]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915/dsi: add support for DSI PLL N1 divisor values
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c
MR
48/* Primary plane formats supported by all gen */
49#define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55/* Primary plane formats for gen <= 3 */
568db4f2 56static const uint32_t i8xx_primary_formats[] = {
465c120c
MR
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60};
61
62/* Primary plane formats for gen >= 4 */
568db4f2 63static const uint32_t i965_primary_formats[] = {
465c120c
MR
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71};
72
3d7d6510
MR
73/* Cursor formats */
74static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76};
77
6b383a7f 78static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 79
f1f644dc 80static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
18442d08 82static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 83 struct intel_crtc_state *pipe_config);
f1f644dc 84
8c7b5ccb 85static int intel_set_mode(struct drm_crtc *crtc,
83a57153 86 struct drm_atomic_state *state);
eb1bfe80
JB
87static int intel_framebuffer_init(struct drm_device *dev,
88 struct intel_framebuffer *ifb,
89 struct drm_mode_fb_cmd2 *mode_cmd,
90 struct drm_i915_gem_object *obj);
5b18e57c
DV
91static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 93static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
94 struct intel_link_m_n *m_n,
95 struct intel_link_m_n *m2_n2);
29407aab 96static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
97static void haswell_set_pipeconf(struct drm_crtc *crtc);
98static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 99static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 100 const struct intel_crtc_state *pipe_config);
d288f65f 101static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 102 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
103static void intel_begin_crtc_commit(struct drm_crtc *crtc);
104static void intel_finish_crtc_commit(struct drm_crtc *crtc);
549e2bfb
CK
105static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
106 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
107static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
108 int num_connectors);
ce22dba9
ML
109static void intel_crtc_enable_planes(struct drm_crtc *crtc);
110static void intel_crtc_disable_planes(struct drm_crtc *crtc);
e7457a9a 111
0e32b39c
DA
112static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
113{
114 if (!connector->mst_port)
115 return connector->encoder;
116 else
117 return &connector->mst_port->mst_encoders[pipe]->base;
118}
119
79e53945 120typedef struct {
0206e353 121 int min, max;
79e53945
JB
122} intel_range_t;
123
124typedef struct {
0206e353
AJ
125 int dot_limit;
126 int p2_slow, p2_fast;
79e53945
JB
127} intel_p2_t;
128
d4906093
ML
129typedef struct intel_limit intel_limit_t;
130struct intel_limit {
0206e353
AJ
131 intel_range_t dot, vco, n, m, m1, m2, p, p1;
132 intel_p2_t p2;
d4906093 133};
79e53945 134
d2acd215
DV
135int
136intel_pch_rawclk(struct drm_device *dev)
137{
138 struct drm_i915_private *dev_priv = dev->dev_private;
139
140 WARN_ON(!HAS_PCH_SPLIT(dev));
141
142 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
143}
144
021357ac
CW
145static inline u32 /* units of 100MHz */
146intel_fdi_link_freq(struct drm_device *dev)
147{
8b99e68c
CW
148 if (IS_GEN5(dev)) {
149 struct drm_i915_private *dev_priv = dev->dev_private;
150 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
151 } else
152 return 27;
021357ac
CW
153}
154
5d536e28 155static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 156 .dot = { .min = 25000, .max = 350000 },
9c333719 157 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 158 .n = { .min = 2, .max = 16 },
0206e353
AJ
159 .m = { .min = 96, .max = 140 },
160 .m1 = { .min = 18, .max = 26 },
161 .m2 = { .min = 6, .max = 16 },
162 .p = { .min = 4, .max = 128 },
163 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
164 .p2 = { .dot_limit = 165000,
165 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
166};
167
5d536e28
DV
168static const intel_limit_t intel_limits_i8xx_dvo = {
169 .dot = { .min = 25000, .max = 350000 },
9c333719 170 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 171 .n = { .min = 2, .max = 16 },
5d536e28
DV
172 .m = { .min = 96, .max = 140 },
173 .m1 = { .min = 18, .max = 26 },
174 .m2 = { .min = 6, .max = 16 },
175 .p = { .min = 4, .max = 128 },
176 .p1 = { .min = 2, .max = 33 },
177 .p2 = { .dot_limit = 165000,
178 .p2_slow = 4, .p2_fast = 4 },
179};
180
e4b36699 181static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 182 .dot = { .min = 25000, .max = 350000 },
9c333719 183 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 184 .n = { .min = 2, .max = 16 },
0206e353
AJ
185 .m = { .min = 96, .max = 140 },
186 .m1 = { .min = 18, .max = 26 },
187 .m2 = { .min = 6, .max = 16 },
188 .p = { .min = 4, .max = 128 },
189 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 14, .p2_fast = 7 },
e4b36699 192};
273e27ca 193
e4b36699 194static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
195 .dot = { .min = 20000, .max = 400000 },
196 .vco = { .min = 1400000, .max = 2800000 },
197 .n = { .min = 1, .max = 6 },
198 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
199 .m1 = { .min = 8, .max = 18 },
200 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
201 .p = { .min = 5, .max = 80 },
202 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
203 .p2 = { .dot_limit = 200000,
204 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
205};
206
207static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
208 .dot = { .min = 20000, .max = 400000 },
209 .vco = { .min = 1400000, .max = 2800000 },
210 .n = { .min = 1, .max = 6 },
211 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
212 .m1 = { .min = 8, .max = 18 },
213 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
214 .p = { .min = 7, .max = 98 },
215 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
216 .p2 = { .dot_limit = 112000,
217 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
218};
219
273e27ca 220
e4b36699 221static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
222 .dot = { .min = 25000, .max = 270000 },
223 .vco = { .min = 1750000, .max = 3500000},
224 .n = { .min = 1, .max = 4 },
225 .m = { .min = 104, .max = 138 },
226 .m1 = { .min = 17, .max = 23 },
227 .m2 = { .min = 5, .max = 11 },
228 .p = { .min = 10, .max = 30 },
229 .p1 = { .min = 1, .max = 3},
230 .p2 = { .dot_limit = 270000,
231 .p2_slow = 10,
232 .p2_fast = 10
044c7c41 233 },
e4b36699
KP
234};
235
236static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
237 .dot = { .min = 22000, .max = 400000 },
238 .vco = { .min = 1750000, .max = 3500000},
239 .n = { .min = 1, .max = 4 },
240 .m = { .min = 104, .max = 138 },
241 .m1 = { .min = 16, .max = 23 },
242 .m2 = { .min = 5, .max = 11 },
243 .p = { .min = 5, .max = 80 },
244 .p1 = { .min = 1, .max = 8},
245 .p2 = { .dot_limit = 165000,
246 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
247};
248
249static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
250 .dot = { .min = 20000, .max = 115000 },
251 .vco = { .min = 1750000, .max = 3500000 },
252 .n = { .min = 1, .max = 3 },
253 .m = { .min = 104, .max = 138 },
254 .m1 = { .min = 17, .max = 23 },
255 .m2 = { .min = 5, .max = 11 },
256 .p = { .min = 28, .max = 112 },
257 .p1 = { .min = 2, .max = 8 },
258 .p2 = { .dot_limit = 0,
259 .p2_slow = 14, .p2_fast = 14
044c7c41 260 },
e4b36699
KP
261};
262
263static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
264 .dot = { .min = 80000, .max = 224000 },
265 .vco = { .min = 1750000, .max = 3500000 },
266 .n = { .min = 1, .max = 3 },
267 .m = { .min = 104, .max = 138 },
268 .m1 = { .min = 17, .max = 23 },
269 .m2 = { .min = 5, .max = 11 },
270 .p = { .min = 14, .max = 42 },
271 .p1 = { .min = 2, .max = 6 },
272 .p2 = { .dot_limit = 0,
273 .p2_slow = 7, .p2_fast = 7
044c7c41 274 },
e4b36699
KP
275};
276
f2b115e6 277static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
278 .dot = { .min = 20000, .max = 400000},
279 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 280 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
281 .n = { .min = 3, .max = 6 },
282 .m = { .min = 2, .max = 256 },
273e27ca 283 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
284 .m1 = { .min = 0, .max = 0 },
285 .m2 = { .min = 0, .max = 254 },
286 .p = { .min = 5, .max = 80 },
287 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
288 .p2 = { .dot_limit = 200000,
289 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
290};
291
f2b115e6 292static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
293 .dot = { .min = 20000, .max = 400000 },
294 .vco = { .min = 1700000, .max = 3500000 },
295 .n = { .min = 3, .max = 6 },
296 .m = { .min = 2, .max = 256 },
297 .m1 = { .min = 0, .max = 0 },
298 .m2 = { .min = 0, .max = 254 },
299 .p = { .min = 7, .max = 112 },
300 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
301 .p2 = { .dot_limit = 112000,
302 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
303};
304
273e27ca
EA
305/* Ironlake / Sandybridge
306 *
307 * We calculate clock using (register_value + 2) for N/M1/M2, so here
308 * the range value for them is (actual_value - 2).
309 */
b91ad0ec 310static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 5 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 5, .max = 80 },
318 .p1 = { .min = 1, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
321};
322
b91ad0ec 323static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
324 .dot = { .min = 25000, .max = 350000 },
325 .vco = { .min = 1760000, .max = 3510000 },
326 .n = { .min = 1, .max = 3 },
327 .m = { .min = 79, .max = 118 },
328 .m1 = { .min = 12, .max = 22 },
329 .m2 = { .min = 5, .max = 9 },
330 .p = { .min = 28, .max = 112 },
331 .p1 = { .min = 2, .max = 8 },
332 .p2 = { .dot_limit = 225000,
333 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
334};
335
336static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
337 .dot = { .min = 25000, .max = 350000 },
338 .vco = { .min = 1760000, .max = 3510000 },
339 .n = { .min = 1, .max = 3 },
340 .m = { .min = 79, .max = 127 },
341 .m1 = { .min = 12, .max = 22 },
342 .m2 = { .min = 5, .max = 9 },
343 .p = { .min = 14, .max = 56 },
344 .p1 = { .min = 2, .max = 8 },
345 .p2 = { .dot_limit = 225000,
346 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
347};
348
273e27ca 349/* LVDS 100mhz refclk limits. */
b91ad0ec 350static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
351 .dot = { .min = 25000, .max = 350000 },
352 .vco = { .min = 1760000, .max = 3510000 },
353 .n = { .min = 1, .max = 2 },
354 .m = { .min = 79, .max = 126 },
355 .m1 = { .min = 12, .max = 22 },
356 .m2 = { .min = 5, .max = 9 },
357 .p = { .min = 28, .max = 112 },
0206e353 358 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
359 .p2 = { .dot_limit = 225000,
360 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
361};
362
363static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000 },
366 .n = { .min = 1, .max = 3 },
367 .m = { .min = 79, .max = 126 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 14, .max = 42 },
0206e353 371 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
372 .p2 = { .dot_limit = 225000,
373 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
374};
375
dc730512 376static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 384 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 385 .n = { .min = 1, .max = 7 },
a0c4da24
JB
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
b99ab663 388 .p1 = { .min = 2, .max = 3 },
5fdc9c49 389 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
390};
391
ef9348c8
CML
392static const intel_limit_t intel_limits_chv = {
393 /*
394 * These are the data rate limits (measured in fast clocks)
395 * since those are the strictest limits we have. The fast
396 * clock and actual rate limits are more relaxed, so checking
397 * them would make no difference.
398 */
399 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 400 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
401 .n = { .min = 1, .max = 1 },
402 .m1 = { .min = 2, .max = 2 },
403 .m2 = { .min = 24 << 22, .max = 175 << 22 },
404 .p1 = { .min = 2, .max = 4 },
405 .p2 = { .p2_slow = 1, .p2_fast = 14 },
406};
407
5ab7b0b7
ID
408static const intel_limit_t intel_limits_bxt = {
409 /* FIXME: find real dot limits */
410 .dot = { .min = 0, .max = INT_MAX },
411 .vco = { .min = 4800000, .max = 6480000 },
412 .n = { .min = 1, .max = 1 },
413 .m1 = { .min = 2, .max = 2 },
414 /* FIXME: find real m2 limits */
415 .m2 = { .min = 2 << 22, .max = 255 << 22 },
416 .p1 = { .min = 2, .max = 4 },
417 .p2 = { .p2_slow = 1, .p2_fast = 20 },
418};
419
6b4bf1c4
VS
420static void vlv_clock(int refclk, intel_clock_t *clock)
421{
422 clock->m = clock->m1 * clock->m2;
423 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
424 if (WARN_ON(clock->n == 0 || clock->p == 0))
425 return;
fb03ac01
VS
426 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
427 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
428}
429
e0638cdf
PZ
430/**
431 * Returns whether any output on the specified pipe is of the specified type
432 */
4093561b 433bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 434{
409ee761 435 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
436 struct intel_encoder *encoder;
437
409ee761 438 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
439 if (encoder->type == type)
440 return true;
441
442 return false;
443}
444
d0737e1d
ACO
445/**
446 * Returns whether any output on the specified pipe will have the specified
447 * type after a staged modeset is complete, i.e., the same as
448 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
449 * encoder->crtc.
450 */
a93e255f
ACO
451static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
452 int type)
d0737e1d 453{
a93e255f 454 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 455 struct drm_connector *connector;
a93e255f 456 struct drm_connector_state *connector_state;
d0737e1d 457 struct intel_encoder *encoder;
a93e255f
ACO
458 int i, num_connectors = 0;
459
da3ced29 460 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
461 if (connector_state->crtc != crtc_state->base.crtc)
462 continue;
463
464 num_connectors++;
d0737e1d 465
a93e255f
ACO
466 encoder = to_intel_encoder(connector_state->best_encoder);
467 if (encoder->type == type)
d0737e1d 468 return true;
a93e255f
ACO
469 }
470
471 WARN_ON(num_connectors == 0);
d0737e1d
ACO
472
473 return false;
474}
475
a93e255f
ACO
476static const intel_limit_t *
477intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 478{
a93e255f 479 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 480 const intel_limit_t *limit;
b91ad0ec 481
a93e255f 482 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 483 if (intel_is_dual_link_lvds(dev)) {
1b894b59 484 if (refclk == 100000)
b91ad0ec
ZW
485 limit = &intel_limits_ironlake_dual_lvds_100m;
486 else
487 limit = &intel_limits_ironlake_dual_lvds;
488 } else {
1b894b59 489 if (refclk == 100000)
b91ad0ec
ZW
490 limit = &intel_limits_ironlake_single_lvds_100m;
491 else
492 limit = &intel_limits_ironlake_single_lvds;
493 }
c6bb3538 494 } else
b91ad0ec 495 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
496
497 return limit;
498}
499
a93e255f
ACO
500static const intel_limit_t *
501intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 502{
a93e255f 503 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
504 const intel_limit_t *limit;
505
a93e255f 506 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 507 if (intel_is_dual_link_lvds(dev))
e4b36699 508 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 509 else
e4b36699 510 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
511 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
512 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 513 limit = &intel_limits_g4x_hdmi;
a93e255f 514 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 515 limit = &intel_limits_g4x_sdvo;
044c7c41 516 } else /* The option is for other outputs */
e4b36699 517 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
518
519 return limit;
520}
521
a93e255f
ACO
522static const intel_limit_t *
523intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 524{
a93e255f 525 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
526 const intel_limit_t *limit;
527
5ab7b0b7
ID
528 if (IS_BROXTON(dev))
529 limit = &intel_limits_bxt;
530 else if (HAS_PCH_SPLIT(dev))
a93e255f 531 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 532 else if (IS_G4X(dev)) {
a93e255f 533 limit = intel_g4x_limit(crtc_state);
f2b115e6 534 } else if (IS_PINEVIEW(dev)) {
a93e255f 535 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 536 limit = &intel_limits_pineview_lvds;
2177832f 537 else
f2b115e6 538 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
539 } else if (IS_CHERRYVIEW(dev)) {
540 limit = &intel_limits_chv;
a0c4da24 541 } else if (IS_VALLEYVIEW(dev)) {
dc730512 542 limit = &intel_limits_vlv;
a6c45cf0 543 } else if (!IS_GEN2(dev)) {
a93e255f 544 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
545 limit = &intel_limits_i9xx_lvds;
546 else
547 limit = &intel_limits_i9xx_sdvo;
79e53945 548 } else {
a93e255f 549 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 550 limit = &intel_limits_i8xx_lvds;
a93e255f 551 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 552 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
553 else
554 limit = &intel_limits_i8xx_dac;
79e53945
JB
555 }
556 return limit;
557}
558
f2b115e6
AJ
559/* m1 is reserved as 0 in Pineview, n is a ring counter */
560static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 561{
2177832f
SL
562 clock->m = clock->m2 + 2;
563 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
564 if (WARN_ON(clock->n == 0 || clock->p == 0))
565 return;
fb03ac01
VS
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
568}
569
7429e9d4
DV
570static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
571{
572 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
573}
574
ac58c3f0 575static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 576{
7429e9d4 577 clock->m = i9xx_dpll_compute_m(clock);
79e53945 578 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
579 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
580 return;
fb03ac01
VS
581 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
582 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
583}
584
ef9348c8
CML
585static void chv_clock(int refclk, intel_clock_t *clock)
586{
587 clock->m = clock->m1 * clock->m2;
588 clock->p = clock->p1 * clock->p2;
589 if (WARN_ON(clock->n == 0 || clock->p == 0))
590 return;
591 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
592 clock->n << 22);
593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594}
595
7c04d1d9 596#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
597/**
598 * Returns whether the given set of divisors are valid for a given refclk with
599 * the given connectors.
600 */
601
1b894b59
CW
602static bool intel_PLL_is_valid(struct drm_device *dev,
603 const intel_limit_t *limit,
604 const intel_clock_t *clock)
79e53945 605{
f01b7962
VS
606 if (clock->n < limit->n.min || limit->n.max < clock->n)
607 INTELPllInvalid("n out of range\n");
79e53945 608 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 609 INTELPllInvalid("p1 out of range\n");
79e53945 610 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 611 INTELPllInvalid("m2 out of range\n");
79e53945 612 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 613 INTELPllInvalid("m1 out of range\n");
f01b7962 614
5ab7b0b7 615 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
616 if (clock->m1 <= clock->m2)
617 INTELPllInvalid("m1 <= m2\n");
618
5ab7b0b7 619 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
620 if (clock->p < limit->p.min || limit->p.max < clock->p)
621 INTELPllInvalid("p out of range\n");
622 if (clock->m < limit->m.min || limit->m.max < clock->m)
623 INTELPllInvalid("m out of range\n");
624 }
625
79e53945 626 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 627 INTELPllInvalid("vco out of range\n");
79e53945
JB
628 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
629 * connector, etc., rather than just a single range.
630 */
631 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 632 INTELPllInvalid("dot out of range\n");
79e53945
JB
633
634 return true;
635}
636
d4906093 637static bool
a93e255f
ACO
638i9xx_find_best_dpll(const intel_limit_t *limit,
639 struct intel_crtc_state *crtc_state,
cec2f356
SP
640 int target, int refclk, intel_clock_t *match_clock,
641 intel_clock_t *best_clock)
79e53945 642{
a93e255f 643 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 644 struct drm_device *dev = crtc->base.dev;
79e53945 645 intel_clock_t clock;
79e53945
JB
646 int err = target;
647
a93e255f 648 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 649 /*
a210b028
DV
650 * For LVDS just rely on its current settings for dual-channel.
651 * We haven't figured out how to reliably set up different
652 * single/dual channel state, if we even can.
79e53945 653 */
1974cad0 654 if (intel_is_dual_link_lvds(dev))
79e53945
JB
655 clock.p2 = limit->p2.p2_fast;
656 else
657 clock.p2 = limit->p2.p2_slow;
658 } else {
659 if (target < limit->p2.dot_limit)
660 clock.p2 = limit->p2.p2_slow;
661 else
662 clock.p2 = limit->p2.p2_fast;
663 }
664
0206e353 665 memset(best_clock, 0, sizeof(*best_clock));
79e53945 666
42158660
ZY
667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 clock.m1++) {
669 for (clock.m2 = limit->m2.min;
670 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 671 if (clock.m2 >= clock.m1)
42158660
ZY
672 break;
673 for (clock.n = limit->n.min;
674 clock.n <= limit->n.max; clock.n++) {
675 for (clock.p1 = limit->p1.min;
676 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
677 int this_err;
678
ac58c3f0
DV
679 i9xx_clock(refclk, &clock);
680 if (!intel_PLL_is_valid(dev, limit,
681 &clock))
682 continue;
683 if (match_clock &&
684 clock.p != match_clock->p)
685 continue;
686
687 this_err = abs(clock.dot - target);
688 if (this_err < err) {
689 *best_clock = clock;
690 err = this_err;
691 }
692 }
693 }
694 }
695 }
696
697 return (err != target);
698}
699
700static bool
a93e255f
ACO
701pnv_find_best_dpll(const intel_limit_t *limit,
702 struct intel_crtc_state *crtc_state,
ee9300bb
DV
703 int target, int refclk, intel_clock_t *match_clock,
704 intel_clock_t *best_clock)
79e53945 705{
a93e255f 706 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 707 struct drm_device *dev = crtc->base.dev;
79e53945 708 intel_clock_t clock;
79e53945
JB
709 int err = target;
710
a93e255f 711 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 712 /*
a210b028
DV
713 * For LVDS just rely on its current settings for dual-channel.
714 * We haven't figured out how to reliably set up different
715 * single/dual channel state, if we even can.
79e53945 716 */
1974cad0 717 if (intel_is_dual_link_lvds(dev))
79e53945
JB
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
0206e353 728 memset(best_clock, 0, sizeof(*best_clock));
79e53945 729
42158660
ZY
730 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
731 clock.m1++) {
732 for (clock.m2 = limit->m2.min;
733 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
734 for (clock.n = limit->n.min;
735 clock.n <= limit->n.max; clock.n++) {
736 for (clock.p1 = limit->p1.min;
737 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
738 int this_err;
739
ac58c3f0 740 pineview_clock(refclk, &clock);
1b894b59
CW
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
79e53945 743 continue;
cec2f356
SP
744 if (match_clock &&
745 clock.p != match_clock->p)
746 continue;
79e53945
JB
747
748 this_err = abs(clock.dot - target);
749 if (this_err < err) {
750 *best_clock = clock;
751 err = this_err;
752 }
753 }
754 }
755 }
756 }
757
758 return (err != target);
759}
760
d4906093 761static bool
a93e255f
ACO
762g4x_find_best_dpll(const intel_limit_t *limit,
763 struct intel_crtc_state *crtc_state,
ee9300bb
DV
764 int target, int refclk, intel_clock_t *match_clock,
765 intel_clock_t *best_clock)
d4906093 766{
a93e255f 767 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 768 struct drm_device *dev = crtc->base.dev;
d4906093
ML
769 intel_clock_t clock;
770 int max_n;
771 bool found;
6ba770dc
AJ
772 /* approximately equals target * 0.00585 */
773 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
774 found = false;
775
a93e255f 776 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 777 if (intel_is_dual_link_lvds(dev))
d4906093
ML
778 clock.p2 = limit->p2.p2_fast;
779 else
780 clock.p2 = limit->p2.p2_slow;
781 } else {
782 if (target < limit->p2.dot_limit)
783 clock.p2 = limit->p2.p2_slow;
784 else
785 clock.p2 = limit->p2.p2_fast;
786 }
787
788 memset(best_clock, 0, sizeof(*best_clock));
789 max_n = limit->n.max;
f77f13e2 790 /* based on hardware requirement, prefer smaller n to precision */
d4906093 791 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 792 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
793 for (clock.m1 = limit->m1.max;
794 clock.m1 >= limit->m1.min; clock.m1--) {
795 for (clock.m2 = limit->m2.max;
796 clock.m2 >= limit->m2.min; clock.m2--) {
797 for (clock.p1 = limit->p1.max;
798 clock.p1 >= limit->p1.min; clock.p1--) {
799 int this_err;
800
ac58c3f0 801 i9xx_clock(refclk, &clock);
1b894b59
CW
802 if (!intel_PLL_is_valid(dev, limit,
803 &clock))
d4906093 804 continue;
1b894b59
CW
805
806 this_err = abs(clock.dot - target);
d4906093
ML
807 if (this_err < err_most) {
808 *best_clock = clock;
809 err_most = this_err;
810 max_n = clock.n;
811 found = true;
812 }
813 }
814 }
815 }
816 }
2c07245f
ZW
817 return found;
818}
819
d5dd62bd
ID
820/*
821 * Check if the calculated PLL configuration is more optimal compared to the
822 * best configuration and error found so far. Return the calculated error.
823 */
824static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
825 const intel_clock_t *calculated_clock,
826 const intel_clock_t *best_clock,
827 unsigned int best_error_ppm,
828 unsigned int *error_ppm)
829{
9ca3ba01
ID
830 /*
831 * For CHV ignore the error and consider only the P value.
832 * Prefer a bigger P value based on HW requirements.
833 */
834 if (IS_CHERRYVIEW(dev)) {
835 *error_ppm = 0;
836
837 return calculated_clock->p > best_clock->p;
838 }
839
24be4e46
ID
840 if (WARN_ON_ONCE(!target_freq))
841 return false;
842
d5dd62bd
ID
843 *error_ppm = div_u64(1000000ULL *
844 abs(target_freq - calculated_clock->dot),
845 target_freq);
846 /*
847 * Prefer a better P value over a better (smaller) error if the error
848 * is small. Ensure this preference for future configurations too by
849 * setting the error to 0.
850 */
851 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
852 *error_ppm = 0;
853
854 return true;
855 }
856
857 return *error_ppm + 10 < best_error_ppm;
858}
859
a0c4da24 860static bool
a93e255f
ACO
861vlv_find_best_dpll(const intel_limit_t *limit,
862 struct intel_crtc_state *crtc_state,
ee9300bb
DV
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
a0c4da24 865{
a93e255f 866 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 867 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 868 intel_clock_t clock;
69e4f900 869 unsigned int bestppm = 1000000;
27e639bf
VS
870 /* min update 19.2 MHz */
871 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 872 bool found = false;
a0c4da24 873
6b4bf1c4
VS
874 target *= 5; /* fast clock */
875
876 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
877
878 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 879 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 880 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 881 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 882 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 883 clock.p = clock.p1 * clock.p2;
a0c4da24 884 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 885 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 886 unsigned int ppm;
69e4f900 887
6b4bf1c4
VS
888 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
889 refclk * clock.m1);
890
891 vlv_clock(refclk, &clock);
43b0ac53 892
f01b7962
VS
893 if (!intel_PLL_is_valid(dev, limit,
894 &clock))
43b0ac53
VS
895 continue;
896
d5dd62bd
ID
897 if (!vlv_PLL_is_optimal(dev, target,
898 &clock,
899 best_clock,
900 bestppm, &ppm))
901 continue;
6b4bf1c4 902
d5dd62bd
ID
903 *best_clock = clock;
904 bestppm = ppm;
905 found = true;
a0c4da24
JB
906 }
907 }
908 }
909 }
a0c4da24 910
49e497ef 911 return found;
a0c4da24 912}
a4fc5ed6 913
ef9348c8 914static bool
a93e255f
ACO
915chv_find_best_dpll(const intel_limit_t *limit,
916 struct intel_crtc_state *crtc_state,
ef9348c8
CML
917 int target, int refclk, intel_clock_t *match_clock,
918 intel_clock_t *best_clock)
919{
a93e255f 920 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 921 struct drm_device *dev = crtc->base.dev;
9ca3ba01 922 unsigned int best_error_ppm;
ef9348c8
CML
923 intel_clock_t clock;
924 uint64_t m2;
925 int found = false;
926
927 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 928 best_error_ppm = 1000000;
ef9348c8
CML
929
930 /*
931 * Based on hardware doc, the n always set to 1, and m1 always
932 * set to 2. If requires to support 200Mhz refclk, we need to
933 * revisit this because n may not 1 anymore.
