]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Add a space to the shared DPLL debug message
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
0e32b39c
DA
104static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105{
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110}
111
79e53945 112typedef struct {
0206e353 113 int min, max;
79e53945
JB
114} intel_range_t;
115
116typedef struct {
0206e353
AJ
117 int dot_limit;
118 int p2_slow, p2_fast;
79e53945
JB
119} intel_p2_t;
120
d4906093
ML
121typedef struct intel_limit intel_limit_t;
122struct intel_limit {
0206e353
AJ
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
d4906093 125};
79e53945 126
d2acd215
DV
127int
128intel_pch_rawclk(struct drm_device *dev)
129{
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135}
136
021357ac
CW
137static inline u32 /* units of 100MHz */
138intel_fdi_link_freq(struct drm_device *dev)
139{
8b99e68c
CW
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
021357ac
CW
145}
146
5d536e28 147static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 148 .dot = { .min = 25000, .max = 350000 },
9c333719 149 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 150 .n = { .min = 2, .max = 16 },
0206e353
AJ
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
158};
159
5d536e28
DV
160static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
9c333719 162 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 163 .n = { .min = 2, .max = 16 },
5d536e28
DV
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171};
172
e4b36699 173static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 174 .dot = { .min = 25000, .max = 350000 },
9c333719 175 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 176 .n = { .min = 2, .max = 16 },
0206e353
AJ
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
e4b36699 184};
273e27ca 185
e4b36699 186static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
210};
211
273e27ca 212
e4b36699 213static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
044c7c41 225 },
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
044c7c41 252 },
e4b36699
KP
253};
254
255static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
044c7c41 266 },
e4b36699
KP
267};
268
f2b115e6 269static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 272 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
273e27ca 275 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
282};
283
f2b115e6 284static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
295};
296
273e27ca
EA
297/* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
b91ad0ec 302static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
b91ad0ec 315static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
326};
327
328static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
339};
340
273e27ca 341/* LVDS 100mhz refclk limits. */
b91ad0ec 342static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
0206e353 350 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
353};
354
355static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
0206e353 363 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
366};
367
dc730512 368static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 376 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 377 .n = { .min = 1, .max = 7 },
a0c4da24
JB
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
b99ab663 380 .p1 = { .min = 2, .max = 3 },
5fdc9c49 381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
382};
383
ef9348c8
CML
384static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398};
399
6b4bf1c4
VS
400static void vlv_clock(int refclk, intel_clock_t *clock)
401{
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
fb03ac01
VS
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
408}
409
e0638cdf
PZ
410/**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
413static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414{
415 struct drm_device *dev = crtc->dev;
416 struct intel_encoder *encoder;
417
418 for_each_encoder_on_crtc(dev, crtc, encoder)
419 if (encoder->type == type)
420 return true;
421
422 return false;
423}
424
1b894b59
CW
425static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426 int refclk)
2c07245f 427{
b91ad0ec 428 struct drm_device *dev = crtc->dev;
2c07245f 429 const intel_limit_t *limit;
b91ad0ec
ZW
430
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 432 if (intel_is_dual_link_lvds(dev)) {
1b894b59 433 if (refclk == 100000)
b91ad0ec
ZW
434 limit = &intel_limits_ironlake_dual_lvds_100m;
435 else
436 limit = &intel_limits_ironlake_dual_lvds;
437 } else {
1b894b59 438 if (refclk == 100000)
b91ad0ec
ZW
439 limit = &intel_limits_ironlake_single_lvds_100m;
440 else
441 limit = &intel_limits_ironlake_single_lvds;
442 }
c6bb3538 443 } else
b91ad0ec 444 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
445
446 return limit;
447}
448
044c7c41
ML
449static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450{
451 struct drm_device *dev = crtc->dev;
044c7c41
ML
452 const intel_limit_t *limit;
453
454 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 455 if (intel_is_dual_link_lvds(dev))
e4b36699 456 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 457 else
e4b36699 458 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
459 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 461 limit = &intel_limits_g4x_hdmi;
044c7c41 462 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 463 limit = &intel_limits_g4x_sdvo;
044c7c41 464 } else /* The option is for other outputs */
e4b36699 465 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
466
467 return limit;
468}
469
1b894b59 470static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
471{
472 struct drm_device *dev = crtc->dev;
473 const intel_limit_t *limit;
474
bad720ff 475 if (HAS_PCH_SPLIT(dev))
1b894b59 476 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 477 else if (IS_G4X(dev)) {
044c7c41 478 limit = intel_g4x_limit(crtc);
f2b115e6 479 } else if (IS_PINEVIEW(dev)) {
2177832f 480 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 481 limit = &intel_limits_pineview_lvds;
2177832f 482 else
f2b115e6 483 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
484 } else if (IS_CHERRYVIEW(dev)) {
485 limit = &intel_limits_chv;
a0c4da24 486 } else if (IS_VALLEYVIEW(dev)) {
dc730512 487 limit = &intel_limits_vlv;
a6c45cf0
CW
488 } else if (!IS_GEN2(dev)) {
489 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490 limit = &intel_limits_i9xx_lvds;
491 else
492 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
493 } else {
494 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 495 limit = &intel_limits_i8xx_lvds;
5d536e28 496 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 497 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
498 else
499 limit = &intel_limits_i8xx_dac;
79e53945
JB
500 }
501 return limit;
502}
503
f2b115e6
AJ
504/* m1 is reserved as 0 in Pineview, n is a ring counter */
505static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 506{
2177832f
SL
507 clock->m = clock->m2 + 2;
508 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
509 if (WARN_ON(clock->n == 0 || clock->p == 0))
510 return;
fb03ac01
VS
511 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
513}
514
7429e9d4
DV
515static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516{
517 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518}
519
ac58c3f0 520static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 521{
7429e9d4 522 clock->m = i9xx_dpll_compute_m(clock);
79e53945 523 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
524 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525 return;
fb03ac01
VS
526 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
528}
529
ef9348c8
CML
530static void chv_clock(int refclk, intel_clock_t *clock)
531{
532 clock->m = clock->m1 * clock->m2;
533 clock->p = clock->p1 * clock->p2;
534 if (WARN_ON(clock->n == 0 || clock->p == 0))
535 return;
536 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537 clock->n << 22);
538 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539}
540
7c04d1d9 541#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
542/**
543 * Returns whether the given set of divisors are valid for a given refclk with
544 * the given connectors.
545 */
546
1b894b59
CW
547static bool intel_PLL_is_valid(struct drm_device *dev,
548 const intel_limit_t *limit,
549 const intel_clock_t *clock)
79e53945 550{
f01b7962
VS
551 if (clock->n < limit->n.min || limit->n.max < clock->n)
552 INTELPllInvalid("n out of range\n");
79e53945 553 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 554 INTELPllInvalid("p1 out of range\n");
79e53945 555 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 556 INTELPllInvalid("m2 out of range\n");
79e53945 557 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 558 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
559
560 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561 if (clock->m1 <= clock->m2)
562 INTELPllInvalid("m1 <= m2\n");
563
564 if (!IS_VALLEYVIEW(dev)) {
565 if (clock->p < limit->p.min || limit->p.max < clock->p)
566 INTELPllInvalid("p out of range\n");
567 if (clock->m < limit->m.min || limit->m.max < clock->m)
568 INTELPllInvalid("m out of range\n");
569 }
570
79e53945 571 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 572 INTELPllInvalid("vco out of range\n");
79e53945
JB
573 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574 * connector, etc., rather than just a single range.
575 */
576 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 577 INTELPllInvalid("dot out of range\n");
79e53945
JB
578
579 return true;
580}
581
d4906093 582static bool
ee9300bb 583i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
584 int target, int refclk, intel_clock_t *match_clock,
585 intel_clock_t *best_clock)
79e53945
JB
586{
587 struct drm_device *dev = crtc->dev;
79e53945 588 intel_clock_t clock;
79e53945
JB
589 int err = target;
590
a210b028 591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 592 /*
a210b028
DV
593 * For LVDS just rely on its current settings for dual-channel.
594 * We haven't figured out how to reliably set up different
595 * single/dual channel state, if we even can.
79e53945 596 */
1974cad0 597 if (intel_is_dual_link_lvds(dev))
79e53945
JB
598 clock.p2 = limit->p2.p2_fast;
599 else
600 clock.p2 = limit->p2.p2_slow;
601 } else {
602 if (target < limit->p2.dot_limit)
603 clock.p2 = limit->p2.p2_slow;
604 else
605 clock.p2 = limit->p2.p2_fast;
606 }
607
0206e353 608 memset(best_clock, 0, sizeof(*best_clock));
79e53945 609
42158660
ZY
610 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611 clock.m1++) {
612 for (clock.m2 = limit->m2.min;
613 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 614 if (clock.m2 >= clock.m1)
42158660
ZY
615 break;
616 for (clock.n = limit->n.min;
617 clock.n <= limit->n.max; clock.n++) {
618 for (clock.p1 = limit->p1.min;
619 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
620 int this_err;
621
ac58c3f0
DV
622 i9xx_clock(refclk, &clock);
623 if (!intel_PLL_is_valid(dev, limit,
624 &clock))
625 continue;
626 if (match_clock &&
627 clock.p != match_clock->p)
628 continue;
629
630 this_err = abs(clock.dot - target);
631 if (this_err < err) {
632 *best_clock = clock;
633 err = this_err;
634 }
635 }
636 }
637 }
638 }
639
640 return (err != target);
641}
642
643static bool
ee9300bb
DV
644pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *match_clock,
646 intel_clock_t *best_clock)
79e53945
JB
647{
648 struct drm_device *dev = crtc->dev;
79e53945 649 intel_clock_t clock;
79e53945
JB
650 int err = target;
651
a210b028 652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 653 /*
a210b028
DV
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
79e53945 657 */
1974cad0 658 if (intel_is_dual_link_lvds(dev))
79e53945
JB
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
0206e353 669 memset(best_clock, 0, sizeof(*best_clock));
79e53945 670
42158660
ZY
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
675 for (clock.n = limit->n.min;
676 clock.n <= limit->n.max; clock.n++) {
677 for (clock.p1 = limit->p1.min;
678 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
679 int this_err;
680
ac58c3f0 681 pineview_clock(refclk, &clock);
1b894b59
CW
682 if (!intel_PLL_is_valid(dev, limit,
683 &clock))
79e53945 684 continue;
cec2f356
SP
685 if (match_clock &&
686 clock.p != match_clock->p)
687 continue;
79e53945
JB
688
689 this_err = abs(clock.dot - target);
690 if (this_err < err) {
691 *best_clock = clock;
692 err = this_err;
693 }
694 }
695 }
696 }
697 }
698
699 return (err != target);
700}
701
d4906093 702static bool
ee9300bb
DV
703g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704 int target, int refclk, intel_clock_t *match_clock,
705 intel_clock_t *best_clock)
d4906093
ML
706{
707 struct drm_device *dev = crtc->dev;
d4906093
ML
708 intel_clock_t clock;
709 int max_n;
710 bool found;
6ba770dc
AJ
711 /* approximately equals target * 0.00585 */
712 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
713 found = false;
714
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 716 if (intel_is_dual_link_lvds(dev))
d4906093
ML
717 clock.p2 = limit->p2.p2_fast;
718 else
719 clock.p2 = limit->p2.p2_slow;
720 } else {
721 if (target < limit->p2.dot_limit)
722 clock.p2 = limit->p2.p2_slow;
723 else
724 clock.p2 = limit->p2.p2_fast;
725 }
726
727 memset(best_clock, 0, sizeof(*best_clock));
728 max_n = limit->n.max;
f77f13e2 729 /* based on hardware requirement, prefer smaller n to precision */
d4906093 730 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 731 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
732 for (clock.m1 = limit->m1.max;
733 clock.m1 >= limit->m1.min; clock.m1--) {
734 for (clock.m2 = limit->m2.max;
735 clock.m2 >= limit->m2.min; clock.m2--) {
736 for (clock.p1 = limit->p1.max;
737 clock.p1 >= limit->p1.min; clock.p1--) {
738 int this_err;
739
ac58c3f0 740 i9xx_clock(refclk, &clock);
1b894b59
CW
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
d4906093 743 continue;
1b894b59
CW
744
745 this_err = abs(clock.dot - target);
d4906093
ML
746 if (this_err < err_most) {
747 *best_clock = clock;
748 err_most = this_err;
749 max_n = clock.n;
750 found = true;
751 }
752 }
753 }
754 }
755 }
2c07245f
ZW
756 return found;
757}
758
a0c4da24 759static bool
ee9300bb
DV
760vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761 int target, int refclk, intel_clock_t *match_clock,
762 intel_clock_t *best_clock)
a0c4da24 763{
f01b7962 764 struct drm_device *dev = crtc->dev;
6b4bf1c4 765 intel_clock_t clock;
69e4f900 766 unsigned int bestppm = 1000000;
27e639bf
VS
767 /* min update 19.2 MHz */
768 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 769 bool found = false;
a0c4da24 770
6b4bf1c4
VS
771 target *= 5; /* fast clock */
772
773 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
774
775 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 777 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 778 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 779 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 780 clock.p = clock.p1 * clock.p2;
a0c4da24 781 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 782 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
783 unsigned int ppm, diff;
784
6b4bf1c4
VS
785 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786 refclk * clock.m1);
787
788 vlv_clock(refclk, &clock);
43b0ac53 789
f01b7962
VS
790 if (!intel_PLL_is_valid(dev, limit,
791 &clock))
43b0ac53
VS
792 continue;
793
6b4bf1c4
VS
794 diff = abs(clock.dot - target);
795 ppm = div_u64(1000000ULL * diff, target);
796
797 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 798 bestppm = 0;
6b4bf1c4 799 *best_clock = clock;
49e497ef 800 found = true;
43b0ac53 801 }
6b4bf1c4 802
c686122c 803 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 804 bestppm = ppm;
6b4bf1c4 805 *best_clock = clock;
49e497ef 806 found = true;
a0c4da24
JB
807 }
808 }
809 }
810 }
811 }
a0c4da24 812
49e497ef 813 return found;
a0c4da24 814}
a4fc5ed6 815
ef9348c8
CML
816static bool
817chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820{
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
823 uint64_t m2;
824 int found = false;
825
826 memset(best_clock, 0, sizeof(*best_clock));
827
828 /*
829 * Based on hardware doc, the n always set to 1, and m1 always
830 * set to 2. If requires to support 200Mhz refclk, we need to
831 * revisit this because n may not 1 anymore.
832 */
833 clock.n = 1, clock.m1 = 2;
834 target *= 5; /* fast clock */
835
836 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837 for (clock.p2 = limit->p2.p2_fast;
838 clock.p2 >= limit->p2.p2_slow;
839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841 clock.p = clock.p1 * clock.p2;
842
843 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844 clock.n) << 22, refclk * clock.m1);
845
846 if (m2 > INT_MAX/clock.m1)
847 continue;
848
849 clock.m2 = m2;
850
851 chv_clock(refclk, &clock);
852
853 if (!intel_PLL_is_valid(dev, limit, &clock))
854 continue;
855
856 /* based on hardware requirement, prefer bigger p
857 */
858 if (clock.p > best_clock->p) {
859 *best_clock = clock;
860 found = true;
861 }
862 }
863 }
864
865 return found;
866}
867
20ddf665
VS
868bool intel_crtc_active(struct drm_crtc *crtc)
869{
870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872 /* Be paranoid as we can arrive here with only partial
873 * state retrieved from the hardware during setup.
874 *
241bfc38 875 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
876 * as Haswell has gained clock readout/fastboot support.
877 *
66e514c1 878 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
879 * properly reconstruct framebuffers.
880 */
f4510a27 881 return intel_crtc->active && crtc->primary->fb &&
241bfc38 882 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
883}
884
a5c961d1
PZ
885enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887{
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
3b117c8f 891 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
892}
893
57e22f4a 894static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
895{
896 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 897 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 902 WARN(1, "vblank wait timed out\n");
a928d536
PZ
903}
904
9d0498a2
JB
905/**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 914{
9d0498a2 915 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 916 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 917
57e22f4a
VS
918 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
920 return;
921 }
922
300387c0
CW
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
9d0498a2 939 /* Wait for vblank interrupt bit to set */
481b6af3
CW
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
9d0498a2
JB
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944}
945
fbf49ea2
VS
946static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947{
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 u32 reg = PIPEDSL(pipe);
950 u32 line1, line2;
951 u32 line_mask;
952
953 if (IS_GEN2(dev))
954 line_mask = DSL_LINEMASK_GEN2;
955 else
956 line_mask = DSL_LINEMASK_GEN3;
957
958 line1 = I915_READ(reg) & line_mask;
959 mdelay(5);
960 line2 = I915_READ(reg) & line_mask;
961
962 return line1 == line2;
963}
964
ab7ad7f6
KP
965/*
966 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
967 * @dev: drm device
968 * @pipe: pipe to wait for
969 *
970 * After disabling a pipe, we can't wait for vblank in the usual way,
971 * spinning on the vblank interrupt status bit, since we won't actually
972 * see an interrupt when the pipe is disabled.
973 *
ab7ad7f6
KP
974 * On Gen4 and above:
975 * wait for the pipe register state bit to turn off
976 *
977 * Otherwise:
978 * wait for the display line value to settle (it usually
979 * ends up stopping at the start of the next frame).
58e10eb9 980 *
9d0498a2 981 */
58e10eb9 982void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
983{
984 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
985 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986 pipe);
ab7ad7f6
KP
987
988 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 989 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
990
991 /* Wait for the Pipe State to go off */
58e10eb9
CW
992 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993 100))
284637d9 994 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 995 } else {
ab7ad7f6 996 /* Wait for the display line to settle */
fbf49ea2 997 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 998 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 999 }
79e53945
JB
1000}
1001
b0ea7d37
DL
1002/*
1003 * ibx_digital_port_connected - is the specified port connected?
1004 * @dev_priv: i915 private structure
1005 * @port: the port to test
1006 *
1007 * Returns true if @port is connected, false otherwise.
1008 */
1009bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010 struct intel_digital_port *port)
1011{
1012 u32 bit;
1013
c36346e3 1014 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1015 switch (port->port) {
c36346e3
DL
1016 case PORT_B:
1017 bit = SDE_PORTB_HOTPLUG;
1018 break;
1019 case PORT_C:
1020 bit = SDE_PORTC_HOTPLUG;
1021 break;
1022 case PORT_D:
1023 bit = SDE_PORTD_HOTPLUG;
1024 break;
1025 default:
1026 return true;
1027 }
1028 } else {
eba905b2 1029 switch (port->port) {
c36346e3
DL
1030 case PORT_B:
1031 bit = SDE_PORTB_HOTPLUG_CPT;
1032 break;
1033 case PORT_C:
1034 bit = SDE_PORTC_HOTPLUG_CPT;
1035 break;
1036 case PORT_D:
1037 bit = SDE_PORTD_HOTPLUG_CPT;
1038 break;
1039 default:
1040 return true;
1041 }
b0ea7d37
DL
1042 }
1043
1044 return I915_READ(SDEISR) & bit;
1045}
1046
b24e7179
JB
1047static const char *state_string(bool enabled)
1048{
1049 return enabled ? "on" : "off";
1050}
1051
1052/* Only for pre-ILK configs */
55607e8a
DV
1053void assert_pll(struct drm_i915_private *dev_priv,
1054 enum pipe pipe, bool state)
b24e7179
JB
1055{
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DPLL(pipe);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DPLL_VCO_ENABLE);
1063 WARN(cur_state != state,
1064 "PLL state assertion failure (expected %s, current %s)\n",
1065 state_string(state), state_string(cur_state));
1066}
b24e7179 1067
23538ef1
JN
1068/* XXX: the dsi pll is shared between MIPI DSI ports */
1069static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070{
1071 u32 val;
1072 bool cur_state;
1073
1074 mutex_lock(&dev_priv->dpio_lock);
1075 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076 mutex_unlock(&dev_priv->dpio_lock);
1077
1078 cur_state = val & DSI_PLL_VCO_EN;
1079 WARN(cur_state != state,
1080 "DSI PLL state assertion failure (expected %s, current %s)\n",
1081 state_string(state), state_string(cur_state));
1082}
1083#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
55607e8a 1086struct intel_shared_dpll *
e2b78267
DV
1087intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088{
1089 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
a43f6e0f 1091 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1092 return NULL;
1093
a43f6e0f 1094 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1095}
1096
040484af 1097/* For ILK+ */
55607e8a
DV
1098void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099 struct intel_shared_dpll *pll,
1100 bool state)
040484af 1101{
040484af 1102 bool cur_state;
5358901f 1103 struct intel_dpll_hw_state hw_state;
040484af 1104
92b27b08 1105 if (WARN (!pll,
46edb027 1106 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1107 return;
ee7b9f93 1108
5358901f 1109 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1110 WARN(cur_state != state,
5358901f
DV
1111 "%s assertion failure (expected %s, current %s)\n",
1112 pll->name, state_string(state), state_string(cur_state));
040484af 1113}
040484af
JB
1114
1115static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117{
1118 int reg;
1119 u32 val;
1120 bool cur_state;
ad80a810
PZ
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
040484af 1123
affa9354
PZ
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
ad80a810 1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1127 val = I915_READ(reg);
ad80a810 1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
040484af
JB
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137}
1138#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143{
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
d63fa0dc
PZ
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154}
1155#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160{
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
3d13ef2e 1165 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1166 return;
1167
bf507ef7 1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1169 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1170 return;
1171
040484af
JB
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175}
1176
55607e8a
DV
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
040484af
JB
1179{
1180 int reg;
1181 u32 val;
55607e8a 1182 bool cur_state;
040484af
JB
1183
1184 reg = FDI_RX_CTL(pipe);
1185 val = I915_READ(reg);
55607e8a
DV
1186 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187 WARN(cur_state != state,
1188 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189 state_string(state), state_string(cur_state));
040484af
JB
1190}
1191
ea0760cf
JB
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194{
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
0de3b485 1198 bool locked = true;
ea0760cf
JB
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1218 pipe_name(pipe));
ea0760cf
JB
1219}
1220
93ce0ba6
JN
1221static void assert_cursor(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
1223{
1224 struct drm_device *dev = dev_priv->dev;
1225 bool cur_state;
1226
d9d82081 1227 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1228 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1229 else
5efb3e28 1230 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1231
1232 WARN(cur_state != state,
1233 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234 pipe_name(pipe), state_string(state), state_string(cur_state));
1235}
1236#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
b840d907
JB
1239void assert_pipe(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
b24e7179
JB
1241{
1242 int reg;
1243 u32 val;
63d7bbe9 1244 bool cur_state;
702e7a56
PZ
1245 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246 pipe);
b24e7179 1247
8e636784
DV
1248 /* if we need the pipe A quirk it must be always on */
1249 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250 state = true;
1251
da7e29bd 1252 if (!intel_display_power_enabled(dev_priv,
b97186f0 1253 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1254 cur_state = false;
1255 } else {
1256 reg = PIPECONF(cpu_transcoder);
1257 val = I915_READ(reg);
1258 cur_state = !!(val & PIPECONF_ENABLE);
1259 }
1260
63d7bbe9
JB
1261 WARN(cur_state != state,
1262 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1263 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1264}
1265
931872fc
CW
1266static void assert_plane(struct drm_i915_private *dev_priv,
1267 enum plane plane, bool state)
b24e7179
JB
1268{
1269 int reg;
1270 u32 val;
931872fc 1271 bool cur_state;
b24e7179
JB
1272
1273 reg = DSPCNTR(plane);
1274 val = I915_READ(reg);
931872fc
CW
1275 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276 WARN(cur_state != state,
1277 "plane %c assertion failure (expected %s, current %s)\n",
1278 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1279}
1280
931872fc
CW
1281#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
b24e7179
JB
1284static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286{
653e1026 1287 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1288 int reg, i;
1289 u32 val;
1290 int cur_pipe;
1291
653e1026
VS
1292 /* Primary planes are fixed to pipes on gen4+ */
1293 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1294 reg = DSPCNTR(pipe);
1295 val = I915_READ(reg);
83f26f16 1296 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1297 "plane %c assertion failure, should be disabled but not\n",
1298 plane_name(pipe));
19ec1358 1299 return;
28c05794 1300 }
19ec1358 1301
b24e7179 1302 /* Need to check both planes against the pipe */
08e2a7de 1303 for_each_pipe(i) {
b24e7179
JB
1304 reg = DSPCNTR(i);
1305 val = I915_READ(reg);
1306 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307 DISPPLANE_SEL_PIPE_SHIFT;
1308 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1309 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310 plane_name(i), pipe_name(pipe));
b24e7179
JB
1311 }
1312}
1313
19332d7a
JB
1314static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315 enum pipe pipe)
1316{
20674eef 1317 struct drm_device *dev = dev_priv->dev;
1fe47785 1318 int reg, sprite;
19332d7a
JB
1319 u32 val;
1320
20674eef 1321 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1322 for_each_sprite(pipe, sprite) {
1323 reg = SPCNTR(pipe, sprite);
20674eef 1324 val = I915_READ(reg);
83f26f16 1325 WARN(val & SP_ENABLE,
20674eef 1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1327 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1328 }
1329 } else if (INTEL_INFO(dev)->gen >= 7) {
1330 reg = SPRCTL(pipe);
19332d7a 1331 val = I915_READ(reg);
83f26f16 1332 WARN(val & SPRITE_ENABLE,
06da8da2 1333 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1334 plane_name(pipe), pipe_name(pipe));
1335 } else if (INTEL_INFO(dev)->gen >= 5) {
1336 reg = DVSCNTR(pipe);
19332d7a 1337 val = I915_READ(reg);
83f26f16 1338 WARN(val & DVS_ENABLE,
06da8da2 1339 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1340 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1341 }
1342}
1343
89eff4be 1344static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1345{
1346 u32 val;
1347 bool enabled;
1348
89eff4be 1349 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1350
92f2584a
JB
1351 val = I915_READ(PCH_DREF_CONTROL);
1352 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353 DREF_SUPERSPREAD_SOURCE_MASK));
1354 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355}
1356
ab9412ba
DV
1357static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
92f2584a
JB
1359{
1360 int reg;
1361 u32 val;
1362 bool enabled;
1363
ab9412ba 1364 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1365 val = I915_READ(reg);
1366 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1367 WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
92f2584a
JB
1370}
1371
4e634389
KP
1372static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1374{
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv->dev)) {
1379 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382 return false;
44f37d1f
CML
1383 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385 return false;
f0575e92
KP
1386 } else {
1387 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388 return false;
1389 }
1390 return true;
1391}
1392
1519b995
KP
1393static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe, u32 val)
1395{
dc0fa718 1396 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1397 return false;
1398
1399 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1400 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1401 return false;
44f37d1f
CML
1402 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404 return false;
1519b995 1405 } else {
dc0fa718 1406 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1407 return false;
1408 }
1409 return true;
1410}
1411
1412static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe, u32 val)
1414{
1415 if ((val & LVDS_PORT_EN) == 0)
1416 return false;
1417
1418 if (HAS_PCH_CPT(dev_priv->dev)) {
1419 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420 return false;
1421 } else {
1422 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423 return false;
1424 }
1425 return true;
1426}
1427
1428static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429 enum pipe pipe, u32 val)
1430{
1431 if ((val & ADPA_DAC_ENABLE) == 0)
1432 return false;
1433 if (HAS_PCH_CPT(dev_priv->dev)) {
1434 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435 return false;
1436 } else {
1437 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438 return false;
1439 }
1440 return true;
1441}
1442
291906f1 1443static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1444 enum pipe pipe, int reg, u32 port_sel)
291906f1 1445{
47a05eca 1446 u32 val = I915_READ(reg);
4e634389 1447 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1449 reg, pipe_name(pipe));
de9a35ab 1450
75c5da27
DV
1451 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
de9a35ab 1453 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1454}
1455
1456static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, int reg)
1458{
47a05eca 1459 u32 val = I915_READ(reg);
b70ad586 1460 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1462 reg, pipe_name(pipe));
de9a35ab 1463
dc0fa718 1464 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1465 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1466 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1467}
1468
1469static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471{
1472 int reg;
1473 u32 val;
291906f1 1474
f0575e92
KP
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1478
1479 reg = PCH_ADPA;
1480 val = I915_READ(reg);
b70ad586 1481 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1482 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1483 pipe_name(pipe));
291906f1
JB
1484
1485 reg = PCH_LVDS;
1486 val = I915_READ(reg);
b70ad586 1487 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1488 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1489 pipe_name(pipe));
291906f1 1490
e2debe91
PZ
1491 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1494}
1495
40e9cf64
JB
1496static void intel_init_dpio(struct drm_device *dev)
1497{
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500 if (!IS_VALLEYVIEW(dev))
1501 return;
1502
a09caddd
CML
1503 /*
1504 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505 * CHV x1 PHY (DP/HDMI D)
1506 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507 */
1508 if (IS_CHERRYVIEW(dev)) {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511 } else {
1512 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513 }
5382f5f3
JB
1514}
1515
426115cf 1516static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1517{
426115cf
DV
1518 struct drm_device *dev = crtc->base.dev;
1519 struct drm_i915_private *dev_priv = dev->dev_private;
1520 int reg = DPLL(crtc->pipe);
1521 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1522
426115cf 1523 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1524
1525 /* No really, not for ILK+ */
1526 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1527
1528 /* PLL is protected by panel, make sure we can write it */
1529 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1530 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1531
426115cf
DV
1532 I915_WRITE(reg, dpll);
1533 POSTING_READ(reg);
1534 udelay(150);
1535
1536 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1537 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1538
1539 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1540 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1541
1542 /* We do this three times for luck */
426115cf 1543 I915_WRITE(reg, dpll);
87442f73
DV
1544 POSTING_READ(reg);
1545 udelay(150); /* wait for warmup */
426115cf 1546 I915_WRITE(reg, dpll);
87442f73
DV
1547 POSTING_READ(reg);
1548 udelay(150); /* wait for warmup */
426115cf 1549 I915_WRITE(reg, dpll);
87442f73
DV
1550 POSTING_READ(reg);
1551 udelay(150); /* wait for warmup */
1552}
1553
9d556c99
CML
1554static void chv_enable_pll(struct intel_crtc *crtc)
1555{
1556 struct drm_device *dev = crtc->base.dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 int pipe = crtc->pipe;
1559 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1560 u32 tmp;
1561
1562 assert_pipe_disabled(dev_priv, crtc->pipe);
1563
1564 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1565
1566 mutex_lock(&dev_priv->dpio_lock);
1567
1568 /* Enable back the 10bit clock to display controller */
1569 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1570 tmp |= DPIO_DCLKP_EN;
1571 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1572
1573 /*
1574 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1575 */
1576 udelay(1);
1577
1578 /* Enable PLL */
a11b0703 1579 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1580
1581 /* Check PLL is locked */
a11b0703 1582 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1583 DRM_ERROR("PLL %d failed to lock\n", pipe);
1584
a11b0703
VS
1585 /* not sure when this should be written */
1586 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1587 POSTING_READ(DPLL_MD(pipe));
1588
9d556c99
CML
1589 mutex_unlock(&dev_priv->dpio_lock);
1590}
1591
66e3d5c0 1592static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1593{
66e3d5c0
DV
1594 struct drm_device *dev = crtc->base.dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 int reg = DPLL(crtc->pipe);
1597 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1598
66e3d5c0 1599 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1600
63d7bbe9 1601 /* No really, not for ILK+ */
3d13ef2e 1602 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1603
1604 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1605 if (IS_MOBILE(dev) && !IS_I830(dev))
1606 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1607
66e3d5c0
DV
1608 I915_WRITE(reg, dpll);
1609
1610 /* Wait for the clocks to stabilize. */
1611 POSTING_READ(reg);
1612 udelay(150);
1613
1614 if (INTEL_INFO(dev)->gen >= 4) {
1615 I915_WRITE(DPLL_MD(crtc->pipe),
1616 crtc->config.dpll_hw_state.dpll_md);
1617 } else {
1618 /* The pixel multiplier can only be updated once the
1619 * DPLL is enabled and the clocks are stable.
1620 *
1621 * So write it again.
1622 */
1623 I915_WRITE(reg, dpll);
1624 }
63d7bbe9
JB
1625
1626 /* We do this three times for luck */
66e3d5c0 1627 I915_WRITE(reg, dpll);
63d7bbe9
JB
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
66e3d5c0 1630 I915_WRITE(reg, dpll);
63d7bbe9
JB
1631 POSTING_READ(reg);
1632 udelay(150); /* wait for warmup */
66e3d5c0 1633 I915_WRITE(reg, dpll);
63d7bbe9
JB
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636}
1637
1638/**
50b44a44 1639 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1640 * @dev_priv: i915 private structure
1641 * @pipe: pipe PLL to disable
1642 *
1643 * Disable the PLL for @pipe, making sure the pipe is off first.
1644 *
1645 * Note! This is for pre-ILK only.
1646 */
50b44a44 1647static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1648{
63d7bbe9
JB
1649 /* Don't disable pipe A or pipe A PLLs if needed */
1650 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1651 return;
1652
1653 /* Make sure the pipe isn't still relying on us */
1654 assert_pipe_disabled(dev_priv, pipe);
1655
50b44a44
DV
1656 I915_WRITE(DPLL(pipe), 0);
1657 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1658}
1659
f6071166
JB
1660static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1661{
1662 u32 val = 0;
1663
1664 /* Make sure the pipe isn't still relying on us */
1665 assert_pipe_disabled(dev_priv, pipe);
1666
e5cbfbfb
ID
1667 /*
1668 * Leave integrated clock source and reference clock enabled for pipe B.
1669 * The latter is needed for VGA hotplug / manual detection.
1670 */
f6071166 1671 if (pipe == PIPE_B)
e5cbfbfb 1672 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1673 I915_WRITE(DPLL(pipe), val);
1674 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1675
1676}
1677
1678static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1679{
d752048d 1680 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1681 u32 val;
1682
a11b0703
VS
1683 /* Make sure the pipe isn't still relying on us */
1684 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1685
a11b0703
VS
1686 /* Set PLL en = 0 */
1687 val = DPLL_SSC_REF_CLOCK_CHV;
1688 if (pipe != PIPE_A)
1689 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1690 I915_WRITE(DPLL(pipe), val);
1691 POSTING_READ(DPLL(pipe));
d752048d
VS
1692
1693 mutex_lock(&dev_priv->dpio_lock);
1694
1695 /* Disable 10bit clock to display controller */
1696 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1697 val &= ~DPIO_DCLKP_EN;
1698 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1699
61407f6d
VS
1700 /* disable left/right clock distribution */
1701 if (pipe != PIPE_B) {
1702 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1703 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1704 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1705 } else {
1706 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1707 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1708 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1709 }
1710
d752048d 1711 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1712}
1713
e4607fcf
CML
1714void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1715 struct intel_digital_port *dport)
89b667f8
JB
1716{
1717 u32 port_mask;
00fc31b7 1718 int dpll_reg;
89b667f8 1719
e4607fcf
CML
1720 switch (dport->port) {
1721 case PORT_B:
89b667f8 1722 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1723 dpll_reg = DPLL(0);
e4607fcf
CML
1724 break;
1725 case PORT_C:
89b667f8 1726 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1727 dpll_reg = DPLL(0);
1728 break;
1729 case PORT_D:
1730 port_mask = DPLL_PORTD_READY_MASK;
1731 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1732 break;
1733 default:
1734 BUG();
1735 }
89b667f8 1736
00fc31b7 1737 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1738 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1739 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1740}
1741
b14b1055
DV
1742static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1743{
1744 struct drm_device *dev = crtc->base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1747
be19f0ff
CW
1748 if (WARN_ON(pll == NULL))
1749 return;
1750
b14b1055
DV
1751 WARN_ON(!pll->refcount);
1752 if (pll->active == 0) {
1753 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1754 WARN_ON(pll->on);
1755 assert_shared_dpll_disabled(dev_priv, pll);
1756
1757 pll->mode_set(dev_priv, pll);
1758 }
1759}
1760
92f2584a 1761/**
85b3894f 1762 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1763 * @dev_priv: i915 private structure
1764 * @pipe: pipe PLL to enable
1765 *
1766 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1767 * drives the transcoder clock.
1768 */
85b3894f 1769static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1770{
3d13ef2e
DL
1771 struct drm_device *dev = crtc->base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1773 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1774
87a875bb 1775 if (WARN_ON(pll == NULL))
48da64a8
CW
1776 return;
1777
1778 if (WARN_ON(pll->refcount == 0))
1779 return;
ee7b9f93 1780
74dd6928 1781 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1782 pll->name, pll->active, pll->on,
e2b78267 1783 crtc->base.base.id);
92f2584a 1784
cdbd2316
DV
1785 if (pll->active++) {
1786 WARN_ON(!pll->on);
e9d6944e 1787 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1788 return;
1789 }
f4a091c7 1790 WARN_ON(pll->on);
ee7b9f93 1791
bd2bb1b9
PZ
1792 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1793
46edb027 1794 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1795 pll->enable(dev_priv, pll);
ee7b9f93 1796 pll->on = true;
92f2584a
JB
1797}
1798
716c2e55 1799void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1800{
3d13ef2e
DL
1801 struct drm_device *dev = crtc->base.dev;
1802 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1803 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1804
92f2584a 1805 /* PCH only available on ILK+ */
3d13ef2e 1806 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1807 if (WARN_ON(pll == NULL))
ee7b9f93 1808 return;
92f2584a 1809
48da64a8
CW
1810 if (WARN_ON(pll->refcount == 0))
1811 return;
7a419866 1812
46edb027
DV
1813 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1814 pll->name, pll->active, pll->on,
e2b78267 1815 crtc->base.base.id);
7a419866 1816
48da64a8 1817 if (WARN_ON(pll->active == 0)) {
e9d6944e 1818 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1819 return;
1820 }
1821
e9d6944e 1822 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1823 WARN_ON(!pll->on);
cdbd2316 1824 if (--pll->active)
7a419866 1825 return;
ee7b9f93 1826
46edb027 1827 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1828 pll->disable(dev_priv, pll);
ee7b9f93 1829 pll->on = false;
bd2bb1b9
PZ
1830
1831 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1832}
1833
b8a4f404
PZ
1834static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1835 enum pipe pipe)
040484af 1836{
23670b32 1837 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1838 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1840 uint32_t reg, val, pipeconf_val;
040484af
JB
1841
1842 /* PCH only available on ILK+ */
3d13ef2e 1843 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1844
1845 /* Make sure PCH DPLL is enabled */
e72f9fbf 1846 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1847 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1848
1849 /* FDI must be feeding us bits for PCH ports */
1850 assert_fdi_tx_enabled(dev_priv, pipe);
1851 assert_fdi_rx_enabled(dev_priv, pipe);
1852
23670b32
DV
1853 if (HAS_PCH_CPT(dev)) {
1854 /* Workaround: Set the timing override bit before enabling the
1855 * pch transcoder. */
1856 reg = TRANS_CHICKEN2(pipe);
1857 val = I915_READ(reg);
1858 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1859 I915_WRITE(reg, val);
59c859d6 1860 }
23670b32 1861
ab9412ba 1862 reg = PCH_TRANSCONF(pipe);
040484af 1863 val = I915_READ(reg);
5f7f726d 1864 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1865
1866 if (HAS_PCH_IBX(dev_priv->dev)) {
1867 /*
1868 * make the BPC in transcoder be consistent with
1869 * that in pipeconf reg.
1870 */
dfd07d72
DV
1871 val &= ~PIPECONF_BPC_MASK;
1872 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1873 }
5f7f726d
PZ
1874
1875 val &= ~TRANS_INTERLACE_MASK;
1876 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1877 if (HAS_PCH_IBX(dev_priv->dev) &&
1878 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1879 val |= TRANS_LEGACY_INTERLACED_ILK;
1880 else
1881 val |= TRANS_INTERLACED;
5f7f726d
PZ
1882 else
1883 val |= TRANS_PROGRESSIVE;
1884
040484af
JB
1885 I915_WRITE(reg, val | TRANS_ENABLE);
1886 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1887 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1888}
1889
8fb033d7 1890static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1891 enum transcoder cpu_transcoder)
040484af 1892{
8fb033d7 1893 u32 val, pipeconf_val;
8fb033d7
PZ
1894
1895 /* PCH only available on ILK+ */
3d13ef2e 1896 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1897
8fb033d7 1898 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1899 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1900 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1901
223a6fdf
PZ
1902 /* Workaround: set timing override bit. */
1903 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1904 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1905 I915_WRITE(_TRANSA_CHICKEN2, val);
1906
25f3ef11 1907 val = TRANS_ENABLE;
937bb610 1908 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1909
9a76b1c6
PZ
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1911 PIPECONF_INTERLACED_ILK)
a35f2679 1912 val |= TRANS_INTERLACED;
8fb033d7
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
ab9412ba
DV
1916 I915_WRITE(LPT_TRANSCONF, val);
1917 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1918 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1919}
1920
b8a4f404
PZ
1921static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum pipe pipe)
040484af 1923{
23670b32
DV
1924 struct drm_device *dev = dev_priv->dev;
1925 uint32_t reg, val;
040484af
JB
1926
1927 /* FDI relies on the transcoder */
1928 assert_fdi_tx_disabled(dev_priv, pipe);
1929 assert_fdi_rx_disabled(dev_priv, pipe);
1930
291906f1
JB
1931 /* Ports must be off as well */
1932 assert_pch_ports_disabled(dev_priv, pipe);
1933
ab9412ba 1934 reg = PCH_TRANSCONF(pipe);
040484af
JB
1935 val = I915_READ(reg);
1936 val &= ~TRANS_ENABLE;
1937 I915_WRITE(reg, val);
1938 /* wait for PCH transcoder off, transcoder state */
1939 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1940 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1941
1942 if (!HAS_PCH_IBX(dev)) {
1943 /* Workaround: Clear the timing override chicken bit again. */
1944 reg = TRANS_CHICKEN2(pipe);
1945 val = I915_READ(reg);
1946 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1947 I915_WRITE(reg, val);
1948 }
040484af
JB
1949}
1950
ab4d966c 1951static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1952{
8fb033d7
PZ
1953 u32 val;
1954
ab9412ba 1955 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1956 val &= ~TRANS_ENABLE;
ab9412ba 1957 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1958 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1959 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1960 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1961
1962 /* Workaround: clear timing override bit. */
1963 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1964 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1965 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1966}
1967
b24e7179 1968/**
309cfea8 1969 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1970 * @crtc: crtc responsible for the pipe
b24e7179 1971 *
0372264a 1972 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1973 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1974 */
e1fdc473 1975static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1976{
0372264a
PZ
1977 struct drm_device *dev = crtc->base.dev;
1978 struct drm_i915_private *dev_priv = dev->dev_private;
1979 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1980 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1981 pipe);
1a240d4d 1982 enum pipe pch_transcoder;
b24e7179
JB
1983 int reg;
1984 u32 val;
1985
58c6eaa2 1986 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1987 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1988 assert_sprites_disabled(dev_priv, pipe);
1989
681e5811 1990 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1991 pch_transcoder = TRANSCODER_A;
1992 else
1993 pch_transcoder = pipe;
1994
b24e7179
JB
1995 /*
1996 * A pipe without a PLL won't actually be able to drive bits from
1997 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1998 * need the check.
1999 */
2000 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2001 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2002 assert_dsi_pll_enabled(dev_priv);
2003 else
2004 assert_pll_enabled(dev_priv, pipe);
040484af 2005 else {
30421c4f 2006 if (crtc->config.has_pch_encoder) {
040484af 2007 /* if driving the PCH, we need FDI enabled */
cc391bbb 2008 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2009 assert_fdi_tx_pll_enabled(dev_priv,
2010 (enum pipe) cpu_transcoder);
040484af
JB
2011 }
2012 /* FIXME: assert CPU port conditions for SNB+ */
2013 }
b24e7179 2014
702e7a56 2015 reg = PIPECONF(cpu_transcoder);
b24e7179 2016 val = I915_READ(reg);
7ad25d48
PZ
2017 if (val & PIPECONF_ENABLE) {
2018 WARN_ON(!(pipe == PIPE_A &&
2019 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2020 return;
7ad25d48 2021 }
00d70b15
CW
2022
2023 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2024 POSTING_READ(reg);
b24e7179
JB
2025}
2026
2027/**
309cfea8 2028 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2029 * @dev_priv: i915 private structure
2030 * @pipe: pipe to disable
2031 *
2032 * Disable @pipe, making sure that various hardware specific requirements
2033 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2034 *
2035 * @pipe should be %PIPE_A or %PIPE_B.
2036 *
2037 * Will wait until the pipe has shut down before returning.
2038 */
2039static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2040 enum pipe pipe)
2041{
702e7a56
PZ
2042 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2043 pipe);
b24e7179
JB
2044 int reg;
2045 u32 val;
2046
2047 /*
2048 * Make sure planes won't keep trying to pump pixels to us,
2049 * or we might hang the display.
2050 */
2051 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2052 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2053 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2054
2055 /* Don't disable pipe A or pipe A PLLs if needed */
2056 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2057 return;
2058
702e7a56 2059 reg = PIPECONF(cpu_transcoder);
b24e7179 2060 val = I915_READ(reg);
00d70b15
CW
2061 if ((val & PIPECONF_ENABLE) == 0)
2062 return;
2063
2064 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2065 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2066}
2067
d74362c9
KP
2068/*
2069 * Plane regs are double buffered, going from enabled->disabled needs a
2070 * trigger in order to latch. The display address reg provides this.
2071 */
1dba99f4
VS
2072void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2073 enum plane plane)
d74362c9 2074{
3d13ef2e
DL
2075 struct drm_device *dev = dev_priv->dev;
2076 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2077
2078 I915_WRITE(reg, I915_READ(reg));
2079 POSTING_READ(reg);
d74362c9
KP
2080}
2081
b24e7179 2082/**
262ca2b0 2083 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2084 * @dev_priv: i915 private structure
2085 * @plane: plane to enable
2086 * @pipe: pipe being fed
2087 *
2088 * Enable @plane on @pipe, making sure that @pipe is running first.
2089 */
262ca2b0
MR
2090static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2091 enum plane plane, enum pipe pipe)
b24e7179 2092{
33c3b0d1 2093 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2094 struct intel_crtc *intel_crtc =
2095 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2096 int reg;
2097 u32 val;
2098
2099 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2100 assert_pipe_enabled(dev_priv, pipe);
2101
98ec7739
VS
2102 if (intel_crtc->primary_enabled)
2103 return;
0037f71c 2104
4c445e0e 2105 intel_crtc->primary_enabled = true;
939c2fe8 2106
b24e7179
JB
2107 reg = DSPCNTR(plane);
2108 val = I915_READ(reg);
10efa932 2109 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2110
2111 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2112 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2113
2114 /*
2115 * BDW signals flip done immediately if the plane
2116 * is disabled, even if the plane enable is already
2117 * armed to occur at the next vblank :(
2118 */
2119 if (IS_BROADWELL(dev))
2120 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2121}
2122
b24e7179 2123/**
262ca2b0 2124 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2125 * @dev_priv: i915 private structure
2126 * @plane: plane to disable
2127 * @pipe: pipe consuming the data
2128 *
2129 * Disable @plane; should be an independent operation.
2130 */
262ca2b0
MR
2131static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2132 enum plane plane, enum pipe pipe)
b24e7179 2133{
939c2fe8
VS
2134 struct intel_crtc *intel_crtc =
2135 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2136 int reg;
2137 u32 val;
2138
98ec7739
VS
2139 if (!intel_crtc->primary_enabled)
2140 return;
0037f71c 2141
4c445e0e 2142 intel_crtc->primary_enabled = false;
939c2fe8 2143
b24e7179
JB
2144 reg = DSPCNTR(plane);
2145 val = I915_READ(reg);
10efa932 2146 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2147
2148 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2149 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2150}
2151
693db184
CW
2152static bool need_vtd_wa(struct drm_device *dev)
2153{
2154#ifdef CONFIG_INTEL_IOMMU
2155 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2156 return true;
2157#endif
2158 return false;
2159}
2160
a57ce0b2
JB
2161static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2162{
2163 int tile_height;
2164
2165 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2166 return ALIGN(height, tile_height);
2167}
2168
127bd2ac 2169int
48b956c5 2170intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2171 struct drm_i915_gem_object *obj,
a4872ba6 2172 struct intel_engine_cs *pipelined)
6b95a207 2173{
ce453d81 2174 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2175 u32 alignment;
2176 int ret;
2177
ebcdd39e
MR
2178 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2179
05394f39 2180 switch (obj->tiling_mode) {
6b95a207 2181 case I915_TILING_NONE:
534843da
CW
2182 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2183 alignment = 128 * 1024;
a6c45cf0 2184 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2185 alignment = 4 * 1024;
2186 else
2187 alignment = 64 * 1024;
6b95a207
KH
2188 break;
2189 case I915_TILING_X:
2190 /* pin() will align the object as required by fence */
2191 alignment = 0;
2192 break;
2193 case I915_TILING_Y:
80075d49 2194 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2195 return -EINVAL;
2196 default:
2197 BUG();
2198 }
2199
693db184
CW
2200 /* Note that the w/a also requires 64 PTE of padding following the
2201 * bo. We currently fill all unused PTE with the shadow page and so
2202 * we should always have valid PTE following the scanout preventing
2203 * the VT-d warning.
