]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Convert wait_for(I915_READ(reg)) to intel_wait_for_register()
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
c37efb99 39#include "i915_gem_dmabuf.h"
db18b6a6 40#include "intel_dsi.h"
e5510fac 41#include "i915_trace.h"
319c1d42 42#include <drm/drm_atomic.h>
c196e1d6 43#include <drm/drm_atomic_helper.h>
760285e7
DH
44#include <drm/drm_dp_helper.h>
45#include <drm/drm_crtc_helper.h>
465c120c
MR
46#include <drm/drm_plane_helper.h>
47#include <drm/drm_rect.h>
c0f372b3 48#include <linux/dma_remapping.h>
fd8e058a 49#include <linux/reservation.h>
79e53945 50
5a21b665
DV
51static bool is_mmio_work(struct intel_flip_work *work)
52{
53 return work->mmio_work.func;
54}
55
465c120c 56/* Primary plane formats for gen <= 3 */
568db4f2 57static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
465c120c 60 DRM_FORMAT_XRGB1555,
67fe7dc5 61 DRM_FORMAT_XRGB8888,
465c120c
MR
62};
63
64/* Primary plane formats for gen >= 4 */
568db4f2 65static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72};
73
74static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
465c120c 78 DRM_FORMAT_XBGR8888,
67fe7dc5 79 DRM_FORMAT_ARGB8888,
465c120c
MR
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
465c120c 82 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
465c120c
MR
87};
88
3d7d6510
MR
89/* Cursor formats */
90static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92};
93
f1f644dc 94static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 95 struct intel_crtc_state *pipe_config);
18442d08 96static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 97 struct intel_crtc_state *pipe_config);
f1f644dc 98
eb1bfe80
JB
99static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
5b18e57c
DV
103static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
bc58be60 105static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
29407aab 106static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
29407aab 109static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97 110static void haswell_set_pipeconf(struct drm_crtc *crtc);
391bf048 111static void haswell_set_pipemisc(struct drm_crtc *crtc);
d288f65f 112static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 113 const struct intel_crtc_state *pipe_config);
d288f65f 114static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 115 const struct intel_crtc_state *pipe_config);
5a21b665
DV
116static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
118static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119 struct intel_crtc_state *crtc_state);
bfd16b2a
ML
120static void skylake_pfit_enable(struct intel_crtc *crtc);
121static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 123static void intel_modeset_setup_hw_state(struct drm_device *dev);
2622a081 124static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
4e5ca60f 125static int ilk_max_pixel_rate(struct drm_atomic_state *state);
324513c0 126static int bxt_calc_cdclk(int max_pixclk);
e7457a9a 127
d4906093 128struct intel_limit {
4c5def93
ACO
129 struct {
130 int min, max;
131 } dot, vco, n, m, m1, m2, p, p1;
132
133 struct {
134 int dot_limit;
135 int p2_slow, p2_fast;
136 } p2;
d4906093 137};
79e53945 138
bfa7df01
VS
139/* returns HPLL frequency in kHz */
140static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141{
142 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144 /* Obtain SKU information */
145 mutex_lock(&dev_priv->sb_lock);
146 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147 CCK_FUSE_HPLL_FREQ_MASK;
148 mutex_unlock(&dev_priv->sb_lock);
149
150 return vco_freq[hpll_freq] * 1000;
151}
152
c30fec65
VS
153int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154 const char *name, u32 reg, int ref_freq)
bfa7df01
VS
155{
156 u32 val;
157 int divider;
158
bfa7df01
VS
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
c30fec65
VS
169 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170}
171
172static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173 const char *name, u32 reg)
174{
175 if (dev_priv->hpll_freq == 0)
176 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178 return vlv_get_cck_clock(dev_priv, name, reg,
179 dev_priv->hpll_freq);
bfa7df01
VS
180}
181
e7dc33f3
VS
182static int
183intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 184{
e7dc33f3
VS
185 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186}
d2acd215 187
e7dc33f3
VS
188static int
189intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190{
19ab4ed3 191 /* RAWCLK_FREQ_VLV register updated from power well code */
35d38d1f
VS
192 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
194}
195
e7dc33f3
VS
196static int
197intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 198{
79e50a4f
JN
199 uint32_t clkcfg;
200
e7dc33f3 201 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
202 clkcfg = I915_READ(CLKCFG);
203 switch (clkcfg & CLKCFG_FSB_MASK) {
204 case CLKCFG_FSB_400:
e7dc33f3 205 return 100000;
79e50a4f 206 case CLKCFG_FSB_533:
e7dc33f3 207 return 133333;
79e50a4f 208 case CLKCFG_FSB_667:
e7dc33f3 209 return 166667;
79e50a4f 210 case CLKCFG_FSB_800:
e7dc33f3 211 return 200000;
79e50a4f 212 case CLKCFG_FSB_1067:
e7dc33f3 213 return 266667;
79e50a4f 214 case CLKCFG_FSB_1333:
e7dc33f3 215 return 333333;
79e50a4f
JN
216 /* these two are just a guess; one of them might be right */
217 case CLKCFG_FSB_1600:
218 case CLKCFG_FSB_1600_ALT:
e7dc33f3 219 return 400000;
79e50a4f 220 default:
e7dc33f3 221 return 133333;
79e50a4f
JN
222 }
223}
224
19ab4ed3 225void intel_update_rawclk(struct drm_i915_private *dev_priv)
e7dc33f3
VS
226{
227 if (HAS_PCH_SPLIT(dev_priv))
228 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233 else
234 return; /* no rawclk on other platforms, or no need to know it */
235
236 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237}
238
bfa7df01
VS
239static void intel_update_czclk(struct drm_i915_private *dev_priv)
240{
666a4537 241 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
242 return;
243
244 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245 CCK_CZ_CLOCK_CONTROL);
246
247 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248}
249
021357ac 250static inline u32 /* units of 100MHz */
21a727b3
VS
251intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252 const struct intel_crtc_state *pipe_config)
021357ac 253{
21a727b3
VS
254 if (HAS_DDI(dev_priv))
255 return pipe_config->port_clock; /* SPLL */
256 else if (IS_GEN5(dev_priv))
257 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 258 else
21a727b3 259 return 270000;
021357ac
CW
260}
261
1b6f4958 262static const struct intel_limit intel_limits_i8xx_dac = {
0206e353 263 .dot = { .min = 25000, .max = 350000 },
9c333719 264 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 265 .n = { .min = 2, .max = 16 },
0206e353
AJ
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
273};
274
1b6f4958 275static const struct intel_limit intel_limits_i8xx_dvo = {
5d536e28 276 .dot = { .min = 25000, .max = 350000 },
9c333719 277 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 278 .n = { .min = 2, .max = 16 },
5d536e28
DV
279 .m = { .min = 96, .max = 140 },
280 .m1 = { .min = 18, .max = 26 },
281 .m2 = { .min = 6, .max = 16 },
282 .p = { .min = 4, .max = 128 },
283 .p1 = { .min = 2, .max = 33 },
284 .p2 = { .dot_limit = 165000,
285 .p2_slow = 4, .p2_fast = 4 },
286};
287
1b6f4958 288static const struct intel_limit intel_limits_i8xx_lvds = {
0206e353 289 .dot = { .min = 25000, .max = 350000 },
9c333719 290 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 291 .n = { .min = 2, .max = 16 },
0206e353
AJ
292 .m = { .min = 96, .max = 140 },
293 .m1 = { .min = 18, .max = 26 },
294 .m2 = { .min = 6, .max = 16 },
295 .p = { .min = 4, .max = 128 },
296 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
297 .p2 = { .dot_limit = 165000,
298 .p2_slow = 14, .p2_fast = 7 },
e4b36699 299};
273e27ca 300
1b6f4958 301static const struct intel_limit intel_limits_i9xx_sdvo = {
0206e353
AJ
302 .dot = { .min = 20000, .max = 400000 },
303 .vco = { .min = 1400000, .max = 2800000 },
304 .n = { .min = 1, .max = 6 },
305 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
306 .m1 = { .min = 8, .max = 18 },
307 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
308 .p = { .min = 5, .max = 80 },
309 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
310 .p2 = { .dot_limit = 200000,
311 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
312};
313
1b6f4958 314static const struct intel_limit intel_limits_i9xx_lvds = {
0206e353
AJ
315 .dot = { .min = 20000, .max = 400000 },
316 .vco = { .min = 1400000, .max = 2800000 },
317 .n = { .min = 1, .max = 6 },
318 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
319 .m1 = { .min = 8, .max = 18 },
320 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
321 .p = { .min = 7, .max = 98 },
322 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
323 .p2 = { .dot_limit = 112000,
324 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
325};
326
273e27ca 327
1b6f4958 328static const struct intel_limit intel_limits_g4x_sdvo = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 270000 },
330 .vco = { .min = 1750000, .max = 3500000},
331 .n = { .min = 1, .max = 4 },
332 .m = { .min = 104, .max = 138 },
333 .m1 = { .min = 17, .max = 23 },
334 .m2 = { .min = 5, .max = 11 },
335 .p = { .min = 10, .max = 30 },
336 .p1 = { .min = 1, .max = 3},
337 .p2 = { .dot_limit = 270000,
338 .p2_slow = 10,
339 .p2_fast = 10
044c7c41 340 },
e4b36699
KP
341};
342
1b6f4958 343static const struct intel_limit intel_limits_g4x_hdmi = {
273e27ca
EA
344 .dot = { .min = 22000, .max = 400000 },
345 .vco = { .min = 1750000, .max = 3500000},
346 .n = { .min = 1, .max = 4 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 16, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 5, .max = 80 },
351 .p1 = { .min = 1, .max = 8},
352 .p2 = { .dot_limit = 165000,
353 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
354};
355
1b6f4958 356static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
357 .dot = { .min = 20000, .max = 115000 },
358 .vco = { .min = 1750000, .max = 3500000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 104, .max = 138 },
361 .m1 = { .min = 17, .max = 23 },
362 .m2 = { .min = 5, .max = 11 },
363 .p = { .min = 28, .max = 112 },
364 .p1 = { .min = 2, .max = 8 },
365 .p2 = { .dot_limit = 0,
366 .p2_slow = 14, .p2_fast = 14
044c7c41 367 },
e4b36699
KP
368};
369
1b6f4958 370static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
371 .dot = { .min = 80000, .max = 224000 },
372 .vco = { .min = 1750000, .max = 3500000 },
373 .n = { .min = 1, .max = 3 },
374 .m = { .min = 104, .max = 138 },
375 .m1 = { .min = 17, .max = 23 },
376 .m2 = { .min = 5, .max = 11 },
377 .p = { .min = 14, .max = 42 },
378 .p1 = { .min = 2, .max = 6 },
379 .p2 = { .dot_limit = 0,
380 .p2_slow = 7, .p2_fast = 7
044c7c41 381 },
e4b36699
KP
382};
383
1b6f4958 384static const struct intel_limit intel_limits_pineview_sdvo = {
0206e353
AJ
385 .dot = { .min = 20000, .max = 400000},
386 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 387 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
388 .n = { .min = 3, .max = 6 },
389 .m = { .min = 2, .max = 256 },
273e27ca 390 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
391 .m1 = { .min = 0, .max = 0 },
392 .m2 = { .min = 0, .max = 254 },
393 .p = { .min = 5, .max = 80 },
394 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
395 .p2 = { .dot_limit = 200000,
396 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
397};
398
1b6f4958 399static const struct intel_limit intel_limits_pineview_lvds = {
0206e353
AJ
400 .dot = { .min = 20000, .max = 400000 },
401 .vco = { .min = 1700000, .max = 3500000 },
402 .n = { .min = 3, .max = 6 },
403 .m = { .min = 2, .max = 256 },
404 .m1 = { .min = 0, .max = 0 },
405 .m2 = { .min = 0, .max = 254 },
406 .p = { .min = 7, .max = 112 },
407 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
408 .p2 = { .dot_limit = 112000,
409 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
410};
411
273e27ca
EA
412/* Ironlake / Sandybridge
413 *
414 * We calculate clock using (register_value + 2) for N/M1/M2, so here
415 * the range value for them is (actual_value - 2).
416 */
1b6f4958 417static const struct intel_limit intel_limits_ironlake_dac = {
273e27ca
EA
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 5 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 5, .max = 80 },
425 .p1 = { .min = 1, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
428};
429
1b6f4958 430static const struct intel_limit intel_limits_ironlake_single_lvds = {
273e27ca
EA
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 3 },
434 .m = { .min = 79, .max = 118 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
441};
442
1b6f4958 443static const struct intel_limit intel_limits_ironlake_dual_lvds = {
273e27ca
EA
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 127 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 56 },
451 .p1 = { .min = 2, .max = 8 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
454};
455
273e27ca 456/* LVDS 100mhz refclk limits. */
1b6f4958 457static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
458 .dot = { .min = 25000, .max = 350000 },
459 .vco = { .min = 1760000, .max = 3510000 },
460 .n = { .min = 1, .max = 2 },
461 .m = { .min = 79, .max = 126 },
462 .m1 = { .min = 12, .max = 22 },
463 .m2 = { .min = 5, .max = 9 },
464 .p = { .min = 28, .max = 112 },
0206e353 465 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
466 .p2 = { .dot_limit = 225000,
467 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
468};
469
1b6f4958 470static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
471 .dot = { .min = 25000, .max = 350000 },
472 .vco = { .min = 1760000, .max = 3510000 },
473 .n = { .min = 1, .max = 3 },
474 .m = { .min = 79, .max = 126 },
475 .m1 = { .min = 12, .max = 22 },
476 .m2 = { .min = 5, .max = 9 },
477 .p = { .min = 14, .max = 42 },
0206e353 478 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
479 .p2 = { .dot_limit = 225000,
480 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
481};
482
1b6f4958 483static const struct intel_limit intel_limits_vlv = {
f01b7962
VS
484 /*
485 * These are the data rate limits (measured in fast clocks)
486 * since those are the strictest limits we have. The fast
487 * clock and actual rate limits are more relaxed, so checking
488 * them would make no difference.
489 */
490 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 491 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 492 .n = { .min = 1, .max = 7 },
a0c4da24
JB
493 .m1 = { .min = 2, .max = 3 },
494 .m2 = { .min = 11, .max = 156 },
b99ab663 495 .p1 = { .min = 2, .max = 3 },
5fdc9c49 496 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
497};
498
1b6f4958 499static const struct intel_limit intel_limits_chv = {
ef9348c8
CML
500 /*
501 * These are the data rate limits (measured in fast clocks)
502 * since those are the strictest limits we have. The fast
503 * clock and actual rate limits are more relaxed, so checking
504 * them would make no difference.
505 */
506 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 507 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 .m2 = { .min = 24 << 22, .max = 175 << 22 },
511 .p1 = { .min = 2, .max = 4 },
512 .p2 = { .p2_slow = 1, .p2_fast = 14 },
513};
514
1b6f4958 515static const struct intel_limit intel_limits_bxt = {
5ab7b0b7
ID
516 /* FIXME: find real dot limits */
517 .dot = { .min = 0, .max = INT_MAX },
e6292556 518 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
519 .n = { .min = 1, .max = 1 },
520 .m1 = { .min = 2, .max = 2 },
521 /* FIXME: find real m2 limits */
522 .m2 = { .min = 2 << 22, .max = 255 << 22 },
523 .p1 = { .min = 2, .max = 4 },
524 .p2 = { .p2_slow = 1, .p2_fast = 20 },
525};
526
cdba954e
ACO
527static bool
528needs_modeset(struct drm_crtc_state *state)
529{
fc596660 530 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
531}
532
e0638cdf
PZ
533/**
534 * Returns whether any output on the specified pipe is of the specified type
535 */
4093561b 536bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 537{
409ee761 538 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
539 struct intel_encoder *encoder;
540
409ee761 541 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
542 if (encoder->type == type)
543 return true;
544
545 return false;
546}
547
d0737e1d
ACO
548/**
549 * Returns whether any output on the specified pipe will have the specified
550 * type after a staged modeset is complete, i.e., the same as
551 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
552 * encoder->crtc.
553 */
a93e255f
ACO
554static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
555 int type)
d0737e1d 556{
a93e255f 557 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 558 struct drm_connector *connector;
a93e255f 559 struct drm_connector_state *connector_state;
d0737e1d 560 struct intel_encoder *encoder;
a93e255f
ACO
561 int i, num_connectors = 0;
562
da3ced29 563 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
564 if (connector_state->crtc != crtc_state->base.crtc)
565 continue;
566
567 num_connectors++;
d0737e1d 568
a93e255f
ACO
569 encoder = to_intel_encoder(connector_state->best_encoder);
570 if (encoder->type == type)
d0737e1d 571 return true;
a93e255f
ACO
572 }
573
574 WARN_ON(num_connectors == 0);
d0737e1d
ACO
575
576 return false;
577}
578
dccbea3b
ID
579/*
580 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
581 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
582 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
583 * The helpers' return value is the rate of the clock that is fed to the
584 * display engine's pipe which can be the above fast dot clock rate or a
585 * divided-down version of it.
586 */
f2b115e6 587/* m1 is reserved as 0 in Pineview, n is a ring counter */
9e2c8475 588static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
79e53945 589{
2177832f
SL
590 clock->m = clock->m2 + 2;
591 clock->p = clock->p1 * clock->p2;
ed5ca77e 592 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 593 return 0;
fb03ac01
VS
594 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
595 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
596
597 return clock->dot;
2177832f
SL
598}
599
7429e9d4
DV
600static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
601{
602 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
603}
604
9e2c8475 605static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
2177832f 606{
7429e9d4 607 clock->m = i9xx_dpll_compute_m(clock);
79e53945 608 clock->p = clock->p1 * clock->p2;
ed5ca77e 609 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 610 return 0;
fb03ac01
VS
611 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
612 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
613
614 return clock->dot;
79e53945
JB
615}
616
9e2c8475 617static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
589eca67
ID
618{
619 clock->m = clock->m1 * clock->m2;
620 clock->p = clock->p1 * clock->p2;
621 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 622 return 0;
589eca67
ID
623 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
624 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
625
626 return clock->dot / 5;
589eca67
ID
627}
628
9e2c8475 629int chv_calc_dpll_params(int refclk, struct dpll *clock)
ef9348c8
CML
630{
631 clock->m = clock->m1 * clock->m2;
632 clock->p = clock->p1 * clock->p2;
633 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 634 return 0;
ef9348c8
CML
635 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
636 clock->n << 22);
637 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
638
639 return clock->dot / 5;
ef9348c8
CML
640}
641
7c04d1d9 642#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
643/**
644 * Returns whether the given set of divisors are valid for a given refclk with
645 * the given connectors.
646 */
647
1b894b59 648static bool intel_PLL_is_valid(struct drm_device *dev,
1b6f4958 649 const struct intel_limit *limit,
9e2c8475 650 const struct dpll *clock)
79e53945 651{
f01b7962
VS
652 if (clock->n < limit->n.min || limit->n.max < clock->n)
653 INTELPllInvalid("n out of range\n");
79e53945 654 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 655 INTELPllInvalid("p1 out of range\n");
79e53945 656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 657 INTELPllInvalid("m2 out of range\n");
79e53945 658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 659 INTELPllInvalid("m1 out of range\n");
f01b7962 660
666a4537
WB
661 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
662 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
663 if (clock->m1 <= clock->m2)
664 INTELPllInvalid("m1 <= m2\n");
665
666a4537 666 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
667 if (clock->p < limit->p.min || limit->p.max < clock->p)
668 INTELPllInvalid("p out of range\n");
669 if (clock->m < limit->m.min || limit->m.max < clock->m)
670 INTELPllInvalid("m out of range\n");
671 }
672
79e53945 673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 674 INTELPllInvalid("vco out of range\n");
79e53945
JB
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 679 INTELPllInvalid("dot out of range\n");
79e53945
JB
680
681 return true;
682}
683
3b1429d9 684static int
1b6f4958 685i9xx_select_p2_div(const struct intel_limit *limit,
3b1429d9
VS
686 const struct intel_crtc_state *crtc_state,
687 int target)
79e53945 688{
3b1429d9 689 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 690
a93e255f 691 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 692 /*
a210b028
DV
693 * For LVDS just rely on its current settings for dual-channel.
694 * We haven't figured out how to reliably set up different
695 * single/dual channel state, if we even can.
79e53945 696 */
1974cad0 697 if (intel_is_dual_link_lvds(dev))
3b1429d9 698 return limit->p2.p2_fast;
79e53945 699 else
3b1429d9 700 return limit->p2.p2_slow;
79e53945
JB
701 } else {
702 if (target < limit->p2.dot_limit)
3b1429d9 703 return limit->p2.p2_slow;
79e53945 704 else
3b1429d9 705 return limit->p2.p2_fast;
79e53945 706 }
3b1429d9
VS
707}
708
70e8aa21
ACO
709/*
710 * Returns a set of divisors for the desired target clock with the given
711 * refclk, or FALSE. The returned values represent the clock equation:
712 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
713 *
714 * Target and reference clocks are specified in kHz.
715 *
716 * If match_clock is provided, then best_clock P divider must match the P
717 * divider from @match_clock used for LVDS downclocking.
718 */
3b1429d9 719static bool
1b6f4958 720i9xx_find_best_dpll(const struct intel_limit *limit,
3b1429d9 721 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
722 int target, int refclk, struct dpll *match_clock,
723 struct dpll *best_clock)
3b1429d9
VS
724{
725 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 726 struct dpll clock;
3b1429d9 727 int err = target;
79e53945 728
0206e353 729 memset(best_clock, 0, sizeof(*best_clock));
79e53945 730
3b1429d9
VS
731 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
732
42158660
ZY
733 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
734 clock.m1++) {
735 for (clock.m2 = limit->m2.min;
736 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 737 if (clock.m2 >= clock.m1)
42158660
ZY
738 break;
739 for (clock.n = limit->n.min;
740 clock.n <= limit->n.max; clock.n++) {
741 for (clock.p1 = limit->p1.min;
742 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
743 int this_err;
744
dccbea3b 745 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
746 if (!intel_PLL_is_valid(dev, limit,
747 &clock))
748 continue;
749 if (match_clock &&
750 clock.p != match_clock->p)
751 continue;
752
753 this_err = abs(clock.dot - target);
754 if (this_err < err) {
755 *best_clock = clock;
756 err = this_err;
757 }
758 }
759 }
760 }
761 }
762
763 return (err != target);
764}
765
70e8aa21
ACO
766/*
767 * Returns a set of divisors for the desired target clock with the given
768 * refclk, or FALSE. The returned values represent the clock equation:
769 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
770 *
771 * Target and reference clocks are specified in kHz.
772 *
773 * If match_clock is provided, then best_clock P divider must match the P
774 * divider from @match_clock used for LVDS downclocking.
775 */
ac58c3f0 776static bool
1b6f4958 777pnv_find_best_dpll(const struct intel_limit *limit,
a93e255f 778 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
779 int target, int refclk, struct dpll *match_clock,
780 struct dpll *best_clock)
79e53945 781{
3b1429d9 782 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 783 struct dpll clock;
79e53945
JB
784 int err = target;
785
0206e353 786 memset(best_clock, 0, sizeof(*best_clock));
79e53945 787
3b1429d9
VS
788 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
789
42158660
ZY
790 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
791 clock.m1++) {
792 for (clock.m2 = limit->m2.min;
793 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
794 for (clock.n = limit->n.min;
795 clock.n <= limit->n.max; clock.n++) {
796 for (clock.p1 = limit->p1.min;
797 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
798 int this_err;
799
dccbea3b 800 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
801 if (!intel_PLL_is_valid(dev, limit,
802 &clock))
79e53945 803 continue;
cec2f356
SP
804 if (match_clock &&
805 clock.p != match_clock->p)
806 continue;
79e53945
JB
807
808 this_err = abs(clock.dot - target);
809 if (this_err < err) {
810 *best_clock = clock;
811 err = this_err;
812 }
813 }
814 }
815 }
816 }
817
818 return (err != target);
819}
820
997c030c
ACO
821/*
822 * Returns a set of divisors for the desired target clock with the given
823 * refclk, or FALSE. The returned values represent the clock equation:
824 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
70e8aa21
ACO
825 *
826 * Target and reference clocks are specified in kHz.
827 *
828 * If match_clock is provided, then best_clock P divider must match the P
829 * divider from @match_clock used for LVDS downclocking.
997c030c 830 */
d4906093 831static bool
1b6f4958 832g4x_find_best_dpll(const struct intel_limit *limit,
a93e255f 833 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
834 int target, int refclk, struct dpll *match_clock,
835 struct dpll *best_clock)
d4906093 836{
3b1429d9 837 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 838 struct dpll clock;
d4906093 839 int max_n;
3b1429d9 840 bool found = false;
6ba770dc
AJ
841 /* approximately equals target * 0.00585 */
842 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
843
844 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
845
846 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
847
d4906093 848 max_n = limit->n.max;
f77f13e2 849 /* based on hardware requirement, prefer smaller n to precision */
d4906093 850 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 851 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
852 for (clock.m1 = limit->m1.max;
853 clock.m1 >= limit->m1.min; clock.m1--) {
854 for (clock.m2 = limit->m2.max;
855 clock.m2 >= limit->m2.min; clock.m2--) {
856 for (clock.p1 = limit->p1.max;
857 clock.p1 >= limit->p1.min; clock.p1--) {
858 int this_err;
859
dccbea3b 860 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
861 if (!intel_PLL_is_valid(dev, limit,
862 &clock))
d4906093 863 continue;
1b894b59
CW
864
865 this_err = abs(clock.dot - target);
d4906093
ML
866 if (this_err < err_most) {
867 *best_clock = clock;
868 err_most = this_err;
869 max_n = clock.n;
870 found = true;
871 }
872 }
873 }
874 }
875 }
2c07245f
ZW
876 return found;
877}
878
d5dd62bd
ID
879/*
880 * Check if the calculated PLL configuration is more optimal compared to the
881 * best configuration and error found so far. Return the calculated error.
882 */
883static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
9e2c8475
ACO
884 const struct dpll *calculated_clock,
885 const struct dpll *best_clock,
d5dd62bd
ID
886 unsigned int best_error_ppm,
887 unsigned int *error_ppm)
888{
9ca3ba01
ID
889 /*
890 * For CHV ignore the error and consider only the P value.
891 * Prefer a bigger P value based on HW requirements.
892 */
893 if (IS_CHERRYVIEW(dev)) {
894 *error_ppm = 0;
895
896 return calculated_clock->p > best_clock->p;
897 }
898
24be4e46
ID
899 if (WARN_ON_ONCE(!target_freq))
900 return false;
901
d5dd62bd
ID
902 *error_ppm = div_u64(1000000ULL *
903 abs(target_freq - calculated_clock->dot),
904 target_freq);
905 /*
906 * Prefer a better P value over a better (smaller) error if the error
907 * is small. Ensure this preference for future configurations too by
908 * setting the error to 0.
909 */
910 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
911 *error_ppm = 0;
912
913 return true;
914 }
915
916 return *error_ppm + 10 < best_error_ppm;
917}
918
65b3d6a9
ACO
919/*
920 * Returns a set of divisors for the desired target clock with the given
921 * refclk, or FALSE. The returned values represent the clock equation:
922 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
923 */
a0c4da24 924static bool
1b6f4958 925vlv_find_best_dpll(const struct intel_limit *limit,
a93e255f 926 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
927 int target, int refclk, struct dpll *match_clock,
928 struct dpll *best_clock)
a0c4da24 929{
a93e255f 930 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 931 struct drm_device *dev = crtc->base.dev;
9e2c8475 932 struct dpll clock;
69e4f900 933 unsigned int bestppm = 1000000;
27e639bf
VS
934 /* min update 19.2 MHz */
935 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 936 bool found = false;
a0c4da24 937
6b4bf1c4
VS
938 target *= 5; /* fast clock */
939
940 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
941
942 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 943 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 944 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 945 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 946 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 947 clock.p = clock.p1 * clock.p2;
a0c4da24 948 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 949 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 950 unsigned int ppm;
69e4f900 951
6b4bf1c4
VS
952 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
953 refclk * clock.m1);
954
dccbea3b 955 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 956
f01b7962
VS
957 if (!intel_PLL_is_valid(dev, limit,
958 &clock))
43b0ac53
VS
959 continue;
960
d5dd62bd
ID
961 if (!vlv_PLL_is_optimal(dev, target,
962 &clock,
963 best_clock,
964 bestppm, &ppm))
965 continue;
6b4bf1c4 966
d5dd62bd
ID
967 *best_clock = clock;
968 bestppm = ppm;
969 found = true;
a0c4da24
JB
970 }
971 }
972 }
973 }
a0c4da24 974
49e497ef 975 return found;
a0c4da24 976}
a4fc5ed6 977
65b3d6a9
ACO
978/*
979 * Returns a set of divisors for the desired target clock with the given
980 * refclk, or FALSE. The returned values represent the clock equation:
981 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
982 */
ef9348c8 983static bool
1b6f4958 984chv_find_best_dpll(const struct intel_limit *limit,
a93e255f 985 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
986 int target, int refclk, struct dpll *match_clock,
987 struct dpll *best_clock)
ef9348c8 988{
a93e255f 989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 990 struct drm_device *dev = crtc->base.dev;
9ca3ba01 991 unsigned int best_error_ppm;
9e2c8475 992 struct dpll clock;
ef9348c8
CML
993 uint64_t m2;
994 int found = false;
995
996 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 997 best_error_ppm = 1000000;
ef9348c8
CML
998
999 /*
1000 * Based on hardware doc, the n always set to 1, and m1 always
1001 * set to 2. If requires to support 200Mhz refclk, we need to
1002 * revisit this because n may not 1 anymore.
1003 */
1004 clock.n = 1, clock.m1 = 2;
1005 target *= 5; /* fast clock */
1006
1007 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1008 for (clock.p2 = limit->p2.p2_fast;
1009 clock.p2 >= limit->p2.p2_slow;
1010 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1011 unsigned int error_ppm;
ef9348c8
CML
1012
1013 clock.p = clock.p1 * clock.p2;
1014
1015 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1016 clock.n) << 22, refclk * clock.m1);
1017
1018 if (m2 > INT_MAX/clock.m1)
1019 continue;
1020
1021 clock.m2 = m2;
1022
dccbea3b 1023 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1024
1025 if (!intel_PLL_is_valid(dev, limit, &clock))
1026 continue;
1027
9ca3ba01
ID
1028 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1029 best_error_ppm, &error_ppm))
1030 continue;
1031
1032 *best_clock = clock;
1033 best_error_ppm = error_ppm;
1034 found = true;
ef9348c8
CML
1035 }
1036 }
1037
1038 return found;
1039}
1040
5ab7b0b7 1041bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
9e2c8475 1042 struct dpll *best_clock)
5ab7b0b7 1043{
65b3d6a9 1044 int refclk = 100000;
1b6f4958 1045 const struct intel_limit *limit = &intel_limits_bxt;
5ab7b0b7 1046
65b3d6a9 1047 return chv_find_best_dpll(limit, crtc_state,
5ab7b0b7
ID
1048 target_clock, refclk, NULL, best_clock);
1049}
1050
20ddf665
VS
1051bool intel_crtc_active(struct drm_crtc *crtc)
1052{
1053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1054
1055 /* Be paranoid as we can arrive here with only partial
1056 * state retrieved from the hardware during setup.
1057 *
241bfc38 1058 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1059 * as Haswell has gained clock readout/fastboot support.
1060 *
66e514c1 1061 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1062 * properly reconstruct framebuffers.
c3d1f436
MR
1063 *
1064 * FIXME: The intel_crtc->active here should be switched to
1065 * crtc->state->active once we have proper CRTC states wired up
1066 * for atomic.
20ddf665 1067 */
c3d1f436 1068 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1069 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1070}
1071
a5c961d1
PZ
1072enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1073 enum pipe pipe)
1074{
1075 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1077
6e3c9717 1078 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1079}
1080
fbf49ea2
VS
1081static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1082{
1083 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1084 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1085 u32 line1, line2;
1086 u32 line_mask;
1087
1088 if (IS_GEN2(dev))
1089 line_mask = DSL_LINEMASK_GEN2;
1090 else
1091 line_mask = DSL_LINEMASK_GEN3;
1092
1093 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1094 msleep(5);
fbf49ea2
VS
1095 line2 = I915_READ(reg) & line_mask;
1096
1097 return line1 == line2;
1098}
1099
ab7ad7f6
KP
1100/*
1101 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1102 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1103 *
1104 * After disabling a pipe, we can't wait for vblank in the usual way,
1105 * spinning on the vblank interrupt status bit, since we won't actually
1106 * see an interrupt when the pipe is disabled.
1107 *
ab7ad7f6
KP
1108 * On Gen4 and above:
1109 * wait for the pipe register state bit to turn off
1110 *
1111 * Otherwise:
1112 * wait for the display line value to settle (it usually
1113 * ends up stopping at the start of the next frame).
58e10eb9 1114 *
9d0498a2 1115 */
575f7ab7 1116static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1117{
575f7ab7 1118 struct drm_device *dev = crtc->base.dev;
9d0498a2 1119 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1120 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1121 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1122
1123 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1124 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1125
1126 /* Wait for the Pipe State to go off */
b8511f53
CW
1127 if (intel_wait_for_register(dev_priv,
1128 reg, I965_PIPECONF_ACTIVE, 0,
1129 100))
284637d9 1130 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1131 } else {
ab7ad7f6 1132 /* Wait for the display line to settle */
fbf49ea2 1133 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1134 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1135 }
79e53945
JB
1136}
1137
b24e7179 1138/* Only for pre-ILK configs */
55607e8a
DV
1139void assert_pll(struct drm_i915_private *dev_priv,
1140 enum pipe pipe, bool state)
b24e7179 1141{
b24e7179
JB
1142 u32 val;
1143 bool cur_state;
1144
649636ef 1145 val = I915_READ(DPLL(pipe));
b24e7179 1146 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1147 I915_STATE_WARN(cur_state != state,
b24e7179 1148 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1149 onoff(state), onoff(cur_state));
b24e7179 1150}
b24e7179 1151
23538ef1 1152/* XXX: the dsi pll is shared between MIPI DSI ports */
8563b1e8 1153void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
23538ef1
JN
1154{
1155 u32 val;
1156 bool cur_state;
1157
a580516d 1158 mutex_lock(&dev_priv->sb_lock);
23538ef1 1159 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1160 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1161
1162 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1163 I915_STATE_WARN(cur_state != state,
23538ef1 1164 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1165 onoff(state), onoff(cur_state));
23538ef1 1166}
23538ef1 1167
040484af
JB
1168static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1169 enum pipe pipe, bool state)
1170{
040484af 1171 bool cur_state;
ad80a810
PZ
1172 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1173 pipe);
040484af 1174
2d1fe073 1175 if (HAS_DDI(dev_priv)) {
affa9354 1176 /* DDI does not have a specific FDI_TX register */
649636ef 1177 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1178 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1179 } else {
649636ef 1180 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1181 cur_state = !!(val & FDI_TX_ENABLE);
1182 }
e2c719b7 1183 I915_STATE_WARN(cur_state != state,
040484af 1184 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1185 onoff(state), onoff(cur_state));
040484af
JB
1186}
1187#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1188#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1189
1190static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1191 enum pipe pipe, bool state)
1192{
040484af
JB
1193 u32 val;
1194 bool cur_state;
1195
649636ef 1196 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1197 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1198 I915_STATE_WARN(cur_state != state,
040484af 1199 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1200 onoff(state), onoff(cur_state));
040484af
JB
1201}
1202#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1203#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1204
1205static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1206 enum pipe pipe)
1207{
040484af
JB
1208 u32 val;
1209
1210 /* ILK FDI PLL is always enabled */
7e22dbbb 1211 if (IS_GEN5(dev_priv))
040484af
JB
1212 return;
1213
bf507ef7 1214 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
2d1fe073 1215 if (HAS_DDI(dev_priv))
bf507ef7
ED
1216 return;
1217
649636ef 1218 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1219 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1220}
1221
55607e8a
DV
1222void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1223 enum pipe pipe, bool state)
040484af 1224{
040484af 1225 u32 val;
55607e8a 1226 bool cur_state;
040484af 1227
649636ef 1228 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1229 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1230 I915_STATE_WARN(cur_state != state,
55607e8a 1231 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1232 onoff(state), onoff(cur_state));
040484af
JB
1233}
1234
b680c37a
DV
1235void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1236 enum pipe pipe)
ea0760cf 1237{
bedd4dba 1238 struct drm_device *dev = dev_priv->dev;
f0f59a00 1239 i915_reg_t pp_reg;
ea0760cf
JB
1240 u32 val;
1241 enum pipe panel_pipe = PIPE_A;
0de3b485 1242 bool locked = true;
ea0760cf 1243
bedd4dba
JN
1244 if (WARN_ON(HAS_DDI(dev)))
1245 return;
1246
1247 if (HAS_PCH_SPLIT(dev)) {
1248 u32 port_sel;
1249
ea0760cf 1250 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1251 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1252
1253 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1254 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1255 panel_pipe = PIPE_B;
1256 /* XXX: else fix for eDP */
666a4537 1257 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
bedd4dba
JN
1258 /* presumably write lock depends on pipe, not port select */
1259 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1260 panel_pipe = pipe;
ea0760cf
JB
1261 } else {
1262 pp_reg = PP_CONTROL;
bedd4dba
JN
1263 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1264 panel_pipe = PIPE_B;
ea0760cf
JB
1265 }
1266
1267 val = I915_READ(pp_reg);
1268 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1269 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1270 locked = false;
1271
e2c719b7 1272 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1273 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1274 pipe_name(pipe));
ea0760cf
JB
1275}
1276
93ce0ba6
JN
1277static void assert_cursor(struct drm_i915_private *dev_priv,
1278 enum pipe pipe, bool state)
1279{
1280 struct drm_device *dev = dev_priv->dev;
1281 bool cur_state;
1282
d9d82081 1283 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1284 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1285 else
5efb3e28 1286 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1287
e2c719b7 1288 I915_STATE_WARN(cur_state != state,
93ce0ba6 1289 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1290 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1291}
1292#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1293#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1294
b840d907
JB
1295void assert_pipe(struct drm_i915_private *dev_priv,
1296 enum pipe pipe, bool state)
b24e7179 1297{
63d7bbe9 1298 bool cur_state;
702e7a56
PZ
1299 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1300 pipe);
4feed0eb 1301 enum intel_display_power_domain power_domain;
b24e7179 1302
b6b5d049
VS
1303 /* if we need the pipe quirk it must be always on */
1304 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1305 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1306 state = true;
1307
4feed0eb
ID
1308 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1309 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1310 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1311 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1312
1313 intel_display_power_put(dev_priv, power_domain);
1314 } else {
1315 cur_state = false;
69310161
PZ
1316 }
1317
e2c719b7 1318 I915_STATE_WARN(cur_state != state,
63d7bbe9 1319 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1320 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1321}
1322
931872fc
CW
1323static void assert_plane(struct drm_i915_private *dev_priv,
1324 enum plane plane, bool state)
b24e7179 1325{
b24e7179 1326 u32 val;
931872fc 1327 bool cur_state;
b24e7179 1328
649636ef 1329 val = I915_READ(DSPCNTR(plane));
931872fc 1330 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1331 I915_STATE_WARN(cur_state != state,
931872fc 1332 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1333 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1334}
1335
931872fc
CW
1336#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1337#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1338
b24e7179
JB
1339static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1340 enum pipe pipe)
1341{
653e1026 1342 struct drm_device *dev = dev_priv->dev;
649636ef 1343 int i;
b24e7179 1344
653e1026
VS
1345 /* Primary planes are fixed to pipes on gen4+ */
1346 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1347 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1348 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1349 "plane %c assertion failure, should be disabled but not\n",
1350 plane_name(pipe));
19ec1358 1351 return;
28c05794 1352 }
19ec1358 1353
b24e7179 1354 /* Need to check both planes against the pipe */
055e393f 1355 for_each_pipe(dev_priv, i) {
649636ef
VS
1356 u32 val = I915_READ(DSPCNTR(i));
1357 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1358 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1359 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1360 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1361 plane_name(i), pipe_name(pipe));
b24e7179
JB
1362 }
1363}
1364
19332d7a
JB
1365static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe)
1367{
20674eef 1368 struct drm_device *dev = dev_priv->dev;
649636ef 1369 int sprite;
19332d7a 1370
7feb8b88 1371 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1372 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1373 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1374 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1375 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1376 sprite, pipe_name(pipe));
1377 }
666a4537 1378 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1379 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1380 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1381 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1382 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1383 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1384 }
1385 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1386 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1387 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1388 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1389 plane_name(pipe), pipe_name(pipe));
1390 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1391 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1392 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1393 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1394 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1395 }
1396}
1397
08c71e5e
VS
1398static void assert_vblank_disabled(struct drm_crtc *crtc)
1399{
e2c719b7 1400 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1401 drm_crtc_vblank_put(crtc);
1402}
1403
7abd4b35
ACO
1404void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe)
92f2584a 1406{
92f2584a
JB
1407 u32 val;
1408 bool enabled;
1409
649636ef 1410 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1411 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1412 I915_STATE_WARN(enabled,
9db4a9c7
JB
1413 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1414 pipe_name(pipe));
92f2584a
JB
1415}
1416
4e634389
KP
1417static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1418 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1419{
1420 if ((val & DP_PORT_EN) == 0)
1421 return false;
1422
2d1fe073 1423 if (HAS_PCH_CPT(dev_priv)) {
f0f59a00 1424 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1425 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1426 return false;
2d1fe073 1427 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1428 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1429 return false;
f0575e92
KP
1430 } else {
1431 if ((val & DP_PIPE_MASK) != (pipe << 30))
1432 return false;
1433 }
1434 return true;
1435}
1436
1519b995
KP
1437static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, u32 val)
1439{
dc0fa718 1440 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1441 return false;
1442
2d1fe073 1443 if (HAS_PCH_CPT(dev_priv)) {
dc0fa718 1444 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1445 return false;
2d1fe073 1446 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1447 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1448 return false;
1519b995 1449 } else {
dc0fa718 1450 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1451 return false;
1452 }
1453 return true;
1454}
1455
1456static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, u32 val)
1458{
1459 if ((val & LVDS_PORT_EN) == 0)
1460 return false;
1461
2d1fe073 1462 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1463 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1464 return false;
1465 } else {
1466 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1467 return false;
1468 }
1469 return true;
1470}
1471
1472static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1473 enum pipe pipe, u32 val)
1474{
1475 if ((val & ADPA_DAC_ENABLE) == 0)
1476 return false;
2d1fe073 1477 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1478 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1479 return false;
1480 } else {
1481 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1482 return false;
1483 }
1484 return true;
1485}
1486
291906f1 1487static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1488 enum pipe pipe, i915_reg_t reg,
1489 u32 port_sel)
291906f1 1490{
47a05eca 1491 u32 val = I915_READ(reg);
e2c719b7 1492 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1493 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1494 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1495
2d1fe073 1496 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
75c5da27 1497 && (val & DP_PIPEB_SELECT),
de9a35ab 1498 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1499}
1500
1501static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1502 enum pipe pipe, i915_reg_t reg)
291906f1 1503{
47a05eca 1504 u32 val = I915_READ(reg);
e2c719b7 1505 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1506 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1507 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1508
2d1fe073 1509 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
75c5da27 1510 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1511 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1512}
1513
1514static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1515 enum pipe pipe)
1516{
291906f1 1517 u32 val;
291906f1 1518
f0575e92
KP
1519 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1520 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1521 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1522
649636ef 1523 val = I915_READ(PCH_ADPA);
e2c719b7 1524 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1525 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1526 pipe_name(pipe));
291906f1 1527
649636ef 1528 val = I915_READ(PCH_LVDS);
e2c719b7 1529 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1530 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1531 pipe_name(pipe));
291906f1 1532
e2debe91
PZ
1533 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1534 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1535 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1536}
1537
cd2d34d9
VS
1538static void _vlv_enable_pll(struct intel_crtc *crtc,
1539 const struct intel_crtc_state *pipe_config)
1540{
1541 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1542 enum pipe pipe = crtc->pipe;
1543
1544 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1545 POSTING_READ(DPLL(pipe));
1546 udelay(150);
1547
2c30b43b
CW
1548 if (intel_wait_for_register(dev_priv,
1549 DPLL(pipe),
1550 DPLL_LOCK_VLV,
1551 DPLL_LOCK_VLV,
1552 1))
cd2d34d9
VS
1553 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1554}
1555
d288f65f 1556static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1557 const struct intel_crtc_state *pipe_config)
87442f73 1558{
cd2d34d9 1559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1560 enum pipe pipe = crtc->pipe;
87442f73 1561
8bd3f301 1562 assert_pipe_disabled(dev_priv, pipe);
87442f73 1563
87442f73 1564 /* PLL is protected by panel, make sure we can write it */
7d1a83cb 1565 assert_panel_unlocked(dev_priv, pipe);
87442f73 1566
cd2d34d9
VS
1567 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1568 _vlv_enable_pll(crtc, pipe_config);
426115cf 1569
8bd3f301
VS
1570 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1571 POSTING_READ(DPLL_MD(pipe));
87442f73
DV
1572}
1573
cd2d34d9
VS
1574
1575static void _chv_enable_pll(struct intel_crtc *crtc,
1576 const struct intel_crtc_state *pipe_config)
9d556c99 1577{
cd2d34d9 1578 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1579 enum pipe pipe = crtc->pipe;
9d556c99 1580 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1581 u32 tmp;
1582
a580516d 1583 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1584
1585 /* Enable back the 10bit clock to display controller */
1586 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1587 tmp |= DPIO_DCLKP_EN;
1588 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1589
54433e91
VS
1590 mutex_unlock(&dev_priv->sb_lock);
1591
9d556c99
CML
1592 /*
1593 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1594 */
1595 udelay(1);
1596
1597 /* Enable PLL */
d288f65f 1598 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1599
1600 /* Check PLL is locked */
6b18826a
CW
1601 if (intel_wait_for_register(dev_priv,
1602 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1603 1))
9d556c99 1604 DRM_ERROR("PLL %d failed to lock\n", pipe);
cd2d34d9
VS
1605}
1606
1607static void chv_enable_pll(struct intel_crtc *crtc,
1608 const struct intel_crtc_state *pipe_config)
1609{
1610 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1611 enum pipe pipe = crtc->pipe;
1612
1613 assert_pipe_disabled(dev_priv, pipe);
1614
1615 /* PLL is protected by panel, make sure we can write it */
1616 assert_panel_unlocked(dev_priv, pipe);
1617
1618 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1619 _chv_enable_pll(crtc, pipe_config);
9d556c99 1620
c231775c
VS
1621 if (pipe != PIPE_A) {
1622 /*
1623 * WaPixelRepeatModeFixForC0:chv
1624 *
1625 * DPLLCMD is AWOL. Use chicken bits to propagate
1626 * the value from DPLLBMD to either pipe B or C.
1627 */
1628 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1629 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1630 I915_WRITE(CBR4_VLV, 0);
1631 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1632
1633 /*
1634 * DPLLB VGA mode also seems to cause problems.
1635 * We should always have it disabled.
1636 */
1637 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1638 } else {
1639 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1640 POSTING_READ(DPLL_MD(pipe));
1641 }
9d556c99
CML
1642}
1643
1c4e0274
VS
1644static int intel_num_dvo_pipes(struct drm_device *dev)
1645{
1646 struct intel_crtc *crtc;
1647 int count = 0;
1648
1649 for_each_intel_crtc(dev, crtc)
3538b9df 1650 count += crtc->base.state->active &&
409ee761 1651 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1652
1653 return count;
1654}
1655
66e3d5c0 1656static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1657{
66e3d5c0
DV
1658 struct drm_device *dev = crtc->base.dev;
1659 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1660 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1661 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1662
66e3d5c0 1663 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1664
63d7bbe9 1665 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1666 if (IS_MOBILE(dev) && !IS_I830(dev))
1667 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1668
1c4e0274
VS
1669 /* Enable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1671 /*
1672 * It appears to be important that we don't enable this
1673 * for the current pipe before otherwise configuring the
1674 * PLL. No idea how this should be handled if multiple
1675 * DVO outputs are enabled simultaneosly.
1676 */
1677 dpll |= DPLL_DVO_2X_MODE;
1678 I915_WRITE(DPLL(!crtc->pipe),
1679 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1680 }
66e3d5c0 1681
c2b63374
VS
1682 /*
1683 * Apparently we need to have VGA mode enabled prior to changing
1684 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1685 * dividers, even though the register value does change.
1686 */
1687 I915_WRITE(reg, 0);
1688
8e7a65aa
VS
1689 I915_WRITE(reg, dpll);
1690
66e3d5c0
DV
1691 /* Wait for the clocks to stabilize. */
1692 POSTING_READ(reg);
1693 udelay(150);
1694
1695 if (INTEL_INFO(dev)->gen >= 4) {
1696 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1697 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1698 } else {
1699 /* The pixel multiplier can only be updated once the
1700 * DPLL is enabled and the clocks are stable.
1701 *
1702 * So write it again.
1703 */
1704 I915_WRITE(reg, dpll);
1705 }
63d7bbe9
JB
1706
1707 /* We do this three times for luck */
66e3d5c0 1708 I915_WRITE(reg, dpll);
63d7bbe9
JB
1709 POSTING_READ(reg);
1710 udelay(150); /* wait for warmup */
66e3d5c0 1711 I915_WRITE(reg, dpll);
63d7bbe9
JB
1712 POSTING_READ(reg);
1713 udelay(150); /* wait for warmup */
66e3d5c0 1714 I915_WRITE(reg, dpll);
63d7bbe9
JB
1715 POSTING_READ(reg);
1716 udelay(150); /* wait for warmup */
1717}
1718
1719/**
50b44a44 1720 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1721 * @dev_priv: i915 private structure
1722 * @pipe: pipe PLL to disable
1723 *
1724 * Disable the PLL for @pipe, making sure the pipe is off first.
1725 *
1726 * Note! This is for pre-ILK only.
1727 */
1c4e0274 1728static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1729{
1c4e0274
VS
1730 struct drm_device *dev = crtc->base.dev;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 enum pipe pipe = crtc->pipe;
1733
1734 /* Disable DVO 2x clock on both PLLs if necessary */
1735 if (IS_I830(dev) &&
409ee761 1736 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1737 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1738 I915_WRITE(DPLL(PIPE_B),
1739 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1740 I915_WRITE(DPLL(PIPE_A),
1741 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1742 }
1743
b6b5d049
VS
1744 /* Don't disable pipe or pipe PLLs if needed */
1745 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1746 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1747 return;
1748
1749 /* Make sure the pipe isn't still relying on us */
1750 assert_pipe_disabled(dev_priv, pipe);
1751
b8afb911 1752 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1753 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1754}
1755
f6071166
JB
1756static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1757{
b8afb911 1758 u32 val;
f6071166
JB
1759
1760 /* Make sure the pipe isn't still relying on us */
1761 assert_pipe_disabled(dev_priv, pipe);
1762
03ed5cbf
VS
1763 val = DPLL_INTEGRATED_REF_CLK_VLV |
1764 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1765 if (pipe != PIPE_A)
1766 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1767
f6071166
JB
1768 I915_WRITE(DPLL(pipe), val);
1769 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1770}
1771
1772static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1773{
d752048d 1774 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1775 u32 val;
1776
a11b0703
VS
1777 /* Make sure the pipe isn't still relying on us */
1778 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1779
60bfe44f
VS
1780 val = DPLL_SSC_REF_CLK_CHV |
1781 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1782 if (pipe != PIPE_A)
1783 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
03ed5cbf 1784
a11b0703
VS
1785 I915_WRITE(DPLL(pipe), val);
1786 POSTING_READ(DPLL(pipe));
d752048d 1787
a580516d 1788 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1789
1790 /* Disable 10bit clock to display controller */
1791 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1792 val &= ~DPIO_DCLKP_EN;
1793 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1794
a580516d 1795 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1796}
1797
e4607fcf 1798void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1799 struct intel_digital_port *dport,
1800 unsigned int expected_mask)
89b667f8
JB
1801{
1802 u32 port_mask;
f0f59a00 1803 i915_reg_t dpll_reg;
89b667f8 1804
e4607fcf
CML
1805 switch (dport->port) {
1806 case PORT_B:
89b667f8 1807 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1808 dpll_reg = DPLL(0);
e4607fcf
CML
1809 break;
1810 case PORT_C:
89b667f8 1811 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1812 dpll_reg = DPLL(0);
9b6de0a1 1813 expected_mask <<= 4;
00fc31b7
CML
1814 break;
1815 case PORT_D:
1816 port_mask = DPLL_PORTD_READY_MASK;
1817 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1818 break;
1819 default:
1820 BUG();
1821 }
89b667f8 1822
370004d3
CW
1823 if (intel_wait_for_register(dev_priv,
1824 dpll_reg, port_mask, expected_mask,
1825 1000))
9b6de0a1
VS
1826 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1827 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1828}
1829
b8a4f404
PZ
1830static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1831 enum pipe pipe)
040484af 1832{
23670b32 1833 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1834 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1836 i915_reg_t reg;
1837 uint32_t val, pipeconf_val;
040484af 1838
040484af 1839 /* Make sure PCH DPLL is enabled */
8106ddbd 1840 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
040484af
JB
1841
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, pipe);
1844 assert_fdi_rx_enabled(dev_priv, pipe);
1845
23670b32
DV
1846 if (HAS_PCH_CPT(dev)) {
1847 /* Workaround: Set the timing override bit before enabling the
1848 * pch transcoder. */
1849 reg = TRANS_CHICKEN2(pipe);
1850 val = I915_READ(reg);
1851 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1852 I915_WRITE(reg, val);
59c859d6 1853 }
23670b32 1854
ab9412ba 1855 reg = PCH_TRANSCONF(pipe);
040484af 1856 val = I915_READ(reg);
5f7f726d 1857 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c 1858
2d1fe073 1859 if (HAS_PCH_IBX(dev_priv)) {
e9bcff5c 1860 /*
c5de7c6f
VS
1861 * Make the BPC in transcoder be consistent with
1862 * that in pipeconf reg. For HDMI we must use 8bpc
1863 * here for both 8bpc and 12bpc.
e9bcff5c 1864 */
dfd07d72 1865 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1866 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1867 val |= PIPECONF_8BPC;
1868 else
1869 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1870 }
5f7f726d
PZ
1871
1872 val &= ~TRANS_INTERLACE_MASK;
1873 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2d1fe073 1874 if (HAS_PCH_IBX(dev_priv) &&
409ee761 1875 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1876 val |= TRANS_LEGACY_INTERLACED_ILK;
1877 else
1878 val |= TRANS_INTERLACED;
5f7f726d
PZ
1879 else
1880 val |= TRANS_PROGRESSIVE;
1881
040484af 1882 I915_WRITE(reg, val | TRANS_ENABLE);
650fbd84
CW
1883 if (intel_wait_for_register(dev_priv,
1884 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1885 100))
4bb6f1f3 1886 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1887}
1888
8fb033d7 1889static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1890 enum transcoder cpu_transcoder)
040484af 1891{
8fb033d7 1892 u32 val, pipeconf_val;
8fb033d7 1893
8fb033d7 1894 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1895 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1896 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1897
223a6fdf 1898 /* Workaround: set timing override bit. */
36c0d0cf 1899 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1900 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1901 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1902
25f3ef11 1903 val = TRANS_ENABLE;
937bb610 1904 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1905
9a76b1c6
PZ
1906 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1907 PIPECONF_INTERLACED_ILK)
a35f2679 1908 val |= TRANS_INTERLACED;
8fb033d7
PZ
1909 else
1910 val |= TRANS_PROGRESSIVE;
1911
ab9412ba 1912 I915_WRITE(LPT_TRANSCONF, val);
d9f96244
CW
1913 if (intel_wait_for_register(dev_priv,
1914 LPT_TRANSCONF,
1915 TRANS_STATE_ENABLE,
1916 TRANS_STATE_ENABLE,
1917 100))
937bb610 1918 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1919}
1920
b8a4f404
PZ
1921static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum pipe pipe)
040484af 1923{
23670b32 1924 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
1925 i915_reg_t reg;
1926 uint32_t val;
040484af
JB
1927
1928 /* FDI relies on the transcoder */
1929 assert_fdi_tx_disabled(dev_priv, pipe);
1930 assert_fdi_rx_disabled(dev_priv, pipe);
1931
291906f1
JB
1932 /* Ports must be off as well */
1933 assert_pch_ports_disabled(dev_priv, pipe);
1934
ab9412ba 1935 reg = PCH_TRANSCONF(pipe);
040484af
JB
1936 val = I915_READ(reg);
1937 val &= ~TRANS_ENABLE;
1938 I915_WRITE(reg, val);
1939 /* wait for PCH transcoder off, transcoder state */
a7d04662
CW
1940 if (intel_wait_for_register(dev_priv,
1941 reg, TRANS_STATE_ENABLE, 0,
1942 50))
4bb6f1f3 1943 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1944
c465613b 1945 if (HAS_PCH_CPT(dev)) {
23670b32
DV
1946 /* Workaround: Clear the timing override chicken bit again. */
1947 reg = TRANS_CHICKEN2(pipe);
1948 val = I915_READ(reg);
1949 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1950 I915_WRITE(reg, val);
1951 }
040484af
JB
1952}
1953
ab4d966c 1954static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1955{
8fb033d7
PZ
1956 u32 val;
1957
ab9412ba 1958 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1959 val &= ~TRANS_ENABLE;
ab9412ba 1960 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1961 /* wait for PCH transcoder off, transcoder state */
dfdb4749
CW
1962 if (intel_wait_for_register(dev_priv,
1963 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1964 50))
8a52fd9f 1965 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1966
1967 /* Workaround: clear timing override bit. */
36c0d0cf 1968 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1969 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1970 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1971}
1972
b24e7179 1973/**
309cfea8 1974 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1975 * @crtc: crtc responsible for the pipe
b24e7179 1976 *
0372264a 1977 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1978 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1979 */
e1fdc473 1980static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1981{
0372264a
PZ
1982 struct drm_device *dev = crtc->base.dev;
1983 struct drm_i915_private *dev_priv = dev->dev_private;
1984 enum pipe pipe = crtc->pipe;
1a70a728 1985 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1986 enum pipe pch_transcoder;
f0f59a00 1987 i915_reg_t reg;
b24e7179
JB
1988 u32 val;
1989
9e2ee2dd
VS
1990 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1991
58c6eaa2 1992 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1993 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1994 assert_sprites_disabled(dev_priv, pipe);
1995
2d1fe073 1996 if (HAS_PCH_LPT(dev_priv))
cc391bbb
PZ
1997 pch_transcoder = TRANSCODER_A;
1998 else
1999 pch_transcoder = pipe;
2000
b24e7179
JB
2001 /*
2002 * A pipe without a PLL won't actually be able to drive bits from
2003 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2004 * need the check.
2005 */
2d1fe073 2006 if (HAS_GMCH_DISPLAY(dev_priv))
a65347ba 2007 if (crtc->config->has_dsi_encoder)
23538ef1
JN
2008 assert_dsi_pll_enabled(dev_priv);
2009 else
2010 assert_pll_enabled(dev_priv, pipe);
040484af 2011 else {
6e3c9717 2012 if (crtc->config->has_pch_encoder) {
040484af 2013 /* if driving the PCH, we need FDI enabled */
cc391bbb 2014 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2015 assert_fdi_tx_pll_enabled(dev_priv,
2016 (enum pipe) cpu_transcoder);
040484af
JB
2017 }
2018 /* FIXME: assert CPU port conditions for SNB+ */
2019 }
b24e7179 2020
702e7a56 2021 reg = PIPECONF(cpu_transcoder);
b24e7179 2022 val = I915_READ(reg);
7ad25d48 2023 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2024 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2025 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2026 return;
7ad25d48 2027 }
00d70b15
CW
2028
2029 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2030 POSTING_READ(reg);
b7792d8b
VS
2031
2032 /*
2033 * Until the pipe starts DSL will read as 0, which would cause
2034 * an apparent vblank timestamp jump, which messes up also the
2035 * frame count when it's derived from the timestamps. So let's
2036 * wait for the pipe to start properly before we call
2037 * drm_crtc_vblank_on()
2038 */
2039 if (dev->max_vblank_count == 0 &&
2040 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2041 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
2042}
2043
2044/**
309cfea8 2045 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2046 * @crtc: crtc whose pipes is to be disabled
b24e7179 2047 *
575f7ab7
VS
2048 * Disable the pipe of @crtc, making sure that various hardware
2049 * specific requirements are met, if applicable, e.g. plane
2050 * disabled, panel fitter off, etc.
b24e7179
JB
2051 *
2052 * Will wait until the pipe has shut down before returning.
2053 */
575f7ab7 2054static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2055{
575f7ab7 2056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2057 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2058 enum pipe pipe = crtc->pipe;
f0f59a00 2059 i915_reg_t reg;
b24e7179
JB
2060 u32 val;
2061
9e2ee2dd
VS
2062 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2063
b24e7179
JB
2064 /*
2065 * Make sure planes won't keep trying to pump pixels to us,
2066 * or we might hang the display.
2067 */
2068 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2069 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2070 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2071
702e7a56 2072 reg = PIPECONF(cpu_transcoder);
b24e7179 2073 val = I915_READ(reg);
00d70b15
CW
2074 if ((val & PIPECONF_ENABLE) == 0)
2075 return;
2076
67adc644
VS
2077 /*
2078 * Double wide has implications for planes
2079 * so best keep it disabled when not needed.
2080 */
6e3c9717 2081 if (crtc->config->double_wide)
67adc644
VS
2082 val &= ~PIPECONF_DOUBLE_WIDE;
2083
2084 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2085 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2086 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2087 val &= ~PIPECONF_ENABLE;
2088
2089 I915_WRITE(reg, val);
2090 if ((val & PIPECONF_ENABLE) == 0)
2091 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2092}
2093
693db184
CW
2094static bool need_vtd_wa(struct drm_device *dev)
2095{
2096#ifdef CONFIG_INTEL_IOMMU
2097 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2098 return true;
2099#endif
2100 return false;
2101}
2102
832be82f
VS
2103static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2104{
2105 return IS_GEN2(dev_priv) ? 2048 : 4096;
2106}
2107
27ba3910
VS
2108static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2109 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2110{
2111 switch (fb_modifier) {
2112 case DRM_FORMAT_MOD_NONE:
2113 return cpp;
2114 case I915_FORMAT_MOD_X_TILED:
2115 if (IS_GEN2(dev_priv))
2116 return 128;
2117 else
2118 return 512;
2119 case I915_FORMAT_MOD_Y_TILED:
2120 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2121 return 128;
2122 else
2123 return 512;
2124 case I915_FORMAT_MOD_Yf_TILED:
2125 switch (cpp) {
2126 case 1:
2127 return 64;
2128 case 2:
2129 case 4:
2130 return 128;
2131 case 8:
2132 case 16:
2133 return 256;
2134 default:
2135 MISSING_CASE(cpp);
2136 return cpp;
2137 }
2138 break;
2139 default:
2140 MISSING_CASE(fb_modifier);
2141 return cpp;
2142 }
2143}
2144
832be82f
VS
2145unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2146 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2147{
832be82f
VS
2148 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2149 return 1;
2150 else
2151 return intel_tile_size(dev_priv) /
27ba3910 2152 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2153}
2154
8d0deca8
VS
2155/* Return the tile dimensions in pixel units */
2156static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2157 unsigned int *tile_width,
2158 unsigned int *tile_height,
2159 uint64_t fb_modifier,
2160 unsigned int cpp)
2161{
2162 unsigned int tile_width_bytes =
2163 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2164
2165 *tile_width = tile_width_bytes / cpp;
2166 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2167}
2168
6761dd31
TU
2169unsigned int
2170intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2171 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2172{
832be82f
VS
2173 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2174 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2175
2176 return ALIGN(height, tile_height);
a57ce0b2
JB
2177}
2178
1663b9d6
VS
2179unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2180{
2181 unsigned int size = 0;
2182 int i;
2183
2184 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2185 size += rot_info->plane[i].width * rot_info->plane[i].height;
2186
2187 return size;
2188}
2189
75c82a53 2190static void
3465c580
VS
2191intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2192 const struct drm_framebuffer *fb,
2193 unsigned int rotation)
f64b98cd 2194{
2d7a215f
VS
2195 if (intel_rotation_90_or_270(rotation)) {
2196 *view = i915_ggtt_view_rotated;
2197 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2198 } else {
2199 *view = i915_ggtt_view_normal;
2200 }
2201}
50470bb0 2202
2d7a215f
VS
2203static void
2204intel_fill_fb_info(struct drm_i915_private *dev_priv,
2205 struct drm_framebuffer *fb)
2206{
2207 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2208 unsigned int tile_size, tile_width, tile_height, cpp;
50470bb0 2209
d9b3288e
VS
2210 tile_size = intel_tile_size(dev_priv);
2211
2212 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
8d0deca8
VS
2213 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2214 fb->modifier[0], cpp);
d9b3288e 2215
1663b9d6
VS
2216 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2217 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
84fe03f7 2218
89e3e142 2219 if (info->pixel_format == DRM_FORMAT_NV12) {
832be82f 2220 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
8d0deca8
VS
2221 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2222 fb->modifier[1], cpp);
d9b3288e 2223
2d7a215f 2224 info->uv_offset = fb->offsets[1];
1663b9d6
VS
2225 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2226 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
89e3e142 2227 }
f64b98cd
TU
2228}
2229
603525d7 2230static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2231{
2232 if (INTEL_INFO(dev_priv)->gen >= 9)
2233 return 256 * 1024;
985b8bb4 2234 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2235 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2236 return 128 * 1024;
2237 else if (INTEL_INFO(dev_priv)->gen >= 4)
2238 return 4 * 1024;
2239 else
44c5905e 2240 return 0;
4e9a86b6
VS
2241}
2242
603525d7
VS
2243static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2244 uint64_t fb_modifier)
2245{
2246 switch (fb_modifier) {
2247 case DRM_FORMAT_MOD_NONE:
2248 return intel_linear_alignment(dev_priv);
2249 case I915_FORMAT_MOD_X_TILED:
2250 if (INTEL_INFO(dev_priv)->gen >= 9)
2251 return 256 * 1024;
2252 return 0;
2253 case I915_FORMAT_MOD_Y_TILED:
2254 case I915_FORMAT_MOD_Yf_TILED:
2255 return 1 * 1024 * 1024;
2256 default:
2257 MISSING_CASE(fb_modifier);
2258 return 0;
2259 }
2260}
2261
127bd2ac 2262int
3465c580
VS
2263intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2264 unsigned int rotation)
6b95a207 2265{
850c4cdc 2266 struct drm_device *dev = fb->dev;
ce453d81 2267 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2268 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2269 struct i915_ggtt_view view;
6b95a207
KH
2270 u32 alignment;
2271 int ret;
2272
ebcdd39e
MR
2273 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2274
603525d7 2275 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2276
3465c580 2277 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2278
693db184
CW
2279 /* Note that the w/a also requires 64 PTE of padding following the
2280 * bo. We currently fill all unused PTE with the shadow page and so
2281 * we should always have valid PTE following the scanout preventing
2282 * the VT-d warning.