934 */
935 clock.n = 1, clock.m1 = 2;
936 target *= 5; /* fast clock */
937
938 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
939 for (clock.p2 = limit->p2.p2_fast;
940 clock.p2 >= limit->p2.p2_slow;
941 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 942 unsigned int error_ppm;
ef9348c8
CML
943
944 clock.p = clock.p1 * clock.p2;
945
946 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
947 clock.n) << 22, refclk * clock.m1);
948
949 if (m2 > INT_MAX/clock.m1)
950 continue;
951
952 clock.m2 = m2;
953
954 chv_clock(refclk, &clock);
955
956 if (!intel_PLL_is_valid(dev, limit, &clock))
957 continue;
958
9ca3ba01
ID
959 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
960 best_error_ppm, &error_ppm))
961 continue;
962
963 *best_clock = clock;
964 best_error_ppm = error_ppm;
965 found = true;
ef9348c8
CML
966 }
967 }
968
969 return found;
970}
971
5ab7b0b7
ID
972bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
973 intel_clock_t *best_clock)
974{
975 int refclk = i9xx_get_refclk(crtc_state, 0);
976
977 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
978 target_clock, refclk, NULL, best_clock);
979}
980
20ddf665
VS
981bool intel_crtc_active(struct drm_crtc *crtc)
982{
983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
984
985 /* Be paranoid as we can arrive here with only partial
986 * state retrieved from the hardware during setup.
987 *
241bfc38 988 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
989 * as Haswell has gained clock readout/fastboot support.
990 *
66e514c1 991 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 992 * properly reconstruct framebuffers.
c3d1f436
MR
993 *
994 * FIXME: The intel_crtc->active here should be switched to
995 * crtc->state->active once we have proper CRTC states wired up
996 * for atomic.
20ddf665 997 */
c3d1f436 998 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 999 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1000}
1001
a5c961d1
PZ
1002enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1003 enum pipe pipe)
1004{
1005 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1007
6e3c9717 1008 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1009}
1010
fbf49ea2
VS
1011static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1012{
1013 struct drm_i915_private *dev_priv = dev->dev_private;
1014 u32 reg = PIPEDSL(pipe);
1015 u32 line1, line2;
1016 u32 line_mask;
1017
1018 if (IS_GEN2(dev))
1019 line_mask = DSL_LINEMASK_GEN2;
1020 else
1021 line_mask = DSL_LINEMASK_GEN3;
1022
1023 line1 = I915_READ(reg) & line_mask;
1024 mdelay(5);
1025 line2 = I915_READ(reg) & line_mask;
1026
1027 return line1 == line2;
1028}
1029
ab7ad7f6
KP
1030/*
1031 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1032 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1033 *
1034 * After disabling a pipe, we can't wait for vblank in the usual way,
1035 * spinning on the vblank interrupt status bit, since we won't actually
1036 * see an interrupt when the pipe is disabled.
1037 *
ab7ad7f6
KP
1038 * On Gen4 and above:
1039 * wait for the pipe register state bit to turn off
1040 *
1041 * Otherwise:
1042 * wait for the display line value to settle (it usually
1043 * ends up stopping at the start of the next frame).
58e10eb9 1044 *
9d0498a2 1045 */
575f7ab7 1046static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1047{
575f7ab7 1048 struct drm_device *dev = crtc->base.dev;
9d0498a2 1049 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1050 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1051 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1052
1053 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1054 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1055
1056 /* Wait for the Pipe State to go off */
58e10eb9
CW
1057 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1058 100))
284637d9 1059 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1060 } else {
ab7ad7f6 1061 /* Wait for the display line to settle */
fbf49ea2 1062 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1063 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1064 }
79e53945
JB
1065}
1066
b0ea7d37
DL
1067/*
1068 * ibx_digital_port_connected - is the specified port connected?
1069 * @dev_priv: i915 private structure
1070 * @port: the port to test
1071 *
1072 * Returns true if @port is connected, false otherwise.
1073 */
1074bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1075 struct intel_digital_port *port)
1076{
1077 u32 bit;
1078
c36346e3 1079 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1080 switch (port->port) {
c36346e3
DL
1081 case PORT_B:
1082 bit = SDE_PORTB_HOTPLUG;
1083 break;
1084 case PORT_C:
1085 bit = SDE_PORTC_HOTPLUG;
1086 break;
1087 case PORT_D:
1088 bit = SDE_PORTD_HOTPLUG;
1089 break;
1090 default:
1091 return true;
1092 }
1093 } else {
eba905b2 1094 switch (port->port) {
c36346e3
DL
1095 case PORT_B:
1096 bit = SDE_PORTB_HOTPLUG_CPT;
1097 break;
1098 case PORT_C:
1099 bit = SDE_PORTC_HOTPLUG_CPT;
1100 break;
1101 case PORT_D:
1102 bit = SDE_PORTD_HOTPLUG_CPT;
1103 break;
1104 default:
1105 return true;
1106 }
b0ea7d37
DL
1107 }
1108
1109 return I915_READ(SDEISR) & bit;
1110}
1111
b24e7179
JB
1112static const char *state_string(bool enabled)
1113{
1114 return enabled ? "on" : "off";
1115}
1116
1117/* Only for pre-ILK configs */
55607e8a
DV
1118void assert_pll(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
b24e7179
JB
1120{
1121 int reg;
1122 u32 val;
1123 bool cur_state;
1124
1125 reg = DPLL(pipe);
1126 val = I915_READ(reg);
1127 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1128 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1129 "PLL state assertion failure (expected %s, current %s)\n",
1130 state_string(state), state_string(cur_state));
1131}
b24e7179 1132
23538ef1
JN
1133/* XXX: the dsi pll is shared between MIPI DSI ports */
1134static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1135{
1136 u32 val;
1137 bool cur_state;
1138
1139 mutex_lock(&dev_priv->dpio_lock);
1140 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1141 mutex_unlock(&dev_priv->dpio_lock);
1142
1143 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1144 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1145 "DSI PLL state assertion failure (expected %s, current %s)\n",
1146 state_string(state), state_string(cur_state));
1147}
1148#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1149#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1150
55607e8a 1151struct intel_shared_dpll *
e2b78267
DV
1152intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1153{
1154 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1155
6e3c9717 1156 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1157 return NULL;
1158
6e3c9717 1159 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1160}
1161
040484af 1162/* For ILK+ */
55607e8a
DV
1163void assert_shared_dpll(struct drm_i915_private *dev_priv,
1164 struct intel_shared_dpll *pll,
1165 bool state)
040484af 1166{
040484af 1167 bool cur_state;
5358901f 1168 struct intel_dpll_hw_state hw_state;
040484af 1169
92b27b08 1170 if (WARN (!pll,
46edb027 1171 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1172 return;
ee7b9f93 1173
5358901f 1174 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1175 I915_STATE_WARN(cur_state != state,
5358901f
DV
1176 "%s assertion failure (expected %s, current %s)\n",
1177 pll->name, state_string(state), state_string(cur_state));
040484af 1178}
040484af
JB
1179
1180static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
1182{
1183 int reg;
1184 u32 val;
1185 bool cur_state;
ad80a810
PZ
1186 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1187 pipe);
040484af 1188
affa9354
PZ
1189 if (HAS_DDI(dev_priv->dev)) {
1190 /* DDI does not have a specific FDI_TX register */
ad80a810 1191 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1192 val = I915_READ(reg);
ad80a810 1193 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1194 } else {
1195 reg = FDI_TX_CTL(pipe);
1196 val = I915_READ(reg);
1197 cur_state = !!(val & FDI_TX_ENABLE);
1198 }
e2c719b7 1199 I915_STATE_WARN(cur_state != state,
040484af
JB
1200 "FDI TX state assertion failure (expected %s, current %s)\n",
1201 state_string(state), state_string(cur_state));
1202}
1203#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1204#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1205
1206static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1207 enum pipe pipe, bool state)
1208{
1209 int reg;
1210 u32 val;
1211 bool cur_state;
1212
d63fa0dc
PZ
1213 reg = FDI_RX_CTL(pipe);
1214 val = I915_READ(reg);
1215 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1216 I915_STATE_WARN(cur_state != state,
040484af
JB
1217 "FDI RX state assertion failure (expected %s, current %s)\n",
1218 state_string(state), state_string(cur_state));
1219}
1220#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1221#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1222
1223static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1224 enum pipe pipe)
1225{
1226 int reg;
1227 u32 val;
1228
1229 /* ILK FDI PLL is always enabled */
3d13ef2e 1230 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1231 return;
1232
bf507ef7 1233 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1234 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1235 return;
1236
040484af
JB
1237 reg = FDI_TX_CTL(pipe);
1238 val = I915_READ(reg);
e2c719b7 1239 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1240}
1241
55607e8a
DV
1242void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, bool state)
040484af
JB
1244{
1245 int reg;
1246 u32 val;
55607e8a 1247 bool cur_state;
040484af
JB
1248
1249 reg = FDI_RX_CTL(pipe);
1250 val = I915_READ(reg);
55607e8a 1251 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1252 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1253 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1254 state_string(state), state_string(cur_state));
040484af
JB
1255}
1256
b680c37a
DV
1257void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1258 enum pipe pipe)
ea0760cf 1259{
bedd4dba
JN
1260 struct drm_device *dev = dev_priv->dev;
1261 int pp_reg;
ea0760cf
JB
1262 u32 val;
1263 enum pipe panel_pipe = PIPE_A;
0de3b485 1264 bool locked = true;
ea0760cf 1265
bedd4dba
JN
1266 if (WARN_ON(HAS_DDI(dev)))
1267 return;
1268
1269 if (HAS_PCH_SPLIT(dev)) {
1270 u32 port_sel;
1271
ea0760cf 1272 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1273 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1274
1275 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1276 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1277 panel_pipe = PIPE_B;
1278 /* XXX: else fix for eDP */
1279 } else if (IS_VALLEYVIEW(dev)) {
1280 /* presumably write lock depends on pipe, not port select */
1281 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1282 panel_pipe = pipe;
ea0760cf
JB
1283 } else {
1284 pp_reg = PP_CONTROL;
bedd4dba
JN
1285 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1286 panel_pipe = PIPE_B;
ea0760cf
JB
1287 }
1288
1289 val = I915_READ(pp_reg);
1290 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1291 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1292 locked = false;
1293
e2c719b7 1294 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1295 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1296 pipe_name(pipe));
ea0760cf
JB
1297}
1298
93ce0ba6
JN
1299static void assert_cursor(struct drm_i915_private *dev_priv,
1300 enum pipe pipe, bool state)
1301{
1302 struct drm_device *dev = dev_priv->dev;
1303 bool cur_state;
1304
d9d82081 1305 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1306 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1307 else
5efb3e28 1308 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1309
e2c719b7 1310 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1311 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1312 pipe_name(pipe), state_string(state), state_string(cur_state));
1313}
1314#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1315#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1316
b840d907
JB
1317void assert_pipe(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, bool state)
b24e7179
JB
1319{
1320 int reg;
1321 u32 val;
63d7bbe9 1322 bool cur_state;
702e7a56
PZ
1323 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1324 pipe);
b24e7179 1325
b6b5d049
VS
1326 /* if we need the pipe quirk it must be always on */
1327 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1328 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1329 state = true;
1330
f458ebbc 1331 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1332 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1333 cur_state = false;
1334 } else {
1335 reg = PIPECONF(cpu_transcoder);
1336 val = I915_READ(reg);
1337 cur_state = !!(val & PIPECONF_ENABLE);
1338 }
1339
e2c719b7 1340 I915_STATE_WARN(cur_state != state,
63d7bbe9 1341 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1342 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1343}
1344
931872fc
CW
1345static void assert_plane(struct drm_i915_private *dev_priv,
1346 enum plane plane, bool state)
b24e7179
JB
1347{
1348 int reg;
1349 u32 val;
931872fc 1350 bool cur_state;
b24e7179
JB
1351
1352 reg = DSPCNTR(plane);
1353 val = I915_READ(reg);
931872fc 1354 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1355 I915_STATE_WARN(cur_state != state,
931872fc
CW
1356 "plane %c assertion failure (expected %s, current %s)\n",
1357 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1358}
1359
931872fc
CW
1360#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1361#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1362
b24e7179
JB
1363static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe)
1365{
653e1026 1366 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1367 int reg, i;
1368 u32 val;
1369 int cur_pipe;
1370
653e1026
VS
1371 /* Primary planes are fixed to pipes on gen4+ */
1372 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1373 reg = DSPCNTR(pipe);
1374 val = I915_READ(reg);
e2c719b7 1375 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1376 "plane %c assertion failure, should be disabled but not\n",
1377 plane_name(pipe));
19ec1358 1378 return;
28c05794 1379 }
19ec1358 1380
b24e7179 1381 /* Need to check both planes against the pipe */
055e393f 1382 for_each_pipe(dev_priv, i) {
b24e7179
JB
1383 reg = DSPCNTR(i);
1384 val = I915_READ(reg);
1385 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1386 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1387 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1388 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1389 plane_name(i), pipe_name(pipe));
b24e7179
JB
1390 }
1391}
1392
19332d7a
JB
1393static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe)
1395{
20674eef 1396 struct drm_device *dev = dev_priv->dev;
1fe47785 1397 int reg, sprite;
19332d7a
JB
1398 u32 val;
1399
7feb8b88 1400 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1401 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1402 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1403 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1404 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1405 sprite, pipe_name(pipe));
1406 }
1407 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1408 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1409 reg = SPCNTR(pipe, sprite);
20674eef 1410 val = I915_READ(reg);
e2c719b7 1411 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1412 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1413 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1414 }
1415 } else if (INTEL_INFO(dev)->gen >= 7) {
1416 reg = SPRCTL(pipe);
19332d7a 1417 val = I915_READ(reg);
e2c719b7 1418 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1419 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1420 plane_name(pipe), pipe_name(pipe));
1421 } else if (INTEL_INFO(dev)->gen >= 5) {
1422 reg = DVSCNTR(pipe);
19332d7a 1423 val = I915_READ(reg);
e2c719b7 1424 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1425 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1426 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1427 }
1428}
1429
08c71e5e
VS
1430static void assert_vblank_disabled(struct drm_crtc *crtc)
1431{
e2c719b7 1432 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1433 drm_crtc_vblank_put(crtc);
1434}
1435
89eff4be 1436static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1437{
1438 u32 val;
1439 bool enabled;
1440
e2c719b7 1441 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1442
92f2584a
JB
1443 val = I915_READ(PCH_DREF_CONTROL);
1444 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1445 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1446 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1447}
1448
ab9412ba
DV
1449static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe)
92f2584a
JB
1451{
1452 int reg;
1453 u32 val;
1454 bool enabled;
1455
ab9412ba 1456 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1457 val = I915_READ(reg);
1458 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1459 I915_STATE_WARN(enabled,
9db4a9c7
JB
1460 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1461 pipe_name(pipe));
92f2584a
JB
1462}
1463
4e634389
KP
1464static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1466{
1467 if ((val & DP_PORT_EN) == 0)
1468 return false;
1469
1470 if (HAS_PCH_CPT(dev_priv->dev)) {
1471 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1472 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1473 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1474 return false;
44f37d1f
CML
1475 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1476 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1477 return false;
f0575e92
KP
1478 } else {
1479 if ((val & DP_PIPE_MASK) != (pipe << 30))
1480 return false;
1481 }
1482 return true;
1483}
1484
1519b995
KP
1485static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1486 enum pipe pipe, u32 val)
1487{
dc0fa718 1488 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1489 return false;
1490
1491 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1492 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1493 return false;
44f37d1f
CML
1494 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1495 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1496 return false;
1519b995 1497 } else {
dc0fa718 1498 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1499 return false;
1500 }
1501 return true;
1502}
1503
1504static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1505 enum pipe pipe, u32 val)
1506{
1507 if ((val & LVDS_PORT_EN) == 0)
1508 return false;
1509
1510 if (HAS_PCH_CPT(dev_priv->dev)) {
1511 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1512 return false;
1513 } else {
1514 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1515 return false;
1516 }
1517 return true;
1518}
1519
1520static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1521 enum pipe pipe, u32 val)
1522{
1523 if ((val & ADPA_DAC_ENABLE) == 0)
1524 return false;
1525 if (HAS_PCH_CPT(dev_priv->dev)) {
1526 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1527 return false;
1528 } else {
1529 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1530 return false;
1531 }
1532 return true;
1533}
1534
291906f1 1535static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1536 enum pipe pipe, int reg, u32 port_sel)
291906f1 1537{
47a05eca 1538 u32 val = I915_READ(reg);
e2c719b7 1539 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1540 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1541 reg, pipe_name(pipe));
de9a35ab 1542
e2c719b7 1543 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1544 && (val & DP_PIPEB_SELECT),
de9a35ab 1545 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1546}
1547
1548static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1549 enum pipe pipe, int reg)
1550{
47a05eca 1551 u32 val = I915_READ(reg);
e2c719b7 1552 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1553 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1554 reg, pipe_name(pipe));
de9a35ab 1555
e2c719b7 1556 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1557 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1558 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1559}
1560
1561static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1562 enum pipe pipe)
1563{
1564 int reg;
1565 u32 val;
291906f1 1566
f0575e92
KP
1567 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1568 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1569 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1570
1571 reg = PCH_ADPA;
1572 val = I915_READ(reg);
e2c719b7 1573 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1574 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1575 pipe_name(pipe));
291906f1
JB
1576
1577 reg = PCH_LVDS;
1578 val = I915_READ(reg);
e2c719b7 1579 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1580 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1581 pipe_name(pipe));
291906f1 1582
e2debe91
PZ
1583 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1584 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1585 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1586}
1587
40e9cf64
JB
1588static void intel_init_dpio(struct drm_device *dev)
1589{
1590 struct drm_i915_private *dev_priv = dev->dev_private;
1591
1592 if (!IS_VALLEYVIEW(dev))
1593 return;
1594
a09caddd
CML
1595 /*
1596 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1597 * CHV x1 PHY (DP/HDMI D)
1598 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1599 */
1600 if (IS_CHERRYVIEW(dev)) {
1601 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1602 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1603 } else {
1604 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1605 }
5382f5f3
JB
1606}
1607
d288f65f 1608static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1609 const struct intel_crtc_state *pipe_config)
87442f73 1610{
426115cf
DV
1611 struct drm_device *dev = crtc->base.dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 int reg = DPLL(crtc->pipe);
d288f65f 1614 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1615
426115cf 1616 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1617
1618 /* No really, not for ILK+ */
1619 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1620
1621 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1622 if (IS_MOBILE(dev_priv->dev))
426115cf 1623 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1624
426115cf
DV
1625 I915_WRITE(reg, dpll);
1626 POSTING_READ(reg);
1627 udelay(150);
1628
1629 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1630 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1631
d288f65f 1632 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1633 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1634
1635 /* We do this three times for luck */
426115cf 1636 I915_WRITE(reg, dpll);
87442f73
DV
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
426115cf 1639 I915_WRITE(reg, dpll);
87442f73
DV
1640 POSTING_READ(reg);
1641 udelay(150); /* wait for warmup */
426115cf 1642 I915_WRITE(reg, dpll);
87442f73
DV
1643 POSTING_READ(reg);
1644 udelay(150); /* wait for warmup */
1645}
1646
d288f65f 1647static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1648 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1649{
1650 struct drm_device *dev = crtc->base.dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 int pipe = crtc->pipe;
1653 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1654 u32 tmp;
1655
1656 assert_pipe_disabled(dev_priv, crtc->pipe);
1657
1658 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1659
1660 mutex_lock(&dev_priv->dpio_lock);
1661
1662 /* Enable back the 10bit clock to display controller */
1663 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1664 tmp |= DPIO_DCLKP_EN;
1665 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1666
1667 /*
1668 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1669 */
1670 udelay(1);
1671
1672 /* Enable PLL */
d288f65f 1673 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1674
1675 /* Check PLL is locked */
a11b0703 1676 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1677 DRM_ERROR("PLL %d failed to lock\n", pipe);
1678
a11b0703 1679 /* not sure when this should be written */
d288f65f 1680 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1681 POSTING_READ(DPLL_MD(pipe));
1682
9d556c99
CML
1683 mutex_unlock(&dev_priv->dpio_lock);
1684}
1685
1c4e0274
VS
1686static int intel_num_dvo_pipes(struct drm_device *dev)
1687{
1688 struct intel_crtc *crtc;
1689 int count = 0;
1690
1691 for_each_intel_crtc(dev, crtc)
1692 count += crtc->active &&
409ee761 1693 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1694
1695 return count;
1696}
1697
66e3d5c0 1698static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1699{
66e3d5c0
DV
1700 struct drm_device *dev = crtc->base.dev;
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702 int reg = DPLL(crtc->pipe);
6e3c9717 1703 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1704
66e3d5c0 1705 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1706
63d7bbe9 1707 /* No really, not for ILK+ */
3d13ef2e 1708 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1709
1710 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1711 if (IS_MOBILE(dev) && !IS_I830(dev))
1712 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1713
1c4e0274
VS
1714 /* Enable DVO 2x clock on both PLLs if necessary */
1715 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1716 /*
1717 * It appears to be important that we don't enable this
1718 * for the current pipe before otherwise configuring the
1719 * PLL. No idea how this should be handled if multiple
1720 * DVO outputs are enabled simultaneosly.
1721 */
1722 dpll |= DPLL_DVO_2X_MODE;
1723 I915_WRITE(DPLL(!crtc->pipe),
1724 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1725 }
66e3d5c0
DV
1726
1727 /* Wait for the clocks to stabilize. */
1728 POSTING_READ(reg);
1729 udelay(150);
1730
1731 if (INTEL_INFO(dev)->gen >= 4) {
1732 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1733 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1734 } else {
1735 /* The pixel multiplier can only be updated once the
1736 * DPLL is enabled and the clocks are stable.
1737 *
1738 * So write it again.
1739 */
1740 I915_WRITE(reg, dpll);
1741 }
63d7bbe9
JB
1742
1743 /* We do this three times for luck */
66e3d5c0 1744 I915_WRITE(reg, dpll);
63d7bbe9
JB
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
66e3d5c0 1747 I915_WRITE(reg, dpll);
63d7bbe9
JB
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
66e3d5c0 1750 I915_WRITE(reg, dpll);
63d7bbe9
JB
1751 POSTING_READ(reg);
1752 udelay(150); /* wait for warmup */
1753}
1754
1755/**
50b44a44 1756 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1757 * @dev_priv: i915 private structure
1758 * @pipe: pipe PLL to disable
1759 *
1760 * Disable the PLL for @pipe, making sure the pipe is off first.
1761 *
1762 * Note! This is for pre-ILK only.
1763 */
1c4e0274 1764static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1765{
1c4e0274
VS
1766 struct drm_device *dev = crtc->base.dev;
1767 struct drm_i915_private *dev_priv = dev->dev_private;
1768 enum pipe pipe = crtc->pipe;
1769
1770 /* Disable DVO 2x clock on both PLLs if necessary */
1771 if (IS_I830(dev) &&
409ee761 1772 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1773 intel_num_dvo_pipes(dev) == 1) {
1774 I915_WRITE(DPLL(PIPE_B),
1775 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1776 I915_WRITE(DPLL(PIPE_A),
1777 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1778 }
1779
b6b5d049
VS
1780 /* Don't disable pipe or pipe PLLs if needed */
1781 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1782 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1783 return;
1784
1785 /* Make sure the pipe isn't still relying on us */
1786 assert_pipe_disabled(dev_priv, pipe);
1787
50b44a44
DV
1788 I915_WRITE(DPLL(pipe), 0);
1789 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1790}
1791
f6071166
JB
1792static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1793{
1794 u32 val = 0;
1795
1796 /* Make sure the pipe isn't still relying on us */
1797 assert_pipe_disabled(dev_priv, pipe);
1798
e5cbfbfb
ID
1799 /*
1800 * Leave integrated clock source and reference clock enabled for pipe B.
1801 * The latter is needed for VGA hotplug / manual detection.
1802 */
f6071166 1803 if (pipe == PIPE_B)
e5cbfbfb 1804 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1805 I915_WRITE(DPLL(pipe), val);
1806 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1807
1808}
1809
1810static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811{
d752048d 1812 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1813 u32 val;
1814
a11b0703
VS
1815 /* Make sure the pipe isn't still relying on us */
1816 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1817
a11b0703 1818 /* Set PLL en = 0 */
d17ec4ce 1819 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1820 if (pipe != PIPE_A)
1821 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822 I915_WRITE(DPLL(pipe), val);
1823 POSTING_READ(DPLL(pipe));
d752048d
VS
1824
1825 mutex_lock(&dev_priv->dpio_lock);
1826
1827 /* Disable 10bit clock to display controller */
1828 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829 val &= ~DPIO_DCLKP_EN;
1830 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
61407f6d
VS
1832 /* disable left/right clock distribution */
1833 if (pipe != PIPE_B) {
1834 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1835 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1836 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1837 } else {
1838 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1839 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1840 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1841 }
1842
d752048d 1843 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1844}
1845
e4607fcf 1846void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1847 struct intel_digital_port *dport,
1848 unsigned int expected_mask)
89b667f8
JB
1849{
1850 u32 port_mask;
00fc31b7 1851 int dpll_reg;
89b667f8 1852
e4607fcf
CML
1853 switch (dport->port) {
1854 case PORT_B:
89b667f8 1855 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1856 dpll_reg = DPLL(0);
e4607fcf
CML
1857 break;
1858 case PORT_C:
89b667f8 1859 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1860 dpll_reg = DPLL(0);
9b6de0a1 1861 expected_mask <<= 4;
00fc31b7
CML
1862 break;
1863 case PORT_D:
1864 port_mask = DPLL_PORTD_READY_MASK;
1865 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1866 break;
1867 default:
1868 BUG();
1869 }
89b667f8 1870
9b6de0a1
VS
1871 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1872 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1873 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1874}
1875
b14b1055
DV
1876static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1877{
1878 struct drm_device *dev = crtc->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1881
be19f0ff
CW
1882 if (WARN_ON(pll == NULL))
1883 return;
1884
3e369b76 1885 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1886 if (pll->active == 0) {
1887 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1888 WARN_ON(pll->on);
1889 assert_shared_dpll_disabled(dev_priv, pll);
1890
1891 pll->mode_set(dev_priv, pll);
1892 }
1893}
1894
92f2584a 1895/**
85b3894f 1896 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1897 * @dev_priv: i915 private structure
1898 * @pipe: pipe PLL to enable
1899 *
1900 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1901 * drives the transcoder clock.
