]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/dsi: fix bxt split screen and color issue
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61}
62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
c20e8355 67 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
c20e8355 70 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
71}
72
73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
c20e8355 76 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
c20e8355 79 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
80}
81
21dd3734 82static int
33196ded 83i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 84{
30dbf0c0
CW
85 int ret;
86
d98c52cf 87 if (!i915_reset_in_progress(error))
30dbf0c0
CW
88 return 0;
89
0a6759c6
DV
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
1f83fee0 95 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 96 !i915_reset_in_progress(error),
1f83fee0 97 10*HZ);
0a6759c6
DV
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
30dbf0c0 102 return ret;
d98c52cf
CW
103 } else {
104 return 0;
0a6759c6 105 }
30dbf0c0
CW
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 109{
33196ded 110 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
111 int ret;
112
33196ded 113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
23bc5982 121 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
122 return 0;
123}
30dbf0c0 124
5a125c3c
EA
125int
126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 127 struct drm_file *file)
5a125c3c 128{
72e96d64 129 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 131 struct drm_i915_gem_get_aperture *args = data;
ca1543be 132 struct i915_vma *vma;
6299f992 133 size_t pinned;
5a125c3c 134
6299f992 135 pinned = 0;
73aa808f 136 mutex_lock(&dev->struct_mutex);
1c7f4bca 137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
138 if (vma->pin_count)
139 pinned += vma->node.size;
1c7f4bca 140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
141 if (vma->pin_count)
142 pinned += vma->node.size;
73aa808f 143 mutex_unlock(&dev->struct_mutex);
5a125c3c 144
72e96d64 145 args->aper_size = ggtt->base.total;
0206e353 146 args->aper_available_size = args->aper_size - pinned;
6299f992 147
5a125c3c
EA
148 return 0;
149}
150
6a2c4232
CW
151static int
152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 153{
6a2c4232
CW
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
00731155 159
6a2c4232
CW
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
09cbfeaf 176 put_page(page);
6a2c4232
CW
177 vaddr += PAGE_SIZE;
178 }
179
c033666a 180 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
00731155 194
6a2c4232
CW
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
6a2c4232
CW
199 return 0;
200}
201
202static void
203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204{
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 208
6a2c4232 209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 210 if (WARN_ON(ret)) {
6a2c4232
CW
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
6a2c4232
CW
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
00731155 221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 222 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
00731155 240 mark_page_accessed(page);
09cbfeaf 241 put_page(page);
00731155
CW
242 vaddr += PAGE_SIZE;
243 }
6a2c4232 244 obj->dirty = 0;
00731155
CW
245 }
246
6a2c4232
CW
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
6a2c4232
CW
249}
250
251static void
252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253{
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255}
256
257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261};
262
263static int
264drop_pages(struct drm_i915_gem_object *obj)
265{
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
1c7f4bca 270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
00731155
CW
278}
279
280int
281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283{
284 drm_dma_handle_t *phys;
6a2c4232 285 int ret;
00731155
CW
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
6a2c4232
CW
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
00731155
CW
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
00731155 309 obj->phys_handle = phys;
6a2c4232
CW
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
00731155
CW
313}
314
315static int
316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319{
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 322 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 323 int ret = 0;
6a2c4232
CW
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
00731155 331
77a0d1ca 332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
00731155
CW
347 }
348
6a2c4232 349 drm_clflush_virt_range(vaddr, args->size);
c033666a 350 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
351
352out:
de152b62 353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 354 return ret;
00731155
CW
355}
356
42dcedd4
CW
357void *i915_gem_object_alloc(struct drm_device *dev)
358{
359 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
361}
362
363void i915_gem_object_free(struct drm_i915_gem_object *obj)
364{
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 366 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
367}
368
ff72145b
DA
369static int
370i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
673a394b 374{
05394f39 375 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
376 int ret;
377 u32 handle;
673a394b 378
ff72145b 379 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
380 if (size == 0)
381 return -EINVAL;
673a394b
EA
382
383 /* Allocate the new object */
d37cd8a8 384 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
673a394b 387
05394f39 388 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 389 /* drop reference from allocate - handle holds it now */
d861e338
DV
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
202f2fef 393
ff72145b 394 *handle_p = handle;
673a394b
EA
395 return 0;
396}
397
ff72145b
DA
398int
399i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402{
403 /* have to work out size/pitch and return them */
de45eaf7 404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
da6b51d0 407 args->size, &args->handle);
ff72145b
DA
408}
409
ff72145b
DA
410/**
411 * Creates a new mm object and returns a handle to it.
412 */
413int
414i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416{
417 struct drm_i915_gem_create *args = data;
63ed2cb2 418
ff72145b 419 return i915_gem_create(file, dev,
da6b51d0 420 args->size, &args->handle);
ff72145b
DA
421}
422
8461d226
DV
423static inline int
424__copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427{
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447}
448
8c59967c 449static inline int
4f0c7cfb
BW
450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
8c59967c
DV
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
4c914c0c
BV
475/*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482{
483 int ret;
484
485 *needs_clflush = 0;
486
1db6e2e7 487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509}
510
d174bd64
DV
511/* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
eb01459f 514static int
d174bd64
DV
515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518{
519 char *vaddr;
520 int ret;
521
e7e58eb5 522 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
f60d7f0c 534 return ret ? -EFAULT : 0;
d174bd64
DV
535}
536
23c18c71
DV
537static void
538shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540{
e7e58eb5 541 if (unlikely(swizzled)) {
23c18c71
DV
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557}
558
d174bd64
DV
559/* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561static int
562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565{
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
23c18c71
DV
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
d174bd64
DV
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
f60d7f0c 585 return ret ? - EFAULT : 0;
d174bd64
DV
586}
587
eb01459f 588static int
dbf7bff0
DV
589i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
eb01459f 593{
8461d226 594 char __user *user_data;
eb01459f 595 ssize_t remain;
8461d226 596 loff_t offset;
eb2c0c81 597 int shmem_page_offset, page_length, ret = 0;
8461d226 598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 599 int prefaulted = 0;
8489731c 600 int needs_clflush = 0;
67d5a50c 601 struct sg_page_iter sg_iter;
eb01459f 602
3ed605bc 603 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
604 remain = args->size;
605
8461d226 606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 607
4c914c0c 608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
609 if (ret)
610 return ret;
611
8461d226 612 offset = args->offset;
eb01459f 613
67d5a50c
ID
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
2db76d7c 616 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
617
618 if (remain <= 0)
619 break;
620
eb01459f
EA
621 /* Operation in this page
622 *
eb01459f 623 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
624 * page_length = bytes to copy for this page
625 */
c8cbbb8b 626 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 630
8461d226
DV
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
d174bd64
DV
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
dbf7bff0 639
dbf7bff0
DV
640 mutex_unlock(&dev->struct_mutex);
641
d330a953 642 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 643 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
eb01459f 651
d174bd64
DV
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
eb01459f 655
dbf7bff0 656 mutex_lock(&dev->struct_mutex);
f60d7f0c 657
f60d7f0c 658 if (ret)
8461d226 659 goto out;
8461d226 660
17793c9a 661next_page:
eb01459f 662 remain -= page_length;
8461d226 663 user_data += page_length;
eb01459f
EA
664 offset += page_length;
665 }
666
4f27b75d 667out:
f60d7f0c
CW
668 i915_gem_object_unpin_pages(obj);
669
eb01459f
EA
670 return ret;
671}
672
673a394b
EA
673/**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678int
679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 680 struct drm_file *file)
673a394b
EA
681{
682 struct drm_i915_gem_pread *args = data;
05394f39 683 struct drm_i915_gem_object *obj;
35b62a89 684 int ret = 0;
673a394b 685
51311d0a
CW
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
3ed605bc 690 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
691 args->size))
692 return -EFAULT;
693
4f27b75d 694 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 695 if (ret)
4f27b75d 696 return ret;
673a394b 697
a8ad0bd8 698 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 699 if (&obj->base == NULL) {
1d7cfea1
CW
700 ret = -ENOENT;
701 goto unlock;
4f27b75d 702 }
673a394b 703
7dcd2499 704 /* Bounds check source. */
05394f39
CW
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
ce9d419d 707 ret = -EINVAL;
35b62a89 708 goto out;
ce9d419d
CW
709 }
710
1286ff73
DV
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
db53a302
CW
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
dbf7bff0 721 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 722
35b62a89 723out:
05394f39 724 drm_gem_object_unreference(&obj->base);
1d7cfea1 725unlock:
4f27b75d 726 mutex_unlock(&dev->struct_mutex);
eb01459f 727 return ret;
673a394b
EA
728}
729
0839ccb8
KP
730/* This is the fast write path which cannot handle
731 * page faults in the source data
9b7530cc 732 */
0839ccb8
KP
733
734static inline int
735fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
9b7530cc 739{
4f0c7cfb
BW
740 void __iomem *vaddr_atomic;
741 void *vaddr;
0839ccb8 742 unsigned long unwritten;
9b7530cc 743
3e4d3af5 744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 748 user_data, length);
3e4d3af5 749 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 750 return unwritten;
0839ccb8
KP
751}
752
3de09aa3
EA
753/**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
673a394b 757static int
05394f39
CW
758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
3de09aa3 760 struct drm_i915_gem_pwrite *args,
05394f39 761 struct drm_file *file)
673a394b 762{
72e96d64
JL
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
673a394b 765 ssize_t remain;
0839ccb8 766 loff_t offset, page_base;
673a394b 767 char __user *user_data;
935aaa69
DV
768 int page_offset, page_length, ret;
769
1ec9e26d 770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
673a394b 781
3ed605bc 782 user_data = u64_to_user_ptr(args->data_ptr);
673a394b 783 remain = args->size;
673a394b 784
f343c5f6 785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 786
77a0d1ca 787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 788
673a394b
EA
789 while (remain > 0) {
790 /* Operation in this page
791 *
0839ccb8
KP
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
673a394b 795 */
c8cbbb8b
CW
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
0839ccb8
KP
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
0839ccb8 802 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
0839ccb8 805 */
72e96d64 806 if (fast_user_write(ggtt->mappable, page_base,
935aaa69
DV
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
063e4e6b 809 goto out_flush;
935aaa69 810 }
673a394b 811
0839ccb8
KP
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
673a394b 815 }
673a394b 816
063e4e6b 817out_flush:
de152b62 818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 819out_unpin:
d7f46fc4 820 i915_gem_object_ggtt_unpin(obj);
935aaa69 821out:
3de09aa3 822 return ret;
673a394b
EA
823}
824
d174bd64
DV
825/* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
3043c60c 829static int
d174bd64
DV
830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
673a394b 835{
d174bd64 836 char *vaddr;
673a394b 837 int ret;
3de09aa3 838
e7e58eb5 839 if (unlikely(page_do_bit17_swizzling))
d174bd64 840 return -EINVAL;
3de09aa3 841
d174bd64
DV
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
c2831a94
CW
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
d174bd64
DV
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
3de09aa3 852
755d2218 853 return ret ? -EFAULT : 0;
3de09aa3
EA
854}
855
d174bd64
DV
856/* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
3043c60c 858static int
d174bd64
DV
859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
673a394b 864{
d174bd64
DV
865 char *vaddr;
866 int ret;
e5281ccd 867
d174bd64 868 vaddr = kmap(page);
e7e58eb5 869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
d174bd64
DV
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
875 user_data,
876 page_length);
d174bd64
DV
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
23c18c71
DV
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
d174bd64 885 kunmap(page);
40123c1f 886
755d2218 887 return ret ? -EFAULT : 0;
40123c1f
EA
888}
889
40123c1f 890static int
e244a443
DV
891i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
40123c1f 895{
40123c1f 896 ssize_t remain;
8c59967c
DV
897 loff_t offset;
898 char __user *user_data;
eb2c0c81 899 int shmem_page_offset, page_length, ret = 0;
8c59967c 900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 901 int hit_slowpath = 0;
58642885
DV
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
67d5a50c 904 struct sg_page_iter sg_iter;
40123c1f 905
3ed605bc 906 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
907 remain = args->size;
908
8c59967c 909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 910
58642885
DV
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
2c22569b 916 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
58642885 920 }
c76ce038
CW
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 926
755d2218
CW
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
77a0d1ca 931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 932
755d2218
CW
933 i915_gem_object_pin_pages(obj);
934
673a394b 935 offset = args->offset;
05394f39 936 obj->dirty = 1;
673a394b 937
67d5a50c
ID
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
2db76d7c 940 struct page *page = sg_page_iter_page(&sg_iter);
58642885 941 int partial_cacheline_write;
e5281ccd 942
9da3da66
CW
943 if (remain <= 0)
944 break;
945
40123c1f
EA
946 /* Operation in this page
947 *
40123c1f 948 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
949 * page_length = bytes to copy for this page
950 */
c8cbbb8b 951 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 956
58642885
DV
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
8c59967c
DV
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
d174bd64
DV
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
e244a443
DV
973
974 hit_slowpath = 1;
e244a443 975 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
40123c1f 980
e244a443 981 mutex_lock(&dev->struct_mutex);
755d2218 982
755d2218 983 if (ret)
8c59967c 984 goto out;
8c59967c 985
17793c9a 986next_page:
40123c1f 987 remain -= page_length;
8c59967c 988 user_data += page_length;
40123c1f 989 offset += page_length;
673a394b
EA
990 }
991
fbd5a26d 992out:
755d2218
CW
993 i915_gem_object_unpin_pages(obj);
994
e244a443 995 if (hit_slowpath) {
8dcf015e
DV
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1003 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1004 needs_clflush_after = true;
e244a443 1005 }
8c59967c 1006 }
673a394b 1007
58642885 1008 if (needs_clflush_after)
c033666a 1009 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1010 else
1011 obj->cache_dirty = true;
58642885 1012
de152b62 1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b 1025{
5d77d9c5 1026 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1027 struct drm_i915_gem_pwrite *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
51311d0a
CW
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
3ed605bc 1035 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
d330a953 1039 if (likely(!i915.prefault_disable)) {
3ed605bc 1040 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
673a394b 1045
5d77d9c5
ID
1046 intel_runtime_pm_get(dev_priv);
1047
fbd5a26d 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
5d77d9c5 1050 goto put_rpm;
1d7cfea1 1051
a8ad0bd8 1052 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
fbd5a26d 1056 }
673a394b 1057
7dcd2499 1058 /* Bounds check destination. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
35b62a89 1062 goto out;
ce9d419d
CW
1063 }
1064
1286ff73
DV
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
db53a302
CW
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
935aaa69 1075 ret = -EFAULT;
673a394b
EA
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
2c22569b
CW
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
fbd5a26d 1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1089 }
673a394b 1090
6a2c4232
CW
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
5c0480f2 1097
35b62a89 1098out:
05394f39 1099 drm_gem_object_unreference(&obj->base);
1d7cfea1 1100unlock:
fbd5a26d 1101 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1102put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
673a394b
EA
1105 return ret;
1106}
1107
f4457ae7
CW
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1110{
f4457ae7
CW
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
d98c52cf 1113
f4457ae7 1114 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
d98c52cf 1120 return -EAGAIN;
b361237b
CW
1121 }
1122
1123 return 0;
1124}
1125
094f9a54
CW
1126static void fake_irq(unsigned long data)
1127{
1128 wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1132 struct intel_engine_cs *engine)
094f9a54 1133{
0bc40be8 1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1135}
1136
ca5b721e
CW
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167}
1168
91b0c352 1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1170{
2def4ad9 1171 unsigned long timeout;
ca5b721e
CW
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
2def4ad9 1183
4a570db5 1184 if (req->engine->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
821485dc
CW
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
ca5b721e 1191 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1192 while (!need_resched()) {
eed29a5b 1193 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1194 return 0;
1195
91b0c352
CW
1196 if (signal_pending_state(state, current))
1197 break;
1198
ca5b721e 1199 if (busywait_stop(timeout, cpu))
2def4ad9 1200 break;
b29c19b6 1201
2def4ad9
CW
1202 cpu_relax_lowlatency();
1203 }
821485dc 1204
eed29a5b 1205 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1206 return 0;
1207
1208 return -EAGAIN;
b29c19b6
CW
1209}
1210
b361237b 1211/**
9c654818
JH
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
b361237b
CW
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
f69061be
DV
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
9c654818 1224 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1225 * errno with remaining time filled in timeout argument.
1226 */
9c654818 1227int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1228 bool interruptible,
5ed0bdf2 1229 s64 *timeout,
2e1b8730 1230 struct intel_rps_client *rps)
b361237b 1231{
666796da 1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
c033666a 1233 struct drm_i915_private *dev_priv = req->i915;
168c3f21 1234 const bool irq_test_in_progress =
666796da 1235 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1236 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1237 DEFINE_WAIT(wait);
47e9766d 1238 unsigned long timeout_expire;
e0313db0 1239 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1240 int ret;
1241
9df7575f 1242 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1243
b4716185
CW
1244 if (list_empty(&req->list))
1245 return 0;
1246
1b5a433a 1247 if (i915_gem_request_completed(req, true))
b361237b
CW
1248 return 0;
1249
bb6d1984
CW
1250 timeout_expire = 0;
1251 if (timeout) {
1252 if (WARN_ON(*timeout < 0))
1253 return -EINVAL;
1254
1255 if (*timeout == 0)
1256 return -ETIME;
1257
1258 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1259
1260 /*
1261 * Record current time in case interrupted by signal, or wedged.
1262 */
1263 before = ktime_get_raw_ns();
bb6d1984 1264 }
b361237b 1265
2e1b8730 1266 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1267 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1268
74328ee5 1269 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1270
1271 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1272 ret = __i915_spin_request(req, state);
2def4ad9
CW
1273 if (ret == 0)
1274 goto out;
1275
e2f80391 1276 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1277 ret = -ENODEV;
1278 goto out;
1279 }
1280
094f9a54
CW
1281 for (;;) {
1282 struct timer_list timer;
b361237b 1283
e2f80391 1284 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1285
f69061be 1286 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1287 * the request being submitted and now. If a reset has occurred,
1288 * the request is effectively complete (we either are in the
1289 * process of or have discarded the rendering and completely
1290 * reset the GPU. The results of the request are lost and we
1291 * are free to continue on with the original operation.
