]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Add SURFLIVE register definitions
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d2acd215
DV
83int
84intel_pch_rawclk(struct drm_device *dev)
85{
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91}
92
d4906093
ML
93static bool
94intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
d4906093
ML
97static bool
98intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
79e53945 101
a4fc5ed6
KP
102static bool
103intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
5eb08b69 106static bool
f2b115e6 107intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
a4fc5ed6 110
a0c4da24
JB
111static bool
112intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
021357ac
CW
116static inline u32 /* units of 100MHz */
117intel_fdi_link_freq(struct drm_device *dev)
118{
8b99e68c
CW
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
021357ac
CW
124}
125
e4b36699 126static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
d4906093 137 .find_pll = intel_find_best_PLL,
e4b36699
KP
138};
139
140static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
d4906093 151 .find_pll = intel_find_best_PLL,
e4b36699 152};
273e27ca 153
e4b36699 154static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
d4906093 165 .find_pll = intel_find_best_PLL,
e4b36699
KP
166};
167
168static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
d4906093 179 .find_pll = intel_find_best_PLL,
e4b36699
KP
180};
181
273e27ca 182
e4b36699 183static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
044c7c41 195 },
d4906093 196 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
d4906093 210 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
211};
212
213static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
044c7c41 224 },
d4906093 225 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
044c7c41 239 },
d4906093 240 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
241};
242
243static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
273e27ca 253 .p2_slow = 10, .p2_fast = 10 },
0206e353 254 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
255};
256
f2b115e6 257static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 260 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
273e27ca 263 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
6115707b 270 .find_pll = intel_find_best_PLL,
e4b36699
KP
271};
272
f2b115e6 273static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
6115707b 284 .find_pll = intel_find_best_PLL,
e4b36699
KP
285};
286
273e27ca
EA
287/* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
b91ad0ec 292static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
4547668a 303 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
304};
305
b91ad0ec 306static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
317 .find_pll = intel_g4x_find_best_PLL,
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331 .find_pll = intel_g4x_find_best_PLL,
332};
333
273e27ca 334/* LVDS 100mhz refclk limits. */
b91ad0ec 335static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
0206e353 343 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
346 .find_pll = intel_g4x_find_best_PLL,
347};
348
349static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
0206e353 357 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
360 .find_pll = intel_g4x_find_best_PLL,
361};
362
363static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
273e27ca 373 .p2_slow = 10, .p2_fast = 10 },
0206e353 374 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
375};
376
a0c4da24
JB
377static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389};
390
391static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
17dc9257 393 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403};
404
405static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 408 .n = { .min = 1, .max = 7 },
74a4dd2e 409 .m = { .min = 22, .max = 450 },
a0c4da24
JB
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417};
418
57f350b6
JB
419u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420{
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442}
443
a0c4da24
JB
444static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446{
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464}
465
57f350b6
JB
466static void vlv_init_dpio(struct drm_device *dev)
467{
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475}
476
618563e3
DV
477static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478{
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481}
482
483static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493};
494
b0354385
TI
495static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497{
498 unsigned int val;
499
121d527a
TI
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
618563e3
DV
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
b0354385
TI
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
14d94a3d 516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521}
522
1b894b59
CW
523static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
2c07245f 525{
b91ad0ec
ZW
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 528 const intel_limit_t *limit;
b91ad0ec
ZW
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 532 /* LVDS dual channel */
1b894b59 533 if (refclk == 100000)
b91ad0ec
ZW
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
1b894b59 538 if (refclk == 100000)
b91ad0ec
ZW
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
2c07245f 546 else
b91ad0ec 547 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
548
549 return limit;
550}
551
044c7c41
ML
552static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553{
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 559 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 560 /* LVDS with dual channel */
e4b36699 561 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
562 else
563 /* LVDS with dual channel */
e4b36699 564 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 567 limit = &intel_limits_g4x_hdmi;
044c7c41 568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 569 limit = &intel_limits_g4x_sdvo;
0206e353 570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 571 limit = &intel_limits_g4x_display_port;
044c7c41 572 } else /* The option is for other outputs */
e4b36699 573 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
574
575 return limit;
576}
577
1b894b59 578static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
579{
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
bad720ff 583 if (HAS_PCH_SPLIT(dev))
1b894b59 584 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 585 else if (IS_G4X(dev)) {
044c7c41 586 limit = intel_g4x_limit(crtc);
f2b115e6 587 } else if (IS_PINEVIEW(dev)) {
2177832f 588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 589 limit = &intel_limits_pineview_lvds;
2177832f 590 else
f2b115e6 591 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 606 limit = &intel_limits_i8xx_lvds;
79e53945 607 else
e4b36699 608 limit = &intel_limits_i8xx_dvo;
79e53945
JB
609 }
610 return limit;
611}
612
f2b115e6
AJ
613/* m1 is reserved as 0 in Pineview, n is a ring counter */
614static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 615{
2177832f
SL
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620}
621
622static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623{
f2b115e6
AJ
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
2177832f
SL
626 return;
627 }
79e53945
JB
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632}
633
79e53945
JB
634/**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
4ef69c7a 637bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 638{
4ef69c7a 639 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
640 struct intel_encoder *encoder;
641
6c2b7c12
DV
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
4ef69c7a
CW
644 return true;
645
646 return false;
79e53945
JB
647}
648
7c04d1d9 649#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
650/**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
1b894b59
CW
655static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
79e53945 658{
79e53945 659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 660 INTELPllInvalid("p1 out of range\n");
79e53945 661 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 662 INTELPllInvalid("p out of range\n");
79e53945 663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 664 INTELPllInvalid("m2 out of range\n");
79e53945 665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 666 INTELPllInvalid("m1 out of range\n");
f2b115e6 667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 668 INTELPllInvalid("m1 <= m2\n");
79e53945 669 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 670 INTELPllInvalid("m out of range\n");
79e53945 671 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 672 INTELPllInvalid("n out of range\n");
79e53945 673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 674 INTELPllInvalid("vco out of range\n");
79e53945
JB
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 679 INTELPllInvalid("dot out of range\n");
79e53945
JB
680
681 return true;
682}
683
d4906093
ML
684static bool
685intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
d4906093 688
79e53945
JB
689{
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
79e53945
JB
693 int err = target;
694
bc5e5718 695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 696 (I915_READ(LVDS)) != 0) {
79e53945
JB
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
b0354385 703 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
0206e353 714 memset(best_clock, 0, sizeof(*best_clock));
79e53945 715
42158660
ZY
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
727 int this_err;
728
2177832f 729 intel_clock(dev, refclk, &clock);
1b894b59
CW
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
79e53945 732 continue;
cec2f356
SP
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
79e53945
JB
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748}
749
d4906093
ML
750static bool
751intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
d4906093
ML
754{
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
6ba770dc
AJ
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
765 int lvds_reg;
766
c619eed4 767 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
f77f13e2 785 /* based on hardware requirement, prefer smaller n to precision */
d4906093 786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 787 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
2177832f 796 intel_clock(dev, refclk, &clock);
1b894b59
CW
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
d4906093 799 continue;
cec2f356
SP
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
1b894b59
CW
803
804 this_err = abs(clock.dot - target);
d4906093
ML
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
2c07245f
ZW
815 return found;
816}
817
5eb08b69 818static bool
f2b115e6 819intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
5eb08b69
ZW
822{
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
4547668a 825
5eb08b69
ZW
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842}
843
a4fc5ed6
KP
844/* DisplayPort has only two frequencies, 162MHz and 270MHz */
845static bool
846intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
a4fc5ed6 849{
5eddb70b
CW
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
a4fc5ed6 870}
a0c4da24
JB
871static bool
872intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875{
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
af447bd3 882 flag = 0;
a0c4da24
JB
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938}
a4fc5ed6 939
a5c961d1
PZ
940enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942{
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946 return intel_crtc->cpu_transcoder;
947}
948
a928d536
PZ
949static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
953
954 frame = I915_READ(frame_reg);
955
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
958}
959
9d0498a2
JB
960/**
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
964 *
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
967 */
968void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 969{
9d0498a2 970 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 971 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 972
a928d536
PZ
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
976 }
977
300387c0
CW
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
980 *
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
990 */
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
9d0498a2 994 /* Wait for vblank interrupt bit to set */
481b6af3
CW
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
9d0498a2
JB
998 DRM_DEBUG_KMS("vblank wait timed out\n");
999}
1000
ab7ad7f6
KP
1001/*
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1005 *
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1009 *
ab7ad7f6
KP
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1012 *
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
58e10eb9 1016 *
9d0498a2 1017 */
58e10eb9 1018void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1019{
1020 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
1021 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022 pipe);
ab7ad7f6
KP
1023
1024 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1025 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1026
1027 /* Wait for the Pipe State to go off */
58e10eb9
CW
1028 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029 100))
284637d9 1030 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1031 } else {
837ba00f 1032 u32 last_line, line_mask;
58e10eb9 1033 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1034 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
837ba00f
PZ
1036 if (IS_GEN2(dev))
1037 line_mask = DSL_LINEMASK_GEN2;
1038 else
1039 line_mask = DSL_LINEMASK_GEN3;
1040
ab7ad7f6
KP
1041 /* Wait for the display line to settle */
1042 do {
837ba00f 1043 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1044 mdelay(5);
837ba00f 1045 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1046 time_after(timeout, jiffies));
1047 if (time_after(jiffies, timeout))
284637d9 1048 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1049 }
79e53945
JB
1050}
1051
b24e7179
JB
1052static const char *state_string(bool enabled)
1053{
1054 return enabled ? "on" : "off";
1055}
1056
1057/* Only for pre-ILK configs */
1058static void assert_pll(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, bool state)
1060{
1061 int reg;
1062 u32 val;
1063 bool cur_state;
1064
1065 reg = DPLL(pipe);
1066 val = I915_READ(reg);
1067 cur_state = !!(val & DPLL_VCO_ENABLE);
1068 WARN(cur_state != state,
1069 "PLL state assertion failure (expected %s, current %s)\n",
1070 state_string(state), state_string(cur_state));
1071}
1072#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
040484af
JB
1075/* For ILK+ */
1076static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1077 struct intel_pch_pll *pll,
1078 struct intel_crtc *crtc,
1079 bool state)
040484af 1080{
040484af
JB
1081 u32 val;
1082 bool cur_state;
1083
9d82aa17
ED
1084 if (HAS_PCH_LPT(dev_priv->dev)) {
1085 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086 return;
1087 }
1088
92b27b08
CW
1089 if (WARN (!pll,
1090 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1091 return;
ee7b9f93 1092
92b27b08
CW
1093 val = I915_READ(pll->pll_reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097 pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099 /* Make sure the selected PLL is correctly attached to the transcoder */
1100 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1101 u32 pch_dpll;
1102
1103 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1104 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106 "PLL[%d] not attached to this transcoder %d: %08x\n",
1107 cur_state, crtc->pipe, pch_dpll)) {
1108 cur_state = !!(val >> (4*crtc->pipe + 3));
1109 WARN(cur_state != state,
1110 "PLL[%d] not %s on this transcoder %d: %08x\n",
1111 pll->pll_reg == _PCH_DPLL_B,
1112 state_string(state),
1113 crtc->pipe,
1114 val);
1115 }
d3ccbe86 1116 }
040484af 1117}
92b27b08
CW
1118#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1120
1121static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
1123{
1124 int reg;
1125 u32 val;
1126 bool cur_state;
ad80a810
PZ
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
040484af 1129
bf507ef7
ED
1130 if (IS_HASWELL(dev_priv->dev)) {
1131 /* On Haswell, DDI is used instead of FDI_TX_CTL */
ad80a810 1132 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1133 val = I915_READ(reg);
ad80a810 1134 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1135 } else {
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 cur_state = !!(val & FDI_TX_ENABLE);
1139 }
040484af
JB
1140 WARN(cur_state != state,
1141 "FDI TX state assertion failure (expected %s, current %s)\n",
1142 state_string(state), state_string(cur_state));
1143}
1144#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148 enum pipe pipe, bool state)
1149{
1150 int reg;
1151 u32 val;
1152 bool cur_state;
1153
59c859d6
ED
1154 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156 return;
1157 } else {
1158 reg = FDI_RX_CTL(pipe);
1159 val = I915_READ(reg);
1160 cur_state = !!(val & FDI_RX_ENABLE);
1161 }
040484af
JB
1162 WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165}
1166#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171{
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
1176 if (dev_priv->info->gen == 5)
1177 return;
1178
bf507ef7
ED
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (IS_HASWELL(dev_priv->dev))
1181 return;
1182
040484af
JB
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186}
1187
1188static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190{
1191 int reg;
1192 u32 val;
1193
59c859d6
ED
1194 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196 return;
1197 }
040484af
JB
1198 reg = FDI_RX_CTL(pipe);
1199 val = I915_READ(reg);
1200 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201}
1202
ea0760cf
JB
1203static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205{
1206 int pp_reg, lvds_reg;
1207 u32 val;
1208 enum pipe panel_pipe = PIPE_A;
0de3b485 1209 bool locked = true;
ea0760cf
JB
1210
1211 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212 pp_reg = PCH_PP_CONTROL;
1213 lvds_reg = PCH_LVDS;
1214 } else {
1215 pp_reg = PP_CONTROL;
1216 lvds_reg = LVDS;
1217 }
1218
1219 val = I915_READ(pp_reg);
1220 if (!(val & PANEL_POWER_ON) ||
1221 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222 locked = false;
1223
1224 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225 panel_pipe = PIPE_B;
1226
1227 WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1229 pipe_name(pipe));
ea0760cf
JB
1230}
1231
b840d907
JB
1232void assert_pipe(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
b24e7179
JB
1234{
1235 int reg;
1236 u32 val;
63d7bbe9 1237 bool cur_state;
702e7a56
PZ
1238 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239 pipe);
b24e7179 1240
8e636784
DV
1241 /* if we need the pipe A quirk it must be always on */
1242 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243 state = true;
1244
702e7a56 1245 reg = PIPECONF(cpu_transcoder);
b24e7179 1246 val = I915_READ(reg);
63d7bbe9
JB
1247 cur_state = !!(val & PIPECONF_ENABLE);
1248 WARN(cur_state != state,
1249 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1250 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1251}
1252
931872fc
CW
1253static void assert_plane(struct drm_i915_private *dev_priv,
1254 enum plane plane, bool state)
b24e7179
JB
1255{
1256 int reg;
1257 u32 val;
931872fc 1258 bool cur_state;
b24e7179
JB
1259
1260 reg = DSPCNTR(plane);
1261 val = I915_READ(reg);
931872fc
CW
1262 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263 WARN(cur_state != state,
1264 "plane %c assertion failure (expected %s, current %s)\n",
1265 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1266}
1267
931872fc
CW
1268#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
b24e7179
JB
1271static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe)
1273{
1274 int reg, i;
1275 u32 val;
1276 int cur_pipe;
1277
19ec1358 1278 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1279 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280 reg = DSPCNTR(pipe);
1281 val = I915_READ(reg);
1282 WARN((val & DISPLAY_PLANE_ENABLE),
1283 "plane %c assertion failure, should be disabled but not\n",
1284 plane_name(pipe));
19ec1358 1285 return;
28c05794 1286 }
19ec1358 1287
b24e7179
JB
1288 /* Need to check both planes against the pipe */
1289 for (i = 0; i < 2; i++) {
1290 reg = DSPCNTR(i);
1291 val = I915_READ(reg);
1292 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293 DISPPLANE_SEL_PIPE_SHIFT;
1294 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1295 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296 plane_name(i), pipe_name(pipe));
b24e7179
JB
1297 }
1298}
1299
92f2584a
JB
1300static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301{
1302 u32 val;
1303 bool enabled;
1304
9d82aa17
ED
1305 if (HAS_PCH_LPT(dev_priv->dev)) {
1306 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307 return;
1308 }
1309
92f2584a
JB
1310 val = I915_READ(PCH_DREF_CONTROL);
1311 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312 DREF_SUPERSPREAD_SOURCE_MASK));
1313 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314}
1315
1316static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318{
1319 int reg;
1320 u32 val;
1321 bool enabled;
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1326 WARN(enabled,
1327 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328 pipe_name(pipe));
92f2584a
JB
1329}
1330
4e634389
KP
1331static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1333{
1334 if ((val & DP_PORT_EN) == 0)
1335 return false;
1336
1337 if (HAS_PCH_CPT(dev_priv->dev)) {
1338 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341 return false;
1342 } else {
1343 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344 return false;
1345 }
1346 return true;
1347}
1348
1519b995
KP
1349static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe, u32 val)
1351{
1352 if ((val & PORT_ENABLE) == 0)
1353 return false;
1354
1355 if (HAS_PCH_CPT(dev_priv->dev)) {
1356 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357 return false;
1358 } else {
1359 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360 return false;
1361 }
1362 return true;
1363}
1364
1365static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 val)
1367{
1368 if ((val & LVDS_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376 return false;
1377 }
1378 return true;
1379}
1380
1381static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382 enum pipe pipe, u32 val)
1383{
1384 if ((val & ADPA_DAC_ENABLE) == 0)
1385 return false;
1386 if (HAS_PCH_CPT(dev_priv->dev)) {
1387 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388 return false;
1389 } else {
1390 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391 return false;
1392 }
1393 return true;
1394}
1395
291906f1 1396static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1397 enum pipe pipe, int reg, u32 port_sel)
291906f1 1398{
47a05eca 1399 u32 val = I915_READ(reg);
4e634389 1400 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1401 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1402 reg, pipe_name(pipe));
de9a35ab 1403
75c5da27
DV
1404 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405 && (val & DP_PIPEB_SELECT),
de9a35ab 1406 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1407}
1408
1409static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, int reg)
1411{
47a05eca 1412 u32 val = I915_READ(reg);
e9a851ed 1413 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1414 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1415 reg, pipe_name(pipe));
de9a35ab 1416
75c5da27
DV
1417 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1419 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1420}
1421
1422static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1424{
1425 int reg;
1426 u32 val;
291906f1 1427
f0575e92
KP
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1431
1432 reg = PCH_ADPA;
1433 val = I915_READ(reg);
e9a851ed 1434 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1435 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1436 pipe_name(pipe));
291906f1
JB
1437
1438 reg = PCH_LVDS;
1439 val = I915_READ(reg);
e9a851ed 1440 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1441 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1442 pipe_name(pipe));
291906f1
JB
1443
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447}
1448
63d7bbe9
JB
1449/**
1450 * intel_enable_pll - enable a PLL
1451 * @dev_priv: i915 private structure
1452 * @pipe: pipe PLL to enable
1453 *
1454 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1455 * make sure the PLL reg is writable first though, since the panel write
1456 * protect mechanism may be enabled.
1457 *
1458 * Note! This is for pre-ILK only.
7434a255
TR
1459 *
1460 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1461 */
a37b9b34 1462static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1463{
1464 int reg;
1465 u32 val;
1466
1467 /* No really, not for ILK+ */
a0c4da24 1468 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472 assert_panel_unlocked(dev_priv, pipe);
1473
1474 reg = DPLL(pipe);
1475 val = I915_READ(reg);
1476 val |= DPLL_VCO_ENABLE;
1477
1478 /* We do this three times for luck */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 I915_WRITE(reg, val);
1483 POSTING_READ(reg);
1484 udelay(150); /* wait for warmup */
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1487 udelay(150); /* wait for warmup */
1488}
1489
1490/**
1491 * intel_disable_pll - disable a PLL
1492 * @dev_priv: i915 private structure
1493 * @pipe: pipe PLL to disable
1494 *
1495 * Disable the PLL for @pipe, making sure the pipe is off first.
1496 *
1497 * Note! This is for pre-ILK only.
1498 */
1499static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500{
1501 int reg;
1502 u32 val;
1503
1504 /* Don't disable pipe A or pipe A PLLs if needed */
1505 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506 return;
1507
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1510
1511 reg = DPLL(pipe);
1512 val = I915_READ(reg);
1513 val &= ~DPLL_VCO_ENABLE;
1514 I915_WRITE(reg, val);
1515 POSTING_READ(reg);
1516}
1517
a416edef
ED
1518/* SBI access */
1519static void
1520intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521{
1522 unsigned long flags;
1523
1524 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1525 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1526 100)) {
1527 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528 goto out_unlock;
1529 }
1530
1531 I915_WRITE(SBI_ADDR,
1532 (reg << 16));
1533 I915_WRITE(SBI_DATA,
1534 value);
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRWR);
1538
39fb50f6 1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542 goto out_unlock;
1543 }
1544
1545out_unlock:
1546 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547}
1548
1549static u32
1550intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551{
1552 unsigned long flags;
39fb50f6 1553 u32 value = 0;
a416edef
ED
1554
1555 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1556 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1557 100)) {
1558 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559 goto out_unlock;
1560 }
1561
1562 I915_WRITE(SBI_ADDR,
1563 (reg << 16));
1564 I915_WRITE(SBI_CTL_STAT,
1565 SBI_BUSY |
1566 SBI_CTL_OP_CRRD);
1567
39fb50f6 1568 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1569 100)) {
1570 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571 goto out_unlock;
1572 }
1573
1574 value = I915_READ(SBI_DATA);
1575
1576out_unlock:
1577 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578 return value;
1579}
1580
92f2584a 1581/**
b6b4e185 1582 * ironlake_enable_pch_pll - enable PCH PLL
92f2584a
JB
1583 * @dev_priv: i915 private structure
1584 * @pipe: pipe PLL to enable
1585 *
1586 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587 * drives the transcoder clock.
1588 */
b6b4e185 1589static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1590{
ee7b9f93 1591 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1592 struct intel_pch_pll *pll;
92f2584a
JB
1593 int reg;
1594 u32 val;
1595
48da64a8 1596 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1597 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1598 pll = intel_crtc->pch_pll;
1599 if (pll == NULL)
1600 return;
1601
1602 if (WARN_ON(pll->refcount == 0))
1603 return;
ee7b9f93
JB
1604
1605 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606 pll->pll_reg, pll->active, pll->on,
1607 intel_crtc->base.base.id);
92f2584a
JB
1608
1609 /* PCH refclock must be enabled first */
1610 assert_pch_refclk_enabled(dev_priv);
1611
ee7b9f93 1612 if (pll->active++ && pll->on) {
92b27b08 1613 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1614 return;
1615 }
1616
1617 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619 reg = pll->pll_reg;
92f2584a
JB
1620 val = I915_READ(reg);
1621 val |= DPLL_VCO_ENABLE;
1622 I915_WRITE(reg, val);
1623 POSTING_READ(reg);
1624 udelay(200);
ee7b9f93
JB
1625
1626 pll->on = true;
92f2584a
JB
1627}
1628
ee7b9f93 1629static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1630{
ee7b9f93
JB
1631 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1633 int reg;
ee7b9f93 1634 u32 val;
4c609cb8 1635
92f2584a
JB
1636 /* PCH only available on ILK+ */
1637 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1638 if (pll == NULL)
1639 return;
92f2584a 1640
48da64a8
CW
1641 if (WARN_ON(pll->refcount == 0))
1642 return;
7a419866 1643
ee7b9f93
JB
1644 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645 pll->pll_reg, pll->active, pll->on,
1646 intel_crtc->base.base.id);
7a419866 1647
48da64a8 1648 if (WARN_ON(pll->active == 0)) {
92b27b08 1649 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1650 return;
1651 }
1652
ee7b9f93 1653 if (--pll->active) {
92b27b08 1654 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1655 return;
ee7b9f93
JB
1656 }
1657
1658 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660 /* Make sure transcoder isn't still depending on us */
1661 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1662
ee7b9f93 1663 reg = pll->pll_reg;
92f2584a
JB
1664 val = I915_READ(reg);
1665 val &= ~DPLL_VCO_ENABLE;
1666 I915_WRITE(reg, val);
1667 POSTING_READ(reg);
1668 udelay(200);
ee7b9f93
JB
1669
1670 pll->on = false;
92f2584a
JB
1671}
1672
b8a4f404
PZ
1673static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
040484af
JB
1675{
1676 int reg;
5f7f726d 1677 u32 val, pipeconf_val;
7c26e5c6 1678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1679
1680 /* PCH only available on ILK+ */
1681 BUG_ON(dev_priv->info->gen < 5);
1682
1683 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1684 assert_pch_pll_enabled(dev_priv,
1685 to_intel_crtc(crtc)->pch_pll,
1686 to_intel_crtc(crtc));
040484af
JB
1687
1688 /* FDI must be feeding us bits for PCH ports */
1689 assert_fdi_tx_enabled(dev_priv, pipe);
1690 assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692 reg = TRANSCONF(pipe);
1693 val = I915_READ(reg);
5f7f726d 1694 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1695
1696 if (HAS_PCH_IBX(dev_priv->dev)) {
1697 /*
1698 * make the BPC in transcoder be consistent with
1699 * that in pipeconf reg.
1700 */
1701 val &= ~PIPE_BPC_MASK;
5f7f726d 1702 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1703 }
5f7f726d
PZ
1704
1705 val &= ~TRANS_INTERLACE_MASK;
1706 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1707 if (HAS_PCH_IBX(dev_priv->dev) &&
1708 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1709 val |= TRANS_LEGACY_INTERLACED_ILK;
1710 else
1711 val |= TRANS_INTERLACED;
5f7f726d
PZ
1712 else
1713 val |= TRANS_PROGRESSIVE;
1714
040484af
JB
1715 I915_WRITE(reg, val | TRANS_ENABLE);
1716 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1717 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1718}
1719
8fb033d7 1720static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1721 enum transcoder cpu_transcoder)
8fb033d7 1722{
8fb033d7 1723 u32 val, pipeconf_val;
8fb033d7
PZ
1724
1725 /* PCH only available on ILK+ */
1726 BUG_ON(dev_priv->info->gen < 5);
1727
8fb033d7 1728 /* FDI must be feeding us bits for PCH ports */
937bb610
PZ
1729 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1730 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1731
25f3ef11 1732 val = TRANS_ENABLE;
937bb610 1733 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1734
9a76b1c6
PZ
1735 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1736 PIPECONF_INTERLACED_ILK)
a35f2679 1737 val |= TRANS_INTERLACED;
8fb033d7
PZ
1738 else
1739 val |= TRANS_PROGRESSIVE;
1740
25f3ef11 1741 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
937bb610
PZ
1742 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1743 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1744}
1745
b8a4f404
PZ
1746static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1747 enum pipe pipe)
040484af
JB
1748{
1749 int reg;
1750 u32 val;
1751
1752 /* FDI relies on the transcoder */
1753 assert_fdi_tx_disabled(dev_priv, pipe);
1754 assert_fdi_rx_disabled(dev_priv, pipe);
1755
291906f1
JB
1756 /* Ports must be off as well */
1757 assert_pch_ports_disabled(dev_priv, pipe);
1758
040484af
JB
1759 reg = TRANSCONF(pipe);
1760 val = I915_READ(reg);
1761 val &= ~TRANS_ENABLE;
1762 I915_WRITE(reg, val);
1763 /* wait for PCH transcoder off, transcoder state */
1764 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1765 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1766}
1767
8fb033d7
PZ
1768static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769 enum pipe pipe)
1770{
1771 int reg;
1772 u32 val;
1773
1774 /* FDI relies on the transcoder */
1775 assert_fdi_tx_disabled(dev_priv, pipe);
1776 assert_fdi_rx_disabled(dev_priv, pipe);
1777
8fb033d7
PZ
1778 reg = TRANSCONF(pipe);
1779 val = I915_READ(reg);
1780 val &= ~TRANS_ENABLE;
1781 I915_WRITE(reg, val);
1782 /* wait for PCH transcoder off, transcoder state */
1783 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1784 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1785}
1786
b24e7179 1787/**
309cfea8 1788 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1789 * @dev_priv: i915 private structure
1790 * @pipe: pipe to enable
040484af 1791 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1792 *
1793 * Enable @pipe, making sure that various hardware specific requirements
1794 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1795 *
1796 * @pipe should be %PIPE_A or %PIPE_B.
1797 *
1798 * Will wait until the pipe is actually running (i.e. first vblank) before
1799 * returning.
1800 */
040484af
JB
1801static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1802 bool pch_port)
b24e7179 1803{
702e7a56
PZ
1804 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1805 pipe);
b24e7179
JB
1806 int reg;
1807 u32 val;
1808
1809 /*
1810 * A pipe without a PLL won't actually be able to drive bits from
1811 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1812 * need the check.
1813 */
1814 if (!HAS_PCH_SPLIT(dev_priv->dev))
1815 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1816 else {
1817 if (pch_port) {
1818 /* if driving the PCH, we need FDI enabled */
1819 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1820 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1821 }
1822 /* FIXME: assert CPU port conditions for SNB+ */
1823 }
b24e7179 1824
702e7a56 1825 reg = PIPECONF(cpu_transcoder);
b24e7179 1826 val = I915_READ(reg);
00d70b15
CW
1827 if (val & PIPECONF_ENABLE)
1828 return;
1829
1830 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1831 intel_wait_for_vblank(dev_priv->dev, pipe);
1832}
1833
1834/**
309cfea8 1835 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1836 * @dev_priv: i915 private structure
1837 * @pipe: pipe to disable
1838 *
1839 * Disable @pipe, making sure that various hardware specific requirements
1840 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1841 *
1842 * @pipe should be %PIPE_A or %PIPE_B.
1843 *
1844 * Will wait until the pipe has shut down before returning.
1845 */
1846static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1847 enum pipe pipe)
1848{
702e7a56
PZ
1849 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1850 pipe);
b24e7179
JB
1851 int reg;
1852 u32 val;
1853
1854 /*
1855 * Make sure planes won't keep trying to pump pixels to us,
1856 * or we might hang the display.
1857 */
1858 assert_planes_disabled(dev_priv, pipe);
1859
1860 /* Don't disable pipe A or pipe A PLLs if needed */
1861 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1862 return;
1863
702e7a56 1864 reg = PIPECONF(cpu_transcoder);
b24e7179 1865 val = I915_READ(reg);
00d70b15
CW
1866 if ((val & PIPECONF_ENABLE) == 0)
1867 return;
1868
1869 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1870 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1871}
1872
d74362c9
KP
1873/*
1874 * Plane regs are double buffered, going from enabled->disabled needs a
1875 * trigger in order to latch. The display address reg provides this.
1876 */
6f1d69b0 1877void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1878 enum plane plane)
1879{
14f86147
DL
1880 if (dev_priv->info->gen >= 4)
1881 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1882 else
1883 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
d74362c9
KP
1884}
1885
b24e7179
JB
1886/**
1887 * intel_enable_plane - enable a display plane on a given pipe
1888 * @dev_priv: i915 private structure
1889 * @plane: plane to enable
1890 * @pipe: pipe being fed
1891 *
1892 * Enable @plane on @pipe, making sure that @pipe is running first.
1893 */
1894static void intel_enable_plane(struct drm_i915_private *dev_priv,
1895 enum plane plane, enum pipe pipe)
1896{
1897 int reg;
1898 u32 val;
1899
1900 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1901 assert_pipe_enabled(dev_priv, pipe);
1902
1903 reg = DSPCNTR(plane);
1904 val = I915_READ(reg);
00d70b15
CW
1905 if (val & DISPLAY_PLANE_ENABLE)
1906 return;
1907
1908 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1909 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1910 intel_wait_for_vblank(dev_priv->dev, pipe);
1911}
1912
b24e7179
JB
1913/**
1914 * intel_disable_plane - disable a display plane
1915 * @dev_priv: i915 private structure
1916 * @plane: plane to disable
1917 * @pipe: pipe consuming the data
1918 *
1919 * Disable @plane; should be an independent operation.
1920 */
1921static void intel_disable_plane(struct drm_i915_private *dev_priv,
1922 enum plane plane, enum pipe pipe)
1923{
1924 int reg;
1925 u32 val;
1926
1927 reg = DSPCNTR(plane);
1928 val = I915_READ(reg);
00d70b15
CW
1929 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1930 return;
1931
1932 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1933 intel_flush_display_plane(dev_priv, plane);
1934 intel_wait_for_vblank(dev_priv->dev, pipe);
1935}
1936
127bd2ac 1937int
48b956c5 1938intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1939 struct drm_i915_gem_object *obj,
919926ae 1940 struct intel_ring_buffer *pipelined)
6b95a207 1941{
ce453d81 1942 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1943 u32 alignment;
1944 int ret;
1945
05394f39 1946 switch (obj->tiling_mode) {
6b95a207 1947 case I915_TILING_NONE:
534843da
CW
1948 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1949 alignment = 128 * 1024;
a6c45cf0 1950 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1951 alignment = 4 * 1024;
1952 else
1953 alignment = 64 * 1024;
6b95a207
KH
1954 break;
1955 case I915_TILING_X:
1956 /* pin() will align the object as required by fence */
1957 alignment = 0;
1958 break;
1959 case I915_TILING_Y:
1960 /* FIXME: Is this true? */
1961 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1962 return -EINVAL;
1963 default:
1964 BUG();
1965 }
1966
ce453d81 1967 dev_priv->mm.interruptible = false;
2da3b9b9 1968 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1969 if (ret)
ce453d81 1970 goto err_interruptible;
6b95a207
KH
1971
1972 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1973 * fence, whereas 965+ only requires a fence if using
1974 * framebuffer compression. For simplicity, we always install
1975 * a fence as the cost is not that onerous.