1902 */
85b3894f 1903static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1904{
3d13ef2e
DL
1905 struct drm_device *dev = crtc->base.dev;
1906 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1907 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1908
87a875bb 1909 if (WARN_ON(pll == NULL))
48da64a8
CW
1910 return;
1911
3e369b76 1912 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1913 return;
ee7b9f93 1914
74dd6928 1915 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1916 pll->name, pll->active, pll->on,
e2b78267 1917 crtc->base.base.id);
92f2584a 1918
cdbd2316
DV
1919 if (pll->active++) {
1920 WARN_ON(!pll->on);
e9d6944e 1921 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1922 return;
1923 }
f4a091c7 1924 WARN_ON(pll->on);
ee7b9f93 1925
bd2bb1b9
PZ
1926 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1927
46edb027 1928 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1929 pll->enable(dev_priv, pll);
ee7b9f93 1930 pll->on = true;
92f2584a
JB
1931}
1932
f6daaec2 1933static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1934{
3d13ef2e
DL
1935 struct drm_device *dev = crtc->base.dev;
1936 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1937 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1938
92f2584a 1939 /* PCH only available on ILK+ */
3d13ef2e 1940 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1941 if (WARN_ON(pll == NULL))
ee7b9f93 1942 return;
92f2584a 1943
3e369b76 1944 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1945 return;
7a419866 1946
46edb027
DV
1947 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1948 pll->name, pll->active, pll->on,
e2b78267 1949 crtc->base.base.id);
7a419866 1950
48da64a8 1951 if (WARN_ON(pll->active == 0)) {
e9d6944e 1952 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1953 return;
1954 }
1955
e9d6944e 1956 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1957 WARN_ON(!pll->on);
cdbd2316 1958 if (--pll->active)
7a419866 1959 return;
ee7b9f93 1960
46edb027 1961 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1962 pll->disable(dev_priv, pll);
ee7b9f93 1963 pll->on = false;
bd2bb1b9
PZ
1964
1965 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1966}
1967
b8a4f404
PZ
1968static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1969 enum pipe pipe)
040484af 1970{
23670b32 1971 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1972 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1974 uint32_t reg, val, pipeconf_val;
040484af
JB
1975
1976 /* PCH only available on ILK+ */
55522f37 1977 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1978
1979 /* Make sure PCH DPLL is enabled */
e72f9fbf 1980 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1981 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1982
1983 /* FDI must be feeding us bits for PCH ports */
1984 assert_fdi_tx_enabled(dev_priv, pipe);
1985 assert_fdi_rx_enabled(dev_priv, pipe);
1986
23670b32
DV
1987 if (HAS_PCH_CPT(dev)) {
1988 /* Workaround: Set the timing override bit before enabling the
1989 * pch transcoder. */
1990 reg = TRANS_CHICKEN2(pipe);
1991 val = I915_READ(reg);
1992 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1993 I915_WRITE(reg, val);
59c859d6 1994 }
23670b32 1995
ab9412ba 1996 reg = PCH_TRANSCONF(pipe);
040484af 1997 val = I915_READ(reg);
5f7f726d 1998 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1999
2000 if (HAS_PCH_IBX(dev_priv->dev)) {
2001 /*
2002 * make the BPC in transcoder be consistent with
2003 * that in pipeconf reg.
2004 */
dfd07d72
DV
2005 val &= ~PIPECONF_BPC_MASK;
2006 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2007 }
5f7f726d
PZ
2008
2009 val &= ~TRANS_INTERLACE_MASK;
2010 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2011 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2012 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2013 val |= TRANS_LEGACY_INTERLACED_ILK;
2014 else
2015 val |= TRANS_INTERLACED;
5f7f726d
PZ
2016 else
2017 val |= TRANS_PROGRESSIVE;
2018
040484af
JB
2019 I915_WRITE(reg, val | TRANS_ENABLE);
2020 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2021 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2022}
2023
8fb033d7 2024static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2025 enum transcoder cpu_transcoder)
040484af 2026{
8fb033d7 2027 u32 val, pipeconf_val;
8fb033d7
PZ
2028
2029 /* PCH only available on ILK+ */
55522f37 2030 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2031
8fb033d7 2032 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2033 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2034 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2035
223a6fdf
PZ
2036 /* Workaround: set timing override bit. */
2037 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2038 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
2039 I915_WRITE(_TRANSA_CHICKEN2, val);
2040
25f3ef11 2041 val = TRANS_ENABLE;
937bb610 2042 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2043
9a76b1c6
PZ
2044 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2045 PIPECONF_INTERLACED_ILK)
a35f2679 2046 val |= TRANS_INTERLACED;
8fb033d7
PZ
2047 else
2048 val |= TRANS_PROGRESSIVE;
2049
ab9412ba
DV
2050 I915_WRITE(LPT_TRANSCONF, val);
2051 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2052 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2053}
2054
b8a4f404
PZ
2055static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2056 enum pipe pipe)
040484af 2057{
23670b32
DV
2058 struct drm_device *dev = dev_priv->dev;
2059 uint32_t reg, val;
040484af
JB
2060
2061 /* FDI relies on the transcoder */
2062 assert_fdi_tx_disabled(dev_priv, pipe);
2063 assert_fdi_rx_disabled(dev_priv, pipe);
2064
291906f1
JB
2065 /* Ports must be off as well */
2066 assert_pch_ports_disabled(dev_priv, pipe);
2067
ab9412ba 2068 reg = PCH_TRANSCONF(pipe);
040484af
JB
2069 val = I915_READ(reg);
2070 val &= ~TRANS_ENABLE;
2071 I915_WRITE(reg, val);
2072 /* wait for PCH transcoder off, transcoder state */
2073 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2074 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2075
2076 if (!HAS_PCH_IBX(dev)) {
2077 /* Workaround: Clear the timing override chicken bit again. */
2078 reg = TRANS_CHICKEN2(pipe);
2079 val = I915_READ(reg);
2080 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2081 I915_WRITE(reg, val);
2082 }
040484af
JB
2083}
2084
ab4d966c 2085static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2086{
8fb033d7
PZ
2087 u32 val;
2088
ab9412ba 2089 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2090 val &= ~TRANS_ENABLE;
ab9412ba 2091 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2092 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2093 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2094 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2095
2096 /* Workaround: clear timing override bit. */
2097 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2098 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2099 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2100}
2101
b24e7179 2102/**
309cfea8 2103 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2104 * @crtc: crtc responsible for the pipe
b24e7179 2105 *
0372264a 2106 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2107 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2108 */
e1fdc473 2109static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2110{
0372264a
PZ
2111 struct drm_device *dev = crtc->base.dev;
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2114 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2115 pipe);
1a240d4d 2116 enum pipe pch_transcoder;
b24e7179
JB
2117 int reg;
2118 u32 val;
2119
58c6eaa2 2120 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2121 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2122 assert_sprites_disabled(dev_priv, pipe);
2123
681e5811 2124 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2125 pch_transcoder = TRANSCODER_A;
2126 else
2127 pch_transcoder = pipe;
2128
b24e7179
JB
2129 /*
2130 * A pipe without a PLL won't actually be able to drive bits from
2131 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2132 * need the check.
2133 */
50360403 2134 if (HAS_GMCH_DISPLAY(dev_priv->dev))
409ee761 2135 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2136 assert_dsi_pll_enabled(dev_priv);
2137 else
2138 assert_pll_enabled(dev_priv, pipe);
040484af 2139 else {
6e3c9717 2140 if (crtc->config->has_pch_encoder) {
040484af 2141 /* if driving the PCH, we need FDI enabled */
cc391bbb 2142 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2143 assert_fdi_tx_pll_enabled(dev_priv,
2144 (enum pipe) cpu_transcoder);
040484af
JB
2145 }
2146 /* FIXME: assert CPU port conditions for SNB+ */
2147 }
b24e7179 2148
702e7a56 2149 reg = PIPECONF(cpu_transcoder);
b24e7179 2150 val = I915_READ(reg);
7ad25d48 2151 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2152 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2153 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2154 return;
7ad25d48 2155 }
00d70b15
CW
2156
2157 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2158 POSTING_READ(reg);
b24e7179
JB
2159}
2160
2161/**
309cfea8 2162 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2163 * @crtc: crtc whose pipes is to be disabled
b24e7179 2164 *
575f7ab7
VS
2165 * Disable the pipe of @crtc, making sure that various hardware
2166 * specific requirements are met, if applicable, e.g. plane
2167 * disabled, panel fitter off, etc.
b24e7179
JB
2168 *
2169 * Will wait until the pipe has shut down before returning.
2170 */
575f7ab7 2171static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2172{
575f7ab7 2173 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2174 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2175 enum pipe pipe = crtc->pipe;
b24e7179
JB
2176 int reg;
2177 u32 val;
2178
2179 /*
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2182 */
2183 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2184 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2185 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2186
702e7a56 2187 reg = PIPECONF(cpu_transcoder);
b24e7179 2188 val = I915_READ(reg);
00d70b15
CW
2189 if ((val & PIPECONF_ENABLE) == 0)
2190 return;
2191
67adc644
VS
2192 /*
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2195 */
6e3c9717 2196 if (crtc->config->double_wide)
67adc644
VS
2197 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2200 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2202 val &= ~PIPECONF_ENABLE;
2203
2204 I915_WRITE(reg, val);
2205 if ((val & PIPECONF_ENABLE) == 0)
2206 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2207}
2208
d74362c9
KP
2209/*
2210 * Plane regs are double buffered, going from enabled->disabled needs a
2211 * trigger in order to latch. The display address reg provides this.
2212 */
1dba99f4
VS
2213void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2214 enum plane plane)
d74362c9 2215{
3d13ef2e
DL
2216 struct drm_device *dev = dev_priv->dev;
2217 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2218
2219 I915_WRITE(reg, I915_READ(reg));
2220 POSTING_READ(reg);
d74362c9
KP
2221}
2222
b24e7179 2223/**
262ca2b0 2224 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2225 * @plane: plane to be enabled
2226 * @crtc: crtc for the plane
b24e7179 2227 *
fdd508a6 2228 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2229 */
fdd508a6
VS
2230static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2231 struct drm_crtc *crtc)
b24e7179 2232{
fdd508a6
VS
2233 struct drm_device *dev = plane->dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2236
2237 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2238 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b70709a6 2239 to_intel_plane_state(plane->state)->visible = true;
939c2fe8 2240
fdd508a6
VS
2241 dev_priv->display.update_primary_plane(crtc, plane->fb,
2242 crtc->x, crtc->y);
b24e7179
JB
2243}
2244
693db184
CW
2245static bool need_vtd_wa(struct drm_device *dev)
2246{
2247#ifdef CONFIG_INTEL_IOMMU
2248 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2249 return true;
2250#endif
2251 return false;
2252}
2253
50470bb0 2254unsigned int
6761dd31
TU
2255intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2256 uint64_t fb_format_modifier)
a57ce0b2 2257{
6761dd31
TU
2258 unsigned int tile_height;
2259 uint32_t pixel_bytes;
a57ce0b2 2260
b5d0e9bf
DL
2261 switch (fb_format_modifier) {
2262 case DRM_FORMAT_MOD_NONE:
2263 tile_height = 1;
2264 break;
2265 case I915_FORMAT_MOD_X_TILED:
2266 tile_height = IS_GEN2(dev) ? 16 : 8;
2267 break;
2268 case I915_FORMAT_MOD_Y_TILED:
2269 tile_height = 32;
2270 break;
2271 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2272 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2273 switch (pixel_bytes) {
b5d0e9bf 2274 default:
6761dd31 2275 case 1:
b5d0e9bf
DL
2276 tile_height = 64;
2277 break;
6761dd31
TU
2278 case 2:
2279 case 4:
b5d0e9bf
DL
2280 tile_height = 32;
2281 break;
6761dd31 2282 case 8:
b5d0e9bf
DL
2283 tile_height = 16;
2284 break;
6761dd31 2285 case 16:
b5d0e9bf
DL
2286 WARN_ONCE(1,
2287 "128-bit pixels are not supported for display!");
2288 tile_height = 16;
2289 break;
2290 }
2291 break;
2292 default:
2293 MISSING_CASE(fb_format_modifier);
2294 tile_height = 1;
2295 break;
2296 }
091df6cb 2297
6761dd31
TU
2298 return tile_height;
2299}
2300
2301unsigned int
2302intel_fb_align_height(struct drm_device *dev, unsigned int height,
2303 uint32_t pixel_format, uint64_t fb_format_modifier)
2304{
2305 return ALIGN(height, intel_tile_height(dev, pixel_format,
2306 fb_format_modifier));
a57ce0b2
JB
2307}
2308
f64b98cd
TU
2309static int
2310intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2311 const struct drm_plane_state *plane_state)
2312{
50470bb0 2313 struct intel_rotation_info *info = &view->rotation_info;
50470bb0 2314
f64b98cd
TU
2315 *view = i915_ggtt_view_normal;
2316
50470bb0
TU
2317 if (!plane_state)
2318 return 0;
2319
121920fa 2320 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2321 return 0;
2322
9abc4648 2323 *view = i915_ggtt_view_rotated;
50470bb0
TU
2324
2325 info->height = fb->height;
2326 info->pixel_format = fb->pixel_format;
2327 info->pitch = fb->pitches[0];
2328 info->fb_modifier = fb->modifier[0];
2329
f64b98cd
TU
2330 return 0;
2331}
2332
127bd2ac 2333int
850c4cdc
TU
2334intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2335 struct drm_framebuffer *fb,
82bc3b2d 2336 const struct drm_plane_state *plane_state,
a4872ba6 2337 struct intel_engine_cs *pipelined)
6b95a207 2338{
850c4cdc 2339 struct drm_device *dev = fb->dev;
ce453d81 2340 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2341 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2342 struct i915_ggtt_view view;
6b95a207
KH
2343 u32 alignment;
2344 int ret;
2345
ebcdd39e
MR
2346 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2347
7b911adc
TU
2348 switch (fb->modifier[0]) {
2349 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2350 if (INTEL_INFO(dev)->gen >= 9)
2351 alignment = 256 * 1024;
2352 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2353 alignment = 128 * 1024;
a6c45cf0 2354 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2355 alignment = 4 * 1024;
2356 else
2357 alignment = 64 * 1024;
6b95a207 2358 break;
7b911adc 2359 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2360 if (INTEL_INFO(dev)->gen >= 9)
2361 alignment = 256 * 1024;
2362 else {
2363 /* pin() will align the object as required by fence */
2364 alignment = 0;
2365 }
6b95a207 2366 break;
7b911adc 2367 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2368 case I915_FORMAT_MOD_Yf_TILED:
2369 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2370 "Y tiling bo slipped through, driver bug!\n"))
2371 return -EINVAL;
2372 alignment = 1 * 1024 * 1024;
2373 break;
6b95a207 2374 default:
7b911adc
TU
2375 MISSING_CASE(fb->modifier[0]);
2376 return -EINVAL;
6b95a207
KH
2377 }
2378
f64b98cd
TU
2379 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2380 if (ret)
2381 return ret;
2382
693db184
CW
2383 /* Note that the w/a also requires 64 PTE of padding following the
2384 * bo. We currently fill all unused PTE with the shadow page and so
2385 * we should always have valid PTE following the scanout preventing
2386 * the VT-d warning.
2387 */
2388 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2389 alignment = 256 * 1024;
2390
d6dd6843
PZ
2391 /*
2392 * Global gtt pte registers are special registers which actually forward
2393 * writes to a chunk of system memory. Which means that there is no risk
2394 * that the register values disappear as soon as we call
2395 * intel_runtime_pm_put(), so it is correct to wrap only the
2396 * pin/unpin/fence and not more.
2397 */
2398 intel_runtime_pm_get(dev_priv);
2399
ce453d81 2400 dev_priv->mm.interruptible = false;
e6617330 2401 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2402 &view);
48b956c5 2403 if (ret)
ce453d81 2404 goto err_interruptible;
6b95a207
KH
2405
2406 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2407 * fence, whereas 965+ only requires a fence if using
2408 * framebuffer compression. For simplicity, we always install
2409 * a fence as the cost is not that onerous.
2410 */
06d98131 2411 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2412 if (ret)
2413 goto err_unpin;
1690e1eb 2414
9a5a53b3 2415 i915_gem_object_pin_fence(obj);
6b95a207 2416
ce453d81 2417 dev_priv->mm.interruptible = true;
d6dd6843 2418 intel_runtime_pm_put(dev_priv);
6b95a207 2419 return 0;
48b956c5
CW
2420
2421err_unpin:
f64b98cd 2422 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2423err_interruptible:
2424 dev_priv->mm.interruptible = true;
d6dd6843 2425 intel_runtime_pm_put(dev_priv);
48b956c5 2426 return ret;
6b95a207
KH
2427}
2428
82bc3b2d
TU
2429static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2430 const struct drm_plane_state *plane_state)
1690e1eb 2431{
82bc3b2d 2432 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2433 struct i915_ggtt_view view;
2434 int ret;
82bc3b2d 2435
ebcdd39e
MR
2436 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2437
f64b98cd
TU
2438 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2439 WARN_ONCE(ret, "Couldn't get view from plane state!");
2440
1690e1eb 2441 i915_gem_object_unpin_fence(obj);
f64b98cd 2442 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2443}
2444
c2c75131
DV
2445/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2446 * is assumed to be a power-of-two. */
bc752862
CW
2447unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2448 unsigned int tiling_mode,
2449 unsigned int cpp,
2450 unsigned int pitch)
c2c75131 2451{
bc752862
CW
2452 if (tiling_mode != I915_TILING_NONE) {
2453 unsigned int tile_rows, tiles;
c2c75131 2454
bc752862
CW
2455 tile_rows = *y / 8;
2456 *y %= 8;
c2c75131 2457
bc752862
CW
2458 tiles = *x / (512/cpp);
2459 *x %= 512/cpp;
2460
2461 return tile_rows * pitch * 8 + tiles * 4096;
2462 } else {
2463 unsigned int offset;
2464
2465 offset = *y * pitch + *x * cpp;
2466 *y = 0;
2467 *x = (offset & 4095) / cpp;
2468 return offset & -4096;
2469 }
c2c75131
DV
2470}
2471
b35d63fa 2472static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2473{
2474 switch (format) {
2475 case DISPPLANE_8BPP:
2476 return DRM_FORMAT_C8;
2477 case DISPPLANE_BGRX555:
2478 return DRM_FORMAT_XRGB1555;
2479 case DISPPLANE_BGRX565:
2480 return DRM_FORMAT_RGB565;
2481 default:
2482 case DISPPLANE_BGRX888:
2483 return DRM_FORMAT_XRGB8888;
2484 case DISPPLANE_RGBX888:
2485 return DRM_FORMAT_XBGR8888;
2486 case DISPPLANE_BGRX101010:
2487 return DRM_FORMAT_XRGB2101010;
2488 case DISPPLANE_RGBX101010:
2489 return DRM_FORMAT_XBGR2101010;
2490 }
2491}
2492
bc8d7dff
DL
2493static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2494{
2495 switch (format) {
2496 case PLANE_CTL_FORMAT_RGB_565:
2497 return DRM_FORMAT_RGB565;
2498 default:
2499 case PLANE_CTL_FORMAT_XRGB_8888:
2500 if (rgb_order) {
2501 if (alpha)
2502 return DRM_FORMAT_ABGR8888;
2503 else
2504 return DRM_FORMAT_XBGR8888;
2505 } else {
2506 if (alpha)
2507 return DRM_FORMAT_ARGB8888;
2508 else
2509 return DRM_FORMAT_XRGB8888;
2510 }
2511 case PLANE_CTL_FORMAT_XRGB_2101010:
2512 if (rgb_order)
2513 return DRM_FORMAT_XBGR2101010;
2514 else
2515 return DRM_FORMAT_XRGB2101010;
2516 }
2517}
2518
5724dbd1 2519static bool
f6936e29
DV
2520intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2521 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2522{
2523 struct drm_device *dev = crtc->base.dev;
2524 struct drm_i915_gem_object *obj = NULL;
2525 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2526 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2527 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2528 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2529 PAGE_SIZE);
2530
2531 size_aligned -= base_aligned;
46f297fb 2532
ff2652ea
CW
2533 if (plane_config->size == 0)
2534 return false;
2535
f37b5c2b
DV
2536 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2537 base_aligned,
2538 base_aligned,
2539 size_aligned);
46f297fb 2540 if (!obj)
484b41dd 2541 return false;
46f297fb 2542
49af449b
DL
2543 obj->tiling_mode = plane_config->tiling;
2544 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2545 obj->stride = fb->pitches[0];
46f297fb 2546
6bf129df
DL
2547 mode_cmd.pixel_format = fb->pixel_format;
2548 mode_cmd.width = fb->width;
2549 mode_cmd.height = fb->height;
2550 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2551 mode_cmd.modifier[0] = fb->modifier[0];
2552 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2553
2554 mutex_lock(&dev->struct_mutex);
6bf129df 2555 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2556 &mode_cmd, obj)) {
46f297fb
JB
2557 DRM_DEBUG_KMS("intel fb init failed\n");
2558 goto out_unref_obj;
2559 }
46f297fb 2560 mutex_unlock(&dev->struct_mutex);
484b41dd 2561
f6936e29 2562 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2563 return true;
46f297fb
JB
2564
2565out_unref_obj:
2566 drm_gem_object_unreference(&obj->base);
2567 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2568 return false;
2569}
2570
afd65eb4
MR
2571/* Update plane->state->fb to match plane->fb after driver-internal updates */
2572static void
2573update_state_fb(struct drm_plane *plane)
2574{
2575 if (plane->fb == plane->state->fb)
2576 return;
2577
2578 if (plane->state->fb)
2579 drm_framebuffer_unreference(plane->state->fb);
2580 plane->state->fb = plane->fb;
2581 if (plane->state->fb)
2582 drm_framebuffer_reference(plane->state->fb);
2583}
2584
5724dbd1 2585static void
f6936e29
DV
2586intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2587 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2588{
2589 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2590 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2591 struct drm_crtc *c;
2592 struct intel_crtc *i;
2ff8fde1 2593 struct drm_i915_gem_object *obj;
88595ac9
DV
2594 struct drm_plane *primary = intel_crtc->base.primary;
2595 struct drm_framebuffer *fb;
484b41dd 2596
2d14030b 2597 if (!plane_config->fb)
484b41dd
JB
2598 return;
2599
f6936e29 2600 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2601 fb = &plane_config->fb->base;
2602 goto valid_fb;
f55548b5 2603 }
484b41dd 2604
2d14030b 2605 kfree(plane_config->fb);
484b41dd
JB
2606
2607 /*
2608 * Failed to alloc the obj, check to see if we should share
2609 * an fb with another CRTC instead
2610 */
70e1e0ec 2611 for_each_crtc(dev, c) {
484b41dd
JB
2612 i = to_intel_crtc(c);
2613
2614 if (c == &intel_crtc->base)
2615 continue;
2616
2ff8fde1
MR
2617 if (!i->active)
2618 continue;
2619
88595ac9
DV
2620 fb = c->primary->fb;
2621 if (!fb)
484b41dd
JB
2622 continue;
2623
88595ac9 2624 obj = intel_fb_obj(fb);
2ff8fde1 2625 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2626 drm_framebuffer_reference(fb);
2627 goto valid_fb;
484b41dd
JB
2628 }
2629 }
88595ac9
DV
2630
2631 return;
2632
2633valid_fb:
2634 obj = intel_fb_obj(fb);
2635 if (obj->tiling_mode != I915_TILING_NONE)
2636 dev_priv->preserve_bios_swizzle = true;
2637
2638 primary->fb = fb;
2639 primary->state->crtc = &intel_crtc->base;
2640 primary->crtc = &intel_crtc->base;
2641 update_state_fb(primary);
2642 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2643}
2644
29b9bde6
DV
2645static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2646 struct drm_framebuffer *fb,
2647 int x, int y)
81255565
JB
2648{
2649 struct drm_device *dev = crtc->dev;
2650 struct drm_i915_private *dev_priv = dev->dev_private;
2651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2652 struct drm_plane *primary = crtc->primary;
2653 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2654 struct drm_i915_gem_object *obj;
81255565 2655 int plane = intel_crtc->plane;
e506a0c6 2656 unsigned long linear_offset;
81255565 2657 u32 dspcntr;
f45651ba 2658 u32 reg = DSPCNTR(plane);
48404c1e 2659 int pixel_size;
f45651ba 2660
b70709a6 2661 if (!visible || !fb) {
fdd508a6
VS
2662 I915_WRITE(reg, 0);
2663 if (INTEL_INFO(dev)->gen >= 4)
2664 I915_WRITE(DSPSURF(plane), 0);
2665 else
2666 I915_WRITE(DSPADDR(plane), 0);
2667 POSTING_READ(reg);
2668 return;
2669 }
2670
c9ba6fad
VS
2671 obj = intel_fb_obj(fb);
2672 if (WARN_ON(obj == NULL))
2673 return;
2674
2675 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2676
f45651ba
VS
2677 dspcntr = DISPPLANE_GAMMA_ENABLE;
2678
fdd508a6 2679 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2680
2681 if (INTEL_INFO(dev)->gen < 4) {
2682 if (intel_crtc->pipe == PIPE_B)
2683 dspcntr |= DISPPLANE_SEL_PIPE_B;
2684
2685 /* pipesrc and dspsize control the size that is scaled from,
2686 * which should always be the user's requested size.