2204 */
2205 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2206 alignment = 256 * 1024;
2207
ce453d81 2208 dev_priv->mm.interruptible = false;
2da3b9b9 2209 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2210 if (ret)
ce453d81 2211 goto err_interruptible;
6b95a207
KH
2212
2213 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2214 * fence, whereas 965+ only requires a fence if using
2215 * framebuffer compression. For simplicity, we always install
2216 * a fence as the cost is not that onerous.
2217 */
06d98131 2218 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2219 if (ret)
2220 goto err_unpin;
1690e1eb 2221
9a5a53b3 2222 i915_gem_object_pin_fence(obj);
6b95a207 2223
ce453d81 2224 dev_priv->mm.interruptible = true;
6b95a207 2225 return 0;
48b956c5
CW
2226
2227err_unpin:
cc98b413 2228 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2229err_interruptible:
2230 dev_priv->mm.interruptible = true;
48b956c5 2231 return ret;
6b95a207
KH
2232}
2233
1690e1eb
CW
2234void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2235{
ebcdd39e
MR
2236 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2237
1690e1eb 2238 i915_gem_object_unpin_fence(obj);
cc98b413 2239 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2240}
2241
c2c75131
DV
2242/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2243 * is assumed to be a power-of-two. */
bc752862
CW
2244unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2245 unsigned int tiling_mode,
2246 unsigned int cpp,
2247 unsigned int pitch)
c2c75131 2248{
bc752862
CW
2249 if (tiling_mode != I915_TILING_NONE) {
2250 unsigned int tile_rows, tiles;
c2c75131 2251
bc752862
CW
2252 tile_rows = *y / 8;
2253 *y %= 8;
c2c75131 2254
bc752862
CW
2255 tiles = *x / (512/cpp);
2256 *x %= 512/cpp;
2257
2258 return tile_rows * pitch * 8 + tiles * 4096;
2259 } else {
2260 unsigned int offset;
2261
2262 offset = *y * pitch + *x * cpp;
2263 *y = 0;
2264 *x = (offset & 4095) / cpp;
2265 return offset & -4096;
2266 }
c2c75131
DV
2267}
2268
46f297fb
JB
2269int intel_format_to_fourcc(int format)
2270{
2271 switch (format) {
2272 case DISPPLANE_8BPP:
2273 return DRM_FORMAT_C8;
2274 case DISPPLANE_BGRX555:
2275 return DRM_FORMAT_XRGB1555;
2276 case DISPPLANE_BGRX565:
2277 return DRM_FORMAT_RGB565;
2278 default:
2279 case DISPPLANE_BGRX888:
2280 return DRM_FORMAT_XRGB8888;
2281 case DISPPLANE_RGBX888:
2282 return DRM_FORMAT_XBGR8888;
2283 case DISPPLANE_BGRX101010:
2284 return DRM_FORMAT_XRGB2101010;
2285 case DISPPLANE_RGBX101010:
2286 return DRM_FORMAT_XBGR2101010;
2287 }
2288}
2289
484b41dd 2290static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2291 struct intel_plane_config *plane_config)
2292{
2293 struct drm_device *dev = crtc->base.dev;
2294 struct drm_i915_gem_object *obj = NULL;
2295 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2296 u32 base = plane_config->base;
2297
ff2652ea
CW
2298 if (plane_config->size == 0)
2299 return false;
2300
46f297fb
JB
2301 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2302 plane_config->size);
2303 if (!obj)
484b41dd 2304 return false;
46f297fb
JB
2305
2306 if (plane_config->tiled) {
2307 obj->tiling_mode = I915_TILING_X;
66e514c1 2308 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2309 }
2310
66e514c1
DA
2311 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2312 mode_cmd.width = crtc->base.primary->fb->width;
2313 mode_cmd.height = crtc->base.primary->fb->height;
2314 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2315
2316 mutex_lock(&dev->struct_mutex);
2317
66e514c1 2318 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2319 &mode_cmd, obj)) {
46f297fb
JB
2320 DRM_DEBUG_KMS("intel fb init failed\n");
2321 goto out_unref_obj;
2322 }
2323
a071fa00 2324 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2325 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2326
2327 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2328 return true;
46f297fb
JB
2329
2330out_unref_obj:
2331 drm_gem_object_unreference(&obj->base);
2332 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2333 return false;
2334}
2335
2336static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2337 struct intel_plane_config *plane_config)
2338{
2339 struct drm_device *dev = intel_crtc->base.dev;
2340 struct drm_crtc *c;
2341 struct intel_crtc *i;
2ff8fde1 2342 struct drm_i915_gem_object *obj;
484b41dd 2343
66e514c1 2344 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2345 return;
2346
2347 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2348 return;
2349
66e514c1
DA
2350 kfree(intel_crtc->base.primary->fb);
2351 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2352
2353 /*
2354 * Failed to alloc the obj, check to see if we should share
2355 * an fb with another CRTC instead
2356 */
70e1e0ec 2357 for_each_crtc(dev, c) {
484b41dd
JB
2358 i = to_intel_crtc(c);
2359
2360 if (c == &intel_crtc->base)
2361 continue;
2362
2ff8fde1
MR
2363 if (!i->active)
2364 continue;
2365
2366 obj = intel_fb_obj(c->primary->fb);
2367 if (obj == NULL)
484b41dd
JB
2368 continue;
2369
2ff8fde1 2370 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2371 drm_framebuffer_reference(c->primary->fb);
2372 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2373 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2374 break;
2375 }
2376 }
46f297fb
JB
2377}
2378
29b9bde6
DV
2379static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2380 struct drm_framebuffer *fb,
2381 int x, int y)
81255565
JB
2382{
2383 struct drm_device *dev = crtc->dev;
2384 struct drm_i915_private *dev_priv = dev->dev_private;
2385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2386 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2387 int plane = intel_crtc->plane;
e506a0c6 2388 unsigned long linear_offset;
81255565 2389 u32 dspcntr;
5eddb70b 2390 u32 reg;
81255565 2391
5eddb70b
CW
2392 reg = DSPCNTR(plane);
2393 dspcntr = I915_READ(reg);
81255565
JB
2394 /* Mask out pixel format bits in case we change it */
2395 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2396 switch (fb->pixel_format) {
2397 case DRM_FORMAT_C8:
81255565
JB
2398 dspcntr |= DISPPLANE_8BPP;
2399 break;
57779d06
VS
2400 case DRM_FORMAT_XRGB1555:
2401 case DRM_FORMAT_ARGB1555:
2402 dspcntr |= DISPPLANE_BGRX555;
81255565 2403 break;
57779d06
VS
2404 case DRM_FORMAT_RGB565:
2405 dspcntr |= DISPPLANE_BGRX565;
2406 break;
2407 case DRM_FORMAT_XRGB8888:
2408 case DRM_FORMAT_ARGB8888:
2409 dspcntr |= DISPPLANE_BGRX888;
2410 break;
2411 case DRM_FORMAT_XBGR8888:
2412 case DRM_FORMAT_ABGR8888:
2413 dspcntr |= DISPPLANE_RGBX888;
2414 break;
2415 case DRM_FORMAT_XRGB2101010:
2416 case DRM_FORMAT_ARGB2101010:
2417 dspcntr |= DISPPLANE_BGRX101010;
2418 break;
2419 case DRM_FORMAT_XBGR2101010:
2420 case DRM_FORMAT_ABGR2101010:
2421 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2422 break;
2423 default:
baba133a 2424 BUG();
81255565 2425 }
57779d06 2426
a6c45cf0 2427 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2428 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2429 dspcntr |= DISPPLANE_TILED;
2430 else
2431 dspcntr &= ~DISPPLANE_TILED;
2432 }
2433
de1aa629
VS
2434 if (IS_G4X(dev))
2435 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2436
5eddb70b 2437 I915_WRITE(reg, dspcntr);
81255565 2438
e506a0c6 2439 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2440
c2c75131
DV
2441 if (INTEL_INFO(dev)->gen >= 4) {
2442 intel_crtc->dspaddr_offset =
bc752862
CW
2443 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2444 fb->bits_per_pixel / 8,
2445 fb->pitches[0]);
c2c75131
DV
2446 linear_offset -= intel_crtc->dspaddr_offset;
2447 } else {
e506a0c6 2448 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2449 }
e506a0c6 2450
f343c5f6
BW
2451 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2452 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2453 fb->pitches[0]);
01f2c773 2454 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2455 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2456 I915_WRITE(DSPSURF(plane),
2457 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2458 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2459 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2460 } else
f343c5f6 2461 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2462 POSTING_READ(reg);
17638cd6
JB
2463}
2464
29b9bde6
DV
2465static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2466 struct drm_framebuffer *fb,
2467 int x, int y)
17638cd6
JB
2468{
2469 struct drm_device *dev = crtc->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2472 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2473 int plane = intel_crtc->plane;
e506a0c6 2474 unsigned long linear_offset;
17638cd6
JB
2475 u32 dspcntr;
2476 u32 reg;
2477
17638cd6
JB
2478 reg = DSPCNTR(plane);
2479 dspcntr = I915_READ(reg);
2480 /* Mask out pixel format bits in case we change it */
2481 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
17638cd6
JB
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
57779d06
VS
2486 case DRM_FORMAT_RGB565:
2487 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2488 break;
57779d06
VS
2489 case DRM_FORMAT_XRGB8888:
2490 case DRM_FORMAT_ARGB8888:
2491 dspcntr |= DISPPLANE_BGRX888;
2492 break;
2493 case DRM_FORMAT_XBGR8888:
2494 case DRM_FORMAT_ABGR8888:
2495 dspcntr |= DISPPLANE_RGBX888;
2496 break;
2497 case DRM_FORMAT_XRGB2101010:
2498 case DRM_FORMAT_ARGB2101010:
2499 dspcntr |= DISPPLANE_BGRX101010;
2500 break;
2501 case DRM_FORMAT_XBGR2101010:
2502 case DRM_FORMAT_ABGR2101010:
2503 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2504 break;
2505 default:
baba133a 2506 BUG();
17638cd6
JB
2507 }
2508
2509 if (obj->tiling_mode != I915_TILING_NONE)
2510 dspcntr |= DISPPLANE_TILED;
2511 else
2512 dspcntr &= ~DISPPLANE_TILED;
2513
b42c6009 2514 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2515 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2516 else
2517 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2518
2519 I915_WRITE(reg, dspcntr);
2520
e506a0c6 2521 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2522 intel_crtc->dspaddr_offset =
bc752862
CW
2523 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2524 fb->bits_per_pixel / 8,
2525 fb->pitches[0]);
c2c75131 2526 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2527
f343c5f6
BW
2528 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2529 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2530 fb->pitches[0]);
01f2c773 2531 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2532 I915_WRITE(DSPSURF(plane),
2533 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2534 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2535 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2536 } else {
2537 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2538 I915_WRITE(DSPLINOFF(plane), linear_offset);
2539 }
17638cd6 2540 POSTING_READ(reg);
17638cd6
JB
2541}
2542
2543/* Assume fb object is pinned & idle & fenced and just update base pointers */
2544static int
2545intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2546 int x, int y, enum mode_set_atomic state)
2547{
2548 struct drm_device *dev = crtc->dev;
2549 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2550
6b8e6ed0
CW
2551 if (dev_priv->display.disable_fbc)
2552 dev_priv->display.disable_fbc(dev);
cc36513c 2553 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2554
29b9bde6
DV
2555 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2556
2557 return 0;
81255565
JB
2558}
2559
96a02917
VS
2560void intel_display_handle_reset(struct drm_device *dev)
2561{
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct drm_crtc *crtc;
2564
2565 /*
2566 * Flips in the rings have been nuked by the reset,
2567 * so complete all pending flips so that user space
2568 * will get its events and not get stuck.
2569 *
2570 * Also update the base address of all primary
2571 * planes to the the last fb to make sure we're
2572 * showing the correct fb after a reset.
2573 *
2574 * Need to make two loops over the crtcs so that we
2575 * don't try to grab a crtc mutex before the
2576 * pending_flip_queue really got woken up.
2577 */
2578
70e1e0ec 2579 for_each_crtc(dev, crtc) {
96a02917
VS
2580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2581 enum plane plane = intel_crtc->plane;
2582
2583 intel_prepare_page_flip(dev, plane);
2584 intel_finish_page_flip_plane(dev, plane);
2585 }
2586
70e1e0ec 2587 for_each_crtc(dev, crtc) {
96a02917
VS
2588 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2589
51fd371b 2590 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2591 /*
2592 * FIXME: Once we have proper support for primary planes (and
2593 * disabling them without disabling the entire crtc) allow again
66e514c1 2594 * a NULL crtc->primary->fb.
947fdaad 2595 */
f4510a27 2596 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2597 dev_priv->display.update_primary_plane(crtc,
66e514c1 2598 crtc->primary->fb,
262ca2b0
MR
2599 crtc->x,
2600 crtc->y);
51fd371b 2601 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2602 }
2603}
2604
14667a4b
CW
2605static int
2606intel_finish_fb(struct drm_framebuffer *old_fb)
2607{
2ff8fde1 2608 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2609 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2610 bool was_interruptible = dev_priv->mm.interruptible;
2611 int ret;
2612
14667a4b
CW
2613 /* Big Hammer, we also need to ensure that any pending
2614 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2615 * current scanout is retired before unpinning the old
2616 * framebuffer.
2617 *
2618 * This should only fail upon a hung GPU, in which case we
2619 * can safely continue.
2620 */
2621 dev_priv->mm.interruptible = false;
2622 ret = i915_gem_object_finish_gpu(obj);
2623 dev_priv->mm.interruptible = was_interruptible;
2624
2625 return ret;
2626}
2627
7d5e3799
CW
2628static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2629{
2630 struct drm_device *dev = crtc->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2633 unsigned long flags;
2634 bool pending;
2635
2636 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2637 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2638 return false;
2639
2640 spin_lock_irqsave(&dev->event_lock, flags);
2641 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2642 spin_unlock_irqrestore(&dev->event_lock, flags);
2643
2644 return pending;
2645}
2646
5c3b82e2 2647static int
3c4fdcfb 2648intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2649 struct drm_framebuffer *fb)
79e53945
JB
2650{
2651 struct drm_device *dev = crtc->dev;
6b8e6ed0 2652 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2654 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2655 struct drm_framebuffer *old_fb = crtc->primary->fb;
2656 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2657 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2658 int ret;
79e53945 2659
7d5e3799
CW
2660 if (intel_crtc_has_pending_flip(crtc)) {
2661 DRM_ERROR("pipe is still busy with an old pageflip\n");
2662 return -EBUSY;
2663 }
2664
79e53945 2665 /* no fb bound */
94352cf9 2666 if (!fb) {
a5071c2f 2667 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2668 return 0;
2669 }
2670
7eb552ae 2671 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2672 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2673 plane_name(intel_crtc->plane),
2674 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2675 return -EINVAL;
79e53945
JB
2676 }
2677
5c3b82e2 2678 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2679 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2680 if (ret == 0)
91565c85 2681 i915_gem_track_fb(old_obj, obj,
a071fa00 2682 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2683 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2684 if (ret != 0) {
a5071c2f 2685 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2686 return ret;
2687 }
79e53945 2688
bb2043de
DL
2689 /*
2690 * Update pipe size and adjust fitter if needed: the reason for this is
2691 * that in compute_mode_changes we check the native mode (not the pfit
2692 * mode) to see if we can flip rather than do a full mode set. In the
2693 * fastboot case, we'll flip, but if we don't update the pipesrc and
2694 * pfit state, we'll end up with a big fb scanned out into the wrong
2695 * sized surface.
2696 *
2697 * To fix this properly, we need to hoist the checks up into
2698 * compute_mode_changes (or above), check the actual pfit state and
2699 * whether the platform allows pfit disable with pipe active, and only
2700 * then update the pipesrc and pfit state, even on the flip path.
2701 */
d330a953 2702 if (i915.fastboot) {
d7bf63f2
DL
2703 const struct drm_display_mode *adjusted_mode =
2704 &intel_crtc->config.adjusted_mode;
2705
4d6a3e63 2706 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2707 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2708 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2709 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2710 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2711 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2712 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2713 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2714 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2715 }
0637d60d
JB
2716 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2717 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2718 }
2719
29b9bde6 2720 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2721
f99d7069
DV
2722 if (intel_crtc->active)
2723 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2724
f4510a27 2725 crtc->primary->fb = fb;
6c4c86f5
DV
2726 crtc->x = x;
2727 crtc->y = y;
94352cf9 2728
b7f1de28 2729 if (old_fb) {
d7697eea
DV
2730 if (intel_crtc->active && old_fb != fb)
2731 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2732 mutex_lock(&dev->struct_mutex);
2ff8fde1 2733 intel_unpin_fb_obj(old_obj);
8ac36ec1 2734 mutex_unlock(&dev->struct_mutex);
b7f1de28 2735 }
652c393a 2736
8ac36ec1 2737 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2738 intel_update_fbc(dev);
5c3b82e2 2739 mutex_unlock(&dev->struct_mutex);
79e53945 2740
5c3b82e2 2741 return 0;
79e53945
JB
2742}
2743
5e84e1a4
ZW
2744static void intel_fdi_normal_train(struct drm_crtc *crtc)
2745{
2746 struct drm_device *dev = crtc->dev;
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2749 int pipe = intel_crtc->pipe;
2750 u32 reg, temp;
2751
2752 /* enable normal train */
2753 reg = FDI_TX_CTL(pipe);
2754 temp = I915_READ(reg);
61e499bf 2755 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2756 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2757 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2758 } else {
2759 temp &= ~FDI_LINK_TRAIN_NONE;
2760 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2761 }
5e84e1a4
ZW
2762 I915_WRITE(reg, temp);
2763
2764 reg = FDI_RX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 if (HAS_PCH_CPT(dev)) {
2767 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2768 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2769 } else {
2770 temp &= ~FDI_LINK_TRAIN_NONE;
2771 temp |= FDI_LINK_TRAIN_NONE;
2772 }
2773 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2774
2775 /* wait one idle pattern time */
2776 POSTING_READ(reg);
2777 udelay(1000);
357555c0
JB
2778
2779 /* IVB wants error correction enabled */
2780 if (IS_IVYBRIDGE(dev))
2781 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2782 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2783}
2784
1fbc0d78 2785static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2786{
1fbc0d78
DV
2787 return crtc->base.enabled && crtc->active &&
2788 crtc->config.has_pch_encoder;
1e833f40
DV
2789}
2790
01a415fd
DV
2791static void ivb_modeset_global_resources(struct drm_device *dev)
2792{
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 struct intel_crtc *pipe_B_crtc =
2795 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2796 struct intel_crtc *pipe_C_crtc =
2797 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2798 uint32_t temp;
2799
1e833f40
DV
2800 /*
2801 * When everything is off disable fdi C so that we could enable fdi B
2802 * with all lanes. Note that we don't care about enabled pipes without
2803 * an enabled pch encoder.
2804 */
2805 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2806 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2807 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2808 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2809
2810 temp = I915_READ(SOUTH_CHICKEN1);
2811 temp &= ~FDI_BC_BIFURCATION_SELECT;
2812 DRM_DEBUG_KMS("disabling fdi C rx\n");
2813 I915_WRITE(SOUTH_CHICKEN1, temp);
2814 }
2815}
2816
8db9d77b
ZW
2817/* The FDI link training functions for ILK/Ibexpeak. */
2818static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2819{
2820 struct drm_device *dev = crtc->dev;
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2823 int pipe = intel_crtc->pipe;
5eddb70b 2824 u32 reg, temp, tries;
8db9d77b 2825
1c8562f6 2826 /* FDI needs bits from pipe first */
0fc932b8 2827 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2828
e1a44743
AJ
2829 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2830 for train result */
5eddb70b
CW
2831 reg = FDI_RX_IMR(pipe);
2832 temp = I915_READ(reg);
e1a44743
AJ
2833 temp &= ~FDI_RX_SYMBOL_LOCK;
2834 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2835 I915_WRITE(reg, temp);
2836 I915_READ(reg);
e1a44743
AJ
2837 udelay(150);
2838
8db9d77b 2839 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2840 reg = FDI_TX_CTL(pipe);
2841 temp = I915_READ(reg);
627eb5a3
DV
2842 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2843 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2844 temp &= ~FDI_LINK_TRAIN_NONE;
2845 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2846 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2847
5eddb70b
CW
2848 reg = FDI_RX_CTL(pipe);
2849 temp = I915_READ(reg);
8db9d77b
ZW
2850 temp &= ~FDI_LINK_TRAIN_NONE;
2851 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2852 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2853
2854 POSTING_READ(reg);
8db9d77b
ZW
2855 udelay(150);
2856
5b2adf89 2857 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2858 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2859 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2860 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2861
5eddb70b 2862 reg = FDI_RX_IIR(pipe);
e1a44743 2863 for (tries = 0; tries < 5; tries++) {
5eddb70b 2864 temp = I915_READ(reg);
8db9d77b
ZW
2865 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2866
2867 if ((temp & FDI_RX_BIT_LOCK)) {
2868 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2869 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2870 break;
2871 }
8db9d77b 2872 }
e1a44743 2873 if (tries == 5)
5eddb70b 2874 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2875
2876 /* Train 2 */
5eddb70b
CW
2877 reg = FDI_TX_CTL(pipe);
2878 temp = I915_READ(reg);
8db9d77b
ZW
2879 temp &= ~FDI_LINK_TRAIN_NONE;
2880 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2881 I915_WRITE(reg, temp);
8db9d77b 2882
5eddb70b
CW
2883 reg = FDI_RX_CTL(pipe);
2884 temp = I915_READ(reg);
8db9d77b
ZW
2885 temp &= ~FDI_LINK_TRAIN_NONE;
2886 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2887 I915_WRITE(reg, temp);
8db9d77b 2888
5eddb70b
CW
2889 POSTING_READ(reg);
2890 udelay(150);
8db9d77b 2891
5eddb70b 2892 reg = FDI_RX_IIR(pipe);
e1a44743 2893 for (tries = 0; tries < 5; tries++) {
5eddb70b 2894 temp = I915_READ(reg);
8db9d77b
ZW
2895 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2896
2897 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2898 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2899 DRM_DEBUG_KMS("FDI train 2 done.\n");
2900 break;
2901 }
8db9d77b 2902 }
e1a44743 2903 if (tries == 5)
5eddb70b 2904 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2905
2906 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2907
8db9d77b
ZW
2908}
2909
0206e353 2910static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2911 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2912 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2913 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2914 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2915};
2916
2917/* The FDI link training functions for SNB/Cougarpoint. */
2918static void gen6_fdi_link_train(struct drm_crtc *crtc)
2919{
2920 struct drm_device *dev = crtc->dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2923 int pipe = intel_crtc->pipe;
fa37d39e 2924 u32 reg, temp, i, retry;
8db9d77b 2925
e1a44743
AJ
2926 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2927 for train result */
5eddb70b
CW
2928 reg = FDI_RX_IMR(pipe);
2929 temp = I915_READ(reg);
e1a44743
AJ
2930 temp &= ~FDI_RX_SYMBOL_LOCK;
2931 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2932 I915_WRITE(reg, temp);
2933
2934 POSTING_READ(reg);
e1a44743
AJ
2935 udelay(150);
2936
8db9d77b 2937 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2938 reg = FDI_TX_CTL(pipe);
2939 temp = I915_READ(reg);
627eb5a3
DV
2940 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2941 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2942 temp &= ~FDI_LINK_TRAIN_NONE;
2943 temp |= FDI_LINK_TRAIN_PATTERN_1;
2944 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2945 /* SNB-B */
2946 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2947 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2948
d74cf324
DV
2949 I915_WRITE(FDI_RX_MISC(pipe),
2950 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2951
5eddb70b
CW
2952 reg = FDI_RX_CTL(pipe);
2953 temp = I915_READ(reg);
8db9d77b
ZW
2954 if (HAS_PCH_CPT(dev)) {
2955 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2956 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2957 } else {
2958 temp &= ~FDI_LINK_TRAIN_NONE;
2959 temp |= FDI_LINK_TRAIN_PATTERN_1;
2960 }
5eddb70b
CW
2961 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2962
2963 POSTING_READ(reg);
8db9d77b
ZW
2964 udelay(150);
2965
0206e353 2966 for (i = 0; i < 4; i++) {
5eddb70b
CW
2967 reg = FDI_TX_CTL(pipe);
2968 temp = I915_READ(reg);
8db9d77b
ZW
2969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2970 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2971 I915_WRITE(reg, temp);
2972
2973 POSTING_READ(reg);
8db9d77b
ZW
2974 udelay(500);
2975
fa37d39e
SP
2976 for (retry = 0; retry < 5; retry++) {
2977 reg = FDI_RX_IIR(pipe);
2978 temp = I915_READ(reg);
2979 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2980 if (temp & FDI_RX_BIT_LOCK) {
2981 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2982 DRM_DEBUG_KMS("FDI train 1 done.\n");
2983 break;
2984 }
2985 udelay(50);
8db9d77b 2986 }
fa37d39e
SP
2987 if (retry < 5)
2988 break;
8db9d77b
ZW
2989 }
2990 if (i == 4)
5eddb70b 2991 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2992
2993 /* Train 2 */
5eddb70b
CW
2994 reg = FDI_TX_CTL(pipe);
2995 temp = I915_READ(reg);
8db9d77b
ZW
2996 temp &= ~FDI_LINK_TRAIN_NONE;
2997 temp |= FDI_LINK_TRAIN_PATTERN_2;
2998 if (IS_GEN6(dev)) {
2999 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3000 /* SNB-B */
3001 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3002 }
5eddb70b 3003 I915_WRITE(reg, temp);
8db9d77b 3004
5eddb70b
CW
3005 reg = FDI_RX_CTL(pipe);
3006 temp = I915_READ(reg);
8db9d77b
ZW
3007 if (HAS_PCH_CPT(dev)) {
3008 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3009 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3010 } else {
3011 temp &= ~FDI_LINK_TRAIN_NONE;
3012 temp |= FDI_LINK_TRAIN_PATTERN_2;
3013 }
5eddb70b
CW
3014 I915_WRITE(reg, temp);
3015
3016 POSTING_READ(reg);
8db9d77b
ZW
3017 udelay(150);
3018
0206e353 3019 for (i = 0; i < 4; i++) {
5eddb70b
CW
3020 reg = FDI_TX_CTL(pipe);
3021 temp = I915_READ(reg);
8db9d77b
ZW
3022 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3023 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3024 I915_WRITE(reg, temp);
3025
3026 POSTING_READ(reg);
8db9d77b
ZW
3027 udelay(500);
3028
fa37d39e
SP
3029 for (retry = 0; retry < 5; retry++) {
3030 reg = FDI_RX_IIR(pipe);
3031 temp = I915_READ(reg);
3032 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3033 if (temp & FDI_RX_SYMBOL_LOCK) {
3034 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3035 DRM_DEBUG_KMS("FDI train 2 done.\n");
3036 break;
3037 }
3038 udelay(50);
8db9d77b 3039 }
fa37d39e
SP
3040 if (retry < 5)
3041 break;
8db9d77b
ZW
3042 }
3043 if (i == 4)
5eddb70b 3044 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3045
3046 DRM_DEBUG_KMS("FDI train done.\n");
3047}
3048
357555c0
JB
3049/* Manual link training for Ivy Bridge A0 parts */
3050static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3051{
3052 struct drm_device *dev = crtc->dev;
3053 struct drm_i915_private *dev_priv = dev->dev_private;
3054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3055 int pipe = intel_crtc->pipe;
139ccd3f 3056 u32 reg, temp, i, j;
357555c0
JB
3057
3058 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3059 for train result */
3060 reg = FDI_RX_IMR(pipe);
3061 temp = I915_READ(reg);
3062 temp &= ~FDI_RX_SYMBOL_LOCK;
3063 temp &= ~FDI_RX_BIT_LOCK;
3064 I915_WRITE(reg, temp);
3065
3066 POSTING_READ(reg);
3067 udelay(150);
3068
01a415fd
DV
3069 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3070 I915_READ(FDI_RX_IIR(pipe)));
3071
139ccd3f
JB
3072 /* Try each vswing and preemphasis setting twice before moving on */
3073 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3074 /* disable first in case we need to retry */
3075 reg = FDI_TX_CTL(pipe);
3076 temp = I915_READ(reg);
3077 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3078 temp &= ~FDI_TX_ENABLE;
3079 I915_WRITE(reg, temp);
357555c0 3080
139ccd3f
JB
3081 reg = FDI_RX_CTL(pipe);
3082 temp = I915_READ(reg);
3083 temp &= ~FDI_LINK_TRAIN_AUTO;
3084 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3085 temp &= ~FDI_RX_ENABLE;
3086 I915_WRITE(reg, temp);
357555c0 3087
139ccd3f 3088 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3089 reg = FDI_TX_CTL(pipe);
3090 temp = I915_READ(reg);
139ccd3f
JB
3091 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3092 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3093 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3094 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3095 temp |= snb_b_fdi_train_param[j/2];
3096 temp |= FDI_COMPOSITE_SYNC;
3097 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3098
139ccd3f
JB
3099 I915_WRITE(FDI_RX_MISC(pipe),
3100 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3101
139ccd3f 3102 reg = FDI_RX_CTL(pipe);
357555c0 3103 temp = I915_READ(reg);
139ccd3f
JB
3104 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3105 temp |= FDI_COMPOSITE_SYNC;
3106 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3107
139ccd3f
JB
3108 POSTING_READ(reg);
3109 udelay(1); /* should be 0.5us */
357555c0 3110
139ccd3f
JB
3111 for (i = 0; i < 4; i++) {
3112 reg = FDI_RX_IIR(pipe);
3113 temp = I915_READ(reg);
3114 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3115
139ccd3f
JB
3116 if (temp & FDI_RX_BIT_LOCK ||
3117 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3118 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3119 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3120 i);
3121 break;
3122 }
3123 udelay(1); /* should be 0.5us */
3124 }
3125 if (i == 4) {
3126 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3127 continue;
3128 }
357555c0 3129
139ccd3f 3130 /* Train 2 */
357555c0
JB
3131 reg = FDI_TX_CTL(pipe);
3132 temp = I915_READ(reg);
139ccd3f
JB
3133 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3134 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3135 I915_WRITE(reg, temp);
3136
3137 reg = FDI_RX_CTL(pipe);
3138 temp = I915_READ(reg);
3139 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3140 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3141 I915_WRITE(reg, temp);
3142
3143 POSTING_READ(reg);
139ccd3f 3144 udelay(2); /* should be 1.5us */
357555c0 3145
139ccd3f
JB
3146 for (i = 0; i < 4; i++) {
3147 reg = FDI_RX_IIR(pipe);
3148 temp = I915_READ(reg);
3149 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3150
139ccd3f
JB
3151 if (temp & FDI_RX_SYMBOL_LOCK ||
3152 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3153 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3154 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3155 i);
3156 goto train_done;
3157 }
3158 udelay(2); /* should be 1.5us */
357555c0 3159 }
139ccd3f
JB
3160 if (i == 4)
3161 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3162 }
357555c0 3163
139ccd3f 3164train_done:
357555c0
JB
3165 DRM_DEBUG_KMS("FDI train done.\n");
3166}
3167
88cefb6c 3168static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3169{
88cefb6c 3170 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3171 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3172 int pipe = intel_crtc->pipe;
5eddb70b 3173 u32 reg, temp;
79e53945 3174
c64e311e 3175
c98e9dcf 3176 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3177 reg = FDI_RX_CTL(pipe);
3178 temp = I915_READ(reg);
627eb5a3
DV
3179 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3180 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3181 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3182 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3183
3184 POSTING_READ(reg);
c98e9dcf
JB
3185 udelay(200);
3186
3187 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3188 temp = I915_READ(reg);
3189 I915_WRITE(reg, temp | FDI_PCDCLK);
3190
3191 POSTING_READ(reg);
c98e9dcf
JB
3192 udelay(200);
3193
20749730
PZ
3194 /* Enable CPU FDI TX PLL, always on for Ironlake */
3195 reg = FDI_TX_CTL(pipe);
3196 temp = I915_READ(reg);
3197 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3198 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3199
20749730
PZ
3200 POSTING_READ(reg);
3201 udelay(100);
6be4a607 3202 }
0e23b99d
JB
3203}
3204
88cefb6c
DV
3205static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3206{
3207 struct drm_device *dev = intel_crtc->base.dev;
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 int pipe = intel_crtc->pipe;
3210 u32 reg, temp;
3211
3212 /* Switch from PCDclk to Rawclk */
3213 reg = FDI_RX_CTL(pipe);
3214 temp = I915_READ(reg);
3215 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3216
3217 /* Disable CPU FDI TX PLL */
3218 reg = FDI_TX_CTL(pipe);
3219 temp = I915_READ(reg);
3220 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3221
3222 POSTING_READ(reg);
3223 udelay(100);
3224
3225 reg = FDI_RX_CTL(pipe);
3226 temp = I915_READ(reg);
3227 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3228
3229 /* Wait for the clocks to turn off. */
3230 POSTING_READ(reg);
3231 udelay(100);
3232}
3233
0fc932b8
JB
3234static void ironlake_fdi_disable(struct drm_crtc *crtc)
3235{
3236 struct drm_device *dev = crtc->dev;
3237 struct drm_i915_private *dev_priv = dev->dev_private;
3238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3239 int pipe = intel_crtc->pipe;
3240 u32 reg, temp;
3241
3242 /* disable CPU FDI tx and PCH FDI rx */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3246 POSTING_READ(reg);
3247
3248 reg = FDI_RX_CTL(pipe);
3249 temp = I915_READ(reg);
3250 temp &= ~(0x7 << 16);
dfd07d72 3251 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3252 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3253
3254 POSTING_READ(reg);
3255 udelay(100);
3256
3257 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3258 if (HAS_PCH_IBX(dev))
6f06ce18 3259 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3260
3261 /* still set train pattern 1 */
3262 reg = FDI_TX_CTL(pipe);
3263 temp = I915_READ(reg);
3264 temp &= ~FDI_LINK_TRAIN_NONE;
3265 temp |= FDI_LINK_TRAIN_PATTERN_1;
3266 I915_WRITE(reg, temp);
3267
3268 reg = FDI_RX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 if (HAS_PCH_CPT(dev)) {
3271 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3272 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3273 } else {
3274 temp &= ~FDI_LINK_TRAIN_NONE;
3275 temp |= FDI_LINK_TRAIN_PATTERN_1;
3276 }
3277 /* BPC in FDI rx is consistent with that in PIPECONF */
3278 temp &= ~(0x07 << 16);
dfd07d72 3279 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3280 I915_WRITE(reg, temp);
3281
3282 POSTING_READ(reg);
3283 udelay(100);
3284}
3285
5dce5b93
CW
3286bool intel_has_pending_fb_unpin(struct drm_device *dev)
3287{
3288 struct intel_crtc *crtc;
3289
3290 /* Note that we don't need to be called with mode_config.lock here
3291 * as our list of CRTC objects is static for the lifetime of the
3292 * device and so cannot disappear as we iterate. Similarly, we can
3293 * happily treat the predicates as racy, atomic checks as userspace
3294 * cannot claim and pin a new fb without at least acquring the
3295 * struct_mutex and so serialising with us.
3296 */
d3fcc808 3297 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3298 if (atomic_read(&crtc->unpin_work_count) == 0)
3299 continue;
3300
3301 if (crtc->unpin_work)
3302 intel_wait_for_vblank(dev, crtc->pipe);
3303
3304 return true;
3305 }
3306
3307 return false;
3308}
3309
46a55d30 3310void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3311{
0f91128d 3312 struct drm_device *dev = crtc->dev;
5bb61643 3313 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3314
f4510a27 3315 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3316 return;
3317
2c10d571
DV
3318 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3319
eed6d67d
DV
3320 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3321 !intel_crtc_has_pending_flip(crtc),
3322 60*HZ) == 0);
5bb61643 3323
0f91128d 3324 mutex_lock(&dev->struct_mutex);
f4510a27 3325 intel_finish_fb(crtc->primary->fb);
0f91128d 3326 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3327}
3328
e615efe4
ED
3329/* Program iCLKIP clock to the desired frequency */
3330static void lpt_program_iclkip(struct drm_crtc *crtc)
3331{
3332 struct drm_device *dev = crtc->dev;
3333 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3334 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3335 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3336 u32 temp;
3337
09153000
DV
3338 mutex_lock(&dev_priv->dpio_lock);
3339
e615efe4
ED
3340 /* It is necessary to ungate the pixclk gate prior to programming
3341 * the divisors, and gate it back when it is done.
3342 */
3343 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3344
3345 /* Disable SSCCTL */
3346 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3347 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3348 SBI_SSCCTL_DISABLE,
3349 SBI_ICLK);
e615efe4
ED
3350
3351 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3352 if (clock == 20000) {
e615efe4
ED
3353 auxdiv = 1;
3354 divsel = 0x41;
3355 phaseinc = 0x20;
3356 } else {
3357 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3358 * but the adjusted_mode->crtc_clock in in KHz. To get the
3359 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3360 * convert the virtual clock precision to KHz here for higher
3361 * precision.
3362 */
3363 u32 iclk_virtual_root_freq = 172800 * 1000;
3364 u32 iclk_pi_range = 64;
3365 u32 desired_divisor, msb_divisor_value, pi_value;
3366
12d7ceed 3367 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3368 msb_divisor_value = desired_divisor / iclk_pi_range;
3369 pi_value = desired_divisor % iclk_pi_range;
3370
3371 auxdiv = 0;
3372 divsel = msb_divisor_value - 2;
3373 phaseinc = pi_value;
3374 }
3375
3376 /* This should not happen with any sane values */
3377 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3378 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3379 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3380 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3381
3382 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3383 clock,
e615efe4
ED
3384 auxdiv,
3385 divsel,
3386 phasedir,
3387 phaseinc);
3388
3389 /* Program SSCDIVINTPHASE6 */
988d6ee8 3390 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3391 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3392 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3393 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3394 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3395 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3396 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3397 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3398
3399 /* Program SSCAUXDIV */
988d6ee8 3400 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3401 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3402 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3403 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3404
3405 /* Enable modulator and associated divider */
988d6ee8 3406 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3407 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3408 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3409
3410 /* Wait for initialization time */
3411 udelay(24);
3412
3413 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3414
3415 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3416}
3417
275f01b2
DV
3418static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3419 enum pipe pch_transcoder)
3420{
3421 struct drm_device *dev = crtc->base.dev;
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3424
3425 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3426 I915_READ(HTOTAL(cpu_transcoder)));
3427 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3428 I915_READ(HBLANK(cpu_transcoder)));
3429 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3430 I915_READ(HSYNC(cpu_transcoder)));
3431
3432 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3433 I915_READ(VTOTAL(cpu_transcoder)));
3434 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3435 I915_READ(VBLANK(cpu_transcoder)));
3436 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3437 I915_READ(VSYNC(cpu_transcoder)));
3438 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3439 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3440}
3441
1fbc0d78
DV
3442static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3443{
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 uint32_t temp;
3446
3447 temp = I915_READ(SOUTH_CHICKEN1);
3448 if (temp & FDI_BC_BIFURCATION_SELECT)
3449 return;
3450
3451 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3453
3454 temp |= FDI_BC_BIFURCATION_SELECT;
3455 DRM_DEBUG_KMS("enabling fdi C rx\n");
3456 I915_WRITE(SOUTH_CHICKEN1, temp);
3457 POSTING_READ(SOUTH_CHICKEN1);
3458}
3459
3460static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3461{
3462 struct drm_device *dev = intel_crtc->base.dev;
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464
3465 switch (intel_crtc->pipe) {
3466 case PIPE_A:
3467 break;
3468 case PIPE_B:
3469 if (intel_crtc->config.fdi_lanes > 2)
3470 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3471 else
3472 cpt_enable_fdi_bc_bifurcation(dev);
3473
3474 break;
3475 case PIPE_C:
3476 cpt_enable_fdi_bc_bifurcation(dev);
3477
3478 break;
3479 default:
3480 BUG();
3481 }
3482}
3483
f67a559d
JB
3484/*
3485 * Enable PCH resources required for PCH ports:
3486 * - PCH PLLs
3487 * - FDI training & RX/TX
3488 * - update transcoder timings
3489 * - DP transcoding bits
3490 * - transcoder
3491 */
3492static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3493{
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 int pipe = intel_crtc->pipe;
ee7b9f93 3498 u32 reg, temp;
2c07245f 3499
ab9412ba 3500 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3501
1fbc0d78
DV
3502 if (IS_IVYBRIDGE(dev))
3503 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3504
cd986abb
DV
3505 /* Write the TU size bits before fdi link training, so that error
3506 * detection works. */
3507 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3508 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3509
c98e9dcf 3510 /* For PCH output, training FDI link */
674cf967 3511 dev_priv->display.fdi_link_train(crtc);
2c07245f 3512
3ad8a208
DV
3513 /* We need to program the right clock selection before writing the pixel
3514 * mutliplier into the DPLL. */
303b81e0 3515 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3516 u32 sel;
4b645f14 3517
c98e9dcf 3518 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3519 temp |= TRANS_DPLL_ENABLE(pipe);
3520 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3521 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3522 temp |= sel;
3523 else
3524 temp &= ~sel;
c98e9dcf 3525 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3526 }
5eddb70b 3527
3ad8a208
DV
3528 /* XXX: pch pll's can be enabled any time before we enable the PCH
3529 * transcoder, and we actually should do this to not upset any PCH
3530 * transcoder that already use the clock when we share it.
3531 *
3532 * Note that enable_shared_dpll tries to do the right thing, but
3533 * get_shared_dpll unconditionally resets the pll - we need that to have
3534 * the right LVDS enable sequence. */
85b3894f 3535 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3536
d9b6cb56
JB
3537 /* set transcoder timing, panel must allow it */
3538 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3539 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3540
303b81e0 3541 intel_fdi_normal_train(crtc);
5e84e1a4 3542
c98e9dcf
JB
3543 /* For PCH DP, enable TRANS_DP_CTL */
3544 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3545 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3546 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3547 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3548 reg = TRANS_DP_CTL(pipe);
3549 temp = I915_READ(reg);
3550 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3551 TRANS_DP_SYNC_MASK |
3552 TRANS_DP_BPC_MASK);
5eddb70b
CW
3553 temp |= (TRANS_DP_OUTPUT_ENABLE |
3554 TRANS_DP_ENH_FRAMING);
9325c9f0 3555 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3556
3557 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3558 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3559 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3560 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3561
3562 switch (intel_trans_dp_port_sel(crtc)) {
3563 case PCH_DP_B:
5eddb70b 3564 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3565 break;
3566 case PCH_DP_C:
5eddb70b 3567 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3568 break;
3569 case PCH_DP_D:
5eddb70b 3570 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3571 break;
3572 default:
e95d41e1 3573 BUG();
32f9d658 3574 }
2c07245f 3575
5eddb70b 3576 I915_WRITE(reg, temp);
6be4a607 3577 }
b52eb4dc 3578
b8a4f404 3579 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3580}
3581
1507e5bd
PZ
3582static void lpt_pch_enable(struct drm_crtc *crtc)
3583{
3584 struct drm_device *dev = crtc->dev;
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3587 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3588
ab9412ba 3589 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3590
8c52b5e8 3591 lpt_program_iclkip(crtc);
1507e5bd 3592
0540e488 3593 /* Set transcoder timing. */
275f01b2 3594 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3595
937bb610 3596 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3597}
3598
716c2e55 3599void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3600{
e2b78267 3601 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3602
3603 if (pll == NULL)
3604 return;
3605
3606 if (pll->refcount == 0) {
46edb027 3607 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3608 return;
3609 }
3610
f4a091c7
DV
3611 if (--pll->refcount == 0) {
3612 WARN_ON(pll->on);
3613 WARN_ON(pll->active);
3614 }
3615
a43f6e0f 3616 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3617}
3618
716c2e55 3619struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3620{
e2b78267
DV
3621 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3622 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3623 enum intel_dpll_id i;
ee7b9f93 3624
ee7b9f93 3625 if (pll) {
46edb027
DV
3626 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3627 crtc->base.base.id, pll->name);
e2b78267 3628 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3629 }
3630
98b6bd99
DV
3631 if (HAS_PCH_IBX(dev_priv->dev)) {
3632 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3633 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3634 pll = &dev_priv->shared_dplls[i];
98b6bd99 3635
46edb027
DV
3636 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3637 crtc->base.base.id, pll->name);
98b6bd99 3638
f2a69f44
DV
3639 WARN_ON(pll->refcount);
3640
98b6bd99
DV
3641 goto found;
3642 }
3643
e72f9fbf
DV
3644 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3645 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3646
3647 /* Only want to check enabled timings first */
3648 if (pll->refcount == 0)
3649 continue;
3650
b89a1d39
DV
3651 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3652 sizeof(pll->hw_state)) == 0) {
46edb027 3653 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3654 crtc->base.base.id,
46edb027 3655 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3656
3657 goto found;
3658 }
3659 }
3660
3661 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3662 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3663 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3664 if (pll->refcount == 0) {
46edb027
DV
3665 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3666 crtc->base.base.id, pll->name);
ee7b9f93
JB
3667 goto found;
3668 }
3669 }
3670
3671 return NULL;
3672
3673found:
f2a69f44
DV
3674 if (pll->refcount == 0)
3675 pll->hw_state = crtc->config.dpll_hw_state;
3676
a43f6e0f 3677 crtc->config.shared_dpll = i;
46edb027
DV
3678 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3679 pipe_name(crtc->pipe));
ee7b9f93 3680
cdbd2316 3681 pll->refcount++;
e04c7350 3682
ee7b9f93
JB
3683 return pll;
3684}
3685
a1520318 3686static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3687{
3688 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3689 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3690 u32 temp;
3691
3692 temp = I915_READ(dslreg);
3693 udelay(500);
3694 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3695 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3696 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3697 }
3698}
3699
b074cec8
JB
3700static void ironlake_pfit_enable(struct intel_crtc *crtc)
3701{
3702 struct drm_device *dev = crtc->base.dev;
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704 int pipe = crtc->pipe;
3705
fd4daa9c 3706 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3707 /* Force use of hard-coded filter coefficients
3708 * as some pre-programmed values are broken,
3709 * e.g. x201.
3710 */
3711 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3712 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3713 PF_PIPE_SEL_IVB(pipe));
3714 else
3715 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3716 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3717 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3718 }
3719}
3720
bb53d4ae
VS
3721static void intel_enable_planes(struct drm_crtc *crtc)
3722{
3723 struct drm_device *dev = crtc->dev;
3724 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3725 struct drm_plane *plane;
bb53d4ae
VS
3726 struct intel_plane *intel_plane;
3727
af2b653b
MR
3728 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3729 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3730 if (intel_plane->pipe == pipe)
3731 intel_plane_restore(&intel_plane->base);
af2b653b 3732 }
bb53d4ae
VS
3733}
3734
3735static void intel_disable_planes(struct drm_crtc *crtc)
3736{
3737 struct drm_device *dev = crtc->dev;
3738 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3739 struct drm_plane *plane;
bb53d4ae
VS
3740 struct intel_plane *intel_plane;
3741
af2b653b
MR
3742 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3743 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3744 if (intel_plane->pipe == pipe)
3745 intel_plane_disable(&intel_plane->base);
af2b653b 3746 }
bb53d4ae
VS
3747}
3748
20bc8673 3749void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3750{
cea165c3
VS
3751 struct drm_device *dev = crtc->base.dev;
3752 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3753
3754 if (!crtc->config.ips_enabled)
3755 return;
3756
cea165c3
VS
3757 /* We can only enable IPS after we enable a plane and wait for a vblank */
3758 intel_wait_for_vblank(dev, crtc->pipe);
3759
d77e4531 3760 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3761 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3762 mutex_lock(&dev_priv->rps.hw_lock);
3763 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3764 mutex_unlock(&dev_priv->rps.hw_lock);
3765 /* Quoting Art Runyan: "its not safe to expect any particular
3766 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3767 * mailbox." Moreover, the mailbox may return a bogus state,
3768 * so we need to just enable it and continue on.
