_reset_fences(dev);
3812
29105ccc
CW
3813 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3814 * We need to replace this with a semaphore, or something.
3815 * And not confound mm.suspended!
3816 */
3817 dev_priv->mm.suspended = 1;
bc0c7f14 3818 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3819
3820 i915_kernel_lost_context(dev);
6dbe2772 3821 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3822
6dbe2772
KP
3823 mutex_unlock(&dev->struct_mutex);
3824
29105ccc
CW
3825 /* Cancel the retire work handler, which should be idle now. */
3826 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3827
673a394b
EA
3828 return 0;
3829}
3830
b9524a1e
BW
3831void i915_gem_l3_remap(struct drm_device *dev)
3832{
3833 drm_i915_private_t *dev_priv = dev->dev_private;
3834 u32 misccpctl;
3835 int i;
3836
3837 if (!IS_IVYBRIDGE(dev))
3838 return;
3839
a4da4fa4 3840 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3841 return;
3842
3843 misccpctl = I915_READ(GEN7_MISCCPCTL);
3844 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3845 POSTING_READ(GEN7_MISCCPCTL);
3846
3847 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3848 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3849 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3850 DRM_DEBUG("0x%x was already programmed to %x\n",
3851 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3852 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3853 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3854 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3855 }
3856
3857 /* Make sure all the writes land before disabling dop clock gating */
3858 POSTING_READ(GEN7_L3LOG_BASE);
3859
3860 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3861}
3862
f691e2f4
DV
3863void i915_gem_init_swizzling(struct drm_device *dev)
3864{
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866
11782b02 3867 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3868 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3869 return;
3870
3871 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3872 DISP_TILE_SURFACE_SWIZZLING);
3873
11782b02
DV
3874 if (IS_GEN5(dev))
3875 return;
3876
f691e2f4
DV
3877 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3878 if (IS_GEN6(dev))
6b26c86d 3879 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 3880 else if (IS_GEN7(dev))
6b26c86d 3881 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
3882 else
3883 BUG();
f691e2f4 3884}
e21af88d 3885
67b1b571
CW
3886static bool
3887intel_enable_blt(struct drm_device *dev)
3888{
3889 if (!HAS_BLT(dev))
3890 return false;
3891
3892 /* The blitter was dysfunctional on early prototypes */
3893 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3894 DRM_INFO("BLT not supported on this pre-production hardware;"
3895 " graphics performance will be degraded.\n");
3896 return false;
3897 }
3898
3899 return true;
3900}
3901
8187a2b7 3902int
f691e2f4 3903i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3904{
3905 drm_i915_private_t *dev_priv = dev->dev_private;
3906 int ret;
68f95ba9 3907
e76e9aeb 3908 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3909 return -EIO;
3910
eda2d7f5
RV
3911 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3912 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3913
b9524a1e
BW
3914 i915_gem_l3_remap(dev);
3915
f691e2f4
DV
3916 i915_gem_init_swizzling(dev);
3917
f7e98ad4
MK
3918 dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3919
5c1143bb 3920 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3921 if (ret)
b6913e4b 3922 return ret;
68f95ba9
CW
3923
3924 if (HAS_BSD(dev)) {
5c1143bb 3925 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3926 if (ret)
3927 goto cleanup_render_ring;
d1b851fc 3928 }
68f95ba9 3929
67b1b571 3930 if (intel_enable_blt(dev)) {
549f7365
CW
3931 ret = intel_init_blt_ring_buffer(dev);
3932 if (ret)
3933 goto cleanup_bsd_ring;
3934 }
3935
254f965c
BW
3936 /*
3937 * XXX: There was some w/a described somewhere suggesting loading
3938 * contexts before PPGTT.