2687 */
2688 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2689 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2690 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2691 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2692 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2693 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2694 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2695 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2696 I915_WRITE(PRIMPOS(plane), 0);
2697 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2698 }
81255565 2699
57779d06
VS
2700 switch (fb->pixel_format) {
2701 case DRM_FORMAT_C8:
81255565
JB
2702 dspcntr |= DISPPLANE_8BPP;
2703 break;
57779d06
VS
2704 case DRM_FORMAT_XRGB1555:
2705 case DRM_FORMAT_ARGB1555:
2706 dspcntr |= DISPPLANE_BGRX555;
81255565 2707 break;
57779d06
VS
2708 case DRM_FORMAT_RGB565:
2709 dspcntr |= DISPPLANE_BGRX565;
2710 break;
2711 case DRM_FORMAT_XRGB8888:
2712 case DRM_FORMAT_ARGB8888:
2713 dspcntr |= DISPPLANE_BGRX888;
2714 break;
2715 case DRM_FORMAT_XBGR8888:
2716 case DRM_FORMAT_ABGR8888:
2717 dspcntr |= DISPPLANE_RGBX888;
2718 break;
2719 case DRM_FORMAT_XRGB2101010:
2720 case DRM_FORMAT_ARGB2101010:
2721 dspcntr |= DISPPLANE_BGRX101010;
2722 break;
2723 case DRM_FORMAT_XBGR2101010:
2724 case DRM_FORMAT_ABGR2101010:
2725 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2726 break;
2727 default:
baba133a 2728 BUG();
81255565 2729 }
57779d06 2730
f45651ba
VS
2731 if (INTEL_INFO(dev)->gen >= 4 &&
2732 obj->tiling_mode != I915_TILING_NONE)
2733 dspcntr |= DISPPLANE_TILED;
81255565 2734
de1aa629
VS
2735 if (IS_G4X(dev))
2736 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2737
b9897127 2738 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2739
c2c75131
DV
2740 if (INTEL_INFO(dev)->gen >= 4) {
2741 intel_crtc->dspaddr_offset =
bc752862 2742 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2743 pixel_size,
bc752862 2744 fb->pitches[0]);
c2c75131
DV
2745 linear_offset -= intel_crtc->dspaddr_offset;
2746 } else {
e506a0c6 2747 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2748 }
e506a0c6 2749
8e7d688b 2750 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2751 dspcntr |= DISPPLANE_ROTATE_180;
2752
6e3c9717
ACO
2753 x += (intel_crtc->config->pipe_src_w - 1);
2754 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2755
2756 /* Finding the last pixel of the last line of the display
2757 data and adding to linear_offset*/
2758 linear_offset +=
6e3c9717
ACO
2759 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2760 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2761 }
2762
2763 I915_WRITE(reg, dspcntr);
2764
01f2c773 2765 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2766 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2767 I915_WRITE(DSPSURF(plane),
2768 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2769 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2770 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2771 } else
f343c5f6 2772 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2773 POSTING_READ(reg);
17638cd6
JB
2774}
2775
29b9bde6
DV
2776static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2777 struct drm_framebuffer *fb,
2778 int x, int y)
17638cd6
JB
2779{
2780 struct drm_device *dev = crtc->dev;
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2783 struct drm_plane *primary = crtc->primary;
2784 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2785 struct drm_i915_gem_object *obj;
17638cd6 2786 int plane = intel_crtc->plane;
e506a0c6 2787 unsigned long linear_offset;
17638cd6 2788 u32 dspcntr;
f45651ba 2789 u32 reg = DSPCNTR(plane);
48404c1e 2790 int pixel_size;
f45651ba 2791
b70709a6 2792 if (!visible || !fb) {
fdd508a6
VS
2793 I915_WRITE(reg, 0);
2794 I915_WRITE(DSPSURF(plane), 0);
2795 POSTING_READ(reg);
2796 return;
2797 }
2798
c9ba6fad
VS
2799 obj = intel_fb_obj(fb);
2800 if (WARN_ON(obj == NULL))
2801 return;
2802
2803 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2804
f45651ba
VS
2805 dspcntr = DISPPLANE_GAMMA_ENABLE;
2806
fdd508a6 2807 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2808
2809 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2810 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2811
57779d06
VS
2812 switch (fb->pixel_format) {
2813 case DRM_FORMAT_C8:
17638cd6
JB
2814 dspcntr |= DISPPLANE_8BPP;
2815 break;
57779d06
VS
2816 case DRM_FORMAT_RGB565:
2817 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2818 break;
57779d06
VS
2819 case DRM_FORMAT_XRGB8888:
2820 case DRM_FORMAT_ARGB8888:
2821 dspcntr |= DISPPLANE_BGRX888;
2822 break;
2823 case DRM_FORMAT_XBGR8888:
2824 case DRM_FORMAT_ABGR8888:
2825 dspcntr |= DISPPLANE_RGBX888;
2826 break;
2827 case DRM_FORMAT_XRGB2101010:
2828 case DRM_FORMAT_ARGB2101010:
2829 dspcntr |= DISPPLANE_BGRX101010;
2830 break;
2831 case DRM_FORMAT_XBGR2101010:
2832 case DRM_FORMAT_ABGR2101010:
2833 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2834 break;
2835 default:
baba133a 2836 BUG();
17638cd6
JB
2837 }
2838
2839 if (obj->tiling_mode != I915_TILING_NONE)
2840 dspcntr |= DISPPLANE_TILED;
17638cd6 2841
f45651ba 2842 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2843 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2844
b9897127 2845 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2846 intel_crtc->dspaddr_offset =
bc752862 2847 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2848 pixel_size,
bc752862 2849 fb->pitches[0]);
c2c75131 2850 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2851 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2852 dspcntr |= DISPPLANE_ROTATE_180;
2853
2854 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2855 x += (intel_crtc->config->pipe_src_w - 1);
2856 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2857
2858 /* Finding the last pixel of the last line of the display
2859 data and adding to linear_offset*/
2860 linear_offset +=
6e3c9717
ACO
2861 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2862 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2863 }
2864 }
2865
2866 I915_WRITE(reg, dspcntr);
17638cd6 2867
01f2c773 2868 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2869 I915_WRITE(DSPSURF(plane),
2870 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2871 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2872 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873 } else {
2874 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876 }
17638cd6 2877 POSTING_READ(reg);
17638cd6
JB
2878}
2879
b321803d
DL
2880u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2881 uint32_t pixel_format)
2882{
2883 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2884
2885 /*
2886 * The stride is either expressed as a multiple of 64 bytes
2887 * chunks for linear buffers or in number of tiles for tiled
2888 * buffers.
2889 */
2890 switch (fb_modifier) {
2891 case DRM_FORMAT_MOD_NONE:
2892 return 64;
2893 case I915_FORMAT_MOD_X_TILED:
2894 if (INTEL_INFO(dev)->gen == 2)
2895 return 128;
2896 return 512;
2897 case I915_FORMAT_MOD_Y_TILED:
2898 /* No need to check for old gens and Y tiling since this is
2899 * about the display engine and those will be blocked before
2900 * we get here.
2901 */
2902 return 128;
2903 case I915_FORMAT_MOD_Yf_TILED:
2904 if (bits_per_pixel == 8)
2905 return 64;
2906 else
2907 return 128;
2908 default:
2909 MISSING_CASE(fb_modifier);
2910 return 64;
2911 }
2912}
2913
121920fa
TU
2914unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2915 struct drm_i915_gem_object *obj)
2916{
9abc4648 2917 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
121920fa
TU
2918
2919 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2920 view = &i915_ggtt_view_rotated;
121920fa
TU
2921
2922 return i915_gem_obj_ggtt_offset_view(obj, view);
2923}
2924
a1b2278e
CK
2925/*
2926 * This function detaches (aka. unbinds) unused scalers in hardware
2927 */
2928void skl_detach_scalers(struct intel_crtc *intel_crtc)
2929{
2930 struct drm_device *dev;
2931 struct drm_i915_private *dev_priv;
2932 struct intel_crtc_scaler_state *scaler_state;
2933 int i;
2934
2935 if (!intel_crtc || !intel_crtc->config)
2936 return;
2937
2938 dev = intel_crtc->base.dev;
2939 dev_priv = dev->dev_private;
2940 scaler_state = &intel_crtc->config->scaler_state;
2941
2942 /* loop through and disable scalers that aren't in use */
2943 for (i = 0; i < intel_crtc->num_scalers; i++) {
2944 if (!scaler_state->scalers[i].in_use) {
2945 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2946 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2947 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2948 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2949 intel_crtc->base.base.id, intel_crtc->pipe, i);
2950 }
2951 }
2952}
2953
6156a456 2954u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2955{
65438bcc 2956 u32 format = 0;
b250a4c4 2957
6156a456 2958 switch (pixel_format) {
d161cf7a
DL
2959 case DRM_FORMAT_C8:
2960 format = PLANE_CTL_FORMAT_INDEXED;
2961 break;
70d21f0e 2962 case DRM_FORMAT_RGB565:
65438bcc 2963 format = PLANE_CTL_FORMAT_RGB_565;
f75fb42a 2964 break;
70d21f0e 2965 case DRM_FORMAT_XBGR8888:
65438bcc 2966 format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456
CK
2967 break;
2968 case DRM_FORMAT_XRGB8888:
65438bcc 2969 format = PLANE_CTL_FORMAT_XRGB_8888;
70d21f0e 2970 break;
6156a456
CK
2971 /*
2972 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2973 * to be already pre-multiplied. We need to add a knob (or a different
2974 * DRM_FORMAT) for user-space to configure that.
2975 */
f75fb42a 2976 case DRM_FORMAT_ABGR8888:
65438bcc 2977 format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456
CK
2978 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2979 break;
2980 case DRM_FORMAT_ARGB8888:
65438bcc 2981 format = PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2982 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
f75fb42a 2983 break;
70d21f0e 2984 case DRM_FORMAT_XRGB2101010:
65438bcc 2985 format = PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e
DL
2986 break;
2987 case DRM_FORMAT_XBGR2101010:
65438bcc 2988 format = PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456
CK
2989 break;
2990 case DRM_FORMAT_YUYV:
65438bcc 2991 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456
CK
2992 break;
2993 case DRM_FORMAT_YVYU:
65438bcc 2994 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456
CK
2995 break;
2996 case DRM_FORMAT_UYVY:
65438bcc 2997 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456
CK
2998 break;
2999 case DRM_FORMAT_VYUY:
65438bcc 3000 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e
DL
3001 break;
3002 default:
4249eeef 3003 MISSING_CASE(pixel_format);
70d21f0e 3004 }
8cfcba41 3005
65438bcc 3006 return format;
6156a456 3007}
70d21f0e 3008
6156a456
CK
3009u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3010{
3011 u32 plane_ctl_tiling = 0;
b250a4c4 3012
6156a456 3013 switch (fb_modifier) {
30af77c4 3014 case DRM_FORMAT_MOD_NONE:
70d21f0e 3015 break;
30af77c4 3016 case I915_FORMAT_MOD_X_TILED:
6156a456 3017 plane_ctl_tiling = PLANE_CTL_TILED_X;
b321803d
DL
3018 break;
3019 case I915_FORMAT_MOD_Y_TILED:
6156a456 3020 plane_ctl_tiling = PLANE_CTL_TILED_Y;
b321803d
DL
3021 break;
3022 case I915_FORMAT_MOD_Yf_TILED:
6156a456 3023 plane_ctl_tiling = PLANE_CTL_TILED_YF;
70d21f0e
DL
3024 break;
3025 default:
6156a456 3026 MISSING_CASE(fb_modifier);
70d21f0e 3027 }
8cfcba41 3028
6156a456
CK
3029 return plane_ctl_tiling;
3030}
70d21f0e 3031
6156a456
CK
3032u32 skl_plane_ctl_rotation(unsigned int rotation)
3033{
3034 u32 plane_ctl_rotation = 0;
b250a4c4 3035
3b7a5119 3036 switch (rotation) {
6156a456
CK
3037 case BIT(DRM_ROTATE_0):
3038 break;
3b7a5119 3039 case BIT(DRM_ROTATE_90):
6156a456 3040 plane_ctl_rotation = PLANE_CTL_ROTATE_90;
3b7a5119 3041 break;
3b7a5119 3042 case BIT(DRM_ROTATE_180):
6156a456 3043 plane_ctl_rotation = PLANE_CTL_ROTATE_180;
3b7a5119 3044 break;
3b7a5119 3045 case BIT(DRM_ROTATE_270):
6156a456 3046 plane_ctl_rotation = PLANE_CTL_ROTATE_270;
3b7a5119 3047 break;
6156a456
CK
3048 default:
3049 MISSING_CASE(rotation);
3050 }
3051
3052 return plane_ctl_rotation;
3053}
3054
3055static void skylake_update_primary_plane(struct drm_crtc *crtc,
3056 struct drm_framebuffer *fb,
3057 int x, int y)
3058{
3059 struct drm_device *dev = crtc->dev;
3060 struct drm_i915_private *dev_priv = dev->dev_private;
3061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
3062 struct drm_plane *plane = crtc->primary;
3063 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3064 struct drm_i915_gem_object *obj;
3065 int pipe = intel_crtc->pipe;
3066 u32 plane_ctl, stride_div, stride;
3067 u32 tile_height, plane_offset, plane_size;
3068 unsigned int rotation;
3069 int x_offset, y_offset;
3070 unsigned long surf_addr;
6156a456
CK
3071 struct intel_crtc_state *crtc_state = intel_crtc->config;
3072 struct intel_plane_state *plane_state;
3073 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3074 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3075 int scaler_id = -1;
3076
6156a456
CK
3077 plane_state = to_intel_plane_state(plane->state);
3078
b70709a6 3079 if (!visible || !fb) {
6156a456
CK
3080 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3081 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3082 POSTING_READ(PLANE_CTL(pipe, 0));
3083 return;
3b7a5119 3084 }
70d21f0e 3085
6156a456
CK
3086 plane_ctl = PLANE_CTL_ENABLE |
3087 PLANE_CTL_PIPE_GAMMA_ENABLE |
3088 PLANE_CTL_PIPE_CSC_ENABLE;
3089
3090 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3091 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3092 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3093
3094 rotation = plane->state->rotation;
3095 plane_ctl |= skl_plane_ctl_rotation(rotation);
3096
b321803d
DL
3097 obj = intel_fb_obj(fb);
3098 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3099 fb->pixel_format);
3b7a5119
SJ
3100 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3101
6156a456
CK
3102 /*
3103 * FIXME: intel_plane_state->src, dst aren't set when transitional
3104 * update_plane helpers are called from legacy paths.
3105 * Once full atomic crtc is available, below check can be avoided.
3106 */
3107 if (drm_rect_width(&plane_state->src)) {
3108 scaler_id = plane_state->scaler_id;
3109 src_x = plane_state->src.x1 >> 16;
3110 src_y = plane_state->src.y1 >> 16;
3111 src_w = drm_rect_width(&plane_state->src) >> 16;
3112 src_h = drm_rect_height(&plane_state->src) >> 16;
3113 dst_x = plane_state->dst.x1;
3114 dst_y = plane_state->dst.y1;
3115 dst_w = drm_rect_width(&plane_state->dst);
3116 dst_h = drm_rect_height(&plane_state->dst);
3117
3118 WARN_ON(x != src_x || y != src_y);
3119 } else {
3120 src_w = intel_crtc->config->pipe_src_w;
3121 src_h = intel_crtc->config->pipe_src_h;
3122 }
3123
3b7a5119
SJ
3124 if (intel_rotation_90_or_270(rotation)) {
3125 /* stride = Surface height in tiles */
2614f17d 3126 tile_height = intel_tile_height(dev, fb->pixel_format,
3b7a5119
SJ
3127 fb->modifier[0]);
3128 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3129 x_offset = stride * tile_height - y - src_h;
3b7a5119 3130 y_offset = x;
6156a456 3131 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3132 } else {
3133 stride = fb->pitches[0] / stride_div;
3134 x_offset = x;
3135 y_offset = y;
6156a456 3136 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3137 }
3138 plane_offset = y_offset << 16 | x_offset;
b321803d 3139
70d21f0e 3140 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3141 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3142 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3143 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3144
3145 if (scaler_id >= 0) {
3146 uint32_t ps_ctrl = 0;
3147
3148 WARN_ON(!dst_w || !dst_h);
3149 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3150 crtc_state->scaler_state.scalers[scaler_id].mode;
3151 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3152 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3153 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3154 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3155 I915_WRITE(PLANE_POS(pipe, 0), 0);
3156 } else {
3157 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3158 }
3159
121920fa 3160 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3161
3162 POSTING_READ(PLANE_SURF(pipe, 0));
3163}
3164
17638cd6
JB
3165/* Assume fb object is pinned & idle & fenced and just update base pointers */
3166static int
3167intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3168 int x, int y, enum mode_set_atomic state)
3169{
3170 struct drm_device *dev = crtc->dev;
3171 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3172
6b8e6ed0
CW
3173 if (dev_priv->display.disable_fbc)
3174 dev_priv->display.disable_fbc(dev);
81255565 3175
29b9bde6
DV
3176 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3177
3178 return 0;
81255565
JB
3179}
3180
7514747d 3181static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3182{
96a02917
VS
3183 struct drm_crtc *crtc;
3184
70e1e0ec 3185 for_each_crtc(dev, crtc) {
96a02917
VS
3186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3187 enum plane plane = intel_crtc->plane;
3188
3189 intel_prepare_page_flip(dev, plane);
3190 intel_finish_page_flip_plane(dev, plane);
3191 }
7514747d
VS
3192}
3193
3194static void intel_update_primary_planes(struct drm_device *dev)
3195{
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 struct drm_crtc *crtc;
96a02917 3198
70e1e0ec 3199 for_each_crtc(dev, crtc) {
96a02917
VS
3200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201
51fd371b 3202 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3203 /*
3204 * FIXME: Once we have proper support for primary planes (and
3205 * disabling them without disabling the entire crtc) allow again
66e514c1 3206 * a NULL crtc->primary->fb.
947fdaad 3207 */
f4510a27 3208 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3209 dev_priv->display.update_primary_plane(crtc,
66e514c1 3210 crtc->primary->fb,
262ca2b0
MR
3211 crtc->x,
3212 crtc->y);
51fd371b 3213 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3214 }
3215}
3216
ce22dba9
ML
3217void intel_crtc_reset(struct intel_crtc *crtc)
3218{
3219 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3220
3221 if (!crtc->active)
3222 return;
3223
3224 intel_crtc_disable_planes(&crtc->base);
3225 dev_priv->display.crtc_disable(&crtc->base);
3226 dev_priv->display.crtc_enable(&crtc->base);
3227 intel_crtc_enable_planes(&crtc->base);
3228}
3229
7514747d
VS
3230void intel_prepare_reset(struct drm_device *dev)
3231{
f98ce92f
VS
3232 struct drm_i915_private *dev_priv = to_i915(dev);
3233 struct intel_crtc *crtc;
3234
7514747d
VS
3235 /* no reset support for gen2 */
3236 if (IS_GEN2(dev))
3237 return;
3238
3239 /* reset doesn't touch the display */
3240 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3241 return;
3242
3243 drm_modeset_lock_all(dev);
f98ce92f
VS
3244
3245 /*
3246 * Disabling the crtcs gracefully seems nicer. Also the
3247 * g33 docs say we should at least disable all the planes.
3248 */
3249 for_each_intel_crtc(dev, crtc) {
ce22dba9
ML
3250 if (!crtc->active)
3251 continue;
3252
3253 intel_crtc_disable_planes(&crtc->base);
3254 dev_priv->display.crtc_disable(&crtc->base);
f98ce92f 3255 }
7514747d
VS
3256}
3257
3258void intel_finish_reset(struct drm_device *dev)
3259{
3260 struct drm_i915_private *dev_priv = to_i915(dev);
3261
3262 /*
3263 * Flips in the rings will be nuked by the reset,
3264 * so complete all pending flips so that user space
3265 * will get its events and not get stuck.
3266 */
3267 intel_complete_page_flips(dev);
3268
3269 /* no reset support for gen2 */
3270 if (IS_GEN2(dev))
3271 return;
3272
3273 /* reset doesn't touch the display */
3274 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3275 /*
3276 * Flips in the rings have been nuked by the reset,
3277 * so update the base address of all primary
3278 * planes to the the last fb to make sure we're
3279 * showing the correct fb after a reset.
3280 */
3281 intel_update_primary_planes(dev);
3282 return;
3283 }
3284
3285 /*
3286 * The display has been reset as well,
3287 * so need a full re-initialization.
3288 */
3289 intel_runtime_pm_disable_interrupts(dev_priv);
3290 intel_runtime_pm_enable_interrupts(dev_priv);
3291
3292 intel_modeset_init_hw(dev);
3293
3294 spin_lock_irq(&dev_priv->irq_lock);
3295 if (dev_priv->display.hpd_irq_setup)
3296 dev_priv->display.hpd_irq_setup(dev);
3297 spin_unlock_irq(&dev_priv->irq_lock);
3298
3299 intel_modeset_setup_hw_state(dev, true);
3300
3301 intel_hpd_init(dev_priv);
3302
3303 drm_modeset_unlock_all(dev);
3304}
3305
2e2f351d 3306static void
14667a4b
CW
3307intel_finish_fb(struct drm_framebuffer *old_fb)
3308{
2ff8fde1 3309 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2e2f351d 3310 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14667a4b
CW
3311 bool was_interruptible = dev_priv->mm.interruptible;
3312 int ret;
3313
14667a4b
CW
3314 /* Big Hammer, we also need to ensure that any pending
3315 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3316 * current scanout is retired before unpinning the old
2e2f351d
CW
3317 * framebuffer. Note that we rely on userspace rendering
3318 * into the buffer attached to the pipe they are waiting
3319 * on. If not, userspace generates a GPU hang with IPEHR
3320 * point to the MI_WAIT_FOR_EVENT.
14667a4b
CW
3321 *
3322 * This should only fail upon a hung GPU, in which case we
3323 * can safely continue.
3324 */
3325 dev_priv->mm.interruptible = false;
2e2f351d 3326 ret = i915_gem_object_wait_rendering(obj, true);
14667a4b
CW
3327 dev_priv->mm.interruptible = was_interruptible;
3328
2e2f351d 3329 WARN_ON(ret);
14667a4b
CW
3330}
3331
7d5e3799
CW
3332static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3333{
3334 struct drm_device *dev = crtc->dev;
3335 struct drm_i915_private *dev_priv = dev->dev_private;
3336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3337 bool pending;
3338
3339 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3340 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3341 return false;
3342
5e2d7afc 3343 spin_lock_irq(&dev->event_lock);
7d5e3799 3344 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3345 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3346
3347 return pending;
3348}
3349
e30e8f75
GP
3350static void intel_update_pipe_size(struct intel_crtc *crtc)
3351{
3352 struct drm_device *dev = crtc->base.dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 const struct drm_display_mode *adjusted_mode;
3355
3356 if (!i915.fastboot)
3357 return;
3358
3359 /*
3360 * Update pipe size and adjust fitter if needed: the reason for this is
3361 * that in compute_mode_changes we check the native mode (not the pfit
3362 * mode) to see if we can flip rather than do a full mode set. In the
3363 * fastboot case, we'll flip, but if we don't update the pipesrc and
3364 * pfit state, we'll end up with a big fb scanned out into the wrong
3365 * sized surface.
3366 *
3367 * To fix this properly, we need to hoist the checks up into
3368 * compute_mode_changes (or above), check the actual pfit state and
3369 * whether the platform allows pfit disable with pipe active, and only
3370 * then update the pipesrc and pfit state, even on the flip path.
