]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: merge shmem_pwrite slow&fast-path
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
05394f39 45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
46static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
47 unsigned alignment,
48 bool map_and_fenceable);
d9e86c0e
CW
49static void i915_gem_clear_fence_reg(struct drm_device *dev,
50 struct drm_i915_fence_reg *reg);
05394f39
CW
51static int i915_gem_phys_pwrite(struct drm_device *dev,
52 struct drm_i915_gem_object *obj,
71acb5eb 53 struct drm_i915_gem_pwrite *args,
05394f39
CW
54 struct drm_file *file);
55static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
8c59967c 59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 60
73aa808f
CW
61/* some bookkeeping */
62static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
63 size_t size)
64{
65 dev_priv->mm.object_count++;
66 dev_priv->mm.object_memory += size;
67}
68
69static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
70 size_t size)
71{
72 dev_priv->mm.object_count--;
73 dev_priv->mm.object_memory -= size;
74}
75
21dd3734
CW
76static int
77i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
78{
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct completion *x = &dev_priv->error_completion;
81 unsigned long flags;
82 int ret;
83
84 if (!atomic_read(&dev_priv->mm.wedged))
85 return 0;
86
87 ret = wait_for_completion_interruptible(x);
88 if (ret)
89 return ret;
90
21dd3734
CW
91 if (atomic_read(&dev_priv->mm.wedged)) {
92 /* GPU is hung, bump the completion count to account for
93 * the token we just consumed so that we never hit zero and
94 * end up waiting upon a subsequent completion event that
95 * will never happen.
96 */
97 spin_lock_irqsave(&x->wait.lock, flags);
98 x->done++;
99 spin_unlock_irqrestore(&x->wait.lock, flags);
100 }
101 return 0;
30dbf0c0
CW
102}
103
54cf91dc 104int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 105{
76c1dec1
CW
106 int ret;
107
21dd3734 108 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
109 if (ret)
110 return ret;
111
112 ret = mutex_lock_interruptible(&dev->struct_mutex);
113 if (ret)
114 return ret;
115
23bc5982 116 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
117 return 0;
118}
30dbf0c0 119
7d1c4804 120static inline bool
05394f39 121i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 122{
05394f39 123 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
124}
125
79e53945
JB
126int
127i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 128 struct drm_file *file)
79e53945
JB
129{
130 struct drm_i915_gem_init *args = data;
2021746e
CW
131
132 if (args->gtt_start >= args->gtt_end ||
133 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
134 return -EINVAL;
79e53945
JB
135
136 mutex_lock(&dev->struct_mutex);
644ec02b
DV
137 i915_gem_init_global_gtt(dev, args->gtt_start,
138 args->gtt_end, args->gtt_end);
673a394b
EA
139 mutex_unlock(&dev->struct_mutex);
140
2021746e 141 return 0;
673a394b
EA
142}
143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
73aa808f 148 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 149 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
150 struct drm_i915_gem_object *obj;
151 size_t pinned;
5a125c3c
EA
152
153 if (!(dev->driver->driver_features & DRIVER_GEM))
154 return -ENODEV;
155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
6299f992
CW
158 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
159 pinned += obj->gtt_space->size;
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
6299f992 162 args->aper_size = dev_priv->mm.gtt_total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
ff72145b
DA
168static int
169i915_gem_create(struct drm_file *file,
170 struct drm_device *dev,
171 uint64_t size,
172 uint32_t *handle_p)
673a394b 173{
05394f39 174 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
175 int ret;
176 u32 handle;
673a394b 177
ff72145b 178 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
179 if (size == 0)
180 return -EINVAL;
673a394b
EA
181
182 /* Allocate the new object */
ff72145b 183 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
184 if (obj == NULL)
185 return -ENOMEM;
186
05394f39 187 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 188 if (ret) {
05394f39
CW
189 drm_gem_object_release(&obj->base);
190 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 191 kfree(obj);
673a394b 192 return ret;
1dfd9754 193 }
673a394b 194
202f2fef 195 /* drop reference from allocate - handle holds it now */
05394f39 196 drm_gem_object_unreference(&obj->base);
202f2fef
CW
197 trace_i915_gem_object_create(obj);
198
ff72145b 199 *handle_p = handle;
673a394b
EA
200 return 0;
201}
202
ff72145b
DA
203int
204i915_gem_dumb_create(struct drm_file *file,
205 struct drm_device *dev,
206 struct drm_mode_create_dumb *args)
207{
208 /* have to work out size/pitch and return them */
ed0291fd 209 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
210 args->size = args->pitch * args->height;
211 return i915_gem_create(file, dev,
212 args->size, &args->handle);
213}
214
215int i915_gem_dumb_destroy(struct drm_file *file,
216 struct drm_device *dev,
217 uint32_t handle)
218{
219 return drm_gem_handle_delete(file, handle);
220}
221
222/**
223 * Creates a new mm object and returns a handle to it.
224 */
225int
226i915_gem_create_ioctl(struct drm_device *dev, void *data,
227 struct drm_file *file)
228{
229 struct drm_i915_gem_create *args = data;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
232}
233
05394f39 234static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 235{
05394f39 236 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
237
238 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 239 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
240}
241
eb01459f
EA
242/**
243 * This is the fast shmem pread path, which attempts to copy_from_user directly
244 * from the backing pages of the object to the user's address space. On a
245 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
246 */
247static int
05394f39
CW
248i915_gem_shmem_pread_fast(struct drm_device *dev,
249 struct drm_i915_gem_object *obj,
eb01459f 250 struct drm_i915_gem_pread *args,
05394f39 251 struct drm_file *file)
eb01459f 252{
05394f39 253 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 254 ssize_t remain;
e5281ccd 255 loff_t offset;
eb01459f
EA
256 char __user *user_data;
257 int page_offset, page_length;
eb01459f
EA
258
259 user_data = (char __user *) (uintptr_t) args->data_ptr;
260 remain = args->size;
261
eb01459f
EA
262 offset = args->offset;
263
264 while (remain > 0) {
e5281ccd
CW
265 struct page *page;
266 char *vaddr;
267 int ret;
268
eb01459f
EA
269 /* Operation in this page
270 *
eb01459f
EA
271 * page_offset = offset within page
272 * page_length = bytes to copy for this page
273 */
c8cbbb8b 274 page_offset = offset_in_page(offset);
eb01459f
EA
275 page_length = remain;
276 if ((page_offset + remain) > PAGE_SIZE)
277 page_length = PAGE_SIZE - page_offset;
278
5949eac4 279 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
280 if (IS_ERR(page))
281 return PTR_ERR(page);
282
283 vaddr = kmap_atomic(page);
284 ret = __copy_to_user_inatomic(user_data,
285 vaddr + page_offset,
286 page_length);
287 kunmap_atomic(vaddr);
288
289 mark_page_accessed(page);
290 page_cache_release(page);
291 if (ret)
4f27b75d 292 return -EFAULT;
eb01459f
EA
293
294 remain -= page_length;
295 user_data += page_length;
296 offset += page_length;
297 }
298
4f27b75d 299 return 0;
eb01459f
EA
300}
301
8461d226
DV
302static inline int
303__copy_to_user_swizzled(char __user *cpu_vaddr,
304 const char *gpu_vaddr, int gpu_offset,
305 int length)
306{
307 int ret, cpu_offset = 0;
308
309 while (length > 0) {
310 int cacheline_end = ALIGN(gpu_offset + 1, 64);
311 int this_length = min(cacheline_end - gpu_offset, length);
312 int swizzled_gpu_offset = gpu_offset ^ 64;
313
314 ret = __copy_to_user(cpu_vaddr + cpu_offset,
315 gpu_vaddr + swizzled_gpu_offset,
316 this_length);
317 if (ret)
318 return ret + length;
319
320 cpu_offset += this_length;
321 gpu_offset += this_length;
322 length -= this_length;
323 }
324
325 return 0;
326}
327
8c59967c
DV
328static inline int
329__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
330 const char *cpu_vaddr,
331 int length)
332{
333 int ret, cpu_offset = 0;
334
335 while (length > 0) {
336 int cacheline_end = ALIGN(gpu_offset + 1, 64);
337 int this_length = min(cacheline_end - gpu_offset, length);
338 int swizzled_gpu_offset = gpu_offset ^ 64;
339
340 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
341 cpu_vaddr + cpu_offset,
342 this_length);
343 if (ret)
344 return ret + length;
345
346 cpu_offset += this_length;
347 gpu_offset += this_length;
348 length -= this_length;
349 }
350
351 return 0;
352}
353
eb01459f
EA
354/**
355 * This is the fallback shmem pread path, which allocates temporary storage
356 * in kernel space to copy_to_user into outside of the struct_mutex, so we
357 * can copy out of the object's backing pages while holding the struct mutex
358 * and not take page faults.
359 */
360static int
05394f39
CW
361i915_gem_shmem_pread_slow(struct drm_device *dev,
362 struct drm_i915_gem_object *obj,
eb01459f 363 struct drm_i915_gem_pread *args,
05394f39 364 struct drm_file *file)
eb01459f 365{
05394f39 366 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 367 char __user *user_data;
eb01459f 368 ssize_t remain;
8461d226 369 loff_t offset;
eb2c0c81 370 int shmem_page_offset, page_length, ret = 0;
8461d226 371 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
eb01459f 372
8461d226 373 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
374 remain = args->size;
375
8461d226 376 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 377
8461d226 378 offset = args->offset;
eb01459f 379
4f27b75d 380 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
381
382 while (remain > 0) {
e5281ccd 383 struct page *page;
8461d226 384 char *vaddr;
e5281ccd 385
eb01459f
EA
386 /* Operation in this page
387 *
eb01459f 388 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
389 * page_length = bytes to copy for this page
390 */
c8cbbb8b 391 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
392 page_length = remain;
393 if ((shmem_page_offset + page_length) > PAGE_SIZE)
394 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 395
5949eac4 396 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
b65552f0
JJ
397 if (IS_ERR(page)) {
398 ret = PTR_ERR(page);
399 goto out;
400 }
e5281ccd 401
8461d226
DV
402 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
403 (page_to_phys(page) & (1 << 17)) != 0;
404
405 vaddr = kmap(page);
406 if (page_do_bit17_swizzling)
407 ret = __copy_to_user_swizzled(user_data,
408 vaddr, shmem_page_offset,
409 page_length);
410 else
411 ret = __copy_to_user(user_data,
412 vaddr + shmem_page_offset,
413 page_length);
414 kunmap(page);
eb01459f 415
e5281ccd
CW
416 mark_page_accessed(page);
417 page_cache_release(page);
418
8461d226
DV
419 if (ret) {
420 ret = -EFAULT;
421 goto out;
422 }
423
eb01459f 424 remain -= page_length;
8461d226 425 user_data += page_length;
eb01459f
EA
426 offset += page_length;
427 }
428
4f27b75d 429out:
8461d226
DV
430 mutex_lock(&dev->struct_mutex);
431 /* Fixup: Kill any reinstated backing storage pages */
432 if (obj->madv == __I915_MADV_PURGED)
433 i915_gem_object_truncate(obj);
eb01459f
EA
434
435 return ret;
436}
437
673a394b
EA
438/**
439 * Reads data from the object referenced by handle.
440 *
441 * On error, the contents of *data are undefined.
442 */
443int
444i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 445 struct drm_file *file)
673a394b
EA
446{
447 struct drm_i915_gem_pread *args = data;
05394f39 448 struct drm_i915_gem_object *obj;
35b62a89 449 int ret = 0;
673a394b 450
51311d0a
CW
451 if (args->size == 0)
452 return 0;
453
454 if (!access_ok(VERIFY_WRITE,
455 (char __user *)(uintptr_t)args->data_ptr,
456 args->size))
457 return -EFAULT;
458
459 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
460 args->size);
461 if (ret)
462 return -EFAULT;
463
4f27b75d 464 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 465 if (ret)
4f27b75d 466 return ret;
673a394b 467
05394f39 468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 469 if (&obj->base == NULL) {
1d7cfea1
CW
470 ret = -ENOENT;
471 goto unlock;
4f27b75d 472 }
673a394b 473
7dcd2499 474 /* Bounds check source. */
05394f39
CW
475 if (args->offset > obj->base.size ||
476 args->size > obj->base.size - args->offset) {
ce9d419d 477 ret = -EINVAL;
35b62a89 478 goto out;
ce9d419d
CW
479 }
480
db53a302
CW
481 trace_i915_gem_object_pread(obj, args->offset, args->size);
482
4f27b75d
CW
483 ret = i915_gem_object_set_cpu_read_domain_range(obj,
484 args->offset,
485 args->size);
486 if (ret)
e5281ccd 487 goto out;
4f27b75d
CW
488
489 ret = -EFAULT;
490 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 491 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 492 if (ret == -EFAULT)
05394f39 493 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 494
35b62a89 495out:
05394f39 496 drm_gem_object_unreference(&obj->base);
1d7cfea1 497unlock:
4f27b75d 498 mutex_unlock(&dev->struct_mutex);
eb01459f 499 return ret;
673a394b
EA
500}
501
0839ccb8
KP
502/* This is the fast write path which cannot handle
503 * page faults in the source data
9b7530cc 504 */
0839ccb8
KP
505
506static inline int
507fast_user_write(struct io_mapping *mapping,
508 loff_t page_base, int page_offset,
509 char __user *user_data,
510 int length)
9b7530cc 511{
9b7530cc 512 char *vaddr_atomic;
0839ccb8 513 unsigned long unwritten;
9b7530cc 514
3e4d3af5 515 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
516 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
517 user_data, length);
3e4d3af5 518 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 519 return unwritten;
0839ccb8
KP
520}
521
522/* Here's the write path which can sleep for
523 * page faults
524 */
525
ab34c226 526static inline void
3de09aa3
EA
527slow_kernel_write(struct io_mapping *mapping,
528 loff_t gtt_base, int gtt_offset,
529 struct page *user_page, int user_offset,
530 int length)
0839ccb8 531{
ab34c226
CW
532 char __iomem *dst_vaddr;
533 char *src_vaddr;
0839ccb8 534
ab34c226
CW
535 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
536 src_vaddr = kmap(user_page);
537
538 memcpy_toio(dst_vaddr + gtt_offset,
539 src_vaddr + user_offset,
540 length);
541
542 kunmap(user_page);
543 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
544}
545
3de09aa3
EA
546/**
547 * This is the fast pwrite path, where we copy the data directly from the
548 * user into the GTT, uncached.
549 */
673a394b 550static int
05394f39
CW
551i915_gem_gtt_pwrite_fast(struct drm_device *dev,
552 struct drm_i915_gem_object *obj,
3de09aa3 553 struct drm_i915_gem_pwrite *args,
05394f39 554 struct drm_file *file)
673a394b 555{
0839ccb8 556 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 557 ssize_t remain;
0839ccb8 558 loff_t offset, page_base;
673a394b 559 char __user *user_data;
0839ccb8 560 int page_offset, page_length;
673a394b
EA
561
562 user_data = (char __user *) (uintptr_t) args->data_ptr;
563 remain = args->size;
673a394b 564
05394f39 565 offset = obj->gtt_offset + args->offset;
673a394b
EA
566
567 while (remain > 0) {
568 /* Operation in this page
569 *
0839ccb8
KP
570 * page_base = page offset within aperture
571 * page_offset = offset within page
572 * page_length = bytes to copy for this page
673a394b 573 */
c8cbbb8b
CW
574 page_base = offset & PAGE_MASK;
575 page_offset = offset_in_page(offset);
0839ccb8
KP
576 page_length = remain;
577 if ((page_offset + remain) > PAGE_SIZE)
578 page_length = PAGE_SIZE - page_offset;
579
0839ccb8 580 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
581 * source page isn't available. Return the error and we'll
582 * retry in the slow path.
0839ccb8 583 */
fbd5a26d
CW
584 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
585 page_offset, user_data, page_length))
fbd5a26d 586 return -EFAULT;
673a394b 587
0839ccb8
KP
588 remain -= page_length;
589 user_data += page_length;
590 offset += page_length;
673a394b 591 }
673a394b 592
fbd5a26d 593 return 0;
673a394b
EA
594}
595
3de09aa3
EA
596/**
597 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
598 * the memory and maps it using kmap_atomic for copying.