2a114cc1
BW
3769 */
3770 } else {
3771 I915_WRITE(IPS_CTL, IPS_ENABLE);
3772 /* The bit only becomes 1 in the next vblank, so this wait here
3773 * is essentially intel_wait_for_vblank. If we don't have this
3774 * and don't wait for vblanks until the end of crtc_enable, then
3775 * the HW state readout code will complain that the expected
3776 * IPS_CTL value is not the one we read. */
3777 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3778 DRM_ERROR("Timed out waiting for IPS enable\n");
3779 }
d77e4531
PZ
3780}
3781
20bc8673 3782void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3783{
3784 struct drm_device *dev = crtc->base.dev;
3785 struct drm_i915_private *dev_priv = dev->dev_private;
3786
3787 if (!crtc->config.ips_enabled)
3788 return;
3789
3790 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3791 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3792 mutex_lock(&dev_priv->rps.hw_lock);
3793 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3794 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3795 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3796 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3797 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3798 } else {
2a114cc1 3799 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3800 POSTING_READ(IPS_CTL);
3801 }
d77e4531
PZ
3802
3803 /* We need to wait for a vblank before we can disable the plane. */
3804 intel_wait_for_vblank(dev, crtc->pipe);
3805}
3806
3807/** Loads the palette/gamma unit for the CRTC with the prepared values */
3808static void intel_crtc_load_lut(struct drm_crtc *crtc)
3809{
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813 enum pipe pipe = intel_crtc->pipe;
3814 int palreg = PALETTE(pipe);
3815 int i;
3816 bool reenable_ips = false;
3817
3818 /* The clocks have to be on to load the palette. */
3819 if (!crtc->enabled || !intel_crtc->active)
3820 return;
3821
3822 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3823 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3824 assert_dsi_pll_enabled(dev_priv);
3825 else
3826 assert_pll_enabled(dev_priv, pipe);
3827 }
3828
3829 /* use legacy palette for Ironlake */
7a1db49a 3830 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3831 palreg = LGC_PALETTE(pipe);
3832
3833 /* Workaround : Do not read or write the pipe palette/gamma data while
3834 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3835 */
41e6fc4c 3836 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3837 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3838 GAMMA_MODE_MODE_SPLIT)) {
3839 hsw_disable_ips(intel_crtc);
3840 reenable_ips = true;
3841 }
3842
3843 for (i = 0; i < 256; i++) {
3844 I915_WRITE(palreg + 4 * i,
3845 (intel_crtc->lut_r[i] << 16) |
3846 (intel_crtc->lut_g[i] << 8) |
3847 intel_crtc->lut_b[i]);
3848 }
3849
3850 if (reenable_ips)
3851 hsw_enable_ips(intel_crtc);
3852}
3853
d3eedb1a
VS
3854static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3855{
3856 if (!enable && intel_crtc->overlay) {
3857 struct drm_device *dev = intel_crtc->base.dev;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859
3860 mutex_lock(&dev->struct_mutex);
3861 dev_priv->mm.interruptible = false;
3862 (void) intel_overlay_switch_off(intel_crtc->overlay);
3863 dev_priv->mm.interruptible = true;
3864 mutex_unlock(&dev->struct_mutex);
3865 }
3866
3867 /* Let userspace switch the overlay on again. In most cases userspace
3868 * has to recompute where to put it anyway.
3869 */
3870}
3871
d3eedb1a 3872static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3873{
3874 struct drm_device *dev = crtc->dev;
3875 struct drm_i915_private *dev_priv = dev->dev_private;
3876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3877 int pipe = intel_crtc->pipe;
3878 int plane = intel_crtc->plane;
3879
f98551ae
VS
3880 drm_vblank_on(dev, pipe);
3881
a5c4d7bc
VS
3882 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3883 intel_enable_planes(crtc);
3884 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3885 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3886
3887 hsw_enable_ips(intel_crtc);
3888
3889 mutex_lock(&dev->struct_mutex);
3890 intel_update_fbc(dev);
3891 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3892
3893 /*
3894 * FIXME: Once we grow proper nuclear flip support out of this we need
3895 * to compute the mask of flip planes precisely. For the time being
3896 * consider this a flip from a NULL plane.
3897 */
3898 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3899}
3900
d3eedb1a 3901static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3902{
3903 struct drm_device *dev = crtc->dev;
3904 struct drm_i915_private *dev_priv = dev->dev_private;
3905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3906 int pipe = intel_crtc->pipe;
3907 int plane = intel_crtc->plane;
3908
3909 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3910
3911 if (dev_priv->fbc.plane == plane)
3912 intel_disable_fbc(dev);
3913
3914 hsw_disable_ips(intel_crtc);
3915
d3eedb1a 3916 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3917 intel_crtc_update_cursor(crtc, false);
3918 intel_disable_planes(crtc);
3919 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3920
f99d7069
DV
3921 /*
3922 * FIXME: Once we grow proper nuclear flip support out of this we need
3923 * to compute the mask of flip planes precisely. For the time being
3924 * consider this a flip to a NULL plane.
3925 */
3926 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3927
f98551ae 3928 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3929}
3930
f67a559d
JB
3931static void ironlake_crtc_enable(struct drm_crtc *crtc)
3932{
3933 struct drm_device *dev = crtc->dev;
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3936 struct intel_encoder *encoder;
f67a559d 3937 int pipe = intel_crtc->pipe;
29407aab 3938 enum plane plane = intel_crtc->plane;
f67a559d 3939
08a48469
DV
3940 WARN_ON(!crtc->enabled);
3941
f67a559d
JB
3942 if (intel_crtc->active)
3943 return;
3944
b14b1055
DV
3945 if (intel_crtc->config.has_pch_encoder)
3946 intel_prepare_shared_dpll(intel_crtc);
3947
29407aab
DV
3948 if (intel_crtc->config.has_dp_encoder)
3949 intel_dp_set_m_n(intel_crtc);
3950
3951 intel_set_pipe_timings(intel_crtc);
3952
3953 if (intel_crtc->config.has_pch_encoder) {
3954 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 3955 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
3956 }
3957
3958 ironlake_set_pipeconf(crtc);
3959
3960 /* Set up the display plane register */
3961 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3962 POSTING_READ(DSPCNTR(plane));
3963
3964 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3965 crtc->x, crtc->y);
3966
f67a559d 3967 intel_crtc->active = true;
8664281b
PZ
3968
3969 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3970 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3971
f6736a1a 3972 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3973 if (encoder->pre_enable)
3974 encoder->pre_enable(encoder);
f67a559d 3975
5bfe2ac0 3976 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3977 /* Note: FDI PLL enabling _must_ be done before we enable the
3978 * cpu pipes, hence this is separate from all the other fdi/pch
3979 * enabling. */
88cefb6c 3980 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3981 } else {
3982 assert_fdi_tx_disabled(dev_priv, pipe);
3983 assert_fdi_rx_disabled(dev_priv, pipe);
3984 }
f67a559d 3985
b074cec8 3986 ironlake_pfit_enable(intel_crtc);
f67a559d 3987
9c54c0dd
JB
3988 /*
3989 * On ILK+ LUT must be loaded before the pipe is running but with
3990 * clocks enabled
3991 */
3992 intel_crtc_load_lut(crtc);
3993
f37fcc2a 3994 intel_update_watermarks(crtc);
e1fdc473 3995 intel_enable_pipe(intel_crtc);
f67a559d 3996
5bfe2ac0 3997 if (intel_crtc->config.has_pch_encoder)
f67a559d 3998 ironlake_pch_enable(crtc);
c98e9dcf 3999
fa5c73b1
DV
4000 for_each_encoder_on_crtc(dev, crtc, encoder)
4001 encoder->enable(encoder);
61b77ddd
DV
4002
4003 if (HAS_PCH_CPT(dev))
a1520318 4004 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4005
d3eedb1a 4006 intel_crtc_enable_planes(crtc);
6be4a607
JB
4007}
4008
42db64ef
PZ
4009/* IPS only exists on ULT machines and is tied to pipe A. */
4010static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4011{
f5adf94e 4012 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4013}
4014
e4916946
PZ
4015/*
4016 * This implements the workaround described in the "notes" section of the mode
4017 * set sequence documentation. When going from no pipes or single pipe to
4018 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4019 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4020 */
4021static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4022{
4023 struct drm_device *dev = crtc->base.dev;
4024 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4025
4026 /* We want to get the other_active_crtc only if there's only 1 other
4027 * active crtc. */
d3fcc808 4028 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4029 if (!crtc_it->active || crtc_it == crtc)
4030 continue;
4031
4032 if (other_active_crtc)
4033 return;
4034
4035 other_active_crtc = crtc_it;
4036 }
4037 if (!other_active_crtc)
4038 return;
4039
4040 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4041 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4042}
4043
4f771f10
PZ
4044static void haswell_crtc_enable(struct drm_crtc *crtc)
4045{
4046 struct drm_device *dev = crtc->dev;
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4049 struct intel_encoder *encoder;
4050 int pipe = intel_crtc->pipe;
229fca97 4051 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4052
4053 WARN_ON(!crtc->enabled);
4054
4055 if (intel_crtc->active)
4056 return;
4057
df8ad70c
DV
4058 if (intel_crtc_to_shared_dpll(intel_crtc))
4059 intel_enable_shared_dpll(intel_crtc);
4060
229fca97
DV
4061 if (intel_crtc->config.has_dp_encoder)
4062 intel_dp_set_m_n(intel_crtc);
4063
4064 intel_set_pipe_timings(intel_crtc);
4065
4066 if (intel_crtc->config.has_pch_encoder) {
4067 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4068 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4069 }
4070
4071 haswell_set_pipeconf(crtc);
4072
4073 intel_set_pipe_csc(crtc);
4074
4075 /* Set up the display plane register */
4076 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4077 POSTING_READ(DSPCNTR(plane));
4078
4079 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4080 crtc->x, crtc->y);
4081
4f771f10 4082 intel_crtc->active = true;
8664281b
PZ
4083
4084 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4085 for_each_encoder_on_crtc(dev, crtc, encoder)
4086 if (encoder->pre_enable)
4087 encoder->pre_enable(encoder);
4088
4fe9467d
ID
4089 if (intel_crtc->config.has_pch_encoder) {
4090 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4091 dev_priv->display.fdi_link_train(crtc);
4092 }
4093
1f544388 4094 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4095
b074cec8 4096 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4097
4098 /*
4099 * On ILK+ LUT must be loaded before the pipe is running but with
4100 * clocks enabled
4101 */
4102 intel_crtc_load_lut(crtc);
4103
1f544388 4104 intel_ddi_set_pipe_settings(crtc);
8228c251 4105 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4106
f37fcc2a 4107 intel_update_watermarks(crtc);
e1fdc473 4108 intel_enable_pipe(intel_crtc);
42db64ef 4109
5bfe2ac0 4110 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4111 lpt_pch_enable(crtc);
4f771f10 4112
0e32b39c
DA
4113 if (intel_crtc->config.dp_encoder_is_mst)
4114 intel_ddi_set_vc_payload_alloc(crtc, true);
4115
8807e55b 4116 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4117 encoder->enable(encoder);
8807e55b
JN
4118 intel_opregion_notify_encoder(encoder, true);
4119 }
4f771f10 4120
e4916946
PZ
4121 /* If we change the relative order between pipe/planes enabling, we need
4122 * to change the workaround. */
4123 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4124 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4125}
4126
3f8dce3a
DV
4127static void ironlake_pfit_disable(struct intel_crtc *crtc)
4128{
4129 struct drm_device *dev = crtc->base.dev;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 int pipe = crtc->pipe;
4132
4133 /* To avoid upsetting the power well on haswell only disable the pfit if
4134 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4135 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4136 I915_WRITE(PF_CTL(pipe), 0);
4137 I915_WRITE(PF_WIN_POS(pipe), 0);
4138 I915_WRITE(PF_WIN_SZ(pipe), 0);
4139 }
4140}
4141
6be4a607
JB
4142static void ironlake_crtc_disable(struct drm_crtc *crtc)
4143{
4144 struct drm_device *dev = crtc->dev;
4145 struct drm_i915_private *dev_priv = dev->dev_private;
4146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4147 struct intel_encoder *encoder;
6be4a607 4148 int pipe = intel_crtc->pipe;
5eddb70b 4149 u32 reg, temp;
b52eb4dc 4150
f7abfe8b
CW
4151 if (!intel_crtc->active)
4152 return;
4153
d3eedb1a 4154 intel_crtc_disable_planes(crtc);
a5c4d7bc 4155
ea9d758d
DV
4156 for_each_encoder_on_crtc(dev, crtc, encoder)
4157 encoder->disable(encoder);
4158
d925c59a
DV
4159 if (intel_crtc->config.has_pch_encoder)
4160 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4161
b24e7179 4162 intel_disable_pipe(dev_priv, pipe);
32f9d658 4163
0e32b39c
DA
4164 if (intel_crtc->config.dp_encoder_is_mst)
4165 intel_ddi_set_vc_payload_alloc(crtc, false);
4166
3f8dce3a 4167 ironlake_pfit_disable(intel_crtc);
2c07245f 4168
bf49ec8c
DV
4169 for_each_encoder_on_crtc(dev, crtc, encoder)
4170 if (encoder->post_disable)
4171 encoder->post_disable(encoder);
2c07245f 4172
d925c59a
DV
4173 if (intel_crtc->config.has_pch_encoder) {
4174 ironlake_fdi_disable(crtc);
913d8d11 4175
d925c59a
DV
4176 ironlake_disable_pch_transcoder(dev_priv, pipe);
4177 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4178
d925c59a
DV
4179 if (HAS_PCH_CPT(dev)) {
4180 /* disable TRANS_DP_CTL */
4181 reg = TRANS_DP_CTL(pipe);
4182 temp = I915_READ(reg);
4183 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4184 TRANS_DP_PORT_SEL_MASK);
4185 temp |= TRANS_DP_PORT_SEL_NONE;
4186 I915_WRITE(reg, temp);
4187
4188 /* disable DPLL_SEL */
4189 temp = I915_READ(PCH_DPLL_SEL);
11887397 4190 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4191 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4192 }
e3421a18 4193
d925c59a 4194 /* disable PCH DPLL */
e72f9fbf 4195 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4196
d925c59a
DV
4197 ironlake_fdi_pll_disable(intel_crtc);
4198 }
6b383a7f 4199
f7abfe8b 4200 intel_crtc->active = false;
46ba614c 4201 intel_update_watermarks(crtc);
d1ebd816
BW
4202
4203 mutex_lock(&dev->struct_mutex);
6b383a7f 4204 intel_update_fbc(dev);
d1ebd816 4205 mutex_unlock(&dev->struct_mutex);
6be4a607 4206}
1b3c7a47 4207
4f771f10 4208static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4209{
4f771f10
PZ
4210 struct drm_device *dev = crtc->dev;
4211 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4213 struct intel_encoder *encoder;
4214 int pipe = intel_crtc->pipe;
3b117c8f 4215 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4216
4f771f10
PZ
4217 if (!intel_crtc->active)
4218 return;
4219
d3eedb1a 4220 intel_crtc_disable_planes(crtc);
dda9a66a 4221
8807e55b
JN
4222 for_each_encoder_on_crtc(dev, crtc, encoder) {
4223 intel_opregion_notify_encoder(encoder, false);
4f771f10 4224 encoder->disable(encoder);
8807e55b 4225 }
4f771f10 4226
8664281b
PZ
4227 if (intel_crtc->config.has_pch_encoder)
4228 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4229 intel_disable_pipe(dev_priv, pipe);
4230
ad80a810 4231 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4232
3f8dce3a 4233 ironlake_pfit_disable(intel_crtc);
4f771f10 4234
1f544388 4235 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4236
88adfff1 4237 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4238 lpt_disable_pch_transcoder(dev_priv);
8664281b 4239 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4240 intel_ddi_fdi_disable(crtc);
83616634 4241 }
4f771f10 4242
97b040aa
ID
4243 for_each_encoder_on_crtc(dev, crtc, encoder)
4244 if (encoder->post_disable)
4245 encoder->post_disable(encoder);
4246
4f771f10 4247 intel_crtc->active = false;
46ba614c 4248 intel_update_watermarks(crtc);
4f771f10
PZ
4249
4250 mutex_lock(&dev->struct_mutex);
4251 intel_update_fbc(dev);
4252 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4253
4254 if (intel_crtc_to_shared_dpll(intel_crtc))
4255 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4256}
4257
ee7b9f93
JB
4258static void ironlake_crtc_off(struct drm_crtc *crtc)
4259{
4260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4261 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4262}
4263
6441ab5f 4264
2dd24552
JB
4265static void i9xx_pfit_enable(struct intel_crtc *crtc)
4266{
4267 struct drm_device *dev = crtc->base.dev;
4268 struct drm_i915_private *dev_priv = dev->dev_private;
4269 struct intel_crtc_config *pipe_config = &crtc->config;
4270
328d8e82 4271 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4272 return;
4273
2dd24552 4274 /*
c0b03411
DV
4275 * The panel fitter should only be adjusted whilst the pipe is disabled,
4276 * according to register description and PRM.
2dd24552 4277 */
c0b03411
DV
4278 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4279 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4280
b074cec8
JB
4281 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4282 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4283
4284 /* Border color in case we don't scale up to the full screen. Black by
4285 * default, change to something else for debugging. */
4286 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4287}
4288
d05410f9
DA
4289static enum intel_display_power_domain port_to_power_domain(enum port port)
4290{
4291 switch (port) {
4292 case PORT_A:
4293 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4294 case PORT_B:
4295 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4296 case PORT_C:
4297 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4298 case PORT_D:
4299 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4300 default:
4301 WARN_ON_ONCE(1);
4302 return POWER_DOMAIN_PORT_OTHER;
4303 }
4304}
4305
77d22dca
ID
4306#define for_each_power_domain(domain, mask) \
4307 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4308 if ((1 << (domain)) & (mask))
4309
319be8ae
ID
4310enum intel_display_power_domain
4311intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4312{
4313 struct drm_device *dev = intel_encoder->base.dev;
4314 struct intel_digital_port *intel_dig_port;
4315
4316 switch (intel_encoder->type) {
4317 case INTEL_OUTPUT_UNKNOWN:
4318 /* Only DDI platforms should ever use this output type */
4319 WARN_ON_ONCE(!HAS_DDI(dev));
4320 case INTEL_OUTPUT_DISPLAYPORT:
4321 case INTEL_OUTPUT_HDMI:
4322 case INTEL_OUTPUT_EDP:
4323 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4324 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4325 case INTEL_OUTPUT_DP_MST:
4326 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4327 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4328 case INTEL_OUTPUT_ANALOG:
4329 return POWER_DOMAIN_PORT_CRT;
4330 case INTEL_OUTPUT_DSI:
4331 return POWER_DOMAIN_PORT_DSI;
4332 default:
4333 return POWER_DOMAIN_PORT_OTHER;
4334 }
4335}
4336
4337static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4338{
319be8ae
ID
4339 struct drm_device *dev = crtc->dev;
4340 struct intel_encoder *intel_encoder;
4341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4342 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4343 unsigned long mask;
4344 enum transcoder transcoder;
4345
4346 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4347
4348 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4349 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4350 if (intel_crtc->config.pch_pfit.enabled ||
4351 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4352 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4353
319be8ae
ID
4354 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4355 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4356
77d22dca
ID
4357 return mask;
4358}
4359
4360void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4361 bool enable)
4362{
4363 if (dev_priv->power_domains.init_power_on == enable)
4364 return;
4365
4366 if (enable)
4367 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4368 else
4369 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4370
4371 dev_priv->power_domains.init_power_on = enable;
4372}
4373
4374static void modeset_update_crtc_power_domains(struct drm_device *dev)
4375{
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4378 struct intel_crtc *crtc;
4379
4380 /*
4381 * First get all needed power domains, then put all unneeded, to avoid
4382 * any unnecessary toggling of the power wells.
4383 */
d3fcc808 4384 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4385 enum intel_display_power_domain domain;
4386
4387 if (!crtc->base.enabled)
4388 continue;
4389
319be8ae 4390 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4391
4392 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4393 intel_display_power_get(dev_priv, domain);
4394 }
4395
d3fcc808 4396 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4397 enum intel_display_power_domain domain;
4398
4399 for_each_power_domain(domain, crtc->enabled_power_domains)
4400 intel_display_power_put(dev_priv, domain);
4401
4402 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4403 }
4404
4405 intel_display_set_init_power(dev_priv, false);
4406}
4407
dfcab17e 4408/* returns HPLL frequency in kHz */
f8bf63fd 4409static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4410{
586f49dc 4411 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4412
586f49dc
JB
4413 /* Obtain SKU information */
4414 mutex_lock(&dev_priv->dpio_lock);
4415 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4416 CCK_FUSE_HPLL_FREQ_MASK;
4417 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4418
dfcab17e 4419 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4420}
4421
f8bf63fd
VS
4422static void vlv_update_cdclk(struct drm_device *dev)
4423{
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425
4426 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4427 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4428 dev_priv->vlv_cdclk_freq);
4429
4430 /*
4431 * Program the gmbus_freq based on the cdclk frequency.
4432 * BSpec erroneously claims we should aim for 4MHz, but
4433 * in fact 1MHz is the correct frequency.
4434 */
4435 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4436}
4437
30a970c6
JB
4438/* Adjust CDclk dividers to allow high res or save power if possible */
4439static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4440{
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 u32 val, cmd;
4443
d197b7d3 4444 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4445
dfcab17e 4446 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4447 cmd = 2;
dfcab17e 4448 else if (cdclk == 266667)
30a970c6
JB
4449 cmd = 1;
4450 else
4451 cmd = 0;
4452
4453 mutex_lock(&dev_priv->rps.hw_lock);
4454 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4455 val &= ~DSPFREQGUAR_MASK;
4456 val |= (cmd << DSPFREQGUAR_SHIFT);
4457 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4458 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4459 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4460 50)) {
4461 DRM_ERROR("timed out waiting for CDclk change\n");
4462 }
4463 mutex_unlock(&dev_priv->rps.hw_lock);
4464
dfcab17e 4465 if (cdclk == 400000) {
30a970c6
JB
4466 u32 divider, vco;
4467
4468 vco = valleyview_get_vco(dev_priv);
dfcab17e 4469 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4470
4471 mutex_lock(&dev_priv->dpio_lock);
4472 /* adjust cdclk divider */
4473 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4474 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4475 val |= divider;
4476 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4477
4478 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4479 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4480 50))
4481 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4482 mutex_unlock(&dev_priv->dpio_lock);
4483 }
4484
4485 mutex_lock(&dev_priv->dpio_lock);
4486 /* adjust self-refresh exit latency value */
4487 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4488 val &= ~0x7f;
4489
4490 /*
4491 * For high bandwidth configs, we set a higher latency in the bunit
4492 * so that the core display fetch happens in time to avoid underruns.
4493 */
dfcab17e 4494 if (cdclk == 400000)
30a970c6
JB
4495 val |= 4500 / 250; /* 4.5 usec */
4496 else
4497 val |= 3000 / 250; /* 3.0 usec */
4498 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4499 mutex_unlock(&dev_priv->dpio_lock);
4500
f8bf63fd 4501 vlv_update_cdclk(dev);
30a970c6
JB
4502}
4503
30a970c6
JB
4504static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4505 int max_pixclk)
4506{
29dc7ef3
VS
4507 int vco = valleyview_get_vco(dev_priv);
4508 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4509
30a970c6
JB
4510 /*
4511 * Really only a few cases to deal with, as only 4 CDclks are supported:
4512 * 200MHz
4513 * 267MHz
29dc7ef3 4514 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4515 * 400MHz
4516 * So we check to see whether we're above 90% of the lower bin and
4517 * adjust if needed.
e37c67a1
VS
4518 *
4519 * We seem to get an unstable or solid color picture at 200MHz.
4520 * Not sure what's wrong. For now use 200MHz only when all pipes
4521 * are off.
30a970c6 4522 */
29dc7ef3 4523 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4524 return 400000;
4525 else if (max_pixclk > 266667*9/10)
29dc7ef3 4526 return freq_320;
e37c67a1 4527 else if (max_pixclk > 0)
dfcab17e 4528 return 266667;
e37c67a1
VS
4529 else
4530 return 200000;
30a970c6
JB
4531}
4532
2f2d7aa1
VS
4533/* compute the max pixel clock for new configuration */
4534static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4535{
4536 struct drm_device *dev = dev_priv->dev;
4537 struct intel_crtc *intel_crtc;
4538 int max_pixclk = 0;
4539
d3fcc808 4540 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4541 if (intel_crtc->new_enabled)
30a970c6 4542 max_pixclk = max(max_pixclk,
2f2d7aa1 4543 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4544 }
4545
4546 return max_pixclk;
4547}
4548
4549static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4550 unsigned *prepare_pipes)
30a970c6
JB
4551{
4552 struct drm_i915_private *dev_priv = dev->dev_private;
4553 struct intel_crtc *intel_crtc;
2f2d7aa1 4554 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4555
d60c4473
ID
4556 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4557 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4558 return;
4559
2f2d7aa1 4560 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4561 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4562 if (intel_crtc->base.enabled)
4563 *prepare_pipes |= (1 << intel_crtc->pipe);
4564}
4565
4566static void valleyview_modeset_global_resources(struct drm_device *dev)
4567{
4568 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4569 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4570 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4571
d60c4473 4572 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4573 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4574 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4575}
4576
89b667f8
JB
4577static void valleyview_crtc_enable(struct drm_crtc *crtc)
4578{
4579 struct drm_device *dev = crtc->dev;
5b18e57c 4580 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582 struct intel_encoder *encoder;
4583 int pipe = intel_crtc->pipe;
5b18e57c 4584 int plane = intel_crtc->plane;
23538ef1 4585 bool is_dsi;
5b18e57c 4586 u32 dspcntr;
89b667f8
JB
4587
4588 WARN_ON(!crtc->enabled);
4589
4590 if (intel_crtc->active)
4591 return;
4592
8525a235
SK
4593 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4594
4595 if (!is_dsi && !IS_CHERRYVIEW(dev))
4596 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4597
5b18e57c
DV
4598 /* Set up the display plane register */
4599 dspcntr = DISPPLANE_GAMMA_ENABLE;
4600
4601 if (intel_crtc->config.has_dp_encoder)
4602 intel_dp_set_m_n(intel_crtc);
4603
4604 intel_set_pipe_timings(intel_crtc);
4605
4606 /* pipesrc and dspsize control the size that is scaled from,
4607 * which should always be the user's requested size.
4608 */
4609 I915_WRITE(DSPSIZE(plane),
4610 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4611 (intel_crtc->config.pipe_src_w - 1));
4612 I915_WRITE(DSPPOS(plane), 0);
4613
4614 i9xx_set_pipeconf(intel_crtc);
4615
4616 I915_WRITE(DSPCNTR(plane), dspcntr);
4617 POSTING_READ(DSPCNTR(plane));
4618
4619 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4620 crtc->x, crtc->y);
4621
89b667f8 4622 intel_crtc->active = true;
89b667f8 4623
4a3436e8
VS
4624 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4625
89b667f8
JB
4626 for_each_encoder_on_crtc(dev, crtc, encoder)
4627 if (encoder->pre_pll_enable)
4628 encoder->pre_pll_enable(encoder);
4629
9d556c99
CML
4630 if (!is_dsi) {
4631 if (IS_CHERRYVIEW(dev))
4632 chv_enable_pll(intel_crtc);
4633 else
4634 vlv_enable_pll(intel_crtc);
4635 }
89b667f8
JB
4636
4637 for_each_encoder_on_crtc(dev, crtc, encoder)
4638 if (encoder->pre_enable)
4639 encoder->pre_enable(encoder);
4640
2dd24552
JB
4641 i9xx_pfit_enable(intel_crtc);
4642
63cbb074
VS
4643 intel_crtc_load_lut(crtc);
4644
f37fcc2a 4645 intel_update_watermarks(crtc);
e1fdc473 4646 intel_enable_pipe(intel_crtc);
be6a6f8e 4647
5004945f
JN
4648 for_each_encoder_on_crtc(dev, crtc, encoder)
4649 encoder->enable(encoder);
9ab0460b
VS
4650
4651 intel_crtc_enable_planes(crtc);
d40d9187 4652
56b80e1f
VS
4653 /* Underruns don't raise interrupts, so check manually. */
4654 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4655}
4656
f13c2ef3
DV
4657static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4658{
4659 struct drm_device *dev = crtc->base.dev;
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661
4662 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4663 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4664}
4665
0b8765c6 4666static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4667{
4668 struct drm_device *dev = crtc->dev;
5b18e57c 4669 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4671 struct intel_encoder *encoder;
79e53945 4672 int pipe = intel_crtc->pipe;
5b18e57c
DV
4673 int plane = intel_crtc->plane;
4674 u32 dspcntr;
79e53945 4675
08a48469
DV
4676 WARN_ON(!crtc->enabled);
4677
f7abfe8b
CW
4678 if (intel_crtc->active)
4679 return;
4680
f13c2ef3
DV
4681 i9xx_set_pll_dividers(intel_crtc);
4682
5b18e57c
DV
4683 /* Set up the display plane register */
4684 dspcntr = DISPPLANE_GAMMA_ENABLE;
4685
4686 if (pipe == 0)
4687 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4688 else
4689 dspcntr |= DISPPLANE_SEL_PIPE_B;
4690
4691 if (intel_crtc->config.has_dp_encoder)
4692 intel_dp_set_m_n(intel_crtc);
4693
4694 intel_set_pipe_timings(intel_crtc);
4695
4696 /* pipesrc and dspsize control the size that is scaled from,
4697 * which should always be the user's requested size.
4698 */
4699 I915_WRITE(DSPSIZE(plane),
4700 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4701 (intel_crtc->config.pipe_src_w - 1));
4702 I915_WRITE(DSPPOS(plane), 0);
4703
4704 i9xx_set_pipeconf(intel_crtc);
4705
4706 I915_WRITE(DSPCNTR(plane), dspcntr);
4707 POSTING_READ(DSPCNTR(plane));
4708
4709 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4710 crtc->x, crtc->y);
4711
f7abfe8b 4712 intel_crtc->active = true;
6b383a7f 4713
4a3436e8
VS
4714 if (!IS_GEN2(dev))
4715 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4716
9d6d9f19
MK
4717 for_each_encoder_on_crtc(dev, crtc, encoder)
4718 if (encoder->pre_enable)
4719 encoder->pre_enable(encoder);
4720
f6736a1a
DV
4721 i9xx_enable_pll(intel_crtc);
4722
2dd24552
JB
4723 i9xx_pfit_enable(intel_crtc);
4724
63cbb074
VS
4725 intel_crtc_load_lut(crtc);
4726
f37fcc2a 4727 intel_update_watermarks(crtc);
e1fdc473 4728 intel_enable_pipe(intel_crtc);
be6a6f8e 4729
fa5c73b1
DV
4730 for_each_encoder_on_crtc(dev, crtc, encoder)
4731 encoder->enable(encoder);
9ab0460b
VS
4732
4733 intel_crtc_enable_planes(crtc);
d40d9187 4734
4a3436e8
VS
4735 /*
4736 * Gen2 reports pipe underruns whenever all planes are disabled.
4737 * So don't enable underrun reporting before at least some planes
4738 * are enabled.
4739 * FIXME: Need to fix the logic to work when we turn off all planes
4740 * but leave the pipe running.
4741 */
4742 if (IS_GEN2(dev))
4743 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4744
56b80e1f
VS
4745 /* Underruns don't raise interrupts, so check manually. */
4746 i9xx_check_fifo_underruns(dev);
0b8765c6 4747}
79e53945 4748
87476d63
DV
4749static void i9xx_pfit_disable(struct intel_crtc *crtc)
4750{
4751 struct drm_device *dev = crtc->base.dev;
4752 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4753
328d8e82
DV
4754 if (!crtc->config.gmch_pfit.control)
4755 return;
87476d63 4756
328d8e82 4757 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4758
328d8e82
DV
4759 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4760 I915_READ(PFIT_CONTROL));
4761 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4762}
4763
0b8765c6
JB
4764static void i9xx_crtc_disable(struct drm_crtc *crtc)
4765{
4766 struct drm_device *dev = crtc->dev;
4767 struct drm_i915_private *dev_priv = dev->dev_private;
4768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4769 struct intel_encoder *encoder;
0b8765c6 4770 int pipe = intel_crtc->pipe;
ef9c3aee 4771
f7abfe8b
CW
4772 if (!intel_crtc->active)
4773 return;
4774
4a3436e8
VS
4775 /*
4776 * Gen2 reports pipe underruns whenever all planes are disabled.
4777 * So diasble underrun reporting before all the planes get disabled.
4778 * FIXME: Need to fix the logic to work when we turn off all planes
4779 * but leave the pipe running.
4780 */
4781 if (IS_GEN2(dev))
4782 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4783
564ed191
ID
4784 /*
4785 * Vblank time updates from the shadow to live plane control register
4786 * are blocked if the memory self-refresh mode is active at that
4787 * moment. So to make sure the plane gets truly disabled, disable
4788 * first the self-refresh mode. The self-refresh enable bit in turn
4789 * will be checked/applied by the HW only at the next frame start
4790 * event which is after the vblank start event, so we need to have a
4791 * wait-for-vblank between disabling the plane and the pipe.
4792 */
4793 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4794 intel_crtc_disable_planes(crtc);
4795
ea9d758d
DV
4796 for_each_encoder_on_crtc(dev, crtc, encoder)
4797 encoder->disable(encoder);
4798
6304cd91
VS
4799 /*
4800 * On gen2 planes are double buffered but the pipe isn't, so we must
4801 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4802 * We also need to wait on all gmch platforms because of the
4803 * self-refresh mode constraint explained above.
6304cd91 4804 */
564ed191 4805 intel_wait_for_vblank(dev, pipe);
6304cd91 4806
b24e7179 4807 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4808
87476d63 4809 i9xx_pfit_disable(intel_crtc);
24a1f16d 4810
89b667f8
JB
4811 for_each_encoder_on_crtc(dev, crtc, encoder)
4812 if (encoder->post_disable)
4813 encoder->post_disable(encoder);
4814
076ed3b2
CML
4815 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4816 if (IS_CHERRYVIEW(dev))
4817 chv_disable_pll(dev_priv, pipe);
4818 else if (IS_VALLEYVIEW(dev))
4819 vlv_disable_pll(dev_priv, pipe);
4820 else
4821 i9xx_disable_pll(dev_priv, pipe);
4822 }
0b8765c6 4823
4a3436e8
VS
4824 if (!IS_GEN2(dev))
4825 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4826
f7abfe8b 4827 intel_crtc->active = false;
46ba614c 4828 intel_update_watermarks(crtc);
f37fcc2a 4829
efa9624e 4830 mutex_lock(&dev->struct_mutex);
6b383a7f 4831 intel_update_fbc(dev);
efa9624e 4832 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4833}
4834
ee7b9f93
JB
4835static void i9xx_crtc_off(struct drm_crtc *crtc)
4836{
4837}
4838
976f8a20
DV
4839static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4840 bool enabled)
2c07245f
ZW
4841{
4842 struct drm_device *dev = crtc->dev;
4843 struct drm_i915_master_private *master_priv;
4844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4845 int pipe = intel_crtc->pipe;
79e53945
JB
4846
4847 if (!dev->primary->master)
4848 return;
4849
4850 master_priv = dev->primary->master->driver_priv;
4851 if (!master_priv->sarea_priv)
4852 return;
4853
79e53945
JB
4854 switch (pipe) {
4855 case 0:
4856 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4857 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4858 break;
4859 case 1:
4860 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4861 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4862 break;
4863 default:
9db4a9c7 4864 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4865 break;
4866 }
79e53945
JB
4867}
4868
b04c5bd6
BF
4869/* Master function to enable/disable CRTC and corresponding power wells */
4870void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4871{
4872 struct drm_device *dev = crtc->dev;
4873 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4875 enum intel_display_power_domain domain;
4876 unsigned long domains;
976f8a20 4877
0e572fe7
DV
4878 if (enable) {
4879 if (!intel_crtc->active) {
e1e9fb84
DV
4880 domains = get_crtc_power_domains(crtc);
4881 for_each_power_domain(domain, domains)
4882 intel_display_power_get(dev_priv, domain);
4883 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4884
4885 dev_priv->display.crtc_enable(crtc);
4886 }
4887 } else {
4888 if (intel_crtc->active) {
4889 dev_priv->display.crtc_disable(crtc);
4890
e1e9fb84
DV
4891 domains = intel_crtc->enabled_power_domains;
4892 for_each_power_domain(domain, domains)
4893 intel_display_power_put(dev_priv, domain);
4894 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4895 }
4896 }
b04c5bd6
BF
4897}
4898
4899/**
4900 * Sets the power management mode of the pipe and plane.
4901 */
4902void intel_crtc_update_dpms(struct drm_crtc *crtc)
4903{
4904 struct drm_device *dev = crtc->dev;
4905 struct intel_encoder *intel_encoder;
4906 bool enable = false;
4907
4908 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4909 enable |= intel_encoder->connectors_active;
4910
4911 intel_crtc_control(crtc, enable);
976f8a20
DV
4912
4913 intel_crtc_update_sarea(crtc, enable);
4914}
4915
cdd59983
CW
4916static void intel_crtc_disable(struct drm_crtc *crtc)
4917{
cdd59983 4918 struct drm_device *dev = crtc->dev;
976f8a20 4919 struct drm_connector *connector;
ee7b9f93 4920 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4921 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4922 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4923
976f8a20
DV
4924 /* crtc should still be enabled when we disable it. */
4925 WARN_ON(!crtc->enabled);
4926
4927 dev_priv->display.crtc_disable(crtc);
4928 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4929 dev_priv->display.off(crtc);
4930
f4510a27 4931 if (crtc->primary->fb) {
cdd59983 4932 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4933 intel_unpin_fb_obj(old_obj);
4934 i915_gem_track_fb(old_obj, NULL,
4935 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4936 mutex_unlock(&dev->struct_mutex);
f4510a27 4937 crtc->primary->fb = NULL;
976f8a20
DV
4938 }
4939
4940 /* Update computed state. */
4941 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4942 if (!connector->encoder || !connector->encoder->crtc)
4943 continue;
4944
4945 if (connector->encoder->crtc != crtc)
4946 continue;
4947
4948 connector->dpms = DRM_MODE_DPMS_OFF;
4949 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4950 }
4951}
4952
ea5b213a 4953void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4954{
4ef69c7a 4955 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4956
ea5b213a
CW
4957 drm_encoder_cleanup(encoder);
4958 kfree(intel_encoder);
7e7d76c3
JB
4959}
4960
9237329d 4961/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4962 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4963 * state of the entire output pipe. */
9237329d 4964static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4965{
5ab432ef
DV
4966 if (mode == DRM_MODE_DPMS_ON) {
4967 encoder->connectors_active = true;
4968
b2cabb0e 4969 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4970 } else {
4971 encoder->connectors_active = false;
4972
b2cabb0e 4973 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4974 }
79e53945
JB
4975}
4976
0a91ca29
DV
4977/* Cross check the actual hw state with our own modeset state tracking (and it's
4978 * internal consistency). */
b980514c 4979static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4980{
0a91ca29
DV
4981 if (connector->get_hw_state(connector)) {
4982 struct intel_encoder *encoder = connector->encoder;
4983 struct drm_crtc *crtc;
4984 bool encoder_enabled;
4985 enum pipe pipe;
4986
4987 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4988 connector->base.base.id,
c23cc417 4989 connector->base.name);
0a91ca29 4990
0e32b39c
DA
4991 /* there is no real hw state for MST connectors */
4992 if (connector->mst_port)
4993 return;
4994
0a91ca29
DV
4995 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4996 "wrong connector dpms state\n");
4997 WARN(connector->base.encoder != &encoder->base,
4998 "active connector not linked to encoder\n");
0a91ca29 4999
36cd7444
DA
5000 if (encoder) {
5001 WARN(!encoder->connectors_active,
5002 "encoder->connectors_active not set\n");
5003
5004 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5005 WARN(!encoder_enabled, "encoder not enabled\n");
5006 if (WARN_ON(!encoder->base.crtc))
5007 return;
0a91ca29 5008
36cd7444 5009 crtc = encoder->base.crtc;
0a91ca29 5010
36cd7444
DA
5011 WARN(!crtc->enabled, "crtc not enabled\n");
5012 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5013 WARN(pipe != to_intel_crtc(crtc)->pipe,
5014 "encoder active on the wrong pipe\n");
5015 }
0a91ca29 5016 }
79e53945
JB
5017}
5018
5ab432ef
DV
5019/* Even simpler default implementation, if there's really no special case to
5020 * consider. */
5021void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5022{
5ab432ef
DV
5023 /* All the simple cases only support two dpms states. */
5024 if (mode != DRM_MODE_DPMS_ON)
5025 mode = DRM_MODE_DPMS_OFF;
d4270e57 5026
5ab432ef
DV
5027 if (mode == connector->dpms)
5028 return;
5029
5030 connector->dpms = mode;
5031
5032 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5033 if (connector->encoder)
5034 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5035
b980514c 5036 intel_modeset_check_state(connector->dev);
79e53945
JB
5037}
5038
f0947c37
DV
5039/* Simple connector->get_hw_state implementation for encoders that support only
5040 * one connector and no cloning and hence the encoder state determines the state
5041 * of the connector. */
5042bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5043{
24929352 5044 enum pipe pipe = 0;
f0947c37 5045 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5046
f0947c37 5047 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5048}
5049
1857e1da
DV
5050static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5051 struct intel_crtc_config *pipe_config)
5052{
5053 struct drm_i915_private *dev_priv = dev->dev_private;
5054 struct intel_crtc *pipe_B_crtc =
5055 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5056
5057 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5058 pipe_name(pipe), pipe_config->fdi_lanes);
5059 if (pipe_config->fdi_lanes > 4) {
5060 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5061 pipe_name(pipe), pipe_config->fdi_lanes);
5062 return false;
5063 }
5064
bafb6553 5065 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5066 if (pipe_config->fdi_lanes > 2) {
5067 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5068 pipe_config->fdi_lanes);
5069 return false;
5070 } else {
5071 return true;
5072 }
5073 }
5074
5075 if (INTEL_INFO(dev)->num_pipes == 2)
5076 return true;
5077
5078 /* Ivybridge 3 pipe is really complicated */
5079 switch (pipe) {
5080 case PIPE_A:
5081 return true;
5082 case PIPE_B:
5083 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5084 pipe_config->fdi_lanes > 2) {
5085 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5086 pipe_name(pipe), pipe_config->fdi_lanes);
5087 return false;
5088 }
5089 return true;
5090 case PIPE_C:
1e833f40 5091 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5092 pipe_B_crtc->config.fdi_lanes <= 2) {
5093 if (pipe_config->fdi_lanes > 2) {
5094 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5095 pipe_name(pipe), pipe_config->fdi_lanes);
5096 return false;
5097 }
5098 } else {
5099 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5100 return false;
5101 }
5102 return true;
5103 default:
5104 BUG();
5105 }
5106}
5107
e29c22c0
DV
5108#define RETRY 1
5109static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5110 struct intel_crtc_config *pipe_config)
877d48d5 5111{
1857e1da 5112 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5113 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5114 int lane, link_bw, fdi_dotclock;
e29c22c0 5115 bool setup_ok, needs_recompute = false;
877d48d5 5116
e29c22c0 5117retry:
877d48d5
DV
5118 /* FDI is a binary signal running at ~2.7GHz, encoding
5119 * each output octet as 10 bits. The actual frequency
5120 * is stored as a divider into a 100MHz clock, and the
5121 * mode pixel clock is stored in units of 1KHz.
5122 * Hence the bw of each lane in terms of the mode signal
5123 * is:
5124 */
5125 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5126
241bfc38 5127 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5128
2bd89a07 5129 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5130 pipe_config->pipe_bpp);
5131
5132 pipe_config->fdi_lanes = lane;
5133
2bd89a07 5134 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5135 link_bw, &pipe_config->fdi_m_n);
1857e1da 5136
e29c22c0
DV
5137 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5138 intel_crtc->pipe, pipe_config);
5139 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5140 pipe_config->pipe_bpp -= 2*3;
5141 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5142 pipe_config->pipe_bpp);
5143 needs_recompute = true;
5144 pipe_config->bw_constrained = true;
5145
5146 goto retry;
5147 }
5148
5149 if (needs_recompute)
5150 return RETRY;
5151
5152 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5153}
5154
42db64ef
PZ
5155static void hsw_compute_ips_config(struct intel_crtc *crtc,
5156 struct intel_crtc_config *pipe_config)
5157{
d330a953 5158 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5159 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5160 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5161}
5162
a43f6e0f 5163static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5164 struct intel_crtc_config *pipe_config)
79e53945 5165{
a43f6e0f 5166 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5167 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5168
ad3a4479 5169 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5170 if (INTEL_INFO(dev)->gen < 4) {
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 int clock_limit =
5173 dev_priv->display.get_display_clock_speed(dev);
5174
5175 /*
5176 * Enable pixel doubling when the dot clock
5177 * is > 90% of the (display) core speed.
5178 *
b397c96b
VS
5179 * GDG double wide on either pipe,
5180 * otherwise pipe A only.
cf532bb2 5181 */
b397c96b 5182 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5183 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5184 clock_limit *= 2;
cf532bb2 5185 pipe_config->double_wide = true;
ad3a4479
VS
5186 }
5187
241bfc38 5188 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5189 return -EINVAL;
2c07245f 5190 }
89749350 5191
1d1d0e27
VS
5192 /*
5193 * Pipe horizontal size must be even in:
5194 * - DVO ganged mode
5195 * - LVDS dual channel mode
5196 * - Double wide pipe
5197 */
5198 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5199 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5200 pipe_config->pipe_src_w &= ~1;
5201
8693a824
DL
5202 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5203 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5204 */
5205 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5206 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5207 return -EINVAL;
44f46b42 5208
bd080ee5 5209 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5210 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5211 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5212 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5213 * for lvds. */
5214 pipe_config->pipe_bpp = 8*3;
5215 }
5216
f5adf94e 5217 if (HAS_IPS(dev))
a43f6e0f
DV
5218 hsw_compute_ips_config(crtc, pipe_config);
5219
12030431
DV
5220 /*
5221 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5222 * old clock survives for now.
5223 */
5224 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5225 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5226
877d48d5 5227 if (pipe_config->has_pch_encoder)
a43f6e0f 5228 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5229
e29c22c0 5230 return 0;
79e53945
JB
5231}
5232
25eb05fc
JB
5233static int valleyview_get_display_clock_speed(struct drm_device *dev)
5234{
d197b7d3
VS
5235 struct drm_i915_private *dev_priv = dev->dev_private;
5236 int vco = valleyview_get_vco(dev_priv);
5237 u32 val;
5238 int divider;
5239
5240 mutex_lock(&dev_priv->dpio_lock);
5241 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5242 mutex_unlock(&dev_priv->dpio_lock);
5243
5244 divider = val & DISPLAY_FREQUENCY_VALUES;
5245
7d007f40
VS
5246 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5247 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5248 "cdclk change in progress\n");
5249
d197b7d3 5250 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5251}
5252
e70236a8
JB
5253static int i945_get_display_clock_speed(struct drm_device *dev)
5254{
5255 return 400000;
5256}
79e53945 5257
e70236a8 5258static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5259{
e70236a8
JB
5260 return 333000;
5261}
79e53945 5262
e70236a8
JB
5263static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5264{
5265 return 200000;
5266}
79e53945 5267
257a7ffc
DV
5268static int pnv_get_display_clock_speed(struct drm_device *dev)
5269{
5270 u16 gcfgc = 0;
5271
5272 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5273
5274 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5275 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5276 return 267000;
5277 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5278 return 333000;
5279 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5280 return 444000;
5281 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5282 return 200000;
5283 default:
5284 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5285 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5286 return 133000;
5287 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5288 return 167000;
5289 }
5290}
5291
e70236a8
JB
5292static int i915gm_get_display_clock_speed(struct drm_device *dev)
5293{
5294 u16 gcfgc = 0;
79e53945 5295
e70236a8
JB
5296 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5297
5298 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5299 return 133000;
5300 else {
5301 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5302 case GC_DISPLAY_CLOCK_333_MHZ:
5303 return 333000;
5304 default:
5305 case GC_DISPLAY_CLOCK_190_200_MHZ:
5306 return 190000;
79e53945 5307 }
e70236a8
JB
5308 }
5309}
5310
5311static int i865_get_display_clock_speed(struct drm_device *dev)
5312{
5313 return 266000;
5314}
5315
5316static int i855_get_display_clock_speed(struct drm_device *dev)
5317{
5318 u16 hpllcc = 0;
5319 /* Assume that the hardware is in the high speed state. This
5320 * should be the default.
