]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
swiotlb: Add swiotlb=noforce debug option
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
6b5e90f5 37#include <linux/dma-fence-array.h>
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
fbbd37b3 45static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
0031fb96 52 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
c76ce038
CW
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
b50a5371
AS
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
2c22569b
CW
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64}
65
4f1959ee 66static int
bb6dc8d9 67insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
68 struct drm_mm_node *node, u32 size)
69{
70 memset(node, 0, sizeof(*node));
bb6dc8d9
CW
71 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 size, 0, -1,
73 0, ggtt->mappable_end,
4f1959ee
AS
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76}
77
78static void
79remove_mappable_node(struct drm_mm_node *node)
80{
81 drm_mm_remove_node(node);
82}
83
73aa808f
CW
84/* some bookkeeping */
85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 86 u64 size)
73aa808f 87{
c20e8355 88 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
c20e8355 91 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92}
93
94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 95 u64 size)
73aa808f 96{
c20e8355 97 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
c20e8355 100 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
101}
102
21dd3734 103static int
33196ded 104i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 105{
30dbf0c0
CW
106 int ret;
107
4c7d62c6
CW
108 might_sleep();
109
d98c52cf 110 if (!i915_reset_in_progress(error))
30dbf0c0
CW
111 return 0;
112
0a6759c6
DV
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
1f83fee0 118 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 119 !i915_reset_in_progress(error),
b52992c0 120 I915_RESET_TIMEOUT);
0a6759c6
DV
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
30dbf0c0 125 return ret;
d98c52cf
CW
126 } else {
127 return 0;
0a6759c6 128 }
30dbf0c0
CW
129}
130
54cf91dc 131int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 132{
fac5e23e 133 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
134 int ret;
135
33196ded 136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
76c1dec1
CW
144 return 0;
145}
30dbf0c0 146
5a125c3c
EA
147int
148i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
5a125c3c 150{
72e96d64 151 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 152 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 153 struct drm_i915_gem_get_aperture *args = data;
ca1543be 154 struct i915_vma *vma;
6299f992 155 size_t pinned;
5a125c3c 156
6299f992 157 pinned = 0;
73aa808f 158 mutex_lock(&dev->struct_mutex);
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
1c7f4bca 162 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 163 if (i915_vma_is_pinned(vma))
ca1543be 164 pinned += vma->node.size;
73aa808f 165 mutex_unlock(&dev->struct_mutex);
5a125c3c 166
72e96d64 167 args->aper_size = ggtt->base.total;
0206e353 168 args->aper_available_size = args->aper_size - pinned;
6299f992 169
5a125c3c
EA
170 return 0;
171}
172
03ac84f1 173static struct sg_table *
6a2c4232 174i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 175{
93c76a3d 176 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
177 char *vaddr = obj->phys_handle->vaddr;
178 struct sg_table *st;
179 struct scatterlist *sg;
180 int i;
00731155 181
6a2c4232 182 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 183 return ERR_PTR(-EINVAL);
6a2c4232
CW
184
185 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
186 struct page *page;
187 char *src;
188
189 page = shmem_read_mapping_page(mapping, i);
190 if (IS_ERR(page))
03ac84f1 191 return ERR_CAST(page);
6a2c4232
CW
192
193 src = kmap_atomic(page);
194 memcpy(vaddr, src, PAGE_SIZE);
195 drm_clflush_virt_range(vaddr, PAGE_SIZE);
196 kunmap_atomic(src);
197
09cbfeaf 198 put_page(page);
6a2c4232
CW
199 vaddr += PAGE_SIZE;
200 }
201
c033666a 202 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
203
204 st = kmalloc(sizeof(*st), GFP_KERNEL);
205 if (st == NULL)
03ac84f1 206 return ERR_PTR(-ENOMEM);
6a2c4232
CW
207
208 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
209 kfree(st);
03ac84f1 210 return ERR_PTR(-ENOMEM);
6a2c4232
CW
211 }
212
213 sg = st->sgl;
214 sg->offset = 0;
215 sg->length = obj->base.size;
00731155 216
6a2c4232
CW
217 sg_dma_address(sg) = obj->phys_handle->busaddr;
218 sg_dma_len(sg) = obj->base.size;
219
03ac84f1 220 return st;
6a2c4232
CW
221}
222
223static void
2b3c8317
CW
224__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
225 struct sg_table *pages)
6a2c4232 226{
a4f5ea64 227 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 228
a4f5ea64
CW
229 if (obj->mm.madv == I915_MADV_DONTNEED)
230 obj->mm.dirty = false;
6a2c4232 231
05c34837
CW
232 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
233 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
2b3c8317 234 drm_clflush_sg(pages);
03ac84f1
CW
235
236 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
237 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
238}
239
240static void
241i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
242 struct sg_table *pages)
243{
2b3c8317 244 __i915_gem_object_release_shmem(obj, pages);
03ac84f1 245
a4f5ea64 246 if (obj->mm.dirty) {
93c76a3d 247 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 248 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
249 int i;
250
251 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
252 struct page *page;
253 char *dst;
254
255 page = shmem_read_mapping_page(mapping, i);
256 if (IS_ERR(page))
257 continue;
258
259 dst = kmap_atomic(page);
260 drm_clflush_virt_range(vaddr, PAGE_SIZE);
261 memcpy(dst, vaddr, PAGE_SIZE);
262 kunmap_atomic(dst);
263
264 set_page_dirty(page);
a4f5ea64 265 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 266 mark_page_accessed(page);
09cbfeaf 267 put_page(page);
00731155
CW
268 vaddr += PAGE_SIZE;
269 }
a4f5ea64 270 obj->mm.dirty = false;
00731155
CW
271 }
272
03ac84f1
CW
273 sg_free_table(pages);
274 kfree(pages);
6a2c4232
CW
275}
276
277static void
278i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
279{
280 drm_pci_free(obj->base.dev, obj->phys_handle);
a4f5ea64 281 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
282}
283
284static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
285 .get_pages = i915_gem_object_get_pages_phys,
286 .put_pages = i915_gem_object_put_pages_phys,
287 .release = i915_gem_object_release_phys,
288};
289
35a9611c 290int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
291{
292 struct i915_vma *vma;
293 LIST_HEAD(still_in_list);
02bef8f9
CW
294 int ret;
295
296 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 297
02bef8f9
CW
298 /* Closed vma are removed from the obj->vma_list - but they may
299 * still have an active binding on the object. To remove those we
300 * must wait for all rendering to complete to the object (as unbinding
301 * must anyway), and retire the requests.
aa653a68 302 */
e95433c7
CW
303 ret = i915_gem_object_wait(obj,
304 I915_WAIT_INTERRUPTIBLE |
305 I915_WAIT_LOCKED |
306 I915_WAIT_ALL,
307 MAX_SCHEDULE_TIMEOUT,
308 NULL);
02bef8f9
CW
309 if (ret)
310 return ret;
311
312 i915_gem_retire_requests(to_i915(obj->base.dev));
313
aa653a68
CW
314 while ((vma = list_first_entry_or_null(&obj->vma_list,
315 struct i915_vma,
316 obj_link))) {
317 list_move_tail(&vma->obj_link, &still_in_list);
318 ret = i915_vma_unbind(vma);
319 if (ret)
320 break;
321 }
322 list_splice(&still_in_list, &obj->vma_list);
323
324 return ret;
325}
326
e95433c7
CW
327static long
328i915_gem_object_wait_fence(struct dma_fence *fence,
329 unsigned int flags,
330 long timeout,
331 struct intel_rps_client *rps)
00e60f26 332{
e95433c7 333 struct drm_i915_gem_request *rq;
00e60f26 334
e95433c7 335 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 336
e95433c7
CW
337 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
338 return timeout;
339
340 if (!dma_fence_is_i915(fence))
341 return dma_fence_wait_timeout(fence,
342 flags & I915_WAIT_INTERRUPTIBLE,
343 timeout);
344
345 rq = to_request(fence);
346 if (i915_gem_request_completed(rq))
347 goto out;
348
349 /* This client is about to stall waiting for the GPU. In many cases
350 * this is undesirable and limits the throughput of the system, as
351 * many clients cannot continue processing user input/output whilst
352 * blocked. RPS autotuning may take tens of milliseconds to respond
353 * to the GPU load and thus incurs additional latency for the client.
354 * We can circumvent that by promoting the GPU frequency to maximum
355 * before we wait. This makes the GPU throttle up much more quickly
356 * (good for benchmarks and user experience, e.g. window animations),
357 * but at a cost of spending more power processing the workload
358 * (bad for battery). Not all clients even want their results
359 * immediately and for them we should just let the GPU select its own
360 * frequency to maximise efficiency. To prevent a single client from
361 * forcing the clocks too high for the whole system, we only allow
362 * each client to waitboost once in a busy period.
363 */
364 if (rps) {
365 if (INTEL_GEN(rq->i915) >= 6)
366 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
367 else
368 rps = NULL;
00e60f26
CW
369 }
370
e95433c7
CW
371 timeout = i915_wait_request(rq, flags, timeout);
372
373out:
374 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
375 i915_gem_request_retire_upto(rq);
376
cb399eab 377 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
378 /* The GPU is now idle and this client has stalled.
379 * Since no other client has submitted a request in the
380 * meantime, assume that this client is the only one
381 * supplying work to the GPU but is unable to keep that
382 * work supplied because it is waiting. Since the GPU is
383 * then never kept fully busy, RPS autoclocking will
384 * keep the clocks relatively low, causing further delays.
385 * Compensate by giving the synchronous client credit for
386 * a waitboost next time.
387 */
388 spin_lock(&rq->i915->rps.client_lock);
389 list_del_init(&rps->link);
390 spin_unlock(&rq->i915->rps.client_lock);
391 }
392
393 return timeout;
394}
395
396static long
397i915_gem_object_wait_reservation(struct reservation_object *resv,
398 unsigned int flags,
399 long timeout,
400 struct intel_rps_client *rps)
401{
402 struct dma_fence *excl;
403
404 if (flags & I915_WAIT_ALL) {
405 struct dma_fence **shared;
406 unsigned int count, i;
00e60f26
CW
407 int ret;
408
e95433c7
CW
409 ret = reservation_object_get_fences_rcu(resv,
410 &excl, &count, &shared);
00e60f26
CW
411 if (ret)
412 return ret;
00e60f26 413
e95433c7
CW
414 for (i = 0; i < count; i++) {
415 timeout = i915_gem_object_wait_fence(shared[i],
416 flags, timeout,
417 rps);
418 if (timeout <= 0)
419 break;
00e60f26 420
e95433c7
CW
421 dma_fence_put(shared[i]);
422 }
423
424 for (; i < count; i++)
425 dma_fence_put(shared[i]);
426 kfree(shared);
427 } else {
428 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
429 }
430
e95433c7
CW
431 if (excl && timeout > 0)
432 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
433
434 dma_fence_put(excl);
435
436 return timeout;
00e60f26
CW
437}
438
6b5e90f5
CW
439static void __fence_set_priority(struct dma_fence *fence, int prio)
440{
441 struct drm_i915_gem_request *rq;
442 struct intel_engine_cs *engine;
443
444 if (!dma_fence_is_i915(fence))
445 return;
446
447 rq = to_request(fence);
448 engine = rq->engine;
449 if (!engine->schedule)
450 return;
451
452 engine->schedule(rq, prio);
453}
454
455static void fence_set_priority(struct dma_fence *fence, int prio)
456{
457 /* Recurse once into a fence-array */
458 if (dma_fence_is_array(fence)) {
459 struct dma_fence_array *array = to_dma_fence_array(fence);
460 int i;
461
462 for (i = 0; i < array->num_fences; i++)
463 __fence_set_priority(array->fences[i], prio);
464 } else {
465 __fence_set_priority(fence, prio);
466 }
467}
468
469int
470i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
471 unsigned int flags,
472 int prio)
473{
474 struct dma_fence *excl;
475
476 if (flags & I915_WAIT_ALL) {
477 struct dma_fence **shared;
478 unsigned int count, i;
479 int ret;
480
481 ret = reservation_object_get_fences_rcu(obj->resv,
482 &excl, &count, &shared);
483 if (ret)
484 return ret;
485
486 for (i = 0; i < count; i++) {
487 fence_set_priority(shared[i], prio);
488 dma_fence_put(shared[i]);
489 }
490
491 kfree(shared);
492 } else {
493 excl = reservation_object_get_excl_rcu(obj->resv);
494 }
495
496 if (excl) {
497 fence_set_priority(excl, prio);
498 dma_fence_put(excl);
499 }
500 return 0;
501}
502
e95433c7
CW
503/**
504 * Waits for rendering to the object to be completed
505 * @obj: i915 gem object
506 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
507 * @timeout: how long to wait
508 * @rps: client (user process) to charge for any waitboosting
00e60f26 509 */
e95433c7
CW
510int
511i915_gem_object_wait(struct drm_i915_gem_object *obj,
512 unsigned int flags,
513 long timeout,
514 struct intel_rps_client *rps)
00e60f26 515{
e95433c7
CW
516 might_sleep();
517#if IS_ENABLED(CONFIG_LOCKDEP)
518 GEM_BUG_ON(debug_locks &&
519 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
520 !!(flags & I915_WAIT_LOCKED));
521#endif
522 GEM_BUG_ON(timeout < 0);
00e60f26 523
d07f0e59
CW
524 timeout = i915_gem_object_wait_reservation(obj->resv,
525 flags, timeout,
526 rps);
e95433c7 527 return timeout < 0 ? timeout : 0;
00e60f26
CW
528}
529
530static struct intel_rps_client *to_rps_client(struct drm_file *file)
531{
532 struct drm_i915_file_private *fpriv = file->driver_priv;
533
534 return &fpriv->rps;
535}
536
00731155
CW
537int
538i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
539 int align)
540{
541 drm_dma_handle_t *phys;
6a2c4232 542 int ret;
00731155
CW
543
544 if (obj->phys_handle) {
545 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
546 return -EBUSY;
547
548 return 0;
549 }
550
a4f5ea64 551 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
552 return -EFAULT;
553
554 if (obj->base.filp == NULL)
555 return -EINVAL;
556
4717ca9e
CW
557 ret = i915_gem_object_unbind(obj);
558 if (ret)
559 return ret;
560
548625ee 561 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
562 if (obj->mm.pages)
563 return -EBUSY;
6a2c4232 564
00731155
CW
565 /* create a new object */
566 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
567 if (!phys)
568 return -ENOMEM;
569
00731155 570 obj->phys_handle = phys;
6a2c4232
CW
571 obj->ops = &i915_gem_phys_ops;
572
a4f5ea64 573 return i915_gem_object_pin_pages(obj);
00731155
CW
574}
575
576static int
577i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
578 struct drm_i915_gem_pwrite *args,
03ac84f1 579 struct drm_file *file)
00731155
CW
580{
581 struct drm_device *dev = obj->base.dev;
582 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 583 char __user *user_data = u64_to_user_ptr(args->data_ptr);
e95433c7 584 int ret;
6a2c4232
CW
585
586 /* We manually control the domain here and pretend that it
587 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
588 */
e95433c7
CW
589 lockdep_assert_held(&obj->base.dev->struct_mutex);
590 ret = i915_gem_object_wait(obj,
591 I915_WAIT_INTERRUPTIBLE |
592 I915_WAIT_LOCKED |
593 I915_WAIT_ALL,
594 MAX_SCHEDULE_TIMEOUT,
03ac84f1 595 to_rps_client(file));
6a2c4232
CW
596 if (ret)
597 return ret;
00731155 598
77a0d1ca 599 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
600 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
601 unsigned long unwritten;
602
603 /* The physical object once assigned is fixed for the lifetime
604 * of the obj, so we can safely drop the lock and continue
605 * to access vaddr.
606 */
607 mutex_unlock(&dev->struct_mutex);
608 unwritten = copy_from_user(vaddr, user_data, args->size);
609 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
610 if (unwritten) {
611 ret = -EFAULT;
612 goto out;
613 }
00731155
CW
614 }
615
6a2c4232 616 drm_clflush_virt_range(vaddr, args->size);
c033666a 617 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
618
619out:
de152b62 620 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 621 return ret;
00731155
CW
622}
623
42dcedd4
CW
624void *i915_gem_object_alloc(struct drm_device *dev)
625{
fac5e23e 626 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 627 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
628}
629
630void i915_gem_object_free(struct drm_i915_gem_object *obj)
631{
fac5e23e 632 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 633 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
634}
635
ff72145b
DA
636static int
637i915_gem_create(struct drm_file *file,
638 struct drm_device *dev,
639 uint64_t size,
640 uint32_t *handle_p)
673a394b 641{
05394f39 642 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
643 int ret;
644 u32 handle;
673a394b 645
ff72145b 646 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
647 if (size == 0)
648 return -EINVAL;
673a394b
EA
649
650 /* Allocate the new object */
d37cd8a8 651 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
652 if (IS_ERR(obj))
653 return PTR_ERR(obj);
673a394b 654
05394f39 655 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 656 /* drop reference from allocate - handle holds it now */
f0cd5182 657 i915_gem_object_put(obj);
d861e338
DV
658 if (ret)
659 return ret;
202f2fef 660
ff72145b 661 *handle_p = handle;
673a394b
EA
662 return 0;
663}
664
ff72145b
DA
665int
666i915_gem_dumb_create(struct drm_file *file,
667 struct drm_device *dev,
668 struct drm_mode_create_dumb *args)
669{
670 /* have to work out size/pitch and return them */
de45eaf7 671 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
672 args->size = args->pitch * args->height;
673 return i915_gem_create(file, dev,
da6b51d0 674 args->size, &args->handle);
ff72145b
DA
675}
676
ff72145b
DA
677/**
678 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
679 * @dev: drm device pointer
680 * @data: ioctl data blob
681 * @file: drm file pointer
ff72145b
DA
682 */
683int
684i915_gem_create_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686{
687 struct drm_i915_gem_create *args = data;
63ed2cb2 688
fbbd37b3
CW
689 i915_gem_flush_free_objects(to_i915(dev));
690
ff72145b 691 return i915_gem_create(file, dev,
da6b51d0 692 args->size, &args->handle);
ff72145b
DA
693}
694
8461d226
DV
695static inline int
696__copy_to_user_swizzled(char __user *cpu_vaddr,
697 const char *gpu_vaddr, int gpu_offset,
698 int length)
699{
700 int ret, cpu_offset = 0;
701
702 while (length > 0) {
703 int cacheline_end = ALIGN(gpu_offset + 1, 64);
704 int this_length = min(cacheline_end - gpu_offset, length);
705 int swizzled_gpu_offset = gpu_offset ^ 64;
706
707 ret = __copy_to_user(cpu_vaddr + cpu_offset,
708 gpu_vaddr + swizzled_gpu_offset,
709 this_length);
710 if (ret)
711 return ret + length;
712
713 cpu_offset += this_length;
714 gpu_offset += this_length;
715 length -= this_length;
716 }
717
718 return 0;
719}
720
8c59967c 721static inline int
4f0c7cfb
BW
722__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
723 const char __user *cpu_vaddr,
8c59967c
DV
724 int length)
725{
726 int ret, cpu_offset = 0;
727
728 while (length > 0) {
729 int cacheline_end = ALIGN(gpu_offset + 1, 64);
730 int this_length = min(cacheline_end - gpu_offset, length);
731 int swizzled_gpu_offset = gpu_offset ^ 64;
732
733 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
734 cpu_vaddr + cpu_offset,
735 this_length);
736 if (ret)
737 return ret + length;
738
739 cpu_offset += this_length;
740 gpu_offset += this_length;
741 length -= this_length;
742 }
743
744 return 0;
745}
746
4c914c0c
BV
747/*
748 * Pins the specified object's pages and synchronizes the object with
749 * GPU accesses. Sets needs_clflush to non-zero if the caller should
750 * flush the object from the CPU cache.