1976 */
06d98131 1977 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1978 if (ret)
1979 goto err_unpin;
1690e1eb 1980
9a5a53b3 1981 i915_gem_object_pin_fence(obj);
6b95a207 1982
ce453d81 1983 dev_priv->mm.interruptible = true;
6b95a207 1984 return 0;
48b956c5
CW
1985
1986err_unpin:
1987 i915_gem_object_unpin(obj);
ce453d81
CW
1988err_interruptible:
1989 dev_priv->mm.interruptible = true;
48b956c5 1990 return ret;
6b95a207
KH
1991}
1992
1690e1eb
CW
1993void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1994{
1995 i915_gem_object_unpin_fence(obj);
1996 i915_gem_object_unpin(obj);
1997}
1998
c2c75131
DV
1999/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2000 * is assumed to be a power-of-two. */
5a35e99e
DL
2001unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2002 unsigned int bpp,
2003 unsigned int pitch)
c2c75131
DV
2004{
2005 int tile_rows, tiles;
2006
2007 tile_rows = *y / 8;
2008 *y %= 8;
2009 tiles = *x / (512/bpp);
2010 *x %= 512/bpp;
2011
2012 return tile_rows * pitch * 8 + tiles * 4096;
2013}
2014
17638cd6
JB
2015static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2016 int x, int y)
81255565
JB
2017{
2018 struct drm_device *dev = crtc->dev;
2019 struct drm_i915_private *dev_priv = dev->dev_private;
2020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2021 struct intel_framebuffer *intel_fb;
05394f39 2022 struct drm_i915_gem_object *obj;
81255565 2023 int plane = intel_crtc->plane;
e506a0c6 2024 unsigned long linear_offset;
81255565 2025 u32 dspcntr;
5eddb70b 2026 u32 reg;
81255565
JB
2027
2028 switch (plane) {
2029 case 0:
2030 case 1:
2031 break;
2032 default:
2033 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2034 return -EINVAL;
2035 }
2036
2037 intel_fb = to_intel_framebuffer(fb);
2038 obj = intel_fb->obj;
81255565 2039
5eddb70b
CW
2040 reg = DSPCNTR(plane);
2041 dspcntr = I915_READ(reg);
81255565
JB
2042 /* Mask out pixel format bits in case we change it */
2043 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2044 switch (fb->pixel_format) {
2045 case DRM_FORMAT_C8:
81255565
JB
2046 dspcntr |= DISPPLANE_8BPP;
2047 break;
57779d06
VS
2048 case DRM_FORMAT_XRGB1555:
2049 case DRM_FORMAT_ARGB1555:
2050 dspcntr |= DISPPLANE_BGRX555;
81255565 2051 break;
57779d06
VS
2052 case DRM_FORMAT_RGB565:
2053 dspcntr |= DISPPLANE_BGRX565;
2054 break;
2055 case DRM_FORMAT_XRGB8888:
2056 case DRM_FORMAT_ARGB8888:
2057 dspcntr |= DISPPLANE_BGRX888;
2058 break;
2059 case DRM_FORMAT_XBGR8888:
2060 case DRM_FORMAT_ABGR8888:
2061 dspcntr |= DISPPLANE_RGBX888;
2062 break;
2063 case DRM_FORMAT_XRGB2101010:
2064 case DRM_FORMAT_ARGB2101010:
2065 dspcntr |= DISPPLANE_BGRX101010;
2066 break;
2067 case DRM_FORMAT_XBGR2101010:
2068 case DRM_FORMAT_ABGR2101010:
2069 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2070 break;
2071 default:
57779d06 2072 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
81255565
JB
2073 return -EINVAL;
2074 }
57779d06 2075
a6c45cf0 2076 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2077 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2078 dspcntr |= DISPPLANE_TILED;
2079 else
2080 dspcntr &= ~DISPPLANE_TILED;
2081 }
2082
5eddb70b 2083 I915_WRITE(reg, dspcntr);
81255565 2084
e506a0c6 2085 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2086
c2c75131
DV
2087 if (INTEL_INFO(dev)->gen >= 4) {
2088 intel_crtc->dspaddr_offset =
5a35e99e
DL
2089 intel_gen4_compute_offset_xtiled(&x, &y,
2090 fb->bits_per_pixel / 8,
2091 fb->pitches[0]);
c2c75131
DV
2092 linear_offset -= intel_crtc->dspaddr_offset;
2093 } else {
e506a0c6 2094 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2095 }
e506a0c6
DV
2096
2097 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2099 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2100 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2101 I915_MODIFY_DISPBASE(DSPSURF(plane),
2102 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2103 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2104 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2105 } else
e506a0c6 2106 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2107 POSTING_READ(reg);
81255565 2108
17638cd6
JB
2109 return 0;
2110}
2111
2112static int ironlake_update_plane(struct drm_crtc *crtc,
2113 struct drm_framebuffer *fb, int x, int y)
2114{
2115 struct drm_device *dev = crtc->dev;
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2118 struct intel_framebuffer *intel_fb;
2119 struct drm_i915_gem_object *obj;
2120 int plane = intel_crtc->plane;
e506a0c6 2121 unsigned long linear_offset;
17638cd6
JB
2122 u32 dspcntr;
2123 u32 reg;
2124
2125 switch (plane) {
2126 case 0:
2127 case 1:
27f8227b 2128 case 2:
17638cd6
JB
2129 break;
2130 default:
2131 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2132 return -EINVAL;
2133 }
2134
2135 intel_fb = to_intel_framebuffer(fb);
2136 obj = intel_fb->obj;
2137
2138 reg = DSPCNTR(plane);
2139 dspcntr = I915_READ(reg);
2140 /* Mask out pixel format bits in case we change it */
2141 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2142 switch (fb->pixel_format) {
2143 case DRM_FORMAT_C8:
17638cd6
JB
2144 dspcntr |= DISPPLANE_8BPP;
2145 break;
57779d06
VS
2146 case DRM_FORMAT_RGB565:
2147 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2148 break;
57779d06
VS
2149 case DRM_FORMAT_XRGB8888:
2150 case DRM_FORMAT_ARGB8888:
2151 dspcntr |= DISPPLANE_BGRX888;
2152 break;
2153 case DRM_FORMAT_XBGR8888:
2154 case DRM_FORMAT_ABGR8888:
2155 dspcntr |= DISPPLANE_RGBX888;
2156 break;
2157 case DRM_FORMAT_XRGB2101010:
2158 case DRM_FORMAT_ARGB2101010:
2159 dspcntr |= DISPPLANE_BGRX101010;
2160 break;
2161 case DRM_FORMAT_XBGR2101010:
2162 case DRM_FORMAT_ABGR2101010:
2163 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2164 break;
2165 default:
57779d06 2166 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
17638cd6
JB
2167 return -EINVAL;
2168 }
2169
2170 if (obj->tiling_mode != I915_TILING_NONE)
2171 dspcntr |= DISPPLANE_TILED;
2172 else
2173 dspcntr &= ~DISPPLANE_TILED;
2174
2175 /* must disable */
2176 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2177
2178 I915_WRITE(reg, dspcntr);
2179
e506a0c6 2180 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2181 intel_crtc->dspaddr_offset =
5a35e99e
DL
2182 intel_gen4_compute_offset_xtiled(&x, &y,
2183 fb->bits_per_pixel / 8,
2184 fb->pitches[0]);
c2c75131 2185 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2186
e506a0c6
DV
2187 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2188 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2189 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2190 I915_MODIFY_DISPBASE(DSPSURF(plane),
2191 obj->gtt_offset + intel_crtc->dspaddr_offset);
bc1c91eb
DL
2192 if (IS_HASWELL(dev)) {
2193 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2194 } else {
2195 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2196 I915_WRITE(DSPLINOFF(plane), linear_offset);
2197 }
17638cd6
JB
2198 POSTING_READ(reg);
2199
2200 return 0;
2201}
2202
2203/* Assume fb object is pinned & idle & fenced and just update base pointers */
2204static int
2205intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2206 int x, int y, enum mode_set_atomic state)
2207{
2208 struct drm_device *dev = crtc->dev;
2209 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2210
6b8e6ed0
CW
2211 if (dev_priv->display.disable_fbc)
2212 dev_priv->display.disable_fbc(dev);
3dec0095 2213 intel_increase_pllclock(crtc);
81255565 2214
6b8e6ed0 2215 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2216}
2217
14667a4b
CW
2218static int
2219intel_finish_fb(struct drm_framebuffer *old_fb)
2220{
2221 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2222 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2223 bool was_interruptible = dev_priv->mm.interruptible;
2224 int ret;
2225
2226 wait_event(dev_priv->pending_flip_queue,
2227 atomic_read(&dev_priv->mm.wedged) ||
2228 atomic_read(&obj->pending_flip) == 0);
2229
2230 /* Big Hammer, we also need to ensure that any pending
2231 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2232 * current scanout is retired before unpinning the old
2233 * framebuffer.
2234 *
2235 * This should only fail upon a hung GPU, in which case we
2236 * can safely continue.
2237 */
2238 dev_priv->mm.interruptible = false;
2239 ret = i915_gem_object_finish_gpu(obj);
2240 dev_priv->mm.interruptible = was_interruptible;
2241
2242 return ret;
2243}
2244
198598d0
VS
2245static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2246{
2247 struct drm_device *dev = crtc->dev;
2248 struct drm_i915_master_private *master_priv;
2249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2250
2251 if (!dev->primary->master)
2252 return;
2253
2254 master_priv = dev->primary->master->driver_priv;
2255 if (!master_priv->sarea_priv)
2256 return;
2257
2258 switch (intel_crtc->pipe) {
2259 case 0:
2260 master_priv->sarea_priv->pipeA_x = x;
2261 master_priv->sarea_priv->pipeA_y = y;
2262 break;
2263 case 1:
2264 master_priv->sarea_priv->pipeB_x = x;
2265 master_priv->sarea_priv->pipeB_y = y;
2266 break;
2267 default:
2268 break;
2269 }
2270}
2271
5c3b82e2 2272static int
3c4fdcfb 2273intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2274 struct drm_framebuffer *fb)
79e53945
JB
2275{
2276 struct drm_device *dev = crtc->dev;
6b8e6ed0 2277 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2279 struct drm_framebuffer *old_fb;
5c3b82e2 2280 int ret;
79e53945
JB
2281
2282 /* no fb bound */
94352cf9 2283 if (!fb) {
a5071c2f 2284 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2285 return 0;
2286 }
2287
5826eca5
ED
2288 if(intel_crtc->plane > dev_priv->num_pipe) {
2289 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2290 intel_crtc->plane,
2291 dev_priv->num_pipe);
5c3b82e2 2292 return -EINVAL;
79e53945
JB
2293 }
2294
5c3b82e2 2295 mutex_lock(&dev->struct_mutex);
265db958 2296 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2297 to_intel_framebuffer(fb)->obj,
919926ae 2298 NULL);
5c3b82e2
CW
2299 if (ret != 0) {
2300 mutex_unlock(&dev->struct_mutex);
a5071c2f 2301 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2302 return ret;
2303 }
79e53945 2304
94352cf9
DV
2305 if (crtc->fb)
2306 intel_finish_fb(crtc->fb);
265db958 2307
94352cf9 2308 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2309 if (ret) {
94352cf9 2310 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2311 mutex_unlock(&dev->struct_mutex);
a5071c2f 2312 DRM_ERROR("failed to update base address\n");
4e6cfefc 2313 return ret;
79e53945 2314 }
3c4fdcfb 2315
94352cf9
DV
2316 old_fb = crtc->fb;
2317 crtc->fb = fb;
6c4c86f5
DV
2318 crtc->x = x;
2319 crtc->y = y;
94352cf9 2320
b7f1de28
CW
2321 if (old_fb) {
2322 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2323 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2324 }
652c393a 2325
6b8e6ed0 2326 intel_update_fbc(dev);
5c3b82e2 2327 mutex_unlock(&dev->struct_mutex);
79e53945 2328
198598d0 2329 intel_crtc_update_sarea_pos(crtc, x, y);
5c3b82e2
CW
2330
2331 return 0;
79e53945
JB
2332}
2333
5eddb70b 2334static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2335{
2336 struct drm_device *dev = crtc->dev;
2337 struct drm_i915_private *dev_priv = dev->dev_private;
2338 u32 dpa_ctl;
2339
28c97730 2340 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2341 dpa_ctl = I915_READ(DP_A);
2342 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2343
2344 if (clock < 200000) {
2345 u32 temp;
2346 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2347 /* workaround for 160Mhz:
2348 1) program 0x4600c bits 15:0 = 0x8124
2349 2) program 0x46010 bit 0 = 1
2350 3) program 0x46034 bit 24 = 1
2351 4) program 0x64000 bit 14 = 1
2352 */
2353 temp = I915_READ(0x4600c);
2354 temp &= 0xffff0000;
2355 I915_WRITE(0x4600c, temp | 0x8124);
2356
2357 temp = I915_READ(0x46010);
2358 I915_WRITE(0x46010, temp | 1);
2359
2360 temp = I915_READ(0x46034);
2361 I915_WRITE(0x46034, temp | (1 << 24));
2362 } else {
2363 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2364 }
2365 I915_WRITE(DP_A, dpa_ctl);
2366
5eddb70b 2367 POSTING_READ(DP_A);
32f9d658
ZW
2368 udelay(500);
2369}
2370
5e84e1a4
ZW
2371static void intel_fdi_normal_train(struct drm_crtc *crtc)
2372{
2373 struct drm_device *dev = crtc->dev;
2374 struct drm_i915_private *dev_priv = dev->dev_private;
2375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2376 int pipe = intel_crtc->pipe;
2377 u32 reg, temp;
2378
2379 /* enable normal train */
2380 reg = FDI_TX_CTL(pipe);
2381 temp = I915_READ(reg);
61e499bf 2382 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2383 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2384 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2385 } else {
2386 temp &= ~FDI_LINK_TRAIN_NONE;
2387 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2388 }
5e84e1a4
ZW
2389 I915_WRITE(reg, temp);
2390
2391 reg = FDI_RX_CTL(pipe);
2392 temp = I915_READ(reg);
2393 if (HAS_PCH_CPT(dev)) {
2394 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2395 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2396 } else {
2397 temp &= ~FDI_LINK_TRAIN_NONE;
2398 temp |= FDI_LINK_TRAIN_NONE;
2399 }
2400 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2401
2402 /* wait one idle pattern time */
2403 POSTING_READ(reg);
2404 udelay(1000);
357555c0
JB
2405
2406 /* IVB wants error correction enabled */
2407 if (IS_IVYBRIDGE(dev))
2408 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2409 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2410}
2411
291427f5
JB
2412static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2413{
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 u32 flags = I915_READ(SOUTH_CHICKEN1);
2416
2417 flags |= FDI_PHASE_SYNC_OVR(pipe);
2418 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2419 flags |= FDI_PHASE_SYNC_EN(pipe);
2420 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2421 POSTING_READ(SOUTH_CHICKEN1);
2422}
2423
01a415fd
DV
2424static void ivb_modeset_global_resources(struct drm_device *dev)
2425{
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 struct intel_crtc *pipe_B_crtc =
2428 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2429 struct intel_crtc *pipe_C_crtc =
2430 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2431 uint32_t temp;
2432
2433 /* When everything is off disable fdi C so that we could enable fdi B
2434 * with all lanes. XXX: This misses the case where a pipe is not using
2435 * any pch resources and so doesn't need any fdi lanes. */
2436 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2437 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2438 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2439
2440 temp = I915_READ(SOUTH_CHICKEN1);
2441 temp &= ~FDI_BC_BIFURCATION_SELECT;
2442 DRM_DEBUG_KMS("disabling fdi C rx\n");
2443 I915_WRITE(SOUTH_CHICKEN1, temp);
2444 }
2445}
2446
8db9d77b
ZW
2447/* The FDI link training functions for ILK/Ibexpeak. */
2448static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2449{
2450 struct drm_device *dev = crtc->dev;
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2453 int pipe = intel_crtc->pipe;
0fc932b8 2454 int plane = intel_crtc->plane;
5eddb70b 2455 u32 reg, temp, tries;
8db9d77b 2456
0fc932b8
JB
2457 /* FDI needs bits from pipe & plane first */
2458 assert_pipe_enabled(dev_priv, pipe);
2459 assert_plane_enabled(dev_priv, plane);
2460
e1a44743
AJ
2461 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2462 for train result */
5eddb70b
CW
2463 reg = FDI_RX_IMR(pipe);
2464 temp = I915_READ(reg);
e1a44743
AJ
2465 temp &= ~FDI_RX_SYMBOL_LOCK;
2466 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2467 I915_WRITE(reg, temp);
2468 I915_READ(reg);
e1a44743
AJ
2469 udelay(150);
2470
8db9d77b 2471 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2472 reg = FDI_TX_CTL(pipe);
2473 temp = I915_READ(reg);
77ffb597
AJ
2474 temp &= ~(7 << 19);
2475 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2476 temp &= ~FDI_LINK_TRAIN_NONE;
2477 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2478 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2479
5eddb70b
CW
2480 reg = FDI_RX_CTL(pipe);
2481 temp = I915_READ(reg);
8db9d77b
ZW
2482 temp &= ~FDI_LINK_TRAIN_NONE;
2483 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2484 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2485
2486 POSTING_READ(reg);
8db9d77b
ZW
2487 udelay(150);
2488
5b2adf89 2489 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2490 if (HAS_PCH_IBX(dev)) {
2491 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2492 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2493 FDI_RX_PHASE_SYNC_POINTER_EN);
2494 }
5b2adf89 2495
5eddb70b 2496 reg = FDI_RX_IIR(pipe);
e1a44743 2497 for (tries = 0; tries < 5; tries++) {
5eddb70b 2498 temp = I915_READ(reg);
8db9d77b
ZW
2499 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2500
2501 if ((temp & FDI_RX_BIT_LOCK)) {
2502 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2503 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2504 break;
2505 }
8db9d77b 2506 }
e1a44743 2507 if (tries == 5)
5eddb70b 2508 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2509
2510 /* Train 2 */
5eddb70b
CW
2511 reg = FDI_TX_CTL(pipe);
2512 temp = I915_READ(reg);
8db9d77b
ZW
2513 temp &= ~FDI_LINK_TRAIN_NONE;
2514 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2515 I915_WRITE(reg, temp);
8db9d77b 2516
5eddb70b
CW
2517 reg = FDI_RX_CTL(pipe);
2518 temp = I915_READ(reg);
8db9d77b
ZW
2519 temp &= ~FDI_LINK_TRAIN_NONE;
2520 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2521 I915_WRITE(reg, temp);
8db9d77b 2522
5eddb70b
CW
2523 POSTING_READ(reg);
2524 udelay(150);
8db9d77b 2525
5eddb70b 2526 reg = FDI_RX_IIR(pipe);
e1a44743 2527 for (tries = 0; tries < 5; tries++) {
5eddb70b 2528 temp = I915_READ(reg);
8db9d77b
ZW
2529 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2530
2531 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2532 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2533 DRM_DEBUG_KMS("FDI train 2 done.\n");
2534 break;
2535 }
8db9d77b 2536 }
e1a44743 2537 if (tries == 5)
5eddb70b 2538 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2539
2540 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2541
8db9d77b
ZW
2542}
2543
0206e353 2544static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2545 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2546 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2547 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2548 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2549};
2550
2551/* The FDI link training functions for SNB/Cougarpoint. */
2552static void gen6_fdi_link_train(struct drm_crtc *crtc)
2553{
2554 struct drm_device *dev = crtc->dev;
2555 struct drm_i915_private *dev_priv = dev->dev_private;
2556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2557 int pipe = intel_crtc->pipe;
fa37d39e 2558 u32 reg, temp, i, retry;
8db9d77b 2559
e1a44743
AJ
2560 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2561 for train result */
5eddb70b
CW
2562 reg = FDI_RX_IMR(pipe);
2563 temp = I915_READ(reg);
e1a44743
AJ
2564 temp &= ~FDI_RX_SYMBOL_LOCK;
2565 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2566 I915_WRITE(reg, temp);
2567
2568 POSTING_READ(reg);
e1a44743
AJ
2569 udelay(150);
2570
8db9d77b 2571 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2572 reg = FDI_TX_CTL(pipe);
2573 temp = I915_READ(reg);
77ffb597
AJ
2574 temp &= ~(7 << 19);
2575 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2576 temp &= ~FDI_LINK_TRAIN_NONE;
2577 temp |= FDI_LINK_TRAIN_PATTERN_1;
2578 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2579 /* SNB-B */
2580 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2581 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2582
d74cf324
DV
2583 I915_WRITE(FDI_RX_MISC(pipe),
2584 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2585
5eddb70b
CW
2586 reg = FDI_RX_CTL(pipe);
2587 temp = I915_READ(reg);
8db9d77b
ZW
2588 if (HAS_PCH_CPT(dev)) {
2589 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2590 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2591 } else {
2592 temp &= ~FDI_LINK_TRAIN_NONE;
2593 temp |= FDI_LINK_TRAIN_PATTERN_1;
2594 }
5eddb70b
CW
2595 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2596
2597 POSTING_READ(reg);
8db9d77b
ZW
2598 udelay(150);
2599
291427f5
JB
2600 if (HAS_PCH_CPT(dev))
2601 cpt_phase_pointer_enable(dev, pipe);
2602
0206e353 2603 for (i = 0; i < 4; i++) {
5eddb70b
CW
2604 reg = FDI_TX_CTL(pipe);
2605 temp = I915_READ(reg);
8db9d77b
ZW
2606 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2607 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2608 I915_WRITE(reg, temp);
2609
2610 POSTING_READ(reg);
8db9d77b
ZW
2611 udelay(500);
2612
fa37d39e
SP
2613 for (retry = 0; retry < 5; retry++) {
2614 reg = FDI_RX_IIR(pipe);
2615 temp = I915_READ(reg);
2616 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2617 if (temp & FDI_RX_BIT_LOCK) {
2618 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2619 DRM_DEBUG_KMS("FDI train 1 done.\n");
2620 break;
2621 }
2622 udelay(50);
8db9d77b 2623 }
fa37d39e
SP
2624 if (retry < 5)
2625 break;
8db9d77b
ZW
2626 }
2627 if (i == 4)
5eddb70b 2628 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2629
2630 /* Train 2 */
5eddb70b
CW
2631 reg = FDI_TX_CTL(pipe);
2632 temp = I915_READ(reg);
8db9d77b
ZW
2633 temp &= ~FDI_LINK_TRAIN_NONE;
2634 temp |= FDI_LINK_TRAIN_PATTERN_2;
2635 if (IS_GEN6(dev)) {
2636 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2637 /* SNB-B */
2638 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2639 }
5eddb70b 2640 I915_WRITE(reg, temp);
8db9d77b 2641
5eddb70b
CW
2642 reg = FDI_RX_CTL(pipe);
2643 temp = I915_READ(reg);
8db9d77b
ZW
2644 if (HAS_PCH_CPT(dev)) {
2645 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2646 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2647 } else {
2648 temp &= ~FDI_LINK_TRAIN_NONE;
2649 temp |= FDI_LINK_TRAIN_PATTERN_2;
2650 }
5eddb70b
CW
2651 I915_WRITE(reg, temp);
2652
2653 POSTING_READ(reg);
8db9d77b
ZW
2654 udelay(150);
2655
0206e353 2656 for (i = 0; i < 4; i++) {
5eddb70b
CW
2657 reg = FDI_TX_CTL(pipe);
2658 temp = I915_READ(reg);
8db9d77b
ZW
2659 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2660 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2661 I915_WRITE(reg, temp);
2662
2663 POSTING_READ(reg);
8db9d77b
ZW
2664 udelay(500);
2665
fa37d39e
SP
2666 for (retry = 0; retry < 5; retry++) {
2667 reg = FDI_RX_IIR(pipe);
2668 temp = I915_READ(reg);
2669 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2670 if (temp & FDI_RX_SYMBOL_LOCK) {
2671 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2672 DRM_DEBUG_KMS("FDI train 2 done.\n");
2673 break;
2674 }
2675 udelay(50);
8db9d77b 2676 }
fa37d39e
SP
2677 if (retry < 5)
2678 break;
8db9d77b
ZW
2679 }
2680 if (i == 4)
5eddb70b 2681 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2682
2683 DRM_DEBUG_KMS("FDI train done.\n");
2684}
2685
357555c0
JB
2686/* Manual link training for Ivy Bridge A0 parts */
2687static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2688{
2689 struct drm_device *dev = crtc->dev;
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692 int pipe = intel_crtc->pipe;
2693 u32 reg, temp, i;
2694
2695 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2696 for train result */
2697 reg = FDI_RX_IMR(pipe);
2698 temp = I915_READ(reg);
2699 temp &= ~FDI_RX_SYMBOL_LOCK;
2700 temp &= ~FDI_RX_BIT_LOCK;
2701 I915_WRITE(reg, temp);
2702
2703 POSTING_READ(reg);
2704 udelay(150);
2705
01a415fd
DV
2706 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2707 I915_READ(FDI_RX_IIR(pipe)));
2708
357555c0
JB
2709 /* enable CPU FDI TX and PCH FDI RX */
2710 reg = FDI_TX_CTL(pipe);
2711 temp = I915_READ(reg);
2712 temp &= ~(7 << 19);
2713 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2714 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2715 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2716 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2717 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2718 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2719 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2720
d74cf324
DV
2721 I915_WRITE(FDI_RX_MISC(pipe),
2722 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2723
357555c0
JB
2724 reg = FDI_RX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 temp &= ~FDI_LINK_TRAIN_AUTO;
2727 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2728 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2729 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2730 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2731
2732 POSTING_READ(reg);
2733 udelay(150);
2734
291427f5
JB
2735 if (HAS_PCH_CPT(dev))
2736 cpt_phase_pointer_enable(dev, pipe);
2737
0206e353 2738 for (i = 0; i < 4; i++) {
357555c0
JB
2739 reg = FDI_TX_CTL(pipe);
2740 temp = I915_READ(reg);
2741 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2742 temp |= snb_b_fdi_train_param[i];
2743 I915_WRITE(reg, temp);
2744
2745 POSTING_READ(reg);
2746 udelay(500);
2747
2748 reg = FDI_RX_IIR(pipe);
2749 temp = I915_READ(reg);
2750 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2751
2752 if (temp & FDI_RX_BIT_LOCK ||
2753 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2754 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
01a415fd 2755 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
357555c0
JB
2756 break;
2757 }
2758 }
2759 if (i == 4)
2760 DRM_ERROR("FDI train 1 fail!\n");
2761
2762 /* Train 2 */
2763 reg = FDI_TX_CTL(pipe);
2764 temp = I915_READ(reg);
2765 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2766 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2767 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2768 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2769 I915_WRITE(reg, temp);
2770
2771 reg = FDI_RX_CTL(pipe);
2772 temp = I915_READ(reg);
2773 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2774 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2775 I915_WRITE(reg, temp);
2776
2777 POSTING_READ(reg);
2778 udelay(150);
2779
0206e353 2780 for (i = 0; i < 4; i++) {
357555c0
JB
2781 reg = FDI_TX_CTL(pipe);
2782 temp = I915_READ(reg);
2783 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2784 temp |= snb_b_fdi_train_param[i];
2785 I915_WRITE(reg, temp);
2786
2787 POSTING_READ(reg);
2788 udelay(500);
2789
2790 reg = FDI_RX_IIR(pipe);
2791 temp = I915_READ(reg);
2792 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2793
2794 if (temp & FDI_RX_SYMBOL_LOCK) {
2795 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
01a415fd 2796 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
357555c0
JB
2797 break;
2798 }
2799 }
2800 if (i == 4)
2801 DRM_ERROR("FDI train 2 fail!\n");
2802
2803 DRM_DEBUG_KMS("FDI train done.\n");
2804}
2805
88cefb6c 2806static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2807{
88cefb6c 2808 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2809 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2810 int pipe = intel_crtc->pipe;
5eddb70b 2811 u32 reg, temp;
79e53945 2812
c64e311e 2813
c98e9dcf 2814 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2815 reg = FDI_RX_CTL(pipe);
2816 temp = I915_READ(reg);
2817 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2818 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2819 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2820 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2821
2822 POSTING_READ(reg);
c98e9dcf
JB
2823 udelay(200);
2824
2825 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2826 temp = I915_READ(reg);
2827 I915_WRITE(reg, temp | FDI_PCDCLK);
2828
2829 POSTING_READ(reg);
c98e9dcf
JB
2830 udelay(200);
2831
bf507ef7
ED
2832 /* On Haswell, the PLL configuration for ports and pipes is handled
2833 * separately, as part of DDI setup */
2834 if (!IS_HASWELL(dev)) {
2835 /* Enable CPU FDI TX PLL, always on for Ironlake */
2836 reg = FDI_TX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2839 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2840
bf507ef7
ED
2841 POSTING_READ(reg);
2842 udelay(100);
2843 }
6be4a607 2844 }
0e23b99d
JB
2845}
2846
88cefb6c
DV
2847static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2848{
2849 struct drm_device *dev = intel_crtc->base.dev;
2850 struct drm_i915_private *dev_priv = dev->dev_private;
2851 int pipe = intel_crtc->pipe;
2852 u32 reg, temp;
2853
2854 /* Switch from PCDclk to Rawclk */
2855 reg = FDI_RX_CTL(pipe);
2856 temp = I915_READ(reg);
2857 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2858
2859 /* Disable CPU FDI TX PLL */
2860 reg = FDI_TX_CTL(pipe);
2861 temp = I915_READ(reg);
2862 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2863
2864 POSTING_READ(reg);
2865 udelay(100);
2866
2867 reg = FDI_RX_CTL(pipe);
2868 temp = I915_READ(reg);
2869 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2870
2871 /* Wait for the clocks to turn off. */
2872 POSTING_READ(reg);
2873 udelay(100);
2874}
2875
291427f5
JB
2876static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2877{
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 u32 flags = I915_READ(SOUTH_CHICKEN1);
2880
2881 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2882 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2883 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2884 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2885 POSTING_READ(SOUTH_CHICKEN1);
2886}
0fc932b8
JB
2887static void ironlake_fdi_disable(struct drm_crtc *crtc)
2888{
2889 struct drm_device *dev = crtc->dev;
2890 struct drm_i915_private *dev_priv = dev->dev_private;
2891 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2892 int pipe = intel_crtc->pipe;
2893 u32 reg, temp;
2894
2895 /* disable CPU FDI tx and PCH FDI rx */
2896 reg = FDI_TX_CTL(pipe);
2897 temp = I915_READ(reg);
2898 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2899 POSTING_READ(reg);
2900
2901 reg = FDI_RX_CTL(pipe);
2902 temp = I915_READ(reg);
2903 temp &= ~(0x7 << 16);
2904 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2905 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2906
2907 POSTING_READ(reg);
2908 udelay(100);
2909
2910 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2911 if (HAS_PCH_IBX(dev)) {
2912 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2913 I915_WRITE(FDI_RX_CHICKEN(pipe),
2914 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2915 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2916 } else if (HAS_PCH_CPT(dev)) {
2917 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2918 }
0fc932b8
JB
2919
2920 /* still set train pattern 1 */
2921 reg = FDI_TX_CTL(pipe);
2922 temp = I915_READ(reg);
2923 temp &= ~FDI_LINK_TRAIN_NONE;
2924 temp |= FDI_LINK_TRAIN_PATTERN_1;
2925 I915_WRITE(reg, temp);
2926
2927 reg = FDI_RX_CTL(pipe);
2928 temp = I915_READ(reg);
2929 if (HAS_PCH_CPT(dev)) {
2930 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2931 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2932 } else {
2933 temp &= ~FDI_LINK_TRAIN_NONE;
2934 temp |= FDI_LINK_TRAIN_PATTERN_1;
2935 }
2936 /* BPC in FDI rx is consistent with that in PIPECONF */
2937 temp &= ~(0x07 << 16);
2938 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2939 I915_WRITE(reg, temp);
2940
2941 POSTING_READ(reg);
2942 udelay(100);
2943}
2944
5bb61643
CW
2945static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2946{
2947 struct drm_device *dev = crtc->dev;
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 unsigned long flags;
2950 bool pending;
2951
2952 if (atomic_read(&dev_priv->mm.wedged))
2953 return false;
2954
2955 spin_lock_irqsave(&dev->event_lock, flags);
2956 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2957 spin_unlock_irqrestore(&dev->event_lock, flags);
2958
2959 return pending;
2960}
2961
e6c3a2a6
CW
2962static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2963{
0f91128d 2964 struct drm_device *dev = crtc->dev;
5bb61643 2965 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2966
2967 if (crtc->fb == NULL)
2968 return;
2969
5bb61643
CW
2970 wait_event(dev_priv->pending_flip_queue,
2971 !intel_crtc_has_pending_flip(crtc));
2972
0f91128d
CW
2973 mutex_lock(&dev->struct_mutex);
2974 intel_finish_fb(crtc->fb);
2975 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2976}
2977
fc316cbe 2978static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
040484af
JB
2979{
2980 struct drm_device *dev = crtc->dev;
228d3e36 2981 struct intel_encoder *intel_encoder;
040484af
JB
2982
2983 /*
2984 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2985 * must be driven by its own crtc; no sharing is possible.