5321 */
5322 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5323 case GC_CLOCK_133_200:
5324 case GC_CLOCK_100_200:
5325 return 200000;
5326 case GC_CLOCK_166_250:
5327 return 250000;
5328 case GC_CLOCK_100_133:
79e53945 5329 return 133000;
e70236a8 5330 }
79e53945 5331
e70236a8
JB
5332 /* Shouldn't happen */
5333 return 0;
5334}
79e53945 5335
e70236a8
JB
5336static int i830_get_display_clock_speed(struct drm_device *dev)
5337{
5338 return 133000;
79e53945
JB
5339}
5340
2c07245f 5341static void
a65851af 5342intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5343{
a65851af
VS
5344 while (*num > DATA_LINK_M_N_MASK ||
5345 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5346 *num >>= 1;
5347 *den >>= 1;
5348 }
5349}
5350
a65851af
VS
5351static void compute_m_n(unsigned int m, unsigned int n,
5352 uint32_t *ret_m, uint32_t *ret_n)
5353{
5354 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5355 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5356 intel_reduce_m_n_ratio(ret_m, ret_n);
5357}
5358
e69d0bc1
DV
5359void
5360intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5361 int pixel_clock, int link_clock,
5362 struct intel_link_m_n *m_n)
2c07245f 5363{
e69d0bc1 5364 m_n->tu = 64;
a65851af
VS
5365
5366 compute_m_n(bits_per_pixel * pixel_clock,
5367 link_clock * nlanes * 8,
5368 &m_n->gmch_m, &m_n->gmch_n);
5369
5370 compute_m_n(pixel_clock, link_clock,
5371 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5372}
5373
a7615030
CW
5374static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5375{
d330a953
JN
5376 if (i915.panel_use_ssc >= 0)
5377 return i915.panel_use_ssc != 0;
41aa3448 5378 return dev_priv->vbt.lvds_use_ssc
435793df 5379 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5380}
5381
c65d77d8
JB
5382static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5383{
5384 struct drm_device *dev = crtc->dev;
5385 struct drm_i915_private *dev_priv = dev->dev_private;
5386 int refclk;
5387
a0c4da24 5388 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5389 refclk = 100000;
a0c4da24 5390 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5391 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5392 refclk = dev_priv->vbt.lvds_ssc_freq;
5393 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5394 } else if (!IS_GEN2(dev)) {
5395 refclk = 96000;
5396 } else {
5397 refclk = 48000;
5398 }
5399
5400 return refclk;
5401}
5402
7429e9d4 5403static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5404{
7df00d7a 5405 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5406}
f47709a9 5407
7429e9d4
DV
5408static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5409{
5410 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5411}
5412
f47709a9 5413static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5414 intel_clock_t *reduced_clock)
5415{
f47709a9 5416 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5417 u32 fp, fp2 = 0;
5418
5419 if (IS_PINEVIEW(dev)) {
7429e9d4 5420 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5421 if (reduced_clock)
7429e9d4 5422 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5423 } else {
7429e9d4 5424 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5425 if (reduced_clock)
7429e9d4 5426 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5427 }
5428
8bcc2795 5429 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5430
f47709a9
DV
5431 crtc->lowfreq_avail = false;
5432 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5433 reduced_clock && i915.powersave) {
8bcc2795 5434 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5435 crtc->lowfreq_avail = true;
a7516a05 5436 } else {
8bcc2795 5437 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5438 }
5439}
5440
5e69f97f
CML
5441static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5442 pipe)
89b667f8
JB
5443{
5444 u32 reg_val;
5445
5446 /*
5447 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5448 * and set it to a reasonable value instead.
5449 */
ab3c759a 5450 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5451 reg_val &= 0xffffff00;
5452 reg_val |= 0x00000030;
ab3c759a 5453 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5454
ab3c759a 5455 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5456 reg_val &= 0x8cffffff;
5457 reg_val = 0x8c000000;
ab3c759a 5458 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5459
ab3c759a 5460 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5461 reg_val &= 0xffffff00;
ab3c759a 5462 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5463
ab3c759a 5464 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5465 reg_val &= 0x00ffffff;
5466 reg_val |= 0xb0000000;
ab3c759a 5467 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5468}
5469
b551842d
DV
5470static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5471 struct intel_link_m_n *m_n)
5472{
5473 struct drm_device *dev = crtc->base.dev;
5474 struct drm_i915_private *dev_priv = dev->dev_private;
5475 int pipe = crtc->pipe;
5476
e3b95f1e
DV
5477 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5478 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5479 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5480 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5481}
5482
5483static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5484 struct intel_link_m_n *m_n,
5485 struct intel_link_m_n *m2_n2)
b551842d
DV
5486{
5487 struct drm_device *dev = crtc->base.dev;
5488 struct drm_i915_private *dev_priv = dev->dev_private;
5489 int pipe = crtc->pipe;
5490 enum transcoder transcoder = crtc->config.cpu_transcoder;
5491
5492 if (INTEL_INFO(dev)->gen >= 5) {
5493 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5494 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5495 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5496 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5497 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5498 * for gen < 8) and if DRRS is supported (to make sure the
5499 * registers are not unnecessarily accessed).
5500 */
5501 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5502 crtc->config.has_drrs) {
5503 I915_WRITE(PIPE_DATA_M2(transcoder),
5504 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5505 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5506 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5507 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5508 }
b551842d 5509 } else {
e3b95f1e
DV
5510 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5511 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5512 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5513 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5514 }
5515}
5516
f769cd24 5517void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5518{
5519 if (crtc->config.has_pch_encoder)
5520 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5521 else
f769cd24
VK
5522 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5523 &crtc->config.dp_m2_n2);
03afc4a2
DV
5524}
5525
f47709a9 5526static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5527{
5528 u32 dpll, dpll_md;
5529
5530 /*
5531 * Enable DPIO clock input. We should never disable the reference
5532 * clock for pipe B, since VGA hotplug / manual detection depends
5533 * on it.
5534 */
5535 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5536 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5537 /* We should never disable this, set it here for state tracking */
5538 if (crtc->pipe == PIPE_B)
5539 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5540 dpll |= DPLL_VCO_ENABLE;
5541 crtc->config.dpll_hw_state.dpll = dpll;
5542
5543 dpll_md = (crtc->config.pixel_multiplier - 1)
5544 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5545 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5546}
5547
5548static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5549{
f47709a9 5550 struct drm_device *dev = crtc->base.dev;
a0c4da24 5551 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5552 int pipe = crtc->pipe;
bdd4b6a6 5553 u32 mdiv;
a0c4da24 5554 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5555 u32 coreclk, reg_val;
a0c4da24 5556
09153000
DV
5557 mutex_lock(&dev_priv->dpio_lock);
5558
f47709a9
DV
5559 bestn = crtc->config.dpll.n;
5560 bestm1 = crtc->config.dpll.m1;
5561 bestm2 = crtc->config.dpll.m2;
5562 bestp1 = crtc->config.dpll.p1;
5563 bestp2 = crtc->config.dpll.p2;
a0c4da24 5564
89b667f8
JB
5565 /* See eDP HDMI DPIO driver vbios notes doc */
5566
5567 /* PLL B needs special handling */
bdd4b6a6 5568 if (pipe == PIPE_B)
5e69f97f 5569 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5570
5571 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5572 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5573
5574 /* Disable target IRef on PLL */
ab3c759a 5575 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5576 reg_val &= 0x00ffffff;
ab3c759a 5577 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5578
5579 /* Disable fast lock */
ab3c759a 5580 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5581
5582 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5583 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5584 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5585 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5586 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5587
5588 /*
5589 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5590 * but we don't support that).
5591 * Note: don't use the DAC post divider as it seems unstable.
5592 */
5593 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5595
a0c4da24 5596 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5597 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5598
89b667f8 5599 /* Set HBR and RBR LPF coefficients */
ff9a6750 5600 if (crtc->config.port_clock == 162000 ||
99750bd4 5601 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5602 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5603 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5604 0x009f0003);
89b667f8 5605 else
ab3c759a 5606 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5607 0x00d0000f);
5608
5609 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5610 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5611 /* Use SSC source */
bdd4b6a6 5612 if (pipe == PIPE_A)
ab3c759a 5613 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5614 0x0df40000);
5615 else
ab3c759a 5616 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5617 0x0df70000);
5618 } else { /* HDMI or VGA */
5619 /* Use bend source */
bdd4b6a6 5620 if (pipe == PIPE_A)
ab3c759a 5621 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5622 0x0df70000);
5623 else
ab3c759a 5624 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5625 0x0df40000);
5626 }
a0c4da24 5627
ab3c759a 5628 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5629 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5630 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5631 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5632 coreclk |= 0x01000000;
ab3c759a 5633 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5634
ab3c759a 5635 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5636 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5637}
5638
9d556c99
CML
5639static void chv_update_pll(struct intel_crtc *crtc)
5640{
5641 struct drm_device *dev = crtc->base.dev;
5642 struct drm_i915_private *dev_priv = dev->dev_private;
5643 int pipe = crtc->pipe;
5644 int dpll_reg = DPLL(crtc->pipe);
5645 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5646 u32 loopfilter, intcoeff;
9d556c99
CML
5647 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5648 int refclk;
5649
a11b0703
VS
5650 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5651 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5652 DPLL_VCO_ENABLE;
5653 if (pipe != PIPE_A)
5654 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5655
5656 crtc->config.dpll_hw_state.dpll_md =
5657 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5658
5659 bestn = crtc->config.dpll.n;
5660 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5661 bestm1 = crtc->config.dpll.m1;
5662 bestm2 = crtc->config.dpll.m2 >> 22;
5663 bestp1 = crtc->config.dpll.p1;
5664 bestp2 = crtc->config.dpll.p2;
5665
5666 /*
5667 * Enable Refclk and SSC
5668 */
a11b0703
VS
5669 I915_WRITE(dpll_reg,
5670 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5671
5672 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5673
9d556c99
CML
5674 /* p1 and p2 divider */
5675 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5676 5 << DPIO_CHV_S1_DIV_SHIFT |
5677 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5678 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5679 1 << DPIO_CHV_K_DIV_SHIFT);
5680
5681 /* Feedback post-divider - m2 */
5682 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5683
5684 /* Feedback refclk divider - n and m1 */
5685 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5686 DPIO_CHV_M1_DIV_BY_2 |
5687 1 << DPIO_CHV_N_DIV_SHIFT);
5688
5689 /* M2 fraction division */
5690 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5691
5692 /* M2 fraction division enable */
5693 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5694 DPIO_CHV_FRAC_DIV_EN |
5695 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5696
5697 /* Loop filter */
5698 refclk = i9xx_get_refclk(&crtc->base, 0);
5699 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5700 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5701 if (refclk == 100000)
5702 intcoeff = 11;
5703 else if (refclk == 38400)
5704 intcoeff = 10;
5705 else
5706 intcoeff = 9;
5707 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5708 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5709
5710 /* AFC Recal */
5711 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5712 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5713 DPIO_AFC_RECAL);
5714
5715 mutex_unlock(&dev_priv->dpio_lock);
5716}
5717
f47709a9
DV
5718static void i9xx_update_pll(struct intel_crtc *crtc,
5719 intel_clock_t *reduced_clock,
eb1cbe48
DV
5720 int num_connectors)
5721{
f47709a9 5722 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5723 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5724 u32 dpll;
5725 bool is_sdvo;
f47709a9 5726 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5727
f47709a9 5728 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5729
f47709a9
DV
5730 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5731 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5732
5733 dpll = DPLL_VGA_MODE_DIS;
5734
f47709a9 5735 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5736 dpll |= DPLLB_MODE_LVDS;
5737 else
5738 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5739
ef1b460d 5740 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5741 dpll |= (crtc->config.pixel_multiplier - 1)
5742 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5743 }
198a037f
DV
5744
5745 if (is_sdvo)
4a33e48d 5746 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5747
f47709a9 5748 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5749 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5750
5751 /* compute bitmask from p1 value */
5752 if (IS_PINEVIEW(dev))
5753 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5754 else {
5755 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5756 if (IS_G4X(dev) && reduced_clock)
5757 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5758 }
5759 switch (clock->p2) {
5760 case 5:
5761 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5762 break;
5763 case 7:
5764 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5765 break;
5766 case 10:
5767 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5768 break;
5769 case 14:
5770 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5771 break;
5772 }
5773 if (INTEL_INFO(dev)->gen >= 4)
5774 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5775
09ede541 5776 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5777 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5778 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5779 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5780 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5781 else
5782 dpll |= PLL_REF_INPUT_DREFCLK;
5783
5784 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5785 crtc->config.dpll_hw_state.dpll = dpll;
5786
eb1cbe48 5787 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5788 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5789 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5790 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5791 }
5792}
5793
f47709a9 5794static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5795 intel_clock_t *reduced_clock,
eb1cbe48
DV
5796 int num_connectors)
5797{
f47709a9 5798 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5799 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5800 u32 dpll;
f47709a9 5801 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5802
f47709a9 5803 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5804
eb1cbe48
DV
5805 dpll = DPLL_VGA_MODE_DIS;
5806
f47709a9 5807 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5808 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5809 } else {
5810 if (clock->p1 == 2)
5811 dpll |= PLL_P1_DIVIDE_BY_TWO;
5812 else
5813 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5814 if (clock->p2 == 4)
5815 dpll |= PLL_P2_DIVIDE_BY_4;
5816 }
5817
4a33e48d
DV
5818 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5819 dpll |= DPLL_DVO_2X_MODE;
5820
f47709a9 5821 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5822 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5823 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5824 else
5825 dpll |= PLL_REF_INPUT_DREFCLK;
5826
5827 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5828 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5829}
5830
8a654f3b 5831static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5832{
5833 struct drm_device *dev = intel_crtc->base.dev;
5834 struct drm_i915_private *dev_priv = dev->dev_private;
5835 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5836 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5837 struct drm_display_mode *adjusted_mode =
5838 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5839 uint32_t crtc_vtotal, crtc_vblank_end;
5840 int vsyncshift = 0;
4d8a62ea
DV
5841
5842 /* We need to be careful not to changed the adjusted mode, for otherwise
5843 * the hw state checker will get angry at the mismatch. */
5844 crtc_vtotal = adjusted_mode->crtc_vtotal;
5845 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5846
609aeaca 5847 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5848 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5849 crtc_vtotal -= 1;
5850 crtc_vblank_end -= 1;
609aeaca
VS
5851
5852 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5853 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5854 else
5855 vsyncshift = adjusted_mode->crtc_hsync_start -
5856 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5857 if (vsyncshift < 0)
5858 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5859 }
5860
5861 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5862 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5863
fe2b8f9d 5864 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5865 (adjusted_mode->crtc_hdisplay - 1) |
5866 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5867 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5868 (adjusted_mode->crtc_hblank_start - 1) |
5869 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5870 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5871 (adjusted_mode->crtc_hsync_start - 1) |
5872 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5873
fe2b8f9d 5874 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5875 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5876 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5877 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5878 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5879 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5880 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5881 (adjusted_mode->crtc_vsync_start - 1) |
5882 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5883
b5e508d4
PZ
5884 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5885 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5886 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5887 * bits. */
5888 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5889 (pipe == PIPE_B || pipe == PIPE_C))
5890 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5891
b0e77b9c
PZ
5892 /* pipesrc controls the size that is scaled from, which should
5893 * always be the user's requested size.
5894 */
5895 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5896 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5897 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5898}
5899
1bd1bd80
DV
5900static void intel_get_pipe_timings(struct intel_crtc *crtc,
5901 struct intel_crtc_config *pipe_config)
5902{
5903 struct drm_device *dev = crtc->base.dev;
5904 struct drm_i915_private *dev_priv = dev->dev_private;
5905 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5906 uint32_t tmp;
5907
5908 tmp = I915_READ(HTOTAL(cpu_transcoder));
5909 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5910 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5911 tmp = I915_READ(HBLANK(cpu_transcoder));
5912 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5913 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5914 tmp = I915_READ(HSYNC(cpu_transcoder));
5915 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5916 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5917
5918 tmp = I915_READ(VTOTAL(cpu_transcoder));
5919 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5920 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5921 tmp = I915_READ(VBLANK(cpu_transcoder));
5922 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5923 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5924 tmp = I915_READ(VSYNC(cpu_transcoder));
5925 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5926 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5927
5928 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5929 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5930 pipe_config->adjusted_mode.crtc_vtotal += 1;
5931 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5932 }
5933
5934 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5935 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5936 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5937
5938 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5939 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5940}
5941
f6a83288
DV
5942void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5943 struct intel_crtc_config *pipe_config)
babea61d 5944{
f6a83288
DV
5945 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5946 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5947 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5948 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5949
f6a83288
DV
5950 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5951 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5952 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5953 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5954
f6a83288 5955 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5956
f6a83288
DV
5957 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5958 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5959}
5960
84b046f3
DV
5961static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5962{
5963 struct drm_device *dev = intel_crtc->base.dev;
5964 struct drm_i915_private *dev_priv = dev->dev_private;
5965 uint32_t pipeconf;
5966
9f11a9e4 5967 pipeconf = 0;
84b046f3 5968
67c72a12
DV
5969 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5970 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5971 pipeconf |= PIPECONF_ENABLE;
5972
cf532bb2
VS
5973 if (intel_crtc->config.double_wide)
5974 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5975
ff9ce46e
DV
5976 /* only g4x and later have fancy bpc/dither controls */
5977 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5978 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5979 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5980 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5981 PIPECONF_DITHER_TYPE_SP;
84b046f3 5982
ff9ce46e
DV
5983 switch (intel_crtc->config.pipe_bpp) {
5984 case 18:
5985 pipeconf |= PIPECONF_6BPC;
5986 break;
5987 case 24:
5988 pipeconf |= PIPECONF_8BPC;
5989 break;
5990 case 30:
5991 pipeconf |= PIPECONF_10BPC;
5992 break;
5993 default:
5994 /* Case prevented by intel_choose_pipe_bpp_dither. */
5995 BUG();
84b046f3
DV
5996 }
5997 }
5998
5999 if (HAS_PIPE_CXSR(dev)) {
6000 if (intel_crtc->lowfreq_avail) {
6001 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6002 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6003 } else {
6004 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6005 }
6006 }
6007
efc2cfff
VS
6008 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6009 if (INTEL_INFO(dev)->gen < 4 ||
6010 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6011 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6012 else
6013 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6014 } else
84b046f3
DV
6015 pipeconf |= PIPECONF_PROGRESSIVE;
6016
9f11a9e4
DV
6017 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6018 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6019
84b046f3
DV
6020 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6021 POSTING_READ(PIPECONF(intel_crtc->pipe));
6022}
6023
f564048e 6024static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6025 int x, int y,
94352cf9 6026 struct drm_framebuffer *fb)
79e53945
JB
6027{
6028 struct drm_device *dev = crtc->dev;
6029 struct drm_i915_private *dev_priv = dev->dev_private;
6030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6031 int refclk, num_connectors = 0;
652c393a 6032 intel_clock_t clock, reduced_clock;
a16af721 6033 bool ok, has_reduced_clock = false;
e9fd1c02 6034 bool is_lvds = false, is_dsi = false;
5eddb70b 6035 struct intel_encoder *encoder;
d4906093 6036 const intel_limit_t *limit;
79e53945 6037
6c2b7c12 6038 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6039 switch (encoder->type) {
79e53945
JB
6040 case INTEL_OUTPUT_LVDS:
6041 is_lvds = true;
6042 break;
e9fd1c02
JN
6043 case INTEL_OUTPUT_DSI:
6044 is_dsi = true;
6045 break;
79e53945 6046 }
43565a06 6047
c751ce4f 6048 num_connectors++;
79e53945
JB
6049 }
6050
f2335330 6051 if (is_dsi)
5b18e57c 6052 return 0;
f2335330
JN
6053
6054 if (!intel_crtc->config.clock_set) {
6055 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6056
e9fd1c02
JN
6057 /*
6058 * Returns a set of divisors for the desired target clock with
6059 * the given refclk, or FALSE. The returned values represent
6060 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6061 * 2) / p1 / p2.
6062 */
6063 limit = intel_limit(crtc, refclk);
6064 ok = dev_priv->display.find_dpll(limit, crtc,
6065 intel_crtc->config.port_clock,
6066 refclk, NULL, &clock);
f2335330 6067 if (!ok) {
e9fd1c02
JN
6068 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6069 return -EINVAL;
6070 }
79e53945 6071
f2335330
JN
6072 if (is_lvds && dev_priv->lvds_downclock_avail) {
6073 /*
6074 * Ensure we match the reduced clock's P to the target
6075 * clock. If the clocks don't match, we can't switch
6076 * the display clock by using the FP0/FP1. In such case
6077 * we will disable the LVDS downclock feature.
6078 */
6079 has_reduced_clock =
6080 dev_priv->display.find_dpll(limit, crtc,
6081 dev_priv->lvds_downclock,
6082 refclk, &clock,
6083 &reduced_clock);
6084 }
6085 /* Compat-code for transition, will disappear. */
f47709a9
DV
6086 intel_crtc->config.dpll.n = clock.n;
6087 intel_crtc->config.dpll.m1 = clock.m1;
6088 intel_crtc->config.dpll.m2 = clock.m2;
6089 intel_crtc->config.dpll.p1 = clock.p1;
6090 intel_crtc->config.dpll.p2 = clock.p2;
6091 }
7026d4ac 6092
e9fd1c02 6093 if (IS_GEN2(dev)) {
8a654f3b 6094 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6095 has_reduced_clock ? &reduced_clock : NULL,
6096 num_connectors);
9d556c99
CML
6097 } else if (IS_CHERRYVIEW(dev)) {
6098 chv_update_pll(intel_crtc);
e9fd1c02 6099 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6100 vlv_update_pll(intel_crtc);
e9fd1c02 6101 } else {
f47709a9 6102 i9xx_update_pll(intel_crtc,
eb1cbe48 6103 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6104 num_connectors);
e9fd1c02 6105 }
79e53945 6106
c8f7a0db 6107 return 0;
f564048e
EA
6108}
6109
2fa2fe9a
DV
6110static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6111 struct intel_crtc_config *pipe_config)
6112{
6113 struct drm_device *dev = crtc->base.dev;
6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115 uint32_t tmp;
6116
dc9e7dec
VS
6117 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6118 return;
6119
2fa2fe9a 6120 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6121 if (!(tmp & PFIT_ENABLE))
6122 return;
2fa2fe9a 6123
06922821 6124 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6125 if (INTEL_INFO(dev)->gen < 4) {
6126 if (crtc->pipe != PIPE_B)
6127 return;
2fa2fe9a
DV
6128 } else {
6129 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6130 return;
6131 }
6132
06922821 6133 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6134 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6135 if (INTEL_INFO(dev)->gen < 5)
6136 pipe_config->gmch_pfit.lvds_border_bits =
6137 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6138}
6139
acbec814
JB
6140static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6141 struct intel_crtc_config *pipe_config)
6142{
6143 struct drm_device *dev = crtc->base.dev;
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145 int pipe = pipe_config->cpu_transcoder;
6146 intel_clock_t clock;
6147 u32 mdiv;
662c6ecb 6148 int refclk = 100000;
acbec814 6149
f573de5a
SK
6150 /* In case of MIPI DPLL will not even be used */
6151 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6152 return;
6153
acbec814 6154 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6155 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6156 mutex_unlock(&dev_priv->dpio_lock);
6157
6158 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6159 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6160 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6161 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6162 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6163
f646628b 6164 vlv_clock(refclk, &clock);
acbec814 6165
f646628b
VS
6166 /* clock.dot is the fast clock */
6167 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6168}
6169
1ad292b5
JB
6170static void i9xx_get_plane_config(struct intel_crtc *crtc,
6171 struct intel_plane_config *plane_config)
6172{
6173 struct drm_device *dev = crtc->base.dev;
6174 struct drm_i915_private *dev_priv = dev->dev_private;
6175 u32 val, base, offset;
6176 int pipe = crtc->pipe, plane = crtc->plane;
6177 int fourcc, pixel_format;
6178 int aligned_height;
6179
66e514c1
DA
6180 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6181 if (!crtc->base.primary->fb) {
1ad292b5
JB
6182 DRM_DEBUG_KMS("failed to alloc fb\n");
6183 return;
6184 }
6185
6186 val = I915_READ(DSPCNTR(plane));
6187
6188 if (INTEL_INFO(dev)->gen >= 4)
6189 if (val & DISPPLANE_TILED)
6190 plane_config->tiled = true;
6191
6192 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6193 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6194 crtc->base.primary->fb->pixel_format = fourcc;
6195 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6196 drm_format_plane_cpp(fourcc, 0) * 8;
6197
6198 if (INTEL_INFO(dev)->gen >= 4) {
6199 if (plane_config->tiled)
6200 offset = I915_READ(DSPTILEOFF(plane));
6201 else
6202 offset = I915_READ(DSPLINOFF(plane));
6203 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6204 } else {
6205 base = I915_READ(DSPADDR(plane));
6206 }
6207 plane_config->base = base;
6208
6209 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6210 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6211 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6212
6213 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6214 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6215
66e514c1 6216 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6217 plane_config->tiled);
6218
1267a26b
FF
6219 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6220 aligned_height);
1ad292b5
JB
6221
6222 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6223 pipe, plane, crtc->base.primary->fb->width,
6224 crtc->base.primary->fb->height,
6225 crtc->base.primary->fb->bits_per_pixel, base,
6226 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6227 plane_config->size);
6228
6229}
6230
70b23a98
VS
6231static void chv_crtc_clock_get(struct intel_crtc *crtc,
6232 struct intel_crtc_config *pipe_config)
6233{
6234 struct drm_device *dev = crtc->base.dev;
6235 struct drm_i915_private *dev_priv = dev->dev_private;
6236 int pipe = pipe_config->cpu_transcoder;
6237 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6238 intel_clock_t clock;
6239 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6240 int refclk = 100000;
6241
6242 mutex_lock(&dev_priv->dpio_lock);
6243 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6244 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6245 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6246 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6247 mutex_unlock(&dev_priv->dpio_lock);
6248
6249 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6250 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6251 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6252 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6253 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6254
6255 chv_clock(refclk, &clock);
6256
6257 /* clock.dot is the fast clock */
6258 pipe_config->port_clock = clock.dot / 5;
6259}
6260
0e8ffe1b
DV
6261static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6262 struct intel_crtc_config *pipe_config)
6263{
6264 struct drm_device *dev = crtc->base.dev;
6265 struct drm_i915_private *dev_priv = dev->dev_private;
6266 uint32_t tmp;
6267
b5482bd0
ID
6268 if (!intel_display_power_enabled(dev_priv,
6269 POWER_DOMAIN_PIPE(crtc->pipe)))
6270 return false;
6271
e143a21c 6272 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6273 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6274
0e8ffe1b
DV
6275 tmp = I915_READ(PIPECONF(crtc->pipe));
6276 if (!(tmp & PIPECONF_ENABLE))
6277 return false;
6278
42571aef
VS
6279 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6280 switch (tmp & PIPECONF_BPC_MASK) {
6281 case PIPECONF_6BPC:
6282 pipe_config->pipe_bpp = 18;
6283 break;
6284 case PIPECONF_8BPC:
6285 pipe_config->pipe_bpp = 24;
6286 break;
6287 case PIPECONF_10BPC:
6288 pipe_config->pipe_bpp = 30;
6289 break;
6290 default:
6291 break;
6292 }
6293 }
6294
b5a9fa09
DV
6295 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6296 pipe_config->limited_color_range = true;
6297
282740f7
VS
6298 if (INTEL_INFO(dev)->gen < 4)
6299 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6300
1bd1bd80
DV
6301 intel_get_pipe_timings(crtc, pipe_config);
6302
2fa2fe9a
DV
6303 i9xx_get_pfit_config(crtc, pipe_config);
6304
6c49f241
DV
6305 if (INTEL_INFO(dev)->gen >= 4) {
6306 tmp = I915_READ(DPLL_MD(crtc->pipe));
6307 pipe_config->pixel_multiplier =
6308 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6309 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6310 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6311 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6312 tmp = I915_READ(DPLL(crtc->pipe));
6313 pipe_config->pixel_multiplier =
6314 ((tmp & SDVO_MULTIPLIER_MASK)
6315 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6316 } else {
6317 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6318 * port and will be fixed up in the encoder->get_config
6319 * function. */
6320 pipe_config->pixel_multiplier = 1;
6321 }
8bcc2795
DV
6322 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6323 if (!IS_VALLEYVIEW(dev)) {
6324 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6325 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6326 } else {
6327 /* Mask out read-only status bits. */
6328 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6329 DPLL_PORTC_READY_MASK |
6330 DPLL_PORTB_READY_MASK);
8bcc2795 6331 }
6c49f241 6332
70b23a98
VS
6333 if (IS_CHERRYVIEW(dev))
6334 chv_crtc_clock_get(crtc, pipe_config);
6335 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6336 vlv_crtc_clock_get(crtc, pipe_config);
6337 else
6338 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6339
0e8ffe1b
DV
6340 return true;
6341}
6342
dde86e2d 6343static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6344{
6345 struct drm_i915_private *dev_priv = dev->dev_private;
6346 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6347 struct intel_encoder *encoder;
74cfd7ac 6348 u32 val, final;
13d83a67 6349 bool has_lvds = false;
199e5d79 6350 bool has_cpu_edp = false;
199e5d79 6351 bool has_panel = false;
99eb6a01
KP
6352 bool has_ck505 = false;
6353 bool can_ssc = false;
13d83a67
JB
6354
6355 /* We need to take the global config into account */
199e5d79
KP
6356 list_for_each_entry(encoder, &mode_config->encoder_list,
6357 base.head) {
6358 switch (encoder->type) {
6359 case INTEL_OUTPUT_LVDS:
6360 has_panel = true;
6361 has_lvds = true;
6362 break;
6363 case INTEL_OUTPUT_EDP:
6364 has_panel = true;
2de6905f 6365 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6366 has_cpu_edp = true;
6367 break;
13d83a67
JB
6368 }
6369 }
6370
99eb6a01 6371 if (HAS_PCH_IBX(dev)) {
41aa3448 6372 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6373 can_ssc = has_ck505;
6374 } else {
6375 has_ck505 = false;
6376 can_ssc = true;
6377 }
6378
2de6905f
ID
6379 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6380 has_panel, has_lvds, has_ck505);
13d83a67
JB
6381
6382 /* Ironlake: try to setup display ref clock before DPLL
6383 * enabling. This is only under driver's control after
6384 * PCH B stepping, previous chipset stepping should be
6385 * ignoring this setting.
6386 */
74cfd7ac
CW
6387 val = I915_READ(PCH_DREF_CONTROL);
6388
6389 /* As we must carefully and slowly disable/enable each source in turn,
6390 * compute the final state we want first and check if we need to
6391 * make any changes at all.
6392 */
6393 final = val;
6394 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6395 if (has_ck505)
6396 final |= DREF_NONSPREAD_CK505_ENABLE;
6397 else
6398 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6399
6400 final &= ~DREF_SSC_SOURCE_MASK;
6401 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6402 final &= ~DREF_SSC1_ENABLE;
6403
6404 if (has_panel) {
6405 final |= DREF_SSC_SOURCE_ENABLE;
6406
6407 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6408 final |= DREF_SSC1_ENABLE;
6409
6410 if (has_cpu_edp) {
6411 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6412 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6413 else
6414 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6415 } else
6416 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6417 } else {
6418 final |= DREF_SSC_SOURCE_DISABLE;
6419 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6420 }
6421
6422 if (final == val)
6423 return;
6424
13d83a67 6425 /* Always enable nonspread source */
74cfd7ac 6426 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6427
99eb6a01 6428 if (has_ck505)
74cfd7ac 6429 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6430 else
74cfd7ac 6431 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6432
199e5d79 6433 if (has_panel) {
74cfd7ac
CW
6434 val &= ~DREF_SSC_SOURCE_MASK;
6435 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6436
199e5d79 6437 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6438 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6439 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6440 val |= DREF_SSC1_ENABLE;
e77166b5 6441 } else
74cfd7ac 6442 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6443
6444 /* Get SSC going before enabling the outputs */
74cfd7ac 6445 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6446 POSTING_READ(PCH_DREF_CONTROL);
6447 udelay(200);
6448
74cfd7ac 6449 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6450
6451 /* Enable CPU source on CPU attached eDP */
199e5d79 6452 if (has_cpu_edp) {
99eb6a01 6453 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6454 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6455 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6456 } else
74cfd7ac 6457 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6458 } else
74cfd7ac 6459 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6460
74cfd7ac 6461 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6462 POSTING_READ(PCH_DREF_CONTROL);
6463 udelay(200);
6464 } else {
6465 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6466
74cfd7ac 6467 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6468
6469 /* Turn off CPU output */
74cfd7ac 6470 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6471
74cfd7ac 6472 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6473 POSTING_READ(PCH_DREF_CONTROL);
6474 udelay(200);
6475
6476 /* Turn off the SSC source */
74cfd7ac
CW
6477 val &= ~DREF_SSC_SOURCE_MASK;
6478 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6479
6480 /* Turn off SSC1 */
74cfd7ac 6481 val &= ~DREF_SSC1_ENABLE;
199e5d79 6482
74cfd7ac 6483 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6484 POSTING_READ(PCH_DREF_CONTROL);
6485 udelay(200);
6486 }
74cfd7ac
CW
6487
6488 BUG_ON(val != final);
13d83a67
JB
6489}
6490
f31f2d55 6491static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6492{
f31f2d55 6493 uint32_t tmp;
dde86e2d 6494
0ff066a9
PZ
6495 tmp = I915_READ(SOUTH_CHICKEN2);
6496 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6497 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6498
0ff066a9
PZ
6499 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6500 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6501 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6502
0ff066a9
PZ
6503 tmp = I915_READ(SOUTH_CHICKEN2);
6504 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6505 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6506
0ff066a9
PZ
6507 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6508 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6509 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6510}
6511
6512/* WaMPhyProgramming:hsw */
6513static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6514{
6515 uint32_t tmp;
dde86e2d
PZ
6516
6517 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6518 tmp &= ~(0xFF << 24);
6519 tmp |= (0x12 << 24);
6520 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6521
dde86e2d
PZ
6522 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6523 tmp |= (1 << 11);
6524 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6525
6526 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6527 tmp |= (1 << 11);
6528 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6529
dde86e2d
PZ
6530 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6531 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6532 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6533
6534 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6535 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6536 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6537
0ff066a9
PZ
6538 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6539 tmp &= ~(7 << 13);
6540 tmp |= (5 << 13);
6541 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6542
0ff066a9
PZ
6543 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6544 tmp &= ~(7 << 13);
6545 tmp |= (5 << 13);
6546 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6547
6548 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6549 tmp &= ~0xFF;
6550 tmp |= 0x1C;
6551 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6552
6553 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6554 tmp &= ~0xFF;
6555 tmp |= 0x1C;
6556 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6557
6558 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6559 tmp &= ~(0xFF << 16);
6560 tmp |= (0x1C << 16);
6561 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6562
6563 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6564 tmp &= ~(0xFF << 16);
6565 tmp |= (0x1C << 16);
6566 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6567
0ff066a9
PZ
6568 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6569 tmp |= (1 << 27);
6570 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6571
0ff066a9
PZ
6572 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6573 tmp |= (1 << 27);
6574 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6575
0ff066a9
PZ
6576 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6577 tmp &= ~(0xF << 28);
6578 tmp |= (4 << 28);
6579 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6580
0ff066a9
PZ
6581 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6582 tmp &= ~(0xF << 28);
6583 tmp |= (4 << 28);
6584 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6585}
6586
2fa86a1f
PZ
6587/* Implements 3 different sequences from BSpec chapter "Display iCLK
6588 * Programming" based on the parameters passed:
6589 * - Sequence to enable CLKOUT_DP
6590 * - Sequence to enable CLKOUT_DP without spread
6591 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6592 */
6593static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6594 bool with_fdi)
f31f2d55
PZ
6595{
6596 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6597 uint32_t reg, tmp;
6598
6599 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6600 with_spread = true;
6601 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6602 with_fdi, "LP PCH doesn't have FDI\n"))
6603 with_fdi = false;
f31f2d55
PZ
6604
6605 mutex_lock(&dev_priv->dpio_lock);
6606
6607 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6608 tmp &= ~SBI_SSCCTL_DISABLE;
6609 tmp |= SBI_SSCCTL_PATHALT;
6610 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6611
6612 udelay(24);
6613
2fa86a1f
PZ
6614 if (with_spread) {
6615 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6616 tmp &= ~SBI_SSCCTL_PATHALT;
6617 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6618
2fa86a1f
PZ
6619 if (with_fdi) {
6620 lpt_reset_fdi_mphy(dev_priv);
6621 lpt_program_fdi_mphy(dev_priv);
6622 }
6623 }
dde86e2d 6624
2fa86a1f
PZ
6625 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6626 SBI_GEN0 : SBI_DBUFF0;
6627 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6628 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6629 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6630
6631 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6632}
6633
47701c3b
PZ
6634/* Sequence to disable CLKOUT_DP */
6635static void lpt_disable_clkout_dp(struct drm_device *dev)
6636{
6637 struct drm_i915_private *dev_priv = dev->dev_private;
6638 uint32_t reg, tmp;
6639
6640 mutex_lock(&dev_priv->dpio_lock);
6641
6642 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6643 SBI_GEN0 : SBI_DBUFF0;
6644 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6645 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6646 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6647
6648 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6649 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6650 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6651 tmp |= SBI_SSCCTL_PATHALT;
6652 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6653 udelay(32);
6654 }
6655 tmp |= SBI_SSCCTL_DISABLE;
6656 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6657 }
6658
6659 mutex_unlock(&dev_priv->dpio_lock);
6660}
6661
bf8fa3d3
PZ
6662static void lpt_init_pch_refclk(struct drm_device *dev)
6663{
6664 struct drm_mode_config *mode_config = &dev->mode_config;
6665 struct intel_encoder *encoder;
6666 bool has_vga = false;
6667
6668 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6669 switch (encoder->type) {
6670 case INTEL_OUTPUT_ANALOG:
6671 has_vga = true;
6672 break;
6673 }
6674 }
6675
47701c3b
PZ
6676 if (has_vga)
6677 lpt_enable_clkout_dp(dev, true, true);
6678 else
6679 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6680}
6681
dde86e2d
PZ
6682/*
6683 * Initialize reference clocks when the driver loads
6684 */
6685void intel_init_pch_refclk(struct drm_device *dev)
6686{
6687 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6688 ironlake_init_pch_refclk(dev);
6689 else if (HAS_PCH_LPT(dev))
6690 lpt_init_pch_refclk(dev);
6691}
6692
d9d444cb
JB
6693static int ironlake_get_refclk(struct drm_crtc *crtc)
6694{
6695 struct drm_device *dev = crtc->dev;
6696 struct drm_i915_private *dev_priv = dev->dev_private;
6697 struct intel_encoder *encoder;
d9d444cb
JB
6698 int num_connectors = 0;
6699 bool is_lvds = false;
6700
6c2b7c12 6701 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6702 switch (encoder->type) {
6703 case INTEL_OUTPUT_LVDS:
6704 is_lvds = true;
6705 break;
d9d444cb
JB
6706 }
6707 num_connectors++;
6708 }
6709
6710 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6711 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6712 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6713 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6714 }
6715
6716 return 120000;
6717}
6718
6ff93609 6719static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6720{
c8203565 6721 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6723 int pipe = intel_crtc->pipe;
c8203565
PZ
6724 uint32_t val;
6725
78114071 6726 val = 0;
c8203565 6727
965e0c48 6728 switch (intel_crtc->config.pipe_bpp) {
c8203565 6729 case 18:
dfd07d72 6730 val |= PIPECONF_6BPC;
c8203565
PZ
6731 break;
6732 case 24:
dfd07d72 6733 val |= PIPECONF_8BPC;
c8203565
PZ
6734 break;
6735 case 30:
dfd07d72 6736 val |= PIPECONF_10BPC;
c8203565
PZ
6737 break;
6738 case 36:
dfd07d72 6739 val |= PIPECONF_12BPC;
c8203565
PZ
6740 break;
6741 default:
cc769b62
PZ
6742 /* Case prevented by intel_choose_pipe_bpp_dither. */
6743 BUG();
c8203565
PZ
6744 }
6745
d8b32247 6746 if (intel_crtc->config.dither)
c8203565
PZ
6747 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6748
6ff93609 6749 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6750 val |= PIPECONF_INTERLACED_ILK;
6751 else
6752 val |= PIPECONF_PROGRESSIVE;
6753
50f3b016 6754 if (intel_crtc->config.limited_color_range)
3685a8f3 6755 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6756
c8203565
PZ
6757 I915_WRITE(PIPECONF(pipe), val);
6758 POSTING_READ(PIPECONF(pipe));
6759}
6760
86d3efce
VS
6761/*
6762 * Set up the pipe CSC unit.
6763 *
6764 * Currently only full range RGB to limited range RGB conversion
6765 * is supported, but eventually this should handle various
6766 * RGB<->YCbCr scenarios as well.
6767 */
50f3b016 6768static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6769{
6770 struct drm_device *dev = crtc->dev;
6771 struct drm_i915_private *dev_priv = dev->dev_private;
6772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6773 int pipe = intel_crtc->pipe;
6774 uint16_t coeff = 0x7800; /* 1.0 */
6775
6776 /*
6777 * TODO: Check what kind of values actually come out of the pipe
6778 * with these coeff/postoff values and adjust to get the best
6779 * accuracy. Perhaps we even need to take the bpc value into
6780 * consideration.
6781 */
6782
50f3b016 6783 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6784 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6785
6786 /*
6787 * GY/GU and RY/RU should be the other way around according
6788 * to BSpec, but reality doesn't agree. Just set them up in
6789 * a way that results in the correct picture.
6790 */
6791 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6792 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6793
6794 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6795 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6796
6797 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6798 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6799
6800 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6801 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6802 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6803
6804 if (INTEL_INFO(dev)->gen > 6) {
6805 uint16_t postoff = 0;
6806
50f3b016 6807 if (intel_crtc->config.limited_color_range)
32cf0cb0 6808 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6809
6810 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6811 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6812 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6813
6814 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6815 } else {
6816 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6817
50f3b016 6818 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6819 mode |= CSC_BLACK_SCREEN_OFFSET;
6820
6821 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6822 }
6823}
6824
6ff93609 6825static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6826{
756f85cf
PZ
6827 struct drm_device *dev = crtc->dev;
6828 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6830 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6831 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6832 uint32_t val;
6833
3eff4faa 6834 val = 0;
ee2b0b38 6835
756f85cf 6836 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6837 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6838
6ff93609 6839 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6840 val |= PIPECONF_INTERLACED_ILK;
6841 else
6842 val |= PIPECONF_PROGRESSIVE;
6843
702e7a56
PZ
6844 I915_WRITE(PIPECONF(cpu_transcoder), val);
6845 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6846
6847 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6848 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6849
6850 if (IS_BROADWELL(dev)) {
6851 val = 0;
6852
6853 switch (intel_crtc->config.pipe_bpp) {
6854 case 18:
6855 val |= PIPEMISC_DITHER_6_BPC;
6856 break;
6857 case 24:
6858 val |= PIPEMISC_DITHER_8_BPC;
6859 break;
6860 case 30:
6861 val |= PIPEMISC_DITHER_10_BPC;
6862 break;
6863 case 36:
6864 val |= PIPEMISC_DITHER_12_BPC;
6865 break;
6866 default:
6867 /* Case prevented by pipe_config_set_bpp. */
6868 BUG();
6869 }
6870
6871 if (intel_crtc->config.dither)
6872 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6873
6874 I915_WRITE(PIPEMISC(pipe), val);
6875 }
ee2b0b38
PZ
6876}
6877
6591c6e4 6878static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6879 intel_clock_t *clock,
6880 bool *has_reduced_clock,
6881 intel_clock_t *reduced_clock)
6882{
6883 struct drm_device *dev = crtc->dev;
6884 struct drm_i915_private *dev_priv = dev->dev_private;
6885 struct intel_encoder *intel_encoder;
6886 int refclk;
d4906093 6887 const intel_limit_t *limit;
a16af721 6888 bool ret, is_lvds = false;
79e53945 6889
6591c6e4
PZ
6890 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6891 switch (intel_encoder->type) {
79e53945
JB
6892 case INTEL_OUTPUT_LVDS:
6893 is_lvds = true;
6894 break;
79e53945
JB
6895 }
6896 }
6897
d9d444cb 6898 refclk = ironlake_get_refclk(crtc);
79e53945 6899
d4906093
ML
6900 /*
6901 * Returns a set of divisors for the desired target clock with the given
6902 * refclk, or FALSE. The returned values represent the clock equation:
6903 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6904 */
1b894b59 6905 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6906 ret = dev_priv->display.find_dpll(limit, crtc,
6907 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6908 refclk, NULL, clock);
6591c6e4
PZ
6909 if (!ret)
6910 return false;
cda4b7d3 6911
ddc9003c 6912 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6913 /*
6914 * Ensure we match the reduced clock's P to the target clock.
6915 * If the clocks don't match, we can't switch the display clock
6916 * by using the FP0/FP1. In such case we will disable the LVDS
6917 * downclock feature.
6918 */
ee9300bb
DV
6919 *has_reduced_clock =
6920 dev_priv->display.find_dpll(limit, crtc,
6921 dev_priv->lvds_downclock,
6922 refclk, clock,
6923 reduced_clock);
652c393a 6924 }
61e9653f 6925
6591c6e4
PZ
6926 return true;
6927}
6928
d4b1931c
PZ
6929int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6930{
6931 /*
6932 * Account for spread spectrum to avoid
6933 * oversubscribing the link. Max center spread
6934 * is 2.5%; use 5% for safety's sake.
6935 */
6936 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6937 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6938}
6939
7429e9d4 6940static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6941{
7429e9d4 6942 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6943}
6944
de13a2e3 6945static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6946 u32 *fp,
9a7c7890 6947 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6948{
de13a2e3 6949 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6950 struct drm_device *dev = crtc->dev;
6951 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6952 struct intel_encoder *intel_encoder;
6953 uint32_t dpll;
6cc5f341 6954 int factor, num_connectors = 0;
09ede541 6955 bool is_lvds = false, is_sdvo = false;
79e53945 6956
de13a2e3
PZ
6957 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6958 switch (intel_encoder->type) {
79e53945
JB
6959 case INTEL_OUTPUT_LVDS:
6960 is_lvds = true;
6961 break;
6962 case INTEL_OUTPUT_SDVO:
7d57382e 6963 case INTEL_OUTPUT_HDMI:
79e53945 6964 is_sdvo = true;
79e53945 6965 break;
79e53945 6966 }
43565a06 6967
c751ce4f 6968 num_connectors++;
79e53945 6969 }
79e53945 6970
c1858123 6971 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6972 factor = 21;
6973 if (is_lvds) {
6974 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6975 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6976 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6977 factor = 25;
09ede541 6978 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6979 factor = 20;
c1858123 6980
7429e9d4 6981 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6982 *fp |= FP_CB_TUNE;
2c07245f 6983
9a7c7890
DV
6984 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6985 *fp2 |= FP_CB_TUNE;
6986
5eddb70b 6987 dpll = 0;
2c07245f 6988
a07d6787
EA
6989 if (is_lvds)
6990 dpll |= DPLLB_MODE_LVDS;
6991 else
6992 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6993
ef1b460d
DV
6994 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6995 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6996
6997 if (is_sdvo)
4a33e48d 6998 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6999 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7000 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7001
a07d6787 7002 /* compute bitmask from p1 value */
7429e9d4 7003 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7004 /* also FPA1 */
7429e9d4 7005 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7006
7429e9d4 7007 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7008 case 5:
7009 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7010 break;
7011 case 7:
7012 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7013 break;
7014 case 10:
7015 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7016 break;
7017 case 14:
7018 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7019 break;
79e53945
JB
7020 }
7021
b4c09f3b 7022 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7023 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7024 else
7025 dpll |= PLL_REF_INPUT_DREFCLK;
7026
959e16d6 7027 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7028}
7029
7030static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7031 int x, int y,
7032 struct drm_framebuffer *fb)
7033{
7034 struct drm_device *dev = crtc->dev;
de13a2e3 7035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7036 int num_connectors = 0;
7037 intel_clock_t clock, reduced_clock;
cbbab5bd 7038 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7039 bool ok, has_reduced_clock = false;
8b47047b 7040 bool is_lvds = false;
de13a2e3 7041 struct intel_encoder *encoder;
e2b78267 7042 struct intel_shared_dpll *pll;
de13a2e3
PZ
7043
7044 for_each_encoder_on_crtc(dev, crtc, encoder) {
7045 switch (encoder->type) {
7046 case INTEL_OUTPUT_LVDS:
7047 is_lvds = true;
7048 break;
de13a2e3
PZ
7049 }
7050
7051 num_connectors++;
a07d6787 7052 }
79e53945 7053
5dc5298b
PZ
7054 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7055 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7056
ff9a6750 7057 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7058 &has_reduced_clock, &reduced_clock);
ee9300bb 7059 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7060 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7061 return -EINVAL;
79e53945 7062 }
f47709a9
DV
7063 /* Compat-code for transition, will disappear. */
7064 if (!intel_crtc->config.clock_set) {
7065 intel_crtc->config.dpll.n = clock.n;
7066 intel_crtc->config.dpll.m1 = clock.m1;
7067 intel_crtc->config.dpll.m2 = clock.m2;
7068 intel_crtc->config.dpll.p1 = clock.p1;
7069 intel_crtc->config.dpll.p2 = clock.p2;
7070 }
79e53945 7071
5dc5298b 7072 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7073 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7074 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7075 if (has_reduced_clock)
7429e9d4 7076 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7077
7429e9d4 7078 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7079 &fp, &reduced_clock,
7080 has_reduced_clock ? &fp2 : NULL);
7081
959e16d6 7082 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7083 intel_crtc->config.dpll_hw_state.fp0 = fp;
7084 if (has_reduced_clock)
7085 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7086 else
7087 intel_crtc->config.dpll_hw_state.fp1 = fp;
7088
b89a1d39 7089 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7090 if (pll == NULL) {
84f44ce7 7091 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7092 pipe_name(intel_crtc->pipe));
4b645f14
JB
7093 return -EINVAL;
7094 }
ee7b9f93 7095 } else
e72f9fbf 7096 intel_put_shared_dpll(intel_crtc);
79e53945 7097
d330a953 7098 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7099 intel_crtc->lowfreq_avail = true;
7100 else
7101 intel_crtc->lowfreq_avail = false;
e2b78267 7102
c8f7a0db 7103 return 0;
79e53945
JB
7104}
7105
eb14cb74
VS
7106static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7107 struct intel_link_m_n *m_n)
7108{
7109 struct drm_device *dev = crtc->base.dev;
7110 struct drm_i915_private *dev_priv = dev->dev_private;
7111 enum pipe pipe = crtc->pipe;
7112
7113 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7114 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7115 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7116 & ~TU_SIZE_MASK;
7117 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7118 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7119 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7120}
7121
7122static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7123 enum transcoder transcoder,
b95af8be
VK
7124 struct intel_link_m_n *m_n,
7125 struct intel_link_m_n *m2_n2)
72419203
DV
7126{
7127 struct drm_device *dev = crtc->base.dev;
7128 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7129 enum pipe pipe = crtc->pipe;
72419203 7130
eb14cb74
VS
7131 if (INTEL_INFO(dev)->gen >= 5) {
7132 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7133 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7134 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7135 & ~TU_SIZE_MASK;
7136 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7137 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7138 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7139 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7140 * gen < 8) and if DRRS is supported (to make sure the
7141 * registers are not unnecessarily read).