2283 */
2284 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2285 alignment = 256 * 1024;
2286
d6dd6843
PZ
2287 /*
2288 * Global gtt pte registers are special registers which actually forward
2289 * writes to a chunk of system memory. Which means that there is no risk
2290 * that the register values disappear as soon as we call
2291 * intel_runtime_pm_put(), so it is correct to wrap only the
2292 * pin/unpin/fence and not more.
2293 */
2294 intel_runtime_pm_get(dev_priv);
2295
7580d774
ML
2296 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2297 &view);
48b956c5 2298 if (ret)
b26a6b35 2299 goto err_pm;
6b95a207
KH
2300
2301 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2302 * fence, whereas 965+ only requires a fence if using
2303 * framebuffer compression. For simplicity, we always install
2304 * a fence as the cost is not that onerous.
2305 */
9807216f
VK
2306 if (view.type == I915_GGTT_VIEW_NORMAL) {
2307 ret = i915_gem_object_get_fence(obj);
2308 if (ret == -EDEADLK) {
2309 /*
2310 * -EDEADLK means there are no free fences
2311 * no pending flips.
2312 *
2313 * This is propagated to atomic, but it uses
2314 * -EDEADLK to force a locking recovery, so
2315 * change the returned error to -EBUSY.
2316 */
2317 ret = -EBUSY;
2318 goto err_unpin;
2319 } else if (ret)
2320 goto err_unpin;
1690e1eb 2321
9807216f
VK
2322 i915_gem_object_pin_fence(obj);
2323 }
6b95a207 2324
d6dd6843 2325 intel_runtime_pm_put(dev_priv);
6b95a207 2326 return 0;
48b956c5
CW
2327
2328err_unpin:
f64b98cd 2329 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2330err_pm:
d6dd6843 2331 intel_runtime_pm_put(dev_priv);
48b956c5 2332 return ret;
6b95a207
KH
2333}
2334
fb4b8ce1 2335void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2336{
82bc3b2d 2337 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2338 struct i915_ggtt_view view;
82bc3b2d 2339
ebcdd39e
MR
2340 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2341
3465c580 2342 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2343
9807216f
VK
2344 if (view.type == I915_GGTT_VIEW_NORMAL)
2345 i915_gem_object_unpin_fence(obj);
2346
f64b98cd 2347 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2348}
2349
29cf9491
VS
2350/*
2351 * Adjust the tile offset by moving the difference into
2352 * the x/y offsets.
2353 *
2354 * Input tile dimensions and pitch must already be
2355 * rotated to match x and y, and in pixel units.
2356 */
2357static u32 intel_adjust_tile_offset(int *x, int *y,
2358 unsigned int tile_width,
2359 unsigned int tile_height,
2360 unsigned int tile_size,
2361 unsigned int pitch_tiles,
2362 u32 old_offset,
2363 u32 new_offset)
2364{
2365 unsigned int tiles;
2366
2367 WARN_ON(old_offset & (tile_size - 1));
2368 WARN_ON(new_offset & (tile_size - 1));
2369 WARN_ON(new_offset > old_offset);
2370
2371 tiles = (old_offset - new_offset) / tile_size;
2372
2373 *y += tiles / pitch_tiles * tile_height;
2374 *x += tiles % pitch_tiles * tile_width;
2375
2376 return new_offset;
2377}
2378
8d0deca8
VS
2379/*
2380 * Computes the linear offset to the base tile and adjusts
2381 * x, y. bytes per pixel is assumed to be a power-of-two.
2382 *
2383 * In the 90/270 rotated case, x and y are assumed
2384 * to be already rotated to match the rotated GTT view, and
2385 * pitch is the tile_height aligned framebuffer height.
2386 */
4f2d9934
VS
2387u32 intel_compute_tile_offset(int *x, int *y,
2388 const struct drm_framebuffer *fb, int plane,
8d0deca8
VS
2389 unsigned int pitch,
2390 unsigned int rotation)
c2c75131 2391{
4f2d9934
VS
2392 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2393 uint64_t fb_modifier = fb->modifier[plane];
2394 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
29cf9491
VS
2395 u32 offset, offset_aligned, alignment;
2396
2397 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2398 if (alignment)
2399 alignment--;
2400
b5c65338 2401 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2402 unsigned int tile_size, tile_width, tile_height;
2403 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2404
d843310d 2405 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2406 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2407 fb_modifier, cpp);
2408
2409 if (intel_rotation_90_or_270(rotation)) {
2410 pitch_tiles = pitch / tile_height;
2411 swap(tile_width, tile_height);
2412 } else {
2413 pitch_tiles = pitch / (tile_width * cpp);
2414 }
d843310d
VS
2415
2416 tile_rows = *y / tile_height;
2417 *y %= tile_height;
c2c75131 2418
8d0deca8
VS
2419 tiles = *x / tile_width;
2420 *x %= tile_width;
bc752862 2421
29cf9491
VS
2422 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2423 offset_aligned = offset & ~alignment;
bc752862 2424
29cf9491
VS
2425 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2426 tile_size, pitch_tiles,
2427 offset, offset_aligned);
2428 } else {
bc752862 2429 offset = *y * pitch + *x * cpp;
29cf9491
VS
2430 offset_aligned = offset & ~alignment;
2431
4e9a86b6
VS
2432 *y = (offset & alignment) / pitch;
2433 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2434 }
29cf9491
VS
2435
2436 return offset_aligned;
c2c75131
DV
2437}
2438
b35d63fa 2439static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2440{
2441 switch (format) {
2442 case DISPPLANE_8BPP:
2443 return DRM_FORMAT_C8;
2444 case DISPPLANE_BGRX555:
2445 return DRM_FORMAT_XRGB1555;
2446 case DISPPLANE_BGRX565:
2447 return DRM_FORMAT_RGB565;
2448 default:
2449 case DISPPLANE_BGRX888:
2450 return DRM_FORMAT_XRGB8888;
2451 case DISPPLANE_RGBX888:
2452 return DRM_FORMAT_XBGR8888;
2453 case DISPPLANE_BGRX101010:
2454 return DRM_FORMAT_XRGB2101010;
2455 case DISPPLANE_RGBX101010:
2456 return DRM_FORMAT_XBGR2101010;
2457 }
2458}
2459
bc8d7dff
DL
2460static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2461{
2462 switch (format) {
2463 case PLANE_CTL_FORMAT_RGB_565:
2464 return DRM_FORMAT_RGB565;
2465 default:
2466 case PLANE_CTL_FORMAT_XRGB_8888:
2467 if (rgb_order) {
2468 if (alpha)
2469 return DRM_FORMAT_ABGR8888;
2470 else
2471 return DRM_FORMAT_XBGR8888;
2472 } else {
2473 if (alpha)
2474 return DRM_FORMAT_ARGB8888;
2475 else
2476 return DRM_FORMAT_XRGB8888;
2477 }
2478 case PLANE_CTL_FORMAT_XRGB_2101010:
2479 if (rgb_order)
2480 return DRM_FORMAT_XBGR2101010;
2481 else
2482 return DRM_FORMAT_XRGB2101010;
2483 }
2484}
2485
5724dbd1 2486static bool
f6936e29
DV
2487intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2488 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2489{
2490 struct drm_device *dev = crtc->base.dev;
3badb49f 2491 struct drm_i915_private *dev_priv = to_i915(dev);
72e96d64 2492 struct i915_ggtt *ggtt = &dev_priv->ggtt;
46f297fb
JB
2493 struct drm_i915_gem_object *obj = NULL;
2494 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2495 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2496 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2497 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2498 PAGE_SIZE);
2499
2500 size_aligned -= base_aligned;
46f297fb 2501
ff2652ea
CW
2502 if (plane_config->size == 0)
2503 return false;
2504
3badb49f
PZ
2505 /* If the FB is too big, just don't use it since fbdev is not very
2506 * important and we should probably use that space with FBC or other
2507 * features. */
72e96d64 2508 if (size_aligned * 2 > ggtt->stolen_usable_size)
3badb49f
PZ
2509 return false;
2510
12c83d99
TU
2511 mutex_lock(&dev->struct_mutex);
2512
f37b5c2b
DV
2513 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2514 base_aligned,
2515 base_aligned,
2516 size_aligned);
12c83d99
TU
2517 if (!obj) {
2518 mutex_unlock(&dev->struct_mutex);
484b41dd 2519 return false;
12c83d99 2520 }
46f297fb 2521
49af449b
DL
2522 obj->tiling_mode = plane_config->tiling;
2523 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2524 obj->stride = fb->pitches[0];
46f297fb 2525
6bf129df
DL
2526 mode_cmd.pixel_format = fb->pixel_format;
2527 mode_cmd.width = fb->width;
2528 mode_cmd.height = fb->height;
2529 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2530 mode_cmd.modifier[0] = fb->modifier[0];
2531 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2532
6bf129df 2533 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2534 &mode_cmd, obj)) {
46f297fb
JB
2535 DRM_DEBUG_KMS("intel fb init failed\n");
2536 goto out_unref_obj;
2537 }
12c83d99 2538
46f297fb 2539 mutex_unlock(&dev->struct_mutex);
484b41dd 2540
f6936e29 2541 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2542 return true;
46f297fb
JB
2543
2544out_unref_obj:
2545 drm_gem_object_unreference(&obj->base);
2546 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2547 return false;
2548}
2549
5a21b665
DV
2550/* Update plane->state->fb to match plane->fb after driver-internal updates */
2551static void
2552update_state_fb(struct drm_plane *plane)
2553{
2554 if (plane->fb == plane->state->fb)
2555 return;
2556
2557 if (plane->state->fb)
2558 drm_framebuffer_unreference(plane->state->fb);
2559 plane->state->fb = plane->fb;
2560 if (plane->state->fb)
2561 drm_framebuffer_reference(plane->state->fb);
2562}
2563
5724dbd1 2564static void
f6936e29
DV
2565intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2566 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2567{
2568 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2569 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2570 struct drm_crtc *c;
2571 struct intel_crtc *i;
2ff8fde1 2572 struct drm_i915_gem_object *obj;
88595ac9 2573 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2574 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2575 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2576 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2577 struct intel_plane_state *intel_state =
2578 to_intel_plane_state(plane_state);
88595ac9 2579 struct drm_framebuffer *fb;
484b41dd 2580
2d14030b 2581 if (!plane_config->fb)
484b41dd
JB
2582 return;
2583
f6936e29 2584 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2585 fb = &plane_config->fb->base;
2586 goto valid_fb;
f55548b5 2587 }
484b41dd 2588
2d14030b 2589 kfree(plane_config->fb);
484b41dd
JB
2590
2591 /*
2592 * Failed to alloc the obj, check to see if we should share
2593 * an fb with another CRTC instead
2594 */
70e1e0ec 2595 for_each_crtc(dev, c) {
484b41dd
JB
2596 i = to_intel_crtc(c);
2597
2598 if (c == &intel_crtc->base)
2599 continue;
2600
2ff8fde1
MR
2601 if (!i->active)
2602 continue;
2603
88595ac9
DV
2604 fb = c->primary->fb;
2605 if (!fb)
484b41dd
JB
2606 continue;
2607
88595ac9 2608 obj = intel_fb_obj(fb);
2ff8fde1 2609 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2610 drm_framebuffer_reference(fb);
2611 goto valid_fb;
484b41dd
JB
2612 }
2613 }
88595ac9 2614
200757f5
MR
2615 /*
2616 * We've failed to reconstruct the BIOS FB. Current display state
2617 * indicates that the primary plane is visible, but has a NULL FB,
2618 * which will lead to problems later if we don't fix it up. The
2619 * simplest solution is to just disable the primary plane now and
2620 * pretend the BIOS never had it enabled.
2621 */
2622 to_intel_plane_state(plane_state)->visible = false;
2623 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2622a081 2624 intel_pre_disable_primary_noatomic(&intel_crtc->base);
200757f5
MR
2625 intel_plane->disable_plane(primary, &intel_crtc->base);
2626
88595ac9
DV
2627 return;
2628
2629valid_fb:
f44e2659
VS
2630 plane_state->src_x = 0;
2631 plane_state->src_y = 0;
be5651f2
ML
2632 plane_state->src_w = fb->width << 16;
2633 plane_state->src_h = fb->height << 16;
2634
f44e2659
VS
2635 plane_state->crtc_x = 0;
2636 plane_state->crtc_y = 0;
be5651f2
ML
2637 plane_state->crtc_w = fb->width;
2638 plane_state->crtc_h = fb->height;
2639
0a8d8a86
MR
2640 intel_state->src.x1 = plane_state->src_x;
2641 intel_state->src.y1 = plane_state->src_y;
2642 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2643 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2644 intel_state->dst.x1 = plane_state->crtc_x;
2645 intel_state->dst.y1 = plane_state->crtc_y;
2646 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2647 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2648
88595ac9
DV
2649 obj = intel_fb_obj(fb);
2650 if (obj->tiling_mode != I915_TILING_NONE)
2651 dev_priv->preserve_bios_swizzle = true;
2652
be5651f2
ML
2653 drm_framebuffer_reference(fb);
2654 primary->fb = primary->state->fb = fb;
36750f28 2655 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2656 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2657 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2658}
2659
a8d201af
ML
2660static void i9xx_update_primary_plane(struct drm_plane *primary,
2661 const struct intel_crtc_state *crtc_state,
2662 const struct intel_plane_state *plane_state)
81255565 2663{
a8d201af 2664 struct drm_device *dev = primary->dev;
81255565 2665 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
2666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2667 struct drm_framebuffer *fb = plane_state->base.fb;
2668 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2669 int plane = intel_crtc->plane;
54ea9da8 2670 u32 linear_offset;
81255565 2671 u32 dspcntr;
f0f59a00 2672 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2673 unsigned int rotation = plane_state->base.rotation;
ac484963 2674 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
54ea9da8
VS
2675 int x = plane_state->src.x1 >> 16;
2676 int y = plane_state->src.y1 >> 16;
c9ba6fad 2677
f45651ba
VS
2678 dspcntr = DISPPLANE_GAMMA_ENABLE;
2679
fdd508a6 2680 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2681
2682 if (INTEL_INFO(dev)->gen < 4) {
2683 if (intel_crtc->pipe == PIPE_B)
2684 dspcntr |= DISPPLANE_SEL_PIPE_B;
2685
2686 /* pipesrc and dspsize control the size that is scaled from,
2687 * which should always be the user's requested size.
2688 */
2689 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
2690 ((crtc_state->pipe_src_h - 1) << 16) |
2691 (crtc_state->pipe_src_w - 1));
f45651ba 2692 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2693 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2694 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
2695 ((crtc_state->pipe_src_h - 1) << 16) |
2696 (crtc_state->pipe_src_w - 1));
c14b0485
VS
2697 I915_WRITE(PRIMPOS(plane), 0);
2698 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2699 }
81255565 2700
57779d06
VS
2701 switch (fb->pixel_format) {
2702 case DRM_FORMAT_C8:
81255565
JB
2703 dspcntr |= DISPPLANE_8BPP;
2704 break;
57779d06 2705 case DRM_FORMAT_XRGB1555:
57779d06 2706 dspcntr |= DISPPLANE_BGRX555;
81255565 2707 break;
57779d06
VS
2708 case DRM_FORMAT_RGB565:
2709 dspcntr |= DISPPLANE_BGRX565;
2710 break;
2711 case DRM_FORMAT_XRGB8888:
57779d06
VS
2712 dspcntr |= DISPPLANE_BGRX888;
2713 break;
2714 case DRM_FORMAT_XBGR8888:
57779d06
VS
2715 dspcntr |= DISPPLANE_RGBX888;
2716 break;
2717 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2718 dspcntr |= DISPPLANE_BGRX101010;
2719 break;
2720 case DRM_FORMAT_XBGR2101010:
57779d06 2721 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2722 break;
2723 default:
baba133a 2724 BUG();
81255565 2725 }
57779d06 2726
f45651ba
VS
2727 if (INTEL_INFO(dev)->gen >= 4 &&
2728 obj->tiling_mode != I915_TILING_NONE)
2729 dspcntr |= DISPPLANE_TILED;
81255565 2730
de1aa629
VS
2731 if (IS_G4X(dev))
2732 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2733
ac484963 2734 linear_offset = y * fb->pitches[0] + x * cpp;
81255565 2735
c2c75131
DV
2736 if (INTEL_INFO(dev)->gen >= 4) {
2737 intel_crtc->dspaddr_offset =
4f2d9934 2738 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2739 fb->pitches[0], rotation);
c2c75131
DV
2740 linear_offset -= intel_crtc->dspaddr_offset;
2741 } else {
e506a0c6 2742 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2743 }
e506a0c6 2744
8d0deca8 2745 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2746 dspcntr |= DISPPLANE_ROTATE_180;
2747
a8d201af
ML
2748 x += (crtc_state->pipe_src_w - 1);
2749 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2750
2751 /* Finding the last pixel of the last line of the display
2752 data and adding to linear_offset*/
2753 linear_offset +=
a8d201af 2754 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2755 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2756 }
2757
2db3366b
PZ
2758 intel_crtc->adjusted_x = x;
2759 intel_crtc->adjusted_y = y;
2760
48404c1e
SJ
2761 I915_WRITE(reg, dspcntr);
2762
01f2c773 2763 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2764 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2765 I915_WRITE(DSPSURF(plane),
2766 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2767 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2768 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2769 } else
f343c5f6 2770 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2771 POSTING_READ(reg);
17638cd6
JB
2772}
2773
a8d201af
ML
2774static void i9xx_disable_primary_plane(struct drm_plane *primary,
2775 struct drm_crtc *crtc)
17638cd6
JB
2776{
2777 struct drm_device *dev = crtc->dev;
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 2780 int plane = intel_crtc->plane;
f45651ba 2781
a8d201af
ML
2782 I915_WRITE(DSPCNTR(plane), 0);
2783 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 2784 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
2785 else
2786 I915_WRITE(DSPADDR(plane), 0);
2787 POSTING_READ(DSPCNTR(plane));
2788}
c9ba6fad 2789
a8d201af
ML
2790static void ironlake_update_primary_plane(struct drm_plane *primary,
2791 const struct intel_crtc_state *crtc_state,
2792 const struct intel_plane_state *plane_state)
2793{
2794 struct drm_device *dev = primary->dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2797 struct drm_framebuffer *fb = plane_state->base.fb;
2798 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2799 int plane = intel_crtc->plane;
54ea9da8 2800 u32 linear_offset;
a8d201af
ML
2801 u32 dspcntr;
2802 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2803 unsigned int rotation = plane_state->base.rotation;
ac484963 2804 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
a8d201af
ML
2805 int x = plane_state->src.x1 >> 16;
2806 int y = plane_state->src.y1 >> 16;
c9ba6fad 2807
f45651ba 2808 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 2809 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2810
2811 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2812 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2813
57779d06
VS
2814 switch (fb->pixel_format) {
2815 case DRM_FORMAT_C8:
17638cd6
JB
2816 dspcntr |= DISPPLANE_8BPP;
2817 break;
57779d06
VS
2818 case DRM_FORMAT_RGB565:
2819 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2820 break;
57779d06 2821 case DRM_FORMAT_XRGB8888:
57779d06
VS
2822 dspcntr |= DISPPLANE_BGRX888;
2823 break;
2824 case DRM_FORMAT_XBGR8888:
57779d06
VS
2825 dspcntr |= DISPPLANE_RGBX888;
2826 break;
2827 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2828 dspcntr |= DISPPLANE_BGRX101010;
2829 break;
2830 case DRM_FORMAT_XBGR2101010:
57779d06 2831 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2832 break;
2833 default:
baba133a 2834 BUG();
17638cd6
JB
2835 }
2836
2837 if (obj->tiling_mode != I915_TILING_NONE)
2838 dspcntr |= DISPPLANE_TILED;
17638cd6 2839
f45651ba 2840 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2841 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2842
ac484963 2843 linear_offset = y * fb->pitches[0] + x * cpp;
c2c75131 2844 intel_crtc->dspaddr_offset =
4f2d9934 2845 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2846 fb->pitches[0], rotation);
c2c75131 2847 linear_offset -= intel_crtc->dspaddr_offset;
8d0deca8 2848 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2849 dspcntr |= DISPPLANE_ROTATE_180;
2850
2851 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
2852 x += (crtc_state->pipe_src_w - 1);
2853 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2854
2855 /* Finding the last pixel of the last line of the display
2856 data and adding to linear_offset*/
2857 linear_offset +=
a8d201af 2858 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2859 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2860 }
2861 }
2862
2db3366b
PZ
2863 intel_crtc->adjusted_x = x;
2864 intel_crtc->adjusted_y = y;
2865
48404c1e 2866 I915_WRITE(reg, dspcntr);
17638cd6 2867
01f2c773 2868 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2869 I915_WRITE(DSPSURF(plane),
2870 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2871 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2872 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873 } else {
2874 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876 }
17638cd6 2877 POSTING_READ(reg);
17638cd6
JB
2878}
2879
7b49f948
VS
2880u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2881 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 2882{
7b49f948 2883 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 2884 return 64;
7b49f948
VS
2885 } else {
2886 int cpp = drm_format_plane_cpp(pixel_format, 0);
2887
27ba3910 2888 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
2889 }
2890}
2891
44eb0cb9
MK
2892u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2893 struct drm_i915_gem_object *obj,
2894 unsigned int plane)
121920fa 2895{
ce7f1728 2896 struct i915_ggtt_view view;
dedf278c 2897 struct i915_vma *vma;
44eb0cb9 2898 u64 offset;
121920fa 2899
e7941294 2900 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
3465c580 2901 intel_plane->base.state->rotation);
121920fa 2902
ce7f1728 2903 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2904 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2905 view.type))
dedf278c
TU
2906 return -1;
2907
44eb0cb9 2908 offset = vma->node.start;
dedf278c
TU
2909
2910 if (plane == 1) {
7723f47d 2911 offset += vma->ggtt_view.params.rotated.uv_start_page *
dedf278c
TU
2912 PAGE_SIZE;
2913 }
2914
44eb0cb9
MK
2915 WARN_ON(upper_32_bits(offset));
2916
2917 return lower_32_bits(offset);
121920fa
TU
2918}
2919
e435d6e5
ML
2920static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2921{
2922 struct drm_device *dev = intel_crtc->base.dev;
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924
2925 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2926 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2927 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2928}
2929
a1b2278e
CK
2930/*
2931 * This function detaches (aka. unbinds) unused scalers in hardware
2932 */
0583236e 2933static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2934{
a1b2278e
CK
2935 struct intel_crtc_scaler_state *scaler_state;
2936 int i;
2937
a1b2278e
CK
2938 scaler_state = &intel_crtc->config->scaler_state;
2939
2940 /* loop through and disable scalers that aren't in use */
2941 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2942 if (!scaler_state->scalers[i].in_use)
2943 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2944 }
2945}
2946
6156a456 2947u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2948{
6156a456 2949 switch (pixel_format) {
d161cf7a 2950 case DRM_FORMAT_C8:
c34ce3d1 2951 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2952 case DRM_FORMAT_RGB565:
c34ce3d1 2953 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2954 case DRM_FORMAT_XBGR8888:
c34ce3d1 2955 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2956 case DRM_FORMAT_XRGB8888:
c34ce3d1 2957 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2958 /*
2959 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2960 * to be already pre-multiplied. We need to add a knob (or a different
2961 * DRM_FORMAT) for user-space to configure that.
2962 */
f75fb42a 2963 case DRM_FORMAT_ABGR8888:
c34ce3d1 2964 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2965 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2966 case DRM_FORMAT_ARGB8888:
c34ce3d1 2967 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2968 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2969 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2970 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2971 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2972 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2973 case DRM_FORMAT_YUYV:
c34ce3d1 2974 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2975 case DRM_FORMAT_YVYU:
c34ce3d1 2976 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2977 case DRM_FORMAT_UYVY:
c34ce3d1 2978 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2979 case DRM_FORMAT_VYUY:
c34ce3d1 2980 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2981 default:
4249eeef 2982 MISSING_CASE(pixel_format);
70d21f0e 2983 }
8cfcba41 2984
c34ce3d1 2985 return 0;
6156a456 2986}
70d21f0e 2987
6156a456
CK
2988u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2989{
6156a456 2990 switch (fb_modifier) {
30af77c4 2991 case DRM_FORMAT_MOD_NONE:
70d21f0e 2992 break;
30af77c4 2993 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2994 return PLANE_CTL_TILED_X;
b321803d 2995 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2996 return PLANE_CTL_TILED_Y;
b321803d 2997 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2998 return PLANE_CTL_TILED_YF;
70d21f0e 2999 default:
6156a456 3000 MISSING_CASE(fb_modifier);
70d21f0e 3001 }
8cfcba41 3002
c34ce3d1 3003 return 0;
6156a456 3004}
70d21f0e 3005
6156a456
CK
3006u32 skl_plane_ctl_rotation(unsigned int rotation)
3007{
3b7a5119 3008 switch (rotation) {
6156a456
CK
3009 case BIT(DRM_ROTATE_0):
3010 break;
1e8df167
SJ
3011 /*
3012 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3013 * while i915 HW rotation is clockwise, thats why this swapping.
3014 */
3b7a5119 3015 case BIT(DRM_ROTATE_90):
1e8df167 3016 return PLANE_CTL_ROTATE_270;
3b7a5119 3017 case BIT(DRM_ROTATE_180):
c34ce3d1 3018 return PLANE_CTL_ROTATE_180;
3b7a5119 3019 case BIT(DRM_ROTATE_270):
1e8df167 3020 return PLANE_CTL_ROTATE_90;
6156a456
CK
3021 default:
3022 MISSING_CASE(rotation);
3023 }
3024
c34ce3d1 3025 return 0;
6156a456
CK
3026}
3027
a8d201af
ML
3028static void skylake_update_primary_plane(struct drm_plane *plane,
3029 const struct intel_crtc_state *crtc_state,
3030 const struct intel_plane_state *plane_state)
6156a456 3031{
a8d201af 3032 struct drm_device *dev = plane->dev;
6156a456 3033 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
3034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3035 struct drm_framebuffer *fb = plane_state->base.fb;
3036 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6156a456
CK
3037 int pipe = intel_crtc->pipe;
3038 u32 plane_ctl, stride_div, stride;
3039 u32 tile_height, plane_offset, plane_size;
a8d201af 3040 unsigned int rotation = plane_state->base.rotation;
6156a456 3041 int x_offset, y_offset;
44eb0cb9 3042 u32 surf_addr;
a8d201af
ML
3043 int scaler_id = plane_state->scaler_id;
3044 int src_x = plane_state->src.x1 >> 16;
3045 int src_y = plane_state->src.y1 >> 16;
3046 int src_w = drm_rect_width(&plane_state->src) >> 16;
3047 int src_h = drm_rect_height(&plane_state->src) >> 16;
3048 int dst_x = plane_state->dst.x1;
3049 int dst_y = plane_state->dst.y1;
3050 int dst_w = drm_rect_width(&plane_state->dst);
3051 int dst_h = drm_rect_height(&plane_state->dst);
70d21f0e 3052
6156a456
CK
3053 plane_ctl = PLANE_CTL_ENABLE |
3054 PLANE_CTL_PIPE_GAMMA_ENABLE |
3055 PLANE_CTL_PIPE_CSC_ENABLE;
3056
3057 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3058 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3059 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3060 plane_ctl |= skl_plane_ctl_rotation(rotation);
3061
7b49f948 3062 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
b321803d 3063 fb->pixel_format);
dedf278c 3064 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3065
a42e5a23
PZ
3066 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3067
3b7a5119 3068 if (intel_rotation_90_or_270(rotation)) {
832be82f
VS
3069 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3070
3b7a5119 3071 /* stride = Surface height in tiles */
832be82f 3072 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3b7a5119 3073 stride = DIV_ROUND_UP(fb->height, tile_height);
a8d201af
ML
3074 x_offset = stride * tile_height - src_y - src_h;
3075 y_offset = src_x;
6156a456 3076 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3077 } else {
3078 stride = fb->pitches[0] / stride_div;
a8d201af
ML
3079 x_offset = src_x;
3080 y_offset = src_y;
6156a456 3081 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3082 }
3083 plane_offset = y_offset << 16 | x_offset;
b321803d 3084
2db3366b
PZ
3085 intel_crtc->adjusted_x = x_offset;
3086 intel_crtc->adjusted_y = y_offset;
3087
70d21f0e 3088 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3089 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3090 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3091 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3092
3093 if (scaler_id >= 0) {
3094 uint32_t ps_ctrl = 0;
3095
3096 WARN_ON(!dst_w || !dst_h);
3097 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3098 crtc_state->scaler_state.scalers[scaler_id].mode;
3099 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3100 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3101 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3102 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3103 I915_WRITE(PLANE_POS(pipe, 0), 0);
3104 } else {
3105 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3106 }
3107
121920fa 3108 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3109
3110 POSTING_READ(PLANE_SURF(pipe, 0));
3111}
3112
a8d201af
ML
3113static void skylake_disable_primary_plane(struct drm_plane *primary,
3114 struct drm_crtc *crtc)
17638cd6
JB
3115{
3116 struct drm_device *dev = crtc->dev;
3117 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af 3118 int pipe = to_intel_crtc(crtc)->pipe;
17638cd6 3119
a8d201af
ML
3120 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3121 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3122 POSTING_READ(PLANE_SURF(pipe, 0));
3123}
29b9bde6 3124
a8d201af
ML
3125/* Assume fb object is pinned & idle & fenced and just update base pointers */
3126static int
3127intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3128 int x, int y, enum mode_set_atomic state)
3129{
3130 /* Support for kgdboc is disabled, this needs a major rework. */
3131 DRM_ERROR("legacy panic handler not supported any more.\n");
3132
3133 return -ENODEV;
81255565
JB
3134}
3135
5a21b665
DV
3136static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3137{
3138 struct intel_crtc *crtc;
3139
3140 for_each_intel_crtc(dev_priv->dev, crtc)
3141 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3142}
3143
7514747d
VS
3144static void intel_update_primary_planes(struct drm_device *dev)
3145{
7514747d 3146 struct drm_crtc *crtc;
96a02917 3147
70e1e0ec 3148 for_each_crtc(dev, crtc) {
11c22da6
ML
3149 struct intel_plane *plane = to_intel_plane(crtc->primary);
3150 struct intel_plane_state *plane_state;
96a02917 3151
11c22da6 3152 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3153 plane_state = to_intel_plane_state(plane->base.state);
3154
a8d201af
ML
3155 if (plane_state->visible)
3156 plane->update_plane(&plane->base,
3157 to_intel_crtc_state(crtc->state),
3158 plane_state);
11c22da6
ML
3159
3160 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3161 }
3162}
3163
c033666a 3164void intel_prepare_reset(struct drm_i915_private *dev_priv)
7514747d
VS
3165{
3166 /* no reset support for gen2 */
c033666a 3167 if (IS_GEN2(dev_priv))
7514747d
VS
3168 return;
3169
3170 /* reset doesn't touch the display */
c033666a 3171 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
7514747d
VS
3172 return;
3173
c033666a 3174 drm_modeset_lock_all(dev_priv->dev);
f98ce92f
VS
3175 /*
3176 * Disabling the crtcs gracefully seems nicer. Also the
3177 * g33 docs say we should at least disable all the planes.
3178 */
c033666a 3179 intel_display_suspend(dev_priv->dev);
7514747d
VS
3180}
3181
c033666a 3182void intel_finish_reset(struct drm_i915_private *dev_priv)
7514747d 3183{
5a21b665
DV
3184 /*
3185 * Flips in the rings will be nuked by the reset,
3186 * so complete all pending flips so that user space
3187 * will get its events and not get stuck.
3188 */
3189 intel_complete_page_flips(dev_priv);
3190
7514747d 3191 /* no reset support for gen2 */
c033666a 3192 if (IS_GEN2(dev_priv))
7514747d
VS
3193 return;
3194
3195 /* reset doesn't touch the display */
c033666a 3196 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
7514747d
VS
3197 /*
3198 * Flips in the rings have been nuked by the reset,
3199 * so update the base address of all primary
3200 * planes to the the last fb to make sure we're
3201 * showing the correct fb after a reset.
11c22da6
ML
3202 *
3203 * FIXME: Atomic will make this obsolete since we won't schedule
3204 * CS-based flips (which might get lost in gpu resets) any more.
7514747d 3205 */
c033666a 3206 intel_update_primary_planes(dev_priv->dev);
7514747d
VS
3207 return;
3208 }
3209
3210 /*
3211 * The display has been reset as well,
3212 * so need a full re-initialization.
3213 */
3214 intel_runtime_pm_disable_interrupts(dev_priv);
3215 intel_runtime_pm_enable_interrupts(dev_priv);
3216
c033666a 3217 intel_modeset_init_hw(dev_priv->dev);
7514747d
VS
3218
3219 spin_lock_irq(&dev_priv->irq_lock);
3220 if (dev_priv->display.hpd_irq_setup)
91d14251 3221 dev_priv->display.hpd_irq_setup(dev_priv);
7514747d
VS
3222 spin_unlock_irq(&dev_priv->irq_lock);
3223
c033666a 3224 intel_display_resume(dev_priv->dev);
7514747d
VS
3225
3226 intel_hpd_init(dev_priv);
3227
c033666a 3228 drm_modeset_unlock_all(dev_priv->dev);
7514747d
VS
3229}
3230
7d5e3799
CW
3231static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3232{
5a21b665
DV
3233 struct drm_device *dev = crtc->dev;
3234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3235 unsigned reset_counter;
3236 bool pending;
3237
3238 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3239 if (intel_crtc->reset_counter != reset_counter)
3240 return false;
3241
3242 spin_lock_irq(&dev->event_lock);
3243 pending = to_intel_crtc(crtc)->flip_work != NULL;
3244 spin_unlock_irq(&dev->event_lock);
3245
3246 return pending;
7d5e3799
CW
3247}
3248
bfd16b2a
ML
3249static void intel_update_pipe_config(struct intel_crtc *crtc,
3250 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3251{
3252 struct drm_device *dev = crtc->base.dev;
3253 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3254 struct intel_crtc_state *pipe_config =
3255 to_intel_crtc_state(crtc->base.state);
e30e8f75 3256
bfd16b2a
ML
3257 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3258 crtc->base.mode = crtc->base.state->mode;
3259
3260 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3261 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3262 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75
GP
3263
3264 /*
3265 * Update pipe size and adjust fitter if needed: the reason for this is
3266 * that in compute_mode_changes we check the native mode (not the pfit
3267 * mode) to see if we can flip rather than do a full mode set. In the
3268 * fastboot case, we'll flip, but if we don't update the pipesrc and
3269 * pfit state, we'll end up with a big fb scanned out into the wrong
3270 * sized surface.
e30e8f75
GP
3271 */
3272
e30e8f75 3273 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3274 ((pipe_config->pipe_src_w - 1) << 16) |
3275 (pipe_config->pipe_src_h - 1));
3276
3277 /* on skylake this is done by detaching scalers */
3278 if (INTEL_INFO(dev)->gen >= 9) {
3279 skl_detach_scalers(crtc);
3280
3281 if (pipe_config->pch_pfit.enabled)
3282 skylake_pfit_enable(crtc);
3283 } else if (HAS_PCH_SPLIT(dev)) {
3284 if (pipe_config->pch_pfit.enabled)
3285 ironlake_pfit_enable(crtc);
3286 else if (old_crtc_state->pch_pfit.enabled)
3287 ironlake_pfit_disable(crtc, true);
e30e8f75 3288 }
e30e8f75
GP
3289}
3290
5e84e1a4
ZW
3291static void intel_fdi_normal_train(struct drm_crtc *crtc)
3292{
3293 struct drm_device *dev = crtc->dev;
3294 struct drm_i915_private *dev_priv = dev->dev_private;
3295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3296 int pipe = intel_crtc->pipe;
f0f59a00
VS
3297 i915_reg_t reg;
3298 u32 temp;
5e84e1a4
ZW
3299
3300 /* enable normal train */
3301 reg = FDI_TX_CTL(pipe);
3302 temp = I915_READ(reg);
61e499bf 3303 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3304 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3305 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3306 } else {
3307 temp &= ~FDI_LINK_TRAIN_NONE;
3308 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3309 }
5e84e1a4
ZW
3310 I915_WRITE(reg, temp);
3311
3312 reg = FDI_RX_CTL(pipe);
3313 temp = I915_READ(reg);
3314 if (HAS_PCH_CPT(dev)) {
3315 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3316 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3317 } else {
3318 temp &= ~FDI_LINK_TRAIN_NONE;
3319 temp |= FDI_LINK_TRAIN_NONE;
3320 }
3321 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3322
3323 /* wait one idle pattern time */
3324 POSTING_READ(reg);
3325 udelay(1000);
357555c0
JB
3326
3327 /* IVB wants error correction enabled */
3328 if (IS_IVYBRIDGE(dev))
3329 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3330 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3331}
3332
8db9d77b
ZW
3333/* The FDI link training functions for ILK/Ibexpeak. */
3334static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3335{
3336 struct drm_device *dev = crtc->dev;
3337 struct drm_i915_private *dev_priv = dev->dev_private;
3338 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3339 int pipe = intel_crtc->pipe;
f0f59a00
VS
3340 i915_reg_t reg;
3341 u32 temp, tries;
8db9d77b 3342
1c8562f6 3343 /* FDI needs bits from pipe first */
0fc932b8 3344 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3345
e1a44743
AJ
3346 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3347 for train result */
5eddb70b
CW
3348 reg = FDI_RX_IMR(pipe);
3349 temp = I915_READ(reg);
e1a44743
AJ
3350 temp &= ~FDI_RX_SYMBOL_LOCK;
3351 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3352 I915_WRITE(reg, temp);
3353 I915_READ(reg);
e1a44743
AJ
3354 udelay(150);
3355
8db9d77b 3356 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3357 reg = FDI_TX_CTL(pipe);
3358 temp = I915_READ(reg);
627eb5a3 3359 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3360 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3361 temp &= ~FDI_LINK_TRAIN_NONE;
3362 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3363 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3364
5eddb70b
CW
3365 reg = FDI_RX_CTL(pipe);
3366 temp = I915_READ(reg);
8db9d77b
ZW
3367 temp &= ~FDI_LINK_TRAIN_NONE;
3368 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3369 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3370
3371 POSTING_READ(reg);
8db9d77b
ZW
3372 udelay(150);
3373
5b2adf89 3374 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3375 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3376 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3377 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3378
5eddb70b 3379 reg = FDI_RX_IIR(pipe);
e1a44743 3380 for (tries = 0; tries < 5; tries++) {
5eddb70b 3381 temp = I915_READ(reg);
8db9d77b
ZW
3382 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3383
3384 if ((temp & FDI_RX_BIT_LOCK)) {
3385 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3386 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3387 break;
3388 }
8db9d77b 3389 }
e1a44743 3390 if (tries == 5)
5eddb70b 3391 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3392
3393 /* Train 2 */
5eddb70b
CW
3394 reg = FDI_TX_CTL(pipe);
3395 temp = I915_READ(reg);
8db9d77b
ZW
3396 temp &= ~FDI_LINK_TRAIN_NONE;
3397 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3398 I915_WRITE(reg, temp);
8db9d77b 3399
5eddb70b
CW
3400 reg = FDI_RX_CTL(pipe);
3401 temp = I915_READ(reg);
8db9d77b
ZW
3402 temp &= ~FDI_LINK_TRAIN_NONE;
3403 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3404 I915_WRITE(reg, temp);
8db9d77b 3405
5eddb70b
CW
3406 POSTING_READ(reg);
3407 udelay(150);
8db9d77b 3408
5eddb70b 3409 reg = FDI_RX_IIR(pipe);
e1a44743 3410 for (tries = 0; tries < 5; tries++) {
5eddb70b 3411 temp = I915_READ(reg);
8db9d77b
ZW
3412 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413
3414 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3415 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3416 DRM_DEBUG_KMS("FDI train 2 done.\n");
3417 break;
3418 }
8db9d77b 3419 }
e1a44743 3420 if (tries == 5)
5eddb70b 3421 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3422
3423 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3424
8db9d77b
ZW
3425}
3426
0206e353 3427static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3428 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3429 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3430 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3431 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3432};
3433
3434/* The FDI link training functions for SNB/Cougarpoint. */
3435static void gen6_fdi_link_train(struct drm_crtc *crtc)
3436{
3437 struct drm_device *dev = crtc->dev;
3438 struct drm_i915_private *dev_priv = dev->dev_private;
3439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3440 int pipe = intel_crtc->pipe;
f0f59a00
VS
3441 i915_reg_t reg;
3442 u32 temp, i, retry;
8db9d77b 3443
e1a44743
AJ
3444 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3445 for train result */
5eddb70b
CW
3446 reg = FDI_RX_IMR(pipe);
3447 temp = I915_READ(reg);
e1a44743
AJ
3448 temp &= ~FDI_RX_SYMBOL_LOCK;
3449 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3450 I915_WRITE(reg, temp);
3451
3452 POSTING_READ(reg);
e1a44743
AJ
3453 udelay(150);
3454
8db9d77b 3455 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3456 reg = FDI_TX_CTL(pipe);
3457 temp = I915_READ(reg);
627eb5a3 3458 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3459 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3460 temp &= ~FDI_LINK_TRAIN_NONE;
3461 temp |= FDI_LINK_TRAIN_PATTERN_1;
3462 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3463 /* SNB-B */
3464 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3465 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3466
d74cf324
DV
3467 I915_WRITE(FDI_RX_MISC(pipe),
3468 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3469
5eddb70b
CW
3470 reg = FDI_RX_CTL(pipe);
3471 temp = I915_READ(reg);
8db9d77b
ZW
3472 if (HAS_PCH_CPT(dev)) {
3473 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3474 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3475 } else {
3476 temp &= ~FDI_LINK_TRAIN_NONE;
3477 temp |= FDI_LINK_TRAIN_PATTERN_1;
3478 }
5eddb70b
CW
3479 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3480
3481 POSTING_READ(reg);
8db9d77b
ZW
3482 udelay(150);
3483
0206e353 3484 for (i = 0; i < 4; i++) {
5eddb70b
CW
3485 reg = FDI_TX_CTL(pipe);
3486 temp = I915_READ(reg);
8db9d77b
ZW
3487 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3488 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3489 I915_WRITE(reg, temp);
3490
3491 POSTING_READ(reg);
8db9d77b
ZW
3492 udelay(500);
3493
fa37d39e
SP
3494 for (retry = 0; retry < 5; retry++) {
3495 reg = FDI_RX_IIR(pipe);
3496 temp = I915_READ(reg);
3497 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3498 if (temp & FDI_RX_BIT_LOCK) {
3499 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3500 DRM_DEBUG_KMS("FDI train 1 done.\n");
3501 break;
3502 }
3503 udelay(50);
8db9d77b 3504 }
fa37d39e
SP
3505 if (retry < 5)
3506 break;
8db9d77b
ZW
3507 }
3508 if (i == 4)
5eddb70b 3509 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3510
3511 /* Train 2 */
5eddb70b
CW
3512 reg = FDI_TX_CTL(pipe);
3513 temp = I915_READ(reg);
8db9d77b
ZW
3514 temp &= ~FDI_LINK_TRAIN_NONE;
3515 temp |= FDI_LINK_TRAIN_PATTERN_2;
3516 if (IS_GEN6(dev)) {
3517 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3518 /* SNB-B */
3519 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3520 }
5eddb70b 3521 I915_WRITE(reg, temp);
8db9d77b 3522
5eddb70b
CW
3523 reg = FDI_RX_CTL(pipe);
3524 temp = I915_READ(reg);
8db9d77b
ZW
3525 if (HAS_PCH_CPT(dev)) {
3526 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3527 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3528 } else {
3529 temp &= ~FDI_LINK_TRAIN_NONE;
3530 temp |= FDI_LINK_TRAIN_PATTERN_2;
3531 }
5eddb70b
CW
3532 I915_WRITE(reg, temp);
3533
3534 POSTING_READ(reg);
8db9d77b
ZW
3535 udelay(150);
3536
0206e353 3537 for (i = 0; i < 4; i++) {
5eddb70b
CW
3538 reg = FDI_TX_CTL(pipe);
3539 temp = I915_READ(reg);
8db9d77b
ZW
3540 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3541 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3542 I915_WRITE(reg, temp);
3543
3544 POSTING_READ(reg);
8db9d77b
ZW
3545 udelay(500);
3546
fa37d39e
SP
3547 for (retry = 0; retry < 5; retry++) {
3548 reg = FDI_RX_IIR(pipe);
3549 temp = I915_READ(reg);
3550 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3551 if (temp & FDI_RX_SYMBOL_LOCK) {
3552 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3553 DRM_DEBUG_KMS("FDI train 2 done.\n");
3554 break;
3555 }
3556 udelay(50);
8db9d77b 3557 }
fa37d39e
SP
3558 if (retry < 5)
3559 break;
8db9d77b
ZW
3560 }
3561 if (i == 4)
5eddb70b 3562 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3563
3564 DRM_DEBUG_KMS("FDI train done.\n");
3565}
3566
357555c0
JB
3567/* Manual link training for Ivy Bridge A0 parts */
3568static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3569{
3570 struct drm_device *dev = crtc->dev;
3571 struct drm_i915_private *dev_priv = dev->dev_private;
3572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3573 int pipe = intel_crtc->pipe;
f0f59a00
VS
3574 i915_reg_t reg;
3575 u32 temp, i, j;
357555c0
JB
3576
3577 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3578 for train result */
3579 reg = FDI_RX_IMR(pipe);
3580 temp = I915_READ(reg);
3581 temp &= ~FDI_RX_SYMBOL_LOCK;
3582 temp &= ~FDI_RX_BIT_LOCK;
3583 I915_WRITE(reg, temp);
3584
3585 POSTING_READ(reg);
3586 udelay(150);
3587
01a415fd
DV
3588 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3589 I915_READ(FDI_RX_IIR(pipe)));
3590
139ccd3f
JB
3591 /* Try each vswing and preemphasis setting twice before moving on */
3592 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3593 /* disable first in case we need to retry */
3594 reg = FDI_TX_CTL(pipe);
3595 temp = I915_READ(reg);
3596 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3597 temp &= ~FDI_TX_ENABLE;
3598 I915_WRITE(reg, temp);
357555c0 3599
139ccd3f
JB
3600 reg = FDI_RX_CTL(pipe);
3601 temp = I915_READ(reg);
3602 temp &= ~FDI_LINK_TRAIN_AUTO;
3603 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3604 temp &= ~FDI_RX_ENABLE;
3605 I915_WRITE(reg, temp);
357555c0 3606
139ccd3f 3607 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3608 reg = FDI_TX_CTL(pipe);
3609 temp = I915_READ(reg);
139ccd3f 3610 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3611 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3612 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3613 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3614 temp |= snb_b_fdi_train_param[j/2];
3615 temp |= FDI_COMPOSITE_SYNC;
3616 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3617
139ccd3f
JB
3618 I915_WRITE(FDI_RX_MISC(pipe),
3619 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3620
139ccd3f 3621 reg = FDI_RX_CTL(pipe);
357555c0 3622 temp = I915_READ(reg);
139ccd3f
JB
3623 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3624 temp |= FDI_COMPOSITE_SYNC;
3625 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3626
139ccd3f
JB
3627 POSTING_READ(reg);
3628 udelay(1); /* should be 0.5us */
357555c0 3629
139ccd3f
JB
3630 for (i = 0; i < 4; i++) {
3631 reg = FDI_RX_IIR(pipe);
3632 temp = I915_READ(reg);
3633 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3634
139ccd3f
JB
3635 if (temp & FDI_RX_BIT_LOCK ||
3636 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3637 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3638 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3639 i);
3640 break;
3641 }
3642 udelay(1); /* should be 0.5us */
3643 }
3644 if (i == 4) {
3645 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3646 continue;
3647 }
357555c0 3648
139ccd3f 3649 /* Train 2 */
357555c0
JB
3650 reg = FDI_TX_CTL(pipe);
3651 temp = I915_READ(reg);
139ccd3f
JB
3652 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3653 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3654 I915_WRITE(reg, temp);
3655
3656 reg = FDI_RX_CTL(pipe);
3657 temp = I915_READ(reg);
3658 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3659 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3660 I915_WRITE(reg, temp);
3661
3662 POSTING_READ(reg);
139ccd3f 3663 udelay(2); /* should be 1.5us */
357555c0 3664
139ccd3f
JB
3665 for (i = 0; i < 4; i++) {
3666 reg = FDI_RX_IIR(pipe);
3667 temp = I915_READ(reg);
3668 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3669
139ccd3f
JB
3670 if (temp & FDI_RX_SYMBOL_LOCK ||
3671 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3672 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3673 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3674 i);
3675 goto train_done;
3676 }
3677 udelay(2); /* should be 1.5us */
357555c0 3678 }
139ccd3f
JB
3679 if (i == 4)
3680 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3681 }
357555c0 3682
139ccd3f 3683train_done:
357555c0
JB
3684 DRM_DEBUG_KMS("FDI train done.\n");
3685}
3686
88cefb6c 3687static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3688{
88cefb6c 3689 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3690 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3691 int pipe = intel_crtc->pipe;
f0f59a00
VS
3692 i915_reg_t reg;
3693 u32 temp;
c64e311e 3694
c98e9dcf 3695 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3696 reg = FDI_RX_CTL(pipe);
3697 temp = I915_READ(reg);
627eb5a3 3698 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3699 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3700 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3701 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3702
3703 POSTING_READ(reg);
c98e9dcf
JB
3704 udelay(200);
3705
3706 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3707 temp = I915_READ(reg);
3708 I915_WRITE(reg, temp | FDI_PCDCLK);
3709
3710 POSTING_READ(reg);
c98e9dcf
JB
3711 udelay(200);
3712
20749730
PZ
3713 /* Enable CPU FDI TX PLL, always on for Ironlake */
3714 reg = FDI_TX_CTL(pipe);
3715 temp = I915_READ(reg);
3716 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3717 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3718
20749730
PZ
3719 POSTING_READ(reg);
3720 udelay(100);
6be4a607 3721 }
0e23b99d
JB
3722}
3723
88cefb6c
DV
3724static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3725{
3726 struct drm_device *dev = intel_crtc->base.dev;
3727 struct drm_i915_private *dev_priv = dev->dev_private;
3728 int pipe = intel_crtc->pipe;
f0f59a00
VS
3729 i915_reg_t reg;
3730 u32 temp;
88cefb6c
DV
3731
3732 /* Switch from PCDclk to Rawclk */
3733 reg = FDI_RX_CTL(pipe);
3734 temp = I915_READ(reg);
3735 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3736
3737 /* Disable CPU FDI TX PLL */
3738 reg = FDI_TX_CTL(pipe);
3739 temp = I915_READ(reg);
3740 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3741
3742 POSTING_READ(reg);
3743 udelay(100);
3744
3745 reg = FDI_RX_CTL(pipe);
3746 temp = I915_READ(reg);
3747 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3748
3749 /* Wait for the clocks to turn off. */
3750 POSTING_READ(reg);
3751 udelay(100);
3752}
3753
0fc932b8
JB
3754static void ironlake_fdi_disable(struct drm_crtc *crtc)
3755{
3756 struct drm_device *dev = crtc->dev;
3757 struct drm_i915_private *dev_priv = dev->dev_private;
3758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3759 int pipe = intel_crtc->pipe;
f0f59a00
VS
3760 i915_reg_t reg;
3761 u32 temp;
0fc932b8
JB
3762
3763 /* disable CPU FDI tx and PCH FDI rx */
3764 reg = FDI_TX_CTL(pipe);
3765 temp = I915_READ(reg);
3766 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3767 POSTING_READ(reg);
3768
3769 reg = FDI_RX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 temp &= ~(0x7 << 16);
dfd07d72 3772 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3773 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3774
3775 POSTING_READ(reg);
3776 udelay(100);
3777
3778 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3779 if (HAS_PCH_IBX(dev))
6f06ce18 3780 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3781
3782 /* still set train pattern 1 */
3783 reg = FDI_TX_CTL(pipe);
3784 temp = I915_READ(reg);
3785 temp &= ~FDI_LINK_TRAIN_NONE;
3786 temp |= FDI_LINK_TRAIN_PATTERN_1;
3787 I915_WRITE(reg, temp);
3788
3789 reg = FDI_RX_CTL(pipe);
3790 temp = I915_READ(reg);
3791 if (HAS_PCH_CPT(dev)) {
3792 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3793 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3794 } else {
3795 temp &= ~FDI_LINK_TRAIN_NONE;
3796 temp |= FDI_LINK_TRAIN_PATTERN_1;
3797 }
3798 /* BPC in FDI rx is consistent with that in PIPECONF */
3799 temp &= ~(0x07 << 16);
dfd07d72 3800 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3801 I915_WRITE(reg, temp);
3802
3803 POSTING_READ(reg);
3804 udelay(100);
3805}
3806
5dce5b93
CW
3807bool intel_has_pending_fb_unpin(struct drm_device *dev)
3808{
3809 struct intel_crtc *crtc;
3810
3811 /* Note that we don't need to be called with mode_config.lock here
3812 * as our list of CRTC objects is static for the lifetime of the
3813 * device and so cannot disappear as we iterate. Similarly, we can
3814 * happily treat the predicates as racy, atomic checks as userspace
3815 * cannot claim and pin a new fb without at least acquring the
3816 * struct_mutex and so serialising with us.
3817 */
d3fcc808 3818 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3819 if (atomic_read(&crtc->unpin_work_count) == 0)
3820 continue;
3821
5a21b665 3822 if (crtc->flip_work)
5dce5b93
CW
3823 intel_wait_for_vblank(dev, crtc->pipe);
3824
3825 return true;
3826 }
3827
3828 return false;
3829}
3830
5a21b665 3831static void page_flip_completed(struct intel_crtc *intel_crtc)
d6bbafa1
CW
3832{
3833 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5a21b665
DV
3834 struct intel_flip_work *work = intel_crtc->flip_work;
3835
3836 intel_crtc->flip_work = NULL;
d6bbafa1
CW
3837
3838 if (work->event)
560ce1dc 3839 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
d6bbafa1
CW
3840
3841 drm_crtc_vblank_put(&intel_crtc->base);
3842
5a21b665 3843 wake_up_all(&dev_priv->pending_flip_queue);
143f73b3 3844 queue_work(dev_priv->wq, &work->unpin_work);
5a21b665
DV
3845
3846 trace_i915_flip_complete(intel_crtc->plane,
3847 work->pending_flip_obj);
d6bbafa1
CW
3848}
3849
5008e874 3850static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3851{
0f91128d 3852 struct drm_device *dev = crtc->dev;
5bb61643 3853 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3854 long ret;
e6c3a2a6 3855
2c10d571 3856 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3857
3858 ret = wait_event_interruptible_timeout(
3859 dev_priv->pending_flip_queue,
3860 !intel_crtc_has_pending_flip(crtc),
3861 60*HZ);
3862
3863 if (ret < 0)
3864 return ret;
3865
5a21b665
DV
3866 if (ret == 0) {
3867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3868 struct intel_flip_work *work;
3869
3870 spin_lock_irq(&dev->event_lock);
3871 work = intel_crtc->flip_work;
3872 if (work && !is_mmio_work(work)) {
3873 WARN_ONCE(1, "Removing stuck page flip\n");
3874 page_flip_completed(intel_crtc);
3875 }
3876 spin_unlock_irq(&dev->event_lock);
3877 }
5bb61643 3878
5008e874 3879 return 0;
e6c3a2a6
CW
3880}
3881
060f02d8
VS
3882static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3883{
3884 u32 temp;
3885
3886 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3887
3888 mutex_lock(&dev_priv->sb_lock);
3889
3890 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3891 temp |= SBI_SSCCTL_DISABLE;
3892 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3893
3894 mutex_unlock(&dev_priv->sb_lock);
3895}
3896
e615efe4
ED
3897/* Program iCLKIP clock to the desired frequency */
3898static void lpt_program_iclkip(struct drm_crtc *crtc)
3899{
64b46a06 3900 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 3901 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3902 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3903 u32 temp;
3904
060f02d8 3905 lpt_disable_iclkip(dev_priv);
e615efe4 3906
64b46a06
VS
3907 /* The iCLK virtual clock root frequency is in MHz,
3908 * but the adjusted_mode->crtc_clock in in KHz. To get the
3909 * divisors, it is necessary to divide one by another, so we
3910 * convert the virtual clock precision to KHz here for higher
3911 * precision.
3912 */
3913 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
3914 u32 iclk_virtual_root_freq = 172800 * 1000;
3915 u32 iclk_pi_range = 64;
64b46a06 3916 u32 desired_divisor;
e615efe4 3917
64b46a06
VS
3918 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3919 clock << auxdiv);
3920 divsel = (desired_divisor / iclk_pi_range) - 2;
3921 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 3922
64b46a06
VS
3923 /*
3924 * Near 20MHz is a corner case which is
3925 * out of range for the 7-bit divisor
3926 */
3927 if (divsel <= 0x7f)
3928 break;
e615efe4
ED
3929 }
3930
3931 /* This should not happen with any sane values */
3932 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3933 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3934 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3935 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3936
3937 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3938 clock,
e615efe4
ED
3939 auxdiv,
3940 divsel,
3941 phasedir,
3942 phaseinc);
3943
060f02d8
VS
3944 mutex_lock(&dev_priv->sb_lock);
3945
e615efe4 3946 /* Program SSCDIVINTPHASE6 */
988d6ee8 3947 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3948 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3949 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3950 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3951 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3952 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3953 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3954 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3955
3956 /* Program SSCAUXDIV */
988d6ee8 3957 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3958 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3959 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3960 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3961
3962 /* Enable modulator and associated divider */
988d6ee8 3963 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3964 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3965 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 3966
060f02d8
VS
3967 mutex_unlock(&dev_priv->sb_lock);
3968
e615efe4
ED
3969 /* Wait for initialization time */
3970 udelay(24);
3971
3972 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3973}
3974
8802e5b6
VS
3975int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3976{
3977 u32 divsel, phaseinc, auxdiv;
3978 u32 iclk_virtual_root_freq = 172800 * 1000;
3979 u32 iclk_pi_range = 64;
3980 u32 desired_divisor;
3981 u32 temp;
3982
3983 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3984 return 0;
3985
3986 mutex_lock(&dev_priv->sb_lock);
3987
3988 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3989 if (temp & SBI_SSCCTL_DISABLE) {
3990 mutex_unlock(&dev_priv->sb_lock);
3991 return 0;
3992 }
3993
3994 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3995 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3996 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3997 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3998 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3999
4000 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4001 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4002 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4003
4004 mutex_unlock(&dev_priv->sb_lock);
4005
4006 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4007
4008 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4009 desired_divisor << auxdiv);
4010}
4011
275f01b2
DV
4012static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4013 enum pipe pch_transcoder)
4014{
4015 struct drm_device *dev = crtc->base.dev;
4016 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4017 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4018
4019 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4020 I915_READ(HTOTAL(cpu_transcoder)));
4021 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4022 I915_READ(HBLANK(cpu_transcoder)));
4023 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4024 I915_READ(HSYNC(cpu_transcoder)));
4025
4026 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4027 I915_READ(VTOTAL(cpu_transcoder)));
4028 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4029 I915_READ(VBLANK(cpu_transcoder)));
4030 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4031 I915_READ(VSYNC(cpu_transcoder)));
4032 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4033 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4034}
4035
003632d9 4036static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4037{
4038 struct drm_i915_private *dev_priv = dev->dev_private;
4039 uint32_t temp;
4040
4041 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4042 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4043 return;
4044
4045 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4046 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4047
003632d9
ACO
4048 temp &= ~FDI_BC_BIFURCATION_SELECT;
4049 if (enable)
4050 temp |= FDI_BC_BIFURCATION_SELECT;
4051
4052 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4053 I915_WRITE(SOUTH_CHICKEN1, temp);
4054 POSTING_READ(SOUTH_CHICKEN1);
4055}
4056
4057static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4058{
4059 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4060
4061 switch (intel_crtc->pipe) {
4062 case PIPE_A:
4063 break;
4064 case PIPE_B:
6e3c9717 4065 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4066 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4067 else
003632d9 4068 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4069
4070 break;
4071 case PIPE_C:
003632d9 4072 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4073
4074 break;
4075 default:
4076 BUG();
4077 }
4078}
4079
c48b5305
VS
4080/* Return which DP Port should be selected for Transcoder DP control */
4081static enum port
4082intel_trans_dp_port_sel(struct drm_crtc *crtc)
4083{
4084 struct drm_device *dev = crtc->dev;
4085 struct intel_encoder *encoder;
4086
4087 for_each_encoder_on_crtc(dev, crtc, encoder) {
4088 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4089 encoder->type == INTEL_OUTPUT_EDP)
4090 return enc_to_dig_port(&encoder->base)->port;
4091 }
4092
4093 return -1;
4094}
4095
f67a559d
JB
4096/*
4097 * Enable PCH resources required for PCH ports:
4098 * - PCH PLLs
4099 * - FDI training & RX/TX
4100 * - update transcoder timings
4101 * - DP transcoding bits
4102 * - transcoder
4103 */
4104static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4105{
4106 struct drm_device *dev = crtc->dev;
4107 struct drm_i915_private *dev_priv = dev->dev_private;
4108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4109 int pipe = intel_crtc->pipe;
f0f59a00 4110 u32 temp;
2c07245f 4111
ab9412ba 4112 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4113
1fbc0d78
DV
4114 if (IS_IVYBRIDGE(dev))
4115 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4116
cd986abb
DV
4117 /* Write the TU size bits before fdi link training, so that error
4118 * detection works. */
4119 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4120 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4121
c98e9dcf 4122 /* For PCH output, training FDI link */
674cf967 4123 dev_priv->display.fdi_link_train(crtc);
2c07245f 4124
3ad8a208
DV
4125 /* We need to program the right clock selection before writing the pixel
4126 * mutliplier into the DPLL. */
303b81e0 4127 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4128 u32 sel;
4b645f14 4129
c98e9dcf 4130 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4131 temp |= TRANS_DPLL_ENABLE(pipe);
4132 sel = TRANS_DPLLB_SEL(pipe);
8106ddbd
ACO
4133 if (intel_crtc->config->shared_dpll ==
4134 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
ee7b9f93
JB
4135 temp |= sel;
4136 else
4137 temp &= ~sel;
c98e9dcf 4138 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4139 }
5eddb70b 4140
3ad8a208
DV
4141 /* XXX: pch pll's can be enabled any time before we enable the PCH
4142 * transcoder, and we actually should do this to not upset any PCH
4143 * transcoder that already use the clock when we share it.
4144 *
4145 * Note that enable_shared_dpll tries to do the right thing, but
4146 * get_shared_dpll unconditionally resets the pll - we need that to have
4147 * the right LVDS enable sequence. */
85b3894f 4148 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4149
d9b6cb56
JB
4150 /* set transcoder timing, panel must allow it */
4151 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4152 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4153
303b81e0 4154 intel_fdi_normal_train(crtc);
5e84e1a4 4155
c98e9dcf 4156 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4157 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4158 const struct drm_display_mode *adjusted_mode =
4159 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4160 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4161 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4162 temp = I915_READ(reg);
4163 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4164 TRANS_DP_SYNC_MASK |
4165 TRANS_DP_BPC_MASK);
e3ef4479 4166 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4167 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4168
9c4edaee 4169 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4170 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4171 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4172 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4173
4174 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4175 case PORT_B:
5eddb70b 4176 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4177 break;
c48b5305 4178 case PORT_C:
5eddb70b 4179 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4180 break;
c48b5305 4181 case PORT_D:
5eddb70b 4182 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4183 break;
4184 default:
e95d41e1 4185 BUG();
32f9d658 4186 }
2c07245f 4187
5eddb70b 4188 I915_WRITE(reg, temp);
6be4a607 4189 }
b52eb4dc 4190
b8a4f404 4191 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4192}
4193
1507e5bd
PZ
4194static void lpt_pch_enable(struct drm_crtc *crtc)
4195{
4196 struct drm_device *dev = crtc->dev;
4197 struct drm_i915_private *dev_priv = dev->dev_private;
4198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4199 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4200
ab9412ba 4201 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4202
8c52b5e8 4203 lpt_program_iclkip(crtc);
1507e5bd 4204
0540e488 4205 /* Set transcoder timing. */
275f01b2 4206 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4207
937bb610 4208 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4209}
4210
a1520318 4211static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4212{
4213 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4214 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4215 u32 temp;
4216
4217 temp = I915_READ(dslreg);
4218 udelay(500);
4219 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4220 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4221 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4222 }
4223}
4224
86adf9d7
ML
4225static int
4226skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4227 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4228 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4229{
86adf9d7
ML
4230 struct intel_crtc_scaler_state *scaler_state =
4231 &crtc_state->scaler_state;
4232 struct intel_crtc *intel_crtc =
4233 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4234 int need_scaling;
6156a456
CK
4235
4236 need_scaling = intel_rotation_90_or_270(rotation) ?
4237 (src_h != dst_w || src_w != dst_h):
4238 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4239
4240 /*
4241 * if plane is being disabled or scaler is no more required or force detach
4242 * - free scaler binded to this plane/crtc
4243 * - in order to do this, update crtc->scaler_usage
4244 *
4245 * Here scaler state in crtc_state is set free so that
4246 * scaler can be assigned to other user. Actual register
4247 * update to free the scaler is done in plane/panel-fit programming.