751 */
752int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 753 unsigned int *needs_clflush)
4c914c0c
BV
754{
755 int ret;
756
e95433c7 757 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 758
e95433c7 759 *needs_clflush = 0;
43394c7d
CW
760 if (!i915_gem_object_has_struct_page(obj))
761 return -ENODEV;
4c914c0c 762
e95433c7
CW
763 ret = i915_gem_object_wait(obj,
764 I915_WAIT_INTERRUPTIBLE |
765 I915_WAIT_LOCKED,
766 MAX_SCHEDULE_TIMEOUT,
767 NULL);
c13d87ea
CW
768 if (ret)
769 return ret;
770
a4f5ea64 771 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
772 if (ret)
773 return ret;
774
a314d5cb
CW
775 i915_gem_object_flush_gtt_write_domain(obj);
776
43394c7d
CW
777 /* If we're not in the cpu read domain, set ourself into the gtt
778 * read domain and manually flush cachelines (if required). This
779 * optimizes for the case when the gpu will dirty the data
780 * anyway again before the next pread happens.
781 */
782 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
783 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
784 obj->cache_level);
43394c7d 785
43394c7d
CW
786 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
787 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
788 if (ret)
789 goto err_unpin;
790
43394c7d 791 *needs_clflush = 0;
4c914c0c
BV
792 }
793
9764951e 794 /* return with the pages pinned */
43394c7d 795 return 0;
9764951e
CW
796
797err_unpin:
798 i915_gem_object_unpin_pages(obj);
799 return ret;
43394c7d
CW
800}
801
802int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
803 unsigned int *needs_clflush)
804{
805 int ret;
806
e95433c7
CW
807 lockdep_assert_held(&obj->base.dev->struct_mutex);
808
43394c7d
CW
809 *needs_clflush = 0;
810 if (!i915_gem_object_has_struct_page(obj))
811 return -ENODEV;
812
e95433c7
CW
813 ret = i915_gem_object_wait(obj,
814 I915_WAIT_INTERRUPTIBLE |
815 I915_WAIT_LOCKED |
816 I915_WAIT_ALL,
817 MAX_SCHEDULE_TIMEOUT,
818 NULL);
43394c7d
CW
819 if (ret)
820 return ret;
821
a4f5ea64 822 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
823 if (ret)
824 return ret;
825
a314d5cb
CW
826 i915_gem_object_flush_gtt_write_domain(obj);
827
43394c7d
CW
828 /* If we're not in the cpu write domain, set ourself into the
829 * gtt write domain and manually flush cachelines (as required).
830 * This optimizes for the case when the gpu will use the data
831 * right away and we therefore have to clflush anyway.
832 */
833 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
834 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
835
836 /* Same trick applies to invalidate partially written cachelines read
837 * before writing.
838 */
839 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
840 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
841 obj->cache_level);
842
43394c7d
CW
843 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
844 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
845 if (ret)
846 goto err_unpin;
847
43394c7d
CW
848 *needs_clflush = 0;
849 }
850
851 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
852 obj->cache_dirty = true;
853
854 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 855 obj->mm.dirty = true;
9764951e 856 /* return with the pages pinned */
43394c7d 857 return 0;
9764951e
CW
858
859err_unpin:
860 i915_gem_object_unpin_pages(obj);
861 return ret;
4c914c0c
BV
862}
863
23c18c71
DV
864static void
865shmem_clflush_swizzled_range(char *addr, unsigned long length,
866 bool swizzled)
867{
e7e58eb5 868 if (unlikely(swizzled)) {
23c18c71
DV
869 unsigned long start = (unsigned long) addr;
870 unsigned long end = (unsigned long) addr + length;
871
872 /* For swizzling simply ensure that we always flush both
873 * channels. Lame, but simple and it works. Swizzled
874 * pwrite/pread is far from a hotpath - current userspace
875 * doesn't use it at all. */
876 start = round_down(start, 128);
877 end = round_up(end, 128);
878
879 drm_clflush_virt_range((void *)start, end - start);
880 } else {
881 drm_clflush_virt_range(addr, length);
882 }
883
884}
885
d174bd64
DV
886/* Only difference to the fast-path function is that this can handle bit17
887 * and uses non-atomic copy and kmap functions. */
888static int
bb6dc8d9 889shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
890 char __user *user_data,
891 bool page_do_bit17_swizzling, bool needs_clflush)
892{
893 char *vaddr;
894 int ret;
895
896 vaddr = kmap(page);
897 if (needs_clflush)
bb6dc8d9 898 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 899 page_do_bit17_swizzling);
d174bd64
DV
900
901 if (page_do_bit17_swizzling)
bb6dc8d9 902 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 903 else
bb6dc8d9 904 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
905 kunmap(page);
906
f60d7f0c 907 return ret ? - EFAULT : 0;
d174bd64
DV
908}
909
bb6dc8d9
CW
910static int
911shmem_pread(struct page *page, int offset, int length, char __user *user_data,
912 bool page_do_bit17_swizzling, bool needs_clflush)
913{
914 int ret;
915
916 ret = -ENODEV;
917 if (!page_do_bit17_swizzling) {
918 char *vaddr = kmap_atomic(page);
919
920 if (needs_clflush)
921 drm_clflush_virt_range(vaddr + offset, length);
922 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
923 kunmap_atomic(vaddr);
924 }
925 if (ret == 0)
926 return 0;
927
928 return shmem_pread_slow(page, offset, length, user_data,
929 page_do_bit17_swizzling, needs_clflush);
930}
931
932static int
933i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
934 struct drm_i915_gem_pread *args)
935{
936 char __user *user_data;
937 u64 remain;
938 unsigned int obj_do_bit17_swizzling;
939 unsigned int needs_clflush;
940 unsigned int idx, offset;
941 int ret;
942
943 obj_do_bit17_swizzling = 0;
944 if (i915_gem_object_needs_bit17_swizzle(obj))
945 obj_do_bit17_swizzling = BIT(17);
946
947 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
948 if (ret)
949 return ret;
950
951 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
952 mutex_unlock(&obj->base.dev->struct_mutex);
953 if (ret)
954 return ret;
955
956 remain = args->size;
957 user_data = u64_to_user_ptr(args->data_ptr);
958 offset = offset_in_page(args->offset);
959 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
960 struct page *page = i915_gem_object_get_page(obj, idx);
961 int length;
962
963 length = remain;
964 if (offset + length > PAGE_SIZE)
965 length = PAGE_SIZE - offset;
966
967 ret = shmem_pread(page, offset, length, user_data,
968 page_to_phys(page) & obj_do_bit17_swizzling,
969 needs_clflush);
970 if (ret)
971 break;
972
973 remain -= length;
974 user_data += length;
975 offset = 0;
976 }
977
978 i915_gem_obj_finish_shmem_access(obj);
979 return ret;
980}
981
982static inline bool
983gtt_user_read(struct io_mapping *mapping,
984 loff_t base, int offset,
985 char __user *user_data, int length)
b50a5371 986{
b50a5371 987 void *vaddr;
bb6dc8d9 988 unsigned long unwritten;
b50a5371 989
b50a5371 990 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
991 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
992 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
993 io_mapping_unmap_atomic(vaddr);
994 if (unwritten) {
995 vaddr = (void __force *)
996 io_mapping_map_wc(mapping, base, PAGE_SIZE);
997 unwritten = copy_to_user(user_data, vaddr + offset, length);
998 io_mapping_unmap(vaddr);
999 }
b50a5371
AS
1000 return unwritten;
1001}
1002
1003static int
bb6dc8d9
CW
1004i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1005 const struct drm_i915_gem_pread *args)
b50a5371 1006{
bb6dc8d9
CW
1007 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1008 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1009 struct drm_mm_node node;
bb6dc8d9
CW
1010 struct i915_vma *vma;
1011 void __user *user_data;
1012 u64 remain, offset;
b50a5371
AS
1013 int ret;
1014
bb6dc8d9
CW
1015 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1016 if (ret)
1017 return ret;
1018
1019 intel_runtime_pm_get(i915);
1020 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1021 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1022 if (!IS_ERR(vma)) {
1023 node.start = i915_ggtt_offset(vma);
1024 node.allocated = false;
49ef5294 1025 ret = i915_vma_put_fence(vma);
18034584
CW
1026 if (ret) {
1027 i915_vma_unpin(vma);
1028 vma = ERR_PTR(ret);
1029 }
1030 }
058d88c4 1031 if (IS_ERR(vma)) {
bb6dc8d9 1032 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1033 if (ret)
bb6dc8d9
CW
1034 goto out_unlock;
1035 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1036 }
1037
1038 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1039 if (ret)
1040 goto out_unpin;
1041
bb6dc8d9 1042 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1043
bb6dc8d9
CW
1044 user_data = u64_to_user_ptr(args->data_ptr);
1045 remain = args->size;
1046 offset = args->offset;
b50a5371
AS
1047
1048 while (remain > 0) {
1049 /* Operation in this page
1050 *
1051 * page_base = page offset within aperture
1052 * page_offset = offset within page
1053 * page_length = bytes to copy for this page
1054 */
1055 u32 page_base = node.start;
1056 unsigned page_offset = offset_in_page(offset);
1057 unsigned page_length = PAGE_SIZE - page_offset;
1058 page_length = remain < page_length ? remain : page_length;
1059 if (node.allocated) {
1060 wmb();
1061 ggtt->base.insert_page(&ggtt->base,
1062 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1063 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1064 wmb();
1065 } else {
1066 page_base += offset & PAGE_MASK;
1067 }
bb6dc8d9
CW
1068
1069 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1070 user_data, page_length)) {
b50a5371
AS
1071 ret = -EFAULT;
1072 break;
1073 }
1074
1075 remain -= page_length;
1076 user_data += page_length;
1077 offset += page_length;
1078 }
1079
bb6dc8d9 1080 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1081out_unpin:
1082 if (node.allocated) {
1083 wmb();
1084 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1085 node.start, node.size);
b50a5371
AS
1086 remove_mappable_node(&node);
1087 } else {
058d88c4 1088 i915_vma_unpin(vma);
b50a5371 1089 }
bb6dc8d9
CW
1090out_unlock:
1091 intel_runtime_pm_put(i915);
1092 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1093
eb01459f
EA
1094 return ret;
1095}
1096
673a394b
EA
1097/**
1098 * Reads data from the object referenced by handle.
14bb2c11
TU
1099 * @dev: drm device pointer
1100 * @data: ioctl data blob
1101 * @file: drm file pointer
673a394b
EA
1102 *
1103 * On error, the contents of *data are undefined.
1104 */
1105int
1106i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1107 struct drm_file *file)
673a394b
EA
1108{
1109 struct drm_i915_gem_pread *args = data;
05394f39 1110 struct drm_i915_gem_object *obj;
bb6dc8d9 1111 int ret;
673a394b 1112
51311d0a
CW
1113 if (args->size == 0)
1114 return 0;
1115
1116 if (!access_ok(VERIFY_WRITE,
3ed605bc 1117 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1118 args->size))
1119 return -EFAULT;
1120
03ac0642 1121 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1122 if (!obj)
1123 return -ENOENT;
673a394b 1124
7dcd2499 1125 /* Bounds check source. */
05394f39
CW
1126 if (args->offset > obj->base.size ||
1127 args->size > obj->base.size - args->offset) {
ce9d419d 1128 ret = -EINVAL;
bb6dc8d9 1129 goto out;
ce9d419d
CW
1130 }
1131
db53a302
CW
1132 trace_i915_gem_object_pread(obj, args->offset, args->size);
1133
e95433c7
CW
1134 ret = i915_gem_object_wait(obj,
1135 I915_WAIT_INTERRUPTIBLE,
1136 MAX_SCHEDULE_TIMEOUT,
1137 to_rps_client(file));
258a5ede 1138 if (ret)
bb6dc8d9 1139 goto out;
258a5ede 1140
bb6dc8d9 1141 ret = i915_gem_object_pin_pages(obj);
258a5ede 1142 if (ret)
bb6dc8d9 1143 goto out;
673a394b 1144
bb6dc8d9 1145 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1146 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1147 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1148
bb6dc8d9
CW
1149 i915_gem_object_unpin_pages(obj);
1150out:
f0cd5182 1151 i915_gem_object_put(obj);
eb01459f 1152 return ret;
673a394b
EA
1153}
1154
0839ccb8
KP
1155/* This is the fast write path which cannot handle
1156 * page faults in the source data
9b7530cc 1157 */
0839ccb8 1158
fe115628
CW
1159static inline bool
1160ggtt_write(struct io_mapping *mapping,
1161 loff_t base, int offset,
1162 char __user *user_data, int length)
9b7530cc 1163{
4f0c7cfb 1164 void *vaddr;
0839ccb8 1165 unsigned long unwritten;
9b7530cc 1166
4f0c7cfb 1167 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1168 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1169 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1170 user_data, length);
fe115628
CW
1171 io_mapping_unmap_atomic(vaddr);
1172 if (unwritten) {
1173 vaddr = (void __force *)
1174 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1175 unwritten = copy_from_user(vaddr + offset, user_data, length);
1176 io_mapping_unmap(vaddr);
1177 }
bb6dc8d9 1178
bb6dc8d9
CW
1179 return unwritten;
1180}
1181
3de09aa3
EA
1182/**
1183 * This is the fast pwrite path, where we copy the data directly from the
1184 * user into the GTT, uncached.
fe115628 1185 * @obj: i915 GEM object
14bb2c11 1186 * @args: pwrite arguments structure
3de09aa3 1187 */
673a394b 1188static int
fe115628
CW
1189i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1190 const struct drm_i915_gem_pwrite *args)
673a394b 1191{
fe115628 1192 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1193 struct i915_ggtt *ggtt = &i915->ggtt;
1194 struct drm_mm_node node;
fe115628
CW
1195 struct i915_vma *vma;
1196 u64 remain, offset;
1197 void __user *user_data;
4f1959ee 1198 int ret;
b50a5371 1199
fe115628
CW
1200 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1201 if (ret)
1202 return ret;
935aaa69 1203
9c870d03 1204 intel_runtime_pm_get(i915);
058d88c4 1205 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1206 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1207 if (!IS_ERR(vma)) {
1208 node.start = i915_ggtt_offset(vma);
1209 node.allocated = false;
49ef5294 1210 ret = i915_vma_put_fence(vma);
18034584
CW
1211 if (ret) {
1212 i915_vma_unpin(vma);
1213 vma = ERR_PTR(ret);
1214 }
1215 }
058d88c4 1216 if (IS_ERR(vma)) {
bb6dc8d9 1217 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1218 if (ret)
fe115628
CW
1219 goto out_unlock;
1220 GEM_BUG_ON(!node.allocated);
4f1959ee 1221 }
935aaa69
DV
1222
1223 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1224 if (ret)
1225 goto out_unpin;
1226
fe115628
CW
1227 mutex_unlock(&i915->drm.struct_mutex);
1228
b19482d7 1229 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1230
4f1959ee
AS
1231 user_data = u64_to_user_ptr(args->data_ptr);
1232 offset = args->offset;
1233 remain = args->size;
1234 while (remain) {
673a394b
EA
1235 /* Operation in this page
1236 *
0839ccb8
KP
1237 * page_base = page offset within aperture
1238 * page_offset = offset within page
1239 * page_length = bytes to copy for this page
673a394b 1240 */
4f1959ee 1241 u32 page_base = node.start;
bb6dc8d9
CW
1242 unsigned int page_offset = offset_in_page(offset);
1243 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1244 page_length = remain < page_length ? remain : page_length;
1245 if (node.allocated) {
1246 wmb(); /* flush the write before we modify the GGTT */
1247 ggtt->base.insert_page(&ggtt->base,
1248 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1249 node.start, I915_CACHE_NONE, 0);
1250 wmb(); /* flush modifications to the GGTT (insert_page) */
1251 } else {
1252 page_base += offset & PAGE_MASK;
1253 }
0839ccb8 1254 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1255 * source page isn't available. Return the error and we'll
1256 * retry in the slow path.
b50a5371
AS
1257 * If the object is non-shmem backed, we retry again with the
1258 * path that handles page fault.
0839ccb8 1259 */
fe115628
CW
1260 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1261 user_data, page_length)) {
1262 ret = -EFAULT;
1263 break;
935aaa69 1264 }
673a394b 1265
0839ccb8
KP
1266 remain -= page_length;
1267 user_data += page_length;
1268 offset += page_length;
673a394b 1269 }
b19482d7 1270 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1271
1272 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1273out_unpin:
4f1959ee
AS
1274 if (node.allocated) {
1275 wmb();
1276 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1277 node.start, node.size);
4f1959ee
AS
1278 remove_mappable_node(&node);
1279 } else {
058d88c4 1280 i915_vma_unpin(vma);
4f1959ee 1281 }
fe115628 1282out_unlock:
9c870d03 1283 intel_runtime_pm_put(i915);
fe115628 1284 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1285 return ret;
673a394b
EA
1286}
1287
3043c60c 1288static int
fe115628 1289shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1290 char __user *user_data,
1291 bool page_do_bit17_swizzling,
1292 bool needs_clflush_before,
1293 bool needs_clflush_after)
673a394b 1294{
d174bd64
DV
1295 char *vaddr;
1296 int ret;
e5281ccd 1297
d174bd64 1298 vaddr = kmap(page);
e7e58eb5 1299 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1300 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1301 page_do_bit17_swizzling);
d174bd64 1302 if (page_do_bit17_swizzling)
fe115628
CW
1303 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1304 length);
d174bd64 1305 else
fe115628 1306 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1307 if (needs_clflush_after)
fe115628 1308 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1309 page_do_bit17_swizzling);
d174bd64 1310 kunmap(page);
40123c1f 1311
755d2218 1312 return ret ? -EFAULT : 0;
40123c1f
EA
1313}
1314
fe115628
CW
1315/* Per-page copy function for the shmem pwrite fastpath.
1316 * Flushes invalid cachelines before writing to the target if
1317 * needs_clflush_before is set and flushes out any written cachelines after
1318 * writing if needs_clflush is set.
1319 */
40123c1f 1320static int
fe115628
CW
1321shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1322 bool page_do_bit17_swizzling,
1323 bool needs_clflush_before,
1324 bool needs_clflush_after)
40123c1f 1325{
fe115628
CW
1326 int ret;
1327
1328 ret = -ENODEV;
1329 if (!page_do_bit17_swizzling) {
1330 char *vaddr = kmap_atomic(page);
1331
1332 if (needs_clflush_before)
1333 drm_clflush_virt_range(vaddr + offset, len);
1334 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1335 if (needs_clflush_after)
1336 drm_clflush_virt_range(vaddr + offset, len);
1337
1338 kunmap_atomic(vaddr);
1339 }
1340 if (ret == 0)
1341 return ret;
1342
1343 return shmem_pwrite_slow(page, offset, len, user_data,
1344 page_do_bit17_swizzling,
1345 needs_clflush_before,
1346 needs_clflush_after);
1347}
1348
1349static int
1350i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1351 const struct drm_i915_gem_pwrite *args)
1352{
1353 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1354 void __user *user_data;
1355 u64 remain;
1356 unsigned int obj_do_bit17_swizzling;
1357 unsigned int partial_cacheline_write;
43394c7d 1358 unsigned int needs_clflush;
fe115628
CW
1359 unsigned int offset, idx;
1360 int ret;
40123c1f 1361
fe115628 1362 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1363 if (ret)
1364 return ret;
1365
fe115628
CW
1366 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1367 mutex_unlock(&i915->drm.struct_mutex);
1368 if (ret)
1369 return ret;
673a394b 1370
fe115628
CW
1371 obj_do_bit17_swizzling = 0;
1372 if (i915_gem_object_needs_bit17_swizzle(obj))
1373 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1374
fe115628
CW
1375 /* If we don't overwrite a cacheline completely we need to be
1376 * careful to have up-to-date data by first clflushing. Don't
1377 * overcomplicate things and flush the entire patch.