3371 */
3372
6e3c9717 3373 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3374
3375 I915_WRITE(PIPESRC(crtc->pipe),
3376 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3377 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3378 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3379 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3380 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3381 I915_WRITE(PF_CTL(crtc->pipe), 0);
3382 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3383 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3384 }
6e3c9717
ACO
3385 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3386 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3387}
3388
5e84e1a4
ZW
3389static void intel_fdi_normal_train(struct drm_crtc *crtc)
3390{
3391 struct drm_device *dev = crtc->dev;
3392 struct drm_i915_private *dev_priv = dev->dev_private;
3393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3394 int pipe = intel_crtc->pipe;
3395 u32 reg, temp;
3396
3397 /* enable normal train */
3398 reg = FDI_TX_CTL(pipe);
3399 temp = I915_READ(reg);
61e499bf 3400 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3401 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3402 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3403 } else {
3404 temp &= ~FDI_LINK_TRAIN_NONE;
3405 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3406 }
5e84e1a4
ZW
3407 I915_WRITE(reg, temp);
3408
3409 reg = FDI_RX_CTL(pipe);
3410 temp = I915_READ(reg);
3411 if (HAS_PCH_CPT(dev)) {
3412 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3413 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3414 } else {
3415 temp &= ~FDI_LINK_TRAIN_NONE;
3416 temp |= FDI_LINK_TRAIN_NONE;
3417 }
3418 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3419
3420 /* wait one idle pattern time */
3421 POSTING_READ(reg);
3422 udelay(1000);
357555c0
JB
3423
3424 /* IVB wants error correction enabled */
3425 if (IS_IVYBRIDGE(dev))
3426 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3427 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3428}
3429
8db9d77b
ZW
3430/* The FDI link training functions for ILK/Ibexpeak. */
3431static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3432{
3433 struct drm_device *dev = crtc->dev;
3434 struct drm_i915_private *dev_priv = dev->dev_private;
3435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3436 int pipe = intel_crtc->pipe;
5eddb70b 3437 u32 reg, temp, tries;
8db9d77b 3438
1c8562f6 3439 /* FDI needs bits from pipe first */
0fc932b8 3440 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3441
e1a44743
AJ
3442 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3443 for train result */
5eddb70b
CW
3444 reg = FDI_RX_IMR(pipe);
3445 temp = I915_READ(reg);
e1a44743
AJ
3446 temp &= ~FDI_RX_SYMBOL_LOCK;
3447 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3448 I915_WRITE(reg, temp);
3449 I915_READ(reg);
e1a44743
AJ
3450 udelay(150);
3451
8db9d77b 3452 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
627eb5a3 3455 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3456 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3457 temp &= ~FDI_LINK_TRAIN_NONE;
3458 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3459 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3460
5eddb70b
CW
3461 reg = FDI_RX_CTL(pipe);
3462 temp = I915_READ(reg);
8db9d77b
ZW
3463 temp &= ~FDI_LINK_TRAIN_NONE;
3464 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3465 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3466
3467 POSTING_READ(reg);
8db9d77b
ZW
3468 udelay(150);
3469
5b2adf89 3470 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3471 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3472 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3473 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3474
5eddb70b 3475 reg = FDI_RX_IIR(pipe);
e1a44743 3476 for (tries = 0; tries < 5; tries++) {
5eddb70b 3477 temp = I915_READ(reg);
8db9d77b
ZW
3478 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3479
3480 if ((temp & FDI_RX_BIT_LOCK)) {
3481 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3482 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3483 break;
3484 }
8db9d77b 3485 }
e1a44743 3486 if (tries == 5)
5eddb70b 3487 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3488
3489 /* Train 2 */
5eddb70b
CW
3490 reg = FDI_TX_CTL(pipe);
3491 temp = I915_READ(reg);
8db9d77b
ZW
3492 temp &= ~FDI_LINK_TRAIN_NONE;
3493 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3494 I915_WRITE(reg, temp);
8db9d77b 3495
5eddb70b
CW
3496 reg = FDI_RX_CTL(pipe);
3497 temp = I915_READ(reg);
8db9d77b
ZW
3498 temp &= ~FDI_LINK_TRAIN_NONE;
3499 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3500 I915_WRITE(reg, temp);
8db9d77b 3501
5eddb70b
CW
3502 POSTING_READ(reg);
3503 udelay(150);
8db9d77b 3504
5eddb70b 3505 reg = FDI_RX_IIR(pipe);
e1a44743 3506 for (tries = 0; tries < 5; tries++) {
5eddb70b 3507 temp = I915_READ(reg);
8db9d77b
ZW
3508 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3509
3510 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3511 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3512 DRM_DEBUG_KMS("FDI train 2 done.\n");
3513 break;
3514 }
8db9d77b 3515 }
e1a44743 3516 if (tries == 5)
5eddb70b 3517 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3518
3519 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3520
8db9d77b
ZW
3521}
3522
0206e353 3523static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3524 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3525 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3526 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3527 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3528};
3529
3530/* The FDI link training functions for SNB/Cougarpoint. */
3531static void gen6_fdi_link_train(struct drm_crtc *crtc)
3532{
3533 struct drm_device *dev = crtc->dev;
3534 struct drm_i915_private *dev_priv = dev->dev_private;
3535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3536 int pipe = intel_crtc->pipe;
fa37d39e 3537 u32 reg, temp, i, retry;
8db9d77b 3538
e1a44743
AJ
3539 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3540 for train result */
5eddb70b
CW
3541 reg = FDI_RX_IMR(pipe);
3542 temp = I915_READ(reg);
e1a44743
AJ
3543 temp &= ~FDI_RX_SYMBOL_LOCK;
3544 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3545 I915_WRITE(reg, temp);
3546
3547 POSTING_READ(reg);
e1a44743
AJ
3548 udelay(150);
3549
8db9d77b 3550 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3551 reg = FDI_TX_CTL(pipe);
3552 temp = I915_READ(reg);
627eb5a3 3553 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3554 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3555 temp &= ~FDI_LINK_TRAIN_NONE;
3556 temp |= FDI_LINK_TRAIN_PATTERN_1;
3557 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3558 /* SNB-B */
3559 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3560 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3561
d74cf324
DV
3562 I915_WRITE(FDI_RX_MISC(pipe),
3563 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3564
5eddb70b
CW
3565 reg = FDI_RX_CTL(pipe);
3566 temp = I915_READ(reg);
8db9d77b
ZW
3567 if (HAS_PCH_CPT(dev)) {
3568 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3569 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3570 } else {
3571 temp &= ~FDI_LINK_TRAIN_NONE;
3572 temp |= FDI_LINK_TRAIN_PATTERN_1;
3573 }
5eddb70b
CW
3574 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3575
3576 POSTING_READ(reg);
8db9d77b
ZW
3577 udelay(150);
3578
0206e353 3579 for (i = 0; i < 4; i++) {
5eddb70b
CW
3580 reg = FDI_TX_CTL(pipe);
3581 temp = I915_READ(reg);
8db9d77b
ZW
3582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3583 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3584 I915_WRITE(reg, temp);
3585
3586 POSTING_READ(reg);
8db9d77b
ZW
3587 udelay(500);
3588
fa37d39e
SP
3589 for (retry = 0; retry < 5; retry++) {
3590 reg = FDI_RX_IIR(pipe);
3591 temp = I915_READ(reg);
3592 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3593 if (temp & FDI_RX_BIT_LOCK) {
3594 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3595 DRM_DEBUG_KMS("FDI train 1 done.\n");
3596 break;
3597 }
3598 udelay(50);
8db9d77b 3599 }
fa37d39e
SP
3600 if (retry < 5)
3601 break;
8db9d77b
ZW
3602 }
3603 if (i == 4)
5eddb70b 3604 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3605
3606 /* Train 2 */
5eddb70b
CW
3607 reg = FDI_TX_CTL(pipe);
3608 temp = I915_READ(reg);
8db9d77b
ZW
3609 temp &= ~FDI_LINK_TRAIN_NONE;
3610 temp |= FDI_LINK_TRAIN_PATTERN_2;
3611 if (IS_GEN6(dev)) {
3612 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3613 /* SNB-B */
3614 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3615 }
5eddb70b 3616 I915_WRITE(reg, temp);
8db9d77b 3617
5eddb70b
CW
3618 reg = FDI_RX_CTL(pipe);
3619 temp = I915_READ(reg);
8db9d77b
ZW
3620 if (HAS_PCH_CPT(dev)) {
3621 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3622 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3623 } else {
3624 temp &= ~FDI_LINK_TRAIN_NONE;
3625 temp |= FDI_LINK_TRAIN_PATTERN_2;
3626 }
5eddb70b
CW
3627 I915_WRITE(reg, temp);
3628
3629 POSTING_READ(reg);
8db9d77b
ZW
3630 udelay(150);
3631
0206e353 3632 for (i = 0; i < 4; i++) {
5eddb70b
CW
3633 reg = FDI_TX_CTL(pipe);
3634 temp = I915_READ(reg);
8db9d77b
ZW
3635 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3636 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3637 I915_WRITE(reg, temp);
3638
3639 POSTING_READ(reg);
8db9d77b
ZW
3640 udelay(500);
3641
fa37d39e
SP
3642 for (retry = 0; retry < 5; retry++) {
3643 reg = FDI_RX_IIR(pipe);
3644 temp = I915_READ(reg);
3645 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3646 if (temp & FDI_RX_SYMBOL_LOCK) {
3647 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3648 DRM_DEBUG_KMS("FDI train 2 done.\n");
3649 break;
3650 }
3651 udelay(50);
8db9d77b 3652 }
fa37d39e
SP
3653 if (retry < 5)
3654 break;
8db9d77b
ZW
3655 }
3656 if (i == 4)
5eddb70b 3657 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3658
3659 DRM_DEBUG_KMS("FDI train done.\n");
3660}
3661
357555c0
JB
3662/* Manual link training for Ivy Bridge A0 parts */
3663static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3664{
3665 struct drm_device *dev = crtc->dev;
3666 struct drm_i915_private *dev_priv = dev->dev_private;
3667 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3668 int pipe = intel_crtc->pipe;
139ccd3f 3669 u32 reg, temp, i, j;
357555c0
JB
3670
3671 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3672 for train result */
3673 reg = FDI_RX_IMR(pipe);
3674 temp = I915_READ(reg);
3675 temp &= ~FDI_RX_SYMBOL_LOCK;
3676 temp &= ~FDI_RX_BIT_LOCK;
3677 I915_WRITE(reg, temp);
3678
3679 POSTING_READ(reg);
3680 udelay(150);
3681
01a415fd
DV
3682 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3683 I915_READ(FDI_RX_IIR(pipe)));
3684
139ccd3f
JB
3685 /* Try each vswing and preemphasis setting twice before moving on */
3686 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3687 /* disable first in case we need to retry */
3688 reg = FDI_TX_CTL(pipe);
3689 temp = I915_READ(reg);
3690 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3691 temp &= ~FDI_TX_ENABLE;
3692 I915_WRITE(reg, temp);
357555c0 3693
139ccd3f
JB
3694 reg = FDI_RX_CTL(pipe);
3695 temp = I915_READ(reg);
3696 temp &= ~FDI_LINK_TRAIN_AUTO;
3697 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3698 temp &= ~FDI_RX_ENABLE;
3699 I915_WRITE(reg, temp);
357555c0 3700
139ccd3f 3701 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3702 reg = FDI_TX_CTL(pipe);
3703 temp = I915_READ(reg);
139ccd3f 3704 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3705 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3706 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3707 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3708 temp |= snb_b_fdi_train_param[j/2];
3709 temp |= FDI_COMPOSITE_SYNC;
3710 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3711
139ccd3f
JB
3712 I915_WRITE(FDI_RX_MISC(pipe),
3713 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3714
139ccd3f 3715 reg = FDI_RX_CTL(pipe);
357555c0 3716 temp = I915_READ(reg);
139ccd3f
JB
3717 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3718 temp |= FDI_COMPOSITE_SYNC;
3719 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3720
139ccd3f
JB
3721 POSTING_READ(reg);
3722 udelay(1); /* should be 0.5us */
357555c0 3723
139ccd3f
JB
3724 for (i = 0; i < 4; i++) {
3725 reg = FDI_RX_IIR(pipe);
3726 temp = I915_READ(reg);
3727 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3728
139ccd3f
JB
3729 if (temp & FDI_RX_BIT_LOCK ||
3730 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3731 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3732 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3733 i);
3734 break;
3735 }
3736 udelay(1); /* should be 0.5us */
3737 }
3738 if (i == 4) {
3739 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3740 continue;
3741 }
357555c0 3742
139ccd3f 3743 /* Train 2 */
357555c0
JB
3744 reg = FDI_TX_CTL(pipe);
3745 temp = I915_READ(reg);
139ccd3f
JB
3746 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3747 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3748 I915_WRITE(reg, temp);
3749
3750 reg = FDI_RX_CTL(pipe);
3751 temp = I915_READ(reg);
3752 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3753 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3754 I915_WRITE(reg, temp);
3755
3756 POSTING_READ(reg);
139ccd3f 3757 udelay(2); /* should be 1.5us */
357555c0 3758
139ccd3f
JB
3759 for (i = 0; i < 4; i++) {
3760 reg = FDI_RX_IIR(pipe);
3761 temp = I915_READ(reg);
3762 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3763
139ccd3f
JB
3764 if (temp & FDI_RX_SYMBOL_LOCK ||
3765 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3766 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3767 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3768 i);
3769 goto train_done;
3770 }
3771 udelay(2); /* should be 1.5us */
357555c0 3772 }
139ccd3f
JB
3773 if (i == 4)
3774 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3775 }
357555c0 3776
139ccd3f 3777train_done:
357555c0
JB
3778 DRM_DEBUG_KMS("FDI train done.\n");
3779}
3780
88cefb6c 3781static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3782{
88cefb6c 3783 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3784 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3785 int pipe = intel_crtc->pipe;
5eddb70b 3786 u32 reg, temp;
79e53945 3787
c64e311e 3788
c98e9dcf 3789 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3790 reg = FDI_RX_CTL(pipe);
3791 temp = I915_READ(reg);
627eb5a3 3792 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3793 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3794 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3795 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3796
3797 POSTING_READ(reg);
c98e9dcf
JB
3798 udelay(200);
3799
3800 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3801 temp = I915_READ(reg);
3802 I915_WRITE(reg, temp | FDI_PCDCLK);
3803
3804 POSTING_READ(reg);
c98e9dcf
JB
3805 udelay(200);
3806
20749730
PZ
3807 /* Enable CPU FDI TX PLL, always on for Ironlake */
3808 reg = FDI_TX_CTL(pipe);
3809 temp = I915_READ(reg);
3810 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3811 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3812
20749730
PZ
3813 POSTING_READ(reg);
3814 udelay(100);
6be4a607 3815 }
0e23b99d
JB
3816}
3817
88cefb6c
DV
3818static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3819{
3820 struct drm_device *dev = intel_crtc->base.dev;
3821 struct drm_i915_private *dev_priv = dev->dev_private;
3822 int pipe = intel_crtc->pipe;
3823 u32 reg, temp;
3824
3825 /* Switch from PCDclk to Rawclk */
3826 reg = FDI_RX_CTL(pipe);
3827 temp = I915_READ(reg);
3828 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3829
3830 /* Disable CPU FDI TX PLL */
3831 reg = FDI_TX_CTL(pipe);
3832 temp = I915_READ(reg);
3833 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3834
3835 POSTING_READ(reg);
3836 udelay(100);
3837
3838 reg = FDI_RX_CTL(pipe);
3839 temp = I915_READ(reg);
3840 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3841
3842 /* Wait for the clocks to turn off. */
3843 POSTING_READ(reg);
3844 udelay(100);
3845}
3846
0fc932b8
JB
3847static void ironlake_fdi_disable(struct drm_crtc *crtc)
3848{
3849 struct drm_device *dev = crtc->dev;
3850 struct drm_i915_private *dev_priv = dev->dev_private;
3851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852 int pipe = intel_crtc->pipe;
3853 u32 reg, temp;
3854
3855 /* disable CPU FDI tx and PCH FDI rx */
3856 reg = FDI_TX_CTL(pipe);
3857 temp = I915_READ(reg);
3858 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3859 POSTING_READ(reg);
3860
3861 reg = FDI_RX_CTL(pipe);
3862 temp = I915_READ(reg);
3863 temp &= ~(0x7 << 16);
dfd07d72 3864 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3865 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3866
3867 POSTING_READ(reg);
3868 udelay(100);
3869
3870 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3871 if (HAS_PCH_IBX(dev))
6f06ce18 3872 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3873
3874 /* still set train pattern 1 */
3875 reg = FDI_TX_CTL(pipe);
3876 temp = I915_READ(reg);
3877 temp &= ~FDI_LINK_TRAIN_NONE;
3878 temp |= FDI_LINK_TRAIN_PATTERN_1;
3879 I915_WRITE(reg, temp);
3880
3881 reg = FDI_RX_CTL(pipe);
3882 temp = I915_READ(reg);
3883 if (HAS_PCH_CPT(dev)) {
3884 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3885 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3886 } else {
3887 temp &= ~FDI_LINK_TRAIN_NONE;
3888 temp |= FDI_LINK_TRAIN_PATTERN_1;
3889 }
3890 /* BPC in FDI rx is consistent with that in PIPECONF */
3891 temp &= ~(0x07 << 16);
dfd07d72 3892 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3893 I915_WRITE(reg, temp);
3894
3895 POSTING_READ(reg);
3896 udelay(100);
3897}
3898
5dce5b93
CW
3899bool intel_has_pending_fb_unpin(struct drm_device *dev)
3900{
3901 struct intel_crtc *crtc;
3902
3903 /* Note that we don't need to be called with mode_config.lock here
3904 * as our list of CRTC objects is static for the lifetime of the
3905 * device and so cannot disappear as we iterate. Similarly, we can
3906 * happily treat the predicates as racy, atomic checks as userspace
3907 * cannot claim and pin a new fb without at least acquring the
3908 * struct_mutex and so serialising with us.
3909 */
d3fcc808 3910 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3911 if (atomic_read(&crtc->unpin_work_count) == 0)
3912 continue;
3913
3914 if (crtc->unpin_work)
3915 intel_wait_for_vblank(dev, crtc->pipe);
3916
3917 return true;
3918 }
3919
3920 return false;
3921}
3922
d6bbafa1
CW
3923static void page_flip_completed(struct intel_crtc *intel_crtc)
3924{
3925 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3926 struct intel_unpin_work *work = intel_crtc->unpin_work;
3927
3928 /* ensure that the unpin work is consistent wrt ->pending. */
3929 smp_rmb();
3930 intel_crtc->unpin_work = NULL;
3931
3932 if (work->event)
3933 drm_send_vblank_event(intel_crtc->base.dev,
3934 intel_crtc->pipe,
3935 work->event);
3936
3937 drm_crtc_vblank_put(&intel_crtc->base);
3938
3939 wake_up_all(&dev_priv->pending_flip_queue);
3940 queue_work(dev_priv->wq, &work->work);
3941
3942 trace_i915_flip_complete(intel_crtc->plane,
3943 work->pending_flip_obj);
3944}
3945
46a55d30 3946void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3947{
0f91128d 3948 struct drm_device *dev = crtc->dev;
5bb61643 3949 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3950
2c10d571 3951 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3952 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3953 !intel_crtc_has_pending_flip(crtc),
3954 60*HZ) == 0)) {
3955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3956
5e2d7afc 3957 spin_lock_irq(&dev->event_lock);
9c787942
CW
3958 if (intel_crtc->unpin_work) {
3959 WARN_ONCE(1, "Removing stuck page flip\n");
3960 page_flip_completed(intel_crtc);
3961 }
5e2d7afc 3962 spin_unlock_irq(&dev->event_lock);
9c787942 3963 }
5bb61643 3964
975d568a
CW
3965 if (crtc->primary->fb) {
3966 mutex_lock(&dev->struct_mutex);
3967 intel_finish_fb(crtc->primary->fb);
3968 mutex_unlock(&dev->struct_mutex);
3969 }
e6c3a2a6
CW
3970}
3971
e615efe4
ED
3972/* Program iCLKIP clock to the desired frequency */
3973static void lpt_program_iclkip(struct drm_crtc *crtc)
3974{
3975 struct drm_device *dev = crtc->dev;
3976 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3977 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3978 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3979 u32 temp;
3980
09153000
DV
3981 mutex_lock(&dev_priv->dpio_lock);
3982
e615efe4
ED
3983 /* It is necessary to ungate the pixclk gate prior to programming
3984 * the divisors, and gate it back when it is done.
3985 */
3986 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3987
3988 /* Disable SSCCTL */
3989 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3990 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3991 SBI_SSCCTL_DISABLE,
3992 SBI_ICLK);
e615efe4
ED
3993
3994 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3995 if (clock == 20000) {
e615efe4
ED
3996 auxdiv = 1;
3997 divsel = 0x41;
3998 phaseinc = 0x20;
3999 } else {
4000 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
4001 * but the adjusted_mode->crtc_clock in in KHz. To get the
4002 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
4003 * convert the virtual clock precision to KHz here for higher
4004 * precision.
4005 */
4006 u32 iclk_virtual_root_freq = 172800 * 1000;
4007 u32 iclk_pi_range = 64;
4008 u32 desired_divisor, msb_divisor_value, pi_value;
4009
12d7ceed 4010 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
4011 msb_divisor_value = desired_divisor / iclk_pi_range;
4012 pi_value = desired_divisor % iclk_pi_range;
4013
4014 auxdiv = 0;
4015 divsel = msb_divisor_value - 2;
4016 phaseinc = pi_value;
4017 }
4018
4019 /* This should not happen with any sane values */
4020 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4021 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4022 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4023 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4024
4025 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 4026 clock,
e615efe4
ED
4027 auxdiv,
4028 divsel,
4029 phasedir,
4030 phaseinc);
4031
4032 /* Program SSCDIVINTPHASE6 */
988d6ee8 4033 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
4034 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4035 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4036 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4037 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4038 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4039 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4040 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4041
4042 /* Program SSCAUXDIV */
988d6ee8 4043 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4044 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4045 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4046 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4047
4048 /* Enable modulator and associated divider */
988d6ee8 4049 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4050 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4051 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
4052
4053 /* Wait for initialization time */
4054 udelay(24);
4055
4056 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
4057
4058 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
4059}
4060
275f01b2
DV
4061static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4062 enum pipe pch_transcoder)
4063{
4064 struct drm_device *dev = crtc->base.dev;
4065 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4066 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4067
4068 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4069 I915_READ(HTOTAL(cpu_transcoder)));
4070 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4071 I915_READ(HBLANK(cpu_transcoder)));
4072 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4073 I915_READ(HSYNC(cpu_transcoder)));
4074
4075 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4076 I915_READ(VTOTAL(cpu_transcoder)));
4077 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4078 I915_READ(VBLANK(cpu_transcoder)));
4079 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4080 I915_READ(VSYNC(cpu_transcoder)));
4081 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4082 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4083}
4084
003632d9 4085static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4086{
4087 struct drm_i915_private *dev_priv = dev->dev_private;
4088 uint32_t temp;
4089
4090 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4091 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4092 return;
4093
4094 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4095 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4096
003632d9
ACO
4097 temp &= ~FDI_BC_BIFURCATION_SELECT;
4098 if (enable)
4099 temp |= FDI_BC_BIFURCATION_SELECT;
4100
4101 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4102 I915_WRITE(SOUTH_CHICKEN1, temp);
4103 POSTING_READ(SOUTH_CHICKEN1);
4104}
4105
4106static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4107{
4108 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4109
4110 switch (intel_crtc->pipe) {
4111 case PIPE_A:
4112 break;
4113 case PIPE_B:
6e3c9717 4114 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4115 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4116 else
003632d9 4117 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4118
4119 break;
4120 case PIPE_C:
003632d9 4121 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4122
4123 break;
4124 default:
4125 BUG();
4126 }
4127}
4128
f67a559d
JB
4129/*
4130 * Enable PCH resources required for PCH ports:
4131 * - PCH PLLs
4132 * - FDI training & RX/TX
4133 * - update transcoder timings
4134 * - DP transcoding bits
4135 * - transcoder
4136 */
4137static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4138{
4139 struct drm_device *dev = crtc->dev;
4140 struct drm_i915_private *dev_priv = dev->dev_private;
4141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4142 int pipe = intel_crtc->pipe;
ee7b9f93 4143 u32 reg, temp;
2c07245f 4144
ab9412ba 4145 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4146
1fbc0d78
DV
4147 if (IS_IVYBRIDGE(dev))
4148 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4149
cd986abb
DV
4150 /* Write the TU size bits before fdi link training, so that error
4151 * detection works. */
4152 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4153 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4154
c98e9dcf 4155 /* For PCH output, training FDI link */
674cf967 4156 dev_priv->display.fdi_link_train(crtc);
2c07245f 4157
3ad8a208
DV
4158 /* We need to program the right clock selection before writing the pixel
4159 * mutliplier into the DPLL. */
303b81e0 4160 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4161 u32 sel;
4b645f14 4162
c98e9dcf 4163 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4164 temp |= TRANS_DPLL_ENABLE(pipe);
4165 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4166 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4167 temp |= sel;
4168 else
4169 temp &= ~sel;
c98e9dcf 4170 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4171 }
5eddb70b 4172
3ad8a208
DV
4173 /* XXX: pch pll's can be enabled any time before we enable the PCH
4174 * transcoder, and we actually should do this to not upset any PCH
4175 * transcoder that already use the clock when we share it.
4176 *
4177 * Note that enable_shared_dpll tries to do the right thing, but
4178 * get_shared_dpll unconditionally resets the pll - we need that to have
4179 * the right LVDS enable sequence. */
85b3894f 4180 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4181
d9b6cb56
JB
4182 /* set transcoder timing, panel must allow it */
4183 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4184 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4185
303b81e0 4186 intel_fdi_normal_train(crtc);
5e84e1a4 4187
c98e9dcf 4188 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4189 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4190 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4191 reg = TRANS_DP_CTL(pipe);
4192 temp = I915_READ(reg);
4193 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4194 TRANS_DP_SYNC_MASK |
4195 TRANS_DP_BPC_MASK);
5eddb70b
CW
4196 temp |= (TRANS_DP_OUTPUT_ENABLE |
4197 TRANS_DP_ENH_FRAMING);
9325c9f0 4198 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4199
4200 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4201 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4202 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4203 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4204
4205 switch (intel_trans_dp_port_sel(crtc)) {
4206 case PCH_DP_B:
5eddb70b 4207 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4208 break;
4209 case PCH_DP_C:
5eddb70b 4210 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4211 break;
4212 case PCH_DP_D:
5eddb70b 4213 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4214 break;
4215 default:
e95d41e1 4216 BUG();
32f9d658 4217 }
2c07245f 4218
5eddb70b 4219 I915_WRITE(reg, temp);
6be4a607 4220 }
b52eb4dc 4221
b8a4f404 4222 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4223}
4224
1507e5bd
PZ
4225static void lpt_pch_enable(struct drm_crtc *crtc)
4226{
4227 struct drm_device *dev = crtc->dev;
4228 struct drm_i915_private *dev_priv = dev->dev_private;
4229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4230 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4231
ab9412ba 4232 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4233
8c52b5e8 4234 lpt_program_iclkip(crtc);
1507e5bd 4235
0540e488 4236 /* Set transcoder timing. */
275f01b2 4237 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4238
937bb610 4239 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4240}
4241
716c2e55 4242void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 4243{
e2b78267 4244 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
4245
4246 if (pll == NULL)
4247 return;
4248
3e369b76 4249 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 4250 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
4251 return;
4252 }
4253
3e369b76
ACO
4254 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4255 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
4256 WARN_ON(pll->on);
4257 WARN_ON(pll->active);
4258 }
4259
6e3c9717 4260 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
4261}
4262
190f68c5
ACO
4263struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4264 struct intel_crtc_state *crtc_state)
ee7b9f93 4265{
e2b78267 4266 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4267 struct intel_shared_dpll *pll;
e2b78267 4268 enum intel_dpll_id i;
ee7b9f93 4269
98b6bd99
DV
4270 if (HAS_PCH_IBX(dev_priv->dev)) {
4271 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4272 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4273 pll = &dev_priv->shared_dplls[i];
98b6bd99 4274
46edb027
DV
4275 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4276 crtc->base.base.id, pll->name);
98b6bd99 4277
8bd31e67 4278 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4279
98b6bd99
DV
4280 goto found;
4281 }
4282
bcddf610
S
4283 if (IS_BROXTON(dev_priv->dev)) {
4284 /* PLL is attached to port in bxt */
4285 struct intel_encoder *encoder;
4286 struct intel_digital_port *intel_dig_port;
4287
4288 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4289 if (WARN_ON(!encoder))
4290 return NULL;
4291
4292 intel_dig_port = enc_to_dig_port(&encoder->base);
4293 /* 1:1 mapping between ports and PLLs */
4294 i = (enum intel_dpll_id)intel_dig_port->port;
4295 pll = &dev_priv->shared_dplls[i];
4296 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4297 crtc->base.base.id, pll->name);
4298 WARN_ON(pll->new_config->crtc_mask);
4299
4300 goto found;
4301 }
4302
e72f9fbf
DV
4303 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4304 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4305
4306 /* Only want to check enabled timings first */
8bd31e67 4307 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4308 continue;
4309
190f68c5 4310 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4311 &pll->new_config->hw_state,
4312 sizeof(pll->new_config->hw_state)) == 0) {
4313 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4314 crtc->base.base.id, pll->name,
8bd31e67
ACO
4315 pll->new_config->crtc_mask,
4316 pll->active);
ee7b9f93
JB
4317 goto found;
4318 }
4319 }
4320
4321 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4322 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4323 pll = &dev_priv->shared_dplls[i];
8bd31e67 4324 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4325 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4326 crtc->base.base.id, pll->name);
ee7b9f93
JB
4327 goto found;
4328 }
4329 }
4330
4331 return NULL;
4332
4333found:
8bd31e67 4334 if (pll->new_config->crtc_mask == 0)
190f68c5 4335 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4336
190f68c5 4337 crtc_state->shared_dpll = i;
46edb027
DV
4338 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4339 pipe_name(crtc->pipe));
ee7b9f93 4340
8bd31e67 4341 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4342
ee7b9f93
JB
4343 return pll;
4344}
4345
8bd31e67
ACO
4346/**
4347 * intel_shared_dpll_start_config - start a new PLL staged config
4348 * @dev_priv: DRM device
4349 * @clear_pipes: mask of pipes that will have their PLLs freed
4350 *
4351 * Starts a new PLL staged config, copying the current config but
4352 * releasing the references of pipes specified in clear_pipes.