2986 */
228d3e36 2987 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
228d3e36 2988 switch (intel_encoder->type) {
040484af 2989 case INTEL_OUTPUT_EDP:
228d3e36 2990 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2991 return false;
2992 continue;
2993 }
2994 }
2995
2996 return true;
2997}
2998
fc316cbe
PZ
2999static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3000{
3001 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3002}
3003
e615efe4
ED
3004/* Program iCLKIP clock to the desired frequency */
3005static void lpt_program_iclkip(struct drm_crtc *crtc)
3006{
3007 struct drm_device *dev = crtc->dev;
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3010 u32 temp;
3011
3012 /* It is necessary to ungate the pixclk gate prior to programming
3013 * the divisors, and gate it back when it is done.
3014 */
3015 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3016
3017 /* Disable SSCCTL */
3018 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3019 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3020 SBI_SSCCTL_DISABLE);
3021
3022 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3023 if (crtc->mode.clock == 20000) {
3024 auxdiv = 1;
3025 divsel = 0x41;
3026 phaseinc = 0x20;
3027 } else {
3028 /* The iCLK virtual clock root frequency is in MHz,
3029 * but the crtc->mode.clock in in KHz. To get the divisors,
3030 * it is necessary to divide one by another, so we
3031 * convert the virtual clock precision to KHz here for higher
3032 * precision.
3033 */
3034 u32 iclk_virtual_root_freq = 172800 * 1000;
3035 u32 iclk_pi_range = 64;
3036 u32 desired_divisor, msb_divisor_value, pi_value;
3037
3038 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3039 msb_divisor_value = desired_divisor / iclk_pi_range;
3040 pi_value = desired_divisor % iclk_pi_range;
3041
3042 auxdiv = 0;
3043 divsel = msb_divisor_value - 2;
3044 phaseinc = pi_value;
3045 }
3046
3047 /* This should not happen with any sane values */
3048 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3049 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3050 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3051 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3052
3053 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3054 crtc->mode.clock,
3055 auxdiv,
3056 divsel,
3057 phasedir,
3058 phaseinc);
3059
3060 /* Program SSCDIVINTPHASE6 */
3061 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3062 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3063 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3064 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3065 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3066 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3067 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3068
3069 intel_sbi_write(dev_priv,
3070 SBI_SSCDIVINTPHASE6,
3071 temp);
3072
3073 /* Program SSCAUXDIV */
3074 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3075 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3076 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3077 intel_sbi_write(dev_priv,
3078 SBI_SSCAUXDIV6,
3079 temp);
3080
3081
3082 /* Enable modulator and associated divider */
3083 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3084 temp &= ~SBI_SSCCTL_DISABLE;
3085 intel_sbi_write(dev_priv,
3086 SBI_SSCCTL6,
3087 temp);
3088
3089 /* Wait for initialization time */
3090 udelay(24);
3091
3092 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3093}
3094
f67a559d
JB
3095/*
3096 * Enable PCH resources required for PCH ports:
3097 * - PCH PLLs
3098 * - FDI training & RX/TX
3099 * - update transcoder timings
3100 * - DP transcoding bits
3101 * - transcoder
3102 */
3103static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3104{
3105 struct drm_device *dev = crtc->dev;
3106 struct drm_i915_private *dev_priv = dev->dev_private;
3107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3108 int pipe = intel_crtc->pipe;
ee7b9f93 3109 u32 reg, temp;
2c07245f 3110
e7e164db
CW
3111 assert_transcoder_disabled(dev_priv, pipe);
3112
cd986abb
DV
3113 /* Write the TU size bits before fdi link training, so that error
3114 * detection works. */
3115 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3116 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3117
c98e9dcf 3118 /* For PCH output, training FDI link */
674cf967 3119 dev_priv->display.fdi_link_train(crtc);
2c07245f 3120
572deb37
DV
3121 /* XXX: pch pll's can be enabled any time before we enable the PCH
3122 * transcoder, and we actually should do this to not upset any PCH
3123 * transcoder that already use the clock when we share it.
3124 *
3125 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3126 * unconditionally resets the pll - we need that to have the right LVDS
3127 * enable sequence. */
b6b4e185 3128 ironlake_enable_pch_pll(intel_crtc);
6f13b7b5 3129
303b81e0 3130 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3131 u32 sel;
4b645f14 3132
c98e9dcf 3133 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3134 switch (pipe) {
3135 default:
3136 case 0:
3137 temp |= TRANSA_DPLL_ENABLE;
3138 sel = TRANSA_DPLLB_SEL;
3139 break;
3140 case 1:
3141 temp |= TRANSB_DPLL_ENABLE;
3142 sel = TRANSB_DPLLB_SEL;
3143 break;
3144 case 2:
3145 temp |= TRANSC_DPLL_ENABLE;
3146 sel = TRANSC_DPLLB_SEL;
3147 break;
d64311ab 3148 }
ee7b9f93
JB
3149 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3150 temp |= sel;
3151 else
3152 temp &= ~sel;
c98e9dcf 3153 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3154 }
5eddb70b 3155
d9b6cb56
JB
3156 /* set transcoder timing, panel must allow it */
3157 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3158 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3159 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3160 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3161
5eddb70b
CW
3162 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3163 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3164 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3165 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3166
303b81e0 3167 intel_fdi_normal_train(crtc);
5e84e1a4 3168
c98e9dcf
JB
3169 /* For PCH DP, enable TRANS_DP_CTL */
3170 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3171 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3172 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3173 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3174 reg = TRANS_DP_CTL(pipe);
3175 temp = I915_READ(reg);
3176 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3177 TRANS_DP_SYNC_MASK |
3178 TRANS_DP_BPC_MASK);
5eddb70b
CW
3179 temp |= (TRANS_DP_OUTPUT_ENABLE |
3180 TRANS_DP_ENH_FRAMING);
9325c9f0 3181 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3182
3183 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3184 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3185 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3186 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3187
3188 switch (intel_trans_dp_port_sel(crtc)) {
3189 case PCH_DP_B:
5eddb70b 3190 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3191 break;
3192 case PCH_DP_C:
5eddb70b 3193 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3194 break;
3195 case PCH_DP_D:
5eddb70b 3196 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3197 break;
3198 default:
e95d41e1 3199 BUG();
32f9d658 3200 }
2c07245f 3201
5eddb70b 3202 I915_WRITE(reg, temp);
6be4a607 3203 }
b52eb4dc 3204
b8a4f404 3205 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3206}
3207
1507e5bd
PZ
3208static void lpt_pch_enable(struct drm_crtc *crtc)
3209{
3210 struct drm_device *dev = crtc->dev;
3211 struct drm_i915_private *dev_priv = dev->dev_private;
3212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3213 int pipe = intel_crtc->pipe;
daed2dbb 3214 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
1507e5bd 3215
daed2dbb 3216 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd
PZ
3217
3218 /* Write the TU size bits before fdi link training, so that error
3219 * detection works. */
3220 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3221 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3222
3223 /* For PCH output, training FDI link */
3224 dev_priv->display.fdi_link_train(crtc);
3225
8c52b5e8 3226 lpt_program_iclkip(crtc);
1507e5bd 3227
0540e488 3228 /* Set transcoder timing. */
daed2dbb
PZ
3229 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3230 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3231 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
1507e5bd 3232
daed2dbb
PZ
3233 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3234 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3235 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3236 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
1507e5bd 3237
937bb610 3238 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
1507e5bd
PZ
3239}
3240
ee7b9f93
JB
3241static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3242{
3243 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3244
3245 if (pll == NULL)
3246 return;
3247
3248 if (pll->refcount == 0) {
3249 WARN(1, "bad PCH PLL refcount\n");
3250 return;
3251 }
3252
3253 --pll->refcount;
3254 intel_crtc->pch_pll = NULL;
3255}
3256
3257static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3258{
3259 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3260 struct intel_pch_pll *pll;
3261 int i;
3262
3263 pll = intel_crtc->pch_pll;
3264 if (pll) {
3265 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3266 intel_crtc->base.base.id, pll->pll_reg);
3267 goto prepare;
3268 }
3269
98b6bd99
DV
3270 if (HAS_PCH_IBX(dev_priv->dev)) {
3271 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3272 i = intel_crtc->pipe;
3273 pll = &dev_priv->pch_plls[i];
3274
3275 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3276 intel_crtc->base.base.id, pll->pll_reg);
3277
3278 goto found;
3279 }
3280
ee7b9f93
JB
3281 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3282 pll = &dev_priv->pch_plls[i];
3283
3284 /* Only want to check enabled timings first */
3285 if (pll->refcount == 0)
3286 continue;
3287
3288 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3289 fp == I915_READ(pll->fp0_reg)) {
3290 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3291 intel_crtc->base.base.id,
3292 pll->pll_reg, pll->refcount, pll->active);
3293
3294 goto found;
3295 }
3296 }
3297
3298 /* Ok no matching timings, maybe there's a free one? */
3299 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3300 pll = &dev_priv->pch_plls[i];
3301 if (pll->refcount == 0) {
3302 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3303 intel_crtc->base.base.id, pll->pll_reg);
3304 goto found;
3305 }
3306 }
3307
3308 return NULL;
3309
3310found:
3311 intel_crtc->pch_pll = pll;
3312 pll->refcount++;
3313 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3314prepare: /* separate function? */
3315 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3316
e04c7350
CW
3317 /* Wait for the clocks to stabilize before rewriting the regs */
3318 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3319 POSTING_READ(pll->pll_reg);
3320 udelay(150);
e04c7350
CW
3321
3322 I915_WRITE(pll->fp0_reg, fp);
3323 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3324 pll->on = false;
3325 return pll;
3326}
3327
d4270e57
JB
3328void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3329{
3330 struct drm_i915_private *dev_priv = dev->dev_private;
3331 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3332 u32 temp;
3333
3334 temp = I915_READ(dslreg);
3335 udelay(500);
3336 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3337 /* Without this, mode sets may fail silently on FDI */
3338 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3339 udelay(250);
3340 I915_WRITE(tc2reg, 0);
3341 if (wait_for(I915_READ(dslreg) != temp, 5))
3342 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3343 }
3344}
3345
f67a559d
JB
3346static void ironlake_crtc_enable(struct drm_crtc *crtc)
3347{
3348 struct drm_device *dev = crtc->dev;
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3351 struct intel_encoder *encoder;
f67a559d
JB
3352 int pipe = intel_crtc->pipe;
3353 int plane = intel_crtc->plane;
3354 u32 temp;
3355 bool is_pch_port;
3356
08a48469
DV
3357 WARN_ON(!crtc->enabled);
3358
f67a559d
JB
3359 if (intel_crtc->active)
3360 return;
3361
3362 intel_crtc->active = true;
3363 intel_update_watermarks(dev);
3364
3365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3366 temp = I915_READ(PCH_LVDS);
3367 if ((temp & LVDS_PORT_EN) == 0)
3368 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3369 }
3370
fc316cbe 3371 is_pch_port = ironlake_crtc_driving_pch(crtc);
f67a559d 3372
46b6f814 3373 if (is_pch_port) {
fff367c7
DV
3374 /* Note: FDI PLL enabling _must_ be done before we enable the
3375 * cpu pipes, hence this is separate from all the other fdi/pch
3376 * enabling. */
88cefb6c 3377 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3378 } else {
3379 assert_fdi_tx_disabled(dev_priv, pipe);
3380 assert_fdi_rx_disabled(dev_priv, pipe);
3381 }
f67a559d 3382
bf49ec8c
DV
3383 for_each_encoder_on_crtc(dev, crtc, encoder)
3384 if (encoder->pre_enable)
3385 encoder->pre_enable(encoder);
3386
f67a559d
JB
3387 /* Enable panel fitting for LVDS */
3388 if (dev_priv->pch_pf_size &&
3389 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3390 /* Force use of hard-coded filter coefficients
3391 * as some pre-programmed values are broken,
3392 * e.g. x201.
3393 */
9db4a9c7
JB
3394 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3395 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3396 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3397 }
3398
9c54c0dd
JB
3399 /*
3400 * On ILK+ LUT must be loaded before the pipe is running but with
3401 * clocks enabled
3402 */
3403 intel_crtc_load_lut(crtc);
3404
f67a559d
JB
3405 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3406 intel_enable_plane(dev_priv, plane, pipe);
3407
3408 if (is_pch_port)
3409 ironlake_pch_enable(crtc);
c98e9dcf 3410
d1ebd816 3411 mutex_lock(&dev->struct_mutex);
bed4a673 3412 intel_update_fbc(dev);
d1ebd816
BW
3413 mutex_unlock(&dev->struct_mutex);
3414
6b383a7f 3415 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3416
fa5c73b1
DV
3417 for_each_encoder_on_crtc(dev, crtc, encoder)
3418 encoder->enable(encoder);
61b77ddd
DV
3419
3420 if (HAS_PCH_CPT(dev))
3421 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3422
3423 /*
3424 * There seems to be a race in PCH platform hw (at least on some
3425 * outputs) where an enabled pipe still completes any pageflip right
3426 * away (as if the pipe is off) instead of waiting for vblank. As soon
3427 * as the first vblank happend, everything works as expected. Hence just
3428 * wait for one vblank before returning to avoid strange things
3429 * happening.
3430 */
3431 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3432}
3433
4f771f10
PZ
3434static void haswell_crtc_enable(struct drm_crtc *crtc)
3435{
3436 struct drm_device *dev = crtc->dev;
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3439 struct intel_encoder *encoder;
3440 int pipe = intel_crtc->pipe;
3441 int plane = intel_crtc->plane;
4f771f10
PZ
3442 bool is_pch_port;
3443
3444 WARN_ON(!crtc->enabled);
3445
3446 if (intel_crtc->active)
3447 return;
3448
3449 intel_crtc->active = true;
3450 intel_update_watermarks(dev);
3451
fc316cbe 3452 is_pch_port = haswell_crtc_driving_pch(crtc);
4f771f10 3453
83616634 3454 if (is_pch_port)
4f771f10 3455 ironlake_fdi_pll_enable(intel_crtc);
4f771f10
PZ
3456
3457 for_each_encoder_on_crtc(dev, crtc, encoder)
3458 if (encoder->pre_enable)
3459 encoder->pre_enable(encoder);
3460
1f544388 3461 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3462
1f544388
PZ
3463 /* Enable panel fitting for eDP */
3464 if (dev_priv->pch_pf_size && HAS_eDP) {
4f771f10
PZ
3465 /* Force use of hard-coded filter coefficients
3466 * as some pre-programmed values are broken,
3467 * e.g. x201.
3468 */
3469 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3470 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3471 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3472 }
3473
3474 /*
3475 * On ILK+ LUT must be loaded before the pipe is running but with
3476 * clocks enabled
3477 */
3478 intel_crtc_load_lut(crtc);
3479
1f544388
PZ
3480 intel_ddi_set_pipe_settings(crtc);
3481 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3482
3483 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3484 intel_enable_plane(dev_priv, plane, pipe);
3485
3486 if (is_pch_port)
1507e5bd 3487 lpt_pch_enable(crtc);
4f771f10
PZ
3488
3489 mutex_lock(&dev->struct_mutex);
3490 intel_update_fbc(dev);
3491 mutex_unlock(&dev->struct_mutex);
3492
3493 intel_crtc_update_cursor(crtc, true);
3494
3495 for_each_encoder_on_crtc(dev, crtc, encoder)
3496 encoder->enable(encoder);
3497
4f771f10
PZ
3498 /*
3499 * There seems to be a race in PCH platform hw (at least on some
3500 * outputs) where an enabled pipe still completes any pageflip right
3501 * away (as if the pipe is off) instead of waiting for vblank. As soon
3502 * as the first vblank happend, everything works as expected. Hence just
3503 * wait for one vblank before returning to avoid strange things
3504 * happening.
3505 */
3506 intel_wait_for_vblank(dev, intel_crtc->pipe);
3507}
3508
6be4a607
JB
3509static void ironlake_crtc_disable(struct drm_crtc *crtc)
3510{
3511 struct drm_device *dev = crtc->dev;
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3514 struct intel_encoder *encoder;
6be4a607
JB
3515 int pipe = intel_crtc->pipe;
3516 int plane = intel_crtc->plane;
5eddb70b 3517 u32 reg, temp;
b52eb4dc 3518
ef9c3aee 3519
f7abfe8b
CW
3520 if (!intel_crtc->active)
3521 return;
3522
ea9d758d
DV
3523 for_each_encoder_on_crtc(dev, crtc, encoder)
3524 encoder->disable(encoder);
3525
e6c3a2a6 3526 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3527 drm_vblank_off(dev, pipe);
6b383a7f 3528 intel_crtc_update_cursor(crtc, false);
5eddb70b 3529
b24e7179 3530 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3531
973d04f9
CW
3532 if (dev_priv->cfb_plane == plane)
3533 intel_disable_fbc(dev);
2c07245f 3534
b24e7179 3535 intel_disable_pipe(dev_priv, pipe);
32f9d658 3536
6be4a607 3537 /* Disable PF */
9db4a9c7
JB
3538 I915_WRITE(PF_CTL(pipe), 0);
3539 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3540
bf49ec8c
DV
3541 for_each_encoder_on_crtc(dev, crtc, encoder)
3542 if (encoder->post_disable)
3543 encoder->post_disable(encoder);
3544
0fc932b8 3545 ironlake_fdi_disable(crtc);
2c07245f 3546
b8a4f404 3547 ironlake_disable_pch_transcoder(dev_priv, pipe);
913d8d11 3548
6be4a607
JB
3549 if (HAS_PCH_CPT(dev)) {
3550 /* disable TRANS_DP_CTL */
5eddb70b
CW
3551 reg = TRANS_DP_CTL(pipe);
3552 temp = I915_READ(reg);
3553 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3554 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3555 I915_WRITE(reg, temp);
6be4a607
JB
3556
3557 /* disable DPLL_SEL */
3558 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3559 switch (pipe) {
3560 case 0:
d64311ab 3561 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3562 break;
3563 case 1:
6be4a607 3564 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3565 break;
3566 case 2:
4b645f14 3567 /* C shares PLL A or B */
d64311ab 3568 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3569 break;
3570 default:
3571 BUG(); /* wtf */
3572 }
6be4a607 3573 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3574 }
e3421a18 3575
6be4a607 3576 /* disable PCH DPLL */
ee7b9f93 3577 intel_disable_pch_pll(intel_crtc);
8db9d77b 3578
88cefb6c 3579 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3580
f7abfe8b 3581 intel_crtc->active = false;
6b383a7f 3582 intel_update_watermarks(dev);
d1ebd816
BW
3583
3584 mutex_lock(&dev->struct_mutex);
6b383a7f 3585 intel_update_fbc(dev);
d1ebd816 3586 mutex_unlock(&dev->struct_mutex);
6be4a607 3587}
1b3c7a47 3588
4f771f10
PZ
3589static void haswell_crtc_disable(struct drm_crtc *crtc)
3590{
3591 struct drm_device *dev = crtc->dev;
3592 struct drm_i915_private *dev_priv = dev->dev_private;
3593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3594 struct intel_encoder *encoder;
3595 int pipe = intel_crtc->pipe;
3596 int plane = intel_crtc->plane;
ad80a810 3597 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
83616634 3598 bool is_pch_port;
4f771f10
PZ
3599
3600 if (!intel_crtc->active)
3601 return;
3602
83616634
PZ
3603 is_pch_port = haswell_crtc_driving_pch(crtc);
3604
4f771f10
PZ
3605 for_each_encoder_on_crtc(dev, crtc, encoder)
3606 encoder->disable(encoder);
3607
3608 intel_crtc_wait_for_pending_flips(crtc);
3609 drm_vblank_off(dev, pipe);
3610 intel_crtc_update_cursor(crtc, false);
3611
3612 intel_disable_plane(dev_priv, plane, pipe);
3613
3614 if (dev_priv->cfb_plane == plane)
3615 intel_disable_fbc(dev);
3616
3617 intel_disable_pipe(dev_priv, pipe);
3618
ad80a810 3619 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10
PZ
3620
3621 /* Disable PF */
3622 I915_WRITE(PF_CTL(pipe), 0);
3623 I915_WRITE(PF_WIN_SZ(pipe), 0);
3624
1f544388 3625 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3626
3627 for_each_encoder_on_crtc(dev, crtc, encoder)
3628 if (encoder->post_disable)
3629 encoder->post_disable(encoder);
3630
83616634
PZ
3631 if (is_pch_port) {
3632 ironlake_fdi_disable(crtc);
8fb033d7 3633 lpt_disable_pch_transcoder(dev_priv, pipe);
83616634
PZ
3634 intel_disable_pch_pll(intel_crtc);
3635 ironlake_fdi_pll_disable(intel_crtc);
3636 }
4f771f10
PZ
3637
3638 intel_crtc->active = false;
3639 intel_update_watermarks(dev);
3640
3641 mutex_lock(&dev->struct_mutex);
3642 intel_update_fbc(dev);
3643 mutex_unlock(&dev->struct_mutex);
3644}
3645
ee7b9f93
JB
3646static void ironlake_crtc_off(struct drm_crtc *crtc)
3647{
3648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3649 intel_put_pch_pll(intel_crtc);
3650}
3651
6441ab5f
PZ
3652static void haswell_crtc_off(struct drm_crtc *crtc)
3653{
a5c961d1
PZ
3654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3655
3656 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3657 * start using it. */
3658 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3659
6441ab5f
PZ
3660 intel_ddi_put_crtc_pll(crtc);
3661}
3662
02e792fb
DV
3663static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3664{
02e792fb 3665 if (!enable && intel_crtc->overlay) {
23f09ce3 3666 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3667 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3668
23f09ce3 3669 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3670 dev_priv->mm.interruptible = false;
3671 (void) intel_overlay_switch_off(intel_crtc->overlay);
3672 dev_priv->mm.interruptible = true;
23f09ce3 3673 mutex_unlock(&dev->struct_mutex);
02e792fb 3674 }
02e792fb 3675
5dcdbcb0
CW
3676 /* Let userspace switch the overlay on again. In most cases userspace
3677 * has to recompute where to put it anyway.
3678 */
02e792fb
DV
3679}
3680
0b8765c6 3681static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3682{
3683 struct drm_device *dev = crtc->dev;
79e53945
JB
3684 struct drm_i915_private *dev_priv = dev->dev_private;
3685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3686 struct intel_encoder *encoder;
79e53945 3687 int pipe = intel_crtc->pipe;
80824003 3688 int plane = intel_crtc->plane;
79e53945 3689
08a48469
DV
3690 WARN_ON(!crtc->enabled);
3691
f7abfe8b
CW
3692 if (intel_crtc->active)
3693 return;
3694
3695 intel_crtc->active = true;
6b383a7f
CW
3696 intel_update_watermarks(dev);
3697
63d7bbe9 3698 intel_enable_pll(dev_priv, pipe);
040484af 3699 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3700 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3701
0b8765c6 3702 intel_crtc_load_lut(crtc);
bed4a673 3703 intel_update_fbc(dev);
79e53945 3704
0b8765c6
JB
3705 /* Give the overlay scaler a chance to enable if it's on this pipe */
3706 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3707 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3708
fa5c73b1
DV
3709 for_each_encoder_on_crtc(dev, crtc, encoder)
3710 encoder->enable(encoder);
0b8765c6 3711}
79e53945 3712
0b8765c6
JB
3713static void i9xx_crtc_disable(struct drm_crtc *crtc)
3714{
3715 struct drm_device *dev = crtc->dev;
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3718 struct intel_encoder *encoder;
0b8765c6
JB
3719 int pipe = intel_crtc->pipe;
3720 int plane = intel_crtc->plane;
b690e96c 3721
ef9c3aee 3722
f7abfe8b
CW
3723 if (!intel_crtc->active)
3724 return;
3725
ea9d758d
DV
3726 for_each_encoder_on_crtc(dev, crtc, encoder)
3727 encoder->disable(encoder);
3728
0b8765c6 3729 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3730 intel_crtc_wait_for_pending_flips(crtc);
3731 drm_vblank_off(dev, pipe);
0b8765c6 3732 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3733 intel_crtc_update_cursor(crtc, false);
0b8765c6 3734
973d04f9
CW
3735 if (dev_priv->cfb_plane == plane)
3736 intel_disable_fbc(dev);
79e53945 3737
b24e7179 3738 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3739 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3740 intel_disable_pll(dev_priv, pipe);
0b8765c6 3741
f7abfe8b 3742 intel_crtc->active = false;
6b383a7f
CW
3743 intel_update_fbc(dev);
3744 intel_update_watermarks(dev);
0b8765c6
JB
3745}
3746
ee7b9f93
JB
3747static void i9xx_crtc_off(struct drm_crtc *crtc)
3748{
3749}
3750
976f8a20
DV
3751static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3752 bool enabled)
2c07245f
ZW
3753{
3754 struct drm_device *dev = crtc->dev;
3755 struct drm_i915_master_private *master_priv;
3756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3757 int pipe = intel_crtc->pipe;
79e53945
JB
3758
3759 if (!dev->primary->master)
3760 return;
3761
3762 master_priv = dev->primary->master->driver_priv;
3763 if (!master_priv->sarea_priv)
3764 return;
3765
79e53945
JB
3766 switch (pipe) {
3767 case 0:
3768 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3769 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3770 break;
3771 case 1:
3772 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3773 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3774 break;
3775 default:
9db4a9c7 3776 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3777 break;
3778 }
79e53945
JB
3779}
3780
976f8a20
DV
3781/**
3782 * Sets the power management mode of the pipe and plane.
3783 */
3784void intel_crtc_update_dpms(struct drm_crtc *crtc)
3785{
3786 struct drm_device *dev = crtc->dev;
3787 struct drm_i915_private *dev_priv = dev->dev_private;
3788 struct intel_encoder *intel_encoder;
3789 bool enable = false;
3790
3791 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3792 enable |= intel_encoder->connectors_active;
3793
3794 if (enable)
3795 dev_priv->display.crtc_enable(crtc);
3796 else
3797 dev_priv->display.crtc_disable(crtc);
3798
3799 intel_crtc_update_sarea(crtc, enable);
3800}
3801
3802static void intel_crtc_noop(struct drm_crtc *crtc)
3803{
3804}
3805
cdd59983
CW
3806static void intel_crtc_disable(struct drm_crtc *crtc)
3807{
cdd59983 3808 struct drm_device *dev = crtc->dev;
976f8a20 3809 struct drm_connector *connector;
ee7b9f93 3810 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3811
976f8a20
DV
3812 /* crtc should still be enabled when we disable it. */
3813 WARN_ON(!crtc->enabled);
3814
3815 dev_priv->display.crtc_disable(crtc);
3816 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3817 dev_priv->display.off(crtc);
3818
931872fc
CW
3819 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3820 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3821
3822 if (crtc->fb) {
3823 mutex_lock(&dev->struct_mutex);
1690e1eb 3824 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3825 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3826 crtc->fb = NULL;
3827 }
3828
3829 /* Update computed state. */
3830 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3831 if (!connector->encoder || !connector->encoder->crtc)
3832 continue;
3833
3834 if (connector->encoder->crtc != crtc)
3835 continue;
3836
3837 connector->dpms = DRM_MODE_DPMS_OFF;
3838 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3839 }
3840}
3841
a261b246 3842void intel_modeset_disable(struct drm_device *dev)
79e53945 3843{
a261b246
DV
3844 struct drm_crtc *crtc;
3845
3846 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3847 if (crtc->enabled)
3848 intel_crtc_disable(crtc);
3849 }
79e53945
JB
3850}
3851
1f703855 3852void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3853{
7e7d76c3
JB
3854}
3855
ea5b213a 3856void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3857{
4ef69c7a 3858 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3859
ea5b213a
CW
3860 drm_encoder_cleanup(encoder);
3861 kfree(intel_encoder);
7e7d76c3
JB
3862}
3863
5ab432ef
DV
3864/* Simple dpms helper for encodres with just one connector, no cloning and only
3865 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3866 * state of the entire output pipe. */
3867void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3868{
5ab432ef
DV
3869 if (mode == DRM_MODE_DPMS_ON) {
3870 encoder->connectors_active = true;
3871
b2cabb0e 3872 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3873 } else {
3874 encoder->connectors_active = false;
3875
b2cabb0e 3876 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3877 }
79e53945
JB
3878}
3879
0a91ca29
DV
3880/* Cross check the actual hw state with our own modeset state tracking (and it's
3881 * internal consistency). */
b980514c 3882static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3883{
0a91ca29
DV
3884 if (connector->get_hw_state(connector)) {
3885 struct intel_encoder *encoder = connector->encoder;
3886 struct drm_crtc *crtc;
3887 bool encoder_enabled;
3888 enum pipe pipe;
3889
3890 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3891 connector->base.base.id,
3892 drm_get_connector_name(&connector->base));
3893
3894 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3895 "wrong connector dpms state\n");
3896 WARN(connector->base.encoder != &encoder->base,
3897 "active connector not linked to encoder\n");
3898 WARN(!encoder->connectors_active,
3899 "encoder->connectors_active not set\n");
3900
3901 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3902 WARN(!encoder_enabled, "encoder not enabled\n");
3903 if (WARN_ON(!encoder->base.crtc))
3904 return;
3905
3906 crtc = encoder->base.crtc;
3907
3908 WARN(!crtc->enabled, "crtc not enabled\n");
3909 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3910 WARN(pipe != to_intel_crtc(crtc)->pipe,
3911 "encoder active on the wrong pipe\n");
3912 }
79e53945
JB
3913}
3914
5ab432ef
DV
3915/* Even simpler default implementation, if there's really no special case to
3916 * consider. */
3917void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3918{
5ab432ef 3919 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3920
5ab432ef
DV
3921 /* All the simple cases only support two dpms states. */
3922 if (mode != DRM_MODE_DPMS_ON)
3923 mode = DRM_MODE_DPMS_OFF;
d4270e57 3924
5ab432ef
DV
3925 if (mode == connector->dpms)
3926 return;
3927
3928 connector->dpms = mode;
3929
3930 /* Only need to change hw state when actually enabled */
3931 if (encoder->base.crtc)
3932 intel_encoder_dpms(encoder, mode);
3933 else
8af6cf88 3934 WARN_ON(encoder->connectors_active != false);
0a91ca29 3935
b980514c 3936 intel_modeset_check_state(connector->dev);
79e53945
JB
3937}
3938
f0947c37
DV
3939/* Simple connector->get_hw_state implementation for encoders that support only
3940 * one connector and no cloning and hence the encoder state determines the state
3941 * of the connector. */
3942bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3943{
24929352 3944 enum pipe pipe = 0;
f0947c37 3945 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3946
f0947c37 3947 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3948}
3949
79e53945 3950static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3951 const struct drm_display_mode *mode,
79e53945
JB
3952 struct drm_display_mode *adjusted_mode)
3953{
2c07245f 3954 struct drm_device *dev = crtc->dev;
89749350 3955
bad720ff 3956 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3957 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3958 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3959 return false;
2c07245f 3960 }
89749350 3961
f9bef081
DV
3962 /* All interlaced capable intel hw wants timings in frames. Note though
3963 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3964 * timings, so we need to be careful not to clobber these.*/
3965 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3966 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3967
44f46b42
CW
3968 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3969 * with a hsync front porch of 0.