1378 */
1379 partial_cacheline_write = 0;
1380 if (needs_clflush & CLFLUSH_BEFORE)
1381 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1382
fe115628
CW
1383 user_data = u64_to_user_ptr(args->data_ptr);
1384 remain = args->size;
1385 offset = offset_in_page(args->offset);
1386 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1387 struct page *page = i915_gem_object_get_page(obj, idx);
1388 int length;
40123c1f 1389
fe115628
CW
1390 length = remain;
1391 if (offset + length > PAGE_SIZE)
1392 length = PAGE_SIZE - offset;
755d2218 1393
fe115628
CW
1394 ret = shmem_pwrite(page, offset, length, user_data,
1395 page_to_phys(page) & obj_do_bit17_swizzling,
1396 (offset | length) & partial_cacheline_write,
1397 needs_clflush & CLFLUSH_AFTER);
755d2218 1398 if (ret)
fe115628 1399 break;
755d2218 1400
fe115628
CW
1401 remain -= length;
1402 user_data += length;
1403 offset = 0;
8c59967c 1404 }
673a394b 1405
de152b62 1406 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1407 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1408 return ret;
673a394b
EA
1409}
1410
1411/**
1412 * Writes data to the object referenced by handle.
14bb2c11
TU
1413 * @dev: drm device
1414 * @data: ioctl data blob
1415 * @file: drm file
673a394b
EA
1416 *
1417 * On error, the contents of the buffer that were to be modified are undefined.
1418 */
1419int
1420i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1421 struct drm_file *file)
673a394b
EA
1422{
1423 struct drm_i915_gem_pwrite *args = data;
05394f39 1424 struct drm_i915_gem_object *obj;
51311d0a
CW
1425 int ret;
1426
1427 if (args->size == 0)
1428 return 0;
1429
1430 if (!access_ok(VERIFY_READ,
3ed605bc 1431 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1432 args->size))
1433 return -EFAULT;
1434
03ac0642 1435 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1436 if (!obj)
1437 return -ENOENT;
673a394b 1438
7dcd2499 1439 /* Bounds check destination. */
05394f39
CW
1440 if (args->offset > obj->base.size ||
1441 args->size > obj->base.size - args->offset) {
ce9d419d 1442 ret = -EINVAL;
258a5ede 1443 goto err;
ce9d419d
CW
1444 }
1445
db53a302
CW
1446 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1447
e95433c7
CW
1448 ret = i915_gem_object_wait(obj,
1449 I915_WAIT_INTERRUPTIBLE |
1450 I915_WAIT_ALL,
1451 MAX_SCHEDULE_TIMEOUT,
1452 to_rps_client(file));
258a5ede
CW
1453 if (ret)
1454 goto err;
1455
fe115628 1456 ret = i915_gem_object_pin_pages(obj);
258a5ede 1457 if (ret)
fe115628 1458 goto err;
258a5ede 1459
935aaa69 1460 ret = -EFAULT;
673a394b
EA
1461 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1462 * it would end up going through the fenced access, and we'll get
1463 * different detiling behavior between reading and writing.
1464 * pread/pwrite currently are reading and writing from the CPU
1465 * perspective, requiring manual detiling by the client.
1466 */
6eae0059 1467 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1468 cpu_write_needs_clflush(obj))
935aaa69
DV
1469 /* Note that the gtt paths might fail with non-page-backed user
1470 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1471 * textures). Fallback to the shmem path in that case.
1472 */
fe115628 1473 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1474
d1054ee4 1475 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1476 if (obj->phys_handle)
1477 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1478 else
fe115628 1479 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1480 }
5c0480f2 1481
fe115628 1482 i915_gem_object_unpin_pages(obj);
258a5ede 1483err:
f0cd5182 1484 i915_gem_object_put(obj);
258a5ede 1485 return ret;
673a394b
EA
1486}
1487
d243ad82 1488static inline enum fb_op_origin
aeecc969
CW
1489write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1490{
50349247
CW
1491 return (domain == I915_GEM_DOMAIN_GTT ?
1492 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1493}
1494
40e62d5d
CW
1495static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1496{
1497 struct drm_i915_private *i915;
1498 struct list_head *list;
1499 struct i915_vma *vma;
1500
1501 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1502 if (!i915_vma_is_ggtt(vma))
1503 continue;
1504
1505 if (i915_vma_is_active(vma))
1506 continue;
1507
1508 if (!drm_mm_node_allocated(&vma->node))
1509 continue;
1510
1511 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1512 }
1513
1514 i915 = to_i915(obj->base.dev);
1515 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1516 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1517}
1518
673a394b 1519/**
2ef7eeaa
EA
1520 * Called when user space prepares to use an object with the CPU, either
1521 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1522 * @dev: drm device
1523 * @data: ioctl data blob
1524 * @file: drm file
673a394b
EA
1525 */
1526int
1527i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1528 struct drm_file *file)
673a394b
EA
1529{
1530 struct drm_i915_gem_set_domain *args = data;
05394f39 1531 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1532 uint32_t read_domains = args->read_domains;
1533 uint32_t write_domain = args->write_domain;
40e62d5d 1534 int err;
673a394b 1535
2ef7eeaa 1536 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1537 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1538 return -EINVAL;
1539
1540 /* Having something in the write domain implies it's in the read
1541 * domain, and only that read domain. Enforce that in the request.
1542 */
1543 if (write_domain != 0 && read_domains != write_domain)
1544 return -EINVAL;
1545
03ac0642 1546 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1547 if (!obj)
1548 return -ENOENT;
673a394b 1549
3236f57a
CW
1550 /* Try to flush the object off the GPU without holding the lock.
1551 * We will repeat the flush holding the lock in the normal manner
1552 * to catch cases where we are gazumped.
1553 */
40e62d5d 1554 err = i915_gem_object_wait(obj,
e95433c7
CW
1555 I915_WAIT_INTERRUPTIBLE |
1556 (write_domain ? I915_WAIT_ALL : 0),
1557 MAX_SCHEDULE_TIMEOUT,
1558 to_rps_client(file));
40e62d5d 1559 if (err)
f0cd5182 1560 goto out;
b8f9096d 1561
40e62d5d
CW
1562 /* Flush and acquire obj->pages so that we are coherent through
1563 * direct access in memory with previous cached writes through
1564 * shmemfs and that our cache domain tracking remains valid.
1565 * For example, if the obj->filp was moved to swap without us
1566 * being notified and releasing the pages, we would mistakenly
1567 * continue to assume that the obj remained out of the CPU cached
1568 * domain.
1569 */
1570 err = i915_gem_object_pin_pages(obj);
1571 if (err)
f0cd5182 1572 goto out;
40e62d5d
CW
1573
1574 err = i915_mutex_lock_interruptible(dev);
1575 if (err)
f0cd5182 1576 goto out_unpin;
3236f57a 1577
43566ded 1578 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1579 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1580 else
40e62d5d 1581 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1582
40e62d5d
CW
1583 /* And bump the LRU for this access */
1584 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1585
673a394b 1586 mutex_unlock(&dev->struct_mutex);
b8f9096d 1587
40e62d5d
CW
1588 if (write_domain != 0)
1589 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1590
f0cd5182 1591out_unpin:
40e62d5d 1592 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1593out:
1594 i915_gem_object_put(obj);
40e62d5d 1595 return err;
673a394b
EA
1596}
1597
1598/**
1599 * Called when user space has done writes to this buffer
14bb2c11
TU
1600 * @dev: drm device
1601 * @data: ioctl data blob
1602 * @file: drm file
673a394b
EA
1603 */
1604int
1605i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1606 struct drm_file *file)
673a394b
EA
1607{
1608 struct drm_i915_gem_sw_finish *args = data;
05394f39 1609 struct drm_i915_gem_object *obj;
c21724cc 1610 int err = 0;
1d7cfea1 1611
03ac0642 1612 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1613 if (!obj)
1614 return -ENOENT;
673a394b 1615
673a394b 1616 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1617 if (READ_ONCE(obj->pin_display)) {
1618 err = i915_mutex_lock_interruptible(dev);
1619 if (!err) {
1620 i915_gem_object_flush_cpu_write_domain(obj);
1621 mutex_unlock(&dev->struct_mutex);
1622 }
1623 }
e47c68e9 1624
f0cd5182 1625 i915_gem_object_put(obj);
c21724cc 1626 return err;
673a394b
EA
1627}
1628
1629/**
14bb2c11
TU
1630 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1631 * it is mapped to.
1632 * @dev: drm device
1633 * @data: ioctl data blob
1634 * @file: drm file
673a394b
EA
1635 *
1636 * While the mapping holds a reference on the contents of the object, it doesn't
1637 * imply a ref on the object itself.
34367381
DV
1638 *
1639 * IMPORTANT:
1640 *
1641 * DRM driver writers who look a this function as an example for how to do GEM
1642 * mmap support, please don't implement mmap support like here. The modern way
1643 * to implement DRM mmap support is with an mmap offset ioctl (like
1644 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1645 * That way debug tooling like valgrind will understand what's going on, hiding
1646 * the mmap call in a driver private ioctl will break that. The i915 driver only
1647 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1648 */
1649int
1650i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1651 struct drm_file *file)
673a394b
EA
1652{
1653 struct drm_i915_gem_mmap *args = data;
03ac0642 1654 struct drm_i915_gem_object *obj;
673a394b
EA
1655 unsigned long addr;
1656
1816f923
AG
1657 if (args->flags & ~(I915_MMAP_WC))
1658 return -EINVAL;
1659
568a58e5 1660 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1661 return -ENODEV;
1662
03ac0642
CW
1663 obj = i915_gem_object_lookup(file, args->handle);
1664 if (!obj)
bf79cb91 1665 return -ENOENT;
673a394b 1666
1286ff73
DV
1667 /* prime objects have no backing filp to GEM mmap
1668 * pages from.
1669 */
03ac0642 1670 if (!obj->base.filp) {
f0cd5182 1671 i915_gem_object_put(obj);
1286ff73
DV
1672 return -EINVAL;
1673 }
1674
03ac0642 1675 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1676 PROT_READ | PROT_WRITE, MAP_SHARED,
1677 args->offset);
1816f923
AG
1678 if (args->flags & I915_MMAP_WC) {
1679 struct mm_struct *mm = current->mm;
1680 struct vm_area_struct *vma;
1681
80a89a5e 1682 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1683 i915_gem_object_put(obj);
80a89a5e
MH
1684 return -EINTR;
1685 }
1816f923
AG
1686 vma = find_vma(mm, addr);
1687 if (vma)
1688 vma->vm_page_prot =
1689 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1690 else
1691 addr = -ENOMEM;
1692 up_write(&mm->mmap_sem);
aeecc969
CW
1693
1694 /* This may race, but that's ok, it only gets set */
50349247 1695 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1696 }
f0cd5182 1697 i915_gem_object_put(obj);
673a394b
EA
1698 if (IS_ERR((void *)addr))
1699 return addr;
1700
1701 args->addr_ptr = (uint64_t) addr;
1702
1703 return 0;
1704}
1705
03af84fe
CW
1706static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1707{
1708 u64 size;
1709
1710 size = i915_gem_object_get_stride(obj);
1711 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1712
1713 return size >> PAGE_SHIFT;
1714}
1715
4cc69075
CW
1716/**
1717 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1718 *
1719 * A history of the GTT mmap interface:
1720 *
1721 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1722 * aligned and suitable for fencing, and still fit into the available
1723 * mappable space left by the pinned display objects. A classic problem
1724 * we called the page-fault-of-doom where we would ping-pong between
1725 * two objects that could not fit inside the GTT and so the memcpy
1726 * would page one object in at the expense of the other between every
1727 * single byte.
1728 *
1729 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1730 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1731 * object is too large for the available space (or simply too large
1732 * for the mappable aperture!), a view is created instead and faulted
1733 * into userspace. (This view is aligned and sized appropriately for
1734 * fenced access.)
1735 *
1736 * Restrictions:
1737 *
1738 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1739 * hangs on some architectures, corruption on others. An attempt to service
1740 * a GTT page fault from a snoopable object will generate a SIGBUS.
1741 *
1742 * * the object must be able to fit into RAM (physical memory, though no
1743 * limited to the mappable aperture).
1744 *
1745 *
1746 * Caveats:
1747 *
1748 * * a new GTT page fault will synchronize rendering from the GPU and flush
1749 * all data to system memory. Subsequent access will not be synchronized.
1750 *
1751 * * all mappings are revoked on runtime device suspend.
1752 *
1753 * * there are only 8, 16 or 32 fence registers to share between all users
1754 * (older machines require fence register for display and blitter access
1755 * as well). Contention of the fence registers will cause the previous users
1756 * to be unmapped and any new access will generate new page faults.
1757 *
1758 * * running out of memory while servicing a fault may generate a SIGBUS,
1759 * rather than the expected SIGSEGV.
1760 */
1761int i915_gem_mmap_gtt_version(void)
1762{
1763 return 1;
1764}
1765
de151cf6
JB
1766/**
1767 * i915_gem_fault - fault a page into the GTT
058d88c4 1768 * @area: CPU VMA in question
d9072a3e 1769 * @vmf: fault info
de151cf6
JB
1770 *
1771 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1772 * from userspace. The fault handler takes care of binding the object to
1773 * the GTT (if needed), allocating and programming a fence register (again,
1774 * only if needed based on whether the old reg is still valid or the object
1775 * is tiled) and inserting a new PTE into the faulting process.
1776 *
1777 * Note that the faulting process may involve evicting existing objects
1778 * from the GTT and/or fence registers to make room. So performance may
1779 * suffer if the GTT working set is large or there are few fence registers
1780 * left.
4cc69075
CW
1781 *
1782 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1783 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1784 */
058d88c4 1785int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1786{
03af84fe 1787#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1788 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1789 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1790 struct drm_i915_private *dev_priv = to_i915(dev);
1791 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1792 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1793 struct i915_vma *vma;
de151cf6 1794 pgoff_t page_offset;
82118877 1795 unsigned int flags;
b8f9096d 1796 int ret;
f65c9168 1797
de151cf6 1798 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1799 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1800 PAGE_SHIFT;
1801
db53a302
CW
1802 trace_i915_gem_object_fault(obj, page_offset, true, write);
1803
6e4930f6 1804 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1805 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1806 * repeat the flush holding the lock in the normal manner to catch cases
1807 * where we are gazumped.
1808 */
e95433c7
CW
1809 ret = i915_gem_object_wait(obj,
1810 I915_WAIT_INTERRUPTIBLE,
1811 MAX_SCHEDULE_TIMEOUT,
1812 NULL);
6e4930f6 1813 if (ret)
b8f9096d
CW
1814 goto err;
1815
40e62d5d
CW
1816 ret = i915_gem_object_pin_pages(obj);
1817 if (ret)
1818 goto err;
1819
b8f9096d
CW
1820 intel_runtime_pm_get(dev_priv);
1821
1822 ret = i915_mutex_lock_interruptible(dev);
1823 if (ret)
1824 goto err_rpm;
6e4930f6 1825
eb119bd6 1826 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1827 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1828 ret = -EFAULT;
b8f9096d 1829 goto err_unlock;
eb119bd6
CW
1830 }
1831
82118877
CW
1832 /* If the object is smaller than a couple of partial vma, it is
1833 * not worth only creating a single partial vma - we may as well
1834 * clear enough space for the full object.
1835 */
1836 flags = PIN_MAPPABLE;
1837 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1838 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1839
a61007a8 1840 /* Now pin it into the GTT as needed */
82118877 1841 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1842 if (IS_ERR(vma)) {
1843 struct i915_ggtt_view view;
03af84fe
CW
1844 unsigned int chunk_size;
1845
a61007a8 1846 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1847 chunk_size = MIN_CHUNK_PAGES;
1848 if (i915_gem_object_is_tiled(obj))
0ef723cb 1849 chunk_size = roundup(chunk_size, tile_row_pages(obj));
e7ded2d7 1850
c5ad54cf
JL
1851 memset(&view, 0, sizeof(view));
1852 view.type = I915_GGTT_VIEW_PARTIAL;
1853 view.params.partial.offset = rounddown(page_offset, chunk_size);
1854 view.params.partial.size =
a61007a8 1855 min_t(unsigned int, chunk_size,
908b1232 1856 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1857
aa136d9d
CW
1858 /* If the partial covers the entire object, just create a
1859 * normal VMA.
1860 */
1861 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1862 view.type = I915_GGTT_VIEW_NORMAL;
1863
50349247
CW
1864 /* Userspace is now writing through an untracked VMA, abandon
1865 * all hope that the hardware is able to track future writes.
1866 */
1867 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1868
a61007a8
CW
1869 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1870 }
058d88c4
CW
1871 if (IS_ERR(vma)) {
1872 ret = PTR_ERR(vma);
b8f9096d 1873 goto err_unlock;
058d88c4 1874 }
4a684a41 1875
c9839303
CW
1876 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1877 if (ret)
b8f9096d 1878 goto err_unpin;
74898d7e 1879
49ef5294 1880 ret = i915_vma_get_fence(vma);
d9e86c0e 1881 if (ret)
b8f9096d 1882 goto err_unpin;
7d1c4804 1883
275f039d 1884 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1885 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1886 if (list_empty(&obj->userfault_link))
1887 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1888
b90b91d8 1889 /* Finally, remap it using the new GTT offset */
c58305af
CW
1890 ret = remap_io_mapping(area,
1891 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1892 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1893 min_t(u64, vma->size, area->vm_end - area->vm_start),
1894 &ggtt->mappable);
a61007a8 1895
b8f9096d 1896err_unpin:
058d88c4 1897 __i915_vma_unpin(vma);
b8f9096d 1898err_unlock:
de151cf6 1899 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1900err_rpm:
1901 intel_runtime_pm_put(dev_priv);
40e62d5d 1902 i915_gem_object_unpin_pages(obj);
b8f9096d 1903err:
de151cf6 1904 switch (ret) {
d9bc7e9f 1905 case -EIO:
2232f031
DV
1906 /*
1907 * We eat errors when the gpu is terminally wedged to avoid
1908 * userspace unduly crashing (gl has no provisions for mmaps to
1909 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1910 * and so needs to be reported.
1911 */
1912 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1913 ret = VM_FAULT_SIGBUS;
1914 break;
1915 }
045e769a 1916 case -EAGAIN:
571c608d
DV
1917 /*
1918 * EAGAIN means the gpu is hung and we'll wait for the error
1919 * handler to reset everything when re-faulting in
1920 * i915_mutex_lock_interruptible.
d9bc7e9f 1921 */
c715089f
CW
1922 case 0:
1923 case -ERESTARTSYS:
bed636ab 1924 case -EINTR:
e79e0fe3
DR
1925 case -EBUSY:
1926 /*
1927 * EBUSY is ok: this just means that another thread
1928 * already did the job.
1929 */
f65c9168
PZ
1930 ret = VM_FAULT_NOPAGE;
1931 break;
de151cf6 1932 case -ENOMEM:
f65c9168
PZ
1933 ret = VM_FAULT_OOM;
1934 break;
a7c2e1aa 1935 case -ENOSPC:
45d67817 1936 case -EFAULT:
f65c9168
PZ
1937 ret = VM_FAULT_SIGBUS;
1938 break;
de151cf6 1939 default:
a7c2e1aa 1940 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1941 ret = VM_FAULT_SIGBUS;
1942 break;
de151cf6 1943 }
f65c9168 1944 return ret;
de151cf6
JB
1945}
1946
901782b2
CW
1947/**
1948 * i915_gem_release_mmap - remove physical page mappings
1949 * @obj: obj in question
1950 *
af901ca1 1951 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1952 * relinquish ownership of the pages back to the system.