599 *
600 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
601 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
602 */
3043c60c 603static int
05394f39
CW
604i915_gem_gtt_pwrite_slow(struct drm_device *dev,
605 struct drm_i915_gem_object *obj,
3de09aa3 606 struct drm_i915_gem_pwrite *args,
05394f39 607 struct drm_file *file)
673a394b 608{
3de09aa3
EA
609 drm_i915_private_t *dev_priv = dev->dev_private;
610 ssize_t remain;
611 loff_t gtt_page_base, offset;
612 loff_t first_data_page, last_data_page, num_pages;
613 loff_t pinned_pages, i;
614 struct page **user_pages;
615 struct mm_struct *mm = current->mm;
616 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 617 int ret;
3de09aa3
EA
618 uint64_t data_ptr = args->data_ptr;
619
620 remain = args->size;
621
622 /* Pin the user pages containing the data. We can't fault while
623 * holding the struct mutex, and all of the pwrite implementations
624 * want to hold it while dereferencing the user data.
625 */
626 first_data_page = data_ptr / PAGE_SIZE;
627 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
628 num_pages = last_data_page - first_data_page + 1;
629
fbd5a26d 630 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
631 if (user_pages == NULL)
632 return -ENOMEM;
633
fbd5a26d 634 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
635 down_read(&mm->mmap_sem);
636 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
637 num_pages, 0, 0, user_pages, NULL);
638 up_read(&mm->mmap_sem);
fbd5a26d 639 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
640 if (pinned_pages < num_pages) {
641 ret = -EFAULT;
642 goto out_unpin_pages;
643 }
673a394b 644
d9e86c0e
CW
645 ret = i915_gem_object_set_to_gtt_domain(obj, true);
646 if (ret)
647 goto out_unpin_pages;
648
649 ret = i915_gem_object_put_fence(obj);
3de09aa3 650 if (ret)
fbd5a26d 651 goto out_unpin_pages;
3de09aa3 652
05394f39 653 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
654
655 while (remain > 0) {
656 /* Operation in this page
657 *
658 * gtt_page_base = page offset within aperture
659 * gtt_page_offset = offset within page in aperture
660 * data_page_index = page number in get_user_pages return
661 * data_page_offset = offset with data_page_index page.
662 * page_length = bytes to copy for this page
663 */
664 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 665 gtt_page_offset = offset_in_page(offset);
3de09aa3 666 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 667 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
668
669 page_length = remain;
670 if ((gtt_page_offset + page_length) > PAGE_SIZE)
671 page_length = PAGE_SIZE - gtt_page_offset;
672 if ((data_page_offset + page_length) > PAGE_SIZE)
673 page_length = PAGE_SIZE - data_page_offset;
674
ab34c226
CW
675 slow_kernel_write(dev_priv->mm.gtt_mapping,
676 gtt_page_base, gtt_page_offset,
677 user_pages[data_page_index],
678 data_page_offset,
679 page_length);
3de09aa3
EA
680
681 remain -= page_length;
682 offset += page_length;
683 data_ptr += page_length;
684 }
685
3de09aa3
EA
686out_unpin_pages:
687 for (i = 0; i < pinned_pages; i++)
688 page_cache_release(user_pages[i]);
8e7d2b2c 689 drm_free_large(user_pages);
3de09aa3
EA
690
691 return ret;
692}
693
3043c60c 694static int
e244a443
DV
695i915_gem_shmem_pwrite(struct drm_device *dev,
696 struct drm_i915_gem_object *obj,
697 struct drm_i915_gem_pwrite *args,
698 struct drm_file *file)
40123c1f 699{
05394f39 700 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 701 ssize_t remain;
8c59967c
DV
702 loff_t offset;
703 char __user *user_data;
eb2c0c81 704 int shmem_page_offset, page_length, ret = 0;
8c59967c 705 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 706 int hit_slowpath = 0;
40123c1f 707
8c59967c 708 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
709 remain = args->size;
710
8c59967c 711 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 712
673a394b 713 offset = args->offset;
05394f39 714 obj->dirty = 1;
673a394b 715
40123c1f 716 while (remain > 0) {
e5281ccd 717 struct page *page;
8c59967c 718 char *vaddr;
e5281ccd 719
40123c1f
EA
720 /* Operation in this page
721 *
40123c1f 722 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
723 * page_length = bytes to copy for this page
724 */
c8cbbb8b 725 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
726
727 page_length = remain;
728 if ((shmem_page_offset + page_length) > PAGE_SIZE)
729 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 730
5949eac4 731 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
732 if (IS_ERR(page)) {
733 ret = PTR_ERR(page);
734 goto out;
735 }
736
8c59967c
DV
737 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
738 (page_to_phys(page) & (1 << 17)) != 0;
739
e244a443
DV
740 if (!page_do_bit17_swizzling) {
741 vaddr = kmap_atomic(page);
742 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
743 user_data,
744 page_length);
745 kunmap_atomic(vaddr);
746
747 if (ret == 0)
748 goto next_page;
749 }
750
751 hit_slowpath = 1;
752
753 mutex_unlock(&dev->struct_mutex);
754
8c59967c
DV
755 vaddr = kmap(page);
756 if (page_do_bit17_swizzling)
757 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
758 user_data,
759 page_length);
760 else
761 ret = __copy_from_user(vaddr + shmem_page_offset,
762 user_data,
763 page_length);
764 kunmap(page);
40123c1f 765
e244a443
DV
766 mutex_lock(&dev->struct_mutex);
767next_page:
e5281ccd
CW
768 set_page_dirty(page);
769 mark_page_accessed(page);
770 page_cache_release(page);
771
8c59967c
DV
772 if (ret) {
773 ret = -EFAULT;
774 goto out;
775 }
776
40123c1f 777 remain -= page_length;
8c59967c 778 user_data += page_length;
40123c1f 779 offset += page_length;
673a394b
EA
780 }
781
fbd5a26d 782out:
e244a443
DV
783 if (hit_slowpath) {
784 /* Fixup: Kill any reinstated backing storage pages */
785 if (obj->madv == __I915_MADV_PURGED)
786 i915_gem_object_truncate(obj);
787 /* and flush dirty cachelines in case the object isn't in the cpu write
788 * domain anymore. */
789 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
790 i915_gem_clflush_object(obj);
791 intel_gtt_chipset_flush();
792 }
8c59967c 793 }
673a394b 794
40123c1f 795 return ret;
673a394b
EA
796}
797
798/**
799 * Writes data to the object referenced by handle.
800 *
801 * On error, the contents of the buffer that were to be modified are undefined.
802 */
803int
804i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 805 struct drm_file *file)
673a394b
EA
806{
807 struct drm_i915_gem_pwrite *args = data;
05394f39 808 struct drm_i915_gem_object *obj;
51311d0a
CW
809 int ret;
810
811 if (args->size == 0)
812 return 0;
813
814 if (!access_ok(VERIFY_READ,
815 (char __user *)(uintptr_t)args->data_ptr,
816 args->size))
817 return -EFAULT;
818
819 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
820 args->size);
821 if (ret)
822 return -EFAULT;
673a394b 823
fbd5a26d 824 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 825 if (ret)
fbd5a26d 826 return ret;
1d7cfea1 827
05394f39 828 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 829 if (&obj->base == NULL) {
1d7cfea1
CW
830 ret = -ENOENT;
831 goto unlock;
fbd5a26d 832 }
673a394b 833
7dcd2499 834 /* Bounds check destination. */
05394f39
CW
835 if (args->offset > obj->base.size ||
836 args->size > obj->base.size - args->offset) {
ce9d419d 837 ret = -EINVAL;
35b62a89 838 goto out;
ce9d419d
CW
839 }
840
db53a302
CW
841 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
842
673a394b
EA
843 /* We can only do the GTT pwrite on untiled buffers, as otherwise
844 * it would end up going through the fenced access, and we'll get
845 * different detiling behavior between reading and writing.
846 * pread/pwrite currently are reading and writing from the CPU
847 * perspective, requiring manual detiling by the client.
848 */
5c0480f2 849 if (obj->phys_obj) {
fbd5a26d 850 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
851 goto out;
852 }
853
854 if (obj->gtt_space &&
855 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 856 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
857 if (ret)
858 goto out;
859
d9e86c0e
CW
860 ret = i915_gem_object_set_to_gtt_domain(obj, true);
861 if (ret)
862 goto out_unpin;
863
864 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
865 if (ret)
866 goto out_unpin;
867
868 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
869 if (ret == -EFAULT)
870 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
871
872out_unpin:
873 i915_gem_object_unpin(obj);
673a394b 874
5c0480f2
DV
875 if (ret != -EFAULT)
876 goto out;
877 /* Fall through to the shmfs paths because the gtt paths might
878 * fail with non-page-backed user pointers (e.g. gtt mappings
879 * when moving data between textures). */
fbd5a26d 880 }
673a394b 881
5c0480f2
DV
882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883 if (ret)
884 goto out;
885
e244a443 886 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 887
35b62a89 888out:
05394f39 889 drm_gem_object_unreference(&obj->base);
1d7cfea1 890unlock:
fbd5a26d 891 mutex_unlock(&dev->struct_mutex);
673a394b
EA
892 return ret;
893}
894
895/**
2ef7eeaa
EA
896 * Called when user space prepares to use an object with the CPU, either
897 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
898 */
899int
900i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 901 struct drm_file *file)
673a394b
EA
902{
903 struct drm_i915_gem_set_domain *args = data;
05394f39 904 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
905 uint32_t read_domains = args->read_domains;
906 uint32_t write_domain = args->write_domain;
673a394b
EA
907 int ret;
908
909 if (!(dev->driver->driver_features & DRIVER_GEM))
910 return -ENODEV;
911
2ef7eeaa 912 /* Only handle setting domains to types used by the CPU. */
21d509e3 913 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
914 return -EINVAL;
915
21d509e3 916 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
917 return -EINVAL;
918
919 /* Having something in the write domain implies it's in the read
920 * domain, and only that read domain. Enforce that in the request.
921 */
922 if (write_domain != 0 && read_domains != write_domain)
923 return -EINVAL;
924
76c1dec1 925 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 926 if (ret)
76c1dec1 927 return ret;
1d7cfea1 928
05394f39 929 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 930 if (&obj->base == NULL) {
1d7cfea1
CW
931 ret = -ENOENT;
932 goto unlock;
76c1dec1 933 }
673a394b 934
2ef7eeaa
EA
935 if (read_domains & I915_GEM_DOMAIN_GTT) {
936 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
937
938 /* Silently promote "you're not bound, there was nothing to do"
939 * to success, since the client was just asking us to
940 * make sure everything was done.
941 */
942 if (ret == -EINVAL)
943 ret = 0;
2ef7eeaa 944 } else {
e47c68e9 945 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
946 }
947
05394f39 948 drm_gem_object_unreference(&obj->base);
1d7cfea1 949unlock:
673a394b
EA
950 mutex_unlock(&dev->struct_mutex);
951 return ret;
952}
953
954/**
955 * Called when user space has done writes to this buffer
956 */
957int
958i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 959 struct drm_file *file)
673a394b
EA
960{
961 struct drm_i915_gem_sw_finish *args = data;
05394f39 962 struct drm_i915_gem_object *obj;
673a394b
EA
963 int ret = 0;
964
965 if (!(dev->driver->driver_features & DRIVER_GEM))
966 return -ENODEV;
967
76c1dec1 968 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 969 if (ret)
76c1dec1 970 return ret;
1d7cfea1 971
05394f39 972 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 973 if (&obj->base == NULL) {
1d7cfea1
CW
974 ret = -ENOENT;
975 goto unlock;
673a394b
EA
976 }
977
673a394b 978 /* Pinned buffers may be scanout, so flush the cache */
05394f39 979 if (obj->pin_count)
e47c68e9
EA
980 i915_gem_object_flush_cpu_write_domain(obj);
981
05394f39 982 drm_gem_object_unreference(&obj->base);
1d7cfea1 983unlock:
673a394b
EA
984 mutex_unlock(&dev->struct_mutex);
985 return ret;
986}
987
988/**
989 * Maps the contents of an object, returning the address it is mapped
990 * into.
991 *
992 * While the mapping holds a reference on the contents of the object, it doesn't
993 * imply a ref on the object itself.
994 */
995int
996i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 997 struct drm_file *file)
673a394b
EA
998{
999 struct drm_i915_gem_mmap *args = data;
1000 struct drm_gem_object *obj;
673a394b
EA
1001 unsigned long addr;
1002
1003 if (!(dev->driver->driver_features & DRIVER_GEM))
1004 return -ENODEV;
1005
05394f39 1006 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1007 if (obj == NULL)
bf79cb91 1008 return -ENOENT;
673a394b 1009
673a394b
EA
1010 down_write(&current->mm->mmap_sem);
1011 addr = do_mmap(obj->filp, 0, args->size,
1012 PROT_READ | PROT_WRITE, MAP_SHARED,
1013 args->offset);
1014 up_write(&current->mm->mmap_sem);
bc9025bd 1015 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1016 if (IS_ERR((void *)addr))
1017 return addr;
1018
1019 args->addr_ptr = (uint64_t) addr;
1020
1021 return 0;
1022}
1023
de151cf6
JB
1024/**
1025 * i915_gem_fault - fault a page into the GTT
1026 * vma: VMA in question
1027 * vmf: fault info
1028 *
1029 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1030 * from userspace. The fault handler takes care of binding the object to
1031 * the GTT (if needed), allocating and programming a fence register (again,
1032 * only if needed based on whether the old reg is still valid or the object
1033 * is tiled) and inserting a new PTE into the faulting process.
1034 *
1035 * Note that the faulting process may involve evicting existing objects
1036 * from the GTT and/or fence registers to make room. So performance may
1037 * suffer if the GTT working set is large or there are few fence registers
1038 * left.
1039 */
1040int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1041{
05394f39
CW
1042 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1043 struct drm_device *dev = obj->base.dev;
7d1c4804 1044 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1045 pgoff_t page_offset;
1046 unsigned long pfn;
1047 int ret = 0;
0f973f27 1048 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1049
1050 /* We don't use vmf->pgoff since that has the fake offset */
1051 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1052 PAGE_SHIFT;
1053
d9bc7e9f
CW
1054 ret = i915_mutex_lock_interruptible(dev);
1055 if (ret)
1056 goto out;
a00b10c3 1057
db53a302
CW
1058 trace_i915_gem_object_fault(obj, page_offset, true, write);
1059
d9bc7e9f 1060 /* Now bind it into the GTT if needed */
919926ae
CW
1061 if (!obj->map_and_fenceable) {
1062 ret = i915_gem_object_unbind(obj);
1063 if (ret)
1064 goto unlock;
a00b10c3 1065 }
05394f39 1066 if (!obj->gtt_space) {
75e9e915 1067 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1068 if (ret)
1069 goto unlock;
de151cf6 1070
e92d03bf
EA
1071 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1072 if (ret)
1073 goto unlock;
1074 }
4a684a41 1075
74898d7e
DV
1076 if (!obj->has_global_gtt_mapping)
1077 i915_gem_gtt_bind_object(obj, obj->cache_level);
1078
d9e86c0e
CW
1079 if (obj->tiling_mode == I915_TILING_NONE)
1080 ret = i915_gem_object_put_fence(obj);
1081 else
ce453d81 1082 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1083 if (ret)
1084 goto unlock;
de151cf6 1085
05394f39
CW
1086 if (i915_gem_object_is_inactive(obj))
1087 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1088
6299f992
CW
1089 obj->fault_mappable = true;
1090
05394f39 1091 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1092 page_offset;
1093
1094 /* Finally, remap it using the new GTT offset */
1095 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1096unlock:
de151cf6 1097 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1098out:
de151cf6 1099 switch (ret) {
d9bc7e9f 1100 case -EIO:
045e769a 1101 case -EAGAIN:
d9bc7e9f
CW
1102 /* Give the error handler a chance to run and move the
1103 * objects off the GPU active list. Next time we service the
1104 * fault, we should be able to transition the page into the
1105 * GTT without touching the GPU (and so avoid further
1106 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1107 * with coherency, just lost writes.