3939 */
3940 i915_gem_context_init(dev);
e21af88d
DV
3941 i915_gem_init_ppgtt(dev);
3942
68f95ba9
CW
3943 return 0;
3944
549f7365 3945cleanup_bsd_ring:
1ec14ad3 3946 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3947cleanup_render_ring:
1ec14ad3 3948 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3949 return ret;
3950}
3951
1070a42b
CW
3952int i915_gem_init(struct drm_device *dev)
3953{
3954 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
3955 int ret;
3956
1070a42b 3957 mutex_lock(&dev->struct_mutex);
d7e5008f 3958 i915_gem_init_global_gtt(dev);
1070a42b
CW
3959 ret = i915_gem_init_hw(dev);
3960 mutex_unlock(&dev->struct_mutex);
3961 if (ret) {
3962 i915_gem_cleanup_aliasing_ppgtt(dev);
3963 return ret;
3964 }
3965
53ca26ca
DV
3966 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3967 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3968 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3969 return 0;
3970}
3971
8187a2b7
ZN
3972void
3973i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3974{
3975 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3976 struct intel_ring_buffer *ring;
1ec14ad3 3977 int i;
8187a2b7 3978
b4519513
CW
3979 for_each_ring(ring, dev_priv, i)
3980 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3981}
3982
673a394b
EA
3983int
3984i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3985 struct drm_file *file_priv)
3986{
3987 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3988 int ret;
673a394b 3989
79e53945
JB
3990 if (drm_core_check_feature(dev, DRIVER_MODESET))
3991 return 0;
3992
ba1234d1 3993 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3994 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3995 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3996 }
3997
673a394b 3998 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3999 dev_priv->mm.suspended = 0;
4000
f691e2f4 4001 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4002 if (ret != 0) {
4003 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4004 return ret;
d816f6ac 4005 }
9bb2d6f9 4006
69dc4987 4007 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4008 mutex_unlock(&dev->struct_mutex);
dbb19d30 4009
5f35308b
CW
4010 ret = drm_irq_install(dev);
4011 if (ret)
4012 goto cleanup_ringbuffer;
dbb19d30 4013
673a394b 4014 return 0;
5f35308b
CW
4015
4016cleanup_ringbuffer:
4017 mutex_lock(&dev->struct_mutex);
4018 i915_gem_cleanup_ringbuffer(dev);
4019 dev_priv->mm.suspended = 1;
4020 mutex_unlock(&dev->struct_mutex);
4021
4022 return ret;
673a394b
EA
4023}
4024
4025int
4026i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4027 struct drm_file *file_priv)
4028{
79e53945
JB
4029 if (drm_core_check_feature(dev, DRIVER_MODESET))
4030 return 0;
4031
dbb19d30 4032 drm_irq_uninstall(dev);
e6890f6f 4033 return i915_gem_idle(dev);
673a394b
EA
4034}
4035
4036void
4037i915_gem_lastclose(struct drm_device *dev)
4038{
4039 int ret;
673a394b 4040
e806b495
EA
4041 if (drm_core_check_feature(dev, DRIVER_MODESET))
4042 return;
4043
6dbe2772
KP
4044 ret = i915_gem_idle(dev);
4045 if (ret)
4046 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4047}
4048
64193406
CW
4049static void
4050init_ring_lists(struct intel_ring_buffer *ring)
4051{
4052 INIT_LIST_HEAD(&ring->active_list);
4053 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4054}
4055
673a394b
EA
4056void
4057i915_gem_load(struct drm_device *dev)
4058{
4059 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4060 int i;
4061
4062 dev_priv->slab =
4063 kmem_cache_create("i915_gem_object",
4064 sizeof(struct drm_i915_gem_object), 0,
4065 SLAB_HWCACHE_ALIGN,
4066 NULL);
673a394b 4067
69dc4987 4068 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4069 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4070 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4071 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4072 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4073 for (i = 0; i < I915_NUM_RINGS; i++)
4074 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4075 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4076 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4077 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4078 i915_gem_retire_work_handler);
30dbf0c0 4079 init_completion(&dev_priv->error_completion);
31169714 4080
94400120
DA
4081 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4082 if (IS_GEN3(dev)) {
50743298
DV