4248 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4249 */
86adf9d7 4250 if (force_detach || !need_scaling) {
a1b2278e 4251 if (*scaler_id >= 0) {
86adf9d7 4252 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4253 scaler_state->scalers[*scaler_id].in_use = 0;
4254
86adf9d7
ML
4255 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4256 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4257 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4258 scaler_state->scaler_users);
4259 *scaler_id = -1;
4260 }
4261 return 0;
4262 }
4263
4264 /* range checks */
4265 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4266 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4267
4268 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4269 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4270 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4271 "size is out of scaler range\n",
86adf9d7 4272 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4273 return -EINVAL;
4274 }
4275
86adf9d7
ML
4276 /* mark this plane as a scaler user in crtc_state */
4277 scaler_state->scaler_users |= (1 << scaler_user);
4278 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4279 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4280 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4281 scaler_state->scaler_users);
4282
4283 return 0;
4284}
4285
4286/**
4287 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4288 *
4289 * @state: crtc's scaler state
86adf9d7
ML
4290 *
4291 * Return
4292 * 0 - scaler_usage updated successfully
4293 * error - requested scaling cannot be supported or other error condition
4294 */
e435d6e5 4295int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4296{
4297 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4298 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7 4299
78108b7c
VS
4300 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4301 intel_crtc->base.base.id, intel_crtc->base.name,
4302 intel_crtc->pipe, SKL_CRTC_INDEX);
86adf9d7 4303
e435d6e5 4304 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
fa5a7970 4305 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
86adf9d7 4306 state->pipe_src_w, state->pipe_src_h,
aad941d5 4307 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4308}
4309
4310/**
4311 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4312 *
4313 * @state: crtc's scaler state
86adf9d7
ML
4314 * @plane_state: atomic plane state to update
4315 *
4316 * Return
4317 * 0 - scaler_usage updated successfully
4318 * error - requested scaling cannot be supported or other error condition
4319 */
da20eabd
ML
4320static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4321 struct intel_plane_state *plane_state)
86adf9d7
ML
4322{
4323
4324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4325 struct intel_plane *intel_plane =
4326 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4327 struct drm_framebuffer *fb = plane_state->base.fb;
4328 int ret;
4329
4330 bool force_detach = !fb || !plane_state->visible;
4331
72660ce0
VS
4332 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4333 intel_plane->base.base.id, intel_plane->base.name,
4334 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
86adf9d7
ML
4335
4336 ret = skl_update_scaler(crtc_state, force_detach,
4337 drm_plane_index(&intel_plane->base),
4338 &plane_state->scaler_id,
4339 plane_state->base.rotation,
4340 drm_rect_width(&plane_state->src) >> 16,
4341 drm_rect_height(&plane_state->src) >> 16,
4342 drm_rect_width(&plane_state->dst),
4343 drm_rect_height(&plane_state->dst));
4344
4345 if (ret || plane_state->scaler_id < 0)
4346 return ret;
4347
a1b2278e 4348 /* check colorkey */
818ed961 4349 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
72660ce0
VS
4350 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4351 intel_plane->base.base.id,
4352 intel_plane->base.name);
a1b2278e
CK
4353 return -EINVAL;
4354 }
4355
4356 /* Check src format */
86adf9d7
ML
4357 switch (fb->pixel_format) {
4358 case DRM_FORMAT_RGB565:
4359 case DRM_FORMAT_XBGR8888:
4360 case DRM_FORMAT_XRGB8888:
4361 case DRM_FORMAT_ABGR8888:
4362 case DRM_FORMAT_ARGB8888:
4363 case DRM_FORMAT_XRGB2101010:
4364 case DRM_FORMAT_XBGR2101010:
4365 case DRM_FORMAT_YUYV:
4366 case DRM_FORMAT_YVYU:
4367 case DRM_FORMAT_UYVY:
4368 case DRM_FORMAT_VYUY:
4369 break;
4370 default:
72660ce0
VS
4371 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4372 intel_plane->base.base.id, intel_plane->base.name,
4373 fb->base.id, fb->pixel_format);
86adf9d7 4374 return -EINVAL;
a1b2278e
CK
4375 }
4376
a1b2278e
CK
4377 return 0;
4378}
4379
e435d6e5
ML
4380static void skylake_scaler_disable(struct intel_crtc *crtc)
4381{
4382 int i;
4383
4384 for (i = 0; i < crtc->num_scalers; i++)
4385 skl_detach_scaler(crtc, i);
4386}
4387
4388static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4389{
4390 struct drm_device *dev = crtc->base.dev;
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392 int pipe = crtc->pipe;
a1b2278e
CK
4393 struct intel_crtc_scaler_state *scaler_state =
4394 &crtc->config->scaler_state;
4395
4396 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4397
6e3c9717 4398 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4399 int id;
4400
4401 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4402 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4403 return;
4404 }
4405
4406 id = scaler_state->scaler_id;
4407 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4408 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4409 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4410 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4411
4412 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4413 }
4414}
4415
b074cec8
JB
4416static void ironlake_pfit_enable(struct intel_crtc *crtc)
4417{
4418 struct drm_device *dev = crtc->base.dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 int pipe = crtc->pipe;
4421
6e3c9717 4422 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4423 /* Force use of hard-coded filter coefficients
4424 * as some pre-programmed values are broken,
4425 * e.g. x201.
4426 */
4427 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4428 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4429 PF_PIPE_SEL_IVB(pipe));
4430 else
4431 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4432 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4433 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4434 }
4435}
4436
20bc8673 4437void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4438{
cea165c3
VS
4439 struct drm_device *dev = crtc->base.dev;
4440 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4441
6e3c9717 4442 if (!crtc->config->ips_enabled)
d77e4531
PZ
4443 return;
4444
307e4498
ML
4445 /*
4446 * We can only enable IPS after we enable a plane and wait for a vblank
4447 * This function is called from post_plane_update, which is run after
4448 * a vblank wait.
4449 */
cea165c3 4450
d77e4531 4451 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4452 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4453 mutex_lock(&dev_priv->rps.hw_lock);
4454 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4455 mutex_unlock(&dev_priv->rps.hw_lock);
4456 /* Quoting Art Runyan: "its not safe to expect any particular
4457 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4458 * mailbox." Moreover, the mailbox may return a bogus state,
4459 * so we need to just enable it and continue on.
2a114cc1
BW
4460 */
4461 } else {
4462 I915_WRITE(IPS_CTL, IPS_ENABLE);
4463 /* The bit only becomes 1 in the next vblank, so this wait here
4464 * is essentially intel_wait_for_vblank. If we don't have this
4465 * and don't wait for vblanks until the end of crtc_enable, then
4466 * the HW state readout code will complain that the expected
4467 * IPS_CTL value is not the one we read. */
2ec9ba3c
CW
4468 if (intel_wait_for_register(dev_priv,
4469 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4470 50))
2a114cc1
BW
4471 DRM_ERROR("Timed out waiting for IPS enable\n");
4472 }
d77e4531
PZ
4473}
4474
20bc8673 4475void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4476{
4477 struct drm_device *dev = crtc->base.dev;
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479
6e3c9717 4480 if (!crtc->config->ips_enabled)
d77e4531
PZ
4481 return;
4482
4483 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4484 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4485 mutex_lock(&dev_priv->rps.hw_lock);
4486 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4487 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130 4488 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
b85c1ecf
CW
4489 if (intel_wait_for_register(dev_priv,
4490 IPS_CTL, IPS_ENABLE, 0,
4491 42))
23d0b130 4492 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4493 } else {
2a114cc1 4494 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4495 POSTING_READ(IPS_CTL);
4496 }
d77e4531
PZ
4497
4498 /* We need to wait for a vblank before we can disable the plane. */
4499 intel_wait_for_vblank(dev, crtc->pipe);
4500}
4501
7cac945f 4502static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4503{
7cac945f 4504 if (intel_crtc->overlay) {
d3eedb1a
VS
4505 struct drm_device *dev = intel_crtc->base.dev;
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507
4508 mutex_lock(&dev->struct_mutex);
4509 dev_priv->mm.interruptible = false;
4510 (void) intel_overlay_switch_off(intel_crtc->overlay);
4511 dev_priv->mm.interruptible = true;
4512 mutex_unlock(&dev->struct_mutex);
4513 }
4514
4515 /* Let userspace switch the overlay on again. In most cases userspace
4516 * has to recompute where to put it anyway.
4517 */
4518}
4519
87d4300a
ML
4520/**
4521 * intel_post_enable_primary - Perform operations after enabling primary plane
4522 * @crtc: the CRTC whose primary plane was just enabled
4523 *
4524 * Performs potentially sleeping operations that must be done after the primary
4525 * plane is enabled, such as updating FBC and IPS. Note that this may be
4526 * called due to an explicit primary plane update, or due to an implicit
4527 * re-enable that is caused when a sprite plane is updated to no longer
4528 * completely hide the primary plane.
4529 */
4530static void
4531intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4532{
4533 struct drm_device *dev = crtc->dev;
87d4300a 4534 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4536 int pipe = intel_crtc->pipe;
a5c4d7bc 4537
87d4300a
ML
4538 /*
4539 * FIXME IPS should be fine as long as one plane is
4540 * enabled, but in practice it seems to have problems
4541 * when going from primary only to sprite only and vice
4542 * versa.
4543 */
a5c4d7bc
VS
4544 hsw_enable_ips(intel_crtc);
4545
f99d7069 4546 /*
87d4300a
ML
4547 * Gen2 reports pipe underruns whenever all planes are disabled.
4548 * So don't enable underrun reporting before at least some planes
4549 * are enabled.
4550 * FIXME: Need to fix the logic to work when we turn off all planes
4551 * but leave the pipe running.
f99d7069 4552 */
87d4300a
ML
4553 if (IS_GEN2(dev))
4554 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4555
aca7b684
VS
4556 /* Underruns don't always raise interrupts, so check manually. */
4557 intel_check_cpu_fifo_underruns(dev_priv);
4558 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4559}
4560
2622a081 4561/* FIXME move all this to pre_plane_update() with proper state tracking */
87d4300a
ML
4562static void
4563intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4564{
4565 struct drm_device *dev = crtc->dev;
4566 struct drm_i915_private *dev_priv = dev->dev_private;
4567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4568 int pipe = intel_crtc->pipe;
a5c4d7bc 4569
87d4300a
ML
4570 /*
4571 * Gen2 reports pipe underruns whenever all planes are disabled.
4572 * So diasble underrun reporting before all the planes get disabled.
4573 * FIXME: Need to fix the logic to work when we turn off all planes
4574 * but leave the pipe running.
4575 */
4576 if (IS_GEN2(dev))
4577 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4578
2622a081
VS
4579 /*
4580 * FIXME IPS should be fine as long as one plane is
4581 * enabled, but in practice it seems to have problems
4582 * when going from primary only to sprite only and vice
4583 * versa.
4584 */
4585 hsw_disable_ips(intel_crtc);
4586}
4587
4588/* FIXME get rid of this and use pre_plane_update */
4589static void
4590intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4591{
4592 struct drm_device *dev = crtc->dev;
4593 struct drm_i915_private *dev_priv = dev->dev_private;
4594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4595 int pipe = intel_crtc->pipe;
4596
4597 intel_pre_disable_primary(crtc);
4598
87d4300a
ML
4599 /*
4600 * Vblank time updates from the shadow to live plane control register
4601 * are blocked if the memory self-refresh mode is active at that
4602 * moment. So to make sure the plane gets truly disabled, disable
4603 * first the self-refresh mode. The self-refresh enable bit in turn
4604 * will be checked/applied by the HW only at the next frame start
4605 * event which is after the vblank start event, so we need to have a
4606 * wait-for-vblank between disabling the plane and the pipe.
4607 */
262cd2e1 4608 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4609 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4610 dev_priv->wm.vlv.cxsr = false;
4611 intel_wait_for_vblank(dev, pipe);
4612 }
87d4300a
ML
4613}
4614
5a21b665
DV
4615static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4616{
4617 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4618 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4619 struct intel_crtc_state *pipe_config =
4620 to_intel_crtc_state(crtc->base.state);
4621 struct drm_device *dev = crtc->base.dev;
4622 struct drm_plane *primary = crtc->base.primary;
4623 struct drm_plane_state *old_pri_state =
4624 drm_atomic_get_existing_plane_state(old_state, primary);
4625
4626 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4627
4628 crtc->wm.cxsr_allowed = true;
4629
4630 if (pipe_config->update_wm_post && pipe_config->base.active)
4631 intel_update_watermarks(&crtc->base);
4632
4633 if (old_pri_state) {
4634 struct intel_plane_state *primary_state =
4635 to_intel_plane_state(primary->state);
4636 struct intel_plane_state *old_primary_state =
4637 to_intel_plane_state(old_pri_state);
4638
4639 intel_fbc_post_update(crtc);
4640
4641 if (primary_state->visible &&
4642 (needs_modeset(&pipe_config->base) ||
4643 !old_primary_state->visible))
4644 intel_post_enable_primary(&crtc->base);
4645 }
4646}
4647
5c74cd73 4648static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4649{
5c74cd73 4650 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 4651 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4652 struct drm_i915_private *dev_priv = dev->dev_private;
ab1d3a0e
ML
4653 struct intel_crtc_state *pipe_config =
4654 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
4655 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4656 struct drm_plane *primary = crtc->base.primary;
4657 struct drm_plane_state *old_pri_state =
4658 drm_atomic_get_existing_plane_state(old_state, primary);
4659 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 4660
5c74cd73
ML
4661 if (old_pri_state) {
4662 struct intel_plane_state *primary_state =
4663 to_intel_plane_state(primary->state);
4664 struct intel_plane_state *old_primary_state =
4665 to_intel_plane_state(old_pri_state);
4666
faf68d92 4667 intel_fbc_pre_update(crtc, pipe_config, primary_state);
31ae71fc 4668
5c74cd73
ML
4669 if (old_primary_state->visible &&
4670 (modeset || !primary_state->visible))
4671 intel_pre_disable_primary(&crtc->base);
4672 }
852eb00d 4673
a4015f9a 4674 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
852eb00d 4675 crtc->wm.cxsr_allowed = false;
2dfd178d 4676
2622a081
VS
4677 /*
4678 * Vblank time updates from the shadow to live plane control register
4679 * are blocked if the memory self-refresh mode is active at that
4680 * moment. So to make sure the plane gets truly disabled, disable
4681 * first the self-refresh mode. The self-refresh enable bit in turn
4682 * will be checked/applied by the HW only at the next frame start
4683 * event which is after the vblank start event, so we need to have a
4684 * wait-for-vblank between disabling the plane and the pipe.
4685 */
4686 if (old_crtc_state->base.active) {
2dfd178d 4687 intel_set_memory_cxsr(dev_priv, false);
2622a081
VS
4688 dev_priv->wm.vlv.cxsr = false;
4689 intel_wait_for_vblank(dev, crtc->pipe);
4690 }
852eb00d 4691 }
92826fcd 4692
ed4a6a7c
MR
4693 /*
4694 * IVB workaround: must disable low power watermarks for at least
4695 * one frame before enabling scaling. LP watermarks can be re-enabled
4696 * when scaling is disabled.
4697 *
4698 * WaCxSRDisabledForSpriteScaling:ivb
4699 */
4700 if (pipe_config->disable_lp_wm) {
4701 ilk_disable_lp_wm(dev);
4702 intel_wait_for_vblank(dev, crtc->pipe);
4703 }
4704
4705 /*
4706 * If we're doing a modeset, we're done. No need to do any pre-vblank
4707 * watermark programming here.
4708 */
4709 if (needs_modeset(&pipe_config->base))
4710 return;
4711
4712 /*
4713 * For platforms that support atomic watermarks, program the
4714 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4715 * will be the intermediate values that are safe for both pre- and
4716 * post- vblank; when vblank happens, the 'active' values will be set
4717 * to the final 'target' values and we'll do this again to get the
4718 * optimal watermarks. For gen9+ platforms, the values we program here
4719 * will be the final target values which will get automatically latched
4720 * at vblank time; no further programming will be necessary.
4721 *
4722 * If a platform hasn't been transitioned to atomic watermarks yet,
4723 * we'll continue to update watermarks the old way, if flags tell
4724 * us to.
4725 */
4726 if (dev_priv->display.initial_watermarks != NULL)
4727 dev_priv->display.initial_watermarks(pipe_config);
caed361d 4728 else if (pipe_config->update_wm_pre)
92826fcd 4729 intel_update_watermarks(&crtc->base);
ac21b225
ML
4730}
4731
d032ffa0 4732static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4733{
4734 struct drm_device *dev = crtc->dev;
4735 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4736 struct drm_plane *p;
87d4300a
ML
4737 int pipe = intel_crtc->pipe;
4738
7cac945f 4739 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4740
d032ffa0
ML
4741 drm_for_each_plane_mask(p, dev, plane_mask)
4742 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4743
f99d7069
DV
4744 /*
4745 * FIXME: Once we grow proper nuclear flip support out of this we need
4746 * to compute the mask of flip planes precisely. For the time being
4747 * consider this a flip to a NULL plane.
4748 */
4749 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4750}
4751
f67a559d
JB
4752static void ironlake_crtc_enable(struct drm_crtc *crtc)
4753{
4754 struct drm_device *dev = crtc->dev;
4755 struct drm_i915_private *dev_priv = dev->dev_private;
4756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4757 struct intel_encoder *encoder;
f67a559d 4758 int pipe = intel_crtc->pipe;
b95c5321
ML
4759 struct intel_crtc_state *pipe_config =
4760 to_intel_crtc_state(crtc->state);
f67a559d 4761
53d9f4e9 4762 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4763 return;
4764
b2c0593a
VS
4765 /*
4766 * Sometimes spurious CPU pipe underruns happen during FDI
4767 * training, at least with VGA+HDMI cloning. Suppress them.
4768 *
4769 * On ILK we get an occasional spurious CPU pipe underruns
4770 * between eDP port A enable and vdd enable. Also PCH port
4771 * enable seems to result in the occasional CPU pipe underrun.
4772 *
4773 * Spurious PCH underruns also occur during PCH enabling.
4774 */
4775 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4776 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
81b088ca
VS
4777 if (intel_crtc->config->has_pch_encoder)
4778 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4779
6e3c9717 4780 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4781 intel_prepare_shared_dpll(intel_crtc);
4782
6e3c9717 4783 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4784 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4785
4786 intel_set_pipe_timings(intel_crtc);
bc58be60 4787 intel_set_pipe_src_size(intel_crtc);
29407aab 4788
6e3c9717 4789 if (intel_crtc->config->has_pch_encoder) {
29407aab 4790 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4791 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4792 }
4793
4794 ironlake_set_pipeconf(crtc);
4795
f67a559d 4796 intel_crtc->active = true;
8664281b 4797
f6736a1a 4798 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4799 if (encoder->pre_enable)
4800 encoder->pre_enable(encoder);
f67a559d 4801
6e3c9717 4802 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4803 /* Note: FDI PLL enabling _must_ be done before we enable the
4804 * cpu pipes, hence this is separate from all the other fdi/pch
4805 * enabling. */
88cefb6c 4806 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4807 } else {
4808 assert_fdi_tx_disabled(dev_priv, pipe);
4809 assert_fdi_rx_disabled(dev_priv, pipe);
4810 }
f67a559d 4811
b074cec8 4812 ironlake_pfit_enable(intel_crtc);
f67a559d 4813
9c54c0dd
JB
4814 /*
4815 * On ILK+ LUT must be loaded before the pipe is running but with
4816 * clocks enabled
4817 */
b95c5321 4818 intel_color_load_luts(&pipe_config->base);
9c54c0dd 4819
1d5bf5d9
ID
4820 if (dev_priv->display.initial_watermarks != NULL)
4821 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 4822 intel_enable_pipe(intel_crtc);
f67a559d 4823
6e3c9717 4824 if (intel_crtc->config->has_pch_encoder)
f67a559d 4825 ironlake_pch_enable(crtc);
c98e9dcf 4826
f9b61ff6
DV
4827 assert_vblank_disabled(crtc);
4828 drm_crtc_vblank_on(crtc);
4829
fa5c73b1
DV
4830 for_each_encoder_on_crtc(dev, crtc, encoder)
4831 encoder->enable(encoder);
61b77ddd
DV
4832
4833 if (HAS_PCH_CPT(dev))
a1520318 4834 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4835
4836 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4837 if (intel_crtc->config->has_pch_encoder)
4838 intel_wait_for_vblank(dev, pipe);
b2c0593a 4839 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
37ca8d4c 4840 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
4841}
4842
42db64ef
PZ
4843/* IPS only exists on ULT machines and is tied to pipe A. */
4844static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4845{
f5adf94e 4846 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4847}
4848
4f771f10
PZ
4849static void haswell_crtc_enable(struct drm_crtc *crtc)
4850{
4851 struct drm_device *dev = crtc->dev;
4852 struct drm_i915_private *dev_priv = dev->dev_private;
4853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854 struct intel_encoder *encoder;
99d736a2 4855 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4d1de975 4856 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
99d736a2
ML
4857 struct intel_crtc_state *pipe_config =
4858 to_intel_crtc_state(crtc->state);
4f771f10 4859
53d9f4e9 4860 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4861 return;
4862
81b088ca
VS
4863 if (intel_crtc->config->has_pch_encoder)
4864 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4865 false);
4866
95a7a2ae
ID
4867 for_each_encoder_on_crtc(dev, crtc, encoder)
4868 if (encoder->pre_pll_enable)
4869 encoder->pre_pll_enable(encoder);
4870
8106ddbd 4871 if (intel_crtc->config->shared_dpll)
df8ad70c
DV
4872 intel_enable_shared_dpll(intel_crtc);
4873
6e3c9717 4874 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4875 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97 4876
4d1de975
JN
4877 if (!intel_crtc->config->has_dsi_encoder)
4878 intel_set_pipe_timings(intel_crtc);
4879
bc58be60 4880 intel_set_pipe_src_size(intel_crtc);
229fca97 4881
4d1de975
JN
4882 if (cpu_transcoder != TRANSCODER_EDP &&
4883 !transcoder_is_dsi(cpu_transcoder)) {
4884 I915_WRITE(PIPE_MULT(cpu_transcoder),
6e3c9717 4885 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4886 }
4887
6e3c9717 4888 if (intel_crtc->config->has_pch_encoder) {
229fca97 4889 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4890 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4891 }
4892
4d1de975
JN
4893 if (!intel_crtc->config->has_dsi_encoder)
4894 haswell_set_pipeconf(crtc);
4895
391bf048 4896 haswell_set_pipemisc(crtc);
229fca97 4897
b95c5321 4898 intel_color_set_csc(&pipe_config->base);
229fca97 4899
4f771f10 4900 intel_crtc->active = true;
8664281b 4901
6b698516
DV
4902 if (intel_crtc->config->has_pch_encoder)
4903 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4904 else
4905 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4906
7d4aefd0 4907 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4908 if (encoder->pre_enable)
4909 encoder->pre_enable(encoder);
7d4aefd0 4910 }
4f771f10 4911
d2d65408 4912 if (intel_crtc->config->has_pch_encoder)
4fe9467d 4913 dev_priv->display.fdi_link_train(crtc);
4fe9467d 4914
a65347ba 4915 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4916 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4917
1c132b44 4918 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 4919 skylake_pfit_enable(intel_crtc);
ff6d9f55 4920 else
1c132b44 4921 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4922
4923 /*
4924 * On ILK+ LUT must be loaded before the pipe is running but with
4925 * clocks enabled
4926 */
b95c5321 4927 intel_color_load_luts(&pipe_config->base);
4f771f10 4928
1f544388 4929 intel_ddi_set_pipe_settings(crtc);
a65347ba 4930 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4931 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4932
1d5bf5d9
ID
4933 if (dev_priv->display.initial_watermarks != NULL)
4934 dev_priv->display.initial_watermarks(pipe_config);
4935 else
4936 intel_update_watermarks(crtc);
4d1de975
JN
4937
4938 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4939 if (!intel_crtc->config->has_dsi_encoder)
4940 intel_enable_pipe(intel_crtc);
42db64ef 4941
6e3c9717 4942 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4943 lpt_pch_enable(crtc);
4f771f10 4944
a65347ba 4945 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4946 intel_ddi_set_vc_payload_alloc(crtc, true);
4947
f9b61ff6
DV
4948 assert_vblank_disabled(crtc);
4949 drm_crtc_vblank_on(crtc);
4950
8807e55b 4951 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4952 encoder->enable(encoder);
8807e55b
JN
4953 intel_opregion_notify_encoder(encoder, true);
4954 }
4f771f10 4955
6b698516
DV
4956 if (intel_crtc->config->has_pch_encoder) {
4957 intel_wait_for_vblank(dev, pipe);
4958 intel_wait_for_vblank(dev, pipe);
4959 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
4960 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4961 true);
6b698516 4962 }
d2d65408 4963
e4916946
PZ
4964 /* If we change the relative order between pipe/planes enabling, we need
4965 * to change the workaround. */
99d736a2
ML
4966 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4967 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4968 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4969 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4970 }
4f771f10
PZ
4971}
4972
bfd16b2a 4973static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
4974{
4975 struct drm_device *dev = crtc->base.dev;
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 int pipe = crtc->pipe;
4978
4979 /* To avoid upsetting the power well on haswell only disable the pfit if
4980 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 4981 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4982 I915_WRITE(PF_CTL(pipe), 0);
4983 I915_WRITE(PF_WIN_POS(pipe), 0);
4984 I915_WRITE(PF_WIN_SZ(pipe), 0);
4985 }
4986}
4987
6be4a607
JB
4988static void ironlake_crtc_disable(struct drm_crtc *crtc)
4989{
4990 struct drm_device *dev = crtc->dev;
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4993 struct intel_encoder *encoder;
6be4a607 4994 int pipe = intel_crtc->pipe;
b52eb4dc 4995
b2c0593a
VS
4996 /*
4997 * Sometimes spurious CPU pipe underruns happen when the
4998 * pipe is already disabled, but FDI RX/TX is still enabled.
4999 * Happens at least with VGA+HDMI cloning. Suppress them.
5000 */
5001 if (intel_crtc->config->has_pch_encoder) {
5002 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
37ca8d4c 5003 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
b2c0593a 5004 }
37ca8d4c 5005
ea9d758d
DV
5006 for_each_encoder_on_crtc(dev, crtc, encoder)
5007 encoder->disable(encoder);
5008
f9b61ff6
DV
5009 drm_crtc_vblank_off(crtc);
5010 assert_vblank_disabled(crtc);
5011
575f7ab7 5012 intel_disable_pipe(intel_crtc);
32f9d658 5013
bfd16b2a 5014 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5015
b2c0593a 5016 if (intel_crtc->config->has_pch_encoder)
5a74f70a
VS
5017 ironlake_fdi_disable(crtc);
5018
bf49ec8c
DV
5019 for_each_encoder_on_crtc(dev, crtc, encoder)
5020 if (encoder->post_disable)
5021 encoder->post_disable(encoder);
2c07245f 5022
6e3c9717 5023 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5024 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5025
d925c59a 5026 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5027 i915_reg_t reg;
5028 u32 temp;
5029
d925c59a
DV
5030 /* disable TRANS_DP_CTL */
5031 reg = TRANS_DP_CTL(pipe);
5032 temp = I915_READ(reg);
5033 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5034 TRANS_DP_PORT_SEL_MASK);
5035 temp |= TRANS_DP_PORT_SEL_NONE;
5036 I915_WRITE(reg, temp);
5037
5038 /* disable DPLL_SEL */
5039 temp = I915_READ(PCH_DPLL_SEL);
11887397 5040 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5041 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5042 }
e3421a18 5043
d925c59a
DV
5044 ironlake_fdi_pll_disable(intel_crtc);
5045 }
81b088ca 5046
b2c0593a 5047 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
81b088ca 5048 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5049}
1b3c7a47 5050
4f771f10 5051static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5052{
4f771f10
PZ
5053 struct drm_device *dev = crtc->dev;
5054 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5056 struct intel_encoder *encoder;
6e3c9717 5057 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5058
d2d65408
VS
5059 if (intel_crtc->config->has_pch_encoder)
5060 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5061 false);
5062
8807e55b
JN
5063 for_each_encoder_on_crtc(dev, crtc, encoder) {
5064 intel_opregion_notify_encoder(encoder, false);
4f771f10 5065 encoder->disable(encoder);
8807e55b 5066 }
4f771f10 5067
f9b61ff6
DV
5068 drm_crtc_vblank_off(crtc);
5069 assert_vblank_disabled(crtc);
5070
4d1de975
JN
5071 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5072 if (!intel_crtc->config->has_dsi_encoder)
5073 intel_disable_pipe(intel_crtc);
4f771f10 5074
6e3c9717 5075 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5076 intel_ddi_set_vc_payload_alloc(crtc, false);
5077
a65347ba 5078 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5079 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5080
1c132b44 5081 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5082 skylake_scaler_disable(intel_crtc);
ff6d9f55 5083 else
bfd16b2a 5084 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5085
a65347ba 5086 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5087 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5088
97b040aa
ID
5089 for_each_encoder_on_crtc(dev, crtc, encoder)
5090 if (encoder->post_disable)
5091 encoder->post_disable(encoder);
81b088ca 5092
92966a37
VS
5093 if (intel_crtc->config->has_pch_encoder) {
5094 lpt_disable_pch_transcoder(dev_priv);
503a74e9 5095 lpt_disable_iclkip(dev_priv);
92966a37
VS
5096 intel_ddi_fdi_disable(crtc);
5097
81b088ca
VS
5098 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5099 true);
92966a37 5100 }
4f771f10
PZ
5101}
5102
2dd24552
JB
5103static void i9xx_pfit_enable(struct intel_crtc *crtc)
5104{
5105 struct drm_device *dev = crtc->base.dev;
5106 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5107 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5108
681a8504 5109 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5110 return;
5111
2dd24552 5112 /*
c0b03411
DV
5113 * The panel fitter should only be adjusted whilst the pipe is disabled,
5114 * according to register description and PRM.
2dd24552 5115 */
c0b03411
DV
5116 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5117 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5118
b074cec8
JB
5119 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5120 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5121
5122 /* Border color in case we don't scale up to the full screen. Black by
5123 * default, change to something else for debugging. */
5124 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5125}
5126
d05410f9
DA
5127static enum intel_display_power_domain port_to_power_domain(enum port port)
5128{
5129 switch (port) {
5130 case PORT_A:
6331a704 5131 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5132 case PORT_B:
6331a704 5133 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5134 case PORT_C:
6331a704 5135 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5136 case PORT_D:
6331a704 5137 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5138 case PORT_E:
6331a704 5139 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5140 default:
b9fec167 5141 MISSING_CASE(port);
d05410f9
DA
5142 return POWER_DOMAIN_PORT_OTHER;
5143 }
5144}
5145
25f78f58
VS
5146static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5147{
5148 switch (port) {
5149 case PORT_A:
5150 return POWER_DOMAIN_AUX_A;
5151 case PORT_B:
5152 return POWER_DOMAIN_AUX_B;
5153 case PORT_C:
5154 return POWER_DOMAIN_AUX_C;
5155 case PORT_D:
5156 return POWER_DOMAIN_AUX_D;
5157 case PORT_E:
5158 /* FIXME: Check VBT for actual wiring of PORT E */
5159 return POWER_DOMAIN_AUX_D;
5160 default:
b9fec167 5161 MISSING_CASE(port);
25f78f58
VS
5162 return POWER_DOMAIN_AUX_A;
5163 }
5164}
5165
319be8ae
ID
5166enum intel_display_power_domain
5167intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5168{
5169 struct drm_device *dev = intel_encoder->base.dev;
5170 struct intel_digital_port *intel_dig_port;
5171
5172 switch (intel_encoder->type) {
5173 case INTEL_OUTPUT_UNKNOWN:
5174 /* Only DDI platforms should ever use this output type */
5175 WARN_ON_ONCE(!HAS_DDI(dev));
5176 case INTEL_OUTPUT_DISPLAYPORT:
5177 case INTEL_OUTPUT_HDMI:
5178 case INTEL_OUTPUT_EDP:
5179 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5180 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5181 case INTEL_OUTPUT_DP_MST:
5182 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5183 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5184 case INTEL_OUTPUT_ANALOG:
5185 return POWER_DOMAIN_PORT_CRT;
5186 case INTEL_OUTPUT_DSI:
5187 return POWER_DOMAIN_PORT_DSI;
5188 default:
5189 return POWER_DOMAIN_PORT_OTHER;
5190 }
5191}
5192
25f78f58
VS
5193enum intel_display_power_domain
5194intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5195{
5196 struct drm_device *dev = intel_encoder->base.dev;
5197 struct intel_digital_port *intel_dig_port;
5198
5199 switch (intel_encoder->type) {
5200 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5201 case INTEL_OUTPUT_HDMI:
5202 /*
5203 * Only DDI platforms should ever use these output types.
5204 * We can get here after the HDMI detect code has already set
5205 * the type of the shared encoder. Since we can't be sure
5206 * what's the status of the given connectors, play safe and
5207 * run the DP detection too.
5208 */
25f78f58
VS
5209 WARN_ON_ONCE(!HAS_DDI(dev));
5210 case INTEL_OUTPUT_DISPLAYPORT:
5211 case INTEL_OUTPUT_EDP:
5212 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5213 return port_to_aux_power_domain(intel_dig_port->port);
5214 case INTEL_OUTPUT_DP_MST:
5215 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5216 return port_to_aux_power_domain(intel_dig_port->port);
5217 default:
b9fec167 5218 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5219 return POWER_DOMAIN_AUX_A;
5220 }
5221}
5222
74bff5f9
ML
5223static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5224 struct intel_crtc_state *crtc_state)
77d22dca 5225{
319be8ae 5226 struct drm_device *dev = crtc->dev;
74bff5f9 5227 struct drm_encoder *encoder;
319be8ae
ID
5228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5229 enum pipe pipe = intel_crtc->pipe;
77d22dca 5230 unsigned long mask;
74bff5f9 5231 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5232
74bff5f9 5233 if (!crtc_state->base.active)
292b990e
ML
5234 return 0;
5235
77d22dca
ID
5236 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5237 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5238 if (crtc_state->pch_pfit.enabled ||
5239 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5240 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5241
74bff5f9
ML
5242 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5243 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5244
319be8ae 5245 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5246 }
319be8ae 5247
15e7ec29
ML
5248 if (crtc_state->shared_dpll)
5249 mask |= BIT(POWER_DOMAIN_PLLS);
5250
77d22dca
ID
5251 return mask;
5252}
5253
74bff5f9
ML
5254static unsigned long
5255modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5256 struct intel_crtc_state *crtc_state)
77d22dca 5257{
292b990e
ML
5258 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5260 enum intel_display_power_domain domain;
5a21b665 5261 unsigned long domains, new_domains, old_domains;
77d22dca 5262
292b990e 5263 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5264 intel_crtc->enabled_power_domains = new_domains =
5265 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5266
5a21b665 5267 domains = new_domains & ~old_domains;
292b990e
ML
5268
5269 for_each_power_domain(domain, domains)
5270 intel_display_power_get(dev_priv, domain);
5271
5a21b665 5272 return old_domains & ~new_domains;
292b990e
ML
5273}
5274
5275static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5276 unsigned long domains)
5277{
5278 enum intel_display_power_domain domain;
5279
5280 for_each_power_domain(domain, domains)
5281 intel_display_power_put(dev_priv, domain);
5282}
77d22dca 5283
adafdc6f
MK
5284static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5285{
5286 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5287
5288 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5289 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5290 return max_cdclk_freq;
5291 else if (IS_CHERRYVIEW(dev_priv))
5292 return max_cdclk_freq*95/100;
5293 else if (INTEL_INFO(dev_priv)->gen < 4)
5294 return 2*max_cdclk_freq*90/100;
5295 else
5296 return max_cdclk_freq*90/100;
5297}
5298
b2045352
VS
5299static int skl_calc_cdclk(int max_pixclk, int vco);
5300
560a7ae4
DL
5301static void intel_update_max_cdclk(struct drm_device *dev)
5302{
5303 struct drm_i915_private *dev_priv = dev->dev_private;
5304
ef11bdb3 5305 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4 5306 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
b2045352
VS
5307 int max_cdclk, vco;
5308
5309 vco = dev_priv->skl_preferred_vco_freq;
63911d72 5310 WARN_ON(vco != 8100000 && vco != 8640000);
560a7ae4 5311
b2045352
VS
5312 /*
5313 * Use the lower (vco 8640) cdclk values as a
5314 * first guess. skl_calc_cdclk() will correct it
5315 * if the preferred vco is 8100 instead.
5316 */
560a7ae4 5317 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
487ed2e4 5318 max_cdclk = 617143;
560a7ae4 5319 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
b2045352 5320 max_cdclk = 540000;
560a7ae4 5321 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
b2045352 5322 max_cdclk = 432000;
560a7ae4 5323 else
487ed2e4 5324 max_cdclk = 308571;
b2045352
VS
5325
5326 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
281c114f
MR
5327 } else if (IS_BROXTON(dev)) {
5328 dev_priv->max_cdclk_freq = 624000;
560a7ae4
DL
5329 } else if (IS_BROADWELL(dev)) {
5330 /*
5331 * FIXME with extra cooling we can allow
5332 * 540 MHz for ULX and 675 Mhz for ULT.
5333 * How can we know if extra cooling is
5334 * available? PCI ID, VTB, something else?
5335 */
5336 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5337 dev_priv->max_cdclk_freq = 450000;
5338 else if (IS_BDW_ULX(dev))
5339 dev_priv->max_cdclk_freq = 450000;
5340 else if (IS_BDW_ULT(dev))
5341 dev_priv->max_cdclk_freq = 540000;
5342 else
5343 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5344 } else if (IS_CHERRYVIEW(dev)) {
5345 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5346 } else if (IS_VALLEYVIEW(dev)) {
5347 dev_priv->max_cdclk_freq = 400000;
5348 } else {
5349 /* otherwise assume cdclk is fixed */
5350 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5351 }
5352
adafdc6f
MK
5353 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5354
560a7ae4
DL
5355 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5356 dev_priv->max_cdclk_freq);
adafdc6f
MK
5357
5358 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5359 dev_priv->max_dotclk_freq);
560a7ae4
DL
5360}
5361
5362static void intel_update_cdclk(struct drm_device *dev)
5363{
5364 struct drm_i915_private *dev_priv = dev->dev_private;
5365
5366 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2f2a121a 5367
83d7c81f 5368 if (INTEL_GEN(dev_priv) >= 9)
709e05c3
VS
5369 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5370 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5371 dev_priv->cdclk_pll.ref);
2f2a121a
VS
5372 else
5373 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5374 dev_priv->cdclk_freq);
560a7ae4
DL
5375
5376 /*
b5d99ff9
VS
5377 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5378 * Programmng [sic] note: bit[9:2] should be programmed to the number
5379 * of cdclk that generates 4MHz reference clock freq which is used to
5380 * generate GMBus clock. This will vary with the cdclk freq.
560a7ae4 5381 */
b5d99ff9 5382 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
560a7ae4 5383 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
560a7ae4
DL
5384}
5385
92891e45
VS
5386/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5387static int skl_cdclk_decimal(int cdclk)
5388{
5389 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5390}
5391
5f199dfa
VS
5392static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5393{
5394 int ratio;
5395
5396 if (cdclk == dev_priv->cdclk_pll.ref)
5397 return 0;
5398
5399 switch (cdclk) {
5400 default:
5401 MISSING_CASE(cdclk);
5402 case 144000:
5403 case 288000:
5404 case 384000:
5405 case 576000:
5406 ratio = 60;
5407 break;
5408 case 624000:
5409 ratio = 65;
5410 break;
5411 }
5412
5413 return dev_priv->cdclk_pll.ref * ratio;
5414}
5415
2b73001e
VS
5416static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5417{
5418 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5419
5420 /* Timeout 200us */
95cac283
CW
5421 if (intel_wait_for_register(dev_priv,
5422 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5423 1))
2b73001e 5424 DRM_ERROR("timeout waiting for DE PLL unlock\n");
83d7c81f
VS
5425
5426 dev_priv->cdclk_pll.vco = 0;
2b73001e
VS
5427}
5428
5f199dfa 5429static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
2b73001e 5430{
5f199dfa 5431 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
2b73001e
VS
5432 u32 val;
5433
5434 val = I915_READ(BXT_DE_PLL_CTL);
5435 val &= ~BXT_DE_PLL_RATIO_MASK;
5f199dfa 5436 val |= BXT_DE_PLL_RATIO(ratio);
2b73001e
VS
5437 I915_WRITE(BXT_DE_PLL_CTL, val);
5438
5439 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5440
5441 /* Timeout 200us */
e084e1b9
CW
5442 if (intel_wait_for_register(dev_priv,
5443 BXT_DE_PLL_ENABLE,
5444 BXT_DE_PLL_LOCK,
5445 BXT_DE_PLL_LOCK,
5446 1))
2b73001e 5447 DRM_ERROR("timeout waiting for DE PLL lock\n");
83d7c81f 5448
5f199dfa 5449 dev_priv->cdclk_pll.vco = vco;
2b73001e
VS
5450}
5451
324513c0 5452static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
f8437dd1 5453{
5f199dfa
VS
5454 u32 val, divider;
5455 int vco, ret;
f8437dd1 5456
5f199dfa
VS
5457 vco = bxt_de_pll_vco(dev_priv, cdclk);
5458
5459 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5460
5461 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5462 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5463 case 8:
f8437dd1 5464 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
f8437dd1 5465 break;
5f199dfa 5466 case 4:
f8437dd1 5467 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
f8437dd1 5468 break;
5f199dfa 5469 case 3:
f8437dd1 5470 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
f8437dd1 5471 break;
5f199dfa 5472 case 2:
f8437dd1 5473 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
f8437dd1
VK
5474 break;
5475 default:
5f199dfa
VS
5476 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5477 WARN_ON(vco != 0);
f8437dd1 5478
5f199dfa
VS
5479 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5480 break;
f8437dd1
VK
5481 }
5482
f8437dd1 5483 /* Inform power controller of upcoming frequency change */
5f199dfa 5484 mutex_lock(&dev_priv->rps.hw_lock);
f8437dd1
VK
5485 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5486 0x80000000);
5487 mutex_unlock(&dev_priv->rps.hw_lock);
5488
5489 if (ret) {
5490 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
9ef56154 5491 ret, cdclk);
f8437dd1
VK
5492 return;
5493 }
5494
5f199dfa
VS
5495 if (dev_priv->cdclk_pll.vco != 0 &&
5496 dev_priv->cdclk_pll.vco != vco)
2b73001e 5497 bxt_de_pll_disable(dev_priv);
f8437dd1 5498
5f199dfa
VS
5499 if (dev_priv->cdclk_pll.vco != vco)
5500 bxt_de_pll_enable(dev_priv, vco);
f8437dd1 5501
5f199dfa
VS
5502 val = divider | skl_cdclk_decimal(cdclk);
5503 /*
5504 * FIXME if only the cd2x divider needs changing, it could be done
5505 * without shutting off the pipe (if only one pipe is active).
5506 */
5507 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5508 /*
5509 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5510 * enable otherwise.
5511 */
5512 if (cdclk >= 500000)
5513 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5514 I915_WRITE(CDCLK_CTL, val);
f8437dd1
VK
5515
5516 mutex_lock(&dev_priv->rps.hw_lock);
5517 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
9ef56154 5518 DIV_ROUND_UP(cdclk, 25000));
f8437dd1
VK
5519 mutex_unlock(&dev_priv->rps.hw_lock);
5520
5521 if (ret) {
5522 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
9ef56154 5523 ret, cdclk);
f8437dd1
VK
5524 return;
5525 }
5526
c6c4696f 5527 intel_update_cdclk(dev_priv->dev);
f8437dd1
VK
5528}
5529
d66a2194 5530static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 5531{
d66a2194
ID
5532 u32 cdctl, expected;
5533
089c6fd5 5534 intel_update_cdclk(dev_priv->dev);
f8437dd1 5535
d66a2194
ID
5536 if (dev_priv->cdclk_pll.vco == 0 ||
5537 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5538 goto sanitize;
5539
5540 /* DPLL okay; verify the cdclock
5541 *
5542 * Some BIOS versions leave an incorrect decimal frequency value and
5543 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5544 * so sanitize this register.
5545 */
5546 cdctl = I915_READ(CDCLK_CTL);
5547 /*
5548 * Let's ignore the pipe field, since BIOS could have configured the
5549 * dividers both synching to an active pipe, or asynchronously
5550 * (PIPE_NONE).
5551 */
5552 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5553
5554 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5555 skl_cdclk_decimal(dev_priv->cdclk_freq);
5556 /*
5557 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5558 * enable otherwise.
5559 */
5560 if (dev_priv->cdclk_freq >= 500000)
5561 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5562
5563 if (cdctl == expected)
5564 /* All well; nothing to sanitize */
5565 return;
5566
5567sanitize:
5568 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5569
5570 /* force cdclk programming */
5571 dev_priv->cdclk_freq = 0;
5572
5573 /* force full PLL disable + enable */
5574 dev_priv->cdclk_pll.vco = -1;
5575}
5576
324513c0 5577void bxt_init_cdclk(struct drm_i915_private *dev_priv)
d66a2194
ID
5578{
5579 bxt_sanitize_cdclk(dev_priv);
5580
5581 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
089c6fd5 5582 return;
c2e001ef 5583
f8437dd1
VK
5584 /*
5585 * FIXME:
5586 * - The initial CDCLK needs to be read from VBT.
5587 * Need to make this change after VBT has changes for BXT.
f8437dd1 5588 */
324513c0 5589 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
f8437dd1
VK
5590}
5591
324513c0 5592void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 5593{
324513c0 5594 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
f8437dd1
VK
5595}
5596
a8ca4934
VS
5597static int skl_calc_cdclk(int max_pixclk, int vco)
5598{
63911d72 5599 if (vco == 8640000) {
a8ca4934 5600 if (max_pixclk > 540000)
487ed2e4 5601 return 617143;
a8ca4934
VS
5602 else if (max_pixclk > 432000)
5603 return 540000;
487ed2e4 5604 else if (max_pixclk > 308571)
a8ca4934
VS
5605 return 432000;
5606 else
487ed2e4 5607 return 308571;
a8ca4934 5608 } else {
a8ca4934
VS
5609 if (max_pixclk > 540000)
5610 return 675000;
5611 else if (max_pixclk > 450000)
5612 return 540000;
5613 else if (max_pixclk > 337500)
5614 return 450000;
5615 else
5616 return 337500;
5617 }
5618}
5619
ea61791e
VS
5620static void
5621skl_dpll0_update(struct drm_i915_private *dev_priv)
5d96d8af 5622{
ea61791e 5623 u32 val;
5d96d8af 5624
709e05c3 5625 dev_priv->cdclk_pll.ref = 24000;
1c3f7700 5626 dev_priv->cdclk_pll.vco = 0;
709e05c3 5627
ea61791e 5628 val = I915_READ(LCPLL1_CTL);
1c3f7700 5629 if ((val & LCPLL_PLL_ENABLE) == 0)
ea61791e 5630 return;
5d96d8af 5631
1c3f7700
ID
5632 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5633 return;
9f7eb31a 5634
ea61791e
VS
5635 val = I915_READ(DPLL_CTRL1);
5636
1c3f7700
ID
5637 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5638 DPLL_CTRL1_SSC(SKL_DPLL0) |
5639 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5640 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5641 return;
9f7eb31a 5642
ea61791e
VS
5643 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5644 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5645 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5646 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5647 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
63911d72 5648 dev_priv->cdclk_pll.vco = 8100000;
ea61791e
VS
5649 break;
5650 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5651 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
63911d72 5652 dev_priv->cdclk_pll.vco = 8640000;
ea61791e
VS
5653 break;
5654 default:
5655 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
ea61791e
VS
5656 break;
5657 }
5d96d8af
DL
5658}
5659
b2045352
VS
5660void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5661{
5662 bool changed = dev_priv->skl_preferred_vco_freq != vco;
5663
5664 dev_priv->skl_preferred_vco_freq = vco;
5665
5666 if (changed)
5667 intel_update_max_cdclk(dev_priv->dev);
5668}
5669
5d96d8af 5670static void
3861fc60 5671skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5d96d8af 5672{
a8ca4934 5673 int min_cdclk = skl_calc_cdclk(0, vco);
5d96d8af
DL
5674 u32 val;
5675
63911d72 5676 WARN_ON(vco != 8100000 && vco != 8640000);
b2045352 5677
5d96d8af 5678 /* select the minimum CDCLK before enabling DPLL 0 */
9ef56154 5679 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5d96d8af
DL
5680 I915_WRITE(CDCLK_CTL, val);
5681 POSTING_READ(CDCLK_CTL);
5682
5683 /*
5684 * We always enable DPLL0 with the lowest link rate possible, but still
5685 * taking into account the VCO required to operate the eDP panel at the
5686 * desired frequency. The usual DP link rates operate with a VCO of
5687 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5688 * The modeset code is responsible for the selection of the exact link
5689 * rate later on, with the constraint of choosing a frequency that
a8ca4934 5690 * works with vco.
5d96d8af
DL
5691 */
5692 val = I915_READ(DPLL_CTRL1);
5693
5694 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5695 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5696 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
63911d72 5697 if (vco == 8640000)
5d96d8af
DL
5698 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5699 SKL_DPLL0);
5700 else
5701 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5702 SKL_DPLL0);
5703
5704 I915_WRITE(DPLL_CTRL1, val);
5705 POSTING_READ(DPLL_CTRL1);
5706
5707 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5708
e24ca054
CW
5709 if (intel_wait_for_register(dev_priv,
5710 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5711 5))
5d96d8af 5712 DRM_ERROR("DPLL0 not locked\n");
1cd593e0 5713
63911d72 5714 dev_priv->cdclk_pll.vco = vco;
b2045352
VS
5715
5716 /* We'll want to keep using the current vco from now on. */
5717 skl_set_preferred_cdclk_vco(dev_priv, vco);
5d96d8af
DL
5718}
5719
430e05de
VS
5720static void
5721skl_dpll0_disable(struct drm_i915_private *dev_priv)
5722{
5723 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
8ad32a05
CW
5724 if (intel_wait_for_register(dev_priv,
5725 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5726 1))
430e05de 5727 DRM_ERROR("Couldn't disable DPLL0\n");
1cd593e0 5728
63911d72 5729 dev_priv->cdclk_pll.vco = 0;
430e05de
VS
5730}
5731
5d96d8af
DL
5732static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5733{
5734 int ret;
5735 u32 val;
5736
5737 /* inform PCU we want to change CDCLK */
5738 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5739 mutex_lock(&dev_priv->rps.hw_lock);
5740 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5741 mutex_unlock(&dev_priv->rps.hw_lock);
5742
5743 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5744}
5745
5746static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5747{
5748 unsigned int i;
5749
5750 for (i = 0; i < 15; i++) {
5751 if (skl_cdclk_pcu_ready(dev_priv))
5752 return true;
5753 udelay(10);
5754 }
5755
5756 return false;
5757}
5758
1cd593e0 5759static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5d96d8af 5760{
560a7ae4 5761 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5762 u32 freq_select, pcu_ack;
5763
1cd593e0
VS
5764 WARN_ON((cdclk == 24000) != (vco == 0));
5765
63911d72 5766 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5d96d8af
DL
5767
5768 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5769 DRM_ERROR("failed to inform PCU about cdclk change\n");
5770 return;
5771 }
5772
5773 /* set CDCLK_CTL */
9ef56154 5774 switch (cdclk) {
5d96d8af
DL
5775 case 450000:
5776 case 432000:
5777 freq_select = CDCLK_FREQ_450_432;
5778 pcu_ack = 1;
5779 break;
5780 case 540000:
5781 freq_select = CDCLK_FREQ_540;
5782 pcu_ack = 2;
5783 break;
487ed2e4 5784 case 308571:
5d96d8af
DL
5785 case 337500:
5786 default:
5787 freq_select = CDCLK_FREQ_337_308;
5788 pcu_ack = 0;
5789 break;
487ed2e4 5790 case 617143:
5d96d8af
DL
5791 case 675000:
5792 freq_select = CDCLK_FREQ_675_617;
5793 pcu_ack = 3;
5794 break;
5795 }
5796
63911d72
VS
5797 if (dev_priv->cdclk_pll.vco != 0 &&
5798 dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
5799 skl_dpll0_disable(dev_priv);
5800
63911d72 5801 if (dev_priv->cdclk_pll.vco != vco)
1cd593e0
VS
5802 skl_dpll0_enable(dev_priv, vco);
5803
9ef56154 5804 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5d96d8af
DL
5805 POSTING_READ(CDCLK_CTL);
5806
5807 /* inform PCU of the change */
5808 mutex_lock(&dev_priv->rps.hw_lock);
5809 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5810 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5811
5812 intel_update_cdclk(dev);
5d96d8af
DL
5813}
5814
9f7eb31a
VS
5815static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5816
5d96d8af
DL
5817void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5818{
709e05c3 5819 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5d96d8af
DL
5820}
5821
5822void skl_init_cdclk(struct drm_i915_private *dev_priv)
5823{
9f7eb31a
VS
5824 int cdclk, vco;
5825
5826 skl_sanitize_cdclk(dev_priv);
5d96d8af 5827
63911d72 5828 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
9f7eb31a
VS
5829 /*
5830 * Use the current vco as our initial
5831 * guess as to what the preferred vco is.
5832 */
5833 if (dev_priv->skl_preferred_vco_freq == 0)
5834 skl_set_preferred_cdclk_vco(dev_priv,
63911d72 5835 dev_priv->cdclk_pll.vco);
70c2c184 5836 return;
1cd593e0 5837 }
5d96d8af 5838
70c2c184
VS
5839 vco = dev_priv->skl_preferred_vco_freq;
5840 if (vco == 0)
63911d72 5841 vco = 8100000;
70c2c184 5842 cdclk = skl_calc_cdclk(0, vco);
5d96d8af 5843
70c2c184 5844 skl_set_cdclk(dev_priv, cdclk, vco);
5d96d8af
DL
5845}
5846
9f7eb31a 5847static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
c73666f3 5848{
09492498 5849 uint32_t cdctl, expected;
c73666f3 5850
f1b391a5
SK
5851 /*
5852 * check if the pre-os intialized the display
5853 * There is SWF18 scratchpad register defined which is set by the
5854 * pre-os which can be used by the OS drivers to check the status
5855 */
5856 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5857 goto sanitize;
5858
1c3f7700 5859 intel_update_cdclk(dev_priv->dev);
c73666f3 5860 /* Is PLL enabled and locked ? */
1c3f7700
ID
5861 if (dev_priv->cdclk_pll.vco == 0 ||
5862 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
c73666f3
SK
5863 goto sanitize;
5864
5865 /* DPLL okay; verify the cdclock
5866 *
5867 * Noticed in some instances that the freq selection is correct but
5868 * decimal part is programmed wrong from BIOS where pre-os does not
5869 * enable display. Verify the same as well.
5870 */
09492498
VS
5871 cdctl = I915_READ(CDCLK_CTL);
5872 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5873 skl_cdclk_decimal(dev_priv->cdclk_freq);
5874 if (cdctl == expected)
c73666f3 5875 /* All well; nothing to sanitize */
9f7eb31a 5876 return;
c89e39f3 5877
9f7eb31a
VS
5878sanitize:
5879 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
c73666f3 5880
9f7eb31a
VS
5881 /* force cdclk programming */
5882 dev_priv->cdclk_freq = 0;
5883 /* force full PLL disable + enable */
63911d72 5884 dev_priv->cdclk_pll.vco = -1;
c73666f3
SK
5885}
5886
30a970c6
JB
5887/* Adjust CDclk dividers to allow high res or save power if possible */
5888static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5889{
5890 struct drm_i915_private *dev_priv = dev->dev_private;
5891 u32 val, cmd;
5892
164dfd28
VK
5893 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5894 != dev_priv->cdclk_freq);
d60c4473 5895
dfcab17e 5896 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5897 cmd = 2;
dfcab17e 5898 else if (cdclk == 266667)
30a970c6
JB
5899 cmd = 1;
5900 else
5901 cmd = 0;
5902
5903 mutex_lock(&dev_priv->rps.hw_lock);
5904 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5905 val &= ~DSPFREQGUAR_MASK;
5906 val |= (cmd << DSPFREQGUAR_SHIFT);
5907 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5908 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5909 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5910 50)) {
5911 DRM_ERROR("timed out waiting for CDclk change\n");
5912 }
5913 mutex_unlock(&dev_priv->rps.hw_lock);
5914
54433e91
VS
5915 mutex_lock(&dev_priv->sb_lock);
5916
dfcab17e 5917 if (cdclk == 400000) {
6bcda4f0 5918 u32 divider;
30a970c6 5919
6bcda4f0 5920 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5921
30a970c6
JB
5922 /* adjust cdclk divider */
5923 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5924 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5925 val |= divider;
5926 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5927
5928 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5929 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5930 50))
5931 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5932 }
5933
30a970c6
JB
5934 /* adjust self-refresh exit latency value */
5935 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5936 val &= ~0x7f;
5937
5938 /*
5939 * For high bandwidth configs, we set a higher latency in the bunit
5940 * so that the core display fetch happens in time to avoid underruns.
5941 */
dfcab17e 5942 if (cdclk == 400000)
30a970c6
JB
5943 val |= 4500 / 250; /* 4.5 usec */
5944 else
5945 val |= 3000 / 250; /* 3.0 usec */
5946 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5947
a580516d 5948 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5949
b6283055 5950 intel_update_cdclk(dev);
30a970c6
JB
5951}
5952
383c5a6a
VS
5953static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5954{
5955 struct drm_i915_private *dev_priv = dev->dev_private;
5956 u32 val, cmd;
5957
164dfd28
VK
5958 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5959 != dev_priv->cdclk_freq);
383c5a6a
VS
5960
5961 switch (cdclk) {
383c5a6a
VS
5962 case 333333:
5963 case 320000:
383c5a6a 5964 case 266667:
383c5a6a 5965 case 200000:
383c5a6a
VS
5966 break;
5967 default:
5f77eeb0 5968 MISSING_CASE(cdclk);
383c5a6a
VS
5969 return;
5970 }
5971
9d0d3fda
VS
5972 /*
5973 * Specs are full of misinformation, but testing on actual
5974 * hardware has shown that we just need to write the desired
5975 * CCK divider into the Punit register.
5976 */
5977 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5978
383c5a6a
VS
5979 mutex_lock(&dev_priv->rps.hw_lock);
5980 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5981 val &= ~DSPFREQGUAR_MASK_CHV;
5982 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5983 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5984 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5985 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5986 50)) {
5987 DRM_ERROR("timed out waiting for CDclk change\n");
5988 }
5989 mutex_unlock(&dev_priv->rps.hw_lock);
5990
b6283055 5991 intel_update_cdclk(dev);
383c5a6a
VS
5992}
5993
30a970c6
JB
5994static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5995 int max_pixclk)
5996{
6bcda4f0 5997 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5998 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5999
30a970c6
JB
6000 /*
6001 * Really only a few cases to deal with, as only 4 CDclks are supported:
6002 * 200MHz
6003 * 267MHz
29dc7ef3 6004 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
6005 * 400MHz (VLV only)
6006 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6007 * of the lower bin and adjust if needed.
e37c67a1
VS
6008 *
6009 * We seem to get an unstable or solid color picture at 200MHz.
6010 * Not sure what's wrong. For now use 200MHz only when all pipes
6011 * are off.
30a970c6 6012 */
6cca3195
VS
6013 if (!IS_CHERRYVIEW(dev_priv) &&
6014 max_pixclk > freq_320*limit/100)
dfcab17e 6015 return 400000;
6cca3195 6016 else if (max_pixclk > 266667*limit/100)
29dc7ef3 6017 return freq_320;
e37c67a1 6018 else if (max_pixclk > 0)
dfcab17e 6019 return 266667;
e37c67a1
VS
6020 else
6021 return 200000;
30a970c6
JB
6022}
6023
324513c0 6024static int bxt_calc_cdclk(int max_pixclk)
f8437dd1 6025{
760e1477 6026 if (max_pixclk > 576000)
f8437dd1 6027 return 624000;
760e1477 6028 else if (max_pixclk > 384000)
f8437dd1 6029 return 576000;
760e1477 6030 else if (max_pixclk > 288000)
f8437dd1 6031 return 384000;
760e1477 6032 else if (max_pixclk > 144000)
f8437dd1
VK
6033 return 288000;
6034 else
6035 return 144000;
6036}
6037
e8788cbc 6038/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
6039static int intel_mode_max_pixclk(struct drm_device *dev,
6040 struct drm_atomic_state *state)
30a970c6 6041{
565602d7
ML
6042 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6043 struct drm_i915_private *dev_priv = dev->dev_private;
6044 struct drm_crtc *crtc;
6045 struct drm_crtc_state *crtc_state;
6046 unsigned max_pixclk = 0, i;
6047 enum pipe pipe;
30a970c6 6048
565602d7
ML
6049 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6050 sizeof(intel_state->min_pixclk));
304603f4 6051
565602d7
ML
6052 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6053 int pixclk = 0;
6054
6055 if (crtc_state->enable)
6056 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 6057
565602d7 6058 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
6059 }
6060
565602d7
ML
6061 for_each_pipe(dev_priv, pipe)
6062 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6063
30a970c6
JB
6064 return max_pixclk;
6065}
6066
27c329ed 6067static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 6068{
27c329ed
ML
6069 struct drm_device *dev = state->dev;
6070 struct drm_i915_private *dev_priv = dev->dev_private;
6071 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6072 struct intel_atomic_state *intel_state =
6073 to_intel_atomic_state(state);
30a970c6 6074
1a617b77 6075 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6076 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6077
1a617b77
ML
6078 if (!intel_state->active_crtcs)
6079 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6080
27c329ed
ML
6081 return 0;
6082}
304603f4 6083
324513c0 6084static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
27c329ed 6085{
4e5ca60f 6086 int max_pixclk = ilk_max_pixel_rate(state);
1a617b77
ML
6087 struct intel_atomic_state *intel_state =
6088 to_intel_atomic_state(state);
85a96e7a 6089
1a617b77 6090 intel_state->cdclk = intel_state->dev_cdclk =
324513c0 6091 bxt_calc_cdclk(max_pixclk);
85a96e7a 6092
1a617b77 6093 if (!intel_state->active_crtcs)
324513c0 6094 intel_state->dev_cdclk = bxt_calc_cdclk(0);
1a617b77 6095
27c329ed 6096 return 0;
30a970c6
JB
6097}
6098
1e69cd74
VS
6099static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6100{
6101 unsigned int credits, default_credits;
6102
6103 if (IS_CHERRYVIEW(dev_priv))
6104 default_credits = PFI_CREDIT(12);
6105 else
6106 default_credits = PFI_CREDIT(8);
6107
bfa7df01 6108 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6109 /* CHV suggested value is 31 or 63 */
6110 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6111 credits = PFI_CREDIT_63;
1e69cd74
VS
6112 else
6113 credits = PFI_CREDIT(15);
6114 } else {
6115 credits = default_credits;
6116 }
6117
6118 /*
6119 * WA - write default credits before re-programming
6120 * FIXME: should we also set the resend bit here?
6121 */
6122 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6123 default_credits);
6124
6125 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6126 credits | PFI_CREDIT_RESEND);
6127
6128 /*
6129 * FIXME is this guaranteed to clear
6130 * immediately or should we poll for it?
6131 */
6132 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6133}
6134
27c329ed 6135static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6136{
a821fc46 6137 struct drm_device *dev = old_state->dev;
30a970c6 6138 struct drm_i915_private *dev_priv = dev->dev_private;
1a617b77
ML
6139 struct intel_atomic_state *old_intel_state =
6140 to_intel_atomic_state(old_state);
6141 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6142
27c329ed
ML
6143 /*
6144 * FIXME: We can end up here with all power domains off, yet
6145 * with a CDCLK frequency other than the minimum. To account
6146 * for this take the PIPE-A power domain, which covers the HW
6147 * blocks needed for the following programming. This can be
6148 * removed once it's guaranteed that we get here either with
6149 * the minimum CDCLK set, or the required power domains
6150 * enabled.
6151 */
6152 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6153
27c329ed
ML
6154 if (IS_CHERRYVIEW(dev))
6155 cherryview_set_cdclk(dev, req_cdclk);
6156 else
6157 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6158
27c329ed 6159 vlv_program_pfi_credits(dev_priv);
1e69cd74 6160
27c329ed 6161 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6162}
6163
89b667f8
JB
6164static void valleyview_crtc_enable(struct drm_crtc *crtc)
6165{
6166 struct drm_device *dev = crtc->dev;
a72e4c9f 6167 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6169 struct intel_encoder *encoder;
b95c5321
ML
6170 struct intel_crtc_state *pipe_config =
6171 to_intel_crtc_state(crtc->state);
89b667f8 6172 int pipe = intel_crtc->pipe;
89b667f8 6173
53d9f4e9 6174 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6175 return;
6176
6e3c9717 6177 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6178 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6179
6180 intel_set_pipe_timings(intel_crtc);
bc58be60 6181 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6182
c14b0485
VS
6183 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6184 struct drm_i915_private *dev_priv = dev->dev_private;
6185
6186 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6187 I915_WRITE(CHV_CANVAS(pipe), 0);
6188 }
6189
5b18e57c
DV
6190 i9xx_set_pipeconf(intel_crtc);
6191
89b667f8 6192 intel_crtc->active = true;
89b667f8 6193
a72e4c9f 6194 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6195
89b667f8
JB
6196 for_each_encoder_on_crtc(dev, crtc, encoder)
6197 if (encoder->pre_pll_enable)
6198 encoder->pre_pll_enable(encoder);
6199
cd2d34d9
VS
6200 if (IS_CHERRYVIEW(dev)) {
6201 chv_prepare_pll(intel_crtc, intel_crtc->config);
6202 chv_enable_pll(intel_crtc, intel_crtc->config);
6203 } else {
6204 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6205 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6206 }
89b667f8
JB
6207
6208 for_each_encoder_on_crtc(dev, crtc, encoder)
6209 if (encoder->pre_enable)
6210 encoder->pre_enable(encoder);
6211
2dd24552
JB
6212 i9xx_pfit_enable(intel_crtc);
6213
b95c5321 6214 intel_color_load_luts(&pipe_config->base);
63cbb074 6215
caed361d 6216 intel_update_watermarks(crtc);
e1fdc473 6217 intel_enable_pipe(intel_crtc);
be6a6f8e 6218
4b3a9526
VS
6219 assert_vblank_disabled(crtc);
6220 drm_crtc_vblank_on(crtc);
6221
f9b61ff6
DV
6222 for_each_encoder_on_crtc(dev, crtc, encoder)
6223 encoder->enable(encoder);
89b667f8
JB
6224}
6225
f13c2ef3
DV
6226static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6227{
6228 struct drm_device *dev = crtc->base.dev;
6229 struct drm_i915_private *dev_priv = dev->dev_private;
6230
6e3c9717
ACO
6231 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6232 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6233}
6234
0b8765c6 6235static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6236{
6237 struct drm_device *dev = crtc->dev;
a72e4c9f 6238 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6240 struct intel_encoder *encoder;
b95c5321
ML
6241 struct intel_crtc_state *pipe_config =
6242 to_intel_crtc_state(crtc->state);
cd2d34d9 6243 enum pipe pipe = intel_crtc->pipe;
79e53945 6244
53d9f4e9 6245 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6246 return;
6247
f13c2ef3
DV
6248 i9xx_set_pll_dividers(intel_crtc);
6249
6e3c9717 6250 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6251 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6252
6253 intel_set_pipe_timings(intel_crtc);
bc58be60 6254 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6255
5b18e57c
DV
6256 i9xx_set_pipeconf(intel_crtc);
6257
f7abfe8b 6258 intel_crtc->active = true;
6b383a7f 6259
4a3436e8 6260 if (!IS_GEN2(dev))
a72e4c9f 6261 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6262
9d6d9f19
MK
6263 for_each_encoder_on_crtc(dev, crtc, encoder)
6264 if (encoder->pre_enable)
6265 encoder->pre_enable(encoder);
6266
f6736a1a
DV
6267 i9xx_enable_pll(intel_crtc);
6268
2dd24552
JB
6269 i9xx_pfit_enable(intel_crtc);
6270
b95c5321 6271 intel_color_load_luts(&pipe_config->base);
63cbb074 6272
f37fcc2a 6273 intel_update_watermarks(crtc);
e1fdc473 6274 intel_enable_pipe(intel_crtc);
be6a6f8e 6275
4b3a9526
VS
6276 assert_vblank_disabled(crtc);
6277 drm_crtc_vblank_on(crtc);
6278
f9b61ff6
DV
6279 for_each_encoder_on_crtc(dev, crtc, encoder)
6280 encoder->enable(encoder);
0b8765c6 6281}
79e53945 6282
87476d63
DV
6283static void i9xx_pfit_disable(struct intel_crtc *crtc)
6284{
6285 struct drm_device *dev = crtc->base.dev;
6286 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6287
6e3c9717 6288 if (!crtc->config->gmch_pfit.control)
328d8e82 6289 return;
87476d63 6290
328d8e82 6291 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6292
328d8e82
DV
6293 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6294 I915_READ(PFIT_CONTROL));
6295 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6296}
6297
0b8765c6
JB
6298static void i9xx_crtc_disable(struct drm_crtc *crtc)
6299{
6300 struct drm_device *dev = crtc->dev;
6301 struct drm_i915_private *dev_priv = dev->dev_private;
6302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6303 struct intel_encoder *encoder;
0b8765c6 6304 int pipe = intel_crtc->pipe;
ef9c3aee 6305
6304cd91
VS
6306 /*
6307 * On gen2 planes are double buffered but the pipe isn't, so we must
6308 * wait for planes to fully turn off before disabling the pipe.