1108 */
045e769a 1109 set_need_resched();
c715089f
CW
1110 case 0:
1111 case -ERESTARTSYS:
bed636ab 1112 case -EINTR:
c715089f 1113 return VM_FAULT_NOPAGE;
de151cf6 1114 case -ENOMEM:
de151cf6 1115 return VM_FAULT_OOM;
de151cf6 1116 default:
c715089f 1117 return VM_FAULT_SIGBUS;
de151cf6
JB
1118 }
1119}
1120
901782b2
CW
1121/**
1122 * i915_gem_release_mmap - remove physical page mappings
1123 * @obj: obj in question
1124 *
af901ca1 1125 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1126 * relinquish ownership of the pages back to the system.
1127 *
1128 * It is vital that we remove the page mapping if we have mapped a tiled
1129 * object through the GTT and then lose the fence register due to
1130 * resource pressure. Similarly if the object has been moved out of the
1131 * aperture, than pages mapped into userspace must be revoked. Removing the
1132 * mapping will then trigger a page fault on the next user access, allowing
1133 * fixup by i915_gem_fault().
1134 */
d05ca301 1135void
05394f39 1136i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1137{
6299f992
CW
1138 if (!obj->fault_mappable)
1139 return;
901782b2 1140
f6e47884
CW
1141 if (obj->base.dev->dev_mapping)
1142 unmap_mapping_range(obj->base.dev->dev_mapping,
1143 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1144 obj->base.size, 1);
fb7d516a 1145
6299f992 1146 obj->fault_mappable = false;
901782b2
CW
1147}
1148
92b88aeb 1149static uint32_t
e28f8711 1150i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1151{
e28f8711 1152 uint32_t gtt_size;
92b88aeb
CW
1153
1154 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1155 tiling_mode == I915_TILING_NONE)
1156 return size;
92b88aeb
CW
1157
1158 /* Previous chips need a power-of-two fence region when tiling */
1159 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1160 gtt_size = 1024*1024;
92b88aeb 1161 else
e28f8711 1162 gtt_size = 512*1024;
92b88aeb 1163
e28f8711
CW
1164 while (gtt_size < size)
1165 gtt_size <<= 1;
92b88aeb 1166
e28f8711 1167 return gtt_size;
92b88aeb
CW
1168}
1169
de151cf6
JB
1170/**
1171 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1172 * @obj: object to check
1173 *
1174 * Return the required GTT alignment for an object, taking into account
5e783301 1175 * potential fence register mapping.
de151cf6
JB
1176 */
1177static uint32_t
e28f8711
CW
1178i915_gem_get_gtt_alignment(struct drm_device *dev,
1179 uint32_t size,
1180 int tiling_mode)
de151cf6 1181{
de151cf6
JB
1182 /*
1183 * Minimum alignment is 4k (GTT page size), but might be greater
1184 * if a fence register is needed for the object.
1185 */
a00b10c3 1186 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1187 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1188 return 4096;
1189
a00b10c3
CW
1190 /*
1191 * Previous chips need to be aligned to the size of the smallest
1192 * fence register that can contain the object.
1193 */
e28f8711 1194 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1195}
1196
5e783301
DV
1197/**
1198 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1199 * unfenced object
e28f8711
CW
1200 * @dev: the device
1201 * @size: size of the object
1202 * @tiling_mode: tiling mode of the object
5e783301
DV
1203 *
1204 * Return the required GTT alignment for an object, only taking into account
1205 * unfenced tiled surface requirements.
1206 */
467cffba 1207uint32_t
e28f8711
CW
1208i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1209 uint32_t size,
1210 int tiling_mode)
5e783301 1211{
5e783301
DV
1212 /*
1213 * Minimum alignment is 4k (GTT page size) for sane hw.
1214 */
1215 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1216 tiling_mode == I915_TILING_NONE)
5e783301
DV
1217 return 4096;
1218
e28f8711
CW
1219 /* Previous hardware however needs to be aligned to a power-of-two
1220 * tile height. The simplest method for determining this is to reuse
1221 * the power-of-tile object size.
5e783301 1222 */
e28f8711 1223 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1224}
1225
de151cf6 1226int
ff72145b
DA
1227i915_gem_mmap_gtt(struct drm_file *file,
1228 struct drm_device *dev,
1229 uint32_t handle,
1230 uint64_t *offset)
de151cf6 1231{
da761a6e 1232 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1233 struct drm_i915_gem_object *obj;
de151cf6
JB
1234 int ret;
1235
1236 if (!(dev->driver->driver_features & DRIVER_GEM))
1237 return -ENODEV;
1238
76c1dec1 1239 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1240 if (ret)
76c1dec1 1241 return ret;
de151cf6 1242
ff72145b 1243 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1244 if (&obj->base == NULL) {
1d7cfea1
CW
1245 ret = -ENOENT;
1246 goto unlock;
1247 }
de151cf6 1248
05394f39 1249 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1250 ret = -E2BIG;
ff56b0bc 1251 goto out;
da761a6e
CW
1252 }
1253
05394f39 1254 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1255 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1256 ret = -EINVAL;
1257 goto out;
ab18282d
CW
1258 }
1259
05394f39 1260 if (!obj->base.map_list.map) {
b464e9a2 1261 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1262 if (ret)
1263 goto out;
de151cf6
JB
1264 }
1265
ff72145b 1266 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1267
1d7cfea1 1268out:
05394f39 1269 drm_gem_object_unreference(&obj->base);
1d7cfea1 1270unlock:
de151cf6 1271 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1272 return ret;
de151cf6
JB
1273}
1274
ff72145b
DA
1275/**
1276 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1277 * @dev: DRM device
1278 * @data: GTT mapping ioctl data
1279 * @file: GEM object info
1280 *
1281 * Simply returns the fake offset to userspace so it can mmap it.
1282 * The mmap call will end up in drm_gem_mmap(), which will set things
1283 * up so we can get faults in the handler above.
1284 *
1285 * The fault handler will take care of binding the object into the GTT
1286 * (since it may have been evicted to make room for something), allocating
1287 * a fence register, and mapping the appropriate aperture address into
1288 * userspace.
1289 */
1290int
1291i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293{
1294 struct drm_i915_gem_mmap_gtt *args = data;
1295
1296 if (!(dev->driver->driver_features & DRIVER_GEM))
1297 return -ENODEV;
1298
1299 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1300}
1301
1302
e5281ccd 1303static int
05394f39 1304i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1305 gfp_t gfpmask)
1306{
e5281ccd
CW
1307 int page_count, i;
1308 struct address_space *mapping;
1309 struct inode *inode;
1310 struct page *page;
1311
1312 /* Get the list of pages out of our struct file. They'll be pinned
1313 * at this point until we release them.
1314 */
05394f39
CW
1315 page_count = obj->base.size / PAGE_SIZE;
1316 BUG_ON(obj->pages != NULL);
1317 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1318 if (obj->pages == NULL)
e5281ccd
CW
1319 return -ENOMEM;
1320
05394f39 1321 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1322 mapping = inode->i_mapping;
5949eac4
HD
1323 gfpmask |= mapping_gfp_mask(mapping);
1324
e5281ccd 1325 for (i = 0; i < page_count; i++) {
5949eac4 1326 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1327 if (IS_ERR(page))
1328 goto err_pages;
1329
05394f39 1330 obj->pages[i] = page;
e5281ccd
CW
1331 }
1332
6dacfd2f 1333 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1334 i915_gem_object_do_bit_17_swizzle(obj);
1335
1336 return 0;
1337
1338err_pages:
1339 while (i--)
05394f39 1340 page_cache_release(obj->pages[i]);
e5281ccd 1341
05394f39
CW
1342 drm_free_large(obj->pages);
1343 obj->pages = NULL;
e5281ccd
CW
1344 return PTR_ERR(page);
1345}
1346
5cdf5881 1347static void
05394f39 1348i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1349{
05394f39 1350 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1351 int i;
1352
05394f39 1353 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1354
6dacfd2f 1355 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1356 i915_gem_object_save_bit_17_swizzle(obj);
1357
05394f39
CW
1358 if (obj->madv == I915_MADV_DONTNEED)
1359 obj->dirty = 0;
3ef94daa
CW
1360
1361 for (i = 0; i < page_count; i++) {
05394f39
CW
1362 if (obj->dirty)
1363 set_page_dirty(obj->pages[i]);
3ef94daa 1364
05394f39
CW
1365 if (obj->madv == I915_MADV_WILLNEED)
1366 mark_page_accessed(obj->pages[i]);
3ef94daa 1367
05394f39 1368 page_cache_release(obj->pages[i]);
3ef94daa 1369 }
05394f39 1370 obj->dirty = 0;
673a394b 1371
05394f39
CW
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
673a394b
EA
1374}
1375
54cf91dc 1376void
05394f39 1377i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1378 struct intel_ring_buffer *ring,
1379 u32 seqno)
673a394b 1380{
05394f39 1381 struct drm_device *dev = obj->base.dev;
69dc4987 1382 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1383
852835f3 1384 BUG_ON(ring == NULL);
05394f39 1385 obj->ring = ring;
673a394b
EA
1386
1387 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1388 if (!obj->active) {
1389 drm_gem_object_reference(&obj->base);
1390 obj->active = 1;
673a394b 1391 }
e35a41de 1392
673a394b 1393 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1394 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1395 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1396
05394f39 1397 obj->last_rendering_seqno = seqno;
caea7476
CW
1398 if (obj->fenced_gpu_access) {
1399 struct drm_i915_fence_reg *reg;
1400
1401 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1402
1403 obj->last_fenced_seqno = seqno;
1404 obj->last_fenced_ring = ring;
1405
1406 reg = &dev_priv->fence_regs[obj->fence_reg];
1407 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1408 }
1409}
1410
1411static void
1412i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1413{
1414 list_del_init(&obj->ring_list);
1415 obj->last_rendering_seqno = 0;
673a394b
EA
1416}
1417
ce44b0ea 1418static void
05394f39 1419i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1420{
05394f39 1421 struct drm_device *dev = obj->base.dev;
ce44b0ea 1422 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1423
05394f39
CW
1424 BUG_ON(!obj->active);
1425 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1426
1427 i915_gem_object_move_off_active(obj);
1428}
1429
1430static void
1431i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1432{
1433 struct drm_device *dev = obj->base.dev;
1434 struct drm_i915_private *dev_priv = dev->dev_private;
1435
1436 if (obj->pin_count != 0)
1437 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1438 else
1439 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1440
1441 BUG_ON(!list_empty(&obj->gpu_write_list));
1442 BUG_ON(!obj->active);
1443 obj->ring = NULL;
1444
1445 i915_gem_object_move_off_active(obj);
1446 obj->fenced_gpu_access = false;
caea7476
CW
1447
1448 obj->active = 0;
87ca9c8a 1449 obj->pending_gpu_write = false;
caea7476
CW
1450 drm_gem_object_unreference(&obj->base);
1451
1452 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1453}
673a394b 1454
963b4836
CW
1455/* Immediately discard the backing storage */
1456static void
05394f39 1457i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1458{
bb6baf76 1459 struct inode *inode;
963b4836 1460
ae9fed6b
CW
1461 /* Our goal here is to return as much of the memory as
1462 * is possible back to the system as we are called from OOM.
1463 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1464 * backing pages, *now*.
ae9fed6b 1465 */
05394f39 1466 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1467 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1468
a14917ee
CW
1469 if (obj->base.map_list.map)
1470 drm_gem_free_mmap_offset(&obj->base);
1471
05394f39 1472 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1473}
1474
1475static inline int
05394f39 1476i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1477{
05394f39 1478 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1479}
1480
63560396 1481static void
db53a302
CW
1482i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1483 uint32_t flush_domains)
63560396 1484{
05394f39 1485 struct drm_i915_gem_object *obj, *next;
63560396 1486
05394f39 1487 list_for_each_entry_safe(obj, next,
64193406 1488 &ring->gpu_write_list,
63560396 1489 gpu_write_list) {
05394f39
CW
1490 if (obj->base.write_domain & flush_domains) {
1491 uint32_t old_write_domain = obj->base.write_domain;
63560396 1492
05394f39
CW
1493 obj->base.write_domain = 0;
1494 list_del_init(&obj->gpu_write_list);
1ec14ad3 1495 i915_gem_object_move_to_active(obj, ring,
db53a302 1496 i915_gem_next_request_seqno(ring));
63560396 1497
63560396 1498 trace_i915_gem_object_change_domain(obj,
05394f39 1499 obj->base.read_domains,
63560396
DV
1500 old_write_domain);
1501 }
1502 }
1503}
8187a2b7 1504
53d227f2
DV
1505static u32
1506i915_gem_get_seqno(struct drm_device *dev)
1507{
1508 drm_i915_private_t *dev_priv = dev->dev_private;
1509 u32 seqno = dev_priv->next_seqno;
1510
1511 /* reserve 0 for non-seqno */
1512 if (++dev_priv->next_seqno == 0)
1513 dev_priv->next_seqno = 1;
1514
1515 return seqno;
1516}
1517
1518u32
1519i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1520{
1521 if (ring->outstanding_lazy_request == 0)
1522 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1523
1524 return ring->outstanding_lazy_request;
1525}
1526
3cce469c 1527int
db53a302 1528i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1529 struct drm_file *file,
db53a302 1530 struct drm_i915_gem_request *request)
673a394b 1531{
db53a302 1532 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1533 uint32_t seqno;
a71d8d94 1534 u32 request_ring_position;
673a394b 1535 int was_empty;
3cce469c
CW
1536 int ret;
1537
1538 BUG_ON(request == NULL);
53d227f2 1539 seqno = i915_gem_next_request_seqno(ring);
673a394b 1540
a71d8d94
CW
1541 /* Record the position of the start of the request so that
1542 * should we detect the updated seqno part-way through the
1543 * GPU processing the request, we never over-estimate the
1544 * position of the head.
1545 */
1546 request_ring_position = intel_ring_get_tail(ring);
1547
3cce469c
CW
1548 ret = ring->add_request(ring, &seqno);
1549 if (ret)
1550 return ret;
673a394b 1551
db53a302 1552 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1553
1554 request->seqno = seqno;
852835f3 1555 request->ring = ring;
a71d8d94 1556 request->tail = request_ring_position;
673a394b 1557 request->emitted_jiffies = jiffies;
852835f3
ZN
1558 was_empty = list_empty(&ring->request_list);
1559 list_add_tail(&request->list, &ring->request_list);
1560
db53a302
CW
1561 if (file) {
1562 struct drm_i915_file_private *file_priv = file->driver_priv;
1563
1c25595f 1564 spin_lock(&file_priv->mm.lock);
f787a5f5 1565 request->file_priv = file_priv;
b962442e 1566 list_add_tail(&request->client_list,
f787a5f5 1567 &file_priv->mm.request_list);
1c25595f 1568 spin_unlock(&file_priv->mm.lock);
b962442e 1569 }
673a394b 1570
5391d0cf 1571 ring->outstanding_lazy_request = 0;
db53a302 1572
f65d9421 1573 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1574 if (i915_enable_hangcheck) {
1575 mod_timer(&dev_priv->hangcheck_timer,
1576 jiffies +
1577 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1578 }
f65d9421 1579 if (was_empty)
b3b079db
CW
1580 queue_delayed_work(dev_priv->wq,
1581 &dev_priv->mm.retire_work, HZ);
f65d9421 1582 }
3cce469c 1583 return 0;
673a394b
EA
1584}
1585
f787a5f5
CW
1586static inline void
1587i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1588{
1c25595f 1589 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1590
1c25595f
CW
1591 if (!file_priv)
1592 return;
1c5d22f7 1593
1c25595f 1594 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1595 if (request->file_priv) {
1596 list_del(&request->client_list);
1597 request->file_priv = NULL;
1598 }
1c25595f 1599 spin_unlock(&file_priv->mm.lock);
673a394b 1600}
673a394b 1601
dfaae392
CW
1602static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1603 struct intel_ring_buffer *ring)
9375e446 1604{
dfaae392
CW
1605 while (!list_empty(&ring->request_list)) {
1606 struct drm_i915_gem_request *request;
673a394b 1607
dfaae392
CW
1608 request = list_first_entry(&ring->request_list,
1609 struct drm_i915_gem_request,
1610 list);
de151cf6 1611
dfaae392 1612 list_del(&request->list);
f787a5f5 1613 i915_gem_request_remove_from_client(request);
dfaae392
CW
1614 kfree(request);
1615 }
673a394b 1616
dfaae392 1617 while (!list_empty(&ring->active_list)) {
05394f39 1618 struct drm_i915_gem_object *obj;
9375e446 1619
05394f39
CW
1620 obj = list_first_entry(&ring->active_list,
1621 struct drm_i915_gem_object,
1622 ring_list);
9375e446 1623
05394f39
CW
1624 obj->base.write_domain = 0;
1625 list_del_init(&obj->gpu_write_list);
1626 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1627 }
1628}
1629
312817a3
CW
1630static void i915_gem_reset_fences(struct drm_device *dev)
1631{
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633 int i;
1634
4b9de737 1635 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1636 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1637 struct drm_i915_gem_object *obj = reg->obj;
1638
1639 if (!obj)
1640 continue;
1641
1642 if (obj->tiling_mode)
1643 i915_gem_release_mmap(obj);
1644
d9e86c0e
CW
1645 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1646 reg->obj->fenced_gpu_access = false;
1647 reg->obj->last_fenced_seqno = 0;
1648 reg->obj->last_fenced_ring = NULL;
1649 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1650 }
1651}
1652
069efc1d 1653void i915_gem_reset(struct drm_device *dev)
673a394b 1654{
77f01230 1655 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1656 struct drm_i915_gem_object *obj;
1ec14ad3 1657 int i;
673a394b 1658
1ec14ad3
CW
1659 for (i = 0; i < I915_NUM_RINGS; i++)
1660 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1661
1662 /* Remove anything from the flushing lists. The GPU cache is likely
1663 * to be lost on reset along with the data, so simply move the
1664 * lost bo to the inactive list.