7142 */
7143 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7144 crtc->config.has_drrs) {
7145 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7146 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7147 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7148 & ~TU_SIZE_MASK;
7149 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7150 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7151 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7152 }
eb14cb74
VS
7153 } else {
7154 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7155 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7156 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7157 & ~TU_SIZE_MASK;
7158 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7159 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7160 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7161 }
7162}
7163
7164void intel_dp_get_m_n(struct intel_crtc *crtc,
7165 struct intel_crtc_config *pipe_config)
7166{
7167 if (crtc->config.has_pch_encoder)
7168 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7169 else
7170 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7171 &pipe_config->dp_m_n,
7172 &pipe_config->dp_m2_n2);
eb14cb74 7173}
72419203 7174
eb14cb74
VS
7175static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7176 struct intel_crtc_config *pipe_config)
7177{
7178 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7179 &pipe_config->fdi_m_n, NULL);
72419203
DV
7180}
7181
2fa2fe9a
DV
7182static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7183 struct intel_crtc_config *pipe_config)
7184{
7185 struct drm_device *dev = crtc->base.dev;
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 uint32_t tmp;
7188
7189 tmp = I915_READ(PF_CTL(crtc->pipe));
7190
7191 if (tmp & PF_ENABLE) {
fd4daa9c 7192 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7193 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7194 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7195
7196 /* We currently do not free assignements of panel fitters on
7197 * ivb/hsw (since we don't use the higher upscaling modes which
7198 * differentiates them) so just WARN about this case for now. */
7199 if (IS_GEN7(dev)) {
7200 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7201 PF_PIPE_SEL_IVB(crtc->pipe));
7202 }
2fa2fe9a 7203 }
79e53945
JB
7204}
7205
4c6baa59
JB
7206static void ironlake_get_plane_config(struct intel_crtc *crtc,
7207 struct intel_plane_config *plane_config)
7208{
7209 struct drm_device *dev = crtc->base.dev;
7210 struct drm_i915_private *dev_priv = dev->dev_private;
7211 u32 val, base, offset;
7212 int pipe = crtc->pipe, plane = crtc->plane;
7213 int fourcc, pixel_format;
7214 int aligned_height;
7215
66e514c1
DA
7216 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7217 if (!crtc->base.primary->fb) {
4c6baa59
JB
7218 DRM_DEBUG_KMS("failed to alloc fb\n");
7219 return;
7220 }
7221
7222 val = I915_READ(DSPCNTR(plane));
7223
7224 if (INTEL_INFO(dev)->gen >= 4)
7225 if (val & DISPPLANE_TILED)
7226 plane_config->tiled = true;
7227
7228 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7229 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7230 crtc->base.primary->fb->pixel_format = fourcc;
7231 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7232 drm_format_plane_cpp(fourcc, 0) * 8;
7233
7234 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7235 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7236 offset = I915_READ(DSPOFFSET(plane));
7237 } else {
7238 if (plane_config->tiled)
7239 offset = I915_READ(DSPTILEOFF(plane));
7240 else
7241 offset = I915_READ(DSPLINOFF(plane));
7242 }
7243 plane_config->base = base;
7244
7245 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7246 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7247 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7248
7249 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7250 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7251
66e514c1 7252 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7253 plane_config->tiled);
7254
1267a26b
FF
7255 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7256 aligned_height);
4c6baa59
JB
7257
7258 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7259 pipe, plane, crtc->base.primary->fb->width,
7260 crtc->base.primary->fb->height,
7261 crtc->base.primary->fb->bits_per_pixel, base,
7262 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7263 plane_config->size);
7264}
7265
0e8ffe1b
DV
7266static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7267 struct intel_crtc_config *pipe_config)
7268{
7269 struct drm_device *dev = crtc->base.dev;
7270 struct drm_i915_private *dev_priv = dev->dev_private;
7271 uint32_t tmp;
7272
930e8c9e
PZ
7273 if (!intel_display_power_enabled(dev_priv,
7274 POWER_DOMAIN_PIPE(crtc->pipe)))
7275 return false;
7276
e143a21c 7277 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7278 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7279
0e8ffe1b
DV
7280 tmp = I915_READ(PIPECONF(crtc->pipe));
7281 if (!(tmp & PIPECONF_ENABLE))
7282 return false;
7283
42571aef
VS
7284 switch (tmp & PIPECONF_BPC_MASK) {
7285 case PIPECONF_6BPC:
7286 pipe_config->pipe_bpp = 18;
7287 break;
7288 case PIPECONF_8BPC:
7289 pipe_config->pipe_bpp = 24;
7290 break;
7291 case PIPECONF_10BPC:
7292 pipe_config->pipe_bpp = 30;
7293 break;
7294 case PIPECONF_12BPC:
7295 pipe_config->pipe_bpp = 36;
7296 break;
7297 default:
7298 break;
7299 }
7300
b5a9fa09
DV
7301 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7302 pipe_config->limited_color_range = true;
7303
ab9412ba 7304 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7305 struct intel_shared_dpll *pll;
7306
88adfff1
DV
7307 pipe_config->has_pch_encoder = true;
7308
627eb5a3
DV
7309 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7310 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7311 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7312
7313 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7314
c0d43d62 7315 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7316 pipe_config->shared_dpll =
7317 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7318 } else {
7319 tmp = I915_READ(PCH_DPLL_SEL);
7320 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7321 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7322 else
7323 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7324 }
66e985c0
DV
7325
7326 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7327
7328 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7329 &pipe_config->dpll_hw_state));
c93f54cf
DV
7330
7331 tmp = pipe_config->dpll_hw_state.dpll;
7332 pipe_config->pixel_multiplier =
7333 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7334 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7335
7336 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7337 } else {
7338 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7339 }
7340
1bd1bd80
DV
7341 intel_get_pipe_timings(crtc, pipe_config);
7342
2fa2fe9a
DV
7343 ironlake_get_pfit_config(crtc, pipe_config);
7344
0e8ffe1b
DV
7345 return true;
7346}
7347
be256dc7
PZ
7348static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7349{
7350 struct drm_device *dev = dev_priv->dev;
be256dc7 7351 struct intel_crtc *crtc;
be256dc7 7352
d3fcc808 7353 for_each_intel_crtc(dev, crtc)
798183c5 7354 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7355 pipe_name(crtc->pipe));
7356
7357 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7358 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7359 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7360 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7361 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7362 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7363 "CPU PWM1 enabled\n");
c5107b87
PZ
7364 if (IS_HASWELL(dev))
7365 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7366 "CPU PWM2 enabled\n");
be256dc7
PZ
7367 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7368 "PCH PWM1 enabled\n");
7369 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7370 "Utility pin enabled\n");
7371 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7372
9926ada1
PZ
7373 /*
7374 * In theory we can still leave IRQs enabled, as long as only the HPD
7375 * interrupts remain enabled. We used to check for that, but since it's
7376 * gen-specific and since we only disable LCPLL after we fully disable
7377 * the interrupts, the check below should be enough.
7378 */
9df7575f 7379 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7380}
7381
9ccd5aeb
PZ
7382static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7383{
7384 struct drm_device *dev = dev_priv->dev;
7385
7386 if (IS_HASWELL(dev))
7387 return I915_READ(D_COMP_HSW);
7388 else
7389 return I915_READ(D_COMP_BDW);
7390}
7391
3c4c9b81
PZ
7392static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7393{
7394 struct drm_device *dev = dev_priv->dev;
7395
7396 if (IS_HASWELL(dev)) {
7397 mutex_lock(&dev_priv->rps.hw_lock);
7398 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7399 val))
f475dadf 7400 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7401 mutex_unlock(&dev_priv->rps.hw_lock);
7402 } else {
9ccd5aeb
PZ
7403 I915_WRITE(D_COMP_BDW, val);
7404 POSTING_READ(D_COMP_BDW);
3c4c9b81 7405 }
be256dc7
PZ
7406}
7407
7408/*
7409 * This function implements pieces of two sequences from BSpec:
7410 * - Sequence for display software to disable LCPLL
7411 * - Sequence for display software to allow package C8+
7412 * The steps implemented here are just the steps that actually touch the LCPLL
7413 * register. Callers should take care of disabling all the display engine
7414 * functions, doing the mode unset, fixing interrupts, etc.
7415 */
6ff58d53
PZ
7416static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7417 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7418{
7419 uint32_t val;
7420
7421 assert_can_disable_lcpll(dev_priv);
7422
7423 val = I915_READ(LCPLL_CTL);
7424
7425 if (switch_to_fclk) {
7426 val |= LCPLL_CD_SOURCE_FCLK;
7427 I915_WRITE(LCPLL_CTL, val);
7428
7429 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7430 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7431 DRM_ERROR("Switching to FCLK failed\n");
7432
7433 val = I915_READ(LCPLL_CTL);
7434 }
7435
7436 val |= LCPLL_PLL_DISABLE;
7437 I915_WRITE(LCPLL_CTL, val);
7438 POSTING_READ(LCPLL_CTL);
7439
7440 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7441 DRM_ERROR("LCPLL still locked\n");
7442
9ccd5aeb 7443 val = hsw_read_dcomp(dev_priv);
be256dc7 7444 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7445 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7446 ndelay(100);
7447
9ccd5aeb
PZ
7448 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7449 1))
be256dc7
PZ
7450 DRM_ERROR("D_COMP RCOMP still in progress\n");
7451
7452 if (allow_power_down) {
7453 val = I915_READ(LCPLL_CTL);
7454 val |= LCPLL_POWER_DOWN_ALLOW;
7455 I915_WRITE(LCPLL_CTL, val);
7456 POSTING_READ(LCPLL_CTL);
7457 }
7458}
7459
7460/*
7461 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7462 * source.
7463 */
6ff58d53 7464static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7465{
7466 uint32_t val;
a8a8bd54 7467 unsigned long irqflags;
be256dc7
PZ
7468
7469 val = I915_READ(LCPLL_CTL);
7470
7471 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7472 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7473 return;
7474
a8a8bd54
PZ
7475 /*
7476 * Make sure we're not on PC8 state before disabling PC8, otherwise
7477 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7478 *
7479 * The other problem is that hsw_restore_lcpll() is called as part of
7480 * the runtime PM resume sequence, so we can't just call
7481 * gen6_gt_force_wake_get() because that function calls
7482 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7483 * while we are on the resume sequence. So to solve this problem we have
7484 * to call special forcewake code that doesn't touch runtime PM and
7485 * doesn't enable the forcewake delayed work.
7486 */
7487 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7488 if (dev_priv->uncore.forcewake_count++ == 0)
7489 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7490 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7491
be256dc7
PZ
7492 if (val & LCPLL_POWER_DOWN_ALLOW) {
7493 val &= ~LCPLL_POWER_DOWN_ALLOW;
7494 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7495 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7496 }
7497
9ccd5aeb 7498 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7499 val |= D_COMP_COMP_FORCE;
7500 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7501 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7502
7503 val = I915_READ(LCPLL_CTL);
7504 val &= ~LCPLL_PLL_DISABLE;
7505 I915_WRITE(LCPLL_CTL, val);
7506
7507 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7508 DRM_ERROR("LCPLL not locked yet\n");
7509
7510 if (val & LCPLL_CD_SOURCE_FCLK) {
7511 val = I915_READ(LCPLL_CTL);
7512 val &= ~LCPLL_CD_SOURCE_FCLK;
7513 I915_WRITE(LCPLL_CTL, val);
7514
7515 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7516 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7517 DRM_ERROR("Switching back to LCPLL failed\n");
7518 }
215733fa 7519
a8a8bd54
PZ
7520 /* See the big comment above. */
7521 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7522 if (--dev_priv->uncore.forcewake_count == 0)
7523 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7524 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7525}
7526
765dab67
PZ
7527/*
7528 * Package states C8 and deeper are really deep PC states that can only be
7529 * reached when all the devices on the system allow it, so even if the graphics
7530 * device allows PC8+, it doesn't mean the system will actually get to these
7531 * states. Our driver only allows PC8+ when going into runtime PM.
7532 *
7533 * The requirements for PC8+ are that all the outputs are disabled, the power
7534 * well is disabled and most interrupts are disabled, and these are also
7535 * requirements for runtime PM. When these conditions are met, we manually do
7536 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7537 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7538 * hang the machine.
7539 *
7540 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7541 * the state of some registers, so when we come back from PC8+ we need to
7542 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7543 * need to take care of the registers kept by RC6. Notice that this happens even
7544 * if we don't put the device in PCI D3 state (which is what currently happens
7545 * because of the runtime PM support).
7546 *
7547 * For more, read "Display Sequences for Package C8" on the hardware
7548 * documentation.
7549 */
a14cb6fc 7550void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7551{
c67a470b
PZ
7552 struct drm_device *dev = dev_priv->dev;
7553 uint32_t val;
7554
c67a470b
PZ
7555 DRM_DEBUG_KMS("Enabling package C8+\n");
7556
c67a470b
PZ
7557 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7558 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7559 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7560 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7561 }
7562
7563 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7564 hsw_disable_lcpll(dev_priv, true, true);
7565}
7566
a14cb6fc 7567void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7568{
7569 struct drm_device *dev = dev_priv->dev;
7570 uint32_t val;
7571
c67a470b
PZ
7572 DRM_DEBUG_KMS("Disabling package C8+\n");
7573
7574 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7575 lpt_init_pch_refclk(dev);
7576
7577 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7578 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7579 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7580 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7581 }
7582
7583 intel_prepare_ddi(dev);
c67a470b
PZ
7584}
7585
9a952a0d
PZ
7586static void snb_modeset_global_resources(struct drm_device *dev)
7587{
7588 modeset_update_crtc_power_domains(dev);
7589}
7590
4f074129
ID
7591static void haswell_modeset_global_resources(struct drm_device *dev)
7592{
da723569 7593 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7594}
7595
09b4ddf9 7596static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7597 int x, int y,
7598 struct drm_framebuffer *fb)
7599{
09b4ddf9 7600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7601
566b734a 7602 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7603 return -EINVAL;
716c2e55 7604
644cef34
DV
7605 intel_crtc->lowfreq_avail = false;
7606
c8f7a0db 7607 return 0;
79e53945
JB
7608}
7609
26804afd
DV
7610static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7611 struct intel_crtc_config *pipe_config)
7612{
7613 struct drm_device *dev = crtc->base.dev;
7614 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7615 struct intel_shared_dpll *pll;
26804afd
DV
7616 enum port port;
7617 uint32_t tmp;
7618
7619 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7620
7621 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7622
7623 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9cd86933
DV
7624
7625 switch (pipe_config->ddi_pll_sel) {
7626 case PORT_CLK_SEL_WRPLL1:
7627 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7628 break;
7629 case PORT_CLK_SEL_WRPLL2:
7630 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7631 break;
7632 }
7633
d452c5b6
DV
7634 if (pipe_config->shared_dpll >= 0) {
7635 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7636
7637 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7638 &pipe_config->dpll_hw_state));
7639 }
7640
26804afd
DV
7641 /*
7642 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7643 * DDI E. So just check whether this pipe is wired to DDI E and whether
7644 * the PCH transcoder is on.
7645 */
7646 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7647 pipe_config->has_pch_encoder = true;
7648
7649 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7650 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7651 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7652
7653 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7654 }
7655}
7656
0e8ffe1b
DV
7657static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7658 struct intel_crtc_config *pipe_config)
7659{
7660 struct drm_device *dev = crtc->base.dev;
7661 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7662 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7663 uint32_t tmp;
7664
b5482bd0
ID
7665 if (!intel_display_power_enabled(dev_priv,
7666 POWER_DOMAIN_PIPE(crtc->pipe)))
7667 return false;
7668
e143a21c 7669 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7670 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7671
eccb140b
DV
7672 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7673 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7674 enum pipe trans_edp_pipe;
7675 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7676 default:
7677 WARN(1, "unknown pipe linked to edp transcoder\n");
7678 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7679 case TRANS_DDI_EDP_INPUT_A_ON:
7680 trans_edp_pipe = PIPE_A;
7681 break;
7682 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7683 trans_edp_pipe = PIPE_B;
7684 break;
7685 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7686 trans_edp_pipe = PIPE_C;
7687 break;
7688 }
7689
7690 if (trans_edp_pipe == crtc->pipe)
7691 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7692 }
7693
da7e29bd 7694 if (!intel_display_power_enabled(dev_priv,
eccb140b 7695 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7696 return false;
7697
eccb140b 7698 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7699 if (!(tmp & PIPECONF_ENABLE))
7700 return false;
7701
26804afd 7702 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7703
1bd1bd80
DV
7704 intel_get_pipe_timings(crtc, pipe_config);
7705
2fa2fe9a 7706 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7707 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7708 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7709
e59150dc
JB
7710 if (IS_HASWELL(dev))
7711 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7712 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7713
6c49f241
DV
7714 pipe_config->pixel_multiplier = 1;
7715
0e8ffe1b
DV
7716 return true;
7717}
7718
1a91510d
JN
7719static struct {
7720 int clock;
7721 u32 config;
7722} hdmi_audio_clock[] = {
7723 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7724 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7725 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7726 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7727 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7728 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7729 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7730 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7731 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7732 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7733};
7734
7735/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7736static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7737{
7738 int i;
7739
7740 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7741 if (mode->clock == hdmi_audio_clock[i].clock)
7742 break;
7743 }
7744
7745 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7746 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7747 i = 1;
7748 }
7749
7750 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7751 hdmi_audio_clock[i].clock,
7752 hdmi_audio_clock[i].config);
7753
7754 return hdmi_audio_clock[i].config;
7755}
7756
3a9627f4
WF
7757static bool intel_eld_uptodate(struct drm_connector *connector,
7758 int reg_eldv, uint32_t bits_eldv,
7759 int reg_elda, uint32_t bits_elda,
7760 int reg_edid)
7761{
7762 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7763 uint8_t *eld = connector->eld;
7764 uint32_t i;
7765
7766 i = I915_READ(reg_eldv);
7767 i &= bits_eldv;
7768
7769 if (!eld[0])
7770 return !i;
7771
7772 if (!i)
7773 return false;
7774
7775 i = I915_READ(reg_elda);
7776 i &= ~bits_elda;
7777 I915_WRITE(reg_elda, i);
7778
7779 for (i = 0; i < eld[2]; i++)
7780 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7781 return false;
7782
7783 return true;
7784}
7785
e0dac65e 7786static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7787 struct drm_crtc *crtc,
7788 struct drm_display_mode *mode)
e0dac65e
WF
7789{
7790 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7791 uint8_t *eld = connector->eld;
7792 uint32_t eldv;
7793 uint32_t len;
7794 uint32_t i;
7795
7796 i = I915_READ(G4X_AUD_VID_DID);
7797
7798 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7799 eldv = G4X_ELDV_DEVCL_DEVBLC;
7800 else
7801 eldv = G4X_ELDV_DEVCTG;
7802
3a9627f4
WF
7803 if (intel_eld_uptodate(connector,
7804 G4X_AUD_CNTL_ST, eldv,
7805 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7806 G4X_HDMIW_HDMIEDID))
7807 return;
7808
e0dac65e
WF
7809 i = I915_READ(G4X_AUD_CNTL_ST);
7810 i &= ~(eldv | G4X_ELD_ADDR);
7811 len = (i >> 9) & 0x1f; /* ELD buffer size */
7812 I915_WRITE(G4X_AUD_CNTL_ST, i);
7813
7814 if (!eld[0])
7815 return;
7816
7817 len = min_t(uint8_t, eld[2], len);
7818 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7819 for (i = 0; i < len; i++)
7820 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7821
7822 i = I915_READ(G4X_AUD_CNTL_ST);
7823 i |= eldv;
7824 I915_WRITE(G4X_AUD_CNTL_ST, i);
7825}
7826
83358c85 7827static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7828 struct drm_crtc *crtc,
7829 struct drm_display_mode *mode)
83358c85
WX
7830{
7831 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7832 uint8_t *eld = connector->eld;
83358c85
WX
7833 uint32_t eldv;
7834 uint32_t i;
7835 int len;
7836 int pipe = to_intel_crtc(crtc)->pipe;
7837 int tmp;
7838
7839 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7840 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7841 int aud_config = HSW_AUD_CFG(pipe);
7842 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7843
83358c85
WX
7844 /* Audio output enable */
7845 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7846 tmp = I915_READ(aud_cntrl_st2);
7847 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7848 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7849 POSTING_READ(aud_cntrl_st2);
83358c85 7850
c7905792 7851 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7852
7853 /* Set ELD valid state */
7854 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7855 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7856 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7857 I915_WRITE(aud_cntrl_st2, tmp);
7858 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7859 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7860
7861 /* Enable HDMI mode */
7862 tmp = I915_READ(aud_config);
7e7cb34f 7863 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7864 /* clear N_programing_enable and N_value_index */
7865 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7866 I915_WRITE(aud_config, tmp);
7867
7868 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7869
7870 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7871
7872 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7873 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7874 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7875 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7876 } else {
7877 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7878 }
83358c85
WX
7879
7880 if (intel_eld_uptodate(connector,
7881 aud_cntrl_st2, eldv,
7882 aud_cntl_st, IBX_ELD_ADDRESS,
7883 hdmiw_hdmiedid))
7884 return;
7885
7886 i = I915_READ(aud_cntrl_st2);
7887 i &= ~eldv;
7888 I915_WRITE(aud_cntrl_st2, i);
7889
7890 if (!eld[0])
7891 return;
7892
7893 i = I915_READ(aud_cntl_st);
7894 i &= ~IBX_ELD_ADDRESS;
7895 I915_WRITE(aud_cntl_st, i);
7896 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7897 DRM_DEBUG_DRIVER("port num:%d\n", i);
7898
7899 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7900 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7901 for (i = 0; i < len; i++)
7902 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7903
7904 i = I915_READ(aud_cntrl_st2);
7905 i |= eldv;
7906 I915_WRITE(aud_cntrl_st2, i);
7907
7908}
7909
e0dac65e 7910static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7911 struct drm_crtc *crtc,
7912 struct drm_display_mode *mode)
e0dac65e
WF
7913{
7914 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7915 uint8_t *eld = connector->eld;
7916 uint32_t eldv;
7917 uint32_t i;
7918 int len;
7919 int hdmiw_hdmiedid;
b6daa025 7920 int aud_config;
e0dac65e
WF
7921 int aud_cntl_st;
7922 int aud_cntrl_st2;
9b138a83 7923 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7924
b3f33cbf 7925 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7926 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7927 aud_config = IBX_AUD_CFG(pipe);
7928 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7929 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7930 } else if (IS_VALLEYVIEW(connector->dev)) {
7931 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7932 aud_config = VLV_AUD_CFG(pipe);
7933 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7934 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7935 } else {
9b138a83
WX
7936 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7937 aud_config = CPT_AUD_CFG(pipe);
7938 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7939 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7940 }
7941
9b138a83 7942 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7943
9ca2fe73
ML
7944 if (IS_VALLEYVIEW(connector->dev)) {
7945 struct intel_encoder *intel_encoder;
7946 struct intel_digital_port *intel_dig_port;
7947
7948 intel_encoder = intel_attached_encoder(connector);
7949 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7950 i = intel_dig_port->port;
7951 } else {
7952 i = I915_READ(aud_cntl_st);
7953 i = (i >> 29) & DIP_PORT_SEL_MASK;
7954 /* DIP_Port_Select, 0x1 = PortB */
7955 }
7956
e0dac65e
WF
7957 if (!i) {
7958 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7959 /* operate blindly on all ports */
1202b4c6
WF
7960 eldv = IBX_ELD_VALIDB;
7961 eldv |= IBX_ELD_VALIDB << 4;
7962 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7963 } else {
2582a850 7964 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7965 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7966 }
7967
3a9627f4
WF
7968 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7969 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7970 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7971 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7972 } else {
7973 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7974 }
e0dac65e 7975
3a9627f4
WF
7976 if (intel_eld_uptodate(connector,
7977 aud_cntrl_st2, eldv,
7978 aud_cntl_st, IBX_ELD_ADDRESS,
7979 hdmiw_hdmiedid))
7980 return;
7981
e0dac65e
WF
7982 i = I915_READ(aud_cntrl_st2);
7983 i &= ~eldv;
7984 I915_WRITE(aud_cntrl_st2, i);
7985
7986 if (!eld[0])
7987 return;
7988
e0dac65e 7989 i = I915_READ(aud_cntl_st);
1202b4c6 7990 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7991 I915_WRITE(aud_cntl_st, i);
7992
7993 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7994 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7995 for (i = 0; i < len; i++)
7996 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7997
7998 i = I915_READ(aud_cntrl_st2);
7999 i |= eldv;
8000 I915_WRITE(aud_cntrl_st2, i);
8001}
8002
8003void intel_write_eld(struct drm_encoder *encoder,
8004 struct drm_display_mode *mode)
8005{
8006 struct drm_crtc *crtc = encoder->crtc;
8007 struct drm_connector *connector;
8008 struct drm_device *dev = encoder->dev;
8009 struct drm_i915_private *dev_priv = dev->dev_private;
8010
8011 connector = drm_select_eld(encoder, mode);
8012 if (!connector)
8013 return;
8014
8015 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8016 connector->base.id,
c23cc417 8017 connector->name,
e0dac65e 8018 connector->encoder->base.id,
8e329a03 8019 connector->encoder->name);
e0dac65e
WF
8020
8021 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8022
8023 if (dev_priv->display.write_eld)
34427052 8024 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8025}
8026
560b85bb
CW
8027static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8028{
8029 struct drm_device *dev = crtc->dev;
8030 struct drm_i915_private *dev_priv = dev->dev_private;
8031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 8032 uint32_t cntl;
560b85bb 8033
4b0e333e 8034 if (base != intel_crtc->cursor_base) {
560b85bb
CW
8035 /* On these chipsets we can only modify the base whilst
8036 * the cursor is disabled.
8037 */
4b0e333e
CW
8038 if (intel_crtc->cursor_cntl) {
8039 I915_WRITE(_CURACNTR, 0);
8040 POSTING_READ(_CURACNTR);
8041 intel_crtc->cursor_cntl = 0;
8042 }
8043
9db4a9c7 8044 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8045 POSTING_READ(_CURABASE);
8046 }
560b85bb 8047
4b0e333e
CW
8048 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8049 cntl = 0;
8050 if (base)
8051 cntl = (CURSOR_ENABLE |
560b85bb 8052 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8053 CURSOR_FORMAT_ARGB);
8054 if (intel_crtc->cursor_cntl != cntl) {
8055 I915_WRITE(_CURACNTR, cntl);
8056 POSTING_READ(_CURACNTR);
8057 intel_crtc->cursor_cntl = cntl;
8058 }
560b85bb
CW
8059}
8060
8061static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8062{
8063 struct drm_device *dev = crtc->dev;
8064 struct drm_i915_private *dev_priv = dev->dev_private;
8065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8066 int pipe = intel_crtc->pipe;
4b0e333e 8067 uint32_t cntl;
4726e0b0 8068
4b0e333e
CW
8069 cntl = 0;
8070 if (base) {
8071 cntl = MCURSOR_GAMMA_ENABLE;
8072 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8073 case 64:
8074 cntl |= CURSOR_MODE_64_ARGB_AX;
8075 break;
8076 case 128:
8077 cntl |= CURSOR_MODE_128_ARGB_AX;
8078 break;
8079 case 256:
8080 cntl |= CURSOR_MODE_256_ARGB_AX;
8081 break;
8082 default:
8083 WARN_ON(1);
8084 return;
560b85bb 8085 }
4b0e333e
CW
8086 cntl |= pipe << 28; /* Connect to correct pipe */
8087 }
8088 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8089 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8090 POSTING_READ(CURCNTR(pipe));
8091 intel_crtc->cursor_cntl = cntl;
560b85bb 8092 }
4b0e333e 8093
560b85bb 8094 /* and commit changes on next vblank */
9db4a9c7 8095 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8096 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8097}
8098
65a21cd6
JB
8099static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8100{
8101 struct drm_device *dev = crtc->dev;
8102 struct drm_i915_private *dev_priv = dev->dev_private;
8103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8104 int pipe = intel_crtc->pipe;
4b0e333e
CW
8105 uint32_t cntl;
8106
8107 cntl = 0;
8108 if (base) {
8109 cntl = MCURSOR_GAMMA_ENABLE;
8110 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8111 case 64:
8112 cntl |= CURSOR_MODE_64_ARGB_AX;
8113 break;
8114 case 128:
8115 cntl |= CURSOR_MODE_128_ARGB_AX;
8116 break;
8117 case 256:
8118 cntl |= CURSOR_MODE_256_ARGB_AX;
8119 break;
8120 default:
8121 WARN_ON(1);
8122 return;
65a21cd6 8123 }
4b0e333e
CW
8124 }
8125 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8126 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8127
4b0e333e
CW
8128 if (intel_crtc->cursor_cntl != cntl) {
8129 I915_WRITE(CURCNTR(pipe), cntl);
8130 POSTING_READ(CURCNTR(pipe));
8131 intel_crtc->cursor_cntl = cntl;
65a21cd6 8132 }
4b0e333e 8133
65a21cd6 8134 /* and commit changes on next vblank */
5efb3e28
VS
8135 I915_WRITE(CURBASE(pipe), base);
8136 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8137}
8138
cda4b7d3 8139/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8140static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8141 bool on)
cda4b7d3
CW
8142{
8143 struct drm_device *dev = crtc->dev;
8144 struct drm_i915_private *dev_priv = dev->dev_private;
8145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8146 int pipe = intel_crtc->pipe;
3d7d6510
MR
8147 int x = crtc->cursor_x;
8148 int y = crtc->cursor_y;
d6e4db15 8149 u32 base = 0, pos = 0;
cda4b7d3 8150
d6e4db15 8151 if (on)
cda4b7d3 8152 base = intel_crtc->cursor_addr;
cda4b7d3 8153
d6e4db15
VS
8154 if (x >= intel_crtc->config.pipe_src_w)
8155 base = 0;
8156
8157 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8158 base = 0;
8159
8160 if (x < 0) {
efc9064e 8161 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8162 base = 0;
8163
8164 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8165 x = -x;
8166 }
8167 pos |= x << CURSOR_X_SHIFT;
8168
8169 if (y < 0) {
efc9064e 8170 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8171 base = 0;
8172
8173 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8174 y = -y;
8175 }
8176 pos |= y << CURSOR_Y_SHIFT;
8177
4b0e333e 8178 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8179 return;
8180
5efb3e28
VS
8181 I915_WRITE(CURPOS(pipe), pos);
8182
8183 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8184 ivb_update_cursor(crtc, base);
5efb3e28
VS
8185 else if (IS_845G(dev) || IS_I865G(dev))
8186 i845_update_cursor(crtc, base);
8187 else
8188 i9xx_update_cursor(crtc, base);
4b0e333e 8189 intel_crtc->cursor_base = base;
cda4b7d3
CW
8190}
8191
e3287951
MR
8192/*
8193 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8194 *
8195 * Note that the object's reference will be consumed if the update fails. If
8196 * the update succeeds, the reference of the old object (if any) will be
8197 * consumed.
8198 */
8199static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8200 struct drm_i915_gem_object *obj,
8201 uint32_t width, uint32_t height)
79e53945
JB
8202{
8203 struct drm_device *dev = crtc->dev;
8204 struct drm_i915_private *dev_priv = dev->dev_private;
8205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8206 enum pipe pipe = intel_crtc->pipe;
64f962e3 8207 unsigned old_width;
cda4b7d3 8208 uint32_t addr;
3f8bc370 8209 int ret;
79e53945 8210
79e53945 8211 /* if we want to turn off the cursor ignore width and height */
e3287951 8212 if (!obj) {
28c97730 8213 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8214 addr = 0;
05394f39 8215 obj = NULL;
5004417d 8216 mutex_lock(&dev->struct_mutex);
3f8bc370 8217 goto finish;
79e53945
JB
8218 }
8219
4726e0b0
SK
8220 /* Check for which cursor types we support */
8221 if (!((width == 64 && height == 64) ||
8222 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8223 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8224 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8225 return -EINVAL;
8226 }
8227
05394f39 8228 if (obj->base.size < width * height * 4) {
e3287951 8229 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8230 ret = -ENOMEM;
8231 goto fail;
79e53945
JB
8232 }
8233
71acb5eb 8234 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8235 mutex_lock(&dev->struct_mutex);
3d13ef2e 8236 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8237 unsigned alignment;
8238
d9e86c0e 8239 if (obj->tiling_mode) {
3b25b31f 8240 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8241 ret = -EINVAL;
8242 goto fail_locked;
8243 }
8244
693db184
CW
8245 /* Note that the w/a also requires 2 PTE of padding following
8246 * the bo. We currently fill all unused PTE with the shadow
8247 * page and so we should always have valid PTE following the
8248 * cursor preventing the VT-d warning.
8249 */
8250 alignment = 0;
8251 if (need_vtd_wa(dev))
8252 alignment = 64*1024;
8253
8254 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8255 if (ret) {
3b25b31f 8256 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8257 goto fail_locked;
e7b526bb
CW
8258 }
8259
d9e86c0e
CW
8260 ret = i915_gem_object_put_fence(obj);
8261 if (ret) {
3b25b31f 8262 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8263 goto fail_unpin;
8264 }
8265
f343c5f6 8266 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8267 } else {
6eeefaf3 8268 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8269 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8270 if (ret) {
3b25b31f 8271 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8272 goto fail_locked;
71acb5eb 8273 }
00731155 8274 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8275 }
8276
a6c45cf0 8277 if (IS_GEN2(dev))
14b60391
JB
8278 I915_WRITE(CURSIZE, (height << 12) | width);
8279
3f8bc370 8280 finish:
3f8bc370 8281 if (intel_crtc->cursor_bo) {
00731155 8282 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8283 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8284 }
80824003 8285
a071fa00
DV
8286 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8287 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8288 mutex_unlock(&dev->struct_mutex);
3f8bc370 8289
64f962e3
CW
8290 old_width = intel_crtc->cursor_width;
8291
3f8bc370 8292 intel_crtc->cursor_addr = addr;
05394f39 8293 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8294 intel_crtc->cursor_width = width;
8295 intel_crtc->cursor_height = height;
8296
64f962e3
CW
8297 if (intel_crtc->active) {
8298 if (old_width != width)
8299 intel_update_watermarks(crtc);
f2f5f771 8300 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8301 }
3f8bc370 8302
f99d7069
DV
8303 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8304
79e53945 8305 return 0;
e7b526bb 8306fail_unpin:
cc98b413 8307 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8308fail_locked:
34b8686e 8309 mutex_unlock(&dev->struct_mutex);
bc9025bd 8310fail:
05394f39 8311 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8312 return ret;
79e53945
JB
8313}
8314
79e53945 8315static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8316 u16 *blue, uint32_t start, uint32_t size)
79e53945 8317{
7203425a 8318 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8320
7203425a 8321 for (i = start; i < end; i++) {
79e53945
JB
8322 intel_crtc->lut_r[i] = red[i] >> 8;
8323 intel_crtc->lut_g[i] = green[i] >> 8;
8324 intel_crtc->lut_b[i] = blue[i] >> 8;
8325 }
8326
8327 intel_crtc_load_lut(crtc);
8328}
8329
79e53945
JB
8330/* VESA 640x480x72Hz mode to set on the pipe */
8331static struct drm_display_mode load_detect_mode = {
8332 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8333 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8334};
8335
a8bb6818
DV
8336struct drm_framebuffer *
8337__intel_framebuffer_create(struct drm_device *dev,
8338 struct drm_mode_fb_cmd2 *mode_cmd,
8339 struct drm_i915_gem_object *obj)
d2dff872
CW
8340{
8341 struct intel_framebuffer *intel_fb;
8342 int ret;
8343
8344 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8345 if (!intel_fb) {
8346 drm_gem_object_unreference_unlocked(&obj->base);
8347 return ERR_PTR(-ENOMEM);
8348 }
8349
8350 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8351 if (ret)
8352 goto err;
d2dff872
CW
8353
8354 return &intel_fb->base;
dd4916c5
DV
8355err:
8356 drm_gem_object_unreference_unlocked(&obj->base);
8357 kfree(intel_fb);
8358
8359 return ERR_PTR(ret);
d2dff872
CW
8360}
8361
b5ea642a 8362static struct drm_framebuffer *
a8bb6818
DV
8363intel_framebuffer_create(struct drm_device *dev,
8364 struct drm_mode_fb_cmd2 *mode_cmd,
8365 struct drm_i915_gem_object *obj)
8366{
8367 struct drm_framebuffer *fb;
8368 int ret;
8369
8370 ret = i915_mutex_lock_interruptible(dev);
8371 if (ret)
8372 return ERR_PTR(ret);
8373 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8374 mutex_unlock(&dev->struct_mutex);
8375
8376 return fb;
8377}
8378
d2dff872
CW
8379static u32
8380intel_framebuffer_pitch_for_width(int width, int bpp)
8381{
8382 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8383 return ALIGN(pitch, 64);
8384}
8385
8386static u32
8387intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8388{
8389 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8390 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8391}
8392
8393static struct drm_framebuffer *
8394intel_framebuffer_create_for_mode(struct drm_device *dev,
8395 struct drm_display_mode *mode,
8396 int depth, int bpp)
8397{
8398 struct drm_i915_gem_object *obj;
0fed39bd 8399 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8400
8401 obj = i915_gem_alloc_object(dev,
8402 intel_framebuffer_size_for_mode(mode, bpp));
8403 if (obj == NULL)
8404 return ERR_PTR(-ENOMEM);
8405
8406 mode_cmd.width = mode->hdisplay;
8407 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8408 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8409 bpp);
5ca0c34a 8410 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8411
8412 return intel_framebuffer_create(dev, &mode_cmd, obj);
8413}
8414
8415static struct drm_framebuffer *
8416mode_fits_in_fbdev(struct drm_device *dev,
8417 struct drm_display_mode *mode)
8418{
4520f53a 8419#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8420 struct drm_i915_private *dev_priv = dev->dev_private;
8421 struct drm_i915_gem_object *obj;
8422 struct drm_framebuffer *fb;
8423
4c0e5528 8424 if (!dev_priv->fbdev)
d2dff872
CW
8425 return NULL;
8426
4c0e5528 8427 if (!dev_priv->fbdev->fb)
d2dff872
CW
8428 return NULL;
8429
4c0e5528
DV
8430 obj = dev_priv->fbdev->fb->obj;
8431 BUG_ON(!obj);
8432
8bcd4553 8433 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8434 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8435 fb->bits_per_pixel))
d2dff872
CW
8436 return NULL;
8437
01f2c773 8438 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8439 return NULL;
8440
8441 return fb;
4520f53a
DV
8442#else
8443 return NULL;
8444#endif
d2dff872
CW
8445}
8446
d2434ab7 8447bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8448 struct drm_display_mode *mode,
51fd371b
RC
8449 struct intel_load_detect_pipe *old,
8450 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8451{
8452 struct intel_crtc *intel_crtc;
d2434ab7
DV
8453 struct intel_encoder *intel_encoder =
8454 intel_attached_encoder(connector);
79e53945 8455 struct drm_crtc *possible_crtc;
4ef69c7a 8456 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8457 struct drm_crtc *crtc = NULL;
8458 struct drm_device *dev = encoder->dev;
94352cf9 8459 struct drm_framebuffer *fb;
51fd371b
RC
8460 struct drm_mode_config *config = &dev->mode_config;
8461 int ret, i = -1;
79e53945 8462
d2dff872 8463 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8464 connector->base.id, connector->name,
8e329a03 8465 encoder->base.id, encoder->name);
d2dff872 8466
51fd371b
RC
8467 drm_modeset_acquire_init(ctx, 0);
8468
8469retry:
8470 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8471 if (ret)
8472 goto fail_unlock;
6e9f798d 8473
79e53945
JB
8474 /*
8475 * Algorithm gets a little messy:
7a5e4805 8476 *
79e53945
JB
8477 * - if the connector already has an assigned crtc, use it (but make
8478 * sure it's on first)
7a5e4805 8479 *
79e53945
JB
8480 * - try to find the first unused crtc that can drive this connector,
8481 * and use that if we find one
79e53945
JB
8482 */
8483
8484 /* See if we already have a CRTC for this connector */
8485 if (encoder->crtc) {
8486 crtc = encoder->crtc;
8261b191 8487
51fd371b
RC
8488 ret = drm_modeset_lock(&crtc->mutex, ctx);
8489 if (ret)
8490 goto fail_unlock;
7b24056b 8491
24218aac 8492 old->dpms_mode = connector->dpms;
8261b191
CW
8493 old->load_detect_temp = false;
8494
8495 /* Make sure the crtc and connector are running */
24218aac
DV
8496 if (connector->dpms != DRM_MODE_DPMS_ON)
8497 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8498
7173188d 8499 return true;
79e53945
JB
8500 }
8501
8502 /* Find an unused one (if possible) */
70e1e0ec 8503 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8504 i++;
8505 if (!(encoder->possible_crtcs & (1 << i)))
8506 continue;
8507 if (!possible_crtc->enabled) {
8508 crtc = possible_crtc;
8509 break;
8510 }
79e53945
JB
8511 }
8512
8513 /*
8514 * If we didn't find an unused CRTC, don't use any.
8515 */
8516 if (!crtc) {
7173188d 8517 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8518 goto fail_unlock;
79e53945
JB
8519 }
8520
51fd371b
RC
8521 ret = drm_modeset_lock(&crtc->mutex, ctx);
8522 if (ret)
8523 goto fail_unlock;
fc303101
DV
8524 intel_encoder->new_crtc = to_intel_crtc(crtc);
8525 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8526
8527 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8528 intel_crtc->new_enabled = true;
8529 intel_crtc->new_config = &intel_crtc->config;
24218aac 8530 old->dpms_mode = connector->dpms;
8261b191 8531 old->load_detect_temp = true;
d2dff872 8532 old->release_fb = NULL;
79e53945 8533
6492711d
CW
8534 if (!mode)
8535 mode = &load_detect_mode;
79e53945 8536
d2dff872
CW
8537 /* We need a framebuffer large enough to accommodate all accesses
8538 * that the plane may generate whilst we perform load detection.
8539 * We can not rely on the fbcon either being present (we get called
8540 * during its initialisation to detect all boot displays, or it may
8541 * not even exist) or that it is large enough to satisfy the
8542 * requested mode.
8543 */
94352cf9
DV
8544 fb = mode_fits_in_fbdev(dev, mode);
8545 if (fb == NULL) {
d2dff872 8546 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8547 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8548 old->release_fb = fb;
d2dff872
CW
8549 } else
8550 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8551 if (IS_ERR(fb)) {
d2dff872 8552 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8553 goto fail;
79e53945 8554 }
79e53945 8555
c0c36b94 8556 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8557 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8558 if (old->release_fb)
8559 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8560 goto fail;
79e53945 8561 }
7173188d 8562
79e53945 8563 /* let the connector get through one full cycle before testing */
9d0498a2 8564 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8565 return true;
412b61d8
VS
8566
8567 fail:
8568 intel_crtc->new_enabled = crtc->enabled;
8569 if (intel_crtc->new_enabled)
8570 intel_crtc->new_config = &intel_crtc->config;
8571 else
8572 intel_crtc->new_config = NULL;
51fd371b
RC
8573fail_unlock:
8574 if (ret == -EDEADLK) {
8575 drm_modeset_backoff(ctx);
8576 goto retry;
8577 }
8578
8579 drm_modeset_drop_locks(ctx);
8580 drm_modeset_acquire_fini(ctx);
6e9f798d 8581
412b61d8 8582 return false;
79e53945
JB
8583}
8584
d2434ab7 8585void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8586 struct intel_load_detect_pipe *old,
8587 struct drm_modeset_acquire_ctx *ctx)
79e53945 8588{
d2434ab7
DV
8589 struct intel_encoder *intel_encoder =
8590 intel_attached_encoder(connector);
4ef69c7a 8591 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8592 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8594
d2dff872 8595 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8596 connector->base.id, connector->name,
8e329a03 8597 encoder->base.id, encoder->name);
d2dff872 8598
8261b191 8599 if (old->load_detect_temp) {
fc303101
DV
8600 to_intel_connector(connector)->new_encoder = NULL;
8601 intel_encoder->new_crtc = NULL;
412b61d8
VS
8602 intel_crtc->new_enabled = false;
8603 intel_crtc->new_config = NULL;
fc303101 8604 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8605
36206361
DV
8606 if (old->release_fb) {
8607 drm_framebuffer_unregister_private(old->release_fb);
8608 drm_framebuffer_unreference(old->release_fb);
8609 }
d2dff872 8610
51fd371b 8611 goto unlock;
0622a53c 8612 return;
79e53945
JB
8613 }
8614
c751ce4f 8615 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8616 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8617 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8618
51fd371b
RC
8619unlock:
8620 drm_modeset_drop_locks(ctx);
8621 drm_modeset_acquire_fini(ctx);
79e53945
JB
8622}
8623
da4a1efa
VS
8624static int i9xx_pll_refclk(struct drm_device *dev,
8625 const struct intel_crtc_config *pipe_config)
8626{
8627 struct drm_i915_private *dev_priv = dev->dev_private;
8628 u32 dpll = pipe_config->dpll_hw_state.dpll;
8629
8630 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8631 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8632 else if (HAS_PCH_SPLIT(dev))
8633 return 120000;
8634 else if (!IS_GEN2(dev))
8635 return 96000;
8636 else
8637 return 48000;
8638}
8639
79e53945 8640/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8641static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8642 struct intel_crtc_config *pipe_config)
79e53945 8643{
f1f644dc 8644 struct drm_device *dev = crtc->base.dev;
79e53945 8645 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8646 int pipe = pipe_config->cpu_transcoder;
293623f7 8647 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8648 u32 fp;
8649 intel_clock_t clock;
da4a1efa 8650 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8651
8652 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8653 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8654 else
293623f7 8655 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8656
8657 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8658 if (IS_PINEVIEW(dev)) {
8659 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8660 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8661 } else {
8662 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8663 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8664 }
8665
a6c45cf0 8666 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8667 if (IS_PINEVIEW(dev))
8668 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8669 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8670 else
8671 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8672 DPLL_FPA01_P1_POST_DIV_SHIFT);
8673
8674 switch (dpll & DPLL_MODE_MASK) {
8675 case DPLLB_MODE_DAC_SERIAL:
8676 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8677 5 : 10;
8678 break;
8679 case DPLLB_MODE_LVDS:
8680 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8681 7 : 14;
8682 break;
8683 default:
28c97730 8684 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8685 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8686 return;
79e53945
JB
8687 }
8688
ac58c3f0 8689 if (IS_PINEVIEW(dev))
da4a1efa 8690 pineview_clock(refclk, &clock);
ac58c3f0 8691 else
da4a1efa 8692 i9xx_clock(refclk, &clock);
79e53945 8693 } else {
0fb58223 8694 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8695 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8696
8697 if (is_lvds) {
8698 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8699 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8700
8701 if (lvds & LVDS_CLKB_POWER_UP)
8702 clock.p2 = 7;
8703 else
8704 clock.p2 = 14;
79e53945
JB
8705 } else {
8706 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8707 clock.p1 = 2;
8708 else {
8709 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8710 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8711 }
8712 if (dpll & PLL_P2_DIVIDE_BY_4)
8713 clock.p2 = 4;
8714 else
8715 clock.p2 = 2;
79e53945 8716 }
da4a1efa
VS
8717
8718 i9xx_clock(refclk, &clock);
79e53945
JB
8719 }
8720
18442d08
VS
8721 /*
8722 * This value includes pixel_multiplier. We will use
241bfc38 8723 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8724 * encoder's get_config() function.