1953 *
1954 * It is vital that we remove the page mapping if we have mapped a tiled
1955 * object through the GTT and then lose the fence register due to
1956 * resource pressure. Similarly if the object has been moved out of the
1957 * aperture, than pages mapped into userspace must be revoked. Removing the
1958 * mapping will then trigger a page fault on the next user access, allowing
1959 * fixup by i915_gem_fault().
1960 */
d05ca301 1961void
05394f39 1962i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1963{
275f039d 1964 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1965
349f2ccf
CW
1966 /* Serialisation between user GTT access and our code depends upon
1967 * revoking the CPU's PTE whilst the mutex is held. The next user
1968 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1969 *
1970 * Note that RPM complicates somewhat by adding an additional
1971 * requirement that operations to the GGTT be made holding the RPM
1972 * wakeref.
349f2ccf 1973 */
275f039d 1974 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1975 intel_runtime_pm_get(i915);
349f2ccf 1976
3594a3e2 1977 if (list_empty(&obj->userfault_link))
9c870d03 1978 goto out;
901782b2 1979
3594a3e2 1980 list_del_init(&obj->userfault_link);
6796cb16
DH
1981 drm_vma_node_unmap(&obj->base.vma_node,
1982 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1983
1984 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1985 * memory transactions from userspace before we return. The TLB
1986 * flushing implied above by changing the PTE above *should* be
1987 * sufficient, an extra barrier here just provides us with a bit
1988 * of paranoid documentation about our requirement to serialise
1989 * memory writes before touching registers / GSM.
1990 */
1991 wmb();
9c870d03
CW
1992
1993out:
1994 intel_runtime_pm_put(i915);
901782b2
CW
1995}
1996
7c108fd8 1997void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1998{
3594a3e2 1999 struct drm_i915_gem_object *obj, *on;
7c108fd8 2000 int i;
eedd10f4 2001
3594a3e2
CW
2002 /*
2003 * Only called during RPM suspend. All users of the userfault_list
2004 * must be holding an RPM wakeref to ensure that this can not
2005 * run concurrently with themselves (and use the struct_mutex for
2006 * protection between themselves).
2007 */
275f039d 2008
3594a3e2
CW
2009 list_for_each_entry_safe(obj, on,
2010 &dev_priv->mm.userfault_list, userfault_link) {
2011 list_del_init(&obj->userfault_link);
275f039d
CW
2012 drm_vma_node_unmap(&obj->base.vma_node,
2013 obj->base.dev->anon_inode->i_mapping);
275f039d 2014 }
7c108fd8
CW
2015
2016 /* The fence will be lost when the device powers down. If any were
2017 * in use by hardware (i.e. they are pinned), we should not be powering
2018 * down! All other fences will be reacquired by the user upon waking.
2019 */
2020 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2021 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2022
2023 if (WARN_ON(reg->pin_count))
2024 continue;
2025
2026 if (!reg->vma)
2027 continue;
2028
2029 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2030 reg->dirty = true;
2031 }
eedd10f4
CW
2032}
2033
ad1a7d20
CW
2034/**
2035 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 2036 * @dev_priv: i915 device
ad1a7d20
CW
2037 * @size: object size
2038 * @tiling_mode: tiling mode
2039 *
2040 * Return the required global GTT size for an object, taking into account
2041 * potential fence register mapping.
2042 */
a9f1481f
CW
2043u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2044 u64 size, int tiling_mode)
92b88aeb 2045{
ad1a7d20 2046 u64 ggtt_size;
92b88aeb 2047
ad1a7d20
CW
2048 GEM_BUG_ON(size == 0);
2049
a9f1481f 2050 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
2051 tiling_mode == I915_TILING_NONE)
2052 return size;
92b88aeb
CW
2053
2054 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 2055 if (IS_GEN3(dev_priv))
ad1a7d20 2056 ggtt_size = 1024*1024;
92b88aeb 2057 else
ad1a7d20 2058 ggtt_size = 512*1024;
92b88aeb 2059
ad1a7d20
CW
2060 while (ggtt_size < size)
2061 ggtt_size <<= 1;
92b88aeb 2062
ad1a7d20 2063 return ggtt_size;
92b88aeb
CW
2064}
2065
de151cf6 2066/**
ad1a7d20 2067 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 2068 * @dev_priv: i915 device
14bb2c11
TU
2069 * @size: object size
2070 * @tiling_mode: tiling mode
ad1a7d20 2071 * @fenced: is fenced alignment required or not
de151cf6 2072 *
ad1a7d20 2073 * Return the required global GTT alignment for an object, taking into account
5e783301 2074 * potential fence register mapping.
de151cf6 2075 */
a9f1481f 2076u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 2077 int tiling_mode, bool fenced)
de151cf6 2078{
ad1a7d20
CW
2079 GEM_BUG_ON(size == 0);
2080
de151cf6
JB
2081 /*
2082 * Minimum alignment is 4k (GTT page size), but might be greater
2083 * if a fence register is needed for the object.
2084 */
a9f1481f 2085 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2086 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2087 return 4096;
2088
a00b10c3
CW
2089 /*
2090 * Previous chips need to be aligned to the size of the smallest
2091 * fence register that can contain the object.
2092 */
a9f1481f 2093 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2094}
2095
d8cb5086
CW
2096static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2097{
fac5e23e 2098 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2099 int err;
da494d7c 2100
f3f6184c
CW
2101 err = drm_gem_create_mmap_offset(&obj->base);
2102 if (!err)
2103 return 0;
d8cb5086 2104
f3f6184c
CW
2105 /* We can idle the GPU locklessly to flush stale objects, but in order
2106 * to claim that space for ourselves, we need to take the big
2107 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2108 */
ea746f36 2109 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2110 if (err)
2111 return err;
2112
2113 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2114 if (!err) {
2115 i915_gem_retire_requests(dev_priv);
2116 err = drm_gem_create_mmap_offset(&obj->base);
2117 mutex_unlock(&dev_priv->drm.struct_mutex);
2118 }
da494d7c 2119
f3f6184c 2120 return err;
d8cb5086
CW
2121}
2122
2123static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2124{
d8cb5086
CW
2125 drm_gem_free_mmap_offset(&obj->base);
2126}
2127
da6b51d0 2128int
ff72145b
DA
2129i915_gem_mmap_gtt(struct drm_file *file,
2130 struct drm_device *dev,
da6b51d0 2131 uint32_t handle,
ff72145b 2132 uint64_t *offset)
de151cf6 2133{
05394f39 2134 struct drm_i915_gem_object *obj;
de151cf6
JB
2135 int ret;
2136
03ac0642 2137 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2138 if (!obj)
2139 return -ENOENT;
ab18282d 2140
d8cb5086 2141 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2142 if (ret == 0)
2143 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2144
f0cd5182 2145 i915_gem_object_put(obj);
1d7cfea1 2146 return ret;
de151cf6
JB
2147}
2148
ff72145b
DA
2149/**
2150 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2151 * @dev: DRM device
2152 * @data: GTT mapping ioctl data
2153 * @file: GEM object info
2154 *
2155 * Simply returns the fake offset to userspace so it can mmap it.
2156 * The mmap call will end up in drm_gem_mmap(), which will set things
2157 * up so we can get faults in the handler above.
2158 *
2159 * The fault handler will take care of binding the object into the GTT
2160 * (since it may have been evicted to make room for something), allocating
2161 * a fence register, and mapping the appropriate aperture address into
2162 * userspace.
2163 */
2164int
2165i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2166 struct drm_file *file)
2167{
2168 struct drm_i915_gem_mmap_gtt *args = data;
2169
da6b51d0 2170 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2171}
2172
225067ee
DV
2173/* Immediately discard the backing storage */
2174static void
2175i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2176{
4d6294bf 2177 i915_gem_object_free_mmap_offset(obj);
1286ff73 2178
4d6294bf
CW
2179 if (obj->base.filp == NULL)
2180 return;
e5281ccd 2181
225067ee
DV
2182 /* Our goal here is to return as much of the memory as
2183 * is possible back to the system as we are called from OOM.
2184 * To do this we must instruct the shmfs to drop all of its
2185 * backing pages, *now*.
2186 */
5537252b 2187 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2188 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2189}
e5281ccd 2190
5537252b 2191/* Try to discard unwanted pages */
03ac84f1 2192void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2193{
5537252b
CW
2194 struct address_space *mapping;
2195
1233e2db
CW
2196 lockdep_assert_held(&obj->mm.lock);
2197 GEM_BUG_ON(obj->mm.pages);
2198
a4f5ea64 2199 switch (obj->mm.madv) {
5537252b
CW
2200 case I915_MADV_DONTNEED:
2201 i915_gem_object_truncate(obj);
2202 case __I915_MADV_PURGED:
2203 return;
2204 }
2205
2206 if (obj->base.filp == NULL)
2207 return;
2208
93c76a3d 2209 mapping = obj->base.filp->f_mapping,
5537252b 2210 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2211}
2212
5cdf5881 2213static void
03ac84f1
CW
2214i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2215 struct sg_table *pages)
673a394b 2216{
85d1225e
DG
2217 struct sgt_iter sgt_iter;
2218 struct page *page;
1286ff73 2219
2b3c8317 2220 __i915_gem_object_release_shmem(obj, pages);
673a394b 2221
03ac84f1 2222 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2223
6dacfd2f 2224 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2225 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2226
03ac84f1 2227 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2228 if (obj->mm.dirty)
9da3da66 2229 set_page_dirty(page);
3ef94daa 2230
a4f5ea64 2231 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2232 mark_page_accessed(page);
3ef94daa 2233
09cbfeaf 2234 put_page(page);
3ef94daa 2235 }
a4f5ea64 2236 obj->mm.dirty = false;
673a394b 2237
03ac84f1
CW
2238 sg_free_table(pages);
2239 kfree(pages);
37e680a1 2240}
6c085a72 2241
96d77634
CW
2242static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2243{
2244 struct radix_tree_iter iter;
2245 void **slot;
2246
a4f5ea64
CW
2247 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2248 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2249}
2250
548625ee
CW
2251void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2252 enum i915_mm_subclass subclass)
37e680a1 2253{
03ac84f1 2254 struct sg_table *pages;
37e680a1 2255
a4f5ea64 2256 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2257 return;
a5570178 2258
15717de2 2259 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2260 if (!READ_ONCE(obj->mm.pages))
2261 return;
2262
2263 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2264 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2265 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2266 goto unlock;
3e123027 2267
a2165e31
CW
2268 /* ->put_pages might need to allocate memory for the bit17 swizzle
2269 * array, hence protect them from being reaped by removing them from gtt
2270 * lists early. */
03ac84f1
CW
2271 pages = fetch_and_zero(&obj->mm.pages);
2272 GEM_BUG_ON(!pages);
a2165e31 2273
a4f5ea64 2274 if (obj->mm.mapping) {
4b30cb23
CW
2275 void *ptr;
2276
a4f5ea64 2277 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2278 if (is_vmalloc_addr(ptr))
2279 vunmap(ptr);
fb8621d3 2280 else
4b30cb23
CW
2281 kunmap(kmap_to_page(ptr));
2282
a4f5ea64 2283 obj->mm.mapping = NULL;
0a798eb9
CW
2284 }
2285
96d77634
CW
2286 __i915_gem_object_reset_page_iter(obj);
2287
03ac84f1 2288 obj->ops->put_pages(obj, pages);
1233e2db
CW
2289unlock:
2290 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2291}
2292
4ff340f0 2293static unsigned int swiotlb_max_size(void)
871dfbd6
CW
2294{
2295#if IS_ENABLED(CONFIG_SWIOTLB)
2296 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2297#else
2298 return 0;
2299#endif
2300}
2301
0c40ce13
TU
2302static void i915_sg_trim(struct sg_table *orig_st)
2303{
2304 struct sg_table new_st;
2305 struct scatterlist *sg, *new_sg;
2306 unsigned int i;
2307
2308 if (orig_st->nents == orig_st->orig_nents)
2309 return;
2310
2311 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2312 return;
2313
2314 new_sg = new_st.sgl;
2315 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2316 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2317 /* called before being DMA mapped, no need to copy sg->dma_* */
2318 new_sg = sg_next(new_sg);
2319 }
2320
2321 sg_free_table(orig_st);
2322
2323 *orig_st = new_st;
2324}
2325
03ac84f1 2326static struct sg_table *
6c085a72 2327i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2328{
fac5e23e 2329 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2330 int page_count, i;
2331 struct address_space *mapping;
9da3da66
CW
2332 struct sg_table *st;
2333 struct scatterlist *sg;
85d1225e 2334 struct sgt_iter sgt_iter;
e5281ccd 2335 struct page *page;
90797e6d 2336 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2337 unsigned int max_segment;
e2273302 2338 int ret;
6c085a72 2339 gfp_t gfp;
e5281ccd 2340
6c085a72
CW
2341 /* Assert that the object is not currently in any GPU domain. As it
2342 * wasn't in the GTT, there shouldn't be any way it could have been in
2343 * a GPU cache
2344 */
03ac84f1
CW
2345 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2346 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2347
871dfbd6
CW
2348 max_segment = swiotlb_max_size();
2349 if (!max_segment)
4ff340f0 2350 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2351
9da3da66
CW
2352 st = kmalloc(sizeof(*st), GFP_KERNEL);
2353 if (st == NULL)
03ac84f1 2354 return ERR_PTR(-ENOMEM);
9da3da66 2355
05394f39 2356 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2357 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2358 kfree(st);
03ac84f1 2359 return ERR_PTR(-ENOMEM);
9da3da66 2360 }
e5281ccd 2361
9da3da66
CW
2362 /* Get the list of pages out of our struct file. They'll be pinned
2363 * at this point until we release them.
2364 *
2365 * Fail silently without starting the shrinker
2366 */
93c76a3d 2367 mapping = obj->base.filp->f_mapping;
c62d2555 2368 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2369 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2370 sg = st->sgl;
2371 st->nents = 0;
2372 for (i = 0; i < page_count; i++) {
6c085a72
CW
2373 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2374 if (IS_ERR(page)) {
21ab4e74
CW
2375 i915_gem_shrink(dev_priv,
2376 page_count,
2377 I915_SHRINK_BOUND |
2378 I915_SHRINK_UNBOUND |
2379 I915_SHRINK_PURGEABLE);
6c085a72
CW
2380 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2381 }
2382 if (IS_ERR(page)) {
2383 /* We've tried hard to allocate the memory by reaping
2384 * our own buffer, now let the real VM do its job and
2385 * go down in flames if truly OOM.
2386 */
f461d1be 2387 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2388 if (IS_ERR(page)) {
2389 ret = PTR_ERR(page);
b17993b7 2390 goto err_sg;
e2273302 2391 }
6c085a72 2392 }
871dfbd6
CW
2393 if (!i ||
2394 sg->length >= max_segment ||
2395 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2396 if (i)
2397 sg = sg_next(sg);
2398 st->nents++;
2399 sg_set_page(sg, page, PAGE_SIZE, 0);
2400 } else {
2401 sg->length += PAGE_SIZE;
2402 }
2403 last_pfn = page_to_pfn(page);
3bbbe706
DV
2404
2405 /* Check that the i965g/gm workaround works. */
2406 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2407 }
871dfbd6 2408 if (sg) /* loop terminated early; short sg table */
426729dc 2409 sg_mark_end(sg);
74ce6b6c 2410
0c40ce13
TU
2411 /* Trim unused sg entries to avoid wasting memory. */
2412 i915_sg_trim(st);
2413
03ac84f1 2414 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302
ID
2415 if (ret)
2416 goto err_pages;
2417
6dacfd2f 2418 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2419 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2420
03ac84f1 2421 return st;
e5281ccd 2422
b17993b7 2423err_sg:
90797e6d 2424 sg_mark_end(sg);
b17993b7 2425err_pages:
85d1225e
DG
2426 for_each_sgt_page(page, sgt_iter, st)
2427 put_page(page);
9da3da66
CW
2428 sg_free_table(st);
2429 kfree(st);
0820baf3
CW
2430
2431 /* shmemfs first checks if there is enough memory to allocate the page
2432 * and reports ENOSPC should there be insufficient, along with the usual
2433 * ENOMEM for a genuine allocation failure.
2434 *
2435 * We use ENOSPC in our driver to mean that we have run out of aperture
2436 * space and so want to translate the error from shmemfs back to our
2437 * usual understanding of ENOMEM.
2438 */
e2273302
ID
2439 if (ret == -ENOSPC)
2440 ret = -ENOMEM;
2441
03ac84f1
CW
2442 return ERR_PTR(ret);
2443}
2444
2445void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2446 struct sg_table *pages)
2447{
1233e2db 2448 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2449
2450 obj->mm.get_page.sg_pos = pages->sgl;
2451 obj->mm.get_page.sg_idx = 0;
2452
2453 obj->mm.pages = pages;
2c3a3f44
CW
2454
2455 if (i915_gem_object_is_tiled(obj) &&
2456 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2457 GEM_BUG_ON(obj->mm.quirked);
2458 __i915_gem_object_pin_pages(obj);
2459 obj->mm.quirked = true;
2460 }
03ac84f1
CW
2461}
2462
2463static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2464{
2465 struct sg_table *pages;
2466
2c3a3f44
CW
2467 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2468
03ac84f1
CW
2469 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2470 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2471 return -EFAULT;
2472 }
2473
2474 pages = obj->ops->get_pages(obj);
2475 if (unlikely(IS_ERR(pages)))
2476 return PTR_ERR(pages);
2477
2478 __i915_gem_object_set_pages(obj, pages);
2479 return 0;
673a394b
EA
2480}
2481
37e680a1 2482/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2483 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2484 * multiple times before they are released by a single call to
1233e2db 2485 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2486 * either as a result of memory pressure (reaping pages under the shrinker)
2487 * or as the object is itself released.