1665 */
1666 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1667 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1668 struct drm_i915_gem_object,
1669 mm_list);
dfaae392 1670
05394f39
CW
1671 obj->base.write_domain = 0;
1672 list_del_init(&obj->gpu_write_list);
1673 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1674 }
1675
1676 /* Move everything out of the GPU domains to ensure we do any
1677 * necessary invalidation upon reuse.
1678 */
05394f39 1679 list_for_each_entry(obj,
77f01230 1680 &dev_priv->mm.inactive_list,
69dc4987 1681 mm_list)
77f01230 1682 {
05394f39 1683 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1684 }
069efc1d
CW
1685
1686 /* The fence registers are invalidated so clear them out */
312817a3 1687 i915_gem_reset_fences(dev);
673a394b
EA
1688}
1689
1690/**
1691 * This function clears the request list as sequence numbers are passed.
1692 */
a71d8d94 1693void
db53a302 1694i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1695{
673a394b 1696 uint32_t seqno;
1ec14ad3 1697 int i;
673a394b 1698
db53a302 1699 if (list_empty(&ring->request_list))
6c0594a3
KW
1700 return;
1701
db53a302 1702 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1703
78501eac 1704 seqno = ring->get_seqno(ring);
1ec14ad3 1705
076e2c0e 1706 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1707 if (seqno >= ring->sync_seqno[i])
1708 ring->sync_seqno[i] = 0;
1709
852835f3 1710 while (!list_empty(&ring->request_list)) {
673a394b 1711 struct drm_i915_gem_request *request;
673a394b 1712
852835f3 1713 request = list_first_entry(&ring->request_list,
673a394b
EA
1714 struct drm_i915_gem_request,
1715 list);
673a394b 1716
dfaae392 1717 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1718 break;
1719
db53a302 1720 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1721 /* We know the GPU must have read the request to have
1722 * sent us the seqno + interrupt, so use the position
1723 * of tail of the request to update the last known position
1724 * of the GPU head.
1725 */
1726 ring->last_retired_head = request->tail;
b84d5f0c
CW
1727
1728 list_del(&request->list);
f787a5f5 1729 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1730 kfree(request);
1731 }
673a394b 1732
b84d5f0c
CW
1733 /* Move any buffers on the active list that are no longer referenced
1734 * by the ringbuffer to the flushing/inactive lists as appropriate.
1735 */
1736 while (!list_empty(&ring->active_list)) {
05394f39 1737 struct drm_i915_gem_object *obj;
b84d5f0c 1738
0206e353 1739 obj = list_first_entry(&ring->active_list,
05394f39
CW
1740 struct drm_i915_gem_object,
1741 ring_list);
673a394b 1742
05394f39 1743 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1744 break;
b84d5f0c 1745
05394f39 1746 if (obj->base.write_domain != 0)
b84d5f0c
CW
1747 i915_gem_object_move_to_flushing(obj);
1748 else
1749 i915_gem_object_move_to_inactive(obj);
673a394b 1750 }
9d34e5db 1751
db53a302
CW
1752 if (unlikely(ring->trace_irq_seqno &&
1753 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1754 ring->irq_put(ring);
db53a302 1755 ring->trace_irq_seqno = 0;
9d34e5db 1756 }
23bc5982 1757
db53a302 1758 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1759}
1760
b09a1fec
CW
1761void
1762i915_gem_retire_requests(struct drm_device *dev)
1763{
1764 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1765 int i;
b09a1fec 1766
be72615b 1767 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1768 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1769
1770 /* We must be careful that during unbind() we do not
1771 * accidentally infinitely recurse into retire requests.
1772 * Currently:
1773 * retire -> free -> unbind -> wait -> retire_ring
1774 */
05394f39 1775 list_for_each_entry_safe(obj, next,
be72615b 1776 &dev_priv->mm.deferred_free_list,
69dc4987 1777 mm_list)
05394f39 1778 i915_gem_free_object_tail(obj);
be72615b
CW
1779 }
1780
1ec14ad3 1781 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1782 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1783}
1784
75ef9da2 1785static void
673a394b
EA
1786i915_gem_retire_work_handler(struct work_struct *work)
1787{
1788 drm_i915_private_t *dev_priv;
1789 struct drm_device *dev;
0a58705b
CW
1790 bool idle;
1791 int i;
673a394b
EA
1792
1793 dev_priv = container_of(work, drm_i915_private_t,
1794 mm.retire_work.work);
1795 dev = dev_priv->dev;
1796
891b48cf
CW
1797 /* Come back later if the device is busy... */
1798 if (!mutex_trylock(&dev->struct_mutex)) {
1799 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1800 return;
1801 }
1802
b09a1fec 1803 i915_gem_retire_requests(dev);
d1b851fc 1804
0a58705b
CW
1805 /* Send a periodic flush down the ring so we don't hold onto GEM
1806 * objects indefinitely.
1807 */
1808 idle = true;
1809 for (i = 0; i < I915_NUM_RINGS; i++) {
1810 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1811
1812 if (!list_empty(&ring->gpu_write_list)) {
1813 struct drm_i915_gem_request *request;
1814 int ret;
1815
db53a302
CW
1816 ret = i915_gem_flush_ring(ring,
1817 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1818 request = kzalloc(sizeof(*request), GFP_KERNEL);
1819 if (ret || request == NULL ||
db53a302 1820 i915_add_request(ring, NULL, request))
0a58705b
CW
1821 kfree(request);
1822 }
1823
1824 idle &= list_empty(&ring->request_list);
1825 }
1826
1827 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1828 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1829
673a394b
EA
1830 mutex_unlock(&dev->struct_mutex);
1831}
1832
db53a302
CW
1833/**
1834 * Waits for a sequence number to be signaled, and cleans up the
1835 * request and object lists appropriately for that event.
1836 */
5a5a0c64 1837int
db53a302 1838i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1839 uint32_t seqno,
1840 bool do_retire)
673a394b 1841{
db53a302 1842 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1843 u32 ier;
673a394b
EA
1844 int ret = 0;
1845
1846 BUG_ON(seqno == 0);
1847
d9bc7e9f
CW
1848 if (atomic_read(&dev_priv->mm.wedged)) {
1849 struct completion *x = &dev_priv->error_completion;
1850 bool recovery_complete;
1851 unsigned long flags;
1852
1853 /* Give the error handler a chance to run. */
1854 spin_lock_irqsave(&x->wait.lock, flags);
1855 recovery_complete = x->done > 0;
1856 spin_unlock_irqrestore(&x->wait.lock, flags);
1857
1858 return recovery_complete ? -EIO : -EAGAIN;
1859 }
30dbf0c0 1860
5d97eb69 1861 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1862 struct drm_i915_gem_request *request;
1863
1864 request = kzalloc(sizeof(*request), GFP_KERNEL);
1865 if (request == NULL)
e35a41de 1866 return -ENOMEM;
3cce469c 1867
db53a302 1868 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1869 if (ret) {
1870 kfree(request);
1871 return ret;
1872 }
1873
1874 seqno = request->seqno;
e35a41de 1875 }
ffed1d09 1876
78501eac 1877 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1878 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1879 ier = I915_READ(DEIER) | I915_READ(GTIER);
1880 else
1881 ier = I915_READ(IER);
802c7eb6
JB
1882 if (!ier) {
1883 DRM_ERROR("something (likely vbetool) disabled "
1884 "interrupts, re-enabling\n");
f01c22fd
CW
1885 ring->dev->driver->irq_preinstall(ring->dev);
1886 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1887 }
1888
db53a302 1889 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1890
b2223497 1891 ring->waiting_seqno = seqno;
b13c2b96 1892 if (ring->irq_get(ring)) {
ce453d81 1893 if (dev_priv->mm.interruptible)
b13c2b96
CW
1894 ret = wait_event_interruptible(ring->irq_queue,
1895 i915_seqno_passed(ring->get_seqno(ring), seqno)
1896 || atomic_read(&dev_priv->mm.wedged));
1897 else
1898 wait_event(ring->irq_queue,
1899 i915_seqno_passed(ring->get_seqno(ring), seqno)
1900 || atomic_read(&dev_priv->mm.wedged));
1901
1902 ring->irq_put(ring);
e959b5db
EA
1903 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1904 seqno) ||
1905 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1906 ret = -EBUSY;
b2223497 1907 ring->waiting_seqno = 0;
1c5d22f7 1908
db53a302 1909 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1910 }
ba1234d1 1911 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1912 ret = -EAGAIN;
673a394b 1913
673a394b
EA
1914 /* Directly dispatch request retiring. While we have the work queue
1915 * to handle this, the waiter on a request often wants an associated
1916 * buffer to have made it to the inactive list, and we would need
1917 * a separate wait queue to handle that.
1918 */
b93f9cf1 1919 if (ret == 0 && do_retire)
db53a302 1920 i915_gem_retire_requests_ring(ring);
673a394b
EA
1921
1922 return ret;
1923}
1924
673a394b
EA
1925/**
1926 * Ensures that all rendering to the object has completed and the object is
1927 * safe to unbind from the GTT or access from the CPU.
1928 */
54cf91dc 1929int
ce453d81 1930i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1931{
673a394b
EA
1932 int ret;
1933
e47c68e9
EA
1934 /* This function only exists to support waiting for existing rendering,
1935 * not for emitting required flushes.
673a394b 1936 */
05394f39 1937 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1938
1939 /* If there is rendering queued on the buffer being evicted, wait for
1940 * it.
1941 */
05394f39 1942 if (obj->active) {
b93f9cf1
BW
1943 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1944 true);
2cf34d7b 1945 if (ret)
673a394b
EA
1946 return ret;
1947 }
1948
1949 return 0;
1950}
1951
b5ffc9bc
CW
1952static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1953{
1954 u32 old_write_domain, old_read_domains;
1955
b5ffc9bc
CW
1956 /* Act a barrier for all accesses through the GTT */
1957 mb();
1958
1959 /* Force a pagefault for domain tracking on next user access */
1960 i915_gem_release_mmap(obj);
1961
b97c3d9c
KP
1962 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1963 return;
1964
b5ffc9bc
CW
1965 old_read_domains = obj->base.read_domains;
1966 old_write_domain = obj->base.write_domain;
1967
1968 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
1969 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
1970
1971 trace_i915_gem_object_change_domain(obj,
1972 old_read_domains,
1973 old_write_domain);
1974}
1975
673a394b
EA
1976/**
1977 * Unbinds an object from the GTT aperture.
1978 */
0f973f27 1979int
05394f39 1980i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 1981{
7bddb01f 1982 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
1983 int ret = 0;
1984
05394f39 1985 if (obj->gtt_space == NULL)
673a394b
EA
1986 return 0;
1987
05394f39 1988 if (obj->pin_count != 0) {
673a394b
EA
1989 DRM_ERROR("Attempting to unbind pinned buffer\n");
1990 return -EINVAL;
1991 }
1992
a8198eea
CW
1993 ret = i915_gem_object_finish_gpu(obj);
1994 if (ret == -ERESTARTSYS)
1995 return ret;
1996 /* Continue on if we fail due to EIO, the GPU is hung so we
1997 * should be safe and we need to cleanup or else we might
1998 * cause memory corruption through use-after-free.
1999 */
2000
b5ffc9bc 2001 i915_gem_object_finish_gtt(obj);
5323fd04 2002
673a394b
EA
2003 /* Move the object to the CPU domain to ensure that
2004 * any possible CPU writes while it's not in the GTT
a8198eea 2005 * are flushed when we go to remap it.
673a394b 2006 */
a8198eea
CW
2007 if (ret == 0)
2008 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2009 if (ret == -ERESTARTSYS)
673a394b 2010 return ret;
812ed492 2011 if (ret) {
a8198eea
CW
2012 /* In the event of a disaster, abandon all caches and
2013 * hope for the best.