1292 */
299259a3 1293 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1294 ret = 0;
094f9a54
CW
1295 break;
1296 }
f69061be 1297
1b5a433a 1298 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1299 ret = 0;
1300 break;
1301 }
b361237b 1302
91b0c352 1303 if (signal_pending_state(state, current)) {
094f9a54
CW
1304 ret = -ERESTARTSYS;
1305 break;
1306 }
1307
47e9766d 1308 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1309 ret = -ETIME;
1310 break;
1311 }
1312
1313 timer.function = NULL;
e2f80391 1314 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1315 unsigned long expire;
1316
094f9a54 1317 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1318 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1319 mod_timer(&timer, expire);
1320 }
1321
5035c275 1322 io_schedule();
094f9a54 1323
094f9a54
CW
1324 if (timer.function) {
1325 del_singleshot_timer_sync(&timer);
1326 destroy_timer_on_stack(&timer);
1327 }
1328 }
168c3f21 1329 if (!irq_test_in_progress)
e2f80391 1330 engine->irq_put(engine);
094f9a54 1331
e2f80391 1332 finish_wait(&engine->irq_queue, &wait);
b361237b 1333
2def4ad9 1334out:
2def4ad9
CW
1335 trace_i915_gem_request_wait_end(req);
1336
b361237b 1337 if (timeout) {
e0313db0 1338 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1339
1340 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1341
1342 /*
1343 * Apparently ktime isn't accurate enough and occasionally has a
1344 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1345 * things up to make the test happy. We allow up to 1 jiffy.
1346 *
1347 * This is a regrssion from the timespec->ktime conversion.
1348 */
1349 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1350 *timeout = 0;
b361237b
CW
1351 }
1352
094f9a54 1353 return ret;
b361237b
CW
1354}
1355
fcfa423c
JH
1356int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1357 struct drm_file *file)
1358{
fcfa423c
JH
1359 struct drm_i915_file_private *file_priv;
1360
1361 WARN_ON(!req || !file || req->file_priv);
1362
1363 if (!req || !file)
1364 return -EINVAL;
1365
1366 if (req->file_priv)
1367 return -EINVAL;
1368
fcfa423c
JH
1369 file_priv = file->driver_priv;
1370
1371 spin_lock(&file_priv->mm.lock);
1372 req->file_priv = file_priv;
1373 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1374 spin_unlock(&file_priv->mm.lock);
1375
1376 req->pid = get_pid(task_pid(current));
1377
1378 return 0;
1379}
1380
b4716185
CW
1381static inline void
1382i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1383{
1384 struct drm_i915_file_private *file_priv = request->file_priv;
1385
1386 if (!file_priv)
1387 return;
1388
1389 spin_lock(&file_priv->mm.lock);
1390 list_del(&request->client_list);
1391 request->file_priv = NULL;
1392 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1393
1394 put_pid(request->pid);
1395 request->pid = NULL;
b4716185
CW
1396}
1397
1398static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1399{
1400 trace_i915_gem_request_retire(request);
1401
1402 /* We know the GPU must have read the request to have
1403 * sent us the seqno + interrupt, so use the position
1404 * of tail of the request to update the last known position
1405 * of the GPU head.
1406 *
1407 * Note this requires that we are always called in request
1408 * completion order.
1409 */
1410 request->ringbuf->last_retired_head = request->postfix;
1411
1412 list_del_init(&request->list);
1413 i915_gem_request_remove_from_client(request);
1414
a16a4052 1415 if (request->previous_context) {
73db04cf 1416 if (i915.enable_execlists)
a16a4052
CW
1417 intel_lr_context_unpin(request->previous_context,
1418 request->engine);
73db04cf
CW
1419 }
1420
a16a4052 1421 i915_gem_context_unreference(request->ctx);
b4716185
CW
1422 i915_gem_request_unreference(request);
1423}
1424
1425static void
1426__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1427{
4a570db5 1428 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1429 struct drm_i915_gem_request *tmp;
1430
c033666a 1431 lockdep_assert_held(&engine->i915->dev->struct_mutex);
b4716185
CW
1432
1433 if (list_empty(&req->list))
1434 return;
1435
1436 do {
1437 tmp = list_first_entry(&engine->request_list,
1438 typeof(*tmp), list);
1439
1440 i915_gem_request_retire(tmp);
1441 } while (tmp != req);
1442
1443 WARN_ON(i915_verify_lists(engine->dev));
1444}
1445
b361237b 1446/**
a4b3a571 1447 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1448 * request and object lists appropriately for that event.
1449 */
1450int
a4b3a571 1451i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1452{
791bee12 1453 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1454 bool interruptible;
b361237b
CW
1455 int ret;
1456
a4b3a571
DV
1457 interruptible = dev_priv->mm.interruptible;
1458
791bee12 1459 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1460
299259a3 1461 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1462 if (ret)
1463 return ret;
d26e3af8 1464
e075a32f
CW
1465 /* If the GPU hung, we want to keep the requests to find the guilty. */
1466 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1467 __i915_gem_request_retire__upto(req);
1468
d26e3af8
CW
1469 return 0;
1470}
1471
b361237b
CW
1472/**
1473 * Ensures that all rendering to the object has completed and the object is
1474 * safe to unbind from the GTT or access from the CPU.
1475 */
2e2f351d 1476int
b361237b
CW
1477i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1478 bool readonly)
1479{
b4716185 1480 int ret, i;
b361237b 1481
b4716185 1482 if (!obj->active)
b361237b
CW
1483 return 0;
1484
b4716185
CW
1485 if (readonly) {
1486 if (obj->last_write_req != NULL) {
1487 ret = i915_wait_request(obj->last_write_req);
1488 if (ret)
1489 return ret;
b361237b 1490
4a570db5 1491 i = obj->last_write_req->engine->id;
b4716185
CW
1492 if (obj->last_read_req[i] == obj->last_write_req)
1493 i915_gem_object_retire__read(obj, i);
1494 else
1495 i915_gem_object_retire__write(obj);
1496 }
1497 } else {
666796da 1498 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1499 if (obj->last_read_req[i] == NULL)
1500 continue;
1501
1502 ret = i915_wait_request(obj->last_read_req[i]);
1503 if (ret)
1504 return ret;
1505
1506 i915_gem_object_retire__read(obj, i);
1507 }
d501b1d2 1508 GEM_BUG_ON(obj->active);
b4716185
CW
1509 }
1510
1511 return 0;
1512}
1513
1514static void
1515i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1516 struct drm_i915_gem_request *req)
1517{
4a570db5 1518 int ring = req->engine->id;
b4716185
CW
1519
1520 if (obj->last_read_req[ring] == req)
1521 i915_gem_object_retire__read(obj, ring);
1522 else if (obj->last_write_req == req)
1523 i915_gem_object_retire__write(obj);
1524
e075a32f
CW
1525 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1526 __i915_gem_request_retire__upto(req);
b361237b
CW
1527}
1528
3236f57a
CW
1529/* A nonblocking variant of the above wait. This is a highly dangerous routine
1530 * as the object state may change during this call.
1531 */
1532static __must_check int
1533i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1534 struct intel_rps_client *rps,
3236f57a
CW
1535 bool readonly)
1536{
1537 struct drm_device *dev = obj->base.dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1539 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1540 int ret, i, n = 0;
3236f57a
CW
1541
1542 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1543 BUG_ON(!dev_priv->mm.interruptible);
1544
b4716185 1545 if (!obj->active)
3236f57a
CW
1546 return 0;
1547
b4716185
CW
1548 if (readonly) {
1549 struct drm_i915_gem_request *req;
1550
1551 req = obj->last_write_req;
1552 if (req == NULL)
1553 return 0;
1554
b4716185
CW
1555 requests[n++] = i915_gem_request_reference(req);
1556 } else {
666796da 1557 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1558 struct drm_i915_gem_request *req;
1559
1560 req = obj->last_read_req[i];
1561 if (req == NULL)
1562 continue;
1563
b4716185
CW
1564 requests[n++] = i915_gem_request_reference(req);
1565 }
1566 }
1567
3236f57a 1568 mutex_unlock(&dev->struct_mutex);
299259a3 1569 ret = 0;
b4716185 1570 for (i = 0; ret == 0 && i < n; i++)
299259a3 1571 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1572 mutex_lock(&dev->struct_mutex);
1573
b4716185
CW
1574 for (i = 0; i < n; i++) {
1575 if (ret == 0)
1576 i915_gem_object_retire_request(obj, requests[i]);
1577 i915_gem_request_unreference(requests[i]);
1578 }
1579
1580 return ret;
3236f57a
CW
1581}
1582
2e1b8730
CW
1583static struct intel_rps_client *to_rps_client(struct drm_file *file)
1584{
1585 struct drm_i915_file_private *fpriv = file->driver_priv;
1586 return &fpriv->rps;
1587}
1588
673a394b 1589/**
2ef7eeaa
EA
1590 * Called when user space prepares to use an object with the CPU, either
1591 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1592 */
1593int
1594i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1595 struct drm_file *file)
673a394b
EA
1596{
1597 struct drm_i915_gem_set_domain *args = data;
05394f39 1598 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
673a394b
EA
1601 int ret;
1602
2ef7eeaa 1603 /* Only handle setting domains to types used by the CPU. */
21d509e3 1604 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1605 return -EINVAL;
1606
21d509e3 1607 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1608 return -EINVAL;
1609
1610 /* Having something in the write domain implies it's in the read
1611 * domain, and only that read domain. Enforce that in the request.
1612 */
1613 if (write_domain != 0 && read_domains != write_domain)
1614 return -EINVAL;
1615
76c1dec1 1616 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1617 if (ret)
76c1dec1 1618 return ret;
1d7cfea1 1619
a8ad0bd8 1620 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1621 if (&obj->base == NULL) {
1d7cfea1
CW
1622 ret = -ENOENT;
1623 goto unlock;
76c1dec1 1624 }
673a394b 1625
3236f57a
CW
1626 /* Try to flush the object off the GPU without holding the lock.
1627 * We will repeat the flush holding the lock in the normal manner
1628 * to catch cases where we are gazumped.
1629 */
6e4930f6 1630 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1631 to_rps_client(file),
6e4930f6 1632 !write_domain);
3236f57a
CW
1633 if (ret)
1634 goto unref;
1635
43566ded 1636 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1637 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1638 else
e47c68e9 1639 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1640
031b698a
DV
1641 if (write_domain != 0)
1642 intel_fb_obj_invalidate(obj,
1643 write_domain == I915_GEM_DOMAIN_GTT ?
1644 ORIGIN_GTT : ORIGIN_CPU);
1645
3236f57a 1646unref:
05394f39 1647 drm_gem_object_unreference(&obj->base);
1d7cfea1 1648unlock:
673a394b
EA
1649 mutex_unlock(&dev->struct_mutex);
1650 return ret;
1651}
1652
1653/**
1654 * Called when user space has done writes to this buffer
1655 */
1656int
1657i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1658 struct drm_file *file)
673a394b
EA
1659{
1660 struct drm_i915_gem_sw_finish *args = data;
05394f39 1661 struct drm_i915_gem_object *obj;
673a394b
EA
1662 int ret = 0;
1663
76c1dec1 1664 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1665 if (ret)
76c1dec1 1666 return ret;
1d7cfea1 1667
a8ad0bd8 1668 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1669 if (&obj->base == NULL) {
1d7cfea1
CW
1670 ret = -ENOENT;
1671 goto unlock;
673a394b
EA
1672 }
1673
673a394b 1674 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1675 if (obj->pin_display)
e62b59e4 1676 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1677
05394f39 1678 drm_gem_object_unreference(&obj->base);
1d7cfea1 1679unlock:
673a394b
EA
1680 mutex_unlock(&dev->struct_mutex);
1681 return ret;
1682}
1683
1684/**
1685 * Maps the contents of an object, returning the address it is mapped
1686 * into.
1687 *
1688 * While the mapping holds a reference on the contents of the object, it doesn't
1689 * imply a ref on the object itself.
34367381
DV
1690 *
1691 * IMPORTANT:
1692 *
1693 * DRM driver writers who look a this function as an example for how to do GEM
1694 * mmap support, please don't implement mmap support like here. The modern way
1695 * to implement DRM mmap support is with an mmap offset ioctl (like
1696 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1697 * That way debug tooling like valgrind will understand what's going on, hiding
1698 * the mmap call in a driver private ioctl will break that. The i915 driver only
1699 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1700 */
1701int
1702i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1703 struct drm_file *file)
673a394b
EA
1704{
1705 struct drm_i915_gem_mmap *args = data;
1706 struct drm_gem_object *obj;
673a394b
EA
1707 unsigned long addr;
1708
1816f923
AG
1709 if (args->flags & ~(I915_MMAP_WC))
1710 return -EINVAL;
1711
568a58e5 1712 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1713 return -ENODEV;
1714
a8ad0bd8 1715 obj = drm_gem_object_lookup(file, args->handle);
673a394b 1716 if (obj == NULL)
bf79cb91 1717 return -ENOENT;
673a394b 1718
1286ff73
DV
1719 /* prime objects have no backing filp to GEM mmap
1720 * pages from.
1721 */
1722 if (!obj->filp) {
1723 drm_gem_object_unreference_unlocked(obj);
1724 return -EINVAL;
1725 }
1726
6be5ceb0 1727 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1728 PROT_READ | PROT_WRITE, MAP_SHARED,
1729 args->offset);
1816f923
AG
1730 if (args->flags & I915_MMAP_WC) {
1731 struct mm_struct *mm = current->mm;
1732 struct vm_area_struct *vma;
1733
80a89a5e
MH
1734 if (down_write_killable(&mm->mmap_sem)) {
1735 drm_gem_object_unreference_unlocked(obj);
1736 return -EINTR;
1737 }
1816f923
AG
1738 vma = find_vma(mm, addr);
1739 if (vma)
1740 vma->vm_page_prot =
1741 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1742 else
1743 addr = -ENOMEM;
1744 up_write(&mm->mmap_sem);
1745 }
bc9025bd 1746 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1747 if (IS_ERR((void *)addr))
1748 return addr;
1749
1750 args->addr_ptr = (uint64_t) addr;
1751
1752 return 0;
1753}
1754
de151cf6
JB
1755/**
1756 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1757 * @vma: VMA in question
1758 * @vmf: fault info
de151cf6
JB
1759 *
1760 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1761 * from userspace. The fault handler takes care of binding the object to
1762 * the GTT (if needed), allocating and programming a fence register (again,
1763 * only if needed based on whether the old reg is still valid or the object
1764 * is tiled) and inserting a new PTE into the faulting process.
1765 *
1766 * Note that the faulting process may involve evicting existing objects
1767 * from the GTT and/or fence registers to make room. So performance may
1768 * suffer if the GTT working set is large or there are few fence registers
1769 * left.
1770 */
1771int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1772{
05394f39
CW
1773 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1774 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1775 struct drm_i915_private *dev_priv = to_i915(dev);
1776 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1777 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1778 pgoff_t page_offset;
1779 unsigned long pfn;
1780 int ret = 0;
0f973f27 1781 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1782
f65c9168
PZ
1783 intel_runtime_pm_get(dev_priv);
1784
de151cf6
JB
1785 /* We don't use vmf->pgoff since that has the fake offset */
1786 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1787 PAGE_SHIFT;
1788
d9bc7e9f
CW
1789 ret = i915_mutex_lock_interruptible(dev);
1790 if (ret)
1791 goto out;
a00b10c3 1792
db53a302
CW
1793 trace_i915_gem_object_fault(obj, page_offset, true, write);
1794
6e4930f6
CW
1795 /* Try to flush the object off the GPU first without holding the lock.
1796 * Upon reacquiring the lock, we will perform our sanity checks and then
1797 * repeat the flush holding the lock in the normal manner to catch cases
1798 * where we are gazumped.
1799 */
1800 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1801 if (ret)
1802 goto unlock;
1803
eb119bd6
CW
1804 /* Access to snoopable pages through the GTT is incoherent. */
1805 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1806 ret = -EFAULT;
eb119bd6
CW
1807 goto unlock;
1808 }
1809
c5ad54cf 1810 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1811 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1812 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1813 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1814
c5ad54cf
JL
1815 memset(&view, 0, sizeof(view));
1816 view.type = I915_GGTT_VIEW_PARTIAL;
1817 view.params.partial.offset = rounddown(page_offset, chunk_size);
1818 view.params.partial.size =
1819 min_t(unsigned int,
1820 chunk_size,
1821 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1822 view.params.partial.offset);
1823 }
1824
1825 /* Now pin it into the GTT if needed */
1826 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1827 if (ret)
1828 goto unlock;
4a684a41 1829
c9839303
CW
1830 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1831 if (ret)
1832 goto unpin;
74898d7e 1833
06d98131 1834 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1835 if (ret)
c9839303 1836 goto unpin;
7d1c4804 1837
b90b91d8 1838 /* Finally, remap it using the new GTT offset */
72e96d64 1839 pfn = ggtt->mappable_base +
c5ad54cf 1840 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1841 pfn >>= PAGE_SHIFT;
de151cf6 1842
c5ad54cf
JL
1843 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1844 /* Overriding existing pages in partial view does not cause
1845 * us any trouble as TLBs are still valid because the fault
1846 * is due to userspace losing part of the mapping or never
1847 * having accessed it before (at this partials' range).
1848 */
1849 unsigned long base = vma->vm_start +
1850 (view.params.partial.offset << PAGE_SHIFT);
1851 unsigned int i;
b90b91d8 1852
c5ad54cf
JL
1853 for (i = 0; i < view.params.partial.size; i++) {
1854 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1855 if (ret)
1856 break;
1857 }
1858
1859 obj->fault_mappable = true;
c5ad54cf
JL
1860 } else {
1861 if (!obj->fault_mappable) {
1862 unsigned long size = min_t(unsigned long,
1863 vma->vm_end - vma->vm_start,
1864 obj->base.size);
1865 int i;
1866
1867 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1868 ret = vm_insert_pfn(vma,
1869 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1870 pfn + i);
1871 if (ret)
1872 break;
1873 }
1874
1875 obj->fault_mappable = true;
1876 } else
1877 ret = vm_insert_pfn(vma,
1878 (unsigned long)vmf->virtual_address,
1879 pfn + page_offset);
1880 }
c9839303 1881unpin:
c5ad54cf 1882 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1883unlock:
de151cf6 1884 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1885out:
de151cf6 1886 switch (ret) {
d9bc7e9f 1887 case -EIO:
2232f031
DV
1888 /*
1889 * We eat errors when the gpu is terminally wedged to avoid
1890 * userspace unduly crashing (gl has no provisions for mmaps to
1891 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1892 * and so needs to be reported.