2488 */
a4f5ea64 2489int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2490{
03ac84f1 2491 int err;
37e680a1 2492
1233e2db
CW
2493 err = mutex_lock_interruptible(&obj->mm.lock);
2494 if (err)
2495 return err;
4c7d62c6 2496
2c3a3f44
CW
2497 if (unlikely(!obj->mm.pages)) {
2498 err = ____i915_gem_object_get_pages(obj);
2499 if (err)
2500 goto unlock;
37e680a1 2501
2c3a3f44
CW
2502 smp_mb__before_atomic();
2503 }
2504 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2505
1233e2db
CW
2506unlock:
2507 mutex_unlock(&obj->mm.lock);
03ac84f1 2508 return err;
673a394b
EA
2509}
2510
dd6034c6 2511/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2512static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2513 enum i915_map_type type)
dd6034c6
DG
2514{
2515 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2516 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2517 struct sgt_iter sgt_iter;
2518 struct page *page;
b338fa47
DG
2519 struct page *stack_pages[32];
2520 struct page **pages = stack_pages;
dd6034c6 2521 unsigned long i = 0;
d31d7cb1 2522 pgprot_t pgprot;
dd6034c6
DG
2523 void *addr;
2524
2525 /* A single page can always be kmapped */
d31d7cb1 2526 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2527 return kmap(sg_page(sgt->sgl));
2528
b338fa47
DG
2529 if (n_pages > ARRAY_SIZE(stack_pages)) {
2530 /* Too big for stack -- allocate temporary array instead */
2531 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2532 if (!pages)
2533 return NULL;
2534 }
dd6034c6 2535
85d1225e
DG
2536 for_each_sgt_page(page, sgt_iter, sgt)
2537 pages[i++] = page;
dd6034c6
DG
2538
2539 /* Check that we have the expected number of pages */
2540 GEM_BUG_ON(i != n_pages);
2541
d31d7cb1
CW
2542 switch (type) {
2543 case I915_MAP_WB:
2544 pgprot = PAGE_KERNEL;
2545 break;
2546 case I915_MAP_WC:
2547 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2548 break;
2549 }
2550 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2551
b338fa47
DG
2552 if (pages != stack_pages)
2553 drm_free_large(pages);
dd6034c6
DG
2554
2555 return addr;
2556}
2557
2558/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2559void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2560 enum i915_map_type type)
0a798eb9 2561{
d31d7cb1
CW
2562 enum i915_map_type has_type;
2563 bool pinned;
2564 void *ptr;
0a798eb9
CW
2565 int ret;
2566
d31d7cb1 2567 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2568
1233e2db 2569 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2570 if (ret)
2571 return ERR_PTR(ret);
2572
1233e2db
CW
2573 pinned = true;
2574 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2575 if (unlikely(!obj->mm.pages)) {
2576 ret = ____i915_gem_object_get_pages(obj);
2577 if (ret)
2578 goto err_unlock;
1233e2db 2579
2c3a3f44
CW
2580 smp_mb__before_atomic();
2581 }
2582 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2583 pinned = false;
2584 }
2585 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2586
a4f5ea64 2587 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2588 if (ptr && has_type != type) {
2589 if (pinned) {
2590 ret = -EBUSY;
1233e2db 2591 goto err_unpin;
0a798eb9 2592 }
d31d7cb1
CW
2593
2594 if (is_vmalloc_addr(ptr))
2595 vunmap(ptr);
2596 else
2597 kunmap(kmap_to_page(ptr));
2598
a4f5ea64 2599 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2600 }
2601
d31d7cb1
CW
2602 if (!ptr) {
2603 ptr = i915_gem_object_map(obj, type);
2604 if (!ptr) {
2605 ret = -ENOMEM;
1233e2db 2606 goto err_unpin;
d31d7cb1
CW
2607 }
2608
a4f5ea64 2609 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2610 }
2611
1233e2db
CW
2612out_unlock:
2613 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2614 return ptr;
2615
1233e2db
CW
2616err_unpin:
2617 atomic_dec(&obj->mm.pages_pin_count);
2618err_unlock:
2619 ptr = ERR_PTR(ret);
2620 goto out_unlock;
0a798eb9
CW
2621}
2622
7b4d3a16 2623static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2624{
44e2c070 2625 unsigned long elapsed;
be62acb4 2626
44e2c070 2627 if (ctx->hang_stats.banned)
be62acb4
MK
2628 return true;
2629
7b4d3a16 2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2631 if (ctx->hang_stats.ban_period_seconds &&
2632 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2633 DRM_DEBUG("context hanging too fast, banning!\n");
2634 return true;
be62acb4
MK
2635 }
2636
2637 return false;
2638}
2639
7b4d3a16 2640static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2641 const bool guilty)
aa60c664 2642{
7b4d3a16 2643 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2644
2645 if (guilty) {
7b4d3a16 2646 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2647 hs->batch_active++;
2648 hs->guilty_ts = get_seconds();
2649 } else {
2650 hs->batch_pending++;
aa60c664
MK
2651 }
2652}
2653
8d9fc7fd 2654struct drm_i915_gem_request *
0bc40be8 2655i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2656{
4db080f9
CW
2657 struct drm_i915_gem_request *request;
2658
f69a02c9
CW
2659 /* We are called by the error capture and reset at a random
2660 * point in time. In particular, note that neither is crucially
2661 * ordered with an interrupt. After a hang, the GPU is dead and we
2662 * assume that no more writes can happen (we waited long enough for
2663 * all writes that were in transaction to be flushed) - adding an
2664 * extra delay for a recent interrupt is pointless. Hence, we do
2665 * not need an engine->irq_seqno_barrier() before the seqno reads.
2666 */
73cb9701 2667 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2668 if (__i915_gem_request_completed(request))
4db080f9 2669 continue;
aa60c664 2670
b6b0fac0 2671 return request;
4db080f9 2672 }
b6b0fac0
MK
2673
2674 return NULL;
2675}
2676
821ed7df
CW
2677static void reset_request(struct drm_i915_gem_request *request)
2678{
2679 void *vaddr = request->ring->vaddr;
2680 u32 head;
2681
2682 /* As this request likely depends on state from the lost
2683 * context, clear out all the user operations leaving the
2684 * breadcrumb at the end (so we get the fence notifications).
2685 */
2686 head = request->head;
2687 if (request->postfix < head) {
2688 memset(vaddr + head, 0, request->ring->size - head);
2689 head = 0;
2690 }
2691 memset(vaddr + head, 0, request->postfix - head);
2692}
2693
2694static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2695{
2696 struct drm_i915_gem_request *request;
821ed7df 2697 struct i915_gem_context *incomplete_ctx;
80b204bc 2698 struct intel_timeline *timeline;
b6b0fac0
MK
2699 bool ring_hung;
2700
821ed7df
CW
2701 if (engine->irq_seqno_barrier)
2702 engine->irq_seqno_barrier(engine);
2703
0bc40be8 2704 request = i915_gem_find_active_request(engine);
821ed7df 2705 if (!request)
b6b0fac0
MK
2706 return;
2707
0bc40be8 2708 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
77c60701
CW
2709 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2710 ring_hung = false;
2711
7b4d3a16 2712 i915_set_reset_status(request->ctx, ring_hung);
821ed7df
CW
2713 if (!ring_hung)
2714 return;
2715
2716 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
65e4760e 2717 engine->name, request->global_seqno);
821ed7df
CW
2718
2719 /* Setup the CS to resume from the breadcrumb of the hung request */
2720 engine->reset_hw(engine, request);
2721
2722 /* Users of the default context do not rely on logical state
2723 * preserved between batches. They have to emit full state on
2724 * every batch and so it is safe to execute queued requests following
2725 * the hang.
2726 *
2727 * Other contexts preserve state, now corrupt. We want to skip all
2728 * queued requests that reference the corrupt context.
2729 */
2730 incomplete_ctx = request->ctx;
2731 if (i915_gem_context_is_default(incomplete_ctx))
2732 return;
2733
73cb9701 2734 list_for_each_entry_continue(request, &engine->timeline->requests, link)
821ed7df
CW
2735 if (request->ctx == incomplete_ctx)
2736 reset_request(request);
80b204bc
CW
2737
2738 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2739 list_for_each_entry(request, &timeline->requests, link)
2740 reset_request(request);
4db080f9 2741}
aa60c664 2742
821ed7df 2743void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2744{
821ed7df 2745 struct intel_engine_cs *engine;
3b3f1650 2746 enum intel_engine_id id;
608c1a52 2747
4c7d62c6
CW
2748 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2749
821ed7df
CW
2750 i915_gem_retire_requests(dev_priv);
2751
3b3f1650 2752 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2753 i915_gem_reset_engine(engine);
2754
4362f4f6 2755 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2756
2757 if (dev_priv->gt.awake) {
2758 intel_sanitize_gt_powersave(dev_priv);
2759 intel_enable_gt_powersave(dev_priv);
2760 if (INTEL_GEN(dev_priv) >= 6)
2761 gen6_rps_busy(dev_priv);
2762 }
821ed7df
CW
2763}
2764
2765static void nop_submit_request(struct drm_i915_gem_request *request)
2766{
ce1135c7
CW
2767 i915_gem_request_submit(request);
2768 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
2769}
2770
2771static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2772{
2773 engine->submit_request = nop_submit_request;
70c2a24d 2774
c4b0930b
CW
2775 /* Mark all pending requests as complete so that any concurrent
2776 * (lockless) lookup doesn't try and wait upon the request as we
2777 * reset it.
2778 */
73cb9701 2779 intel_engine_init_global_seqno(engine,
cb399eab 2780 intel_engine_last_submit(engine));
c4b0930b 2781
dcb4c12a
OM
2782 /*
2783 * Clear the execlists queue up before freeing the requests, as those
2784 * are the ones that keep the context and ringbuffer backing objects
2785 * pinned in place.
2786 */
dcb4c12a 2787
7de1691a 2788 if (i915.enable_execlists) {
663f71e7
CW
2789 unsigned long flags;
2790
2791 spin_lock_irqsave(&engine->timeline->lock, flags);
2792
70c2a24d
CW
2793 i915_gem_request_put(engine->execlist_port[0].request);
2794 i915_gem_request_put(engine->execlist_port[1].request);
2795 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2796 engine->execlist_queue = RB_ROOT;
2797 engine->execlist_first = NULL;
663f71e7
CW
2798
2799 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2800 }
673a394b
EA
2801}
2802
821ed7df 2803void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
673a394b 2804{
e2f80391 2805 struct intel_engine_cs *engine;
3b3f1650 2806 enum intel_engine_id id;
673a394b 2807
821ed7df
CW
2808 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2809 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2810
821ed7df 2811 i915_gem_context_lost(dev_priv);
3b3f1650 2812 for_each_engine(engine, dev_priv, id)
821ed7df 2813 i915_gem_cleanup_engine(engine);
b913b33c 2814 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2815
821ed7df 2816 i915_gem_retire_requests(dev_priv);
673a394b
EA
2817}
2818
75ef9da2 2819static void
673a394b
EA
2820i915_gem_retire_work_handler(struct work_struct *work)
2821{
b29c19b6 2822 struct drm_i915_private *dev_priv =
67d97da3 2823 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2824 struct drm_device *dev = &dev_priv->drm;
673a394b 2825
891b48cf 2826 /* Come back later if the device is busy... */
b29c19b6 2827 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2828 i915_gem_retire_requests(dev_priv);
b29c19b6 2829 mutex_unlock(&dev->struct_mutex);
673a394b 2830 }
67d97da3
CW
2831
2832 /* Keep the retire handler running until we are finally idle.
2833 * We do not need to do this test under locking as in the worst-case
2834 * we queue the retire worker once too often.
2835 */
c9615613
CW
2836 if (READ_ONCE(dev_priv->gt.awake)) {
2837 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2838 queue_delayed_work(dev_priv->wq,
2839 &dev_priv->gt.retire_work,
bcb45086 2840 round_jiffies_up_relative(HZ));
c9615613 2841 }
b29c19b6 2842}
0a58705b 2843
b29c19b6
CW
2844static void
2845i915_gem_idle_work_handler(struct work_struct *work)
2846{
2847 struct drm_i915_private *dev_priv =
67d97da3 2848 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2849 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2850 struct intel_engine_cs *engine;
3b3f1650 2851 enum intel_engine_id id;
67d97da3
CW
2852 bool rearm_hangcheck;
2853
2854 if (!READ_ONCE(dev_priv->gt.awake))
2855 return;
2856
0cb5670b
ID
2857 /*
2858 * Wait for last execlists context complete, but bail out in case a
2859 * new request is submitted.
2860 */
2861 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2862 intel_execlists_idle(dev_priv), 10);
2863
28176ef4 2864 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2865 return;
2866
2867 rearm_hangcheck =
2868 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2869
2870 if (!mutex_trylock(&dev->struct_mutex)) {
2871 /* Currently busy, come back later */
2872 mod_delayed_work(dev_priv->wq,
2873 &dev_priv->gt.idle_work,
2874 msecs_to_jiffies(50));
2875 goto out_rearm;
2876 }
2877
93c97dc1
ID
2878 /*
2879 * New request retired after this work handler started, extend active
2880 * period until next instance of the work.
2881 */
2882 if (work_pending(work))
2883 goto out_unlock;
2884
28176ef4 2885 if (dev_priv->gt.active_requests)
67d97da3 2886 goto out_unlock;
b29c19b6 2887
0cb5670b
ID
2888 if (wait_for(intel_execlists_idle(dev_priv), 10))
2889 DRM_ERROR("Timeout waiting for engines to idle\n");
2890
3b3f1650 2891 for_each_engine(engine, dev_priv, id)
67d97da3 2892 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2893
67d97da3
CW
2894 GEM_BUG_ON(!dev_priv->gt.awake);
2895 dev_priv->gt.awake = false;
2896 rearm_hangcheck = false;
30ecad77 2897
67d97da3
CW
2898 if (INTEL_GEN(dev_priv) >= 6)
2899 gen6_rps_idle(dev_priv);
2900 intel_runtime_pm_put(dev_priv);
2901out_unlock:
2902 mutex_unlock(&dev->struct_mutex);
b29c19b6 2903
67d97da3
CW
2904out_rearm:
2905 if (rearm_hangcheck) {
2906 GEM_BUG_ON(!dev_priv->gt.awake);
2907 i915_queue_hangcheck(dev_priv);
35c94185 2908 }
673a394b
EA
2909}
2910
b1f788c6
CW
2911void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2912{
2913 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2914 struct drm_i915_file_private *fpriv = file->driver_priv;
2915 struct i915_vma *vma, *vn;
2916
2917 mutex_lock(&obj->base.dev->struct_mutex);
2918 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2919 if (vma->vm->file == fpriv)
2920 i915_vma_close(vma);
f8a7fde4
CW
2921
2922 if (i915_gem_object_is_active(obj) &&
2923 !i915_gem_object_has_active_reference(obj)) {
2924 i915_gem_object_set_active_reference(obj);
2925 i915_gem_object_get(obj);
2926 }
b1f788c6
CW
2927 mutex_unlock(&obj->base.dev->struct_mutex);
2928}
2929
e95433c7
CW
2930static unsigned long to_wait_timeout(s64 timeout_ns)
2931{
2932 if (timeout_ns < 0)
2933 return MAX_SCHEDULE_TIMEOUT;
2934
2935 if (timeout_ns == 0)
2936 return 0;
2937
2938 return nsecs_to_jiffies_timeout(timeout_ns);
2939}
2940
23ba4fd0
BW
2941/**
2942 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2943 * @dev: drm device pointer
2944 * @data: ioctl data blob
2945 * @file: drm file pointer
23ba4fd0
BW
2946 *
2947 * Returns 0 if successful, else an error is returned with the remaining time in
2948 * the timeout parameter.
2949 * -ETIME: object is still busy after timeout
2950 * -ERESTARTSYS: signal interrupted the wait
2951 * -ENONENT: object doesn't exist
2952 * Also possible, but rare:
2953 * -EAGAIN: GPU wedged
2954 * -ENOMEM: damn
2955 * -ENODEV: Internal IRQ fail
2956 * -E?: The add request failed
2957 *
2958 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2959 * non-zero timeout parameter the wait ioctl will wait for the given number of
2960 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2961 * without holding struct_mutex the object may become re-busied before this
2962 * function completes. A similar but shorter * race condition exists in the busy
2963 * ioctl
2964 */
2965int
2966i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2967{
2968 struct drm_i915_gem_wait *args = data;
2969 struct drm_i915_gem_object *obj;
e95433c7
CW
2970 ktime_t start;
2971 long ret;
23ba4fd0 2972
11b5d511
DV
2973 if (args->flags != 0)
2974 return -EINVAL;
2975
03ac0642 2976 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2977 if (!obj)
23ba4fd0 2978 return -ENOENT;
23ba4fd0 2979
e95433c7
CW
2980 start = ktime_get();
2981
2982 ret = i915_gem_object_wait(obj,
2983 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2984 to_wait_timeout(args->timeout_ns),
2985 to_rps_client(file));
2986
2987 if (args->timeout_ns > 0) {
2988 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2989 if (args->timeout_ns < 0)
2990 args->timeout_ns = 0;
b4716185
CW
2991 }
2992
f0cd5182 2993 i915_gem_object_put(obj);
ff865885 2994 return ret;
23ba4fd0
BW
2995}
2996
73cb9701 2997static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 2998{
73cb9701 2999 int ret, i;
4df2faf4 3000
73cb9701
CW
3001 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3002 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3003 if (ret)
3004 return ret;
3005 }
62e63007 3006
73cb9701
CW
3007 return 0;
3008}
3009
3010int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3011{
73cb9701
CW
3012 int ret;
3013
9caa34aa
CW
3014 if (flags & I915_WAIT_LOCKED) {
3015 struct i915_gem_timeline *tl;
3016
3017 lockdep_assert_held(&i915->drm.struct_mutex);
3018
3019 list_for_each_entry(tl, &i915->gt.timelines, link) {
3020 ret = wait_for_timeline(tl, flags);
3021 if (ret)
3022 return ret;
3023 }
3024 } else {
3025 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3026 if (ret)
3027 return ret;
3028 }
4df2faf4 3029
8a1a49f9 3030 return 0;
4df2faf4
DV
3031}
3032
d0da48cf
CW
3033void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3034 bool force)
673a394b 3035{
673a394b
EA
3036 /* If we don't have a page list set up, then we're not pinned
3037 * to GPU, and we can ignore the cache flush because it'll happen
3038 * again at bind time.
3039 */
a4f5ea64 3040 if (!obj->mm.pages)
d0da48cf 3041 return;
673a394b 3042
769ce464
ID
3043 /*
3044 * Stolen memory is always coherent with the GPU as it is explicitly
3045 * marked as wc by the system, or the system is cache-coherent.
3046 */
6a2c4232 3047 if (obj->stolen || obj->phys_handle)
d0da48cf 3048 return;
769ce464 3049
9c23f7fc
CW
3050 /* If the GPU is snooping the contents of the CPU cache,
3051 * we do not need to manually clear the CPU cache lines. However,
3052 * the caches are only snooped when the render cache is
3053 * flushed/invalidated. As we always have to emit invalidations
3054 * and flushes when moving into and out of the RENDER domain, correct
3055 * snooping behaviour occurs naturally as the result of our domain
3056 * tracking.
3057 */
0f71979a
CW
3058 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3059 obj->cache_dirty = true;
d0da48cf 3060 return;
0f71979a 3061 }
9c23f7fc 3062
1c5d22f7 3063 trace_i915_gem_object_clflush(obj);
a4f5ea64 3064 drm_clflush_sg(obj->mm.pages);
0f71979a 3065 obj->cache_dirty = false;
e47c68e9
EA
3066}
3067
3068/** Flushes the GTT write domain for the object if it's dirty. */
3069static void
05394f39 3070i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3071{
3b5724d7 3072 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3073
05394f39 3074 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3075 return;
3076
63256ec5 3077 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3078 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3079 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3080 *
3081 * However, we do have to enforce the order so that all writes through
3082 * the GTT land before any writes to the device, such as updates to
3083 * the GATT itself.
3b5724d7
CW
3084 *
3085 * We also have to wait a bit for the writes to land from the GTT.
3086 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3087 * timing. This issue has only been observed when switching quickly
3088 * between GTT writes and CPU reads from inside the kernel on recent hw,
3089 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3090 * system agents we cannot reproduce this behaviour).
e47c68e9 3091 */
63256ec5 3092 wmb();
3b5724d7 3093 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3094 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3095
d243ad82 3096 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3097
b0dc465f 3098 obj->base.write_domain = 0;
1c5d22f7 3099 trace_i915_gem_object_change_domain(obj,
05394f39 3100 obj->base.read_domains,
b0dc465f 3101 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3102}
3103
3104/** Flushes the CPU write domain for the object if it's dirty. */
3105static void
e62b59e4 3106i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3107{
05394f39 3108 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3109 return;
3110
d0da48cf 3111 i915_gem_clflush_object(obj, obj->pin_display);
de152b62 3112 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3113
b0dc465f 3114 obj->base.write_domain = 0;
1c5d22f7 3115 trace_i915_gem_object_change_domain(obj,
05394f39 3116 obj->base.read_domains,
b0dc465f 3117 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3118}
3119
2ef7eeaa
EA
3120/**
3121 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3122 * @obj: object to act on
3123 * @write: ask for write access or read only
2ef7eeaa
EA
3124 *
3125 * This function returns when the move is complete, including waiting on
3126 * flushes to occur.
3127 */
79e53945 3128int
2021746e 3129i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3130{
1c5d22f7 3131 uint32_t old_write_domain, old_read_domains;
e47c68e9 3132 int ret;
2ef7eeaa 3133
e95433c7 3134 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3135
e95433c7
CW
3136 ret = i915_gem_object_wait(obj,
3137 I915_WAIT_INTERRUPTIBLE |
3138 I915_WAIT_LOCKED |
3139 (write ? I915_WAIT_ALL : 0),
3140 MAX_SCHEDULE_TIMEOUT,
3141 NULL);
88241785
CW
3142 if (ret)
3143 return ret;
3144
c13d87ea
CW
3145 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3146 return 0;
3147
43566ded
CW
3148 /* Flush and acquire obj->pages so that we are coherent through
3149 * direct access in memory with previous cached writes through
3150 * shmemfs and that our cache domain tracking remains valid.