2014 */
812ed492 2015 i915_gem_clflush_object(obj);
05394f39 2016 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2017 }
673a394b 2018
96b47b65 2019 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2020 ret = i915_gem_object_put_fence(obj);
2021 if (ret == -ERESTARTSYS)
2022 return ret;
96b47b65 2023
db53a302
CW
2024 trace_i915_gem_object_unbind(obj);
2025
74898d7e
DV
2026 if (obj->has_global_gtt_mapping)
2027 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2028 if (obj->has_aliasing_ppgtt_mapping) {
2029 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2030 obj->has_aliasing_ppgtt_mapping = 0;
2031 }
74163907 2032 i915_gem_gtt_finish_object(obj);
7bddb01f 2033
e5281ccd 2034 i915_gem_object_put_pages_gtt(obj);
673a394b 2035
6299f992 2036 list_del_init(&obj->gtt_list);
05394f39 2037 list_del_init(&obj->mm_list);
75e9e915 2038 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2039 obj->map_and_fenceable = true;
673a394b 2040
05394f39
CW
2041 drm_mm_put_block(obj->gtt_space);
2042 obj->gtt_space = NULL;
2043 obj->gtt_offset = 0;
673a394b 2044
05394f39 2045 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2046 i915_gem_object_truncate(obj);
2047
8dc1775d 2048 return ret;
673a394b
EA
2049}
2050
88241785 2051int
db53a302 2052i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2053 uint32_t invalidate_domains,
2054 uint32_t flush_domains)
2055{
88241785
CW
2056 int ret;
2057
36d527de
CW
2058 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2059 return 0;
2060
db53a302
CW
2061 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2062
88241785
CW
2063 ret = ring->flush(ring, invalidate_domains, flush_domains);
2064 if (ret)
2065 return ret;
2066
36d527de
CW
2067 if (flush_domains & I915_GEM_GPU_DOMAINS)
2068 i915_gem_process_flushing_list(ring, flush_domains);
2069
88241785 2070 return 0;
54cf91dc
CW
2071}
2072
b93f9cf1 2073static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2074{
88241785
CW
2075 int ret;
2076
395b70be 2077 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2078 return 0;
2079
88241785 2080 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2081 ret = i915_gem_flush_ring(ring,
0ac74c6b 2082 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2083 if (ret)
2084 return ret;
2085 }
2086
b93f9cf1
BW
2087 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2088 do_retire);
a56ba56c
CW
2089}
2090
b93f9cf1 2091int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2092{
2093 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2094 int ret, i;
4df2faf4 2095
4df2faf4 2096 /* Flush everything onto the inactive list. */
1ec14ad3 2097 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2098 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2099 if (ret)
2100 return ret;
2101 }
4df2faf4 2102
8a1a49f9 2103 return 0;
4df2faf4
DV
2104}
2105
c6642782
DV
2106static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2107 struct intel_ring_buffer *pipelined)
4e901fdc 2108{
05394f39 2109 struct drm_device *dev = obj->base.dev;
4e901fdc 2110 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2111 u32 size = obj->gtt_space->size;
2112 int regnum = obj->fence_reg;
4e901fdc
EA
2113 uint64_t val;
2114
05394f39 2115 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2116 0xfffff000) << 32;
05394f39
CW
2117 val |= obj->gtt_offset & 0xfffff000;
2118 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2119 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2120
05394f39 2121 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2122 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2123 val |= I965_FENCE_REG_VALID;
2124
c6642782
DV
2125 if (pipelined) {
2126 int ret = intel_ring_begin(pipelined, 6);
2127 if (ret)
2128 return ret;
2129
2130 intel_ring_emit(pipelined, MI_NOOP);
2131 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2132 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2133 intel_ring_emit(pipelined, (u32)val);
2134 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2135 intel_ring_emit(pipelined, (u32)(val >> 32));
2136 intel_ring_advance(pipelined);
2137 } else
2138 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2139
2140 return 0;
4e901fdc
EA
2141}
2142
c6642782
DV
2143static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2144 struct intel_ring_buffer *pipelined)
de151cf6 2145{
05394f39 2146 struct drm_device *dev = obj->base.dev;
de151cf6 2147 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2148 u32 size = obj->gtt_space->size;
2149 int regnum = obj->fence_reg;
de151cf6
JB
2150 uint64_t val;
2151
05394f39 2152 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2153 0xfffff000) << 32;
05394f39
CW
2154 val |= obj->gtt_offset & 0xfffff000;
2155 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2156 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2157 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2158 val |= I965_FENCE_REG_VALID;
2159
c6642782
DV
2160 if (pipelined) {
2161 int ret = intel_ring_begin(pipelined, 6);
2162 if (ret)
2163 return ret;
2164
2165 intel_ring_emit(pipelined, MI_NOOP);
2166 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2167 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2168 intel_ring_emit(pipelined, (u32)val);
2169 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2170 intel_ring_emit(pipelined, (u32)(val >> 32));
2171 intel_ring_advance(pipelined);
2172 } else
2173 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2174
2175 return 0;
de151cf6
JB
2176}
2177
c6642782
DV
2178static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2179 struct intel_ring_buffer *pipelined)
de151cf6 2180{
05394f39 2181 struct drm_device *dev = obj->base.dev;
de151cf6 2182 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2183 u32 size = obj->gtt_space->size;
c6642782 2184 u32 fence_reg, val, pitch_val;
0f973f27 2185 int tile_width;
de151cf6 2186
c6642782
DV
2187 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2188 (size & -size) != size ||
2189 (obj->gtt_offset & (size - 1)),
2190 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2191 obj->gtt_offset, obj->map_and_fenceable, size))
2192 return -EINVAL;
de151cf6 2193
c6642782 2194 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2195 tile_width = 128;
de151cf6 2196 else
0f973f27
JB
2197 tile_width = 512;
2198
2199 /* Note: pitch better be a power of two tile widths */
05394f39 2200 pitch_val = obj->stride / tile_width;
0f973f27 2201 pitch_val = ffs(pitch_val) - 1;
de151cf6 2202
05394f39
CW
2203 val = obj->gtt_offset;
2204 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2205 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2206 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2207 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2208 val |= I830_FENCE_REG_VALID;
2209
05394f39 2210 fence_reg = obj->fence_reg;
a00b10c3
CW
2211 if (fence_reg < 8)
2212 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2213 else
a00b10c3 2214 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2215
2216 if (pipelined) {
2217 int ret = intel_ring_begin(pipelined, 4);
2218 if (ret)
2219 return ret;
2220
2221 intel_ring_emit(pipelined, MI_NOOP);
2222 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2223 intel_ring_emit(pipelined, fence_reg);
2224 intel_ring_emit(pipelined, val);
2225 intel_ring_advance(pipelined);
2226 } else
2227 I915_WRITE(fence_reg, val);
2228
2229 return 0;
de151cf6
JB
2230}
2231
c6642782
DV
2232static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2233 struct intel_ring_buffer *pipelined)
de151cf6 2234{
05394f39 2235 struct drm_device *dev = obj->base.dev;
de151cf6 2236 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2237 u32 size = obj->gtt_space->size;
2238 int regnum = obj->fence_reg;
de151cf6
JB
2239 uint32_t val;
2240 uint32_t pitch_val;
2241
c6642782
DV
2242 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2243 (size & -size) != size ||
2244 (obj->gtt_offset & (size - 1)),
2245 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2246 obj->gtt_offset, size))
2247 return -EINVAL;
de151cf6 2248
05394f39 2249 pitch_val = obj->stride / 128;
e76a16de 2250 pitch_val = ffs(pitch_val) - 1;
e76a16de 2251
05394f39
CW
2252 val = obj->gtt_offset;
2253 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2254 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2255 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2256 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2257 val |= I830_FENCE_REG_VALID;
2258
c6642782
DV
2259 if (pipelined) {
2260 int ret = intel_ring_begin(pipelined, 4);
2261 if (ret)
2262 return ret;
2263
2264 intel_ring_emit(pipelined, MI_NOOP);
2265 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2266 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2267 intel_ring_emit(pipelined, val);
2268 intel_ring_advance(pipelined);
2269 } else
2270 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2271
2272 return 0;
de151cf6
JB
2273}
2274
d9e86c0e
CW
2275static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2276{
2277 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2278}
2279
2280static int
2281i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2282 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2283{
2284 int ret;
2285
2286 if (obj->fenced_gpu_access) {
88241785 2287 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2288 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2289 0, obj->base.write_domain);
2290 if (ret)
2291 return ret;
2292 }
d9e86c0e
CW
2293
2294 obj->fenced_gpu_access = false;
2295 }
2296
2297 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2298 if (!ring_passed_seqno(obj->last_fenced_ring,
2299 obj->last_fenced_seqno)) {
db53a302 2300 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2301 obj->last_fenced_seqno,
2302 true);
d9e86c0e
CW
2303 if (ret)
2304 return ret;
2305 }
2306
2307 obj->last_fenced_seqno = 0;
2308 obj->last_fenced_ring = NULL;
2309 }
2310
63256ec5
CW
2311 /* Ensure that all CPU reads are completed before installing a fence
2312 * and all writes before removing the fence.
2313 */
2314 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2315 mb();
2316
d9e86c0e
CW
2317 return 0;
2318}
2319
2320int
2321i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2322{
2323 int ret;
2324
2325 if (obj->tiling_mode)
2326 i915_gem_release_mmap(obj);
2327
ce453d81 2328 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2329 if (ret)
2330 return ret;
2331
2332 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2333 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2334
2335 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2336 i915_gem_clear_fence_reg(obj->base.dev,
2337 &dev_priv->fence_regs[obj->fence_reg]);
2338
2339 obj->fence_reg = I915_FENCE_REG_NONE;
2340 }
2341
2342 return 0;
2343}
2344
2345static struct drm_i915_fence_reg *
2346i915_find_fence_reg(struct drm_device *dev,
2347 struct intel_ring_buffer *pipelined)
ae3db24a 2348{
ae3db24a 2349 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2350 struct drm_i915_fence_reg *reg, *first, *avail;
2351 int i;
ae3db24a
DV
2352
2353 /* First try to find a free reg */
d9e86c0e 2354 avail = NULL;
ae3db24a
DV
2355 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2356 reg = &dev_priv->fence_regs[i];
2357 if (!reg->obj)
d9e86c0e 2358 return reg;
ae3db24a 2359
1690e1eb 2360 if (!reg->pin_count)
d9e86c0e 2361 avail = reg;
ae3db24a
DV
2362 }
2363
d9e86c0e
CW
2364 if (avail == NULL)
2365 return NULL;
ae3db24a
DV
2366
2367 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2368 avail = first = NULL;
2369 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2370 if (reg->pin_count)
ae3db24a
DV
2371 continue;
2372
d9e86c0e
CW
2373 if (first == NULL)
2374 first = reg;
2375
2376 if (!pipelined ||
2377 !reg->obj->last_fenced_ring ||
2378 reg->obj->last_fenced_ring == pipelined) {
2379 avail = reg;
2380 break;
2381 }
ae3db24a
DV
2382 }
2383
d9e86c0e
CW
2384 if (avail == NULL)
2385 avail = first;
ae3db24a 2386
a00b10c3 2387 return avail;
ae3db24a
DV
2388}
2389
de151cf6 2390/**
d9e86c0e 2391 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2392 * @obj: object to map through a fence reg
d9e86c0e
CW
2393 * @pipelined: ring on which to queue the change, or NULL for CPU access
2394 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2395 *
2396 * When mapping objects through the GTT, userspace wants to be able to write
2397 * to them without having to worry about swizzling if the object is tiled.
2398 *
2399 * This function walks the fence regs looking for a free one for @obj,
2400 * stealing one if it can't find any.
2401 *
2402 * It then sets up the reg based on the object's properties: address, pitch
2403 * and tiling format.
2404 */
8c4b8c3f 2405int
d9e86c0e 2406i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2407 struct intel_ring_buffer *pipelined)
de151cf6 2408{
05394f39 2409 struct drm_device *dev = obj->base.dev;
79e53945 2410 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2411 struct drm_i915_fence_reg *reg;
ae3db24a 2412 int ret;
de151cf6 2413
6bda10d1
CW
2414 /* XXX disable pipelining. There are bugs. Shocking. */
2415 pipelined = NULL;
2416
d9e86c0e 2417 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2418 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2419 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2420 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2421
29c5a587
CW
2422 if (obj->tiling_changed) {
2423 ret = i915_gem_object_flush_fence(obj, pipelined);
2424 if (ret)
2425 return ret;
2426
2427 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2428 pipelined = NULL;
2429
2430 if (pipelined) {
2431 reg->setup_seqno =
2432 i915_gem_next_request_seqno(pipelined);
2433 obj->last_fenced_seqno = reg->setup_seqno;
2434 obj->last_fenced_ring = pipelined;
2435 }
2436
2437 goto update;
2438 }
d9e86c0e
CW
2439
2440 if (!pipelined) {
2441 if (reg->setup_seqno) {
2442 if (!ring_passed_seqno(obj->last_fenced_ring,
2443 reg->setup_seqno)) {
db53a302 2444 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2445 reg->setup_seqno,
2446 true);
d9e86c0e
CW
2447 if (ret)
2448 return ret;
2449 }
2450
2451 reg->setup_seqno = 0;
2452 }
2453 } else if (obj->last_fenced_ring &&
2454 obj->last_fenced_ring != pipelined) {
ce453d81 2455 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2456 if (ret)
2457 return ret;
d9e86c0e
CW
2458 }
2459
a09ba7fa
EA
2460 return 0;
2461 }
2462
d9e86c0e
CW
2463 reg = i915_find_fence_reg(dev, pipelined);
2464 if (reg == NULL)
39965b37 2465 return -EDEADLK;
de151cf6 2466
ce453d81 2467 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2468 if (ret)
ae3db24a 2469 return ret;
de151cf6 2470
d9e86c0e
CW
2471 if (reg->obj) {
2472 struct drm_i915_gem_object *old = reg->obj;
2473
2474 drm_gem_object_reference(&old->base);
2475
2476 if (old->tiling_mode)
2477 i915_gem_release_mmap(old);
2478
ce453d81 2479 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2480 if (ret) {
2481 drm_gem_object_unreference(&old->base);
2482 return ret;
2483 }
2484
2485 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2486 pipelined = NULL;
2487
2488 old->fence_reg = I915_FENCE_REG_NONE;
2489 old->last_fenced_ring = pipelined;
2490 old->last_fenced_seqno =
db53a302 2491 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2492
2493 drm_gem_object_unreference(&old->base);
2494 } else if (obj->last_fenced_seqno == 0)
2495 pipelined = NULL;
a09ba7fa 2496
de151cf6 2497 reg->obj = obj;
d9e86c0e
CW
2498 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2499 obj->fence_reg = reg - dev_priv->fence_regs;
2500 obj->last_fenced_ring = pipelined;
de151cf6 2501
d9e86c0e 2502 reg->setup_seqno =
db53a302 2503 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2504 obj->last_fenced_seqno = reg->setup_seqno;
2505
2506update:
2507 obj->tiling_changed = false;
e259befd 2508 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2509 case 7:
e259befd 2510 case 6:
c6642782 2511 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2512 break;
2513 case 5:
2514 case 4:
c6642782 2515 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2516 break;
2517 case 3:
c6642782 2518 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2519 break;
2520 case 2:
c6642782 2521 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2522 break;
2523 }
d9ddcb96 2524
c6642782 2525 return ret;
de151cf6
JB
2526}
2527
2528/**
2529 * i915_gem_clear_fence_reg - clear out fence register info
2530 * @obj: object to clear
2531 *
2532 * Zeroes out the fence register itself and clears out the associated
05394f39 2533 * data structures in dev_priv and obj.
de151cf6
JB
2534 */
2535static void
d9e86c0e
CW
2536i915_gem_clear_fence_reg(struct drm_device *dev,
2537 struct drm_i915_fence_reg *reg)
de151cf6 2538{
79e53945 2539 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2540 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2541
e259befd 2542 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2543 case 7:
e259befd 2544 case 6:
d9e86c0e 2545 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2546 break;
2547 case 5:
2548 case 4:
d9e86c0e 2549 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2550 break;
2551 case 3:
d9e86c0e
CW
2552 if (fence_reg >= 8)
2553 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2554 else
e259befd 2555 case 2:
d9e86c0e 2556 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2557
2558 I915_WRITE(fence_reg, 0);
e259befd 2559 break;
dc529a4f 2560 }
de151cf6 2561
007cc8ac 2562 list_del_init(&reg->lru_list);
d9e86c0e
CW
2563 reg->obj = NULL;
2564 reg->setup_seqno = 0;
1690e1eb 2565 reg->pin_count = 0;
52dc7d32
CW
2566}
2567
673a394b
EA
2568/**
2569 * Finds free space in the GTT aperture and binds the object there.
2570 */
2571static int
05394f39 2572i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2573 unsigned alignment,
75e9e915 2574 bool map_and_fenceable)
673a394b 2575{
05394f39 2576 struct drm_device *dev = obj->base.dev;
673a394b 2577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2578 struct drm_mm_node *free_space;
a00b10c3 2579 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2580 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2581 bool mappable, fenceable;
07f73f69 2582 int ret;
673a394b 2583
05394f39 2584 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2585 DRM_ERROR("Attempting to bind a purgeable object\n");
2586 return -EINVAL;
2587 }
2588
e28f8711
CW
2589 fence_size = i915_gem_get_gtt_size(dev,
2590 obj->base.size,
2591 obj->tiling_mode);
2592 fence_alignment = i915_gem_get_gtt_alignment(dev,
2593 obj->base.size,
2594 obj->tiling_mode);
2595 unfenced_alignment =
2596 i915_gem_get_unfenced_gtt_alignment(dev,
2597 obj->base.size,
2598 obj->tiling_mode);
a00b10c3 2599
673a394b 2600 if (alignment == 0)
5e783301
DV
2601 alignment = map_and_fenceable ? fence_alignment :
2602 unfenced_alignment;
75e9e915 2603 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2604 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2605 return -EINVAL;
2606 }
2607
05394f39 2608 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2609
654fc607
CW
2610 /* If the object is bigger than the entire aperture, reject it early
2611 * before evicting everything in a vain attempt to find space.
2612 */
05394f39 2613 if (obj->base.size >
75e9e915 2614 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2615 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2616 return -E2BIG;
2617 }
2618
673a394b 2619 search_free:
75e9e915 2620 if (map_and_fenceable)
920afa77
DV
2621 free_space =
2622 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2623 size, alignment, 0,
920afa77
DV
2624 dev_priv->mm.gtt_mappable_end,
2625 0);
2626 else
2627 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2628 size, alignment, 0);
920afa77
DV
2629
2630 if (free_space != NULL) {
75e9e915 2631 if (map_and_fenceable)
05394f39 2632 obj->gtt_space =
920afa77 2633 drm_mm_get_block_range_generic(free_space,
a00b10c3 2634 size, alignment, 0,
920afa77
DV
2635 dev_priv->mm.gtt_mappable_end,
2636 0);
2637 else
05394f39 2638 obj->gtt_space =
a00b10c3 2639 drm_mm_get_block(free_space, size, alignment);
920afa77 2640 }
05394f39 2641 if (obj->gtt_space == NULL) {
673a394b
EA
2642 /* If the gtt is empty and we're still having trouble
2643 * fitting our object in, we're out of memory.