1893 */
1894 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1895 ret = VM_FAULT_SIGBUS;
1896 break;
1897 }
045e769a 1898 case -EAGAIN:
571c608d
DV
1899 /*
1900 * EAGAIN means the gpu is hung and we'll wait for the error
1901 * handler to reset everything when re-faulting in
1902 * i915_mutex_lock_interruptible.
d9bc7e9f 1903 */
c715089f
CW
1904 case 0:
1905 case -ERESTARTSYS:
bed636ab 1906 case -EINTR:
e79e0fe3
DR
1907 case -EBUSY:
1908 /*
1909 * EBUSY is ok: this just means that another thread
1910 * already did the job.
1911 */
f65c9168
PZ
1912 ret = VM_FAULT_NOPAGE;
1913 break;
de151cf6 1914 case -ENOMEM:
f65c9168
PZ
1915 ret = VM_FAULT_OOM;
1916 break;
a7c2e1aa 1917 case -ENOSPC:
45d67817 1918 case -EFAULT:
f65c9168
PZ
1919 ret = VM_FAULT_SIGBUS;
1920 break;
de151cf6 1921 default:
a7c2e1aa 1922 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1923 ret = VM_FAULT_SIGBUS;
1924 break;
de151cf6 1925 }
f65c9168
PZ
1926
1927 intel_runtime_pm_put(dev_priv);
1928 return ret;
de151cf6
JB
1929}
1930
901782b2
CW
1931/**
1932 * i915_gem_release_mmap - remove physical page mappings
1933 * @obj: obj in question
1934 *
af901ca1 1935 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1936 * relinquish ownership of the pages back to the system.
1937 *
1938 * It is vital that we remove the page mapping if we have mapped a tiled
1939 * object through the GTT and then lose the fence register due to
1940 * resource pressure. Similarly if the object has been moved out of the
1941 * aperture, than pages mapped into userspace must be revoked. Removing the
1942 * mapping will then trigger a page fault on the next user access, allowing
1943 * fixup by i915_gem_fault().
1944 */
d05ca301 1945void
05394f39 1946i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1947{
349f2ccf
CW
1948 /* Serialisation between user GTT access and our code depends upon
1949 * revoking the CPU's PTE whilst the mutex is held. The next user
1950 * pagefault then has to wait until we release the mutex.
1951 */
1952 lockdep_assert_held(&obj->base.dev->struct_mutex);
1953
6299f992
CW
1954 if (!obj->fault_mappable)
1955 return;
901782b2 1956
6796cb16
DH
1957 drm_vma_node_unmap(&obj->base.vma_node,
1958 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1959
1960 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1961 * memory transactions from userspace before we return. The TLB
1962 * flushing implied above by changing the PTE above *should* be
1963 * sufficient, an extra barrier here just provides us with a bit
1964 * of paranoid documentation about our requirement to serialise
1965 * memory writes before touching registers / GSM.
1966 */
1967 wmb();
1968
6299f992 1969 obj->fault_mappable = false;
901782b2
CW
1970}
1971
eedd10f4
CW
1972void
1973i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1974{
1975 struct drm_i915_gem_object *obj;
1976
1977 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1978 i915_gem_release_mmap(obj);
1979}
1980
0fa87796 1981uint32_t
e28f8711 1982i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1983{
e28f8711 1984 uint32_t gtt_size;
92b88aeb
CW
1985
1986 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1987 tiling_mode == I915_TILING_NONE)
1988 return size;
92b88aeb
CW
1989
1990 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 1991 if (IS_GEN3(dev))
e28f8711 1992 gtt_size = 1024*1024;
92b88aeb 1993 else
e28f8711 1994 gtt_size = 512*1024;
92b88aeb 1995
e28f8711
CW
1996 while (gtt_size < size)
1997 gtt_size <<= 1;
92b88aeb 1998
e28f8711 1999 return gtt_size;
92b88aeb
CW
2000}
2001
de151cf6
JB
2002/**
2003 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2004 * @obj: object to check
2005 *
2006 * Return the required GTT alignment for an object, taking into account
5e783301 2007 * potential fence register mapping.
de151cf6 2008 */
d865110c
ID
2009uint32_t
2010i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2011 int tiling_mode, bool fenced)
de151cf6 2012{
de151cf6
JB
2013 /*
2014 * Minimum alignment is 4k (GTT page size), but might be greater
2015 * if a fence register is needed for the object.
2016 */
d865110c 2017 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2018 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2019 return 4096;
2020
a00b10c3
CW
2021 /*
2022 * Previous chips need to be aligned to the size of the smallest
2023 * fence register that can contain the object.
2024 */
e28f8711 2025 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2026}
2027
d8cb5086
CW
2028static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2029{
2030 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2031 int ret;
2032
da494d7c
DV
2033 dev_priv->mm.shrinker_no_lock_stealing = true;
2034
d8cb5086
CW
2035 ret = drm_gem_create_mmap_offset(&obj->base);
2036 if (ret != -ENOSPC)
da494d7c 2037 goto out;
d8cb5086
CW
2038
2039 /* Badly fragmented mmap space? The only way we can recover
2040 * space is by destroying unwanted objects. We can't randomly release
2041 * mmap_offsets as userspace expects them to be persistent for the
2042 * lifetime of the objects. The closest we can is to release the
2043 * offsets on purgeable objects by truncating it and marking it purged,
2044 * which prevents userspace from ever using that object again.
2045 */
21ab4e74
CW
2046 i915_gem_shrink(dev_priv,
2047 obj->base.size >> PAGE_SHIFT,
2048 I915_SHRINK_BOUND |
2049 I915_SHRINK_UNBOUND |
2050 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2051 ret = drm_gem_create_mmap_offset(&obj->base);
2052 if (ret != -ENOSPC)
da494d7c 2053 goto out;
d8cb5086
CW
2054
2055 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2056 ret = drm_gem_create_mmap_offset(&obj->base);
2057out:
2058 dev_priv->mm.shrinker_no_lock_stealing = false;
2059
2060 return ret;
d8cb5086
CW
2061}
2062
2063static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2064{
d8cb5086
CW
2065 drm_gem_free_mmap_offset(&obj->base);
2066}
2067
da6b51d0 2068int
ff72145b
DA
2069i915_gem_mmap_gtt(struct drm_file *file,
2070 struct drm_device *dev,
da6b51d0 2071 uint32_t handle,
ff72145b 2072 uint64_t *offset)
de151cf6 2073{
05394f39 2074 struct drm_i915_gem_object *obj;
de151cf6
JB
2075 int ret;
2076
76c1dec1 2077 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2078 if (ret)
76c1dec1 2079 return ret;
de151cf6 2080
a8ad0bd8 2081 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
c8725226 2082 if (&obj->base == NULL) {
1d7cfea1
CW
2083 ret = -ENOENT;
2084 goto unlock;
2085 }
de151cf6 2086
05394f39 2087 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2088 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2089 ret = -EFAULT;
1d7cfea1 2090 goto out;
ab18282d
CW
2091 }
2092
d8cb5086
CW
2093 ret = i915_gem_object_create_mmap_offset(obj);
2094 if (ret)
2095 goto out;
de151cf6 2096
0de23977 2097 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2098
1d7cfea1 2099out:
05394f39 2100 drm_gem_object_unreference(&obj->base);
1d7cfea1 2101unlock:
de151cf6 2102 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2103 return ret;
de151cf6
JB
2104}
2105
ff72145b
DA
2106/**
2107 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2108 * @dev: DRM device
2109 * @data: GTT mapping ioctl data
2110 * @file: GEM object info
2111 *
2112 * Simply returns the fake offset to userspace so it can mmap it.
2113 * The mmap call will end up in drm_gem_mmap(), which will set things
2114 * up so we can get faults in the handler above.
2115 *
2116 * The fault handler will take care of binding the object into the GTT
2117 * (since it may have been evicted to make room for something), allocating
2118 * a fence register, and mapping the appropriate aperture address into
2119 * userspace.
2120 */
2121int
2122i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2123 struct drm_file *file)
2124{
2125 struct drm_i915_gem_mmap_gtt *args = data;
2126
da6b51d0 2127 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2128}
2129
225067ee
DV
2130/* Immediately discard the backing storage */
2131static void
2132i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2133{
4d6294bf 2134 i915_gem_object_free_mmap_offset(obj);
1286ff73 2135
4d6294bf
CW
2136 if (obj->base.filp == NULL)
2137 return;
e5281ccd 2138
225067ee
DV
2139 /* Our goal here is to return as much of the memory as
2140 * is possible back to the system as we are called from OOM.
2141 * To do this we must instruct the shmfs to drop all of its
2142 * backing pages, *now*.
2143 */
5537252b 2144 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2145 obj->madv = __I915_MADV_PURGED;
2146}
e5281ccd 2147
5537252b
CW
2148/* Try to discard unwanted pages */
2149static void
2150i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2151{
5537252b
CW
2152 struct address_space *mapping;
2153
2154 switch (obj->madv) {
2155 case I915_MADV_DONTNEED:
2156 i915_gem_object_truncate(obj);
2157 case __I915_MADV_PURGED:
2158 return;
2159 }
2160
2161 if (obj->base.filp == NULL)
2162 return;
2163
2164 mapping = file_inode(obj->base.filp)->i_mapping,
2165 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2166}
2167
5cdf5881 2168static void
05394f39 2169i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2170{
85d1225e
DG
2171 struct sgt_iter sgt_iter;
2172 struct page *page;
90797e6d 2173 int ret;
1286ff73 2174
05394f39 2175 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2176
6c085a72 2177 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2178 if (WARN_ON(ret)) {
6c085a72
CW
2179 /* In the event of a disaster, abandon all caches and
2180 * hope for the best.
2181 */
2c22569b 2182 i915_gem_clflush_object(obj, true);
6c085a72
CW
2183 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2184 }
2185
e2273302
ID
2186 i915_gem_gtt_finish_object(obj);
2187
6dacfd2f 2188 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2189 i915_gem_object_save_bit_17_swizzle(obj);
2190
05394f39
CW
2191 if (obj->madv == I915_MADV_DONTNEED)
2192 obj->dirty = 0;
3ef94daa 2193
85d1225e 2194 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2195 if (obj->dirty)
9da3da66 2196 set_page_dirty(page);
3ef94daa 2197
05394f39 2198 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2199 mark_page_accessed(page);
3ef94daa 2200
09cbfeaf 2201 put_page(page);
3ef94daa 2202 }
05394f39 2203 obj->dirty = 0;
673a394b 2204
9da3da66
CW
2205 sg_free_table(obj->pages);
2206 kfree(obj->pages);
37e680a1 2207}
6c085a72 2208
dd624afd 2209int
37e680a1
CW
2210i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2211{
2212 const struct drm_i915_gem_object_ops *ops = obj->ops;
2213
2f745ad3 2214 if (obj->pages == NULL)
37e680a1
CW
2215 return 0;
2216
a5570178
CW
2217 if (obj->pages_pin_count)
2218 return -EBUSY;
2219
9843877d 2220 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2221
a2165e31
CW
2222 /* ->put_pages might need to allocate memory for the bit17 swizzle
2223 * array, hence protect them from being reaped by removing them from gtt
2224 * lists early. */
35c20a60 2225 list_del(&obj->global_list);
a2165e31 2226
0a798eb9 2227 if (obj->mapping) {
fb8621d3
CW
2228 if (is_vmalloc_addr(obj->mapping))
2229 vunmap(obj->mapping);
2230 else
2231 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2232 obj->mapping = NULL;
2233 }
2234
37e680a1 2235 ops->put_pages(obj);
05394f39 2236 obj->pages = NULL;
37e680a1 2237
5537252b 2238 i915_gem_object_invalidate(obj);
6c085a72
CW
2239
2240 return 0;
2241}
2242
37e680a1 2243static int
6c085a72 2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2245{
6c085a72 2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2247 int page_count, i;
2248 struct address_space *mapping;
9da3da66
CW
2249 struct sg_table *st;
2250 struct scatterlist *sg;
85d1225e 2251 struct sgt_iter sgt_iter;
e5281ccd 2252 struct page *page;
90797e6d 2253 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2254 int ret;
6c085a72 2255 gfp_t gfp;
e5281ccd 2256
6c085a72
CW
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
9da3da66
CW
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
05394f39 2268 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2270 kfree(st);
e5281ccd 2271 return -ENOMEM;
9da3da66 2272 }
e5281ccd 2273
9da3da66
CW
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
496ad9aa 2279 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
6c085a72
CW
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
21ab4e74
CW
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
6c085a72
CW
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
6c085a72 2299 i915_gem_shrink_all(dev_priv);
f461d1be 2300 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
6c085a72 2303 goto err_pages;
e2273302 2304 }
6c085a72 2305 }
426729dc
KRW
2306#ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313#endif
90797e6d
ID
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
3bbbe706
DV
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2326 }
426729dc
KRW
2327#ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329#endif
2330 sg_mark_end(sg);
74ce6b6c
CW
2331 obj->pages = st;
2332
e2273302
ID
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
6dacfd2f 2337 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
656bfa3a
DV
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
e5281ccd
CW
2344 return 0;
2345
2346err_pages:
90797e6d 2347 sg_mark_end(sg);
85d1225e
DG
2348 for_each_sgt_page(page, sgt_iter, st)
2349 put_page(page);
9da3da66
CW
2350 sg_free_table(st);
2351 kfree(st);
0820baf3
CW
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
e2273302
ID
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
673a394b
EA
2365}
2366
37e680a1
CW
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2f745ad3 2381 if (obj->pages)
37e680a1
CW
2382 return 0;
2383
43e28f09 2384 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2386 return -EFAULT;
43e28f09
CW
2387 }
2388
a5570178
CW
2389 BUG_ON(obj->pages_pin_count);
2390
37e680a1
CW
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
35c20a60 2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
37e680a1 2400 return 0;
673a394b
EA
2401}
2402
dd6034c6
DG
2403/* The 'mapping' part of i915_gem_object_pin_map() below */
2404static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2405{
2406 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2407 struct sg_table *sgt = obj->pages;
85d1225e
DG
2408 struct sgt_iter sgt_iter;
2409 struct page *page;
b338fa47
DG
2410 struct page *stack_pages[32];
2411 struct page **pages = stack_pages;
dd6034c6
DG
2412 unsigned long i = 0;
2413 void *addr;
2414
2415 /* A single page can always be kmapped */
2416 if (n_pages == 1)
2417 return kmap(sg_page(sgt->sgl));
2418
b338fa47
DG
2419 if (n_pages > ARRAY_SIZE(stack_pages)) {
2420 /* Too big for stack -- allocate temporary array instead */
2421 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2422 if (!pages)
2423 return NULL;
2424 }
dd6034c6 2425
85d1225e
DG
2426 for_each_sgt_page(page, sgt_iter, sgt)
2427 pages[i++] = page;
dd6034c6
DG
2428
2429 /* Check that we have the expected number of pages */
2430 GEM_BUG_ON(i != n_pages);
2431
2432 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2433
b338fa47
DG
2434 if (pages != stack_pages)
2435 drm_free_large(pages);
dd6034c6
DG
2436
2437 return addr;
2438}
2439
2440/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2441void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2442{
2443 int ret;
2444
2445 lockdep_assert_held(&obj->base.dev->struct_mutex);
2446
2447 ret = i915_gem_object_get_pages(obj);
2448 if (ret)
2449 return ERR_PTR(ret);
2450
2451 i915_gem_object_pin_pages(obj);
2452
dd6034c6
DG
2453 if (!obj->mapping) {
2454 obj->mapping = i915_gem_object_map(obj);
2455 if (!obj->mapping) {
0a798eb9
CW
2456 i915_gem_object_unpin_pages(obj);
2457 return ERR_PTR(-ENOMEM);
2458 }
2459 }
2460
2461 return obj->mapping;
2462}
2463
b4716185 2464void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2465 struct drm_i915_gem_request *req)
673a394b 2466{
b4716185 2467 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2468 struct intel_engine_cs *engine;
b2af0376 2469
666796da 2470 engine = i915_gem_request_get_engine(req);
673a394b
EA
2471
2472 /* Add a reference if we're newly entering the active list. */
b4716185 2473 if (obj->active == 0)
05394f39 2474 drm_gem_object_reference(&obj->base);
666796da 2475 obj->active |= intel_engine_flag(engine);
e35a41de 2476
117897f4 2477 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2478 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2479
1c7f4bca 2480 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2481}
2482
b4716185
CW
2483static void
2484i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2485{
d501b1d2
CW
2486 GEM_BUG_ON(obj->last_write_req == NULL);
2487 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2488
2489 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2490 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2491}
2492
caea7476 2493static void
b4716185 2494i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2495{
feb822cf 2496 struct i915_vma *vma;
ce44b0ea 2497
d501b1d2
CW
2498 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2499 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2500
117897f4 2501 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2502 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2503
4a570db5 2504 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2505 i915_gem_object_retire__write(obj);
2506
2507 obj->active &= ~(1 << ring);
2508 if (obj->active)
2509 return;
caea7476 2510
6c246959
CW
2511 /* Bump our place on the bound list to keep it roughly in LRU order
2512 * so that we don't steal from recently used but inactive objects
2513 * (unless we are forced to ofc!)