6309 */
90e83e53
ACO
6310 if (IS_GEN2(dev))
6311 intel_wait_for_vblank(dev, pipe);
6304cd91 6312
4b3a9526
VS
6313 for_each_encoder_on_crtc(dev, crtc, encoder)
6314 encoder->disable(encoder);
6315
f9b61ff6
DV
6316 drm_crtc_vblank_off(crtc);
6317 assert_vblank_disabled(crtc);
6318
575f7ab7 6319 intel_disable_pipe(intel_crtc);
24a1f16d 6320
87476d63 6321 i9xx_pfit_disable(intel_crtc);
24a1f16d 6322
89b667f8
JB
6323 for_each_encoder_on_crtc(dev, crtc, encoder)
6324 if (encoder->post_disable)
6325 encoder->post_disable(encoder);
6326
a65347ba 6327 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6328 if (IS_CHERRYVIEW(dev))
6329 chv_disable_pll(dev_priv, pipe);
6330 else if (IS_VALLEYVIEW(dev))
6331 vlv_disable_pll(dev_priv, pipe);
6332 else
1c4e0274 6333 i9xx_disable_pll(intel_crtc);
076ed3b2 6334 }
0b8765c6 6335
d6db995f
VS
6336 for_each_encoder_on_crtc(dev, crtc, encoder)
6337 if (encoder->post_pll_disable)
6338 encoder->post_pll_disable(encoder);
6339
4a3436e8 6340 if (!IS_GEN2(dev))
a72e4c9f 6341 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6342}
6343
b17d48e2
ML
6344static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6345{
842e0307 6346 struct intel_encoder *encoder;
b17d48e2
ML
6347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6348 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6349 enum intel_display_power_domain domain;
6350 unsigned long domains;
6351
6352 if (!intel_crtc->active)
6353 return;
6354
a539205a 6355 if (to_intel_plane_state(crtc->primary->state)->visible) {
5a21b665 6356 WARN_ON(intel_crtc->flip_work);
fc32b1fd 6357
2622a081 6358 intel_pre_disable_primary_noatomic(crtc);
54a41961
ML
6359
6360 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6361 to_intel_plane_state(crtc->primary->state)->visible = false;
a539205a
ML
6362 }
6363
b17d48e2 6364 dev_priv->display.crtc_disable(crtc);
842e0307 6365
78108b7c
VS
6366 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6367 crtc->base.id, crtc->name);
842e0307
ML
6368
6369 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6370 crtc->state->active = false;
37d9078b 6371 intel_crtc->active = false;
842e0307
ML
6372 crtc->enabled = false;
6373 crtc->state->connector_mask = 0;
6374 crtc->state->encoder_mask = 0;
6375
6376 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6377 encoder->base.crtc = NULL;
6378
58f9c0bc 6379 intel_fbc_disable(intel_crtc);
37d9078b 6380 intel_update_watermarks(crtc);
1f7457b1 6381 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6382
6383 domains = intel_crtc->enabled_power_domains;
6384 for_each_power_domain(domain, domains)
6385 intel_display_power_put(dev_priv, domain);
6386 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6387
6388 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6389 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6390}
6391
6b72d486
ML
6392/*
6393 * turn all crtc's off, but do not adjust state
6394 * This has to be paired with a call to intel_modeset_setup_hw_state.
6395 */
70e0bd74 6396int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6397{
e2c8b870 6398 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6399 struct drm_atomic_state *state;
e2c8b870 6400 int ret;
70e0bd74 6401
e2c8b870
ML
6402 state = drm_atomic_helper_suspend(dev);
6403 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6404 if (ret)
6405 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6406 else
6407 dev_priv->modeset_restore_state = state;
70e0bd74 6408 return ret;
ee7b9f93
JB
6409}
6410
ea5b213a 6411void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6412{
4ef69c7a 6413 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6414
ea5b213a
CW
6415 drm_encoder_cleanup(encoder);
6416 kfree(intel_encoder);
7e7d76c3
JB
6417}
6418
0a91ca29
DV
6419/* Cross check the actual hw state with our own modeset state tracking (and it's
6420 * internal consistency). */
5a21b665 6421static void intel_connector_verify_state(struct intel_connector *connector)
79e53945 6422{
5a21b665 6423 struct drm_crtc *crtc = connector->base.state->crtc;
35dd3c64
ML
6424
6425 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6426 connector->base.base.id,
6427 connector->base.name);
6428
0a91ca29 6429 if (connector->get_hw_state(connector)) {
e85376cb 6430 struct intel_encoder *encoder = connector->encoder;
5a21b665 6431 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6432
35dd3c64
ML
6433 I915_STATE_WARN(!crtc,
6434 "connector enabled without attached crtc\n");
0a91ca29 6435
35dd3c64
ML
6436 if (!crtc)
6437 return;
6438
6439 I915_STATE_WARN(!crtc->state->active,
6440 "connector is active, but attached crtc isn't\n");
6441
e85376cb 6442 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6443 return;
6444
e85376cb 6445 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6446 "atomic encoder doesn't match attached encoder\n");
6447
e85376cb 6448 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6449 "attached encoder crtc differs from connector crtc\n");
6450 } else {
4d688a2a
ML
6451 I915_STATE_WARN(crtc && crtc->state->active,
6452 "attached crtc is active, but connector isn't\n");
5a21b665 6453 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
35dd3c64 6454 "best encoder set without crtc!\n");
0a91ca29 6455 }
79e53945
JB
6456}
6457
08d9bc92
ACO
6458int intel_connector_init(struct intel_connector *connector)
6459{
5350a031 6460 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6461
5350a031 6462 if (!connector->base.state)
08d9bc92
ACO
6463 return -ENOMEM;
6464
08d9bc92
ACO
6465 return 0;
6466}
6467
6468struct intel_connector *intel_connector_alloc(void)
6469{
6470 struct intel_connector *connector;
6471
6472 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6473 if (!connector)
6474 return NULL;
6475
6476 if (intel_connector_init(connector) < 0) {
6477 kfree(connector);
6478 return NULL;
6479 }
6480
6481 return connector;
6482}
6483
f0947c37
DV
6484/* Simple connector->get_hw_state implementation for encoders that support only
6485 * one connector and no cloning and hence the encoder state determines the state
6486 * of the connector. */
6487bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6488{
24929352 6489 enum pipe pipe = 0;
f0947c37 6490 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6491
f0947c37 6492 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6493}
6494
6d293983 6495static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6496{
6d293983
ACO
6497 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6498 return crtc_state->fdi_lanes;
d272ddfa
VS
6499
6500 return 0;
6501}
6502
6d293983 6503static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6504 struct intel_crtc_state *pipe_config)
1857e1da 6505{
6d293983
ACO
6506 struct drm_atomic_state *state = pipe_config->base.state;
6507 struct intel_crtc *other_crtc;
6508 struct intel_crtc_state *other_crtc_state;
6509
1857e1da
DV
6510 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6511 pipe_name(pipe), pipe_config->fdi_lanes);
6512 if (pipe_config->fdi_lanes > 4) {
6513 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6514 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6515 return -EINVAL;
1857e1da
DV
6516 }
6517
bafb6553 6518 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6519 if (pipe_config->fdi_lanes > 2) {
6520 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6521 pipe_config->fdi_lanes);
6d293983 6522 return -EINVAL;
1857e1da 6523 } else {
6d293983 6524 return 0;
1857e1da
DV
6525 }
6526 }
6527
6528 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6529 return 0;
1857e1da
DV
6530
6531 /* Ivybridge 3 pipe is really complicated */
6532 switch (pipe) {
6533 case PIPE_A:
6d293983 6534 return 0;
1857e1da 6535 case PIPE_B:
6d293983
ACO
6536 if (pipe_config->fdi_lanes <= 2)
6537 return 0;
6538
6539 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6540 other_crtc_state =
6541 intel_atomic_get_crtc_state(state, other_crtc);
6542 if (IS_ERR(other_crtc_state))
6543 return PTR_ERR(other_crtc_state);
6544
6545 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6546 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6547 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6548 return -EINVAL;
1857e1da 6549 }
6d293983 6550 return 0;
1857e1da 6551 case PIPE_C:
251cc67c
VS
6552 if (pipe_config->fdi_lanes > 2) {
6553 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6554 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6555 return -EINVAL;
251cc67c 6556 }
6d293983
ACO
6557
6558 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6559 other_crtc_state =
6560 intel_atomic_get_crtc_state(state, other_crtc);
6561 if (IS_ERR(other_crtc_state))
6562 return PTR_ERR(other_crtc_state);
6563
6564 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6565 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6566 return -EINVAL;
1857e1da 6567 }
6d293983 6568 return 0;
1857e1da
DV
6569 default:
6570 BUG();
6571 }
6572}
6573
e29c22c0
DV
6574#define RETRY 1
6575static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6576 struct intel_crtc_state *pipe_config)
877d48d5 6577{
1857e1da 6578 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6579 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6580 int lane, link_bw, fdi_dotclock, ret;
6581 bool needs_recompute = false;
877d48d5 6582
e29c22c0 6583retry:
877d48d5
DV
6584 /* FDI is a binary signal running at ~2.7GHz, encoding
6585 * each output octet as 10 bits. The actual frequency
6586 * is stored as a divider into a 100MHz clock, and the
6587 * mode pixel clock is stored in units of 1KHz.
6588 * Hence the bw of each lane in terms of the mode signal
6589 * is:
6590 */
21a727b3 6591 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 6592
241bfc38 6593 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6594
2bd89a07 6595 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6596 pipe_config->pipe_bpp);
6597
6598 pipe_config->fdi_lanes = lane;
6599
2bd89a07 6600 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6601 link_bw, &pipe_config->fdi_m_n);
1857e1da 6602
e3b247da 6603 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 6604 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6605 pipe_config->pipe_bpp -= 2*3;
6606 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6607 pipe_config->pipe_bpp);
6608 needs_recompute = true;
6609 pipe_config->bw_constrained = true;
6610
6611 goto retry;
6612 }
6613
6614 if (needs_recompute)
6615 return RETRY;
6616
6d293983 6617 return ret;
877d48d5
DV
6618}
6619
8cfb3407
VS
6620static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6621 struct intel_crtc_state *pipe_config)
6622{
6623 if (pipe_config->pipe_bpp > 24)
6624 return false;
6625
6626 /* HSW can handle pixel rate up to cdclk? */
2d1fe073 6627 if (IS_HASWELL(dev_priv))
8cfb3407
VS
6628 return true;
6629
6630 /*
b432e5cf
VS
6631 * We compare against max which means we must take
6632 * the increased cdclk requirement into account when
6633 * calculating the new cdclk.
6634 *
6635 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6636 */
6637 return ilk_pipe_pixel_rate(pipe_config) <=
6638 dev_priv->max_cdclk_freq * 95 / 100;
6639}
6640
42db64ef 6641static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6642 struct intel_crtc_state *pipe_config)
42db64ef 6643{
8cfb3407
VS
6644 struct drm_device *dev = crtc->base.dev;
6645 struct drm_i915_private *dev_priv = dev->dev_private;
6646
d330a953 6647 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6648 hsw_crtc_supports_ips(crtc) &&
6649 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6650}
6651
39acb4aa
VS
6652static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6653{
6654 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6655
6656 /* GDG double wide on either pipe, otherwise pipe A only */
6657 return INTEL_INFO(dev_priv)->gen < 4 &&
6658 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6659}
6660
a43f6e0f 6661static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6662 struct intel_crtc_state *pipe_config)
79e53945 6663{
a43f6e0f 6664 struct drm_device *dev = crtc->base.dev;
8bd31e67 6665 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6666 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
f3261156 6667 int clock_limit = dev_priv->max_dotclk_freq;
89749350 6668
cf532bb2 6669 if (INTEL_INFO(dev)->gen < 4) {
f3261156 6670 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6671
6672 /*
39acb4aa 6673 * Enable double wide mode when the dot clock
cf532bb2 6674 * is > 90% of the (display) core speed.
cf532bb2 6675 */
39acb4aa
VS
6676 if (intel_crtc_supports_double_wide(crtc) &&
6677 adjusted_mode->crtc_clock > clock_limit) {
f3261156 6678 clock_limit = dev_priv->max_dotclk_freq;
cf532bb2 6679 pipe_config->double_wide = true;
ad3a4479 6680 }
f3261156 6681 }
ad3a4479 6682
f3261156
VS
6683 if (adjusted_mode->crtc_clock > clock_limit) {
6684 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6685 adjusted_mode->crtc_clock, clock_limit,
6686 yesno(pipe_config->double_wide));
6687 return -EINVAL;
2c07245f 6688 }
89749350 6689
1d1d0e27
VS
6690 /*
6691 * Pipe horizontal size must be even in:
6692 * - DVO ganged mode
6693 * - LVDS dual channel mode
6694 * - Double wide pipe
6695 */
a93e255f 6696 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6697 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6698 pipe_config->pipe_src_w &= ~1;
6699
8693a824
DL
6700 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6701 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6702 */
6703 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6704 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6705 return -EINVAL;
44f46b42 6706
f5adf94e 6707 if (HAS_IPS(dev))
a43f6e0f
DV
6708 hsw_compute_ips_config(crtc, pipe_config);
6709
877d48d5 6710 if (pipe_config->has_pch_encoder)
a43f6e0f 6711 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6712
cf5a15be 6713 return 0;
79e53945
JB
6714}
6715
1652d19e
VS
6716static int skylake_get_display_clock_speed(struct drm_device *dev)
6717{
6718 struct drm_i915_private *dev_priv = to_i915(dev);
ea61791e 6719 uint32_t cdctl;
1652d19e 6720
ea61791e 6721 skl_dpll0_update(dev_priv);
1652d19e 6722
63911d72 6723 if (dev_priv->cdclk_pll.vco == 0)
709e05c3 6724 return dev_priv->cdclk_pll.ref;
1652d19e 6725
ea61791e 6726 cdctl = I915_READ(CDCLK_CTL);
1652d19e 6727
63911d72 6728 if (dev_priv->cdclk_pll.vco == 8640000) {
1652d19e
VS
6729 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6730 case CDCLK_FREQ_450_432:
6731 return 432000;
6732 case CDCLK_FREQ_337_308:
487ed2e4 6733 return 308571;
ea61791e
VS
6734 case CDCLK_FREQ_540:
6735 return 540000;
1652d19e 6736 case CDCLK_FREQ_675_617:
487ed2e4 6737 return 617143;
1652d19e 6738 default:
ea61791e 6739 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
6740 }
6741 } else {
1652d19e
VS
6742 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6743 case CDCLK_FREQ_450_432:
6744 return 450000;
6745 case CDCLK_FREQ_337_308:
6746 return 337500;
ea61791e
VS
6747 case CDCLK_FREQ_540:
6748 return 540000;
1652d19e
VS
6749 case CDCLK_FREQ_675_617:
6750 return 675000;
6751 default:
ea61791e 6752 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1652d19e
VS
6753 }
6754 }
6755
709e05c3 6756 return dev_priv->cdclk_pll.ref;
1652d19e
VS
6757}
6758
83d7c81f
VS
6759static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6760{
6761 u32 val;
6762
6763 dev_priv->cdclk_pll.ref = 19200;
1c3f7700 6764 dev_priv->cdclk_pll.vco = 0;
83d7c81f
VS
6765
6766 val = I915_READ(BXT_DE_PLL_ENABLE);
1c3f7700 6767 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
83d7c81f 6768 return;
83d7c81f 6769
1c3f7700
ID
6770 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6771 return;
83d7c81f
VS
6772
6773 val = I915_READ(BXT_DE_PLL_CTL);
6774 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6775 dev_priv->cdclk_pll.ref;
6776}
6777
acd3f3d3
BP
6778static int broxton_get_display_clock_speed(struct drm_device *dev)
6779{
6780 struct drm_i915_private *dev_priv = to_i915(dev);
f5986242
VS
6781 u32 divider;
6782 int div, vco;
acd3f3d3 6783
83d7c81f
VS
6784 bxt_de_pll_update(dev_priv);
6785
f5986242
VS
6786 vco = dev_priv->cdclk_pll.vco;
6787 if (vco == 0)
6788 return dev_priv->cdclk_pll.ref;
acd3f3d3 6789
f5986242 6790 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
acd3f3d3 6791
f5986242 6792 switch (divider) {
acd3f3d3 6793 case BXT_CDCLK_CD2X_DIV_SEL_1:
f5986242
VS
6794 div = 2;
6795 break;
acd3f3d3 6796 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
f5986242
VS
6797 div = 3;
6798 break;
acd3f3d3 6799 case BXT_CDCLK_CD2X_DIV_SEL_2:
f5986242
VS
6800 div = 4;
6801 break;
acd3f3d3 6802 case BXT_CDCLK_CD2X_DIV_SEL_4:
f5986242
VS
6803 div = 8;
6804 break;
6805 default:
6806 MISSING_CASE(divider);
6807 return dev_priv->cdclk_pll.ref;
acd3f3d3
BP
6808 }
6809
f5986242 6810 return DIV_ROUND_CLOSEST(vco, div);
acd3f3d3
BP
6811}
6812
1652d19e
VS
6813static int broadwell_get_display_clock_speed(struct drm_device *dev)
6814{
6815 struct drm_i915_private *dev_priv = dev->dev_private;
6816 uint32_t lcpll = I915_READ(LCPLL_CTL);
6817 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6818
6819 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6820 return 800000;
6821 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6822 return 450000;
6823 else if (freq == LCPLL_CLK_FREQ_450)
6824 return 450000;
6825 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6826 return 540000;
6827 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6828 return 337500;
6829 else
6830 return 675000;
6831}
6832
6833static int haswell_get_display_clock_speed(struct drm_device *dev)
6834{
6835 struct drm_i915_private *dev_priv = dev->dev_private;
6836 uint32_t lcpll = I915_READ(LCPLL_CTL);
6837 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6838
6839 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6840 return 800000;
6841 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6842 return 450000;
6843 else if (freq == LCPLL_CLK_FREQ_450)
6844 return 450000;
6845 else if (IS_HSW_ULT(dev))
6846 return 337500;
6847 else
6848 return 540000;
79e53945
JB
6849}
6850
25eb05fc
JB
6851static int valleyview_get_display_clock_speed(struct drm_device *dev)
6852{
bfa7df01
VS
6853 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6854 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6855}
6856
b37a6434
VS
6857static int ilk_get_display_clock_speed(struct drm_device *dev)
6858{
6859 return 450000;
6860}
6861
e70236a8
JB
6862static int i945_get_display_clock_speed(struct drm_device *dev)
6863{
6864 return 400000;
6865}
79e53945 6866
e70236a8 6867static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6868{
e907f170 6869 return 333333;
e70236a8 6870}
79e53945 6871
e70236a8
JB
6872static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6873{
6874 return 200000;
6875}
79e53945 6876
257a7ffc
DV
6877static int pnv_get_display_clock_speed(struct drm_device *dev)
6878{
6879 u16 gcfgc = 0;
6880
6881 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6882
6883 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6884 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6885 return 266667;
257a7ffc 6886 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6887 return 333333;
257a7ffc 6888 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6889 return 444444;
257a7ffc
DV
6890 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6891 return 200000;
6892 default:
6893 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6894 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6895 return 133333;
257a7ffc 6896 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6897 return 166667;
257a7ffc
DV
6898 }
6899}
6900
e70236a8
JB
6901static int i915gm_get_display_clock_speed(struct drm_device *dev)
6902{
6903 u16 gcfgc = 0;
79e53945 6904
e70236a8
JB
6905 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6906
6907 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6908 return 133333;
e70236a8
JB
6909 else {
6910 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6911 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6912 return 333333;
e70236a8
JB
6913 default:
6914 case GC_DISPLAY_CLOCK_190_200_MHZ:
6915 return 190000;
79e53945 6916 }
e70236a8
JB
6917 }
6918}
6919
6920static int i865_get_display_clock_speed(struct drm_device *dev)
6921{
e907f170 6922 return 266667;
e70236a8
JB
6923}
6924
1b1d2716 6925static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6926{
6927 u16 hpllcc = 0;
1b1d2716 6928
65cd2b3f
VS
6929 /*
6930 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6931 * encoding is different :(
6932 * FIXME is this the right way to detect 852GM/852GMV?
6933 */
6934 if (dev->pdev->revision == 0x1)
6935 return 133333;
6936
1b1d2716
VS
6937 pci_bus_read_config_word(dev->pdev->bus,
6938 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6939
e70236a8
JB
6940 /* Assume that the hardware is in the high speed state. This
6941 * should be the default.
6942 */
6943 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6944 case GC_CLOCK_133_200:
1b1d2716 6945 case GC_CLOCK_133_200_2:
e70236a8
JB
6946 case GC_CLOCK_100_200:
6947 return 200000;
6948 case GC_CLOCK_166_250:
6949 return 250000;
6950 case GC_CLOCK_100_133:
e907f170 6951 return 133333;
1b1d2716
VS
6952 case GC_CLOCK_133_266:
6953 case GC_CLOCK_133_266_2:
6954 case GC_CLOCK_166_266:
6955 return 266667;
e70236a8 6956 }
79e53945 6957
e70236a8
JB
6958 /* Shouldn't happen */
6959 return 0;
6960}
79e53945 6961
e70236a8
JB
6962static int i830_get_display_clock_speed(struct drm_device *dev)
6963{
e907f170 6964 return 133333;
79e53945
JB
6965}
6966
34edce2f
VS
6967static unsigned int intel_hpll_vco(struct drm_device *dev)
6968{
6969 struct drm_i915_private *dev_priv = dev->dev_private;
6970 static const unsigned int blb_vco[8] = {
6971 [0] = 3200000,
6972 [1] = 4000000,
6973 [2] = 5333333,
6974 [3] = 4800000,
6975 [4] = 6400000,
6976 };
6977 static const unsigned int pnv_vco[8] = {
6978 [0] = 3200000,
6979 [1] = 4000000,
6980 [2] = 5333333,
6981 [3] = 4800000,
6982 [4] = 2666667,
6983 };
6984 static const unsigned int cl_vco[8] = {
6985 [0] = 3200000,
6986 [1] = 4000000,
6987 [2] = 5333333,
6988 [3] = 6400000,
6989 [4] = 3333333,
6990 [5] = 3566667,
6991 [6] = 4266667,
6992 };
6993 static const unsigned int elk_vco[8] = {
6994 [0] = 3200000,
6995 [1] = 4000000,
6996 [2] = 5333333,
6997 [3] = 4800000,
6998 };
6999 static const unsigned int ctg_vco[8] = {
7000 [0] = 3200000,
7001 [1] = 4000000,
7002 [2] = 5333333,
7003 [3] = 6400000,
7004 [4] = 2666667,
7005 [5] = 4266667,
7006 };
7007 const unsigned int *vco_table;
7008 unsigned int vco;
7009 uint8_t tmp = 0;
7010
7011 /* FIXME other chipsets? */
7012 if (IS_GM45(dev))
7013 vco_table = ctg_vco;
7014 else if (IS_G4X(dev))
7015 vco_table = elk_vco;
7016 else if (IS_CRESTLINE(dev))
7017 vco_table = cl_vco;
7018 else if (IS_PINEVIEW(dev))
7019 vco_table = pnv_vco;
7020 else if (IS_G33(dev))
7021 vco_table = blb_vco;
7022 else
7023 return 0;
7024
7025 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7026
7027 vco = vco_table[tmp & 0x7];
7028 if (vco == 0)
7029 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7030 else
7031 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7032
7033 return vco;
7034}
7035
7036static int gm45_get_display_clock_speed(struct drm_device *dev)
7037{
7038 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7039 uint16_t tmp = 0;
7040
7041 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7042
7043 cdclk_sel = (tmp >> 12) & 0x1;
7044
7045 switch (vco) {
7046 case 2666667:
7047 case 4000000:
7048 case 5333333:
7049 return cdclk_sel ? 333333 : 222222;
7050 case 3200000:
7051 return cdclk_sel ? 320000 : 228571;
7052 default:
7053 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7054 return 222222;
7055 }
7056}
7057
7058static int i965gm_get_display_clock_speed(struct drm_device *dev)
7059{
7060 static const uint8_t div_3200[] = { 16, 10, 8 };
7061 static const uint8_t div_4000[] = { 20, 12, 10 };
7062 static const uint8_t div_5333[] = { 24, 16, 14 };
7063 const uint8_t *div_table;
7064 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7065 uint16_t tmp = 0;
7066
7067 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7068
7069 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7070
7071 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7072 goto fail;
7073
7074 switch (vco) {
7075 case 3200000:
7076 div_table = div_3200;
7077 break;
7078 case 4000000:
7079 div_table = div_4000;
7080 break;
7081 case 5333333:
7082 div_table = div_5333;
7083 break;
7084 default:
7085 goto fail;
7086 }
7087
7088 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7089
caf4e252 7090fail:
34edce2f
VS
7091 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7092 return 200000;
7093}
7094
7095static int g33_get_display_clock_speed(struct drm_device *dev)
7096{
7097 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7098 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7099 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7100 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7101 const uint8_t *div_table;
7102 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7103 uint16_t tmp = 0;
7104
7105 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7106
7107 cdclk_sel = (tmp >> 4) & 0x7;
7108
7109 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7110 goto fail;
7111
7112 switch (vco) {
7113 case 3200000:
7114 div_table = div_3200;
7115 break;
7116 case 4000000:
7117 div_table = div_4000;
7118 break;
7119 case 4800000:
7120 div_table = div_4800;
7121 break;
7122 case 5333333:
7123 div_table = div_5333;
7124 break;
7125 default:
7126 goto fail;
7127 }
7128
7129 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7130
caf4e252 7131fail:
34edce2f
VS
7132 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7133 return 190476;
7134}
7135
2c07245f 7136static void
a65851af 7137intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7138{
a65851af
VS
7139 while (*num > DATA_LINK_M_N_MASK ||
7140 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7141 *num >>= 1;
7142 *den >>= 1;
7143 }
7144}
7145
a65851af
VS
7146static void compute_m_n(unsigned int m, unsigned int n,
7147 uint32_t *ret_m, uint32_t *ret_n)
7148{
7149 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7150 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7151 intel_reduce_m_n_ratio(ret_m, ret_n);
7152}
7153
e69d0bc1
DV
7154void
7155intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7156 int pixel_clock, int link_clock,
7157 struct intel_link_m_n *m_n)
2c07245f 7158{
e69d0bc1 7159 m_n->tu = 64;
a65851af
VS
7160
7161 compute_m_n(bits_per_pixel * pixel_clock,
7162 link_clock * nlanes * 8,
7163 &m_n->gmch_m, &m_n->gmch_n);
7164
7165 compute_m_n(pixel_clock, link_clock,
7166 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7167}
7168
a7615030
CW
7169static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7170{
d330a953
JN
7171 if (i915.panel_use_ssc >= 0)
7172 return i915.panel_use_ssc != 0;
41aa3448 7173 return dev_priv->vbt.lvds_use_ssc
435793df 7174 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7175}
7176
7429e9d4 7177static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7178{
7df00d7a 7179 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7180}
f47709a9 7181
7429e9d4
DV
7182static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7183{
7184 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7185}
7186
f47709a9 7187static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7188 struct intel_crtc_state *crtc_state,
9e2c8475 7189 struct dpll *reduced_clock)
a7516a05 7190{
f47709a9 7191 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7192 u32 fp, fp2 = 0;
7193
7194 if (IS_PINEVIEW(dev)) {
190f68c5 7195 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7196 if (reduced_clock)
7429e9d4 7197 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7198 } else {
190f68c5 7199 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7200 if (reduced_clock)
7429e9d4 7201 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7202 }
7203
190f68c5 7204 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7205
f47709a9 7206 crtc->lowfreq_avail = false;
a93e255f 7207 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7208 reduced_clock) {
190f68c5 7209 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7210 crtc->lowfreq_avail = true;
a7516a05 7211 } else {
190f68c5 7212 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7213 }
7214}
7215
5e69f97f
CML
7216static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7217 pipe)
89b667f8
JB
7218{
7219 u32 reg_val;
7220
7221 /*
7222 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7223 * and set it to a reasonable value instead.
7224 */
ab3c759a 7225 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7226 reg_val &= 0xffffff00;
7227 reg_val |= 0x00000030;
ab3c759a 7228 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7229
ab3c759a 7230 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7231 reg_val &= 0x8cffffff;
7232 reg_val = 0x8c000000;
ab3c759a 7233 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7234
ab3c759a 7235 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7236 reg_val &= 0xffffff00;
ab3c759a 7237 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7238
ab3c759a 7239 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7240 reg_val &= 0x00ffffff;
7241 reg_val |= 0xb0000000;
ab3c759a 7242 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7243}
7244
b551842d
DV
7245static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7246 struct intel_link_m_n *m_n)
7247{
7248 struct drm_device *dev = crtc->base.dev;
7249 struct drm_i915_private *dev_priv = dev->dev_private;
7250 int pipe = crtc->pipe;
7251
e3b95f1e
DV
7252 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7253 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7254 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7255 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7256}
7257
7258static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7259 struct intel_link_m_n *m_n,
7260 struct intel_link_m_n *m2_n2)
b551842d
DV
7261{
7262 struct drm_device *dev = crtc->base.dev;
7263 struct drm_i915_private *dev_priv = dev->dev_private;
7264 int pipe = crtc->pipe;
6e3c9717 7265 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7266
7267 if (INTEL_INFO(dev)->gen >= 5) {
7268 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7269 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7270 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7271 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7272 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7273 * for gen < 8) and if DRRS is supported (to make sure the
7274 * registers are not unnecessarily accessed).
7275 */
44395bfe 7276 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7277 crtc->config->has_drrs) {
f769cd24
VK
7278 I915_WRITE(PIPE_DATA_M2(transcoder),
7279 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7280 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7281 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7282 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7283 }
b551842d 7284 } else {
e3b95f1e
DV
7285 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7286 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7287 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7288 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7289 }
7290}
7291
fe3cd48d 7292void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7293{
fe3cd48d
R
7294 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7295
7296 if (m_n == M1_N1) {
7297 dp_m_n = &crtc->config->dp_m_n;
7298 dp_m2_n2 = &crtc->config->dp_m2_n2;
7299 } else if (m_n == M2_N2) {
7300
7301 /*
7302 * M2_N2 registers are not supported. Hence m2_n2 divider value
7303 * needs to be programmed into M1_N1.
7304 */
7305 dp_m_n = &crtc->config->dp_m2_n2;
7306 } else {
7307 DRM_ERROR("Unsupported divider value\n");
7308 return;
7309 }
7310
6e3c9717
ACO
7311 if (crtc->config->has_pch_encoder)
7312 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7313 else
fe3cd48d 7314 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7315}
7316
251ac862
DV
7317static void vlv_compute_dpll(struct intel_crtc *crtc,
7318 struct intel_crtc_state *pipe_config)
bdd4b6a6 7319{
03ed5cbf 7320 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
cd2d34d9 7321 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7322 if (crtc->pipe != PIPE_A)
7323 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
bdd4b6a6 7324
cd2d34d9 7325 /* DPLL not used with DSI, but still need the rest set up */
187a1c07 7326 if (!pipe_config->has_dsi_encoder)
cd2d34d9
VS
7327 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7328 DPLL_EXT_BUFFER_ENABLE_VLV;
7329
03ed5cbf
VS
7330 pipe_config->dpll_hw_state.dpll_md =
7331 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7332}
bdd4b6a6 7333
03ed5cbf
VS
7334static void chv_compute_dpll(struct intel_crtc *crtc,
7335 struct intel_crtc_state *pipe_config)
7336{
7337 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
cd2d34d9 7338 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7339 if (crtc->pipe != PIPE_A)
7340 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7341
cd2d34d9 7342 /* DPLL not used with DSI, but still need the rest set up */
187a1c07 7343 if (!pipe_config->has_dsi_encoder)
cd2d34d9
VS
7344 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7345
03ed5cbf
VS
7346 pipe_config->dpll_hw_state.dpll_md =
7347 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
bdd4b6a6
DV
7348}
7349
d288f65f 7350static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7351 const struct intel_crtc_state *pipe_config)
a0c4da24 7352{
f47709a9 7353 struct drm_device *dev = crtc->base.dev;
a0c4da24 7354 struct drm_i915_private *dev_priv = dev->dev_private;
cd2d34d9 7355 enum pipe pipe = crtc->pipe;
bdd4b6a6 7356 u32 mdiv;
a0c4da24 7357 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7358 u32 coreclk, reg_val;
a0c4da24 7359
cd2d34d9
VS
7360 /* Enable Refclk */
7361 I915_WRITE(DPLL(pipe),
7362 pipe_config->dpll_hw_state.dpll &
7363 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7364
7365 /* No need to actually set up the DPLL with DSI */
7366 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7367 return;
7368
a580516d 7369 mutex_lock(&dev_priv->sb_lock);
09153000 7370
d288f65f
VS
7371 bestn = pipe_config->dpll.n;
7372 bestm1 = pipe_config->dpll.m1;
7373 bestm2 = pipe_config->dpll.m2;
7374 bestp1 = pipe_config->dpll.p1;
7375 bestp2 = pipe_config->dpll.p2;
a0c4da24 7376
89b667f8
JB
7377 /* See eDP HDMI DPIO driver vbios notes doc */
7378
7379 /* PLL B needs special handling */
bdd4b6a6 7380 if (pipe == PIPE_B)
5e69f97f 7381 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7382
7383 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7384 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7385
7386 /* Disable target IRef on PLL */
ab3c759a 7387 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7388 reg_val &= 0x00ffffff;
ab3c759a 7389 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7390
7391 /* Disable fast lock */
ab3c759a 7392 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7393
7394 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7395 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7396 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7397 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7398 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7399
7400 /*
7401 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7402 * but we don't support that).
7403 * Note: don't use the DAC post divider as it seems unstable.
7404 */
7405 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7406 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7407
a0c4da24 7408 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7409 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7410
89b667f8 7411 /* Set HBR and RBR LPF coefficients */
d288f65f 7412 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7413 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7414 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7415 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7416 0x009f0003);
89b667f8 7417 else
ab3c759a 7418 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7419 0x00d0000f);
7420
681a8504 7421 if (pipe_config->has_dp_encoder) {
89b667f8 7422 /* Use SSC source */
bdd4b6a6 7423 if (pipe == PIPE_A)
ab3c759a 7424 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7425 0x0df40000);
7426 else
ab3c759a 7427 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7428 0x0df70000);
7429 } else { /* HDMI or VGA */
7430 /* Use bend source */
bdd4b6a6 7431 if (pipe == PIPE_A)
ab3c759a 7432 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7433 0x0df70000);
7434 else
ab3c759a 7435 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7436 0x0df40000);
7437 }
a0c4da24 7438
ab3c759a 7439 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7440 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7441 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7442 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7443 coreclk |= 0x01000000;
ab3c759a 7444 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7445
ab3c759a 7446 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7447 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7448}
7449
d288f65f 7450static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7451 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7452{
7453 struct drm_device *dev = crtc->base.dev;
7454 struct drm_i915_private *dev_priv = dev->dev_private;
cd2d34d9 7455 enum pipe pipe = crtc->pipe;
9d556c99 7456 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7457 u32 loopfilter, tribuf_calcntr;
9d556c99 7458 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7459 u32 dpio_val;
9cbe40c1 7460 int vco;
9d556c99 7461
cd2d34d9
VS
7462 /* Enable Refclk and SSC */
7463 I915_WRITE(DPLL(pipe),
7464 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7465
7466 /* No need to actually set up the DPLL with DSI */
7467 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7468 return;
7469
d288f65f
VS
7470 bestn = pipe_config->dpll.n;
7471 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7472 bestm1 = pipe_config->dpll.m1;
7473 bestm2 = pipe_config->dpll.m2 >> 22;
7474 bestp1 = pipe_config->dpll.p1;
7475 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7476 vco = pipe_config->dpll.vco;
a945ce7e 7477 dpio_val = 0;
9cbe40c1 7478 loopfilter = 0;
9d556c99 7479
a580516d 7480 mutex_lock(&dev_priv->sb_lock);
9d556c99 7481
9d556c99
CML
7482 /* p1 and p2 divider */
7483 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7484 5 << DPIO_CHV_S1_DIV_SHIFT |
7485 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7486 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7487 1 << DPIO_CHV_K_DIV_SHIFT);
7488
7489 /* Feedback post-divider - m2 */
7490 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7491
7492 /* Feedback refclk divider - n and m1 */
7493 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7494 DPIO_CHV_M1_DIV_BY_2 |
7495 1 << DPIO_CHV_N_DIV_SHIFT);
7496
7497 /* M2 fraction division */
25a25dfc 7498 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7499
7500 /* M2 fraction division enable */
a945ce7e
VP
7501 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7502 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7503 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7504 if (bestm2_frac)
7505 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7506 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7507
de3a0fde
VP
7508 /* Program digital lock detect threshold */
7509 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7510 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7511 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7512 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7513 if (!bestm2_frac)
7514 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7515 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7516
9d556c99 7517 /* Loop filter */
9cbe40c1
VP
7518 if (vco == 5400000) {
7519 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7520 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7521 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7522 tribuf_calcntr = 0x9;
7523 } else if (vco <= 6200000) {
7524 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7525 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7526 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7527 tribuf_calcntr = 0x9;
7528 } else if (vco <= 6480000) {
7529 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7530 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7531 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7532 tribuf_calcntr = 0x8;
7533 } else {
7534 /* Not supported. Apply the same limits as in the max case */
7535 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7536 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7537 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7538 tribuf_calcntr = 0;
7539 }
9d556c99
CML
7540 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7541
968040b2 7542 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7543 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7544 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7545 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7546
9d556c99
CML
7547 /* AFC Recal */
7548 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7549 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7550 DPIO_AFC_RECAL);
7551
a580516d 7552 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7553}
7554
d288f65f
VS
7555/**
7556 * vlv_force_pll_on - forcibly enable just the PLL
7557 * @dev_priv: i915 private structure
7558 * @pipe: pipe PLL to enable
7559 * @dpll: PLL configuration
7560 *
7561 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7562 * in cases where we need the PLL enabled even when @pipe is not going to
7563 * be enabled.
7564 */
3f36b937
TU
7565int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7566 const struct dpll *dpll)
d288f65f
VS
7567{
7568 struct intel_crtc *crtc =
7569 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
7570 struct intel_crtc_state *pipe_config;
7571
7572 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7573 if (!pipe_config)
7574 return -ENOMEM;
7575
7576 pipe_config->base.crtc = &crtc->base;
7577 pipe_config->pixel_multiplier = 1;
7578 pipe_config->dpll = *dpll;
d288f65f
VS
7579
7580 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
7581 chv_compute_dpll(crtc, pipe_config);
7582 chv_prepare_pll(crtc, pipe_config);
7583 chv_enable_pll(crtc, pipe_config);
d288f65f 7584 } else {
3f36b937
TU
7585 vlv_compute_dpll(crtc, pipe_config);
7586 vlv_prepare_pll(crtc, pipe_config);
7587 vlv_enable_pll(crtc, pipe_config);
d288f65f 7588 }
3f36b937
TU
7589
7590 kfree(pipe_config);
7591
7592 return 0;
d288f65f
VS
7593}
7594
7595/**
7596 * vlv_force_pll_off - forcibly disable just the PLL
7597 * @dev_priv: i915 private structure
7598 * @pipe: pipe PLL to disable
7599 *
7600 * Disable the PLL for @pipe. To be used in cases where we need
7601 * the PLL enabled even when @pipe is not going to be enabled.
7602 */
7603void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7604{
7605 if (IS_CHERRYVIEW(dev))
7606 chv_disable_pll(to_i915(dev), pipe);
7607 else
7608 vlv_disable_pll(to_i915(dev), pipe);
7609}
7610
251ac862
DV
7611static void i9xx_compute_dpll(struct intel_crtc *crtc,
7612 struct intel_crtc_state *crtc_state,
9e2c8475 7613 struct dpll *reduced_clock)
eb1cbe48 7614{
f47709a9 7615 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7616 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7617 u32 dpll;
7618 bool is_sdvo;
190f68c5 7619 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7620
190f68c5 7621 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7622
a93e255f
ACO
7623 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7624 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7625
7626 dpll = DPLL_VGA_MODE_DIS;
7627
a93e255f 7628 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7629 dpll |= DPLLB_MODE_LVDS;
7630 else
7631 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7632
ef1b460d 7633 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7634 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7635 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7636 }
198a037f
DV
7637
7638 if (is_sdvo)
4a33e48d 7639 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7640
190f68c5 7641 if (crtc_state->has_dp_encoder)
4a33e48d 7642 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7643
7644 /* compute bitmask from p1 value */
7645 if (IS_PINEVIEW(dev))
7646 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7647 else {
7648 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7649 if (IS_G4X(dev) && reduced_clock)
7650 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7651 }
7652 switch (clock->p2) {
7653 case 5:
7654 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7655 break;
7656 case 7:
7657 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7658 break;
7659 case 10:
7660 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7661 break;
7662 case 14:
7663 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7664 break;
7665 }
7666 if (INTEL_INFO(dev)->gen >= 4)
7667 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7668
190f68c5 7669 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7670 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7671 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 7672 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
7673 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7674 else
7675 dpll |= PLL_REF_INPUT_DREFCLK;
7676
7677 dpll |= DPLL_VCO_ENABLE;
190f68c5 7678 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7679
eb1cbe48 7680 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7681 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7682 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7683 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7684 }
7685}
7686
251ac862
DV
7687static void i8xx_compute_dpll(struct intel_crtc *crtc,
7688 struct intel_crtc_state *crtc_state,
9e2c8475 7689 struct dpll *reduced_clock)
eb1cbe48 7690{
f47709a9 7691 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7692 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7693 u32 dpll;
190f68c5 7694 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7695
190f68c5 7696 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7697
eb1cbe48
DV
7698 dpll = DPLL_VGA_MODE_DIS;
7699
a93e255f 7700 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7701 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7702 } else {
7703 if (clock->p1 == 2)
7704 dpll |= PLL_P1_DIVIDE_BY_TWO;
7705 else
7706 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7707 if (clock->p2 == 4)
7708 dpll |= PLL_P2_DIVIDE_BY_4;
7709 }
7710
a93e255f 7711 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7712 dpll |= DPLL_DVO_2X_MODE;
7713
a93e255f 7714 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 7715 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
7716 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7717 else
7718 dpll |= PLL_REF_INPUT_DREFCLK;
7719
7720 dpll |= DPLL_VCO_ENABLE;
190f68c5 7721 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7722}
7723
8a654f3b 7724static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7725{
7726 struct drm_device *dev = intel_crtc->base.dev;
7727 struct drm_i915_private *dev_priv = dev->dev_private;
7728 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7729 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7730 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7731 uint32_t crtc_vtotal, crtc_vblank_end;
7732 int vsyncshift = 0;
4d8a62ea
DV
7733
7734 /* We need to be careful not to changed the adjusted mode, for otherwise
7735 * the hw state checker will get angry at the mismatch. */
7736 crtc_vtotal = adjusted_mode->crtc_vtotal;
7737 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7738
609aeaca 7739 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7740 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7741 crtc_vtotal -= 1;
7742 crtc_vblank_end -= 1;
609aeaca 7743
409ee761 7744 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7745 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7746 else
7747 vsyncshift = adjusted_mode->crtc_hsync_start -
7748 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7749 if (vsyncshift < 0)
7750 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7751 }
7752
7753 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7754 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7755
fe2b8f9d 7756 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7757 (adjusted_mode->crtc_hdisplay - 1) |
7758 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7759 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7760 (adjusted_mode->crtc_hblank_start - 1) |
7761 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7762 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7763 (adjusted_mode->crtc_hsync_start - 1) |
7764 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7765
fe2b8f9d 7766 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7767 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7768 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7769 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7770 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7771 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7772 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7773 (adjusted_mode->crtc_vsync_start - 1) |
7774 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7775
b5e508d4
PZ
7776 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7777 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7778 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7779 * bits. */
7780 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7781 (pipe == PIPE_B || pipe == PIPE_C))
7782 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7783
bc58be60
JN
7784}
7785
7786static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7787{
7788 struct drm_device *dev = intel_crtc->base.dev;
7789 struct drm_i915_private *dev_priv = dev->dev_private;
7790 enum pipe pipe = intel_crtc->pipe;
7791
b0e77b9c
PZ
7792 /* pipesrc controls the size that is scaled from, which should
7793 * always be the user's requested size.
7794 */
7795 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7796 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7797 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7798}
7799
1bd1bd80 7800static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7801 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7802{
7803 struct drm_device *dev = crtc->base.dev;
7804 struct drm_i915_private *dev_priv = dev->dev_private;
7805 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7806 uint32_t tmp;
7807
7808 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7809 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7810 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7811 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7812 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7813 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7814 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7815 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7816 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7817
7818 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7819 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7820 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7821 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7822 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7823 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7824 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7825 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7826 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7827
7828 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7829 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7830 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7831 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80 7832 }
bc58be60
JN
7833}
7834
7835static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7836 struct intel_crtc_state *pipe_config)
7837{
7838 struct drm_device *dev = crtc->base.dev;
7839 struct drm_i915_private *dev_priv = dev->dev_private;
7840 u32 tmp;
1bd1bd80
DV
7841
7842 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7843 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7844 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7845
2d112de7
ACO
7846 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7847 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7848}
7849
f6a83288 7850void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7851 struct intel_crtc_state *pipe_config)
babea61d 7852{
2d112de7
ACO
7853 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7854 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7855 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7856 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7857
2d112de7
ACO
7858 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7859 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7860 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7861 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7862
2d112de7 7863 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7864 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7865
2d112de7
ACO
7866 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7867 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7868
7869 mode->hsync = drm_mode_hsync(mode);
7870 mode->vrefresh = drm_mode_vrefresh(mode);
7871 drm_mode_set_name(mode);
babea61d
JB
7872}
7873
84b046f3
DV
7874static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7875{
7876 struct drm_device *dev = intel_crtc->base.dev;
7877 struct drm_i915_private *dev_priv = dev->dev_private;
7878 uint32_t pipeconf;
7879
9f11a9e4 7880 pipeconf = 0;
84b046f3 7881
b6b5d049
VS
7882 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7883 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7884 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7885
6e3c9717 7886 if (intel_crtc->config->double_wide)
cf532bb2 7887 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7888
ff9ce46e 7889 /* only g4x and later have fancy bpc/dither controls */
666a4537 7890 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 7891 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7892 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7893 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7894 PIPECONF_DITHER_TYPE_SP;
84b046f3 7895
6e3c9717 7896 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7897 case 18:
7898 pipeconf |= PIPECONF_6BPC;
7899 break;
7900 case 24:
7901 pipeconf |= PIPECONF_8BPC;
7902 break;
7903 case 30:
7904 pipeconf |= PIPECONF_10BPC;
7905 break;
7906 default:
7907 /* Case prevented by intel_choose_pipe_bpp_dither. */
7908 BUG();
84b046f3
DV
7909 }
7910 }
7911
7912 if (HAS_PIPE_CXSR(dev)) {
7913 if (intel_crtc->lowfreq_avail) {
7914 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7915 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7916 } else {
7917 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7918 }
7919 }
7920
6e3c9717 7921 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7922 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7923 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7924 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7925 else
7926 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7927 } else
84b046f3
DV
7928 pipeconf |= PIPECONF_PROGRESSIVE;
7929
666a4537
WB
7930 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7931 intel_crtc->config->limited_color_range)
9f11a9e4 7932 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7933
84b046f3
DV
7934 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7935 POSTING_READ(PIPECONF(intel_crtc->pipe));
7936}
7937
81c97f52
ACO
7938static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7939 struct intel_crtc_state *crtc_state)
7940{
7941 struct drm_device *dev = crtc->base.dev;
7942 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7943 const struct intel_limit *limit;
81c97f52
ACO
7944 int refclk = 48000;
7945
7946 memset(&crtc_state->dpll_hw_state, 0,
7947 sizeof(crtc_state->dpll_hw_state));
7948
7949 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7950 if (intel_panel_use_ssc(dev_priv)) {
7951 refclk = dev_priv->vbt.lvds_ssc_freq;
7952 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7953 }
7954
7955 limit = &intel_limits_i8xx_lvds;
7956 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7957 limit = &intel_limits_i8xx_dvo;
7958 } else {
7959 limit = &intel_limits_i8xx_dac;
7960 }
7961
7962 if (!crtc_state->clock_set &&
7963 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7964 refclk, NULL, &crtc_state->dpll)) {
7965 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7966 return -EINVAL;
7967 }
7968
7969 i8xx_compute_dpll(crtc, crtc_state, NULL);
7970
7971 return 0;
7972}
7973
19ec6693
ACO
7974static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7975 struct intel_crtc_state *crtc_state)
7976{
7977 struct drm_device *dev = crtc->base.dev;
7978 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7979 const struct intel_limit *limit;
19ec6693
ACO
7980 int refclk = 96000;
7981
7982 memset(&crtc_state->dpll_hw_state, 0,
7983 sizeof(crtc_state->dpll_hw_state));
7984
7985 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7986 if (intel_panel_use_ssc(dev_priv)) {
7987 refclk = dev_priv->vbt.lvds_ssc_freq;
7988 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7989 }
7990
7991 if (intel_is_dual_link_lvds(dev))
7992 limit = &intel_limits_g4x_dual_channel_lvds;
7993 else
7994 limit = &intel_limits_g4x_single_channel_lvds;
7995 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7996 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7997 limit = &intel_limits_g4x_hdmi;
7998 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7999 limit = &intel_limits_g4x_sdvo;
8000 } else {
8001 /* The option is for other outputs */
8002 limit = &intel_limits_i9xx_sdvo;
8003 }
8004
8005 if (!crtc_state->clock_set &&
8006 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8007 refclk, NULL, &crtc_state->dpll)) {
8008 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8009 return -EINVAL;
8010 }
8011
8012 i9xx_compute_dpll(crtc, crtc_state, NULL);
8013
8014 return 0;
8015}
8016
70e8aa21
ACO
8017static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8018 struct intel_crtc_state *crtc_state)
8019{
8020 struct drm_device *dev = crtc->base.dev;
8021 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 8022 const struct intel_limit *limit;
70e8aa21
ACO
8023 int refclk = 96000;
8024
8025 memset(&crtc_state->dpll_hw_state, 0,
8026 sizeof(crtc_state->dpll_hw_state));
8027
8028 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8029 if (intel_panel_use_ssc(dev_priv)) {
8030 refclk = dev_priv->vbt.lvds_ssc_freq;
8031 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8032 }
8033
8034 limit = &intel_limits_pineview_lvds;
8035 } else {
8036 limit = &intel_limits_pineview_sdvo;
8037 }
8038
8039 if (!crtc_state->clock_set &&
8040 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8041 refclk, NULL, &crtc_state->dpll)) {
8042 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8043 return -EINVAL;
8044 }
8045
8046 i9xx_compute_dpll(crtc, crtc_state, NULL);
8047
8048 return 0;
8049}
8050
190f68c5
ACO
8051static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8052 struct intel_crtc_state *crtc_state)
79e53945 8053{
c7653199 8054 struct drm_device *dev = crtc->base.dev;
79e53945 8055 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 8056 const struct intel_limit *limit;
81c97f52 8057 int refclk = 96000;
79e53945 8058
dd3cd74a
ACO
8059 memset(&crtc_state->dpll_hw_state, 0,
8060 sizeof(crtc_state->dpll_hw_state));
8061
70e8aa21
ACO
8062 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8063 if (intel_panel_use_ssc(dev_priv)) {
8064 refclk = dev_priv->vbt.lvds_ssc_freq;
8065 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8066 }
43565a06 8067
70e8aa21
ACO
8068 limit = &intel_limits_i9xx_lvds;
8069 } else {
8070 limit = &intel_limits_i9xx_sdvo;
81c97f52 8071 }
79e53945 8072
70e8aa21
ACO
8073 if (!crtc_state->clock_set &&
8074 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8075 refclk, NULL, &crtc_state->dpll)) {
8076 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8077 return -EINVAL;
f47709a9 8078 }
7026d4ac 8079
81c97f52 8080 i9xx_compute_dpll(crtc, crtc_state, NULL);
79e53945 8081
c8f7a0db 8082 return 0;
f564048e
EA
8083}
8084
65b3d6a9
ACO
8085static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8086 struct intel_crtc_state *crtc_state)
8087{
8088 int refclk = 100000;
1b6f4958 8089 const struct intel_limit *limit = &intel_limits_chv;
65b3d6a9
ACO
8090
8091 memset(&crtc_state->dpll_hw_state, 0,
8092 sizeof(crtc_state->dpll_hw_state));
8093
65b3d6a9
ACO
8094 if (!crtc_state->clock_set &&
8095 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8096 refclk, NULL, &crtc_state->dpll)) {
8097 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8098 return -EINVAL;
8099 }
8100
8101 chv_compute_dpll(crtc, crtc_state);
8102
8103 return 0;
8104}
8105
8106static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8107 struct intel_crtc_state *crtc_state)
8108{
8109 int refclk = 100000;
1b6f4958 8110 const struct intel_limit *limit = &intel_limits_vlv;
65b3d6a9
ACO
8111
8112 memset(&crtc_state->dpll_hw_state, 0,
8113 sizeof(crtc_state->dpll_hw_state));
8114
65b3d6a9
ACO
8115 if (!crtc_state->clock_set &&
8116 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8117 refclk, NULL, &crtc_state->dpll)) {
8118 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8119 return -EINVAL;
8120 }
8121
8122 vlv_compute_dpll(crtc, crtc_state);
8123
8124 return 0;
8125}
8126
2fa2fe9a 8127static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8128 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8129{
8130 struct drm_device *dev = crtc->base.dev;
8131 struct drm_i915_private *dev_priv = dev->dev_private;
8132 uint32_t tmp;
8133
dc9e7dec
VS
8134 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8135 return;
8136
2fa2fe9a 8137 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
8138 if (!(tmp & PFIT_ENABLE))
8139 return;
2fa2fe9a 8140
06922821 8141 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8142 if (INTEL_INFO(dev)->gen < 4) {
8143 if (crtc->pipe != PIPE_B)
8144 return;
2fa2fe9a
DV
8145 } else {
8146 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8147 return;
8148 }
8149
06922821 8150 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a 8151 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
2fa2fe9a
DV
8152}
8153
acbec814 8154static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8155 struct intel_crtc_state *pipe_config)
acbec814
JB
8156{
8157 struct drm_device *dev = crtc->base.dev;
8158 struct drm_i915_private *dev_priv = dev->dev_private;
8159 int pipe = pipe_config->cpu_transcoder;
9e2c8475 8160 struct dpll clock;
acbec814 8161 u32 mdiv;
662c6ecb 8162 int refclk = 100000;
acbec814 8163
b521973b
VS
8164 /* In case of DSI, DPLL will not be used */
8165 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
f573de5a
SK
8166 return;
8167
a580516d 8168 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8169 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8170 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8171
8172 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8173 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8174 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8175 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8176 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8177
dccbea3b 8178 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8179}
8180
5724dbd1
DL
8181static void
8182i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8183 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8184{
8185 struct drm_device *dev = crtc->base.dev;
8186 struct drm_i915_private *dev_priv = dev->dev_private;
8187 u32 val, base, offset;
8188 int pipe = crtc->pipe, plane = crtc->plane;
8189 int fourcc, pixel_format;
6761dd31 8190 unsigned int aligned_height;
b113d5ee 8191 struct drm_framebuffer *fb;
1b842c89 8192 struct intel_framebuffer *intel_fb;
1ad292b5 8193
42a7b088
DL
8194 val = I915_READ(DSPCNTR(plane));
8195 if (!(val & DISPLAY_PLANE_ENABLE))
8196 return;
8197
d9806c9f 8198 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8199 if (!intel_fb) {
1ad292b5
JB
8200 DRM_DEBUG_KMS("failed to alloc fb\n");
8201 return;
8202 }
8203
1b842c89
DL
8204 fb = &intel_fb->base;
8205
18c5247e
DV
8206 if (INTEL_INFO(dev)->gen >= 4) {
8207 if (val & DISPPLANE_TILED) {
49af449b 8208 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8209 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8210 }
8211 }
1ad292b5
JB
8212
8213 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8214 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8215 fb->pixel_format = fourcc;
8216 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8217
8218 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8219 if (plane_config->tiling)
1ad292b5
JB
8220 offset = I915_READ(DSPTILEOFF(plane));
8221 else
8222 offset = I915_READ(DSPLINOFF(plane));
8223 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8224 } else {
8225 base = I915_READ(DSPADDR(plane));
8226 }
8227 plane_config->base = base;
8228
8229 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8230 fb->width = ((val >> 16) & 0xfff) + 1;
8231 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8232
8233 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8234 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8235
b113d5ee 8236 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8237 fb->pixel_format,
8238 fb->modifier[0]);
1ad292b5 8239
f37b5c2b 8240 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8241
2844a921
DL
8242 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8243 pipe_name(pipe), plane, fb->width, fb->height,
8244 fb->bits_per_pixel, base, fb->pitches[0],
8245 plane_config->size);
1ad292b5 8246
2d14030b 8247 plane_config->fb = intel_fb;
1ad292b5
JB
8248}
8249
70b23a98 8250static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8251 struct intel_crtc_state *pipe_config)
70b23a98
VS
8252{
8253 struct drm_device *dev = crtc->base.dev;
8254 struct drm_i915_private *dev_priv = dev->dev_private;
8255 int pipe = pipe_config->cpu_transcoder;
8256 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9e2c8475 8257 struct dpll clock;
0d7b6b11 8258 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8259 int refclk = 100000;
8260
b521973b
VS
8261 /* In case of DSI, DPLL will not be used */
8262 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8263 return;
8264
a580516d 8265 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8266 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8267 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8268 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8269 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8270 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8271 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8272
8273 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8274 clock.m2 = (pll_dw0 & 0xff) << 22;
8275 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8276 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8277 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8278 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8279 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8280
dccbea3b 8281 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8282}
8283
0e8ffe1b 8284static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8285 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8286{
8287 struct drm_device *dev = crtc->base.dev;
8288 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 8289 enum intel_display_power_domain power_domain;
0e8ffe1b 8290 uint32_t tmp;
1729050e 8291 bool ret;
0e8ffe1b 8292
1729050e
ID
8293 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8294 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8295 return false;
8296
e143a21c 8297 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 8298 pipe_config->shared_dpll = NULL;
eccb140b 8299
1729050e
ID
8300 ret = false;
8301
0e8ffe1b
DV
8302 tmp = I915_READ(PIPECONF(crtc->pipe));
8303 if (!(tmp & PIPECONF_ENABLE))
1729050e 8304 goto out;
0e8ffe1b 8305
666a4537 8306 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8307 switch (tmp & PIPECONF_BPC_MASK) {
8308 case PIPECONF_6BPC:
8309 pipe_config->pipe_bpp = 18;
8310 break;
8311 case PIPECONF_8BPC:
8312 pipe_config->pipe_bpp = 24;
8313 break;
8314 case PIPECONF_10BPC:
8315 pipe_config->pipe_bpp = 30;
8316 break;
8317 default:
8318 break;
8319 }
8320 }
8321
666a4537
WB
8322 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8323 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8324 pipe_config->limited_color_range = true;
8325
282740f7
VS
8326 if (INTEL_INFO(dev)->gen < 4)
8327 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8328
1bd1bd80 8329 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 8330 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 8331
2fa2fe9a
DV
8332 i9xx_get_pfit_config(crtc, pipe_config);
8333
6c49f241 8334 if (INTEL_INFO(dev)->gen >= 4) {
c231775c
VS
8335 /* No way to read it out on pipes B and C */
8336 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8337 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8338 else
8339 tmp = I915_READ(DPLL_MD(crtc->pipe));
6c49f241
DV
8340 pipe_config->pixel_multiplier =
8341 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8342 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8343 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8344 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8345 tmp = I915_READ(DPLL(crtc->pipe));
8346 pipe_config->pixel_multiplier =
8347 ((tmp & SDVO_MULTIPLIER_MASK)
8348 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8349 } else {
8350 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8351 * port and will be fixed up in the encoder->get_config
8352 * function. */
8353 pipe_config->pixel_multiplier = 1;
8354 }
8bcc2795 8355 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8356 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8357 /*
8358 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8359 * on 830. Filter it out here so that we don't
8360 * report errors due to that.
8361 */
8362 if (IS_I830(dev))
8363 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8364
8bcc2795
DV
8365 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8366 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8367 } else {
8368 /* Mask out read-only status bits. */
8369 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8370 DPLL_PORTC_READY_MASK |
8371 DPLL_PORTB_READY_MASK);
8bcc2795 8372 }
6c49f241 8373
70b23a98
VS
8374 if (IS_CHERRYVIEW(dev))
8375 chv_crtc_clock_get(crtc, pipe_config);
8376 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8377 vlv_crtc_clock_get(crtc, pipe_config);
8378 else
8379 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8380
0f64614d
VS
8381 /*
8382 * Normally the dotclock is filled in by the encoder .get_config()
8383 * but in case the pipe is enabled w/o any ports we need a sane
8384 * default.
8385 */
8386 pipe_config->base.adjusted_mode.crtc_clock =
8387 pipe_config->port_clock / pipe_config->pixel_multiplier;
8388
1729050e
ID
8389 ret = true;
8390
8391out:
8392 intel_display_power_put(dev_priv, power_domain);
8393
8394 return ret;
0e8ffe1b
DV
8395}
8396
dde86e2d 8397static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8398{
8399 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8400 struct intel_encoder *encoder;
1c1a24d2 8401 int i;
74cfd7ac 8402 u32 val, final;
13d83a67 8403 bool has_lvds = false;
199e5d79 8404 bool has_cpu_edp = false;
199e5d79 8405 bool has_panel = false;
99eb6a01
KP
8406 bool has_ck505 = false;
8407 bool can_ssc = false;
1c1a24d2 8408 bool using_ssc_source = false;
13d83a67
JB
8409
8410 /* We need to take the global config into account */
b2784e15 8411 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8412 switch (encoder->type) {
8413 case INTEL_OUTPUT_LVDS:
8414 has_panel = true;
8415 has_lvds = true;
8416 break;
8417 case INTEL_OUTPUT_EDP:
8418 has_panel = true;
2de6905f 8419 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8420 has_cpu_edp = true;
8421 break;
6847d71b
PZ
8422 default:
8423 break;
13d83a67
JB
8424 }
8425 }
8426
99eb6a01 8427 if (HAS_PCH_IBX(dev)) {
41aa3448 8428 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8429 can_ssc = has_ck505;
8430 } else {
8431 has_ck505 = false;
8432 can_ssc = true;
8433 }
8434
1c1a24d2
L
8435 /* Check if any DPLLs are using the SSC source */
8436 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8437 u32 temp = I915_READ(PCH_DPLL(i));
8438
8439 if (!(temp & DPLL_VCO_ENABLE))
8440 continue;
8441
8442 if ((temp & PLL_REF_INPUT_MASK) ==
8443 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8444 using_ssc_source = true;
8445 break;
8446 }
8447 }
8448
8449 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8450 has_panel, has_lvds, has_ck505, using_ssc_source);
13d83a67
JB
8451
8452 /* Ironlake: try to setup display ref clock before DPLL
8453 * enabling. This is only under driver's control after
8454 * PCH B stepping, previous chipset stepping should be
8455 * ignoring this setting.
8456 */
74cfd7ac
CW
8457 val = I915_READ(PCH_DREF_CONTROL);
8458
8459 /* As we must carefully and slowly disable/enable each source in turn,
8460 * compute the final state we want first and check if we need to
8461 * make any changes at all.