8725 */
8726 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8727}
8728
6878da05
VS
8729int intel_dotclock_calculate(int link_freq,
8730 const struct intel_link_m_n *m_n)
f1f644dc 8731{
f1f644dc
JB
8732 /*
8733 * The calculation for the data clock is:
1041a02f 8734 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8735 * But we want to avoid losing precison if possible, so:
1041a02f 8736 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8737 *
8738 * and the link clock is simpler:
1041a02f 8739 * link_clock = (m * link_clock) / n
f1f644dc
JB
8740 */
8741
6878da05
VS
8742 if (!m_n->link_n)
8743 return 0;
f1f644dc 8744
6878da05
VS
8745 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8746}
f1f644dc 8747
18442d08
VS
8748static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8749 struct intel_crtc_config *pipe_config)
6878da05
VS
8750{
8751 struct drm_device *dev = crtc->base.dev;
79e53945 8752
18442d08
VS
8753 /* read out port_clock from the DPLL */
8754 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8755
f1f644dc 8756 /*
18442d08 8757 * This value does not include pixel_multiplier.
241bfc38 8758 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8759 * agree once we know their relationship in the encoder's
8760 * get_config() function.
79e53945 8761 */
241bfc38 8762 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8763 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8764 &pipe_config->fdi_m_n);
79e53945
JB
8765}
8766
8767/** Returns the currently programmed mode of the given pipe. */
8768struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8769 struct drm_crtc *crtc)
8770{
548f245b 8771 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8773 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8774 struct drm_display_mode *mode;
f1f644dc 8775 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8776 int htot = I915_READ(HTOTAL(cpu_transcoder));
8777 int hsync = I915_READ(HSYNC(cpu_transcoder));
8778 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8779 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8780 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8781
8782 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8783 if (!mode)
8784 return NULL;
8785
f1f644dc
JB
8786 /*
8787 * Construct a pipe_config sufficient for getting the clock info
8788 * back out of crtc_clock_get.
8789 *
8790 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8791 * to use a real value here instead.
8792 */
293623f7 8793 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8794 pipe_config.pixel_multiplier = 1;
293623f7
VS
8795 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8796 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8797 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8798 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8799
773ae034 8800 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8801 mode->hdisplay = (htot & 0xffff) + 1;
8802 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8803 mode->hsync_start = (hsync & 0xffff) + 1;
8804 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8805 mode->vdisplay = (vtot & 0xffff) + 1;
8806 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8807 mode->vsync_start = (vsync & 0xffff) + 1;
8808 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8809
8810 drm_mode_set_name(mode);
79e53945
JB
8811
8812 return mode;
8813}
8814
cc36513c
DV
8815static void intel_increase_pllclock(struct drm_device *dev,
8816 enum pipe pipe)
652c393a 8817{
fbee40df 8818 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8819 int dpll_reg = DPLL(pipe);
8820 int dpll;
652c393a 8821
baff296c 8822 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8823 return;
8824
8825 if (!dev_priv->lvds_downclock_avail)
8826 return;
8827
dbdc6479 8828 dpll = I915_READ(dpll_reg);
652c393a 8829 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8830 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8831
8ac5a6d5 8832 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8833
8834 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8835 I915_WRITE(dpll_reg, dpll);
9d0498a2 8836 intel_wait_for_vblank(dev, pipe);
dbdc6479 8837
652c393a
JB
8838 dpll = I915_READ(dpll_reg);
8839 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8840 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8841 }
652c393a
JB
8842}
8843
8844static void intel_decrease_pllclock(struct drm_crtc *crtc)
8845{
8846 struct drm_device *dev = crtc->dev;
fbee40df 8847 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8849
baff296c 8850 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8851 return;
8852
8853 if (!dev_priv->lvds_downclock_avail)
8854 return;
8855
8856 /*
8857 * Since this is called by a timer, we should never get here in
8858 * the manual case.
8859 */
8860 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8861 int pipe = intel_crtc->pipe;
8862 int dpll_reg = DPLL(pipe);
8863 int dpll;
f6e5b160 8864
44d98a61 8865 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8866
8ac5a6d5 8867 assert_panel_unlocked(dev_priv, pipe);
652c393a 8868
dc257cf1 8869 dpll = I915_READ(dpll_reg);
652c393a
JB
8870 dpll |= DISPLAY_RATE_SELECT_FPA1;
8871 I915_WRITE(dpll_reg, dpll);
9d0498a2 8872 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8873 dpll = I915_READ(dpll_reg);
8874 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8875 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8876 }
8877
8878}
8879
f047e395
CW
8880void intel_mark_busy(struct drm_device *dev)
8881{
c67a470b
PZ
8882 struct drm_i915_private *dev_priv = dev->dev_private;
8883
f62a0076
CW
8884 if (dev_priv->mm.busy)
8885 return;
8886
43694d69 8887 intel_runtime_pm_get(dev_priv);
c67a470b 8888 i915_update_gfx_val(dev_priv);
f62a0076 8889 dev_priv->mm.busy = true;
f047e395
CW
8890}
8891
8892void intel_mark_idle(struct drm_device *dev)
652c393a 8893{
c67a470b 8894 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8895 struct drm_crtc *crtc;
652c393a 8896
f62a0076
CW
8897 if (!dev_priv->mm.busy)
8898 return;
8899
8900 dev_priv->mm.busy = false;
8901
d330a953 8902 if (!i915.powersave)
bb4cdd53 8903 goto out;
652c393a 8904
70e1e0ec 8905 for_each_crtc(dev, crtc) {
f4510a27 8906 if (!crtc->primary->fb)
652c393a
JB
8907 continue;
8908
725a5b54 8909 intel_decrease_pllclock(crtc);
652c393a 8910 }
b29c19b6 8911
3d13ef2e 8912 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8913 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8914
8915out:
43694d69 8916 intel_runtime_pm_put(dev_priv);
652c393a
JB
8917}
8918
7c8f8a70 8919
f99d7069
DV
8920/**
8921 * intel_mark_fb_busy - mark given planes as busy
8922 * @dev: DRM device
8923 * @frontbuffer_bits: bits for the affected planes
8924 * @ring: optional ring for asynchronous commands
8925 *
8926 * This function gets called every time the screen contents change. It can be
8927 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8928 */
8929static void intel_mark_fb_busy(struct drm_device *dev,
8930 unsigned frontbuffer_bits,
8931 struct intel_engine_cs *ring)
652c393a 8932{
cc36513c 8933 enum pipe pipe;
652c393a 8934
d330a953 8935 if (!i915.powersave)
acb87dfb
CW
8936 return;
8937
cc36513c 8938 for_each_pipe(pipe) {
f99d7069 8939 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8940 continue;
8941
cc36513c 8942 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8943 if (ring && intel_fbc_enabled(dev))
8944 ring->fbc_dirty = true;
652c393a
JB
8945 }
8946}
8947
f99d7069
DV
8948/**
8949 * intel_fb_obj_invalidate - invalidate frontbuffer object
8950 * @obj: GEM object to invalidate
8951 * @ring: set for asynchronous rendering
8952 *
8953 * This function gets called every time rendering on the given object starts and
8954 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8955 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8956 * until the rendering completes or a flip on this frontbuffer plane is
8957 * scheduled.
8958 */
8959void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8960 struct intel_engine_cs *ring)
8961{
8962 struct drm_device *dev = obj->base.dev;
8963 struct drm_i915_private *dev_priv = dev->dev_private;
8964
8965 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8966
8967 if (!obj->frontbuffer_bits)
8968 return;
8969
8970 if (ring) {
8971 mutex_lock(&dev_priv->fb_tracking.lock);
8972 dev_priv->fb_tracking.busy_bits
8973 |= obj->frontbuffer_bits;
8974 dev_priv->fb_tracking.flip_bits
8975 &= ~obj->frontbuffer_bits;
8976 mutex_unlock(&dev_priv->fb_tracking.lock);
8977 }
8978
8979 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8980
9ca15301 8981 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
8982}
8983
8984/**
8985 * intel_frontbuffer_flush - flush frontbuffer
8986 * @dev: DRM device
8987 * @frontbuffer_bits: frontbuffer plane tracking bits
8988 *
8989 * This function gets called every time rendering on the given planes has
8990 * completed and frontbuffer caching can be started again. Flushes will get
8991 * delayed if they're blocked by some oustanding asynchronous rendering.
8992 *
8993 * Can be called without any locks held.
8994 */
8995void intel_frontbuffer_flush(struct drm_device *dev,
8996 unsigned frontbuffer_bits)
8997{
8998 struct drm_i915_private *dev_priv = dev->dev_private;
8999
9000 /* Delay flushing when rings are still busy.*/
9001 mutex_lock(&dev_priv->fb_tracking.lock);
9002 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9003 mutex_unlock(&dev_priv->fb_tracking.lock);
9004
9005 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9006
9ca15301 9007 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9008}
9009
9010/**
9011 * intel_fb_obj_flush - flush frontbuffer object
9012 * @obj: GEM object to flush
9013 * @retire: set when retiring asynchronous rendering
9014 *
9015 * This function gets called every time rendering on the given object has
9016 * completed and frontbuffer caching can be started again. If @retire is true
9017 * then any delayed flushes will be unblocked.
9018 */
9019void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9020 bool retire)
9021{
9022 struct drm_device *dev = obj->base.dev;
9023 struct drm_i915_private *dev_priv = dev->dev_private;
9024 unsigned frontbuffer_bits;
9025
9026 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9027
9028 if (!obj->frontbuffer_bits)
9029 return;
9030
9031 frontbuffer_bits = obj->frontbuffer_bits;
9032
9033 if (retire) {
9034 mutex_lock(&dev_priv->fb_tracking.lock);
9035 /* Filter out new bits since rendering started. */
9036 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9037
9038 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9039 mutex_unlock(&dev_priv->fb_tracking.lock);
9040 }
9041
9042 intel_frontbuffer_flush(dev, frontbuffer_bits);
9043}
9044
9045/**
9046 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9047 * @dev: DRM device
9048 * @frontbuffer_bits: frontbuffer plane tracking bits
9049 *
9050 * This function gets called after scheduling a flip on @obj. The actual
9051 * frontbuffer flushing will be delayed until completion is signalled with
9052 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9053 * flush will be cancelled.
9054 *
9055 * Can be called without any locks held.
9056 */
9057void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9058 unsigned frontbuffer_bits)
9059{
9060 struct drm_i915_private *dev_priv = dev->dev_private;
9061
9062 mutex_lock(&dev_priv->fb_tracking.lock);
9063 dev_priv->fb_tracking.flip_bits
9064 |= frontbuffer_bits;
9065 mutex_unlock(&dev_priv->fb_tracking.lock);
9066}
9067
9068/**
9069 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9070 * @dev: DRM device
9071 * @frontbuffer_bits: frontbuffer plane tracking bits
9072 *
9073 * This function gets called after the flip has been latched and will complete
9074 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9075 *
9076 * Can be called without any locks held.
9077 */
9078void intel_frontbuffer_flip_complete(struct drm_device *dev,
9079 unsigned frontbuffer_bits)
9080{
9081 struct drm_i915_private *dev_priv = dev->dev_private;
9082
9083 mutex_lock(&dev_priv->fb_tracking.lock);
9084 /* Mask any cancelled flips. */
9085 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9086 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9087 mutex_unlock(&dev_priv->fb_tracking.lock);
9088
9089 intel_frontbuffer_flush(dev, frontbuffer_bits);
9090}
9091
79e53945
JB
9092static void intel_crtc_destroy(struct drm_crtc *crtc)
9093{
9094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9095 struct drm_device *dev = crtc->dev;
9096 struct intel_unpin_work *work;
9097 unsigned long flags;
9098
9099 spin_lock_irqsave(&dev->event_lock, flags);
9100 work = intel_crtc->unpin_work;
9101 intel_crtc->unpin_work = NULL;
9102 spin_unlock_irqrestore(&dev->event_lock, flags);
9103
9104 if (work) {
9105 cancel_work_sync(&work->work);
9106 kfree(work);
9107 }
79e53945
JB
9108
9109 drm_crtc_cleanup(crtc);
67e77c5a 9110
79e53945
JB
9111 kfree(intel_crtc);
9112}
9113
6b95a207
KH
9114static void intel_unpin_work_fn(struct work_struct *__work)
9115{
9116 struct intel_unpin_work *work =
9117 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9118 struct drm_device *dev = work->crtc->dev;
f99d7069 9119 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9120
b4a98e57 9121 mutex_lock(&dev->struct_mutex);
1690e1eb 9122 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9123 drm_gem_object_unreference(&work->pending_flip_obj->base);
9124 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9125
b4a98e57
CW
9126 intel_update_fbc(dev);
9127 mutex_unlock(&dev->struct_mutex);
9128
f99d7069
DV
9129 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9130
b4a98e57
CW
9131 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9132 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9133
6b95a207
KH
9134 kfree(work);
9135}
9136
1afe3e9d 9137static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9138 struct drm_crtc *crtc)
6b95a207 9139{
fbee40df 9140 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9142 struct intel_unpin_work *work;
6b95a207
KH
9143 unsigned long flags;
9144
9145 /* Ignore early vblank irqs */
9146 if (intel_crtc == NULL)
9147 return;
9148
9149 spin_lock_irqsave(&dev->event_lock, flags);
9150 work = intel_crtc->unpin_work;
e7d841ca
CW
9151
9152 /* Ensure we don't miss a work->pending update ... */
9153 smp_rmb();
9154
9155 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9156 spin_unlock_irqrestore(&dev->event_lock, flags);
9157 return;
9158 }
9159
e7d841ca
CW
9160 /* and that the unpin work is consistent wrt ->pending. */
9161 smp_rmb();
9162
6b95a207 9163 intel_crtc->unpin_work = NULL;
6b95a207 9164
45a066eb
RC
9165 if (work->event)
9166 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9167
87b6b101 9168 drm_crtc_vblank_put(crtc);
0af7e4df 9169
6b95a207
KH
9170 spin_unlock_irqrestore(&dev->event_lock, flags);
9171
2c10d571 9172 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9173
9174 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9175
9176 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9177}
9178
1afe3e9d
JB
9179void intel_finish_page_flip(struct drm_device *dev, int pipe)
9180{
fbee40df 9181 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9182 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9183
49b14a5c 9184 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9185}
9186
9187void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9188{
fbee40df 9189 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9190 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9191
49b14a5c 9192 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9193}
9194
75f7f3ec
VS
9195/* Is 'a' after or equal to 'b'? */
9196static bool g4x_flip_count_after_eq(u32 a, u32 b)
9197{
9198 return !((a - b) & 0x80000000);
9199}
9200
9201static bool page_flip_finished(struct intel_crtc *crtc)
9202{
9203 struct drm_device *dev = crtc->base.dev;
9204 struct drm_i915_private *dev_priv = dev->dev_private;
9205
9206 /*
9207 * The relevant registers doen't exist on pre-ctg.
9208 * As the flip done interrupt doesn't trigger for mmio
9209 * flips on gmch platforms, a flip count check isn't
9210 * really needed there. But since ctg has the registers,
9211 * include it in the check anyway.
9212 */
9213 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9214 return true;
9215
9216 /*
9217 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9218 * used the same base address. In that case the mmio flip might
9219 * have completed, but the CS hasn't even executed the flip yet.
9220 *
9221 * A flip count check isn't enough as the CS might have updated
9222 * the base address just after start of vblank, but before we
9223 * managed to process the interrupt. This means we'd complete the
9224 * CS flip too soon.
9225 *
9226 * Combining both checks should get us a good enough result. It may
9227 * still happen that the CS flip has been executed, but has not
9228 * yet actually completed. But in case the base address is the same
9229 * anyway, we don't really care.
9230 */
9231 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9232 crtc->unpin_work->gtt_offset &&
9233 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9234 crtc->unpin_work->flip_count);
9235}
9236
6b95a207
KH
9237void intel_prepare_page_flip(struct drm_device *dev, int plane)
9238{
fbee40df 9239 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9240 struct intel_crtc *intel_crtc =
9241 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9242 unsigned long flags;
9243
e7d841ca
CW
9244 /* NB: An MMIO update of the plane base pointer will also
9245 * generate a page-flip completion irq, i.e. every modeset
9246 * is also accompanied by a spurious intel_prepare_page_flip().
9247 */
6b95a207 9248 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9249 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9250 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9251 spin_unlock_irqrestore(&dev->event_lock, flags);
9252}
9253
eba905b2 9254static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9255{
9256 /* Ensure that the work item is consistent when activating it ... */
9257 smp_wmb();
9258 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9259 /* and that it is marked active as soon as the irq could fire. */
9260 smp_wmb();
9261}
9262
8c9f3aaf
JB
9263static int intel_gen2_queue_flip(struct drm_device *dev,
9264 struct drm_crtc *crtc,
9265 struct drm_framebuffer *fb,
ed8d1975 9266 struct drm_i915_gem_object *obj,
a4872ba6 9267 struct intel_engine_cs *ring,
ed8d1975 9268 uint32_t flags)
8c9f3aaf 9269{
8c9f3aaf 9270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9271 u32 flip_mask;
9272 int ret;
9273
6d90c952 9274 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9275 if (ret)
4fa62c89 9276 return ret;
8c9f3aaf
JB
9277
9278 /* Can't queue multiple flips, so wait for the previous
9279 * one to finish before executing the next.
9280 */
9281 if (intel_crtc->plane)
9282 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9283 else
9284 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9285 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9286 intel_ring_emit(ring, MI_NOOP);
9287 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9288 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9289 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9290 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9291 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9292
9293 intel_mark_page_flip_active(intel_crtc);
09246732 9294 __intel_ring_advance(ring);
83d4092b 9295 return 0;
8c9f3aaf
JB
9296}
9297
9298static int intel_gen3_queue_flip(struct drm_device *dev,
9299 struct drm_crtc *crtc,
9300 struct drm_framebuffer *fb,
ed8d1975 9301 struct drm_i915_gem_object *obj,
a4872ba6 9302 struct intel_engine_cs *ring,
ed8d1975 9303 uint32_t flags)
8c9f3aaf 9304{
8c9f3aaf 9305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9306 u32 flip_mask;
9307 int ret;
9308
6d90c952 9309 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9310 if (ret)
4fa62c89 9311 return ret;
8c9f3aaf
JB
9312
9313 if (intel_crtc->plane)
9314 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9315 else
9316 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9317 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9318 intel_ring_emit(ring, MI_NOOP);
9319 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9320 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9321 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9322 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9323 intel_ring_emit(ring, MI_NOOP);
9324
e7d841ca 9325 intel_mark_page_flip_active(intel_crtc);
09246732 9326 __intel_ring_advance(ring);
83d4092b 9327 return 0;
8c9f3aaf
JB
9328}
9329
9330static int intel_gen4_queue_flip(struct drm_device *dev,
9331 struct drm_crtc *crtc,
9332 struct drm_framebuffer *fb,
ed8d1975 9333 struct drm_i915_gem_object *obj,
a4872ba6 9334 struct intel_engine_cs *ring,
ed8d1975 9335 uint32_t flags)
8c9f3aaf
JB
9336{
9337 struct drm_i915_private *dev_priv = dev->dev_private;
9338 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9339 uint32_t pf, pipesrc;
9340 int ret;
9341
6d90c952 9342 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9343 if (ret)
4fa62c89 9344 return ret;
8c9f3aaf
JB
9345
9346 /* i965+ uses the linear or tiled offsets from the
9347 * Display Registers (which do not change across a page-flip)
9348 * so we need only reprogram the base address.
9349 */
6d90c952
DV
9350 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9351 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9352 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9353 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9354 obj->tiling_mode);
8c9f3aaf
JB
9355
9356 /* XXX Enabling the panel-fitter across page-flip is so far
9357 * untested on non-native modes, so ignore it for now.
9358 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9359 */
9360 pf = 0;
9361 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9362 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9363
9364 intel_mark_page_flip_active(intel_crtc);
09246732 9365 __intel_ring_advance(ring);
83d4092b 9366 return 0;
8c9f3aaf
JB
9367}
9368
9369static int intel_gen6_queue_flip(struct drm_device *dev,
9370 struct drm_crtc *crtc,
9371 struct drm_framebuffer *fb,
ed8d1975 9372 struct drm_i915_gem_object *obj,
a4872ba6 9373 struct intel_engine_cs *ring,
ed8d1975 9374 uint32_t flags)
8c9f3aaf
JB
9375{
9376 struct drm_i915_private *dev_priv = dev->dev_private;
9377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9378 uint32_t pf, pipesrc;
9379 int ret;
9380
6d90c952 9381 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9382 if (ret)
4fa62c89 9383 return ret;
8c9f3aaf 9384
6d90c952
DV
9385 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9386 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9387 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9388 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9389
dc257cf1
DV
9390 /* Contrary to the suggestions in the documentation,
9391 * "Enable Panel Fitter" does not seem to be required when page
9392 * flipping with a non-native mode, and worse causes a normal
9393 * modeset to fail.
9394 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9395 */
9396 pf = 0;
8c9f3aaf 9397 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9398 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9399
9400 intel_mark_page_flip_active(intel_crtc);
09246732 9401 __intel_ring_advance(ring);
83d4092b 9402 return 0;
8c9f3aaf
JB
9403}
9404
7c9017e5
JB
9405static int intel_gen7_queue_flip(struct drm_device *dev,
9406 struct drm_crtc *crtc,
9407 struct drm_framebuffer *fb,
ed8d1975 9408 struct drm_i915_gem_object *obj,
a4872ba6 9409 struct intel_engine_cs *ring,
ed8d1975 9410 uint32_t flags)
7c9017e5 9411{
7c9017e5 9412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9413 uint32_t plane_bit = 0;
ffe74d75
CW
9414 int len, ret;
9415
eba905b2 9416 switch (intel_crtc->plane) {
cb05d8de
DV
9417 case PLANE_A:
9418 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9419 break;
9420 case PLANE_B:
9421 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9422 break;
9423 case PLANE_C:
9424 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9425 break;
9426 default:
9427 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9428 return -ENODEV;
cb05d8de
DV
9429 }
9430
ffe74d75 9431 len = 4;
f476828a 9432 if (ring->id == RCS) {
ffe74d75 9433 len += 6;
f476828a
DL
9434 /*
9435 * On Gen 8, SRM is now taking an extra dword to accommodate
9436 * 48bits addresses, and we need a NOOP for the batch size to
9437 * stay even.
9438 */
9439 if (IS_GEN8(dev))
9440 len += 2;
9441 }
ffe74d75 9442
f66fab8e
VS
9443 /*
9444 * BSpec MI_DISPLAY_FLIP for IVB:
9445 * "The full packet must be contained within the same cache line."
9446 *
9447 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9448 * cacheline, if we ever start emitting more commands before
9449 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9450 * then do the cacheline alignment, and finally emit the
9451 * MI_DISPLAY_FLIP.
9452 */
9453 ret = intel_ring_cacheline_align(ring);
9454 if (ret)
4fa62c89 9455 return ret;
f66fab8e 9456
ffe74d75 9457 ret = intel_ring_begin(ring, len);
7c9017e5 9458 if (ret)
4fa62c89 9459 return ret;
7c9017e5 9460
ffe74d75
CW
9461 /* Unmask the flip-done completion message. Note that the bspec says that
9462 * we should do this for both the BCS and RCS, and that we must not unmask
9463 * more than one flip event at any time (or ensure that one flip message
9464 * can be sent by waiting for flip-done prior to queueing new flips).
9465 * Experimentation says that BCS works despite DERRMR masking all
9466 * flip-done completion events and that unmasking all planes at once
9467 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9468 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9469 */
9470 if (ring->id == RCS) {
9471 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9472 intel_ring_emit(ring, DERRMR);
9473 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9474 DERRMR_PIPEB_PRI_FLIP_DONE |
9475 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9476 if (IS_GEN8(dev))
9477 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9478 MI_SRM_LRM_GLOBAL_GTT);
9479 else
9480 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9481 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9482 intel_ring_emit(ring, DERRMR);
9483 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9484 if (IS_GEN8(dev)) {
9485 intel_ring_emit(ring, 0);
9486 intel_ring_emit(ring, MI_NOOP);
9487 }
ffe74d75
CW
9488 }
9489
cb05d8de 9490 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9491 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9492 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9493 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9494
9495 intel_mark_page_flip_active(intel_crtc);
09246732 9496 __intel_ring_advance(ring);
83d4092b 9497 return 0;
7c9017e5
JB
9498}
9499
84c33a64
SG
9500static bool use_mmio_flip(struct intel_engine_cs *ring,
9501 struct drm_i915_gem_object *obj)
9502{
9503 /*
9504 * This is not being used for older platforms, because
9505 * non-availability of flip done interrupt forces us to use
9506 * CS flips. Older platforms derive flip done using some clever
9507 * tricks involving the flip_pending status bits and vblank irqs.
9508 * So using MMIO flips there would disrupt this mechanism.
9509 */
9510
8e09bf83
CW
9511 if (ring == NULL)
9512 return true;
9513
84c33a64
SG
9514 if (INTEL_INFO(ring->dev)->gen < 5)
9515 return false;
9516
9517 if (i915.use_mmio_flip < 0)
9518 return false;
9519 else if (i915.use_mmio_flip > 0)
9520 return true;
9521 else
9522 return ring != obj->ring;
9523}
9524
9525static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9526{
9527 struct drm_device *dev = intel_crtc->base.dev;
9528 struct drm_i915_private *dev_priv = dev->dev_private;
9529 struct intel_framebuffer *intel_fb =
9530 to_intel_framebuffer(intel_crtc->base.primary->fb);
9531 struct drm_i915_gem_object *obj = intel_fb->obj;
9532 u32 dspcntr;
9533 u32 reg;
9534
9535 intel_mark_page_flip_active(intel_crtc);
9536
9537 reg = DSPCNTR(intel_crtc->plane);
9538 dspcntr = I915_READ(reg);
9539
9540 if (INTEL_INFO(dev)->gen >= 4) {
9541 if (obj->tiling_mode != I915_TILING_NONE)
9542 dspcntr |= DISPPLANE_TILED;
9543 else
9544 dspcntr &= ~DISPPLANE_TILED;
9545 }
9546 I915_WRITE(reg, dspcntr);
9547
9548 I915_WRITE(DSPSURF(intel_crtc->plane),
9549 intel_crtc->unpin_work->gtt_offset);
9550 POSTING_READ(DSPSURF(intel_crtc->plane));
9551}
9552
9553static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9554{
9555 struct intel_engine_cs *ring;
9556 int ret;
9557
9558 lockdep_assert_held(&obj->base.dev->struct_mutex);
9559
9560 if (!obj->last_write_seqno)
9561 return 0;
9562
9563 ring = obj->ring;
9564
9565 if (i915_seqno_passed(ring->get_seqno(ring, true),
9566 obj->last_write_seqno))
9567 return 0;
9568
9569 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9570 if (ret)
9571 return ret;
9572
9573 if (WARN_ON(!ring->irq_get(ring)))
9574 return 0;
9575
9576 return 1;
9577}
9578
9579void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9580{
9581 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9582 struct intel_crtc *intel_crtc;
9583 unsigned long irq_flags;
9584 u32 seqno;
9585
9586 seqno = ring->get_seqno(ring, false);
9587
9588 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9589 for_each_intel_crtc(ring->dev, intel_crtc) {
9590 struct intel_mmio_flip *mmio_flip;
9591
9592 mmio_flip = &intel_crtc->mmio_flip;
9593 if (mmio_flip->seqno == 0)
9594 continue;
9595
9596 if (ring->id != mmio_flip->ring_id)
9597 continue;
9598
9599 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9600 intel_do_mmio_flip(intel_crtc);
9601 mmio_flip->seqno = 0;
9602 ring->irq_put(ring);
9603 }
9604 }
9605 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9606}
9607
9608static int intel_queue_mmio_flip(struct drm_device *dev,
9609 struct drm_crtc *crtc,
9610 struct drm_framebuffer *fb,
9611 struct drm_i915_gem_object *obj,
9612 struct intel_engine_cs *ring,
9613 uint32_t flags)
9614{
9615 struct drm_i915_private *dev_priv = dev->dev_private;
9616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9617 unsigned long irq_flags;
9618 int ret;
9619
9620 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9621 return -EBUSY;
9622
9623 ret = intel_postpone_flip(obj);
9624 if (ret < 0)
9625 return ret;
9626 if (ret == 0) {
9627 intel_do_mmio_flip(intel_crtc);
9628 return 0;
9629 }
9630
9631 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9632 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9633 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9634 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9635
9636 /*
9637 * Double check to catch cases where irq fired before
9638 * mmio flip data was ready
9639 */
9640 intel_notify_mmio_flip(obj->ring);
9641 return 0;
9642}
9643
8c9f3aaf
JB
9644static int intel_default_queue_flip(struct drm_device *dev,
9645 struct drm_crtc *crtc,
9646 struct drm_framebuffer *fb,
ed8d1975 9647 struct drm_i915_gem_object *obj,
a4872ba6 9648 struct intel_engine_cs *ring,
ed8d1975 9649 uint32_t flags)
8c9f3aaf
JB
9650{
9651 return -ENODEV;
9652}
9653
6b95a207
KH
9654static int intel_crtc_page_flip(struct drm_crtc *crtc,
9655 struct drm_framebuffer *fb,
ed8d1975
KP
9656 struct drm_pending_vblank_event *event,
9657 uint32_t page_flip_flags)
6b95a207
KH
9658{
9659 struct drm_device *dev = crtc->dev;
9660 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9661 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9662 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9664 enum pipe pipe = intel_crtc->pipe;
6b95a207 9665 struct intel_unpin_work *work;
a4872ba6 9666 struct intel_engine_cs *ring;
8c9f3aaf 9667 unsigned long flags;
52e68630 9668 int ret;
6b95a207 9669
2ff8fde1
MR
9670 /*
9671 * drm_mode_page_flip_ioctl() should already catch this, but double
9672 * check to be safe. In the future we may enable pageflipping from
9673 * a disabled primary plane.
9674 */
9675 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9676 return -EBUSY;
9677
e6a595d2 9678 /* Can't change pixel format via MI display flips. */
f4510a27 9679 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9680 return -EINVAL;
9681
9682 /*
9683 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9684 * Note that pitch changes could also affect these register.
9685 */
9686 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9687 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9688 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9689 return -EINVAL;
9690
f900db47
CW
9691 if (i915_terminally_wedged(&dev_priv->gpu_error))
9692 goto out_hang;
9693
b14c5679 9694 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9695 if (work == NULL)
9696 return -ENOMEM;
9697
6b95a207 9698 work->event = event;
b4a98e57 9699 work->crtc = crtc;
2ff8fde1 9700 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9701 INIT_WORK(&work->work, intel_unpin_work_fn);
9702
87b6b101 9703 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9704 if (ret)
9705 goto free_work;
9706
6b95a207
KH
9707 /* We borrow the event spin lock for protecting unpin_work */
9708 spin_lock_irqsave(&dev->event_lock, flags);
9709 if (intel_crtc->unpin_work) {
9710 spin_unlock_irqrestore(&dev->event_lock, flags);
9711 kfree(work);
87b6b101 9712 drm_crtc_vblank_put(crtc);
468f0b44
CW
9713
9714 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9715 return -EBUSY;
9716 }
9717 intel_crtc->unpin_work = work;
9718 spin_unlock_irqrestore(&dev->event_lock, flags);
9719
b4a98e57
CW
9720 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9721 flush_workqueue(dev_priv->wq);
9722
79158103
CW
9723 ret = i915_mutex_lock_interruptible(dev);
9724 if (ret)
9725 goto cleanup;
6b95a207 9726
75dfca80 9727 /* Reference the objects for the scheduled work. */
05394f39
CW
9728 drm_gem_object_reference(&work->old_fb_obj->base);
9729 drm_gem_object_reference(&obj->base);
6b95a207 9730
f4510a27 9731 crtc->primary->fb = fb;
96b099fd 9732
e1f99ce6 9733 work->pending_flip_obj = obj;
e1f99ce6 9734
4e5359cd
SF
9735 work->enable_stall_check = true;
9736
b4a98e57 9737 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9738 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9739
75f7f3ec 9740 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9741 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9742
4fa62c89
VS
9743 if (IS_VALLEYVIEW(dev)) {
9744 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9745 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9746 /* vlv: DISPLAY_FLIP fails to change tiling */
9747 ring = NULL;
2a92d5bc
CW
9748 } else if (IS_IVYBRIDGE(dev)) {
9749 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9750 } else if (INTEL_INFO(dev)->gen >= 7) {
9751 ring = obj->ring;
9752 if (ring == NULL || ring->id != RCS)
9753 ring = &dev_priv->ring[BCS];
9754 } else {
9755 ring = &dev_priv->ring[RCS];
9756 }
9757
9758 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9759 if (ret)
9760 goto cleanup_pending;
6b95a207 9761
4fa62c89
VS
9762 work->gtt_offset =
9763 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9764
84c33a64
SG
9765 if (use_mmio_flip(ring, obj))
9766 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9767 page_flip_flags);
9768 else
9769 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9770 page_flip_flags);
4fa62c89
VS
9771 if (ret)
9772 goto cleanup_unpin;
9773
a071fa00
DV
9774 i915_gem_track_fb(work->old_fb_obj, obj,
9775 INTEL_FRONTBUFFER_PRIMARY(pipe));
9776
7782de3b 9777 intel_disable_fbc(dev);
f99d7069 9778 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9779 mutex_unlock(&dev->struct_mutex);
9780
e5510fac
JB
9781 trace_i915_flip_request(intel_crtc->plane, obj);
9782
6b95a207 9783 return 0;
96b099fd 9784
4fa62c89
VS
9785cleanup_unpin:
9786 intel_unpin_fb_obj(obj);
8c9f3aaf 9787cleanup_pending:
b4a98e57 9788 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9789 crtc->primary->fb = old_fb;
05394f39
CW
9790 drm_gem_object_unreference(&work->old_fb_obj->base);
9791 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9792 mutex_unlock(&dev->struct_mutex);
9793
79158103 9794cleanup:
96b099fd
CW
9795 spin_lock_irqsave(&dev->event_lock, flags);
9796 intel_crtc->unpin_work = NULL;
9797 spin_unlock_irqrestore(&dev->event_lock, flags);
9798
87b6b101 9799 drm_crtc_vblank_put(crtc);
7317c75e 9800free_work:
96b099fd
CW
9801 kfree(work);
9802
f900db47
CW
9803 if (ret == -EIO) {
9804out_hang:
9805 intel_crtc_wait_for_pending_flips(crtc);
9806 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9807 if (ret == 0 && event)
a071fa00 9808 drm_send_vblank_event(dev, pipe, event);
f900db47 9809 }
96b099fd 9810 return ret;
6b95a207
KH
9811}
9812
f6e5b160 9813static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9814 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9815 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9816};
9817
9a935856
DV
9818/**
9819 * intel_modeset_update_staged_output_state
9820 *
9821 * Updates the staged output configuration state, e.g. after we've read out the
9822 * current hw state.
9823 */
9824static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9825{
7668851f 9826 struct intel_crtc *crtc;
9a935856
DV
9827 struct intel_encoder *encoder;
9828 struct intel_connector *connector;
f6e5b160 9829
9a935856
DV
9830 list_for_each_entry(connector, &dev->mode_config.connector_list,
9831 base.head) {
9832 connector->new_encoder =
9833 to_intel_encoder(connector->base.encoder);
9834 }
f6e5b160 9835
9a935856
DV
9836 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9837 base.head) {
9838 encoder->new_crtc =
9839 to_intel_crtc(encoder->base.crtc);
9840 }
7668851f 9841
d3fcc808 9842 for_each_intel_crtc(dev, crtc) {
7668851f 9843 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9844
9845 if (crtc->new_enabled)
9846 crtc->new_config = &crtc->config;
9847 else
9848 crtc->new_config = NULL;
7668851f 9849 }
f6e5b160
CW
9850}
9851
9a935856
DV
9852/**
9853 * intel_modeset_commit_output_state
9854 *
9855 * This function copies the stage display pipe configuration to the real one.
9856 */
9857static void intel_modeset_commit_output_state(struct drm_device *dev)
9858{
7668851f 9859 struct intel_crtc *crtc;
9a935856
DV
9860 struct intel_encoder *encoder;
9861 struct intel_connector *connector;
f6e5b160 9862
9a935856
DV
9863 list_for_each_entry(connector, &dev->mode_config.connector_list,
9864 base.head) {
9865 connector->base.encoder = &connector->new_encoder->base;
9866 }
f6e5b160 9867
9a935856
DV
9868 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9869 base.head) {
9870 encoder->base.crtc = &encoder->new_crtc->base;
9871 }
7668851f 9872
d3fcc808 9873 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9874 crtc->base.enabled = crtc->new_enabled;
9875 }
9a935856
DV
9876}
9877
050f7aeb 9878static void
eba905b2 9879connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9880 struct intel_crtc_config *pipe_config)
9881{
9882 int bpp = pipe_config->pipe_bpp;
9883
9884 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9885 connector->base.base.id,
c23cc417 9886 connector->base.name);
050f7aeb
DV
9887
9888 /* Don't use an invalid EDID bpc value */
9889 if (connector->base.display_info.bpc &&
9890 connector->base.display_info.bpc * 3 < bpp) {
9891 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9892 bpp, connector->base.display_info.bpc*3);
9893 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9894 }
9895
9896 /* Clamp bpp to 8 on screens without EDID 1.4 */
9897 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9898 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9899 bpp);
9900 pipe_config->pipe_bpp = 24;
9901 }
9902}
9903
4e53c2e0 9904static int
050f7aeb
DV
9905compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9906 struct drm_framebuffer *fb,
9907 struct intel_crtc_config *pipe_config)
4e53c2e0 9908{
050f7aeb
DV
9909 struct drm_device *dev = crtc->base.dev;
9910 struct intel_connector *connector;
4e53c2e0
DV
9911 int bpp;
9912
d42264b1
DV
9913 switch (fb->pixel_format) {
9914 case DRM_FORMAT_C8:
4e53c2e0
DV
9915 bpp = 8*3; /* since we go through a colormap */
9916 break;
d42264b1
DV
9917 case DRM_FORMAT_XRGB1555:
9918 case DRM_FORMAT_ARGB1555:
9919 /* checked in intel_framebuffer_init already */
9920 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9921 return -EINVAL;
9922 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9923 bpp = 6*3; /* min is 18bpp */
9924 break;
d42264b1
DV
9925 case DRM_FORMAT_XBGR8888:
9926 case DRM_FORMAT_ABGR8888:
9927 /* checked in intel_framebuffer_init already */
9928 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9929 return -EINVAL;
9930 case DRM_FORMAT_XRGB8888:
9931 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9932 bpp = 8*3;
9933 break;
d42264b1
DV
9934 case DRM_FORMAT_XRGB2101010:
9935 case DRM_FORMAT_ARGB2101010:
9936 case DRM_FORMAT_XBGR2101010:
9937 case DRM_FORMAT_ABGR2101010:
9938 /* checked in intel_framebuffer_init already */
9939 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9940 return -EINVAL;
4e53c2e0
DV
9941 bpp = 10*3;
9942 break;
baba133a 9943 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9944 default:
9945 DRM_DEBUG_KMS("unsupported depth\n");
9946 return -EINVAL;
9947 }
9948
4e53c2e0
DV
9949 pipe_config->pipe_bpp = bpp;
9950
9951 /* Clamp display bpp to EDID value */
9952 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9953 base.head) {
1b829e05
DV
9954 if (!connector->new_encoder ||
9955 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9956 continue;
9957
050f7aeb 9958 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9959 }
9960
9961 return bpp;
9962}
9963
644db711
DV
9964static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9965{
9966 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9967 "type: 0x%x flags: 0x%x\n",
1342830c 9968 mode->crtc_clock,
644db711
DV
9969 mode->crtc_hdisplay, mode->crtc_hsync_start,
9970 mode->crtc_hsync_end, mode->crtc_htotal,
9971 mode->crtc_vdisplay, mode->crtc_vsync_start,
9972 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9973}
9974
c0b03411
DV
9975static void intel_dump_pipe_config(struct intel_crtc *crtc,
9976 struct intel_crtc_config *pipe_config,
9977 const char *context)
9978{
9979 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9980 context, pipe_name(crtc->pipe));
9981
9982 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9983 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9984 pipe_config->pipe_bpp, pipe_config->dither);
9985 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9986 pipe_config->has_pch_encoder,
9987 pipe_config->fdi_lanes,
9988 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9989 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9990 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9991 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9992 pipe_config->has_dp_encoder,
9993 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9994 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9995 pipe_config->dp_m_n.tu);
b95af8be
VK
9996
9997 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9998 pipe_config->has_dp_encoder,
9999 pipe_config->dp_m2_n2.gmch_m,
10000 pipe_config->dp_m2_n2.gmch_n,
10001 pipe_config->dp_m2_n2.link_m,
10002 pipe_config->dp_m2_n2.link_n,
10003 pipe_config->dp_m2_n2.tu);
10004
c0b03411
DV
10005 DRM_DEBUG_KMS("requested mode:\n");
10006 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10007 DRM_DEBUG_KMS("adjusted mode:\n");
10008 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10009 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10010 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10011 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10012 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10013 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10014 pipe_config->gmch_pfit.control,
10015 pipe_config->gmch_pfit.pgm_ratios,
10016 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10017 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10018 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10019 pipe_config->pch_pfit.size,
10020 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10021 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10022 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10023}
10024
bc079e8b
VS
10025static bool encoders_cloneable(const struct intel_encoder *a,
10026 const struct intel_encoder *b)
accfc0c5 10027{
bc079e8b
VS
10028 /* masks could be asymmetric, so check both ways */
10029 return a == b || (a->cloneable & (1 << b->type) &&
10030 b->cloneable & (1 << a->type));
10031}
10032
10033static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10034 struct intel_encoder *encoder)
10035{
10036 struct drm_device *dev = crtc->base.dev;
10037 struct intel_encoder *source_encoder;
10038
10039 list_for_each_entry(source_encoder,
10040 &dev->mode_config.encoder_list, base.head) {
10041 if (source_encoder->new_crtc != crtc)
10042 continue;
10043
10044 if (!encoders_cloneable(encoder, source_encoder))
10045 return false;
10046 }
10047
10048 return true;
10049}
10050
10051static bool check_encoder_cloning(struct intel_crtc *crtc)
10052{
10053 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10054 struct intel_encoder *encoder;
10055
bc079e8b
VS
10056 list_for_each_entry(encoder,
10057 &dev->mode_config.encoder_list, base.head) {
10058 if (encoder->new_crtc != crtc)
accfc0c5
DV
10059 continue;
10060
bc079e8b
VS
10061 if (!check_single_encoder_cloning(crtc, encoder))
10062 return false;
accfc0c5
DV
10063 }
10064
bc079e8b 10065 return true;
accfc0c5
DV
10066}
10067
b8cecdf5
DV
10068static struct intel_crtc_config *
10069intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10070 struct drm_framebuffer *fb,
b8cecdf5 10071 struct drm_display_mode *mode)
ee7b9f93 10072{
7758a113 10073 struct drm_device *dev = crtc->dev;
7758a113 10074 struct intel_encoder *encoder;
b8cecdf5 10075 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10076 int plane_bpp, ret = -EINVAL;
10077 bool retry = true;
ee7b9f93 10078
bc079e8b 10079 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10080 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10081 return ERR_PTR(-EINVAL);
10082 }
10083
b8cecdf5
DV
10084 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10085 if (!pipe_config)
7758a113
DV
10086 return ERR_PTR(-ENOMEM);
10087
b8cecdf5
DV
10088 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10089 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10090
e143a21c
DV
10091 pipe_config->cpu_transcoder =
10092 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10093 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10094
2960bc9c
ID
10095 /*
10096 * Sanitize sync polarity flags based on requested ones. If neither
10097 * positive or negative polarity is requested, treat this as meaning
10098 * negative polarity.
10099 */
10100 if (!(pipe_config->adjusted_mode.flags &
10101 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10102 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10103
10104 if (!(pipe_config->adjusted_mode.flags &
10105 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10106 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10107
050f7aeb
DV
10108 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10109 * plane pixel format and any sink constraints into account. Returns the
10110 * source plane bpp so that dithering can be selected on mismatches
10111 * after encoders and crtc also have had their say. */
10112 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10113 fb, pipe_config);
4e53c2e0
DV
10114 if (plane_bpp < 0)
10115 goto fail;
10116
e41a56be
VS
10117 /*
10118 * Determine the real pipe dimensions. Note that stereo modes can
10119 * increase the actual pipe size due to the frame doubling and
10120 * insertion of additional space for blanks between the frame. This
10121 * is stored in the crtc timings. We use the requested mode to do this
10122 * computation to clearly distinguish it from the adjusted mode, which
10123 * can be changed by the connectors in the below retry loop.
10124 */
10125 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10126 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10127 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10128
e29c22c0 10129encoder_retry:
ef1b460d 10130 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10131 pipe_config->port_clock = 0;
ef1b460d 10132 pipe_config->pixel_multiplier = 1;
ff9a6750 10133
135c81b8 10134 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10135 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10136
7758a113
DV
10137 /* Pass our mode to the connectors and the CRTC to give them a chance to
10138 * adjust it according to limitations or connector properties, and also
10139 * a chance to reject the mode entirely.
47f1c6c9 10140 */
7758a113
DV
10141 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10142 base.head) {
47f1c6c9 10143
7758a113
DV
10144 if (&encoder->new_crtc->base != crtc)
10145 continue;
7ae89233 10146
efea6e8e
DV
10147 if (!(encoder->compute_config(encoder, pipe_config))) {
10148 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10149 goto fail;
10150 }
ee7b9f93 10151 }
47f1c6c9 10152
ff9a6750
DV
10153 /* Set default port clock if not overwritten by the encoder. Needs to be
10154 * done afterwards in case the encoder adjusts the mode. */
10155 if (!pipe_config->port_clock)
241bfc38
DL
10156 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10157 * pipe_config->pixel_multiplier;
ff9a6750 10158
a43f6e0f 10159 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10160 if (ret < 0) {
7758a113
DV
10161 DRM_DEBUG_KMS("CRTC fixup failed\n");
10162 goto fail;
ee7b9f93 10163 }
e29c22c0
DV
10164
10165 if (ret == RETRY) {
10166 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10167 ret = -EINVAL;
10168 goto fail;
10169 }
10170
10171 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10172 retry = false;
10173 goto encoder_retry;
10174 }
10175
4e53c2e0
DV
10176 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10177 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10178 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10179
b8cecdf5 10180 return pipe_config;
7758a113 10181fail:
b8cecdf5 10182 kfree(pipe_config);
e29c22c0 10183 return ERR_PTR(ret);
ee7b9f93 10184}
47f1c6c9 10185
e2e1ed41
DV
10186/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10187 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10188static void
10189intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10190 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10191{
10192 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10193 struct drm_device *dev = crtc->dev;
10194 struct intel_encoder *encoder;
10195 struct intel_connector *connector;
10196 struct drm_crtc *tmp_crtc;
79e53945 10197
e2e1ed41 10198 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10199
e2e1ed41
DV
10200 /* Check which crtcs have changed outputs connected to them, these need
10201 * to be part of the prepare_pipes mask. We don't (yet) support global
10202 * modeset across multiple crtcs, so modeset_pipes will only have one
10203 * bit set at most. */
10204 list_for_each_entry(connector, &dev->mode_config.connector_list,
10205 base.head) {
10206 if (connector->base.encoder == &connector->new_encoder->base)
10207 continue;
79e53945 10208
e2e1ed41
DV
10209 if (connector->base.encoder) {
10210 tmp_crtc = connector->base.encoder->crtc;
10211
10212 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10213 }
10214
10215 if (connector->new_encoder)
10216 *prepare_pipes |=
10217 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10218 }
10219
e2e1ed41
DV
10220 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10221 base.head) {
10222 if (encoder->base.crtc == &encoder->new_crtc->base)
10223 continue;
10224
10225 if (encoder->base.crtc) {
10226 tmp_crtc = encoder->base.crtc;
10227
10228 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10229 }
10230
10231 if (encoder->new_crtc)
10232 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10233 }
10234
7668851f 10235 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10236 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10237 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10238 continue;
7e7d76c3 10239
7668851f 10240 if (!intel_crtc->new_enabled)
e2e1ed41 10241 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10242 else
10243 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10244 }
10245
e2e1ed41
DV
10246
10247 /* set_mode is also used to update properties on life display pipes. */
10248 intel_crtc = to_intel_crtc(crtc);
7668851f 10249 if (intel_crtc->new_enabled)
e2e1ed41
DV
10250 *prepare_pipes |= 1 << intel_crtc->pipe;
10251
b6c5164d
DV
10252 /*
10253 * For simplicity do a full modeset on any pipe where the output routing
10254 * changed. We could be more clever, but that would require us to be
10255 * more careful with calling the relevant encoder->mode_set functions.