2514 */
2515 list_move_tail(&obj->global_list,
2516 &to_i915(obj->base.dev)->mm.bound_list);
2517
1c7f4bca
CW
2518 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2519 if (!list_empty(&vma->vm_link))
2520 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2521 }
caea7476 2522
97b2a6a1 2523 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2524 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2525}
2526
9d773091 2527static int
c033666a 2528i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
53d227f2 2529{
e2f80391 2530 struct intel_engine_cs *engine;
29dcb570 2531 int ret;
53d227f2 2532
107f27a5 2533 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2534 for_each_engine(engine, dev_priv) {
666796da 2535 ret = intel_engine_idle(engine);
107f27a5
CW
2536 if (ret)
2537 return ret;
9d773091 2538 }
c033666a 2539 i915_gem_retire_requests(dev_priv);
107f27a5
CW
2540
2541 /* Finally reset hw state */
29dcb570 2542 for_each_engine(engine, dev_priv)
e2f80391 2543 intel_ring_init_seqno(engine, seqno);
498d2ac1 2544
9d773091 2545 return 0;
53d227f2
DV
2546}
2547
fca26bb4
MK
2548int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2549{
2550 struct drm_i915_private *dev_priv = dev->dev_private;
2551 int ret;
2552
2553 if (seqno == 0)
2554 return -EINVAL;
2555
2556 /* HWS page needs to be set less than what we
2557 * will inject to ring
2558 */
c033666a 2559 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
fca26bb4
MK
2560 if (ret)
2561 return ret;
2562
2563 /* Carefully set the last_seqno value so that wrap
2564 * detection still works
2565 */
2566 dev_priv->next_seqno = seqno;
2567 dev_priv->last_seqno = seqno - 1;
2568 if (dev_priv->last_seqno == 0)
2569 dev_priv->last_seqno--;
2570
2571 return 0;
2572}
2573
9d773091 2574int
c033666a 2575i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
53d227f2 2576{
9d773091
CW
2577 /* reserve 0 for non-seqno */
2578 if (dev_priv->next_seqno == 0) {
c033666a 2579 int ret = i915_gem_init_seqno(dev_priv, 0);
9d773091
CW
2580 if (ret)
2581 return ret;
53d227f2 2582
9d773091
CW
2583 dev_priv->next_seqno = 1;
2584 }
53d227f2 2585
f72b3435 2586 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2587 return 0;
53d227f2
DV
2588}
2589
bf7dc5b7
JH
2590/*
2591 * NB: This function is not allowed to fail. Doing so would mean the the
2592 * request is not being tracked for completion but the work itself is
2593 * going to happen on the hardware. This would be a Bad Thing(tm).
2594 */
75289874 2595void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2596 struct drm_i915_gem_object *obj,
2597 bool flush_caches)
673a394b 2598{
e2f80391 2599 struct intel_engine_cs *engine;
75289874 2600 struct drm_i915_private *dev_priv;
48e29f55 2601 struct intel_ringbuffer *ringbuf;
6d3d8274 2602 u32 request_start;
0251a963 2603 u32 reserved_tail;
3cce469c
CW
2604 int ret;
2605
48e29f55 2606 if (WARN_ON(request == NULL))
bf7dc5b7 2607 return;
48e29f55 2608
4a570db5 2609 engine = request->engine;
39dabecd 2610 dev_priv = request->i915;
75289874
JH
2611 ringbuf = request->ringbuf;
2612
29b1b415
JH
2613 /*
2614 * To ensure that this call will not fail, space for its emissions
2615 * should already have been reserved in the ring buffer. Let the ring
2616 * know that it is time to use that space up.
2617 */
48e29f55 2618 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2619 reserved_tail = request->reserved_space;
2620 request->reserved_space = 0;
2621
cc889e0f
DV
2622 /*
2623 * Emit any outstanding flushes - execbuf can fail to emit the flush
2624 * after having emitted the batchbuffer command. Hence we need to fix
2625 * things up similar to emitting the lazy request. The difference here
2626 * is that the flush _must_ happen before the next request, no matter
2627 * what.
2628 */
5b4a60c2
JH
2629 if (flush_caches) {
2630 if (i915.enable_execlists)
4866d729 2631 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2632 else
4866d729 2633 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2634 /* Not allowed to fail! */
2635 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2636 }
cc889e0f 2637
7c90b7de
CW
2638 trace_i915_gem_request_add(request);
2639
2640 request->head = request_start;
2641
2642 /* Whilst this request exists, batch_obj will be on the
2643 * active_list, and so will hold the active reference. Only when this
2644 * request is retired will the the batch_obj be moved onto the
2645 * inactive_list and lose its active reference. Hence we do not need
2646 * to explicitly hold another reference here.
2647 */
2648 request->batch_obj = obj;
2649
2650 /* Seal the request and mark it as pending execution. Note that
2651 * we may inspect this state, without holding any locks, during
2652 * hangcheck. Hence we apply the barrier to ensure that we do not
2653 * see a more recent value in the hws than we are tracking.
2654 */
2655 request->emitted_jiffies = jiffies;
2656 request->previous_seqno = engine->last_submitted_seqno;
2657 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2658 list_add_tail(&request->list, &engine->request_list);
2659
a71d8d94
CW
2660 /* Record the position of the start of the request so that
2661 * should we detect the updated seqno part-way through the
2662 * GPU processing the request, we never over-estimate the
2663 * position of the head.
2664 */
6d3d8274 2665 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2666
bf7dc5b7 2667 if (i915.enable_execlists)
e2f80391 2668 ret = engine->emit_request(request);
bf7dc5b7 2669 else {
e2f80391 2670 ret = engine->add_request(request);
53292cdb
MT
2671
2672 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2673 }
bf7dc5b7
JH
2674 /* Not allowed to fail! */
2675 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2676
c033666a 2677 i915_queue_hangcheck(engine->i915);
10cd45b6 2678
87255483
DV
2679 queue_delayed_work(dev_priv->wq,
2680 &dev_priv->mm.retire_work,
2681 round_jiffies_up_relative(HZ));
7d993739 2682 intel_mark_busy(dev_priv);
cc889e0f 2683
29b1b415 2684 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2685 ret = intel_ring_get_tail(ringbuf) - request_start;
2686 if (ret < 0)
2687 ret += ringbuf->size;
2688 WARN_ONCE(ret > reserved_tail,
2689 "Not enough space reserved (%d bytes) "
2690 "for adding the request (%d bytes)\n",
2691 reserved_tail, ret);
673a394b
EA
2692}
2693
939fd762 2694static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
e2efd130 2695 const struct i915_gem_context *ctx)
be62acb4 2696{
44e2c070 2697 unsigned long elapsed;
be62acb4 2698
44e2c070
MK
2699 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2700
2701 if (ctx->hang_stats.banned)
be62acb4
MK
2702 return true;
2703
676fa572
CW
2704 if (ctx->hang_stats.ban_period_seconds &&
2705 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2706 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2707 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2708 return true;
88b4aa87
MK
2709 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2710 if (i915_stop_ring_allow_warn(dev_priv))
2711 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2712 return true;
3fac8978 2713 }
be62acb4
MK
2714 }
2715
2716 return false;
2717}
2718
939fd762 2719static void i915_set_reset_status(struct drm_i915_private *dev_priv,
e2efd130 2720 struct i915_gem_context *ctx,
b6b0fac0 2721 const bool guilty)
aa60c664 2722{
44e2c070
MK
2723 struct i915_ctx_hang_stats *hs;
2724
2725 if (WARN_ON(!ctx))
2726 return;
aa60c664 2727
44e2c070
MK
2728 hs = &ctx->hang_stats;
2729
2730 if (guilty) {
939fd762 2731 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2732 hs->batch_active++;
2733 hs->guilty_ts = get_seconds();
2734 } else {
2735 hs->batch_pending++;
aa60c664
MK
2736 }
2737}
2738
abfe262a
JH
2739void i915_gem_request_free(struct kref *req_ref)
2740{
2741 struct drm_i915_gem_request *req = container_of(req_ref,
2742 typeof(*req), ref);
efab6d8d 2743 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2744}
2745
26827088 2746static inline int
0bc40be8 2747__i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 2748 struct i915_gem_context *ctx,
26827088 2749 struct drm_i915_gem_request **req_out)
6689cb2b 2750{
c033666a 2751 struct drm_i915_private *dev_priv = engine->i915;
299259a3 2752 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2753 struct drm_i915_gem_request *req;
6689cb2b 2754 int ret;
6689cb2b 2755
217e46b5
JH
2756 if (!req_out)
2757 return -EINVAL;
2758
bccca494 2759 *req_out = NULL;
6689cb2b 2760
f4457ae7
CW
2761 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2762 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2763 * and restart.
2764 */
2765 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
2766 if (ret)
2767 return ret;
2768
eed29a5b
DV
2769 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2770 if (req == NULL)
6689cb2b
JH
2771 return -ENOMEM;
2772
c033666a 2773 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
9a0c1e27
CW
2774 if (ret)
2775 goto err;
6689cb2b 2776
40e895ce
JH
2777 kref_init(&req->ref);
2778 req->i915 = dev_priv;
4a570db5 2779 req->engine = engine;
299259a3 2780 req->reset_counter = reset_counter;
40e895ce
JH
2781 req->ctx = ctx;
2782 i915_gem_context_reference(req->ctx);
6689cb2b 2783
29b1b415
JH
2784 /*
2785 * Reserve space in the ring buffer for all the commands required to
2786 * eventually emit this request. This is to guarantee that the
2787 * i915_add_request() call can't fail. Note that the reserve may need
2788 * to be redone if the request is not actually submitted straight
2789 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2790 */
0251a963 2791 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
2792
2793 if (i915.enable_execlists)
2794 ret = intel_logical_ring_alloc_request_extras(req);
2795 else
2796 ret = intel_ring_alloc_request_extras(req);
2797 if (ret)
2798 goto err_ctx;
29b1b415 2799
bccca494 2800 *req_out = req;
6689cb2b 2801 return 0;
9a0c1e27 2802
bfa01200
CW
2803err_ctx:
2804 i915_gem_context_unreference(ctx);
9a0c1e27
CW
2805err:
2806 kmem_cache_free(dev_priv->requests, req);
2807 return ret;
0e50e96b
MK
2808}
2809
26827088
DG
2810/**
2811 * i915_gem_request_alloc - allocate a request structure
2812 *
2813 * @engine: engine that we wish to issue the request on.
2814 * @ctx: context that the request will be associated with.
2815 * This can be NULL if the request is not directly related to
2816 * any specific user context, in which case this function will
2817 * choose an appropriate context to use.
2818 *
2819 * Returns a pointer to the allocated request if successful,
2820 * or an error code if not.
2821 */
2822struct drm_i915_gem_request *
2823i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 2824 struct i915_gem_context *ctx)
26827088
DG
2825{
2826 struct drm_i915_gem_request *req;
2827 int err;
2828
2829 if (ctx == NULL)
c033666a 2830 ctx = engine->i915->kernel_context;
26827088
DG
2831 err = __i915_gem_request_alloc(engine, ctx, &req);
2832 return err ? ERR_PTR(err) : req;
2833}
2834
8d9fc7fd 2835struct drm_i915_gem_request *
0bc40be8 2836i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2837{
4db080f9
CW
2838 struct drm_i915_gem_request *request;
2839
0bc40be8 2840 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2841 if (i915_gem_request_completed(request, false))
4db080f9 2842 continue;
aa60c664 2843
b6b0fac0 2844 return request;
4db080f9 2845 }
b6b0fac0
MK
2846
2847 return NULL;
2848}
2849
666796da 2850static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2851 struct intel_engine_cs *engine)
b6b0fac0
MK
2852{
2853 struct drm_i915_gem_request *request;
2854 bool ring_hung;
2855
0bc40be8 2856 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2857
2858 if (request == NULL)
2859 return;
2860
0bc40be8 2861 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2862
939fd762 2863 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2864
0bc40be8 2865 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2866 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2867}
aa60c664 2868
666796da 2869static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2870 struct intel_engine_cs *engine)
4db080f9 2871{
608c1a52
CW
2872 struct intel_ringbuffer *buffer;
2873
0bc40be8 2874 while (!list_empty(&engine->active_list)) {
05394f39 2875 struct drm_i915_gem_object *obj;
9375e446 2876
0bc40be8 2877 obj = list_first_entry(&engine->active_list,
05394f39 2878 struct drm_i915_gem_object,
117897f4 2879 engine_list[engine->id]);
9375e446 2880
0bc40be8 2881 i915_gem_object_retire__read(obj, engine->id);
673a394b 2882 }
1d62beea 2883
dcb4c12a
OM
2884 /*
2885 * Clear the execlists queue up before freeing the requests, as those
2886 * are the ones that keep the context and ringbuffer backing objects
2887 * pinned in place.
2888 */
dcb4c12a 2889
7de1691a 2890 if (i915.enable_execlists) {
27af5eea
TU
2891 /* Ensure irq handler finishes or is cancelled. */
2892 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2893
e39d42fa 2894 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2895 }
2896
1d62beea
BW
2897 /*
2898 * We must free the requests after all the corresponding objects have
2899 * been moved off active lists. Which is the same order as the normal
2900 * retire_requests function does. This is important if object hold
2901 * implicit references on things like e.g. ppgtt address spaces through
2902 * the request.
2903 */
0bc40be8 2904 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2905 struct drm_i915_gem_request *request;
2906
0bc40be8 2907 request = list_first_entry(&engine->request_list,
1d62beea
BW
2908 struct drm_i915_gem_request,
2909 list);
2910
b4716185 2911 i915_gem_request_retire(request);
1d62beea 2912 }
608c1a52
CW
2913
2914 /* Having flushed all requests from all queues, we know that all
2915 * ringbuffers must now be empty. However, since we do not reclaim
2916 * all space when retiring the request (to prevent HEADs colliding
2917 * with rapid ringbuffer wraparound) the amount of available space
2918 * upon reset is less than when we start. Do one more pass over
2919 * all the ringbuffers to reset last_retired_head.
2920 */
0bc40be8 2921 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2922 buffer->last_retired_head = buffer->tail;
2923 intel_ring_update_space(buffer);
2924 }
2ed53a94
CW
2925
2926 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
2927}
2928
069efc1d 2929void i915_gem_reset(struct drm_device *dev)
673a394b 2930{
77f01230 2931 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2932 struct intel_engine_cs *engine;
673a394b 2933
4db080f9
CW
2934 /*
2935 * Before we free the objects from the requests, we need to inspect
2936 * them for finding the guilty party. As the requests only borrow
2937 * their reference to the objects, the inspection must be done first.
2938 */
b4ac5afc 2939 for_each_engine(engine, dev_priv)
666796da 2940 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2941
b4ac5afc 2942 for_each_engine(engine, dev_priv)
666796da 2943 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2944
acce9ffa
BW
2945 i915_gem_context_reset(dev);
2946
19b2dbde 2947 i915_gem_restore_fences(dev);
b4716185
CW
2948
2949 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2950}
2951
2952/**
2953 * This function clears the request list as sequence numbers are passed.
2954 */
1cf0ba14 2955void
0bc40be8 2956i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2957{
0bc40be8 2958 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2959
832a3aad
CW
2960 /* Retire requests first as we use it above for the early return.
2961 * If we retire requests last, we may use a later seqno and so clear
2962 * the requests lists without clearing the active list, leading to
2963 * confusion.
e9103038 2964 */
0bc40be8 2965 while (!list_empty(&engine->request_list)) {
673a394b 2966 struct drm_i915_gem_request *request;
673a394b 2967
0bc40be8 2968 request = list_first_entry(&engine->request_list,
673a394b
EA
2969 struct drm_i915_gem_request,
2970 list);
673a394b 2971
1b5a433a 2972 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2973 break;
2974
b4716185 2975 i915_gem_request_retire(request);
b84d5f0c 2976 }
673a394b 2977
832a3aad
CW
2978 /* Move any buffers on the active list that are no longer referenced
2979 * by the ringbuffer to the flushing/inactive lists as appropriate,
2980 * before we free the context associated with the requests.
2981 */
0bc40be8 2982 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2983 struct drm_i915_gem_object *obj;
2984
0bc40be8
TU
2985 obj = list_first_entry(&engine->active_list,
2986 struct drm_i915_gem_object,
117897f4 2987 engine_list[engine->id]);
832a3aad 2988
0bc40be8 2989 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2990 break;
2991
0bc40be8 2992 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2993 }
2994
0bc40be8
TU
2995 if (unlikely(engine->trace_irq_req &&
2996 i915_gem_request_completed(engine->trace_irq_req, true))) {
2997 engine->irq_put(engine);
2998 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2999 }
23bc5982 3000
0bc40be8 3001 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
3002}
3003
b29c19b6 3004bool
c033666a 3005i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 3006{
e2f80391 3007 struct intel_engine_cs *engine;
b29c19b6 3008 bool idle = true;
b09a1fec 3009
b4ac5afc 3010 for_each_engine(engine, dev_priv) {
e2f80391
TU
3011 i915_gem_retire_requests_ring(engine);
3012 idle &= list_empty(&engine->request_list);
c86ee3a9 3013 if (i915.enable_execlists) {
27af5eea 3014 spin_lock_bh(&engine->execlist_lock);
e2f80391 3015 idle &= list_empty(&engine->execlist_queue);
27af5eea 3016 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3017 }
b29c19b6
CW
3018 }
3019
3020 if (idle)
3021 mod_delayed_work(dev_priv->wq,
3022 &dev_priv->mm.idle_work,
3023 msecs_to_jiffies(100));
3024
3025 return idle;
b09a1fec
CW
3026}
3027
75ef9da2 3028static void
673a394b
EA
3029i915_gem_retire_work_handler(struct work_struct *work)
3030{
b29c19b6
CW
3031 struct drm_i915_private *dev_priv =
3032 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3033 struct drm_device *dev = dev_priv->dev;
0a58705b 3034 bool idle;
673a394b 3035
891b48cf 3036 /* Come back later if the device is busy... */
b29c19b6
CW
3037 idle = false;
3038 if (mutex_trylock(&dev->struct_mutex)) {
c033666a 3039 idle = i915_gem_retire_requests(dev_priv);
b29c19b6 3040 mutex_unlock(&dev->struct_mutex);
673a394b 3041 }
b29c19b6 3042 if (!idle)
bcb45086
CW
3043 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3044 round_jiffies_up_relative(HZ));
b29c19b6 3045}
0a58705b 3046
b29c19b6
CW
3047static void
3048i915_gem_idle_work_handler(struct work_struct *work)
3049{
3050 struct drm_i915_private *dev_priv =
3051 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3052 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3053 struct intel_engine_cs *engine;
b29c19b6 3054
b4ac5afc
DG
3055 for_each_engine(engine, dev_priv)
3056 if (!list_empty(&engine->request_list))
423795cb 3057 return;
35c94185 3058
30ecad77 3059 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3060 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3061 * by dev->struct_mutex. */
3062
7d993739 3063 intel_mark_idle(dev_priv);
35c94185
CW
3064
3065 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3066 for_each_engine(engine, dev_priv)
e2f80391 3067 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3068
35c94185
CW
3069 mutex_unlock(&dev->struct_mutex);
3070 }
673a394b
EA
3071}
3072
30dfebf3
DV
3073/**
3074 * Ensures that an object will eventually get non-busy by flushing any required
3075 * write domains, emitting any outstanding lazy request and retiring and
3076 * completed requests.