2644 */
75e9e915
DV
2645 ret = i915_gem_evict_something(dev, size, alignment,
2646 map_and_fenceable);
9731129c 2647 if (ret)
673a394b 2648 return ret;
9731129c 2649
673a394b
EA
2650 goto search_free;
2651 }
2652
e5281ccd 2653 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2654 if (ret) {
05394f39
CW
2655 drm_mm_put_block(obj->gtt_space);
2656 obj->gtt_space = NULL;
07f73f69
CW
2657
2658 if (ret == -ENOMEM) {
809b6334
CW
2659 /* first try to reclaim some memory by clearing the GTT */
2660 ret = i915_gem_evict_everything(dev, false);
07f73f69 2661 if (ret) {
07f73f69 2662 /* now try to shrink everyone else */
4bdadb97
CW
2663 if (gfpmask) {
2664 gfpmask = 0;
2665 goto search_free;
07f73f69
CW
2666 }
2667
809b6334 2668 return -ENOMEM;
07f73f69
CW
2669 }
2670
2671 goto search_free;
2672 }
2673
673a394b
EA
2674 return ret;
2675 }
2676
74163907 2677 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2678 if (ret) {
e5281ccd 2679 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2680 drm_mm_put_block(obj->gtt_space);
2681 obj->gtt_space = NULL;
07f73f69 2682
809b6334 2683 if (i915_gem_evict_everything(dev, false))
07f73f69 2684 return ret;
07f73f69
CW
2685
2686 goto search_free;
673a394b 2687 }
0ebb9829
DV
2688
2689 if (!dev_priv->mm.aliasing_ppgtt)
2690 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2691
6299f992 2692 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2693 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2694
673a394b
EA
2695 /* Assert that the object is not currently in any GPU domain. As it
2696 * wasn't in the GTT, there shouldn't be any way it could have been in
2697 * a GPU cache
2698 */
05394f39
CW
2699 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2700 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2701
6299f992 2702 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2703
75e9e915 2704 fenceable =
05394f39 2705 obj->gtt_space->size == fence_size &&
0206e353 2706 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2707
75e9e915 2708 mappable =
05394f39 2709 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2710
05394f39 2711 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2712
db53a302 2713 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2714 return 0;
2715}
2716
2717void
05394f39 2718i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2719{
673a394b
EA
2720 /* If we don't have a page list set up, then we're not pinned
2721 * to GPU, and we can ignore the cache flush because it'll happen
2722 * again at bind time.
2723 */
05394f39 2724 if (obj->pages == NULL)
673a394b
EA
2725 return;
2726
9c23f7fc
CW
2727 /* If the GPU is snooping the contents of the CPU cache,
2728 * we do not need to manually clear the CPU cache lines. However,
2729 * the caches are only snooped when the render cache is
2730 * flushed/invalidated. As we always have to emit invalidations
2731 * and flushes when moving into and out of the RENDER domain, correct
2732 * snooping behaviour occurs naturally as the result of our domain
2733 * tracking.
2734 */
2735 if (obj->cache_level != I915_CACHE_NONE)
2736 return;
2737
1c5d22f7 2738 trace_i915_gem_object_clflush(obj);
cfa16a0d 2739
05394f39 2740 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2741}
2742
e47c68e9 2743/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2744static int
3619df03 2745i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2746{
05394f39 2747 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2748 return 0;
e47c68e9
EA
2749
2750 /* Queue the GPU write cache flushing we need. */
db53a302 2751 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2752}
2753
2754/** Flushes the GTT write domain for the object if it's dirty. */
2755static void
05394f39 2756i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2757{
1c5d22f7
CW
2758 uint32_t old_write_domain;
2759
05394f39 2760 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2761 return;
2762
63256ec5 2763 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2764 * to it immediately go to main memory as far as we know, so there's
2765 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2766 *
2767 * However, we do have to enforce the order so that all writes through
2768 * the GTT land before any writes to the device, such as updates to
2769 * the GATT itself.
e47c68e9 2770 */
63256ec5
CW
2771 wmb();
2772
05394f39
CW
2773 old_write_domain = obj->base.write_domain;
2774 obj->base.write_domain = 0;
1c5d22f7
CW
2775
2776 trace_i915_gem_object_change_domain(obj,
05394f39 2777 obj->base.read_domains,
1c5d22f7 2778 old_write_domain);
e47c68e9
EA
2779}
2780
2781/** Flushes the CPU write domain for the object if it's dirty. */
2782static void
05394f39 2783i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2784{
1c5d22f7 2785 uint32_t old_write_domain;
e47c68e9 2786
05394f39 2787 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2788 return;
2789
2790 i915_gem_clflush_object(obj);
40ce6575 2791 intel_gtt_chipset_flush();
05394f39
CW
2792 old_write_domain = obj->base.write_domain;
2793 obj->base.write_domain = 0;
1c5d22f7
CW
2794
2795 trace_i915_gem_object_change_domain(obj,
05394f39 2796 obj->base.read_domains,
1c5d22f7 2797 old_write_domain);
e47c68e9
EA
2798}
2799
2ef7eeaa
EA
2800/**
2801 * Moves a single object to the GTT read, and possibly write domain.
2802 *
2803 * This function returns when the move is complete, including waiting on
2804 * flushes to occur.
2805 */
79e53945 2806int
2021746e 2807i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2808{
1c5d22f7 2809 uint32_t old_write_domain, old_read_domains;
e47c68e9 2810 int ret;
2ef7eeaa 2811
02354392 2812 /* Not valid to be called on unbound objects. */
05394f39 2813 if (obj->gtt_space == NULL)
02354392
EA
2814 return -EINVAL;
2815
8d7e3de1
CW
2816 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2817 return 0;
2818
88241785
CW
2819 ret = i915_gem_object_flush_gpu_write_domain(obj);
2820 if (ret)
2821 return ret;
2822
87ca9c8a 2823 if (obj->pending_gpu_write || write) {
ce453d81 2824 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2825 if (ret)
2826 return ret;
2827 }
2dafb1e0 2828
7213342d 2829 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2830
05394f39
CW
2831 old_write_domain = obj->base.write_domain;
2832 old_read_domains = obj->base.read_domains;
1c5d22f7 2833
e47c68e9
EA
2834 /* It should now be out of any other write domains, and we can update
2835 * the domain values for our changes.
2836 */
05394f39
CW
2837 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2838 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2839 if (write) {
05394f39
CW
2840 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2841 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2842 obj->dirty = 1;
2ef7eeaa
EA
2843 }
2844
1c5d22f7
CW
2845 trace_i915_gem_object_change_domain(obj,
2846 old_read_domains,
2847 old_write_domain);
2848
e47c68e9
EA
2849 return 0;
2850}
2851
e4ffd173
CW
2852int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2853 enum i915_cache_level cache_level)
2854{
7bddb01f
DV
2855 struct drm_device *dev = obj->base.dev;
2856 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2857 int ret;
2858
2859 if (obj->cache_level == cache_level)
2860 return 0;
2861
2862 if (obj->pin_count) {
2863 DRM_DEBUG("can not change the cache level of pinned objects\n");
2864 return -EBUSY;
2865 }
2866
2867 if (obj->gtt_space) {
2868 ret = i915_gem_object_finish_gpu(obj);
2869 if (ret)
2870 return ret;
2871
2872 i915_gem_object_finish_gtt(obj);
2873
2874 /* Before SandyBridge, you could not use tiling or fence
2875 * registers with snooped memory, so relinquish any fences
2876 * currently pointing to our region in the aperture.
2877 */
2878 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2879 ret = i915_gem_object_put_fence(obj);
2880 if (ret)
2881 return ret;
2882 }
2883
74898d7e
DV
2884 if (obj->has_global_gtt_mapping)
2885 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2886 if (obj->has_aliasing_ppgtt_mapping)
2887 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2888 obj, cache_level);
e4ffd173
CW
2889 }
2890
2891 if (cache_level == I915_CACHE_NONE) {
2892 u32 old_read_domains, old_write_domain;
2893
2894 /* If we're coming from LLC cached, then we haven't
2895 * actually been tracking whether the data is in the
2896 * CPU cache or not, since we only allow one bit set
2897 * in obj->write_domain and have been skipping the clflushes.
2898 * Just set it to the CPU cache for now.
2899 */
2900 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2901 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2902
2903 old_read_domains = obj->base.read_domains;
2904 old_write_domain = obj->base.write_domain;
2905
2906 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2907 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 old_read_domains,
2911 old_write_domain);
2912 }
2913
2914 obj->cache_level = cache_level;
2915 return 0;
2916}
2917
b9241ea3 2918/*
2da3b9b9
CW
2919 * Prepare buffer for display plane (scanout, cursors, etc).
2920 * Can be called from an uninterruptible phase (modesetting) and allows
2921 * any flushes to be pipelined (for pageflips).
2922 *
2923 * For the display plane, we want to be in the GTT but out of any write
2924 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
2925 * ability to pipeline the waits, pinning and any additional subtleties
2926 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
2927 */
2928int
2da3b9b9
CW
2929i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2930 u32 alignment,
919926ae 2931 struct intel_ring_buffer *pipelined)
b9241ea3 2932{
2da3b9b9 2933 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2934 int ret;
2935
88241785
CW
2936 ret = i915_gem_object_flush_gpu_write_domain(obj);
2937 if (ret)
2938 return ret;
2939
0be73284 2940 if (pipelined != obj->ring) {
ce453d81 2941 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 2942 if (ret == -ERESTARTSYS)
b9241ea3
ZW
2943 return ret;
2944 }
2945
a7ef0640
EA
2946 /* The display engine is not coherent with the LLC cache on gen6. As
2947 * a result, we make sure that the pinning that is about to occur is
2948 * done with uncached PTEs. This is lowest common denominator for all
2949 * chipsets.
2950 *
2951 * However for gen6+, we could do better by using the GFDT bit instead
2952 * of uncaching, which would allow us to flush all the LLC-cached data
2953 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2954 */
2955 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2956 if (ret)
2957 return ret;
2958
2da3b9b9
CW
2959 /* As the user may map the buffer once pinned in the display plane
2960 * (e.g. libkms for the bootup splash), we have to ensure that we
2961 * always use map_and_fenceable for all scanout buffers.
2962 */
2963 ret = i915_gem_object_pin(obj, alignment, true);
2964 if (ret)
2965 return ret;
2966
b118c1e3
CW
2967 i915_gem_object_flush_cpu_write_domain(obj);
2968
2da3b9b9 2969 old_write_domain = obj->base.write_domain;
05394f39 2970 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2971
2972 /* It should now be out of any other write domains, and we can update
2973 * the domain values for our changes.
2974 */
2975 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2976 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2977
2978 trace_i915_gem_object_change_domain(obj,
2979 old_read_domains,
2da3b9b9 2980 old_write_domain);
b9241ea3
ZW
2981
2982 return 0;
2983}
2984
85345517 2985int
a8198eea 2986i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2987{
88241785
CW
2988 int ret;
2989
a8198eea 2990 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2991 return 0;
2992
88241785 2993 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2994 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2995 if (ret)
2996 return ret;
2997 }
85345517 2998
c501ae7f
CW
2999 ret = i915_gem_object_wait_rendering(obj);
3000 if (ret)
3001 return ret;
3002
a8198eea
CW
3003 /* Ensure that we invalidate the GPU's caches and TLBs. */
3004 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3005 return 0;
85345517
CW
3006}
3007
e47c68e9
EA
3008/**
3009 * Moves a single object to the CPU read, and possibly write domain.
3010 *
3011 * This function returns when the move is complete, including waiting on
3012 * flushes to occur.
3013 */
dabdfe02 3014int
919926ae 3015i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3016{
1c5d22f7 3017 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3018 int ret;
3019
8d7e3de1
CW
3020 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3021 return 0;
3022
88241785
CW
3023 ret = i915_gem_object_flush_gpu_write_domain(obj);
3024 if (ret)
3025 return ret;
3026
ce453d81 3027 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3028 if (ret)
e47c68e9 3029 return ret;
2ef7eeaa 3030
e47c68e9 3031 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3032
e47c68e9
EA
3033 /* If we have a partially-valid cache of the object in the CPU,
3034 * finish invalidating it and free the per-page flags.
2ef7eeaa 3035 */
e47c68e9 3036 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3037
05394f39
CW
3038 old_write_domain = obj->base.write_domain;
3039 old_read_domains = obj->base.read_domains;
1c5d22f7 3040
e47c68e9 3041 /* Flush the CPU cache if it's still invalid. */
05394f39 3042 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3043 i915_gem_clflush_object(obj);
2ef7eeaa 3044
05394f39 3045 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3046 }
3047
3048 /* It should now be out of any other write domains, and we can update
3049 * the domain values for our changes.
3050 */
05394f39 3051 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3052
3053 /* If we're writing through the CPU, then the GPU read domains will
3054 * need to be invalidated at next use.
3055 */
3056 if (write) {
05394f39
CW
3057 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3058 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3059 }
2ef7eeaa 3060
1c5d22f7
CW
3061 trace_i915_gem_object_change_domain(obj,
3062 old_read_domains,
3063 old_write_domain);
3064
2ef7eeaa
EA
3065 return 0;
3066}
3067
673a394b 3068/**
e47c68e9 3069 * Moves the object from a partially CPU read to a full one.
673a394b 3070 *
e47c68e9
EA
3071 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3072 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3073 */
e47c68e9 3074static void
05394f39 3075i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3076{
05394f39 3077 if (!obj->page_cpu_valid)
e47c68e9
EA
3078 return;
3079
3080 /* If we're partially in the CPU read domain, finish moving it in.
3081 */
05394f39 3082 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3083 int i;
3084
05394f39
CW
3085 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3086 if (obj->page_cpu_valid[i])
e47c68e9 3087 continue;
05394f39 3088 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3089 }
e47c68e9
EA
3090 }
3091
3092 /* Free the page_cpu_valid mappings which are now stale, whether
3093 * or not we've got I915_GEM_DOMAIN_CPU.
3094 */
05394f39
CW
3095 kfree(obj->page_cpu_valid);
3096 obj->page_cpu_valid = NULL;
e47c68e9
EA
3097}
3098
3099/**
3100 * Set the CPU read domain on a range of the object.
3101 *
3102 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3103 * not entirely valid. The page_cpu_valid member of the object flags which
3104 * pages have been flushed, and will be respected by
3105 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3106 * of the whole object.
3107 *
3108 * This function returns when the move is complete, including waiting on
3109 * flushes to occur.
3110 */
3111static int
05394f39 3112i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3113 uint64_t offset, uint64_t size)
3114{
1c5d22f7 3115 uint32_t old_read_domains;
e47c68e9 3116 int i, ret;
673a394b 3117
05394f39 3118 if (offset == 0 && size == obj->base.size)
e47c68e9 3119 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3120
88241785
CW
3121 ret = i915_gem_object_flush_gpu_write_domain(obj);
3122 if (ret)
3123 return ret;
3124
ce453d81 3125 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3126 if (ret)
6a47baa6 3127 return ret;
de18a29e 3128
e47c68e9
EA
3129 i915_gem_object_flush_gtt_write_domain(obj);
3130
3131 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3132 if (obj->page_cpu_valid == NULL &&
3133 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3134 return 0;
673a394b 3135
e47c68e9
EA
3136 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3137 * newly adding I915_GEM_DOMAIN_CPU
3138 */
05394f39
CW
3139 if (obj->page_cpu_valid == NULL) {
3140 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3141 GFP_KERNEL);
3142 if (obj->page_cpu_valid == NULL)
e47c68e9 3143 return -ENOMEM;
05394f39
CW
3144 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3145 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3146
3147 /* Flush the cache on any pages that are still invalid from the CPU's
3148 * perspective.
3149 */
e47c68e9
EA
3150 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3151 i++) {
05394f39 3152 if (obj->page_cpu_valid[i])
673a394b
EA
3153 continue;
3154
05394f39 3155 drm_clflush_pages(obj->pages + i, 1);
673a394b 3156
05394f39 3157 obj->page_cpu_valid[i] = 1;
673a394b
EA
3158 }
3159
e47c68e9
EA
3160 /* It should now be out of any other write domains, and we can update
3161 * the domain values for our changes.