3151 * For example, if the obj->filp was moved to swap without us
3152 * being notified and releasing the pages, we would mistakenly
3153 * continue to assume that the obj remained out of the CPU cached
3154 * domain.
3155 */
a4f5ea64 3156 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3157 if (ret)
3158 return ret;
3159
e62b59e4 3160 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3161
d0a57789
CW
3162 /* Serialise direct access to this object with the barriers for
3163 * coherent writes from the GPU, by effectively invalidating the
3164 * GTT domain upon first access.
3165 */
3166 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3167 mb();
3168
05394f39
CW
3169 old_write_domain = obj->base.write_domain;
3170 old_read_domains = obj->base.read_domains;
1c5d22f7 3171
e47c68e9
EA
3172 /* It should now be out of any other write domains, and we can update
3173 * the domain values for our changes.
3174 */
40e62d5d 3175 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3176 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3177 if (write) {
05394f39
CW
3178 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3179 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3180 obj->mm.dirty = true;
2ef7eeaa
EA
3181 }
3182
1c5d22f7
CW
3183 trace_i915_gem_object_change_domain(obj,
3184 old_read_domains,
3185 old_write_domain);
3186
a4f5ea64 3187 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3188 return 0;
3189}
3190
ef55f92a
CW
3191/**
3192 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3193 * @obj: object to act on
3194 * @cache_level: new cache level to set for the object
ef55f92a
CW
3195 *
3196 * After this function returns, the object will be in the new cache-level
3197 * across all GTT and the contents of the backing storage will be coherent,
3198 * with respect to the new cache-level. In order to keep the backing storage
3199 * coherent for all users, we only allow a single cache level to be set
3200 * globally on the object and prevent it from being changed whilst the
3201 * hardware is reading from the object. That is if the object is currently
3202 * on the scanout it will be set to uncached (or equivalent display
3203 * cache coherency) and all non-MOCS GPU access will also be uncached so
3204 * that all direct access to the scanout remains coherent.
3205 */
e4ffd173
CW
3206int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3207 enum i915_cache_level cache_level)
3208{
aa653a68 3209 struct i915_vma *vma;
a6a7cc4b 3210 int ret;
e4ffd173 3211
4c7d62c6
CW
3212 lockdep_assert_held(&obj->base.dev->struct_mutex);
3213
e4ffd173 3214 if (obj->cache_level == cache_level)
a6a7cc4b 3215 return 0;
e4ffd173 3216
ef55f92a
CW
3217 /* Inspect the list of currently bound VMA and unbind any that would
3218 * be invalid given the new cache-level. This is principally to
3219 * catch the issue of the CS prefetch crossing page boundaries and
3220 * reading an invalid PTE on older architectures.
3221 */
aa653a68
CW
3222restart:
3223 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3224 if (!drm_mm_node_allocated(&vma->node))
3225 continue;
3226
20dfbde4 3227 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3228 DRM_DEBUG("can not change the cache level of pinned objects\n");
3229 return -EBUSY;
3230 }
3231
aa653a68
CW
3232 if (i915_gem_valid_gtt_space(vma, cache_level))
3233 continue;
3234
3235 ret = i915_vma_unbind(vma);
3236 if (ret)
3237 return ret;
3238
3239 /* As unbinding may affect other elements in the
3240 * obj->vma_list (due to side-effects from retiring
3241 * an active vma), play safe and restart the iterator.
3242 */
3243 goto restart;
42d6ab48
CW
3244 }
3245
ef55f92a
CW
3246 /* We can reuse the existing drm_mm nodes but need to change the
3247 * cache-level on the PTE. We could simply unbind them all and
3248 * rebind with the correct cache-level on next use. However since
3249 * we already have a valid slot, dma mapping, pages etc, we may as
3250 * rewrite the PTE in the belief that doing so tramples upon less
3251 * state and so involves less work.
3252 */
15717de2 3253 if (obj->bind_count) {
ef55f92a
CW
3254 /* Before we change the PTE, the GPU must not be accessing it.
3255 * If we wait upon the object, we know that all the bound
3256 * VMA are no longer active.
3257 */
e95433c7
CW
3258 ret = i915_gem_object_wait(obj,
3259 I915_WAIT_INTERRUPTIBLE |
3260 I915_WAIT_LOCKED |
3261 I915_WAIT_ALL,
3262 MAX_SCHEDULE_TIMEOUT,
3263 NULL);
e4ffd173
CW
3264 if (ret)
3265 return ret;
3266
0031fb96
TU
3267 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3268 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3269 /* Access to snoopable pages through the GTT is
3270 * incoherent and on some machines causes a hard
3271 * lockup. Relinquish the CPU mmaping to force
3272 * userspace to refault in the pages and we can
3273 * then double check if the GTT mapping is still
3274 * valid for that pointer access.
3275 */
3276 i915_gem_release_mmap(obj);
3277
3278 /* As we no longer need a fence for GTT access,
3279 * we can relinquish it now (and so prevent having
3280 * to steal a fence from someone else on the next
3281 * fence request). Note GPU activity would have
3282 * dropped the fence as all snoopable access is
3283 * supposed to be linear.
3284 */
49ef5294
CW
3285 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3286 ret = i915_vma_put_fence(vma);
3287 if (ret)
3288 return ret;
3289 }
ef55f92a
CW
3290 } else {
3291 /* We either have incoherent backing store and
3292 * so no GTT access or the architecture is fully
3293 * coherent. In such cases, existing GTT mmaps
3294 * ignore the cache bit in the PTE and we can
3295 * rewrite it without confusing the GPU or having
3296 * to force userspace to fault back in its mmaps.
3297 */
e4ffd173
CW
3298 }
3299
1c7f4bca 3300 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3301 if (!drm_mm_node_allocated(&vma->node))
3302 continue;
3303
3304 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3305 if (ret)
3306 return ret;
3307 }
e4ffd173
CW
3308 }
3309
a6a7cc4b
CW
3310 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3311 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3312 obj->cache_dirty = true;
3313
1c7f4bca 3314 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3315 vma->node.color = cache_level;
3316 obj->cache_level = cache_level;
3317
e4ffd173
CW
3318 return 0;
3319}
3320
199adf40
BW
3321int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322 struct drm_file *file)
e6994aee 3323{
199adf40 3324 struct drm_i915_gem_caching *args = data;
e6994aee 3325 struct drm_i915_gem_object *obj;
fbbd37b3 3326 int err = 0;
e6994aee 3327
fbbd37b3
CW
3328 rcu_read_lock();
3329 obj = i915_gem_object_lookup_rcu(file, args->handle);
3330 if (!obj) {
3331 err = -ENOENT;
3332 goto out;
3333 }
e6994aee 3334
651d794f
CW
3335 switch (obj->cache_level) {
3336 case I915_CACHE_LLC:
3337 case I915_CACHE_L3_LLC:
3338 args->caching = I915_CACHING_CACHED;
3339 break;
3340
4257d3ba
CW
3341 case I915_CACHE_WT:
3342 args->caching = I915_CACHING_DISPLAY;
3343 break;
3344
651d794f
CW
3345 default:
3346 args->caching = I915_CACHING_NONE;
3347 break;
3348 }
fbbd37b3
CW
3349out:
3350 rcu_read_unlock();
3351 return err;
e6994aee
CW
3352}
3353
199adf40
BW
3354int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3355 struct drm_file *file)
e6994aee 3356{
9c870d03 3357 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3358 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3359 struct drm_i915_gem_object *obj;
3360 enum i915_cache_level level;
3361 int ret;
3362
199adf40
BW
3363 switch (args->caching) {
3364 case I915_CACHING_NONE:
e6994aee
CW
3365 level = I915_CACHE_NONE;
3366 break;
199adf40 3367 case I915_CACHING_CACHED:
e5756c10
ID
3368 /*
3369 * Due to a HW issue on BXT A stepping, GPU stores via a
3370 * snooped mapping may leave stale data in a corresponding CPU
3371 * cacheline, whereas normally such cachelines would get
3372 * invalidated.
3373 */
9c870d03 3374 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3375 return -ENODEV;
3376
e6994aee
CW
3377 level = I915_CACHE_LLC;
3378 break;
4257d3ba 3379 case I915_CACHING_DISPLAY:
9c870d03 3380 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3381 break;
e6994aee
CW
3382 default:
3383 return -EINVAL;
3384 }
3385
3bc2913e
BW
3386 ret = i915_mutex_lock_interruptible(dev);
3387 if (ret)
9c870d03 3388 return ret;
3bc2913e 3389
03ac0642
CW
3390 obj = i915_gem_object_lookup(file, args->handle);
3391 if (!obj) {
e6994aee
CW
3392 ret = -ENOENT;
3393 goto unlock;
3394 }
3395
3396 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3397 i915_gem_object_put(obj);
e6994aee
CW
3398unlock:
3399 mutex_unlock(&dev->struct_mutex);
3400 return ret;
3401}
3402
b9241ea3 3403/*
2da3b9b9
CW
3404 * Prepare buffer for display plane (scanout, cursors, etc).
3405 * Can be called from an uninterruptible phase (modesetting) and allows
3406 * any flushes to be pipelined (for pageflips).
b9241ea3 3407 */
058d88c4 3408struct i915_vma *
2da3b9b9
CW
3409i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3410 u32 alignment,
e6617330 3411 const struct i915_ggtt_view *view)
b9241ea3 3412{
058d88c4 3413 struct i915_vma *vma;
2da3b9b9 3414 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3415 int ret;
3416
4c7d62c6
CW
3417 lockdep_assert_held(&obj->base.dev->struct_mutex);
3418
cc98b413
CW
3419 /* Mark the pin_display early so that we account for the
3420 * display coherency whilst setting up the cache domains.
3421 */
8a0c39b1 3422 obj->pin_display++;
cc98b413 3423
a7ef0640
EA
3424 /* The display engine is not coherent with the LLC cache on gen6. As
3425 * a result, we make sure that the pinning that is about to occur is
3426 * done with uncached PTEs. This is lowest common denominator for all
3427 * chipsets.
3428 *
3429 * However for gen6+, we could do better by using the GFDT bit instead
3430 * of uncaching, which would allow us to flush all the LLC-cached data
3431 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3432 */
651d794f 3433 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3434 HAS_WT(to_i915(obj->base.dev)) ?
3435 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3436 if (ret) {
3437 vma = ERR_PTR(ret);
cc98b413 3438 goto err_unpin_display;
058d88c4 3439 }
a7ef0640 3440
2da3b9b9
CW
3441 /* As the user may map the buffer once pinned in the display plane
3442 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3443 * always use map_and_fenceable for all scanout buffers. However,
3444 * it may simply be too big to fit into mappable, in which case
3445 * put it anyway and hope that userspace can cope (but always first
3446 * try to preserve the existing ABI).
2da3b9b9 3447 */
2efb813d
CW
3448 vma = ERR_PTR(-ENOSPC);
3449 if (view->type == I915_GGTT_VIEW_NORMAL)
3450 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3451 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3452 if (IS_ERR(vma)) {
3453 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3454 unsigned int flags;
3455
3456 /* Valleyview is definitely limited to scanning out the first
3457 * 512MiB. Lets presume this behaviour was inherited from the
3458 * g4x display engine and that all earlier gen are similarly
3459 * limited. Testing suggests that it is a little more
3460 * complicated than this. For example, Cherryview appears quite
3461 * happy to scanout from anywhere within its global aperture.
3462 */
3463 flags = 0;
3464 if (HAS_GMCH_DISPLAY(i915))
3465 flags = PIN_MAPPABLE;
3466 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3467 }
058d88c4 3468 if (IS_ERR(vma))
cc98b413 3469 goto err_unpin_display;
2da3b9b9 3470
d8923dcf
CW
3471 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3472
a6a7cc4b
CW
3473 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3474 if (obj->cache_dirty) {
3475 i915_gem_clflush_object(obj, true);
3476 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3477 }
b118c1e3 3478
2da3b9b9 3479 old_write_domain = obj->base.write_domain;
05394f39 3480 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3481
3482 /* It should now be out of any other write domains, and we can update
3483 * the domain values for our changes.
3484 */
e5f1d962 3485 obj->base.write_domain = 0;
05394f39 3486 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3487
3488 trace_i915_gem_object_change_domain(obj,
3489 old_read_domains,
2da3b9b9 3490 old_write_domain);
b9241ea3 3491
058d88c4 3492 return vma;
cc98b413
CW
3493
3494err_unpin_display:
8a0c39b1 3495 obj->pin_display--;
058d88c4 3496 return vma;
cc98b413
CW
3497}
3498
3499void
058d88c4 3500i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3501{
4c7d62c6
CW
3502 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3503
058d88c4 3504 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3505 return;
3506
d8923dcf
CW
3507 if (--vma->obj->pin_display == 0)
3508 vma->display_alignment = 0;
e6617330 3509
383d5823
CW
3510 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3511 if (!i915_vma_is_active(vma))
3512 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3513
058d88c4 3514 i915_vma_unpin(vma);
b9241ea3
ZW
3515}
3516
e47c68e9
EA
3517/**
3518 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3519 * @obj: object to act on
3520 * @write: requesting write or read-only access
e47c68e9
EA
3521 *
3522 * This function returns when the move is complete, including waiting on
3523 * flushes to occur.
3524 */
dabdfe02 3525int
919926ae 3526i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3527{
1c5d22f7 3528 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3529 int ret;
3530
e95433c7 3531 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3532
e95433c7
CW
3533 ret = i915_gem_object_wait(obj,
3534 I915_WAIT_INTERRUPTIBLE |
3535 I915_WAIT_LOCKED |
3536 (write ? I915_WAIT_ALL : 0),
3537 MAX_SCHEDULE_TIMEOUT,
3538 NULL);
88241785
CW
3539 if (ret)
3540 return ret;
3541
c13d87ea
CW
3542 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3543 return 0;
3544
e47c68e9 3545 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3546
05394f39
CW
3547 old_write_domain = obj->base.write_domain;
3548 old_read_domains = obj->base.read_domains;
1c5d22f7 3549
e47c68e9 3550 /* Flush the CPU cache if it's still invalid. */
05394f39 3551 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3552 i915_gem_clflush_object(obj, false);
2ef7eeaa 3553
05394f39 3554 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3555 }
3556
3557 /* It should now be out of any other write domains, and we can update
3558 * the domain values for our changes.
3559 */
40e62d5d 3560 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3561
3562 /* If we're writing through the CPU, then the GPU read domains will
3563 * need to be invalidated at next use.
3564 */
3565 if (write) {
05394f39
CW
3566 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3567 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3568 }
2ef7eeaa 3569
1c5d22f7
CW
3570 trace_i915_gem_object_change_domain(obj,
3571 old_read_domains,
3572 old_write_domain);
3573
2ef7eeaa
EA
3574 return 0;
3575}
3576
673a394b
EA
3577/* Throttle our rendering by waiting until the ring has completed our requests
3578 * emitted over 20 msec ago.
3579 *
b962442e
EA
3580 * Note that if we were to use the current jiffies each time around the loop,
3581 * we wouldn't escape the function with any frames outstanding if the time to
3582 * render a frame was over 20ms.
3583 *
673a394b
EA
3584 * This should get us reasonable parallelism between CPU and GPU but also
3585 * relatively low latency when blocking on a particular request to finish.
3586 */
40a5f0de 3587static int
f787a5f5 3588i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3589{
fac5e23e 3590 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3591 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3592 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3593 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3594 long ret;
93533c29 3595
f4457ae7
CW
3596 /* ABI: return -EIO if already wedged */
3597 if (i915_terminally_wedged(&dev_priv->gpu_error))
3598 return -EIO;
e110e8d6 3599
1c25595f 3600 spin_lock(&file_priv->mm.lock);
f787a5f5 3601 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3602 if (time_after_eq(request->emitted_jiffies, recent_enough))
3603 break;
40a5f0de 3604
fcfa423c
JH
3605 /*
3606 * Note that the request might not have been submitted yet.
3607 * In which case emitted_jiffies will be zero.
3608 */
3609 if (!request->emitted_jiffies)
3610 continue;
3611
54fb2411 3612 target = request;
b962442e 3613 }
ff865885 3614 if (target)
e8a261ea 3615 i915_gem_request_get(target);
1c25595f 3616 spin_unlock(&file_priv->mm.lock);
40a5f0de 3617
54fb2411 3618 if (target == NULL)
f787a5f5 3619 return 0;
2bc43b5c 3620
e95433c7
CW
3621 ret = i915_wait_request(target,
3622 I915_WAIT_INTERRUPTIBLE,
3623 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3624 i915_gem_request_put(target);
ff865885 3625
e95433c7 3626 return ret < 0 ? ret : 0;
40a5f0de
EA
3627}
3628
058d88c4 3629struct i915_vma *
ec7adb6e
JL
3630i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3631 const struct i915_ggtt_view *view,
91b2db6f 3632 u64 size,
2ffffd0f
CW
3633 u64 alignment,
3634 u64 flags)
ec7adb6e 3635{
ad16d2ed
CW
3636 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3637 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3638 struct i915_vma *vma;
3639 int ret;
72e96d64 3640
4c7d62c6
CW
3641 lockdep_assert_held(&obj->base.dev->struct_mutex);
3642
058d88c4 3643 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3644 if (IS_ERR(vma))
058d88c4 3645 return vma;
59bfa124
CW
3646
3647 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3648 if (flags & PIN_NONBLOCK &&
3649 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3650 return ERR_PTR(-ENOSPC);
59bfa124 3651
ad16d2ed
CW
3652 if (flags & PIN_MAPPABLE) {
3653 u32 fence_size;
3654
3655 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3656 i915_gem_object_get_tiling(obj));
3657 /* If the required space is larger than the available
3658 * aperture, we will not able to find a slot for the
3659 * object and unbinding the object now will be in
3660 * vain. Worse, doing so may cause us to ping-pong
3661 * the object in and out of the Global GTT and
3662 * waste a lot of cycles under the mutex.
3663 */
3664 if (fence_size > dev_priv->ggtt.mappable_end)
3665 return ERR_PTR(-E2BIG);
3666
3667 /* If NONBLOCK is set the caller is optimistically
3668 * trying to cache the full object within the mappable
3669 * aperture, and *must* have a fallback in place for
3670 * situations where we cannot bind the object. We
3671 * can be a little more lax here and use the fallback
3672 * more often to avoid costly migrations of ourselves
3673 * and other objects within the aperture.
3674 *
3675 * Half-the-aperture is used as a simple heuristic.
3676 * More interesting would to do search for a free
3677 * block prior to making the commitment to unbind.
3678 * That caters for the self-harm case, and with a
3679 * little more heuristics (e.g. NOFAULT, NOEVICT)
3680 * we could try to minimise harm to others.
3681 */
3682 if (flags & PIN_NONBLOCK &&
3683 fence_size > dev_priv->ggtt.mappable_end / 2)
3684 return ERR_PTR(-ENOSPC);
3685 }
3686
59bfa124
CW
3687 WARN(i915_vma_is_pinned(vma),
3688 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3689 " offset=%08x, req.alignment=%llx,"
3690 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3691 i915_ggtt_offset(vma), alignment,
59bfa124 3692 !!(flags & PIN_MAPPABLE),
05a20d09 3693 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3694 ret = i915_vma_unbind(vma);
3695 if (ret)
058d88c4 3696 return ERR_PTR(ret);
59bfa124
CW
3697 }
3698
058d88c4
CW
3699 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3700 if (ret)
3701 return ERR_PTR(ret);
ec7adb6e 3702
058d88c4 3703 return vma;
673a394b
EA
3704}
3705
edf6b76f 3706static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3707{
3708 /* Note that we could alias engines in the execbuf API, but
3709 * that would be very unwise as it prevents userspace from
3710 * fine control over engine selection. Ahem.