3077 */
3078static int
3079i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3080{
a5ac0f90 3081 int i;
b4716185
CW
3082
3083 if (!obj->active)
3084 return 0;
30dfebf3 3085
666796da 3086 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3087 struct drm_i915_gem_request *req;
41c52415 3088
b4716185
CW
3089 req = obj->last_read_req[i];
3090 if (req == NULL)
3091 continue;
3092
e6db7469 3093 if (i915_gem_request_completed(req, true))
b4716185 3094 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
3095 }
3096
3097 return 0;
3098}
3099
23ba4fd0
BW
3100/**
3101 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3102 * @DRM_IOCTL_ARGS: standard ioctl arguments
3103 *
3104 * Returns 0 if successful, else an error is returned with the remaining time in
3105 * the timeout parameter.
3106 * -ETIME: object is still busy after timeout
3107 * -ERESTARTSYS: signal interrupted the wait
3108 * -ENONENT: object doesn't exist
3109 * Also possible, but rare:
3110 * -EAGAIN: GPU wedged
3111 * -ENOMEM: damn
3112 * -ENODEV: Internal IRQ fail
3113 * -E?: The add request failed
3114 *
3115 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3116 * non-zero timeout parameter the wait ioctl will wait for the given number of
3117 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3118 * without holding struct_mutex the object may become re-busied before this
3119 * function completes. A similar but shorter * race condition exists in the busy
3120 * ioctl
3121 */
3122int
3123i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3124{
3125 struct drm_i915_gem_wait *args = data;
3126 struct drm_i915_gem_object *obj;
666796da 3127 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3128 int i, n = 0;
3129 int ret;
23ba4fd0 3130
11b5d511
DV
3131 if (args->flags != 0)
3132 return -EINVAL;
3133
23ba4fd0
BW
3134 ret = i915_mutex_lock_interruptible(dev);
3135 if (ret)
3136 return ret;
3137
a8ad0bd8 3138 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
23ba4fd0
BW
3139 if (&obj->base == NULL) {
3140 mutex_unlock(&dev->struct_mutex);
3141 return -ENOENT;
3142 }
3143
30dfebf3
DV
3144 /* Need to make sure the object gets inactive eventually. */
3145 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3146 if (ret)
3147 goto out;
3148
b4716185 3149 if (!obj->active)
97b2a6a1 3150 goto out;
23ba4fd0 3151
23ba4fd0 3152 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3153 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3154 */
762e4583 3155 if (args->timeout_ns == 0) {
23ba4fd0
BW
3156 ret = -ETIME;
3157 goto out;
3158 }
3159
3160 drm_gem_object_unreference(&obj->base);
b4716185 3161
666796da 3162 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3163 if (obj->last_read_req[i] == NULL)
3164 continue;
3165
3166 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3167 }
3168
23ba4fd0
BW
3169 mutex_unlock(&dev->struct_mutex);
3170
b4716185
CW
3171 for (i = 0; i < n; i++) {
3172 if (ret == 0)
299259a3 3173 ret = __i915_wait_request(req[i], true,
b4716185 3174 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3175 to_rps_client(file));
73db04cf 3176 i915_gem_request_unreference(req[i]);
b4716185 3177 }
ff865885 3178 return ret;
23ba4fd0
BW
3179
3180out:
3181 drm_gem_object_unreference(&obj->base);
3182 mutex_unlock(&dev->struct_mutex);
3183 return ret;
3184}
3185
b4716185
CW
3186static int
3187__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3188 struct intel_engine_cs *to,
91af127f
JH
3189 struct drm_i915_gem_request *from_req,
3190 struct drm_i915_gem_request **to_req)
b4716185
CW
3191{
3192 struct intel_engine_cs *from;
3193 int ret;
3194
666796da 3195 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3196 if (to == from)
3197 return 0;
3198
91af127f 3199 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3200 return 0;
3201
c033666a 3202 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
a6f766f3 3203 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3204 ret = __i915_wait_request(from_req,
a6f766f3
CW
3205 i915->mm.interruptible,
3206 NULL,
3207 &i915->rps.semaphores);
b4716185
CW
3208 if (ret)
3209 return ret;
3210
91af127f 3211 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3212 } else {
3213 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3214 u32 seqno = i915_gem_request_get_seqno(from_req);
3215
3216 WARN_ON(!to_req);
b4716185
CW
3217
3218 if (seqno <= from->semaphore.sync_seqno[idx])
3219 return 0;
3220
91af127f 3221 if (*to_req == NULL) {
26827088
DG
3222 struct drm_i915_gem_request *req;
3223
3224 req = i915_gem_request_alloc(to, NULL);
3225 if (IS_ERR(req))
3226 return PTR_ERR(req);
3227
3228 *to_req = req;
91af127f
JH
3229 }
3230
599d924c
JH
3231 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3232 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3233 if (ret)
3234 return ret;
3235
3236 /* We use last_read_req because sync_to()
3237 * might have just caused seqno wrap under
3238 * the radar.
3239 */
3240 from->semaphore.sync_seqno[idx] =
3241 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3242 }
3243
3244 return 0;
3245}
3246
5816d648
BW
3247/**
3248 * i915_gem_object_sync - sync an object to a ring.
3249 *
3250 * @obj: object which may be in use on another ring.
3251 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3252 * @to_req: request we wish to use the object for. See below.
3253 * This will be allocated and returned if a request is
3254 * required but not passed in.
5816d648
BW
3255 *
3256 * This code is meant to abstract object synchronization with the GPU.
3257 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3258 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3259 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3260 * into a buffer at any time, but multiple readers. To ensure each has
3261 * a coherent view of memory, we must:
3262 *
3263 * - If there is an outstanding write request to the object, the new
3264 * request must wait for it to complete (either CPU or in hw, requests
3265 * on the same ring will be naturally ordered).
3266 *
3267 * - If we are a write request (pending_write_domain is set), the new
3268 * request must wait for outstanding read requests to complete.
5816d648 3269 *
91af127f
JH
3270 * For CPU synchronisation (NULL to) no request is required. For syncing with
3271 * rings to_req must be non-NULL. However, a request does not have to be
3272 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3273 * request will be allocated automatically and returned through *to_req. Note
3274 * that it is not guaranteed that commands will be emitted (because the system
3275 * might already be idle). Hence there is no need to create a request that
3276 * might never have any work submitted. Note further that if a request is
3277 * returned in *to_req, it is the responsibility of the caller to submit
3278 * that request (after potentially adding more work to it).
3279 *
5816d648
BW
3280 * Returns 0 if successful, else propagates up the lower layer error.
3281 */
2911a35b
BW
3282int
3283i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3284 struct intel_engine_cs *to,
3285 struct drm_i915_gem_request **to_req)
2911a35b 3286{
b4716185 3287 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3288 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3289 int ret, i, n;
41c52415 3290
b4716185 3291 if (!obj->active)
2911a35b
BW
3292 return 0;
3293
b4716185
CW
3294 if (to == NULL)
3295 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3296
b4716185
CW
3297 n = 0;
3298 if (readonly) {
3299 if (obj->last_write_req)
3300 req[n++] = obj->last_write_req;
3301 } else {
666796da 3302 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3303 if (obj->last_read_req[i])
3304 req[n++] = obj->last_read_req[i];
3305 }
3306 for (i = 0; i < n; i++) {
91af127f 3307 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3308 if (ret)
3309 return ret;
3310 }
2911a35b 3311
b4716185 3312 return 0;
2911a35b
BW
3313}
3314
b5ffc9bc
CW
3315static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3316{
3317 u32 old_write_domain, old_read_domains;
3318
b5ffc9bc
CW
3319 /* Force a pagefault for domain tracking on next user access */
3320 i915_gem_release_mmap(obj);
3321
b97c3d9c
KP
3322 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3323 return;
3324
b5ffc9bc
CW
3325 old_read_domains = obj->base.read_domains;
3326 old_write_domain = obj->base.write_domain;
3327
3328 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3329 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3330
3331 trace_i915_gem_object_change_domain(obj,
3332 old_read_domains,
3333 old_write_domain);
3334}
3335
8ef8561f
CW
3336static void __i915_vma_iounmap(struct i915_vma *vma)
3337{
3338 GEM_BUG_ON(vma->pin_count);
3339
3340 if (vma->iomap == NULL)
3341 return;
3342
3343 io_mapping_unmap(vma->iomap);
3344 vma->iomap = NULL;
3345}
3346
e9f24d5f 3347static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3348{
07fe0b12 3349 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3350 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3351 int ret;
673a394b 3352
1c7f4bca 3353 if (list_empty(&vma->obj_link))
673a394b
EA
3354 return 0;
3355
0ff501cb
DV
3356 if (!drm_mm_node_allocated(&vma->node)) {
3357 i915_gem_vma_destroy(vma);
0ff501cb
DV
3358 return 0;
3359 }
433544bd 3360
d7f46fc4 3361 if (vma->pin_count)
31d8d651 3362 return -EBUSY;
673a394b 3363
c4670ad0
CW
3364 BUG_ON(obj->pages == NULL);
3365
e9f24d5f
TU
3366 if (wait) {
3367 ret = i915_gem_object_wait_rendering(obj, false);
3368 if (ret)
3369 return ret;
3370 }
a8198eea 3371
596c5923 3372 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3373 i915_gem_object_finish_gtt(obj);
5323fd04 3374
8b1bc9b4
DV
3375 /* release the fence reg _after_ flushing */
3376 ret = i915_gem_object_put_fence(obj);
3377 if (ret)
3378 return ret;
8ef8561f
CW
3379
3380 __i915_vma_iounmap(vma);
8b1bc9b4 3381 }
96b47b65 3382
07fe0b12 3383 trace_i915_vma_unbind(vma);
db53a302 3384
777dc5bb 3385 vma->vm->unbind_vma(vma);
5e562f1d 3386 vma->bound = 0;
6f65e29a 3387
1c7f4bca 3388 list_del_init(&vma->vm_link);
596c5923 3389 if (vma->is_ggtt) {
fe14d5f4
TU
3390 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3391 obj->map_and_fenceable = false;
3392 } else if (vma->ggtt_view.pages) {
3393 sg_free_table(vma->ggtt_view.pages);
3394 kfree(vma->ggtt_view.pages);
fe14d5f4 3395 }
016a65a3 3396 vma->ggtt_view.pages = NULL;
fe14d5f4 3397 }
673a394b 3398
2f633156
BW
3399 drm_mm_remove_node(&vma->node);
3400 i915_gem_vma_destroy(vma);
3401
3402 /* Since the unbound list is global, only move to that list if
b93dab6e 3403 * no more VMAs exist. */
e2273302 3404 if (list_empty(&obj->vma_list))
2f633156 3405 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3406
70903c3b
CW
3407 /* And finally now the object is completely decoupled from this vma,
3408 * we can drop its hold on the backing storage and allow it to be
3409 * reaped by the shrinker.
3410 */
3411 i915_gem_object_unpin_pages(obj);
3412
88241785 3413 return 0;
54cf91dc
CW
3414}
3415
e9f24d5f
TU
3416int i915_vma_unbind(struct i915_vma *vma)
3417{
3418 return __i915_vma_unbind(vma, true);
3419}
3420
3421int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3422{
3423 return __i915_vma_unbind(vma, false);
3424}
3425
b2da9fe5 3426int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3427{
3e31c6c0 3428 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3429 struct intel_engine_cs *engine;
b4ac5afc 3430 int ret;
4df2faf4 3431
4df2faf4 3432 /* Flush everything onto the inactive list. */
b4ac5afc 3433 for_each_engine(engine, dev_priv) {
ecdb5fd8 3434 if (!i915.enable_execlists) {
73cfa865
JH
3435 struct drm_i915_gem_request *req;
3436
e2f80391 3437 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3438 if (IS_ERR(req))
3439 return PTR_ERR(req);
73cfa865 3440
ba01cc93 3441 ret = i915_switch_context(req);
75289874 3442 i915_add_request_no_flush(req);
aa9b7810
CW
3443 if (ret)
3444 return ret;
ecdb5fd8 3445 }
b6c7488d 3446
666796da 3447 ret = intel_engine_idle(engine);
1ec14ad3
CW
3448 if (ret)
3449 return ret;
3450 }
4df2faf4 3451
b4716185 3452 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3453 return 0;
4df2faf4
DV
3454}
3455
4144f9b5 3456static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3457 unsigned long cache_level)
3458{
4144f9b5 3459 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3460 struct drm_mm_node *other;
3461
4144f9b5
CW
3462 /*
3463 * On some machines we have to be careful when putting differing types
3464 * of snoopable memory together to avoid the prefetcher crossing memory
3465 * domains and dying. During vm initialisation, we decide whether or not
3466 * these constraints apply and set the drm_mm.color_adjust
3467 * appropriately.
42d6ab48 3468 */
4144f9b5 3469 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3470 return true;
3471
c6cfb325 3472 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3473 return true;
3474
3475 if (list_empty(&gtt_space->node_list))
3476 return true;
3477
3478 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3479 if (other->allocated && !other->hole_follows && other->color != cache_level)
3480 return false;
3481
3482 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3483 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3484 return false;
3485
3486 return true;
3487}
3488
673a394b 3489/**
91e6711e
JL
3490 * Finds free space in the GTT aperture and binds the object or a view of it
3491 * there.
673a394b 3492 */
262de145 3493static struct i915_vma *
07fe0b12
BW
3494i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3495 struct i915_address_space *vm,
ec7adb6e 3496 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3497 unsigned alignment,
ec7adb6e 3498 uint64_t flags)
673a394b 3499{
05394f39 3500 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3501 struct drm_i915_private *dev_priv = to_i915(dev);
3502 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3503 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3504 u32 search_flag, alloc_flag;
3505 u64 start, end;
65bd342f 3506 u64 size, fence_size;
2f633156 3507 struct i915_vma *vma;
07f73f69 3508 int ret;
673a394b 3509
91e6711e
JL
3510 if (i915_is_ggtt(vm)) {
3511 u32 view_size;
3512
3513 if (WARN_ON(!ggtt_view))
3514 return ERR_PTR(-EINVAL);
ec7adb6e 3515
91e6711e
JL
3516 view_size = i915_ggtt_view_size(obj, ggtt_view);
3517
3518 fence_size = i915_gem_get_gtt_size(dev,
3519 view_size,
3520 obj->tiling_mode);
3521 fence_alignment = i915_gem_get_gtt_alignment(dev,
3522 view_size,
3523 obj->tiling_mode,
3524 true);
3525 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3526 view_size,
3527 obj->tiling_mode,
3528 false);
3529 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3530 } else {
3531 fence_size = i915_gem_get_gtt_size(dev,
3532 obj->base.size,
3533 obj->tiling_mode);
3534 fence_alignment = i915_gem_get_gtt_alignment(dev,
3535 obj->base.size,
3536 obj->tiling_mode,
3537 true);
3538 unfenced_alignment =
3539 i915_gem_get_gtt_alignment(dev,
3540 obj->base.size,
3541 obj->tiling_mode,
3542 false);
3543 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3544 }
a00b10c3 3545
101b506a
MT
3546 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3547 end = vm->total;
3548 if (flags & PIN_MAPPABLE)
72e96d64 3549 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3550 if (flags & PIN_ZONE_4G)
48ea1e32 3551 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3552
673a394b 3553 if (alignment == 0)
1ec9e26d 3554 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3555 unfenced_alignment;
1ec9e26d 3556 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3557 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3558 ggtt_view ? ggtt_view->type : 0,
3559 alignment);
262de145 3560 return ERR_PTR(-EINVAL);
673a394b
EA
3561 }
3562
91e6711e
JL
3563 /* If binding the object/GGTT view requires more space than the entire
3564 * aperture has, reject it early before evicting everything in a vain
3565 * attempt to find space.
654fc607 3566 */
91e6711e 3567 if (size > end) {
65bd342f 3568 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3569 ggtt_view ? ggtt_view->type : 0,
3570 size,
1ec9e26d 3571 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3572 end);
262de145 3573 return ERR_PTR(-E2BIG);
654fc607
CW
3574 }
3575
37e680a1 3576 ret = i915_gem_object_get_pages(obj);
6c085a72 3577 if (ret)
262de145 3578 return ERR_PTR(ret);
6c085a72 3579
fbdda6fb
CW
3580 i915_gem_object_pin_pages(obj);
3581
ec7adb6e
JL
3582 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3583 i915_gem_obj_lookup_or_create_vma(obj, vm);
3584
262de145 3585 if (IS_ERR(vma))
bc6bc15b 3586 goto err_unpin;
2f633156 3587
506a8e87
CW
3588 if (flags & PIN_OFFSET_FIXED) {
3589 uint64_t offset = flags & PIN_OFFSET_MASK;
3590
3591 if (offset & (alignment - 1) || offset + size > end) {
3592 ret = -EINVAL;
3593 goto err_free_vma;
3594 }
3595 vma->node.start = offset;
3596 vma->node.size = size;
3597 vma->node.color = obj->cache_level;
3598 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3599 if (ret) {
3600 ret = i915_gem_evict_for_vma(vma);
3601 if (ret == 0)
3602 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3603 }
3604 if (ret)
3605 goto err_free_vma;
101b506a 3606 } else {
506a8e87
CW
3607 if (flags & PIN_HIGH) {
3608 search_flag = DRM_MM_SEARCH_BELOW;
3609 alloc_flag = DRM_MM_CREATE_TOP;
3610 } else {
3611 search_flag = DRM_MM_SEARCH_DEFAULT;
3612 alloc_flag = DRM_MM_CREATE_DEFAULT;
3613 }
101b506a 3614
0a9ae0d7 3615search_free:
506a8e87
CW
3616 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3617 size, alignment,
3618 obj->cache_level,
3619 start, end,
3620 search_flag,
3621 alloc_flag);
3622 if (ret) {
3623 ret = i915_gem_evict_something(dev, vm, size, alignment,
3624 obj->cache_level,
3625 start, end,
3626 flags);
3627 if (ret == 0)
3628 goto search_free;
9731129c 3629
506a8e87
CW
3630 goto err_free_vma;
3631 }
673a394b 3632 }
4144f9b5 3633 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3634 ret = -EINVAL;
bc6bc15b 3635 goto err_remove_node;
673a394b
EA
3636 }
3637
fe14d5f4 3638 trace_i915_vma_bind(vma, flags);
0875546c 3639 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3640 if (ret)
e2273302 3641 goto err_remove_node;
fe14d5f4 3642
35c20a60 3643 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3644 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3645
262de145 3646 return vma;
2f633156 3647
bc6bc15b 3648err_remove_node:
6286ef9b 3649 drm_mm_remove_node(&vma->node);
bc6bc15b 3650err_free_vma:
2f633156 3651 i915_gem_vma_destroy(vma);
262de145 3652 vma = ERR_PTR(ret);
bc6bc15b 3653err_unpin:
2f633156 3654 i915_gem_object_unpin_pages(obj);
262de145 3655 return vma;
673a394b
EA
3656}
3657
000433b6 3658bool
2c22569b
CW
3659i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3660 bool force)
673a394b 3661{
673a394b
EA
3662 /* If we don't have a page list set up, then we're not pinned
3663 * to GPU, and we can ignore the cache flush because it'll happen
3664 * again at bind time.