4353 */
4354static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4355 unsigned clear_pipes)
4356{
4357 struct intel_shared_dpll *pll;
4358 enum intel_dpll_id i;
4359
4360 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4361 pll = &dev_priv->shared_dplls[i];
4362
4363 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4364 GFP_KERNEL);
4365 if (!pll->new_config)
4366 goto cleanup;
4367
4368 pll->new_config->crtc_mask &= ~clear_pipes;
4369 }
4370
4371 return 0;
4372
4373cleanup:
4374 while (--i >= 0) {
4375 pll = &dev_priv->shared_dplls[i];
f354d733 4376 kfree(pll->new_config);
8bd31e67
ACO
4377 pll->new_config = NULL;
4378 }
4379
4380 return -ENOMEM;
4381}
4382
4383static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4384{
4385 struct intel_shared_dpll *pll;
4386 enum intel_dpll_id i;
4387
4388 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4389 pll = &dev_priv->shared_dplls[i];
4390
4391 WARN_ON(pll->new_config == &pll->config);
4392
4393 pll->config = *pll->new_config;
4394 kfree(pll->new_config);
4395 pll->new_config = NULL;
4396 }
4397}
4398
4399static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4400{
4401 struct intel_shared_dpll *pll;
4402 enum intel_dpll_id i;
4403
4404 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4405 pll = &dev_priv->shared_dplls[i];
4406
4407 WARN_ON(pll->new_config == &pll->config);
4408
4409 kfree(pll->new_config);
4410 pll->new_config = NULL;
4411 }
4412}
4413
a1520318 4414static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4415{
4416 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4417 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4418 u32 temp;
4419
4420 temp = I915_READ(dslreg);
4421 udelay(500);
4422 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4423 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4424 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4425 }
4426}
4427
a1b2278e
CK
4428/**
4429 * skl_update_scaler_users - Stages update to crtc's scaler state
4430 * @intel_crtc: crtc
4431 * @crtc_state: crtc_state
4432 * @plane: plane (NULL indicates crtc is requesting update)
4433 * @plane_state: plane's state
4434 * @force_detach: request unconditional detachment of scaler
4435 *
4436 * This function updates scaler state for requested plane or crtc.
4437 * To request scaler usage update for a plane, caller shall pass plane pointer.
4438 * To request scaler usage update for crtc, caller shall pass plane pointer
4439 * as NULL.
4440 *
4441 * Return
4442 * 0 - scaler_usage updated successfully
4443 * error - requested scaling cannot be supported or other error condition
4444 */
4445int
4446skl_update_scaler_users(
4447 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4448 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4449 int force_detach)
4450{
4451 int need_scaling;
4452 int idx;
4453 int src_w, src_h, dst_w, dst_h;
4454 int *scaler_id;
4455 struct drm_framebuffer *fb;
4456 struct intel_crtc_scaler_state *scaler_state;
6156a456 4457 unsigned int rotation;
a1b2278e
CK
4458
4459 if (!intel_crtc || !crtc_state)
4460 return 0;
4461
4462 scaler_state = &crtc_state->scaler_state;
4463
4464 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4465 fb = intel_plane ? plane_state->base.fb : NULL;
4466
4467 if (intel_plane) {
4468 src_w = drm_rect_width(&plane_state->src) >> 16;
4469 src_h = drm_rect_height(&plane_state->src) >> 16;
4470 dst_w = drm_rect_width(&plane_state->dst);
4471 dst_h = drm_rect_height(&plane_state->dst);
4472 scaler_id = &plane_state->scaler_id;
6156a456 4473 rotation = plane_state->base.rotation;
a1b2278e
CK
4474 } else {
4475 struct drm_display_mode *adjusted_mode =
4476 &crtc_state->base.adjusted_mode;
4477 src_w = crtc_state->pipe_src_w;
4478 src_h = crtc_state->pipe_src_h;
4479 dst_w = adjusted_mode->hdisplay;
4480 dst_h = adjusted_mode->vdisplay;
4481 scaler_id = &scaler_state->scaler_id;
6156a456 4482 rotation = DRM_ROTATE_0;
a1b2278e 4483 }
6156a456
CK
4484
4485 need_scaling = intel_rotation_90_or_270(rotation) ?
4486 (src_h != dst_w || src_w != dst_h):
4487 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4488
4489 /*
4490 * if plane is being disabled or scaler is no more required or force detach
4491 * - free scaler binded to this plane/crtc
4492 * - in order to do this, update crtc->scaler_usage
4493 *
4494 * Here scaler state in crtc_state is set free so that
4495 * scaler can be assigned to other user. Actual register
4496 * update to free the scaler is done in plane/panel-fit programming.
4497 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4498 */
4499 if (force_detach || !need_scaling || (intel_plane &&
4500 (!fb || !plane_state->visible))) {
4501 if (*scaler_id >= 0) {
4502 scaler_state->scaler_users &= ~(1 << idx);
4503 scaler_state->scalers[*scaler_id].in_use = 0;
4504
4505 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4506 "crtc_state = %p scaler_users = 0x%x\n",
4507 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4508 intel_plane ? intel_plane->base.base.id :
4509 intel_crtc->base.base.id, crtc_state,
4510 scaler_state->scaler_users);
4511 *scaler_id = -1;
4512 }
4513 return 0;
4514 }
4515
4516 /* range checks */
4517 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4518 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4519
4520 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4521 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4522 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4523 "size is out of scaler range\n",
4524 intel_plane ? "PLANE" : "CRTC",
4525 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4526 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4527 return -EINVAL;
4528 }
4529
4530 /* check colorkey */
4531 if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
4532 DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
4533 intel_plane->base.base.id);
4534 return -EINVAL;
4535 }
4536
4537 /* Check src format */
4538 if (intel_plane) {
4539 switch (fb->pixel_format) {
4540 case DRM_FORMAT_RGB565:
4541 case DRM_FORMAT_XBGR8888:
4542 case DRM_FORMAT_XRGB8888:
4543 case DRM_FORMAT_ABGR8888:
4544 case DRM_FORMAT_ARGB8888:
4545 case DRM_FORMAT_XRGB2101010:
4546 case DRM_FORMAT_ARGB2101010:
4547 case DRM_FORMAT_XBGR2101010:
4548 case DRM_FORMAT_ABGR2101010:
4549 case DRM_FORMAT_YUYV:
4550 case DRM_FORMAT_YVYU:
4551 case DRM_FORMAT_UYVY:
4552 case DRM_FORMAT_VYUY:
4553 break;
4554 default:
4555 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4556 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4557 return -EINVAL;
4558 }
4559 }
4560
4561 /* mark this plane as a scaler user in crtc_state */
4562 scaler_state->scaler_users |= (1 << idx);
4563 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4564 "crtc_state = %p scaler_users = 0x%x\n",
4565 intel_plane ? "PLANE" : "CRTC",
4566 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4567 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4568 return 0;
4569}
4570
4571static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
bd2e244f
JB
4572{
4573 struct drm_device *dev = crtc->base.dev;
4574 struct drm_i915_private *dev_priv = dev->dev_private;
4575 int pipe = crtc->pipe;
a1b2278e
CK
4576 struct intel_crtc_scaler_state *scaler_state =
4577 &crtc->config->scaler_state;
4578
4579 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4580
4581 /* To update pfit, first update scaler state */
4582 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4583 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4584 skl_detach_scalers(crtc);
4585 if (!enable)
4586 return;
bd2e244f 4587
6e3c9717 4588 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4589 int id;
4590
4591 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4592 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4593 return;
4594 }
4595
4596 id = scaler_state->scaler_id;
4597 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4598 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4599 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4600 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4601
4602 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4603 }
4604}
4605
b074cec8
JB
4606static void ironlake_pfit_enable(struct intel_crtc *crtc)
4607{
4608 struct drm_device *dev = crtc->base.dev;
4609 struct drm_i915_private *dev_priv = dev->dev_private;
4610 int pipe = crtc->pipe;
4611
6e3c9717 4612 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4613 /* Force use of hard-coded filter coefficients
4614 * as some pre-programmed values are broken,
4615 * e.g. x201.
4616 */
4617 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4618 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4619 PF_PIPE_SEL_IVB(pipe));
4620 else
4621 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4622 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4623 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4624 }
4625}
4626
4a3b8769 4627static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4628{
4629 struct drm_device *dev = crtc->dev;
4630 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4631 struct drm_plane *plane;
bb53d4ae
VS
4632 struct intel_plane *intel_plane;
4633
af2b653b
MR
4634 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4635 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4636 if (intel_plane->pipe == pipe)
4637 intel_plane_restore(&intel_plane->base);
af2b653b 4638 }
bb53d4ae
VS
4639}
4640
20bc8673 4641void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4642{
cea165c3
VS
4643 struct drm_device *dev = crtc->base.dev;
4644 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4645
6e3c9717 4646 if (!crtc->config->ips_enabled)
d77e4531
PZ
4647 return;
4648
cea165c3
VS
4649 /* We can only enable IPS after we enable a plane and wait for a vblank */
4650 intel_wait_for_vblank(dev, crtc->pipe);
4651
d77e4531 4652 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4653 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4654 mutex_lock(&dev_priv->rps.hw_lock);
4655 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4656 mutex_unlock(&dev_priv->rps.hw_lock);
4657 /* Quoting Art Runyan: "its not safe to expect any particular
4658 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4659 * mailbox." Moreover, the mailbox may return a bogus state,
4660 * so we need to just enable it and continue on.
2a114cc1
BW
4661 */
4662 } else {
4663 I915_WRITE(IPS_CTL, IPS_ENABLE);
4664 /* The bit only becomes 1 in the next vblank, so this wait here
4665 * is essentially intel_wait_for_vblank. If we don't have this
4666 * and don't wait for vblanks until the end of crtc_enable, then
4667 * the HW state readout code will complain that the expected
4668 * IPS_CTL value is not the one we read. */
4669 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4670 DRM_ERROR("Timed out waiting for IPS enable\n");
4671 }
d77e4531
PZ
4672}
4673
20bc8673 4674void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4675{
4676 struct drm_device *dev = crtc->base.dev;
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678
6e3c9717 4679 if (!crtc->config->ips_enabled)
d77e4531
PZ
4680 return;
4681
4682 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4683 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4684 mutex_lock(&dev_priv->rps.hw_lock);
4685 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4686 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4687 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4688 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4689 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4690 } else {
2a114cc1 4691 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4692 POSTING_READ(IPS_CTL);
4693 }
d77e4531
PZ
4694
4695 /* We need to wait for a vblank before we can disable the plane. */
4696 intel_wait_for_vblank(dev, crtc->pipe);
4697}
4698
4699/** Loads the palette/gamma unit for the CRTC with the prepared values */
4700static void intel_crtc_load_lut(struct drm_crtc *crtc)
4701{
4702 struct drm_device *dev = crtc->dev;
4703 struct drm_i915_private *dev_priv = dev->dev_private;
4704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4705 enum pipe pipe = intel_crtc->pipe;
4706 int palreg = PALETTE(pipe);
4707 int i;
4708 bool reenable_ips = false;
4709
4710 /* The clocks have to be on to load the palette. */
83d65738 4711 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4712 return;
4713
50360403 4714 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
409ee761 4715 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4716 assert_dsi_pll_enabled(dev_priv);
4717 else
4718 assert_pll_enabled(dev_priv, pipe);
4719 }
4720
4721 /* use legacy palette for Ironlake */
7a1db49a 4722 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4723 palreg = LGC_PALETTE(pipe);
4724
4725 /* Workaround : Do not read or write the pipe palette/gamma data while
4726 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4727 */
6e3c9717 4728 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4729 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4730 GAMMA_MODE_MODE_SPLIT)) {
4731 hsw_disable_ips(intel_crtc);
4732 reenable_ips = true;
4733 }
4734
4735 for (i = 0; i < 256; i++) {
4736 I915_WRITE(palreg + 4 * i,
4737 (intel_crtc->lut_r[i] << 16) |
4738 (intel_crtc->lut_g[i] << 8) |
4739 intel_crtc->lut_b[i]);
4740 }
4741
4742 if (reenable_ips)
4743 hsw_enable_ips(intel_crtc);
4744}
4745
7cac945f 4746static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4747{
7cac945f 4748 if (intel_crtc->overlay) {
d3eedb1a
VS
4749 struct drm_device *dev = intel_crtc->base.dev;
4750 struct drm_i915_private *dev_priv = dev->dev_private;
4751
4752 mutex_lock(&dev->struct_mutex);
4753 dev_priv->mm.interruptible = false;
4754 (void) intel_overlay_switch_off(intel_crtc->overlay);
4755 dev_priv->mm.interruptible = true;
4756 mutex_unlock(&dev->struct_mutex);
4757 }
4758
4759 /* Let userspace switch the overlay on again. In most cases userspace
4760 * has to recompute where to put it anyway.
4761 */
4762}
4763
87d4300a
ML
4764/**
4765 * intel_post_enable_primary - Perform operations after enabling primary plane
4766 * @crtc: the CRTC whose primary plane was just enabled
4767 *
4768 * Performs potentially sleeping operations that must be done after the primary
4769 * plane is enabled, such as updating FBC and IPS. Note that this may be
4770 * called due to an explicit primary plane update, or due to an implicit
4771 * re-enable that is caused when a sprite plane is updated to no longer
4772 * completely hide the primary plane.
4773 */
4774static void
4775intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4776{
4777 struct drm_device *dev = crtc->dev;
87d4300a 4778 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4780 int pipe = intel_crtc->pipe;
a5c4d7bc 4781
87d4300a
ML
4782 /*
4783 * BDW signals flip done immediately if the plane
4784 * is disabled, even if the plane enable is already
4785 * armed to occur at the next vblank :(
4786 */
4787 if (IS_BROADWELL(dev))
4788 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4789
87d4300a
ML
4790 /*
4791 * FIXME IPS should be fine as long as one plane is
4792 * enabled, but in practice it seems to have problems
4793 * when going from primary only to sprite only and vice
4794 * versa.
4795 */
a5c4d7bc
VS
4796 hsw_enable_ips(intel_crtc);
4797
4798 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4799 intel_fbc_update(dev);
a5c4d7bc 4800 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4801
4802 /*
87d4300a
ML
4803 * Gen2 reports pipe underruns whenever all planes are disabled.
4804 * So don't enable underrun reporting before at least some planes
4805 * are enabled.
4806 * FIXME: Need to fix the logic to work when we turn off all planes
4807 * but leave the pipe running.
f99d7069 4808 */
87d4300a
ML
4809 if (IS_GEN2(dev))
4810 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4811
4812 /* Underruns don't raise interrupts, so check manually. */
4813 if (HAS_GMCH_DISPLAY(dev))
4814 i9xx_check_fifo_underruns(dev_priv);
a5c4d7bc
VS
4815}
4816
87d4300a
ML
4817/**
4818 * intel_pre_disable_primary - Perform operations before disabling primary plane
4819 * @crtc: the CRTC whose primary plane is to be disabled
4820 *
4821 * Performs potentially sleeping operations that must be done before the
4822 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4823 * be called due to an explicit primary plane update, or due to an implicit
4824 * disable that is caused when a sprite plane completely hides the primary
4825 * plane.
4826 */
4827static void
4828intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4829{
4830 struct drm_device *dev = crtc->dev;
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4833 int pipe = intel_crtc->pipe;
a5c4d7bc 4834
87d4300a
ML
4835 /*
4836 * Gen2 reports pipe underruns whenever all planes are disabled.
4837 * So diasble underrun reporting before all the planes get disabled.
4838 * FIXME: Need to fix the logic to work when we turn off all planes
4839 * but leave the pipe running.
4840 */
4841 if (IS_GEN2(dev))
4842 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4843
87d4300a
ML
4844 /*
4845 * Vblank time updates from the shadow to live plane control register
4846 * are blocked if the memory self-refresh mode is active at that
4847 * moment. So to make sure the plane gets truly disabled, disable
4848 * first the self-refresh mode. The self-refresh enable bit in turn
4849 * will be checked/applied by the HW only at the next frame start
4850 * event which is after the vblank start event, so we need to have a
4851 * wait-for-vblank between disabling the plane and the pipe.
4852 */
4853 if (HAS_GMCH_DISPLAY(dev))
4854 intel_set_memory_cxsr(dev_priv, false);
4855
4856 mutex_lock(&dev->struct_mutex);
e35fef21 4857 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4858 intel_fbc_disable(dev);
87d4300a 4859 mutex_unlock(&dev->struct_mutex);
a5c4d7bc 4860
87d4300a
ML
4861 /*
4862 * FIXME IPS should be fine as long as one plane is
4863 * enabled, but in practice it seems to have problems
4864 * when going from primary only to sprite only and vice
4865 * versa.
4866 */
a5c4d7bc 4867 hsw_disable_ips(intel_crtc);
87d4300a
ML
4868}
4869
4870static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4871{
87d4300a
ML
4872 intel_enable_primary_hw_plane(crtc->primary, crtc);
4873 intel_enable_sprite_planes(crtc);
4874 intel_crtc_update_cursor(crtc, true);
87d4300a
ML
4875
4876 intel_post_enable_primary(crtc);
4877}
4878
4879static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4880{
4881 struct drm_device *dev = crtc->dev;
4882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883 struct intel_plane *intel_plane;
4884 int pipe = intel_crtc->pipe;
4885
4886 intel_crtc_wait_for_pending_flips(crtc);
4887
4888 intel_pre_disable_primary(crtc);
a5c4d7bc 4889
7cac945f 4890 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8
ML
4891 for_each_intel_plane(dev, intel_plane) {
4892 if (intel_plane->pipe == pipe) {
4893 struct drm_crtc *from = intel_plane->base.crtc;
4894
4895 intel_plane->disable_plane(&intel_plane->base,
4896 from ?: crtc, true);
4897 }
4898 }
f98551ae 4899
f99d7069
DV
4900 /*
4901 * FIXME: Once we grow proper nuclear flip support out of this we need
4902 * to compute the mask of flip planes precisely. For the time being
4903 * consider this a flip to a NULL plane.
4904 */
4905 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4906}
4907
f67a559d
JB
4908static void ironlake_crtc_enable(struct drm_crtc *crtc)
4909{
4910 struct drm_device *dev = crtc->dev;
4911 struct drm_i915_private *dev_priv = dev->dev_private;
4912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4913 struct intel_encoder *encoder;
f67a559d 4914 int pipe = intel_crtc->pipe;
f67a559d 4915
83d65738 4916 WARN_ON(!crtc->state->enable);
08a48469 4917
f67a559d
JB
4918 if (intel_crtc->active)
4919 return;
4920
6e3c9717 4921 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4922 intel_prepare_shared_dpll(intel_crtc);
4923
6e3c9717 4924 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4925 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4926
4927 intel_set_pipe_timings(intel_crtc);
4928
6e3c9717 4929 if (intel_crtc->config->has_pch_encoder) {
29407aab 4930 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4931 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4932 }
4933
4934 ironlake_set_pipeconf(crtc);
4935
f67a559d 4936 intel_crtc->active = true;
8664281b 4937
a72e4c9f
DV
4938 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4939 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4940
f6736a1a 4941 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4942 if (encoder->pre_enable)
4943 encoder->pre_enable(encoder);
f67a559d 4944
6e3c9717 4945 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4946 /* Note: FDI PLL enabling _must_ be done before we enable the
4947 * cpu pipes, hence this is separate from all the other fdi/pch
4948 * enabling. */
88cefb6c 4949 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4950 } else {
4951 assert_fdi_tx_disabled(dev_priv, pipe);
4952 assert_fdi_rx_disabled(dev_priv, pipe);
4953 }
f67a559d 4954
b074cec8 4955 ironlake_pfit_enable(intel_crtc);
f67a559d 4956
9c54c0dd
JB
4957 /*
4958 * On ILK+ LUT must be loaded before the pipe is running but with
4959 * clocks enabled
4960 */
4961 intel_crtc_load_lut(crtc);
4962
f37fcc2a 4963 intel_update_watermarks(crtc);
e1fdc473 4964 intel_enable_pipe(intel_crtc);
f67a559d 4965
6e3c9717 4966 if (intel_crtc->config->has_pch_encoder)
f67a559d 4967 ironlake_pch_enable(crtc);
c98e9dcf 4968
f9b61ff6
DV
4969 assert_vblank_disabled(crtc);
4970 drm_crtc_vblank_on(crtc);
4971
fa5c73b1
DV
4972 for_each_encoder_on_crtc(dev, crtc, encoder)
4973 encoder->enable(encoder);
61b77ddd
DV
4974
4975 if (HAS_PCH_CPT(dev))
a1520318 4976 cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
4977}
4978
42db64ef
PZ
4979/* IPS only exists on ULT machines and is tied to pipe A. */
4980static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4981{
f5adf94e 4982 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4983}
4984
e4916946
PZ
4985/*
4986 * This implements the workaround described in the "notes" section of the mode
4987 * set sequence documentation. When going from no pipes or single pipe to
4988 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4989 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4990 */
4991static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4992{
4993 struct drm_device *dev = crtc->base.dev;
4994 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4995
4996 /* We want to get the other_active_crtc only if there's only 1 other
4997 * active crtc. */
d3fcc808 4998 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4999 if (!crtc_it->active || crtc_it == crtc)
5000 continue;
5001
5002 if (other_active_crtc)
5003 return;
5004
5005 other_active_crtc = crtc_it;
5006 }
5007 if (!other_active_crtc)
5008 return;
5009
5010 intel_wait_for_vblank(dev, other_active_crtc->pipe);
5011 intel_wait_for_vblank(dev, other_active_crtc->pipe);
5012}
5013
4f771f10
PZ
5014static void haswell_crtc_enable(struct drm_crtc *crtc)
5015{
5016 struct drm_device *dev = crtc->dev;
5017 struct drm_i915_private *dev_priv = dev->dev_private;
5018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5019 struct intel_encoder *encoder;
5020 int pipe = intel_crtc->pipe;
4f771f10 5021
83d65738 5022 WARN_ON(!crtc->state->enable);
4f771f10
PZ
5023
5024 if (intel_crtc->active)
5025 return;
5026
df8ad70c
DV
5027 if (intel_crtc_to_shared_dpll(intel_crtc))
5028 intel_enable_shared_dpll(intel_crtc);
5029
6e3c9717 5030 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5031 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
5032
5033 intel_set_pipe_timings(intel_crtc);
5034
6e3c9717
ACO
5035 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5036 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5037 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
5038 }
5039
6e3c9717 5040 if (intel_crtc->config->has_pch_encoder) {
229fca97 5041 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 5042 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
5043 }
5044
5045 haswell_set_pipeconf(crtc);
5046
5047 intel_set_pipe_csc(crtc);
5048
4f771f10 5049 intel_crtc->active = true;
8664281b 5050
a72e4c9f 5051 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
5052 for_each_encoder_on_crtc(dev, crtc, encoder)
5053 if (encoder->pre_enable)
5054 encoder->pre_enable(encoder);
5055
6e3c9717 5056 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
5057 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5058 true);
4fe9467d
ID
5059 dev_priv->display.fdi_link_train(crtc);
5060 }
5061
1f544388 5062 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5063
ff6d9f55 5064 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 5065 skylake_pfit_update(intel_crtc, 1);
ff6d9f55 5066 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5067 ironlake_pfit_enable(intel_crtc);
ff6d9f55
JB
5068 else
5069 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10
PZ
5070
5071 /*
5072 * On ILK+ LUT must be loaded before the pipe is running but with
5073 * clocks enabled
5074 */
5075 intel_crtc_load_lut(crtc);
5076
1f544388 5077 intel_ddi_set_pipe_settings(crtc);
8228c251 5078 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5079
f37fcc2a 5080 intel_update_watermarks(crtc);
e1fdc473 5081 intel_enable_pipe(intel_crtc);
42db64ef 5082
6e3c9717 5083 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5084 lpt_pch_enable(crtc);
4f771f10 5085
6e3c9717 5086 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
5087 intel_ddi_set_vc_payload_alloc(crtc, true);
5088
f9b61ff6
DV
5089 assert_vblank_disabled(crtc);
5090 drm_crtc_vblank_on(crtc);
5091
8807e55b 5092 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 5093 encoder->enable(encoder);
8807e55b
JN
5094 intel_opregion_notify_encoder(encoder, true);
5095 }
4f771f10 5096
e4916946
PZ
5097 /* If we change the relative order between pipe/planes enabling, we need
5098 * to change the workaround. */
5099 haswell_mode_set_planes_workaround(intel_crtc);
4f771f10
PZ
5100}
5101
3f8dce3a
DV
5102static void ironlake_pfit_disable(struct intel_crtc *crtc)
5103{
5104 struct drm_device *dev = crtc->base.dev;
5105 struct drm_i915_private *dev_priv = dev->dev_private;
5106 int pipe = crtc->pipe;
5107
5108 /* To avoid upsetting the power well on haswell only disable the pfit if
5109 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 5110 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5111 I915_WRITE(PF_CTL(pipe), 0);
5112 I915_WRITE(PF_WIN_POS(pipe), 0);
5113 I915_WRITE(PF_WIN_SZ(pipe), 0);
5114 }
5115}
5116
6be4a607
JB
5117static void ironlake_crtc_disable(struct drm_crtc *crtc)
5118{
5119 struct drm_device *dev = crtc->dev;
5120 struct drm_i915_private *dev_priv = dev->dev_private;
5121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5122 struct intel_encoder *encoder;
6be4a607 5123 int pipe = intel_crtc->pipe;
5eddb70b 5124 u32 reg, temp;
b52eb4dc 5125
f7abfe8b
CW
5126 if (!intel_crtc->active)
5127 return;
5128
ea9d758d
DV
5129 for_each_encoder_on_crtc(dev, crtc, encoder)
5130 encoder->disable(encoder);
5131
f9b61ff6
DV
5132 drm_crtc_vblank_off(crtc);
5133 assert_vblank_disabled(crtc);
5134
6e3c9717 5135 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 5136 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 5137
575f7ab7 5138 intel_disable_pipe(intel_crtc);
32f9d658 5139
3f8dce3a 5140 ironlake_pfit_disable(intel_crtc);
2c07245f 5141
bf49ec8c
DV
5142 for_each_encoder_on_crtc(dev, crtc, encoder)
5143 if (encoder->post_disable)
5144 encoder->post_disable(encoder);
2c07245f 5145
6e3c9717 5146 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5147 ironlake_fdi_disable(crtc);
913d8d11 5148
d925c59a 5149 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5150
d925c59a
DV
5151 if (HAS_PCH_CPT(dev)) {
5152 /* disable TRANS_DP_CTL */
5153 reg = TRANS_DP_CTL(pipe);
5154 temp = I915_READ(reg);
5155 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5156 TRANS_DP_PORT_SEL_MASK);
5157 temp |= TRANS_DP_PORT_SEL_NONE;
5158 I915_WRITE(reg, temp);
5159
5160 /* disable DPLL_SEL */
5161 temp = I915_READ(PCH_DPLL_SEL);
11887397 5162 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5163 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5164 }
e3421a18 5165
d925c59a 5166 /* disable PCH DPLL */
e72f9fbf 5167 intel_disable_shared_dpll(intel_crtc);
8db9d77b 5168
d925c59a
DV
5169 ironlake_fdi_pll_disable(intel_crtc);
5170 }
6b383a7f 5171
f7abfe8b 5172 intel_crtc->active = false;
46ba614c 5173 intel_update_watermarks(crtc);
d1ebd816
BW
5174
5175 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5176 intel_fbc_update(dev);
d1ebd816 5177 mutex_unlock(&dev->struct_mutex);
6be4a607 5178}
1b3c7a47 5179
4f771f10 5180static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5181{
4f771f10
PZ
5182 struct drm_device *dev = crtc->dev;
5183 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5185 struct intel_encoder *encoder;
6e3c9717 5186 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5187
4f771f10
PZ
5188 if (!intel_crtc->active)
5189 return;
5190
8807e55b
JN
5191 for_each_encoder_on_crtc(dev, crtc, encoder) {
5192 intel_opregion_notify_encoder(encoder, false);
4f771f10 5193 encoder->disable(encoder);
8807e55b 5194 }
4f771f10 5195
f9b61ff6
DV
5196 drm_crtc_vblank_off(crtc);
5197 assert_vblank_disabled(crtc);
5198
6e3c9717 5199 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
5200 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5201 false);
575f7ab7 5202 intel_disable_pipe(intel_crtc);
4f771f10 5203
6e3c9717 5204 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5205 intel_ddi_set_vc_payload_alloc(crtc, false);
5206
ad80a810 5207 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5208
ff6d9f55 5209 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 5210 skylake_pfit_update(intel_crtc, 0);
ff6d9f55 5211 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5212 ironlake_pfit_disable(intel_crtc);
ff6d9f55
JB
5213 else
5214 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10 5215
1f544388 5216 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5217
6e3c9717 5218 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5219 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5220 intel_ddi_fdi_disable(crtc);
83616634 5221 }
4f771f10 5222
97b040aa
ID
5223 for_each_encoder_on_crtc(dev, crtc, encoder)
5224 if (encoder->post_disable)
5225 encoder->post_disable(encoder);
5226
4f771f10 5227 intel_crtc->active = false;
46ba614c 5228 intel_update_watermarks(crtc);
4f771f10
PZ
5229
5230 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5231 intel_fbc_update(dev);
4f771f10 5232 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
5233
5234 if (intel_crtc_to_shared_dpll(intel_crtc))
5235 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
5236}
5237
ee7b9f93
JB
5238static void ironlake_crtc_off(struct drm_crtc *crtc)
5239{
5240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 5241 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
5242}
5243
6441ab5f 5244
2dd24552
JB
5245static void i9xx_pfit_enable(struct intel_crtc *crtc)
5246{
5247 struct drm_device *dev = crtc->base.dev;
5248 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5249 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5250
681a8504 5251 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5252 return;
5253
2dd24552 5254 /*
c0b03411
DV
5255 * The panel fitter should only be adjusted whilst the pipe is disabled,
5256 * according to register description and PRM.