10256 */
e2e1ed41
DV
10257 if (*prepare_pipes)
10258 *modeset_pipes = *prepare_pipes;
10259
10260 /* ... and mask these out. */
10261 *modeset_pipes &= ~(*disable_pipes);
10262 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10263
10264 /*
10265 * HACK: We don't (yet) fully support global modesets. intel_set_config
10266 * obies this rule, but the modeset restore mode of
10267 * intel_modeset_setup_hw_state does not.
10268 */
10269 *modeset_pipes &= 1 << intel_crtc->pipe;
10270 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10271
10272 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10273 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10274}
79e53945 10275
ea9d758d 10276static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10277{
ea9d758d 10278 struct drm_encoder *encoder;
f6e5b160 10279 struct drm_device *dev = crtc->dev;
f6e5b160 10280
ea9d758d
DV
10281 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10282 if (encoder->crtc == crtc)
10283 return true;
10284
10285 return false;
10286}
10287
10288static void
10289intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10290{
10291 struct intel_encoder *intel_encoder;
10292 struct intel_crtc *intel_crtc;
10293 struct drm_connector *connector;
10294
10295 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10296 base.head) {
10297 if (!intel_encoder->base.crtc)
10298 continue;
10299
10300 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10301
10302 if (prepare_pipes & (1 << intel_crtc->pipe))
10303 intel_encoder->connectors_active = false;
10304 }
10305
10306 intel_modeset_commit_output_state(dev);
10307
7668851f 10308 /* Double check state. */
d3fcc808 10309 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10310 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10311 WARN_ON(intel_crtc->new_config &&
10312 intel_crtc->new_config != &intel_crtc->config);
10313 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10314 }
10315
10316 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10317 if (!connector->encoder || !connector->encoder->crtc)
10318 continue;
10319
10320 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10321
10322 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10323 struct drm_property *dpms_property =
10324 dev->mode_config.dpms_property;
10325
ea9d758d 10326 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10327 drm_object_property_set_value(&connector->base,
68d34720
DV
10328 dpms_property,
10329 DRM_MODE_DPMS_ON);
ea9d758d
DV
10330
10331 intel_encoder = to_intel_encoder(connector->encoder);
10332 intel_encoder->connectors_active = true;
10333 }
10334 }
10335
10336}
10337
3bd26263 10338static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10339{
3bd26263 10340 int diff;
f1f644dc
JB
10341
10342 if (clock1 == clock2)
10343 return true;
10344
10345 if (!clock1 || !clock2)
10346 return false;
10347
10348 diff = abs(clock1 - clock2);
10349
10350 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10351 return true;
10352
10353 return false;
10354}
10355
25c5b266
DV
10356#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10357 list_for_each_entry((intel_crtc), \
10358 &(dev)->mode_config.crtc_list, \
10359 base.head) \
0973f18f 10360 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10361
0e8ffe1b 10362static bool
2fa2fe9a
DV
10363intel_pipe_config_compare(struct drm_device *dev,
10364 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10365 struct intel_crtc_config *pipe_config)
10366{
66e985c0
DV
10367#define PIPE_CONF_CHECK_X(name) \
10368 if (current_config->name != pipe_config->name) { \
10369 DRM_ERROR("mismatch in " #name " " \
10370 "(expected 0x%08x, found 0x%08x)\n", \
10371 current_config->name, \
10372 pipe_config->name); \
10373 return false; \
10374 }
10375
08a24034
DV
10376#define PIPE_CONF_CHECK_I(name) \
10377 if (current_config->name != pipe_config->name) { \
10378 DRM_ERROR("mismatch in " #name " " \
10379 "(expected %i, found %i)\n", \
10380 current_config->name, \
10381 pipe_config->name); \
10382 return false; \
88adfff1
DV
10383 }
10384
b95af8be
VK
10385/* This is required for BDW+ where there is only one set of registers for
10386 * switching between high and low RR.
10387 * This macro can be used whenever a comparison has to be made between one
10388 * hw state and multiple sw state variables.
10389 */
10390#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10391 if ((current_config->name != pipe_config->name) && \
10392 (current_config->alt_name != pipe_config->name)) { \
10393 DRM_ERROR("mismatch in " #name " " \
10394 "(expected %i or %i, found %i)\n", \
10395 current_config->name, \
10396 current_config->alt_name, \
10397 pipe_config->name); \
10398 return false; \
10399 }
10400
1bd1bd80
DV
10401#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10402 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10403 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10404 "(expected %i, found %i)\n", \
10405 current_config->name & (mask), \
10406 pipe_config->name & (mask)); \
10407 return false; \
10408 }
10409
5e550656
VS
10410#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10411 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10412 DRM_ERROR("mismatch in " #name " " \
10413 "(expected %i, found %i)\n", \
10414 current_config->name, \
10415 pipe_config->name); \
10416 return false; \
10417 }
10418
bb760063
DV
10419#define PIPE_CONF_QUIRK(quirk) \
10420 ((current_config->quirks | pipe_config->quirks) & (quirk))
10421
eccb140b
DV
10422 PIPE_CONF_CHECK_I(cpu_transcoder);
10423
08a24034
DV
10424 PIPE_CONF_CHECK_I(has_pch_encoder);
10425 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10426 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10427 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10428 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10429 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10430 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10431
eb14cb74 10432 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10433
10434 if (INTEL_INFO(dev)->gen < 8) {
10435 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10436 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10437 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10438 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10439 PIPE_CONF_CHECK_I(dp_m_n.tu);
10440
10441 if (current_config->has_drrs) {
10442 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10443 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10444 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10445 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10446 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10447 }
10448 } else {
10449 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10450 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10451 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10452 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10453 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10454 }
eb14cb74 10455
1bd1bd80
DV
10456 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10457 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10458 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10459 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10460 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10461 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10462
10463 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10464 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10465 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10466 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10467 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10468 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10469
c93f54cf 10470 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10471 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10472 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10473 IS_VALLEYVIEW(dev))
10474 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10475
9ed109a7
DV
10476 PIPE_CONF_CHECK_I(has_audio);
10477
1bd1bd80
DV
10478 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10479 DRM_MODE_FLAG_INTERLACE);
10480
bb760063
DV
10481 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10482 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10483 DRM_MODE_FLAG_PHSYNC);
10484 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10485 DRM_MODE_FLAG_NHSYNC);
10486 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10487 DRM_MODE_FLAG_PVSYNC);
10488 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10489 DRM_MODE_FLAG_NVSYNC);
10490 }
045ac3b5 10491
37327abd
VS
10492 PIPE_CONF_CHECK_I(pipe_src_w);
10493 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10494
9953599b
DV
10495 /*
10496 * FIXME: BIOS likes to set up a cloned config with lvds+external
10497 * screen. Since we don't yet re-compute the pipe config when moving
10498 * just the lvds port away to another pipe the sw tracking won't match.
10499 *
10500 * Proper atomic modesets with recomputed global state will fix this.
10501 * Until then just don't check gmch state for inherited modes.
10502 */
10503 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10504 PIPE_CONF_CHECK_I(gmch_pfit.control);
10505 /* pfit ratios are autocomputed by the hw on gen4+ */
10506 if (INTEL_INFO(dev)->gen < 4)
10507 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10508 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10509 }
10510
fd4daa9c
CW
10511 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10512 if (current_config->pch_pfit.enabled) {
10513 PIPE_CONF_CHECK_I(pch_pfit.pos);
10514 PIPE_CONF_CHECK_I(pch_pfit.size);
10515 }
2fa2fe9a 10516
e59150dc
JB
10517 /* BDW+ don't expose a synchronous way to read the state */
10518 if (IS_HASWELL(dev))
10519 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10520
282740f7
VS
10521 PIPE_CONF_CHECK_I(double_wide);
10522
26804afd
DV
10523 PIPE_CONF_CHECK_X(ddi_pll_sel);
10524
c0d43d62 10525 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10526 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10527 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10528 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10529 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10530 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10531
42571aef
VS
10532 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10533 PIPE_CONF_CHECK_I(pipe_bpp);
10534
a9a7e98a
JB
10535 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10536 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10537
66e985c0 10538#undef PIPE_CONF_CHECK_X
08a24034 10539#undef PIPE_CONF_CHECK_I
b95af8be 10540#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10541#undef PIPE_CONF_CHECK_FLAGS
5e550656 10542#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10543#undef PIPE_CONF_QUIRK
88adfff1 10544
0e8ffe1b
DV
10545 return true;
10546}
10547
91d1b4bd
DV
10548static void
10549check_connector_state(struct drm_device *dev)
8af6cf88 10550{
8af6cf88
DV
10551 struct intel_connector *connector;
10552
10553 list_for_each_entry(connector, &dev->mode_config.connector_list,
10554 base.head) {
10555 /* This also checks the encoder/connector hw state with the
10556 * ->get_hw_state callbacks. */
10557 intel_connector_check_state(connector);
10558
10559 WARN(&connector->new_encoder->base != connector->base.encoder,
10560 "connector's staged encoder doesn't match current encoder\n");
10561 }
91d1b4bd
DV
10562}
10563
10564static void
10565check_encoder_state(struct drm_device *dev)
10566{
10567 struct intel_encoder *encoder;
10568 struct intel_connector *connector;
8af6cf88
DV
10569
10570 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10571 base.head) {
10572 bool enabled = false;
10573 bool active = false;
10574 enum pipe pipe, tracked_pipe;
10575
10576 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10577 encoder->base.base.id,
8e329a03 10578 encoder->base.name);
8af6cf88
DV
10579
10580 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10581 "encoder's stage crtc doesn't match current crtc\n");
10582 WARN(encoder->connectors_active && !encoder->base.crtc,
10583 "encoder's active_connectors set, but no crtc\n");
10584
10585 list_for_each_entry(connector, &dev->mode_config.connector_list,
10586 base.head) {
10587 if (connector->base.encoder != &encoder->base)
10588 continue;
10589 enabled = true;
10590 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10591 active = true;
10592 }
0e32b39c
DA
10593 /*
10594 * for MST connectors if we unplug the connector is gone
10595 * away but the encoder is still connected to a crtc
10596 * until a modeset happens in response to the hotplug.
10597 */
10598 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10599 continue;
10600
8af6cf88
DV
10601 WARN(!!encoder->base.crtc != enabled,
10602 "encoder's enabled state mismatch "
10603 "(expected %i, found %i)\n",
10604 !!encoder->base.crtc, enabled);
10605 WARN(active && !encoder->base.crtc,
10606 "active encoder with no crtc\n");
10607
10608 WARN(encoder->connectors_active != active,
10609 "encoder's computed active state doesn't match tracked active state "
10610 "(expected %i, found %i)\n", active, encoder->connectors_active);
10611
10612 active = encoder->get_hw_state(encoder, &pipe);
10613 WARN(active != encoder->connectors_active,
10614 "encoder's hw state doesn't match sw tracking "
10615 "(expected %i, found %i)\n",
10616 encoder->connectors_active, active);
10617
10618 if (!encoder->base.crtc)
10619 continue;
10620
10621 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10622 WARN(active && pipe != tracked_pipe,
10623 "active encoder's pipe doesn't match"
10624 "(expected %i, found %i)\n",
10625 tracked_pipe, pipe);
10626
10627 }
91d1b4bd
DV
10628}
10629
10630static void
10631check_crtc_state(struct drm_device *dev)
10632{
fbee40df 10633 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10634 struct intel_crtc *crtc;
10635 struct intel_encoder *encoder;
10636 struct intel_crtc_config pipe_config;
8af6cf88 10637
d3fcc808 10638 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10639 bool enabled = false;
10640 bool active = false;
10641
045ac3b5
JB
10642 memset(&pipe_config, 0, sizeof(pipe_config));
10643
8af6cf88
DV
10644 DRM_DEBUG_KMS("[CRTC:%d]\n",
10645 crtc->base.base.id);
10646
10647 WARN(crtc->active && !crtc->base.enabled,
10648 "active crtc, but not enabled in sw tracking\n");
10649
10650 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10651 base.head) {
10652 if (encoder->base.crtc != &crtc->base)
10653 continue;
10654 enabled = true;
10655 if (encoder->connectors_active)
10656 active = true;
10657 }
6c49f241 10658
8af6cf88
DV
10659 WARN(active != crtc->active,
10660 "crtc's computed active state doesn't match tracked active state "
10661 "(expected %i, found %i)\n", active, crtc->active);
10662 WARN(enabled != crtc->base.enabled,
10663 "crtc's computed enabled state doesn't match tracked enabled state "
10664 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10665
0e8ffe1b
DV
10666 active = dev_priv->display.get_pipe_config(crtc,
10667 &pipe_config);
d62cf62a
DV
10668
10669 /* hw state is inconsistent with the pipe A quirk */
10670 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10671 active = crtc->active;
10672
6c49f241
DV
10673 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10674 base.head) {
3eaba51c 10675 enum pipe pipe;
6c49f241
DV
10676 if (encoder->base.crtc != &crtc->base)
10677 continue;
1d37b689 10678 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10679 encoder->get_config(encoder, &pipe_config);
10680 }
10681
0e8ffe1b
DV
10682 WARN(crtc->active != active,
10683 "crtc active state doesn't match with hw state "
10684 "(expected %i, found %i)\n", crtc->active, active);
10685
c0b03411
DV
10686 if (active &&
10687 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10688 WARN(1, "pipe state doesn't match!\n");
10689 intel_dump_pipe_config(crtc, &pipe_config,
10690 "[hw state]");
10691 intel_dump_pipe_config(crtc, &crtc->config,
10692 "[sw state]");
10693 }
8af6cf88
DV
10694 }
10695}
10696
91d1b4bd
DV
10697static void
10698check_shared_dpll_state(struct drm_device *dev)
10699{
fbee40df 10700 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10701 struct intel_crtc *crtc;
10702 struct intel_dpll_hw_state dpll_hw_state;
10703 int i;
5358901f
DV
10704
10705 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10706 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10707 int enabled_crtcs = 0, active_crtcs = 0;
10708 bool active;
10709
10710 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10711
10712 DRM_DEBUG_KMS("%s\n", pll->name);
10713
10714 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10715
10716 WARN(pll->active > pll->refcount,
10717 "more active pll users than references: %i vs %i\n",
10718 pll->active, pll->refcount);
10719 WARN(pll->active && !pll->on,
10720 "pll in active use but not on in sw tracking\n");
35c95375
DV
10721 WARN(pll->on && !pll->active,
10722 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10723 WARN(pll->on != active,
10724 "pll on state mismatch (expected %i, found %i)\n",
10725 pll->on, active);
10726
d3fcc808 10727 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10728 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10729 enabled_crtcs++;
10730 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10731 active_crtcs++;
10732 }
10733 WARN(pll->active != active_crtcs,
10734 "pll active crtcs mismatch (expected %i, found %i)\n",
10735 pll->active, active_crtcs);
10736 WARN(pll->refcount != enabled_crtcs,
10737 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10738 pll->refcount, enabled_crtcs);
66e985c0
DV
10739
10740 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10741 sizeof(dpll_hw_state)),
10742 "pll hw state mismatch\n");
5358901f 10743 }
8af6cf88
DV
10744}
10745
91d1b4bd
DV
10746void
10747intel_modeset_check_state(struct drm_device *dev)
10748{
10749 check_connector_state(dev);
10750 check_encoder_state(dev);
10751 check_crtc_state(dev);
10752 check_shared_dpll_state(dev);
10753}
10754
18442d08
VS
10755void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10756 int dotclock)
10757{
10758 /*
10759 * FDI already provided one idea for the dotclock.
10760 * Yell if the encoder disagrees.
10761 */
241bfc38 10762 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10763 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10764 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10765}
10766
80715b2f
VS
10767static void update_scanline_offset(struct intel_crtc *crtc)
10768{
10769 struct drm_device *dev = crtc->base.dev;
10770
10771 /*
10772 * The scanline counter increments at the leading edge of hsync.
10773 *
10774 * On most platforms it starts counting from vtotal-1 on the
10775 * first active line. That means the scanline counter value is
10776 * always one less than what we would expect. Ie. just after
10777 * start of vblank, which also occurs at start of hsync (on the
10778 * last active line), the scanline counter will read vblank_start-1.
10779 *
10780 * On gen2 the scanline counter starts counting from 1 instead
10781 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10782 * to keep the value positive), instead of adding one.
10783 *
10784 * On HSW+ the behaviour of the scanline counter depends on the output
10785 * type. For DP ports it behaves like most other platforms, but on HDMI
10786 * there's an extra 1 line difference. So we need to add two instead of
10787 * one to the value.
10788 */
10789 if (IS_GEN2(dev)) {
10790 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10791 int vtotal;
10792
10793 vtotal = mode->crtc_vtotal;
10794 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10795 vtotal /= 2;
10796
10797 crtc->scanline_offset = vtotal - 1;
10798 } else if (HAS_DDI(dev) &&
10799 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10800 crtc->scanline_offset = 2;
10801 } else
10802 crtc->scanline_offset = 1;
10803}
10804
f30da187
DV
10805static int __intel_set_mode(struct drm_crtc *crtc,
10806 struct drm_display_mode *mode,
10807 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10808{
10809 struct drm_device *dev = crtc->dev;
fbee40df 10810 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10811 struct drm_display_mode *saved_mode;
b8cecdf5 10812 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10813 struct intel_crtc *intel_crtc;
10814 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10815 int ret = 0;
a6778b3c 10816
4b4b9238 10817 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10818 if (!saved_mode)
10819 return -ENOMEM;
a6778b3c 10820
e2e1ed41 10821 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10822 &prepare_pipes, &disable_pipes);
10823
3ac18232 10824 *saved_mode = crtc->mode;
a6778b3c 10825
25c5b266
DV
10826 /* Hack: Because we don't (yet) support global modeset on multiple
10827 * crtcs, we don't keep track of the new mode for more than one crtc.
10828 * Hence simply check whether any bit is set in modeset_pipes in all the
10829 * pieces of code that are not yet converted to deal with mutliple crtcs
10830 * changing their mode at the same time. */
25c5b266 10831 if (modeset_pipes) {
4e53c2e0 10832 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10833 if (IS_ERR(pipe_config)) {
10834 ret = PTR_ERR(pipe_config);
10835 pipe_config = NULL;
10836
3ac18232 10837 goto out;
25c5b266 10838 }
c0b03411
DV
10839 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10840 "[modeset]");
50741abc 10841 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10842 }
a6778b3c 10843
30a970c6
JB
10844 /*
10845 * See if the config requires any additional preparation, e.g.
10846 * to adjust global state with pipes off. We need to do this
10847 * here so we can get the modeset_pipe updated config for the new
10848 * mode set on this crtc. For other crtcs we need to use the
10849 * adjusted_mode bits in the crtc directly.
10850 */
c164f833 10851 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10852 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10853
c164f833
VS
10854 /* may have added more to prepare_pipes than we should */
10855 prepare_pipes &= ~disable_pipes;
10856 }
10857
460da916
DV
10858 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10859 intel_crtc_disable(&intel_crtc->base);
10860
ea9d758d
DV
10861 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10862 if (intel_crtc->base.enabled)
10863 dev_priv->display.crtc_disable(&intel_crtc->base);
10864 }
a6778b3c 10865
6c4c86f5
DV
10866 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10867 * to set it here already despite that we pass it down the callchain.
f6e5b160 10868 */
b8cecdf5 10869 if (modeset_pipes) {
25c5b266 10870 crtc->mode = *mode;
b8cecdf5
DV
10871 /* mode_set/enable/disable functions rely on a correct pipe
10872 * config. */
10873 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10874 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10875
10876 /*
10877 * Calculate and store various constants which
10878 * are later needed by vblank and swap-completion
10879 * timestamping. They are derived from true hwmode.
10880 */
10881 drm_calc_timestamping_constants(crtc,
10882 &pipe_config->adjusted_mode);
b8cecdf5 10883 }
7758a113 10884
ea9d758d
DV
10885 /* Only after disabling all output pipelines that will be changed can we
10886 * update the the output configuration. */
10887 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10888
47fab737
DV
10889 if (dev_priv->display.modeset_global_resources)
10890 dev_priv->display.modeset_global_resources(dev);
10891
a6778b3c
DV
10892 /* Set up the DPLL and any encoders state that needs to adjust or depend
10893 * on the DPLL.
f6e5b160 10894 */
25c5b266 10895 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10896 struct drm_framebuffer *old_fb = crtc->primary->fb;
10897 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10898 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10899
10900 mutex_lock(&dev->struct_mutex);
10901 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10902 obj,
4c10794f
DV
10903 NULL);
10904 if (ret != 0) {
10905 DRM_ERROR("pin & fence failed\n");
10906 mutex_unlock(&dev->struct_mutex);
10907 goto done;
10908 }
2ff8fde1 10909 if (old_fb)
a071fa00 10910 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10911 i915_gem_track_fb(old_obj, obj,
10912 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10913 mutex_unlock(&dev->struct_mutex);
10914
10915 crtc->primary->fb = fb;
10916 crtc->x = x;
10917 crtc->y = y;
10918
4271b753
DV
10919 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10920 x, y, fb);
c0c36b94
CW
10921 if (ret)
10922 goto done;
a6778b3c
DV
10923 }
10924
10925 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10926 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10927 update_scanline_offset(intel_crtc);
10928
25c5b266 10929 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10930 }
a6778b3c 10931
a6778b3c
DV
10932 /* FIXME: add subpixel order */
10933done:
4b4b9238 10934 if (ret && crtc->enabled)
3ac18232 10935 crtc->mode = *saved_mode;
a6778b3c 10936
3ac18232 10937out:
b8cecdf5 10938 kfree(pipe_config);
3ac18232 10939 kfree(saved_mode);
a6778b3c 10940 return ret;
f6e5b160
CW
10941}
10942
e7457a9a
DL
10943static int intel_set_mode(struct drm_crtc *crtc,
10944 struct drm_display_mode *mode,
10945 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10946{
10947 int ret;
10948
10949 ret = __intel_set_mode(crtc, mode, x, y, fb);
10950
10951 if (ret == 0)
10952 intel_modeset_check_state(crtc->dev);
10953
10954 return ret;
10955}
10956
c0c36b94
CW
10957void intel_crtc_restore_mode(struct drm_crtc *crtc)
10958{
f4510a27 10959 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10960}
10961
25c5b266
DV
10962#undef for_each_intel_crtc_masked
10963
d9e55608
DV
10964static void intel_set_config_free(struct intel_set_config *config)
10965{
10966 if (!config)
10967 return;
10968
1aa4b628
DV
10969 kfree(config->save_connector_encoders);
10970 kfree(config->save_encoder_crtcs);
7668851f 10971 kfree(config->save_crtc_enabled);
d9e55608
DV
10972 kfree(config);
10973}
10974
85f9eb71
DV
10975static int intel_set_config_save_state(struct drm_device *dev,
10976 struct intel_set_config *config)
10977{
7668851f 10978 struct drm_crtc *crtc;
85f9eb71
DV
10979 struct drm_encoder *encoder;
10980 struct drm_connector *connector;
10981 int count;
10982
7668851f
VS
10983 config->save_crtc_enabled =
10984 kcalloc(dev->mode_config.num_crtc,
10985 sizeof(bool), GFP_KERNEL);
10986 if (!config->save_crtc_enabled)
10987 return -ENOMEM;
10988
1aa4b628
DV
10989 config->save_encoder_crtcs =
10990 kcalloc(dev->mode_config.num_encoder,
10991 sizeof(struct drm_crtc *), GFP_KERNEL);
10992 if (!config->save_encoder_crtcs)
85f9eb71
DV
10993 return -ENOMEM;
10994
1aa4b628
DV
10995 config->save_connector_encoders =
10996 kcalloc(dev->mode_config.num_connector,
10997 sizeof(struct drm_encoder *), GFP_KERNEL);
10998 if (!config->save_connector_encoders)
85f9eb71
DV
10999 return -ENOMEM;
11000
11001 /* Copy data. Note that driver private data is not affected.
11002 * Should anything bad happen only the expected state is
11003 * restored, not the drivers personal bookkeeping.
11004 */
7668851f 11005 count = 0;
70e1e0ec 11006 for_each_crtc(dev, crtc) {
7668851f
VS
11007 config->save_crtc_enabled[count++] = crtc->enabled;
11008 }
11009
85f9eb71
DV
11010 count = 0;
11011 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11012 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11013 }
11014
11015 count = 0;
11016 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11017 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11018 }
11019
11020 return 0;
11021}
11022
11023static void intel_set_config_restore_state(struct drm_device *dev,
11024 struct intel_set_config *config)
11025{
7668851f 11026 struct intel_crtc *crtc;
9a935856
DV
11027 struct intel_encoder *encoder;
11028 struct intel_connector *connector;
85f9eb71
DV
11029 int count;
11030
7668851f 11031 count = 0;
d3fcc808 11032 for_each_intel_crtc(dev, crtc) {
7668851f 11033 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11034
11035 if (crtc->new_enabled)
11036 crtc->new_config = &crtc->config;
11037 else
11038 crtc->new_config = NULL;
7668851f
VS
11039 }
11040
85f9eb71 11041 count = 0;
9a935856
DV
11042 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11043 encoder->new_crtc =
11044 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11045 }
11046
11047 count = 0;
9a935856
DV
11048 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11049 connector->new_encoder =
11050 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11051 }
11052}
11053
e3de42b6 11054static bool
2e57f47d 11055is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11056{
11057 int i;
11058
2e57f47d
CW
11059 if (set->num_connectors == 0)
11060 return false;
11061
11062 if (WARN_ON(set->connectors == NULL))
11063 return false;
11064
11065 for (i = 0; i < set->num_connectors; i++)
11066 if (set->connectors[i]->encoder &&
11067 set->connectors[i]->encoder->crtc == set->crtc &&
11068 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11069 return true;
11070
11071 return false;
11072}
11073
5e2b584e
DV
11074static void
11075intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11076 struct intel_set_config *config)
11077{
11078
11079 /* We should be able to check here if the fb has the same properties
11080 * and then just flip_or_move it */
2e57f47d
CW
11081 if (is_crtc_connector_off(set)) {
11082 config->mode_changed = true;
f4510a27 11083 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11084 /*
11085 * If we have no fb, we can only flip as long as the crtc is
11086 * active, otherwise we need a full mode set. The crtc may
11087 * be active if we've only disabled the primary plane, or
11088 * in fastboot situations.
11089 */
f4510a27 11090 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11091 struct intel_crtc *intel_crtc =
11092 to_intel_crtc(set->crtc);
11093
3b150f08 11094 if (intel_crtc->active) {
319d9827
JB
11095 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11096 config->fb_changed = true;
11097 } else {
11098 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11099 config->mode_changed = true;
11100 }
5e2b584e
DV
11101 } else if (set->fb == NULL) {
11102 config->mode_changed = true;
72f4901e 11103 } else if (set->fb->pixel_format !=
f4510a27 11104 set->crtc->primary->fb->pixel_format) {
5e2b584e 11105 config->mode_changed = true;
e3de42b6 11106 } else {
5e2b584e 11107 config->fb_changed = true;
e3de42b6 11108 }
5e2b584e
DV
11109 }
11110
835c5873 11111 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11112 config->fb_changed = true;
11113
11114 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11115 DRM_DEBUG_KMS("modes are different, full mode set\n");
11116 drm_mode_debug_printmodeline(&set->crtc->mode);
11117 drm_mode_debug_printmodeline(set->mode);
11118 config->mode_changed = true;
11119 }
a1d95703
CW
11120
11121 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11122 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11123}
11124
2e431051 11125static int
9a935856
DV
11126intel_modeset_stage_output_state(struct drm_device *dev,
11127 struct drm_mode_set *set,
11128 struct intel_set_config *config)
50f56119 11129{
9a935856
DV
11130 struct intel_connector *connector;
11131 struct intel_encoder *encoder;
7668851f 11132 struct intel_crtc *crtc;
f3f08572 11133 int ro;
50f56119 11134
9abdda74 11135 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11136 * of connectors. For paranoia, double-check this. */
11137 WARN_ON(!set->fb && (set->num_connectors != 0));
11138 WARN_ON(set->fb && (set->num_connectors == 0));
11139
9a935856
DV
11140 list_for_each_entry(connector, &dev->mode_config.connector_list,
11141 base.head) {
11142 /* Otherwise traverse passed in connector list and get encoders
11143 * for them. */
50f56119 11144 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11145 if (set->connectors[ro] == &connector->base) {
0e32b39c 11146 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11147 break;
11148 }
11149 }
11150
9a935856
DV
11151 /* If we disable the crtc, disable all its connectors. Also, if
11152 * the connector is on the changing crtc but not on the new
11153 * connector list, disable it. */
11154 if ((!set->fb || ro == set->num_connectors) &&
11155 connector->base.encoder &&
11156 connector->base.encoder->crtc == set->crtc) {
11157 connector->new_encoder = NULL;
11158
11159 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11160 connector->base.base.id,
c23cc417 11161 connector->base.name);
9a935856
DV
11162 }
11163
11164
11165 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11166 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11167 config->mode_changed = true;
50f56119
DV
11168 }
11169 }
9a935856 11170 /* connector->new_encoder is now updated for all connectors. */
50f56119 11171
9a935856 11172 /* Update crtc of enabled connectors. */
9a935856
DV
11173 list_for_each_entry(connector, &dev->mode_config.connector_list,
11174 base.head) {
7668851f
VS
11175 struct drm_crtc *new_crtc;
11176
9a935856 11177 if (!connector->new_encoder)
50f56119
DV
11178 continue;
11179
9a935856 11180 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11181
11182 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11183 if (set->connectors[ro] == &connector->base)
50f56119
DV
11184 new_crtc = set->crtc;
11185 }
11186
11187 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11188 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11189 new_crtc)) {
5e2b584e 11190 return -EINVAL;
50f56119 11191 }
0e32b39c 11192 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11193
11194 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11195 connector->base.base.id,
c23cc417 11196 connector->base.name,
9a935856
DV
11197 new_crtc->base.id);
11198 }
11199
11200 /* Check for any encoders that needs to be disabled. */
11201 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11202 base.head) {
5a65f358 11203 int num_connectors = 0;
9a935856
DV
11204 list_for_each_entry(connector,
11205 &dev->mode_config.connector_list,
11206 base.head) {
11207 if (connector->new_encoder == encoder) {
11208 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11209 num_connectors++;
9a935856
DV
11210 }
11211 }
5a65f358
PZ
11212
11213 if (num_connectors == 0)
11214 encoder->new_crtc = NULL;
11215 else if (num_connectors > 1)
11216 return -EINVAL;
11217
9a935856
DV
11218 /* Only now check for crtc changes so we don't miss encoders
11219 * that will be disabled. */
11220 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11221 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11222 config->mode_changed = true;
50f56119
DV
11223 }
11224 }
9a935856 11225 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11226 list_for_each_entry(connector, &dev->mode_config.connector_list,
11227 base.head) {
11228 if (connector->new_encoder)
11229 if (connector->new_encoder != connector->encoder)
11230 connector->encoder = connector->new_encoder;
11231 }
d3fcc808 11232 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11233 crtc->new_enabled = false;
11234
11235 list_for_each_entry(encoder,
11236 &dev->mode_config.encoder_list,
11237 base.head) {
11238 if (encoder->new_crtc == crtc) {
11239 crtc->new_enabled = true;
11240 break;
11241 }
11242 }
11243
11244 if (crtc->new_enabled != crtc->base.enabled) {
11245 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11246 crtc->new_enabled ? "en" : "dis");
11247 config->mode_changed = true;
11248 }
7bd0a8e7
VS
11249
11250 if (crtc->new_enabled)
11251 crtc->new_config = &crtc->config;
11252 else
11253 crtc->new_config = NULL;
7668851f
VS
11254 }
11255
2e431051
DV
11256 return 0;
11257}
11258
7d00a1f5
VS
11259static void disable_crtc_nofb(struct intel_crtc *crtc)
11260{
11261 struct drm_device *dev = crtc->base.dev;
11262 struct intel_encoder *encoder;
11263 struct intel_connector *connector;
11264
11265 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11266 pipe_name(crtc->pipe));
11267
11268 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11269 if (connector->new_encoder &&
11270 connector->new_encoder->new_crtc == crtc)
11271 connector->new_encoder = NULL;
11272 }
11273
11274 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11275 if (encoder->new_crtc == crtc)
11276 encoder->new_crtc = NULL;
11277 }
11278
11279 crtc->new_enabled = false;
7bd0a8e7 11280 crtc->new_config = NULL;
7d00a1f5
VS
11281}
11282
2e431051
DV
11283static int intel_crtc_set_config(struct drm_mode_set *set)
11284{
11285 struct drm_device *dev;
2e431051
DV
11286 struct drm_mode_set save_set;
11287 struct intel_set_config *config;
11288 int ret;
2e431051 11289
8d3e375e
DV
11290 BUG_ON(!set);
11291 BUG_ON(!set->crtc);
11292 BUG_ON(!set->crtc->helper_private);
2e431051 11293
7e53f3a4
DV
11294 /* Enforce sane interface api - has been abused by the fb helper. */
11295 BUG_ON(!set->mode && set->fb);
11296 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11297
2e431051
DV
11298 if (set->fb) {
11299 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11300 set->crtc->base.id, set->fb->base.id,
11301 (int)set->num_connectors, set->x, set->y);
11302 } else {
11303 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11304 }
11305
11306 dev = set->crtc->dev;
11307
11308 ret = -ENOMEM;
11309 config = kzalloc(sizeof(*config), GFP_KERNEL);
11310 if (!config)
11311 goto out_config;
11312
11313 ret = intel_set_config_save_state(dev, config);
11314 if (ret)
11315 goto out_config;
11316
11317 save_set.crtc = set->crtc;
11318 save_set.mode = &set->crtc->mode;
11319 save_set.x = set->crtc->x;
11320 save_set.y = set->crtc->y;
f4510a27 11321 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11322
11323 /* Compute whether we need a full modeset, only an fb base update or no
11324 * change at all. In the future we might also check whether only the
11325 * mode changed, e.g. for LVDS where we only change the panel fitter in
11326 * such cases. */
11327 intel_set_config_compute_mode_changes(set, config);
11328
9a935856 11329 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11330 if (ret)
11331 goto fail;
11332
5e2b584e 11333 if (config->mode_changed) {
c0c36b94
CW
11334 ret = intel_set_mode(set->crtc, set->mode,
11335 set->x, set->y, set->fb);
5e2b584e 11336 } else if (config->fb_changed) {
3b150f08
MR
11337 struct drm_i915_private *dev_priv = dev->dev_private;
11338 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11339
4878cae2
VS
11340 intel_crtc_wait_for_pending_flips(set->crtc);
11341
4f660f49 11342 ret = intel_pipe_set_base(set->crtc,
94352cf9 11343 set->x, set->y, set->fb);
3b150f08
MR
11344
11345 /*
11346 * We need to make sure the primary plane is re-enabled if it
11347 * has previously been turned off.
11348 */
11349 if (!intel_crtc->primary_enabled && ret == 0) {
11350 WARN_ON(!intel_crtc->active);
11351 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11352 intel_crtc->pipe);
11353 }
11354
7ca51a3a
JB
11355 /*
11356 * In the fastboot case this may be our only check of the
11357 * state after boot. It would be better to only do it on
11358 * the first update, but we don't have a nice way of doing that
11359 * (and really, set_config isn't used much for high freq page
11360 * flipping, so increasing its cost here shouldn't be a big
11361 * deal).
11362 */
d330a953 11363 if (i915.fastboot && ret == 0)
7ca51a3a 11364 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11365 }
11366
2d05eae1 11367 if (ret) {
bf67dfeb
DV
11368 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11369 set->crtc->base.id, ret);
50f56119 11370fail:
2d05eae1 11371 intel_set_config_restore_state(dev, config);
50f56119 11372
7d00a1f5
VS
11373 /*
11374 * HACK: if the pipe was on, but we didn't have a framebuffer,
11375 * force the pipe off to avoid oopsing in the modeset code
11376 * due to fb==NULL. This should only happen during boot since
11377 * we don't yet reconstruct the FB from the hardware state.
11378 */
11379 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11380 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11381
2d05eae1
CW
11382 /* Try to restore the config */
11383 if (config->mode_changed &&
11384 intel_set_mode(save_set.crtc, save_set.mode,
11385 save_set.x, save_set.y, save_set.fb))
11386 DRM_ERROR("failed to restore config after modeset failure\n");
11387 }
50f56119 11388
d9e55608
DV
11389out_config:
11390 intel_set_config_free(config);
50f56119
DV
11391 return ret;
11392}
f6e5b160
CW
11393
11394static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11395 .gamma_set = intel_crtc_gamma_set,
50f56119 11396 .set_config = intel_crtc_set_config,
f6e5b160
CW
11397 .destroy = intel_crtc_destroy,
11398 .page_flip = intel_crtc_page_flip,
11399};
11400
5358901f
DV
11401static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11402 struct intel_shared_dpll *pll,
11403 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11404{
5358901f 11405 uint32_t val;
ee7b9f93 11406
bd2bb1b9
PZ
11407 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11408 return false;
11409
5358901f 11410 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11411 hw_state->dpll = val;
11412 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11413 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11414
11415 return val & DPLL_VCO_ENABLE;
11416}
11417
15bdd4cf
DV
11418static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11419 struct intel_shared_dpll *pll)
11420{
11421 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11422 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11423}
11424
e7b903d2
DV
11425static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11426 struct intel_shared_dpll *pll)
11427{
e7b903d2 11428 /* PCH refclock must be enabled first */
89eff4be 11429 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11430
15bdd4cf
DV
11431 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11432
11433 /* Wait for the clocks to stabilize. */
11434 POSTING_READ(PCH_DPLL(pll->id));
11435 udelay(150);
11436
11437 /* The pixel multiplier can only be updated once the
11438 * DPLL is enabled and the clocks are stable.
11439 *
11440 * So write it again.
11441 */
11442 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11443 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11444 udelay(200);
11445}
11446
11447static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11448 struct intel_shared_dpll *pll)
11449{
11450 struct drm_device *dev = dev_priv->dev;
11451 struct intel_crtc *crtc;
e7b903d2
DV
11452
11453 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11454 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11455 if (intel_crtc_to_shared_dpll(crtc) == pll)
11456 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11457 }
11458
15bdd4cf
DV
11459 I915_WRITE(PCH_DPLL(pll->id), 0);
11460 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11461 udelay(200);
11462}
11463
46edb027
DV
11464static char *ibx_pch_dpll_names[] = {
11465 "PCH DPLL A",
11466 "PCH DPLL B",
11467};
11468
7c74ade1 11469static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11470{
e7b903d2 11471 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11472 int i;
11473
7c74ade1 11474 dev_priv->num_shared_dpll = 2;
ee7b9f93 11475
e72f9fbf 11476 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11477 dev_priv->shared_dplls[i].id = i;
11478 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11479 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11480 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11481 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11482 dev_priv->shared_dplls[i].get_hw_state =
11483 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11484 }
11485}
11486
7c74ade1
DV
11487static void intel_shared_dpll_init(struct drm_device *dev)
11488{
e7b903d2 11489 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11490
9cd86933
DV
11491 if (HAS_DDI(dev))
11492 intel_ddi_pll_init(dev);
11493 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11494 ibx_pch_dpll_init(dev);
11495 else
11496 dev_priv->num_shared_dpll = 0;
11497
11498 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11499}
11500
465c120c
MR
11501static int
11502intel_primary_plane_disable(struct drm_plane *plane)
11503{
11504 struct drm_device *dev = plane->dev;
11505 struct drm_i915_private *dev_priv = dev->dev_private;
11506 struct intel_plane *intel_plane = to_intel_plane(plane);
11507 struct intel_crtc *intel_crtc;
11508
11509 if (!plane->fb)
11510 return 0;
11511
11512 BUG_ON(!plane->crtc);
11513
11514 intel_crtc = to_intel_crtc(plane->crtc);
11515
11516 /*
11517 * Even though we checked plane->fb above, it's still possible that
11518 * the primary plane has been implicitly disabled because the crtc
11519 * coordinates given weren't visible, or because we detected
11520 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11521 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11522 * In either case, we need to unpin the FB and let the fb pointer get
11523 * updated, but otherwise we don't need to touch the hardware.
11524 */
11525 if (!intel_crtc->primary_enabled)
11526 goto disable_unpin;
11527
11528 intel_crtc_wait_for_pending_flips(plane->crtc);
11529 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11530 intel_plane->pipe);
465c120c 11531disable_unpin:
4c34574f 11532 mutex_lock(&dev->struct_mutex);
2ff8fde1 11533 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11534 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11535 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11536 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11537 plane->fb = NULL;
11538
11539 return 0;
11540}
11541
11542static int
11543intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11544 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11545 unsigned int crtc_w, unsigned int crtc_h,
11546 uint32_t src_x, uint32_t src_y,
11547 uint32_t src_w, uint32_t src_h)
11548{
11549 struct drm_device *dev = crtc->dev;
11550 struct drm_i915_private *dev_priv = dev->dev_private;
11551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11552 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11553 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11554 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11555 struct drm_rect dest = {
11556 /* integer pixels */
11557 .x1 = crtc_x,
11558 .y1 = crtc_y,
11559 .x2 = crtc_x + crtc_w,
11560 .y2 = crtc_y + crtc_h,
11561 };
11562 struct drm_rect src = {
11563 /* 16.16 fixed point */
11564 .x1 = src_x,
11565 .y1 = src_y,
11566 .x2 = src_x + src_w,
11567 .y2 = src_y + src_h,
11568 };
11569 const struct drm_rect clip = {
11570 /* integer pixels */
11571 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11572 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11573 };
11574 bool visible;
11575 int ret;
11576
11577 ret = drm_plane_helper_check_update(plane, crtc, fb,
11578 &src, &dest, &clip,
11579 DRM_PLANE_HELPER_NO_SCALING,
11580 DRM_PLANE_HELPER_NO_SCALING,
11581 false, true, &visible);
11582
11583 if (ret)
11584 return ret;
11585
11586 /*
11587 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11588 * updating the fb pointer, and returning without touching the
11589 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11590 * turn on the display with all planes setup as desired.
11591 */
11592 if (!crtc->enabled) {
4c34574f
MR
11593 mutex_lock(&dev->struct_mutex);
11594
465c120c
MR
11595 /*
11596 * If we already called setplane while the crtc was disabled,
11597 * we may have an fb pinned; unpin it.
11598 */
11599 if (plane->fb)
a071fa00
DV
11600 intel_unpin_fb_obj(old_obj);
11601
11602 i915_gem_track_fb(old_obj, obj,
11603 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11604
11605 /* Pin and return without programming hardware */
4c34574f
MR
11606 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11607 mutex_unlock(&dev->struct_mutex);
11608
11609 return ret;
465c120c
MR
11610 }
11611
11612 intel_crtc_wait_for_pending_flips(crtc);
11613
11614 /*
11615 * If clipping results in a non-visible primary plane, we'll disable
11616 * the primary plane. Note that this is a bit different than what
11617 * happens if userspace explicitly disables the plane by passing fb=0
11618 * because plane->fb still gets set and pinned.
11619 */
11620 if (!visible) {
4c34574f
MR
11621 mutex_lock(&dev->struct_mutex);
11622
465c120c
MR
11623 /*
11624 * Try to pin the new fb first so that we can bail out if we
11625 * fail.