8462 */
8463 final = val;
8464 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8465 if (has_ck505)
8466 final |= DREF_NONSPREAD_CK505_ENABLE;
8467 else
8468 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8469
8c07eb68 8470 final &= ~DREF_SSC_SOURCE_MASK;
74cfd7ac 8471 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8c07eb68 8472 final &= ~DREF_SSC1_ENABLE;
74cfd7ac
CW
8473
8474 if (has_panel) {
8475 final |= DREF_SSC_SOURCE_ENABLE;
8476
8477 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8478 final |= DREF_SSC1_ENABLE;
8479
8480 if (has_cpu_edp) {
8481 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8482 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8483 else
8484 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8485 } else
8486 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
1c1a24d2
L
8487 } else if (using_ssc_source) {
8488 final |= DREF_SSC_SOURCE_ENABLE;
8489 final |= DREF_SSC1_ENABLE;
74cfd7ac
CW
8490 }
8491
8492 if (final == val)
8493 return;
8494
13d83a67 8495 /* Always enable nonspread source */
74cfd7ac 8496 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8497
99eb6a01 8498 if (has_ck505)
74cfd7ac 8499 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8500 else
74cfd7ac 8501 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8502
199e5d79 8503 if (has_panel) {
74cfd7ac
CW
8504 val &= ~DREF_SSC_SOURCE_MASK;
8505 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8506
199e5d79 8507 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8508 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8509 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8510 val |= DREF_SSC1_ENABLE;
e77166b5 8511 } else
74cfd7ac 8512 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8513
8514 /* Get SSC going before enabling the outputs */
74cfd7ac 8515 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8516 POSTING_READ(PCH_DREF_CONTROL);
8517 udelay(200);
8518
74cfd7ac 8519 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8520
8521 /* Enable CPU source on CPU attached eDP */
199e5d79 8522 if (has_cpu_edp) {
99eb6a01 8523 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8524 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8525 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8526 } else
74cfd7ac 8527 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8528 } else
74cfd7ac 8529 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8530
74cfd7ac 8531 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8532 POSTING_READ(PCH_DREF_CONTROL);
8533 udelay(200);
8534 } else {
1c1a24d2 8535 DRM_DEBUG_KMS("Disabling CPU source output\n");
199e5d79 8536
74cfd7ac 8537 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8538
8539 /* Turn off CPU output */
74cfd7ac 8540 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8541
74cfd7ac 8542 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8543 POSTING_READ(PCH_DREF_CONTROL);
8544 udelay(200);
8545
1c1a24d2
L
8546 if (!using_ssc_source) {
8547 DRM_DEBUG_KMS("Disabling SSC source\n");
199e5d79 8548
1c1a24d2
L
8549 /* Turn off the SSC source */
8550 val &= ~DREF_SSC_SOURCE_MASK;
8551 val |= DREF_SSC_SOURCE_DISABLE;
f165d283 8552
1c1a24d2
L
8553 /* Turn off SSC1 */
8554 val &= ~DREF_SSC1_ENABLE;
8555
8556 I915_WRITE(PCH_DREF_CONTROL, val);
8557 POSTING_READ(PCH_DREF_CONTROL);
8558 udelay(200);
8559 }
13d83a67 8560 }
74cfd7ac
CW
8561
8562 BUG_ON(val != final);
13d83a67
JB
8563}
8564
f31f2d55 8565static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8566{
f31f2d55 8567 uint32_t tmp;
dde86e2d 8568
0ff066a9
PZ
8569 tmp = I915_READ(SOUTH_CHICKEN2);
8570 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8571 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8572
cf3598c2
ID
8573 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8574 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
0ff066a9 8575 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8576
0ff066a9
PZ
8577 tmp = I915_READ(SOUTH_CHICKEN2);
8578 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8579 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8580
cf3598c2
ID
8581 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8582 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
0ff066a9 8583 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8584}
8585
8586/* WaMPhyProgramming:hsw */
8587static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8588{
8589 uint32_t tmp;
dde86e2d
PZ
8590
8591 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8592 tmp &= ~(0xFF << 24);
8593 tmp |= (0x12 << 24);
8594 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8595
dde86e2d
PZ
8596 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8597 tmp |= (1 << 11);
8598 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8599
8600 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8601 tmp |= (1 << 11);
8602 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8603
dde86e2d
PZ
8604 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8605 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8606 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8607
8608 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8609 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8610 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8611
0ff066a9
PZ
8612 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8613 tmp &= ~(7 << 13);
8614 tmp |= (5 << 13);
8615 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8616
0ff066a9
PZ
8617 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8618 tmp &= ~(7 << 13);
8619 tmp |= (5 << 13);
8620 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8621
8622 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8623 tmp &= ~0xFF;
8624 tmp |= 0x1C;
8625 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8626
8627 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8628 tmp &= ~0xFF;
8629 tmp |= 0x1C;
8630 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8631
8632 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8633 tmp &= ~(0xFF << 16);
8634 tmp |= (0x1C << 16);
8635 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8636
8637 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8638 tmp &= ~(0xFF << 16);
8639 tmp |= (0x1C << 16);
8640 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8641
0ff066a9
PZ
8642 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8643 tmp |= (1 << 27);
8644 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8645
0ff066a9
PZ
8646 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8647 tmp |= (1 << 27);
8648 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8649
0ff066a9
PZ
8650 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8651 tmp &= ~(0xF << 28);
8652 tmp |= (4 << 28);
8653 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8654
0ff066a9
PZ
8655 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8656 tmp &= ~(0xF << 28);
8657 tmp |= (4 << 28);
8658 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8659}
8660
2fa86a1f
PZ
8661/* Implements 3 different sequences from BSpec chapter "Display iCLK
8662 * Programming" based on the parameters passed:
8663 * - Sequence to enable CLKOUT_DP
8664 * - Sequence to enable CLKOUT_DP without spread
8665 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8666 */
8667static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8668 bool with_fdi)
f31f2d55
PZ
8669{
8670 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8671 uint32_t reg, tmp;
8672
8673 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8674 with_spread = true;
c2699524 8675 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8676 with_fdi = false;
f31f2d55 8677
a580516d 8678 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8679
8680 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8681 tmp &= ~SBI_SSCCTL_DISABLE;
8682 tmp |= SBI_SSCCTL_PATHALT;
8683 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8684
8685 udelay(24);
8686
2fa86a1f
PZ
8687 if (with_spread) {
8688 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8689 tmp &= ~SBI_SSCCTL_PATHALT;
8690 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8691
2fa86a1f
PZ
8692 if (with_fdi) {
8693 lpt_reset_fdi_mphy(dev_priv);
8694 lpt_program_fdi_mphy(dev_priv);
8695 }
8696 }
dde86e2d 8697
c2699524 8698 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8699 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8700 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8701 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8702
a580516d 8703 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8704}
8705
47701c3b
PZ
8706/* Sequence to disable CLKOUT_DP */
8707static void lpt_disable_clkout_dp(struct drm_device *dev)
8708{
8709 struct drm_i915_private *dev_priv = dev->dev_private;
8710 uint32_t reg, tmp;
8711
a580516d 8712 mutex_lock(&dev_priv->sb_lock);
47701c3b 8713
c2699524 8714 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8715 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8716 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8717 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8718
8719 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8720 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8721 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8722 tmp |= SBI_SSCCTL_PATHALT;
8723 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8724 udelay(32);
8725 }
8726 tmp |= SBI_SSCCTL_DISABLE;
8727 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8728 }
8729
a580516d 8730 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8731}
8732
f7be2c21
VS
8733#define BEND_IDX(steps) ((50 + (steps)) / 5)
8734
8735static const uint16_t sscdivintphase[] = {
8736 [BEND_IDX( 50)] = 0x3B23,
8737 [BEND_IDX( 45)] = 0x3B23,
8738 [BEND_IDX( 40)] = 0x3C23,
8739 [BEND_IDX( 35)] = 0x3C23,
8740 [BEND_IDX( 30)] = 0x3D23,
8741 [BEND_IDX( 25)] = 0x3D23,
8742 [BEND_IDX( 20)] = 0x3E23,
8743 [BEND_IDX( 15)] = 0x3E23,
8744 [BEND_IDX( 10)] = 0x3F23,
8745 [BEND_IDX( 5)] = 0x3F23,
8746 [BEND_IDX( 0)] = 0x0025,
8747 [BEND_IDX( -5)] = 0x0025,
8748 [BEND_IDX(-10)] = 0x0125,
8749 [BEND_IDX(-15)] = 0x0125,
8750 [BEND_IDX(-20)] = 0x0225,
8751 [BEND_IDX(-25)] = 0x0225,
8752 [BEND_IDX(-30)] = 0x0325,
8753 [BEND_IDX(-35)] = 0x0325,
8754 [BEND_IDX(-40)] = 0x0425,
8755 [BEND_IDX(-45)] = 0x0425,
8756 [BEND_IDX(-50)] = 0x0525,
8757};
8758
8759/*
8760 * Bend CLKOUT_DP
8761 * steps -50 to 50 inclusive, in steps of 5
8762 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8763 * change in clock period = -(steps / 10) * 5.787 ps
8764 */
8765static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8766{
8767 uint32_t tmp;
8768 int idx = BEND_IDX(steps);
8769
8770 if (WARN_ON(steps % 5 != 0))
8771 return;
8772
8773 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8774 return;
8775
8776 mutex_lock(&dev_priv->sb_lock);
8777
8778 if (steps % 10 != 0)
8779 tmp = 0xAAAAAAAB;
8780 else
8781 tmp = 0x00000000;
8782 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8783
8784 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8785 tmp &= 0xffff0000;
8786 tmp |= sscdivintphase[idx];
8787 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8788
8789 mutex_unlock(&dev_priv->sb_lock);
8790}
8791
8792#undef BEND_IDX
8793
bf8fa3d3
PZ
8794static void lpt_init_pch_refclk(struct drm_device *dev)
8795{
bf8fa3d3
PZ
8796 struct intel_encoder *encoder;
8797 bool has_vga = false;
8798
b2784e15 8799 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8800 switch (encoder->type) {
8801 case INTEL_OUTPUT_ANALOG:
8802 has_vga = true;
8803 break;
6847d71b
PZ
8804 default:
8805 break;
bf8fa3d3
PZ
8806 }
8807 }
8808
f7be2c21
VS
8809 if (has_vga) {
8810 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 8811 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 8812 } else {
47701c3b 8813 lpt_disable_clkout_dp(dev);
f7be2c21 8814 }
bf8fa3d3
PZ
8815}
8816
dde86e2d
PZ
8817/*
8818 * Initialize reference clocks when the driver loads
8819 */
8820void intel_init_pch_refclk(struct drm_device *dev)
8821{
8822 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8823 ironlake_init_pch_refclk(dev);
8824 else if (HAS_PCH_LPT(dev))
8825 lpt_init_pch_refclk(dev);
8826}
8827
6ff93609 8828static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8829{
c8203565 8830 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8832 int pipe = intel_crtc->pipe;
c8203565
PZ
8833 uint32_t val;
8834
78114071 8835 val = 0;
c8203565 8836
6e3c9717 8837 switch (intel_crtc->config->pipe_bpp) {
c8203565 8838 case 18:
dfd07d72 8839 val |= PIPECONF_6BPC;
c8203565
PZ
8840 break;
8841 case 24:
dfd07d72 8842 val |= PIPECONF_8BPC;
c8203565
PZ
8843 break;
8844 case 30:
dfd07d72 8845 val |= PIPECONF_10BPC;
c8203565
PZ
8846 break;
8847 case 36:
dfd07d72 8848 val |= PIPECONF_12BPC;
c8203565
PZ
8849 break;
8850 default:
cc769b62
PZ
8851 /* Case prevented by intel_choose_pipe_bpp_dither. */
8852 BUG();
c8203565
PZ
8853 }
8854
6e3c9717 8855 if (intel_crtc->config->dither)
c8203565
PZ
8856 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8857
6e3c9717 8858 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8859 val |= PIPECONF_INTERLACED_ILK;
8860 else
8861 val |= PIPECONF_PROGRESSIVE;
8862
6e3c9717 8863 if (intel_crtc->config->limited_color_range)
3685a8f3 8864 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8865
c8203565
PZ
8866 I915_WRITE(PIPECONF(pipe), val);
8867 POSTING_READ(PIPECONF(pipe));
8868}
8869
6ff93609 8870static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8871{
391bf048 8872 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
ee2b0b38 8873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8874 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
391bf048 8875 u32 val = 0;
ee2b0b38 8876
391bf048 8877 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
ee2b0b38
PZ
8878 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8879
6e3c9717 8880 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8881 val |= PIPECONF_INTERLACED_ILK;
8882 else
8883 val |= PIPECONF_PROGRESSIVE;
8884
702e7a56
PZ
8885 I915_WRITE(PIPECONF(cpu_transcoder), val);
8886 POSTING_READ(PIPECONF(cpu_transcoder));
391bf048
JN
8887}
8888
391bf048
JN
8889static void haswell_set_pipemisc(struct drm_crtc *crtc)
8890{
8891 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8893
391bf048
JN
8894 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8895 u32 val = 0;
756f85cf 8896
6e3c9717 8897 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8898 case 18:
8899 val |= PIPEMISC_DITHER_6_BPC;
8900 break;
8901 case 24:
8902 val |= PIPEMISC_DITHER_8_BPC;
8903 break;
8904 case 30:
8905 val |= PIPEMISC_DITHER_10_BPC;
8906 break;
8907 case 36:
8908 val |= PIPEMISC_DITHER_12_BPC;
8909 break;
8910 default:
8911 /* Case prevented by pipe_config_set_bpp. */
8912 BUG();
8913 }
8914
6e3c9717 8915 if (intel_crtc->config->dither)
756f85cf
PZ
8916 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8917
391bf048 8918 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
756f85cf 8919 }
ee2b0b38
PZ
8920}
8921
d4b1931c
PZ
8922int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8923{
8924 /*
8925 * Account for spread spectrum to avoid
8926 * oversubscribing the link. Max center spread
8927 * is 2.5%; use 5% for safety's sake.
8928 */
8929 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8930 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8931}
8932
7429e9d4 8933static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8934{
7429e9d4 8935 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8936}
8937
b75ca6f6
ACO
8938static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8939 struct intel_crtc_state *crtc_state,
9e2c8475 8940 struct dpll *reduced_clock)
79e53945 8941{
de13a2e3 8942 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8943 struct drm_device *dev = crtc->dev;
8944 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8945 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8946 struct drm_connector *connector;
55bb9992
ACO
8947 struct drm_connector_state *connector_state;
8948 struct intel_encoder *encoder;
b75ca6f6 8949 u32 dpll, fp, fp2;
ceb41007 8950 int factor, i;
09ede541 8951 bool is_lvds = false, is_sdvo = false;
79e53945 8952
da3ced29 8953 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8954 if (connector_state->crtc != crtc_state->base.crtc)
8955 continue;
8956
8957 encoder = to_intel_encoder(connector_state->best_encoder);
8958
8959 switch (encoder->type) {
79e53945
JB
8960 case INTEL_OUTPUT_LVDS:
8961 is_lvds = true;
8962 break;
8963 case INTEL_OUTPUT_SDVO:
7d57382e 8964 case INTEL_OUTPUT_HDMI:
79e53945 8965 is_sdvo = true;
79e53945 8966 break;
6847d71b
PZ
8967 default:
8968 break;
79e53945
JB
8969 }
8970 }
79e53945 8971
c1858123 8972 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8973 factor = 21;
8974 if (is_lvds) {
8975 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8976 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8977 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8978 factor = 25;
190f68c5 8979 } else if (crtc_state->sdvo_tv_clock)
8febb297 8980 factor = 20;
c1858123 8981
b75ca6f6
ACO
8982 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8983
190f68c5 8984 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
b75ca6f6
ACO
8985 fp |= FP_CB_TUNE;
8986
8987 if (reduced_clock) {
8988 fp2 = i9xx_dpll_compute_fp(reduced_clock);
2c07245f 8989
b75ca6f6
ACO
8990 if (reduced_clock->m < factor * reduced_clock->n)
8991 fp2 |= FP_CB_TUNE;
8992 } else {
8993 fp2 = fp;
8994 }
9a7c7890 8995
5eddb70b 8996 dpll = 0;
2c07245f 8997
a07d6787
EA
8998 if (is_lvds)
8999 dpll |= DPLLB_MODE_LVDS;
9000 else
9001 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 9002
190f68c5 9003 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 9004 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
9005
9006 if (is_sdvo)
4a33e48d 9007 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 9008 if (crtc_state->has_dp_encoder)
4a33e48d 9009 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 9010
a07d6787 9011 /* compute bitmask from p1 value */
190f68c5 9012 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 9013 /* also FPA1 */
190f68c5 9014 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 9015
190f68c5 9016 switch (crtc_state->dpll.p2) {
a07d6787
EA
9017 case 5:
9018 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9019 break;
9020 case 7:
9021 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9022 break;
9023 case 10:
9024 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9025 break;
9026 case 14:
9027 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9028 break;
79e53945
JB
9029 }
9030
ceb41007 9031 if (is_lvds && intel_panel_use_ssc(dev_priv))
43565a06 9032 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
9033 else
9034 dpll |= PLL_REF_INPUT_DREFCLK;
9035
b75ca6f6
ACO
9036 dpll |= DPLL_VCO_ENABLE;
9037
9038 crtc_state->dpll_hw_state.dpll = dpll;
9039 crtc_state->dpll_hw_state.fp0 = fp;
9040 crtc_state->dpll_hw_state.fp1 = fp2;
de13a2e3
PZ
9041}
9042
190f68c5
ACO
9043static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9044 struct intel_crtc_state *crtc_state)
de13a2e3 9045{
997c030c
ACO
9046 struct drm_device *dev = crtc->base.dev;
9047 struct drm_i915_private *dev_priv = dev->dev_private;
9e2c8475 9048 struct dpll reduced_clock;
7ed9f894 9049 bool has_reduced_clock = false;
e2b78267 9050 struct intel_shared_dpll *pll;
1b6f4958 9051 const struct intel_limit *limit;
997c030c 9052 int refclk = 120000;
de13a2e3 9053
dd3cd74a
ACO
9054 memset(&crtc_state->dpll_hw_state, 0,
9055 sizeof(crtc_state->dpll_hw_state));
9056
ded220e2
ACO
9057 crtc->lowfreq_avail = false;
9058
9059 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9060 if (!crtc_state->has_pch_encoder)
9061 return 0;
79e53945 9062
997c030c
ACO
9063 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9064 if (intel_panel_use_ssc(dev_priv)) {
9065 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9066 dev_priv->vbt.lvds_ssc_freq);
9067 refclk = dev_priv->vbt.lvds_ssc_freq;
9068 }
9069
9070 if (intel_is_dual_link_lvds(dev)) {
9071 if (refclk == 100000)
9072 limit = &intel_limits_ironlake_dual_lvds_100m;
9073 else
9074 limit = &intel_limits_ironlake_dual_lvds;
9075 } else {
9076 if (refclk == 100000)
9077 limit = &intel_limits_ironlake_single_lvds_100m;
9078 else
9079 limit = &intel_limits_ironlake_single_lvds;
9080 }
9081 } else {
9082 limit = &intel_limits_ironlake_dac;
9083 }
9084
364ee29d 9085 if (!crtc_state->clock_set &&
997c030c
ACO
9086 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9087 refclk, NULL, &crtc_state->dpll)) {
364ee29d
ACO
9088 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9089 return -EINVAL;
f47709a9 9090 }
79e53945 9091
b75ca6f6
ACO
9092 ironlake_compute_dpll(crtc, crtc_state,
9093 has_reduced_clock ? &reduced_clock : NULL);
66e985c0 9094
ded220e2
ACO
9095 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9096 if (pll == NULL) {
9097 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9098 pipe_name(crtc->pipe));
9099 return -EINVAL;
3fb37703 9100 }
79e53945 9101
ded220e2
ACO
9102 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9103 has_reduced_clock)
c7653199 9104 crtc->lowfreq_avail = true;
e2b78267 9105
c8f7a0db 9106 return 0;
79e53945
JB
9107}
9108
eb14cb74
VS
9109static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9110 struct intel_link_m_n *m_n)
9111{
9112 struct drm_device *dev = crtc->base.dev;
9113 struct drm_i915_private *dev_priv = dev->dev_private;
9114 enum pipe pipe = crtc->pipe;
9115
9116 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9117 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9118 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9119 & ~TU_SIZE_MASK;
9120 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9121 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9122 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9123}
9124
9125static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9126 enum transcoder transcoder,
b95af8be
VK
9127 struct intel_link_m_n *m_n,
9128 struct intel_link_m_n *m2_n2)
72419203
DV
9129{
9130 struct drm_device *dev = crtc->base.dev;
9131 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 9132 enum pipe pipe = crtc->pipe;
72419203 9133
eb14cb74
VS
9134 if (INTEL_INFO(dev)->gen >= 5) {
9135 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9136 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9137 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9138 & ~TU_SIZE_MASK;
9139 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9140 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9141 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9142 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9143 * gen < 8) and if DRRS is supported (to make sure the
9144 * registers are not unnecessarily read).
9145 */
9146 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9147 crtc->config->has_drrs) {
b95af8be
VK
9148 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9149 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9150 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9151 & ~TU_SIZE_MASK;
9152 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9153 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9154 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9155 }
eb14cb74
VS
9156 } else {
9157 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9158 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9159 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9160 & ~TU_SIZE_MASK;
9161 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9162 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9163 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9164 }
9165}
9166
9167void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9168 struct intel_crtc_state *pipe_config)
eb14cb74 9169{
681a8504 9170 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9171 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9172 else
9173 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9174 &pipe_config->dp_m_n,
9175 &pipe_config->dp_m2_n2);
eb14cb74 9176}
72419203 9177
eb14cb74 9178static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9179 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9180{
9181 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9182 &pipe_config->fdi_m_n, NULL);
72419203
DV
9183}
9184
bd2e244f 9185static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9186 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9187{
9188 struct drm_device *dev = crtc->base.dev;
9189 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9190 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9191 uint32_t ps_ctrl = 0;
9192 int id = -1;
9193 int i;
bd2e244f 9194
a1b2278e
CK
9195 /* find scaler attached to this pipe */
9196 for (i = 0; i < crtc->num_scalers; i++) {
9197 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9198 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9199 id = i;
9200 pipe_config->pch_pfit.enabled = true;
9201 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9202 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9203 break;
9204 }
9205 }
bd2e244f 9206
a1b2278e
CK
9207 scaler_state->scaler_id = id;
9208 if (id >= 0) {
9209 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9210 } else {
9211 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9212 }
9213}
9214
5724dbd1
DL
9215static void
9216skylake_get_initial_plane_config(struct intel_crtc *crtc,
9217 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9218{
9219 struct drm_device *dev = crtc->base.dev;
9220 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9221 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9222 int pipe = crtc->pipe;
9223 int fourcc, pixel_format;
6761dd31 9224 unsigned int aligned_height;
bc8d7dff 9225 struct drm_framebuffer *fb;
1b842c89 9226 struct intel_framebuffer *intel_fb;
bc8d7dff 9227
d9806c9f 9228 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9229 if (!intel_fb) {
bc8d7dff
DL
9230 DRM_DEBUG_KMS("failed to alloc fb\n");
9231 return;
9232 }
9233
1b842c89
DL
9234 fb = &intel_fb->base;
9235
bc8d7dff 9236 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9237 if (!(val & PLANE_CTL_ENABLE))
9238 goto error;
9239
bc8d7dff
DL
9240 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9241 fourcc = skl_format_to_fourcc(pixel_format,
9242 val & PLANE_CTL_ORDER_RGBX,
9243 val & PLANE_CTL_ALPHA_MASK);
9244 fb->pixel_format = fourcc;
9245 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9246
40f46283
DL
9247 tiling = val & PLANE_CTL_TILED_MASK;
9248 switch (tiling) {
9249 case PLANE_CTL_TILED_LINEAR:
9250 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9251 break;
9252 case PLANE_CTL_TILED_X:
9253 plane_config->tiling = I915_TILING_X;
9254 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9255 break;
9256 case PLANE_CTL_TILED_Y:
9257 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9258 break;
9259 case PLANE_CTL_TILED_YF:
9260 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9261 break;
9262 default:
9263 MISSING_CASE(tiling);
9264 goto error;
9265 }
9266
bc8d7dff
DL
9267 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9268 plane_config->base = base;
9269
9270 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9271
9272 val = I915_READ(PLANE_SIZE(pipe, 0));
9273 fb->height = ((val >> 16) & 0xfff) + 1;
9274 fb->width = ((val >> 0) & 0x1fff) + 1;
9275
9276 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9277 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9278 fb->pixel_format);
bc8d7dff
DL
9279 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9280
9281 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9282 fb->pixel_format,
9283 fb->modifier[0]);
bc8d7dff 9284
f37b5c2b 9285 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9286
9287 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9288 pipe_name(pipe), fb->width, fb->height,
9289 fb->bits_per_pixel, base, fb->pitches[0],
9290 plane_config->size);
9291
2d14030b 9292 plane_config->fb = intel_fb;
bc8d7dff
DL
9293 return;
9294
9295error:
9296 kfree(fb);
9297}
9298
2fa2fe9a 9299static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9300 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9301{
9302 struct drm_device *dev = crtc->base.dev;
9303 struct drm_i915_private *dev_priv = dev->dev_private;
9304 uint32_t tmp;
9305
9306 tmp = I915_READ(PF_CTL(crtc->pipe));
9307
9308 if (tmp & PF_ENABLE) {
fd4daa9c 9309 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9310 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9311 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9312
9313 /* We currently do not free assignements of panel fitters on
9314 * ivb/hsw (since we don't use the higher upscaling modes which
9315 * differentiates them) so just WARN about this case for now. */
9316 if (IS_GEN7(dev)) {
9317 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9318 PF_PIPE_SEL_IVB(crtc->pipe));
9319 }
2fa2fe9a 9320 }
79e53945
JB
9321}
9322
5724dbd1
DL
9323static void
9324ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9325 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9326{
9327 struct drm_device *dev = crtc->base.dev;
9328 struct drm_i915_private *dev_priv = dev->dev_private;
9329 u32 val, base, offset;
aeee5a49 9330 int pipe = crtc->pipe;
4c6baa59 9331 int fourcc, pixel_format;
6761dd31 9332 unsigned int aligned_height;
b113d5ee 9333 struct drm_framebuffer *fb;
1b842c89 9334 struct intel_framebuffer *intel_fb;
4c6baa59 9335
42a7b088
DL
9336 val = I915_READ(DSPCNTR(pipe));
9337 if (!(val & DISPLAY_PLANE_ENABLE))
9338 return;
9339
d9806c9f 9340 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9341 if (!intel_fb) {
4c6baa59
JB
9342 DRM_DEBUG_KMS("failed to alloc fb\n");
9343 return;
9344 }
9345
1b842c89
DL
9346 fb = &intel_fb->base;
9347
18c5247e
DV
9348 if (INTEL_INFO(dev)->gen >= 4) {
9349 if (val & DISPPLANE_TILED) {
49af449b 9350 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9351 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9352 }
9353 }
4c6baa59
JB
9354
9355 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9356 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9357 fb->pixel_format = fourcc;
9358 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9359
aeee5a49 9360 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9361 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9362 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9363 } else {
49af449b 9364 if (plane_config->tiling)
aeee5a49 9365 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9366 else
aeee5a49 9367 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9368 }
9369 plane_config->base = base;
9370
9371 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9372 fb->width = ((val >> 16) & 0xfff) + 1;
9373 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9374
9375 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9376 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9377
b113d5ee 9378 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9379 fb->pixel_format,
9380 fb->modifier[0]);
4c6baa59 9381
f37b5c2b 9382 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9383
2844a921
DL
9384 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9385 pipe_name(pipe), fb->width, fb->height,
9386 fb->bits_per_pixel, base, fb->pitches[0],
9387 plane_config->size);
b113d5ee 9388
2d14030b 9389 plane_config->fb = intel_fb;
4c6baa59
JB
9390}
9391
0e8ffe1b 9392static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9393 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9394{
9395 struct drm_device *dev = crtc->base.dev;
9396 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 9397 enum intel_display_power_domain power_domain;
0e8ffe1b 9398 uint32_t tmp;
1729050e 9399 bool ret;
0e8ffe1b 9400
1729050e
ID
9401 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9402 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9403 return false;
9404
e143a21c 9405 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9406 pipe_config->shared_dpll = NULL;
eccb140b 9407
1729050e 9408 ret = false;
0e8ffe1b
DV
9409 tmp = I915_READ(PIPECONF(crtc->pipe));
9410 if (!(tmp & PIPECONF_ENABLE))
1729050e 9411 goto out;
0e8ffe1b 9412
42571aef
VS
9413 switch (tmp & PIPECONF_BPC_MASK) {
9414 case PIPECONF_6BPC:
9415 pipe_config->pipe_bpp = 18;
9416 break;
9417 case PIPECONF_8BPC:
9418 pipe_config->pipe_bpp = 24;
9419 break;
9420 case PIPECONF_10BPC:
9421 pipe_config->pipe_bpp = 30;
9422 break;
9423 case PIPECONF_12BPC:
9424 pipe_config->pipe_bpp = 36;
9425 break;
9426 default:
9427 break;
9428 }
9429
b5a9fa09
DV
9430 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9431 pipe_config->limited_color_range = true;
9432
ab9412ba 9433 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0 9434 struct intel_shared_dpll *pll;
8106ddbd 9435 enum intel_dpll_id pll_id;
66e985c0 9436
88adfff1
DV
9437 pipe_config->has_pch_encoder = true;
9438
627eb5a3
DV
9439 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9440 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9441 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9442
9443 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9444
2d1fe073 9445 if (HAS_PCH_IBX(dev_priv)) {
d9a7bc67
ID
9446 /*
9447 * The pipe->pch transcoder and pch transcoder->pll
9448 * mapping is fixed.
9449 */
8106ddbd 9450 pll_id = (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9451 } else {
9452 tmp = I915_READ(PCH_DPLL_SEL);
9453 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8106ddbd 9454 pll_id = DPLL_ID_PCH_PLL_B;
c0d43d62 9455 else
8106ddbd 9456 pll_id= DPLL_ID_PCH_PLL_A;
c0d43d62 9457 }
66e985c0 9458
8106ddbd
ACO
9459 pipe_config->shared_dpll =
9460 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9461 pll = pipe_config->shared_dpll;
66e985c0 9462
2edd6443
ACO
9463 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9464 &pipe_config->dpll_hw_state));
c93f54cf
DV
9465
9466 tmp = pipe_config->dpll_hw_state.dpll;
9467 pipe_config->pixel_multiplier =
9468 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9469 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9470
9471 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9472 } else {
9473 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9474 }
9475
1bd1bd80 9476 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 9477 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 9478
2fa2fe9a
DV
9479 ironlake_get_pfit_config(crtc, pipe_config);
9480
1729050e
ID
9481 ret = true;
9482
9483out:
9484 intel_display_power_put(dev_priv, power_domain);
9485
9486 return ret;
0e8ffe1b
DV
9487}
9488
be256dc7
PZ
9489static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9490{
9491 struct drm_device *dev = dev_priv->dev;
be256dc7 9492 struct intel_crtc *crtc;
be256dc7 9493
d3fcc808 9494 for_each_intel_crtc(dev, crtc)
e2c719b7 9495 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9496 pipe_name(crtc->pipe));
9497
e2c719b7
RC
9498 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9499 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9500 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9501 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9502 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9503 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9504 "CPU PWM1 enabled\n");
c5107b87 9505 if (IS_HASWELL(dev))
e2c719b7 9506 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9507 "CPU PWM2 enabled\n");
e2c719b7 9508 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9509 "PCH PWM1 enabled\n");
e2c719b7 9510 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9511 "Utility pin enabled\n");
e2c719b7 9512 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9513
9926ada1
PZ
9514 /*
9515 * In theory we can still leave IRQs enabled, as long as only the HPD
9516 * interrupts remain enabled. We used to check for that, but since it's
9517 * gen-specific and since we only disable LCPLL after we fully disable
9518 * the interrupts, the check below should be enough.
9519 */
e2c719b7 9520 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9521}
9522
9ccd5aeb
PZ
9523static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9524{
9525 struct drm_device *dev = dev_priv->dev;
9526
9527 if (IS_HASWELL(dev))
9528 return I915_READ(D_COMP_HSW);
9529 else
9530 return I915_READ(D_COMP_BDW);
9531}
9532
3c4c9b81
PZ
9533static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9534{
9535 struct drm_device *dev = dev_priv->dev;
9536
9537 if (IS_HASWELL(dev)) {
9538 mutex_lock(&dev_priv->rps.hw_lock);
9539 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9540 val))
f475dadf 9541 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9542 mutex_unlock(&dev_priv->rps.hw_lock);
9543 } else {
9ccd5aeb
PZ
9544 I915_WRITE(D_COMP_BDW, val);
9545 POSTING_READ(D_COMP_BDW);
3c4c9b81 9546 }
be256dc7
PZ
9547}
9548
9549/*
9550 * This function implements pieces of two sequences from BSpec:
9551 * - Sequence for display software to disable LCPLL
9552 * - Sequence for display software to allow package C8+
9553 * The steps implemented here are just the steps that actually touch the LCPLL
9554 * register. Callers should take care of disabling all the display engine
9555 * functions, doing the mode unset, fixing interrupts, etc.
9556 */
6ff58d53
PZ
9557static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9558 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9559{
9560 uint32_t val;
9561
9562 assert_can_disable_lcpll(dev_priv);
9563
9564 val = I915_READ(LCPLL_CTL);
9565
9566 if (switch_to_fclk) {
9567 val |= LCPLL_CD_SOURCE_FCLK;
9568 I915_WRITE(LCPLL_CTL, val);
9569
f53dd63f
ID
9570 if (wait_for_us(I915_READ(LCPLL_CTL) &
9571 LCPLL_CD_SOURCE_FCLK_DONE, 1))
be256dc7
PZ
9572 DRM_ERROR("Switching to FCLK failed\n");
9573
9574 val = I915_READ(LCPLL_CTL);
9575 }
9576
9577 val |= LCPLL_PLL_DISABLE;
9578 I915_WRITE(LCPLL_CTL, val);
9579 POSTING_READ(LCPLL_CTL);
9580
9581 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9582 DRM_ERROR("LCPLL still locked\n");
9583
9ccd5aeb 9584 val = hsw_read_dcomp(dev_priv);
be256dc7 9585 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9586 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9587 ndelay(100);
9588
9ccd5aeb
PZ
9589 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9590 1))
be256dc7
PZ
9591 DRM_ERROR("D_COMP RCOMP still in progress\n");
9592
9593 if (allow_power_down) {
9594 val = I915_READ(LCPLL_CTL);
9595 val |= LCPLL_POWER_DOWN_ALLOW;
9596 I915_WRITE(LCPLL_CTL, val);
9597 POSTING_READ(LCPLL_CTL);
9598 }
9599}
9600
9601/*
9602 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9603 * source.
9604 */
6ff58d53 9605static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9606{
9607 uint32_t val;
9608
9609 val = I915_READ(LCPLL_CTL);
9610
9611 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9612 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9613 return;
9614
a8a8bd54
PZ
9615 /*
9616 * Make sure we're not on PC8 state before disabling PC8, otherwise
9617 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9618 */
59bad947 9619 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9620
be256dc7
PZ
9621 if (val & LCPLL_POWER_DOWN_ALLOW) {
9622 val &= ~LCPLL_POWER_DOWN_ALLOW;
9623 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9624 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9625 }
9626
9ccd5aeb 9627 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9628 val |= D_COMP_COMP_FORCE;
9629 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9630 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9631
9632 val = I915_READ(LCPLL_CTL);
9633 val &= ~LCPLL_PLL_DISABLE;
9634 I915_WRITE(LCPLL_CTL, val);
9635
9636 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9637 DRM_ERROR("LCPLL not locked yet\n");
9638
9639 if (val & LCPLL_CD_SOURCE_FCLK) {
9640 val = I915_READ(LCPLL_CTL);
9641 val &= ~LCPLL_CD_SOURCE_FCLK;
9642 I915_WRITE(LCPLL_CTL, val);
9643
f53dd63f
ID
9644 if (wait_for_us((I915_READ(LCPLL_CTL) &
9645 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
be256dc7
PZ
9646 DRM_ERROR("Switching back to LCPLL failed\n");
9647 }
215733fa 9648
59bad947 9649 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9650 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9651}
9652
765dab67
PZ
9653/*
9654 * Package states C8 and deeper are really deep PC states that can only be
9655 * reached when all the devices on the system allow it, so even if the graphics
9656 * device allows PC8+, it doesn't mean the system will actually get to these
9657 * states. Our driver only allows PC8+ when going into runtime PM.
9658 *
9659 * The requirements for PC8+ are that all the outputs are disabled, the power
9660 * well is disabled and most interrupts are disabled, and these are also
9661 * requirements for runtime PM. When these conditions are met, we manually do
9662 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9663 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9664 * hang the machine.
9665 *
9666 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9667 * the state of some registers, so when we come back from PC8+ we need to
9668 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9669 * need to take care of the registers kept by RC6. Notice that this happens even
9670 * if we don't put the device in PCI D3 state (which is what currently happens
9671 * because of the runtime PM support).
9672 *
9673 * For more, read "Display Sequences for Package C8" on the hardware
9674 * documentation.
9675 */
a14cb6fc 9676void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9677{
c67a470b
PZ
9678 struct drm_device *dev = dev_priv->dev;
9679 uint32_t val;
9680
c67a470b
PZ
9681 DRM_DEBUG_KMS("Enabling package C8+\n");
9682
c2699524 9683 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9684 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9685 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9686 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9687 }
9688
9689 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9690 hsw_disable_lcpll(dev_priv, true, true);
9691}
9692
a14cb6fc 9693void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9694{
9695 struct drm_device *dev = dev_priv->dev;
9696 uint32_t val;
9697
c67a470b
PZ
9698 DRM_DEBUG_KMS("Disabling package C8+\n");
9699
9700 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9701 lpt_init_pch_refclk(dev);
9702
c2699524 9703 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9704 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9705 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9706 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9707 }
c67a470b
PZ
9708}
9709
324513c0 9710static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9711{
a821fc46 9712 struct drm_device *dev = old_state->dev;
1a617b77
ML
9713 struct intel_atomic_state *old_intel_state =
9714 to_intel_atomic_state(old_state);
9715 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 9716
324513c0 9717 bxt_set_cdclk(to_i915(dev), req_cdclk);
f8437dd1
VK
9718}
9719
b432e5cf 9720/* compute the max rate for new configuration */
27c329ed 9721static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9722{
565602d7
ML
9723 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9724 struct drm_i915_private *dev_priv = state->dev->dev_private;
9725 struct drm_crtc *crtc;
9726 struct drm_crtc_state *cstate;
27c329ed 9727 struct intel_crtc_state *crtc_state;
565602d7
ML
9728 unsigned max_pixel_rate = 0, i;
9729 enum pipe pipe;
b432e5cf 9730
565602d7
ML
9731 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9732 sizeof(intel_state->min_pixclk));
27c329ed 9733
565602d7
ML
9734 for_each_crtc_in_state(state, crtc, cstate, i) {
9735 int pixel_rate;
27c329ed 9736
565602d7
ML
9737 crtc_state = to_intel_crtc_state(cstate);
9738 if (!crtc_state->base.enable) {
9739 intel_state->min_pixclk[i] = 0;
b432e5cf 9740 continue;
565602d7 9741 }
b432e5cf 9742
27c329ed 9743 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9744
9745 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 9746 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
9747 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9748
565602d7 9749 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
9750 }
9751
565602d7
ML
9752 for_each_pipe(dev_priv, pipe)
9753 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9754
b432e5cf
VS
9755 return max_pixel_rate;
9756}
9757
9758static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9759{
9760 struct drm_i915_private *dev_priv = dev->dev_private;
9761 uint32_t val, data;
9762 int ret;
9763
9764 if (WARN((I915_READ(LCPLL_CTL) &
9765 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9766 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9767 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9768 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9769 "trying to change cdclk frequency with cdclk not enabled\n"))
9770 return;
9771
9772 mutex_lock(&dev_priv->rps.hw_lock);
9773 ret = sandybridge_pcode_write(dev_priv,
9774 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9775 mutex_unlock(&dev_priv->rps.hw_lock);
9776 if (ret) {
9777 DRM_ERROR("failed to inform pcode about cdclk change\n");
9778 return;
9779 }
9780
9781 val = I915_READ(LCPLL_CTL);
9782 val |= LCPLL_CD_SOURCE_FCLK;
9783 I915_WRITE(LCPLL_CTL, val);
9784
5ba00178
TU
9785 if (wait_for_us(I915_READ(LCPLL_CTL) &
9786 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
9787 DRM_ERROR("Switching to FCLK failed\n");
9788
9789 val = I915_READ(LCPLL_CTL);
9790 val &= ~LCPLL_CLK_FREQ_MASK;
9791
9792 switch (cdclk) {
9793 case 450000:
9794 val |= LCPLL_CLK_FREQ_450;
9795 data = 0;
9796 break;
9797 case 540000:
9798 val |= LCPLL_CLK_FREQ_54O_BDW;
9799 data = 1;
9800 break;
9801 case 337500:
9802 val |= LCPLL_CLK_FREQ_337_5_BDW;
9803 data = 2;
9804 break;
9805 case 675000:
9806 val |= LCPLL_CLK_FREQ_675_BDW;
9807 data = 3;
9808 break;
9809 default:
9810 WARN(1, "invalid cdclk frequency\n");
9811 return;
9812 }
9813
9814 I915_WRITE(LCPLL_CTL, val);
9815
9816 val = I915_READ(LCPLL_CTL);
9817 val &= ~LCPLL_CD_SOURCE_FCLK;
9818 I915_WRITE(LCPLL_CTL, val);
9819
5ba00178
TU
9820 if (wait_for_us((I915_READ(LCPLL_CTL) &
9821 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
9822 DRM_ERROR("Switching back to LCPLL failed\n");
9823
9824 mutex_lock(&dev_priv->rps.hw_lock);
9825 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9826 mutex_unlock(&dev_priv->rps.hw_lock);
9827
7f1052a8
VS
9828 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9829
b432e5cf
VS
9830 intel_update_cdclk(dev);
9831
9832 WARN(cdclk != dev_priv->cdclk_freq,
9833 "cdclk requested %d kHz but got %d kHz\n",
9834 cdclk, dev_priv->cdclk_freq);
9835}
9836
587c7914
VS
9837static int broadwell_calc_cdclk(int max_pixclk)
9838{
9839 if (max_pixclk > 540000)
9840 return 675000;
9841 else if (max_pixclk > 450000)
9842 return 540000;
9843 else if (max_pixclk > 337500)
9844 return 450000;
9845 else
9846 return 337500;
9847}
9848
27c329ed 9849static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9850{
27c329ed 9851 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 9852 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 9853 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9854 int cdclk;
9855
9856 /*
9857 * FIXME should also account for plane ratio
9858 * once 64bpp pixel formats are supported.
9859 */
587c7914 9860 cdclk = broadwell_calc_cdclk(max_pixclk);
b432e5cf 9861
b432e5cf 9862 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9863 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9864 cdclk, dev_priv->max_cdclk_freq);
9865 return -EINVAL;
b432e5cf
VS
9866 }
9867
1a617b77
ML
9868 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9869 if (!intel_state->active_crtcs)
587c7914 9870 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
b432e5cf
VS
9871
9872 return 0;
9873}
9874
27c329ed 9875static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9876{
27c329ed 9877 struct drm_device *dev = old_state->dev;
1a617b77
ML
9878 struct intel_atomic_state *old_intel_state =
9879 to_intel_atomic_state(old_state);
9880 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 9881
27c329ed 9882 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9883}
9884
c89e39f3
CT
9885static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9886{
9887 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9888 struct drm_i915_private *dev_priv = to_i915(state->dev);
9889 const int max_pixclk = ilk_max_pixel_rate(state);
a8ca4934 9890 int vco = intel_state->cdclk_pll_vco;
c89e39f3
CT
9891 int cdclk;
9892
9893 /*
9894 * FIXME should also account for plane ratio
9895 * once 64bpp pixel formats are supported.
9896 */
a8ca4934 9897 cdclk = skl_calc_cdclk(max_pixclk, vco);
c89e39f3
CT
9898
9899 /*
9900 * FIXME move the cdclk caclulation to
9901 * compute_config() so we can fail gracegully.
9902 */
9903 if (cdclk > dev_priv->max_cdclk_freq) {
9904 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9905 cdclk, dev_priv->max_cdclk_freq);
9906 cdclk = dev_priv->max_cdclk_freq;
9907 }
9908
9909 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9910 if (!intel_state->active_crtcs)
a8ca4934 9911 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
c89e39f3
CT
9912
9913 return 0;
9914}
9915
9916static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9917{
1cd593e0
VS
9918 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9919 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9920 unsigned int req_cdclk = intel_state->dev_cdclk;
9921 unsigned int req_vco = intel_state->cdclk_pll_vco;
c89e39f3 9922
1cd593e0 9923 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
c89e39f3
CT
9924}
9925
190f68c5
ACO
9926static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9927 struct intel_crtc_state *crtc_state)
09b4ddf9 9928{
af3997b5
MK
9929 struct intel_encoder *intel_encoder =
9930 intel_ddi_get_crtc_new_encoder(crtc_state);
9931
9932 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9933 if (!intel_ddi_pll_select(crtc, crtc_state))
9934 return -EINVAL;
9935 }
716c2e55 9936
c7653199 9937 crtc->lowfreq_avail = false;
644cef34 9938
c8f7a0db 9939 return 0;
79e53945
JB
9940}
9941
3760b59c
S
9942static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9943 enum port port,
9944 struct intel_crtc_state *pipe_config)
9945{
8106ddbd
ACO
9946 enum intel_dpll_id id;
9947
3760b59c
S
9948 switch (port) {
9949 case PORT_A:
9950 pipe_config->ddi_pll_sel = SKL_DPLL0;
08250c4b 9951 id = DPLL_ID_SKL_DPLL0;
3760b59c
S
9952 break;
9953 case PORT_B:
9954 pipe_config->ddi_pll_sel = SKL_DPLL1;
08250c4b 9955 id = DPLL_ID_SKL_DPLL1;
3760b59c
S
9956 break;
9957 case PORT_C:
9958 pipe_config->ddi_pll_sel = SKL_DPLL2;
08250c4b 9959 id = DPLL_ID_SKL_DPLL2;
3760b59c
S
9960 break;
9961 default:
9962 DRM_ERROR("Incorrect port type\n");
8106ddbd 9963 return;
3760b59c 9964 }
8106ddbd
ACO
9965
9966 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
3760b59c
S
9967}
9968
96b7dfb7
S
9969static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9970 enum port port,
5cec258b 9971 struct intel_crtc_state *pipe_config)
96b7dfb7 9972{
8106ddbd 9973 enum intel_dpll_id id;
a3c988ea 9974 u32 temp;
96b7dfb7
S
9975
9976 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9977 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9978
9979 switch (pipe_config->ddi_pll_sel) {
3148ade7 9980 case SKL_DPLL0:
a3c988ea
ACO
9981 id = DPLL_ID_SKL_DPLL0;
9982 break;
96b7dfb7 9983 case SKL_DPLL1:
8106ddbd 9984 id = DPLL_ID_SKL_DPLL1;
96b7dfb7
S
9985 break;
9986 case SKL_DPLL2:
8106ddbd 9987 id = DPLL_ID_SKL_DPLL2;
96b7dfb7
S
9988 break;
9989 case SKL_DPLL3:
8106ddbd 9990 id = DPLL_ID_SKL_DPLL3;
96b7dfb7 9991 break;
8106ddbd
ACO
9992 default:
9993 MISSING_CASE(pipe_config->ddi_pll_sel);
9994 return;
96b7dfb7 9995 }
8106ddbd
ACO
9996
9997 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
96b7dfb7
S
9998}
9999
7d2c8175
DL
10000static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10001 enum port port,
5cec258b 10002 struct intel_crtc_state *pipe_config)
7d2c8175 10003{
8106ddbd
ACO
10004 enum intel_dpll_id id;
10005
7d2c8175
DL
10006 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10007
10008 switch (pipe_config->ddi_pll_sel) {
10009 case PORT_CLK_SEL_WRPLL1:
8106ddbd 10010 id = DPLL_ID_WRPLL1;
7d2c8175
DL
10011 break;
10012 case PORT_CLK_SEL_WRPLL2:
8106ddbd 10013 id = DPLL_ID_WRPLL2;
7d2c8175 10014 break;
00490c22 10015 case PORT_CLK_SEL_SPLL:
8106ddbd 10016 id = DPLL_ID_SPLL;
79bd23da 10017 break;
9d16da65
ACO
10018 case PORT_CLK_SEL_LCPLL_810:
10019 id = DPLL_ID_LCPLL_810;
10020 break;
10021 case PORT_CLK_SEL_LCPLL_1350:
10022 id = DPLL_ID_LCPLL_1350;
10023 break;
10024 case PORT_CLK_SEL_LCPLL_2700:
10025 id = DPLL_ID_LCPLL_2700;
10026 break;
8106ddbd
ACO
10027 default:
10028 MISSING_CASE(pipe_config->ddi_pll_sel);
10029 /* fall through */
10030 case PORT_CLK_SEL_NONE:
8106ddbd 10031 return;
7d2c8175 10032 }
8106ddbd
ACO
10033
10034 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
7d2c8175
DL
10035}
10036
cf30429e
JN
10037static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10038 struct intel_crtc_state *pipe_config,
10039 unsigned long *power_domain_mask)
10040{
10041 struct drm_device *dev = crtc->base.dev;
10042 struct drm_i915_private *dev_priv = dev->dev_private;
10043 enum intel_display_power_domain power_domain;
10044 u32 tmp;
10045
d9a7bc67
ID
10046 /*
10047 * The pipe->transcoder mapping is fixed with the exception of the eDP
10048 * transcoder handled below.
10049 */
cf30429e
JN
10050 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10051
10052 /*
10053 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10054 * consistency and less surprising code; it's in always on power).
10055 */
10056 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10057 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10058 enum pipe trans_edp_pipe;
10059 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10060 default:
10061 WARN(1, "unknown pipe linked to edp transcoder\n");
10062 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10063 case TRANS_DDI_EDP_INPUT_A_ON:
10064 trans_edp_pipe = PIPE_A;
10065 break;
10066 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10067 trans_edp_pipe = PIPE_B;
10068 break;
10069 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10070 trans_edp_pipe = PIPE_C;
10071 break;
10072 }
10073
10074 if (trans_edp_pipe == crtc->pipe)
10075 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10076 }
10077
10078 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10079 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10080 return false;
10081 *power_domain_mask |= BIT(power_domain);
10082
10083 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10084
10085 return tmp & PIPECONF_ENABLE;
10086}
10087
4d1de975
JN
10088static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10089 struct intel_crtc_state *pipe_config,
10090 unsigned long *power_domain_mask)
10091{
10092 struct drm_device *dev = crtc->base.dev;
10093 struct drm_i915_private *dev_priv = dev->dev_private;
10094 enum intel_display_power_domain power_domain;
10095 enum port port;
10096 enum transcoder cpu_transcoder;
10097 u32 tmp;
10098
10099 pipe_config->has_dsi_encoder = false;
10100
10101 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10102 if (port == PORT_A)
10103 cpu_transcoder = TRANSCODER_DSI_A;
10104 else
10105 cpu_transcoder = TRANSCODER_DSI_C;
10106
10107 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10108 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10109 continue;
10110 *power_domain_mask |= BIT(power_domain);
10111
db18b6a6
ID
10112 /*
10113 * The PLL needs to be enabled with a valid divider
10114 * configuration, otherwise accessing DSI registers will hang
10115 * the machine. See BSpec North Display Engine
10116 * registers/MIPI[BXT]. We can break out here early, since we
10117 * need the same DSI PLL to be enabled for both DSI ports.
10118 */
10119 if (!intel_dsi_pll_is_enabled(dev_priv))
10120 break;
10121
4d1de975
JN
10122 /* XXX: this works for video mode only */
10123 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10124 if (!(tmp & DPI_ENABLE))
10125 continue;
10126
10127 tmp = I915_READ(MIPI_CTRL(port));
10128 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10129 continue;
10130
10131 pipe_config->cpu_transcoder = cpu_transcoder;
10132 pipe_config->has_dsi_encoder = true;
10133 break;
10134 }
10135
10136 return pipe_config->has_dsi_encoder;
10137}
10138
26804afd 10139static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 10140 struct intel_crtc_state *pipe_config)
26804afd
DV
10141{
10142 struct drm_device *dev = crtc->base.dev;
10143 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 10144 struct intel_shared_dpll *pll;
26804afd
DV
10145 enum port port;
10146 uint32_t tmp;
10147
10148 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10149
10150 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10151
ef11bdb3 10152 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 10153 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
10154 else if (IS_BROXTON(dev))
10155 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
10156 else
10157 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 10158
8106ddbd
ACO
10159 pll = pipe_config->shared_dpll;
10160 if (pll) {
2edd6443
ACO
10161 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10162 &pipe_config->dpll_hw_state));
d452c5b6
DV
10163 }
10164
26804afd
DV
10165 /*
10166 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10167 * DDI E. So just check whether this pipe is wired to DDI E and whether
10168 * the PCH transcoder is on.
10169 */
ca370455
DL
10170 if (INTEL_INFO(dev)->gen < 9 &&
10171 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
10172 pipe_config->has_pch_encoder = true;
10173
10174 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10175 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10176 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10177
10178 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10179 }
10180}
10181
0e8ffe1b 10182static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 10183 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
10184{
10185 struct drm_device *dev = crtc->base.dev;
10186 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e
ID
10187 enum intel_display_power_domain power_domain;
10188 unsigned long power_domain_mask;
cf30429e 10189 bool active;
0e8ffe1b 10190
1729050e
ID
10191 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10192 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 10193 return false;
1729050e
ID
10194 power_domain_mask = BIT(power_domain);
10195
8106ddbd 10196 pipe_config->shared_dpll = NULL;
c0d43d62 10197
cf30429e 10198 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
eccb140b 10199
4d1de975
JN
10200 if (IS_BROXTON(dev_priv)) {
10201 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10202 &power_domain_mask);
10203 WARN_ON(active && pipe_config->has_dsi_encoder);
10204 if (pipe_config->has_dsi_encoder)
10205 active = true;
10206 }
10207
cf30429e 10208 if (!active)
1729050e 10209 goto out;
0e8ffe1b 10210
4d1de975
JN
10211 if (!pipe_config->has_dsi_encoder) {
10212 haswell_get_ddi_port_state(crtc, pipe_config);
10213 intel_get_pipe_timings(crtc, pipe_config);
10214 }
627eb5a3 10215
bc58be60 10216 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 10217
05dc698c
LL
10218 pipe_config->gamma_mode =
10219 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10220
a1b2278e
CK
10221 if (INTEL_INFO(dev)->gen >= 9) {
10222 skl_init_scalers(dev, crtc, pipe_config);
10223 }
10224
af99ceda
CK
10225 if (INTEL_INFO(dev)->gen >= 9) {
10226 pipe_config->scaler_state.scaler_id = -1;
10227 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10228 }
10229
1729050e
ID
10230 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10231 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10232 power_domain_mask |= BIT(power_domain);
1c132b44 10233 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 10234 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 10235 else
1c132b44 10236 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 10237 }
88adfff1 10238
e59150dc
JB
10239 if (IS_HASWELL(dev))
10240 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10241 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 10242
4d1de975
JN
10243 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10244 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
ebb69c95
CT
10245 pipe_config->pixel_multiplier =
10246 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10247 } else {
10248 pipe_config->pixel_multiplier = 1;
10249 }
6c49f241 10250
1729050e
ID
10251out:
10252 for_each_power_domain(power_domain, power_domain_mask)
10253 intel_display_power_put(dev_priv, power_domain);
10254
cf30429e 10255 return active;
0e8ffe1b
DV
10256}
10257
55a08b3f
ML
10258static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10259 const struct intel_plane_state *plane_state)
560b85bb
CW
10260{
10261 struct drm_device *dev = crtc->dev;
10262 struct drm_i915_private *dev_priv = dev->dev_private;
10263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 10264 uint32_t cntl = 0, size = 0;
560b85bb 10265
55a08b3f
ML
10266 if (plane_state && plane_state->visible) {
10267 unsigned int width = plane_state->base.crtc_w;
10268 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
10269 unsigned int stride = roundup_pow_of_two(width) * 4;
10270
10271 switch (stride) {
10272 default:
10273 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10274 width, stride);
10275 stride = 256;
10276 /* fallthrough */
10277 case 256:
10278 case 512:
10279 case 1024:
10280 case 2048:
10281 break;
4b0e333e
CW
10282 }
10283
dc41c154
VS
10284 cntl |= CURSOR_ENABLE |
10285 CURSOR_GAMMA_ENABLE |
10286 CURSOR_FORMAT_ARGB |
10287 CURSOR_STRIDE(stride);
10288
10289 size = (height << 12) | width;
4b0e333e 10290 }
560b85bb 10291
dc41c154
VS
10292 if (intel_crtc->cursor_cntl != 0 &&
10293 (intel_crtc->cursor_base != base ||
10294 intel_crtc->cursor_size != size ||
10295 intel_crtc->cursor_cntl != cntl)) {
10296 /* On these chipsets we can only modify the base/size/stride
10297 * whilst the cursor is disabled.
10298 */
0b87c24e
VS
10299 I915_WRITE(CURCNTR(PIPE_A), 0);
10300 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 10301 intel_crtc->cursor_cntl = 0;
4b0e333e 10302 }
560b85bb 10303
99d1f387 10304 if (intel_crtc->cursor_base != base) {
0b87c24e 10305 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10306 intel_crtc->cursor_base = base;
10307 }
4726e0b0 10308
dc41c154
VS
10309 if (intel_crtc->cursor_size != size) {
10310 I915_WRITE(CURSIZE, size);
10311 intel_crtc->cursor_size = size;
4b0e333e 10312 }
560b85bb 10313
4b0e333e 10314 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10315 I915_WRITE(CURCNTR(PIPE_A), cntl);
10316 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10317 intel_crtc->cursor_cntl = cntl;
560b85bb 10318 }
560b85bb
CW
10319}
10320
55a08b3f
ML
10321static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10322 const struct intel_plane_state *plane_state)
65a21cd6
JB
10323{
10324 struct drm_device *dev = crtc->dev;
10325 struct drm_i915_private *dev_priv = dev->dev_private;
10326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10327 int pipe = intel_crtc->pipe;
663f3122 10328 uint32_t cntl = 0;
4b0e333e 10329
55a08b3f 10330 if (plane_state && plane_state->visible) {
4b0e333e 10331 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10332 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10333 case 64:
10334 cntl |= CURSOR_MODE_64_ARGB_AX;
10335 break;
10336 case 128:
10337 cntl |= CURSOR_MODE_128_ARGB_AX;
10338 break;
10339 case 256:
10340 cntl |= CURSOR_MODE_256_ARGB_AX;
10341 break;
10342 default:
55a08b3f 10343 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10344 return;
65a21cd6 10345 }
4b0e333e 10346 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10347
fc6f93bc 10348 if (HAS_DDI(dev))
47bf17a7 10349 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10350
55a08b3f
ML
10351 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10352 cntl |= CURSOR_ROTATE_180;
10353 }
4398ad45 10354
4b0e333e
CW
10355 if (intel_crtc->cursor_cntl != cntl) {
10356 I915_WRITE(CURCNTR(pipe), cntl);
10357 POSTING_READ(CURCNTR(pipe));
10358 intel_crtc->cursor_cntl = cntl;
65a21cd6 10359 }
4b0e333e 10360
65a21cd6 10361 /* and commit changes on next vblank */
5efb3e28
VS
10362 I915_WRITE(CURBASE(pipe), base);
10363 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10364
10365 intel_crtc->cursor_base = base;
65a21cd6
JB
10366}
10367
cda4b7d3 10368/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10369static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10370 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10371{
10372 struct drm_device *dev = crtc->dev;
10373 struct drm_i915_private *dev_priv = dev->dev_private;
10374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10375 int pipe = intel_crtc->pipe;
55a08b3f
ML
10376 u32 base = intel_crtc->cursor_addr;
10377 u32 pos = 0;
cda4b7d3 10378
55a08b3f
ML
10379 if (plane_state) {
10380 int x = plane_state->base.crtc_x;
10381 int y = plane_state->base.crtc_y;
cda4b7d3 10382
55a08b3f
ML
10383 if (x < 0) {
10384 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10385 x = -x;
10386 }
10387 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10388
55a08b3f
ML
10389 if (y < 0) {
10390 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10391 y = -y;
10392 }
10393 pos |= y << CURSOR_Y_SHIFT;
10394
10395 /* ILK+ do this automagically */
10396 if (HAS_GMCH_DISPLAY(dev) &&
10397 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10398 base += (plane_state->base.crtc_h *
10399 plane_state->base.crtc_w - 1) * 4;
10400 }
cda4b7d3 10401 }
cda4b7d3 10402
5efb3e28
VS
10403 I915_WRITE(CURPOS(pipe), pos);
10404
8ac54669 10405 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10406 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10407 else
55a08b3f 10408 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10409}
10410
dc41c154
VS
10411static bool cursor_size_ok(struct drm_device *dev,
10412 uint32_t width, uint32_t height)
10413{
10414 if (width == 0 || height == 0)
10415 return false;
10416
10417 /*
10418 * 845g/865g are special in that they are only limited by
10419 * the width of their cursors, the height is arbitrary up to
10420 * the precision of the register. Everything else requires
10421 * square cursors, limited to a few power-of-two sizes.
10422 */
10423 if (IS_845G(dev) || IS_I865G(dev)) {
10424 if ((width & 63) != 0)
10425 return false;
10426
10427 if (width > (IS_845G(dev) ? 64 : 512))
10428 return false;
10429
10430 if (height > 1023)
10431 return false;
10432 } else {
10433 switch (width | height) {
10434 case 256:
10435 case 128:
10436 if (IS_GEN2(dev))
10437 return false;
10438 case 64:
10439 break;
10440 default:
10441 return false;
10442 }
10443 }
10444
10445 return true;
10446}
10447
79e53945
JB
10448/* VESA 640x480x72Hz mode to set on the pipe */
10449static struct drm_display_mode load_detect_mode = {
10450 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10451 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10452};
10453
a8bb6818
DV
10454struct drm_framebuffer *
10455__intel_framebuffer_create(struct drm_device *dev,
10456 struct drm_mode_fb_cmd2 *mode_cmd,
10457 struct drm_i915_gem_object *obj)
d2dff872
CW
10458{
10459 struct intel_framebuffer *intel_fb;
10460 int ret;
10461
10462 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10463 if (!intel_fb)
d2dff872 10464 return ERR_PTR(-ENOMEM);
d2dff872
CW
10465
10466 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10467 if (ret)
10468 goto err;
d2dff872
CW
10469
10470 return &intel_fb->base;
dcb1394e 10471
dd4916c5 10472err:
dd4916c5 10473 kfree(intel_fb);
dd4916c5 10474 return ERR_PTR(ret);
d2dff872
CW
10475}
10476
b5ea642a 10477static struct drm_framebuffer *
a8bb6818
DV
10478intel_framebuffer_create(struct drm_device *dev,
10479 struct drm_mode_fb_cmd2 *mode_cmd,
10480 struct drm_i915_gem_object *obj)
10481{
10482 struct drm_framebuffer *fb;
10483 int ret;
10484
10485 ret = i915_mutex_lock_interruptible(dev);
10486 if (ret)
10487 return ERR_PTR(ret);
10488 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10489 mutex_unlock(&dev->struct_mutex);
10490
10491 return fb;
10492}
10493
d2dff872
CW
10494static u32
10495intel_framebuffer_pitch_for_width(int width, int bpp)
10496{
10497 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10498 return ALIGN(pitch, 64);
10499}
10500
10501static u32
10502intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10503{
10504 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10505 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10506}
10507
10508static struct drm_framebuffer *
10509intel_framebuffer_create_for_mode(struct drm_device *dev,
10510 struct drm_display_mode *mode,
10511 int depth, int bpp)
10512{
dcb1394e 10513 struct drm_framebuffer *fb;
d2dff872 10514 struct drm_i915_gem_object *obj;
0fed39bd 10515 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872 10516
d37cd8a8 10517 obj = i915_gem_object_create(dev,
d2dff872 10518 intel_framebuffer_size_for_mode(mode, bpp));
fe3db79b
CW
10519 if (IS_ERR(obj))
10520 return ERR_CAST(obj);
d2dff872
CW
10521
10522 mode_cmd.width = mode->hdisplay;
10523 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10524 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10525 bpp);
5ca0c34a 10526 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10527
dcb1394e
LW
10528 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10529 if (IS_ERR(fb))
10530 drm_gem_object_unreference_unlocked(&obj->base);
10531
10532 return fb;
d2dff872
CW
10533}
10534
10535static struct drm_framebuffer *
10536mode_fits_in_fbdev(struct drm_device *dev,
10537 struct drm_display_mode *mode)
10538{
0695726e 10539#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10540 struct drm_i915_private *dev_priv = dev->dev_private;
10541 struct drm_i915_gem_object *obj;
10542 struct drm_framebuffer *fb;
10543
4c0e5528 10544 if (!dev_priv->fbdev)
d2dff872
CW
10545 return NULL;
10546
4c0e5528 10547 if (!dev_priv->fbdev->fb)
d2dff872
CW
10548 return NULL;
10549
4c0e5528
DV
10550 obj = dev_priv->fbdev->fb->obj;
10551 BUG_ON(!obj);
10552
8bcd4553 10553 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10554 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10555 fb->bits_per_pixel))
d2dff872
CW
10556 return NULL;
10557
01f2c773 10558 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10559 return NULL;
10560
edde3617 10561 drm_framebuffer_reference(fb);
d2dff872 10562 return fb;
4520f53a
DV
10563#else
10564 return NULL;
10565#endif
d2dff872
CW
10566}
10567
d3a40d1b
ACO
10568static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10569 struct drm_crtc *crtc,
10570 struct drm_display_mode *mode,
10571 struct drm_framebuffer *fb,
10572 int x, int y)
10573{
10574 struct drm_plane_state *plane_state;
10575 int hdisplay, vdisplay;
10576 int ret;
10577
10578 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10579 if (IS_ERR(plane_state))
10580 return PTR_ERR(plane_state);
10581
10582 if (mode)
10583 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10584 else
10585 hdisplay = vdisplay = 0;
10586
10587 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10588 if (ret)
10589 return ret;
10590 drm_atomic_set_fb_for_plane(plane_state, fb);
10591 plane_state->crtc_x = 0;
10592 plane_state->crtc_y = 0;
10593 plane_state->crtc_w = hdisplay;
10594 plane_state->crtc_h = vdisplay;
10595 plane_state->src_x = x << 16;
10596 plane_state->src_y = y << 16;
10597 plane_state->src_w = hdisplay << 16;
10598 plane_state->src_h = vdisplay << 16;
10599
10600 return 0;
10601}
10602
d2434ab7 10603bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10604 struct drm_display_mode *mode,
51fd371b
RC
10605 struct intel_load_detect_pipe *old,
10606 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10607{
10608 struct intel_crtc *intel_crtc;
d2434ab7
DV
10609 struct intel_encoder *intel_encoder =
10610 intel_attached_encoder(connector);
79e53945 10611 struct drm_crtc *possible_crtc;
4ef69c7a 10612 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10613 struct drm_crtc *crtc = NULL;
10614 struct drm_device *dev = encoder->dev;
94352cf9 10615 struct drm_framebuffer *fb;
51fd371b 10616 struct drm_mode_config *config = &dev->mode_config;
edde3617 10617 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 10618 struct drm_connector_state *connector_state;
4be07317 10619 struct intel_crtc_state *crtc_state;
51fd371b 10620 int ret, i = -1;
79e53945 10621
d2dff872 10622 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10623 connector->base.id, connector->name,
8e329a03 10624 encoder->base.id, encoder->name);
d2dff872 10625
edde3617
ML
10626 old->restore_state = NULL;
10627
51fd371b
RC
10628retry:
10629 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10630 if (ret)
ad3c558f 10631 goto fail;
6e9f798d 10632
79e53945
JB
10633 /*
10634 * Algorithm gets a little messy:
7a5e4805 10635 *
79e53945
JB
10636 * - if the connector already has an assigned crtc, use it (but make
10637 * sure it's on first)
7a5e4805 10638 *
79e53945
JB
10639 * - try to find the first unused crtc that can drive this connector,
10640 * and use that if we find one
79e53945
JB
10641 */
10642
10643 /* See if we already have a CRTC for this connector */
edde3617
ML
10644 if (connector->state->crtc) {
10645 crtc = connector->state->crtc;
8261b191 10646
51fd371b 10647 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10648 if (ret)
ad3c558f 10649 goto fail;
8261b191
CW
10650
10651 /* Make sure the crtc and connector are running */
edde3617 10652 goto found;
79e53945
JB
10653 }
10654
10655 /* Find an unused one (if possible) */
70e1e0ec 10656 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10657 i++;
10658 if (!(encoder->possible_crtcs & (1 << i)))
10659 continue;
edde3617
ML
10660
10661 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10662 if (ret)
10663 goto fail;
10664
10665 if (possible_crtc->state->enable) {
10666 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 10667 continue;
edde3617 10668 }
a459249c
VS
10669
10670 crtc = possible_crtc;
10671 break;
79e53945
JB
10672 }
10673
10674 /*
10675 * If we didn't find an unused CRTC, don't use any.