3665 */
05394f39 3666 if (obj->pages == NULL)
000433b6 3667 return false;
673a394b 3668
769ce464
ID
3669 /*
3670 * Stolen memory is always coherent with the GPU as it is explicitly
3671 * marked as wc by the system, or the system is cache-coherent.
3672 */
6a2c4232 3673 if (obj->stolen || obj->phys_handle)
000433b6 3674 return false;
769ce464 3675
9c23f7fc
CW
3676 /* If the GPU is snooping the contents of the CPU cache,
3677 * we do not need to manually clear the CPU cache lines. However,
3678 * the caches are only snooped when the render cache is
3679 * flushed/invalidated. As we always have to emit invalidations
3680 * and flushes when moving into and out of the RENDER domain, correct
3681 * snooping behaviour occurs naturally as the result of our domain
3682 * tracking.
3683 */
0f71979a
CW
3684 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3685 obj->cache_dirty = true;
000433b6 3686 return false;
0f71979a 3687 }
9c23f7fc 3688
1c5d22f7 3689 trace_i915_gem_object_clflush(obj);
9da3da66 3690 drm_clflush_sg(obj->pages);
0f71979a 3691 obj->cache_dirty = false;
000433b6
CW
3692
3693 return true;
e47c68e9
EA
3694}
3695
3696/** Flushes the GTT write domain for the object if it's dirty. */
3697static void
05394f39 3698i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3699{
1c5d22f7
CW
3700 uint32_t old_write_domain;
3701
05394f39 3702 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3703 return;
3704
63256ec5 3705 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3706 * to it immediately go to main memory as far as we know, so there's
3707 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3708 *
3709 * However, we do have to enforce the order so that all writes through
3710 * the GTT land before any writes to the device, such as updates to
3711 * the GATT itself.
e47c68e9 3712 */
63256ec5
CW
3713 wmb();
3714
05394f39
CW
3715 old_write_domain = obj->base.write_domain;
3716 obj->base.write_domain = 0;
1c5d22f7 3717
de152b62 3718 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3719
1c5d22f7 3720 trace_i915_gem_object_change_domain(obj,
05394f39 3721 obj->base.read_domains,
1c5d22f7 3722 old_write_domain);
e47c68e9
EA
3723}
3724
3725/** Flushes the CPU write domain for the object if it's dirty. */
3726static void
e62b59e4 3727i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3728{
1c5d22f7 3729 uint32_t old_write_domain;
e47c68e9 3730
05394f39 3731 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3732 return;
3733
e62b59e4 3734 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3735 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3736
05394f39
CW
3737 old_write_domain = obj->base.write_domain;
3738 obj->base.write_domain = 0;
1c5d22f7 3739
de152b62 3740 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3741
1c5d22f7 3742 trace_i915_gem_object_change_domain(obj,
05394f39 3743 obj->base.read_domains,
1c5d22f7 3744 old_write_domain);
e47c68e9
EA
3745}
3746
2ef7eeaa
EA
3747/**
3748 * Moves a single object to the GTT read, and possibly write domain.
3749 *
3750 * This function returns when the move is complete, including waiting on
3751 * flushes to occur.
3752 */
79e53945 3753int
2021746e 3754i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3755{
72e96d64
JL
3756 struct drm_device *dev = obj->base.dev;
3757 struct drm_i915_private *dev_priv = to_i915(dev);
3758 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3759 uint32_t old_write_domain, old_read_domains;
43566ded 3760 struct i915_vma *vma;
e47c68e9 3761 int ret;
2ef7eeaa 3762
8d7e3de1
CW
3763 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3764 return 0;
3765
0201f1ec 3766 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3767 if (ret)
3768 return ret;
3769
43566ded
CW
3770 /* Flush and acquire obj->pages so that we are coherent through
3771 * direct access in memory with previous cached writes through
3772 * shmemfs and that our cache domain tracking remains valid.
3773 * For example, if the obj->filp was moved to swap without us
3774 * being notified and releasing the pages, we would mistakenly
3775 * continue to assume that the obj remained out of the CPU cached
3776 * domain.
3777 */
3778 ret = i915_gem_object_get_pages(obj);
3779 if (ret)
3780 return ret;
3781
e62b59e4 3782 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3783
d0a57789
CW
3784 /* Serialise direct access to this object with the barriers for
3785 * coherent writes from the GPU, by effectively invalidating the
3786 * GTT domain upon first access.
3787 */
3788 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3789 mb();
3790
05394f39
CW
3791 old_write_domain = obj->base.write_domain;
3792 old_read_domains = obj->base.read_domains;
1c5d22f7 3793
e47c68e9
EA
3794 /* It should now be out of any other write domains, and we can update
3795 * the domain values for our changes.
3796 */
05394f39
CW
3797 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3798 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3799 if (write) {
05394f39
CW
3800 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3801 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3802 obj->dirty = 1;
2ef7eeaa
EA
3803 }
3804
1c5d22f7
CW
3805 trace_i915_gem_object_change_domain(obj,
3806 old_read_domains,
3807 old_write_domain);
3808
8325a09d 3809 /* And bump the LRU for this access */
43566ded
CW
3810 vma = i915_gem_obj_to_ggtt(obj);
3811 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3812 list_move_tail(&vma->vm_link,
72e96d64 3813 &ggtt->base.inactive_list);
8325a09d 3814
e47c68e9
EA
3815 return 0;
3816}
3817
ef55f92a
CW
3818/**
3819 * Changes the cache-level of an object across all VMA.
3820 *
3821 * After this function returns, the object will be in the new cache-level
3822 * across all GTT and the contents of the backing storage will be coherent,
3823 * with respect to the new cache-level. In order to keep the backing storage
3824 * coherent for all users, we only allow a single cache level to be set
3825 * globally on the object and prevent it from being changed whilst the
3826 * hardware is reading from the object. That is if the object is currently
3827 * on the scanout it will be set to uncached (or equivalent display
3828 * cache coherency) and all non-MOCS GPU access will also be uncached so
3829 * that all direct access to the scanout remains coherent.
3830 */
e4ffd173
CW
3831int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3832 enum i915_cache_level cache_level)
3833{
7bddb01f 3834 struct drm_device *dev = obj->base.dev;
df6f783a 3835 struct i915_vma *vma, *next;
ef55f92a 3836 bool bound = false;
ed75a55b 3837 int ret = 0;
e4ffd173
CW
3838
3839 if (obj->cache_level == cache_level)
ed75a55b 3840 goto out;
e4ffd173 3841
ef55f92a
CW
3842 /* Inspect the list of currently bound VMA and unbind any that would
3843 * be invalid given the new cache-level. This is principally to
3844 * catch the issue of the CS prefetch crossing page boundaries and
3845 * reading an invalid PTE on older architectures.
3846 */
1c7f4bca 3847 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3848 if (!drm_mm_node_allocated(&vma->node))
3849 continue;
3850
3851 if (vma->pin_count) {
3852 DRM_DEBUG("can not change the cache level of pinned objects\n");
3853 return -EBUSY;
3854 }
3855
4144f9b5 3856 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3857 ret = i915_vma_unbind(vma);
3089c6f2
BW
3858 if (ret)
3859 return ret;
ef55f92a
CW
3860 } else
3861 bound = true;
42d6ab48
CW
3862 }
3863
ef55f92a
CW
3864 /* We can reuse the existing drm_mm nodes but need to change the
3865 * cache-level on the PTE. We could simply unbind them all and
3866 * rebind with the correct cache-level on next use. However since
3867 * we already have a valid slot, dma mapping, pages etc, we may as
3868 * rewrite the PTE in the belief that doing so tramples upon less
3869 * state and so involves less work.
3870 */
3871 if (bound) {
3872 /* Before we change the PTE, the GPU must not be accessing it.
3873 * If we wait upon the object, we know that all the bound
3874 * VMA are no longer active.
3875 */
2e2f351d 3876 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3877 if (ret)
3878 return ret;
3879
ef55f92a
CW
3880 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3881 /* Access to snoopable pages through the GTT is
3882 * incoherent and on some machines causes a hard
3883 * lockup. Relinquish the CPU mmaping to force
3884 * userspace to refault in the pages and we can
3885 * then double check if the GTT mapping is still
3886 * valid for that pointer access.
3887 */
3888 i915_gem_release_mmap(obj);
3889
3890 /* As we no longer need a fence for GTT access,
3891 * we can relinquish it now (and so prevent having
3892 * to steal a fence from someone else on the next
3893 * fence request). Note GPU activity would have
3894 * dropped the fence as all snoopable access is
3895 * supposed to be linear.
3896 */
e4ffd173
CW
3897 ret = i915_gem_object_put_fence(obj);
3898 if (ret)
3899 return ret;
ef55f92a
CW
3900 } else {
3901 /* We either have incoherent backing store and
3902 * so no GTT access or the architecture is fully
3903 * coherent. In such cases, existing GTT mmaps
3904 * ignore the cache bit in the PTE and we can
3905 * rewrite it without confusing the GPU or having
3906 * to force userspace to fault back in its mmaps.
3907 */
e4ffd173
CW
3908 }
3909
1c7f4bca 3910 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3911 if (!drm_mm_node_allocated(&vma->node))
3912 continue;
3913
3914 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3915 if (ret)
3916 return ret;
3917 }
e4ffd173
CW
3918 }
3919
1c7f4bca 3920 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3921 vma->node.color = cache_level;
3922 obj->cache_level = cache_level;
3923
ed75a55b 3924out:
ef55f92a
CW
3925 /* Flush the dirty CPU caches to the backing storage so that the
3926 * object is now coherent at its new cache level (with respect
3927 * to the access domain).
3928 */
0f71979a
CW
3929 if (obj->cache_dirty &&
3930 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3931 cpu_write_needs_clflush(obj)) {
3932 if (i915_gem_clflush_object(obj, true))
c033666a 3933 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3934 }
3935
e4ffd173
CW
3936 return 0;
3937}
3938
199adf40
BW
3939int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3940 struct drm_file *file)
e6994aee 3941{
199adf40 3942 struct drm_i915_gem_caching *args = data;
e6994aee 3943 struct drm_i915_gem_object *obj;
e6994aee 3944
a8ad0bd8 3945 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
432be69d
CW
3946 if (&obj->base == NULL)
3947 return -ENOENT;
e6994aee 3948
651d794f
CW
3949 switch (obj->cache_level) {
3950 case I915_CACHE_LLC:
3951 case I915_CACHE_L3_LLC:
3952 args->caching = I915_CACHING_CACHED;
3953 break;
3954
4257d3ba
CW
3955 case I915_CACHE_WT:
3956 args->caching = I915_CACHING_DISPLAY;
3957 break;
3958
651d794f
CW
3959 default:
3960 args->caching = I915_CACHING_NONE;
3961 break;
3962 }
e6994aee 3963
432be69d
CW
3964 drm_gem_object_unreference_unlocked(&obj->base);
3965 return 0;
e6994aee
CW
3966}
3967
199adf40
BW
3968int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3969 struct drm_file *file)
e6994aee 3970{
fd0fe6ac 3971 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3972 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3973 struct drm_i915_gem_object *obj;
3974 enum i915_cache_level level;
3975 int ret;
3976
199adf40
BW
3977 switch (args->caching) {
3978 case I915_CACHING_NONE:
e6994aee
CW
3979 level = I915_CACHE_NONE;
3980 break;
199adf40 3981 case I915_CACHING_CACHED:
e5756c10
ID
3982 /*
3983 * Due to a HW issue on BXT A stepping, GPU stores via a
3984 * snooped mapping may leave stale data in a corresponding CPU
3985 * cacheline, whereas normally such cachelines would get
3986 * invalidated.
3987 */
ca377809 3988 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3989 return -ENODEV;
3990
e6994aee
CW
3991 level = I915_CACHE_LLC;
3992 break;
4257d3ba
CW
3993 case I915_CACHING_DISPLAY:
3994 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3995 break;
e6994aee
CW
3996 default:
3997 return -EINVAL;
3998 }
3999
fd0fe6ac
ID
4000 intel_runtime_pm_get(dev_priv);
4001
3bc2913e
BW
4002 ret = i915_mutex_lock_interruptible(dev);
4003 if (ret)
fd0fe6ac 4004 goto rpm_put;
3bc2913e 4005
a8ad0bd8 4006 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
e6994aee
CW
4007 if (&obj->base == NULL) {
4008 ret = -ENOENT;
4009 goto unlock;
4010 }
4011
4012 ret = i915_gem_object_set_cache_level(obj, level);
4013
4014 drm_gem_object_unreference(&obj->base);
4015unlock:
4016 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4017rpm_put:
4018 intel_runtime_pm_put(dev_priv);
4019
e6994aee
CW
4020 return ret;
4021}
4022
b9241ea3 4023/*
2da3b9b9
CW
4024 * Prepare buffer for display plane (scanout, cursors, etc).
4025 * Can be called from an uninterruptible phase (modesetting) and allows
4026 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4027 */
4028int
2da3b9b9
CW
4029i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4030 u32 alignment,
e6617330 4031 const struct i915_ggtt_view *view)
b9241ea3 4032{
2da3b9b9 4033 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4034 int ret;
4035
cc98b413
CW
4036 /* Mark the pin_display early so that we account for the
4037 * display coherency whilst setting up the cache domains.
4038 */
8a0c39b1 4039 obj->pin_display++;
cc98b413 4040
a7ef0640
EA
4041 /* The display engine is not coherent with the LLC cache on gen6. As
4042 * a result, we make sure that the pinning that is about to occur is
4043 * done with uncached PTEs. This is lowest common denominator for all
4044 * chipsets.
4045 *
4046 * However for gen6+, we could do better by using the GFDT bit instead
4047 * of uncaching, which would allow us to flush all the LLC-cached data
4048 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4049 */
651d794f
CW
4050 ret = i915_gem_object_set_cache_level(obj,
4051 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4052 if (ret)
cc98b413 4053 goto err_unpin_display;
a7ef0640 4054
2da3b9b9
CW
4055 /* As the user may map the buffer once pinned in the display plane
4056 * (e.g. libkms for the bootup splash), we have to ensure that we
4057 * always use map_and_fenceable for all scanout buffers.
4058 */
50470bb0
TU
4059 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4060 view->type == I915_GGTT_VIEW_NORMAL ?
4061 PIN_MAPPABLE : 0);
2da3b9b9 4062 if (ret)
cc98b413 4063 goto err_unpin_display;
2da3b9b9 4064
e62b59e4 4065 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4066
2da3b9b9 4067 old_write_domain = obj->base.write_domain;
05394f39 4068 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4069
4070 /* It should now be out of any other write domains, and we can update
4071 * the domain values for our changes.
4072 */
e5f1d962 4073 obj->base.write_domain = 0;
05394f39 4074 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4075
4076 trace_i915_gem_object_change_domain(obj,
4077 old_read_domains,
2da3b9b9 4078 old_write_domain);
b9241ea3
ZW
4079
4080 return 0;
cc98b413
CW
4081
4082err_unpin_display:
8a0c39b1 4083 obj->pin_display--;
cc98b413
CW
4084 return ret;
4085}
4086
4087void
e6617330
TU
4088i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4089 const struct i915_ggtt_view *view)
cc98b413 4090{
8a0c39b1
TU
4091 if (WARN_ON(obj->pin_display == 0))
4092 return;
4093
e6617330
TU
4094 i915_gem_object_ggtt_unpin_view(obj, view);
4095
8a0c39b1 4096 obj->pin_display--;
b9241ea3
ZW
4097}
4098
e47c68e9
EA
4099/**
4100 * Moves a single object to the CPU read, and possibly write domain.
4101 *
4102 * This function returns when the move is complete, including waiting on
4103 * flushes to occur.
4104 */
dabdfe02 4105int
919926ae 4106i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4107{
1c5d22f7 4108 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4109 int ret;
4110
8d7e3de1
CW
4111 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4112 return 0;
4113
0201f1ec 4114 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4115 if (ret)
4116 return ret;
4117
e47c68e9 4118 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4119
05394f39
CW
4120 old_write_domain = obj->base.write_domain;
4121 old_read_domains = obj->base.read_domains;
1c5d22f7 4122
e47c68e9 4123 /* Flush the CPU cache if it's still invalid. */
05394f39 4124 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4125 i915_gem_clflush_object(obj, false);
2ef7eeaa 4126
05394f39 4127 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4128 }
4129
4130 /* It should now be out of any other write domains, and we can update
4131 * the domain values for our changes.
4132 */
05394f39 4133 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4134
4135 /* If we're writing through the CPU, then the GPU read domains will
4136 * need to be invalidated at next use.