3711 *
3712 * This should be something like EXEC_MAX_ENGINE instead of
3713 * I915_NUM_ENGINES.
3714 */
3715 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3716 return 0x10000 << id;
3717}
3718
3719static __always_inline unsigned int __busy_write_id(unsigned int id)
3720{
70cb472c
CW
3721 /* The uABI guarantees an active writer is also amongst the read
3722 * engines. This would be true if we accessed the activity tracking
3723 * under the lock, but as we perform the lookup of the object and
3724 * its activity locklessly we can not guarantee that the last_write
3725 * being active implies that we have set the same engine flag from
3726 * last_read - hence we always set both read and write busy for
3727 * last_write.
3728 */
3729 return id | __busy_read_flag(id);
3fdc13c7
CW
3730}
3731
edf6b76f 3732static __always_inline unsigned int
d07f0e59 3733__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3734 unsigned int (*flag)(unsigned int id))
3735{
d07f0e59 3736 struct drm_i915_gem_request *rq;
3fdc13c7 3737
d07f0e59
CW
3738 /* We have to check the current hw status of the fence as the uABI
3739 * guarantees forward progress. We could rely on the idle worker
3740 * to eventually flush us, but to minimise latency just ask the
3741 * hardware.
1255501d 3742 *
d07f0e59 3743 * Note we only report on the status of native fences.
1255501d 3744 */
d07f0e59
CW
3745 if (!dma_fence_is_i915(fence))
3746 return 0;
3747
3748 /* opencode to_request() in order to avoid const warnings */
3749 rq = container_of(fence, struct drm_i915_gem_request, fence);
3750 if (i915_gem_request_completed(rq))
3751 return 0;
3752
3753 return flag(rq->engine->exec_id);
3fdc13c7
CW
3754}
3755
edf6b76f 3756static __always_inline unsigned int
d07f0e59 3757busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3758{
d07f0e59 3759 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3760}
3761
edf6b76f 3762static __always_inline unsigned int
d07f0e59 3763busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3764{
d07f0e59
CW
3765 if (!fence)
3766 return 0;
3767
3768 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3769}
3770
673a394b
EA
3771int
3772i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3773 struct drm_file *file)
673a394b
EA
3774{
3775 struct drm_i915_gem_busy *args = data;
05394f39 3776 struct drm_i915_gem_object *obj;
d07f0e59
CW
3777 struct reservation_object_list *list;
3778 unsigned int seq;
fbbd37b3 3779 int err;
673a394b 3780
d07f0e59 3781 err = -ENOENT;
fbbd37b3
CW
3782 rcu_read_lock();
3783 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 3784 if (!obj)
fbbd37b3 3785 goto out;
d1b851fc 3786
d07f0e59
CW
3787 /* A discrepancy here is that we do not report the status of
3788 * non-i915 fences, i.e. even though we may report the object as idle,
3789 * a call to set-domain may still stall waiting for foreign rendering.
3790 * This also means that wait-ioctl may report an object as busy,
3791 * where busy-ioctl considers it idle.
3792 *
3793 * We trade the ability to warn of foreign fences to report on which
3794 * i915 engines are active for the object.
3795 *
3796 * Alternatively, we can trade that extra information on read/write
3797 * activity with
3798 * args->busy =
3799 * !reservation_object_test_signaled_rcu(obj->resv, true);
3800 * to report the overall busyness. This is what the wait-ioctl does.
3801 *
3802 */
3803retry:
3804 seq = raw_read_seqcount(&obj->resv->seq);
426960be 3805
d07f0e59
CW
3806 /* Translate the exclusive fence to the READ *and* WRITE engine */
3807 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 3808
d07f0e59
CW
3809 /* Translate shared fences to READ set of engines */
3810 list = rcu_dereference(obj->resv->fence);
3811 if (list) {
3812 unsigned int shared_count = list->shared_count, i;
3fdc13c7 3813
d07f0e59
CW
3814 for (i = 0; i < shared_count; ++i) {
3815 struct dma_fence *fence =
3816 rcu_dereference(list->shared[i]);
3817
3818 args->busy |= busy_check_reader(fence);
3819 }
426960be 3820 }
673a394b 3821
d07f0e59
CW
3822 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3823 goto retry;
3824
3825 err = 0;
fbbd37b3
CW
3826out:
3827 rcu_read_unlock();
3828 return err;
673a394b
EA
3829}
3830
3831int
3832i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3833 struct drm_file *file_priv)
3834{
0206e353 3835 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3836}
3837
3ef94daa
CW
3838int
3839i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file_priv)
3841{
fac5e23e 3842 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3843 struct drm_i915_gem_madvise *args = data;
05394f39 3844 struct drm_i915_gem_object *obj;
1233e2db 3845 int err;
3ef94daa
CW
3846
3847 switch (args->madv) {
3848 case I915_MADV_DONTNEED:
3849 case I915_MADV_WILLNEED:
3850 break;
3851 default:
3852 return -EINVAL;
3853 }
3854
03ac0642 3855 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
3856 if (!obj)
3857 return -ENOENT;
3858
3859 err = mutex_lock_interruptible(&obj->mm.lock);
3860 if (err)
3861 goto out;
3ef94daa 3862
a4f5ea64 3863 if (obj->mm.pages &&
3e510a8e 3864 i915_gem_object_is_tiled(obj) &&
656bfa3a 3865 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
3866 if (obj->mm.madv == I915_MADV_WILLNEED) {
3867 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 3868 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
3869 obj->mm.quirked = false;
3870 }
3871 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 3872 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 3873 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
3874 obj->mm.quirked = true;
3875 }
656bfa3a
DV
3876 }
3877
a4f5ea64
CW
3878 if (obj->mm.madv != __I915_MADV_PURGED)
3879 obj->mm.madv = args->madv;
3ef94daa 3880
6c085a72 3881 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 3882 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
3883 i915_gem_object_truncate(obj);
3884
a4f5ea64 3885 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 3886 mutex_unlock(&obj->mm.lock);
bb6baf76 3887
1233e2db 3888out:
f8c417cd 3889 i915_gem_object_put(obj);
1233e2db 3890 return err;
3ef94daa
CW
3891}
3892
5b8c8aec
CW
3893static void
3894frontbuffer_retire(struct i915_gem_active *active,
3895 struct drm_i915_gem_request *request)
3896{
3897 struct drm_i915_gem_object *obj =
3898 container_of(active, typeof(*obj), frontbuffer_write);
3899
3900 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3901}
3902
37e680a1
CW
3903void i915_gem_object_init(struct drm_i915_gem_object *obj,
3904 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3905{
1233e2db
CW
3906 mutex_init(&obj->mm.lock);
3907
56cea323 3908 INIT_LIST_HEAD(&obj->global_link);
275f039d 3909 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 3910 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3911 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3912 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3913
37e680a1
CW
3914 obj->ops = ops;
3915
d07f0e59
CW
3916 reservation_object_init(&obj->__builtin_resv);
3917 obj->resv = &obj->__builtin_resv;
3918
50349247 3919 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 3920 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
3921
3922 obj->mm.madv = I915_MADV_WILLNEED;
3923 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3924 mutex_init(&obj->mm.get_page.lock);
0327d6ba 3925
f19ec8cb 3926 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3927}
3928
37e680a1 3929static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
3930 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3931 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
3932 .get_pages = i915_gem_object_get_pages_gtt,
3933 .put_pages = i915_gem_object_put_pages_gtt,
3934};
3935
b4bcbe2a
CW
3936/* Note we don't consider signbits :| */
3937#define overflows_type(x, T) \
3938 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3939
3940struct drm_i915_gem_object *
3941i915_gem_object_create(struct drm_device *dev, u64 size)
ac52bc56 3942{
a26e5239 3943 struct drm_i915_private *dev_priv = to_i915(dev);
c397b908 3944 struct drm_i915_gem_object *obj;
5949eac4 3945 struct address_space *mapping;
1a240d4d 3946 gfp_t mask;
fe3db79b 3947 int ret;
ac52bc56 3948
b4bcbe2a
CW
3949 /* There is a prevalence of the assumption that we fit the object's
3950 * page count inside a 32bit _signed_ variable. Let's document this and
3951 * catch if we ever need to fix it. In the meantime, if you do spot
3952 * such a local variable, please consider fixing!
3953 */
3954 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3955 return ERR_PTR(-E2BIG);
3956
3957 if (overflows_type(size, obj->base.size))
3958 return ERR_PTR(-E2BIG);
3959
42dcedd4 3960 obj = i915_gem_object_alloc(dev);
c397b908 3961 if (obj == NULL)
fe3db79b 3962 return ERR_PTR(-ENOMEM);
673a394b 3963
fe3db79b
CW
3964 ret = drm_gem_object_init(dev, &obj->base, size);
3965 if (ret)
3966 goto fail;
673a394b 3967
bed1ea95 3968 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
a26e5239 3969 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
bed1ea95
CW
3970 /* 965gm cannot relocate objects above 4GiB. */
3971 mask &= ~__GFP_HIGHMEM;
3972 mask |= __GFP_DMA32;
3973 }
3974
93c76a3d 3975 mapping = obj->base.filp->f_mapping;
bed1ea95 3976 mapping_set_gfp_mask(mapping, mask);
5949eac4 3977
37e680a1 3978 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3979
c397b908
DV
3980 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3981 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3982
0031fb96 3983 if (HAS_LLC(dev_priv)) {
3d29b842 3984 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3985 * cache) for about a 10% performance improvement
3986 * compared to uncached. Graphics requests other than
3987 * display scanout are coherent with the CPU in
3988 * accessing this cache. This means in this mode we
3989 * don't need to clflush on the CPU side, and on the
3990 * GPU side we only need to flush internal caches to
3991 * get data visible to the CPU.
3992 *
3993 * However, we maintain the display planes as UC, and so
3994 * need to rebind when first used as such.
3995 */
3996 obj->cache_level = I915_CACHE_LLC;
3997 } else
3998 obj->cache_level = I915_CACHE_NONE;
3999
d861e338
DV
4000 trace_i915_gem_object_create(obj);
4001
05394f39 4002 return obj;
fe3db79b
CW
4003
4004fail:
4005 i915_gem_object_free(obj);
fe3db79b 4006 return ERR_PTR(ret);
c397b908
DV
4007}
4008
340fbd8c
CW
4009static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4010{
4011 /* If we are the last user of the backing storage (be it shmemfs
4012 * pages or stolen etc), we know that the pages are going to be
4013 * immediately released. In this case, we can then skip copying
4014 * back the contents from the GPU.
4015 */
4016
a4f5ea64 4017 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4018 return false;
4019
4020 if (obj->base.filp == NULL)
4021 return true;
4022
4023 /* At first glance, this looks racy, but then again so would be
4024 * userspace racing mmap against close. However, the first external
4025 * reference to the filp can only be obtained through the
4026 * i915_gem_mmap_ioctl() which safeguards us against the user
4027 * acquiring such a reference whilst we are in the middle of
4028 * freeing the object.
4029 */
4030 return atomic_long_read(&obj->base.filp->f_count) == 1;
4031}
4032
fbbd37b3
CW
4033static void __i915_gem_free_objects(struct drm_i915_private *i915,
4034 struct llist_node *freed)
673a394b 4035{
fbbd37b3 4036 struct drm_i915_gem_object *obj, *on;
673a394b 4037
fbbd37b3
CW
4038 mutex_lock(&i915->drm.struct_mutex);
4039 intel_runtime_pm_get(i915);
4040 llist_for_each_entry(obj, freed, freed) {
4041 struct i915_vma *vma, *vn;
4042
4043 trace_i915_gem_object_destroy(obj);
4044
4045 GEM_BUG_ON(i915_gem_object_is_active(obj));
4046 list_for_each_entry_safe(vma, vn,
4047 &obj->vma_list, obj_link) {
4048 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4049 GEM_BUG_ON(i915_vma_is_active(vma));
4050 vma->flags &= ~I915_VMA_PIN_MASK;
4051 i915_vma_close(vma);
4052 }
db6c2b41
CW
4053 GEM_BUG_ON(!list_empty(&obj->vma_list));
4054 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4055
56cea323 4056 list_del(&obj->global_link);
fbbd37b3
CW
4057 }
4058 intel_runtime_pm_put(i915);
4059 mutex_unlock(&i915->drm.struct_mutex);
4060
4061 llist_for_each_entry_safe(obj, on, freed, freed) {
4062 GEM_BUG_ON(obj->bind_count);
4063 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4064
4065 if (obj->ops->release)
4066 obj->ops->release(obj);
f65c9168 4067
fbbd37b3
CW
4068 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4069 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4070 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4071 GEM_BUG_ON(obj->mm.pages);
4072
4073 if (obj->base.import_attach)
4074 drm_prime_gem_destroy(&obj->base, NULL);
4075
d07f0e59 4076 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4077 drm_gem_object_release(&obj->base);
4078 i915_gem_info_remove_obj(i915, obj->base.size);
4079
4080 kfree(obj->bit_17);
4081 i915_gem_object_free(obj);
4082 }
4083}
4084
4085static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4086{
4087 struct llist_node *freed;
4088
4089 freed = llist_del_all(&i915->mm.free_list);
4090 if (unlikely(freed))
4091 __i915_gem_free_objects(i915, freed);
4092}
4093
4094static void __i915_gem_free_work(struct work_struct *work)
4095{
4096 struct drm_i915_private *i915 =
4097 container_of(work, struct drm_i915_private, mm.free_work);
4098 struct llist_node *freed;
26e12f89 4099
b1f788c6
CW
4100 /* All file-owned VMA should have been released by this point through
4101 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4102 * However, the object may also be bound into the global GTT (e.g.
4103 * older GPUs without per-process support, or for direct access through
4104 * the GTT either for the user or for scanout). Those VMA still need to
4105 * unbound now.
4106 */
1488fc08 4107
fbbd37b3
CW
4108 while ((freed = llist_del_all(&i915->mm.free_list)))
4109 __i915_gem_free_objects(i915, freed);
4110}
a071fa00 4111
fbbd37b3
CW
4112static void __i915_gem_free_object_rcu(struct rcu_head *head)
4113{
4114 struct drm_i915_gem_object *obj =
4115 container_of(head, typeof(*obj), rcu);
4116 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4117
4118 /* We can't simply use call_rcu() from i915_gem_free_object()
4119 * as we need to block whilst unbinding, and the call_rcu
4120 * task may be called from softirq context. So we take a
4121 * detour through a worker.
4122 */
4123 if (llist_add(&obj->freed, &i915->mm.free_list))
4124 schedule_work(&i915->mm.free_work);
4125}
656bfa3a 4126
fbbd37b3
CW
4127void i915_gem_free_object(struct drm_gem_object *gem_obj)
4128{
4129 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4130
bc0629a7
CW
4131 if (obj->mm.quirked)
4132 __i915_gem_object_unpin_pages(obj);
4133
340fbd8c 4134 if (discard_backing_storage(obj))
a4f5ea64 4135 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4136
fbbd37b3
CW
4137 /* Before we free the object, make sure any pure RCU-only
4138 * read-side critical sections are complete, e.g.
4139 * i915_gem_busy_ioctl(). For the corresponding synchronized
4140 * lookup see i915_gem_object_lookup_rcu().
4141 */
4142 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4143}
4144
f8a7fde4
CW
4145void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4146{
4147 lockdep_assert_held(&obj->base.dev->struct_mutex);
4148
4149 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4150 if (i915_gem_object_is_active(obj))
4151 i915_gem_object_set_active_reference(obj);
4152 else
4153 i915_gem_object_put(obj);
4154}
4155
3033acab
CW
4156static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4157{
4158 struct intel_engine_cs *engine;
4159 enum intel_engine_id id;
4160
4161 for_each_engine(engine, dev_priv, id)
4162 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4163}
4164
dcff85c8 4165int i915_gem_suspend(struct drm_device *dev)
29105ccc 4166{
fac5e23e 4167 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4168 int ret;
28dfe52a 4169
54b4f68f
CW
4170 intel_suspend_gt_powersave(dev_priv);
4171
45c5f202 4172 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4173
4174 /* We have to flush all the executing contexts to main memory so
4175 * that they can saved in the hibernation image. To ensure the last
4176 * context image is coherent, we have to switch away from it. That
4177 * leaves the dev_priv->kernel_context still active when
4178 * we actually suspend, and its image in memory may not match the GPU
4179 * state. Fortunately, the kernel_context is disposable and we do
4180 * not rely on its state.
4181 */
4182 ret = i915_gem_switch_to_kernel_context(dev_priv);
4183 if (ret)
4184 goto err;
4185
22dd3bb9
CW
4186 ret = i915_gem_wait_for_idle(dev_priv,
4187 I915_WAIT_INTERRUPTIBLE |
4188 I915_WAIT_LOCKED);
f7403347 4189 if (ret)
45c5f202 4190 goto err;
f7403347 4191
c033666a 4192 i915_gem_retire_requests(dev_priv);
28176ef4 4193 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4194
3033acab 4195 assert_kernel_context_is_current(dev_priv);
b2e862d0 4196 i915_gem_context_lost(dev_priv);
45c5f202
CW
4197 mutex_unlock(&dev->struct_mutex);
4198
737b1506 4199 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4200 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4201 flush_delayed_work(&dev_priv->gt.idle_work);
fbbd37b3 4202 flush_work(&dev_priv->mm.free_work);
29105ccc 4203
bdcf120b
CW
4204 /* Assert that we sucessfully flushed all the work and
4205 * reset the GPU back to its idle, low power state.
4206 */
67d97da3 4207 WARN_ON(dev_priv->gt.awake);
31ab49ab 4208 WARN_ON(!intel_execlists_idle(dev_priv));
bdcf120b 4209
1c777c5d
ID
4210 /*
4211 * Neither the BIOS, ourselves or any other kernel
4212 * expects the system to be in execlists mode on startup,
4213 * so we need to reset the GPU back to legacy mode. And the only
4214 * known way to disable logical contexts is through a GPU reset.
4215 *
4216 * So in order to leave the system in a known default configuration,
4217 * always reset the GPU upon unload and suspend. Afterwards we then
4218 * clean up the GEM state tracking, flushing off the requests and
4219 * leaving the system in a known idle state.
4220 *
4221 * Note that is of the upmost importance that the GPU is idle and
4222 * all stray writes are flushed *before* we dismantle the backing
4223 * storage for the pinned objects.
4224 *
4225 * However, since we are uncertain that resetting the GPU on older
4226 * machines is a good idea, we don't - just in case it leaves the
4227 * machine in an unusable condition.
4228 */
0031fb96 4229 if (HAS_HW_CONTEXTS(dev_priv)) {
1c777c5d
ID
4230 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4231 WARN_ON(reset && reset != -ENODEV);
4232 }
4233
673a394b 4234 return 0;
45c5f202
CW
4235
4236err:
4237 mutex_unlock(&dev->struct_mutex);
4238 return ret;
673a394b
EA
4239}
4240
5ab57c70
CW
4241void i915_gem_resume(struct drm_device *dev)
4242{
4243 struct drm_i915_private *dev_priv = to_i915(dev);
4244
31ab49ab
ID
4245 WARN_ON(dev_priv->gt.awake);
4246
5ab57c70 4247 mutex_lock(&dev->struct_mutex);
275a991c 4248 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4249
4250 /* As we didn't flush the kernel context before suspend, we cannot
4251 * guarantee that the context image is complete. So let's just reset
4252 * it and start again.