10676 */
10677 if (!crtc) {
7173188d 10678 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10679 goto fail;
79e53945
JB
10680 }
10681
edde3617
ML
10682found:
10683 intel_crtc = to_intel_crtc(crtc);
10684
4d02e2de
DV
10685 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10686 if (ret)
ad3c558f 10687 goto fail;
79e53945 10688
83a57153 10689 state = drm_atomic_state_alloc(dev);
edde3617
ML
10690 restore_state = drm_atomic_state_alloc(dev);
10691 if (!state || !restore_state) {
10692 ret = -ENOMEM;
10693 goto fail;
10694 }
83a57153
ACO
10695
10696 state->acquire_ctx = ctx;
edde3617 10697 restore_state->acquire_ctx = ctx;
83a57153 10698
944b0c76
ACO
10699 connector_state = drm_atomic_get_connector_state(state, connector);
10700 if (IS_ERR(connector_state)) {
10701 ret = PTR_ERR(connector_state);
10702 goto fail;
10703 }
10704
edde3617
ML
10705 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10706 if (ret)
10707 goto fail;
944b0c76 10708
4be07317
ACO
10709 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10710 if (IS_ERR(crtc_state)) {
10711 ret = PTR_ERR(crtc_state);
10712 goto fail;
10713 }
10714
49d6fa21 10715 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10716
6492711d
CW
10717 if (!mode)
10718 mode = &load_detect_mode;
79e53945 10719
d2dff872
CW
10720 /* We need a framebuffer large enough to accommodate all accesses
10721 * that the plane may generate whilst we perform load detection.
10722 * We can not rely on the fbcon either being present (we get called
10723 * during its initialisation to detect all boot displays, or it may
10724 * not even exist) or that it is large enough to satisfy the
10725 * requested mode.
10726 */
94352cf9
DV
10727 fb = mode_fits_in_fbdev(dev, mode);
10728 if (fb == NULL) {
d2dff872 10729 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 10730 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
10731 } else
10732 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10733 if (IS_ERR(fb)) {
d2dff872 10734 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10735 goto fail;
79e53945 10736 }
79e53945 10737
d3a40d1b
ACO
10738 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10739 if (ret)
10740 goto fail;
10741
edde3617
ML
10742 drm_framebuffer_unreference(fb);
10743
10744 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10745 if (ret)
10746 goto fail;
10747
10748 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10749 if (!ret)
10750 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10751 if (!ret)
10752 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10753 if (ret) {
10754 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10755 goto fail;
10756 }
8c7b5ccb 10757
3ba86073
ML
10758 ret = drm_atomic_commit(state);
10759 if (ret) {
6492711d 10760 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 10761 goto fail;
79e53945 10762 }
edde3617
ML
10763
10764 old->restore_state = restore_state;
7173188d 10765
79e53945 10766 /* let the connector get through one full cycle before testing */
9d0498a2 10767 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10768 return true;
412b61d8 10769
ad3c558f 10770fail:
e5d958ef 10771 drm_atomic_state_free(state);
edde3617
ML
10772 drm_atomic_state_free(restore_state);
10773 restore_state = state = NULL;
83a57153 10774
51fd371b
RC
10775 if (ret == -EDEADLK) {
10776 drm_modeset_backoff(ctx);
10777 goto retry;
10778 }
10779
412b61d8 10780 return false;
79e53945
JB
10781}
10782
d2434ab7 10783void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10784 struct intel_load_detect_pipe *old,
10785 struct drm_modeset_acquire_ctx *ctx)
79e53945 10786{
d2434ab7
DV
10787 struct intel_encoder *intel_encoder =
10788 intel_attached_encoder(connector);
4ef69c7a 10789 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 10790 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 10791 int ret;
79e53945 10792
d2dff872 10793 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10794 connector->base.id, connector->name,
8e329a03 10795 encoder->base.id, encoder->name);
d2dff872 10796
edde3617 10797 if (!state)
0622a53c 10798 return;
79e53945 10799
edde3617
ML
10800 ret = drm_atomic_commit(state);
10801 if (ret) {
10802 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10803 drm_atomic_state_free(state);
10804 }
79e53945
JB
10805}
10806
da4a1efa 10807static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10808 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10809{
10810 struct drm_i915_private *dev_priv = dev->dev_private;
10811 u32 dpll = pipe_config->dpll_hw_state.dpll;
10812
10813 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10814 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10815 else if (HAS_PCH_SPLIT(dev))
10816 return 120000;
10817 else if (!IS_GEN2(dev))
10818 return 96000;
10819 else
10820 return 48000;
10821}
10822
79e53945 10823/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10824static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10825 struct intel_crtc_state *pipe_config)
79e53945 10826{
f1f644dc 10827 struct drm_device *dev = crtc->base.dev;
79e53945 10828 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10829 int pipe = pipe_config->cpu_transcoder;
293623f7 10830 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945 10831 u32 fp;
9e2c8475 10832 struct dpll clock;
dccbea3b 10833 int port_clock;
da4a1efa 10834 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10835
10836 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10837 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10838 else
293623f7 10839 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10840
10841 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10842 if (IS_PINEVIEW(dev)) {
10843 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10844 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10845 } else {
10846 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10847 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10848 }
10849
a6c45cf0 10850 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10851 if (IS_PINEVIEW(dev))
10852 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10853 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10854 else
10855 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10856 DPLL_FPA01_P1_POST_DIV_SHIFT);
10857
10858 switch (dpll & DPLL_MODE_MASK) {
10859 case DPLLB_MODE_DAC_SERIAL:
10860 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10861 5 : 10;
10862 break;
10863 case DPLLB_MODE_LVDS:
10864 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10865 7 : 14;
10866 break;
10867 default:
28c97730 10868 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10869 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10870 return;
79e53945
JB
10871 }
10872
ac58c3f0 10873 if (IS_PINEVIEW(dev))
dccbea3b 10874 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10875 else
dccbea3b 10876 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10877 } else {
0fb58223 10878 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10879 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10880
10881 if (is_lvds) {
10882 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10883 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10884
10885 if (lvds & LVDS_CLKB_POWER_UP)
10886 clock.p2 = 7;
10887 else
10888 clock.p2 = 14;
79e53945
JB
10889 } else {
10890 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10891 clock.p1 = 2;
10892 else {
10893 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10894 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10895 }
10896 if (dpll & PLL_P2_DIVIDE_BY_4)
10897 clock.p2 = 4;
10898 else
10899 clock.p2 = 2;
79e53945 10900 }
da4a1efa 10901
dccbea3b 10902 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10903 }
10904
18442d08
VS
10905 /*
10906 * This value includes pixel_multiplier. We will use
241bfc38 10907 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10908 * encoder's get_config() function.
10909 */
dccbea3b 10910 pipe_config->port_clock = port_clock;
f1f644dc
JB
10911}
10912
6878da05
VS
10913int intel_dotclock_calculate(int link_freq,
10914 const struct intel_link_m_n *m_n)
f1f644dc 10915{
f1f644dc
JB
10916 /*
10917 * The calculation for the data clock is:
1041a02f 10918 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10919 * But we want to avoid losing precison if possible, so:
1041a02f 10920 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10921 *
10922 * and the link clock is simpler:
1041a02f 10923 * link_clock = (m * link_clock) / n
f1f644dc
JB
10924 */
10925
6878da05
VS
10926 if (!m_n->link_n)
10927 return 0;
f1f644dc 10928
6878da05
VS
10929 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10930}
f1f644dc 10931
18442d08 10932static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10933 struct intel_crtc_state *pipe_config)
6878da05 10934{
e3b247da 10935 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 10936
18442d08
VS
10937 /* read out port_clock from the DPLL */
10938 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10939
f1f644dc 10940 /*
e3b247da
VS
10941 * In case there is an active pipe without active ports,
10942 * we may need some idea for the dotclock anyway.
10943 * Calculate one based on the FDI configuration.
79e53945 10944 */
2d112de7 10945 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 10946 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 10947 &pipe_config->fdi_m_n);
79e53945
JB
10948}
10949
10950/** Returns the currently programmed mode of the given pipe. */
10951struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10952 struct drm_crtc *crtc)
10953{
548f245b 10954 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10956 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10957 struct drm_display_mode *mode;
3f36b937 10958 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
10959 int htot = I915_READ(HTOTAL(cpu_transcoder));
10960 int hsync = I915_READ(HSYNC(cpu_transcoder));
10961 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10962 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10963 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10964
10965 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10966 if (!mode)
10967 return NULL;
10968
3f36b937
TU
10969 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10970 if (!pipe_config) {
10971 kfree(mode);
10972 return NULL;
10973 }
10974
f1f644dc
JB
10975 /*
10976 * Construct a pipe_config sufficient for getting the clock info
10977 * back out of crtc_clock_get.
10978 *
10979 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10980 * to use a real value here instead.
10981 */
3f36b937
TU
10982 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10983 pipe_config->pixel_multiplier = 1;
10984 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10985 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10986 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10987 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10988
10989 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
10990 mode->hdisplay = (htot & 0xffff) + 1;
10991 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10992 mode->hsync_start = (hsync & 0xffff) + 1;
10993 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10994 mode->vdisplay = (vtot & 0xffff) + 1;
10995 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10996 mode->vsync_start = (vsync & 0xffff) + 1;
10997 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10998
10999 drm_mode_set_name(mode);
79e53945 11000
3f36b937
TU
11001 kfree(pipe_config);
11002
79e53945
JB
11003 return mode;
11004}
11005
7d993739 11006void intel_mark_busy(struct drm_i915_private *dev_priv)
f047e395 11007{
f62a0076
CW
11008 if (dev_priv->mm.busy)
11009 return;
11010
43694d69 11011 intel_runtime_pm_get(dev_priv);
c67a470b 11012 i915_update_gfx_val(dev_priv);
7d993739 11013 if (INTEL_GEN(dev_priv) >= 6)
43cf3bf0 11014 gen6_rps_busy(dev_priv);
f62a0076 11015 dev_priv->mm.busy = true;
f047e395
CW
11016}
11017
7d993739 11018void intel_mark_idle(struct drm_i915_private *dev_priv)
652c393a 11019{
f62a0076
CW
11020 if (!dev_priv->mm.busy)
11021 return;
11022
11023 dev_priv->mm.busy = false;
11024
7d993739
TU
11025 if (INTEL_GEN(dev_priv) >= 6)
11026 gen6_rps_idle(dev_priv);
bb4cdd53 11027
43694d69 11028 intel_runtime_pm_put(dev_priv);
652c393a
JB
11029}
11030
79e53945
JB
11031static void intel_crtc_destroy(struct drm_crtc *crtc)
11032{
11033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a 11034 struct drm_device *dev = crtc->dev;
51cbaf01 11035 struct intel_flip_work *work;
67e77c5a 11036
5e2d7afc 11037 spin_lock_irq(&dev->event_lock);
5a21b665
DV
11038 work = intel_crtc->flip_work;
11039 intel_crtc->flip_work = NULL;
11040 spin_unlock_irq(&dev->event_lock);
67e77c5a 11041
5a21b665 11042 if (work) {
51cbaf01
ML
11043 cancel_work_sync(&work->mmio_work);
11044 cancel_work_sync(&work->unpin_work);
5a21b665 11045 kfree(work);
67e77c5a 11046 }
79e53945
JB
11047
11048 drm_crtc_cleanup(crtc);
67e77c5a 11049
79e53945
JB
11050 kfree(intel_crtc);
11051}
11052
6b95a207
KH
11053static void intel_unpin_work_fn(struct work_struct *__work)
11054{
51cbaf01
ML
11055 struct intel_flip_work *work =
11056 container_of(__work, struct intel_flip_work, unpin_work);
5a21b665
DV
11057 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11058 struct drm_device *dev = crtc->base.dev;
11059 struct drm_plane *primary = crtc->base.primary;
03f476e1 11060
5a21b665
DV
11061 if (is_mmio_work(work))
11062 flush_work(&work->mmio_work);
03f476e1 11063
5a21b665
DV
11064 mutex_lock(&dev->struct_mutex);
11065 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11066 drm_gem_object_unreference(&work->pending_flip_obj->base);
143f73b3 11067
5a21b665
DV
11068 if (work->flip_queued_req)
11069 i915_gem_request_assign(&work->flip_queued_req, NULL);
11070 mutex_unlock(&dev->struct_mutex);
143f73b3 11071
5a21b665
DV
11072 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
11073 intel_fbc_post_update(crtc);
11074 drm_framebuffer_unreference(work->old_fb);
143f73b3 11075
5a21b665
DV
11076 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11077 atomic_dec(&crtc->unpin_work_count);
a6747b73 11078
5a21b665
DV
11079 kfree(work);
11080}
d9e86c0e 11081
5a21b665
DV
11082/* Is 'a' after or equal to 'b'? */
11083static bool g4x_flip_count_after_eq(u32 a, u32 b)
11084{
11085 return !((a - b) & 0x80000000);
11086}
143f73b3 11087
5a21b665
DV
11088static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11089 struct intel_flip_work *work)
11090{
11091 struct drm_device *dev = crtc->base.dev;
11092 struct drm_i915_private *dev_priv = dev->dev_private;
11093 unsigned reset_counter;
143f73b3 11094
5a21b665
DV
11095 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11096 if (crtc->reset_counter != reset_counter)
11097 return true;
143f73b3 11098
5a21b665
DV
11099 /*
11100 * The relevant registers doen't exist on pre-ctg.
11101 * As the flip done interrupt doesn't trigger for mmio
11102 * flips on gmch platforms, a flip count check isn't
11103 * really needed there. But since ctg has the registers,
11104 * include it in the check anyway.
11105 */
11106 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11107 return true;
b4a98e57 11108
5a21b665
DV
11109 /*
11110 * BDW signals flip done immediately if the plane
11111 * is disabled, even if the plane enable is already
11112 * armed to occur at the next vblank :(
11113 */
f99d7069 11114
5a21b665
DV
11115 /*
11116 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11117 * used the same base address. In that case the mmio flip might
11118 * have completed, but the CS hasn't even executed the flip yet.
11119 *
11120 * A flip count check isn't enough as the CS might have updated
11121 * the base address just after start of vblank, but before we
11122 * managed to process the interrupt. This means we'd complete the
11123 * CS flip too soon.
11124 *
11125 * Combining both checks should get us a good enough result. It may
11126 * still happen that the CS flip has been executed, but has not
11127 * yet actually completed. But in case the base address is the same
11128 * anyway, we don't really care.
11129 */
11130 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11131 crtc->flip_work->gtt_offset &&
11132 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11133 crtc->flip_work->flip_count);
11134}
b4a98e57 11135
5a21b665
DV
11136static bool
11137__pageflip_finished_mmio(struct intel_crtc *crtc,
11138 struct intel_flip_work *work)
11139{
11140 /*
11141 * MMIO work completes when vblank is different from
11142 * flip_queued_vblank.
11143 *
11144 * Reset counter value doesn't matter, this is handled by
11145 * i915_wait_request finishing early, so no need to handle
11146 * reset here.
11147 */
11148 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
6b95a207
KH
11149}
11150
51cbaf01
ML
11151
11152static bool pageflip_finished(struct intel_crtc *crtc,
11153 struct intel_flip_work *work)
11154{
11155 if (!atomic_read(&work->pending))
11156 return false;
11157
11158 smp_rmb();
11159
5a21b665
DV
11160 if (is_mmio_work(work))
11161 return __pageflip_finished_mmio(crtc, work);
11162 else
11163 return __pageflip_finished_cs(crtc, work);
11164}
11165
11166void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11167{
11168 struct drm_device *dev = dev_priv->dev;
11169 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11171 struct intel_flip_work *work;
11172 unsigned long flags;
11173
11174 /* Ignore early vblank irqs */
11175 if (!crtc)
11176 return;
11177
51cbaf01 11178 /*
5a21b665
DV
11179 * This is called both by irq handlers and the reset code (to complete
11180 * lost pageflips) so needs the full irqsave spinlocks.
51cbaf01 11181 */
5a21b665
DV
11182 spin_lock_irqsave(&dev->event_lock, flags);
11183 work = intel_crtc->flip_work;
11184
11185 if (work != NULL &&
11186 !is_mmio_work(work) &&
11187 pageflip_finished(intel_crtc, work))
11188 page_flip_completed(intel_crtc);
11189
11190 spin_unlock_irqrestore(&dev->event_lock, flags);
75f7f3ec
VS
11191}
11192
51cbaf01 11193void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
6b95a207 11194{
91d14251 11195 struct drm_device *dev = dev_priv->dev;
5251f04e
ML
11196 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
51cbaf01 11198 struct intel_flip_work *work;
6b95a207
KH
11199 unsigned long flags;
11200
5251f04e
ML
11201 /* Ignore early vblank irqs */
11202 if (!crtc)
11203 return;
f326038a
DV
11204
11205 /*
11206 * This is called both by irq handlers and the reset code (to complete
11207 * lost pageflips) so needs the full irqsave spinlocks.
e7d841ca 11208 */
6b95a207 11209 spin_lock_irqsave(&dev->event_lock, flags);
5a21b665 11210 work = intel_crtc->flip_work;
5251f04e 11211
5a21b665
DV
11212 if (work != NULL &&
11213 is_mmio_work(work) &&
11214 pageflip_finished(intel_crtc, work))
11215 page_flip_completed(intel_crtc);
5251f04e 11216
6b95a207
KH
11217 spin_unlock_irqrestore(&dev->event_lock, flags);
11218}
11219
5a21b665
DV
11220static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11221 struct intel_flip_work *work)
84c33a64 11222{
5a21b665 11223 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
84c33a64 11224
5a21b665
DV
11225 /* Ensure that the work item is consistent when activating it ... */
11226 smp_mb__before_atomic();
11227 atomic_set(&work->pending, 1);
11228}
a6747b73 11229
5a21b665
DV
11230static int intel_gen2_queue_flip(struct drm_device *dev,
11231 struct drm_crtc *crtc,
11232 struct drm_framebuffer *fb,
11233 struct drm_i915_gem_object *obj,
11234 struct drm_i915_gem_request *req,
11235 uint32_t flags)
11236{
11237 struct intel_engine_cs *engine = req->engine;
11238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11239 u32 flip_mask;
11240 int ret;
143f73b3 11241
5a21b665
DV
11242 ret = intel_ring_begin(req, 6);
11243 if (ret)
11244 return ret;
143f73b3 11245
5a21b665
DV
11246 /* Can't queue multiple flips, so wait for the previous
11247 * one to finish before executing the next.
11248 */
11249 if (intel_crtc->plane)
11250 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11251 else
11252 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11253 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11254 intel_ring_emit(engine, MI_NOOP);
11255 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11256 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11257 intel_ring_emit(engine, fb->pitches[0]);
11258 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11259 intel_ring_emit(engine, 0); /* aux display base address, unused */
143f73b3 11260
5a21b665
DV
11261 return 0;
11262}
84c33a64 11263
5a21b665
DV
11264static int intel_gen3_queue_flip(struct drm_device *dev,
11265 struct drm_crtc *crtc,
11266 struct drm_framebuffer *fb,
11267 struct drm_i915_gem_object *obj,
11268 struct drm_i915_gem_request *req,
11269 uint32_t flags)
11270{
11271 struct intel_engine_cs *engine = req->engine;
11272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11273 u32 flip_mask;
11274 int ret;
d55dbd06 11275
5a21b665
DV
11276 ret = intel_ring_begin(req, 6);
11277 if (ret)
11278 return ret;
d55dbd06 11279
5a21b665
DV
11280 if (intel_crtc->plane)
11281 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11282 else
11283 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11284 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11285 intel_ring_emit(engine, MI_NOOP);
11286 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11287 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11288 intel_ring_emit(engine, fb->pitches[0]);
11289 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11290 intel_ring_emit(engine, MI_NOOP);
fd8e058a 11291
5a21b665
DV
11292 return 0;
11293}
84c33a64 11294
5a21b665
DV
11295static int intel_gen4_queue_flip(struct drm_device *dev,
11296 struct drm_crtc *crtc,
11297 struct drm_framebuffer *fb,
11298 struct drm_i915_gem_object *obj,
11299 struct drm_i915_gem_request *req,
11300 uint32_t flags)
11301{
11302 struct intel_engine_cs *engine = req->engine;
11303 struct drm_i915_private *dev_priv = dev->dev_private;
11304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11305 uint32_t pf, pipesrc;
11306 int ret;
143f73b3 11307
5a21b665
DV
11308 ret = intel_ring_begin(req, 4);
11309 if (ret)
11310 return ret;
143f73b3 11311
5a21b665
DV
11312 /* i965+ uses the linear or tiled offsets from the
11313 * Display Registers (which do not change across a page-flip)
11314 * so we need only reprogram the base address.
11315 */
11316 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11317 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11318 intel_ring_emit(engine, fb->pitches[0]);
11319 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11320 obj->tiling_mode);
11321
11322 /* XXX Enabling the panel-fitter across page-flip is so far
11323 * untested on non-native modes, so ignore it for now.
11324 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11325 */
11326 pf = 0;
11327 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11328 intel_ring_emit(engine, pf | pipesrc);
143f73b3 11329
5a21b665 11330 return 0;
8c9f3aaf
JB
11331}
11332
5a21b665
DV
11333static int intel_gen6_queue_flip(struct drm_device *dev,
11334 struct drm_crtc *crtc,
11335 struct drm_framebuffer *fb,
11336 struct drm_i915_gem_object *obj,
11337 struct drm_i915_gem_request *req,
11338 uint32_t flags)
da20eabd 11339{
5a21b665
DV
11340 struct intel_engine_cs *engine = req->engine;
11341 struct drm_i915_private *dev_priv = dev->dev_private;
11342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11343 uint32_t pf, pipesrc;
11344 int ret;
d21fbe87 11345
5a21b665
DV
11346 ret = intel_ring_begin(req, 4);
11347 if (ret)
11348 return ret;
92826fcd 11349
5a21b665
DV
11350 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11351 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11352 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11353 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
92826fcd 11354
5a21b665
DV
11355 /* Contrary to the suggestions in the documentation,
11356 * "Enable Panel Fitter" does not seem to be required when page
11357 * flipping with a non-native mode, and worse causes a normal
11358 * modeset to fail.
11359 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11360 */
11361 pf = 0;
11362 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11363 intel_ring_emit(engine, pf | pipesrc);
7809e5ae 11364
5a21b665 11365 return 0;
7809e5ae
MR
11366}
11367
5a21b665
DV
11368static int intel_gen7_queue_flip(struct drm_device *dev,
11369 struct drm_crtc *crtc,
11370 struct drm_framebuffer *fb,
11371 struct drm_i915_gem_object *obj,
11372 struct drm_i915_gem_request *req,
11373 uint32_t flags)
d21fbe87 11374{
5a21b665
DV
11375 struct intel_engine_cs *engine = req->engine;
11376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11377 uint32_t plane_bit = 0;
11378 int len, ret;
d21fbe87 11379
5a21b665
DV
11380 switch (intel_crtc->plane) {
11381 case PLANE_A:
11382 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11383 break;
11384 case PLANE_B:
11385 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11386 break;
11387 case PLANE_C:
11388 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11389 break;
11390 default:
11391 WARN_ONCE(1, "unknown plane in flip command\n");
11392 return -ENODEV;
11393 }
11394
11395 len = 4;
11396 if (engine->id == RCS) {
11397 len += 6;
11398 /*
11399 * On Gen 8, SRM is now taking an extra dword to accommodate
11400 * 48bits addresses, and we need a NOOP for the batch size to
11401 * stay even.
11402 */
11403 if (IS_GEN8(dev))
11404 len += 2;
11405 }
11406
11407 /*
11408 * BSpec MI_DISPLAY_FLIP for IVB:
11409 * "The full packet must be contained within the same cache line."
11410 *
11411 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11412 * cacheline, if we ever start emitting more commands before
11413 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11414 * then do the cacheline alignment, and finally emit the
11415 * MI_DISPLAY_FLIP.
11416 */
11417 ret = intel_ring_cacheline_align(req);
11418 if (ret)
11419 return ret;
11420
11421 ret = intel_ring_begin(req, len);
11422 if (ret)
11423 return ret;
11424
11425 /* Unmask the flip-done completion message. Note that the bspec says that
11426 * we should do this for both the BCS and RCS, and that we must not unmask
11427 * more than one flip event at any time (or ensure that one flip message
11428 * can be sent by waiting for flip-done prior to queueing new flips).
11429 * Experimentation says that BCS works despite DERRMR masking all
11430 * flip-done completion events and that unmasking all planes at once
11431 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11432 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11433 */
11434 if (engine->id == RCS) {
11435 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11436 intel_ring_emit_reg(engine, DERRMR);
11437 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11438 DERRMR_PIPEB_PRI_FLIP_DONE |
11439 DERRMR_PIPEC_PRI_FLIP_DONE));
11440 if (IS_GEN8(dev))
11441 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11442 MI_SRM_LRM_GLOBAL_GTT);
11443 else
11444 intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11445 MI_SRM_LRM_GLOBAL_GTT);
11446 intel_ring_emit_reg(engine, DERRMR);
11447 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11448 if (IS_GEN8(dev)) {
11449 intel_ring_emit(engine, 0);
11450 intel_ring_emit(engine, MI_NOOP);
11451 }
11452 }
11453
11454 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11455 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11456 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11457 intel_ring_emit(engine, (MI_NOOP));
11458
11459 return 0;
11460}
11461
11462static bool use_mmio_flip(struct intel_engine_cs *engine,
11463 struct drm_i915_gem_object *obj)
11464{
c37efb99
CW
11465 struct reservation_object *resv;
11466
5a21b665
DV
11467 /*
11468 * This is not being used for older platforms, because
11469 * non-availability of flip done interrupt forces us to use
11470 * CS flips. Older platforms derive flip done using some clever
11471 * tricks involving the flip_pending status bits and vblank irqs.
11472 * So using MMIO flips there would disrupt this mechanism.
11473 */
11474
11475 if (engine == NULL)
11476 return true;
11477
11478 if (INTEL_GEN(engine->i915) < 5)
11479 return false;
11480
11481 if (i915.use_mmio_flip < 0)
11482 return false;
11483 else if (i915.use_mmio_flip > 0)
11484 return true;
11485 else if (i915.enable_execlists)
11486 return true;
c37efb99
CW
11487
11488 resv = i915_gem_object_get_dmabuf_resv(obj);
11489 if (resv && !reservation_object_test_signaled_rcu(resv, false))
5a21b665 11490 return true;
c37efb99
CW
11491
11492 return engine != i915_gem_request_get_engine(obj->last_write_req);
5a21b665
DV
11493}
11494
11495static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11496 unsigned int rotation,
11497 struct intel_flip_work *work)
11498{
11499 struct drm_device *dev = intel_crtc->base.dev;
11500 struct drm_i915_private *dev_priv = dev->dev_private;
11501 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11502 const enum pipe pipe = intel_crtc->pipe;
11503 u32 ctl, stride, tile_height;
11504
11505 ctl = I915_READ(PLANE_CTL(pipe, 0));
11506 ctl &= ~PLANE_CTL_TILED_MASK;
11507 switch (fb->modifier[0]) {
11508 case DRM_FORMAT_MOD_NONE:
11509 break;
11510 case I915_FORMAT_MOD_X_TILED:
11511 ctl |= PLANE_CTL_TILED_X;
11512 break;
11513 case I915_FORMAT_MOD_Y_TILED:
11514 ctl |= PLANE_CTL_TILED_Y;
11515 break;
11516 case I915_FORMAT_MOD_Yf_TILED:
11517 ctl |= PLANE_CTL_TILED_YF;
11518 break;
11519 default:
11520 MISSING_CASE(fb->modifier[0]);
11521 }
11522
11523 /*
11524 * The stride is either expressed as a multiple of 64 bytes chunks for
11525 * linear buffers or in number of tiles for tiled buffers.
11526 */
11527 if (intel_rotation_90_or_270(rotation)) {
11528 /* stride = Surface height in tiles */
11529 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11530 stride = DIV_ROUND_UP(fb->height, tile_height);
11531 } else {
11532 stride = fb->pitches[0] /
11533 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11534 fb->pixel_format);
11535 }
11536
11537 /*
11538 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11539 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11540 */
11541 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11542 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11543
11544 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11545 POSTING_READ(PLANE_SURF(pipe, 0));
11546}
11547
11548static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11549 struct intel_flip_work *work)
11550{
11551 struct drm_device *dev = intel_crtc->base.dev;
11552 struct drm_i915_private *dev_priv = dev->dev_private;
11553 struct intel_framebuffer *intel_fb =
11554 to_intel_framebuffer(intel_crtc->base.primary->fb);
11555 struct drm_i915_gem_object *obj = intel_fb->obj;
11556 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11557 u32 dspcntr;
11558
11559 dspcntr = I915_READ(reg);
11560
11561 if (obj->tiling_mode != I915_TILING_NONE)
11562 dspcntr |= DISPPLANE_TILED;
11563 else
11564 dspcntr &= ~DISPPLANE_TILED;
11565
11566 I915_WRITE(reg, dspcntr);
11567
11568 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11569 POSTING_READ(DSPSURF(intel_crtc->plane));
11570}
11571
11572static void intel_mmio_flip_work_func(struct work_struct *w)
11573{
11574 struct intel_flip_work *work =
11575 container_of(w, struct intel_flip_work, mmio_work);
11576 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11577 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11578 struct intel_framebuffer *intel_fb =
11579 to_intel_framebuffer(crtc->base.primary->fb);
11580 struct drm_i915_gem_object *obj = intel_fb->obj;
c37efb99 11581 struct reservation_object *resv;
5a21b665
DV
11582
11583 if (work->flip_queued_req)
11584 WARN_ON(__i915_wait_request(work->flip_queued_req,
11585 false, NULL,
11586 &dev_priv->rps.mmioflips));
11587
11588 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
11589 resv = i915_gem_object_get_dmabuf_resv(obj);
11590 if (resv)
11591 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
5a21b665
DV
11592 MAX_SCHEDULE_TIMEOUT) < 0);
11593
11594 intel_pipe_update_start(crtc);
11595
11596 if (INTEL_GEN(dev_priv) >= 9)
11597 skl_do_mmio_flip(crtc, work->rotation, work);
11598 else
11599 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11600 ilk_do_mmio_flip(crtc, work);
11601
11602 intel_pipe_update_end(crtc, work);
11603}
11604
11605static int intel_default_queue_flip(struct drm_device *dev,
11606 struct drm_crtc *crtc,
11607 struct drm_framebuffer *fb,
11608 struct drm_i915_gem_object *obj,
11609 struct drm_i915_gem_request *req,
11610 uint32_t flags)
11611{
11612 return -ENODEV;
11613}
11614
11615static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11616 struct intel_crtc *intel_crtc,
11617 struct intel_flip_work *work)
11618{
11619 u32 addr, vblank;
11620
11621 if (!atomic_read(&work->pending))
11622 return false;
11623
11624 smp_rmb();
11625
11626 vblank = intel_crtc_get_vblank_counter(intel_crtc);
11627 if (work->flip_ready_vblank == 0) {
11628 if (work->flip_queued_req &&
11629 !i915_gem_request_completed(work->flip_queued_req, true))
11630 return false;
11631
11632 work->flip_ready_vblank = vblank;
11633 }
11634
11635 if (vblank - work->flip_ready_vblank < 3)
11636 return false;
11637
11638 /* Potential stall - if we see that the flip has happened,
11639 * assume a missed interrupt. */
11640 if (INTEL_GEN(dev_priv) >= 4)
11641 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11642 else
11643 addr = I915_READ(DSPADDR(intel_crtc->plane));
11644
11645 /* There is a potential issue here with a false positive after a flip
11646 * to the same address. We could address this by checking for a
11647 * non-incrementing frame counter.
11648 */
11649 return addr == work->gtt_offset;
11650}
11651
11652void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11653{
11654 struct drm_device *dev = dev_priv->dev;
11655 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11657 struct intel_flip_work *work;
11658
11659 WARN_ON(!in_interrupt());
11660
11661 if (crtc == NULL)
11662 return;
11663
11664 spin_lock(&dev->event_lock);
11665 work = intel_crtc->flip_work;
11666
11667 if (work != NULL && !is_mmio_work(work) &&
11668 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11669 WARN_ONCE(1,
11670 "Kicking stuck page flip: queued at %d, now %d\n",
11671 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11672 page_flip_completed(intel_crtc);
11673 work = NULL;
11674 }
11675
11676 if (work != NULL && !is_mmio_work(work) &&
11677 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11678 intel_queue_rps_boost_for_request(work->flip_queued_req);
11679 spin_unlock(&dev->event_lock);
11680}
11681
11682static int intel_crtc_page_flip(struct drm_crtc *crtc,
11683 struct drm_framebuffer *fb,
11684 struct drm_pending_vblank_event *event,
11685 uint32_t page_flip_flags)
11686{
11687 struct drm_device *dev = crtc->dev;
11688 struct drm_i915_private *dev_priv = dev->dev_private;
11689 struct drm_framebuffer *old_fb = crtc->primary->fb;
11690 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11692 struct drm_plane *primary = crtc->primary;
11693 enum pipe pipe = intel_crtc->pipe;
11694 struct intel_flip_work *work;
11695 struct intel_engine_cs *engine;
11696 bool mmio_flip;
11697 struct drm_i915_gem_request *request = NULL;
11698 int ret;
11699
11700 /*
11701 * drm_mode_page_flip_ioctl() should already catch this, but double
11702 * check to be safe. In the future we may enable pageflipping from
11703 * a disabled primary plane.
11704 */
11705 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11706 return -EBUSY;
11707
11708 /* Can't change pixel format via MI display flips. */
11709 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11710 return -EINVAL;
11711
11712 /*
11713 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11714 * Note that pitch changes could also affect these register.
11715 */
11716 if (INTEL_INFO(dev)->gen > 3 &&
11717 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11718 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11719 return -EINVAL;
11720
11721 if (i915_terminally_wedged(&dev_priv->gpu_error))
11722 goto out_hang;
11723
11724 work = kzalloc(sizeof(*work), GFP_KERNEL);
11725 if (work == NULL)
11726 return -ENOMEM;
11727
11728 work->event = event;
11729 work->crtc = crtc;
11730 work->old_fb = old_fb;
11731 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11732
11733 ret = drm_crtc_vblank_get(crtc);
11734 if (ret)
11735 goto free_work;
11736
11737 /* We borrow the event spin lock for protecting flip_work */
11738 spin_lock_irq(&dev->event_lock);
11739 if (intel_crtc->flip_work) {
11740 /* Before declaring the flip queue wedged, check if
11741 * the hardware completed the operation behind our backs.
11742 */
11743 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11744 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11745 page_flip_completed(intel_crtc);
11746 } else {
11747 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11748 spin_unlock_irq(&dev->event_lock);
11749
11750 drm_crtc_vblank_put(crtc);
11751 kfree(work);
11752 return -EBUSY;
11753 }
11754 }
11755 intel_crtc->flip_work = work;
11756 spin_unlock_irq(&dev->event_lock);
11757
11758 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11759 flush_workqueue(dev_priv->wq);
11760
11761 /* Reference the objects for the scheduled work. */
11762 drm_framebuffer_reference(work->old_fb);
11763 drm_gem_object_reference(&obj->base);
11764
11765 crtc->primary->fb = fb;
11766 update_state_fb(crtc->primary);
faf68d92
ML
11767
11768 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11769 to_intel_plane_state(primary->state));
5a21b665
DV
11770
11771 work->pending_flip_obj = obj;
11772
11773 ret = i915_mutex_lock_interruptible(dev);
11774 if (ret)
11775 goto cleanup;
11776
11777 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11778 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11779 ret = -EIO;
11780 goto cleanup;
11781 }
11782
11783 atomic_inc(&intel_crtc->unpin_work_count);
11784
11785 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11786 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11787
11788 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11789 engine = &dev_priv->engine[BCS];
11790 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11791 /* vlv: DISPLAY_FLIP fails to change tiling */
11792 engine = NULL;
11793 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11794 engine = &dev_priv->engine[BCS];
11795 } else if (INTEL_INFO(dev)->gen >= 7) {
11796 engine = i915_gem_request_get_engine(obj->last_write_req);
11797 if (engine == NULL || engine->id != RCS)
11798 engine = &dev_priv->engine[BCS];
11799 } else {
11800 engine = &dev_priv->engine[RCS];
11801 }
11802
11803 mmio_flip = use_mmio_flip(engine, obj);
11804
11805 /* When using CS flips, we want to emit semaphores between rings.
11806 * However, when using mmio flips we will create a task to do the
11807 * synchronisation, so all we want here is to pin the framebuffer
11808 * into the display plane and skip any waits.
11809 */
11810 if (!mmio_flip) {
11811 ret = i915_gem_object_sync(obj, engine, &request);
11812 if (!ret && !request) {
11813 request = i915_gem_request_alloc(engine, NULL);
11814 ret = PTR_ERR_OR_ZERO(request);
11815 }
11816
11817 if (ret)
11818 goto cleanup_pending;
11819 }
11820
11821 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11822 if (ret)
11823 goto cleanup_pending;
11824
11825 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11826 obj, 0);
11827 work->gtt_offset += intel_crtc->dspaddr_offset;
11828 work->rotation = crtc->primary->state->rotation;
11829
11830 if (mmio_flip) {
11831 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11832
11833 i915_gem_request_assign(&work->flip_queued_req,
11834 obj->last_write_req);
11835
11836 schedule_work(&work->mmio_work);
11837 } else {
11838 i915_gem_request_assign(&work->flip_queued_req, request);
11839 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11840 page_flip_flags);
11841 if (ret)
11842 goto cleanup_unpin;
11843
11844 intel_mark_page_flip_active(intel_crtc, work);
11845
11846 i915_add_request_no_flush(request);
11847 }
11848
11849 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11850 to_intel_plane(primary)->frontbuffer_bit);
11851 mutex_unlock(&dev->struct_mutex);
11852
11853 intel_frontbuffer_flip_prepare(dev,
11854 to_intel_plane(primary)->frontbuffer_bit);
11855
11856 trace_i915_flip_request(intel_crtc->plane, obj);
11857
11858 return 0;
11859
11860cleanup_unpin:
11861 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11862cleanup_pending:
11863 if (!IS_ERR_OR_NULL(request))
11864 i915_add_request_no_flush(request);
11865 atomic_dec(&intel_crtc->unpin_work_count);
11866 mutex_unlock(&dev->struct_mutex);
11867cleanup:
11868 crtc->primary->fb = old_fb;
11869 update_state_fb(crtc->primary);
11870
11871 drm_gem_object_unreference_unlocked(&obj->base);
11872 drm_framebuffer_unreference(work->old_fb);
11873
11874 spin_lock_irq(&dev->event_lock);
11875 intel_crtc->flip_work = NULL;
11876 spin_unlock_irq(&dev->event_lock);
11877
11878 drm_crtc_vblank_put(crtc);
11879free_work:
11880 kfree(work);
11881
11882 if (ret == -EIO) {
11883 struct drm_atomic_state *state;
11884 struct drm_plane_state *plane_state;
11885
11886out_hang:
11887 state = drm_atomic_state_alloc(dev);
11888 if (!state)
11889 return -ENOMEM;
11890 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11891
11892retry:
11893 plane_state = drm_atomic_get_plane_state(state, primary);
11894 ret = PTR_ERR_OR_ZERO(plane_state);
11895 if (!ret) {
11896 drm_atomic_set_fb_for_plane(plane_state, fb);
11897
11898 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11899 if (!ret)
11900 ret = drm_atomic_commit(state);
11901 }
11902
11903 if (ret == -EDEADLK) {
11904 drm_modeset_backoff(state->acquire_ctx);
11905 drm_atomic_state_clear(state);
11906 goto retry;
11907 }
11908
11909 if (ret)
11910 drm_atomic_state_free(state);
11911
11912 if (ret == 0 && event) {
11913 spin_lock_irq(&dev->event_lock);
11914 drm_crtc_send_vblank_event(crtc, event);
11915 spin_unlock_irq(&dev->event_lock);
11916 }
11917 }
11918 return ret;
11919}
11920
11921
11922/**
11923 * intel_wm_need_update - Check whether watermarks need updating
11924 * @plane: drm plane
11925 * @state: new plane state
11926 *
11927 * Check current plane state versus the new one to determine whether
11928 * watermarks need to be recalculated.
11929 *
11930 * Returns true or false.
11931 */
11932static bool intel_wm_need_update(struct drm_plane *plane,
11933 struct drm_plane_state *state)
11934{
11935 struct intel_plane_state *new = to_intel_plane_state(state);
11936 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11937
11938 /* Update watermarks on tiling or size changes. */
11939 if (new->visible != cur->visible)
11940 return true;
11941
11942 if (!cur->base.fb || !new->base.fb)
11943 return false;
11944
11945 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11946 cur->base.rotation != new->base.rotation ||
11947 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11948 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11949 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11950 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11951 return true;
11952
11953 return false;
11954}
11955
11956static bool needs_scaling(struct intel_plane_state *state)
11957{
11958 int src_w = drm_rect_width(&state->src) >> 16;
11959 int src_h = drm_rect_height(&state->src) >> 16;
11960 int dst_w = drm_rect_width(&state->dst);
11961 int dst_h = drm_rect_height(&state->dst);
11962
11963 return (src_w != dst_w || src_h != dst_h);
11964}
d21fbe87 11965
da20eabd
ML
11966int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11967 struct drm_plane_state *plane_state)
11968{
ab1d3a0e 11969 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11970 struct drm_crtc *crtc = crtc_state->crtc;
11971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11972 struct drm_plane *plane = plane_state->plane;
11973 struct drm_device *dev = crtc->dev;
ed4a6a7c 11974 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
11975 struct intel_plane_state *old_plane_state =
11976 to_intel_plane_state(plane->state);
da20eabd
ML
11977 bool mode_changed = needs_modeset(crtc_state);
11978 bool was_crtc_enabled = crtc->state->active;
11979 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11980 bool turn_off, turn_on, visible, was_visible;
11981 struct drm_framebuffer *fb = plane_state->fb;
78108b7c 11982 int ret;
da20eabd
ML
11983
11984 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11985 plane->type != DRM_PLANE_TYPE_CURSOR) {
11986 ret = skl_update_scaler_plane(
11987 to_intel_crtc_state(crtc_state),
11988 to_intel_plane_state(plane_state));
11989 if (ret)
11990 return ret;
11991 }
11992
da20eabd
ML
11993 was_visible = old_plane_state->visible;
11994 visible = to_intel_plane_state(plane_state)->visible;
11995
11996 if (!was_crtc_enabled && WARN_ON(was_visible))
11997 was_visible = false;
11998
35c08f43
ML
11999 /*
12000 * Visibility is calculated as if the crtc was on, but
12001 * after scaler setup everything depends on it being off
12002 * when the crtc isn't active.
f818ffea
VS
12003 *
12004 * FIXME this is wrong for watermarks. Watermarks should also
12005 * be computed as if the pipe would be active. Perhaps move
12006 * per-plane wm computation to the .check_plane() hook, and
12007 * only combine the results from all planes in the current place?
35c08f43
ML
12008 */
12009 if (!is_crtc_enabled)
12010 to_intel_plane_state(plane_state)->visible = visible = false;
da20eabd
ML
12011
12012 if (!was_visible && !visible)
12013 return 0;
12014
e8861675
ML
12015 if (fb != old_plane_state->base.fb)
12016 pipe_config->fb_changed = true;
12017
da20eabd
ML
12018 turn_off = was_visible && (!visible || mode_changed);
12019 turn_on = visible && (!was_visible || mode_changed);
12020
72660ce0 12021 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
78108b7c
VS
12022 intel_crtc->base.base.id,
12023 intel_crtc->base.name,
72660ce0
VS
12024 plane->base.id, plane->name,
12025 fb ? fb->base.id : -1);
da20eabd 12026
72660ce0
VS
12027 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12028 plane->base.id, plane->name,
12029 was_visible, visible,
da20eabd
ML
12030 turn_off, turn_on, mode_changed);
12031
caed361d
VS
12032 if (turn_on) {
12033 pipe_config->update_wm_pre = true;
12034
12035 /* must disable cxsr around plane enable/disable */
12036 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12037 pipe_config->disable_cxsr = true;
12038 } else if (turn_off) {
12039 pipe_config->update_wm_post = true;
92826fcd 12040
852eb00d 12041 /* must disable cxsr around plane enable/disable */
e8861675 12042 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 12043 pipe_config->disable_cxsr = true;
852eb00d 12044 } else if (intel_wm_need_update(plane, plane_state)) {
caed361d
VS
12045 /* FIXME bollocks */
12046 pipe_config->update_wm_pre = true;
12047 pipe_config->update_wm_post = true;
852eb00d 12048 }
da20eabd 12049
ed4a6a7c 12050 /* Pre-gen9 platforms need two-step watermark updates */
caed361d
VS
12051 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12052 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
ed4a6a7c
MR
12053 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12054
8be6ca85 12055 if (visible || was_visible)
cd202f69 12056 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
a9ff8714 12057
31ae71fc
ML
12058 /*
12059 * WaCxSRDisabledForSpriteScaling:ivb
12060 *
12061 * cstate->update_wm was already set above, so this flag will
12062 * take effect when we commit and program watermarks.
12063 */
12064 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12065 needs_scaling(to_intel_plane_state(plane_state)) &&
12066 !needs_scaling(old_plane_state))
12067 pipe_config->disable_lp_wm = true;
d21fbe87 12068
da20eabd
ML
12069 return 0;
12070}
12071
6d3a1ce7
ML
12072static bool encoders_cloneable(const struct intel_encoder *a,
12073 const struct intel_encoder *b)
12074{
12075 /* masks could be asymmetric, so check both ways */
12076 return a == b || (a->cloneable & (1 << b->type) &&
12077 b->cloneable & (1 << a->type));
12078}
12079
12080static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12081 struct intel_crtc *crtc,
12082 struct intel_encoder *encoder)
12083{
12084 struct intel_encoder *source_encoder;
12085 struct drm_connector *connector;
12086 struct drm_connector_state *connector_state;
12087 int i;
12088
12089 for_each_connector_in_state(state, connector, connector_state, i) {
12090 if (connector_state->crtc != &crtc->base)
12091 continue;
12092
12093 source_encoder =
12094 to_intel_encoder(connector_state->best_encoder);
12095 if (!encoders_cloneable(encoder, source_encoder))
12096 return false;
12097 }
12098
12099 return true;
12100}
12101
12102static bool check_encoder_cloning(struct drm_atomic_state *state,
12103 struct intel_crtc *crtc)
12104{
12105 struct intel_encoder *encoder;
12106 struct drm_connector *connector;
12107 struct drm_connector_state *connector_state;
12108 int i;
12109
12110 for_each_connector_in_state(state, connector, connector_state, i) {
12111 if (connector_state->crtc != &crtc->base)
12112 continue;
12113
12114 encoder = to_intel_encoder(connector_state->best_encoder);
12115 if (!check_single_encoder_cloning(state, crtc, encoder))
12116 return false;
12117 }
12118
12119 return true;
12120}
12121
12122static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12123 struct drm_crtc_state *crtc_state)
12124{
cf5a15be 12125 struct drm_device *dev = crtc->dev;
ad421372 12126 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 12127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
12128 struct intel_crtc_state *pipe_config =
12129 to_intel_crtc_state(crtc_state);
6d3a1ce7 12130 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 12131 int ret;
6d3a1ce7
ML
12132 bool mode_changed = needs_modeset(crtc_state);
12133
12134 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12135 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12136 return -EINVAL;
12137 }
12138
852eb00d 12139 if (mode_changed && !crtc_state->active)
caed361d 12140 pipe_config->update_wm_post = true;
eddfcbcd 12141
ad421372
ML
12142 if (mode_changed && crtc_state->enable &&
12143 dev_priv->display.crtc_compute_clock &&
8106ddbd 12144 !WARN_ON(pipe_config->shared_dpll)) {
ad421372
ML
12145 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12146 pipe_config);
12147 if (ret)
12148 return ret;
12149 }
12150
82cf435b
LL
12151 if (crtc_state->color_mgmt_changed) {
12152 ret = intel_color_check(crtc, crtc_state);
12153 if (ret)
12154 return ret;
12155 }
12156
e435d6e5 12157 ret = 0;
86c8bbbe 12158 if (dev_priv->display.compute_pipe_wm) {
e3bddded 12159 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
12160 if (ret) {
12161 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12162 return ret;
12163 }
12164 }
12165
12166 if (dev_priv->display.compute_intermediate_wm &&
12167 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12168 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12169 return 0;
12170
12171 /*
12172 * Calculate 'intermediate' watermarks that satisfy both the
12173 * old state and the new state. We can program these
12174 * immediately.
12175 */
12176 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12177 intel_crtc,
12178 pipe_config);
12179 if (ret) {
12180 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 12181 return ret;
ed4a6a7c 12182 }
e3d5457c
VS
12183 } else if (dev_priv->display.compute_intermediate_wm) {
12184 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12185 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
86c8bbbe
MR
12186 }
12187
e435d6e5
ML
12188 if (INTEL_INFO(dev)->gen >= 9) {
12189 if (mode_changed)
12190 ret = skl_update_scaler_crtc(pipe_config);
12191
12192 if (!ret)
12193 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12194 pipe_config);
12195 }
12196
12197 return ret;
6d3a1ce7
ML
12198}
12199
65b38e0d 12200static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160 12201 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5a21b665
DV
12202 .atomic_begin = intel_begin_crtc_commit,
12203 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 12204 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
12205};
12206
d29b2f9d
ACO
12207static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12208{
12209 struct intel_connector *connector;
12210
12211 for_each_intel_connector(dev, connector) {
8863dc7f
DV
12212 if (connector->base.state->crtc)
12213 drm_connector_unreference(&connector->base);
12214
d29b2f9d
ACO
12215 if (connector->base.encoder) {
12216 connector->base.state->best_encoder =
12217 connector->base.encoder;
12218 connector->base.state->crtc =
12219 connector->base.encoder->crtc;
8863dc7f
DV
12220
12221 drm_connector_reference(&connector->base);
d29b2f9d
ACO
12222 } else {
12223 connector->base.state->best_encoder = NULL;
12224 connector->base.state->crtc = NULL;
12225 }
12226 }
12227}
12228
050f7aeb 12229static void
eba905b2 12230connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 12231 struct intel_crtc_state *pipe_config)
050f7aeb
DV
12232{
12233 int bpp = pipe_config->pipe_bpp;
12234
12235 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12236 connector->base.base.id,
c23cc417 12237 connector->base.name);
050f7aeb
DV
12238
12239 /* Don't use an invalid EDID bpc value */
12240 if (connector->base.display_info.bpc &&
12241 connector->base.display_info.bpc * 3 < bpp) {
12242 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12243 bpp, connector->base.display_info.bpc*3);
12244 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12245 }
12246
013dd9e0
JN
12247 /* Clamp bpp to default limit on screens without EDID 1.4 */
12248 if (connector->base.display_info.bpc == 0) {
12249 int type = connector->base.connector_type;
12250 int clamp_bpp = 24;
12251
12252 /* Fall back to 18 bpp when DP sink capability is unknown. */
12253 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12254 type == DRM_MODE_CONNECTOR_eDP)
12255 clamp_bpp = 18;
12256
12257 if (bpp > clamp_bpp) {
12258 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12259 bpp, clamp_bpp);
12260 pipe_config->pipe_bpp = clamp_bpp;
12261 }
050f7aeb
DV
12262 }
12263}
12264
4e53c2e0 12265static int
050f7aeb 12266compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12267 struct intel_crtc_state *pipe_config)
4e53c2e0 12268{
050f7aeb 12269 struct drm_device *dev = crtc->base.dev;
1486017f 12270 struct drm_atomic_state *state;
da3ced29
ACO
12271 struct drm_connector *connector;
12272 struct drm_connector_state *connector_state;
1486017f 12273 int bpp, i;
4e53c2e0 12274
666a4537 12275 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 12276 bpp = 10*3;
d328c9d7
DV
12277 else if (INTEL_INFO(dev)->gen >= 5)
12278 bpp = 12*3;
12279 else
12280 bpp = 8*3;
12281
4e53c2e0 12282
4e53c2e0
DV
12283 pipe_config->pipe_bpp = bpp;
12284
1486017f
ACO
12285 state = pipe_config->base.state;
12286
4e53c2e0 12287 /* Clamp display bpp to EDID value */
da3ced29
ACO
12288 for_each_connector_in_state(state, connector, connector_state, i) {
12289 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12290 continue;
12291
da3ced29
ACO
12292 connected_sink_compute_bpp(to_intel_connector(connector),
12293 pipe_config);
4e53c2e0
DV
12294 }
12295
12296 return bpp;
12297}
12298
644db711
DV
12299static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12300{
12301 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12302 "type: 0x%x flags: 0x%x\n",
1342830c 12303 mode->crtc_clock,
644db711
DV
12304 mode->crtc_hdisplay, mode->crtc_hsync_start,
12305 mode->crtc_hsync_end, mode->crtc_htotal,
12306 mode->crtc_vdisplay, mode->crtc_vsync_start,
12307 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12308}
12309
c0b03411 12310static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12311 struct intel_crtc_state *pipe_config,
c0b03411
DV
12312 const char *context)
12313{
6a60cd87
CK
12314 struct drm_device *dev = crtc->base.dev;
12315 struct drm_plane *plane;
12316 struct intel_plane *intel_plane;
12317 struct intel_plane_state *state;
12318 struct drm_framebuffer *fb;
12319
78108b7c
VS
12320 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12321 crtc->base.base.id, crtc->base.name,
6a60cd87 12322 context, pipe_config, pipe_name(crtc->pipe));
c0b03411 12323
da205630 12324 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
c0b03411
DV
12325 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12326 pipe_config->pipe_bpp, pipe_config->dither);
12327 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12328 pipe_config->has_pch_encoder,
12329 pipe_config->fdi_lanes,
12330 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12331 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12332 pipe_config->fdi_m_n.tu);
90a6b7b0 12333 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12334 pipe_config->has_dp_encoder,
90a6b7b0 12335 pipe_config->lane_count,
eb14cb74
VS
12336 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12337 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12338 pipe_config->dp_m_n.tu);
b95af8be 12339
90a6b7b0 12340 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12341 pipe_config->has_dp_encoder,
90a6b7b0 12342 pipe_config->lane_count,
b95af8be
VK
12343 pipe_config->dp_m2_n2.gmch_m,
12344 pipe_config->dp_m2_n2.gmch_n,
12345 pipe_config->dp_m2_n2.link_m,
12346 pipe_config->dp_m2_n2.link_n,
12347 pipe_config->dp_m2_n2.tu);
12348
55072d19
DV
12349 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12350 pipe_config->has_audio,
12351 pipe_config->has_infoframe);
12352
c0b03411 12353 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12354 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12355 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12356 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12357 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12358 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12359 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12360 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12361 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12362 crtc->num_scalers,
12363 pipe_config->scaler_state.scaler_users,
12364 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12365 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12366 pipe_config->gmch_pfit.control,
12367 pipe_config->gmch_pfit.pgm_ratios,
12368 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12369 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12370 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12371 pipe_config->pch_pfit.size,
12372 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12373 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12374 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12375
415ff0f6 12376 if (IS_BROXTON(dev)) {
05712c15 12377 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12378 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12379 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12380 pipe_config->ddi_pll_sel,
12381 pipe_config->dpll_hw_state.ebb0,
05712c15 12382 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12383 pipe_config->dpll_hw_state.pll0,
12384 pipe_config->dpll_hw_state.pll1,
12385 pipe_config->dpll_hw_state.pll2,
12386 pipe_config->dpll_hw_state.pll3,
12387 pipe_config->dpll_hw_state.pll6,
12388 pipe_config->dpll_hw_state.pll8,
05712c15 12389 pipe_config->dpll_hw_state.pll9,
c8453338 12390 pipe_config->dpll_hw_state.pll10,
415ff0f6 12391 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12392 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12393 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12394 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12395 pipe_config->ddi_pll_sel,
12396 pipe_config->dpll_hw_state.ctrl1,
12397 pipe_config->dpll_hw_state.cfgcr1,
12398 pipe_config->dpll_hw_state.cfgcr2);
12399 } else if (HAS_DDI(dev)) {
1260f07e 12400 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12401 pipe_config->ddi_pll_sel,
00490c22
ML
12402 pipe_config->dpll_hw_state.wrpll,
12403 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12404 } else {
12405 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12406 "fp0: 0x%x, fp1: 0x%x\n",
12407 pipe_config->dpll_hw_state.dpll,
12408 pipe_config->dpll_hw_state.dpll_md,
12409 pipe_config->dpll_hw_state.fp0,
12410 pipe_config->dpll_hw_state.fp1);
12411 }
12412
6a60cd87
CK
12413 DRM_DEBUG_KMS("planes on this crtc\n");
12414 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12415 intel_plane = to_intel_plane(plane);
12416 if (intel_plane->pipe != crtc->pipe)
12417 continue;
12418
12419 state = to_intel_plane_state(plane->state);
12420 fb = state->base.fb;
12421 if (!fb) {
1d577e02
VS
12422 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12423 plane->base.id, plane->name, state->scaler_id);
6a60cd87
CK
12424 continue;
12425 }
12426
1d577e02
VS
12427 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12428 plane->base.id, plane->name);
12429 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12430 fb->base.id, fb->width, fb->height,
12431 drm_get_format_name(fb->pixel_format));
12432 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12433 state->scaler_id,
12434 state->src.x1 >> 16, state->src.y1 >> 16,
12435 drm_rect_width(&state->src) >> 16,
12436 drm_rect_height(&state->src) >> 16,
12437 state->dst.x1, state->dst.y1,
12438 drm_rect_width(&state->dst),
12439 drm_rect_height(&state->dst));
6a60cd87 12440 }
c0b03411
DV
12441}
12442
5448a00d 12443static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12444{
5448a00d 12445 struct drm_device *dev = state->dev;
da3ced29 12446 struct drm_connector *connector;
00f0b378
VS
12447 unsigned int used_ports = 0;
12448
12449 /*
12450 * Walk the connector list instead of the encoder
12451 * list to detect the problem on ddi platforms
12452 * where there's just one encoder per digital port.
12453 */
0bff4858
VS
12454 drm_for_each_connector(connector, dev) {
12455 struct drm_connector_state *connector_state;
12456 struct intel_encoder *encoder;
12457
12458 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12459 if (!connector_state)
12460 connector_state = connector->state;
12461
5448a00d 12462 if (!connector_state->best_encoder)
00f0b378
VS
12463 continue;
12464
5448a00d
ACO
12465 encoder = to_intel_encoder(connector_state->best_encoder);
12466
12467 WARN_ON(!connector_state->crtc);
00f0b378
VS
12468
12469 switch (encoder->type) {
12470 unsigned int port_mask;
12471 case INTEL_OUTPUT_UNKNOWN:
12472 if (WARN_ON(!HAS_DDI(dev)))
12473 break;
12474 case INTEL_OUTPUT_DISPLAYPORT:
12475 case INTEL_OUTPUT_HDMI:
12476 case INTEL_OUTPUT_EDP:
12477 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12478
12479 /* the same port mustn't appear more than once */
12480 if (used_ports & port_mask)
12481 return false;
12482
12483 used_ports |= port_mask;
12484 default:
12485 break;
12486 }
12487 }
12488
12489 return true;
12490}
12491
83a57153
ACO
12492static void
12493clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12494{
12495 struct drm_crtc_state tmp_state;
663a3640 12496 struct intel_crtc_scaler_state scaler_state;
4978cc93 12497 struct intel_dpll_hw_state dpll_hw_state;
8106ddbd 12498 struct intel_shared_dpll *shared_dpll;
8504c74c 12499 uint32_t ddi_pll_sel;
c4e2d043 12500 bool force_thru;
83a57153 12501
7546a384
ACO
12502 /* FIXME: before the switch to atomic started, a new pipe_config was
12503 * kzalloc'd. Code that depends on any field being zero should be
12504 * fixed, so that the crtc_state can be safely duplicated. For now,
12505 * only fields that are know to not cause problems are preserved. */
12506
83a57153 12507 tmp_state = crtc_state->base;
663a3640 12508 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12509 shared_dpll = crtc_state->shared_dpll;
12510 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12511 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12512 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12513
83a57153 12514 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12515
83a57153 12516 crtc_state->base = tmp_state;
663a3640 12517 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12518 crtc_state->shared_dpll = shared_dpll;
12519 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12520 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12521 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12522}
12523
548ee15b 12524static int
b8cecdf5 12525intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12526 struct intel_crtc_state *pipe_config)
ee7b9f93 12527{
b359283a 12528 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12529 struct intel_encoder *encoder;
da3ced29 12530 struct drm_connector *connector;
0b901879 12531 struct drm_connector_state *connector_state;
d328c9d7 12532 int base_bpp, ret = -EINVAL;
0b901879 12533 int i;
e29c22c0 12534 bool retry = true;
ee7b9f93 12535
83a57153 12536 clear_intel_crtc_state(pipe_config);
7758a113 12537
e143a21c
DV
12538 pipe_config->cpu_transcoder =
12539 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12540
2960bc9c
ID
12541 /*
12542 * Sanitize sync polarity flags based on requested ones. If neither
12543 * positive or negative polarity is requested, treat this as meaning
12544 * negative polarity.
12545 */
2d112de7 12546 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12547 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12548 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12549
2d112de7 12550 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12551 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12552 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12553
d328c9d7
DV
12554 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12555 pipe_config);
12556 if (base_bpp < 0)
4e53c2e0
DV
12557 goto fail;
12558
e41a56be
VS
12559 /*
12560 * Determine the real pipe dimensions. Note that stereo modes can
12561 * increase the actual pipe size due to the frame doubling and
12562 * insertion of additional space for blanks between the frame. This
12563 * is stored in the crtc timings. We use the requested mode to do this
12564 * computation to clearly distinguish it from the adjusted mode, which
12565 * can be changed by the connectors in the below retry loop.
12566 */
2d112de7 12567 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12568 &pipe_config->pipe_src_w,
12569 &pipe_config->pipe_src_h);
e41a56be 12570
e29c22c0 12571encoder_retry:
ef1b460d 12572 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12573 pipe_config->port_clock = 0;
ef1b460d 12574 pipe_config->pixel_multiplier = 1;
ff9a6750 12575
135c81b8 12576 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12577 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12578 CRTC_STEREO_DOUBLE);
135c81b8 12579
7758a113
DV
12580 /* Pass our mode to the connectors and the CRTC to give them a chance to
12581 * adjust it according to limitations or connector properties, and also
12582 * a chance to reject the mode entirely.
47f1c6c9 12583 */
da3ced29 12584 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12585 if (connector_state->crtc != crtc)
7758a113 12586 continue;
7ae89233 12587
0b901879
ACO
12588 encoder = to_intel_encoder(connector_state->best_encoder);
12589
efea6e8e
DV
12590 if (!(encoder->compute_config(encoder, pipe_config))) {
12591 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12592 goto fail;
12593 }
ee7b9f93 12594 }
47f1c6c9 12595
ff9a6750
DV
12596 /* Set default port clock if not overwritten by the encoder. Needs to be
12597 * done afterwards in case the encoder adjusts the mode. */
12598 if (!pipe_config->port_clock)
2d112de7 12599 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12600 * pipe_config->pixel_multiplier;
ff9a6750 12601
a43f6e0f 12602 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12603 if (ret < 0) {
7758a113
DV
12604 DRM_DEBUG_KMS("CRTC fixup failed\n");
12605 goto fail;
ee7b9f93 12606 }
e29c22c0
DV
12607
12608 if (ret == RETRY) {
12609 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12610 ret = -EINVAL;
12611 goto fail;
12612 }
12613
12614 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12615 retry = false;
12616 goto encoder_retry;
12617 }
12618
e8fa4270
DV
12619 /* Dithering seems to not pass-through bits correctly when it should, so
12620 * only enable it on 6bpc panels. */
12621 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12622 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12623 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12624
7758a113 12625fail:
548ee15b 12626 return ret;
ee7b9f93 12627}
47f1c6c9 12628
ea9d758d 12629static void
4740b0f2 12630intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12631{
0a9ab303
ACO
12632 struct drm_crtc *crtc;
12633 struct drm_crtc_state *crtc_state;
8a75d157 12634 int i;
ea9d758d 12635
7668851f 12636 /* Double check state. */
8a75d157 12637 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12638 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12639
12640 /* Update hwmode for vblank functions */
12641 if (crtc->state->active)
12642 crtc->hwmode = crtc->state->adjusted_mode;
12643 else
12644 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12645
12646 /*
12647 * Update legacy state to satisfy fbc code. This can
12648 * be removed when fbc uses the atomic state.