11626 */
11627 if (plane->fb != fb) {
a071fa00 11628 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11629 if (ret) {
11630 mutex_unlock(&dev->struct_mutex);
465c120c 11631 return ret;
4c34574f 11632 }
465c120c
MR
11633 }
11634
a071fa00
DV
11635 i915_gem_track_fb(old_obj, obj,
11636 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11637
465c120c
MR
11638 if (intel_crtc->primary_enabled)
11639 intel_disable_primary_hw_plane(dev_priv,
11640 intel_plane->plane,
11641 intel_plane->pipe);
11642
11643
11644 if (plane->fb != fb)
11645 if (plane->fb)
a071fa00 11646 intel_unpin_fb_obj(old_obj);
465c120c 11647
4c34574f
MR
11648 mutex_unlock(&dev->struct_mutex);
11649
465c120c
MR
11650 return 0;
11651 }
11652
11653 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11654 if (ret)
11655 return ret;
11656
11657 if (!intel_crtc->primary_enabled)
11658 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11659 intel_crtc->pipe);
11660
11661 return 0;
11662}
11663
3d7d6510
MR
11664/* Common destruction function for both primary and cursor planes */
11665static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11666{
11667 struct intel_plane *intel_plane = to_intel_plane(plane);
11668 drm_plane_cleanup(plane);
11669 kfree(intel_plane);
11670}
11671
11672static const struct drm_plane_funcs intel_primary_plane_funcs = {
11673 .update_plane = intel_primary_plane_setplane,
11674 .disable_plane = intel_primary_plane_disable,
3d7d6510 11675 .destroy = intel_plane_destroy,
465c120c
MR
11676};
11677
11678static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11679 int pipe)
11680{
11681 struct intel_plane *primary;
11682 const uint32_t *intel_primary_formats;
11683 int num_formats;
11684
11685 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11686 if (primary == NULL)
11687 return NULL;
11688
11689 primary->can_scale = false;
11690 primary->max_downscale = 1;
11691 primary->pipe = pipe;
11692 primary->plane = pipe;
11693 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11694 primary->plane = !pipe;
11695
11696 if (INTEL_INFO(dev)->gen <= 3) {
11697 intel_primary_formats = intel_primary_formats_gen2;
11698 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11699 } else {
11700 intel_primary_formats = intel_primary_formats_gen4;
11701 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11702 }
11703
11704 drm_universal_plane_init(dev, &primary->base, 0,
11705 &intel_primary_plane_funcs,
11706 intel_primary_formats, num_formats,
11707 DRM_PLANE_TYPE_PRIMARY);
11708 return &primary->base;
11709}
11710
3d7d6510
MR
11711static int
11712intel_cursor_plane_disable(struct drm_plane *plane)
11713{
11714 if (!plane->fb)
11715 return 0;
11716
11717 BUG_ON(!plane->crtc);
11718
11719 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11720}
11721
11722static int
11723intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11724 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11725 unsigned int crtc_w, unsigned int crtc_h,
11726 uint32_t src_x, uint32_t src_y,
11727 uint32_t src_w, uint32_t src_h)
11728{
11729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11730 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11731 struct drm_i915_gem_object *obj = intel_fb->obj;
11732 struct drm_rect dest = {
11733 /* integer pixels */
11734 .x1 = crtc_x,
11735 .y1 = crtc_y,
11736 .x2 = crtc_x + crtc_w,
11737 .y2 = crtc_y + crtc_h,
11738 };
11739 struct drm_rect src = {
11740 /* 16.16 fixed point */
11741 .x1 = src_x,
11742 .y1 = src_y,
11743 .x2 = src_x + src_w,
11744 .y2 = src_y + src_h,
11745 };
11746 const struct drm_rect clip = {
11747 /* integer pixels */
11748 .x2 = intel_crtc->config.pipe_src_w,
11749 .y2 = intel_crtc->config.pipe_src_h,
11750 };
11751 bool visible;
11752 int ret;
11753
11754 ret = drm_plane_helper_check_update(plane, crtc, fb,
11755 &src, &dest, &clip,
11756 DRM_PLANE_HELPER_NO_SCALING,
11757 DRM_PLANE_HELPER_NO_SCALING,
11758 true, true, &visible);
11759 if (ret)
11760 return ret;
11761
11762 crtc->cursor_x = crtc_x;
11763 crtc->cursor_y = crtc_y;
11764 if (fb != crtc->cursor->fb) {
11765 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11766 } else {
11767 intel_crtc_update_cursor(crtc, visible);
11768 return 0;
11769 }
11770}
11771static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11772 .update_plane = intel_cursor_plane_update,
11773 .disable_plane = intel_cursor_plane_disable,
11774 .destroy = intel_plane_destroy,
11775};
11776
11777static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11778 int pipe)
11779{
11780 struct intel_plane *cursor;
11781
11782 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11783 if (cursor == NULL)
11784 return NULL;
11785
11786 cursor->can_scale = false;
11787 cursor->max_downscale = 1;
11788 cursor->pipe = pipe;
11789 cursor->plane = pipe;
11790
11791 drm_universal_plane_init(dev, &cursor->base, 0,
11792 &intel_cursor_plane_funcs,
11793 intel_cursor_formats,
11794 ARRAY_SIZE(intel_cursor_formats),
11795 DRM_PLANE_TYPE_CURSOR);
11796 return &cursor->base;
11797}
11798
b358d0a6 11799static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11800{
fbee40df 11801 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11802 struct intel_crtc *intel_crtc;
3d7d6510
MR
11803 struct drm_plane *primary = NULL;
11804 struct drm_plane *cursor = NULL;
465c120c 11805 int i, ret;
79e53945 11806
955382f3 11807 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11808 if (intel_crtc == NULL)
11809 return;
11810
465c120c 11811 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11812 if (!primary)
11813 goto fail;
11814
11815 cursor = intel_cursor_plane_create(dev, pipe);
11816 if (!cursor)
11817 goto fail;
11818
465c120c 11819 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11820 cursor, &intel_crtc_funcs);
11821 if (ret)
11822 goto fail;
79e53945
JB
11823
11824 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11825 for (i = 0; i < 256; i++) {
11826 intel_crtc->lut_r[i] = i;
11827 intel_crtc->lut_g[i] = i;
11828 intel_crtc->lut_b[i] = i;
11829 }
11830
1f1c2e24
VS
11831 /*
11832 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11833 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11834 */
80824003
JB
11835 intel_crtc->pipe = pipe;
11836 intel_crtc->plane = pipe;
3a77c4c4 11837 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11838 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11839 intel_crtc->plane = !pipe;
80824003
JB
11840 }
11841
4b0e333e
CW
11842 intel_crtc->cursor_base = ~0;
11843 intel_crtc->cursor_cntl = ~0;
11844
22fd0fab
JB
11845 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11846 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11847 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11848 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11849
79e53945 11850 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11851
11852 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11853 return;
11854
11855fail:
11856 if (primary)
11857 drm_plane_cleanup(primary);
11858 if (cursor)
11859 drm_plane_cleanup(cursor);
11860 kfree(intel_crtc);
79e53945
JB
11861}
11862
752aa88a
JB
11863enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11864{
11865 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11866 struct drm_device *dev = connector->base.dev;
752aa88a 11867
51fd371b 11868 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11869
11870 if (!encoder)
11871 return INVALID_PIPE;
11872
11873 return to_intel_crtc(encoder->crtc)->pipe;
11874}
11875
08d7b3d1 11876int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11877 struct drm_file *file)
08d7b3d1 11878{
08d7b3d1 11879 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11880 struct drm_crtc *drmmode_crtc;
c05422d5 11881 struct intel_crtc *crtc;
08d7b3d1 11882
1cff8f6b
DV
11883 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11884 return -ENODEV;
08d7b3d1 11885
7707e653 11886 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11887
7707e653 11888 if (!drmmode_crtc) {
08d7b3d1 11889 DRM_ERROR("no such CRTC id\n");
3f2c2057 11890 return -ENOENT;
08d7b3d1
CW
11891 }
11892
7707e653 11893 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 11894 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11895
c05422d5 11896 return 0;
08d7b3d1
CW
11897}
11898
66a9278e 11899static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11900{
66a9278e
DV
11901 struct drm_device *dev = encoder->base.dev;
11902 struct intel_encoder *source_encoder;
79e53945 11903 int index_mask = 0;
79e53945
JB
11904 int entry = 0;
11905
66a9278e
DV
11906 list_for_each_entry(source_encoder,
11907 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11908 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11909 index_mask |= (1 << entry);
11910
79e53945
JB
11911 entry++;
11912 }
4ef69c7a 11913
79e53945
JB
11914 return index_mask;
11915}
11916
4d302442
CW
11917static bool has_edp_a(struct drm_device *dev)
11918{
11919 struct drm_i915_private *dev_priv = dev->dev_private;
11920
11921 if (!IS_MOBILE(dev))
11922 return false;
11923
11924 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11925 return false;
11926
e3589908 11927 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11928 return false;
11929
11930 return true;
11931}
11932
ba0fbca4
DL
11933const char *intel_output_name(int output)
11934{
11935 static const char *names[] = {
11936 [INTEL_OUTPUT_UNUSED] = "Unused",
11937 [INTEL_OUTPUT_ANALOG] = "Analog",
11938 [INTEL_OUTPUT_DVO] = "DVO",
11939 [INTEL_OUTPUT_SDVO] = "SDVO",
11940 [INTEL_OUTPUT_LVDS] = "LVDS",
11941 [INTEL_OUTPUT_TVOUT] = "TV",
11942 [INTEL_OUTPUT_HDMI] = "HDMI",
11943 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11944 [INTEL_OUTPUT_EDP] = "eDP",
11945 [INTEL_OUTPUT_DSI] = "DSI",
11946 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11947 };
11948
11949 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11950 return "Invalid";
11951
11952 return names[output];
11953}
11954
84b4e042
JB
11955static bool intel_crt_present(struct drm_device *dev)
11956{
11957 struct drm_i915_private *dev_priv = dev->dev_private;
11958
11959 if (IS_ULT(dev))
11960 return false;
11961
11962 if (IS_CHERRYVIEW(dev))
11963 return false;
11964
11965 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11966 return false;
11967
11968 return true;
11969}
11970
79e53945
JB
11971static void intel_setup_outputs(struct drm_device *dev)
11972{
725e30ad 11973 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11974 struct intel_encoder *encoder;
cb0953d7 11975 bool dpd_is_edp = false;
79e53945 11976
c9093354 11977 intel_lvds_init(dev);
79e53945 11978
84b4e042 11979 if (intel_crt_present(dev))
79935fca 11980 intel_crt_init(dev);
cb0953d7 11981
affa9354 11982 if (HAS_DDI(dev)) {
0e72a5b5
ED
11983 int found;
11984
11985 /* Haswell uses DDI functions to detect digital outputs */
11986 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11987 /* DDI A only supports eDP */
11988 if (found)
11989 intel_ddi_init(dev, PORT_A);
11990
11991 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11992 * register */
11993 found = I915_READ(SFUSE_STRAP);
11994
11995 if (found & SFUSE_STRAP_DDIB_DETECTED)
11996 intel_ddi_init(dev, PORT_B);
11997 if (found & SFUSE_STRAP_DDIC_DETECTED)
11998 intel_ddi_init(dev, PORT_C);
11999 if (found & SFUSE_STRAP_DDID_DETECTED)
12000 intel_ddi_init(dev, PORT_D);
12001 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12002 int found;
5d8a7752 12003 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12004
12005 if (has_edp_a(dev))
12006 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12007
dc0fa718 12008 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12009 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12010 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12011 if (!found)
e2debe91 12012 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12013 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12014 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12015 }
12016
dc0fa718 12017 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12018 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12019
dc0fa718 12020 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12021 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12022
5eb08b69 12023 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12024 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12025
270b3042 12026 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12027 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12028 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12029 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12030 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12031 PORT_B);
12032 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12033 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12034 }
12035
6f6005a5
JB
12036 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12037 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12038 PORT_C);
12039 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12040 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12041 }
19c03924 12042
9418c1f1
VS
12043 if (IS_CHERRYVIEW(dev)) {
12044 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12045 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12046 PORT_D);
12047 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12048 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12049 }
12050 }
12051
3cfca973 12052 intel_dsi_init(dev);
103a196f 12053 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12054 bool found = false;
7d57382e 12055
e2debe91 12056 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12057 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12058 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12059 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12060 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12061 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12062 }
27185ae1 12063
e7281eab 12064 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12065 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12066 }
13520b05
KH
12067
12068 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12069
e2debe91 12070 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12071 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12072 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12073 }
27185ae1 12074
e2debe91 12075 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12076
b01f2c3a
JB
12077 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12078 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12079 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12080 }
e7281eab 12081 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12082 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12083 }
27185ae1 12084
b01f2c3a 12085 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12086 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12087 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12088 } else if (IS_GEN2(dev))
79e53945
JB
12089 intel_dvo_init(dev);
12090
103a196f 12091 if (SUPPORTS_TV(dev))
79e53945
JB
12092 intel_tv_init(dev);
12093
7c8f8a70
RV
12094 intel_edp_psr_init(dev);
12095
4ef69c7a
CW
12096 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12097 encoder->base.possible_crtcs = encoder->crtc_mask;
12098 encoder->base.possible_clones =
66a9278e 12099 intel_encoder_clones(encoder);
79e53945 12100 }
47356eb6 12101
dde86e2d 12102 intel_init_pch_refclk(dev);
270b3042
DV
12103
12104 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12105}
12106
12107static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12108{
60a5ca01 12109 struct drm_device *dev = fb->dev;
79e53945 12110 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12111
ef2d633e 12112 drm_framebuffer_cleanup(fb);
60a5ca01 12113 mutex_lock(&dev->struct_mutex);
ef2d633e 12114 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12115 drm_gem_object_unreference(&intel_fb->obj->base);
12116 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12117 kfree(intel_fb);
12118}
12119
12120static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12121 struct drm_file *file,
79e53945
JB
12122 unsigned int *handle)
12123{
12124 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12125 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12126
05394f39 12127 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12128}
12129
12130static const struct drm_framebuffer_funcs intel_fb_funcs = {
12131 .destroy = intel_user_framebuffer_destroy,
12132 .create_handle = intel_user_framebuffer_create_handle,
12133};
12134
b5ea642a
DV
12135static int intel_framebuffer_init(struct drm_device *dev,
12136 struct intel_framebuffer *intel_fb,
12137 struct drm_mode_fb_cmd2 *mode_cmd,
12138 struct drm_i915_gem_object *obj)
79e53945 12139{
a57ce0b2 12140 int aligned_height;
a35cdaa0 12141 int pitch_limit;
79e53945
JB
12142 int ret;
12143
dd4916c5
DV
12144 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12145
c16ed4be
CW
12146 if (obj->tiling_mode == I915_TILING_Y) {
12147 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12148 return -EINVAL;
c16ed4be 12149 }
57cd6508 12150
c16ed4be
CW
12151 if (mode_cmd->pitches[0] & 63) {
12152 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12153 mode_cmd->pitches[0]);
57cd6508 12154 return -EINVAL;
c16ed4be 12155 }
57cd6508 12156
a35cdaa0
CW
12157 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12158 pitch_limit = 32*1024;
12159 } else if (INTEL_INFO(dev)->gen >= 4) {
12160 if (obj->tiling_mode)
12161 pitch_limit = 16*1024;
12162 else
12163 pitch_limit = 32*1024;
12164 } else if (INTEL_INFO(dev)->gen >= 3) {
12165 if (obj->tiling_mode)
12166 pitch_limit = 8*1024;
12167 else
12168 pitch_limit = 16*1024;
12169 } else
12170 /* XXX DSPC is limited to 4k tiled */
12171 pitch_limit = 8*1024;
12172
12173 if (mode_cmd->pitches[0] > pitch_limit) {
12174 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12175 obj->tiling_mode ? "tiled" : "linear",
12176 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12177 return -EINVAL;
c16ed4be 12178 }
5d7bd705
VS
12179
12180 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12181 mode_cmd->pitches[0] != obj->stride) {
12182 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12183 mode_cmd->pitches[0], obj->stride);
5d7bd705 12184 return -EINVAL;
c16ed4be 12185 }
5d7bd705 12186
57779d06 12187 /* Reject formats not supported by any plane early. */
308e5bcb 12188 switch (mode_cmd->pixel_format) {
57779d06 12189 case DRM_FORMAT_C8:
04b3924d
VS
12190 case DRM_FORMAT_RGB565:
12191 case DRM_FORMAT_XRGB8888:
12192 case DRM_FORMAT_ARGB8888:
57779d06
VS
12193 break;
12194 case DRM_FORMAT_XRGB1555:
12195 case DRM_FORMAT_ARGB1555:
c16ed4be 12196 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12197 DRM_DEBUG("unsupported pixel format: %s\n",
12198 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12199 return -EINVAL;
c16ed4be 12200 }
57779d06
VS
12201 break;
12202 case DRM_FORMAT_XBGR8888:
12203 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12204 case DRM_FORMAT_XRGB2101010:
12205 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12206 case DRM_FORMAT_XBGR2101010:
12207 case DRM_FORMAT_ABGR2101010:
c16ed4be 12208 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12209 DRM_DEBUG("unsupported pixel format: %s\n",
12210 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12211 return -EINVAL;
c16ed4be 12212 }
b5626747 12213 break;
04b3924d
VS
12214 case DRM_FORMAT_YUYV:
12215 case DRM_FORMAT_UYVY:
12216 case DRM_FORMAT_YVYU:
12217 case DRM_FORMAT_VYUY:
c16ed4be 12218 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12219 DRM_DEBUG("unsupported pixel format: %s\n",
12220 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12221 return -EINVAL;
c16ed4be 12222 }
57cd6508
CW
12223 break;
12224 default:
4ee62c76
VS
12225 DRM_DEBUG("unsupported pixel format: %s\n",
12226 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12227 return -EINVAL;
12228 }
12229
90f9a336
VS
12230 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12231 if (mode_cmd->offsets[0] != 0)
12232 return -EINVAL;
12233
a57ce0b2
JB
12234 aligned_height = intel_align_height(dev, mode_cmd->height,
12235 obj->tiling_mode);
53155c0a
DV
12236 /* FIXME drm helper for size checks (especially planar formats)? */
12237 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12238 return -EINVAL;
12239
c7d73f6a
DV
12240 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12241 intel_fb->obj = obj;
80075d49 12242 intel_fb->obj->framebuffer_references++;
c7d73f6a 12243
79e53945
JB
12244 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12245 if (ret) {
12246 DRM_ERROR("framebuffer init failed %d\n", ret);
12247 return ret;
12248 }
12249
79e53945
JB
12250 return 0;
12251}
12252
79e53945
JB
12253static struct drm_framebuffer *
12254intel_user_framebuffer_create(struct drm_device *dev,
12255 struct drm_file *filp,
308e5bcb 12256 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12257{
05394f39 12258 struct drm_i915_gem_object *obj;
79e53945 12259
308e5bcb
JB
12260 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12261 mode_cmd->handles[0]));
c8725226 12262 if (&obj->base == NULL)
cce13ff7 12263 return ERR_PTR(-ENOENT);
79e53945 12264
d2dff872 12265 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12266}
12267
4520f53a 12268#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12269static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12270{
12271}
12272#endif
12273
79e53945 12274static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12275 .fb_create = intel_user_framebuffer_create,
0632fef6 12276 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12277};
12278
e70236a8
JB
12279/* Set up chip specific display functions */
12280static void intel_init_display(struct drm_device *dev)
12281{
12282 struct drm_i915_private *dev_priv = dev->dev_private;
12283
ee9300bb
DV
12284 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12285 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12286 else if (IS_CHERRYVIEW(dev))
12287 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12288 else if (IS_VALLEYVIEW(dev))
12289 dev_priv->display.find_dpll = vlv_find_best_dpll;
12290 else if (IS_PINEVIEW(dev))
12291 dev_priv->display.find_dpll = pnv_find_best_dpll;
12292 else
12293 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12294
affa9354 12295 if (HAS_DDI(dev)) {
0e8ffe1b 12296 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12297 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12298 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12299 dev_priv->display.crtc_enable = haswell_crtc_enable;
12300 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12301 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12302 dev_priv->display.update_primary_plane =
12303 ironlake_update_primary_plane;
09b4ddf9 12304 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12305 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12306 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12307 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12308 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12309 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12310 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12311 dev_priv->display.update_primary_plane =
12312 ironlake_update_primary_plane;
89b667f8
JB
12313 } else if (IS_VALLEYVIEW(dev)) {
12314 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12315 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12316 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12317 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12318 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12319 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12320 dev_priv->display.update_primary_plane =
12321 i9xx_update_primary_plane;
f564048e 12322 } else {
0e8ffe1b 12323 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12324 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12325 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12326 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12327 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12328 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12329 dev_priv->display.update_primary_plane =
12330 i9xx_update_primary_plane;
f564048e 12331 }
e70236a8 12332
e70236a8 12333 /* Returns the core display clock speed */
25eb05fc
JB
12334 if (IS_VALLEYVIEW(dev))
12335 dev_priv->display.get_display_clock_speed =
12336 valleyview_get_display_clock_speed;
12337 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12338 dev_priv->display.get_display_clock_speed =
12339 i945_get_display_clock_speed;
12340 else if (IS_I915G(dev))
12341 dev_priv->display.get_display_clock_speed =
12342 i915_get_display_clock_speed;
257a7ffc 12343 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12344 dev_priv->display.get_display_clock_speed =
12345 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12346 else if (IS_PINEVIEW(dev))
12347 dev_priv->display.get_display_clock_speed =
12348 pnv_get_display_clock_speed;
e70236a8
JB
12349 else if (IS_I915GM(dev))
12350 dev_priv->display.get_display_clock_speed =
12351 i915gm_get_display_clock_speed;
12352 else if (IS_I865G(dev))
12353 dev_priv->display.get_display_clock_speed =
12354 i865_get_display_clock_speed;
f0f8a9ce 12355 else if (IS_I85X(dev))
e70236a8
JB
12356 dev_priv->display.get_display_clock_speed =
12357 i855_get_display_clock_speed;
12358 else /* 852, 830 */
12359 dev_priv->display.get_display_clock_speed =
12360 i830_get_display_clock_speed;
12361
7f8a8569 12362 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12363 if (IS_GEN5(dev)) {
674cf967 12364 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12365 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12366 } else if (IS_GEN6(dev)) {
674cf967 12367 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12368 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12369 dev_priv->display.modeset_global_resources =
12370 snb_modeset_global_resources;
357555c0
JB
12371 } else if (IS_IVYBRIDGE(dev)) {
12372 /* FIXME: detect B0+ stepping and use auto training */
12373 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12374 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12375 dev_priv->display.modeset_global_resources =
12376 ivb_modeset_global_resources;
4e0bbc31 12377 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12378 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12379 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12380 dev_priv->display.modeset_global_resources =
12381 haswell_modeset_global_resources;
a0e63c22 12382 }
6067aaea 12383 } else if (IS_G4X(dev)) {
e0dac65e 12384 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12385 } else if (IS_VALLEYVIEW(dev)) {
12386 dev_priv->display.modeset_global_resources =
12387 valleyview_modeset_global_resources;
9ca2fe73 12388 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12389 }
8c9f3aaf
JB
12390
12391 /* Default just returns -ENODEV to indicate unsupported */
12392 dev_priv->display.queue_flip = intel_default_queue_flip;
12393
12394 switch (INTEL_INFO(dev)->gen) {
12395 case 2:
12396 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12397 break;
12398
12399 case 3:
12400 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12401 break;
12402
12403 case 4:
12404 case 5:
12405 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12406 break;
12407
12408 case 6:
12409 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12410 break;
7c9017e5 12411 case 7:
4e0bbc31 12412 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12413 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12414 break;
8c9f3aaf 12415 }
7bd688cd
JN
12416
12417 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12418}
12419
b690e96c
JB
12420/*
12421 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12422 * resume, or other times. This quirk makes sure that's the case for
12423 * affected systems.
12424 */
0206e353 12425static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12426{
12427 struct drm_i915_private *dev_priv = dev->dev_private;
12428
12429 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12430 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12431}
12432
435793df
KP
12433/*
12434 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12435 */
12436static void quirk_ssc_force_disable(struct drm_device *dev)
12437{
12438 struct drm_i915_private *dev_priv = dev->dev_private;
12439 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12440 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12441}
12442
4dca20ef 12443/*
5a15ab5b
CE
12444 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12445 * brightness value
4dca20ef
CE
12446 */
12447static void quirk_invert_brightness(struct drm_device *dev)
12448{
12449 struct drm_i915_private *dev_priv = dev->dev_private;
12450 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12451 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12452}
12453
9c72cc6f
SD
12454/* Some VBT's incorrectly indicate no backlight is present */
12455static void quirk_backlight_present(struct drm_device *dev)
12456{
12457 struct drm_i915_private *dev_priv = dev->dev_private;
12458 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12459 DRM_INFO("applying backlight present quirk\n");
12460}
12461
b690e96c
JB
12462struct intel_quirk {
12463 int device;
12464 int subsystem_vendor;
12465 int subsystem_device;
12466 void (*hook)(struct drm_device *dev);
12467};
12468
5f85f176
EE
12469/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12470struct intel_dmi_quirk {
12471 void (*hook)(struct drm_device *dev);
12472 const struct dmi_system_id (*dmi_id_list)[];
12473};
12474
12475static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12476{
12477 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12478 return 1;
12479}
12480
12481static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12482 {
12483 .dmi_id_list = &(const struct dmi_system_id[]) {
12484 {
12485 .callback = intel_dmi_reverse_brightness,
12486 .ident = "NCR Corporation",
12487 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12488 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12489 },
12490 },
12491 { } /* terminating entry */
12492 },
12493 .hook = quirk_invert_brightness,
12494 },
12495};
12496
c43b5634 12497static struct intel_quirk intel_quirks[] = {
b690e96c 12498 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12499 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12500
b690e96c
JB
12501 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12502 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12503
b690e96c
JB
12504 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12505 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12506
435793df
KP
12507 /* Lenovo U160 cannot use SSC on LVDS */
12508 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12509
12510 /* Sony Vaio Y cannot use SSC on LVDS */
12511 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12512
be505f64
AH
12513 /* Acer Aspire 5734Z must invert backlight brightness */
12514 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12515
12516 /* Acer/eMachines G725 */
12517 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12518
12519 /* Acer/eMachines e725 */
12520 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12521
12522 /* Acer/Packard Bell NCL20 */
12523 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12524
12525 /* Acer Aspire 4736Z */
12526 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12527
12528 /* Acer Aspire 5336 */
12529 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12530
12531 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12532 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12533
12534 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12535 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12536
12537 /* HP Chromebook 14 (Celeron 2955U) */
12538 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12539};
12540
12541static void intel_init_quirks(struct drm_device *dev)
12542{
12543 struct pci_dev *d = dev->pdev;
12544 int i;
12545
12546 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12547 struct intel_quirk *q = &intel_quirks[i];
12548
12549 if (d->device == q->device &&
12550 (d->subsystem_vendor == q->subsystem_vendor ||
12551 q->subsystem_vendor == PCI_ANY_ID) &&
12552 (d->subsystem_device == q->subsystem_device ||
12553 q->subsystem_device == PCI_ANY_ID))
12554 q->hook(dev);
12555 }
5f85f176
EE
12556 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12557 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12558 intel_dmi_quirks[i].hook(dev);
12559 }
b690e96c
JB
12560}
12561
9cce37f4
JB
12562/* Disable the VGA plane that we never use */
12563static void i915_disable_vga(struct drm_device *dev)
12564{
12565 struct drm_i915_private *dev_priv = dev->dev_private;
12566 u8 sr1;
766aa1c4 12567 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12568
2b37c616 12569 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12570 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12571 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12572 sr1 = inb(VGA_SR_DATA);
12573 outb(sr1 | 1<<5, VGA_SR_DATA);
12574 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12575 udelay(300);
12576
12577 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12578 POSTING_READ(vga_reg);
12579}
12580
f817586c
DV
12581void intel_modeset_init_hw(struct drm_device *dev)
12582{
a8f78b58
ED
12583 intel_prepare_ddi(dev);
12584
f8bf63fd
VS
12585 if (IS_VALLEYVIEW(dev))
12586 vlv_update_cdclk(dev);
12587
f817586c
DV
12588 intel_init_clock_gating(dev);
12589
8090c6b9 12590 intel_enable_gt_powersave(dev);
f817586c
DV
12591}
12592
7d708ee4
ID
12593void intel_modeset_suspend_hw(struct drm_device *dev)
12594{
12595 intel_suspend_hw(dev);
12596}
12597
79e53945
JB
12598void intel_modeset_init(struct drm_device *dev)
12599{
652c393a 12600 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12601 int sprite, ret;
8cc87b75 12602 enum pipe pipe;
46f297fb 12603 struct intel_crtc *crtc;
79e53945
JB
12604
12605 drm_mode_config_init(dev);
12606
12607 dev->mode_config.min_width = 0;
12608 dev->mode_config.min_height = 0;
12609
019d96cb
DA
12610 dev->mode_config.preferred_depth = 24;
12611 dev->mode_config.prefer_shadow = 1;
12612
e6ecefaa 12613 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12614
b690e96c
JB
12615 intel_init_quirks(dev);
12616
1fa61106
ED
12617 intel_init_pm(dev);
12618
e3c74757
BW
12619 if (INTEL_INFO(dev)->num_pipes == 0)
12620 return;
12621
e70236a8
JB
12622 intel_init_display(dev);
12623
a6c45cf0
CW
12624 if (IS_GEN2(dev)) {
12625 dev->mode_config.max_width = 2048;
12626 dev->mode_config.max_height = 2048;
12627 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12628 dev->mode_config.max_width = 4096;
12629 dev->mode_config.max_height = 4096;
79e53945 12630 } else {
a6c45cf0
CW
12631 dev->mode_config.max_width = 8192;
12632 dev->mode_config.max_height = 8192;
79e53945 12633 }
068be561
DL
12634
12635 if (IS_GEN2(dev)) {
12636 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12637 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12638 } else {
12639 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12640 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12641 }
12642
5d4545ae 12643 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12644
28c97730 12645 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12646 INTEL_INFO(dev)->num_pipes,
12647 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12648
8cc87b75
DL
12649 for_each_pipe(pipe) {
12650 intel_crtc_init(dev, pipe);
1fe47785
DL
12651 for_each_sprite(pipe, sprite) {
12652 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12653 if (ret)
06da8da2 12654 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12655 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12656 }
79e53945
JB
12657 }
12658
f42bb70d
JB
12659 intel_init_dpio(dev);
12660
e72f9fbf 12661 intel_shared_dpll_init(dev);
ee7b9f93 12662
9cce37f4
JB
12663 /* Just disable it once at startup */
12664 i915_disable_vga(dev);
79e53945 12665 intel_setup_outputs(dev);
11be49eb
CW
12666
12667 /* Just in case the BIOS is doing something questionable. */
12668 intel_disable_fbc(dev);
fa9fa083 12669
6e9f798d 12670 drm_modeset_lock_all(dev);
fa9fa083 12671 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12672 drm_modeset_unlock_all(dev);
46f297fb 12673
d3fcc808 12674 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12675 if (!crtc->active)
12676 continue;
12677
46f297fb 12678 /*
46f297fb
JB
12679 * Note that reserving the BIOS fb up front prevents us
12680 * from stuffing other stolen allocations like the ring
12681 * on top. This prevents some ugliness at boot time, and
12682 * can even allow for smooth boot transitions if the BIOS
12683 * fb is large enough for the active pipe configuration.
12684 */
12685 if (dev_priv->display.get_plane_config) {
12686 dev_priv->display.get_plane_config(crtc,
12687 &crtc->plane_config);
12688 /*
12689 * If the fb is shared between multiple heads, we'll
12690 * just get the first one.
12691 */
484b41dd 12692 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12693 }
46f297fb 12694 }
2c7111db
CW
12695}
12696
7fad798e
DV
12697static void intel_enable_pipe_a(struct drm_device *dev)
12698{
12699 struct intel_connector *connector;
12700 struct drm_connector *crt = NULL;
12701 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12702 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12703
12704 /* We can't just switch on the pipe A, we need to set things up with a
12705 * proper mode and output configuration. As a gross hack, enable pipe A
12706 * by enabling the load detect pipe once. */
12707 list_for_each_entry(connector,
12708 &dev->mode_config.connector_list,
12709 base.head) {
12710 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12711 crt = &connector->base;
12712 break;
12713 }
12714 }
12715
12716 if (!crt)
12717 return;
12718
51fd371b
RC
12719 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12720 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12721
652c393a 12722
7fad798e
DV
12723}
12724
fa555837
DV
12725static bool
12726intel_check_plane_mapping(struct intel_crtc *crtc)
12727{
7eb552ae
BW
12728 struct drm_device *dev = crtc->base.dev;
12729 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12730 u32 reg, val;
12731
7eb552ae 12732 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12733 return true;
12734
12735 reg = DSPCNTR(!crtc->plane);
12736 val = I915_READ(reg);
12737
12738 if ((val & DISPLAY_PLANE_ENABLE) &&
12739 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12740 return false;
12741
12742 return true;
12743}
12744
24929352
DV
12745static void intel_sanitize_crtc(struct intel_crtc *crtc)
12746{
12747 struct drm_device *dev = crtc->base.dev;
12748 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12749 u32 reg;
24929352 12750
24929352 12751 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12752 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12753 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12754
d3eaf884
VS
12755 /* restore vblank interrupts to correct state */
12756 if (crtc->active)
12757 drm_vblank_on(dev, crtc->pipe);
12758 else
12759 drm_vblank_off(dev, crtc->pipe);
12760
24929352 12761 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12762 * disable the crtc (and hence change the state) if it is wrong. Note
12763 * that gen4+ has a fixed plane -> pipe mapping. */
12764 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12765 struct intel_connector *connector;
12766 bool plane;
12767
24929352
DV
12768 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12769 crtc->base.base.id);
12770
12771 /* Pipe has the wrong plane attached and the plane is active.
12772 * Temporarily change the plane mapping and disable everything
12773 * ... */
12774 plane = crtc->plane;
12775 crtc->plane = !plane;
9c8958bc 12776 crtc->primary_enabled = true;
24929352
DV
12777 dev_priv->display.crtc_disable(&crtc->base);
12778 crtc->plane = plane;
12779
12780 /* ... and break all links. */
12781 list_for_each_entry(connector, &dev->mode_config.connector_list,
12782 base.head) {
12783 if (connector->encoder->base.crtc != &crtc->base)
12784 continue;
12785
7f1950fb
EE
12786 connector->base.dpms = DRM_MODE_DPMS_OFF;
12787 connector->base.encoder = NULL;
24929352 12788 }
7f1950fb
EE
12789 /* multiple connectors may have the same encoder:
12790 * handle them and break crtc link separately */
12791 list_for_each_entry(connector, &dev->mode_config.connector_list,
12792 base.head)
12793 if (connector->encoder->base.crtc == &crtc->base) {
12794 connector->encoder->base.crtc = NULL;
12795 connector->encoder->connectors_active = false;
12796 }
24929352
DV
12797
12798 WARN_ON(crtc->active);
12799 crtc->base.enabled = false;
12800 }
24929352 12801
7fad798e
DV
12802 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12803 crtc->pipe == PIPE_A && !crtc->active) {
12804 /* BIOS forgot to enable pipe A, this mostly happens after
12805 * resume. Force-enable the pipe to fix this, the update_dpms
12806 * call below we restore the pipe to the right state, but leave
12807 * the required bits on. */
12808 intel_enable_pipe_a(dev);
12809 }
12810
24929352
DV
12811 /* Adjust the state of the output pipe according to whether we
12812 * have active connectors/encoders. */
12813 intel_crtc_update_dpms(&crtc->base);
12814
12815 if (crtc->active != crtc->base.enabled) {
12816 struct intel_encoder *encoder;
12817
12818 /* This can happen either due to bugs in the get_hw_state
12819 * functions or because the pipe is force-enabled due to the
12820 * pipe A quirk. */
12821 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12822 crtc->base.base.id,
12823 crtc->base.enabled ? "enabled" : "disabled",
12824 crtc->active ? "enabled" : "disabled");
12825
12826 crtc->base.enabled = crtc->active;
12827
12828 /* Because we only establish the connector -> encoder ->
12829 * crtc links if something is active, this means the
12830 * crtc is now deactivated. Break the links. connector
12831 * -> encoder links are only establish when things are
12832 * actually up, hence no need to break them. */
12833 WARN_ON(crtc->active);
12834
12835 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12836 WARN_ON(encoder->connectors_active);
12837 encoder->base.crtc = NULL;
12838 }
12839 }
c5ab3bc0
DV
12840
12841 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12842 /*
12843 * We start out with underrun reporting disabled to avoid races.
12844 * For correct bookkeeping mark this on active crtcs.
12845 *
c5ab3bc0
DV
12846 * Also on gmch platforms we dont have any hardware bits to
12847 * disable the underrun reporting. Which means we need to start
12848 * out with underrun reporting disabled also on inactive pipes,
12849 * since otherwise we'll complain about the garbage we read when
12850 * e.g. coming up after runtime pm.
12851 *
4cc31489
DV
12852 * No protection against concurrent access is required - at
12853 * worst a fifo underrun happens which also sets this to false.
12854 */
12855 crtc->cpu_fifo_underrun_disabled = true;
12856 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12857
12858 update_scanline_offset(crtc);
4cc31489 12859 }
24929352
DV
12860}
12861
12862static void intel_sanitize_encoder(struct intel_encoder *encoder)
12863{
12864 struct intel_connector *connector;
12865 struct drm_device *dev = encoder->base.dev;
12866
12867 /* We need to check both for a crtc link (meaning that the
12868 * encoder is active and trying to read from a pipe) and the
12869 * pipe itself being active. */
12870 bool has_active_crtc = encoder->base.crtc &&
12871 to_intel_crtc(encoder->base.crtc)->active;
12872
12873 if (encoder->connectors_active && !has_active_crtc) {
12874 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12875 encoder->base.base.id,
8e329a03 12876 encoder->base.name);
24929352
DV
12877
12878 /* Connector is active, but has no active pipe. This is
12879 * fallout from our resume register restoring. Disable
12880 * the encoder manually again. */
12881 if (encoder->base.crtc) {
12882 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12883 encoder->base.base.id,
8e329a03 12884 encoder->base.name);
24929352 12885 encoder->disable(encoder);
a62d1497
VS
12886 if (encoder->post_disable)
12887 encoder->post_disable(encoder);
24929352 12888 }
7f1950fb
EE
12889 encoder->base.crtc = NULL;
12890 encoder->connectors_active = false;
24929352
DV
12891
12892 /* Inconsistent output/port/pipe state happens presumably due to
12893 * a bug in one of the get_hw_state functions. Or someplace else
12894 * in our code, like the register restore mess on resume. Clamp
12895 * things to off as a safer default. */
12896 list_for_each_entry(connector,
12897 &dev->mode_config.connector_list,
12898 base.head) {
12899 if (connector->encoder != encoder)
12900 continue;
7f1950fb
EE
12901 connector->base.dpms = DRM_MODE_DPMS_OFF;
12902 connector->base.encoder = NULL;
24929352
DV
12903 }
12904 }
12905 /* Enabled encoders without active connectors will be fixed in
12906 * the crtc fixup. */
12907}
12908
04098753 12909void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12910{
12911 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12912 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12913
04098753
ID
12914 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12915 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12916 i915_disable_vga(dev);
12917 }
12918}
12919
12920void i915_redisable_vga(struct drm_device *dev)
12921{
12922 struct drm_i915_private *dev_priv = dev->dev_private;
12923
8dc8a27c
PZ
12924 /* This function can be called both from intel_modeset_setup_hw_state or
12925 * at a very early point in our resume sequence, where the power well
12926 * structures are not yet restored. Since this function is at a very
12927 * paranoid "someone might have enabled VGA while we were not looking"
12928 * level, just check if the power well is enabled instead of trying to
12929 * follow the "don't touch the power well if we don't need it" policy
12930 * the rest of the driver uses. */
04098753 12931 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12932 return;
12933
04098753 12934 i915_redisable_vga_power_on(dev);
0fde901f
KM
12935}
12936
98ec7739
VS
12937static bool primary_get_hw_state(struct intel_crtc *crtc)
12938{
12939 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12940
12941 if (!crtc->active)
12942 return false;
12943
12944 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12945}
12946
30e984df 12947static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12948{
12949 struct drm_i915_private *dev_priv = dev->dev_private;
12950 enum pipe pipe;
24929352
DV
12951 struct intel_crtc *crtc;
12952 struct intel_encoder *encoder;
12953 struct intel_connector *connector;
5358901f 12954 int i;
24929352 12955
d3fcc808 12956 for_each_intel_crtc(dev, crtc) {
88adfff1 12957 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12958
9953599b
DV
12959 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12960
0e8ffe1b
DV
12961 crtc->active = dev_priv->display.get_pipe_config(crtc,
12962 &crtc->config);
24929352
DV
12963
12964 crtc->base.enabled = crtc->active;
98ec7739 12965 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12966
12967 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12968 crtc->base.base.id,
12969 crtc->active ? "enabled" : "disabled");
12970 }
12971
5358901f
DV
12972 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12973 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12974
12975 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12976 pll->active = 0;
d3fcc808 12977 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12978 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12979 pll->active++;
12980 }
12981 pll->refcount = pll->active;
12982
35c95375
DV
12983 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12984 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
12985
12986 if (pll->refcount)
12987 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
12988 }
12989
24929352
DV
12990 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12991 base.head) {
12992 pipe = 0;
12993
12994 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12995 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12996 encoder->base.crtc = &crtc->base;
1d37b689 12997 encoder->get_config(encoder, &crtc->config);
24929352
DV
12998 } else {
12999 encoder->base.crtc = NULL;
13000 }
13001
13002 encoder->connectors_active = false;
6f2bcceb 13003 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13004 encoder->base.base.id,
8e329a03 13005 encoder->base.name,
24929352 13006 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13007 pipe_name(pipe));
24929352
DV
13008 }
13009
13010 list_for_each_entry(connector, &dev->mode_config.connector_list,
13011 base.head) {
13012 if (connector->get_hw_state(connector)) {
13013 connector->base.dpms = DRM_MODE_DPMS_ON;
13014 connector->encoder->connectors_active = true;
13015 connector->base.encoder = &connector->encoder->base;
13016 } else {
13017 connector->base.dpms = DRM_MODE_DPMS_OFF;
13018 connector->base.encoder = NULL;
13019 }
13020 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13021 connector->base.base.id,
c23cc417 13022 connector->base.name,
24929352
DV
13023 connector->base.encoder ? "enabled" : "disabled");
13024 }
30e984df
DV
13025}
13026
13027/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13028 * and i915 state tracking structures. */
13029void intel_modeset_setup_hw_state(struct drm_device *dev,
13030 bool force_restore)
13031{
13032 struct drm_i915_private *dev_priv = dev->dev_private;
13033 enum pipe pipe;
30e984df
DV
13034 struct intel_crtc *crtc;
13035 struct intel_encoder *encoder;
35c95375 13036 int i;
30e984df
DV
13037
13038 intel_modeset_readout_hw_state(dev);
24929352 13039
babea61d
JB
13040 /*
13041 * Now that we have the config, copy it to each CRTC struct
13042 * Note that this could go away if we move to using crtc_config
13043 * checking everywhere.
13044 */
d3fcc808 13045 for_each_intel_crtc(dev, crtc) {
d330a953 13046 if (crtc->active && i915.fastboot) {
f6a83288 13047 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13048 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13049 crtc->base.base.id);
13050 drm_mode_debug_printmodeline(&crtc->base.mode);
13051 }
13052 }
13053
24929352
DV
13054 /* HW state is read out, now we need to sanitize this mess. */
13055 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13056 base.head) {
13057 intel_sanitize_encoder(encoder);
13058 }
13059
13060 for_each_pipe(pipe) {
13061 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13062 intel_sanitize_crtc(crtc);
c0b03411 13063 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13064 }
9a935856 13065
35c95375
DV
13066 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13067 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13068
13069 if (!pll->on || pll->active)
13070 continue;
13071
13072 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13073
13074 pll->disable(dev_priv, pll);
13075 pll->on = false;
13076 }
13077
96f90c54 13078 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13079 ilk_wm_get_hw_state(dev);
13080
45e2b5f6 13081 if (force_restore) {
7d0bc1ea
VS
13082 i915_redisable_vga(dev);
13083
f30da187
DV
13084 /*
13085 * We need to use raw interfaces for restoring state to avoid
13086 * checking (bogus) intermediate states.
13087 */
45e2b5f6 13088 for_each_pipe(pipe) {
b5644d05
JB
13089 struct drm_crtc *crtc =
13090 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13091
13092 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13093 crtc->primary->fb);
45e2b5f6
DV
13094 }
13095 } else {
13096 intel_modeset_update_staged_output_state(dev);
13097 }
8af6cf88
DV
13098
13099 intel_modeset_check_state(dev);
2c7111db
CW
13100}
13101
13102void intel_modeset_gem_init(struct drm_device *dev)
13103{
484b41dd 13104 struct drm_crtc *c;
2ff8fde1 13105 struct drm_i915_gem_object *obj;
484b41dd 13106
ae48434c
ID
13107 mutex_lock(&dev->struct_mutex);
13108 intel_init_gt_powersave(dev);
13109 mutex_unlock(&dev->struct_mutex);
13110
1833b134 13111 intel_modeset_init_hw(dev);
02e792fb
DV
13112
13113 intel_setup_overlay(dev);
484b41dd
JB
13114
13115 /*
13116 * Make sure any fbs we allocated at startup are properly
13117 * pinned & fenced. When we do the allocation it's too early
13118 * for this.
13119 */
13120 mutex_lock(&dev->struct_mutex);
70e1e0ec 13121 for_each_crtc(dev, c) {
2ff8fde1
MR
13122 obj = intel_fb_obj(c->primary->fb);
13123 if (obj == NULL)
484b41dd
JB
13124 continue;
13125
2ff8fde1 13126 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13127 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13128 to_intel_crtc(c)->pipe);
66e514c1
DA
13129 drm_framebuffer_unreference(c->primary->fb);
13130 c->primary->fb = NULL;
484b41dd
JB
13131 }
13132 }
13133 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13134}
13135
4932e2c3
ID
13136void intel_connector_unregister(struct intel_connector *intel_connector)
13137{
13138 struct drm_connector *connector = &intel_connector->base;
13139
13140 intel_panel_destroy_backlight(connector);
34ea3d38 13141 drm_connector_unregister(connector);
4932e2c3
ID
13142}
13143
79e53945
JB
13144void intel_modeset_cleanup(struct drm_device *dev)
13145{
652c393a 13146 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13147 struct drm_connector *connector;
652c393a 13148
fd0c0642
DV
13149 /*
13150 * Interrupts and polling as the first thing to avoid creating havoc.
13151 * Too much stuff here (turning of rps, connectors, ...) would
13152 * experience fancy races otherwise.
13153 */
13154 drm_irq_uninstall(dev);
13155 cancel_work_sync(&dev_priv->hotplug_work);
eb21b92b
JB
13156 dev_priv->pm._irqs_disabled = true;
13157
fd0c0642
DV
13158 /*
13159 * Due to the hpd irq storm handling the hotplug work can re-arm the
13160 * poll handlers. Hence disable polling after hpd handling is shut down.
13161 */
f87ea761 13162 drm_kms_helper_poll_fini(dev);
fd0c0642 13163
652c393a
JB
13164 mutex_lock(&dev->struct_mutex);
13165
723bfd70
JB
13166 intel_unregister_dsm_handler();
13167
973d04f9 13168 intel_disable_fbc(dev);
e70236a8 13169
8090c6b9 13170 intel_disable_gt_powersave(dev);
0cdab21f 13171
930ebb46
DV
13172 ironlake_teardown_rc6(dev);
13173
69341a5e
KH
13174 mutex_unlock(&dev->struct_mutex);
13175
1630fe75
CW
13176 /* flush any delayed tasks or pending work */
13177 flush_scheduled_work();
13178
db31af1d
JN
13179 /* destroy the backlight and sysfs files before encoders/connectors */
13180 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13181 struct intel_connector *intel_connector;
13182
13183 intel_connector = to_intel_connector(connector);
13184 intel_connector->unregister(intel_connector);
db31af1d 13185 }
d9255d57 13186
79e53945 13187 drm_mode_config_cleanup(dev);
4d7bb011
DV
13188
13189 intel_cleanup_overlay(dev);
ae48434c
ID
13190
13191 mutex_lock(&dev->struct_mutex);
13192 intel_cleanup_gt_powersave(dev);
13193 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13194}
13195
f1c79df3
ZW
13196/*
13197 * Return which encoder is currently attached for connector.
13198 */
df0e9248 13199struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13200{
df0e9248
CW
13201 return &intel_attached_encoder(connector)->base;
13202}
f1c79df3 13203
df0e9248
CW
13204void intel_connector_attach_encoder(struct intel_connector *connector,
13205 struct intel_encoder *encoder)
13206{
13207 connector->encoder = encoder;
13208 drm_mode_connector_attach_encoder(&connector->base,
13209 &encoder->base);
79e53945 13210}
28d52043
DA
13211
13212/*
13213 * set vga decode state - true == enable VGA decode
13214 */
13215int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13216{
13217 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13218 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13219 u16 gmch_ctrl;
13220
75fa041d
CW
13221 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13222 DRM_ERROR("failed to read control word\n");
13223 return -EIO;
13224 }
13225
c0cc8a55
CW
13226 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13227 return 0;
13228
28d52043
DA
13229 if (state)
13230 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13231 else
13232 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13233
13234 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13235 DRM_ERROR("failed to write control word\n");
13236 return -EIO;
13237 }
13238
28d52043
DA
13239 return 0;
13240}
c4a1d9e4 13241
c4a1d9e4 13242struct intel_display_error_state {
ff57f1b0
PZ
13243
13244 u32 power_well_driver;
13245
63b66e5b
CW
13246 int num_transcoders;
13247
c4a1d9e4
CW
13248 struct intel_cursor_error_state {
13249 u32 control;
13250 u32 position;
13251 u32 base;
13252 u32 size;
52331309 13253 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13254
13255 struct intel_pipe_error_state {
ddf9c536 13256 bool power_domain_on;
c4a1d9e4 13257 u32 source;
f301b1e1 13258 u32 stat;
52331309 13259 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13260
13261 struct intel_plane_error_state {
13262 u32 control;
13263 u32 stride;
13264 u32 size;
13265 u32 pos;
13266 u32 addr;
13267 u32 surface;
13268 u32 tile_offset;
52331309 13269 } plane[I915_MAX_PIPES];
63b66e5b
CW
13270
13271 struct intel_transcoder_error_state {
ddf9c536 13272 bool power_domain_on;
63b66e5b
CW
13273 enum transcoder cpu_transcoder;
13274
13275 u32 conf;
13276
13277 u32 htotal;
13278 u32 hblank;
13279 u32 hsync;
13280 u32 vtotal;
13281 u32 vblank;
13282 u32 vsync;
13283 } transcoder[4];
c4a1d9e4
CW
13284};
13285
13286struct intel_display_error_state *
13287intel_display_capture_error_state(struct drm_device *dev)
13288{
fbee40df 13289 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13290 struct intel_display_error_state *error;
63b66e5b
CW
13291 int transcoders[] = {
13292 TRANSCODER_A,
13293 TRANSCODER_B,
13294 TRANSCODER_C,
13295 TRANSCODER_EDP,
13296 };
c4a1d9e4
CW
13297 int i;
13298
63b66e5b
CW
13299 if (INTEL_INFO(dev)->num_pipes == 0)
13300 return NULL;
13301
9d1cb914 13302 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13303 if (error == NULL)
13304 return NULL;
13305
190be112 13306 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13307 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13308
52331309 13309 for_each_pipe(i) {
ddf9c536 13310 error->pipe[i].power_domain_on =
bfafe93a
ID
13311 intel_display_power_enabled_unlocked(dev_priv,
13312 POWER_DOMAIN_PIPE(i));
ddf9c536 13313 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13314 continue;
13315
5efb3e28
VS
13316 error->cursor[i].control = I915_READ(CURCNTR(i));
13317 error->cursor[i].position = I915_READ(CURPOS(i));
13318 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13319
13320 error->plane[i].control = I915_READ(DSPCNTR(i));
13321 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13322 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13323 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13324 error->plane[i].pos = I915_READ(DSPPOS(i));
13325 }
ca291363
PZ
13326 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13327 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13328 if (INTEL_INFO(dev)->gen >= 4) {
13329 error->plane[i].surface = I915_READ(DSPSURF(i));
13330 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13331 }
13332
c4a1d9e4 13333 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13334
3abfce77 13335 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13336 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13337 }
13338
13339 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13340 if (HAS_DDI(dev_priv->dev))
13341 error->num_transcoders++; /* Account for eDP. */
13342
13343 for (i = 0; i < error->num_transcoders; i++) {
13344 enum transcoder cpu_transcoder = transcoders[i];
13345
ddf9c536 13346 error->transcoder[i].power_domain_on =
bfafe93a 13347 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13348 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13349 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13350 continue;
13351
63b66e5b
CW
13352 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13353
13354 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13355 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13356 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13357 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13358 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13359 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13360 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13361 }
13362
13363 return error;
13364}
13365
edc3d884
MK
13366#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13367
c4a1d9e4 13368void
edc3d884 13369intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13370 struct drm_device *dev,
13371 struct intel_display_error_state *error)
13372{
13373 int i;
13374
63b66e5b
CW
13375 if (!error)
13376 return;
13377
edc3d884 13378 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13379 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13380 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13381 error->power_well_driver);
52331309 13382 for_each_pipe(i) {
edc3d884 13383 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13384 err_printf(m, " Power: %s\n",
13385 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13386 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13387 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13388
13389 err_printf(m, "Plane [%d]:\n", i);
13390 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13391 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13392 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13393 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13394 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13395 }
4b71a570 13396 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13397 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13398 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13399 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13400 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13401 }
13402
edc3d884
MK
13403 err_printf(m, "Cursor [%d]:\n", i);
13404 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13405 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13406 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13407 }
63b66e5b
CW
13408
13409 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13410 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13411 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13412 err_printf(m, " Power: %s\n",
13413 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13414 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13415 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13416 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13417 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13418 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13419 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13420 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13421 }
c4a1d9e4 13422}