2dd24552 5257 */
c0b03411
DV
5258 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5259 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5260
b074cec8
JB
5261 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5262 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5263
5264 /* Border color in case we don't scale up to the full screen. Black by
5265 * default, change to something else for debugging. */
5266 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5267}
5268
d05410f9
DA
5269static enum intel_display_power_domain port_to_power_domain(enum port port)
5270{
5271 switch (port) {
5272 case PORT_A:
5273 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5274 case PORT_B:
5275 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5276 case PORT_C:
5277 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5278 case PORT_D:
5279 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5280 default:
5281 WARN_ON_ONCE(1);
5282 return POWER_DOMAIN_PORT_OTHER;
5283 }
5284}
5285
77d22dca
ID
5286#define for_each_power_domain(domain, mask) \
5287 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5288 if ((1 << (domain)) & (mask))
5289
319be8ae
ID
5290enum intel_display_power_domain
5291intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5292{
5293 struct drm_device *dev = intel_encoder->base.dev;
5294 struct intel_digital_port *intel_dig_port;
5295
5296 switch (intel_encoder->type) {
5297 case INTEL_OUTPUT_UNKNOWN:
5298 /* Only DDI platforms should ever use this output type */
5299 WARN_ON_ONCE(!HAS_DDI(dev));
5300 case INTEL_OUTPUT_DISPLAYPORT:
5301 case INTEL_OUTPUT_HDMI:
5302 case INTEL_OUTPUT_EDP:
5303 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5304 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5305 case INTEL_OUTPUT_DP_MST:
5306 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5307 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5308 case INTEL_OUTPUT_ANALOG:
5309 return POWER_DOMAIN_PORT_CRT;
5310 case INTEL_OUTPUT_DSI:
5311 return POWER_DOMAIN_PORT_DSI;
5312 default:
5313 return POWER_DOMAIN_PORT_OTHER;
5314 }
5315}
5316
5317static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5318{
319be8ae
ID
5319 struct drm_device *dev = crtc->dev;
5320 struct intel_encoder *intel_encoder;
5321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5322 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
5323 unsigned long mask;
5324 enum transcoder transcoder;
5325
5326 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5327
5328 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5329 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5330 if (intel_crtc->config->pch_pfit.enabled ||
5331 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5332 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5333
319be8ae
ID
5334 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5335 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5336
77d22dca
ID
5337 return mask;
5338}
5339
679dacd4 5340static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
77d22dca 5341{
679dacd4 5342 struct drm_device *dev = state->dev;
77d22dca
ID
5343 struct drm_i915_private *dev_priv = dev->dev_private;
5344 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5345 struct intel_crtc *crtc;
5346
5347 /*
5348 * First get all needed power domains, then put all unneeded, to avoid
5349 * any unnecessary toggling of the power wells.
5350 */
d3fcc808 5351 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5352 enum intel_display_power_domain domain;
5353
83d65738 5354 if (!crtc->base.state->enable)
77d22dca
ID
5355 continue;
5356
319be8ae 5357 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
5358
5359 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5360 intel_display_power_get(dev_priv, domain);
5361 }
5362
50f6e502 5363 if (dev_priv->display.modeset_global_resources)
679dacd4 5364 dev_priv->display.modeset_global_resources(state);
50f6e502 5365
d3fcc808 5366 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5367 enum intel_display_power_domain domain;
5368
5369 for_each_power_domain(domain, crtc->enabled_power_domains)
5370 intel_display_power_put(dev_priv, domain);
5371
5372 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5373 }
5374
5375 intel_display_set_init_power(dev_priv, false);
5376}
5377
f8437dd1
VK
5378void broxton_set_cdclk(struct drm_device *dev, int frequency)
5379{
5380 struct drm_i915_private *dev_priv = dev->dev_private;
5381 uint32_t divider;
5382 uint32_t ratio;
5383 uint32_t current_freq;
5384 int ret;
5385
5386 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5387 switch (frequency) {
5388 case 144000:
5389 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5390 ratio = BXT_DE_PLL_RATIO(60);
5391 break;
5392 case 288000:
5393 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5394 ratio = BXT_DE_PLL_RATIO(60);
5395 break;
5396 case 384000:
5397 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5398 ratio = BXT_DE_PLL_RATIO(60);
5399 break;
5400 case 576000:
5401 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5402 ratio = BXT_DE_PLL_RATIO(60);
5403 break;
5404 case 624000:
5405 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5406 ratio = BXT_DE_PLL_RATIO(65);
5407 break;
5408 case 19200:
5409 /*
5410 * Bypass frequency with DE PLL disabled. Init ratio, divider
5411 * to suppress GCC warning.
5412 */
5413 ratio = 0;
5414 divider = 0;
5415 break;
5416 default:
5417 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5418
5419 return;
5420 }
5421
5422 mutex_lock(&dev_priv->rps.hw_lock);
5423 /* Inform power controller of upcoming frequency change */
5424 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5425 0x80000000);
5426 mutex_unlock(&dev_priv->rps.hw_lock);
5427
5428 if (ret) {
5429 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5430 ret, frequency);
5431 return;
5432 }
5433
5434 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5435 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5436 current_freq = current_freq * 500 + 1000;
5437
5438 /*
5439 * DE PLL has to be disabled when
5440 * - setting to 19.2MHz (bypass, PLL isn't used)
5441 * - before setting to 624MHz (PLL needs toggling)
5442 * - before setting to any frequency from 624MHz (PLL needs toggling)
5443 */
5444 if (frequency == 19200 || frequency == 624000 ||
5445 current_freq == 624000) {
5446 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5447 /* Timeout 200us */
5448 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5449 1))
5450 DRM_ERROR("timout waiting for DE PLL unlock\n");
5451 }
5452
5453 if (frequency != 19200) {
5454 uint32_t val;
5455
5456 val = I915_READ(BXT_DE_PLL_CTL);
5457 val &= ~BXT_DE_PLL_RATIO_MASK;
5458 val |= ratio;
5459 I915_WRITE(BXT_DE_PLL_CTL, val);
5460
5461 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5462 /* Timeout 200us */
5463 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5464 DRM_ERROR("timeout waiting for DE PLL lock\n");
5465
5466 val = I915_READ(CDCLK_CTL);
5467 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5468 val |= divider;
5469 /*
5470 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5471 * enable otherwise.
5472 */
5473 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5474 if (frequency >= 500000)
5475 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5476
5477 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5478 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5479 val |= (frequency - 1000) / 500;
5480 I915_WRITE(CDCLK_CTL, val);
5481 }
5482
5483 mutex_lock(&dev_priv->rps.hw_lock);
5484 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5485 DIV_ROUND_UP(frequency, 25000));
5486 mutex_unlock(&dev_priv->rps.hw_lock);
5487
5488 if (ret) {
5489 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5490 ret, frequency);
5491 return;
5492 }
5493
5494 dev_priv->cdclk_freq = frequency;
5495}
5496
5497void broxton_init_cdclk(struct drm_device *dev)
5498{
5499 struct drm_i915_private *dev_priv = dev->dev_private;
5500 uint32_t val;
5501
5502 /*
5503 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5504 * or else the reset will hang because there is no PCH to respond.
5505 * Move the handshake programming to initialization sequence.
5506 * Previously was left up to BIOS.
5507 */
5508 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5509 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5510 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5511
5512 /* Enable PG1 for cdclk */
5513 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5514
5515 /* check if cd clock is enabled */
5516 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5517 DRM_DEBUG_KMS("Display already initialized\n");
5518 return;
5519 }
5520
5521 /*
5522 * FIXME:
5523 * - The initial CDCLK needs to be read from VBT.
5524 * Need to make this change after VBT has changes for BXT.
5525 * - check if setting the max (or any) cdclk freq is really necessary
5526 * here, it belongs to modeset time
5527 */
5528 broxton_set_cdclk(dev, 624000);
5529
5530 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5531 POSTING_READ(DBUF_CTL);
5532
f8437dd1
VK
5533 udelay(10);
5534
5535 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5536 DRM_ERROR("DBuf power enable timeout!\n");
5537}
5538
5539void broxton_uninit_cdclk(struct drm_device *dev)
5540{
5541 struct drm_i915_private *dev_priv = dev->dev_private;
5542
5543 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5544 POSTING_READ(DBUF_CTL);
5545
f8437dd1
VK
5546 udelay(10);
5547
5548 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5549 DRM_ERROR("DBuf power disable timeout!\n");
5550
5551 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5552 broxton_set_cdclk(dev, 19200);
5553
5554 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5555}
5556
dfcab17e 5557/* returns HPLL frequency in kHz */
f8bf63fd 5558static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 5559{
586f49dc 5560 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 5561
586f49dc
JB
5562 /* Obtain SKU information */
5563 mutex_lock(&dev_priv->dpio_lock);
5564 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5565 CCK_FUSE_HPLL_FREQ_MASK;
5566 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 5567
dfcab17e 5568 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
5569}
5570
f8bf63fd
VS
5571static void vlv_update_cdclk(struct drm_device *dev)
5572{
5573 struct drm_i915_private *dev_priv = dev->dev_private;
5574
164dfd28 5575 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 5576 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
164dfd28 5577 dev_priv->cdclk_freq);
f8bf63fd
VS
5578
5579 /*
5580 * Program the gmbus_freq based on the cdclk frequency.
5581 * BSpec erroneously claims we should aim for 4MHz, but
5582 * in fact 1MHz is the correct frequency.
5583 */
164dfd28 5584 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
f8bf63fd
VS
5585}
5586
30a970c6
JB
5587/* Adjust CDclk dividers to allow high res or save power if possible */
5588static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5589{
5590 struct drm_i915_private *dev_priv = dev->dev_private;
5591 u32 val, cmd;
5592
164dfd28
VK
5593 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5594 != dev_priv->cdclk_freq);
d60c4473 5595
dfcab17e 5596 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5597 cmd = 2;
dfcab17e 5598 else if (cdclk == 266667)
30a970c6
JB
5599 cmd = 1;
5600 else
5601 cmd = 0;
5602
5603 mutex_lock(&dev_priv->rps.hw_lock);
5604 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5605 val &= ~DSPFREQGUAR_MASK;
5606 val |= (cmd << DSPFREQGUAR_SHIFT);
5607 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5608 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5609 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5610 50)) {
5611 DRM_ERROR("timed out waiting for CDclk change\n");
5612 }
5613 mutex_unlock(&dev_priv->rps.hw_lock);
5614
dfcab17e 5615 if (cdclk == 400000) {
6bcda4f0 5616 u32 divider;
30a970c6 5617
6bcda4f0 5618 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
5619
5620 mutex_lock(&dev_priv->dpio_lock);
5621 /* adjust cdclk divider */
5622 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5623 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5624 val |= divider;
5625 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5626
5627 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5628 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5629 50))
5630 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5631 mutex_unlock(&dev_priv->dpio_lock);
5632 }
5633
5634 mutex_lock(&dev_priv->dpio_lock);
5635 /* adjust self-refresh exit latency value */
5636 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5637 val &= ~0x7f;
5638
5639 /*
5640 * For high bandwidth configs, we set a higher latency in the bunit
5641 * so that the core display fetch happens in time to avoid underruns.
5642 */
dfcab17e 5643 if (cdclk == 400000)
30a970c6
JB
5644 val |= 4500 / 250; /* 4.5 usec */
5645 else
5646 val |= 3000 / 250; /* 3.0 usec */
5647 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5648 mutex_unlock(&dev_priv->dpio_lock);
5649
f8bf63fd 5650 vlv_update_cdclk(dev);
30a970c6
JB
5651}
5652
383c5a6a
VS
5653static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5654{
5655 struct drm_i915_private *dev_priv = dev->dev_private;
5656 u32 val, cmd;
5657
164dfd28
VK
5658 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5659 != dev_priv->cdclk_freq);
383c5a6a
VS
5660
5661 switch (cdclk) {
383c5a6a
VS
5662 case 333333:
5663 case 320000:
383c5a6a 5664 case 266667:
383c5a6a 5665 case 200000:
383c5a6a
VS
5666 break;
5667 default:
5f77eeb0 5668 MISSING_CASE(cdclk);
383c5a6a
VS
5669 return;
5670 }
5671
9d0d3fda
VS
5672 /*
5673 * Specs are full of misinformation, but testing on actual
5674 * hardware has shown that we just need to write the desired
5675 * CCK divider into the Punit register.
5676 */
5677 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5678
383c5a6a
VS
5679 mutex_lock(&dev_priv->rps.hw_lock);
5680 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5681 val &= ~DSPFREQGUAR_MASK_CHV;
5682 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5683 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5684 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5685 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5686 50)) {
5687 DRM_ERROR("timed out waiting for CDclk change\n");
5688 }
5689 mutex_unlock(&dev_priv->rps.hw_lock);
5690
5691 vlv_update_cdclk(dev);
5692}
5693
30a970c6
JB
5694static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5695 int max_pixclk)
5696{
6bcda4f0 5697 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5698 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5699
30a970c6
JB
5700 /*
5701 * Really only a few cases to deal with, as only 4 CDclks are supported:
5702 * 200MHz
5703 * 267MHz
29dc7ef3 5704 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5705 * 400MHz (VLV only)
5706 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5707 * of the lower bin and adjust if needed.
e37c67a1
VS
5708 *
5709 * We seem to get an unstable or solid color picture at 200MHz.
5710 * Not sure what's wrong. For now use 200MHz only when all pipes
5711 * are off.
30a970c6 5712 */
6cca3195
VS
5713 if (!IS_CHERRYVIEW(dev_priv) &&
5714 max_pixclk > freq_320*limit/100)
dfcab17e 5715 return 400000;
6cca3195 5716 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5717 return freq_320;
e37c67a1 5718 else if (max_pixclk > 0)
dfcab17e 5719 return 266667;
e37c67a1
VS
5720 else
5721 return 200000;
30a970c6
JB
5722}
5723
f8437dd1
VK
5724static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5725 int max_pixclk)
5726{
5727 /*
5728 * FIXME:
5729 * - remove the guardband, it's not needed on BXT
5730 * - set 19.2MHz bypass frequency if there are no active pipes
5731 */
5732 if (max_pixclk > 576000*9/10)
5733 return 624000;
5734 else if (max_pixclk > 384000*9/10)
5735 return 576000;
5736 else if (max_pixclk > 288000*9/10)
5737 return 384000;
5738 else if (max_pixclk > 144000*9/10)
5739 return 288000;
5740 else
5741 return 144000;
5742}
5743
a821fc46
ACO
5744/* Compute the max pixel clock for new configuration. Uses atomic state if
5745 * that's non-NULL, look at current state otherwise. */
5746static int intel_mode_max_pixclk(struct drm_device *dev,
5747 struct drm_atomic_state *state)
30a970c6 5748{
30a970c6 5749 struct intel_crtc *intel_crtc;
304603f4 5750 struct intel_crtc_state *crtc_state;
30a970c6
JB
5751 int max_pixclk = 0;
5752
d3fcc808 5753 for_each_intel_crtc(dev, intel_crtc) {
a821fc46
ACO
5754 if (state)
5755 crtc_state =
5756 intel_atomic_get_crtc_state(state, intel_crtc);
5757 else
5758 crtc_state = intel_crtc->config;
304603f4
ACO
5759 if (IS_ERR(crtc_state))
5760 return PTR_ERR(crtc_state);
5761
5762 if (!crtc_state->base.enable)
5763 continue;
5764
5765 max_pixclk = max(max_pixclk,
5766 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
5767 }
5768
5769 return max_pixclk;
5770}
5771
0a9ab303 5772static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
30a970c6 5773{
304603f4 5774 struct drm_i915_private *dev_priv = to_i915(state->dev);
0a9ab303
ACO
5775 struct drm_crtc *crtc;
5776 struct drm_crtc_state *crtc_state;
a821fc46 5777 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
0a9ab303 5778 int cdclk, i;
30a970c6 5779
304603f4
ACO
5780 if (max_pixclk < 0)
5781 return max_pixclk;
30a970c6 5782
f8437dd1
VK
5783 if (IS_VALLEYVIEW(dev_priv))
5784 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5785 else
5786 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5787
5788 if (cdclk == dev_priv->cdclk_freq)
304603f4 5789 return 0;
30a970c6 5790
0a9ab303
ACO
5791 /* add all active pipes to the state */
5792 for_each_crtc(state->dev, crtc) {
5793 if (!crtc->state->enable)
5794 continue;
5795
5796 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5797 if (IS_ERR(crtc_state))
5798 return PTR_ERR(crtc_state);
5799 }
5800
2f2d7aa1 5801 /* disable/enable all currently active pipes while we change cdclk */
0a9ab303
ACO
5802 for_each_crtc_in_state(state, crtc, crtc_state, i)
5803 if (crtc_state->enable)
5804 crtc_state->mode_changed = true;
304603f4
ACO
5805
5806 return 0;
30a970c6
JB
5807}
5808
1e69cd74
VS
5809static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5810{
5811 unsigned int credits, default_credits;
5812
5813 if (IS_CHERRYVIEW(dev_priv))
5814 default_credits = PFI_CREDIT(12);
5815 else
5816 default_credits = PFI_CREDIT(8);
5817
164dfd28 5818 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
1e69cd74
VS
5819 /* CHV suggested value is 31 or 63 */
5820 if (IS_CHERRYVIEW(dev_priv))
5821 credits = PFI_CREDIT_31;
5822 else
5823 credits = PFI_CREDIT(15);
5824 } else {
5825 credits = default_credits;
5826 }
5827
5828 /*
5829 * WA - write default credits before re-programming
5830 * FIXME: should we also set the resend bit here?
5831 */
5832 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5833 default_credits);
5834
5835 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5836 credits | PFI_CREDIT_RESEND);
5837
5838 /*
5839 * FIXME is this guaranteed to clear
5840 * immediately or should we poll for it?
5841 */
5842 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5843}
5844
a821fc46 5845static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
30a970c6 5846{
a821fc46 5847 struct drm_device *dev = old_state->dev;
30a970c6 5848 struct drm_i915_private *dev_priv = dev->dev_private;
a821fc46 5849 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
304603f4
ACO
5850 int req_cdclk;
5851
a821fc46
ACO
5852 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
5853 * never fail. */
304603f4
ACO
5854 if (WARN_ON(max_pixclk < 0))
5855 return;
30a970c6 5856
304603f4 5857 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
30a970c6 5858
164dfd28 5859 if (req_cdclk != dev_priv->cdclk_freq) {
738c05c0
ID
5860 /*
5861 * FIXME: We can end up here with all power domains off, yet
5862 * with a CDCLK frequency other than the minimum. To account
5863 * for this take the PIPE-A power domain, which covers the HW
5864 * blocks needed for the following programming. This can be
5865 * removed once it's guaranteed that we get here either with
5866 * the minimum CDCLK set, or the required power domains
5867 * enabled.
5868 */
5869 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5870
383c5a6a
VS
5871 if (IS_CHERRYVIEW(dev))
5872 cherryview_set_cdclk(dev, req_cdclk);
5873 else
5874 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 5875
1e69cd74
VS
5876 vlv_program_pfi_credits(dev_priv);
5877
738c05c0 5878 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5879 }
30a970c6
JB
5880}
5881
89b667f8
JB
5882static void valleyview_crtc_enable(struct drm_crtc *crtc)
5883{
5884 struct drm_device *dev = crtc->dev;
a72e4c9f 5885 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5887 struct intel_encoder *encoder;
5888 int pipe = intel_crtc->pipe;
23538ef1 5889 bool is_dsi;
89b667f8 5890
83d65738 5891 WARN_ON(!crtc->state->enable);
89b667f8
JB
5892
5893 if (intel_crtc->active)
5894 return;
5895
409ee761 5896 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5897
1ae0d137
VS
5898 if (!is_dsi) {
5899 if (IS_CHERRYVIEW(dev))
6e3c9717 5900 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5901 else
6e3c9717 5902 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5903 }
5b18e57c 5904
6e3c9717 5905 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5906 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5907
5908 intel_set_pipe_timings(intel_crtc);
5909
c14b0485
VS
5910 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5911 struct drm_i915_private *dev_priv = dev->dev_private;
5912
5913 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5914 I915_WRITE(CHV_CANVAS(pipe), 0);
5915 }
5916
5b18e57c
DV
5917 i9xx_set_pipeconf(intel_crtc);
5918
89b667f8 5919 intel_crtc->active = true;
89b667f8 5920
a72e4c9f 5921 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5922
89b667f8
JB
5923 for_each_encoder_on_crtc(dev, crtc, encoder)
5924 if (encoder->pre_pll_enable)
5925 encoder->pre_pll_enable(encoder);
5926
9d556c99
CML
5927 if (!is_dsi) {
5928 if (IS_CHERRYVIEW(dev))
6e3c9717 5929 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5930 else
6e3c9717 5931 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5932 }
89b667f8
JB
5933
5934 for_each_encoder_on_crtc(dev, crtc, encoder)
5935 if (encoder->pre_enable)
5936 encoder->pre_enable(encoder);
5937
2dd24552
JB
5938 i9xx_pfit_enable(intel_crtc);
5939
63cbb074
VS
5940 intel_crtc_load_lut(crtc);
5941
f37fcc2a 5942 intel_update_watermarks(crtc);
e1fdc473 5943 intel_enable_pipe(intel_crtc);
be6a6f8e 5944
4b3a9526
VS
5945 assert_vblank_disabled(crtc);
5946 drm_crtc_vblank_on(crtc);
5947
f9b61ff6
DV
5948 for_each_encoder_on_crtc(dev, crtc, encoder)
5949 encoder->enable(encoder);
89b667f8
JB
5950}
5951
f13c2ef3
DV
5952static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5953{
5954 struct drm_device *dev = crtc->base.dev;
5955 struct drm_i915_private *dev_priv = dev->dev_private;
5956
6e3c9717
ACO
5957 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5958 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5959}
5960
0b8765c6 5961static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5962{
5963 struct drm_device *dev = crtc->dev;
a72e4c9f 5964 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5966 struct intel_encoder *encoder;
79e53945 5967 int pipe = intel_crtc->pipe;
79e53945 5968
83d65738 5969 WARN_ON(!crtc->state->enable);
08a48469 5970
f7abfe8b
CW
5971 if (intel_crtc->active)
5972 return;
5973
f13c2ef3
DV
5974 i9xx_set_pll_dividers(intel_crtc);
5975
6e3c9717 5976 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5977 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5978
5979 intel_set_pipe_timings(intel_crtc);
5980
5b18e57c
DV
5981 i9xx_set_pipeconf(intel_crtc);
5982
f7abfe8b 5983 intel_crtc->active = true;
6b383a7f 5984
4a3436e8 5985 if (!IS_GEN2(dev))
a72e4c9f 5986 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5987
9d6d9f19
MK
5988 for_each_encoder_on_crtc(dev, crtc, encoder)
5989 if (encoder->pre_enable)
5990 encoder->pre_enable(encoder);
5991
f6736a1a
DV
5992 i9xx_enable_pll(intel_crtc);
5993
2dd24552
JB
5994 i9xx_pfit_enable(intel_crtc);
5995
63cbb074
VS
5996 intel_crtc_load_lut(crtc);
5997
f37fcc2a 5998 intel_update_watermarks(crtc);
e1fdc473 5999 intel_enable_pipe(intel_crtc);
be6a6f8e 6000
4b3a9526
VS
6001 assert_vblank_disabled(crtc);
6002 drm_crtc_vblank_on(crtc);
6003
f9b61ff6
DV
6004 for_each_encoder_on_crtc(dev, crtc, encoder)
6005 encoder->enable(encoder);
0b8765c6 6006}
79e53945 6007
87476d63
DV
6008static void i9xx_pfit_disable(struct intel_crtc *crtc)
6009{
6010 struct drm_device *dev = crtc->base.dev;
6011 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6012
6e3c9717 6013 if (!crtc->config->gmch_pfit.control)
328d8e82 6014 return;
87476d63 6015
328d8e82 6016 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6017
328d8e82
DV
6018 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6019 I915_READ(PFIT_CONTROL));
6020 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6021}
6022
0b8765c6
JB
6023static void i9xx_crtc_disable(struct drm_crtc *crtc)
6024{
6025 struct drm_device *dev = crtc->dev;
6026 struct drm_i915_private *dev_priv = dev->dev_private;
6027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6028 struct intel_encoder *encoder;
0b8765c6 6029 int pipe = intel_crtc->pipe;
ef9c3aee 6030
f7abfe8b
CW
6031 if (!intel_crtc->active)
6032 return;
6033
6304cd91
VS
6034 /*
6035 * On gen2 planes are double buffered but the pipe isn't, so we must
6036 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6037 * We also need to wait on all gmch platforms because of the
6038 * self-refresh mode constraint explained above.