3970 */
3971 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3972 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3973 return false;
3974
79e53945
JB
3975 return true;
3976}
3977
25eb05fc
JB
3978static int valleyview_get_display_clock_speed(struct drm_device *dev)
3979{
3980 return 400000; /* FIXME */
3981}
3982
e70236a8
JB
3983static int i945_get_display_clock_speed(struct drm_device *dev)
3984{
3985 return 400000;
3986}
79e53945 3987
e70236a8 3988static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3989{
e70236a8
JB
3990 return 333000;
3991}
79e53945 3992
e70236a8
JB
3993static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3994{
3995 return 200000;
3996}
79e53945 3997
e70236a8
JB
3998static int i915gm_get_display_clock_speed(struct drm_device *dev)
3999{
4000 u16 gcfgc = 0;
79e53945 4001
e70236a8
JB
4002 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4003
4004 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4005 return 133000;
4006 else {
4007 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4008 case GC_DISPLAY_CLOCK_333_MHZ:
4009 return 333000;
4010 default:
4011 case GC_DISPLAY_CLOCK_190_200_MHZ:
4012 return 190000;
79e53945 4013 }
e70236a8
JB
4014 }
4015}
4016
4017static int i865_get_display_clock_speed(struct drm_device *dev)
4018{
4019 return 266000;
4020}
4021
4022static int i855_get_display_clock_speed(struct drm_device *dev)
4023{
4024 u16 hpllcc = 0;
4025 /* Assume that the hardware is in the high speed state. This
4026 * should be the default.
4027 */
4028 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4029 case GC_CLOCK_133_200:
4030 case GC_CLOCK_100_200:
4031 return 200000;
4032 case GC_CLOCK_166_250:
4033 return 250000;
4034 case GC_CLOCK_100_133:
79e53945 4035 return 133000;
e70236a8 4036 }
79e53945 4037
e70236a8
JB
4038 /* Shouldn't happen */
4039 return 0;
4040}
79e53945 4041
e70236a8
JB
4042static int i830_get_display_clock_speed(struct drm_device *dev)
4043{
4044 return 133000;
79e53945
JB
4045}
4046
2c07245f
ZW
4047struct fdi_m_n {
4048 u32 tu;
4049 u32 gmch_m;
4050 u32 gmch_n;
4051 u32 link_m;
4052 u32 link_n;
4053};
4054
4055static void
4056fdi_reduce_ratio(u32 *num, u32 *den)
4057{
4058 while (*num > 0xffffff || *den > 0xffffff) {
4059 *num >>= 1;
4060 *den >>= 1;
4061 }
4062}
4063
2c07245f 4064static void
f2b115e6
AJ
4065ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4066 int link_clock, struct fdi_m_n *m_n)
2c07245f 4067{
2c07245f
ZW
4068 m_n->tu = 64; /* default size */
4069
22ed1113
CW
4070 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4071 m_n->gmch_m = bits_per_pixel * pixel_clock;
4072 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
4073 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4074
22ed1113
CW
4075 m_n->link_m = pixel_clock;
4076 m_n->link_n = link_clock;
2c07245f
ZW
4077 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4078}
4079
a7615030
CW
4080static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4081{
72bbe58c
KP
4082 if (i915_panel_use_ssc >= 0)
4083 return i915_panel_use_ssc != 0;
4084 return dev_priv->lvds_use_ssc
435793df 4085 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4086}
4087
5a354204
JB
4088/**
4089 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4090 * @crtc: CRTC structure
3b5c78a3 4091 * @mode: requested mode
5a354204
JB
4092 *
4093 * A pipe may be connected to one or more outputs. Based on the depth of the
4094 * attached framebuffer, choose a good color depth to use on the pipe.
4095 *
4096 * If possible, match the pipe depth to the fb depth. In some cases, this
4097 * isn't ideal, because the connected output supports a lesser or restricted
4098 * set of depths. Resolve that here:
4099 * LVDS typically supports only 6bpc, so clamp down in that case
4100 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4101 * Displays may support a restricted set as well, check EDID and clamp as
4102 * appropriate.
3b5c78a3 4103 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4104 *
4105 * RETURNS:
4106 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4107 * true if they don't match).
4108 */
4109static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 4110 struct drm_framebuffer *fb,
3b5c78a3
AJ
4111 unsigned int *pipe_bpp,
4112 struct drm_display_mode *mode)
5a354204
JB
4113{
4114 struct drm_device *dev = crtc->dev;
4115 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 4116 struct drm_connector *connector;
6c2b7c12 4117 struct intel_encoder *intel_encoder;
5a354204
JB
4118 unsigned int display_bpc = UINT_MAX, bpc;
4119
4120 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 4121 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
4122
4123 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4124 unsigned int lvds_bpc;
4125
4126 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4127 LVDS_A3_POWER_UP)
4128 lvds_bpc = 8;
4129 else
4130 lvds_bpc = 6;
4131
4132 if (lvds_bpc < display_bpc) {
82820490 4133 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4134 display_bpc = lvds_bpc;
4135 }
4136 continue;
4137 }
4138
5a354204
JB
4139 /* Not one of the known troublemakers, check the EDID */
4140 list_for_each_entry(connector, &dev->mode_config.connector_list,
4141 head) {
6c2b7c12 4142 if (connector->encoder != &intel_encoder->base)
5a354204
JB
4143 continue;
4144
62ac41a6
JB
4145 /* Don't use an invalid EDID bpc value */
4146 if (connector->display_info.bpc &&
4147 connector->display_info.bpc < display_bpc) {
82820490 4148 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4149 display_bpc = connector->display_info.bpc;
4150 }
4151 }
4152
4153 /*
4154 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4155 * through, clamp it down. (Note: >12bpc will be caught below.)
4156 */
4157 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4158 if (display_bpc > 8 && display_bpc < 12) {
82820490 4159 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4160 display_bpc = 12;
4161 } else {
82820490 4162 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4163 display_bpc = 8;
4164 }
4165 }
4166 }
4167
3b5c78a3
AJ
4168 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4169 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4170 display_bpc = 6;
4171 }
4172
5a354204
JB
4173 /*
4174 * We could just drive the pipe at the highest bpc all the time and
4175 * enable dithering as needed, but that costs bandwidth. So choose
4176 * the minimum value that expresses the full color range of the fb but
4177 * also stays within the max display bpc discovered above.
4178 */
4179
94352cf9 4180 switch (fb->depth) {
5a354204
JB
4181 case 8:
4182 bpc = 8; /* since we go through a colormap */
4183 break;
4184 case 15:
4185 case 16:
4186 bpc = 6; /* min is 18bpp */
4187 break;
4188 case 24:
578393cd 4189 bpc = 8;
5a354204
JB
4190 break;
4191 case 30:
578393cd 4192 bpc = 10;
5a354204
JB
4193 break;
4194 case 48:
578393cd 4195 bpc = 12;
5a354204
JB
4196 break;
4197 default:
4198 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4199 bpc = min((unsigned int)8, display_bpc);
4200 break;
4201 }
4202
578393cd
KP
4203 display_bpc = min(display_bpc, bpc);
4204
82820490
AJ
4205 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4206 bpc, display_bpc);
5a354204 4207
578393cd 4208 *pipe_bpp = display_bpc * 3;
5a354204
JB
4209
4210 return display_bpc != bpc;
4211}
4212
a0c4da24
JB
4213static int vlv_get_refclk(struct drm_crtc *crtc)
4214{
4215 struct drm_device *dev = crtc->dev;
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 int refclk = 27000; /* for DP & HDMI */
4218
4219 return 100000; /* only one validated so far */
4220
4221 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4222 refclk = 96000;
4223 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4224 if (intel_panel_use_ssc(dev_priv))
4225 refclk = 100000;
4226 else
4227 refclk = 96000;
4228 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4229 refclk = 100000;
4230 }
4231
4232 return refclk;
4233}
4234
c65d77d8
JB
4235static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4236{
4237 struct drm_device *dev = crtc->dev;
4238 struct drm_i915_private *dev_priv = dev->dev_private;
4239 int refclk;
4240
a0c4da24
JB
4241 if (IS_VALLEYVIEW(dev)) {
4242 refclk = vlv_get_refclk(crtc);
4243 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4244 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4245 refclk = dev_priv->lvds_ssc_freq * 1000;
4246 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4247 refclk / 1000);
4248 } else if (!IS_GEN2(dev)) {
4249 refclk = 96000;
4250 } else {
4251 refclk = 48000;
4252 }
4253
4254 return refclk;
4255}
4256
4257static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4258 intel_clock_t *clock)
4259{
4260 /* SDVO TV has fixed PLL values depend on its clock range,
4261 this mirrors vbios setting. */
4262 if (adjusted_mode->clock >= 100000
4263 && adjusted_mode->clock < 140500) {
4264 clock->p1 = 2;
4265 clock->p2 = 10;
4266 clock->n = 3;
4267 clock->m1 = 16;
4268 clock->m2 = 8;
4269 } else if (adjusted_mode->clock >= 140500
4270 && adjusted_mode->clock <= 200000) {
4271 clock->p1 = 1;
4272 clock->p2 = 10;
4273 clock->n = 6;
4274 clock->m1 = 12;
4275 clock->m2 = 8;
4276 }
4277}
4278
a7516a05
JB
4279static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4280 intel_clock_t *clock,
4281 intel_clock_t *reduced_clock)
4282{
4283 struct drm_device *dev = crtc->dev;
4284 struct drm_i915_private *dev_priv = dev->dev_private;
4285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4286 int pipe = intel_crtc->pipe;
4287 u32 fp, fp2 = 0;
4288
4289 if (IS_PINEVIEW(dev)) {
4290 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4291 if (reduced_clock)
4292 fp2 = (1 << reduced_clock->n) << 16 |
4293 reduced_clock->m1 << 8 | reduced_clock->m2;
4294 } else {
4295 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4296 if (reduced_clock)
4297 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4298 reduced_clock->m2;
4299 }
4300
4301 I915_WRITE(FP0(pipe), fp);
4302
4303 intel_crtc->lowfreq_avail = false;
4304 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4305 reduced_clock && i915_powersave) {
4306 I915_WRITE(FP1(pipe), fp2);
4307 intel_crtc->lowfreq_avail = true;
4308 } else {
4309 I915_WRITE(FP1(pipe), fp);
4310 }
4311}
4312
93e537a1
DV
4313static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4314 struct drm_display_mode *adjusted_mode)
4315{
4316 struct drm_device *dev = crtc->dev;
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4319 int pipe = intel_crtc->pipe;
284d5df5 4320 u32 temp;
93e537a1
DV
4321
4322 temp = I915_READ(LVDS);
4323 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4324 if (pipe == 1) {
4325 temp |= LVDS_PIPEB_SELECT;
4326 } else {
4327 temp &= ~LVDS_PIPEB_SELECT;
4328 }
4329 /* set the corresponsding LVDS_BORDER bit */
4330 temp |= dev_priv->lvds_border_bits;
4331 /* Set the B0-B3 data pairs corresponding to whether we're going to
4332 * set the DPLLs for dual-channel mode or not.
4333 */
4334 if (clock->p2 == 7)
4335 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4336 else
4337 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4338
4339 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4340 * appropriately here, but we need to look more thoroughly into how
4341 * panels behave in the two modes.
4342 */
4343 /* set the dithering flag on LVDS as needed */
4344 if (INTEL_INFO(dev)->gen >= 4) {
4345 if (dev_priv->lvds_dither)
4346 temp |= LVDS_ENABLE_DITHER;
4347 else
4348 temp &= ~LVDS_ENABLE_DITHER;
4349 }
284d5df5 4350 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4351 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4352 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4353 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4354 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4355 I915_WRITE(LVDS, temp);
4356}
4357
a0c4da24
JB
4358static void vlv_update_pll(struct drm_crtc *crtc,
4359 struct drm_display_mode *mode,
4360 struct drm_display_mode *adjusted_mode,
4361 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4362 int num_connectors)
a0c4da24
JB
4363{
4364 struct drm_device *dev = crtc->dev;
4365 struct drm_i915_private *dev_priv = dev->dev_private;
4366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4367 int pipe = intel_crtc->pipe;
4368 u32 dpll, mdiv, pdiv;
4369 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4370 bool is_sdvo;
4371 u32 temp;
4372
4373 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4374 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4375
2a8f64ca
VP
4376 dpll = DPLL_VGA_MODE_DIS;
4377 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4378 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4379 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4380
4381 I915_WRITE(DPLL(pipe), dpll);
4382 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4383
4384 bestn = clock->n;
4385 bestm1 = clock->m1;
4386 bestm2 = clock->m2;
4387 bestp1 = clock->p1;
4388 bestp2 = clock->p2;
4389
2a8f64ca
VP
4390 /*
4391 * In Valleyview PLL and program lane counter registers are exposed
4392 * through DPIO interface
4393 */
a0c4da24
JB
4394 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4395 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4396 mdiv |= ((bestn << DPIO_N_SHIFT));
4397 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4398 mdiv |= (1 << DPIO_K_SHIFT);
4399 mdiv |= DPIO_ENABLE_CALIBRATION;
4400 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4401
4402 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4403
2a8f64ca 4404 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4405 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4406 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4407 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4408 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4409
2a8f64ca 4410 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4411
4412 dpll |= DPLL_VCO_ENABLE;
4413 I915_WRITE(DPLL(pipe), dpll);
4414 POSTING_READ(DPLL(pipe));
4415 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4416 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4417
2a8f64ca
VP
4418 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4419
4420 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4421 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4422
4423 I915_WRITE(DPLL(pipe), dpll);
4424
4425 /* Wait for the clocks to stabilize. */
4426 POSTING_READ(DPLL(pipe));
4427 udelay(150);
a0c4da24 4428
2a8f64ca
VP
4429 temp = 0;
4430 if (is_sdvo) {
4431 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4432 if (temp > 1)
4433 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4434 else
4435 temp = 0;
a0c4da24 4436 }
2a8f64ca
VP
4437 I915_WRITE(DPLL_MD(pipe), temp);
4438 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4439
2a8f64ca
VP
4440 /* Now program lane control registers */
4441 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4442 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4443 {
4444 temp = 0x1000C4;
4445 if(pipe == 1)
4446 temp |= (1 << 21);
4447 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4448 }
4449 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4450 {
4451 temp = 0x1000C4;
4452 if(pipe == 1)
4453 temp |= (1 << 21);
4454 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4455 }
a0c4da24
JB
4456}
4457
eb1cbe48
DV
4458static void i9xx_update_pll(struct drm_crtc *crtc,
4459 struct drm_display_mode *mode,
4460 struct drm_display_mode *adjusted_mode,
4461 intel_clock_t *clock, intel_clock_t *reduced_clock,
4462 int num_connectors)
4463{
4464 struct drm_device *dev = crtc->dev;
4465 struct drm_i915_private *dev_priv = dev->dev_private;
4466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4467 int pipe = intel_crtc->pipe;
4468 u32 dpll;
4469 bool is_sdvo;
4470
2a8f64ca
VP
4471 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4472
eb1cbe48
DV
4473 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4474 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4475
4476 dpll = DPLL_VGA_MODE_DIS;
4477
4478 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4479 dpll |= DPLLB_MODE_LVDS;
4480 else
4481 dpll |= DPLLB_MODE_DAC_SERIAL;
4482 if (is_sdvo) {
4483 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4484 if (pixel_multiplier > 1) {
4485 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4486 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4487 }
4488 dpll |= DPLL_DVO_HIGH_SPEED;
4489 }
4490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4491 dpll |= DPLL_DVO_HIGH_SPEED;
4492
4493 /* compute bitmask from p1 value */
4494 if (IS_PINEVIEW(dev))
4495 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4496 else {
4497 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4498 if (IS_G4X(dev) && reduced_clock)
4499 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4500 }
4501 switch (clock->p2) {
4502 case 5:
4503 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4504 break;
4505 case 7:
4506 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4507 break;
4508 case 10:
4509 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4510 break;
4511 case 14:
4512 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4513 break;
4514 }
4515 if (INTEL_INFO(dev)->gen >= 4)
4516 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4517
4518 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4519 dpll |= PLL_REF_INPUT_TVCLKINBC;
4520 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4521 /* XXX: just matching BIOS for now */
4522 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4523 dpll |= 3;
4524 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4525 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4526 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4527 else
4528 dpll |= PLL_REF_INPUT_DREFCLK;
4529
4530 dpll |= DPLL_VCO_ENABLE;
4531 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4532 POSTING_READ(DPLL(pipe));
4533 udelay(150);
4534
4535 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4536 * This is an exception to the general rule that mode_set doesn't turn
4537 * things on.
4538 */
4539 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4540 intel_update_lvds(crtc, clock, adjusted_mode);
4541
4542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4543 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4544
4545 I915_WRITE(DPLL(pipe), dpll);
4546
4547 /* Wait for the clocks to stabilize. */
4548 POSTING_READ(DPLL(pipe));
4549 udelay(150);
4550
4551 if (INTEL_INFO(dev)->gen >= 4) {
4552 u32 temp = 0;
4553 if (is_sdvo) {
4554 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4555 if (temp > 1)
4556 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4557 else
4558 temp = 0;
4559 }
4560 I915_WRITE(DPLL_MD(pipe), temp);
4561 } else {
4562 /* The pixel multiplier can only be updated once the
4563 * DPLL is enabled and the clocks are stable.
4564 *
4565 * So write it again.
4566 */
4567 I915_WRITE(DPLL(pipe), dpll);
4568 }
4569}
4570
4571static void i8xx_update_pll(struct drm_crtc *crtc,
4572 struct drm_display_mode *adjusted_mode,
2a8f64ca 4573 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4574 int num_connectors)
4575{
4576 struct drm_device *dev = crtc->dev;
4577 struct drm_i915_private *dev_priv = dev->dev_private;
4578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4579 int pipe = intel_crtc->pipe;
4580 u32 dpll;
4581
2a8f64ca
VP
4582 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4583
eb1cbe48
DV
4584 dpll = DPLL_VGA_MODE_DIS;
4585
4586 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4587 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4588 } else {
4589 if (clock->p1 == 2)
4590 dpll |= PLL_P1_DIVIDE_BY_TWO;
4591 else
4592 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4593 if (clock->p2 == 4)
4594 dpll |= PLL_P2_DIVIDE_BY_4;
4595 }
4596
4597 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4598 /* XXX: just matching BIOS for now */
4599 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4600 dpll |= 3;
4601 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4602 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4603 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4604 else
4605 dpll |= PLL_REF_INPUT_DREFCLK;
4606
4607 dpll |= DPLL_VCO_ENABLE;
4608 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4609 POSTING_READ(DPLL(pipe));
4610 udelay(150);
4611
eb1cbe48
DV
4612 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4613 * This is an exception to the general rule that mode_set doesn't turn
4614 * things on.
4615 */
4616 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4617 intel_update_lvds(crtc, clock, adjusted_mode);
4618
5b5896e4
DV
4619 I915_WRITE(DPLL(pipe), dpll);
4620
4621 /* Wait for the clocks to stabilize. */
4622 POSTING_READ(DPLL(pipe));
4623 udelay(150);
4624
eb1cbe48
DV
4625 /* The pixel multiplier can only be updated once the
4626 * DPLL is enabled and the clocks are stable.
4627 *
4628 * So write it again.
4629 */
4630 I915_WRITE(DPLL(pipe), dpll);
4631}
4632
b0e77b9c
PZ
4633static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4634 struct drm_display_mode *mode,
4635 struct drm_display_mode *adjusted_mode)
4636{
4637 struct drm_device *dev = intel_crtc->base.dev;
4638 struct drm_i915_private *dev_priv = dev->dev_private;
4639 enum pipe pipe = intel_crtc->pipe;
fe2b8f9d 4640 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
b0e77b9c
PZ
4641 uint32_t vsyncshift;
4642
4643 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4644 /* the chip adds 2 halflines automatically */
4645 adjusted_mode->crtc_vtotal -= 1;
4646 adjusted_mode->crtc_vblank_end -= 1;
4647 vsyncshift = adjusted_mode->crtc_hsync_start
4648 - adjusted_mode->crtc_htotal / 2;
4649 } else {
4650 vsyncshift = 0;
4651 }
4652
4653 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 4654 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 4655
fe2b8f9d 4656 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
4657 (adjusted_mode->crtc_hdisplay - 1) |
4658 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 4659 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
4660 (adjusted_mode->crtc_hblank_start - 1) |
4661 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 4662 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
4663 (adjusted_mode->crtc_hsync_start - 1) |
4664 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4665
fe2b8f9d 4666 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c
PZ
4667 (adjusted_mode->crtc_vdisplay - 1) |
4668 ((adjusted_mode->crtc_vtotal - 1) << 16));
fe2b8f9d 4669 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c
PZ
4670 (adjusted_mode->crtc_vblank_start - 1) |
4671 ((adjusted_mode->crtc_vblank_end - 1) << 16));
fe2b8f9d 4672 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
4673 (adjusted_mode->crtc_vsync_start - 1) |
4674 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4675
b5e508d4
PZ
4676 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4677 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4678 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4679 * bits. */
4680 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4681 (pipe == PIPE_B || pipe == PIPE_C))
4682 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4683
b0e77b9c
PZ
4684 /* pipesrc controls the size that is scaled from, which should
4685 * always be the user's requested size.
4686 */
4687 I915_WRITE(PIPESRC(pipe),
4688 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4689}
4690
f564048e
EA
4691static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4692 struct drm_display_mode *mode,
4693 struct drm_display_mode *adjusted_mode,
4694 int x, int y,
94352cf9 4695 struct drm_framebuffer *fb)
79e53945
JB
4696{
4697 struct drm_device *dev = crtc->dev;
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4700 int pipe = intel_crtc->pipe;
80824003 4701 int plane = intel_crtc->plane;
c751ce4f 4702 int refclk, num_connectors = 0;
652c393a 4703 intel_clock_t clock, reduced_clock;
b0e77b9c 4704 u32 dspcntr, pipeconf;
eb1cbe48
DV
4705 bool ok, has_reduced_clock = false, is_sdvo = false;
4706 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4707 struct intel_encoder *encoder;
d4906093 4708 const intel_limit_t *limit;
5c3b82e2 4709 int ret;
79e53945 4710
6c2b7c12 4711 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4712 switch (encoder->type) {
79e53945
JB
4713 case INTEL_OUTPUT_LVDS:
4714 is_lvds = true;
4715 break;
4716 case INTEL_OUTPUT_SDVO:
7d57382e 4717 case INTEL_OUTPUT_HDMI:
79e53945 4718 is_sdvo = true;
5eddb70b 4719 if (encoder->needs_tv_clock)
e2f0ba97 4720 is_tv = true;
79e53945 4721 break;
79e53945
JB
4722 case INTEL_OUTPUT_TVOUT:
4723 is_tv = true;
4724 break;
a4fc5ed6
KP
4725 case INTEL_OUTPUT_DISPLAYPORT:
4726 is_dp = true;
4727 break;
79e53945 4728 }
43565a06 4729
c751ce4f 4730 num_connectors++;
79e53945
JB
4731 }
4732
c65d77d8 4733 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4734
d4906093
ML
4735 /*
4736 * Returns a set of divisors for the desired target clock with the given
4737 * refclk, or FALSE. The returned values represent the clock equation:
4738 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4739 */
1b894b59 4740 limit = intel_limit(crtc, refclk);
cec2f356
SP
4741 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4742 &clock);
79e53945
JB
4743 if (!ok) {
4744 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4745 return -EINVAL;
79e53945
JB
4746 }
4747
cda4b7d3 4748 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4749 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4750
ddc9003c 4751 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4752 /*
4753 * Ensure we match the reduced clock's P to the target clock.
4754 * If the clocks don't match, we can't switch the display clock
4755 * by using the FP0/FP1. In such case we will disable the LVDS
4756 * downclock feature.
4757 */
ddc9003c 4758 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4759 dev_priv->lvds_downclock,
4760 refclk,
cec2f356 4761 &clock,
5eddb70b 4762 &reduced_clock);
7026d4ac
ZW
4763 }
4764
c65d77d8
JB
4765 if (is_sdvo && is_tv)
4766 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4767
eb1cbe48 4768 if (IS_GEN2(dev))
2a8f64ca
VP
4769 i8xx_update_pll(crtc, adjusted_mode, &clock,
4770 has_reduced_clock ? &reduced_clock : NULL,
4771 num_connectors);
a0c4da24 4772 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4773 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4774 has_reduced_clock ? &reduced_clock : NULL,
4775 num_connectors);
79e53945 4776 else
eb1cbe48
DV
4777 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4778 has_reduced_clock ? &reduced_clock : NULL,
4779 num_connectors);
79e53945
JB
4780
4781 /* setup pipeconf */
5eddb70b 4782 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4783
4784 /* Set up the display plane register */
4785 dspcntr = DISPPLANE_GAMMA_ENABLE;
4786
929c77fb
EA
4787 if (pipe == 0)
4788 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4789 else
4790 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4791
a6c45cf0 4792 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4793 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4794 * core speed.
4795 *
4796 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4797 * pipe == 0 check?
4798 */
e70236a8
JB
4799 if (mode->clock >
4800 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4801 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4802 else
5eddb70b 4803 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4804 }
4805
3b5c78a3
AJ
4806 /* default to 8bpc */
4807 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4808 if (is_dp) {
0c96c65b 4809 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4810 pipeconf |= PIPECONF_BPP_6 |
4811 PIPECONF_DITHER_EN |
4812 PIPECONF_DITHER_TYPE_SP;
4813 }
4814 }
4815
19c03924
GB
4816 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4817 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4818 pipeconf |= PIPECONF_BPP_6 |
4819 PIPECONF_ENABLE |
4820 I965_PIPECONF_ACTIVE;
4821 }
4822 }
4823
28c97730 4824 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4825 drm_mode_debug_printmodeline(mode);
4826
a7516a05
JB
4827 if (HAS_PIPE_CXSR(dev)) {
4828 if (intel_crtc->lowfreq_avail) {
28c97730 4829 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4830 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4831 } else {
28c97730 4832 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4833 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4834 }
4835 }
4836
617cf884 4837 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4838 if (!IS_GEN2(dev) &&
b0e77b9c 4839 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4840 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4841 else
617cf884 4842 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4843
b0e77b9c 4844 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4845
4846 /* pipesrc and dspsize control the size that is scaled from,
4847 * which should always be the user's requested size.
79e53945 4848 */
929c77fb
EA
4849 I915_WRITE(DSPSIZE(plane),
4850 ((mode->vdisplay - 1) << 16) |
4851 (mode->hdisplay - 1));
4852 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4853
f564048e
EA
4854 I915_WRITE(PIPECONF(pipe), pipeconf);
4855 POSTING_READ(PIPECONF(pipe));
929c77fb 4856 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4857
4858 intel_wait_for_vblank(dev, pipe);
4859
f564048e
EA
4860 I915_WRITE(DSPCNTR(plane), dspcntr);
4861 POSTING_READ(DSPCNTR(plane));
4862
94352cf9 4863 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4864
4865 intel_update_watermarks(dev);
4866
f564048e
EA
4867 return ret;
4868}
4869
9fb526db
KP
4870/*
4871 * Initialize reference clocks when the driver loads
4872 */
4873void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4874{
4875 struct drm_i915_private *dev_priv = dev->dev_private;
4876 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4877 struct intel_encoder *encoder;
13d83a67
JB
4878 u32 temp;
4879 bool has_lvds = false;
199e5d79
KP
4880 bool has_cpu_edp = false;
4881 bool has_pch_edp = false;
4882 bool has_panel = false;
99eb6a01
KP
4883 bool has_ck505 = false;
4884 bool can_ssc = false;
13d83a67
JB
4885
4886 /* We need to take the global config into account */
199e5d79
KP
4887 list_for_each_entry(encoder, &mode_config->encoder_list,
4888 base.head) {
4889 switch (encoder->type) {
4890 case INTEL_OUTPUT_LVDS:
4891 has_panel = true;
4892 has_lvds = true;
4893 break;
4894 case INTEL_OUTPUT_EDP:
4895 has_panel = true;
4896 if (intel_encoder_is_pch_edp(&encoder->base))
4897 has_pch_edp = true;
4898 else
4899 has_cpu_edp = true;
4900 break;
13d83a67
JB
4901 }
4902 }
4903
99eb6a01
KP
4904 if (HAS_PCH_IBX(dev)) {
4905 has_ck505 = dev_priv->display_clock_mode;
4906 can_ssc = has_ck505;
4907 } else {
4908 has_ck505 = false;
4909 can_ssc = true;
4910 }
4911
4912 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4913 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4914 has_ck505);
13d83a67
JB
4915
4916 /* Ironlake: try to setup display ref clock before DPLL
4917 * enabling. This is only under driver's control after
4918 * PCH B stepping, previous chipset stepping should be
4919 * ignoring this setting.
4920 */
4921 temp = I915_READ(PCH_DREF_CONTROL);
4922 /* Always enable nonspread source */
4923 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4924
99eb6a01
KP
4925 if (has_ck505)
4926 temp |= DREF_NONSPREAD_CK505_ENABLE;
4927 else
4928 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4929
199e5d79
KP
4930 if (has_panel) {
4931 temp &= ~DREF_SSC_SOURCE_MASK;
4932 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4933
199e5d79 4934 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4935 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4936 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4937 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4938 } else
4939 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4940
4941 /* Get SSC going before enabling the outputs */
4942 I915_WRITE(PCH_DREF_CONTROL, temp);
4943 POSTING_READ(PCH_DREF_CONTROL);
4944 udelay(200);
4945
13d83a67
JB
4946 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4947
4948 /* Enable CPU source on CPU attached eDP */
199e5d79 4949 if (has_cpu_edp) {
99eb6a01 4950 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4951 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4952 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4953 }
13d83a67
JB
4954 else
4955 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4956 } else
4957 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4958
4959 I915_WRITE(PCH_DREF_CONTROL, temp);
4960 POSTING_READ(PCH_DREF_CONTROL);
4961 udelay(200);
4962 } else {
4963 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4964
4965 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4966
4967 /* Turn off CPU output */
4968 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4969
4970 I915_WRITE(PCH_DREF_CONTROL, temp);
4971 POSTING_READ(PCH_DREF_CONTROL);
4972 udelay(200);
4973
4974 /* Turn off the SSC source */
4975 temp &= ~DREF_SSC_SOURCE_MASK;
4976 temp |= DREF_SSC_SOURCE_DISABLE;
4977
4978 /* Turn off SSC1 */
4979 temp &= ~ DREF_SSC1_ENABLE;
4980
13d83a67
JB
4981 I915_WRITE(PCH_DREF_CONTROL, temp);
4982 POSTING_READ(PCH_DREF_CONTROL);
4983 udelay(200);
4984 }
4985}
4986
d9d444cb
JB
4987static int ironlake_get_refclk(struct drm_crtc *crtc)
4988{
4989 struct drm_device *dev = crtc->dev;
4990 struct drm_i915_private *dev_priv = dev->dev_private;
4991 struct intel_encoder *encoder;
d9d444cb
JB
4992 struct intel_encoder *edp_encoder = NULL;
4993 int num_connectors = 0;
4994 bool is_lvds = false;
4995
6c2b7c12 4996 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4997 switch (encoder->type) {
4998 case INTEL_OUTPUT_LVDS:
4999 is_lvds = true;
5000 break;
5001 case INTEL_OUTPUT_EDP:
5002 edp_encoder = encoder;
5003 break;
5004 }
5005 num_connectors++;
5006 }
5007
5008 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5009 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5010 dev_priv->lvds_ssc_freq);
5011 return dev_priv->lvds_ssc_freq * 1000;
5012 }
5013
5014 return 120000;
5015}
5016
c8203565
PZ
5017static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5018 struct drm_display_mode *adjusted_mode,
5019 bool dither)
5020{
5021 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5023 int pipe = intel_crtc->pipe;
5024 uint32_t val;
5025
5026 val = I915_READ(PIPECONF(pipe));
5027
5028 val &= ~PIPE_BPC_MASK;
5029 switch (intel_crtc->bpp) {
5030 case 18:
5031 val |= PIPE_6BPC;
5032 break;
5033 case 24:
5034 val |= PIPE_8BPC;
5035 break;
5036 case 30:
5037 val |= PIPE_10BPC;
5038 break;
5039 case 36:
5040 val |= PIPE_12BPC;
5041 break;
5042 default:
cc769b62
PZ
5043 /* Case prevented by intel_choose_pipe_bpp_dither. */
5044 BUG();
c8203565
PZ
5045 }
5046
5047 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5048 if (dither)
5049 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5050
5051 val &= ~PIPECONF_INTERLACE_MASK;
5052 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5053 val |= PIPECONF_INTERLACED_ILK;
5054 else
5055 val |= PIPECONF_PROGRESSIVE;
5056
5057 I915_WRITE(PIPECONF(pipe), val);
5058 POSTING_READ(PIPECONF(pipe));
5059}
5060
ee2b0b38
PZ
5061static void haswell_set_pipeconf(struct drm_crtc *crtc,
5062 struct drm_display_mode *adjusted_mode,
5063 bool dither)
5064{
5065 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
702e7a56 5067 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
ee2b0b38
PZ
5068 uint32_t val;
5069
702e7a56 5070 val = I915_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5071
5072 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5073 if (dither)
5074 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5075
5076 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5077 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5078 val |= PIPECONF_INTERLACED_ILK;
5079 else
5080 val |= PIPECONF_PROGRESSIVE;
5081
702e7a56
PZ
5082 I915_WRITE(PIPECONF(cpu_transcoder), val);
5083 POSTING_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5084}
5085
6591c6e4
PZ
5086static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5087 struct drm_display_mode *adjusted_mode,
5088 intel_clock_t *clock,
5089 bool *has_reduced_clock,
5090 intel_clock_t *reduced_clock)
5091{
5092 struct drm_device *dev = crtc->dev;
5093 struct drm_i915_private *dev_priv = dev->dev_private;
5094 struct intel_encoder *intel_encoder;
5095 int refclk;
5096 const intel_limit_t *limit;
5097 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5098
5099 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5100 switch (intel_encoder->type) {
5101 case INTEL_OUTPUT_LVDS:
5102 is_lvds = true;
5103 break;
5104 case INTEL_OUTPUT_SDVO:
5105 case INTEL_OUTPUT_HDMI:
5106 is_sdvo = true;
5107 if (intel_encoder->needs_tv_clock)
5108 is_tv = true;
5109 break;
5110 case INTEL_OUTPUT_TVOUT:
5111 is_tv = true;
5112 break;
5113 }
5114 }
5115
5116 refclk = ironlake_get_refclk(crtc);
5117
5118 /*
5119 * Returns a set of divisors for the desired target clock with the given
5120 * refclk, or FALSE. The returned values represent the clock equation:
5121 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5122 */
5123 limit = intel_limit(crtc, refclk);
5124 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5125 clock);
5126 if (!ret)
5127 return false;
5128
5129 if (is_lvds && dev_priv->lvds_downclock_avail) {
5130 /*
5131 * Ensure we match the reduced clock's P to the target clock.