4137 */
4138 if (write) {
05394f39
CW
4139 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4140 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4141 }
2ef7eeaa 4142
1c5d22f7
CW
4143 trace_i915_gem_object_change_domain(obj,
4144 old_read_domains,
4145 old_write_domain);
4146
2ef7eeaa
EA
4147 return 0;
4148}
4149
673a394b
EA
4150/* Throttle our rendering by waiting until the ring has completed our requests
4151 * emitted over 20 msec ago.
4152 *
b962442e
EA
4153 * Note that if we were to use the current jiffies each time around the loop,
4154 * we wouldn't escape the function with any frames outstanding if the time to
4155 * render a frame was over 20ms.
4156 *
673a394b
EA
4157 * This should get us reasonable parallelism between CPU and GPU but also
4158 * relatively low latency when blocking on a particular request to finish.
4159 */
40a5f0de 4160static int
f787a5f5 4161i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4162{
f787a5f5
CW
4163 struct drm_i915_private *dev_priv = dev->dev_private;
4164 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4165 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4166 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4167 int ret;
93533c29 4168
308887aa
DV
4169 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4170 if (ret)
4171 return ret;
4172
f4457ae7
CW
4173 /* ABI: return -EIO if already wedged */
4174 if (i915_terminally_wedged(&dev_priv->gpu_error))
4175 return -EIO;
e110e8d6 4176
1c25595f 4177 spin_lock(&file_priv->mm.lock);
f787a5f5 4178 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4179 if (time_after_eq(request->emitted_jiffies, recent_enough))
4180 break;
40a5f0de 4181
fcfa423c
JH
4182 /*
4183 * Note that the request might not have been submitted yet.
4184 * In which case emitted_jiffies will be zero.
4185 */
4186 if (!request->emitted_jiffies)
4187 continue;
4188
54fb2411 4189 target = request;
b962442e 4190 }
ff865885
JH
4191 if (target)
4192 i915_gem_request_reference(target);
1c25595f 4193 spin_unlock(&file_priv->mm.lock);
40a5f0de 4194
54fb2411 4195 if (target == NULL)
f787a5f5 4196 return 0;
2bc43b5c 4197
299259a3 4198 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4199 if (ret == 0)
4200 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4201
73db04cf 4202 i915_gem_request_unreference(target);
ff865885 4203
40a5f0de
EA
4204 return ret;
4205}
4206
d23db88c
CW
4207static bool
4208i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4209{
4210 struct drm_i915_gem_object *obj = vma->obj;
4211
4212 if (alignment &&
4213 vma->node.start & (alignment - 1))
4214 return true;
4215
4216 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4217 return true;
4218
4219 if (flags & PIN_OFFSET_BIAS &&
4220 vma->node.start < (flags & PIN_OFFSET_MASK))
4221 return true;
4222
506a8e87
CW
4223 if (flags & PIN_OFFSET_FIXED &&
4224 vma->node.start != (flags & PIN_OFFSET_MASK))
4225 return true;
4226
d23db88c
CW
4227 return false;
4228}
4229
d0710abb
CW
4230void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4231{
4232 struct drm_i915_gem_object *obj = vma->obj;
4233 bool mappable, fenceable;
4234 u32 fence_size, fence_alignment;
4235
4236 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4237 obj->base.size,
4238 obj->tiling_mode);
4239 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4240 obj->base.size,
4241 obj->tiling_mode,
4242 true);
4243
4244 fenceable = (vma->node.size == fence_size &&
4245 (vma->node.start & (fence_alignment - 1)) == 0);
4246
4247 mappable = (vma->node.start + fence_size <=
62106b4f 4248 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4249
4250 obj->map_and_fenceable = mappable && fenceable;
4251}
4252
ec7adb6e
JL
4253static int
4254i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4255 struct i915_address_space *vm,
4256 const struct i915_ggtt_view *ggtt_view,
4257 uint32_t alignment,
4258 uint64_t flags)
673a394b 4259{
6e7186af 4260 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4261 struct i915_vma *vma;
ef79e17c 4262 unsigned bound;
673a394b
EA
4263 int ret;
4264
6e7186af
BW
4265 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4266 return -ENODEV;
4267
bf3d149b 4268 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4269 return -EINVAL;
07fe0b12 4270
c826c449
CW
4271 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4272 return -EINVAL;
4273
ec7adb6e
JL
4274 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4275 return -EINVAL;
4276
4277 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4278 i915_gem_obj_to_vma(obj, vm);
4279
07fe0b12 4280 if (vma) {
d7f46fc4
BW
4281 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4282 return -EBUSY;
4283
d23db88c 4284 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4285 WARN(vma->pin_count,
ec7adb6e 4286 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4287 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4288 " obj->map_and_fenceable=%d\n",
ec7adb6e 4289 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4290 upper_32_bits(vma->node.start),
4291 lower_32_bits(vma->node.start),
fe14d5f4 4292 alignment,
d23db88c 4293 !!(flags & PIN_MAPPABLE),
05394f39 4294 obj->map_and_fenceable);
07fe0b12 4295 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4296 if (ret)
4297 return ret;
8ea99c92
DV
4298
4299 vma = NULL;
ac0c6b5a
CW
4300 }
4301 }
4302
ef79e17c 4303 bound = vma ? vma->bound : 0;
8ea99c92 4304 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4305 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4306 flags);
262de145
DV
4307 if (IS_ERR(vma))
4308 return PTR_ERR(vma);
0875546c
DV
4309 } else {
4310 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4311 if (ret)
4312 return ret;
4313 }
74898d7e 4314
91e6711e
JL
4315 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4316 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4317 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4318 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4319 }
ef79e17c 4320
8ea99c92 4321 vma->pin_count++;
673a394b
EA
4322 return 0;
4323}
4324
ec7adb6e
JL
4325int
4326i915_gem_object_pin(struct drm_i915_gem_object *obj,
4327 struct i915_address_space *vm,
4328 uint32_t alignment,
4329 uint64_t flags)
4330{
4331 return i915_gem_object_do_pin(obj, vm,
4332 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4333 alignment, flags);
4334}
4335
4336int
4337i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4338 const struct i915_ggtt_view *view,
4339 uint32_t alignment,
4340 uint64_t flags)
4341{
72e96d64
JL
4342 struct drm_device *dev = obj->base.dev;
4343 struct drm_i915_private *dev_priv = to_i915(dev);
4344 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4345
ade7daa1 4346 BUG_ON(!view);
ec7adb6e 4347
72e96d64 4348 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4349 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4350}
4351
673a394b 4352void
e6617330
TU
4353i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4354 const struct i915_ggtt_view *view)
673a394b 4355{
e6617330 4356 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4357
e6617330 4358 WARN_ON(vma->pin_count == 0);
9abc4648 4359 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4360
30154650 4361 --vma->pin_count;
673a394b
EA
4362}
4363
673a394b
EA
4364int
4365i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4366 struct drm_file *file)
673a394b
EA
4367{
4368 struct drm_i915_gem_busy *args = data;
05394f39 4369 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4370 int ret;
4371
76c1dec1 4372 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4373 if (ret)
76c1dec1 4374 return ret;
673a394b 4375
a8ad0bd8 4376 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 4377 if (&obj->base == NULL) {
1d7cfea1
CW
4378 ret = -ENOENT;
4379 goto unlock;
673a394b 4380 }
d1b851fc 4381
0be555b6
CW
4382 /* Count all active objects as busy, even if they are currently not used
4383 * by the gpu. Users of this interface expect objects to eventually
4384 * become non-busy without any further actions, therefore emit any
4385 * necessary flushes here.
c4de0a5d 4386 */
30dfebf3 4387 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4388 if (ret)
4389 goto unref;
0be555b6 4390
426960be
CW
4391 args->busy = 0;
4392 if (obj->active) {
4393 int i;
4394
666796da 4395 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4396 struct drm_i915_gem_request *req;
4397
4398 req = obj->last_read_req[i];
4399 if (req)
4a570db5 4400 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4401 }
4402 if (obj->last_write_req)
4a570db5 4403 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4404 }
673a394b 4405
b4716185 4406unref:
05394f39 4407 drm_gem_object_unreference(&obj->base);
1d7cfea1 4408unlock:
673a394b 4409 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4410 return ret;
673a394b
EA
4411}
4412
4413int
4414i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4415 struct drm_file *file_priv)
4416{
0206e353 4417 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4418}
4419
3ef94daa
CW
4420int
4421i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4422 struct drm_file *file_priv)
4423{
656bfa3a 4424 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4425 struct drm_i915_gem_madvise *args = data;
05394f39 4426 struct drm_i915_gem_object *obj;
76c1dec1 4427 int ret;
3ef94daa
CW
4428
4429 switch (args->madv) {
4430 case I915_MADV_DONTNEED:
4431 case I915_MADV_WILLNEED:
4432 break;
4433 default:
4434 return -EINVAL;
4435 }
4436
1d7cfea1
CW
4437 ret = i915_mutex_lock_interruptible(dev);
4438 if (ret)
4439 return ret;
4440
a8ad0bd8 4441 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
c8725226 4442 if (&obj->base == NULL) {
1d7cfea1
CW
4443 ret = -ENOENT;
4444 goto unlock;
3ef94daa 4445 }
3ef94daa 4446
d7f46fc4 4447 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4448 ret = -EINVAL;
4449 goto out;
3ef94daa
CW
4450 }
4451
656bfa3a
DV
4452 if (obj->pages &&
4453 obj->tiling_mode != I915_TILING_NONE &&
4454 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4455 if (obj->madv == I915_MADV_WILLNEED)
4456 i915_gem_object_unpin_pages(obj);
4457 if (args->madv == I915_MADV_WILLNEED)
4458 i915_gem_object_pin_pages(obj);
4459 }
4460
05394f39
CW
4461 if (obj->madv != __I915_MADV_PURGED)
4462 obj->madv = args->madv;
3ef94daa 4463
6c085a72 4464 /* if the object is no longer attached, discard its backing storage */
be6a0376 4465 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4466 i915_gem_object_truncate(obj);
4467
05394f39 4468 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4469
1d7cfea1 4470out:
05394f39 4471 drm_gem_object_unreference(&obj->base);
1d7cfea1 4472unlock:
3ef94daa 4473 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4474 return ret;
3ef94daa
CW
4475}
4476
37e680a1
CW
4477void i915_gem_object_init(struct drm_i915_gem_object *obj,
4478 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4479{
b4716185
CW
4480 int i;
4481
35c20a60 4482 INIT_LIST_HEAD(&obj->global_list);
666796da 4483 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4484 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4485 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4486 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4487 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4488
37e680a1
CW
4489 obj->ops = ops;
4490
0327d6ba
CW
4491 obj->fence_reg = I915_FENCE_REG_NONE;
4492 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4493
4494 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4495}
4496
37e680a1 4497static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4498 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4499 .get_pages = i915_gem_object_get_pages_gtt,
4500 .put_pages = i915_gem_object_put_pages_gtt,
4501};
4502
d37cd8a8 4503struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4504 size_t size)
ac52bc56 4505{
c397b908 4506 struct drm_i915_gem_object *obj;
5949eac4 4507 struct address_space *mapping;
1a240d4d 4508 gfp_t mask;
fe3db79b 4509 int ret;
ac52bc56 4510
42dcedd4 4511 obj = i915_gem_object_alloc(dev);
c397b908 4512 if (obj == NULL)
fe3db79b 4513 return ERR_PTR(-ENOMEM);
673a394b 4514
fe3db79b
CW
4515 ret = drm_gem_object_init(dev, &obj->base, size);
4516 if (ret)
4517 goto fail;
673a394b 4518
bed1ea95
CW
4519 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4520 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4521 /* 965gm cannot relocate objects above 4GiB. */
4522 mask &= ~__GFP_HIGHMEM;
4523 mask |= __GFP_DMA32;
4524 }
4525
496ad9aa 4526 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4527 mapping_set_gfp_mask(mapping, mask);
5949eac4 4528
37e680a1 4529 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4530
c397b908
DV
4531 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4532 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4533
3d29b842
ED
4534 if (HAS_LLC(dev)) {
4535 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4536 * cache) for about a 10% performance improvement
4537 * compared to uncached. Graphics requests other than
4538 * display scanout are coherent with the CPU in
4539 * accessing this cache. This means in this mode we
4540 * don't need to clflush on the CPU side, and on the
4541 * GPU side we only need to flush internal caches to
4542 * get data visible to the CPU.
4543 *
4544 * However, we maintain the display planes as UC, and so
4545 * need to rebind when first used as such.
4546 */
4547 obj->cache_level = I915_CACHE_LLC;
4548 } else
4549 obj->cache_level = I915_CACHE_NONE;
4550
d861e338
DV
4551 trace_i915_gem_object_create(obj);
4552
05394f39 4553 return obj;
fe3db79b
CW
4554
4555fail:
4556 i915_gem_object_free(obj);
4557
4558 return ERR_PTR(ret);
c397b908
DV
4559}
4560
340fbd8c
CW
4561static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4562{
4563 /* If we are the last user of the backing storage (be it shmemfs
4564 * pages or stolen etc), we know that the pages are going to be
4565 * immediately released. In this case, we can then skip copying
4566 * back the contents from the GPU.
4567 */
4568
4569 if (obj->madv != I915_MADV_WILLNEED)
4570 return false;
4571
4572 if (obj->base.filp == NULL)
4573 return true;
4574
4575 /* At first glance, this looks racy, but then again so would be
4576 * userspace racing mmap against close. However, the first external
4577 * reference to the filp can only be obtained through the
4578 * i915_gem_mmap_ioctl() which safeguards us against the user
4579 * acquiring such a reference whilst we are in the middle of
4580 * freeing the object.
4581 */
4582 return atomic_long_read(&obj->base.filp->f_count) == 1;
4583}
4584
1488fc08 4585void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4586{
1488fc08 4587 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4588 struct drm_device *dev = obj->base.dev;
3e31c6c0 4589 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4590 struct i915_vma *vma, *next;
673a394b 4591
f65c9168
PZ
4592 intel_runtime_pm_get(dev_priv);
4593
26e12f89
CW
4594 trace_i915_gem_object_destroy(obj);
4595
1c7f4bca 4596 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4597 int ret;
4598
4599 vma->pin_count = 0;
4600 ret = i915_vma_unbind(vma);
07fe0b12
BW
4601 if (WARN_ON(ret == -ERESTARTSYS)) {
4602 bool was_interruptible;
1488fc08 4603
07fe0b12
BW
4604 was_interruptible = dev_priv->mm.interruptible;
4605 dev_priv->mm.interruptible = false;
1488fc08 4606
07fe0b12 4607 WARN_ON(i915_vma_unbind(vma));
1488fc08 4608
07fe0b12
BW
4609 dev_priv->mm.interruptible = was_interruptible;
4610 }
1488fc08
CW
4611 }
4612
1d64ae71
BW
4613 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4614 * before progressing. */
4615 if (obj->stolen)
4616 i915_gem_object_unpin_pages(obj);
4617
a071fa00
DV
4618 WARN_ON(obj->frontbuffer_bits);
4619
656bfa3a
DV
4620 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4621 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4622 obj->tiling_mode != I915_TILING_NONE)
4623 i915_gem_object_unpin_pages(obj);
4624
401c29f6
BW
4625 if (WARN_ON(obj->pages_pin_count))
4626 obj->pages_pin_count = 0;
340fbd8c 4627 if (discard_backing_storage(obj))
5537252b 4628 obj->madv = I915_MADV_DONTNEED;
37e680a1 4629 i915_gem_object_put_pages(obj);
d8cb5086 4630 i915_gem_object_free_mmap_offset(obj);
de151cf6 4631
9da3da66
CW
4632 BUG_ON(obj->pages);
4633
2f745ad3
CW
4634 if (obj->base.import_attach)
4635 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4636
5cc9ed4b
CW
4637 if (obj->ops->release)
4638 obj->ops->release(obj);
4639
05394f39
CW
4640 drm_gem_object_release(&obj->base);
4641 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4642
05394f39 4643 kfree(obj->bit_17);
42dcedd4 4644 i915_gem_object_free(obj);
f65c9168
PZ
4645
4646 intel_runtime_pm_put(dev_priv);
673a394b
EA
4647}
4648
ec7adb6e
JL
4649struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4650 struct i915_address_space *vm)
e656a6cb
DV
4651{
4652 struct i915_vma *vma;
1c7f4bca 4653 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4654 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4655 vma->vm == vm)
e656a6cb 4656 return vma;
ec7adb6e
JL
4657 }
4658 return NULL;
4659}
4660
4661struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4662 const struct i915_ggtt_view *view)
4663{
ec7adb6e 4664 struct i915_vma *vma;
e656a6cb 4665
598b9ec8 4666 GEM_BUG_ON(!view);
ec7adb6e 4667
1c7f4bca 4668 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4669 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4670 return vma;
e656a6cb
DV
4671 return NULL;
4672}
4673
2f633156
BW
4674void i915_gem_vma_destroy(struct i915_vma *vma)
4675{
4676 WARN_ON(vma->node.allocated);
aaa05667
CW
4677
4678 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4679 if (!list_empty(&vma->exec_list))
4680 return;
4681
596c5923
CW
4682 if (!vma->is_ggtt)
4683 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4684
1c7f4bca 4685 list_del(&vma->obj_link);
b93dab6e 4686
e20d2ab7 4687 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4688}
4689
e3efda49 4690static void
117897f4 4691i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4692{
4693 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4694 struct intel_engine_cs *engine;
e3efda49 4695
b4ac5afc 4696 for_each_engine(engine, dev_priv)
117897f4 4697 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4698}
4699
29105ccc 4700int
45c5f202 4701i915_gem_suspend(struct drm_device *dev)
29105ccc 4702{
3e31c6c0 4703 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4704 int ret = 0;
28dfe52a 4705
45c5f202 4706 mutex_lock(&dev->struct_mutex);
b2da9fe5 4707 ret = i915_gpu_idle(dev);
f7403347 4708 if (ret)
45c5f202 4709 goto err;
f7403347 4710
c033666a 4711 i915_gem_retire_requests(dev_priv);
673a394b 4712
117897f4 4713 i915_gem_stop_engines(dev);
b2e862d0 4714 i915_gem_context_lost(dev_priv);
45c5f202
CW
4715 mutex_unlock(&dev->struct_mutex);
4716
737b1506 4717 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4718 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4719 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4720
bdcf120b
CW
4721 /* Assert that we sucessfully flushed all the work and
4722 * reset the GPU back to its idle, low power state.