4083 I915_WRITE(MI_ARB_STATE,
4084 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4085 }
4086
72bfa19c
CW
4087 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4088
de151cf6 4089 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4090 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4091 dev_priv->fence_reg_start = 3;
de151cf6 4092
a6c45cf0 4093 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4094 dev_priv->num_fence_regs = 16;
4095 else
4096 dev_priv->num_fence_regs = 8;
4097
b5aa8a0f 4098 /* Initialize fence registers to zero */
ada726c7 4099 i915_gem_reset_fences(dev);
10ed13e4 4100
673a394b 4101 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4102 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4103
ce453d81
CW
4104 dev_priv->mm.interruptible = true;
4105
17250b71
CW
4106 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4107 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4108 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4109}
71acb5eb
DA
4110
4111/*
4112 * Create a physically contiguous memory object for this object
4113 * e.g. for cursor + overlay regs
4114 */
995b6762
CW
4115static int i915_gem_init_phys_object(struct drm_device *dev,
4116 int id, int size, int align)
71acb5eb
DA
4117{
4118 drm_i915_private_t *dev_priv = dev->dev_private;
4119 struct drm_i915_gem_phys_object *phys_obj;
4120 int ret;
4121
4122 if (dev_priv->mm.phys_objs[id - 1] || !size)
4123 return 0;
4124
9a298b2a 4125 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4126 if (!phys_obj)
4127 return -ENOMEM;
4128
4129 phys_obj->id = id;
4130
6eeefaf3 4131 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4132 if (!phys_obj->handle) {
4133 ret = -ENOMEM;
4134 goto kfree_obj;
4135 }
4136#ifdef CONFIG_X86
4137 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4138#endif
4139
4140 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4141
4142 return 0;
4143kfree_obj:
9a298b2a 4144 kfree(phys_obj);
71acb5eb
DA
4145 return ret;
4146}
4147
995b6762 4148static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4149{
4150 drm_i915_private_t *dev_priv = dev->dev_private;
4151 struct drm_i915_gem_phys_object *phys_obj;
4152
4153 if (!dev_priv->mm.phys_objs[id - 1])
4154 return;
4155
4156 phys_obj = dev_priv->mm.phys_objs[id - 1];
4157 if (phys_obj->cur_obj) {
4158 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4159 }
4160
4161#ifdef CONFIG_X86
4162 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4163#endif
4164 drm_pci_free(dev, phys_obj->handle);
4165 kfree(phys_obj);
4166 dev_priv->mm.phys_objs[id - 1] = NULL;
4167}
4168
4169void i915_gem_free_all_phys_object(struct drm_device *dev)
4170{
4171 int i;
4172
260883c8 4173 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4174 i915_gem_free_phys_object(dev, i);
4175}
4176
4177void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4178 struct drm_i915_gem_object *obj)
71acb5eb 4179{
05394f39 4180 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4181 char *vaddr;
71acb5eb 4182 int i;
71acb5eb
DA
4183 int page_count;
4184
05394f39 4185 if (!obj->phys_obj)
71acb5eb 4186 return;
05394f39 4187 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4188
05394f39 4189 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4190 for (i = 0; i < page_count; i++) {
5949eac4 4191 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4192 if (!IS_ERR(page)) {
4193 char *dst = kmap_atomic(page);
4194 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4195 kunmap_atomic(dst);
4196
4197 drm_clflush_pages(&page, 1);
4198
4199 set_page_dirty(page);
4200 mark_page_accessed(page);
4201 page_cache_release(page);
4202 }
71acb5eb 4203 }
e76e9aeb 4204 i915_gem_chipset_flush(dev);
d78b47b9 4205
05394f39
CW
4206 obj->phys_obj->cur_obj = NULL;
4207 obj->phys_obj = NULL;
71acb5eb
DA
4208}
4209
4210int
4211i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4212 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4213 int id,
4214 int align)
71acb5eb 4215{
05394f39 4216 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4217 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4218 int ret = 0;
4219 int page_count;
4220 int i;
4221
4222 if (id > I915_MAX_PHYS_OBJECT)
4223 return -EINVAL;
4224
05394f39
CW
4225 if (obj->phys_obj) {
4226 if (obj->phys_obj->id == id)
71acb5eb
DA
4227 return 0;
4228 i915_gem_detach_phys_object(dev, obj);
4229 }
4230
71acb5eb
DA
4231 /* create a new object */