5132 * If the clocks don't match, we can't switch the display clock
5133 * by using the FP0/FP1. In such case we will disable the LVDS
5134 * downclock feature.
5135 */
5136 *has_reduced_clock = limit->find_pll(limit, crtc,
5137 dev_priv->lvds_downclock,
5138 refclk,
5139 clock,
5140 reduced_clock);
5141 }
5142
5143 if (is_sdvo && is_tv)
5144 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5145
5146 return true;
5147}
5148
01a415fd
DV
5149static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5150{
5151 struct drm_i915_private *dev_priv = dev->dev_private;
5152 uint32_t temp;
5153
5154 temp = I915_READ(SOUTH_CHICKEN1);
5155 if (temp & FDI_BC_BIFURCATION_SELECT)
5156 return;
5157
5158 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5159 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5160
5161 temp |= FDI_BC_BIFURCATION_SELECT;
5162 DRM_DEBUG_KMS("enabling fdi C rx\n");
5163 I915_WRITE(SOUTH_CHICKEN1, temp);
5164 POSTING_READ(SOUTH_CHICKEN1);
5165}
5166
5167static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5168{
5169 struct drm_device *dev = intel_crtc->base.dev;
5170 struct drm_i915_private *dev_priv = dev->dev_private;
5171 struct intel_crtc *pipe_B_crtc =
5172 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5173
5174 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5175 intel_crtc->pipe, intel_crtc->fdi_lanes);
5176 if (intel_crtc->fdi_lanes > 4) {
5177 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5178 intel_crtc->pipe, intel_crtc->fdi_lanes);
5179 /* Clamp lanes to avoid programming the hw with bogus values. */
5180 intel_crtc->fdi_lanes = 4;
5181
5182 return false;
5183 }
5184
5185 if (dev_priv->num_pipe == 2)
5186 return true;
5187
5188 switch (intel_crtc->pipe) {
5189 case PIPE_A:
5190 return true;
5191 case PIPE_B:
5192 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5193 intel_crtc->fdi_lanes > 2) {
5194 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5195 intel_crtc->pipe, intel_crtc->fdi_lanes);
5196 /* Clamp lanes to avoid programming the hw with bogus values. */
5197 intel_crtc->fdi_lanes = 2;
5198
5199 return false;
5200 }
5201
5202 if (intel_crtc->fdi_lanes > 2)
5203 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5204 else
5205 cpt_enable_fdi_bc_bifurcation(dev);
5206
5207 return true;
5208 case PIPE_C:
5209 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5210 if (intel_crtc->fdi_lanes > 2) {
5211 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5212 intel_crtc->pipe, intel_crtc->fdi_lanes);
5213 /* Clamp lanes to avoid programming the hw with bogus values. */
5214 intel_crtc->fdi_lanes = 2;
5215
5216 return false;
5217 }
5218 } else {
5219 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5220 return false;
5221 }
5222
5223 cpt_enable_fdi_bc_bifurcation(dev);
5224
5225 return true;
5226 default:
5227 BUG();
5228 }
5229}
5230
f48d8f23
PZ
5231static void ironlake_set_m_n(struct drm_crtc *crtc,
5232 struct drm_display_mode *mode,
5233 struct drm_display_mode *adjusted_mode)
5234{
5235 struct drm_device *dev = crtc->dev;
5236 struct drm_i915_private *dev_priv = dev->dev_private;
5237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
afe2fcf5 5238 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
f48d8f23
PZ
5239 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5240 struct fdi_m_n m_n = {0};
5241 int target_clock, pixel_multiplier, lane, link_bw;
5242 bool is_dp = false, is_cpu_edp = false;
5243
5244 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5245 switch (intel_encoder->type) {
5246 case INTEL_OUTPUT_DISPLAYPORT:
5247 is_dp = true;
5248 break;
5249 case INTEL_OUTPUT_EDP:
5250 is_dp = true;
5251 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5252 is_cpu_edp = true;
5253 edp_encoder = intel_encoder;
5254 break;
5255 }
5256 }
5257
5258 /* FDI link */
5259 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5260 lane = 0;
5261 /* CPU eDP doesn't require FDI link, so just set DP M/N
5262 according to current link config */
5263 if (is_cpu_edp) {
5264 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5265 } else {
5266 /* FDI is a binary signal running at ~2.7GHz, encoding
5267 * each output octet as 10 bits. The actual frequency
5268 * is stored as a divider into a 100MHz clock, and the
5269 * mode pixel clock is stored in units of 1KHz.
5270 * Hence the bw of each lane in terms of the mode signal
5271 * is:
5272 */
5273 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5274 }
5275
5276 /* [e]DP over FDI requires target mode clock instead of link clock. */
5277 if (edp_encoder)
5278 target_clock = intel_edp_target_clock(edp_encoder, mode);
5279 else if (is_dp)
5280 target_clock = mode->clock;
5281 else
5282 target_clock = adjusted_mode->clock;
5283
5284 if (!lane) {
5285 /*
5286 * Account for spread spectrum to avoid
5287 * oversubscribing the link. Max center spread
5288 * is 2.5%; use 5% for safety's sake.
5289 */
5290 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5291 lane = bps / (link_bw * 8) + 1;
5292 }
5293
5294 intel_crtc->fdi_lanes = lane;
5295
5296 if (pixel_multiplier > 1)
5297 link_bw *= pixel_multiplier;
5298 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5299 &m_n);
5300
afe2fcf5
PZ
5301 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5302 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5303 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5304 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
f48d8f23
PZ
5305}
5306
de13a2e3
PZ
5307static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5308 struct drm_display_mode *adjusted_mode,
5309 intel_clock_t *clock, u32 fp)
79e53945 5310{
de13a2e3 5311 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5312 struct drm_device *dev = crtc->dev;
5313 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5314 struct intel_encoder *intel_encoder;
5315 uint32_t dpll;
5316 int factor, pixel_multiplier, num_connectors = 0;
5317 bool is_lvds = false, is_sdvo = false, is_tv = false;
5318 bool is_dp = false, is_cpu_edp = false;
79e53945 5319
de13a2e3
PZ
5320 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5321 switch (intel_encoder->type) {
79e53945
JB
5322 case INTEL_OUTPUT_LVDS:
5323 is_lvds = true;
5324 break;
5325 case INTEL_OUTPUT_SDVO:
7d57382e 5326 case INTEL_OUTPUT_HDMI:
79e53945 5327 is_sdvo = true;
de13a2e3 5328 if (intel_encoder->needs_tv_clock)
e2f0ba97 5329 is_tv = true;
79e53945 5330 break;
79e53945
JB
5331 case INTEL_OUTPUT_TVOUT:
5332 is_tv = true;
5333 break;
a4fc5ed6
KP
5334 case INTEL_OUTPUT_DISPLAYPORT:
5335 is_dp = true;
5336 break;
32f9d658 5337 case INTEL_OUTPUT_EDP:
e3aef172 5338 is_dp = true;
de13a2e3 5339 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5340 is_cpu_edp = true;
32f9d658 5341 break;
79e53945 5342 }
43565a06 5343
c751ce4f 5344 num_connectors++;
79e53945
JB
5345 }
5346
c1858123 5347 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5348 factor = 21;
5349 if (is_lvds) {
5350 if ((intel_panel_use_ssc(dev_priv) &&
5351 dev_priv->lvds_ssc_freq == 100) ||
5352 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5353 factor = 25;
5354 } else if (is_sdvo && is_tv)
5355 factor = 20;
c1858123 5356
de13a2e3 5357 if (clock->m < factor * clock->n)
8febb297 5358 fp |= FP_CB_TUNE;
2c07245f 5359
5eddb70b 5360 dpll = 0;
2c07245f 5361
a07d6787
EA
5362 if (is_lvds)
5363 dpll |= DPLLB_MODE_LVDS;
5364 else
5365 dpll |= DPLLB_MODE_DAC_SERIAL;
5366 if (is_sdvo) {
de13a2e3 5367 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5368 if (pixel_multiplier > 1) {
5369 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5370 }
a07d6787
EA
5371 dpll |= DPLL_DVO_HIGH_SPEED;
5372 }
e3aef172 5373 if (is_dp && !is_cpu_edp)
a07d6787 5374 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5375
a07d6787 5376 /* compute bitmask from p1 value */
de13a2e3 5377 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5378 /* also FPA1 */
de13a2e3 5379 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5380
de13a2e3 5381 switch (clock->p2) {
a07d6787
EA
5382 case 5:
5383 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5384 break;
5385 case 7:
5386 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5387 break;
5388 case 10:
5389 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5390 break;
5391 case 14:
5392 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5393 break;
79e53945
JB
5394 }
5395
43565a06
KH
5396 if (is_sdvo && is_tv)
5397 dpll |= PLL_REF_INPUT_TVCLKINBC;
5398 else if (is_tv)
79e53945 5399 /* XXX: just matching BIOS for now */
43565a06 5400 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5401 dpll |= 3;
a7615030 5402 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5403 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5404 else
5405 dpll |= PLL_REF_INPUT_DREFCLK;
5406
de13a2e3
PZ
5407 return dpll;
5408}
5409
5410static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5411 struct drm_display_mode *mode,
5412 struct drm_display_mode *adjusted_mode,
5413 int x, int y,
5414 struct drm_framebuffer *fb)
5415{
5416 struct drm_device *dev = crtc->dev;
5417 struct drm_i915_private *dev_priv = dev->dev_private;
5418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5419 int pipe = intel_crtc->pipe;
5420 int plane = intel_crtc->plane;
5421 int num_connectors = 0;
5422 intel_clock_t clock, reduced_clock;
5423 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5424 bool ok, has_reduced_clock = false;
5425 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5426 struct intel_encoder *encoder;
5427 u32 temp;
5428 int ret;
01a415fd 5429 bool dither, fdi_config_ok;
de13a2e3
PZ
5430
5431 for_each_encoder_on_crtc(dev, crtc, encoder) {
5432 switch (encoder->type) {
5433 case INTEL_OUTPUT_LVDS:
5434 is_lvds = true;
5435 break;
de13a2e3
PZ
5436 case INTEL_OUTPUT_DISPLAYPORT:
5437 is_dp = true;
5438 break;
5439 case INTEL_OUTPUT_EDP:
5440 is_dp = true;
e2f12b07 5441 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5442 is_cpu_edp = true;
5443 break;
5444 }
5445
5446 num_connectors++;
5447 }
5448
5dc5298b
PZ
5449 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5450 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5451
de13a2e3
PZ
5452 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5453 &has_reduced_clock, &reduced_clock);
5454 if (!ok) {
5455 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5456 return -EINVAL;
5457 }
5458
5459 /* Ensure that the cursor is valid for the new mode before changing... */
5460 intel_crtc_update_cursor(crtc, true);
5461
5462 /* determine panel color depth */
c8241969
JN
5463 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5464 adjusted_mode);
de13a2e3
PZ
5465 if (is_lvds && dev_priv->lvds_dither)
5466 dither = true;
5467
5468 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5469 if (has_reduced_clock)
5470 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5471 reduced_clock.m2;
5472
5473 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5474
f7cb34d4 5475 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5476 drm_mode_debug_printmodeline(mode);
5477
5dc5298b
PZ
5478 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5479 if (!is_cpu_edp) {
ee7b9f93 5480 struct intel_pch_pll *pll;
4b645f14 5481
ee7b9f93
JB
5482 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5483 if (pll == NULL) {
5484 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5485 pipe);
4b645f14
JB
5486 return -EINVAL;
5487 }
ee7b9f93
JB
5488 } else
5489 intel_put_pch_pll(intel_crtc);
79e53945
JB
5490
5491 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5492 * This is an exception to the general rule that mode_set doesn't turn
5493 * things on.
5494 */
5495 if (is_lvds) {
fae14981 5496 temp = I915_READ(PCH_LVDS);
5eddb70b 5497 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5498 if (HAS_PCH_CPT(dev)) {
5499 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5500 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5501 } else {
5502 if (pipe == 1)
5503 temp |= LVDS_PIPEB_SELECT;
5504 else
5505 temp &= ~LVDS_PIPEB_SELECT;
5506 }
4b645f14 5507
a3e17eb8 5508 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5509 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5510 /* Set the B0-B3 data pairs corresponding to whether we're going to
5511 * set the DPLLs for dual-channel mode or not.
5512 */
5513 if (clock.p2 == 7)
5eddb70b 5514 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5515 else
5eddb70b 5516 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5517
5518 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5519 * appropriately here, but we need to look more thoroughly into how
5520 * panels behave in the two modes.
5521 */
284d5df5 5522 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5523 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5524 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5525 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5526 temp |= LVDS_VSYNC_POLARITY;
fae14981 5527 I915_WRITE(PCH_LVDS, temp);
79e53945 5528 }
434ed097 5529
e3aef172 5530 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5531 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5532 } else {
8db9d77b 5533 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5534 I915_WRITE(TRANSDATA_M1(pipe), 0);
5535 I915_WRITE(TRANSDATA_N1(pipe), 0);
5536 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5537 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5538 }
79e53945 5539
ee7b9f93
JB
5540 if (intel_crtc->pch_pll) {
5541 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5542
32f9d658 5543 /* Wait for the clocks to stabilize. */
ee7b9f93 5544 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5545 udelay(150);
5546
8febb297
EA
5547 /* The pixel multiplier can only be updated once the
5548 * DPLL is enabled and the clocks are stable.
5549 *
5550 * So write it again.
5551 */
ee7b9f93 5552 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5553 }
79e53945 5554
5eddb70b 5555 intel_crtc->lowfreq_avail = false;
ee7b9f93 5556 if (intel_crtc->pch_pll) {
4b645f14 5557 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5558 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5559 intel_crtc->lowfreq_avail = true;
4b645f14 5560 } else {
ee7b9f93 5561 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5562 }
5563 }
5564
b0e77b9c 5565 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
2c07245f 5566
01a415fd
DV
5567 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5568 * ironlake_check_fdi_lanes. */
f48d8f23 5569 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5570
01a415fd
DV
5571 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5572
e3aef172 5573 if (is_cpu_edp)
8febb297 5574 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5575
c8203565 5576 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5577
9d0498a2 5578 intel_wait_for_vblank(dev, pipe);
79e53945 5579
a1f9e77e
PZ
5580 /* Set up the display plane register */
5581 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5582 POSTING_READ(DSPCNTR(plane));
79e53945 5583
94352cf9 5584 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5585
5586 intel_update_watermarks(dev);
5587
1f8eeabf
ED
5588 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5589
01a415fd 5590 return fdi_config_ok ? ret : -EINVAL;
79e53945
JB
5591}
5592
09b4ddf9
PZ
5593static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5594 struct drm_display_mode *mode,
5595 struct drm_display_mode *adjusted_mode,
5596 int x, int y,
5597 struct drm_framebuffer *fb)
5598{
5599 struct drm_device *dev = crtc->dev;
5600 struct drm_i915_private *dev_priv = dev->dev_private;
5601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5602 int pipe = intel_crtc->pipe;
5603 int plane = intel_crtc->plane;
5604 int num_connectors = 0;
5605 intel_clock_t clock, reduced_clock;
5dc5298b 5606 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5607 bool ok, has_reduced_clock = false;
5608 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5609 struct intel_encoder *encoder;
5610 u32 temp;
5611 int ret;
5612 bool dither;
5613
5614 for_each_encoder_on_crtc(dev, crtc, encoder) {
5615 switch (encoder->type) {
5616 case INTEL_OUTPUT_LVDS:
5617 is_lvds = true;
5618 break;
5619 case INTEL_OUTPUT_DISPLAYPORT:
5620 is_dp = true;
5621 break;
5622 case INTEL_OUTPUT_EDP:
5623 is_dp = true;
5624 if (!intel_encoder_is_pch_edp(&encoder->base))
5625 is_cpu_edp = true;
5626 break;
5627 }
5628
5629 num_connectors++;
5630 }
5631
a5c961d1
PZ
5632 if (is_cpu_edp)
5633 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5634 else
5635 intel_crtc->cpu_transcoder = pipe;
5636
5dc5298b
PZ
5637 /* We are not sure yet this won't happen. */
5638 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5639 INTEL_PCH_TYPE(dev));
5640
5641 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5642 num_connectors, pipe_name(pipe));
5643
702e7a56 5644 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
1ce42920
PZ
5645 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5646
5647 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5648
6441ab5f
PZ
5649 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5650 return -EINVAL;
5651
5dc5298b
PZ
5652 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5653 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5654 &has_reduced_clock,
5655 &reduced_clock);
5656 if (!ok) {
5657 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5658 return -EINVAL;
5659 }
09b4ddf9
PZ
5660 }
5661
5662 /* Ensure that the cursor is valid for the new mode before changing... */
5663 intel_crtc_update_cursor(crtc, true);
5664
5665 /* determine panel color depth */
c8241969
JN
5666 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5667 adjusted_mode);
09b4ddf9
PZ
5668 if (is_lvds && dev_priv->lvds_dither)
5669 dither = true;
5670
09b4ddf9
PZ
5671 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5672 drm_mode_debug_printmodeline(mode);
5673
5dc5298b
PZ
5674 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5675 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5676 if (has_reduced_clock)
5677 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5678 reduced_clock.m2;
5679
5680 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5681 fp);
5682
5683 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5684 * own on pre-Haswell/LPT generation */
5685 if (!is_cpu_edp) {
5686 struct intel_pch_pll *pll;
5687
5688 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5689 if (pll == NULL) {
5690 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5691 pipe);
5692 return -EINVAL;
5693 }
5694 } else
5695 intel_put_pch_pll(intel_crtc);
09b4ddf9 5696
5dc5298b
PZ
5697 /* The LVDS pin pair needs to be on before the DPLLs are
5698 * enabled. This is an exception to the general rule that
5699 * mode_set doesn't turn things on.
5700 */
5701 if (is_lvds) {
5702 temp = I915_READ(PCH_LVDS);
5703 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5704 if (HAS_PCH_CPT(dev)) {
5705 temp &= ~PORT_TRANS_SEL_MASK;
5706 temp |= PORT_TRANS_SEL_CPT(pipe);
5707 } else {
5708 if (pipe == 1)
5709 temp |= LVDS_PIPEB_SELECT;
5710 else
5711 temp &= ~LVDS_PIPEB_SELECT;
5712 }
09b4ddf9 5713
5dc5298b
PZ
5714 /* set the corresponsding LVDS_BORDER bit */
5715 temp |= dev_priv->lvds_border_bits;
5716 /* Set the B0-B3 data pairs corresponding to whether
5717 * we're going to set the DPLLs for dual-channel mode or
5718 * not.
5719 */
5720 if (clock.p2 == 7)
5721 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5722 else
5dc5298b
PZ
5723 temp &= ~(LVDS_B0B3_POWER_UP |
5724 LVDS_CLKB_POWER_UP);
5725
5726 /* It would be nice to set 24 vs 18-bit mode
5727 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5728 * look more thoroughly into how panels behave in the
5729 * two modes.
5730 */
5731 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5732 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5733 temp |= LVDS_HSYNC_POLARITY;
5734 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5735 temp |= LVDS_VSYNC_POLARITY;
5736 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5737 }
09b4ddf9
PZ
5738 }
5739
5740 if (is_dp && !is_cpu_edp) {
5741 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5742 } else {
5dc5298b
PZ
5743 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5744 /* For non-DP output, clear any trans DP clock recovery
5745 * setting.*/
5746 I915_WRITE(TRANSDATA_M1(pipe), 0);
5747 I915_WRITE(TRANSDATA_N1(pipe), 0);
5748 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5749 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5750 }
09b4ddf9
PZ
5751 }
5752
5753 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5754 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5755 if (intel_crtc->pch_pll) {
5756 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5757
5758 /* Wait for the clocks to stabilize. */
5759 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5760 udelay(150);
5761
5762 /* The pixel multiplier can only be updated once the
5763 * DPLL is enabled and the clocks are stable.
5764 *
5765 * So write it again.
5766 */
5767 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5768 }
5769
5770 if (intel_crtc->pch_pll) {
5771 if (is_lvds && has_reduced_clock && i915_powersave) {
5772 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5773 intel_crtc->lowfreq_avail = true;
5774 } else {
5775 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5776 }
09b4ddf9
PZ
5777 }
5778 }
5779
5780 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5781
1eb8dfec
PZ
5782 if (!is_dp || is_cpu_edp)
5783 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5784
5dc5298b
PZ
5785 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5786 if (is_cpu_edp)
5787 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5788
ee2b0b38 5789 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5790
09b4ddf9
PZ
5791 /* Set up the display plane register */
5792 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5793 POSTING_READ(DSPCNTR(plane));
5794
5795 ret = intel_pipe_set_base(crtc, x, y, fb);
5796
5797 intel_update_watermarks(dev);
5798
5799 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5800
5801 return ret;
5802}
5803
f564048e
EA
5804static int intel_crtc_mode_set(struct drm_crtc *crtc,
5805 struct drm_display_mode *mode,
5806 struct drm_display_mode *adjusted_mode,
5807 int x, int y,
94352cf9 5808 struct drm_framebuffer *fb)
f564048e
EA
5809{
5810 struct drm_device *dev = crtc->dev;
5811 struct drm_i915_private *dev_priv = dev->dev_private;
9256aa19
DV
5812 struct drm_encoder_helper_funcs *encoder_funcs;
5813 struct intel_encoder *encoder;
0b701d27
EA
5814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5815 int pipe = intel_crtc->pipe;
f564048e
EA
5816 int ret;
5817
0b701d27 5818 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5819
f564048e 5820 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5821 x, y, fb);
79e53945 5822 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5823
9256aa19
DV
5824 if (ret != 0)
5825 return ret;
5826
5827 for_each_encoder_on_crtc(dev, crtc, encoder) {
5828 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5829 encoder->base.base.id,
5830 drm_get_encoder_name(&encoder->base),
5831 mode->base.id, mode->name);
5832 encoder_funcs = encoder->base.helper_private;
5833 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5834 }
5835
5836 return 0;
79e53945
JB
5837}
5838
3a9627f4
WF
5839static bool intel_eld_uptodate(struct drm_connector *connector,
5840 int reg_eldv, uint32_t bits_eldv,
5841 int reg_elda, uint32_t bits_elda,
5842 int reg_edid)
5843{
5844 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5845 uint8_t *eld = connector->eld;
5846 uint32_t i;
5847
5848 i = I915_READ(reg_eldv);
5849 i &= bits_eldv;
5850
5851 if (!eld[0])
5852 return !i;
5853
5854 if (!i)
5855 return false;
5856
5857 i = I915_READ(reg_elda);
5858 i &= ~bits_elda;
5859 I915_WRITE(reg_elda, i);
5860
5861 for (i = 0; i < eld[2]; i++)
5862 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5863 return false;
5864
5865 return true;
5866}
5867
e0dac65e
WF
5868static void g4x_write_eld(struct drm_connector *connector,
5869 struct drm_crtc *crtc)
5870{
5871 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5872 uint8_t *eld = connector->eld;
5873 uint32_t eldv;
5874 uint32_t len;
5875 uint32_t i;
5876
5877 i = I915_READ(G4X_AUD_VID_DID);
5878
5879 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5880 eldv = G4X_ELDV_DEVCL_DEVBLC;
5881 else
5882 eldv = G4X_ELDV_DEVCTG;
5883
3a9627f4
WF
5884 if (intel_eld_uptodate(connector,
5885 G4X_AUD_CNTL_ST, eldv,
5886 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5887 G4X_HDMIW_HDMIEDID))
5888 return;
5889
e0dac65e
WF
5890 i = I915_READ(G4X_AUD_CNTL_ST);
5891 i &= ~(eldv | G4X_ELD_ADDR);
5892 len = (i >> 9) & 0x1f; /* ELD buffer size */
5893 I915_WRITE(G4X_AUD_CNTL_ST, i);
5894
5895 if (!eld[0])
5896 return;
5897
5898 len = min_t(uint8_t, eld[2], len);
5899 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5900 for (i = 0; i < len; i++)
5901 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5902
5903 i = I915_READ(G4X_AUD_CNTL_ST);
5904 i |= eldv;
5905 I915_WRITE(G4X_AUD_CNTL_ST, i);
5906}
5907
83358c85
WX
5908static void haswell_write_eld(struct drm_connector *connector,
5909 struct drm_crtc *crtc)
5910{
5911 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5912 uint8_t *eld = connector->eld;
5913 struct drm_device *dev = crtc->dev;
5914 uint32_t eldv;
5915 uint32_t i;
5916 int len;
5917 int pipe = to_intel_crtc(crtc)->pipe;
5918 int tmp;
5919
5920 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5921 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5922 int aud_config = HSW_AUD_CFG(pipe);
5923 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5924
5925
5926 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5927
5928 /* Audio output enable */
5929 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5930 tmp = I915_READ(aud_cntrl_st2);
5931 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5932 I915_WRITE(aud_cntrl_st2, tmp);
5933
5934 /* Wait for 1 vertical blank */
5935 intel_wait_for_vblank(dev, pipe);
5936
5937 /* Set ELD valid state */
5938 tmp = I915_READ(aud_cntrl_st2);
5939 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5940 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5941 I915_WRITE(aud_cntrl_st2, tmp);
5942 tmp = I915_READ(aud_cntrl_st2);
5943 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5944
5945 /* Enable HDMI mode */
5946 tmp = I915_READ(aud_config);
5947 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5948 /* clear N_programing_enable and N_value_index */
5949 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5950 I915_WRITE(aud_config, tmp);
5951
5952 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5953
5954 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5955
5956 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5957 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5958 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5959 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5960 } else
5961 I915_WRITE(aud_config, 0);
5962
5963 if (intel_eld_uptodate(connector,
5964 aud_cntrl_st2, eldv,
5965 aud_cntl_st, IBX_ELD_ADDRESS,
5966 hdmiw_hdmiedid))
5967 return;
5968
5969 i = I915_READ(aud_cntrl_st2);
5970 i &= ~eldv;
5971 I915_WRITE(aud_cntrl_st2, i);
5972
5973 if (!eld[0])
5974 return;
5975
5976 i = I915_READ(aud_cntl_st);
5977 i &= ~IBX_ELD_ADDRESS;
5978 I915_WRITE(aud_cntl_st, i);
5979 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5980 DRM_DEBUG_DRIVER("port num:%d\n", i);
5981
5982 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5983 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5984 for (i = 0; i < len; i++)
5985 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5986
5987 i = I915_READ(aud_cntrl_st2);
5988 i |= eldv;
5989 I915_WRITE(aud_cntrl_st2, i);
5990
5991}
5992
e0dac65e
WF
5993static void ironlake_write_eld(struct drm_connector *connector,
5994 struct drm_crtc *crtc)
5995{
5996 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5997 uint8_t *eld = connector->eld;
5998 uint32_t eldv;
5999 uint32_t i;
6000 int len;
6001 int hdmiw_hdmiedid;
b6daa025 6002 int aud_config;
e0dac65e
WF
6003 int aud_cntl_st;
6004 int aud_cntrl_st2;
9b138a83 6005 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 6006
b3f33cbf 6007 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
6008 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6009 aud_config = IBX_AUD_CFG(pipe);
6010 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 6011 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 6012 } else {
9b138a83
WX
6013 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6014 aud_config = CPT_AUD_CFG(pipe);
6015 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 6016 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
6017 }
6018
9b138a83 6019 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
6020
6021 i = I915_READ(aud_cntl_st);
9b138a83 6022 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
6023 if (!i) {
6024 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6025 /* operate blindly on all ports */
1202b4c6
WF
6026 eldv = IBX_ELD_VALIDB;
6027 eldv |= IBX_ELD_VALIDB << 4;
6028 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
6029 } else {
6030 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 6031 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
6032 }
6033
3a9627f4
WF
6034 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6035 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6036 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
6037 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6038 } else
6039 I915_WRITE(aud_config, 0);
e0dac65e 6040
3a9627f4
WF
6041 if (intel_eld_uptodate(connector,
6042 aud_cntrl_st2, eldv,
6043 aud_cntl_st, IBX_ELD_ADDRESS,
6044 hdmiw_hdmiedid))
6045 return;
6046
e0dac65e
WF
6047 i = I915_READ(aud_cntrl_st2);
6048 i &= ~eldv;
6049 I915_WRITE(aud_cntrl_st2, i);
6050
6051 if (!eld[0])
6052 return;
6053
e0dac65e 6054 i = I915_READ(aud_cntl_st);
1202b4c6 6055 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6056 I915_WRITE(aud_cntl_st, i);
6057
6058 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6059 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6060 for (i = 0; i < len; i++)
6061 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6062
6063 i = I915_READ(aud_cntrl_st2);
6064 i |= eldv;
6065 I915_WRITE(aud_cntrl_st2, i);
6066}
6067
6068void intel_write_eld(struct drm_encoder *encoder,
6069 struct drm_display_mode *mode)
6070{
6071 struct drm_crtc *crtc = encoder->crtc;
6072 struct drm_connector *connector;
6073 struct drm_device *dev = encoder->dev;
6074 struct drm_i915_private *dev_priv = dev->dev_private;
6075
6076 connector = drm_select_eld(encoder, mode);
6077 if (!connector)
6078 return;
6079
6080 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6081 connector->base.id,
6082 drm_get_connector_name(connector),
6083 connector->encoder->base.id,
6084 drm_get_encoder_name(connector->encoder));
6085
6086 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6087
6088 if (dev_priv->display.write_eld)
6089 dev_priv->display.write_eld(connector, crtc);
6090}
6091
79e53945
JB
6092/** Loads the palette/gamma unit for the CRTC with the prepared values */
6093void intel_crtc_load_lut(struct drm_crtc *crtc)
6094{
6095 struct drm_device *dev = crtc->dev;
6096 struct drm_i915_private *dev_priv = dev->dev_private;
6097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6098 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6099 int i;
6100
6101 /* The clocks have to be on to load the palette. */
aed3f09d 6102 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
6103 return;
6104
f2b115e6 6105 /* use legacy palette for Ironlake */
bad720ff 6106 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6107 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6108
79e53945
JB
6109 for (i = 0; i < 256; i++) {
6110 I915_WRITE(palreg + 4 * i,
6111 (intel_crtc->lut_r[i] << 16) |
6112 (intel_crtc->lut_g[i] << 8) |
6113 intel_crtc->lut_b[i]);
6114 }
6115}
6116
560b85bb
CW
6117static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6118{
6119 struct drm_device *dev = crtc->dev;
6120 struct drm_i915_private *dev_priv = dev->dev_private;
6121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6122 bool visible = base != 0;
6123 u32 cntl;
6124
6125 if (intel_crtc->cursor_visible == visible)
6126 return;
6127
9db4a9c7 6128 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6129 if (visible) {
6130 /* On these chipsets we can only modify the base whilst
6131 * the cursor is disabled.