3162 */
05394f39 3163 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3164
05394f39
CW
3165 old_read_domains = obj->base.read_domains;
3166 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3167
1c5d22f7
CW
3168 trace_i915_gem_object_change_domain(obj,
3169 old_read_domains,
05394f39 3170 obj->base.write_domain);
1c5d22f7 3171
673a394b
EA
3172 return 0;
3173}
3174
673a394b
EA
3175/* Throttle our rendering by waiting until the ring has completed our requests
3176 * emitted over 20 msec ago.
3177 *
b962442e
EA
3178 * Note that if we were to use the current jiffies each time around the loop,
3179 * we wouldn't escape the function with any frames outstanding if the time to
3180 * render a frame was over 20ms.
3181 *
673a394b
EA
3182 * This should get us reasonable parallelism between CPU and GPU but also
3183 * relatively low latency when blocking on a particular request to finish.
3184 */
40a5f0de 3185static int
f787a5f5 3186i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3187{
f787a5f5
CW
3188 struct drm_i915_private *dev_priv = dev->dev_private;
3189 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3190 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3191 struct drm_i915_gem_request *request;
3192 struct intel_ring_buffer *ring = NULL;
3193 u32 seqno = 0;
3194 int ret;
93533c29 3195
e110e8d6
CW
3196 if (atomic_read(&dev_priv->mm.wedged))
3197 return -EIO;
3198
1c25595f 3199 spin_lock(&file_priv->mm.lock);
f787a5f5 3200 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3201 if (time_after_eq(request->emitted_jiffies, recent_enough))
3202 break;
40a5f0de 3203
f787a5f5
CW
3204 ring = request->ring;
3205 seqno = request->seqno;
b962442e 3206 }
1c25595f 3207 spin_unlock(&file_priv->mm.lock);
40a5f0de 3208
f787a5f5
CW
3209 if (seqno == 0)
3210 return 0;
2bc43b5c 3211
f787a5f5 3212 ret = 0;
78501eac 3213 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3214 /* And wait for the seqno passing without holding any locks and
3215 * causing extra latency for others. This is safe as the irq
3216 * generation is designed to be run atomically and so is
3217 * lockless.
3218 */
b13c2b96
CW
3219 if (ring->irq_get(ring)) {
3220 ret = wait_event_interruptible(ring->irq_queue,
3221 i915_seqno_passed(ring->get_seqno(ring), seqno)
3222 || atomic_read(&dev_priv->mm.wedged));
3223 ring->irq_put(ring);
40a5f0de 3224
b13c2b96
CW
3225 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3226 ret = -EIO;
e959b5db
EA
3227 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3228 seqno) ||
7ea29b13
EA
3229 atomic_read(&dev_priv->mm.wedged), 3000)) {
3230 ret = -EBUSY;
b13c2b96 3231 }
40a5f0de
EA
3232 }
3233
f787a5f5
CW
3234 if (ret == 0)
3235 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3236
3237 return ret;
3238}
3239
673a394b 3240int
05394f39
CW
3241i915_gem_object_pin(struct drm_i915_gem_object *obj,
3242 uint32_t alignment,
75e9e915 3243 bool map_and_fenceable)
673a394b 3244{
05394f39 3245 struct drm_device *dev = obj->base.dev;
f13d3f73 3246 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3247 int ret;
3248
05394f39 3249 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3250 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3251
05394f39
CW
3252 if (obj->gtt_space != NULL) {
3253 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3254 (map_and_fenceable && !obj->map_and_fenceable)) {
3255 WARN(obj->pin_count,
ae7d49d8 3256 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3257 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3258 " obj->map_and_fenceable=%d\n",
05394f39 3259 obj->gtt_offset, alignment,
75e9e915 3260 map_and_fenceable,
05394f39 3261 obj->map_and_fenceable);
ac0c6b5a
CW
3262 ret = i915_gem_object_unbind(obj);
3263 if (ret)
3264 return ret;
3265 }
3266 }
3267
05394f39 3268 if (obj->gtt_space == NULL) {
a00b10c3 3269 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3270 map_and_fenceable);
9731129c 3271 if (ret)
673a394b 3272 return ret;
22c344e9 3273 }
76446cac 3274
74898d7e
DV
3275 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3276 i915_gem_gtt_bind_object(obj, obj->cache_level);
3277
05394f39 3278 if (obj->pin_count++ == 0) {
05394f39
CW
3279 if (!obj->active)
3280 list_move_tail(&obj->mm_list,
f13d3f73 3281 &dev_priv->mm.pinned_list);
673a394b 3282 }
6299f992 3283 obj->pin_mappable |= map_and_fenceable;
673a394b 3284
23bc5982 3285 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3286 return 0;
3287}
3288
3289void
05394f39 3290i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3291{
05394f39 3292 struct drm_device *dev = obj->base.dev;
673a394b 3293 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3294
23bc5982 3295 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3296 BUG_ON(obj->pin_count == 0);
3297 BUG_ON(obj->gtt_space == NULL);
673a394b 3298
05394f39
CW
3299 if (--obj->pin_count == 0) {
3300 if (!obj->active)
3301 list_move_tail(&obj->mm_list,
673a394b 3302 &dev_priv->mm.inactive_list);
6299f992 3303 obj->pin_mappable = false;
673a394b 3304 }
23bc5982 3305 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3306}
3307
3308int
3309i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3310 struct drm_file *file)
673a394b
EA
3311{
3312 struct drm_i915_gem_pin *args = data;
05394f39 3313 struct drm_i915_gem_object *obj;
673a394b
EA
3314 int ret;
3315
1d7cfea1
CW
3316 ret = i915_mutex_lock_interruptible(dev);
3317 if (ret)
3318 return ret;
673a394b 3319
05394f39 3320 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3321 if (&obj->base == NULL) {
1d7cfea1
CW
3322 ret = -ENOENT;
3323 goto unlock;
673a394b 3324 }
673a394b 3325
05394f39 3326 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3327 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3328 ret = -EINVAL;
3329 goto out;
3ef94daa
CW
3330 }
3331
05394f39 3332 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3333 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3334 args->handle);
1d7cfea1
CW
3335 ret = -EINVAL;
3336 goto out;
79e53945
JB
3337 }
3338
05394f39
CW
3339 obj->user_pin_count++;
3340 obj->pin_filp = file;
3341 if (obj->user_pin_count == 1) {
75e9e915 3342 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3343 if (ret)
3344 goto out;
673a394b
EA
3345 }
3346
3347 /* XXX - flush the CPU caches for pinned objects
3348 * as the X server doesn't manage domains yet
3349 */
e47c68e9 3350 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3351 args->offset = obj->gtt_offset;
1d7cfea1 3352out:
05394f39 3353 drm_gem_object_unreference(&obj->base);
1d7cfea1 3354unlock:
673a394b 3355 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3356 return ret;
673a394b
EA
3357}
3358
3359int
3360i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3361 struct drm_file *file)
673a394b
EA
3362{
3363 struct drm_i915_gem_pin *args = data;
05394f39 3364 struct drm_i915_gem_object *obj;
76c1dec1 3365 int ret;
673a394b 3366
1d7cfea1
CW
3367 ret = i915_mutex_lock_interruptible(dev);
3368 if (ret)
3369 return ret;
673a394b 3370
05394f39 3371 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3372 if (&obj->base == NULL) {
1d7cfea1
CW
3373 ret = -ENOENT;
3374 goto unlock;
673a394b 3375 }
76c1dec1 3376
05394f39 3377 if (obj->pin_filp != file) {
79e53945
JB
3378 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3379 args->handle);
1d7cfea1
CW
3380 ret = -EINVAL;
3381 goto out;
79e53945 3382 }
05394f39
CW
3383 obj->user_pin_count--;
3384 if (obj->user_pin_count == 0) {
3385 obj->pin_filp = NULL;
79e53945
JB
3386 i915_gem_object_unpin(obj);
3387 }
673a394b 3388
1d7cfea1 3389out:
05394f39 3390 drm_gem_object_unreference(&obj->base);
1d7cfea1 3391unlock:
673a394b 3392 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3393 return ret;
673a394b
EA
3394}
3395
3396int
3397i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3398 struct drm_file *file)
673a394b
EA
3399{
3400 struct drm_i915_gem_busy *args = data;
05394f39 3401 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3402 int ret;
3403
76c1dec1 3404 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3405 if (ret)
76c1dec1 3406 return ret;
673a394b 3407
05394f39 3408 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3409 if (&obj->base == NULL) {
1d7cfea1
CW
3410 ret = -ENOENT;
3411 goto unlock;
673a394b 3412 }
d1b851fc 3413
0be555b6
CW
3414 /* Count all active objects as busy, even if they are currently not used
3415 * by the gpu. Users of this interface expect objects to eventually
3416 * become non-busy without any further actions, therefore emit any
3417 * necessary flushes here.
c4de0a5d 3418 */
05394f39 3419 args->busy = obj->active;
0be555b6
CW
3420 if (args->busy) {
3421 /* Unconditionally flush objects, even when the gpu still uses this
3422 * object. Userspace calling this function indicates that it wants to
3423 * use this buffer rather sooner than later, so issuing the required
3424 * flush earlier is beneficial.
3425 */
1a1c6976 3426 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3427 ret = i915_gem_flush_ring(obj->ring,
88241785 3428 0, obj->base.write_domain);
1a1c6976
CW
3429 } else if (obj->ring->outstanding_lazy_request ==
3430 obj->last_rendering_seqno) {
3431 struct drm_i915_gem_request *request;
3432
7a194876
CW
3433 /* This ring is not being cleared by active usage,
3434 * so emit a request to do so.
3435 */
1a1c6976 3436 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3437 if (request) {
0206e353 3438 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3439 if (ret)
3440 kfree(request);
3441 } else
7a194876
CW
3442 ret = -ENOMEM;
3443 }
0be555b6
CW
3444
3445 /* Update the active list for the hardware's current position.
3446 * Otherwise this only updates on a delayed timer or when irqs
3447 * are actually unmasked, and our working set ends up being
3448 * larger than required.
3449 */
db53a302 3450 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3451
05394f39 3452 args->busy = obj->active;
0be555b6 3453 }
673a394b 3454
05394f39 3455 drm_gem_object_unreference(&obj->base);
1d7cfea1 3456unlock:
673a394b 3457 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3458 return ret;
673a394b
EA
3459}
3460
3461int
3462i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3463 struct drm_file *file_priv)
3464{
0206e353 3465 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3466}
3467
3ef94daa
CW
3468int
3469i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3470 struct drm_file *file_priv)
3471{
3472 struct drm_i915_gem_madvise *args = data;
05394f39 3473 struct drm_i915_gem_object *obj;
76c1dec1 3474 int ret;
3ef94daa
CW
3475
3476 switch (args->madv) {
3477 case I915_MADV_DONTNEED:
3478 case I915_MADV_WILLNEED:
3479 break;
3480 default:
3481 return -EINVAL;
3482 }
3483
1d7cfea1
CW
3484 ret = i915_mutex_lock_interruptible(dev);
3485 if (ret)
3486 return ret;
3487
05394f39 3488 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3489 if (&obj->base == NULL) {
1d7cfea1
CW
3490 ret = -ENOENT;
3491 goto unlock;
3ef94daa 3492 }
3ef94daa 3493
05394f39 3494 if (obj->pin_count) {
1d7cfea1
CW
3495 ret = -EINVAL;
3496 goto out;
3ef94daa
CW
3497 }
3498
05394f39
CW
3499 if (obj->madv != __I915_MADV_PURGED)
3500 obj->madv = args->madv;
3ef94daa 3501
2d7ef395 3502 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3503 if (i915_gem_object_is_purgeable(obj) &&
3504 obj->gtt_space == NULL)
2d7ef395
CW
3505 i915_gem_object_truncate(obj);
3506
05394f39 3507 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3508
1d7cfea1 3509out:
05394f39 3510 drm_gem_object_unreference(&obj->base);
1d7cfea1 3511unlock:
3ef94daa 3512 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3513 return ret;
3ef94daa
CW
3514}
3515
05394f39
CW
3516struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3517 size_t size)
ac52bc56 3518{
73aa808f 3519 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3520 struct drm_i915_gem_object *obj;
5949eac4 3521 struct address_space *mapping;
ac52bc56 3522
c397b908
DV
3523 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3524 if (obj == NULL)
3525 return NULL;
673a394b 3526
c397b908
DV
3527 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3528 kfree(obj);
3529 return NULL;
3530 }
673a394b 3531
5949eac4
HD
3532 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3533 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3534
73aa808f
CW
3535 i915_gem_info_add_obj(dev_priv, size);
3536
c397b908
DV
3537 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3538 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3539
3d29b842
ED
3540 if (HAS_LLC(dev)) {
3541 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3542 * cache) for about a 10% performance improvement
3543 * compared to uncached. Graphics requests other than
3544 * display scanout are coherent with the CPU in
3545 * accessing this cache. This means in this mode we
3546 * don't need to clflush on the CPU side, and on the
3547 * GPU side we only need to flush internal caches to
3548 * get data visible to the CPU.
3549 *
3550 * However, we maintain the display planes as UC, and so
3551 * need to rebind when first used as such.
3552 */
3553 obj->cache_level = I915_CACHE_LLC;
3554 } else
3555 obj->cache_level = I915_CACHE_NONE;
3556
62b8b215 3557 obj->base.driver_private = NULL;
c397b908 3558 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3559 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3560 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3561 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3562 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3563 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3564 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3565 /* Avoid an unnecessary call to unbind on the first bind. */
3566 obj->map_and_fenceable = true;
de151cf6 3567
05394f39 3568 return obj;
c397b908
DV
3569}
3570
3571int i915_gem_init_object(struct drm_gem_object *obj)
3572{
3573 BUG();
de151cf6 3574
673a394b
EA
3575 return 0;
3576}
3577
05394f39 3578static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3579{
05394f39 3580 struct drm_device *dev = obj->base.dev;
be72615b 3581 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3582 int ret;
673a394b 3583
be72615b
CW
3584 ret = i915_gem_object_unbind(obj);
3585 if (ret == -ERESTARTSYS) {
05394f39 3586 list_move(&obj->mm_list,
be72615b
CW
3587 &dev_priv->mm.deferred_free_list);
3588 return;
3589 }
673a394b 3590
26e12f89
CW
3591 trace_i915_gem_object_destroy(obj);
3592
05394f39 3593 if (obj->base.map_list.map)
b464e9a2 3594 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3595
05394f39
CW
3596 drm_gem_object_release(&obj->base);
3597 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3598
05394f39
CW
3599 kfree(obj->page_cpu_valid);
3600 kfree(obj->bit_17);
3601 kfree(obj);
673a394b
EA
3602}
3603
05394f39 3604void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3605{
05394f39
CW
3606 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3607 struct drm_device *dev = obj->base.dev;
be72615b 3608
05394f39 3609 while (obj->pin_count > 0)
be72615b
CW
3610 i915_gem_object_unpin(obj);
3611
05394f39 3612 if (obj->phys_obj)
be72615b
CW
3613 i915_gem_detach_phys_object(dev, obj);
3614
3615 i915_gem_free_object_tail(obj);
3616}
3617
29105ccc
CW
3618int
3619i915_gem_idle(struct drm_device *dev)
3620{
3621 drm_i915_private_t *dev_priv = dev->dev_private;
3622 int ret;
28dfe52a 3623
29105ccc 3624 mutex_lock(&dev->struct_mutex);
1c5d22f7 3625
87acb0a5 3626 if (dev_priv->mm.suspended) {
29105ccc
CW
3627 mutex_unlock(&dev->struct_mutex);
3628 return 0;
28dfe52a
EA
3629 }
3630
b93f9cf1 3631 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3632 if (ret) {
3633 mutex_unlock(&dev->struct_mutex);
673a394b 3634 return ret;
6dbe2772 3635 }
673a394b 3636
29105ccc
CW
3637 /* Under UMS, be paranoid and evict. */
3638 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3639 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3640 if (ret) {
3641 mutex_unlock(&dev->struct_mutex);
3642 return ret;
3643 }
3644 }
3645
312817a3
CW
3646 i915_gem_reset_fences(dev);
3647
29105ccc
CW
3648 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3649 * We need to replace this with a semaphore, or something.