12649 */
12650 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12651 struct drm_plane_state *plane_state = crtc->primary->state;
12652
12653 crtc->primary->fb = plane_state->fb;
12654 crtc->x = plane_state->src_x >> 16;
12655 crtc->y = plane_state->src_y >> 16;
12656 }
ea9d758d 12657 }
ea9d758d
DV
12658}
12659
3bd26263 12660static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12661{
3bd26263 12662 int diff;
f1f644dc
JB
12663
12664 if (clock1 == clock2)
12665 return true;
12666
12667 if (!clock1 || !clock2)
12668 return false;
12669
12670 diff = abs(clock1 - clock2);
12671
12672 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12673 return true;
12674
12675 return false;
12676}
12677
25c5b266
DV
12678#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12679 list_for_each_entry((intel_crtc), \
12680 &(dev)->mode_config.crtc_list, \
12681 base.head) \
95150bdf 12682 for_each_if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12683
cfb23ed6
ML
12684static bool
12685intel_compare_m_n(unsigned int m, unsigned int n,
12686 unsigned int m2, unsigned int n2,
12687 bool exact)
12688{
12689 if (m == m2 && n == n2)
12690 return true;
12691
12692 if (exact || !m || !n || !m2 || !n2)
12693 return false;
12694
12695 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12696
31d10b57
ML
12697 if (n > n2) {
12698 while (n > n2) {
cfb23ed6
ML
12699 m2 <<= 1;
12700 n2 <<= 1;
12701 }
31d10b57
ML
12702 } else if (n < n2) {
12703 while (n < n2) {
cfb23ed6
ML
12704 m <<= 1;
12705 n <<= 1;
12706 }
12707 }
12708
31d10b57
ML
12709 if (n != n2)
12710 return false;
12711
12712 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
12713}
12714
12715static bool
12716intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12717 struct intel_link_m_n *m2_n2,
12718 bool adjust)
12719{
12720 if (m_n->tu == m2_n2->tu &&
12721 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12722 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12723 intel_compare_m_n(m_n->link_m, m_n->link_n,
12724 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12725 if (adjust)
12726 *m2_n2 = *m_n;
12727
12728 return true;
12729 }
12730
12731 return false;
12732}
12733
0e8ffe1b 12734static bool
2fa2fe9a 12735intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12736 struct intel_crtc_state *current_config,
cfb23ed6
ML
12737 struct intel_crtc_state *pipe_config,
12738 bool adjust)
0e8ffe1b 12739{
cfb23ed6
ML
12740 bool ret = true;
12741
12742#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12743 do { \
12744 if (!adjust) \
12745 DRM_ERROR(fmt, ##__VA_ARGS__); \
12746 else \
12747 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12748 } while (0)
12749
66e985c0
DV
12750#define PIPE_CONF_CHECK_X(name) \
12751 if (current_config->name != pipe_config->name) { \
cfb23ed6 12752 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12753 "(expected 0x%08x, found 0x%08x)\n", \
12754 current_config->name, \
12755 pipe_config->name); \
cfb23ed6 12756 ret = false; \
66e985c0
DV
12757 }
12758
08a24034
DV
12759#define PIPE_CONF_CHECK_I(name) \
12760 if (current_config->name != pipe_config->name) { \
cfb23ed6 12761 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12762 "(expected %i, found %i)\n", \
12763 current_config->name, \
12764 pipe_config->name); \
cfb23ed6
ML
12765 ret = false; \
12766 }
12767
8106ddbd
ACO
12768#define PIPE_CONF_CHECK_P(name) \
12769 if (current_config->name != pipe_config->name) { \
12770 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12771 "(expected %p, found %p)\n", \
12772 current_config->name, \
12773 pipe_config->name); \
12774 ret = false; \
12775 }
12776
cfb23ed6
ML
12777#define PIPE_CONF_CHECK_M_N(name) \
12778 if (!intel_compare_link_m_n(&current_config->name, \
12779 &pipe_config->name,\
12780 adjust)) { \
12781 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12782 "(expected tu %i gmch %i/%i link %i/%i, " \
12783 "found tu %i, gmch %i/%i link %i/%i)\n", \
12784 current_config->name.tu, \
12785 current_config->name.gmch_m, \
12786 current_config->name.gmch_n, \
12787 current_config->name.link_m, \
12788 current_config->name.link_n, \
12789 pipe_config->name.tu, \
12790 pipe_config->name.gmch_m, \
12791 pipe_config->name.gmch_n, \
12792 pipe_config->name.link_m, \
12793 pipe_config->name.link_n); \
12794 ret = false; \
12795 }
12796
55c561a7
DV
12797/* This is required for BDW+ where there is only one set of registers for
12798 * switching between high and low RR.
12799 * This macro can be used whenever a comparison has to be made between one
12800 * hw state and multiple sw state variables.
12801 */
cfb23ed6
ML
12802#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12803 if (!intel_compare_link_m_n(&current_config->name, \
12804 &pipe_config->name, adjust) && \
12805 !intel_compare_link_m_n(&current_config->alt_name, \
12806 &pipe_config->name, adjust)) { \
12807 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12808 "(expected tu %i gmch %i/%i link %i/%i, " \
12809 "or tu %i gmch %i/%i link %i/%i, " \
12810 "found tu %i, gmch %i/%i link %i/%i)\n", \
12811 current_config->name.tu, \
12812 current_config->name.gmch_m, \
12813 current_config->name.gmch_n, \
12814 current_config->name.link_m, \
12815 current_config->name.link_n, \
12816 current_config->alt_name.tu, \
12817 current_config->alt_name.gmch_m, \
12818 current_config->alt_name.gmch_n, \
12819 current_config->alt_name.link_m, \
12820 current_config->alt_name.link_n, \
12821 pipe_config->name.tu, \
12822 pipe_config->name.gmch_m, \
12823 pipe_config->name.gmch_n, \
12824 pipe_config->name.link_m, \
12825 pipe_config->name.link_n); \
12826 ret = false; \
88adfff1
DV
12827 }
12828
1bd1bd80
DV
12829#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12830 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12831 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12832 "(expected %i, found %i)\n", \
12833 current_config->name & (mask), \
12834 pipe_config->name & (mask)); \
cfb23ed6 12835 ret = false; \
1bd1bd80
DV
12836 }
12837
5e550656
VS
12838#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12839 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12840 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12841 "(expected %i, found %i)\n", \
12842 current_config->name, \
12843 pipe_config->name); \
cfb23ed6 12844 ret = false; \
5e550656
VS
12845 }
12846
bb760063
DV
12847#define PIPE_CONF_QUIRK(quirk) \
12848 ((current_config->quirks | pipe_config->quirks) & (quirk))
12849
eccb140b
DV
12850 PIPE_CONF_CHECK_I(cpu_transcoder);
12851
08a24034
DV
12852 PIPE_CONF_CHECK_I(has_pch_encoder);
12853 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12854 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12855
eb14cb74 12856 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12857 PIPE_CONF_CHECK_I(lane_count);
95a7a2ae 12858 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
b95af8be
VK
12859
12860 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12861 PIPE_CONF_CHECK_M_N(dp_m_n);
12862
cfb23ed6
ML
12863 if (current_config->has_drrs)
12864 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12865 } else
12866 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12867
a65347ba
JN
12868 PIPE_CONF_CHECK_I(has_dsi_encoder);
12869
2d112de7
ACO
12870 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12871 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12872 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12873 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12874 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12875 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12876
2d112de7
ACO
12877 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12878 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12879 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12880 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12881 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12882 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12883
c93f54cf 12884 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12885 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 12886 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 12887 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 12888 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12889 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12890
9ed109a7
DV
12891 PIPE_CONF_CHECK_I(has_audio);
12892
2d112de7 12893 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12894 DRM_MODE_FLAG_INTERLACE);
12895
bb760063 12896 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12897 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12898 DRM_MODE_FLAG_PHSYNC);
2d112de7 12899 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12900 DRM_MODE_FLAG_NHSYNC);
2d112de7 12901 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12902 DRM_MODE_FLAG_PVSYNC);
2d112de7 12903 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12904 DRM_MODE_FLAG_NVSYNC);
12905 }
045ac3b5 12906
333b8ca8 12907 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12908 /* pfit ratios are autocomputed by the hw on gen4+ */
12909 if (INTEL_INFO(dev)->gen < 4)
7f7d8dd6 12910 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
333b8ca8 12911 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12912
bfd16b2a
ML
12913 if (!adjust) {
12914 PIPE_CONF_CHECK_I(pipe_src_w);
12915 PIPE_CONF_CHECK_I(pipe_src_h);
12916
12917 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12918 if (current_config->pch_pfit.enabled) {
12919 PIPE_CONF_CHECK_X(pch_pfit.pos);
12920 PIPE_CONF_CHECK_X(pch_pfit.size);
12921 }
2fa2fe9a 12922
7aefe2b5
ML
12923 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12924 }
a1b2278e 12925
e59150dc
JB
12926 /* BDW+ don't expose a synchronous way to read the state */
12927 if (IS_HASWELL(dev))
12928 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12929
282740f7
VS
12930 PIPE_CONF_CHECK_I(double_wide);
12931
26804afd
DV
12932 PIPE_CONF_CHECK_X(ddi_pll_sel);
12933
8106ddbd 12934 PIPE_CONF_CHECK_P(shared_dpll);
66e985c0 12935 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12936 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12937 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12938 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12939 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12940 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12941 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12942 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12943 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12944
47eacbab
VS
12945 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12946 PIPE_CONF_CHECK_X(dsi_pll.div);
12947
42571aef
VS
12948 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12949 PIPE_CONF_CHECK_I(pipe_bpp);
12950
2d112de7 12951 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12952 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12953
66e985c0 12954#undef PIPE_CONF_CHECK_X
08a24034 12955#undef PIPE_CONF_CHECK_I
8106ddbd 12956#undef PIPE_CONF_CHECK_P
1bd1bd80 12957#undef PIPE_CONF_CHECK_FLAGS
5e550656 12958#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12959#undef PIPE_CONF_QUIRK
cfb23ed6 12960#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12961
cfb23ed6 12962 return ret;
0e8ffe1b
DV
12963}
12964
e3b247da
VS
12965static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12966 const struct intel_crtc_state *pipe_config)
12967{
12968 if (pipe_config->has_pch_encoder) {
21a727b3 12969 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
12970 &pipe_config->fdi_m_n);
12971 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12972
12973 /*
12974 * FDI already provided one idea for the dotclock.
12975 * Yell if the encoder disagrees.
12976 */
12977 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12978 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12979 fdi_dotclock, dotclock);
12980 }
12981}
12982
c0ead703
ML
12983static void verify_wm_state(struct drm_crtc *crtc,
12984 struct drm_crtc_state *new_state)
08db6652 12985{
e7c84544 12986 struct drm_device *dev = crtc->dev;
08db6652
DL
12987 struct drm_i915_private *dev_priv = dev->dev_private;
12988 struct skl_ddb_allocation hw_ddb, *sw_ddb;
e7c84544
ML
12989 struct skl_ddb_entry *hw_entry, *sw_entry;
12990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12991 const enum pipe pipe = intel_crtc->pipe;
08db6652
DL
12992 int plane;
12993
e7c84544 12994 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
08db6652
DL
12995 return;
12996
12997 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12998 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12999
e7c84544
ML
13000 /* planes */
13001 for_each_plane(dev_priv, pipe, plane) {
13002 hw_entry = &hw_ddb.plane[pipe][plane];
13003 sw_entry = &sw_ddb->plane[pipe][plane];
08db6652 13004
e7c84544 13005 if (skl_ddb_entry_equal(hw_entry, sw_entry))
08db6652
DL
13006 continue;
13007
e7c84544
ML
13008 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13009 "(expected (%u,%u), found (%u,%u))\n",
13010 pipe_name(pipe), plane + 1,
13011 sw_entry->start, sw_entry->end,
13012 hw_entry->start, hw_entry->end);
13013 }
08db6652 13014
e7c84544
ML
13015 /* cursor */
13016 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13017 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652 13018
e7c84544 13019 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
08db6652
DL
13020 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13021 "(expected (%u,%u), found (%u,%u))\n",
13022 pipe_name(pipe),
13023 sw_entry->start, sw_entry->end,
13024 hw_entry->start, hw_entry->end);
13025 }
13026}
13027
91d1b4bd 13028static void
c0ead703 13029verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
8af6cf88 13030{
35dd3c64 13031 struct drm_connector *connector;
8af6cf88 13032
e7c84544 13033 drm_for_each_connector(connector, dev) {
35dd3c64
ML
13034 struct drm_encoder *encoder = connector->encoder;
13035 struct drm_connector_state *state = connector->state;
ad3c558f 13036
e7c84544
ML
13037 if (state->crtc != crtc)
13038 continue;
13039
5a21b665 13040 intel_connector_verify_state(to_intel_connector(connector));
8af6cf88 13041
ad3c558f 13042 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 13043 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 13044 }
91d1b4bd
DV
13045}
13046
13047static void
c0ead703 13048verify_encoder_state(struct drm_device *dev)
91d1b4bd
DV
13049{
13050 struct intel_encoder *encoder;
13051 struct intel_connector *connector;
8af6cf88 13052
b2784e15 13053 for_each_intel_encoder(dev, encoder) {
8af6cf88 13054 bool enabled = false;
4d20cd86 13055 enum pipe pipe;
8af6cf88
DV
13056
13057 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13058 encoder->base.base.id,
8e329a03 13059 encoder->base.name);
8af6cf88 13060
3a3371ff 13061 for_each_intel_connector(dev, connector) {
4d20cd86 13062 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
13063 continue;
13064 enabled = true;
ad3c558f
ML
13065
13066 I915_STATE_WARN(connector->base.state->crtc !=
13067 encoder->base.crtc,
13068 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 13069 }
0e32b39c 13070
e2c719b7 13071 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
13072 "encoder's enabled state mismatch "
13073 "(expected %i, found %i)\n",
13074 !!encoder->base.crtc, enabled);
7c60d198
ML
13075
13076 if (!encoder->base.crtc) {
4d20cd86 13077 bool active;
7c60d198 13078
4d20cd86
ML
13079 active = encoder->get_hw_state(encoder, &pipe);
13080 I915_STATE_WARN(active,
13081 "encoder detached but still enabled on pipe %c.\n",
13082 pipe_name(pipe));
7c60d198 13083 }
8af6cf88 13084 }
91d1b4bd
DV
13085}
13086
13087static void
c0ead703
ML
13088verify_crtc_state(struct drm_crtc *crtc,
13089 struct drm_crtc_state *old_crtc_state,
13090 struct drm_crtc_state *new_crtc_state)
91d1b4bd 13091{
e7c84544 13092 struct drm_device *dev = crtc->dev;
fbee40df 13093 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 13094 struct intel_encoder *encoder;
e7c84544
ML
13095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13096 struct intel_crtc_state *pipe_config, *sw_config;
13097 struct drm_atomic_state *old_state;
13098 bool active;
045ac3b5 13099
e7c84544 13100 old_state = old_crtc_state->state;
ec2dc6a0 13101 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
e7c84544
ML
13102 pipe_config = to_intel_crtc_state(old_crtc_state);
13103 memset(pipe_config, 0, sizeof(*pipe_config));
13104 pipe_config->base.crtc = crtc;
13105 pipe_config->base.state = old_state;
8af6cf88 13106
78108b7c 13107 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
8af6cf88 13108
e7c84544 13109 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
d62cf62a 13110
e7c84544
ML
13111 /* hw state is inconsistent with the pipe quirk */
13112 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13113 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13114 active = new_crtc_state->active;
6c49f241 13115
e7c84544
ML
13116 I915_STATE_WARN(new_crtc_state->active != active,
13117 "crtc active state doesn't match with hw state "
13118 "(expected %i, found %i)\n", new_crtc_state->active, active);
0e8ffe1b 13119
e7c84544
ML
13120 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13121 "transitional active state does not match atomic hw state "
13122 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
4d20cd86 13123
e7c84544
ML
13124 for_each_encoder_on_crtc(dev, crtc, encoder) {
13125 enum pipe pipe;
4d20cd86 13126
e7c84544
ML
13127 active = encoder->get_hw_state(encoder, &pipe);
13128 I915_STATE_WARN(active != new_crtc_state->active,
13129 "[ENCODER:%i] active %i with crtc active %i\n",
13130 encoder->base.base.id, active, new_crtc_state->active);
4d20cd86 13131
e7c84544
ML
13132 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13133 "Encoder connected to wrong pipe %c\n",
13134 pipe_name(pipe));
4d20cd86 13135
e7c84544
ML
13136 if (active)
13137 encoder->get_config(encoder, pipe_config);
13138 }
53d9f4e9 13139
e7c84544
ML
13140 if (!new_crtc_state->active)
13141 return;
cfb23ed6 13142
e7c84544 13143 intel_pipe_config_sanity_check(dev_priv, pipe_config);
e3b247da 13144
e7c84544
ML
13145 sw_config = to_intel_crtc_state(crtc->state);
13146 if (!intel_pipe_config_compare(dev, sw_config,
13147 pipe_config, false)) {
13148 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13149 intel_dump_pipe_config(intel_crtc, pipe_config,
13150 "[hw state]");
13151 intel_dump_pipe_config(intel_crtc, sw_config,
13152 "[sw state]");
8af6cf88
DV
13153 }
13154}
13155
91d1b4bd 13156static void
c0ead703
ML
13157verify_single_dpll_state(struct drm_i915_private *dev_priv,
13158 struct intel_shared_dpll *pll,
13159 struct drm_crtc *crtc,
13160 struct drm_crtc_state *new_state)
91d1b4bd 13161{
91d1b4bd 13162 struct intel_dpll_hw_state dpll_hw_state;
e7c84544
ML
13163 unsigned crtc_mask;
13164 bool active;
5358901f 13165
e7c84544 13166 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
5358901f 13167
e7c84544 13168 DRM_DEBUG_KMS("%s\n", pll->name);
5358901f 13169
e7c84544 13170 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
5358901f 13171
e7c84544
ML
13172 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13173 I915_STATE_WARN(!pll->on && pll->active_mask,
13174 "pll in active use but not on in sw tracking\n");
13175 I915_STATE_WARN(pll->on && !pll->active_mask,
13176 "pll is on but not used by any active crtc\n");
13177 I915_STATE_WARN(pll->on != active,
13178 "pll on state mismatch (expected %i, found %i)\n",
13179 pll->on, active);
13180 }
5358901f 13181
e7c84544 13182 if (!crtc) {
2dd66ebd 13183 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
e7c84544
ML
13184 "more active pll users than references: %x vs %x\n",
13185 pll->active_mask, pll->config.crtc_mask);
5358901f 13186
e7c84544
ML
13187 return;
13188 }
13189
13190 crtc_mask = 1 << drm_crtc_index(crtc);
13191
13192 if (new_state->active)
13193 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13194 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13195 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13196 else
13197 I915_STATE_WARN(pll->active_mask & crtc_mask,
13198 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13199 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
2dd66ebd 13200
e7c84544
ML
13201 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13202 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13203 crtc_mask, pll->config.crtc_mask);
66e985c0 13204
e7c84544
ML
13205 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13206 &dpll_hw_state,
13207 sizeof(dpll_hw_state)),
13208 "pll hw state mismatch\n");
13209}
13210
13211static void
c0ead703
ML
13212verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13213 struct drm_crtc_state *old_crtc_state,
13214 struct drm_crtc_state *new_crtc_state)
e7c84544
ML
13215{
13216 struct drm_i915_private *dev_priv = dev->dev_private;
13217 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13218 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13219
13220 if (new_state->shared_dpll)
c0ead703 13221 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
e7c84544
ML
13222
13223 if (old_state->shared_dpll &&
13224 old_state->shared_dpll != new_state->shared_dpll) {
13225 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13226 struct intel_shared_dpll *pll = old_state->shared_dpll;
13227
13228 I915_STATE_WARN(pll->active_mask & crtc_mask,
13229 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13230 pipe_name(drm_crtc_index(crtc)));
13231 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13232 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13233 pipe_name(drm_crtc_index(crtc)));
5358901f 13234 }
8af6cf88
DV
13235}
13236
e7c84544 13237static void
c0ead703 13238intel_modeset_verify_crtc(struct drm_crtc *crtc,
e7c84544
ML
13239 struct drm_crtc_state *old_state,
13240 struct drm_crtc_state *new_state)
13241{
5a21b665
DV
13242 if (!needs_modeset(new_state) &&
13243 !to_intel_crtc_state(new_state)->update_pipe)
13244 return;
13245
c0ead703 13246 verify_wm_state(crtc, new_state);
5a21b665 13247 verify_connector_state(crtc->dev, crtc);
c0ead703
ML
13248 verify_crtc_state(crtc, old_state, new_state);
13249 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
e7c84544
ML
13250}
13251
13252static void
c0ead703 13253verify_disabled_dpll_state(struct drm_device *dev)
e7c84544
ML
13254{
13255 struct drm_i915_private *dev_priv = dev->dev_private;
13256 int i;
13257
13258 for (i = 0; i < dev_priv->num_shared_dpll; i++)
c0ead703 13259 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
e7c84544
ML
13260}
13261
13262static void
c0ead703 13263intel_modeset_verify_disabled(struct drm_device *dev)
e7c84544 13264{
c0ead703
ML
13265 verify_encoder_state(dev);
13266 verify_connector_state(dev, NULL);
13267 verify_disabled_dpll_state(dev);
e7c84544
ML
13268}
13269
80715b2f
VS
13270static void update_scanline_offset(struct intel_crtc *crtc)
13271{
13272 struct drm_device *dev = crtc->base.dev;
13273
13274 /*
13275 * The scanline counter increments at the leading edge of hsync.
13276 *
13277 * On most platforms it starts counting from vtotal-1 on the
13278 * first active line. That means the scanline counter value is
13279 * always one less than what we would expect. Ie. just after
13280 * start of vblank, which also occurs at start of hsync (on the
13281 * last active line), the scanline counter will read vblank_start-1.
13282 *
13283 * On gen2 the scanline counter starts counting from 1 instead
13284 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13285 * to keep the value positive), instead of adding one.
13286 *
13287 * On HSW+ the behaviour of the scanline counter depends on the output
13288 * type. For DP ports it behaves like most other platforms, but on HDMI
13289 * there's an extra 1 line difference. So we need to add two instead of
13290 * one to the value.
13291 */
13292 if (IS_GEN2(dev)) {
124abe07 13293 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
13294 int vtotal;
13295
124abe07
VS
13296 vtotal = adjusted_mode->crtc_vtotal;
13297 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
13298 vtotal /= 2;
13299
13300 crtc->scanline_offset = vtotal - 1;
13301 } else if (HAS_DDI(dev) &&
409ee761 13302 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13303 crtc->scanline_offset = 2;
13304 } else
13305 crtc->scanline_offset = 1;
13306}
13307
ad421372 13308static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13309{
225da59b 13310 struct drm_device *dev = state->dev;
ed6739ef 13311 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13312 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
13313 struct drm_crtc *crtc;
13314 struct drm_crtc_state *crtc_state;
0a9ab303 13315 int i;
ed6739ef
ACO
13316
13317 if (!dev_priv->display.crtc_compute_clock)
ad421372 13318 return;
ed6739ef 13319
0a9ab303 13320 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9 13321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106ddbd
ACO
13322 struct intel_shared_dpll *old_dpll =
13323 to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 13324
fb1a38a9 13325 if (!needs_modeset(crtc_state))
225da59b
ACO
13326 continue;
13327
8106ddbd 13328 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
fb1a38a9 13329
8106ddbd 13330 if (!old_dpll)
fb1a38a9 13331 continue;
0a9ab303 13332
ad421372
ML
13333 if (!shared_dpll)
13334 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13335
8106ddbd 13336 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
ad421372 13337 }
ed6739ef
ACO
13338}
13339
99d736a2
ML
13340/*
13341 * This implements the workaround described in the "notes" section of the mode
13342 * set sequence documentation. When going from no pipes or single pipe to
13343 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13344 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13345 */
13346static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13347{
13348 struct drm_crtc_state *crtc_state;
13349 struct intel_crtc *intel_crtc;
13350 struct drm_crtc *crtc;
13351 struct intel_crtc_state *first_crtc_state = NULL;
13352 struct intel_crtc_state *other_crtc_state = NULL;
13353 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13354 int i;
13355
13356 /* look at all crtc's that are going to be enabled in during modeset */
13357 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13358 intel_crtc = to_intel_crtc(crtc);
13359
13360 if (!crtc_state->active || !needs_modeset(crtc_state))
13361 continue;
13362
13363 if (first_crtc_state) {
13364 other_crtc_state = to_intel_crtc_state(crtc_state);
13365 break;
13366 } else {
13367 first_crtc_state = to_intel_crtc_state(crtc_state);
13368 first_pipe = intel_crtc->pipe;
13369 }
13370 }
13371
13372 /* No workaround needed? */
13373 if (!first_crtc_state)
13374 return 0;
13375
13376 /* w/a possibly needed, check how many crtc's are already enabled. */
13377 for_each_intel_crtc(state->dev, intel_crtc) {
13378 struct intel_crtc_state *pipe_config;
13379
13380 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13381 if (IS_ERR(pipe_config))
13382 return PTR_ERR(pipe_config);
13383
13384 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13385
13386 if (!pipe_config->base.active ||
13387 needs_modeset(&pipe_config->base))
13388 continue;
13389
13390 /* 2 or more enabled crtcs means no need for w/a */
13391 if (enabled_pipe != INVALID_PIPE)
13392 return 0;
13393
13394 enabled_pipe = intel_crtc->pipe;
13395 }
13396
13397 if (enabled_pipe != INVALID_PIPE)
13398 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13399 else if (other_crtc_state)
13400 other_crtc_state->hsw_workaround_pipe = first_pipe;
13401
13402 return 0;
13403}
13404
27c329ed
ML
13405static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13406{
13407 struct drm_crtc *crtc;
13408 struct drm_crtc_state *crtc_state;
13409 int ret = 0;
13410
13411 /* add all active pipes to the state */
13412 for_each_crtc(state->dev, crtc) {
13413 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13414 if (IS_ERR(crtc_state))
13415 return PTR_ERR(crtc_state);
13416
13417 if (!crtc_state->active || needs_modeset(crtc_state))
13418 continue;
13419
13420 crtc_state->mode_changed = true;
13421
13422 ret = drm_atomic_add_affected_connectors(state, crtc);
13423 if (ret)
13424 break;
13425
13426 ret = drm_atomic_add_affected_planes(state, crtc);
13427 if (ret)
13428 break;
13429 }
13430
13431 return ret;
13432}
13433
c347a676 13434static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13435{
565602d7
ML
13436 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13437 struct drm_i915_private *dev_priv = state->dev->dev_private;
13438 struct drm_crtc *crtc;
13439 struct drm_crtc_state *crtc_state;
13440 int ret = 0, i;
054518dd 13441
b359283a
ML
13442 if (!check_digital_port_conflicts(state)) {
13443 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13444 return -EINVAL;
13445 }
13446
565602d7
ML
13447 intel_state->modeset = true;
13448 intel_state->active_crtcs = dev_priv->active_crtcs;
13449
13450 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13451 if (crtc_state->active)
13452 intel_state->active_crtcs |= 1 << i;
13453 else
13454 intel_state->active_crtcs &= ~(1 << i);
8b4a7d05
MR
13455
13456 if (crtc_state->active != crtc->state->active)
13457 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
565602d7
ML
13458 }
13459
054518dd
ACO
13460 /*
13461 * See if the config requires any additional preparation, e.g.
13462 * to adjust global state with pipes off. We need to do this
13463 * here so we can get the modeset_pipe updated config for the new
13464 * mode set on this crtc. For other crtcs we need to use the
13465 * adjusted_mode bits in the crtc directly.
13466 */
27c329ed 13467 if (dev_priv->display.modeset_calc_cdclk) {
c89e39f3 13468 if (!intel_state->cdclk_pll_vco)
63911d72 13469 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
b2045352
VS
13470 if (!intel_state->cdclk_pll_vco)
13471 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
c89e39f3 13472
27c329ed 13473 ret = dev_priv->display.modeset_calc_cdclk(state);
c89e39f3
CT
13474 if (ret < 0)
13475 return ret;
27c329ed 13476
c89e39f3 13477 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 13478 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
27c329ed
ML
13479 ret = intel_modeset_all_pipes(state);
13480
13481 if (ret < 0)
054518dd 13482 return ret;
e8788cbc
ML
13483
13484 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13485 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13486 } else
1a617b77 13487 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13488
ad421372 13489 intel_modeset_clear_plls(state);
054518dd 13490
565602d7 13491 if (IS_HASWELL(dev_priv))
ad421372 13492 return haswell_mode_set_planes_workaround(state);
99d736a2 13493
ad421372 13494 return 0;
c347a676
ACO
13495}
13496
aa363136
MR
13497/*
13498 * Handle calculation of various watermark data at the end of the atomic check
13499 * phase. The code here should be run after the per-crtc and per-plane 'check'
13500 * handlers to ensure that all derived state has been updated.
13501 */
55994c2c 13502static int calc_watermark_data(struct drm_atomic_state *state)
aa363136
MR
13503{
13504 struct drm_device *dev = state->dev;
98d39494 13505 struct drm_i915_private *dev_priv = to_i915(dev);
98d39494
MR
13506
13507 /* Is there platform-specific watermark information to calculate? */
13508 if (dev_priv->display.compute_global_watermarks)
55994c2c
MR
13509 return dev_priv->display.compute_global_watermarks(state);
13510
13511 return 0;
aa363136
MR
13512}
13513
74c090b1
ML
13514/**
13515 * intel_atomic_check - validate state object
13516 * @dev: drm device
13517 * @state: state to validate
13518 */
13519static int intel_atomic_check(struct drm_device *dev,
13520 struct drm_atomic_state *state)
c347a676 13521{
dd8b3bdb 13522 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13523 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13524 struct drm_crtc *crtc;
13525 struct drm_crtc_state *crtc_state;
13526 int ret, i;
61333b60 13527 bool any_ms = false;
c347a676 13528
74c090b1 13529 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13530 if (ret)
13531 return ret;
13532
c347a676 13533 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13534 struct intel_crtc_state *pipe_config =
13535 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13536
13537 /* Catch I915_MODE_FLAG_INHERITED */
13538 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13539 crtc_state->mode_changed = true;
cfb23ed6 13540
af4a879e 13541 if (!needs_modeset(crtc_state))
c347a676
ACO
13542 continue;
13543
af4a879e
DV
13544 if (!crtc_state->enable) {
13545 any_ms = true;
cfb23ed6 13546 continue;
af4a879e 13547 }
cfb23ed6 13548
26495481
DV
13549 /* FIXME: For only active_changed we shouldn't need to do any
13550 * state recomputation at all. */
13551
1ed51de9
DV
13552 ret = drm_atomic_add_affected_connectors(state, crtc);
13553 if (ret)
13554 return ret;
b359283a 13555
cfb23ed6 13556 ret = intel_modeset_pipe_config(crtc, pipe_config);
25aa1c39
ML
13557 if (ret) {
13558 intel_dump_pipe_config(to_intel_crtc(crtc),
13559 pipe_config, "[failed]");
c347a676 13560 return ret;
25aa1c39 13561 }
c347a676 13562
73831236 13563 if (i915.fastboot &&
dd8b3bdb 13564 intel_pipe_config_compare(dev,
cfb23ed6 13565 to_intel_crtc_state(crtc->state),
1ed51de9 13566 pipe_config, true)) {
26495481 13567 crtc_state->mode_changed = false;
bfd16b2a 13568 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13569 }
13570
af4a879e 13571 if (needs_modeset(crtc_state))
26495481 13572 any_ms = true;
cfb23ed6 13573
af4a879e
DV
13574 ret = drm_atomic_add_affected_planes(state, crtc);
13575 if (ret)
13576 return ret;
61333b60 13577
26495481
DV
13578 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13579 needs_modeset(crtc_state) ?
13580 "[modeset]" : "[fastset]");
c347a676
ACO
13581 }
13582
61333b60
ML
13583 if (any_ms) {
13584 ret = intel_modeset_checks(state);
13585
13586 if (ret)
13587 return ret;
27c329ed 13588 } else
dd8b3bdb 13589 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 13590
dd8b3bdb 13591 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
13592 if (ret)
13593 return ret;
13594
f51be2e0 13595 intel_fbc_choose_crtc(dev_priv, state);
55994c2c 13596 return calc_watermark_data(state);
054518dd
ACO
13597}
13598
5008e874
ML
13599static int intel_atomic_prepare_commit(struct drm_device *dev,
13600 struct drm_atomic_state *state,
81072bfd 13601 bool nonblock)
5008e874 13602{
7580d774
ML
13603 struct drm_i915_private *dev_priv = dev->dev_private;
13604 struct drm_plane_state *plane_state;
5008e874 13605 struct drm_crtc_state *crtc_state;
7580d774 13606 struct drm_plane *plane;
5008e874
ML
13607 struct drm_crtc *crtc;
13608 int i, ret;
13609
5a21b665
DV
13610 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13611 if (state->legacy_cursor_update)
a6747b73
ML
13612 continue;
13613
5a21b665
DV
13614 ret = intel_crtc_wait_for_pending_flips(crtc);
13615 if (ret)
13616 return ret;
5008e874 13617
5a21b665
DV
13618 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13619 flush_workqueue(dev_priv->wq);
d55dbd06
ML
13620 }
13621
f935675f
ML
13622 ret = mutex_lock_interruptible(&dev->struct_mutex);
13623 if (ret)
13624 return ret;
13625
5008e874 13626 ret = drm_atomic_helper_prepare_planes(dev, state);
f7e5838b 13627 mutex_unlock(&dev->struct_mutex);
7580d774 13628
21daaeee 13629 if (!ret && !nonblock) {
7580d774
ML
13630 for_each_plane_in_state(state, plane, plane_state, i) {
13631 struct intel_plane_state *intel_plane_state =
13632 to_intel_plane_state(plane_state);
13633
13634 if (!intel_plane_state->wait_req)
13635 continue;
13636
13637 ret = __i915_wait_request(intel_plane_state->wait_req,
299259a3 13638 true, NULL, NULL);
f7e5838b 13639 if (ret) {
f4457ae7
CW
13640 /* Any hang should be swallowed by the wait */
13641 WARN_ON(ret == -EIO);
f7e5838b
CW
13642 mutex_lock(&dev->struct_mutex);
13643 drm_atomic_helper_cleanup_planes(dev, state);
13644 mutex_unlock(&dev->struct_mutex);
7580d774 13645 break;
f7e5838b 13646 }
7580d774 13647 }
7580d774 13648 }
5008e874
ML
13649
13650 return ret;
13651}
13652
a2991414
ML
13653u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13654{
13655 struct drm_device *dev = crtc->base.dev;
13656
13657 if (!dev->max_vblank_count)
13658 return drm_accurate_vblank_count(&crtc->base);
13659
13660 return dev->driver->get_vblank_counter(dev, crtc->pipe);
13661}
13662
5a21b665
DV
13663static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13664 struct drm_i915_private *dev_priv,
13665 unsigned crtc_mask)
e8861675 13666{
5a21b665
DV
13667 unsigned last_vblank_count[I915_MAX_PIPES];
13668 enum pipe pipe;
13669 int ret;
e8861675 13670
5a21b665
DV
13671 if (!crtc_mask)
13672 return;
e8861675 13673
5a21b665
DV
13674 for_each_pipe(dev_priv, pipe) {
13675 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e8861675 13676
5a21b665 13677 if (!((1 << pipe) & crtc_mask))
e8861675
ML
13678 continue;
13679
5a21b665
DV
13680 ret = drm_crtc_vblank_get(crtc);
13681 if (WARN_ON(ret != 0)) {
13682 crtc_mask &= ~(1 << pipe);
13683 continue;
e8861675
ML
13684 }
13685
5a21b665 13686 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
e8861675
ML
13687 }
13688
5a21b665
DV
13689 for_each_pipe(dev_priv, pipe) {
13690 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13691 long lret;
e8861675 13692
5a21b665
DV
13693 if (!((1 << pipe) & crtc_mask))
13694 continue;
d55dbd06 13695
5a21b665
DV
13696 lret = wait_event_timeout(dev->vblank[pipe].queue,
13697 last_vblank_count[pipe] !=
13698 drm_crtc_vblank_count(crtc),
13699 msecs_to_jiffies(50));
d55dbd06 13700
5a21b665 13701 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
d55dbd06 13702
5a21b665 13703 drm_crtc_vblank_put(crtc);
d55dbd06
ML
13704 }
13705}
13706
5a21b665 13707static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
a6747b73 13708{
5a21b665
DV
13709 /* fb updated, need to unpin old fb */
13710 if (crtc_state->fb_changed)
13711 return true;
a6747b73 13712
5a21b665
DV
13713 /* wm changes, need vblank before final wm's */
13714 if (crtc_state->update_wm_post)
13715 return true;
a6747b73 13716
5a21b665
DV
13717 /*
13718 * cxsr is re-enabled after vblank.
13719 * This is already handled by crtc_state->update_wm_post,
13720 * but added for clarity.
13721 */
13722 if (crtc_state->disable_cxsr)
13723 return true;
a6747b73 13724
5a21b665 13725 return false;
e8861675
ML
13726}
13727
94f05024 13728static void intel_atomic_commit_tail(struct drm_atomic_state *state)
a6778b3c 13729{
94f05024 13730 struct drm_device *dev = state->dev;
565602d7 13731 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fbee40df 13732 struct drm_i915_private *dev_priv = dev->dev_private;
29ceb0e6 13733 struct drm_crtc_state *old_crtc_state;
7580d774 13734 struct drm_crtc *crtc;
5a21b665 13735 struct intel_crtc_state *intel_cstate;
94f05024
DV
13736 struct drm_plane *plane;
13737 struct drm_plane_state *plane_state;
5a21b665
DV
13738 bool hw_check = intel_state->modeset;
13739 unsigned long put_domains[I915_MAX_PIPES] = {};
13740 unsigned crtc_vblank_mask = 0;
94f05024 13741 int i, ret;
a6778b3c 13742
94f05024
DV
13743 for_each_plane_in_state(state, plane, plane_state, i) {
13744 struct intel_plane_state *intel_plane_state =
13745 to_intel_plane_state(plane_state);
ea0000f0 13746
94f05024
DV
13747 if (!intel_plane_state->wait_req)
13748 continue;
d4afb8cc 13749
94f05024
DV
13750 ret = __i915_wait_request(intel_plane_state->wait_req,
13751 true, NULL, NULL);
13752 /* EIO should be eaten, and we can't get interrupted in the
13753 * worker, and blocking commits have waited already. */
13754 WARN_ON(ret);
13755 }
1c5e19f8 13756
ea0000f0
DV
13757 drm_atomic_helper_wait_for_dependencies(state);
13758
565602d7
ML
13759 if (intel_state->modeset) {
13760 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13761 sizeof(intel_state->min_pixclk));
13762 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 13763 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
5a21b665
DV
13764
13765 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
13766 }
13767
29ceb0e6 13768 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
a539205a
ML
13769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13770
5a21b665
DV
13771 if (needs_modeset(crtc->state) ||
13772 to_intel_crtc_state(crtc->state)->update_pipe) {
13773 hw_check = true;
13774
13775 put_domains[to_intel_crtc(crtc)->pipe] =
13776 modeset_get_crtc_power_domains(crtc,
13777 to_intel_crtc_state(crtc->state));
13778 }
13779
61333b60
ML
13780 if (!needs_modeset(crtc->state))
13781 continue;
13782
29ceb0e6 13783 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
460da916 13784
29ceb0e6
VS
13785 if (old_crtc_state->active) {
13786 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
a539205a 13787 dev_priv->display.crtc_disable(crtc);
eddfcbcd 13788 intel_crtc->active = false;
58f9c0bc 13789 intel_fbc_disable(intel_crtc);
eddfcbcd 13790 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13791
13792 /*
13793 * Underruns don't always raise
13794 * interrupts, so check manually.
13795 */
13796 intel_check_cpu_fifo_underruns(dev_priv);
13797 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
13798
13799 if (!crtc->state->active)
13800 intel_update_watermarks(crtc);
a539205a 13801 }
b8cecdf5 13802 }
7758a113 13803
ea9d758d
DV
13804 /* Only after disabling all output pipelines that will be changed can we
13805 * update the the output configuration. */
4740b0f2 13806 intel_modeset_update_crtc_state(state);
f6e5b160 13807
565602d7 13808 if (intel_state->modeset) {
4740b0f2 13809 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
13810
13811 if (dev_priv->display.modeset_commit_cdclk &&
c89e39f3 13812 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
63911d72 13813 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
33c8df89 13814 dev_priv->display.modeset_commit_cdclk(state);
f6d1973d 13815
c0ead703 13816 intel_modeset_verify_disabled(dev);
4740b0f2 13817 }
47fab737 13818
a6778b3c 13819 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
29ceb0e6 13820 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
f6ac4b2a
ML
13821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13822 bool modeset = needs_modeset(crtc->state);
5a21b665
DV
13823 struct intel_crtc_state *pipe_config =
13824 to_intel_crtc_state(crtc->state);
9f836f90 13825
f6ac4b2a 13826 if (modeset && crtc->state->active) {
a539205a
ML
13827 update_scanline_offset(to_intel_crtc(crtc));
13828 dev_priv->display.crtc_enable(crtc);
13829 }
80715b2f 13830
1f7528c4
DV
13831 /* Complete events for now disable pipes here. */
13832 if (modeset && !crtc->state->active && crtc->state->event) {
13833 spin_lock_irq(&dev->event_lock);
13834 drm_crtc_send_vblank_event(crtc, crtc->state->event);
13835 spin_unlock_irq(&dev->event_lock);
13836
13837 crtc->state->event = NULL;
13838 }
13839
f6ac4b2a 13840 if (!modeset)
29ceb0e6 13841 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
f6ac4b2a 13842
5a21b665
DV
13843 if (crtc->state->active &&
13844 drm_atomic_get_existing_plane_state(state, crtc->primary))
faf68d92 13845 intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
5a21b665 13846
1f7528c4 13847 if (crtc->state->active)
5a21b665 13848 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
f6d1973d 13849
5a21b665
DV
13850 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13851 crtc_vblank_mask |= 1 << i;
177246a8
MR
13852 }
13853
94f05024
DV
13854 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13855 * already, but still need the state for the delayed optimization. To
13856 * fix this:
13857 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13858 * - schedule that vblank worker _before_ calling hw_done
13859 * - at the start of commit_tail, cancel it _synchrously
13860 * - switch over to the vblank wait helper in the core after that since
13861 * we don't need out special handling any more.
13862 */
5a21b665
DV
13863 if (!state->legacy_cursor_update)
13864 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13865
13866 /*
13867 * Now that the vblank has passed, we can go ahead and program the
13868 * optimal watermarks on platforms that need two-step watermark
13869 * programming.
13870 *
13871 * TODO: Move this (and other cleanup) to an async worker eventually.
13872 */
13873 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13874 intel_cstate = to_intel_crtc_state(crtc->state);
13875
13876 if (dev_priv->display.optimize_watermarks)
13877 dev_priv->display.optimize_watermarks(intel_cstate);
13878 }
13879
13880 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13881 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13882
13883 if (put_domains[i])
13884 modeset_put_power_domains(dev_priv, put_domains[i]);
13885
13886 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13887 }
13888
94f05024
DV
13889 drm_atomic_helper_commit_hw_done(state);
13890
5a21b665
DV
13891 if (intel_state->modeset)
13892 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13893
13894 mutex_lock(&dev->struct_mutex);
13895 drm_atomic_helper_cleanup_planes(dev, state);
13896 mutex_unlock(&dev->struct_mutex);
13897
ea0000f0
DV
13898 drm_atomic_helper_commit_cleanup_done(state);
13899
ee165b1a 13900 drm_atomic_state_free(state);
f30da187 13901
75714940
MK
13902 /* As one of the primary mmio accessors, KMS has a high likelihood
13903 * of triggering bugs in unclaimed access. After we finish
13904 * modesetting, see if an error has been flagged, and if so
13905 * enable debugging for the next modeset - and hope we catch
13906 * the culprit.
13907 *
13908 * XXX note that we assume display power is on at this point.
13909 * This might hold true now but we need to add pm helper to check
13910 * unclaimed only when the hardware is on, as atomic commits
13911 * can happen also when the device is completely off.
13912 */
13913 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
94f05024
DV
13914}
13915
13916static void intel_atomic_commit_work(struct work_struct *work)
13917{
13918 struct drm_atomic_state *state = container_of(work,
13919 struct drm_atomic_state,
13920 commit_work);
13921 intel_atomic_commit_tail(state);
13922}
13923
6c9c1b38
DV
13924static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13925{
13926 struct drm_plane_state *old_plane_state;
13927 struct drm_plane *plane;
13928 struct drm_i915_gem_object *obj, *old_obj;
13929 struct intel_plane *intel_plane;
13930 int i;
13931
13932 mutex_lock(&state->dev->struct_mutex);
13933 for_each_plane_in_state(state, plane, old_plane_state, i) {
13934 obj = intel_fb_obj(plane->state->fb);
13935 old_obj = intel_fb_obj(old_plane_state->fb);
13936 intel_plane = to_intel_plane(plane);
13937
13938 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13939 }
13940 mutex_unlock(&state->dev->struct_mutex);
13941}
13942
94f05024
DV
13943/**
13944 * intel_atomic_commit - commit validated state object
13945 * @dev: DRM device
13946 * @state: the top-level driver state object
13947 * @nonblock: nonblocking commit
13948 *
13949 * This function commits a top-level state object that has been validated
13950 * with drm_atomic_helper_check().
13951 *
13952 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13953 * nonblocking commits are only safe for pure plane updates. Everything else
13954 * should work though.
13955 *
13956 * RETURNS
13957 * Zero for success or -errno.
13958 */
13959static int intel_atomic_commit(struct drm_device *dev,
13960 struct drm_atomic_state *state,
13961 bool nonblock)
13962{
13963 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13964 struct drm_i915_private *dev_priv = dev->dev_private;
13965 int ret = 0;
13966
13967 if (intel_state->modeset && nonblock) {
13968 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13969 return -EINVAL;
13970 }
13971
13972 ret = drm_atomic_helper_setup_commit(state, nonblock);
13973 if (ret)
13974 return ret;
13975
13976 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13977
13978 ret = intel_atomic_prepare_commit(dev, state, nonblock);
13979 if (ret) {
13980 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13981 return ret;
13982 }
13983
13984 drm_atomic_helper_swap_state(state, true);
13985 dev_priv->wm.distrust_bios_wm = false;
13986 dev_priv->wm.skl_results = intel_state->wm_results;
13987 intel_shared_dpll_commit(state);
6c9c1b38 13988 intel_atomic_track_fbs(state);
94f05024
DV
13989
13990 if (nonblock)
13991 queue_work(system_unbound_wq, &state->commit_work);
13992 else
13993 intel_atomic_commit_tail(state);
75714940 13994
74c090b1 13995 return 0;
7f27126e
JB
13996}
13997
c0c36b94
CW
13998void intel_crtc_restore_mode(struct drm_crtc *crtc)
13999{
83a57153
ACO
14000 struct drm_device *dev = crtc->dev;
14001 struct drm_atomic_state *state;
e694eb02 14002 struct drm_crtc_state *crtc_state;
2bfb4627 14003 int ret;
83a57153
ACO
14004
14005 state = drm_atomic_state_alloc(dev);
14006 if (!state) {
78108b7c
VS
14007 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14008 crtc->base.id, crtc->name);
83a57153
ACO
14009 return;
14010 }
14011
e694eb02 14012 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 14013
e694eb02
ML
14014retry:
14015 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14016 ret = PTR_ERR_OR_ZERO(crtc_state);
14017 if (!ret) {
14018 if (!crtc_state->active)
14019 goto out;
83a57153 14020
e694eb02 14021 crtc_state->mode_changed = true;
74c090b1 14022 ret = drm_atomic_commit(state);
83a57153
ACO
14023 }
14024
e694eb02
ML
14025 if (ret == -EDEADLK) {
14026 drm_atomic_state_clear(state);
14027 drm_modeset_backoff(state->acquire_ctx);
14028 goto retry;
4ed9fb37 14029 }
4be07317 14030
2bfb4627 14031 if (ret)
e694eb02 14032out:
2bfb4627 14033 drm_atomic_state_free(state);
c0c36b94
CW
14034}
14035
25c5b266
DV
14036#undef for_each_intel_crtc_masked
14037
f6e5b160 14038static const struct drm_crtc_funcs intel_crtc_funcs = {
82cf435b 14039 .gamma_set = drm_atomic_helper_legacy_gamma_set,
74c090b1 14040 .set_config = drm_atomic_helper_set_config,
82cf435b 14041 .set_property = drm_atomic_helper_crtc_set_property,
f6e5b160 14042 .destroy = intel_crtc_destroy,
527b6abe 14043 .page_flip = intel_crtc_page_flip,
1356837e
MR
14044 .atomic_duplicate_state = intel_crtc_duplicate_state,
14045 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
14046};
14047
6beb8c23
MR
14048/**
14049 * intel_prepare_plane_fb - Prepare fb for usage on plane
14050 * @plane: drm plane to prepare for
14051 * @fb: framebuffer to prepare for presentation
14052 *
14053 * Prepares a framebuffer for usage on a display plane. Generally this
14054 * involves pinning the underlying object and updating the frontbuffer tracking
14055 * bits. Some older platforms need special physical address handling for
14056 * cursor planes.
14057 *
f935675f
ML
14058 * Must be called with struct_mutex held.
14059 *
6beb8c23
MR
14060 * Returns 0 on success, negative error code on failure.
14061 */
14062int
14063intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 14064 const struct drm_plane_state *new_state)
465c120c
MR
14065{
14066 struct drm_device *dev = plane->dev;
844f9111 14067 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 14068 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 14069 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
c37efb99 14070 struct reservation_object *resv;
6beb8c23 14071 int ret = 0;
465c120c 14072
1ee49399 14073 if (!obj && !old_obj)
465c120c
MR
14074 return 0;
14075
5008e874
ML
14076 if (old_obj) {
14077 struct drm_crtc_state *crtc_state =
14078 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14079
14080 /* Big Hammer, we also need to ensure that any pending
14081 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14082 * current scanout is retired before unpinning the old
14083 * framebuffer. Note that we rely on userspace rendering
14084 * into the buffer attached to the pipe they are waiting
14085 * on. If not, userspace generates a GPU hang with IPEHR
14086 * point to the MI_WAIT_FOR_EVENT.
14087 *
14088 * This should only fail upon a hung GPU, in which case we
14089 * can safely continue.
14090 */
14091 if (needs_modeset(crtc_state))
14092 ret = i915_gem_object_wait_rendering(old_obj, true);
f4457ae7
CW
14093 if (ret) {
14094 /* GPU hangs should have been swallowed by the wait */
14095 WARN_ON(ret == -EIO);
f935675f 14096 return ret;
f4457ae7 14097 }
5008e874
ML
14098 }
14099
c37efb99
CW
14100 if (!obj)
14101 return 0;
14102
5a21b665 14103 /* For framebuffer backed by dmabuf, wait for fence */
c37efb99
CW
14104 resv = i915_gem_object_get_dmabuf_resv(obj);
14105 if (resv) {
5a21b665
DV
14106 long lret;
14107
c37efb99 14108 lret = reservation_object_wait_timeout_rcu(resv, false, true,
5a21b665
DV
14109 MAX_SCHEDULE_TIMEOUT);
14110 if (lret == -ERESTARTSYS)
14111 return lret;
14112
14113 WARN(lret < 0, "waiting returns %li\n", lret);
14114 }
14115
c37efb99 14116 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
14117 INTEL_INFO(dev)->cursor_needs_physical) {
14118 int align = IS_I830(dev) ? 16 * 1024 : 256;
14119 ret = i915_gem_object_attach_phys(obj, align);
14120 if (ret)
14121 DRM_DEBUG_KMS("failed to attach phys object\n");
14122 } else {
3465c580 14123 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
6beb8c23 14124 }
465c120c 14125
c37efb99 14126 if (ret == 0) {
6c9c1b38
DV
14127 struct intel_plane_state *plane_state =
14128 to_intel_plane_state(new_state);
7580d774 14129
6c9c1b38
DV
14130 i915_gem_request_assign(&plane_state->wait_req,
14131 obj->last_write_req);
7580d774 14132 }
fdd508a6 14133
6beb8c23
MR
14134 return ret;
14135}
14136
38f3ce3a
MR
14137/**
14138 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14139 * @plane: drm plane to clean up for
14140 * @fb: old framebuffer that was on plane
14141 *
14142 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
14143 *
14144 * Must be called with struct_mutex held.
38f3ce3a
MR
14145 */
14146void
14147intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 14148 const struct drm_plane_state *old_state)
38f3ce3a
MR
14149{
14150 struct drm_device *dev = plane->dev;
7580d774 14151 struct intel_plane_state *old_intel_state;
1ee49399
ML
14152 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14153 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 14154
7580d774
ML
14155 old_intel_state = to_intel_plane_state(old_state);
14156
1ee49399 14157 if (!obj && !old_obj)
38f3ce3a
MR
14158 return;
14159
1ee49399
ML
14160 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14161 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 14162 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399 14163
7580d774 14164 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
14165}
14166
6156a456
CK
14167int
14168skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14169{
14170 int max_scale;
14171 struct drm_device *dev;
14172 struct drm_i915_private *dev_priv;
14173 int crtc_clock, cdclk;
14174
bf8a0af0 14175 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
14176 return DRM_PLANE_HELPER_NO_SCALING;
14177
14178 dev = intel_crtc->base.dev;
14179 dev_priv = dev->dev_private;
14180 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 14181 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 14182
54bf1ce6 14183 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
14184 return DRM_PLANE_HELPER_NO_SCALING;
14185
14186 /*
14187 * skl max scale is lower of:
14188 * close to 3 but not 3, -1 is for that purpose
14189 * or
14190 * cdclk/crtc_clock
14191 */
14192 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14193
14194 return max_scale;
14195}
14196
465c120c 14197static int
3c692a41 14198intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 14199 struct intel_crtc_state *crtc_state,
3c692a41
GP
14200 struct intel_plane_state *state)
14201{
2b875c22
MR
14202 struct drm_crtc *crtc = state->base.crtc;
14203 struct drm_framebuffer *fb = state->base.fb;
6156a456 14204 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
14205 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14206 bool can_position = false;
465c120c 14207
693bdc28
VS
14208 if (INTEL_INFO(plane->dev)->gen >= 9) {
14209 /* use scaler when colorkey is not required */
14210 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14211 min_scale = 1;
14212 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14213 }
d8106366 14214 can_position = true;
6156a456 14215 }
d8106366 14216
061e4b8d
ML
14217 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14218 &state->dst, &state->clip,
9b8b013d 14219 state->base.rotation,
da20eabd
ML
14220 min_scale, max_scale,
14221 can_position, true,
14222 &state->visible);
14af293f
GP
14223}
14224
5a21b665
DV
14225static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14226 struct drm_crtc_state *old_crtc_state)
14227{
14228 struct drm_device *dev = crtc->dev;
14229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14230 struct intel_crtc_state *old_intel_state =
14231 to_intel_crtc_state(old_crtc_state);
14232 bool modeset = needs_modeset(crtc->state);
14233
14234 /* Perform vblank evasion around commit operation */
14235 intel_pipe_update_start(intel_crtc);
14236
14237 if (modeset)
14238 return;
14239
14240 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14241 intel_color_set_csc(crtc->state);
14242 intel_color_load_luts(crtc->state);
14243 }
14244
14245 if (to_intel_crtc_state(crtc->state)->update_pipe)
14246 intel_update_pipe_config(intel_crtc, old_intel_state);
14247 else if (INTEL_INFO(dev)->gen >= 9)
14248 skl_detach_scalers(intel_crtc);
14249}
14250
14251static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14252 struct drm_crtc_state *old_crtc_state)
14253{
14254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14255
14256 intel_pipe_update_end(intel_crtc, NULL);
14257}
14258
cf4c7c12 14259/**
4a3b8769
MR
14260 * intel_plane_destroy - destroy a plane
14261 * @plane: plane to destroy
cf4c7c12 14262 *
4a3b8769
MR
14263 * Common destruction function for all types of planes (primary, cursor,
14264 * sprite).
cf4c7c12 14265 */
4a3b8769 14266void intel_plane_destroy(struct drm_plane *plane)
465c120c 14267{
69ae561f
VS
14268 if (!plane)
14269 return;
14270
465c120c 14271 drm_plane_cleanup(plane);
69ae561f 14272 kfree(to_intel_plane(plane));
465c120c
MR
14273}
14274
65a3fea0 14275const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
14276 .update_plane = drm_atomic_helper_update_plane,
14277 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 14278 .destroy = intel_plane_destroy,
c196e1d6 14279 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
14280 .atomic_get_property = intel_plane_atomic_get_property,
14281 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
14282 .atomic_duplicate_state = intel_plane_duplicate_state,
14283 .atomic_destroy_state = intel_plane_destroy_state,
14284
465c120c
MR
14285};
14286
14287static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14288 int pipe)
14289{
fca0ce2a
VS
14290 struct intel_plane *primary = NULL;
14291 struct intel_plane_state *state = NULL;
465c120c 14292 const uint32_t *intel_primary_formats;
45e3743a 14293 unsigned int num_formats;
fca0ce2a 14294 int ret;
465c120c
MR
14295
14296 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
fca0ce2a
VS
14297 if (!primary)
14298 goto fail;
465c120c 14299
8e7d688b 14300 state = intel_create_plane_state(&primary->base);
fca0ce2a
VS
14301 if (!state)
14302 goto fail;
8e7d688b 14303 primary->base.state = &state->base;
ea2c67bb 14304
465c120c
MR
14305 primary->can_scale = false;
14306 primary->max_downscale = 1;
6156a456
CK
14307 if (INTEL_INFO(dev)->gen >= 9) {
14308 primary->can_scale = true;
af99ceda 14309 state->scaler_id = -1;
6156a456 14310 }
465c120c
MR
14311 primary->pipe = pipe;
14312 primary->plane = pipe;
a9ff8714 14313 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 14314 primary->check_plane = intel_check_primary_plane;
465c120c
MR
14315 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14316 primary->plane = !pipe;
14317
6c0fd451
DL
14318 if (INTEL_INFO(dev)->gen >= 9) {
14319 intel_primary_formats = skl_primary_formats;
14320 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
14321
14322 primary->update_plane = skylake_update_primary_plane;
14323 primary->disable_plane = skylake_disable_primary_plane;
14324 } else if (HAS_PCH_SPLIT(dev)) {
14325 intel_primary_formats = i965_primary_formats;
14326 num_formats = ARRAY_SIZE(i965_primary_formats);
14327
14328 primary->update_plane = ironlake_update_primary_plane;
14329 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 14330 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
14331 intel_primary_formats = i965_primary_formats;
14332 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
14333
14334 primary->update_plane = i9xx_update_primary_plane;
14335 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
14336 } else {
14337 intel_primary_formats = i8xx_primary_formats;
14338 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
14339
14340 primary->update_plane = i9xx_update_primary_plane;
14341 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
14342 }
14343
38573dc1
VS
14344 if (INTEL_INFO(dev)->gen >= 9)
14345 ret = drm_universal_plane_init(dev, &primary->base, 0,
14346 &intel_plane_funcs,
14347 intel_primary_formats, num_formats,
14348 DRM_PLANE_TYPE_PRIMARY,
14349 "plane 1%c", pipe_name(pipe));
14350 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14351 ret = drm_universal_plane_init(dev, &primary->base, 0,
14352 &intel_plane_funcs,
14353 intel_primary_formats, num_formats,
14354 DRM_PLANE_TYPE_PRIMARY,
14355 "primary %c", pipe_name(pipe));
14356 else
14357 ret = drm_universal_plane_init(dev, &primary->base, 0,
14358 &intel_plane_funcs,
14359 intel_primary_formats, num_formats,
14360 DRM_PLANE_TYPE_PRIMARY,
14361 "plane %c", plane_name(primary->plane));
fca0ce2a
VS
14362 if (ret)
14363 goto fail;
48404c1e 14364
3b7a5119
SJ
14365 if (INTEL_INFO(dev)->gen >= 4)
14366 intel_create_rotation_property(dev, primary);
48404c1e 14367
ea2c67bb
MR
14368 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14369
465c120c 14370 return &primary->base;
fca0ce2a
VS
14371
14372fail:
14373 kfree(state);
14374 kfree(primary);
14375
14376 return NULL;
465c120c
MR
14377}
14378
3b7a5119
SJ
14379void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14380{
14381 if (!dev->mode_config.rotation_property) {
14382 unsigned long flags = BIT(DRM_ROTATE_0) |
14383 BIT(DRM_ROTATE_180);
14384
14385 if (INTEL_INFO(dev)->gen >= 9)
14386 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14387
14388 dev->mode_config.rotation_property =
14389 drm_mode_create_rotation_property(dev, flags);
14390 }
14391 if (dev->mode_config.rotation_property)
14392 drm_object_attach_property(&plane->base.base,
14393 dev->mode_config.rotation_property,
14394 plane->base.state->rotation);
14395}
14396
3d7d6510 14397static int
852e787c 14398intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 14399 struct intel_crtc_state *crtc_state,
852e787c 14400 struct intel_plane_state *state)
3d7d6510 14401{
061e4b8d 14402 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 14403 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 14404 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 14405 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
14406 unsigned stride;
14407 int ret;
3d7d6510 14408
061e4b8d
ML
14409 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14410 &state->dst, &state->clip,
9b8b013d 14411 state->base.rotation,
3d7d6510
MR
14412 DRM_PLANE_HELPER_NO_SCALING,
14413 DRM_PLANE_HELPER_NO_SCALING,
852e787c 14414 true, true, &state->visible);
757f9a3e
GP
14415 if (ret)
14416 return ret;
14417
757f9a3e
GP
14418 /* if we want to turn off the cursor ignore width and height */
14419 if (!obj)
da20eabd 14420 return 0;
757f9a3e 14421
757f9a3e 14422 /* Check for which cursor types we support */
061e4b8d 14423 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14424 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14425 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14426 return -EINVAL;
14427 }
14428
ea2c67bb
MR
14429 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14430 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14431 DRM_DEBUG_KMS("buffer is too small\n");
14432 return -ENOMEM;
14433 }
14434
3a656b54 14435 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14436 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14437 return -EINVAL;
32b7eeec
MR
14438 }
14439
b29ec92c
VS
14440 /*
14441 * There's something wrong with the cursor on CHV pipe C.
14442 * If it straddles the left edge of the screen then
14443 * moving it away from the edge or disabling it often
14444 * results in a pipe underrun, and often that can lead to
14445 * dead pipe (constant underrun reported, and it scans
14446 * out just a solid color). To recover from that, the
14447 * display power well must be turned off and on again.
14448 * Refuse the put the cursor into that compromised position.
14449 */
14450 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14451 state->visible && state->base.crtc_x < 0) {
14452 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14453 return -EINVAL;
14454 }
14455
da20eabd 14456 return 0;
852e787c 14457}
3d7d6510 14458
a8ad0d8e
ML
14459static void
14460intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14461 struct drm_crtc *crtc)
a8ad0d8e 14462{
f2858021
ML
14463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14464
14465 intel_crtc->cursor_addr = 0;
55a08b3f 14466 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
14467}
14468
f4a2cf29 14469static void
55a08b3f
ML
14470intel_update_cursor_plane(struct drm_plane *plane,
14471 const struct intel_crtc_state *crtc_state,
14472 const struct intel_plane_state *state)
852e787c 14473{
55a08b3f
ML
14474 struct drm_crtc *crtc = crtc_state->base.crtc;
14475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 14476 struct drm_device *dev = plane->dev;
2b875c22 14477 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14478 uint32_t addr;
852e787c 14479
f4a2cf29 14480 if (!obj)
a912f12f 14481 addr = 0;
f4a2cf29 14482 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14483 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14484 else
a912f12f 14485 addr = obj->phys_handle->busaddr;
852e787c 14486
a912f12f 14487 intel_crtc->cursor_addr = addr;
55a08b3f 14488 intel_crtc_update_cursor(crtc, state);
852e787c
GP
14489}
14490
3d7d6510
MR
14491static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14492 int pipe)
14493{
fca0ce2a
VS
14494 struct intel_plane *cursor = NULL;
14495 struct intel_plane_state *state = NULL;
14496 int ret;
3d7d6510
MR
14497
14498 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
fca0ce2a
VS
14499 if (!cursor)
14500 goto fail;
3d7d6510 14501
8e7d688b 14502 state = intel_create_plane_state(&cursor->base);
fca0ce2a
VS
14503 if (!state)
14504 goto fail;
8e7d688b 14505 cursor->base.state = &state->base;
ea2c67bb 14506
3d7d6510
MR
14507 cursor->can_scale = false;
14508 cursor->max_downscale = 1;
14509 cursor->pipe = pipe;
14510 cursor->plane = pipe;
a9ff8714 14511 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 14512 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 14513 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 14514 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510 14515
fca0ce2a
VS
14516 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14517 &intel_plane_funcs,
14518 intel_cursor_formats,
14519 ARRAY_SIZE(intel_cursor_formats),
38573dc1
VS
14520 DRM_PLANE_TYPE_CURSOR,
14521 "cursor %c", pipe_name(pipe));
fca0ce2a
VS
14522 if (ret)
14523 goto fail;
4398ad45
VS
14524
14525 if (INTEL_INFO(dev)->gen >= 4) {
14526 if (!dev->mode_config.rotation_property)
14527 dev->mode_config.rotation_property =
14528 drm_mode_create_rotation_property(dev,
14529 BIT(DRM_ROTATE_0) |
14530 BIT(DRM_ROTATE_180));
14531 if (dev->mode_config.rotation_property)
14532 drm_object_attach_property(&cursor->base.base,
14533 dev->mode_config.rotation_property,
8e7d688b 14534 state->base.rotation);
4398ad45
VS
14535 }
14536
af99ceda
CK
14537 if (INTEL_INFO(dev)->gen >=9)
14538 state->scaler_id = -1;
14539
ea2c67bb
MR
14540 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14541
3d7d6510 14542 return &cursor->base;
fca0ce2a
VS
14543
14544fail:
14545 kfree(state);
14546 kfree(cursor);
14547
14548 return NULL;
3d7d6510
MR
14549}
14550
549e2bfb
CK
14551static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14552 struct intel_crtc_state *crtc_state)
14553{
14554 int i;
14555 struct intel_scaler *intel_scaler;
14556 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14557
14558 for (i = 0; i < intel_crtc->num_scalers; i++) {
14559 intel_scaler = &scaler_state->scalers[i];
14560 intel_scaler->in_use = 0;
549e2bfb
CK
14561 intel_scaler->mode = PS_SCALER_MODE_DYN;
14562 }
14563
14564 scaler_state->scaler_id = -1;
14565}
14566
b358d0a6 14567static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14568{
fbee40df 14569 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14570 struct intel_crtc *intel_crtc;
f5de6e07 14571 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14572 struct drm_plane *primary = NULL;
14573 struct drm_plane *cursor = NULL;
8563b1e8 14574 int ret;
79e53945 14575
955382f3 14576 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14577 if (intel_crtc == NULL)
14578 return;
14579
f5de6e07
ACO
14580 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14581 if (!crtc_state)
14582 goto fail;
550acefd
ACO
14583 intel_crtc->config = crtc_state;
14584 intel_crtc->base.state = &crtc_state->base;
07878248 14585 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14586
549e2bfb
CK
14587 /* initialize shared scalers */
14588 if (INTEL_INFO(dev)->gen >= 9) {
14589 if (pipe == PIPE_C)
14590 intel_crtc->num_scalers = 1;
14591 else
14592 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14593
14594 skl_init_scalers(dev, intel_crtc, crtc_state);
14595 }
14596
465c120c 14597 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14598 if (!primary)
14599 goto fail;
14600
14601 cursor = intel_cursor_plane_create(dev, pipe);
14602 if (!cursor)
14603 goto fail;
14604
465c120c 14605 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
4d5d72b7
VS
14606 cursor, &intel_crtc_funcs,
14607 "pipe %c", pipe_name(pipe));
3d7d6510
MR
14608 if (ret)
14609 goto fail;
79e53945 14610
1f1c2e24
VS
14611 /*
14612 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14613 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14614 */
80824003
JB
14615 intel_crtc->pipe = pipe;
14616 intel_crtc->plane = pipe;
3a77c4c4 14617 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14618 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14619 intel_crtc->plane = !pipe;
80824003
JB
14620 }
14621
4b0e333e
CW
14622 intel_crtc->cursor_base = ~0;
14623 intel_crtc->cursor_cntl = ~0;
dc41c154 14624 intel_crtc->cursor_size = ~0;
8d7849db 14625
852eb00d
VS
14626 intel_crtc->wm.cxsr_allowed = true;
14627
22fd0fab
JB
14628 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14629 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14630 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14631 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14632
79e53945 14633 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101 14634
8563b1e8
LL
14635 intel_color_init(&intel_crtc->base);
14636
87b6b101 14637 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14638 return;
14639
14640fail:
69ae561f
VS
14641 intel_plane_destroy(primary);
14642 intel_plane_destroy(cursor);
f5de6e07 14643 kfree(crtc_state);
3d7d6510 14644 kfree(intel_crtc);
79e53945
JB
14645}
14646
752aa88a
JB
14647enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14648{
14649 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14650 struct drm_device *dev = connector->base.dev;
752aa88a 14651
51fd371b 14652 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14653
d3babd3f 14654 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14655 return INVALID_PIPE;
14656
14657 return to_intel_crtc(encoder->crtc)->pipe;
14658}
14659
08d7b3d1 14660int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14661 struct drm_file *file)
08d7b3d1 14662{
08d7b3d1 14663 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14664 struct drm_crtc *drmmode_crtc;
c05422d5 14665 struct intel_crtc *crtc;
08d7b3d1 14666
7707e653 14667 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
71240ed2 14668 if (!drmmode_crtc)
3f2c2057 14669 return -ENOENT;
08d7b3d1 14670
7707e653 14671 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14672 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14673
c05422d5 14674 return 0;
08d7b3d1
CW
14675}
14676
66a9278e 14677static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14678{
66a9278e
DV
14679 struct drm_device *dev = encoder->base.dev;
14680 struct intel_encoder *source_encoder;
79e53945 14681 int index_mask = 0;
79e53945
JB
14682 int entry = 0;
14683
b2784e15 14684 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14685 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14686 index_mask |= (1 << entry);
14687
79e53945
JB
14688 entry++;
14689 }
4ef69c7a 14690
79e53945
JB
14691 return index_mask;
14692}
14693
4d302442
CW
14694static bool has_edp_a(struct drm_device *dev)
14695{
14696 struct drm_i915_private *dev_priv = dev->dev_private;
14697
14698 if (!IS_MOBILE(dev))
14699 return false;
14700
14701 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14702 return false;
14703
e3589908 14704 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14705 return false;
14706
14707 return true;
14708}
14709
84b4e042
JB
14710static bool intel_crt_present(struct drm_device *dev)
14711{
14712 struct drm_i915_private *dev_priv = dev->dev_private;
14713
884497ed
DL
14714 if (INTEL_INFO(dev)->gen >= 9)
14715 return false;
14716
cf404ce4 14717 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14718 return false;
14719
14720 if (IS_CHERRYVIEW(dev))
14721 return false;
14722
65e472e4
VS
14723 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14724 return false;
14725
70ac54d0
VS
14726 /* DDI E can't be used if DDI A requires 4 lanes */
14727 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14728 return false;
14729
e4abb733 14730 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14731 return false;
14732
14733 return true;
14734}
14735
79e53945
JB
14736static void intel_setup_outputs(struct drm_device *dev)
14737{
725e30ad 14738 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14739 struct intel_encoder *encoder;
cb0953d7 14740 bool dpd_is_edp = false;
79e53945 14741
97a824e1
ID
14742 /*
14743 * intel_edp_init_connector() depends on this completing first, to
14744 * prevent the registeration of both eDP and LVDS and the incorrect
14745 * sharing of the PPS.