6132 */
9db4a9c7 6133 I915_WRITE(_CURABASE, base);
560b85bb
CW
6134
6135 cntl &= ~(CURSOR_FORMAT_MASK);
6136 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6137 cntl |= CURSOR_ENABLE |
6138 CURSOR_GAMMA_ENABLE |
6139 CURSOR_FORMAT_ARGB;
6140 } else
6141 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6142 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6143
6144 intel_crtc->cursor_visible = visible;
6145}
6146
6147static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6148{
6149 struct drm_device *dev = crtc->dev;
6150 struct drm_i915_private *dev_priv = dev->dev_private;
6151 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6152 int pipe = intel_crtc->pipe;
6153 bool visible = base != 0;
6154
6155 if (intel_crtc->cursor_visible != visible) {
548f245b 6156 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6157 if (base) {
6158 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6159 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6160 cntl |= pipe << 28; /* Connect to correct pipe */
6161 } else {
6162 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6163 cntl |= CURSOR_MODE_DISABLE;
6164 }
9db4a9c7 6165 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6166
6167 intel_crtc->cursor_visible = visible;
6168 }
6169 /* and commit changes on next vblank */
9db4a9c7 6170 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6171}
6172
65a21cd6
JB
6173static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6174{
6175 struct drm_device *dev = crtc->dev;
6176 struct drm_i915_private *dev_priv = dev->dev_private;
6177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6178 int pipe = intel_crtc->pipe;
6179 bool visible = base != 0;
6180
6181 if (intel_crtc->cursor_visible != visible) {
6182 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6183 if (base) {
6184 cntl &= ~CURSOR_MODE;
6185 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6186 } else {
6187 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6188 cntl |= CURSOR_MODE_DISABLE;
6189 }
6190 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6191
6192 intel_crtc->cursor_visible = visible;
6193 }
6194 /* and commit changes on next vblank */
6195 I915_WRITE(CURBASE_IVB(pipe), base);
6196}
6197
cda4b7d3 6198/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6199static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6200 bool on)
cda4b7d3
CW
6201{
6202 struct drm_device *dev = crtc->dev;
6203 struct drm_i915_private *dev_priv = dev->dev_private;
6204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6205 int pipe = intel_crtc->pipe;
6206 int x = intel_crtc->cursor_x;
6207 int y = intel_crtc->cursor_y;
560b85bb 6208 u32 base, pos;
cda4b7d3
CW
6209 bool visible;
6210
6211 pos = 0;
6212
6b383a7f 6213 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6214 base = intel_crtc->cursor_addr;
6215 if (x > (int) crtc->fb->width)
6216 base = 0;
6217
6218 if (y > (int) crtc->fb->height)
6219 base = 0;
6220 } else
6221 base = 0;
6222
6223 if (x < 0) {
6224 if (x + intel_crtc->cursor_width < 0)
6225 base = 0;
6226
6227 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6228 x = -x;
6229 }
6230 pos |= x << CURSOR_X_SHIFT;
6231
6232 if (y < 0) {
6233 if (y + intel_crtc->cursor_height < 0)
6234 base = 0;
6235
6236 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6237 y = -y;
6238 }
6239 pos |= y << CURSOR_Y_SHIFT;
6240
6241 visible = base != 0;
560b85bb 6242 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6243 return;
6244
0cd83aa9 6245 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
6246 I915_WRITE(CURPOS_IVB(pipe), pos);
6247 ivb_update_cursor(crtc, base);
6248 } else {
6249 I915_WRITE(CURPOS(pipe), pos);
6250 if (IS_845G(dev) || IS_I865G(dev))
6251 i845_update_cursor(crtc, base);
6252 else
6253 i9xx_update_cursor(crtc, base);
6254 }
cda4b7d3
CW
6255}
6256
79e53945 6257static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6258 struct drm_file *file,
79e53945
JB
6259 uint32_t handle,
6260 uint32_t width, uint32_t height)
6261{
6262 struct drm_device *dev = crtc->dev;
6263 struct drm_i915_private *dev_priv = dev->dev_private;
6264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6265 struct drm_i915_gem_object *obj;
cda4b7d3 6266 uint32_t addr;
3f8bc370 6267 int ret;
79e53945 6268
79e53945
JB
6269 /* if we want to turn off the cursor ignore width and height */
6270 if (!handle) {
28c97730 6271 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6272 addr = 0;
05394f39 6273 obj = NULL;
5004417d 6274 mutex_lock(&dev->struct_mutex);
3f8bc370 6275 goto finish;
79e53945
JB
6276 }
6277
6278 /* Currently we only support 64x64 cursors */
6279 if (width != 64 || height != 64) {
6280 DRM_ERROR("we currently only support 64x64 cursors\n");
6281 return -EINVAL;
6282 }
6283
05394f39 6284 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6285 if (&obj->base == NULL)
79e53945
JB
6286 return -ENOENT;
6287
05394f39 6288 if (obj->base.size < width * height * 4) {
79e53945 6289 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6290 ret = -ENOMEM;
6291 goto fail;
79e53945
JB
6292 }
6293
71acb5eb 6294 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6295 mutex_lock(&dev->struct_mutex);
b295d1b6 6296 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6297 if (obj->tiling_mode) {
6298 DRM_ERROR("cursor cannot be tiled\n");
6299 ret = -EINVAL;
6300 goto fail_locked;
6301 }
6302
2da3b9b9 6303 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6304 if (ret) {
6305 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6306 goto fail_locked;
e7b526bb
CW
6307 }
6308
d9e86c0e
CW
6309 ret = i915_gem_object_put_fence(obj);
6310 if (ret) {
2da3b9b9 6311 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6312 goto fail_unpin;
6313 }
6314
05394f39 6315 addr = obj->gtt_offset;
71acb5eb 6316 } else {
6eeefaf3 6317 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6318 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6319 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6320 align);
71acb5eb
DA
6321 if (ret) {
6322 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6323 goto fail_locked;
71acb5eb 6324 }
05394f39 6325 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6326 }
6327
a6c45cf0 6328 if (IS_GEN2(dev))
14b60391
JB
6329 I915_WRITE(CURSIZE, (height << 12) | width);
6330
3f8bc370 6331 finish:
3f8bc370 6332 if (intel_crtc->cursor_bo) {
b295d1b6 6333 if (dev_priv->info->cursor_needs_physical) {
05394f39 6334 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6335 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6336 } else
6337 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6338 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6339 }
80824003 6340
7f9872e0 6341 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6342
6343 intel_crtc->cursor_addr = addr;
05394f39 6344 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6345 intel_crtc->cursor_width = width;
6346 intel_crtc->cursor_height = height;
6347
6b383a7f 6348 intel_crtc_update_cursor(crtc, true);
3f8bc370 6349
79e53945 6350 return 0;
e7b526bb 6351fail_unpin:
05394f39 6352 i915_gem_object_unpin(obj);
7f9872e0 6353fail_locked:
34b8686e 6354 mutex_unlock(&dev->struct_mutex);
bc9025bd 6355fail:
05394f39 6356 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6357 return ret;
79e53945
JB
6358}
6359
6360static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6361{
79e53945 6362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6363
cda4b7d3
CW
6364 intel_crtc->cursor_x = x;
6365 intel_crtc->cursor_y = y;
652c393a 6366
6b383a7f 6367 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6368
6369 return 0;
6370}
6371
6372/** Sets the color ramps on behalf of RandR */
6373void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6374 u16 blue, int regno)
6375{
6376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6377
6378 intel_crtc->lut_r[regno] = red >> 8;
6379 intel_crtc->lut_g[regno] = green >> 8;
6380 intel_crtc->lut_b[regno] = blue >> 8;
6381}
6382
b8c00ac5
DA
6383void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6384 u16 *blue, int regno)
6385{
6386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6387
6388 *red = intel_crtc->lut_r[regno] << 8;
6389 *green = intel_crtc->lut_g[regno] << 8;
6390 *blue = intel_crtc->lut_b[regno] << 8;
6391}
6392
79e53945 6393static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6394 u16 *blue, uint32_t start, uint32_t size)
79e53945 6395{
7203425a 6396 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6398
7203425a 6399 for (i = start; i < end; i++) {
79e53945
JB
6400 intel_crtc->lut_r[i] = red[i] >> 8;
6401 intel_crtc->lut_g[i] = green[i] >> 8;
6402 intel_crtc->lut_b[i] = blue[i] >> 8;
6403 }
6404
6405 intel_crtc_load_lut(crtc);
6406}
6407
6408/**
6409 * Get a pipe with a simple mode set on it for doing load-based monitor
6410 * detection.
6411 *
6412 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6413 * its requirements. The pipe will be connected to no other encoders.
79e53945 6414 *
c751ce4f 6415 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6416 * configured for it. In the future, it could choose to temporarily disable
6417 * some outputs to free up a pipe for its use.
6418 *
6419 * \return crtc, or NULL if no pipes are available.
6420 */
6421
6422/* VESA 640x480x72Hz mode to set on the pipe */
6423static struct drm_display_mode load_detect_mode = {
6424 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6425 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6426};
6427
d2dff872
CW
6428static struct drm_framebuffer *
6429intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6430 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6431 struct drm_i915_gem_object *obj)
6432{
6433 struct intel_framebuffer *intel_fb;
6434 int ret;
6435
6436 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6437 if (!intel_fb) {
6438 drm_gem_object_unreference_unlocked(&obj->base);
6439 return ERR_PTR(-ENOMEM);
6440 }
6441
6442 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6443 if (ret) {
6444 drm_gem_object_unreference_unlocked(&obj->base);
6445 kfree(intel_fb);
6446 return ERR_PTR(ret);
6447 }
6448
6449 return &intel_fb->base;
6450}
6451
6452static u32
6453intel_framebuffer_pitch_for_width(int width, int bpp)
6454{
6455 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6456 return ALIGN(pitch, 64);
6457}
6458
6459static u32
6460intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6461{
6462 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6463 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6464}
6465
6466static struct drm_framebuffer *
6467intel_framebuffer_create_for_mode(struct drm_device *dev,
6468 struct drm_display_mode *mode,
6469 int depth, int bpp)
6470{
6471 struct drm_i915_gem_object *obj;
308e5bcb 6472 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
6473
6474 obj = i915_gem_alloc_object(dev,
6475 intel_framebuffer_size_for_mode(mode, bpp));
6476 if (obj == NULL)
6477 return ERR_PTR(-ENOMEM);
6478
6479 mode_cmd.width = mode->hdisplay;
6480 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6481 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6482 bpp);
5ca0c34a 6483 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6484
6485 return intel_framebuffer_create(dev, &mode_cmd, obj);
6486}
6487
6488static struct drm_framebuffer *
6489mode_fits_in_fbdev(struct drm_device *dev,
6490 struct drm_display_mode *mode)
6491{
6492 struct drm_i915_private *dev_priv = dev->dev_private;
6493 struct drm_i915_gem_object *obj;
6494 struct drm_framebuffer *fb;
6495
6496 if (dev_priv->fbdev == NULL)
6497 return NULL;
6498
6499 obj = dev_priv->fbdev->ifb.obj;
6500 if (obj == NULL)
6501 return NULL;
6502
6503 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6504 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6505 fb->bits_per_pixel))
d2dff872
CW
6506 return NULL;
6507
01f2c773 6508 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6509 return NULL;
6510
6511 return fb;
6512}
6513
d2434ab7 6514bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6515 struct drm_display_mode *mode,
8261b191 6516 struct intel_load_detect_pipe *old)
79e53945
JB
6517{
6518 struct intel_crtc *intel_crtc;
d2434ab7
DV
6519 struct intel_encoder *intel_encoder =
6520 intel_attached_encoder(connector);
79e53945 6521 struct drm_crtc *possible_crtc;
4ef69c7a 6522 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6523 struct drm_crtc *crtc = NULL;
6524 struct drm_device *dev = encoder->dev;
94352cf9 6525 struct drm_framebuffer *fb;
79e53945
JB
6526 int i = -1;
6527
d2dff872
CW
6528 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6529 connector->base.id, drm_get_connector_name(connector),
6530 encoder->base.id, drm_get_encoder_name(encoder));
6531
79e53945
JB
6532 /*
6533 * Algorithm gets a little messy:
7a5e4805 6534 *
79e53945
JB
6535 * - if the connector already has an assigned crtc, use it (but make
6536 * sure it's on first)
7a5e4805 6537 *
79e53945
JB
6538 * - try to find the first unused crtc that can drive this connector,
6539 * and use that if we find one
79e53945
JB
6540 */
6541
6542 /* See if we already have a CRTC for this connector */
6543 if (encoder->crtc) {
6544 crtc = encoder->crtc;
8261b191 6545
24218aac 6546 old->dpms_mode = connector->dpms;
8261b191
CW
6547 old->load_detect_temp = false;
6548
6549 /* Make sure the crtc and connector are running */
24218aac
DV
6550 if (connector->dpms != DRM_MODE_DPMS_ON)
6551 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6552
7173188d 6553 return true;
79e53945
JB
6554 }
6555
6556 /* Find an unused one (if possible) */
6557 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6558 i++;
6559 if (!(encoder->possible_crtcs & (1 << i)))
6560 continue;
6561 if (!possible_crtc->enabled) {
6562 crtc = possible_crtc;
6563 break;
6564 }
79e53945
JB
6565 }
6566
6567 /*
6568 * If we didn't find an unused CRTC, don't use any.
6569 */
6570 if (!crtc) {
7173188d
CW
6571 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6572 return false;
79e53945
JB
6573 }
6574
fc303101
DV
6575 intel_encoder->new_crtc = to_intel_crtc(crtc);
6576 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6577
6578 intel_crtc = to_intel_crtc(crtc);
24218aac 6579 old->dpms_mode = connector->dpms;
8261b191 6580 old->load_detect_temp = true;
d2dff872 6581 old->release_fb = NULL;
79e53945 6582
6492711d
CW
6583 if (!mode)
6584 mode = &load_detect_mode;
79e53945 6585
d2dff872
CW
6586 /* We need a framebuffer large enough to accommodate all accesses
6587 * that the plane may generate whilst we perform load detection.
6588 * We can not rely on the fbcon either being present (we get called
6589 * during its initialisation to detect all boot displays, or it may
6590 * not even exist) or that it is large enough to satisfy the
6591 * requested mode.
6592 */
94352cf9
DV
6593 fb = mode_fits_in_fbdev(dev, mode);
6594 if (fb == NULL) {
d2dff872 6595 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6596 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6597 old->release_fb = fb;
d2dff872
CW
6598 } else
6599 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6600 if (IS_ERR(fb)) {
d2dff872 6601 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 6602 goto fail;
79e53945 6603 }
79e53945 6604
94352cf9 6605 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6606 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6607 if (old->release_fb)
6608 old->release_fb->funcs->destroy(old->release_fb);
24218aac 6609 goto fail;
79e53945 6610 }
7173188d 6611
79e53945 6612 /* let the connector get through one full cycle before testing */
9d0498a2 6613 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6614
7173188d 6615 return true;
24218aac
DV
6616fail:
6617 connector->encoder = NULL;
6618 encoder->crtc = NULL;
24218aac 6619 return false;
79e53945
JB
6620}
6621
d2434ab7 6622void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6623 struct intel_load_detect_pipe *old)
79e53945 6624{
d2434ab7
DV
6625 struct intel_encoder *intel_encoder =
6626 intel_attached_encoder(connector);
4ef69c7a 6627 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6628
d2dff872
CW
6629 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6630 connector->base.id, drm_get_connector_name(connector),
6631 encoder->base.id, drm_get_encoder_name(encoder));
6632
8261b191 6633 if (old->load_detect_temp) {
fc303101
DV
6634 struct drm_crtc *crtc = encoder->crtc;
6635
6636 to_intel_connector(connector)->new_encoder = NULL;
6637 intel_encoder->new_crtc = NULL;
6638 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6639
6640 if (old->release_fb)
6641 old->release_fb->funcs->destroy(old->release_fb);
6642
0622a53c 6643 return;
79e53945
JB
6644 }
6645
c751ce4f 6646 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6647 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6648 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6649}
6650
6651/* Returns the clock of the currently programmed mode of the given pipe. */
6652static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6653{
6654 struct drm_i915_private *dev_priv = dev->dev_private;
6655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6656 int pipe = intel_crtc->pipe;
548f245b 6657 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6658 u32 fp;
6659 intel_clock_t clock;
6660
6661 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6662 fp = I915_READ(FP0(pipe));
79e53945 6663 else
39adb7a5 6664 fp = I915_READ(FP1(pipe));
79e53945
JB
6665
6666 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6667 if (IS_PINEVIEW(dev)) {
6668 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6669 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6670 } else {
6671 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6672 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6673 }
6674
a6c45cf0 6675 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6676 if (IS_PINEVIEW(dev))
6677 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6678 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6679 else
6680 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6681 DPLL_FPA01_P1_POST_DIV_SHIFT);
6682
6683 switch (dpll & DPLL_MODE_MASK) {
6684 case DPLLB_MODE_DAC_SERIAL:
6685 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6686 5 : 10;
6687 break;
6688 case DPLLB_MODE_LVDS:
6689 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6690 7 : 14;
6691 break;
6692 default:
28c97730 6693 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6694 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6695 return 0;
6696 }
6697
6698 /* XXX: Handle the 100Mhz refclk */
2177832f 6699 intel_clock(dev, 96000, &clock);
79e53945
JB
6700 } else {
6701 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6702
6703 if (is_lvds) {
6704 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6705 DPLL_FPA01_P1_POST_DIV_SHIFT);
6706 clock.p2 = 14;
6707
6708 if ((dpll & PLL_REF_INPUT_MASK) ==
6709 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6710 /* XXX: might not be 66MHz */
2177832f 6711 intel_clock(dev, 66000, &clock);
79e53945 6712 } else
2177832f 6713 intel_clock(dev, 48000, &clock);
79e53945
JB
6714 } else {
6715 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6716 clock.p1 = 2;
6717 else {
6718 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6719 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6720 }
6721 if (dpll & PLL_P2_DIVIDE_BY_4)
6722 clock.p2 = 4;
6723 else
6724 clock.p2 = 2;
6725
2177832f 6726 intel_clock(dev, 48000, &clock);
79e53945
JB
6727 }
6728 }
6729
6730 /* XXX: It would be nice to validate the clocks, but we can't reuse
6731 * i830PllIsValid() because it relies on the xf86_config connector
6732 * configuration being accurate, which it isn't necessarily.
6733 */
6734
6735 return clock.dot;
6736}
6737
6738/** Returns the currently programmed mode of the given pipe. */
6739struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6740 struct drm_crtc *crtc)
6741{
548f245b 6742 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 6743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fe2b8f9d 6744 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
79e53945 6745 struct drm_display_mode *mode;
fe2b8f9d
PZ
6746 int htot = I915_READ(HTOTAL(cpu_transcoder));
6747 int hsync = I915_READ(HSYNC(cpu_transcoder));
6748 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6749 int vsync = I915_READ(VSYNC(cpu_transcoder));
79e53945
JB
6750
6751 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6752 if (!mode)
6753 return NULL;
6754
6755 mode->clock = intel_crtc_clock_get(dev, crtc);
6756 mode->hdisplay = (htot & 0xffff) + 1;
6757 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6758 mode->hsync_start = (hsync & 0xffff) + 1;
6759 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6760 mode->vdisplay = (vtot & 0xffff) + 1;
6761 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6762 mode->vsync_start = (vsync & 0xffff) + 1;
6763 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6764
6765 drm_mode_set_name(mode);
79e53945
JB
6766
6767 return mode;
6768}
6769
3dec0095 6770static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6771{
6772 struct drm_device *dev = crtc->dev;
6773 drm_i915_private_t *dev_priv = dev->dev_private;
6774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6775 int pipe = intel_crtc->pipe;
dbdc6479
JB
6776 int dpll_reg = DPLL(pipe);
6777 int dpll;
652c393a 6778
bad720ff 6779 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6780 return;
6781
6782 if (!dev_priv->lvds_downclock_avail)
6783 return;
6784
dbdc6479 6785 dpll = I915_READ(dpll_reg);
652c393a 6786 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6787 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6788
8ac5a6d5 6789 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6790
6791 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6792 I915_WRITE(dpll_reg, dpll);
9d0498a2 6793 intel_wait_for_vblank(dev, pipe);
dbdc6479 6794
652c393a
JB
6795 dpll = I915_READ(dpll_reg);
6796 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6797 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6798 }
652c393a
JB
6799}
6800
6801static void intel_decrease_pllclock(struct drm_crtc *crtc)
6802{
6803 struct drm_device *dev = crtc->dev;
6804 drm_i915_private_t *dev_priv = dev->dev_private;
6805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6806
bad720ff 6807 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6808 return;
6809
6810 if (!dev_priv->lvds_downclock_avail)
6811 return;
6812
6813 /*
6814 * Since this is called by a timer, we should never get here in
6815 * the manual case.
6816 */
6817 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6818 int pipe = intel_crtc->pipe;
6819 int dpll_reg = DPLL(pipe);
6820 int dpll;
f6e5b160 6821
44d98a61 6822 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6823
8ac5a6d5 6824 assert_panel_unlocked(dev_priv, pipe);
652c393a 6825
dc257cf1 6826 dpll = I915_READ(dpll_reg);
652c393a
JB
6827 dpll |= DISPLAY_RATE_SELECT_FPA1;
6828 I915_WRITE(dpll_reg, dpll);
9d0498a2 6829 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6830 dpll = I915_READ(dpll_reg);
6831 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6832 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6833 }
6834
6835}
6836
f047e395
CW
6837void intel_mark_busy(struct drm_device *dev)
6838{
f047e395
CW
6839 i915_update_gfx_val(dev->dev_private);
6840}
6841
6842void intel_mark_idle(struct drm_device *dev)
652c393a 6843{
f047e395
CW
6844}
6845
6846void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6847{
6848 struct drm_device *dev = obj->base.dev;
652c393a 6849 struct drm_crtc *crtc;
652c393a
JB
6850
6851 if (!i915_powersave)
6852 return;
6853
652c393a 6854 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6855 if (!crtc->fb)
6856 continue;
6857
f047e395
CW
6858 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6859 intel_increase_pllclock(crtc);
652c393a 6860 }
652c393a
JB
6861}
6862
f047e395 6863void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6864{
f047e395
CW
6865 struct drm_device *dev = obj->base.dev;
6866 struct drm_crtc *crtc;
652c393a 6867
f047e395 6868 if (!i915_powersave)
acb87dfb
CW
6869 return;
6870
652c393a
JB
6871 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6872 if (!crtc->fb)
6873 continue;
6874
f047e395
CW
6875 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6876 intel_decrease_pllclock(crtc);
652c393a
JB
6877 }
6878}
6879
79e53945
JB
6880static void intel_crtc_destroy(struct drm_crtc *crtc)
6881{
6882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6883 struct drm_device *dev = crtc->dev;
6884 struct intel_unpin_work *work;
6885 unsigned long flags;
6886
6887 spin_lock_irqsave(&dev->event_lock, flags);
6888 work = intel_crtc->unpin_work;
6889 intel_crtc->unpin_work = NULL;
6890 spin_unlock_irqrestore(&dev->event_lock, flags);
6891
6892 if (work) {
6893 cancel_work_sync(&work->work);
6894 kfree(work);
6895 }
79e53945
JB
6896
6897 drm_crtc_cleanup(crtc);
67e77c5a 6898
79e53945
JB
6899 kfree(intel_crtc);
6900}
6901
6b95a207
KH
6902static void intel_unpin_work_fn(struct work_struct *__work)
6903{
6904 struct intel_unpin_work *work =
6905 container_of(__work, struct intel_unpin_work, work);
6906
6907 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6908 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6909 drm_gem_object_unreference(&work->pending_flip_obj->base);
6910 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6911
7782de3b 6912 intel_update_fbc(work->dev);
6b95a207
KH
6913 mutex_unlock(&work->dev->struct_mutex);
6914 kfree(work);
6915}
6916
1afe3e9d 6917static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6918 struct drm_crtc *crtc)
6b95a207
KH
6919{
6920 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6922 struct intel_unpin_work *work;
05394f39 6923 struct drm_i915_gem_object *obj;
6b95a207 6924 struct drm_pending_vblank_event *e;
95cb1b02 6925 struct timeval tvbl;
6b95a207
KH
6926 unsigned long flags;
6927
6928 /* Ignore early vblank irqs */
6929 if (intel_crtc == NULL)
6930 return;
6931
6932 spin_lock_irqsave(&dev->event_lock, flags);
6933 work = intel_crtc->unpin_work;
6934 if (work == NULL || !work->pending) {
6935 spin_unlock_irqrestore(&dev->event_lock, flags);
6936 return;
6937 }
6938
6939 intel_crtc->unpin_work = NULL;
6b95a207
KH
6940
6941 if (work->event) {
6942 e = work->event;
49b14a5c 6943 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df 6944
49b14a5c
MK
6945 e->event.tv_sec = tvbl.tv_sec;
6946 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6947
6b95a207
KH
6948 list_add_tail(&e->base.link,
6949 &e->base.file_priv->event_list);
6950 wake_up_interruptible(&e->base.file_priv->event_wait);
6951 }
6952
0af7e4df
MK
6953 drm_vblank_put(dev, intel_crtc->pipe);
6954
6b95a207
KH
6955 spin_unlock_irqrestore(&dev->event_lock, flags);
6956
05394f39 6957 obj = work->old_fb_obj;
d9e86c0e 6958
e59f2bac 6959 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 6960 &obj->pending_flip.counter);
d9e86c0e 6961
5bb61643 6962 wake_up(&dev_priv->pending_flip_queue);
6b95a207 6963 schedule_work(&work->work);
e5510fac
JB
6964
6965 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6966}
6967
1afe3e9d
JB
6968void intel_finish_page_flip(struct drm_device *dev, int pipe)
6969{
6970 drm_i915_private_t *dev_priv = dev->dev_private;
6971 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6972
49b14a5c 6973 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6974}
6975
6976void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6977{
6978 drm_i915_private_t *dev_priv = dev->dev_private;
6979 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6980
49b14a5c 6981 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6982}
6983
6b95a207
KH
6984void intel_prepare_page_flip(struct drm_device *dev, int plane)
6985{
6986 drm_i915_private_t *dev_priv = dev->dev_private;
6987 struct intel_crtc *intel_crtc =
6988 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6989 unsigned long flags;
6990
6991 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6992 if (intel_crtc->unpin_work) {
4e5359cd
SF
6993 if ((++intel_crtc->unpin_work->pending) > 1)
6994 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6995 } else {
6996 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6997 }
6b95a207
KH
6998 spin_unlock_irqrestore(&dev->event_lock, flags);
6999}
7000
8c9f3aaf
JB
7001static int intel_gen2_queue_flip(struct drm_device *dev,
7002 struct drm_crtc *crtc,
7003 struct drm_framebuffer *fb,
7004 struct drm_i915_gem_object *obj)
7005{
7006 struct drm_i915_private *dev_priv = dev->dev_private;
7007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7008 u32 flip_mask;
6d90c952 7009 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7010 int ret;
7011
6d90c952 7012 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7013 if (ret)
83d4092b 7014 goto err;
8c9f3aaf 7015
6d90c952 7016 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7017 if (ret)
83d4092b 7018 goto err_unpin;
8c9f3aaf
JB
7019
7020 /* Can't queue multiple flips, so wait for the previous
7021 * one to finish before executing the next.
7022 */
7023 if (intel_crtc->plane)
7024 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7025 else
7026 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7027 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7028 intel_ring_emit(ring, MI_NOOP);
7029 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7030 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7031 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7032 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7033 intel_ring_emit(ring, 0); /* aux display base address, unused */
7034 intel_ring_advance(ring);
83d4092b
CW
7035 return 0;
7036
7037err_unpin:
7038 intel_unpin_fb_obj(obj);
7039err:
8c9f3aaf
JB
7040 return ret;
7041}
7042
7043static int intel_gen3_queue_flip(struct drm_device *dev,
7044 struct drm_crtc *crtc,
7045 struct drm_framebuffer *fb,
7046 struct drm_i915_gem_object *obj)
7047{
7048 struct drm_i915_private *dev_priv = dev->dev_private;
7049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7050 u32 flip_mask;
6d90c952 7051 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7052 int ret;
7053
6d90c952 7054 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7055 if (ret)
83d4092b 7056 goto err;
8c9f3aaf 7057
6d90c952 7058 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7059 if (ret)
83d4092b 7060 goto err_unpin;
8c9f3aaf
JB
7061
7062 if (intel_crtc->plane)
7063 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7064 else
7065 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7066 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7067 intel_ring_emit(ring, MI_NOOP);
7068 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7069 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7070 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7071 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7072 intel_ring_emit(ring, MI_NOOP);
7073
7074 intel_ring_advance(ring);
83d4092b
CW
7075 return 0;
7076
7077err_unpin:
7078 intel_unpin_fb_obj(obj);
7079err:
8c9f3aaf
JB
7080 return ret;
7081}
7082
7083static int intel_gen4_queue_flip(struct drm_device *dev,
7084 struct drm_crtc *crtc,
7085 struct drm_framebuffer *fb,
7086 struct drm_i915_gem_object *obj)
7087{
7088 struct drm_i915_private *dev_priv = dev->dev_private;
7089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7090 uint32_t pf, pipesrc;
6d90c952 7091 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7092 int ret;
7093
6d90c952 7094 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7095 if (ret)
83d4092b 7096 goto err;
8c9f3aaf 7097
6d90c952 7098 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7099 if (ret)
83d4092b 7100 goto err_unpin;
8c9f3aaf
JB
7101
7102 /* i965+ uses the linear or tiled offsets from the
7103 * Display Registers (which do not change across a page-flip)
7104 * so we need only reprogram the base address.
7105 */
6d90c952
DV
7106 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7107 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7108 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
7109 intel_ring_emit(ring,
7110 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7111 obj->tiling_mode);
8c9f3aaf
JB
7112
7113 /* XXX Enabling the panel-fitter across page-flip is so far
7114 * untested on non-native modes, so ignore it for now.
7115 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7116 */
7117 pf = 0;
7118 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7119 intel_ring_emit(ring, pf | pipesrc);
7120 intel_ring_advance(ring);
83d4092b
CW
7121 return 0;
7122
7123err_unpin:
7124 intel_unpin_fb_obj(obj);
7125err:
8c9f3aaf
JB
7126 return ret;
7127}
7128
7129static int intel_gen6_queue_flip(struct drm_device *dev,
7130 struct drm_crtc *crtc,
7131 struct drm_framebuffer *fb,
7132 struct drm_i915_gem_object *obj)
7133{
7134 struct drm_i915_private *dev_priv = dev->dev_private;
7135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 7136 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7137 uint32_t pf, pipesrc;
7138 int ret;
7139
6d90c952 7140 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7141 if (ret)
83d4092b 7142 goto err;
8c9f3aaf 7143
6d90c952 7144 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7145 if (ret)
83d4092b 7146 goto err_unpin;
8c9f3aaf 7147
6d90c952
DV
7148 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7149 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7150 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 7151 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 7152
dc257cf1
DV
7153 /* Contrary to the suggestions in the documentation,
7154 * "Enable Panel Fitter" does not seem to be required when page
7155 * flipping with a non-native mode, and worse causes a normal
7156 * modeset to fail.
7157 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7158 */
7159 pf = 0;
8c9f3aaf 7160 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7161 intel_ring_emit(ring, pf | pipesrc);
7162 intel_ring_advance(ring);
83d4092b
CW
7163 return 0;
7164
7165err_unpin:
7166 intel_unpin_fb_obj(obj);
7167err:
8c9f3aaf
JB
7168 return ret;
7169}
7170
7c9017e5
JB
7171/*
7172 * On gen7 we currently use the blit ring because (in early silicon at least)
7173 * the render ring doesn't give us interrpts for page flip completion, which
7174 * means clients will hang after the first flip is queued. Fortunately the
7175 * blit ring generates interrupts properly, so use it instead.