4232 if (!dev_priv->mm.phys_objs[id - 1]) {
4233 ret = i915_gem_init_phys_object(dev, id,
05394f39 4234 obj->base.size, align);
71acb5eb 4235 if (ret) {
05394f39
CW
4236 DRM_ERROR("failed to init phys object %d size: %zu\n",
4237 id, obj->base.size);
e5281ccd 4238 return ret;
71acb5eb
DA
4239 }
4240 }
4241
4242 /* bind to the object */
05394f39
CW
4243 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4244 obj->phys_obj->cur_obj = obj;
71acb5eb 4245
05394f39 4246 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4247
4248 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4249 struct page *page;
4250 char *dst, *src;
4251
5949eac4 4252 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4253 if (IS_ERR(page))
4254 return PTR_ERR(page);
71acb5eb 4255
ff75b9bc 4256 src = kmap_atomic(page);
05394f39 4257 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4258 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4259 kunmap_atomic(src);
71acb5eb 4260
e5281ccd
CW
4261 mark_page_accessed(page);
4262 page_cache_release(page);
4263 }
d78b47b9 4264
71acb5eb 4265 return 0;
71acb5eb
DA
4266}
4267
4268static int
05394f39
CW
4269i915_gem_phys_pwrite(struct drm_device *dev,
4270 struct drm_i915_gem_object *obj,
71acb5eb
DA
4271 struct drm_i915_gem_pwrite *args,
4272 struct drm_file *file_priv)
4273{
05394f39 4274 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4275 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4276
b47b30cc
CW
4277 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4278 unsigned long unwritten;
4279
4280 /* The physical object once assigned is fixed for the lifetime
4281 * of the obj, so we can safely drop the lock and continue
4282 * to access vaddr.
4283 */
4284 mutex_unlock(&dev->struct_mutex);
4285 unwritten = copy_from_user(vaddr, user_data, args->size);
4286 mutex_lock(&dev->struct_mutex);
4287 if (unwritten)
4288 return -EFAULT;
4289 }
71acb5eb 4290
e76e9aeb 4291 i915_gem_chipset_flush(dev);
71acb5eb
DA
4292 return 0;
4293}
b962442e 4294
f787a5f5 4295void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4296{
f787a5f5 4297 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4298
4299 /* Clean up our request list when the client is going away, so that
4300 * later retire_requests won't dereference our soon-to-be-gone
4301 * file_priv.
4302 */
1c25595f 4303 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4304 while (!list_empty(&file_priv->mm.request_list)) {
4305 struct drm_i915_gem_request *request;
4306
4307 request = list_first_entry(&file_priv->mm.request_list,
4308 struct drm_i915_gem_request,
4309 client_list);
4310 list_del(&request->client_list);
4311 request->file_priv = NULL;
4312 }
1c25595f 4313 spin_unlock(&file_priv->mm.lock);
b962442e 4314}
31169714 4315
5774506f
CW
4316static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4317{
4318 if (!mutex_is_locked(mutex))
4319 return false;
4320
4321#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4322 return mutex->owner == task;
4323#else
4324 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4325 return false;
4326#endif
4327}
4328
31169714 4329static int
1495f230 4330i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4331{
17250b71
CW
4332 struct drm_i915_private *dev_priv =
4333 container_of(shrinker,
4334 struct drm_i915_private,
4335 mm.inactive_shrinker);
4336 struct drm_device *dev = dev_priv->dev;
6c085a72 4337 struct drm_i915_gem_object *obj;
1495f230 4338 int nr_to_scan = sc->nr_to_scan;
5774506f 4339 bool unlock = true;
17250b71
CW
4340 int cnt;
4341
5774506f
CW
4342 if (!mutex_trylock(&dev->struct_mutex)) {
4343 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4344 return 0;
4345
677feac2
DV
4346 if (dev_priv->mm.shrinker_no_lock_stealing)
4347 return 0;
4348
5774506f
CW
4349 unlock = false;
4350 }
31169714 4351
6c085a72
CW
4352 if (nr_to_scan) {
4353 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4354 if (nr_to_scan > 0)
4355 i915_gem_shrink_all(dev_priv);
31169714
CW
4356 }
4357
17250b71 4358 cnt = 0;
6c085a72 4359 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4360 if (obj->pages_pin_count == 0)
4361 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4362 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4363 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4364 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4365
5774506f
CW
4366 if (unlock)
4367 mutex_unlock(&dev->struct_mutex);
6c085a72 4368 return cnt;
31169714 4369}