14746 */
c9093354 14747 intel_lvds_init(dev);
79e53945 14748
84b4e042 14749 if (intel_crt_present(dev))
79935fca 14750 intel_crt_init(dev);
cb0953d7 14751
c776eb2e
VK
14752 if (IS_BROXTON(dev)) {
14753 /*
14754 * FIXME: Broxton doesn't support port detection via the
14755 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14756 * detect the ports.
14757 */
14758 intel_ddi_init(dev, PORT_A);
14759 intel_ddi_init(dev, PORT_B);
14760 intel_ddi_init(dev, PORT_C);
c6c794a2
SS
14761
14762 intel_dsi_init(dev);
c776eb2e 14763 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14764 int found;
14765
de31facd
JB
14766 /*
14767 * Haswell uses DDI functions to detect digital outputs.
14768 * On SKL pre-D0 the strap isn't connected, so we assume
14769 * it's there.
14770 */
77179400 14771 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14772 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14773 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14774 intel_ddi_init(dev, PORT_A);
14775
14776 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14777 * register */
14778 found = I915_READ(SFUSE_STRAP);
14779
14780 if (found & SFUSE_STRAP_DDIB_DETECTED)
14781 intel_ddi_init(dev, PORT_B);
14782 if (found & SFUSE_STRAP_DDIC_DETECTED)
14783 intel_ddi_init(dev, PORT_C);
14784 if (found & SFUSE_STRAP_DDID_DETECTED)
14785 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14786 /*
14787 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14788 */
ef11bdb3 14789 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14790 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14791 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14792 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14793 intel_ddi_init(dev, PORT_E);
14794
0e72a5b5 14795 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14796 int found;
5d8a7752 14797 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14798
14799 if (has_edp_a(dev))
14800 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14801
dc0fa718 14802 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14803 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14804 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14805 if (!found)
e2debe91 14806 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14807 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14808 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14809 }
14810
dc0fa718 14811 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14812 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14813
dc0fa718 14814 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14815 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14816
5eb08b69 14817 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14818 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14819
270b3042 14820 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14821 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 14822 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
22f35042 14823 bool has_edp, has_port;
457c52d8 14824
e17ac6db
VS
14825 /*
14826 * The DP_DETECTED bit is the latched state of the DDC
14827 * SDA pin at boot. However since eDP doesn't require DDC
14828 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14829 * eDP ports may have been muxed to an alternate function.
14830 * Thus we can't rely on the DP_DETECTED bit alone to detect
14831 * eDP ports. Consult the VBT as well as DP_DETECTED to
14832 * detect eDP ports.
22f35042
VS
14833 *
14834 * Sadly the straps seem to be missing sometimes even for HDMI
14835 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14836 * and VBT for the presence of the port. Additionally we can't
14837 * trust the port type the VBT declares as we've seen at least
14838 * HDMI ports that the VBT claim are DP or eDP.
e17ac6db 14839 */
457c52d8 14840 has_edp = intel_dp_is_edp(dev, PORT_B);
22f35042
VS
14841 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14842 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
457c52d8 14843 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
22f35042 14844 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 14845 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
585a94b8 14846
457c52d8 14847 has_edp = intel_dp_is_edp(dev, PORT_C);
22f35042
VS
14848 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14849 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
457c52d8 14850 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
22f35042 14851 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
e66eb81d 14852 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
19c03924 14853
9418c1f1 14854 if (IS_CHERRYVIEW(dev)) {
22f35042
VS
14855 /*
14856 * eDP not supported on port D,
14857 * so no need to worry about it
14858 */
14859 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14860 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
e66eb81d 14861 intel_dp_init(dev, CHV_DP_D, PORT_D);
22f35042
VS
14862 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14863 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
9418c1f1
VS
14864 }
14865
3cfca973 14866 intel_dsi_init(dev);
09da55dc 14867 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14868 bool found = false;
7d57382e 14869
e2debe91 14870 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14871 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14872 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14873 if (!found && IS_G4X(dev)) {
b01f2c3a 14874 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14875 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14876 }
27185ae1 14877
3fec3d2f 14878 if (!found && IS_G4X(dev))
ab9d7c30 14879 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14880 }
13520b05
KH
14881
14882 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14883
e2debe91 14884 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14885 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14886 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14887 }
27185ae1 14888
e2debe91 14889 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14890
3fec3d2f 14891 if (IS_G4X(dev)) {
b01f2c3a 14892 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14893 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14894 }
3fec3d2f 14895 if (IS_G4X(dev))
ab9d7c30 14896 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14897 }
27185ae1 14898
3fec3d2f 14899 if (IS_G4X(dev) &&
e7281eab 14900 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14901 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14902 } else if (IS_GEN2(dev))
79e53945
JB
14903 intel_dvo_init(dev);
14904
103a196f 14905 if (SUPPORTS_TV(dev))
79e53945
JB
14906 intel_tv_init(dev);
14907
0bc12bcb 14908 intel_psr_init(dev);
7c8f8a70 14909
b2784e15 14910 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14911 encoder->base.possible_crtcs = encoder->crtc_mask;
14912 encoder->base.possible_clones =
66a9278e 14913 intel_encoder_clones(encoder);
79e53945 14914 }
47356eb6 14915
dde86e2d 14916 intel_init_pch_refclk(dev);
270b3042
DV
14917
14918 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14919}
14920
14921static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14922{
60a5ca01 14923 struct drm_device *dev = fb->dev;
79e53945 14924 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14925
ef2d633e 14926 drm_framebuffer_cleanup(fb);
60a5ca01 14927 mutex_lock(&dev->struct_mutex);
ef2d633e 14928 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14929 drm_gem_object_unreference(&intel_fb->obj->base);
14930 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14931 kfree(intel_fb);
14932}
14933
14934static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14935 struct drm_file *file,
79e53945
JB
14936 unsigned int *handle)
14937{
14938 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14939 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14940
cc917ab4
CW
14941 if (obj->userptr.mm) {
14942 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14943 return -EINVAL;
14944 }
14945
05394f39 14946 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14947}
14948
86c98588
RV
14949static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14950 struct drm_file *file,
14951 unsigned flags, unsigned color,
14952 struct drm_clip_rect *clips,
14953 unsigned num_clips)
14954{
14955 struct drm_device *dev = fb->dev;
14956 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14957 struct drm_i915_gem_object *obj = intel_fb->obj;
14958
14959 mutex_lock(&dev->struct_mutex);
74b4ea1e 14960 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14961 mutex_unlock(&dev->struct_mutex);
14962
14963 return 0;
14964}
14965
79e53945
JB
14966static const struct drm_framebuffer_funcs intel_fb_funcs = {
14967 .destroy = intel_user_framebuffer_destroy,
14968 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14969 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14970};
14971
b321803d
DL
14972static
14973u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14974 uint32_t pixel_format)
14975{
14976 u32 gen = INTEL_INFO(dev)->gen;
14977
14978 if (gen >= 9) {
ac484963
VS
14979 int cpp = drm_format_plane_cpp(pixel_format, 0);
14980
b321803d
DL
14981 /* "The stride in bytes must not exceed the of the size of 8K
14982 * pixels and 32K bytes."
14983 */
ac484963 14984 return min(8192 * cpp, 32768);
666a4537 14985 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
14986 return 32*1024;
14987 } else if (gen >= 4) {
14988 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14989 return 16*1024;
14990 else
14991 return 32*1024;
14992 } else if (gen >= 3) {
14993 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14994 return 8*1024;
14995 else
14996 return 16*1024;
14997 } else {
14998 /* XXX DSPC is limited to 4k tiled */
14999 return 8*1024;
15000 }
15001}
15002
b5ea642a
DV
15003static int intel_framebuffer_init(struct drm_device *dev,
15004 struct intel_framebuffer *intel_fb,
15005 struct drm_mode_fb_cmd2 *mode_cmd,
15006 struct drm_i915_gem_object *obj)
79e53945 15007{
7b49f948 15008 struct drm_i915_private *dev_priv = to_i915(dev);
6761dd31 15009 unsigned int aligned_height;
79e53945 15010 int ret;
b321803d 15011 u32 pitch_limit, stride_alignment;
79e53945 15012
dd4916c5
DV
15013 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15014
2a80eada
DV
15015 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15016 /* Enforce that fb modifier and tiling mode match, but only for
15017 * X-tiled. This is needed for FBC. */
15018 if (!!(obj->tiling_mode == I915_TILING_X) !=
15019 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
15020 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15021 return -EINVAL;
15022 }
15023 } else {
15024 if (obj->tiling_mode == I915_TILING_X)
15025 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15026 else if (obj->tiling_mode == I915_TILING_Y) {
15027 DRM_DEBUG("No Y tiling for legacy addfb\n");
15028 return -EINVAL;
15029 }
15030 }
15031
9a8f0a12
TU
15032 /* Passed in modifier sanity checking. */
15033 switch (mode_cmd->modifier[0]) {
15034 case I915_FORMAT_MOD_Y_TILED:
15035 case I915_FORMAT_MOD_Yf_TILED:
15036 if (INTEL_INFO(dev)->gen < 9) {
15037 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15038 mode_cmd->modifier[0]);
15039 return -EINVAL;
15040 }
15041 case DRM_FORMAT_MOD_NONE:
15042 case I915_FORMAT_MOD_X_TILED:
15043 break;
15044 default:
c0f40428
JB
15045 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15046 mode_cmd->modifier[0]);
57cd6508 15047 return -EINVAL;
c16ed4be 15048 }
57cd6508 15049
7b49f948
VS
15050 stride_alignment = intel_fb_stride_alignment(dev_priv,
15051 mode_cmd->modifier[0],
b321803d
DL
15052 mode_cmd->pixel_format);
15053 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15054 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15055 mode_cmd->pitches[0], stride_alignment);
57cd6508 15056 return -EINVAL;
c16ed4be 15057 }
57cd6508 15058
b321803d
DL
15059 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15060 mode_cmd->pixel_format);
a35cdaa0 15061 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
15062 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15063 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 15064 "tiled" : "linear",
a35cdaa0 15065 mode_cmd->pitches[0], pitch_limit);
5d7bd705 15066 return -EINVAL;
c16ed4be 15067 }
5d7bd705 15068
2a80eada 15069 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
15070 mode_cmd->pitches[0] != obj->stride) {
15071 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15072 mode_cmd->pitches[0], obj->stride);
5d7bd705 15073 return -EINVAL;
c16ed4be 15074 }
5d7bd705 15075
57779d06 15076 /* Reject formats not supported by any plane early. */
308e5bcb 15077 switch (mode_cmd->pixel_format) {
57779d06 15078 case DRM_FORMAT_C8:
04b3924d
VS
15079 case DRM_FORMAT_RGB565:
15080 case DRM_FORMAT_XRGB8888:
15081 case DRM_FORMAT_ARGB8888:
57779d06
VS
15082 break;
15083 case DRM_FORMAT_XRGB1555:
c16ed4be 15084 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
15085 DRM_DEBUG("unsupported pixel format: %s\n",
15086 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15087 return -EINVAL;
c16ed4be 15088 }
57779d06 15089 break;
57779d06 15090 case DRM_FORMAT_ABGR8888:
666a4537
WB
15091 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15092 INTEL_INFO(dev)->gen < 9) {
6c0fd451
DL
15093 DRM_DEBUG("unsupported pixel format: %s\n",
15094 drm_get_format_name(mode_cmd->pixel_format));
15095 return -EINVAL;
15096 }
15097 break;
15098 case DRM_FORMAT_XBGR8888:
04b3924d 15099 case DRM_FORMAT_XRGB2101010:
57779d06 15100 case DRM_FORMAT_XBGR2101010:
c16ed4be 15101 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
15102 DRM_DEBUG("unsupported pixel format: %s\n",
15103 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15104 return -EINVAL;
c16ed4be 15105 }
b5626747 15106 break;
7531208b 15107 case DRM_FORMAT_ABGR2101010:
666a4537 15108 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7531208b
DL
15109 DRM_DEBUG("unsupported pixel format: %s\n",
15110 drm_get_format_name(mode_cmd->pixel_format));
15111 return -EINVAL;
15112 }
15113 break;
04b3924d
VS
15114 case DRM_FORMAT_YUYV:
15115 case DRM_FORMAT_UYVY:
15116 case DRM_FORMAT_YVYU:
15117 case DRM_FORMAT_VYUY:
c16ed4be 15118 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
15119 DRM_DEBUG("unsupported pixel format: %s\n",
15120 drm_get_format_name(mode_cmd->pixel_format));
57779d06 15121 return -EINVAL;
c16ed4be 15122 }
57cd6508
CW
15123 break;
15124 default:
4ee62c76
VS
15125 DRM_DEBUG("unsupported pixel format: %s\n",
15126 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
15127 return -EINVAL;
15128 }
15129
90f9a336
VS
15130 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15131 if (mode_cmd->offsets[0] != 0)
15132 return -EINVAL;
15133
ec2c981e 15134 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
15135 mode_cmd->pixel_format,
15136 mode_cmd->modifier[0]);
53155c0a
DV
15137 /* FIXME drm helper for size checks (especially planar formats)? */
15138 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15139 return -EINVAL;
15140
c7d73f6a
DV
15141 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15142 intel_fb->obj = obj;
15143
2d7a215f
VS
15144 intel_fill_fb_info(dev_priv, &intel_fb->base);
15145
79e53945
JB
15146 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15147 if (ret) {
15148 DRM_ERROR("framebuffer init failed %d\n", ret);
15149 return ret;
15150 }
15151
0b05e1e0
VS
15152 intel_fb->obj->framebuffer_references++;
15153
79e53945
JB
15154 return 0;
15155}
15156
79e53945
JB
15157static struct drm_framebuffer *
15158intel_user_framebuffer_create(struct drm_device *dev,
15159 struct drm_file *filp,
1eb83451 15160 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 15161{
dcb1394e 15162 struct drm_framebuffer *fb;
05394f39 15163 struct drm_i915_gem_object *obj;
76dc3769 15164 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 15165
a8ad0bd8 15166 obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
c8725226 15167 if (&obj->base == NULL)
cce13ff7 15168 return ERR_PTR(-ENOENT);
79e53945 15169
92907cbb 15170 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
15171 if (IS_ERR(fb))
15172 drm_gem_object_unreference_unlocked(&obj->base);
15173
15174 return fb;
79e53945
JB
15175}
15176
0695726e 15177#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 15178static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
15179{
15180}
15181#endif
15182
79e53945 15183static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 15184 .fb_create = intel_user_framebuffer_create,
0632fef6 15185 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
15186 .atomic_check = intel_atomic_check,
15187 .atomic_commit = intel_atomic_commit,
de419ab6
ML
15188 .atomic_state_alloc = intel_atomic_state_alloc,
15189 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
15190};
15191
88212941
ID
15192/**
15193 * intel_init_display_hooks - initialize the display modesetting hooks
15194 * @dev_priv: device private
15195 */
15196void intel_init_display_hooks(struct drm_i915_private *dev_priv)
e70236a8 15197{
88212941 15198 if (INTEL_INFO(dev_priv)->gen >= 9) {
bc8d7dff 15199 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15200 dev_priv->display.get_initial_plane_config =
15201 skylake_get_initial_plane_config;
bc8d7dff
DL
15202 dev_priv->display.crtc_compute_clock =
15203 haswell_crtc_compute_clock;
15204 dev_priv->display.crtc_enable = haswell_crtc_enable;
15205 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15206 } else if (HAS_DDI(dev_priv)) {
0e8ffe1b 15207 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
15208 dev_priv->display.get_initial_plane_config =
15209 ironlake_get_initial_plane_config;
797d0259
ACO
15210 dev_priv->display.crtc_compute_clock =
15211 haswell_crtc_compute_clock;
4f771f10
PZ
15212 dev_priv->display.crtc_enable = haswell_crtc_enable;
15213 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 15214 } else if (HAS_PCH_SPLIT(dev_priv)) {
0e8ffe1b 15215 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
15216 dev_priv->display.get_initial_plane_config =
15217 ironlake_get_initial_plane_config;
3fb37703
ACO
15218 dev_priv->display.crtc_compute_clock =
15219 ironlake_crtc_compute_clock;
76e5a89c
DV
15220 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15221 dev_priv->display.crtc_disable = ironlake_crtc_disable;
65b3d6a9 15222 } else if (IS_CHERRYVIEW(dev_priv)) {
89b667f8 15223 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15224 dev_priv->display.get_initial_plane_config =
15225 i9xx_get_initial_plane_config;
65b3d6a9
ACO
15226 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15227 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15228 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15229 } else if (IS_VALLEYVIEW(dev_priv)) {
15230 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15231 dev_priv->display.get_initial_plane_config =
15232 i9xx_get_initial_plane_config;
15233 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
89b667f8
JB
15234 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15235 dev_priv->display.crtc_disable = i9xx_crtc_disable;
19ec6693
ACO
15236 } else if (IS_G4X(dev_priv)) {
15237 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15238 dev_priv->display.get_initial_plane_config =
15239 i9xx_get_initial_plane_config;
15240 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15241 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15242 dev_priv->display.crtc_disable = i9xx_crtc_disable;
70e8aa21
ACO
15243 } else if (IS_PINEVIEW(dev_priv)) {
15244 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15245 dev_priv->display.get_initial_plane_config =
15246 i9xx_get_initial_plane_config;
15247 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15248 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15249 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52 15250 } else if (!IS_GEN2(dev_priv)) {
0e8ffe1b 15251 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
15252 dev_priv->display.get_initial_plane_config =
15253 i9xx_get_initial_plane_config;
d6dfee7a 15254 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
15255 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15256 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52
ACO
15257 } else {
15258 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15259 dev_priv->display.get_initial_plane_config =
15260 i9xx_get_initial_plane_config;
15261 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15262 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15263 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 15264 }
e70236a8 15265
e70236a8 15266 /* Returns the core display clock speed */
88212941 15267 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1652d19e
VS
15268 dev_priv->display.get_display_clock_speed =
15269 skylake_get_display_clock_speed;
88212941 15270 else if (IS_BROXTON(dev_priv))
acd3f3d3
BP
15271 dev_priv->display.get_display_clock_speed =
15272 broxton_get_display_clock_speed;
88212941 15273 else if (IS_BROADWELL(dev_priv))
1652d19e
VS
15274 dev_priv->display.get_display_clock_speed =
15275 broadwell_get_display_clock_speed;
88212941 15276 else if (IS_HASWELL(dev_priv))
1652d19e
VS
15277 dev_priv->display.get_display_clock_speed =
15278 haswell_get_display_clock_speed;
88212941 15279 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
25eb05fc
JB
15280 dev_priv->display.get_display_clock_speed =
15281 valleyview_get_display_clock_speed;
88212941 15282 else if (IS_GEN5(dev_priv))
b37a6434
VS
15283 dev_priv->display.get_display_clock_speed =
15284 ilk_get_display_clock_speed;
88212941
ID
15285 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15286 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
e70236a8
JB
15287 dev_priv->display.get_display_clock_speed =
15288 i945_get_display_clock_speed;
88212941 15289 else if (IS_GM45(dev_priv))
34edce2f
VS
15290 dev_priv->display.get_display_clock_speed =
15291 gm45_get_display_clock_speed;
88212941 15292 else if (IS_CRESTLINE(dev_priv))
34edce2f
VS
15293 dev_priv->display.get_display_clock_speed =
15294 i965gm_get_display_clock_speed;
88212941 15295 else if (IS_PINEVIEW(dev_priv))
34edce2f
VS
15296 dev_priv->display.get_display_clock_speed =
15297 pnv_get_display_clock_speed;
88212941 15298 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
34edce2f
VS
15299 dev_priv->display.get_display_clock_speed =
15300 g33_get_display_clock_speed;
88212941 15301 else if (IS_I915G(dev_priv))
e70236a8
JB
15302 dev_priv->display.get_display_clock_speed =
15303 i915_get_display_clock_speed;
88212941 15304 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
e70236a8
JB
15305 dev_priv->display.get_display_clock_speed =
15306 i9xx_misc_get_display_clock_speed;
88212941 15307 else if (IS_I915GM(dev_priv))
e70236a8
JB
15308 dev_priv->display.get_display_clock_speed =
15309 i915gm_get_display_clock_speed;
88212941 15310 else if (IS_I865G(dev_priv))
e70236a8
JB
15311 dev_priv->display.get_display_clock_speed =
15312 i865_get_display_clock_speed;
88212941 15313 else if (IS_I85X(dev_priv))
e70236a8 15314 dev_priv->display.get_display_clock_speed =
1b1d2716 15315 i85x_get_display_clock_speed;
623e01e5 15316 else { /* 830 */
88212941 15317 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
15318 dev_priv->display.get_display_clock_speed =
15319 i830_get_display_clock_speed;
623e01e5 15320 }
e70236a8 15321
88212941 15322 if (IS_GEN5(dev_priv)) {
3bb11b53 15323 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
88212941 15324 } else if (IS_GEN6(dev_priv)) {
3bb11b53 15325 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
88212941 15326 } else if (IS_IVYBRIDGE(dev_priv)) {
3bb11b53
SJ
15327 /* FIXME: detect B0+ stepping and use auto training */
15328 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
88212941 15329 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3bb11b53 15330 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
445e780b
VS
15331 }
15332
15333 if (IS_BROADWELL(dev_priv)) {
15334 dev_priv->display.modeset_commit_cdclk =
15335 broadwell_modeset_commit_cdclk;
15336 dev_priv->display.modeset_calc_cdclk =
15337 broadwell_modeset_calc_cdclk;
88212941 15338 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
27c329ed
ML
15339 dev_priv->display.modeset_commit_cdclk =
15340 valleyview_modeset_commit_cdclk;
15341 dev_priv->display.modeset_calc_cdclk =
15342 valleyview_modeset_calc_cdclk;
88212941 15343 } else if (IS_BROXTON(dev_priv)) {
27c329ed 15344 dev_priv->display.modeset_commit_cdclk =
324513c0 15345 bxt_modeset_commit_cdclk;
27c329ed 15346 dev_priv->display.modeset_calc_cdclk =
324513c0 15347 bxt_modeset_calc_cdclk;
c89e39f3
CT
15348 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15349 dev_priv->display.modeset_commit_cdclk =
15350 skl_modeset_commit_cdclk;
15351 dev_priv->display.modeset_calc_cdclk =
15352 skl_modeset_calc_cdclk;
e70236a8 15353 }
5a21b665
DV
15354
15355 switch (INTEL_INFO(dev_priv)->gen) {
15356 case 2:
15357 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15358 break;
15359
15360 case 3:
15361 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15362 break;
15363
15364 case 4:
15365 case 5:
15366 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15367 break;
15368
15369 case 6:
15370 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15371 break;
15372 case 7:
15373 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15374 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15375 break;
15376 case 9:
15377 /* Drop through - unsupported since execlist only. */
15378 default:
15379 /* Default just returns -ENODEV to indicate unsupported */
15380 dev_priv->display.queue_flip = intel_default_queue_flip;
15381 }
e70236a8
JB
15382}
15383
b690e96c
JB
15384/*
15385 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15386 * resume, or other times. This quirk makes sure that's the case for
15387 * affected systems.
15388 */
0206e353 15389static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
15390{
15391 struct drm_i915_private *dev_priv = dev->dev_private;
15392
15393 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 15394 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
15395}
15396
b6b5d049
VS
15397static void quirk_pipeb_force(struct drm_device *dev)
15398{
15399 struct drm_i915_private *dev_priv = dev->dev_private;
15400
15401 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15402 DRM_INFO("applying pipe b force quirk\n");
15403}
15404
435793df
KP
15405/*
15406 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15407 */
15408static void quirk_ssc_force_disable(struct drm_device *dev)
15409{
15410 struct drm_i915_private *dev_priv = dev->dev_private;
15411 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 15412 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
15413}
15414
4dca20ef 15415/*
5a15ab5b
CE
15416 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15417 * brightness value
4dca20ef
CE
15418 */
15419static void quirk_invert_brightness(struct drm_device *dev)
15420{
15421 struct drm_i915_private *dev_priv = dev->dev_private;
15422 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 15423 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
15424}
15425
9c72cc6f
SD
15426/* Some VBT's incorrectly indicate no backlight is present */
15427static void quirk_backlight_present(struct drm_device *dev)
15428{
15429 struct drm_i915_private *dev_priv = dev->dev_private;
15430 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15431 DRM_INFO("applying backlight present quirk\n");
15432}
15433
b690e96c
JB
15434struct intel_quirk {
15435 int device;
15436 int subsystem_vendor;
15437 int subsystem_device;
15438 void (*hook)(struct drm_device *dev);
15439};
15440
5f85f176
EE
15441/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15442struct intel_dmi_quirk {
15443 void (*hook)(struct drm_device *dev);
15444 const struct dmi_system_id (*dmi_id_list)[];
15445};
15446
15447static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15448{
15449 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15450 return 1;
15451}
15452
15453static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15454 {
15455 .dmi_id_list = &(const struct dmi_system_id[]) {
15456 {
15457 .callback = intel_dmi_reverse_brightness,
15458 .ident = "NCR Corporation",
15459 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15460 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15461 },
15462 },
15463 { } /* terminating entry */
15464 },
15465 .hook = quirk_invert_brightness,
15466 },
15467};
15468
c43b5634 15469static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15470 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15471 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15472
b690e96c
JB
15473 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15474 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15475
5f080c0f
VS
15476 /* 830 needs to leave pipe A & dpll A up */
15477 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15478
b6b5d049
VS
15479 /* 830 needs to leave pipe B & dpll B up */
15480 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15481
435793df
KP
15482 /* Lenovo U160 cannot use SSC on LVDS */
15483 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15484
15485 /* Sony Vaio Y cannot use SSC on LVDS */
15486 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15487
be505f64
AH
15488 /* Acer Aspire 5734Z must invert backlight brightness */
15489 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15490
15491 /* Acer/eMachines G725 */
15492 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15493
15494 /* Acer/eMachines e725 */
15495 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15496
15497 /* Acer/Packard Bell NCL20 */
15498 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15499
15500 /* Acer Aspire 4736Z */
15501 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15502
15503 /* Acer Aspire 5336 */
15504 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15505
15506 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15507 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15508
dfb3d47b
SD
15509 /* Acer C720 Chromebook (Core i3 4005U) */
15510 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15511
b2a9601c 15512 /* Apple Macbook 2,1 (Core 2 T7400) */
15513 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15514
1b9448b0
JN
15515 /* Apple Macbook 4,1 */
15516 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15517
d4967d8c
SD
15518 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15519 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15520
15521 /* HP Chromebook 14 (Celeron 2955U) */
15522 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15523
15524 /* Dell Chromebook 11 */
15525 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15526
15527 /* Dell Chromebook 11 (2015 version) */
15528 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15529};
15530
15531static void intel_init_quirks(struct drm_device *dev)
15532{
15533 struct pci_dev *d = dev->pdev;
15534 int i;
15535
15536 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15537 struct intel_quirk *q = &intel_quirks[i];
15538
15539 if (d->device == q->device &&
15540 (d->subsystem_vendor == q->subsystem_vendor ||
15541 q->subsystem_vendor == PCI_ANY_ID) &&
15542 (d->subsystem_device == q->subsystem_device ||
15543 q->subsystem_device == PCI_ANY_ID))
15544 q->hook(dev);
15545 }
5f85f176
EE
15546 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15547 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15548 intel_dmi_quirks[i].hook(dev);
15549 }
b690e96c
JB
15550}
15551
9cce37f4
JB
15552/* Disable the VGA plane that we never use */
15553static void i915_disable_vga(struct drm_device *dev)
15554{
15555 struct drm_i915_private *dev_priv = dev->dev_private;
15556 u8 sr1;
f0f59a00 15557 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15558
2b37c616 15559 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15560 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15561 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15562 sr1 = inb(VGA_SR_DATA);
15563 outb(sr1 | 1<<5, VGA_SR_DATA);
15564 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15565 udelay(300);
15566
01f5a626 15567 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15568 POSTING_READ(vga_reg);
15569}
15570
f817586c
DV
15571void intel_modeset_init_hw(struct drm_device *dev)
15572{
1a617b77
ML
15573 struct drm_i915_private *dev_priv = dev->dev_private;
15574
b6283055 15575 intel_update_cdclk(dev);
1a617b77
ML
15576
15577 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15578
f817586c 15579 intel_init_clock_gating(dev);
dc97997a 15580 intel_enable_gt_powersave(dev_priv);
f817586c
DV
15581}
15582
d93c0372
MR
15583/*
15584 * Calculate what we think the watermarks should be for the state we've read
15585 * out of the hardware and then immediately program those watermarks so that
15586 * we ensure the hardware settings match our internal state.
15587 *
15588 * We can calculate what we think WM's should be by creating a duplicate of the
15589 * current state (which was constructed during hardware readout) and running it
15590 * through the atomic check code to calculate new watermark values in the
15591 * state object.
15592 */
15593static void sanitize_watermarks(struct drm_device *dev)
15594{
15595 struct drm_i915_private *dev_priv = to_i915(dev);
15596 struct drm_atomic_state *state;
15597 struct drm_crtc *crtc;
15598 struct drm_crtc_state *cstate;
15599 struct drm_modeset_acquire_ctx ctx;
15600 int ret;
15601 int i;
15602
15603 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 15604 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
15605 return;
15606
15607 /*
15608 * We need to hold connection_mutex before calling duplicate_state so
15609 * that the connector loop is protected.
15610 */
15611 drm_modeset_acquire_init(&ctx, 0);
15612retry:
0cd1262d 15613 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
15614 if (ret == -EDEADLK) {
15615 drm_modeset_backoff(&ctx);
15616 goto retry;
15617 } else if (WARN_ON(ret)) {
0cd1262d 15618 goto fail;
d93c0372
MR
15619 }
15620
15621 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15622 if (WARN_ON(IS_ERR(state)))
0cd1262d 15623 goto fail;
d93c0372 15624
ed4a6a7c
MR
15625 /*
15626 * Hardware readout is the only time we don't want to calculate
15627 * intermediate watermarks (since we don't trust the current
15628 * watermarks).
15629 */
15630 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15631
d93c0372
MR
15632 ret = intel_atomic_check(dev, state);
15633 if (ret) {
15634 /*
15635 * If we fail here, it means that the hardware appears to be
15636 * programmed in a way that shouldn't be possible, given our
15637 * understanding of watermark requirements. This might mean a
15638 * mistake in the hardware readout code or a mistake in the
15639 * watermark calculations for a given platform. Raise a WARN
15640 * so that this is noticeable.
15641 *
15642 * If this actually happens, we'll have to just leave the
15643 * BIOS-programmed watermarks untouched and hope for the best.
15644 */
15645 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 15646 goto fail;
d93c0372
MR
15647 }
15648
15649 /* Write calculated watermark values back */
d93c0372
MR
15650 for_each_crtc_in_state(state, crtc, cstate, i) {
15651 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15652
ed4a6a7c
MR
15653 cs->wm.need_postvbl_update = true;
15654 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
15655 }
15656
15657 drm_atomic_state_free(state);
0cd1262d 15658fail:
d93c0372
MR
15659 drm_modeset_drop_locks(&ctx);
15660 drm_modeset_acquire_fini(&ctx);
15661}
15662
79e53945
JB
15663void intel_modeset_init(struct drm_device *dev)
15664{
72e96d64
JL
15665 struct drm_i915_private *dev_priv = to_i915(dev);
15666 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1fe47785 15667 int sprite, ret;
8cc87b75 15668 enum pipe pipe;
46f297fb 15669 struct intel_crtc *crtc;
79e53945
JB
15670
15671 drm_mode_config_init(dev);
15672
15673 dev->mode_config.min_width = 0;
15674 dev->mode_config.min_height = 0;
15675
019d96cb
DA
15676 dev->mode_config.preferred_depth = 24;
15677 dev->mode_config.prefer_shadow = 1;
15678
25bab385
TU
15679 dev->mode_config.allow_fb_modifiers = true;
15680
e6ecefaa 15681 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15682
b690e96c
JB
15683 intel_init_quirks(dev);
15684
1fa61106
ED
15685 intel_init_pm(dev);
15686
e3c74757
BW
15687 if (INTEL_INFO(dev)->num_pipes == 0)
15688 return;
15689
69f92f67
LW
15690 /*
15691 * There may be no VBT; and if the BIOS enabled SSC we can
15692 * just keep using it to avoid unnecessary flicker. Whereas if the
15693 * BIOS isn't using it, don't assume it will work even if the VBT
15694 * indicates as much.
15695 */
15696 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15697 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15698 DREF_SSC1_ENABLE);
15699
15700 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15701 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15702 bios_lvds_use_ssc ? "en" : "dis",
15703 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15704 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15705 }
15706 }
15707
a6c45cf0
CW
15708 if (IS_GEN2(dev)) {
15709 dev->mode_config.max_width = 2048;
15710 dev->mode_config.max_height = 2048;
15711 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15712 dev->mode_config.max_width = 4096;
15713 dev->mode_config.max_height = 4096;
79e53945 15714 } else {
a6c45cf0
CW
15715 dev->mode_config.max_width = 8192;
15716 dev->mode_config.max_height = 8192;
79e53945 15717 }
068be561 15718
dc41c154
VS
15719 if (IS_845G(dev) || IS_I865G(dev)) {
15720 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15721 dev->mode_config.cursor_height = 1023;
15722 } else if (IS_GEN2(dev)) {
068be561
DL
15723 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15724 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15725 } else {
15726 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15727 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15728 }
15729
72e96d64 15730 dev->mode_config.fb_base = ggtt->mappable_base;
79e53945 15731
28c97730 15732 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15733 INTEL_INFO(dev)->num_pipes,
15734 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15735
055e393f 15736 for_each_pipe(dev_priv, pipe) {
8cc87b75 15737 intel_crtc_init(dev, pipe);
3bdcfc0c 15738 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15739 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15740 if (ret)
06da8da2 15741 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15742 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15743 }
79e53945
JB
15744 }
15745
bfa7df01
VS
15746 intel_update_czclk(dev_priv);
15747 intel_update_cdclk(dev);
15748
e72f9fbf 15749 intel_shared_dpll_init(dev);
ee7b9f93 15750
b2045352
VS
15751 if (dev_priv->max_cdclk_freq == 0)
15752 intel_update_max_cdclk(dev);
15753
9cce37f4
JB
15754 /* Just disable it once at startup */
15755 i915_disable_vga(dev);
79e53945 15756 intel_setup_outputs(dev);
11be49eb 15757
6e9f798d 15758 drm_modeset_lock_all(dev);
043e9bda 15759 intel_modeset_setup_hw_state(dev);
6e9f798d 15760 drm_modeset_unlock_all(dev);
46f297fb 15761
d3fcc808 15762 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15763 struct intel_initial_plane_config plane_config = {};
15764
46f297fb
JB
15765 if (!crtc->active)
15766 continue;
15767
46f297fb 15768 /*
46f297fb
JB
15769 * Note that reserving the BIOS fb up front prevents us
15770 * from stuffing other stolen allocations like the ring
15771 * on top. This prevents some ugliness at boot time, and
15772 * can even allow for smooth boot transitions if the BIOS
15773 * fb is large enough for the active pipe configuration.
15774 */
eeebeac5
ML
15775 dev_priv->display.get_initial_plane_config(crtc,
15776 &plane_config);
15777
15778 /*
15779 * If the fb is shared between multiple heads, we'll
15780 * just get the first one.
15781 */
15782 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15783 }
d93c0372
MR
15784
15785 /*
15786 * Make sure hardware watermarks really match the state we read out.
15787 * Note that we need to do this after reconstructing the BIOS fb's
15788 * since the watermark calculation done here will use pstate->fb.
15789 */
15790 sanitize_watermarks(dev);
2c7111db
CW
15791}
15792
7fad798e
DV
15793static void intel_enable_pipe_a(struct drm_device *dev)
15794{
15795 struct intel_connector *connector;
15796 struct drm_connector *crt = NULL;
15797 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15798 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15799
15800 /* We can't just switch on the pipe A, we need to set things up with a
15801 * proper mode and output configuration. As a gross hack, enable pipe A
15802 * by enabling the load detect pipe once. */
3a3371ff 15803 for_each_intel_connector(dev, connector) {
7fad798e
DV
15804 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15805 crt = &connector->base;
15806 break;
15807 }
15808 }
15809
15810 if (!crt)
15811 return;
15812
208bf9fd 15813 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15814 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15815}
15816
fa555837
DV
15817static bool
15818intel_check_plane_mapping(struct intel_crtc *crtc)
15819{
7eb552ae
BW
15820 struct drm_device *dev = crtc->base.dev;
15821 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15822 u32 val;
fa555837 15823
7eb552ae 15824 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15825 return true;
15826
649636ef 15827 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15828
15829 if ((val & DISPLAY_PLANE_ENABLE) &&
15830 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15831 return false;
15832
15833 return true;
15834}
15835
02e93c35
VS
15836static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15837{
15838 struct drm_device *dev = crtc->base.dev;
15839 struct intel_encoder *encoder;
15840
15841 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15842 return true;
15843
15844 return false;
15845}
15846
dd756198
VS
15847static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15848{
15849 struct drm_device *dev = encoder->base.dev;
15850 struct intel_connector *connector;
15851
15852 for_each_connector_on_encoder(dev, &encoder->base, connector)
15853 return true;
15854
15855 return false;
15856}
15857
24929352
DV
15858static void intel_sanitize_crtc(struct intel_crtc *crtc)
15859{
15860 struct drm_device *dev = crtc->base.dev;
15861 struct drm_i915_private *dev_priv = dev->dev_private;
4d1de975 15862 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
24929352 15863
24929352 15864 /* Clear any frame start delays used for debugging left by the BIOS */
4d1de975
JN
15865 if (!transcoder_is_dsi(cpu_transcoder)) {
15866 i915_reg_t reg = PIPECONF(cpu_transcoder);
15867
15868 I915_WRITE(reg,
15869 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15870 }
24929352 15871
d3eaf884 15872 /* restore vblank interrupts to correct state */
9625604c 15873 drm_crtc_vblank_reset(&crtc->base);
d297e103 15874 if (crtc->active) {
f9cd7b88
VS
15875 struct intel_plane *plane;
15876
9625604c 15877 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15878
15879 /* Disable everything but the primary plane */
15880 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15881 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15882 continue;
15883
15884 plane->disable_plane(&plane->base, &crtc->base);
15885 }
9625604c 15886 }
d3eaf884 15887
24929352 15888 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15889 * disable the crtc (and hence change the state) if it is wrong. Note
15890 * that gen4+ has a fixed plane -> pipe mapping. */
15891 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15892 bool plane;
15893
78108b7c
VS
15894 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15895 crtc->base.base.id, crtc->base.name);
24929352
DV
15896
15897 /* Pipe has the wrong plane attached and the plane is active.
15898 * Temporarily change the plane mapping and disable everything
15899 * ... */
15900 plane = crtc->plane;
b70709a6 15901 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15902 crtc->plane = !plane;
b17d48e2 15903 intel_crtc_disable_noatomic(&crtc->base);
24929352 15904 crtc->plane = plane;
24929352 15905 }
24929352 15906
7fad798e
DV
15907 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15908 crtc->pipe == PIPE_A && !crtc->active) {
15909 /* BIOS forgot to enable pipe A, this mostly happens after
15910 * resume. Force-enable the pipe to fix this, the update_dpms
15911 * call below we restore the pipe to the right state, but leave
15912 * the required bits on. */
15913 intel_enable_pipe_a(dev);
15914 }
15915
24929352
DV
15916 /* Adjust the state of the output pipe according to whether we
15917 * have active connectors/encoders. */
842e0307 15918 if (crtc->active && !intel_crtc_has_encoders(crtc))
b17d48e2 15919 intel_crtc_disable_noatomic(&crtc->base);
24929352 15920
a3ed6aad 15921 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15922 /*
15923 * We start out with underrun reporting disabled to avoid races.
15924 * For correct bookkeeping mark this on active crtcs.
15925 *
c5ab3bc0
DV
15926 * Also on gmch platforms we dont have any hardware bits to
15927 * disable the underrun reporting. Which means we need to start
15928 * out with underrun reporting disabled also on inactive pipes,
15929 * since otherwise we'll complain about the garbage we read when
15930 * e.g. coming up after runtime pm.
15931 *
4cc31489
DV
15932 * No protection against concurrent access is required - at
15933 * worst a fifo underrun happens which also sets this to false.
15934 */
15935 crtc->cpu_fifo_underrun_disabled = true;
15936 crtc->pch_fifo_underrun_disabled = true;
15937 }
24929352
DV
15938}
15939
15940static void intel_sanitize_encoder(struct intel_encoder *encoder)
15941{
15942 struct intel_connector *connector;
15943 struct drm_device *dev = encoder->base.dev;
15944
15945 /* We need to check both for a crtc link (meaning that the
15946 * encoder is active and trying to read from a pipe) and the
15947 * pipe itself being active. */
15948 bool has_active_crtc = encoder->base.crtc &&
15949 to_intel_crtc(encoder->base.crtc)->active;
15950
dd756198 15951 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
24929352
DV
15952 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15953 encoder->base.base.id,
8e329a03 15954 encoder->base.name);
24929352
DV
15955
15956 /* Connector is active, but has no active pipe. This is
15957 * fallout from our resume register restoring. Disable
15958 * the encoder manually again. */
15959 if (encoder->base.crtc) {
15960 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15961 encoder->base.base.id,
8e329a03 15962 encoder->base.name);
24929352 15963 encoder->disable(encoder);
a62d1497
VS
15964 if (encoder->post_disable)
15965 encoder->post_disable(encoder);
24929352 15966 }
7f1950fb 15967 encoder->base.crtc = NULL;
24929352
DV
15968
15969 /* Inconsistent output/port/pipe state happens presumably due to
15970 * a bug in one of the get_hw_state functions. Or someplace else
15971 * in our code, like the register restore mess on resume. Clamp
15972 * things to off as a safer default. */
3a3371ff 15973 for_each_intel_connector(dev, connector) {
24929352
DV
15974 if (connector->encoder != encoder)
15975 continue;
7f1950fb
EE
15976 connector->base.dpms = DRM_MODE_DPMS_OFF;
15977 connector->base.encoder = NULL;
24929352
DV
15978 }
15979 }
15980 /* Enabled encoders without active connectors will be fixed in
15981 * the crtc fixup. */
15982}
15983
04098753 15984void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15985{
15986 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15987 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15988
04098753
ID
15989 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15990 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15991 i915_disable_vga(dev);
15992 }
15993}
15994
15995void i915_redisable_vga(struct drm_device *dev)
15996{
15997 struct drm_i915_private *dev_priv = dev->dev_private;
15998
8dc8a27c
PZ
15999 /* This function can be called both from intel_modeset_setup_hw_state or
16000 * at a very early point in our resume sequence, where the power well
16001 * structures are not yet restored. Since this function is at a very
16002 * paranoid "someone might have enabled VGA while we were not looking"
16003 * level, just check if the power well is enabled instead of trying to
16004 * follow the "don't touch the power well if we don't need it" policy
16005 * the rest of the driver uses. */
6392f847 16006 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
16007 return;
16008
04098753 16009 i915_redisable_vga_power_on(dev);
6392f847
ID
16010
16011 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
16012}
16013
f9cd7b88 16014static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 16015{
f9cd7b88 16016 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 16017
f9cd7b88 16018 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
16019}
16020
f9cd7b88
VS
16021/* FIXME read out full plane state for all planes */
16022static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 16023{
b26d3ea3 16024 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 16025 struct intel_plane_state *plane_state =
b26d3ea3 16026 to_intel_plane_state(primary->state);
d032ffa0 16027
19b8d387 16028 plane_state->visible = crtc->active &&
b26d3ea3
ML
16029 primary_get_hw_state(to_intel_plane(primary));
16030
16031 if (plane_state->visible)
16032 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
16033}
16034
30e984df 16035static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
16036{
16037 struct drm_i915_private *dev_priv = dev->dev_private;
16038 enum pipe pipe;
24929352
DV
16039 struct intel_crtc *crtc;
16040 struct intel_encoder *encoder;
16041 struct intel_connector *connector;
5358901f 16042 int i;
24929352 16043
565602d7
ML
16044 dev_priv->active_crtcs = 0;
16045
d3fcc808 16046 for_each_intel_crtc(dev, crtc) {
565602d7
ML
16047 struct intel_crtc_state *crtc_state = crtc->config;
16048 int pixclk = 0;
3b117c8f 16049
ec2dc6a0 16050 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
565602d7
ML
16051 memset(crtc_state, 0, sizeof(*crtc_state));
16052 crtc_state->base.crtc = &crtc->base;
24929352 16053
565602d7
ML
16054 crtc_state->base.active = crtc_state->base.enable =
16055 dev_priv->display.get_pipe_config(crtc, crtc_state);
16056
16057 crtc->base.enabled = crtc_state->base.enable;
16058 crtc->active = crtc_state->base.active;
16059
16060 if (crtc_state->base.active) {
16061 dev_priv->active_crtcs |= 1 << crtc->pipe;
16062
c89e39f3 16063 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
565602d7 16064 pixclk = ilk_pipe_pixel_rate(crtc_state);
9558d15d 16065 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
565602d7
ML
16066 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16067 else
16068 WARN_ON(dev_priv->display.modeset_calc_cdclk);
9558d15d
VS
16069
16070 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16071 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16072 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
565602d7
ML
16073 }
16074
16075 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 16076
f9cd7b88 16077 readout_plane_state(crtc);
24929352 16078
78108b7c
VS
16079 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16080 crtc->base.base.id, crtc->base.name,
24929352
DV
16081 crtc->active ? "enabled" : "disabled");
16082 }
16083
5358901f
DV
16084 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16085 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16086
2edd6443
ACO
16087 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16088 &pll->config.hw_state);
3e369b76 16089 pll->config.crtc_mask = 0;
d3fcc808 16090 for_each_intel_crtc(dev, crtc) {
2dd66ebd 16091 if (crtc->active && crtc->config->shared_dpll == pll)
3e369b76 16092 pll->config.crtc_mask |= 1 << crtc->pipe;
5358901f 16093 }
2dd66ebd 16094 pll->active_mask = pll->config.crtc_mask;
5358901f 16095
1e6f2ddc 16096 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 16097 pll->name, pll->config.crtc_mask, pll->on);
5358901f
DV
16098 }
16099
b2784e15 16100 for_each_intel_encoder(dev, encoder) {
24929352
DV
16101 pipe = 0;
16102
16103 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
16104 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16105 encoder->base.crtc = &crtc->base;
6e3c9717 16106 encoder->get_config(encoder, crtc->config);
24929352
DV
16107 } else {
16108 encoder->base.crtc = NULL;
16109 }
16110
6f2bcceb 16111 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 16112 encoder->base.base.id,
8e329a03 16113 encoder->base.name,
24929352 16114 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 16115 pipe_name(pipe));
24929352
DV
16116 }
16117
3a3371ff 16118 for_each_intel_connector(dev, connector) {
24929352
DV
16119 if (connector->get_hw_state(connector)) {
16120 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
16121
16122 encoder = connector->encoder;
16123 connector->base.encoder = &encoder->base;
16124
16125 if (encoder->base.crtc &&
16126 encoder->base.crtc->state->active) {
16127 /*
16128 * This has to be done during hardware readout
16129 * because anything calling .crtc_disable may
16130 * rely on the connector_mask being accurate.
16131 */
16132 encoder->base.crtc->state->connector_mask |=
16133 1 << drm_connector_index(&connector->base);
e87a52b3
ML
16134 encoder->base.crtc->state->encoder_mask |=
16135 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
16136 }
16137
24929352
DV
16138 } else {
16139 connector->base.dpms = DRM_MODE_DPMS_OFF;
16140 connector->base.encoder = NULL;
16141 }
16142 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16143 connector->base.base.id,
c23cc417 16144 connector->base.name,
24929352
DV
16145 connector->base.encoder ? "enabled" : "disabled");
16146 }
7f4c6284
VS
16147
16148 for_each_intel_crtc(dev, crtc) {
16149 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16150
16151 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16152 if (crtc->base.state->active) {
16153 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16154 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16155 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16156
16157 /*
16158 * The initial mode needs to be set in order to keep
16159 * the atomic core happy. It wants a valid mode if the
16160 * crtc's enabled, so we do the above call.
16161 *
16162 * At this point some state updated by the connectors
16163 * in their ->detect() callback has not run yet, so
16164 * no recalculation can be done yet.
16165 *
16166 * Even if we could do a recalculation and modeset
16167 * right now it would cause a double modeset if
16168 * fbdev or userspace chooses a different initial mode.
16169 *
16170 * If that happens, someone indicated they wanted a
16171 * mode change, which means it's safe to do a full
16172 * recalculation.
16173 */
16174 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
16175
16176 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16177 update_scanline_offset(crtc);
7f4c6284 16178 }
e3b247da
VS
16179
16180 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 16181 }
30e984df
DV
16182}
16183
043e9bda
ML
16184/* Scan out the current hw modeset state,
16185 * and sanitizes it to the current state
16186 */
16187static void
16188intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
16189{
16190 struct drm_i915_private *dev_priv = dev->dev_private;
16191 enum pipe pipe;
30e984df
DV
16192 struct intel_crtc *crtc;
16193 struct intel_encoder *encoder;
35c95375 16194 int i;
30e984df
DV
16195
16196 intel_modeset_readout_hw_state(dev);
24929352
DV
16197
16198 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 16199 for_each_intel_encoder(dev, encoder) {
24929352
DV
16200 intel_sanitize_encoder(encoder);
16201 }
16202
055e393f 16203 for_each_pipe(dev_priv, pipe) {
24929352
DV
16204 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16205 intel_sanitize_crtc(crtc);
6e3c9717
ACO
16206 intel_dump_pipe_config(crtc, crtc->config,
16207 "[setup_hw_state]");
24929352 16208 }
9a935856 16209
d29b2f9d
ACO
16210 intel_modeset_update_connector_atomic_state(dev);
16211
35c95375
DV
16212 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16213 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16214
2dd66ebd 16215 if (!pll->on || pll->active_mask)
35c95375
DV
16216 continue;
16217
16218 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16219
2edd6443 16220 pll->funcs.disable(dev_priv, pll);
35c95375
DV
16221 pll->on = false;
16222 }
16223
666a4537 16224 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
16225 vlv_wm_get_hw_state(dev);
16226 else if (IS_GEN9(dev))
3078999f
PB
16227 skl_wm_get_hw_state(dev);
16228 else if (HAS_PCH_SPLIT(dev))
243e6a44 16229 ilk_wm_get_hw_state(dev);
292b990e
ML
16230
16231 for_each_intel_crtc(dev, crtc) {
16232 unsigned long put_domains;
16233
74bff5f9 16234 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
16235 if (WARN_ON(put_domains))
16236 modeset_put_power_domains(dev_priv, put_domains);
16237 }
16238 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
16239
16240 intel_fbc_init_pipe_state(dev_priv);
043e9bda 16241}
7d0bc1ea 16242
043e9bda
ML
16243void intel_display_resume(struct drm_device *dev)
16244{
e2c8b870
ML
16245 struct drm_i915_private *dev_priv = to_i915(dev);
16246 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16247 struct drm_modeset_acquire_ctx ctx;
043e9bda 16248 int ret;
e2c8b870 16249 bool setup = false;
f30da187 16250
e2c8b870 16251 dev_priv->modeset_restore_state = NULL;
043e9bda 16252
ea49c9ac
ML
16253 /*
16254 * This is a cludge because with real atomic modeset mode_config.mutex
16255 * won't be taken. Unfortunately some probed state like
16256 * audio_codec_enable is still protected by mode_config.mutex, so lock
16257 * it here for now.
16258 */
16259 mutex_lock(&dev->mode_config.mutex);
e2c8b870 16260 drm_modeset_acquire_init(&ctx, 0);
043e9bda 16261
e2c8b870
ML
16262retry:
16263 ret = drm_modeset_lock_all_ctx(dev, &ctx);
043e9bda 16264
e2c8b870
ML
16265 if (ret == 0 && !setup) {
16266 setup = true;
043e9bda 16267
e2c8b870
ML
16268 intel_modeset_setup_hw_state(dev);
16269 i915_redisable_vga(dev);
45e2b5f6 16270 }
8af6cf88 16271
e2c8b870
ML
16272 if (ret == 0 && state) {
16273 struct drm_crtc_state *crtc_state;
16274 struct drm_crtc *crtc;
16275 int i;
043e9bda 16276
e2c8b870
ML
16277 state->acquire_ctx = &ctx;
16278
e3d5457c
VS
16279 /* ignore any reset values/BIOS leftovers in the WM registers */
16280 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16281
e2c8b870
ML
16282 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16283 /*
16284 * Force recalculation even if we restore
16285 * current state. With fast modeset this may not result
16286 * in a modeset when the state is compatible.
16287 */
16288 crtc_state->mode_changed = true;
16289 }
16290
16291 ret = drm_atomic_commit(state);
043e9bda
ML
16292 }
16293
e2c8b870
ML
16294 if (ret == -EDEADLK) {
16295 drm_modeset_backoff(&ctx);
16296 goto retry;
16297 }
043e9bda 16298
e2c8b870
ML
16299 drm_modeset_drop_locks(&ctx);
16300 drm_modeset_acquire_fini(&ctx);
ea49c9ac 16301 mutex_unlock(&dev->mode_config.mutex);
043e9bda 16302
e2c8b870
ML
16303 if (ret) {
16304 DRM_ERROR("Restoring old state failed with %i\n", ret);
16305 drm_atomic_state_free(state);
16306 }
2c7111db
CW
16307}
16308
16309void intel_modeset_gem_init(struct drm_device *dev)
16310{
dc97997a 16311 struct drm_i915_private *dev_priv = to_i915(dev);
484b41dd 16312 struct drm_crtc *c;
2ff8fde1 16313 struct drm_i915_gem_object *obj;
e0d6149b 16314 int ret;
484b41dd 16315
dc97997a 16316 intel_init_gt_powersave(dev_priv);
ae48434c 16317
1833b134 16318 intel_modeset_init_hw(dev);
02e792fb 16319
1ee8da6d 16320 intel_setup_overlay(dev_priv);
484b41dd
JB
16321
16322 /*
16323 * Make sure any fbs we allocated at startup are properly
16324 * pinned & fenced. When we do the allocation it's too early
16325 * for this.
16326 */
70e1e0ec 16327 for_each_crtc(dev, c) {
2ff8fde1
MR
16328 obj = intel_fb_obj(c->primary->fb);
16329 if (obj == NULL)
484b41dd
JB
16330 continue;
16331
e0d6149b 16332 mutex_lock(&dev->struct_mutex);
3465c580
VS
16333 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16334 c->primary->state->rotation);
e0d6149b
TU
16335 mutex_unlock(&dev->struct_mutex);
16336 if (ret) {
484b41dd
JB
16337 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16338 to_intel_crtc(c)->pipe);
66e514c1 16339 drm_framebuffer_unreference(c->primary->fb);
5a21b665 16340 c->primary->fb = NULL;
36750f28 16341 c->primary->crtc = c->primary->state->crtc = NULL;
5a21b665 16342 update_state_fb(c->primary);
36750f28 16343 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
16344 }
16345 }
1ebaa0b9
CW
16346}
16347
16348int intel_connector_register(struct drm_connector *connector)
16349{
16350 struct intel_connector *intel_connector = to_intel_connector(connector);
16351 int ret;
16352
16353 ret = intel_backlight_device_register(intel_connector);
16354 if (ret)
16355 goto err;
16356
16357 return 0;
0962c3c9 16358
1ebaa0b9
CW
16359err:
16360 return ret;
79e53945
JB
16361}
16362
c191eca1 16363void intel_connector_unregister(struct drm_connector *connector)
4932e2c3 16364{
e63d87c0 16365 struct intel_connector *intel_connector = to_intel_connector(connector);
4932e2c3 16366
e63d87c0 16367 intel_backlight_device_unregister(intel_connector);
4932e2c3 16368 intel_panel_destroy_backlight(connector);
4932e2c3
ID
16369}
16370
79e53945
JB
16371void intel_modeset_cleanup(struct drm_device *dev)
16372{
652c393a 16373 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 16374
dc97997a 16375 intel_disable_gt_powersave(dev_priv);
2eb5252e 16376
fd0c0642
DV
16377 /*
16378 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 16379 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
16380 * experience fancy races otherwise.
16381 */
2aeb7d3a 16382 intel_irq_uninstall(dev_priv);
eb21b92b 16383
fd0c0642
DV
16384 /*
16385 * Due to the hpd irq storm handling the hotplug work can re-arm the
16386 * poll handlers. Hence disable polling after hpd handling is shut down.
16387 */
f87ea761 16388 drm_kms_helper_poll_fini(dev);
fd0c0642 16389
723bfd70
JB
16390 intel_unregister_dsm_handler();
16391
c937ab3e 16392 intel_fbc_global_disable(dev_priv);
69341a5e 16393
1630fe75
CW
16394 /* flush any delayed tasks or pending work */
16395 flush_scheduled_work();
16396
79e53945 16397 drm_mode_config_cleanup(dev);
4d7bb011 16398
1ee8da6d 16399 intel_cleanup_overlay(dev_priv);
ae48434c 16400
dc97997a 16401 intel_cleanup_gt_powersave(dev_priv);
f5949141
DV
16402
16403 intel_teardown_gmbus(dev);
79e53945
JB
16404}
16405
df0e9248
CW
16406void intel_connector_attach_encoder(struct intel_connector *connector,
16407 struct intel_encoder *encoder)
16408{
16409 connector->encoder = encoder;
16410 drm_mode_connector_attach_encoder(&connector->base,
16411 &encoder->base);
79e53945 16412}
28d52043
DA
16413
16414/*
16415 * set vga decode state - true == enable VGA decode
16416 */
16417int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16418{
16419 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 16420 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
16421 u16 gmch_ctrl;
16422
75fa041d
CW
16423 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16424 DRM_ERROR("failed to read control word\n");
16425 return -EIO;
16426 }
16427
c0cc8a55
CW
16428 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16429 return 0;
16430
28d52043
DA
16431 if (state)
16432 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16433 else
16434 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
16435
16436 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16437 DRM_ERROR("failed to write control word\n");
16438 return -EIO;
16439 }
16440
28d52043
DA
16441 return 0;
16442}
c4a1d9e4 16443
c4a1d9e4 16444struct intel_display_error_state {
ff57f1b0
PZ
16445
16446 u32 power_well_driver;
16447
63b66e5b
CW
16448 int num_transcoders;
16449
c4a1d9e4
CW
16450 struct intel_cursor_error_state {
16451 u32 control;
16452 u32 position;
16453 u32 base;
16454 u32 size;
52331309 16455 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
16456
16457 struct intel_pipe_error_state {
ddf9c536 16458 bool power_domain_on;
c4a1d9e4 16459 u32 source;
f301b1e1 16460 u32 stat;
52331309 16461 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
16462
16463 struct intel_plane_error_state {
16464 u32 control;
16465 u32 stride;
16466 u32 size;
16467 u32 pos;
16468 u32 addr;
16469 u32 surface;
16470 u32 tile_offset;
52331309 16471 } plane[I915_MAX_PIPES];
63b66e5b
CW
16472
16473 struct intel_transcoder_error_state {
ddf9c536 16474 bool power_domain_on;
63b66e5b
CW
16475 enum transcoder cpu_transcoder;
16476
16477 u32 conf;
16478
16479 u32 htotal;
16480 u32 hblank;
16481 u32 hsync;
16482 u32 vtotal;
16483 u32 vblank;
16484 u32 vsync;
16485 } transcoder[4];
c4a1d9e4
CW
16486};
16487
16488struct intel_display_error_state *
c033666a 16489intel_display_capture_error_state(struct drm_i915_private *dev_priv)
c4a1d9e4 16490{
c4a1d9e4 16491 struct intel_display_error_state *error;
63b66e5b
CW
16492 int transcoders[] = {
16493 TRANSCODER_A,
16494 TRANSCODER_B,
16495 TRANSCODER_C,
16496 TRANSCODER_EDP,
16497 };
c4a1d9e4
CW
16498 int i;
16499
c033666a 16500 if (INTEL_INFO(dev_priv)->num_pipes == 0)
63b66e5b
CW
16501 return NULL;
16502
9d1cb914 16503 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
16504 if (error == NULL)
16505 return NULL;
16506
c033666a 16507 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ff57f1b0
PZ
16508 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16509
055e393f 16510 for_each_pipe(dev_priv, i) {
ddf9c536 16511 error->pipe[i].power_domain_on =
f458ebbc
DV
16512 __intel_display_power_is_enabled(dev_priv,
16513 POWER_DOMAIN_PIPE(i));
ddf9c536 16514 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
16515 continue;
16516
5efb3e28
VS
16517 error->cursor[i].control = I915_READ(CURCNTR(i));
16518 error->cursor[i].position = I915_READ(CURPOS(i));
16519 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
16520
16521 error->plane[i].control = I915_READ(DSPCNTR(i));
16522 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
c033666a 16523 if (INTEL_GEN(dev_priv) <= 3) {
51889b35 16524 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
16525 error->plane[i].pos = I915_READ(DSPPOS(i));
16526 }
c033666a 16527 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
ca291363 16528 error->plane[i].addr = I915_READ(DSPADDR(i));
c033666a 16529 if (INTEL_GEN(dev_priv) >= 4) {
c4a1d9e4
CW
16530 error->plane[i].surface = I915_READ(DSPSURF(i));
16531 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16532 }
16533
c4a1d9e4 16534 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 16535
c033666a 16536 if (HAS_GMCH_DISPLAY(dev_priv))
f301b1e1 16537 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
16538 }
16539
4d1de975 16540 /* Note: this does not include DSI transcoders. */
c033666a 16541 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
2d1fe073 16542 if (HAS_DDI(dev_priv))
63b66e5b
CW
16543 error->num_transcoders++; /* Account for eDP. */
16544
16545 for (i = 0; i < error->num_transcoders; i++) {
16546 enum transcoder cpu_transcoder = transcoders[i];
16547
ddf9c536 16548 error->transcoder[i].power_domain_on =
f458ebbc 16549 __intel_display_power_is_enabled(dev_priv,
38cc1daf 16550 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 16551 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
16552 continue;
16553
63b66e5b
CW
16554 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16555
16556 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16557 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16558 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16559 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16560 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16561 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16562 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
16563 }
16564
16565 return error;
16566}
16567
edc3d884
MK
16568#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16569
c4a1d9e4 16570void
edc3d884 16571intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
16572 struct drm_device *dev,
16573 struct intel_display_error_state *error)
16574{
055e393f 16575 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
16576 int i;
16577
63b66e5b
CW
16578 if (!error)
16579 return;
16580
edc3d884 16581 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 16582 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16583 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16584 error->power_well_driver);
055e393f 16585 for_each_pipe(dev_priv, i) {
edc3d884 16586 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 16587 err_printf(m, " Power: %s\n",
87ad3212 16588 onoff(error->pipe[i].power_domain_on));
edc3d884 16589 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16590 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16591
16592 err_printf(m, "Plane [%d]:\n", i);
16593 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16594 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16595 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16596 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16597 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16598 }
4b71a570 16599 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16600 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16601 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16602 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16603 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16604 }
16605
edc3d884
MK
16606 err_printf(m, "Cursor [%d]:\n", i);
16607 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16608 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16609 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16610 }
63b66e5b
CW
16611
16612 for (i = 0; i < error->num_transcoders; i++) {
da205630 16613 err_printf(m, "CPU transcoder: %s\n",
63b66e5b 16614 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 16615 err_printf(m, " Power: %s\n",
87ad3212 16616 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
16617 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16618 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16619 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16620 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16621 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16622 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16623 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16624 }
c4a1d9e4 16625}