7176 */
7177static int intel_gen7_queue_flip(struct drm_device *dev,
7178 struct drm_crtc *crtc,
7179 struct drm_framebuffer *fb,
7180 struct drm_i915_gem_object *obj)
7181{
7182 struct drm_i915_private *dev_priv = dev->dev_private;
7183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7184 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 7185 uint32_t plane_bit = 0;
7c9017e5
JB
7186 int ret;
7187
7188 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7189 if (ret)
83d4092b 7190 goto err;
7c9017e5 7191
cb05d8de
DV
7192 switch(intel_crtc->plane) {
7193 case PLANE_A:
7194 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7195 break;
7196 case PLANE_B:
7197 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7198 break;
7199 case PLANE_C:
7200 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7201 break;
7202 default:
7203 WARN_ONCE(1, "unknown plane in flip command\n");
7204 ret = -ENODEV;
ab3951eb 7205 goto err_unpin;
cb05d8de
DV
7206 }
7207
7c9017e5
JB
7208 ret = intel_ring_begin(ring, 4);
7209 if (ret)
83d4092b 7210 goto err_unpin;
7c9017e5 7211
cb05d8de 7212 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 7213 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 7214 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
7215 intel_ring_emit(ring, (MI_NOOP));
7216 intel_ring_advance(ring);
83d4092b
CW
7217 return 0;
7218
7219err_unpin:
7220 intel_unpin_fb_obj(obj);
7221err:
7c9017e5
JB
7222 return ret;
7223}
7224
8c9f3aaf
JB
7225static int intel_default_queue_flip(struct drm_device *dev,
7226 struct drm_crtc *crtc,
7227 struct drm_framebuffer *fb,
7228 struct drm_i915_gem_object *obj)
7229{
7230 return -ENODEV;
7231}
7232
6b95a207
KH
7233static int intel_crtc_page_flip(struct drm_crtc *crtc,
7234 struct drm_framebuffer *fb,
7235 struct drm_pending_vblank_event *event)
7236{
7237 struct drm_device *dev = crtc->dev;
7238 struct drm_i915_private *dev_priv = dev->dev_private;
7239 struct intel_framebuffer *intel_fb;
05394f39 7240 struct drm_i915_gem_object *obj;
6b95a207
KH
7241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7242 struct intel_unpin_work *work;
8c9f3aaf 7243 unsigned long flags;
52e68630 7244 int ret;
6b95a207 7245
e6a595d2
VS
7246 /* Can't change pixel format via MI display flips. */
7247 if (fb->pixel_format != crtc->fb->pixel_format)
7248 return -EINVAL;
7249
7250 /*
7251 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7252 * Note that pitch changes could also affect these register.
7253 */
7254 if (INTEL_INFO(dev)->gen > 3 &&
7255 (fb->offsets[0] != crtc->fb->offsets[0] ||
7256 fb->pitches[0] != crtc->fb->pitches[0]))
7257 return -EINVAL;
7258
6b95a207
KH
7259 work = kzalloc(sizeof *work, GFP_KERNEL);
7260 if (work == NULL)
7261 return -ENOMEM;
7262
6b95a207
KH
7263 work->event = event;
7264 work->dev = crtc->dev;
7265 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7266 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7267 INIT_WORK(&work->work, intel_unpin_work_fn);
7268
7317c75e
JB
7269 ret = drm_vblank_get(dev, intel_crtc->pipe);
7270 if (ret)
7271 goto free_work;
7272
6b95a207
KH
7273 /* We borrow the event spin lock for protecting unpin_work */
7274 spin_lock_irqsave(&dev->event_lock, flags);
7275 if (intel_crtc->unpin_work) {
7276 spin_unlock_irqrestore(&dev->event_lock, flags);
7277 kfree(work);
7317c75e 7278 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7279
7280 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7281 return -EBUSY;
7282 }
7283 intel_crtc->unpin_work = work;
7284 spin_unlock_irqrestore(&dev->event_lock, flags);
7285
7286 intel_fb = to_intel_framebuffer(fb);
7287 obj = intel_fb->obj;
7288
79158103
CW
7289 ret = i915_mutex_lock_interruptible(dev);
7290 if (ret)
7291 goto cleanup;
6b95a207 7292
75dfca80 7293 /* Reference the objects for the scheduled work. */
05394f39
CW
7294 drm_gem_object_reference(&work->old_fb_obj->base);
7295 drm_gem_object_reference(&obj->base);
6b95a207
KH
7296
7297 crtc->fb = fb;
96b099fd 7298
e1f99ce6 7299 work->pending_flip_obj = obj;
e1f99ce6 7300
4e5359cd
SF
7301 work->enable_stall_check = true;
7302
e1f99ce6
CW
7303 /* Block clients from rendering to the new back buffer until
7304 * the flip occurs and the object is no longer visible.
7305 */
05394f39 7306 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7307
8c9f3aaf
JB
7308 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7309 if (ret)
7310 goto cleanup_pending;
6b95a207 7311
7782de3b 7312 intel_disable_fbc(dev);
f047e395 7313 intel_mark_fb_busy(obj);
6b95a207
KH
7314 mutex_unlock(&dev->struct_mutex);
7315
e5510fac
JB
7316 trace_i915_flip_request(intel_crtc->plane, obj);
7317
6b95a207 7318 return 0;
96b099fd 7319
8c9f3aaf
JB
7320cleanup_pending:
7321 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7322 drm_gem_object_unreference(&work->old_fb_obj->base);
7323 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7324 mutex_unlock(&dev->struct_mutex);
7325
79158103 7326cleanup:
96b099fd
CW
7327 spin_lock_irqsave(&dev->event_lock, flags);
7328 intel_crtc->unpin_work = NULL;
7329 spin_unlock_irqrestore(&dev->event_lock, flags);
7330
7317c75e
JB
7331 drm_vblank_put(dev, intel_crtc->pipe);
7332free_work:
96b099fd
CW
7333 kfree(work);
7334
7335 return ret;
6b95a207
KH
7336}
7337
f6e5b160 7338static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7339 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7340 .load_lut = intel_crtc_load_lut,
976f8a20 7341 .disable = intel_crtc_noop,
f6e5b160
CW
7342};
7343
6ed0f796 7344bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7345{
6ed0f796
DV
7346 struct intel_encoder *other_encoder;
7347 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7348
6ed0f796
DV
7349 if (WARN_ON(!crtc))
7350 return false;
7351
7352 list_for_each_entry(other_encoder,
7353 &crtc->dev->mode_config.encoder_list,
7354 base.head) {
7355
7356 if (&other_encoder->new_crtc->base != crtc ||
7357 encoder == other_encoder)
7358 continue;
7359 else
7360 return true;
f47166d2
CW
7361 }
7362
6ed0f796
DV
7363 return false;
7364}
47f1c6c9 7365
50f56119
DV
7366static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7367 struct drm_crtc *crtc)
7368{
7369 struct drm_device *dev;
7370 struct drm_crtc *tmp;
7371 int crtc_mask = 1;
47f1c6c9 7372
50f56119 7373 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7374
50f56119 7375 dev = crtc->dev;
47f1c6c9 7376
50f56119
DV
7377 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7378 if (tmp == crtc)
7379 break;
7380 crtc_mask <<= 1;
7381 }
47f1c6c9 7382
50f56119
DV
7383 if (encoder->possible_crtcs & crtc_mask)
7384 return true;
7385 return false;
47f1c6c9 7386}
79e53945 7387
9a935856
DV
7388/**
7389 * intel_modeset_update_staged_output_state
7390 *
7391 * Updates the staged output configuration state, e.g. after we've read out the
7392 * current hw state.
7393 */
7394static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7395{
9a935856
DV
7396 struct intel_encoder *encoder;
7397 struct intel_connector *connector;
f6e5b160 7398
9a935856
DV
7399 list_for_each_entry(connector, &dev->mode_config.connector_list,
7400 base.head) {
7401 connector->new_encoder =
7402 to_intel_encoder(connector->base.encoder);
7403 }
f6e5b160 7404
9a935856
DV
7405 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7406 base.head) {
7407 encoder->new_crtc =
7408 to_intel_crtc(encoder->base.crtc);
7409 }
f6e5b160
CW
7410}
7411
9a935856
DV
7412/**
7413 * intel_modeset_commit_output_state
7414 *
7415 * This function copies the stage display pipe configuration to the real one.
7416 */
7417static void intel_modeset_commit_output_state(struct drm_device *dev)
7418{
7419 struct intel_encoder *encoder;
7420 struct intel_connector *connector;
f6e5b160 7421
9a935856
DV
7422 list_for_each_entry(connector, &dev->mode_config.connector_list,
7423 base.head) {
7424 connector->base.encoder = &connector->new_encoder->base;
7425 }
f6e5b160 7426
9a935856
DV
7427 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7428 base.head) {
7429 encoder->base.crtc = &encoder->new_crtc->base;
7430 }
7431}
7432
7758a113
DV
7433static struct drm_display_mode *
7434intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7435 struct drm_display_mode *mode)
ee7b9f93 7436{
7758a113
DV
7437 struct drm_device *dev = crtc->dev;
7438 struct drm_display_mode *adjusted_mode;
7439 struct drm_encoder_helper_funcs *encoder_funcs;
7440 struct intel_encoder *encoder;
ee7b9f93 7441
7758a113
DV
7442 adjusted_mode = drm_mode_duplicate(dev, mode);
7443 if (!adjusted_mode)
7444 return ERR_PTR(-ENOMEM);
7445
7446 /* Pass our mode to the connectors and the CRTC to give them a chance to
7447 * adjust it according to limitations or connector properties, and also
7448 * a chance to reject the mode entirely.
7449 */
7450 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7451 base.head) {
7452
7453 if (&encoder->new_crtc->base != crtc)
7454 continue;
7455 encoder_funcs = encoder->base.helper_private;
7456 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7457 adjusted_mode))) {
7458 DRM_DEBUG_KMS("Encoder fixup failed\n");
7459 goto fail;
7460 }
ee7b9f93
JB
7461 }
7462
7758a113
DV
7463 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7464 DRM_DEBUG_KMS("CRTC fixup failed\n");
7465 goto fail;
ee7b9f93 7466 }
7758a113
DV
7467 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7468
7469 return adjusted_mode;
7470fail:
7471 drm_mode_destroy(dev, adjusted_mode);
7472 return ERR_PTR(-EINVAL);
ee7b9f93
JB
7473}
7474
e2e1ed41
DV
7475/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7476 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7477static void
7478intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7479 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7480{
7481 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7482 struct drm_device *dev = crtc->dev;
7483 struct intel_encoder *encoder;
7484 struct intel_connector *connector;
7485 struct drm_crtc *tmp_crtc;
79e53945 7486
e2e1ed41 7487 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7488
e2e1ed41
DV
7489 /* Check which crtcs have changed outputs connected to them, these need
7490 * to be part of the prepare_pipes mask. We don't (yet) support global
7491 * modeset across multiple crtcs, so modeset_pipes will only have one
7492 * bit set at most. */
7493 list_for_each_entry(connector, &dev->mode_config.connector_list,
7494 base.head) {
7495 if (connector->base.encoder == &connector->new_encoder->base)
7496 continue;
79e53945 7497
e2e1ed41
DV
7498 if (connector->base.encoder) {
7499 tmp_crtc = connector->base.encoder->crtc;
7500
7501 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7502 }
7503
7504 if (connector->new_encoder)
7505 *prepare_pipes |=
7506 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7507 }
7508
e2e1ed41
DV
7509 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7510 base.head) {
7511 if (encoder->base.crtc == &encoder->new_crtc->base)
7512 continue;
7513
7514 if (encoder->base.crtc) {
7515 tmp_crtc = encoder->base.crtc;
7516
7517 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7518 }
7519
7520 if (encoder->new_crtc)
7521 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7522 }
7523
e2e1ed41
DV
7524 /* Check for any pipes that will be fully disabled ... */
7525 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7526 base.head) {
7527 bool used = false;
22fd0fab 7528
e2e1ed41
DV
7529 /* Don't try to disable disabled crtcs. */
7530 if (!intel_crtc->base.enabled)
7531 continue;
7e7d76c3 7532
e2e1ed41
DV
7533 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7534 base.head) {
7535 if (encoder->new_crtc == intel_crtc)
7536 used = true;
7537 }
7538
7539 if (!used)
7540 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7541 }
7542
e2e1ed41
DV
7543
7544 /* set_mode is also used to update properties on life display pipes. */
7545 intel_crtc = to_intel_crtc(crtc);
7546 if (crtc->enabled)
7547 *prepare_pipes |= 1 << intel_crtc->pipe;
7548
7549 /* We only support modeset on one single crtc, hence we need to do that
7550 * only for the passed in crtc iff we change anything else than just
7551 * disable crtcs.
7552 *
7553 * This is actually not true, to be fully compatible with the old crtc
7554 * helper we automatically disable _any_ output (i.e. doesn't need to be
7555 * connected to the crtc we're modesetting on) if it's disconnected.
7556 * Which is a rather nutty api (since changed the output configuration
7557 * without userspace's explicit request can lead to confusion), but
7558 * alas. Hence we currently need to modeset on all pipes we prepare. */
7559 if (*prepare_pipes)
7560 *modeset_pipes = *prepare_pipes;
7561
7562 /* ... and mask these out. */
7563 *modeset_pipes &= ~(*disable_pipes);
7564 *prepare_pipes &= ~(*disable_pipes);
7565}
7566
ea9d758d
DV
7567static bool intel_crtc_in_use(struct drm_crtc *crtc)
7568{
7569 struct drm_encoder *encoder;
7570 struct drm_device *dev = crtc->dev;
7571
7572 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7573 if (encoder->crtc == crtc)
7574 return true;
7575
7576 return false;
7577}
7578
7579static void
7580intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7581{
7582 struct intel_encoder *intel_encoder;
7583 struct intel_crtc *intel_crtc;
7584 struct drm_connector *connector;
7585
7586 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7587 base.head) {
7588 if (!intel_encoder->base.crtc)
7589 continue;
7590
7591 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7592
7593 if (prepare_pipes & (1 << intel_crtc->pipe))
7594 intel_encoder->connectors_active = false;
7595 }
7596
7597 intel_modeset_commit_output_state(dev);
7598
7599 /* Update computed state. */
7600 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7601 base.head) {
7602 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7603 }
7604
7605 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7606 if (!connector->encoder || !connector->encoder->crtc)
7607 continue;
7608
7609 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7610
7611 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7612 struct drm_property *dpms_property =
7613 dev->mode_config.dpms_property;
7614
ea9d758d 7615 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
7616 drm_connector_property_set_value(connector,
7617 dpms_property,
7618 DRM_MODE_DPMS_ON);
ea9d758d
DV
7619
7620 intel_encoder = to_intel_encoder(connector->encoder);
7621 intel_encoder->connectors_active = true;
7622 }
7623 }
7624
7625}
7626
25c5b266
DV
7627#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7628 list_for_each_entry((intel_crtc), \
7629 &(dev)->mode_config.crtc_list, \
7630 base.head) \
7631 if (mask & (1 <<(intel_crtc)->pipe)) \
7632
b980514c 7633void
8af6cf88
DV
7634intel_modeset_check_state(struct drm_device *dev)
7635{
7636 struct intel_crtc *crtc;
7637 struct intel_encoder *encoder;
7638 struct intel_connector *connector;
7639
7640 list_for_each_entry(connector, &dev->mode_config.connector_list,
7641 base.head) {
7642 /* This also checks the encoder/connector hw state with the
7643 * ->get_hw_state callbacks. */
7644 intel_connector_check_state(connector);
7645
7646 WARN(&connector->new_encoder->base != connector->base.encoder,
7647 "connector's staged encoder doesn't match current encoder\n");
7648 }
7649
7650 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7651 base.head) {
7652 bool enabled = false;
7653 bool active = false;
7654 enum pipe pipe, tracked_pipe;
7655
7656 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7657 encoder->base.base.id,
7658 drm_get_encoder_name(&encoder->base));
7659
7660 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7661 "encoder's stage crtc doesn't match current crtc\n");
7662 WARN(encoder->connectors_active && !encoder->base.crtc,
7663 "encoder's active_connectors set, but no crtc\n");
7664
7665 list_for_each_entry(connector, &dev->mode_config.connector_list,
7666 base.head) {
7667 if (connector->base.encoder != &encoder->base)
7668 continue;
7669 enabled = true;
7670 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7671 active = true;
7672 }
7673 WARN(!!encoder->base.crtc != enabled,
7674 "encoder's enabled state mismatch "
7675 "(expected %i, found %i)\n",
7676 !!encoder->base.crtc, enabled);
7677 WARN(active && !encoder->base.crtc,
7678 "active encoder with no crtc\n");
7679
7680 WARN(encoder->connectors_active != active,
7681 "encoder's computed active state doesn't match tracked active state "
7682 "(expected %i, found %i)\n", active, encoder->connectors_active);
7683
7684 active = encoder->get_hw_state(encoder, &pipe);
7685 WARN(active != encoder->connectors_active,
7686 "encoder's hw state doesn't match sw tracking "
7687 "(expected %i, found %i)\n",
7688 encoder->connectors_active, active);
7689
7690 if (!encoder->base.crtc)
7691 continue;
7692
7693 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7694 WARN(active && pipe != tracked_pipe,
7695 "active encoder's pipe doesn't match"
7696 "(expected %i, found %i)\n",
7697 tracked_pipe, pipe);
7698
7699 }
7700
7701 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7702 base.head) {
7703 bool enabled = false;
7704 bool active = false;
7705
7706 DRM_DEBUG_KMS("[CRTC:%d]\n",
7707 crtc->base.base.id);
7708
7709 WARN(crtc->active && !crtc->base.enabled,
7710 "active crtc, but not enabled in sw tracking\n");
7711
7712 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7713 base.head) {
7714 if (encoder->base.crtc != &crtc->base)
7715 continue;
7716 enabled = true;
7717 if (encoder->connectors_active)
7718 active = true;
7719 }
7720 WARN(active != crtc->active,
7721 "crtc's computed active state doesn't match tracked active state "
7722 "(expected %i, found %i)\n", active, crtc->active);
7723 WARN(enabled != crtc->base.enabled,
7724 "crtc's computed enabled state doesn't match tracked enabled state "
7725 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7726
7727 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7728 }
7729}
7730
a6778b3c
DV
7731bool intel_set_mode(struct drm_crtc *crtc,
7732 struct drm_display_mode *mode,
94352cf9 7733 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7734{
7735 struct drm_device *dev = crtc->dev;
dbf2b54e 7736 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7737 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
25c5b266
DV
7738 struct intel_crtc *intel_crtc;
7739 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7740 bool ret = true;
7741
e2e1ed41 7742 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7743 &prepare_pipes, &disable_pipes);
7744
7745 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7746 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7747
976f8a20
DV
7748 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7749 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7750
a6778b3c
DV
7751 saved_hwmode = crtc->hwmode;
7752 saved_mode = crtc->mode;
a6778b3c 7753
25c5b266
DV
7754 /* Hack: Because we don't (yet) support global modeset on multiple
7755 * crtcs, we don't keep track of the new mode for more than one crtc.
7756 * Hence simply check whether any bit is set in modeset_pipes in all the
7757 * pieces of code that are not yet converted to deal with mutliple crtcs
7758 * changing their mode at the same time. */
7759 adjusted_mode = NULL;
7760 if (modeset_pipes) {
7761 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7762 if (IS_ERR(adjusted_mode)) {
7763 return false;
7764 }
25c5b266 7765 }
a6778b3c 7766
ea9d758d
DV
7767 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7768 if (intel_crtc->base.enabled)
7769 dev_priv->display.crtc_disable(&intel_crtc->base);
7770 }
a6778b3c 7771
6c4c86f5
DV
7772 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7773 * to set it here already despite that we pass it down the callchain.
7774 */
7775 if (modeset_pipes)
25c5b266 7776 crtc->mode = *mode;
7758a113 7777
ea9d758d
DV
7778 /* Only after disabling all output pipelines that will be changed can we
7779 * update the the output configuration. */
7780 intel_modeset_update_state(dev, prepare_pipes);
7781
47fab737
DV
7782 if (dev_priv->display.modeset_global_resources)
7783 dev_priv->display.modeset_global_resources(dev);
7784
a6778b3c
DV
7785 /* Set up the DPLL and any encoders state that needs to adjust or depend
7786 * on the DPLL.
7787 */
25c5b266
DV
7788 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7789 ret = !intel_crtc_mode_set(&intel_crtc->base,
7790 mode, adjusted_mode,
7791 x, y, fb);
7792 if (!ret)
7793 goto done;
a6778b3c
DV
7794 }
7795
7796 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7797 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7798 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7799
25c5b266
DV
7800 if (modeset_pipes) {
7801 /* Store real post-adjustment hardware mode. */
7802 crtc->hwmode = *adjusted_mode;
a6778b3c 7803
25c5b266
DV
7804 /* Calculate and store various constants which
7805 * are later needed by vblank and swap-completion
7806 * timestamping. They are derived from true hwmode.
7807 */
7808 drm_calc_timestamping_constants(crtc);
7809 }
a6778b3c
DV
7810
7811 /* FIXME: add subpixel order */
7812done:
7813 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7814 if (!ret && crtc->enabled) {
a6778b3c
DV
7815 crtc->hwmode = saved_hwmode;
7816 crtc->mode = saved_mode;
8af6cf88
DV
7817 } else {
7818 intel_modeset_check_state(dev);
a6778b3c
DV
7819 }
7820
7821 return ret;
7822}
7823
25c5b266
DV
7824#undef for_each_intel_crtc_masked
7825
d9e55608
DV
7826static void intel_set_config_free(struct intel_set_config *config)
7827{
7828 if (!config)
7829 return;
7830
1aa4b628
DV
7831 kfree(config->save_connector_encoders);
7832 kfree(config->save_encoder_crtcs);
d9e55608
DV
7833 kfree(config);
7834}
7835
85f9eb71
DV
7836static int intel_set_config_save_state(struct drm_device *dev,
7837 struct intel_set_config *config)
7838{
85f9eb71
DV
7839 struct drm_encoder *encoder;
7840 struct drm_connector *connector;
7841 int count;
7842
1aa4b628
DV
7843 config->save_encoder_crtcs =
7844 kcalloc(dev->mode_config.num_encoder,
7845 sizeof(struct drm_crtc *), GFP_KERNEL);
7846 if (!config->save_encoder_crtcs)
85f9eb71
DV
7847 return -ENOMEM;
7848
1aa4b628
DV
7849 config->save_connector_encoders =
7850 kcalloc(dev->mode_config.num_connector,
7851 sizeof(struct drm_encoder *), GFP_KERNEL);
7852 if (!config->save_connector_encoders)
85f9eb71
DV
7853 return -ENOMEM;
7854
7855 /* Copy data. Note that driver private data is not affected.
7856 * Should anything bad happen only the expected state is
7857 * restored, not the drivers personal bookkeeping.
7858 */
85f9eb71
DV
7859 count = 0;
7860 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7861 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7862 }
7863
7864 count = 0;
7865 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7866 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7867 }
7868
7869 return 0;
7870}
7871
7872static void intel_set_config_restore_state(struct drm_device *dev,
7873 struct intel_set_config *config)
7874{
9a935856
DV
7875 struct intel_encoder *encoder;
7876 struct intel_connector *connector;
85f9eb71
DV
7877 int count;
7878
85f9eb71 7879 count = 0;
9a935856
DV
7880 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7881 encoder->new_crtc =
7882 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7883 }
7884
7885 count = 0;
9a935856
DV
7886 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7887 connector->new_encoder =
7888 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7889 }
7890}
7891
5e2b584e
DV
7892static void
7893intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7894 struct intel_set_config *config)
7895{
7896
7897 /* We should be able to check here if the fb has the same properties
7898 * and then just flip_or_move it */
7899 if (set->crtc->fb != set->fb) {
7900 /* If we have no fb then treat it as a full mode set */
7901 if (set->crtc->fb == NULL) {
7902 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7903 config->mode_changed = true;
7904 } else if (set->fb == NULL) {
7905 config->mode_changed = true;
7906 } else if (set->fb->depth != set->crtc->fb->depth) {
7907 config->mode_changed = true;
7908 } else if (set->fb->bits_per_pixel !=
7909 set->crtc->fb->bits_per_pixel) {
7910 config->mode_changed = true;
7911 } else
7912 config->fb_changed = true;
7913 }
7914
835c5873 7915 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7916 config->fb_changed = true;
7917
7918 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7919 DRM_DEBUG_KMS("modes are different, full mode set\n");
7920 drm_mode_debug_printmodeline(&set->crtc->mode);
7921 drm_mode_debug_printmodeline(set->mode);
7922 config->mode_changed = true;
7923 }
7924}
7925
2e431051 7926static int
9a935856
DV
7927intel_modeset_stage_output_state(struct drm_device *dev,
7928 struct drm_mode_set *set,
7929 struct intel_set_config *config)
50f56119 7930{
85f9eb71 7931 struct drm_crtc *new_crtc;
9a935856
DV
7932 struct intel_connector *connector;
7933 struct intel_encoder *encoder;
2e431051 7934 int count, ro;
50f56119 7935
9a935856
DV
7936 /* The upper layers ensure that we either disabl a crtc or have a list
7937 * of connectors. For paranoia, double-check this. */
7938 WARN_ON(!set->fb && (set->num_connectors != 0));
7939 WARN_ON(set->fb && (set->num_connectors == 0));
7940
50f56119 7941 count = 0;
9a935856
DV
7942 list_for_each_entry(connector, &dev->mode_config.connector_list,
7943 base.head) {
7944 /* Otherwise traverse passed in connector list and get encoders
7945 * for them. */
50f56119 7946 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7947 if (set->connectors[ro] == &connector->base) {
7948 connector->new_encoder = connector->encoder;
50f56119
DV
7949 break;
7950 }
7951 }
7952
9a935856
DV
7953 /* If we disable the crtc, disable all its connectors. Also, if
7954 * the connector is on the changing crtc but not on the new
7955 * connector list, disable it. */
7956 if ((!set->fb || ro == set->num_connectors) &&
7957 connector->base.encoder &&
7958 connector->base.encoder->crtc == set->crtc) {
7959 connector->new_encoder = NULL;
7960
7961 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7962 connector->base.base.id,
7963 drm_get_connector_name(&connector->base));
7964 }
7965
7966
7967 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7968 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7969 config->mode_changed = true;
50f56119 7970 }
9a935856
DV
7971
7972 /* Disable all disconnected encoders. */
7973 if (connector->base.status == connector_status_disconnected)
7974 connector->new_encoder = NULL;
50f56119 7975 }
9a935856 7976 /* connector->new_encoder is now updated for all connectors. */
50f56119 7977
9a935856 7978 /* Update crtc of enabled connectors. */
50f56119 7979 count = 0;
9a935856
DV
7980 list_for_each_entry(connector, &dev->mode_config.connector_list,
7981 base.head) {
7982 if (!connector->new_encoder)
50f56119
DV
7983 continue;
7984
9a935856 7985 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7986
7987 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7988 if (set->connectors[ro] == &connector->base)
50f56119
DV
7989 new_crtc = set->crtc;
7990 }
7991
7992 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7993 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7994 new_crtc)) {
5e2b584e 7995 return -EINVAL;
50f56119 7996 }
9a935856
DV
7997 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7998
7999 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8000 connector->base.base.id,
8001 drm_get_connector_name(&connector->base),
8002 new_crtc->base.id);
8003 }
8004
8005 /* Check for any encoders that needs to be disabled. */
8006 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8007 base.head) {
8008 list_for_each_entry(connector,
8009 &dev->mode_config.connector_list,
8010 base.head) {
8011 if (connector->new_encoder == encoder) {
8012 WARN_ON(!connector->new_encoder->new_crtc);
8013
8014 goto next_encoder;
8015 }
8016 }
8017 encoder->new_crtc = NULL;
8018next_encoder:
8019 /* Only now check for crtc changes so we don't miss encoders
8020 * that will be disabled. */
8021 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 8022 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 8023 config->mode_changed = true;
50f56119
DV
8024 }
8025 }
9a935856 8026 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 8027
2e431051
DV
8028 return 0;
8029}
8030
8031static int intel_crtc_set_config(struct drm_mode_set *set)
8032{
8033 struct drm_device *dev;
2e431051
DV
8034 struct drm_mode_set save_set;
8035 struct intel_set_config *config;
8036 int ret;
2e431051 8037
8d3e375e
DV
8038 BUG_ON(!set);
8039 BUG_ON(!set->crtc);
8040 BUG_ON(!set->crtc->helper_private);
2e431051
DV
8041
8042 if (!set->mode)
8043 set->fb = NULL;
8044
431e50f7
DV
8045 /* The fb helper likes to play gross jokes with ->mode_set_config.