4723 */
4724 WARN_ON(dev_priv->mm.busy);
4725
673a394b 4726 return 0;
45c5f202
CW
4727
4728err:
4729 mutex_unlock(&dev->struct_mutex);
4730 return ret;
673a394b
EA
4731}
4732
f691e2f4
DV
4733void i915_gem_init_swizzling(struct drm_device *dev)
4734{
3e31c6c0 4735 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4736
11782b02 4737 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4738 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4739 return;
4740
4741 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4742 DISP_TILE_SURFACE_SWIZZLING);
4743
11782b02
DV
4744 if (IS_GEN5(dev))
4745 return;
4746
f691e2f4
DV
4747 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4748 if (IS_GEN6(dev))
6b26c86d 4749 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4750 else if (IS_GEN7(dev))
6b26c86d 4751 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4752 else if (IS_GEN8(dev))
4753 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4754 else
4755 BUG();
f691e2f4 4756}
e21af88d 4757
81e7f200
VS
4758static void init_unused_ring(struct drm_device *dev, u32 base)
4759{
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761
4762 I915_WRITE(RING_CTL(base), 0);
4763 I915_WRITE(RING_HEAD(base), 0);
4764 I915_WRITE(RING_TAIL(base), 0);
4765 I915_WRITE(RING_START(base), 0);
4766}
4767
4768static void init_unused_rings(struct drm_device *dev)
4769{
4770 if (IS_I830(dev)) {
4771 init_unused_ring(dev, PRB1_BASE);
4772 init_unused_ring(dev, SRB0_BASE);
4773 init_unused_ring(dev, SRB1_BASE);
4774 init_unused_ring(dev, SRB2_BASE);
4775 init_unused_ring(dev, SRB3_BASE);
4776 } else if (IS_GEN2(dev)) {
4777 init_unused_ring(dev, SRB0_BASE);
4778 init_unused_ring(dev, SRB1_BASE);
4779 } else if (IS_GEN3(dev)) {
4780 init_unused_ring(dev, PRB1_BASE);
4781 init_unused_ring(dev, PRB2_BASE);
4782 }
4783}
4784
117897f4 4785int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4786{
4fc7c971 4787 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4788 int ret;
68f95ba9 4789
5c1143bb 4790 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4791 if (ret)
b6913e4b 4792 return ret;
68f95ba9
CW
4793
4794 if (HAS_BSD(dev)) {
5c1143bb 4795 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4796 if (ret)
4797 goto cleanup_render_ring;
d1b851fc 4798 }
68f95ba9 4799
d39398f5 4800 if (HAS_BLT(dev)) {
549f7365
CW
4801 ret = intel_init_blt_ring_buffer(dev);
4802 if (ret)
4803 goto cleanup_bsd_ring;
4804 }
4805
9a8a2213
BW
4806 if (HAS_VEBOX(dev)) {
4807 ret = intel_init_vebox_ring_buffer(dev);
4808 if (ret)
4809 goto cleanup_blt_ring;
4810 }
4811
845f74a7
ZY
4812 if (HAS_BSD2(dev)) {
4813 ret = intel_init_bsd2_ring_buffer(dev);
4814 if (ret)
4815 goto cleanup_vebox_ring;
4816 }
9a8a2213 4817
4fc7c971
BW
4818 return 0;
4819
9a8a2213 4820cleanup_vebox_ring:
117897f4 4821 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4822cleanup_blt_ring:
117897f4 4823 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4824cleanup_bsd_ring:
117897f4 4825 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4826cleanup_render_ring:
117897f4 4827 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4828
4829 return ret;
4830}
4831
4832int
4833i915_gem_init_hw(struct drm_device *dev)
4834{
3e31c6c0 4835 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4836 struct intel_engine_cs *engine;
d200cda6 4837 int ret;
4fc7c971 4838
5e4f5189
CW
4839 /* Double layer security blanket, see i915_gem_init() */
4840 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4841
3accaf7e 4842 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4843 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4844
0bf21347
VS
4845 if (IS_HASWELL(dev))
4846 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4847 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4848
88a2b2a3 4849 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4850 if (IS_IVYBRIDGE(dev)) {
4851 u32 temp = I915_READ(GEN7_MSG_CTL);
4852 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4853 I915_WRITE(GEN7_MSG_CTL, temp);
4854 } else if (INTEL_INFO(dev)->gen >= 7) {
4855 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4856 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4857 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4858 }
88a2b2a3
BW
4859 }
4860
4fc7c971
BW
4861 i915_gem_init_swizzling(dev);
4862
d5abdfda
DV
4863 /*
4864 * At least 830 can leave some of the unused rings
4865 * "active" (ie. head != tail) after resume which
4866 * will prevent c3 entry. Makes sure all unused rings
4867 * are totally idle.
4868 */
4869 init_unused_rings(dev);
4870
ed54c1a1 4871 BUG_ON(!dev_priv->kernel_context);
90638cc1 4872
4ad2fd88
JH
4873 ret = i915_ppgtt_init_hw(dev);
4874 if (ret) {
4875 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4876 goto out;
4877 }
4878
4879 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4880 for_each_engine(engine, dev_priv) {
e2f80391 4881 ret = engine->init_hw(engine);
35a57ffb 4882 if (ret)
5e4f5189 4883 goto out;
35a57ffb 4884 }
99433931 4885
0ccdacf6
PA
4886 intel_mocs_init_l3cc_table(dev);
4887
33a732f4 4888 /* We can't enable contexts until all firmware is loaded */
1a3d1898 4889 if (HAS_GUC(dev)) {
f09d675f 4890 ret = intel_guc_setup(dev);
fce91f22 4891 if (ret)
9f9e539f 4892 goto out;
33a732f4
AD
4893 }
4894
e84fe803
NH
4895 /*
4896 * Increment the next seqno by 0x100 so we have a visible break
4897 * on re-initialisation
4898 */
4899 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
e21af88d 4900
5e4f5189
CW
4901out:
4902 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4903 return ret;
8187a2b7
ZN
4904}
4905
1070a42b
CW
4906int i915_gem_init(struct drm_device *dev)
4907{
4908 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4909 int ret;
4910
1070a42b 4911 mutex_lock(&dev->struct_mutex);
d62b4892 4912
a83014d3 4913 if (!i915.enable_execlists) {
f3dc74c0 4914 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4915 dev_priv->gt.init_engines = i915_gem_init_engines;
4916 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4917 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4918 } else {
f3dc74c0 4919 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4920 dev_priv->gt.init_engines = intel_logical_rings_init;
4921 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4922 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4923 }
4924
5e4f5189
CW
4925 /* This is just a security blanket to placate dragons.
4926 * On some systems, we very sporadically observe that the first TLBs
4927 * used by the CS may be stale, despite us poking the TLB reset. If
4928 * we hold the forcewake during initialisation these problems
4929 * just magically go away.
4930 */
4931 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4932
72778cb2 4933 i915_gem_init_userptr(dev_priv);
d85489d3 4934 i915_gem_init_ggtt(dev);
d62b4892 4935
2fa48d8d 4936 ret = i915_gem_context_init(dev);
7bcc3777
JN
4937 if (ret)
4938 goto out_unlock;
2fa48d8d 4939
117897f4 4940 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4941 if (ret)
7bcc3777 4942 goto out_unlock;
2fa48d8d 4943
1070a42b 4944 ret = i915_gem_init_hw(dev);
60990320
CW
4945 if (ret == -EIO) {
4946 /* Allow ring initialisation to fail by marking the GPU as
4947 * wedged. But we only want to do this where the GPU is angry,
4948 * for all other failure, such as an allocation failure, bail.
4949 */
4950 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4951 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4952 ret = 0;
1070a42b 4953 }
7bcc3777
JN
4954
4955out_unlock:
5e4f5189 4956 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4957 mutex_unlock(&dev->struct_mutex);
1070a42b 4958
60990320 4959 return ret;
1070a42b
CW
4960}
4961
8187a2b7 4962void
117897f4 4963i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4964{
3e31c6c0 4965 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4966 struct intel_engine_cs *engine;
8187a2b7 4967
b4ac5afc 4968 for_each_engine(engine, dev_priv)
117897f4 4969 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4970}
4971
64193406 4972static void
666796da 4973init_engine_lists(struct intel_engine_cs *engine)
64193406 4974{
0bc40be8
TU
4975 INIT_LIST_HEAD(&engine->active_list);
4976 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4977}
4978
40ae4e16
ID
4979void
4980i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4981{
4982 struct drm_device *dev = dev_priv->dev;
4983
4984 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4985 !IS_CHERRYVIEW(dev_priv))
4986 dev_priv->num_fence_regs = 32;
4987 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4988 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4989 dev_priv->num_fence_regs = 16;
4990 else
4991 dev_priv->num_fence_regs = 8;
4992
c033666a 4993 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4994 dev_priv->num_fence_regs =
4995 I915_READ(vgtif_reg(avail_rs.fence_num));
4996
4997 /* Initialize fence registers to zero */
4998 i915_gem_restore_fences(dev);
4999
5000 i915_gem_detect_bit_6_swizzle(dev);
5001}
5002
673a394b 5003void
d64aa096 5004i915_gem_load_init(struct drm_device *dev)
673a394b 5005{
3e31c6c0 5006 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5007 int i;
5008
efab6d8d 5009 dev_priv->objects =
42dcedd4
CW
5010 kmem_cache_create("i915_gem_object",
5011 sizeof(struct drm_i915_gem_object), 0,
5012 SLAB_HWCACHE_ALIGN,
5013 NULL);
e20d2ab7
CW
5014 dev_priv->vmas =
5015 kmem_cache_create("i915_gem_vma",
5016 sizeof(struct i915_vma), 0,
5017 SLAB_HWCACHE_ALIGN,
5018 NULL);
efab6d8d
CW
5019 dev_priv->requests =
5020 kmem_cache_create("i915_gem_request",
5021 sizeof(struct drm_i915_gem_request), 0,
5022 SLAB_HWCACHE_ALIGN,
5023 NULL);
673a394b 5024
fc8c067e 5025 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5026 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5027 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5028 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5029 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5030 for (i = 0; i < I915_NUM_ENGINES; i++)
5031 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5032 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5033 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5034 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5035 i915_gem_retire_work_handler);
b29c19b6
CW
5036 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5037 i915_gem_idle_work_handler);
1f83fee0 5038 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5039
72bfa19c
CW
5040 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5041
e84fe803
NH
5042 /*
5043 * Set initial sequence number for requests.
5044 * Using this number allows the wraparound to happen early,
5045 * catching any obvious problems.
5046 */
5047 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5048 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5049
19b2dbde 5050 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5051
6b95a207 5052 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5053
ce453d81
CW
5054 dev_priv->mm.interruptible = true;
5055
f99d7069 5056 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5057}
71acb5eb 5058
d64aa096
ID
5059void i915_gem_load_cleanup(struct drm_device *dev)
5060{
5061 struct drm_i915_private *dev_priv = to_i915(dev);
5062
5063 kmem_cache_destroy(dev_priv->requests);
5064 kmem_cache_destroy(dev_priv->vmas);
5065 kmem_cache_destroy(dev_priv->objects);
5066}
5067
461fb99c
CW
5068int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5069{
5070 struct drm_i915_gem_object *obj;
5071
5072 /* Called just before we write the hibernation image.
5073 *
5074 * We need to update the domain tracking to reflect that the CPU
5075 * will be accessing all the pages to create and restore from the
5076 * hibernation, and so upon restoration those pages will be in the
5077 * CPU domain.
5078 *
5079 * To make sure the hibernation image contains the latest state,
5080 * we update that state just before writing out the image.
5081 */
5082
5083 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5084 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5085 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5086 }
5087
5088 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5089 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5090 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5091 }
5092
5093 return 0;
5094}
5095
f787a5f5 5096void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5097{
f787a5f5 5098 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5099
5100 /* Clean up our request list when the client is going away, so that
5101 * later retire_requests won't dereference our soon-to-be-gone
5102 * file_priv.
5103 */
1c25595f 5104 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5105 while (!list_empty(&file_priv->mm.request_list)) {
5106 struct drm_i915_gem_request *request;
5107
5108 request = list_first_entry(&file_priv->mm.request_list,
5109 struct drm_i915_gem_request,
5110 client_list);
5111 list_del(&request->client_list);
5112 request->file_priv = NULL;
5113 }
1c25595f 5114 spin_unlock(&file_priv->mm.lock);
b29c19b6 5115
2e1b8730 5116 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5117 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5118 list_del(&file_priv->rps.link);
8d3afd7d 5119 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5120 }
b29c19b6
CW
5121}
5122
5123int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5124{
5125 struct drm_i915_file_private *file_priv;
e422b888 5126 int ret;
b29c19b6
CW
5127
5128 DRM_DEBUG_DRIVER("\n");
5129
5130 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5131 if (!file_priv)
5132 return -ENOMEM;
5133
5134 file->driver_priv = file_priv;
5135 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5136 file_priv->file = file;
2e1b8730 5137 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5138
5139 spin_lock_init(&file_priv->mm.lock);
5140 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5141
de1add36
TU
5142 file_priv->bsd_ring = -1;
5143
e422b888
BW
5144 ret = i915_gem_context_open(dev, file);
5145 if (ret)
5146 kfree(file_priv);
b29c19b6 5147
e422b888 5148 return ret;
b29c19b6
CW
5149}
5150
b680c37a
DV
5151/**
5152 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5153 * @old: current GEM buffer for the frontbuffer slots
5154 * @new: new GEM buffer for the frontbuffer slots
5155 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5156 *
5157 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5158 * from @old and setting them in @new. Both @old and @new can be NULL.
5159 */
a071fa00
DV
5160void i915_gem_track_fb(struct drm_i915_gem_object *old,
5161 struct drm_i915_gem_object *new,
5162 unsigned frontbuffer_bits)
5163{
5164 if (old) {
5165 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5166 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5167 old->frontbuffer_bits &= ~frontbuffer_bits;
5168 }
5169
5170 if (new) {
5171 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5172 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5173 new->frontbuffer_bits |= frontbuffer_bits;
5174 }
5175}
5176
a70a3148 5177/* All the new VM stuff */
088e0df4
MT
5178u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5179 struct i915_address_space *vm)
a70a3148
BW
5180{
5181 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5182 struct i915_vma *vma;
5183
896ab1a5 5184 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5185
1c7f4bca 5186 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5187 if (vma->is_ggtt &&
ec7adb6e
JL
5188 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5189 continue;
5190 if (vma->vm == vm)
a70a3148 5191 return vma->node.start;
a70a3148 5192 }
ec7adb6e 5193
f25748ea
DV
5194 WARN(1, "%s vma for this object not found.\n",
5195 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5196 return -1;
5197}
5198
088e0df4
MT
5199u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5200 const struct i915_ggtt_view *view)
a70a3148
BW
5201{
5202 struct i915_vma *vma;
5203
1c7f4bca 5204 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5205 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5206 return vma->node.start;
5207
5678ad73 5208 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5209 return -1;
5210}
5211
5212bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5213 struct i915_address_space *vm)
5214{
5215 struct i915_vma *vma;
5216
1c7f4bca 5217 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5218 if (vma->is_ggtt &&
ec7adb6e
JL
5219 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5220 continue;
5221 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5222 return true;
5223 }
5224
5225 return false;
5226}
5227
5228bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5229 const struct i915_ggtt_view *view)
ec7adb6e 5230{
ec7adb6e
JL
5231 struct i915_vma *vma;
5232
1c7f4bca 5233 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5234 if (vma->is_ggtt &&
9abc4648 5235 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5236 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5237 return true;
5238
5239 return false;
5240}
5241
5242bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5243{
5a1d5eb0 5244 struct i915_vma *vma;
a70a3148 5245
1c7f4bca 5246 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5247 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5248 return true;
5249
5250 return false;
5251}
5252
8da32727 5253unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5254{
a70a3148
BW
5255 struct i915_vma *vma;
5256
8da32727 5257 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5258
1c7f4bca 5259 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5260 if (vma->is_ggtt &&
8da32727 5261 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5262 return vma->node.size;
ec7adb6e 5263 }
8da32727 5264
a70a3148
BW
5265 return 0;
5266}
5267
ec7adb6e 5268bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5269{
5270 struct i915_vma *vma;
1c7f4bca 5271 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5272 if (vma->pin_count > 0)
5273 return true;
a6631ae1 5274
ec7adb6e 5275 return false;
5c2abbea 5276}
ea70299d 5277
033908ae
DG
5278/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5279struct page *
5280i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5281{
5282 struct page *page;
5283
5284 /* Only default objects have per-page dirty tracking */
de472664 5285 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5286 return NULL;
5287
5288 page = i915_gem_object_get_page(obj, n);
5289 set_page_dirty(page);
5290 return page;
5291}
5292
ea70299d
DG
5293/* Allocate a new GEM object and fill it with the supplied data */
5294struct drm_i915_gem_object *
5295i915_gem_object_create_from_data(struct drm_device *dev,
5296 const void *data, size_t size)
5297{
5298 struct drm_i915_gem_object *obj;
5299 struct sg_table *sg;
5300 size_t bytes;
5301 int ret;
5302
d37cd8a8 5303 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5304 if (IS_ERR(obj))
ea70299d
DG
5305 return obj;
5306
5307 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5308 if (ret)
5309 goto fail;
5310
5311 ret = i915_gem_object_get_pages(obj);
5312 if (ret)
5313 goto fail;
5314
5315 i915_gem_object_pin_pages(obj);
5316 sg = obj->pages;
5317 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5318 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5319 i915_gem_object_unpin_pages(obj);
5320
5321 if (WARN_ON(bytes != size)) {
5322 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5323 ret = -EFAULT;
5324 goto fail;
5325 }
5326
5327 return obj;
5328
5329fail:
5330 drm_gem_object_unreference(&obj->base);
5331 return ERR_PTR(ret);
5332}