4253 */
821ed7df 4254 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4255
4256 mutex_unlock(&dev->struct_mutex);
4257}
4258
c6be607a 4259void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4260{
c6be607a 4261 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4262 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4263 return;
4264
4265 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4266 DISP_TILE_SURFACE_SWIZZLING);
4267
5db94019 4268 if (IS_GEN5(dev_priv))
11782b02
DV
4269 return;
4270
f691e2f4 4271 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4272 if (IS_GEN6(dev_priv))
6b26c86d 4273 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4274 else if (IS_GEN7(dev_priv))
6b26c86d 4275 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4276 else if (IS_GEN8(dev_priv))
31a5336e 4277 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4278 else
4279 BUG();
f691e2f4 4280}
e21af88d 4281
50a0bc90 4282static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4283{
81e7f200
VS
4284 I915_WRITE(RING_CTL(base), 0);
4285 I915_WRITE(RING_HEAD(base), 0);
4286 I915_WRITE(RING_TAIL(base), 0);
4287 I915_WRITE(RING_START(base), 0);
4288}
4289
50a0bc90 4290static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4291{
50a0bc90
TU
4292 if (IS_I830(dev_priv)) {
4293 init_unused_ring(dev_priv, PRB1_BASE);
4294 init_unused_ring(dev_priv, SRB0_BASE);
4295 init_unused_ring(dev_priv, SRB1_BASE);
4296 init_unused_ring(dev_priv, SRB2_BASE);
4297 init_unused_ring(dev_priv, SRB3_BASE);
4298 } else if (IS_GEN2(dev_priv)) {
4299 init_unused_ring(dev_priv, SRB0_BASE);
4300 init_unused_ring(dev_priv, SRB1_BASE);
4301 } else if (IS_GEN3(dev_priv)) {
4302 init_unused_ring(dev_priv, PRB1_BASE);
4303 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4304 }
4305}
4306
4fc7c971
BW
4307int
4308i915_gem_init_hw(struct drm_device *dev)
4309{
fac5e23e 4310 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4311 struct intel_engine_cs *engine;
3b3f1650 4312 enum intel_engine_id id;
d200cda6 4313 int ret;
4fc7c971 4314
de867c20
CW
4315 dev_priv->gt.last_init_time = ktime_get();
4316
5e4f5189
CW
4317 /* Double layer security blanket, see i915_gem_init() */
4318 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4319
0031fb96 4320 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4321 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4322
772c2a51 4323 if (IS_HASWELL(dev_priv))
50a0bc90 4324 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4325 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4326
6e266956 4327 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4328 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4329 u32 temp = I915_READ(GEN7_MSG_CTL);
4330 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4331 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4332 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4333 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4334 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4335 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4336 }
88a2b2a3
BW
4337 }
4338
c6be607a 4339 i915_gem_init_swizzling(dev_priv);
4fc7c971 4340
d5abdfda
DV
4341 /*
4342 * At least 830 can leave some of the unused rings
4343 * "active" (ie. head != tail) after resume which
4344 * will prevent c3 entry. Makes sure all unused rings
4345 * are totally idle.
4346 */
50a0bc90 4347 init_unused_rings(dev_priv);
d5abdfda 4348
ed54c1a1 4349 BUG_ON(!dev_priv->kernel_context);
90638cc1 4350
c6be607a 4351 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4352 if (ret) {
4353 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4354 goto out;
4355 }
4356
4357 /* Need to do basic initialisation of all rings first: */
3b3f1650 4358 for_each_engine(engine, dev_priv, id) {
e2f80391 4359 ret = engine->init_hw(engine);
35a57ffb 4360 if (ret)
5e4f5189 4361 goto out;
35a57ffb 4362 }
99433931 4363
0ccdacf6
PA
4364 intel_mocs_init_l3cc_table(dev);
4365
33a732f4 4366 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4367 ret = intel_guc_setup(dev);
4368 if (ret)
4369 goto out;
33a732f4 4370
5e4f5189
CW
4371out:
4372 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4373 return ret;
8187a2b7
ZN
4374}
4375
39df9190
CW
4376bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4377{
4378 if (INTEL_INFO(dev_priv)->gen < 6)
4379 return false;
4380
4381 /* TODO: make semaphores and Execlists play nicely together */
4382 if (i915.enable_execlists)
4383 return false;
4384
4385 if (value >= 0)
4386 return value;
4387
4388#ifdef CONFIG_INTEL_IOMMU
4389 /* Enable semaphores on SNB when IO remapping is off */
4390 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4391 return false;
4392#endif
4393
4394 return true;
4395}
4396
1070a42b
CW
4397int i915_gem_init(struct drm_device *dev)
4398{
fac5e23e 4399 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4400 int ret;
4401
1070a42b 4402 mutex_lock(&dev->struct_mutex);
d62b4892 4403
a83014d3 4404 if (!i915.enable_execlists) {
821ed7df 4405 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4406 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4407 } else {
821ed7df 4408 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4409 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4410 }
4411
5e4f5189
CW
4412 /* This is just a security blanket to placate dragons.
4413 * On some systems, we very sporadically observe that the first TLBs
4414 * used by the CS may be stale, despite us poking the TLB reset. If
4415 * we hold the forcewake during initialisation these problems
4416 * just magically go away.
4417 */
4418 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4419
72778cb2 4420 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4421
4422 ret = i915_gem_init_ggtt(dev_priv);
4423 if (ret)
4424 goto out_unlock;
d62b4892 4425
2fa48d8d 4426 ret = i915_gem_context_init(dev);
7bcc3777
JN
4427 if (ret)
4428 goto out_unlock;
2fa48d8d 4429
8b3e2d36 4430 ret = intel_engines_init(dev);
35a57ffb 4431 if (ret)
7bcc3777 4432 goto out_unlock;
2fa48d8d 4433
1070a42b 4434 ret = i915_gem_init_hw(dev);
60990320 4435 if (ret == -EIO) {
7e21d648 4436 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4437 * wedged. But we only want to do this where the GPU is angry,
4438 * for all other failure, such as an allocation failure, bail.
4439 */
4440 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4441 i915_gem_set_wedged(dev_priv);
60990320 4442 ret = 0;
1070a42b 4443 }
7bcc3777
JN
4444
4445out_unlock:
5e4f5189 4446 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4447 mutex_unlock(&dev->struct_mutex);
1070a42b 4448
60990320 4449 return ret;
1070a42b
CW
4450}
4451
8187a2b7 4452void
117897f4 4453i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4454{
fac5e23e 4455 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4456 struct intel_engine_cs *engine;
3b3f1650 4457 enum intel_engine_id id;
8187a2b7 4458
3b3f1650 4459 for_each_engine(engine, dev_priv, id)
117897f4 4460 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4461}
4462
40ae4e16
ID
4463void
4464i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4465{
49ef5294 4466 int i;
40ae4e16
ID
4467
4468 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4469 !IS_CHERRYVIEW(dev_priv))
4470 dev_priv->num_fence_regs = 32;
4471 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4472 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4473 dev_priv->num_fence_regs = 16;
4474 else
4475 dev_priv->num_fence_regs = 8;
4476
c033666a 4477 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4478 dev_priv->num_fence_regs =
4479 I915_READ(vgtif_reg(avail_rs.fence_num));
4480
4481 /* Initialize fence registers to zero */
49ef5294
CW
4482 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4483 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4484
4485 fence->i915 = dev_priv;
4486 fence->id = i;
4487 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4488 }
4362f4f6 4489 i915_gem_restore_fences(dev_priv);
40ae4e16 4490
4362f4f6 4491 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4492}
4493
73cb9701 4494int
d64aa096 4495i915_gem_load_init(struct drm_device *dev)
673a394b 4496{
fac5e23e 4497 struct drm_i915_private *dev_priv = to_i915(dev);
a933568e 4498 int err = -ENOMEM;
42dcedd4 4499
a933568e
TU
4500 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4501 if (!dev_priv->objects)
73cb9701 4502 goto err_out;
73cb9701 4503
a933568e
TU
4504 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4505 if (!dev_priv->vmas)
73cb9701 4506 goto err_objects;
73cb9701 4507
a933568e
TU
4508 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4509 SLAB_HWCACHE_ALIGN |
4510 SLAB_RECLAIM_ACCOUNT |
4511 SLAB_DESTROY_BY_RCU);
4512 if (!dev_priv->requests)
73cb9701 4513 goto err_vmas;
73cb9701 4514
52e54209
CW
4515 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4516 SLAB_HWCACHE_ALIGN |
4517 SLAB_RECLAIM_ACCOUNT);
4518 if (!dev_priv->dependencies)
4519 goto err_requests;
4520
73cb9701
CW
4521 mutex_lock(&dev_priv->drm.struct_mutex);
4522 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4523 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4524 mutex_unlock(&dev_priv->drm.struct_mutex);
4525 if (err)
52e54209 4526 goto err_dependencies;
673a394b 4527
a33afea5 4528 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4529 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4530 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4531 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4532 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4533 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4534 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4535 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4536 i915_gem_retire_work_handler);
67d97da3 4537 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4538 i915_gem_idle_work_handler);
1f15b76f 4539 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4540 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4541
72bfa19c
CW
4542 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4543
6b95a207 4544 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4545
ce453d81
CW
4546 dev_priv->mm.interruptible = true;
4547
6f633402
JL
4548 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4549
b5add959 4550 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4551
4552 return 0;
4553
52e54209
CW
4554err_dependencies:
4555 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4556err_requests:
4557 kmem_cache_destroy(dev_priv->requests);
4558err_vmas:
4559 kmem_cache_destroy(dev_priv->vmas);
4560err_objects:
4561 kmem_cache_destroy(dev_priv->objects);
4562err_out:
4563 return err;
673a394b 4564}
71acb5eb 4565
d64aa096
ID
4566void i915_gem_load_cleanup(struct drm_device *dev)
4567{
4568 struct drm_i915_private *dev_priv = to_i915(dev);
4569
7d5d59e5
CW
4570 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4571
ea84aa77
MA
4572 mutex_lock(&dev_priv->drm.struct_mutex);
4573 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4574 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4575 mutex_unlock(&dev_priv->drm.struct_mutex);
4576
52e54209 4577 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4578 kmem_cache_destroy(dev_priv->requests);
4579 kmem_cache_destroy(dev_priv->vmas);
4580 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4581
4582 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4583 rcu_barrier();
d64aa096
ID
4584}
4585
6a800eab
CW
4586int i915_gem_freeze(struct drm_i915_private *dev_priv)
4587{
4588 intel_runtime_pm_get(dev_priv);
4589
4590 mutex_lock(&dev_priv->drm.struct_mutex);
4591 i915_gem_shrink_all(dev_priv);
4592 mutex_unlock(&dev_priv->drm.struct_mutex);
4593
4594 intel_runtime_pm_put(dev_priv);
4595
4596 return 0;
4597}
4598
461fb99c
CW
4599int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4600{
4601 struct drm_i915_gem_object *obj;
7aab2d53
CW
4602 struct list_head *phases[] = {
4603 &dev_priv->mm.unbound_list,
4604 &dev_priv->mm.bound_list,
4605 NULL
4606 }, **p;
461fb99c
CW
4607
4608 /* Called just before we write the hibernation image.
4609 *
4610 * We need to update the domain tracking to reflect that the CPU
4611 * will be accessing all the pages to create and restore from the
4612 * hibernation, and so upon restoration those pages will be in the
4613 * CPU domain.
4614 *
4615 * To make sure the hibernation image contains the latest state,
4616 * we update that state just before writing out the image.
7aab2d53
CW
4617 *
4618 * To try and reduce the hibernation image, we manually shrink
4619 * the objects as well.
461fb99c
CW
4620 */
4621
6a800eab
CW
4622 mutex_lock(&dev_priv->drm.struct_mutex);
4623 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4624
7aab2d53 4625 for (p = phases; *p; p++) {
56cea323 4626 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4627 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4628 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4629 }
461fb99c 4630 }
6a800eab 4631 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4632
4633 return 0;
4634}
4635
f787a5f5 4636void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4637{
f787a5f5 4638 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4639 struct drm_i915_gem_request *request;
b962442e
EA
4640
4641 /* Clean up our request list when the client is going away, so that
4642 * later retire_requests won't dereference our soon-to-be-gone
4643 * file_priv.
4644 */
1c25595f 4645 spin_lock(&file_priv->mm.lock);
15f7bbc7 4646 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4647 request->file_priv = NULL;
1c25595f 4648 spin_unlock(&file_priv->mm.lock);
b29c19b6 4649
2e1b8730 4650 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4651 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4652 list_del(&file_priv->rps.link);
8d3afd7d 4653 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4654 }
b29c19b6
CW
4655}
4656
4657int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4658{
4659 struct drm_i915_file_private *file_priv;
e422b888 4660 int ret;
b29c19b6 4661
c4c29d7b 4662 DRM_DEBUG("\n");
b29c19b6
CW
4663
4664 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4665 if (!file_priv)
4666 return -ENOMEM;
4667
4668 file->driver_priv = file_priv;
f19ec8cb 4669 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4670 file_priv->file = file;
2e1b8730 4671 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4672
4673 spin_lock_init(&file_priv->mm.lock);
4674 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4675
c80ff16e 4676 file_priv->bsd_engine = -1;
de1add36 4677
e422b888
BW
4678 ret = i915_gem_context_open(dev, file);
4679 if (ret)
4680 kfree(file_priv);
b29c19b6 4681
e422b888 4682 return ret;
b29c19b6
CW
4683}
4684
b680c37a
DV
4685/**
4686 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4687 * @old: current GEM buffer for the frontbuffer slots
4688 * @new: new GEM buffer for the frontbuffer slots
4689 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4690 *
4691 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4692 * from @old and setting them in @new. Both @old and @new can be NULL.
4693 */
a071fa00
DV
4694void i915_gem_track_fb(struct drm_i915_gem_object *old,
4695 struct drm_i915_gem_object *new,
4696 unsigned frontbuffer_bits)
4697{
faf5bf0a
CW
4698 /* Control of individual bits within the mask are guarded by
4699 * the owning plane->mutex, i.e. we can never see concurrent
4700 * manipulation of individual bits. But since the bitfield as a whole
4701 * is updated using RMW, we need to use atomics in order to update
4702 * the bits.
4703 */
4704 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4705 sizeof(atomic_t) * BITS_PER_BYTE);
4706
a071fa00 4707 if (old) {
faf5bf0a
CW
4708 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4709 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4710 }
4711
4712 if (new) {
faf5bf0a
CW
4713 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4714 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4715 }
4716}
4717
ea70299d
DG
4718/* Allocate a new GEM object and fill it with the supplied data */
4719struct drm_i915_gem_object *
4720i915_gem_object_create_from_data(struct drm_device *dev,
4721 const void *data, size_t size)
4722{
4723 struct drm_i915_gem_object *obj;
4724 struct sg_table *sg;
4725 size_t bytes;
4726 int ret;
4727
d37cd8a8 4728 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4729 if (IS_ERR(obj))
ea70299d
DG
4730 return obj;
4731
4732 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4733 if (ret)
4734 goto fail;
4735
a4f5ea64 4736 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4737 if (ret)
4738 goto fail;
4739
a4f5ea64 4740 sg = obj->mm.pages;
ea70299d 4741 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4742 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4743 i915_gem_object_unpin_pages(obj);
4744
4745 if (WARN_ON(bytes != size)) {
4746 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4747 ret = -EFAULT;
4748 goto fail;
4749 }
4750
4751 return obj;
4752
4753fail:
f8c417cd 4754 i915_gem_object_put(obj);
ea70299d
DG
4755 return ERR_PTR(ret);
4756}
96d77634
CW
4757
4758struct scatterlist *
4759i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4760 unsigned int n,
4761 unsigned int *offset)
4762{
a4f5ea64 4763 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4764 struct scatterlist *sg;
4765 unsigned int idx, count;
4766
4767 might_sleep();
4768 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4769 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4770
4771 /* As we iterate forward through the sg, we record each entry in a
4772 * radixtree for quick repeated (backwards) lookups. If we have seen
4773 * this index previously, we will have an entry for it.
4774 *
4775 * Initial lookup is O(N), but this is amortized to O(1) for
4776 * sequential page access (where each new request is consecutive
4777 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4778 * i.e. O(1) with a large constant!
4779 */
4780 if (n < READ_ONCE(iter->sg_idx))
4781 goto lookup;
4782
4783 mutex_lock(&iter->lock);
4784
4785 /* We prefer to reuse the last sg so that repeated lookup of this
4786 * (or the subsequent) sg are fast - comparing against the last
4787 * sg is faster than going through the radixtree.
4788 */
4789
4790 sg = iter->sg_pos;
4791 idx = iter->sg_idx;
4792 count = __sg_page_count(sg);
4793
4794 while (idx + count <= n) {
4795 unsigned long exception, i;
4796 int ret;
4797
4798 /* If we cannot allocate and insert this entry, or the
4799 * individual pages from this range, cancel updating the
4800 * sg_idx so that on this lookup we are forced to linearly
4801 * scan onwards, but on future lookups we will try the
4802 * insertion again (in which case we need to be careful of
4803 * the error return reporting that we have already inserted
4804 * this index).
4805 */
4806 ret = radix_tree_insert(&iter->radix, idx, sg);
4807 if (ret && ret != -EEXIST)
4808 goto scan;
4809
4810 exception =
4811 RADIX_TREE_EXCEPTIONAL_ENTRY |
4812 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4813 for (i = 1; i < count; i++) {
4814 ret = radix_tree_insert(&iter->radix, idx + i,
4815 (void *)exception);
4816 if (ret && ret != -EEXIST)
4817 goto scan;
4818 }
4819
4820 idx += count;
4821 sg = ____sg_next(sg);
4822 count = __sg_page_count(sg);
4823 }
4824
4825scan:
4826 iter->sg_pos = sg;
4827 iter->sg_idx = idx;
4828
4829 mutex_unlock(&iter->lock);
4830
4831 if (unlikely(n < idx)) /* insertion completed by another thread */
4832 goto lookup;
4833
4834 /* In case we failed to insert the entry into the radixtree, we need
4835 * to look beyond the current sg.
4836 */
4837 while (idx + count <= n) {
4838 idx += count;
4839 sg = ____sg_next(sg);
4840 count = __sg_page_count(sg);
4841 }
4842
4843 *offset = n - idx;
4844 return sg;
4845
4846lookup:
4847 rcu_read_lock();
4848
4849 sg = radix_tree_lookup(&iter->radix, n);
4850 GEM_BUG_ON(!sg);
4851
4852 /* If this index is in the middle of multi-page sg entry,
4853 * the radixtree will contain an exceptional entry that points
4854 * to the start of that range. We will return the pointer to
4855 * the base page and the offset of this page within the
4856 * sg entry's range.
4857 */
4858 *offset = 0;
4859 if (unlikely(radix_tree_exception(sg))) {
4860 unsigned long base =
4861 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4862
4863 sg = radix_tree_lookup(&iter->radix, base);
4864 GEM_BUG_ON(!sg);
4865
4866 *offset = n - base;
4867 }
4868
4869 rcu_read_unlock();
4870
4871 return sg;
4872}
4873
4874struct page *
4875i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4876{
4877 struct scatterlist *sg;
4878 unsigned int offset;
4879
4880 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4881
4882 sg = i915_gem_object_get_sg(obj, n, &offset);
4883 return nth_page(sg_page(sg), offset);
4884}
4885
4886/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4887struct page *
4888i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4889 unsigned int n)
4890{
4891 struct page *page;
4892
4893 page = i915_gem_object_get_page(obj, n);
a4f5ea64 4894 if (!obj->mm.dirty)
96d77634
CW
4895 set_page_dirty(page);
4896
4897 return page;
4898}
4899
4900dma_addr_t
4901i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4902 unsigned long n)
4903{
4904 struct scatterlist *sg;
4905 unsigned int offset;
4906
4907 sg = i915_gem_object_get_sg(obj, n, &offset);
4908 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4909}