8046 * Unfortunately the crtc helper doesn't do much at all for this case,
8047 * so we have to cope with this madness until the fb helper is fixed up. */
8048 if (set->fb && set->num_connectors == 0)
8049 return 0;
8050
2e431051
DV
8051 if (set->fb) {
8052 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8053 set->crtc->base.id, set->fb->base.id,
8054 (int)set->num_connectors, set->x, set->y);
8055 } else {
8056 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
8057 }
8058
8059 dev = set->crtc->dev;
8060
8061 ret = -ENOMEM;
8062 config = kzalloc(sizeof(*config), GFP_KERNEL);
8063 if (!config)
8064 goto out_config;
8065
8066 ret = intel_set_config_save_state(dev, config);
8067 if (ret)
8068 goto out_config;
8069
8070 save_set.crtc = set->crtc;
8071 save_set.mode = &set->crtc->mode;
8072 save_set.x = set->crtc->x;
8073 save_set.y = set->crtc->y;
8074 save_set.fb = set->crtc->fb;
8075
8076 /* Compute whether we need a full modeset, only an fb base update or no
8077 * change at all. In the future we might also check whether only the
8078 * mode changed, e.g. for LVDS where we only change the panel fitter in
8079 * such cases. */
8080 intel_set_config_compute_mode_changes(set, config);
8081
9a935856 8082 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
8083 if (ret)
8084 goto fail;
8085
5e2b584e 8086 if (config->mode_changed) {
87f1faa6 8087 if (set->mode) {
50f56119
DV
8088 DRM_DEBUG_KMS("attempting to set mode from"
8089 " userspace\n");
8090 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
8091 }
8092
8093 if (!intel_set_mode(set->crtc, set->mode,
8094 set->x, set->y, set->fb)) {
8095 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8096 set->crtc->base.id);
8097 ret = -EINVAL;
8098 goto fail;
8099 }
5e2b584e 8100 } else if (config->fb_changed) {
4f660f49 8101 ret = intel_pipe_set_base(set->crtc,
94352cf9 8102 set->x, set->y, set->fb);
50f56119
DV
8103 }
8104
d9e55608
DV
8105 intel_set_config_free(config);
8106
50f56119
DV
8107 return 0;
8108
8109fail:
85f9eb71 8110 intel_set_config_restore_state(dev, config);
50f56119
DV
8111
8112 /* Try to restore the config */
5e2b584e 8113 if (config->mode_changed &&
a6778b3c
DV
8114 !intel_set_mode(save_set.crtc, save_set.mode,
8115 save_set.x, save_set.y, save_set.fb))
50f56119
DV
8116 DRM_ERROR("failed to restore config after modeset failure\n");
8117
d9e55608
DV
8118out_config:
8119 intel_set_config_free(config);
50f56119
DV
8120 return ret;
8121}
8122
f6e5b160 8123static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
8124 .cursor_set = intel_crtc_cursor_set,
8125 .cursor_move = intel_crtc_cursor_move,
8126 .gamma_set = intel_crtc_gamma_set,
50f56119 8127 .set_config = intel_crtc_set_config,
f6e5b160
CW
8128 .destroy = intel_crtc_destroy,
8129 .page_flip = intel_crtc_page_flip,
8130};
8131
79f689aa
PZ
8132static void intel_cpu_pll_init(struct drm_device *dev)
8133{
8134 if (IS_HASWELL(dev))
8135 intel_ddi_pll_init(dev);
8136}
8137
ee7b9f93
JB
8138static void intel_pch_pll_init(struct drm_device *dev)
8139{
8140 drm_i915_private_t *dev_priv = dev->dev_private;
8141 int i;
8142
8143 if (dev_priv->num_pch_pll == 0) {
8144 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8145 return;
8146 }
8147
8148 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8149 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8150 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8151 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8152 }
8153}
8154
b358d0a6 8155static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 8156{
22fd0fab 8157 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
8158 struct intel_crtc *intel_crtc;
8159 int i;
8160
8161 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8162 if (intel_crtc == NULL)
8163 return;
8164
8165 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8166
8167 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
8168 for (i = 0; i < 256; i++) {
8169 intel_crtc->lut_r[i] = i;
8170 intel_crtc->lut_g[i] = i;
8171 intel_crtc->lut_b[i] = i;
8172 }
8173
80824003
JB
8174 /* Swap pipes & planes for FBC on pre-965 */
8175 intel_crtc->pipe = pipe;
8176 intel_crtc->plane = pipe;
a5c961d1 8177 intel_crtc->cpu_transcoder = pipe;
e2e767ab 8178 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 8179 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 8180 intel_crtc->plane = !pipe;
80824003
JB
8181 }
8182
22fd0fab
JB
8183 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8184 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8185 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8186 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8187
5a354204 8188 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 8189
79e53945 8190 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
8191}
8192
08d7b3d1 8193int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 8194 struct drm_file *file)
08d7b3d1 8195{
08d7b3d1 8196 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
8197 struct drm_mode_object *drmmode_obj;
8198 struct intel_crtc *crtc;
08d7b3d1 8199
1cff8f6b
DV
8200 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8201 return -ENODEV;
08d7b3d1 8202
c05422d5
DV
8203 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8204 DRM_MODE_OBJECT_CRTC);
08d7b3d1 8205
c05422d5 8206 if (!drmmode_obj) {
08d7b3d1
CW
8207 DRM_ERROR("no such CRTC id\n");
8208 return -EINVAL;
8209 }
8210
c05422d5
DV
8211 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8212 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 8213
c05422d5 8214 return 0;
08d7b3d1
CW
8215}
8216
66a9278e 8217static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 8218{
66a9278e
DV
8219 struct drm_device *dev = encoder->base.dev;
8220 struct intel_encoder *source_encoder;
79e53945 8221 int index_mask = 0;
79e53945
JB
8222 int entry = 0;
8223
66a9278e
DV
8224 list_for_each_entry(source_encoder,
8225 &dev->mode_config.encoder_list, base.head) {
8226
8227 if (encoder == source_encoder)
79e53945 8228 index_mask |= (1 << entry);
66a9278e
DV
8229
8230 /* Intel hw has only one MUX where enocoders could be cloned. */
8231 if (encoder->cloneable && source_encoder->cloneable)
8232 index_mask |= (1 << entry);
8233
79e53945
JB
8234 entry++;
8235 }
4ef69c7a 8236
79e53945
JB
8237 return index_mask;
8238}
8239
4d302442
CW
8240static bool has_edp_a(struct drm_device *dev)
8241{
8242 struct drm_i915_private *dev_priv = dev->dev_private;
8243
8244 if (!IS_MOBILE(dev))
8245 return false;
8246
8247 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8248 return false;
8249
8250 if (IS_GEN5(dev) &&
8251 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8252 return false;
8253
8254 return true;
8255}
8256
79e53945
JB
8257static void intel_setup_outputs(struct drm_device *dev)
8258{
725e30ad 8259 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 8260 struct intel_encoder *encoder;
cb0953d7 8261 bool dpd_is_edp = false;
f3cfcba6 8262 bool has_lvds;
79e53945 8263
f3cfcba6 8264 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
8265 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8266 /* disable the panel fitter on everything but LVDS */
8267 I915_WRITE(PFIT_CONTROL, 0);
8268 }
79e53945 8269
bad720ff 8270 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8271 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 8272
4d302442 8273 if (has_edp_a(dev))
ab9d7c30 8274 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 8275
cb0953d7 8276 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8277 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
8278 }
8279
8280 intel_crt_init(dev);
8281
0e72a5b5
ED
8282 if (IS_HASWELL(dev)) {
8283 int found;
8284
8285 /* Haswell uses DDI functions to detect digital outputs */
8286 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8287 /* DDI A only supports eDP */
8288 if (found)
8289 intel_ddi_init(dev, PORT_A);
8290
8291 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8292 * register */
8293 found = I915_READ(SFUSE_STRAP);
8294
8295 if (found & SFUSE_STRAP_DDIB_DETECTED)
8296 intel_ddi_init(dev, PORT_B);
8297 if (found & SFUSE_STRAP_DDIC_DETECTED)
8298 intel_ddi_init(dev, PORT_C);
8299 if (found & SFUSE_STRAP_DDID_DETECTED)
8300 intel_ddi_init(dev, PORT_D);
8301 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
8302 int found;
8303
30ad48b7 8304 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8305 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8306 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8307 if (!found)
08d644ad 8308 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8309 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8310 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8311 }
8312
8313 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8314 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8315
b708a1d5 8316 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8317 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8318
5eb08b69 8319 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8320 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8321
cb0953d7 8322 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8323 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8324 } else if (IS_VALLEYVIEW(dev)) {
8325 int found;
8326
19c03924
GB
8327 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8328 if (I915_READ(DP_C) & DP_DETECTED)
8329 intel_dp_init(dev, DP_C, PORT_C);
8330
4a87d65d
JB
8331 if (I915_READ(SDVOB) & PORT_DETECTED) {
8332 /* SDVOB multiplex with HDMIB */
8333 found = intel_sdvo_init(dev, SDVOB, true);
8334 if (!found)
08d644ad 8335 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8336 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8337 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8338 }
8339
8340 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8341 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8342
103a196f 8343 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8344 bool found = false;
7d57382e 8345
725e30ad 8346 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8347 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8348 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8349 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8350 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8351 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8352 }
27185ae1 8353
b01f2c3a
JB
8354 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8355 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8356 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8357 }
725e30ad 8358 }
13520b05
KH
8359
8360 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8361
b01f2c3a
JB
8362 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8363 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8364 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8365 }
27185ae1
ML
8366
8367 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8368
b01f2c3a
JB
8369 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8370 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8371 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8372 }
8373 if (SUPPORTS_INTEGRATED_DP(dev)) {
8374 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8375 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8376 }
725e30ad 8377 }
27185ae1 8378
b01f2c3a
JB
8379 if (SUPPORTS_INTEGRATED_DP(dev) &&
8380 (I915_READ(DP_D) & DP_DETECTED)) {
8381 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8382 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8383 }
bad720ff 8384 } else if (IS_GEN2(dev))
79e53945
JB
8385 intel_dvo_init(dev);
8386
103a196f 8387 if (SUPPORTS_TV(dev))
79e53945
JB
8388 intel_tv_init(dev);
8389
4ef69c7a
CW
8390 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8391 encoder->base.possible_crtcs = encoder->crtc_mask;
8392 encoder->base.possible_clones =
66a9278e 8393 intel_encoder_clones(encoder);
79e53945 8394 }
47356eb6 8395
40579abe 8396 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8397 ironlake_init_pch_refclk(dev);
79e53945
JB
8398}
8399
8400static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8401{
8402 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8403
8404 drm_framebuffer_cleanup(fb);
05394f39 8405 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8406
8407 kfree(intel_fb);
8408}
8409
8410static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8411 struct drm_file *file,
79e53945
JB
8412 unsigned int *handle)
8413{
8414 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8415 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8416
05394f39 8417 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8418}
8419
8420static const struct drm_framebuffer_funcs intel_fb_funcs = {
8421 .destroy = intel_user_framebuffer_destroy,
8422 .create_handle = intel_user_framebuffer_create_handle,
8423};
8424
38651674
DA
8425int intel_framebuffer_init(struct drm_device *dev,
8426 struct intel_framebuffer *intel_fb,
308e5bcb 8427 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8428 struct drm_i915_gem_object *obj)
79e53945 8429{
79e53945
JB
8430 int ret;
8431
05394f39 8432 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8433 return -EINVAL;
8434
308e5bcb 8435 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8436 return -EINVAL;
8437
5d7bd705
VS
8438 /* FIXME <= Gen4 stride limits are bit unclear */
8439 if (mode_cmd->pitches[0] > 32768)
8440 return -EINVAL;
8441
8442 if (obj->tiling_mode != I915_TILING_NONE &&
8443 mode_cmd->pitches[0] != obj->stride)
8444 return -EINVAL;
8445
57779d06 8446 /* Reject formats not supported by any plane early. */
308e5bcb 8447 switch (mode_cmd->pixel_format) {
57779d06 8448 case DRM_FORMAT_C8:
04b3924d
VS
8449 case DRM_FORMAT_RGB565:
8450 case DRM_FORMAT_XRGB8888:
8451 case DRM_FORMAT_ARGB8888:
57779d06
VS
8452 break;
8453 case DRM_FORMAT_XRGB1555:
8454 case DRM_FORMAT_ARGB1555:
8455 if (INTEL_INFO(dev)->gen > 3)
8456 return -EINVAL;
8457 break;
8458 case DRM_FORMAT_XBGR8888:
8459 case DRM_FORMAT_ABGR8888:
04b3924d
VS
8460 case DRM_FORMAT_XRGB2101010:
8461 case DRM_FORMAT_ARGB2101010:
57779d06
VS
8462 case DRM_FORMAT_XBGR2101010:
8463 case DRM_FORMAT_ABGR2101010:
8464 if (INTEL_INFO(dev)->gen < 4)
8465 return -EINVAL;
b5626747 8466 break;
04b3924d
VS
8467 case DRM_FORMAT_YUYV:
8468 case DRM_FORMAT_UYVY:
8469 case DRM_FORMAT_YVYU:
8470 case DRM_FORMAT_VYUY:
57779d06
VS
8471 if (INTEL_INFO(dev)->gen < 6)
8472 return -EINVAL;
57cd6508
CW
8473 break;
8474 default:
57779d06 8475 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
57cd6508
CW
8476 return -EINVAL;
8477 }
8478
90f9a336
VS
8479 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8480 if (mode_cmd->offsets[0] != 0)
8481 return -EINVAL;
8482
79e53945
JB
8483 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8484 if (ret) {
8485 DRM_ERROR("framebuffer init failed %d\n", ret);
8486 return ret;
8487 }
8488
8489 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8490 intel_fb->obj = obj;
79e53945
JB
8491 return 0;
8492}
8493
79e53945
JB
8494static struct drm_framebuffer *
8495intel_user_framebuffer_create(struct drm_device *dev,
8496 struct drm_file *filp,
308e5bcb 8497 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8498{
05394f39 8499 struct drm_i915_gem_object *obj;
79e53945 8500
308e5bcb
JB
8501 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8502 mode_cmd->handles[0]));
c8725226 8503 if (&obj->base == NULL)
cce13ff7 8504 return ERR_PTR(-ENOENT);
79e53945 8505
d2dff872 8506 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8507}
8508
79e53945 8509static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8510 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8511 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8512};
8513
e70236a8
JB
8514/* Set up chip specific display functions */
8515static void intel_init_display(struct drm_device *dev)
8516{
8517 struct drm_i915_private *dev_priv = dev->dev_private;
8518
8519 /* We always want a DPMS function */
09b4ddf9
PZ
8520 if (IS_HASWELL(dev)) {
8521 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8522 dev_priv->display.crtc_enable = haswell_crtc_enable;
8523 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8524 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8525 dev_priv->display.update_plane = ironlake_update_plane;
8526 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8527 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8528 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8529 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8530 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8531 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8532 } else {
f564048e 8533 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8534 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8535 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8536 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8537 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8538 }
e70236a8 8539
e70236a8 8540 /* Returns the core display clock speed */
25eb05fc
JB
8541 if (IS_VALLEYVIEW(dev))
8542 dev_priv->display.get_display_clock_speed =
8543 valleyview_get_display_clock_speed;
8544 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8545 dev_priv->display.get_display_clock_speed =
8546 i945_get_display_clock_speed;
8547 else if (IS_I915G(dev))
8548 dev_priv->display.get_display_clock_speed =
8549 i915_get_display_clock_speed;
f2b115e6 8550 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8551 dev_priv->display.get_display_clock_speed =
8552 i9xx_misc_get_display_clock_speed;
8553 else if (IS_I915GM(dev))
8554 dev_priv->display.get_display_clock_speed =
8555 i915gm_get_display_clock_speed;
8556 else if (IS_I865G(dev))
8557 dev_priv->display.get_display_clock_speed =
8558 i865_get_display_clock_speed;
f0f8a9ce 8559 else if (IS_I85X(dev))
e70236a8
JB
8560 dev_priv->display.get_display_clock_speed =
8561 i855_get_display_clock_speed;
8562 else /* 852, 830 */
8563 dev_priv->display.get_display_clock_speed =
8564 i830_get_display_clock_speed;
8565
7f8a8569 8566 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8567 if (IS_GEN5(dev)) {
674cf967 8568 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8569 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8570 } else if (IS_GEN6(dev)) {
674cf967 8571 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8572 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8573 } else if (IS_IVYBRIDGE(dev)) {
8574 /* FIXME: detect B0+ stepping and use auto training */
8575 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8576 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
8577 dev_priv->display.modeset_global_resources =
8578 ivb_modeset_global_resources;
c82e4d26
ED
8579 } else if (IS_HASWELL(dev)) {
8580 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8581 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8582 } else
8583 dev_priv->display.update_wm = NULL;
6067aaea 8584 } else if (IS_G4X(dev)) {
e0dac65e 8585 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8586 }
8c9f3aaf
JB
8587
8588 /* Default just returns -ENODEV to indicate unsupported */
8589 dev_priv->display.queue_flip = intel_default_queue_flip;
8590
8591 switch (INTEL_INFO(dev)->gen) {
8592 case 2:
8593 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8594 break;
8595
8596 case 3:
8597 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8598 break;
8599
8600 case 4:
8601 case 5:
8602 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8603 break;
8604
8605 case 6:
8606 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8607 break;
7c9017e5
JB
8608 case 7:
8609 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8610 break;
8c9f3aaf 8611 }
e70236a8
JB
8612}
8613
b690e96c
JB
8614/*
8615 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8616 * resume, or other times. This quirk makes sure that's the case for
8617 * affected systems.
8618 */
0206e353 8619static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8620{
8621 struct drm_i915_private *dev_priv = dev->dev_private;
8622
8623 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8624 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8625}
8626
435793df
KP
8627/*
8628 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8629 */
8630static void quirk_ssc_force_disable(struct drm_device *dev)
8631{
8632 struct drm_i915_private *dev_priv = dev->dev_private;
8633 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8634 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8635}
8636
4dca20ef 8637/*
5a15ab5b
CE
8638 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8639 * brightness value
4dca20ef
CE
8640 */
8641static void quirk_invert_brightness(struct drm_device *dev)
8642{
8643 struct drm_i915_private *dev_priv = dev->dev_private;
8644 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8645 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8646}
8647
b690e96c
JB
8648struct intel_quirk {
8649 int device;
8650 int subsystem_vendor;
8651 int subsystem_device;
8652 void (*hook)(struct drm_device *dev);
8653};
8654
c43b5634 8655static struct intel_quirk intel_quirks[] = {
b690e96c 8656 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8657 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8658
b690e96c
JB
8659 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8660 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8661
b690e96c
JB
8662 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8663 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8664
ccd0d36e 8665 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8666 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8667 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8668
8669 /* Lenovo U160 cannot use SSC on LVDS */
8670 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8671
8672 /* Sony Vaio Y cannot use SSC on LVDS */
8673 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8674
8675 /* Acer Aspire 5734Z must invert backlight brightness */
8676 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8677};
8678
8679static void intel_init_quirks(struct drm_device *dev)
8680{
8681 struct pci_dev *d = dev->pdev;
8682 int i;
8683
8684 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8685 struct intel_quirk *q = &intel_quirks[i];
8686
8687 if (d->device == q->device &&
8688 (d->subsystem_vendor == q->subsystem_vendor ||
8689 q->subsystem_vendor == PCI_ANY_ID) &&
8690 (d->subsystem_device == q->subsystem_device ||
8691 q->subsystem_device == PCI_ANY_ID))
8692 q->hook(dev);
8693 }
8694}
8695
9cce37f4
JB
8696/* Disable the VGA plane that we never use */
8697static void i915_disable_vga(struct drm_device *dev)
8698{
8699 struct drm_i915_private *dev_priv = dev->dev_private;
8700 u8 sr1;
8701 u32 vga_reg;
8702
8703 if (HAS_PCH_SPLIT(dev))
8704 vga_reg = CPU_VGACNTRL;
8705 else
8706 vga_reg = VGACNTRL;
8707
8708 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8709 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8710 sr1 = inb(VGA_SR_DATA);
8711 outb(sr1 | 1<<5, VGA_SR_DATA);
8712 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8713 udelay(300);
8714
8715 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8716 POSTING_READ(vga_reg);
8717}
8718
f817586c
DV
8719void intel_modeset_init_hw(struct drm_device *dev)
8720{
0232e927
ED
8721 /* We attempt to init the necessary power wells early in the initialization
8722 * time, so the subsystems that expect power to be enabled can work.
8723 */
8724 intel_init_power_wells(dev);
8725
a8f78b58
ED
8726 intel_prepare_ddi(dev);
8727
f817586c
DV
8728 intel_init_clock_gating(dev);
8729
79f5b2c7 8730 mutex_lock(&dev->struct_mutex);
8090c6b9 8731 intel_enable_gt_powersave(dev);
79f5b2c7 8732 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8733}
8734
79e53945
JB
8735void intel_modeset_init(struct drm_device *dev)
8736{
652c393a 8737 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8738 int i, ret;
79e53945
JB
8739
8740 drm_mode_config_init(dev);
8741
8742 dev->mode_config.min_width = 0;
8743 dev->mode_config.min_height = 0;
8744
019d96cb
DA
8745 dev->mode_config.preferred_depth = 24;
8746 dev->mode_config.prefer_shadow = 1;
8747
e6ecefaa 8748 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8749
b690e96c
JB
8750 intel_init_quirks(dev);
8751
1fa61106
ED
8752 intel_init_pm(dev);
8753
e70236a8
JB
8754 intel_init_display(dev);
8755
a6c45cf0
CW
8756 if (IS_GEN2(dev)) {
8757 dev->mode_config.max_width = 2048;
8758 dev->mode_config.max_height = 2048;
8759 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8760 dev->mode_config.max_width = 4096;
8761 dev->mode_config.max_height = 4096;
79e53945 8762 } else {
a6c45cf0
CW
8763 dev->mode_config.max_width = 8192;
8764 dev->mode_config.max_height = 8192;
79e53945 8765 }
dd2757f8 8766 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8767
28c97730 8768 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8769 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8770
a3524f1b 8771 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8772 intel_crtc_init(dev, i);
00c2064b
JB
8773 ret = intel_plane_init(dev, i);
8774 if (ret)
8775 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8776 }
8777
79f689aa 8778 intel_cpu_pll_init(dev);
ee7b9f93
JB
8779 intel_pch_pll_init(dev);
8780
9cce37f4
JB
8781 /* Just disable it once at startup */
8782 i915_disable_vga(dev);
79e53945 8783 intel_setup_outputs(dev);
2c7111db
CW
8784}
8785
24929352
DV
8786static void
8787intel_connector_break_all_links(struct intel_connector *connector)
8788{
8789 connector->base.dpms = DRM_MODE_DPMS_OFF;
8790 connector->base.encoder = NULL;
8791 connector->encoder->connectors_active = false;
8792 connector->encoder->base.crtc = NULL;
8793}
8794
7fad798e
DV
8795static void intel_enable_pipe_a(struct drm_device *dev)
8796{
8797 struct intel_connector *connector;
8798 struct drm_connector *crt = NULL;
8799 struct intel_load_detect_pipe load_detect_temp;
8800
8801 /* We can't just switch on the pipe A, we need to set things up with a
8802 * proper mode and output configuration. As a gross hack, enable pipe A
8803 * by enabling the load detect pipe once. */
8804 list_for_each_entry(connector,
8805 &dev->mode_config.connector_list,
8806 base.head) {
8807 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8808 crt = &connector->base;
8809 break;
8810 }
8811 }
8812
8813 if (!crt)
8814 return;
8815
8816 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8817 intel_release_load_detect_pipe(crt, &load_detect_temp);
8818
8819
8820}
8821
fa555837
DV
8822static bool
8823intel_check_plane_mapping(struct intel_crtc *crtc)
8824{
8825 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8826 u32 reg, val;
8827
8828 if (dev_priv->num_pipe == 1)
8829 return true;
8830
8831 reg = DSPCNTR(!crtc->plane);
8832 val = I915_READ(reg);
8833
8834 if ((val & DISPLAY_PLANE_ENABLE) &&
8835 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8836 return false;
8837
8838 return true;
8839}
8840
24929352
DV
8841static void intel_sanitize_crtc(struct intel_crtc *crtc)
8842{
8843 struct drm_device *dev = crtc->base.dev;
8844 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8845 u32 reg;
24929352 8846
24929352 8847 /* Clear any frame start delays used for debugging left by the BIOS */
702e7a56 8848 reg = PIPECONF(crtc->cpu_transcoder);
24929352
DV
8849 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8850
8851 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8852 * disable the crtc (and hence change the state) if it is wrong. Note
8853 * that gen4+ has a fixed plane -> pipe mapping. */
8854 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8855 struct intel_connector *connector;
8856 bool plane;
8857
24929352
DV
8858 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8859 crtc->base.base.id);
8860
8861 /* Pipe has the wrong plane attached and the plane is active.
8862 * Temporarily change the plane mapping and disable everything
8863 * ... */
8864 plane = crtc->plane;
8865 crtc->plane = !plane;
8866 dev_priv->display.crtc_disable(&crtc->base);
8867 crtc->plane = plane;
8868
8869 /* ... and break all links. */
8870 list_for_each_entry(connector, &dev->mode_config.connector_list,
8871 base.head) {
8872 if (connector->encoder->base.crtc != &crtc->base)
8873 continue;
8874
8875 intel_connector_break_all_links(connector);
8876 }
8877
8878 WARN_ON(crtc->active);
8879 crtc->base.enabled = false;
8880 }
24929352 8881
7fad798e
DV
8882 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8883 crtc->pipe == PIPE_A && !crtc->active) {
8884 /* BIOS forgot to enable pipe A, this mostly happens after
8885 * resume. Force-enable the pipe to fix this, the update_dpms
8886 * call below we restore the pipe to the right state, but leave
8887 * the required bits on. */
8888 intel_enable_pipe_a(dev);
8889 }
8890
24929352
DV
8891 /* Adjust the state of the output pipe according to whether we
8892 * have active connectors/encoders. */
8893 intel_crtc_update_dpms(&crtc->base);
8894
8895 if (crtc->active != crtc->base.enabled) {
8896 struct intel_encoder *encoder;
8897
8898 /* This can happen either due to bugs in the get_hw_state
8899 * functions or because the pipe is force-enabled due to the
8900 * pipe A quirk. */
8901 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8902 crtc->base.base.id,
8903 crtc->base.enabled ? "enabled" : "disabled",
8904 crtc->active ? "enabled" : "disabled");
8905
8906 crtc->base.enabled = crtc->active;
8907
8908 /* Because we only establish the connector -> encoder ->
8909 * crtc links if something is active, this means the
8910 * crtc is now deactivated. Break the links. connector
8911 * -> encoder links are only establish when things are
8912 * actually up, hence no need to break them. */
8913 WARN_ON(crtc->active);
8914
8915 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8916 WARN_ON(encoder->connectors_active);
8917 encoder->base.crtc = NULL;
8918 }
8919 }
8920}
8921
8922static void intel_sanitize_encoder(struct intel_encoder *encoder)
8923{
8924 struct intel_connector *connector;
8925 struct drm_device *dev = encoder->base.dev;
8926
8927 /* We need to check both for a crtc link (meaning that the
8928 * encoder is active and trying to read from a pipe) and the
8929 * pipe itself being active. */
8930 bool has_active_crtc = encoder->base.crtc &&
8931 to_intel_crtc(encoder->base.crtc)->active;
8932
8933 if (encoder->connectors_active && !has_active_crtc) {
8934 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8935 encoder->base.base.id,
8936 drm_get_encoder_name(&encoder->base));
8937
8938 /* Connector is active, but has no active pipe. This is
8939 * fallout from our resume register restoring. Disable
8940 * the encoder manually again. */
8941 if (encoder->base.crtc) {
8942 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8943 encoder->base.base.id,
8944 drm_get_encoder_name(&encoder->base));
8945 encoder->disable(encoder);
8946 }
8947
8948 /* Inconsistent output/port/pipe state happens presumably due to
8949 * a bug in one of the get_hw_state functions. Or someplace else
8950 * in our code, like the register restore mess on resume. Clamp
8951 * things to off as a safer default. */
8952 list_for_each_entry(connector,
8953 &dev->mode_config.connector_list,
8954 base.head) {
8955 if (connector->encoder != encoder)
8956 continue;
8957
8958 intel_connector_break_all_links(connector);
8959 }
8960 }
8961 /* Enabled encoders without active connectors will be fixed in
8962 * the crtc fixup. */
8963}
8964
8965/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8966 * and i915 state tracking structures. */
8967void intel_modeset_setup_hw_state(struct drm_device *dev)
8968{
8969 struct drm_i915_private *dev_priv = dev->dev_private;
8970 enum pipe pipe;
8971 u32 tmp;
8972 struct intel_crtc *crtc;
8973 struct intel_encoder *encoder;
8974 struct intel_connector *connector;
8975
e28d54cb
PZ
8976 if (IS_HASWELL(dev)) {
8977 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8978
8979 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8980 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8981 case TRANS_DDI_EDP_INPUT_A_ON:
8982 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8983 pipe = PIPE_A;
8984 break;
8985 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8986 pipe = PIPE_B;
8987 break;
8988 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8989 pipe = PIPE_C;
8990 break;
8991 }
8992
8993 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8994 crtc->cpu_transcoder = TRANSCODER_EDP;
8995
8996 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8997 pipe_name(pipe));
8998 }
8999 }
9000
24929352
DV
9001 for_each_pipe(pipe) {
9002 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9003
702e7a56 9004 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
24929352
DV
9005 if (tmp & PIPECONF_ENABLE)
9006 crtc->active = true;
9007 else
9008 crtc->active = false;
9009
9010 crtc->base.enabled = crtc->active;
9011
9012 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9013 crtc->base.base.id,
9014 crtc->active ? "enabled" : "disabled");
9015 }
9016
6441ab5f
PZ
9017 if (IS_HASWELL(dev))
9018 intel_ddi_setup_hw_pll_state(dev);
9019
24929352
DV
9020 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9021 base.head) {
9022 pipe = 0;
9023
9024 if (encoder->get_hw_state(encoder, &pipe)) {
9025 encoder->base.crtc =
9026 dev_priv->pipe_to_crtc_mapping[pipe];
9027 } else {
9028 encoder->base.crtc = NULL;
9029 }
9030
9031 encoder->connectors_active = false;
9032 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9033 encoder->base.base.id,
9034 drm_get_encoder_name(&encoder->base),
9035 encoder->base.crtc ? "enabled" : "disabled",
9036 pipe);
9037 }
9038
9039 list_for_each_entry(connector, &dev->mode_config.connector_list,
9040 base.head) {
9041 if (connector->get_hw_state(connector)) {
9042 connector->base.dpms = DRM_MODE_DPMS_ON;
9043 connector->encoder->connectors_active = true;
9044 connector->base.encoder = &connector->encoder->base;
9045 } else {
9046 connector->base.dpms = DRM_MODE_DPMS_OFF;
9047 connector->base.encoder = NULL;
9048 }
9049 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9050 connector->base.base.id,
9051 drm_get_connector_name(&connector->base),
9052 connector->base.encoder ? "enabled" : "disabled");
9053 }
9054
9055 /* HW state is read out, now we need to sanitize this mess. */
9056 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9057 base.head) {
9058 intel_sanitize_encoder(encoder);
9059 }
9060
9061 for_each_pipe(pipe) {
9062 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9063 intel_sanitize_crtc(crtc);
9064 }
9a935856
DV
9065
9066 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
9067
9068 intel_modeset_check_state(dev);
2e938892
DV
9069
9070 drm_mode_config_reset(dev);
24929352
DV
9071}
9072
2c7111db
CW
9073void intel_modeset_gem_init(struct drm_device *dev)
9074{
1833b134 9075 intel_modeset_init_hw(dev);
02e792fb
DV
9076
9077 intel_setup_overlay(dev);
24929352
DV
9078
9079 intel_modeset_setup_hw_state(dev);
79e53945
JB
9080}
9081
9082void intel_modeset_cleanup(struct drm_device *dev)
9083{
652c393a
JB
9084 struct drm_i915_private *dev_priv = dev->dev_private;
9085 struct drm_crtc *crtc;
9086 struct intel_crtc *intel_crtc;
9087
f87ea761 9088 drm_kms_helper_poll_fini(dev);
652c393a
JB
9089 mutex_lock(&dev->struct_mutex);
9090
723bfd70
JB
9091 intel_unregister_dsm_handler();
9092
9093
652c393a
JB
9094 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9095 /* Skip inactive CRTCs */
9096 if (!crtc->fb)
9097 continue;
9098
9099 intel_crtc = to_intel_crtc(crtc);
3dec0095 9100 intel_increase_pllclock(crtc);
652c393a
JB
9101 }
9102
973d04f9 9103 intel_disable_fbc(dev);
e70236a8 9104
8090c6b9 9105 intel_disable_gt_powersave(dev);
0cdab21f 9106
930ebb46
DV
9107 ironlake_teardown_rc6(dev);
9108
57f350b6
JB
9109 if (IS_VALLEYVIEW(dev))
9110 vlv_init_dpio(dev);
9111
69341a5e
KH
9112 mutex_unlock(&dev->struct_mutex);
9113
6c0d9350
DV
9114 /* Disable the irq before mode object teardown, for the irq might
9115 * enqueue unpin/hotplug work. */
9116 drm_irq_uninstall(dev);
9117 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 9118 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 9119
1630fe75
CW
9120 /* flush any delayed tasks or pending work */
9121 flush_scheduled_work();
9122
79e53945
JB
9123 drm_mode_config_cleanup(dev);
9124}
9125
f1c79df3
ZW
9126/*
9127 * Return which encoder is currently attached for connector.
9128 */
df0e9248 9129struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9130{
df0e9248
CW
9131 return &intel_attached_encoder(connector)->base;
9132}
f1c79df3 9133
df0e9248
CW
9134void intel_connector_attach_encoder(struct intel_connector *connector,
9135 struct intel_encoder *encoder)
9136{
9137 connector->encoder = encoder;
9138 drm_mode_connector_attach_encoder(&connector->base,
9139 &encoder->base);
79e53945 9140}
28d52043
DA
9141
9142/*
9143 * set vga decode state - true == enable VGA decode
9144 */
9145int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9146{
9147 struct drm_i915_private *dev_priv = dev->dev_private;
9148 u16 gmch_ctrl;
9149
9150 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9151 if (state)
9152 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9153 else
9154 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9155 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9156 return 0;
9157}
c4a1d9e4
CW
9158
9159#ifdef CONFIG_DEBUG_FS
9160#include <linux/seq_file.h>
9161
9162struct intel_display_error_state {
9163 struct intel_cursor_error_state {
9164 u32 control;
9165 u32 position;
9166 u32 base;
9167 u32 size;
52331309 9168 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
9169
9170 struct intel_pipe_error_state {
9171 u32 conf;
9172 u32 source;
9173
9174 u32 htotal;
9175 u32 hblank;
9176 u32 hsync;
9177 u32 vtotal;
9178 u32 vblank;
9179 u32 vsync;
52331309 9180 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
9181
9182 struct intel_plane_error_state {
9183 u32 control;
9184 u32 stride;
9185 u32 size;
9186 u32 pos;
9187 u32 addr;
9188 u32 surface;
9189 u32 tile_offset;
52331309 9190 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
9191};
9192
9193struct intel_display_error_state *
9194intel_display_capture_error_state(struct drm_device *dev)
9195{
0206e353 9196 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4 9197 struct intel_display_error_state *error;
702e7a56 9198 enum transcoder cpu_transcoder;
c4a1d9e4
CW
9199 int i;
9200
9201 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9202 if (error == NULL)
9203 return NULL;
9204
52331309 9205 for_each_pipe(i) {
702e7a56
PZ
9206 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9207
c4a1d9e4
CW
9208 error->cursor[i].control = I915_READ(CURCNTR(i));
9209 error->cursor[i].position = I915_READ(CURPOS(i));
9210 error->cursor[i].base = I915_READ(CURBASE(i));
9211
9212 error->plane[i].control = I915_READ(DSPCNTR(i));
9213 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9214 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9215 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9216 error->plane[i].addr = I915_READ(DSPADDR(i));
9217 if (INTEL_INFO(dev)->gen >= 4) {
9218 error->plane[i].surface = I915_READ(DSPSURF(i));
9219 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9220 }
9221
702e7a56 9222 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
c4a1d9e4 9223 error->pipe[i].source = I915_READ(PIPESRC(i));
fe2b8f9d
PZ
9224 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9225 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9226 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9227 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9228 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9229 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
9230 }
9231
9232 return error;
9233}
9234
9235void
9236intel_display_print_error_state(struct seq_file *m,
9237 struct drm_device *dev,
9238 struct intel_display_error_state *error)
9239{
52331309 9240 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9241 int i;
9242
52331309
DL
9243 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9244 for_each_pipe(i) {
c4a1d9e4
CW
9245 seq_printf(m, "Pipe [%d]:\n", i);
9246 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9247 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9248 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9249 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9250 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9251 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9252 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9253 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9254
9255 seq_printf(m, "Plane [%d]:\n", i);
9256 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9257 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9258 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9259 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9260 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9261 if (INTEL_INFO(dev)->gen >= 4) {
9262 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9263 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9264 }
9265
9266 seq_printf(m, "Cursor [%d]:\n", i);
9267 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9268 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9269 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9270 }
9271}
9272#endif