3650 * And not confound mm.suspended!
3651 */
3652 dev_priv->mm.suspended = 1;
bc0c7f14 3653 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3654
3655 i915_kernel_lost_context(dev);
6dbe2772 3656 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3657
6dbe2772
KP
3658 mutex_unlock(&dev->struct_mutex);
3659
29105ccc
CW
3660 /* Cancel the retire work handler, which should be idle now. */
3661 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3662
673a394b
EA
3663 return 0;
3664}
3665
f691e2f4
DV
3666void i915_gem_init_swizzling(struct drm_device *dev)
3667{
3668 drm_i915_private_t *dev_priv = dev->dev_private;
3669
11782b02 3670 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3671 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3672 return;
3673
3674 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3675 DISP_TILE_SURFACE_SWIZZLING);
3676
11782b02
DV
3677 if (IS_GEN5(dev))
3678 return;
3679
f691e2f4
DV
3680 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3681 if (IS_GEN6(dev))
3682 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3683 else
3684 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3685}
e21af88d
DV
3686
3687void i915_gem_init_ppgtt(struct drm_device *dev)
3688{
3689 drm_i915_private_t *dev_priv = dev->dev_private;
3690 uint32_t pd_offset;
3691 struct intel_ring_buffer *ring;
3692 int i;
3693
3694 if (!dev_priv->mm.aliasing_ppgtt)
3695 return;
3696
3697 pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
3698 pd_offset /= 64; /* in cachelines, */
3699 pd_offset <<= 16;
3700
3701 if (INTEL_INFO(dev)->gen == 6) {
3702 uint32_t ecochk = I915_READ(GAM_ECOCHK);
3703 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3704 ECOCHK_PPGTT_CACHE64B);
3705 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3706 } else if (INTEL_INFO(dev)->gen >= 7) {
3707 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3708 /* GFX_MODE is per-ring on gen7+ */
3709 }
3710
3711 for (i = 0; i < I915_NUM_RINGS; i++) {
3712 ring = &dev_priv->ring[i];
3713
3714 if (INTEL_INFO(dev)->gen >= 7)
3715 I915_WRITE(RING_MODE_GEN7(ring),
3716 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3717
3718 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3719 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3720 }
3721}
3722
8187a2b7 3723int
f691e2f4 3724i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3725{
3726 drm_i915_private_t *dev_priv = dev->dev_private;
3727 int ret;
68f95ba9 3728
f691e2f4
DV
3729 i915_gem_init_swizzling(dev);
3730
5c1143bb 3731 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3732 if (ret)
b6913e4b 3733 return ret;
68f95ba9
CW
3734
3735 if (HAS_BSD(dev)) {
5c1143bb 3736 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3737 if (ret)
3738 goto cleanup_render_ring;
d1b851fc 3739 }
68f95ba9 3740
549f7365
CW
3741 if (HAS_BLT(dev)) {
3742 ret = intel_init_blt_ring_buffer(dev);
3743 if (ret)
3744 goto cleanup_bsd_ring;
3745 }
3746
6f392d54
CW
3747 dev_priv->next_seqno = 1;
3748
e21af88d
DV
3749 i915_gem_init_ppgtt(dev);
3750
68f95ba9
CW
3751 return 0;
3752
549f7365 3753cleanup_bsd_ring:
1ec14ad3 3754 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3755cleanup_render_ring:
1ec14ad3 3756 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3757 return ret;
3758}
3759
3760void
3761i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3762{
3763 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3764 int i;
8187a2b7 3765
1ec14ad3
CW
3766 for (i = 0; i < I915_NUM_RINGS; i++)
3767 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3768}
3769
673a394b
EA
3770int
3771i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3772 struct drm_file *file_priv)
3773{
3774 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3775 int ret, i;
673a394b 3776
79e53945
JB
3777 if (drm_core_check_feature(dev, DRIVER_MODESET))
3778 return 0;
3779
ba1234d1 3780 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3781 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3782 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3783 }
3784
673a394b 3785 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3786 dev_priv->mm.suspended = 0;
3787
f691e2f4 3788 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3789 if (ret != 0) {
3790 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3791 return ret;
d816f6ac 3792 }
9bb2d6f9 3793
69dc4987 3794 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3795 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3796 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3797 for (i = 0; i < I915_NUM_RINGS; i++) {
3798 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3799 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3800 }
673a394b 3801 mutex_unlock(&dev->struct_mutex);
dbb19d30 3802
5f35308b
CW
3803 ret = drm_irq_install(dev);
3804 if (ret)
3805 goto cleanup_ringbuffer;
dbb19d30 3806
673a394b 3807 return 0;
5f35308b
CW
3808
3809cleanup_ringbuffer:
3810 mutex_lock(&dev->struct_mutex);
3811 i915_gem_cleanup_ringbuffer(dev);
3812 dev_priv->mm.suspended = 1;
3813 mutex_unlock(&dev->struct_mutex);
3814
3815 return ret;
673a394b
EA
3816}
3817
3818int
3819i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3820 struct drm_file *file_priv)
3821{
79e53945
JB
3822 if (drm_core_check_feature(dev, DRIVER_MODESET))
3823 return 0;
3824
dbb19d30 3825 drm_irq_uninstall(dev);
e6890f6f 3826 return i915_gem_idle(dev);
673a394b
EA
3827}
3828
3829void
3830i915_gem_lastclose(struct drm_device *dev)
3831{
3832 int ret;
673a394b 3833
e806b495
EA
3834 if (drm_core_check_feature(dev, DRIVER_MODESET))
3835 return;
3836
6dbe2772
KP
3837 ret = i915_gem_idle(dev);
3838 if (ret)
3839 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3840}
3841
64193406
CW
3842static void
3843init_ring_lists(struct intel_ring_buffer *ring)
3844{
3845 INIT_LIST_HEAD(&ring->active_list);
3846 INIT_LIST_HEAD(&ring->request_list);
3847 INIT_LIST_HEAD(&ring->gpu_write_list);
3848}
3849
673a394b
EA
3850void
3851i915_gem_load(struct drm_device *dev)
3852{
b5aa8a0f 3853 int i;
673a394b
EA
3854 drm_i915_private_t *dev_priv = dev->dev_private;
3855
69dc4987 3856 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3857 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3858 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3859 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3860 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3861 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3862 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3863 for (i = 0; i < I915_NUM_RINGS; i++)
3864 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3865 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3866 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3867 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3868 i915_gem_retire_work_handler);
30dbf0c0 3869 init_completion(&dev_priv->error_completion);
31169714 3870
94400120
DA
3871 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3872 if (IS_GEN3(dev)) {
3873 u32 tmp = I915_READ(MI_ARB_STATE);
3874 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3875 /* arb state is a masked write, so set bit + bit in mask */
3876 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3877 I915_WRITE(MI_ARB_STATE, tmp);
3878 }
3879 }
3880
72bfa19c
CW
3881 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3882
de151cf6 3883 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3884 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3885 dev_priv->fence_reg_start = 3;
de151cf6 3886
a6c45cf0 3887 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3888 dev_priv->num_fence_regs = 16;
3889 else
3890 dev_priv->num_fence_regs = 8;
3891
b5aa8a0f 3892 /* Initialize fence registers to zero */
10ed13e4
EA
3893 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3894 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3895 }
10ed13e4 3896
673a394b 3897 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3898 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3899
ce453d81
CW
3900 dev_priv->mm.interruptible = true;
3901
17250b71
CW
3902 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3903 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3904 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3905}
71acb5eb
DA
3906
3907/*
3908 * Create a physically contiguous memory object for this object
3909 * e.g. for cursor + overlay regs
3910 */
995b6762
CW
3911static int i915_gem_init_phys_object(struct drm_device *dev,
3912 int id, int size, int align)
71acb5eb
DA
3913{
3914 drm_i915_private_t *dev_priv = dev->dev_private;
3915 struct drm_i915_gem_phys_object *phys_obj;
3916 int ret;
3917
3918 if (dev_priv->mm.phys_objs[id - 1] || !size)
3919 return 0;
3920
9a298b2a 3921 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3922 if (!phys_obj)
3923 return -ENOMEM;
3924
3925 phys_obj->id = id;
3926
6eeefaf3 3927 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3928 if (!phys_obj->handle) {
3929 ret = -ENOMEM;
3930 goto kfree_obj;
3931 }
3932#ifdef CONFIG_X86
3933 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3934#endif
3935
3936 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3937
3938 return 0;
3939kfree_obj:
9a298b2a 3940 kfree(phys_obj);
71acb5eb
DA
3941 return ret;
3942}
3943
995b6762 3944static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3945{
3946 drm_i915_private_t *dev_priv = dev->dev_private;
3947 struct drm_i915_gem_phys_object *phys_obj;
3948
3949 if (!dev_priv->mm.phys_objs[id - 1])
3950 return;
3951
3952 phys_obj = dev_priv->mm.phys_objs[id - 1];
3953 if (phys_obj->cur_obj) {
3954 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3955 }
3956
3957#ifdef CONFIG_X86
3958 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3959#endif
3960 drm_pci_free(dev, phys_obj->handle);
3961 kfree(phys_obj);
3962 dev_priv->mm.phys_objs[id - 1] = NULL;
3963}
3964
3965void i915_gem_free_all_phys_object(struct drm_device *dev)
3966{
3967 int i;
3968
260883c8 3969 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3970 i915_gem_free_phys_object(dev, i);
3971}
3972
3973void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3974 struct drm_i915_gem_object *obj)
71acb5eb 3975{
05394f39 3976 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3977 char *vaddr;
71acb5eb 3978 int i;
71acb5eb
DA
3979 int page_count;
3980
05394f39 3981 if (!obj->phys_obj)
71acb5eb 3982 return;
05394f39 3983 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3984
05394f39 3985 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3986 for (i = 0; i < page_count; i++) {
5949eac4 3987 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3988 if (!IS_ERR(page)) {
3989 char *dst = kmap_atomic(page);
3990 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3991 kunmap_atomic(dst);
3992
3993 drm_clflush_pages(&page, 1);
3994
3995 set_page_dirty(page);
3996 mark_page_accessed(page);
3997 page_cache_release(page);
3998 }
71acb5eb 3999 }
40ce6575 4000 intel_gtt_chipset_flush();
d78b47b9 4001
05394f39
CW
4002 obj->phys_obj->cur_obj = NULL;
4003 obj->phys_obj = NULL;
71acb5eb
DA
4004}
4005
4006int
4007i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4008 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4009 int id,
4010 int align)
71acb5eb 4011{
05394f39 4012 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4013 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4014 int ret = 0;
4015 int page_count;
4016 int i;
4017
4018 if (id > I915_MAX_PHYS_OBJECT)
4019 return -EINVAL;
4020
05394f39
CW
4021 if (obj->phys_obj) {
4022 if (obj->phys_obj->id == id)
71acb5eb
DA
4023 return 0;
4024 i915_gem_detach_phys_object(dev, obj);
4025 }
4026
71acb5eb
DA
4027 /* create a new object */
4028 if (!dev_priv->mm.phys_objs[id - 1]) {
4029 ret = i915_gem_init_phys_object(dev, id,
05394f39 4030 obj->base.size, align);
71acb5eb 4031 if (ret) {
05394f39
CW
4032 DRM_ERROR("failed to init phys object %d size: %zu\n",
4033 id, obj->base.size);
e5281ccd 4034 return ret;
71acb5eb
DA
4035 }
4036 }
4037
4038 /* bind to the object */
05394f39
CW
4039 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4040 obj->phys_obj->cur_obj = obj;
71acb5eb 4041
05394f39 4042 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4043
4044 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4045 struct page *page;
4046 char *dst, *src;
4047
5949eac4 4048 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4049 if (IS_ERR(page))
4050 return PTR_ERR(page);
71acb5eb 4051
ff75b9bc 4052 src = kmap_atomic(page);
05394f39 4053 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4054 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4055 kunmap_atomic(src);
71acb5eb 4056
e5281ccd
CW
4057 mark_page_accessed(page);
4058 page_cache_release(page);
4059 }
d78b47b9 4060
71acb5eb 4061 return 0;
71acb5eb
DA
4062}
4063
4064static int
05394f39
CW
4065i915_gem_phys_pwrite(struct drm_device *dev,
4066 struct drm_i915_gem_object *obj,
71acb5eb
DA
4067 struct drm_i915_gem_pwrite *args,
4068 struct drm_file *file_priv)
4069{
05394f39 4070 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4071 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4072
b47b30cc
CW
4073 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4074 unsigned long unwritten;
4075
4076 /* The physical object once assigned is fixed for the lifetime
4077 * of the obj, so we can safely drop the lock and continue
4078 * to access vaddr.
4079 */
4080 mutex_unlock(&dev->struct_mutex);
4081 unwritten = copy_from_user(vaddr, user_data, args->size);
4082 mutex_lock(&dev->struct_mutex);
4083 if (unwritten)
4084 return -EFAULT;
4085 }
71acb5eb 4086
40ce6575 4087 intel_gtt_chipset_flush();
71acb5eb
DA
4088 return 0;
4089}
b962442e 4090
f787a5f5 4091void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4092{
f787a5f5 4093 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4094
4095 /* Clean up our request list when the client is going away, so that
4096 * later retire_requests won't dereference our soon-to-be-gone
4097 * file_priv.
4098 */
1c25595f 4099 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4100 while (!list_empty(&file_priv->mm.request_list)) {
4101 struct drm_i915_gem_request *request;
4102
4103 request = list_first_entry(&file_priv->mm.request_list,
4104 struct drm_i915_gem_request,
4105 client_list);
4106 list_del(&request->client_list);
4107 request->file_priv = NULL;
4108 }
1c25595f 4109 spin_unlock(&file_priv->mm.lock);
b962442e 4110}
31169714 4111
1637ef41
CW
4112static int
4113i915_gpu_is_active(struct drm_device *dev)
4114{
4115 drm_i915_private_t *dev_priv = dev->dev_private;
4116 int lists_empty;
4117
1637ef41 4118 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4119 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4120
4121 return !lists_empty;
4122}
4123
31169714 4124static int
1495f230 4125i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4126{
17250b71
CW
4127 struct drm_i915_private *dev_priv =
4128 container_of(shrinker,
4129 struct drm_i915_private,
4130 mm.inactive_shrinker);
4131 struct drm_device *dev = dev_priv->dev;
4132 struct drm_i915_gem_object *obj, *next;
1495f230 4133 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4134 int cnt;
4135
4136 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4137 return 0;
31169714
CW
4138
4139 /* "fast-path" to count number of available objects */
4140 if (nr_to_scan == 0) {
17250b71
CW
4141 cnt = 0;
4142 list_for_each_entry(obj,
4143 &dev_priv->mm.inactive_list,
4144 mm_list)
4145 cnt++;
4146 mutex_unlock(&dev->struct_mutex);
4147 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4148 }
4149
1637ef41 4150rescan:
31169714 4151 /* first scan for clean buffers */
17250b71 4152 i915_gem_retire_requests(dev);
31169714 4153
17250b71
CW
4154 list_for_each_entry_safe(obj, next,
4155 &dev_priv->mm.inactive_list,
4156 mm_list) {
4157 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4158 if (i915_gem_object_unbind(obj) == 0 &&
4159 --nr_to_scan == 0)
17250b71 4160 break;
31169714 4161 }
31169714
CW
4162 }
4163
4164 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4165 cnt = 0;
4166 list_for_each_entry_safe(obj, next,
4167 &dev_priv->mm.inactive_list,
4168 mm_list) {
2021746e
CW
4169 if (nr_to_scan &&
4170 i915_gem_object_unbind(obj) == 0)
17250b71 4171 nr_to_scan--;
2021746e 4172 else
17250b71
CW
4173 cnt++;
4174 }
4175
4176 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4177 /*
4178 * We are desperate for pages, so as a last resort, wait
4179 * for the GPU to finish and discard whatever we can.
4180 * This has a dramatic impact to reduce the number of
4181 * OOM-killer events whilst running the GPU aggressively.
4182 */
b93f9cf1 4183 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4184 goto rescan;
4185 }
17250b71
CW
4186 mutex_unlock(&dev->struct_mutex);
4187 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4188}