6304cd91 6039 */
564ed191 6040 intel_wait_for_vblank(dev, pipe);
6304cd91 6041
4b3a9526
VS
6042 for_each_encoder_on_crtc(dev, crtc, encoder)
6043 encoder->disable(encoder);
6044
f9b61ff6
DV
6045 drm_crtc_vblank_off(crtc);
6046 assert_vblank_disabled(crtc);
6047
575f7ab7 6048 intel_disable_pipe(intel_crtc);
24a1f16d 6049
87476d63 6050 i9xx_pfit_disable(intel_crtc);
24a1f16d 6051
89b667f8
JB
6052 for_each_encoder_on_crtc(dev, crtc, encoder)
6053 if (encoder->post_disable)
6054 encoder->post_disable(encoder);
6055
409ee761 6056 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6057 if (IS_CHERRYVIEW(dev))
6058 chv_disable_pll(dev_priv, pipe);
6059 else if (IS_VALLEYVIEW(dev))
6060 vlv_disable_pll(dev_priv, pipe);
6061 else
1c4e0274 6062 i9xx_disable_pll(intel_crtc);
076ed3b2 6063 }
0b8765c6 6064
4a3436e8 6065 if (!IS_GEN2(dev))
a72e4c9f 6066 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 6067
f7abfe8b 6068 intel_crtc->active = false;
46ba614c 6069 intel_update_watermarks(crtc);
f37fcc2a 6070
efa9624e 6071 mutex_lock(&dev->struct_mutex);
7ff0ebcc 6072 intel_fbc_update(dev);
efa9624e 6073 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
6074}
6075
ee7b9f93
JB
6076static void i9xx_crtc_off(struct drm_crtc *crtc)
6077{
6078}
6079
b04c5bd6
BF
6080/* Master function to enable/disable CRTC and corresponding power wells */
6081void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
6082{
6083 struct drm_device *dev = crtc->dev;
6084 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 6085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
6086 enum intel_display_power_domain domain;
6087 unsigned long domains;
976f8a20 6088
0e572fe7
DV
6089 if (enable) {
6090 if (!intel_crtc->active) {
e1e9fb84
DV
6091 domains = get_crtc_power_domains(crtc);
6092 for_each_power_domain(domain, domains)
6093 intel_display_power_get(dev_priv, domain);
6094 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
6095
6096 dev_priv->display.crtc_enable(crtc);
ce22dba9 6097 intel_crtc_enable_planes(crtc);
0e572fe7
DV
6098 }
6099 } else {
6100 if (intel_crtc->active) {
ce22dba9 6101 intel_crtc_disable_planes(crtc);
0e572fe7
DV
6102 dev_priv->display.crtc_disable(crtc);
6103
e1e9fb84
DV
6104 domains = intel_crtc->enabled_power_domains;
6105 for_each_power_domain(domain, domains)
6106 intel_display_power_put(dev_priv, domain);
6107 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
6108 }
6109 }
b04c5bd6
BF
6110}
6111
6112/**
6113 * Sets the power management mode of the pipe and plane.
6114 */
6115void intel_crtc_update_dpms(struct drm_crtc *crtc)
6116{
6117 struct drm_device *dev = crtc->dev;
6118 struct intel_encoder *intel_encoder;
6119 bool enable = false;
6120
6121 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6122 enable |= intel_encoder->connectors_active;
6123
6124 intel_crtc_control(crtc, enable);
0f63cca2
ACO
6125
6126 crtc->state->active = enable;
976f8a20
DV
6127}
6128
cdd59983
CW
6129static void intel_crtc_disable(struct drm_crtc *crtc)
6130{
cdd59983 6131 struct drm_device *dev = crtc->dev;
976f8a20 6132 struct drm_connector *connector;
ee7b9f93 6133 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 6134
976f8a20 6135 /* crtc should still be enabled when we disable it. */
83d65738 6136 WARN_ON(!crtc->state->enable);
976f8a20 6137
ce22dba9 6138 intel_crtc_disable_planes(crtc);
976f8a20 6139 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
6140 dev_priv->display.off(crtc);
6141
70a101f8 6142 drm_plane_helper_disable(crtc->primary);
976f8a20
DV
6143
6144 /* Update computed state. */
6145 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6146 if (!connector->encoder || !connector->encoder->crtc)
6147 continue;
6148
6149 if (connector->encoder->crtc != crtc)
6150 continue;
6151
6152 connector->dpms = DRM_MODE_DPMS_OFF;
6153 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
6154 }
6155}
6156
ea5b213a 6157void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6158{
4ef69c7a 6159 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6160
ea5b213a
CW
6161 drm_encoder_cleanup(encoder);
6162 kfree(intel_encoder);
7e7d76c3
JB
6163}
6164
9237329d 6165/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
6166 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6167 * state of the entire output pipe. */
9237329d 6168static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 6169{
5ab432ef
DV
6170 if (mode == DRM_MODE_DPMS_ON) {
6171 encoder->connectors_active = true;
6172
b2cabb0e 6173 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
6174 } else {
6175 encoder->connectors_active = false;
6176
b2cabb0e 6177 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 6178 }
79e53945
JB
6179}
6180
0a91ca29
DV
6181/* Cross check the actual hw state with our own modeset state tracking (and it's
6182 * internal consistency). */
b980514c 6183static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6184{
0a91ca29
DV
6185 if (connector->get_hw_state(connector)) {
6186 struct intel_encoder *encoder = connector->encoder;
6187 struct drm_crtc *crtc;
6188 bool encoder_enabled;
6189 enum pipe pipe;
6190
6191 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6192 connector->base.base.id,
c23cc417 6193 connector->base.name);
0a91ca29 6194
0e32b39c
DA
6195 /* there is no real hw state for MST connectors */
6196 if (connector->mst_port)
6197 return;
6198
e2c719b7 6199 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 6200 "wrong connector dpms state\n");
e2c719b7 6201 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 6202 "active connector not linked to encoder\n");
0a91ca29 6203
36cd7444 6204 if (encoder) {
e2c719b7 6205 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
6206 "encoder->connectors_active not set\n");
6207
6208 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
6209 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6210 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 6211 return;
0a91ca29 6212
36cd7444 6213 crtc = encoder->base.crtc;
0a91ca29 6214
83d65738
MR
6215 I915_STATE_WARN(!crtc->state->enable,
6216 "crtc not enabled\n");
e2c719b7
RC
6217 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6218 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
6219 "encoder active on the wrong pipe\n");
6220 }
0a91ca29 6221 }
79e53945
JB
6222}
6223
08d9bc92
ACO
6224int intel_connector_init(struct intel_connector *connector)
6225{
6226 struct drm_connector_state *connector_state;
6227
6228 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6229 if (!connector_state)
6230 return -ENOMEM;
6231
6232 connector->base.state = connector_state;
6233 return 0;
6234}
6235
6236struct intel_connector *intel_connector_alloc(void)
6237{
6238 struct intel_connector *connector;
6239
6240 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6241 if (!connector)
6242 return NULL;
6243
6244 if (intel_connector_init(connector) < 0) {
6245 kfree(connector);
6246 return NULL;
6247 }
6248
6249 return connector;
6250}
6251
5ab432ef
DV
6252/* Even simpler default implementation, if there's really no special case to
6253 * consider. */
6254void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 6255{
5ab432ef
DV
6256 /* All the simple cases only support two dpms states. */
6257 if (mode != DRM_MODE_DPMS_ON)
6258 mode = DRM_MODE_DPMS_OFF;
d4270e57 6259
5ab432ef
DV
6260 if (mode == connector->dpms)
6261 return;
6262
6263 connector->dpms = mode;
6264
6265 /* Only need to change hw state when actually enabled */
c9976dcf
CW
6266 if (connector->encoder)
6267 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 6268
b980514c 6269 intel_modeset_check_state(connector->dev);
79e53945
JB
6270}
6271
f0947c37
DV
6272/* Simple connector->get_hw_state implementation for encoders that support only
6273 * one connector and no cloning and hence the encoder state determines the state
6274 * of the connector. */
6275bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6276{
24929352 6277 enum pipe pipe = 0;
f0947c37 6278 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6279
f0947c37 6280 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6281}
6282
6d293983 6283static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6284{
6d293983
ACO
6285 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6286 return crtc_state->fdi_lanes;
d272ddfa
VS
6287
6288 return 0;
6289}
6290
6d293983 6291static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6292 struct intel_crtc_state *pipe_config)
1857e1da 6293{
6d293983
ACO
6294 struct drm_atomic_state *state = pipe_config->base.state;
6295 struct intel_crtc *other_crtc;
6296 struct intel_crtc_state *other_crtc_state;
6297
1857e1da
DV
6298 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6299 pipe_name(pipe), pipe_config->fdi_lanes);
6300 if (pipe_config->fdi_lanes > 4) {
6301 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6302 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6303 return -EINVAL;
1857e1da
DV
6304 }
6305
bafb6553 6306 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6307 if (pipe_config->fdi_lanes > 2) {
6308 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6309 pipe_config->fdi_lanes);
6d293983 6310 return -EINVAL;
1857e1da 6311 } else {
6d293983 6312 return 0;
1857e1da
DV
6313 }
6314 }
6315
6316 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6317 return 0;
1857e1da
DV
6318
6319 /* Ivybridge 3 pipe is really complicated */
6320 switch (pipe) {
6321 case PIPE_A:
6d293983 6322 return 0;
1857e1da 6323 case PIPE_B:
6d293983
ACO
6324 if (pipe_config->fdi_lanes <= 2)
6325 return 0;
6326
6327 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6328 other_crtc_state =
6329 intel_atomic_get_crtc_state(state, other_crtc);
6330 if (IS_ERR(other_crtc_state))
6331 return PTR_ERR(other_crtc_state);
6332
6333 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6334 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6335 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6336 return -EINVAL;
1857e1da 6337 }
6d293983 6338 return 0;
1857e1da 6339 case PIPE_C:
251cc67c
VS
6340 if (pipe_config->fdi_lanes > 2) {
6341 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6342 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6343 return -EINVAL;
251cc67c 6344 }
6d293983
ACO
6345
6346 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6347 other_crtc_state =
6348 intel_atomic_get_crtc_state(state, other_crtc);
6349 if (IS_ERR(other_crtc_state))
6350 return PTR_ERR(other_crtc_state);
6351
6352 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6353 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6354 return -EINVAL;
1857e1da 6355 }
6d293983 6356 return 0;
1857e1da
DV
6357 default:
6358 BUG();
6359 }
6360}
6361
e29c22c0
DV
6362#define RETRY 1
6363static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6364 struct intel_crtc_state *pipe_config)
877d48d5 6365{
1857e1da 6366 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 6367 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6368 int lane, link_bw, fdi_dotclock, ret;
6369 bool needs_recompute = false;
877d48d5 6370
e29c22c0 6371retry:
877d48d5
DV
6372 /* FDI is a binary signal running at ~2.7GHz, encoding
6373 * each output octet as 10 bits. The actual frequency
6374 * is stored as a divider into a 100MHz clock, and the
6375 * mode pixel clock is stored in units of 1KHz.
6376 * Hence the bw of each lane in terms of the mode signal
6377 * is:
6378 */
6379 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6380
241bfc38 6381 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6382
2bd89a07 6383 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6384 pipe_config->pipe_bpp);
6385
6386 pipe_config->fdi_lanes = lane;
6387
2bd89a07 6388 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6389 link_bw, &pipe_config->fdi_m_n);
1857e1da 6390
6d293983
ACO
6391 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6392 intel_crtc->pipe, pipe_config);
6393 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6394 pipe_config->pipe_bpp -= 2*3;
6395 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6396 pipe_config->pipe_bpp);
6397 needs_recompute = true;
6398 pipe_config->bw_constrained = true;
6399
6400 goto retry;
6401 }
6402
6403 if (needs_recompute)
6404 return RETRY;
6405
6d293983 6406 return ret;
877d48d5
DV
6407}
6408
42db64ef 6409static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6410 struct intel_crtc_state *pipe_config)
42db64ef 6411{
d330a953 6412 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 6413 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 6414 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
6415}
6416
a43f6e0f 6417static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6418 struct intel_crtc_state *pipe_config)
79e53945 6419{
a43f6e0f 6420 struct drm_device *dev = crtc->base.dev;
8bd31e67 6421 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 6422 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
d03c93d4 6423 int ret;
89749350 6424
ad3a4479 6425 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6426 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
6427 int clock_limit =
6428 dev_priv->display.get_display_clock_speed(dev);
6429
6430 /*
6431 * Enable pixel doubling when the dot clock
6432 * is > 90% of the (display) core speed.
6433 *
b397c96b
VS
6434 * GDG double wide on either pipe,
6435 * otherwise pipe A only.
cf532bb2 6436 */
b397c96b 6437 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 6438 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 6439 clock_limit *= 2;
cf532bb2 6440 pipe_config->double_wide = true;
ad3a4479
VS
6441 }
6442
241bfc38 6443 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 6444 return -EINVAL;
2c07245f 6445 }
89749350 6446
1d1d0e27
VS
6447 /*
6448 * Pipe horizontal size must be even in:
6449 * - DVO ganged mode
6450 * - LVDS dual channel mode
6451 * - Double wide pipe
6452 */
a93e255f 6453 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6454 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6455 pipe_config->pipe_src_w &= ~1;
6456
8693a824
DL
6457 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6458 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6459 */
6460 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6461 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 6462 return -EINVAL;
44f46b42 6463
f5adf94e 6464 if (HAS_IPS(dev))
a43f6e0f
DV
6465 hsw_compute_ips_config(crtc, pipe_config);
6466
877d48d5 6467 if (pipe_config->has_pch_encoder)
a43f6e0f 6468 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6469
d03c93d4
CK
6470 /* FIXME: remove below call once atomic mode set is place and all crtc
6471 * related checks called from atomic_crtc_check function */
6472 ret = 0;
6473 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6474 crtc, pipe_config->base.state);
6475 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6476
6477 return ret;
79e53945
JB
6478}
6479
1652d19e
VS
6480static int skylake_get_display_clock_speed(struct drm_device *dev)
6481{
6482 struct drm_i915_private *dev_priv = to_i915(dev);
6483 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6484 uint32_t cdctl = I915_READ(CDCLK_CTL);
6485 uint32_t linkrate;
6486
6487 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6488 WARN(1, "LCPLL1 not enabled\n");
6489 return 24000; /* 24MHz is the cd freq with NSSC ref */
6490 }
6491
6492 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6493 return 540000;
6494
6495 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6496 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6497
71cd8423
DL
6498 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6499 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6500 /* vco 8640 */
6501 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6502 case CDCLK_FREQ_450_432:
6503 return 432000;
6504 case CDCLK_FREQ_337_308:
6505 return 308570;
6506 case CDCLK_FREQ_675_617:
6507 return 617140;
6508 default:
6509 WARN(1, "Unknown cd freq selection\n");
6510 }
6511 } else {
6512 /* vco 8100 */
6513 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6514 case CDCLK_FREQ_450_432:
6515 return 450000;
6516 case CDCLK_FREQ_337_308:
6517 return 337500;
6518 case CDCLK_FREQ_675_617:
6519 return 675000;
6520 default:
6521 WARN(1, "Unknown cd freq selection\n");
6522 }
6523 }
6524
6525 /* error case, do as if DPLL0 isn't enabled */
6526 return 24000;
6527}
6528
6529static int broadwell_get_display_clock_speed(struct drm_device *dev)
6530{
6531 struct drm_i915_private *dev_priv = dev->dev_private;
6532 uint32_t lcpll = I915_READ(LCPLL_CTL);
6533 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6534
6535 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6536 return 800000;
6537 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6538 return 450000;
6539 else if (freq == LCPLL_CLK_FREQ_450)
6540 return 450000;
6541 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6542 return 540000;
6543 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6544 return 337500;
6545 else
6546 return 675000;
6547}
6548
6549static int haswell_get_display_clock_speed(struct drm_device *dev)
6550{
6551 struct drm_i915_private *dev_priv = dev->dev_private;
6552 uint32_t lcpll = I915_READ(LCPLL_CTL);
6553 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6554
6555 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6556 return 800000;
6557 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6558 return 450000;
6559 else if (freq == LCPLL_CLK_FREQ_450)
6560 return 450000;
6561 else if (IS_HSW_ULT(dev))
6562 return 337500;
6563 else
6564 return 540000;
79e53945
JB
6565}
6566
25eb05fc
JB
6567static int valleyview_get_display_clock_speed(struct drm_device *dev)
6568{
d197b7d3 6569 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
6570 u32 val;
6571 int divider;
6572
6bcda4f0
VS
6573 if (dev_priv->hpll_freq == 0)
6574 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6575
d197b7d3
VS
6576 mutex_lock(&dev_priv->dpio_lock);
6577 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6578 mutex_unlock(&dev_priv->dpio_lock);
6579
6580 divider = val & DISPLAY_FREQUENCY_VALUES;
6581
7d007f40
VS
6582 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6583 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6584 "cdclk change in progress\n");
6585
6bcda4f0 6586 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
6587}
6588
b37a6434
VS
6589static int ilk_get_display_clock_speed(struct drm_device *dev)
6590{
6591 return 450000;
6592}
6593
e70236a8
JB
6594static int i945_get_display_clock_speed(struct drm_device *dev)
6595{
6596 return 400000;
6597}
79e53945 6598
e70236a8 6599static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6600{
e907f170 6601 return 333333;
e70236a8 6602}
79e53945 6603
e70236a8
JB
6604static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6605{
6606 return 200000;
6607}
79e53945 6608
257a7ffc
DV
6609static int pnv_get_display_clock_speed(struct drm_device *dev)
6610{
6611 u16 gcfgc = 0;
6612
6613 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6614
6615 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6616 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6617 return 266667;
257a7ffc 6618 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6619 return 333333;
257a7ffc 6620 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6621 return 444444;
257a7ffc
DV
6622 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6623 return 200000;
6624 default:
6625 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6626 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6627 return 133333;
257a7ffc 6628 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6629 return 166667;
257a7ffc
DV
6630 }
6631}
6632
e70236a8
JB
6633static int i915gm_get_display_clock_speed(struct drm_device *dev)
6634{
6635 u16 gcfgc = 0;
79e53945 6636
e70236a8
JB
6637 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6638
6639 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6640 return 133333;
e70236a8
JB
6641 else {
6642 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6643 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6644 return 333333;
e70236a8
JB
6645 default:
6646 case GC_DISPLAY_CLOCK_190_200_MHZ:
6647 return 190000;
79e53945 6648 }
e70236a8
JB
6649 }
6650}
6651
6652static int i865_get_display_clock_speed(struct drm_device *dev)
6653{
e907f170 6654 return 266667;
e70236a8
JB
6655}
6656
6657static int i855_get_display_clock_speed(struct drm_device *dev)
6658{
6659 u16 hpllcc = 0;
6660 /* Assume that the hardware is in the high speed state. This
6661 * should be the default.
6662 */
6663 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6664 case GC_CLOCK_133_200:
6665 case GC_CLOCK_100_200:
6666 return 200000;
6667 case GC_CLOCK_166_250:
6668 return 250000;
6669 case GC_CLOCK_100_133:
e907f170 6670 return 133333;
e70236a8 6671 }
79e53945 6672
e70236a8
JB
6673 /* Shouldn't happen */
6674 return 0;
6675}
79e53945 6676
e70236a8
JB
6677static int i830_get_display_clock_speed(struct drm_device *dev)
6678{
e907f170 6679 return 133333;
79e53945
JB
6680}
6681
2c07245f 6682static void
a65851af 6683intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 6684{
a65851af
VS
6685 while (*num > DATA_LINK_M_N_MASK ||
6686 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
6687 *num >>= 1;
6688 *den >>= 1;
6689 }
6690}
6691
a65851af
VS
6692static void compute_m_n(unsigned int m, unsigned int n,
6693 uint32_t *ret_m, uint32_t *ret_n)
6694{
6695 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6696 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6697 intel_reduce_m_n_ratio(ret_m, ret_n);
6698}
6699
e69d0bc1
DV
6700void
6701intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6702 int pixel_clock, int link_clock,
6703 struct intel_link_m_n *m_n)
2c07245f 6704{
e69d0bc1 6705 m_n->tu = 64;
a65851af
VS
6706
6707 compute_m_n(bits_per_pixel * pixel_clock,
6708 link_clock * nlanes * 8,
6709 &m_n->gmch_m, &m_n->gmch_n);
6710
6711 compute_m_n(pixel_clock, link_clock,
6712 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
6713}
6714
a7615030
CW
6715static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6716{
d330a953
JN
6717 if (i915.panel_use_ssc >= 0)
6718 return i915.panel_use_ssc != 0;
41aa3448 6719 return dev_priv->vbt.lvds_use_ssc
435793df 6720 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
6721}
6722
a93e255f
ACO
6723static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6724 int num_connectors)
c65d77d8 6725{
a93e255f 6726 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
6727 struct drm_i915_private *dev_priv = dev->dev_private;
6728 int refclk;
6729
a93e255f
ACO
6730 WARN_ON(!crtc_state->base.state);
6731
5ab7b0b7 6732 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 6733 refclk = 100000;
a93e255f 6734 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 6735 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
6736 refclk = dev_priv->vbt.lvds_ssc_freq;
6737 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
6738 } else if (!IS_GEN2(dev)) {
6739 refclk = 96000;
6740 } else {
6741 refclk = 48000;
6742 }
6743
6744 return refclk;
6745}
6746
7429e9d4 6747static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 6748{
7df00d7a 6749 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 6750}
f47709a9 6751
7429e9d4
DV
6752static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6753{
6754 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
6755}
6756
f47709a9 6757static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 6758 struct intel_crtc_state *crtc_state,
a7516a05
JB
6759 intel_clock_t *reduced_clock)
6760{
f47709a9 6761 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
6762 u32 fp, fp2 = 0;
6763
6764 if (IS_PINEVIEW(dev)) {
190f68c5 6765 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6766 if (reduced_clock)
7429e9d4 6767 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 6768 } else {
190f68c5 6769 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6770 if (reduced_clock)
7429e9d4 6771 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
6772 }
6773
190f68c5 6774 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 6775
f47709a9 6776 crtc->lowfreq_avail = false;
a93e255f 6777 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 6778 reduced_clock) {
190f68c5 6779 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 6780 crtc->lowfreq_avail = true;
a7516a05 6781 } else {
190f68c5 6782 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
6783 }
6784}
6785
5e69f97f
CML
6786static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6787 pipe)
89b667f8
JB
6788{
6789 u32 reg_val;
6790
6791 /*
6792 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6793 * and set it to a reasonable value instead.
6794 */
ab3c759a 6795 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
6796 reg_val &= 0xffffff00;
6797 reg_val |= 0x00000030;
ab3c759a 6798 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6799
ab3c759a 6800 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6801 reg_val &= 0x8cffffff;
6802 reg_val = 0x8c000000;
ab3c759a 6803 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 6804
ab3c759a 6805 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 6806 reg_val &= 0xffffff00;
ab3c759a 6807 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6808
ab3c759a 6809 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6810 reg_val &= 0x00ffffff;
6811 reg_val |= 0xb0000000;
ab3c759a 6812 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
6813}
6814
b551842d
DV
6815static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6816 struct intel_link_m_n *m_n)
6817{
6818 struct drm_device *dev = crtc->base.dev;
6819 struct drm_i915_private *dev_priv = dev->dev_private;
6820 int pipe = crtc->pipe;
6821
e3b95f1e
DV
6822 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6823 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6824 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6825 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
6826}
6827
6828static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
6829 struct intel_link_m_n *m_n,
6830 struct intel_link_m_n *m2_n2)
b551842d
DV
6831{
6832 struct drm_device *dev = crtc->base.dev;
6833 struct drm_i915_private *dev_priv = dev->dev_private;
6834 int pipe = crtc->pipe;
6e3c9717 6835 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
6836
6837 if (INTEL_INFO(dev)->gen >= 5) {
6838 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6839 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6840 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6841 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
6842 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6843 * for gen < 8) and if DRRS is supported (to make sure the
6844 * registers are not unnecessarily accessed).
6845 */
44395bfe 6846 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 6847 crtc->config->has_drrs) {
f769cd24
VK
6848 I915_WRITE(PIPE_DATA_M2(transcoder),
6849 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6850 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6851 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6852 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6853 }
b551842d 6854 } else {
e3b95f1e
DV
6855 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6856 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6857 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6858 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
6859 }
6860}
6861
fe3cd48d 6862void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 6863{
fe3cd48d
R
6864 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6865
6866 if (m_n == M1_N1) {
6867 dp_m_n = &crtc->config->dp_m_n;
6868 dp_m2_n2 = &crtc->config->dp_m2_n2;
6869 } else if (m_n == M2_N2) {
6870
6871 /*
6872 * M2_N2 registers are not supported. Hence m2_n2 divider value
6873 * needs to be programmed into M1_N1.
6874 */
6875 dp_m_n = &crtc->config->dp_m2_n2;
6876 } else {
6877 DRM_ERROR("Unsupported divider value\n");
6878 return;
6879 }
6880
6e3c9717
ACO
6881 if (crtc->config->has_pch_encoder)
6882 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 6883 else
fe3cd48d 6884 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
6885}
6886
d288f65f 6887static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 6888 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
6889{
6890 u32 dpll, dpll_md;
6891
6892 /*
6893 * Enable DPIO clock input. We should never disable the reference
6894 * clock for pipe B, since VGA hotplug / manual detection depends
6895 * on it.
6896 */
6897 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6898 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6899 /* We should never disable this, set it here for state tracking */
6900 if (crtc->pipe == PIPE_B)
6901 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6902 dpll |= DPLL_VCO_ENABLE;
d288f65f 6903 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 6904
d288f65f 6905 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 6906 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 6907 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
6908}
6909
d288f65f 6910static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6911 const struct intel_crtc_state *pipe_config)
a0c4da24 6912{
f47709a9 6913 struct drm_device *dev = crtc->base.dev;
a0c4da24 6914 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 6915 int pipe = crtc->pipe;
bdd4b6a6 6916 u32 mdiv;
a0c4da24 6917 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 6918 u32 coreclk, reg_val;
a0c4da24 6919
09153000
DV
6920 mutex_lock(&dev_priv->dpio_lock);
6921
d288f65f
VS
6922 bestn = pipe_config->dpll.n;
6923 bestm1 = pipe_config->dpll.m1;
6924 bestm2 = pipe_config->dpll.m2;
6925 bestp1 = pipe_config->dpll.p1;
6926 bestp2 = pipe_config->dpll.p2;
a0c4da24 6927
89b667f8
JB
6928 /* See eDP HDMI DPIO driver vbios notes doc */
6929
6930 /* PLL B needs special handling */
bdd4b6a6 6931 if (pipe == PIPE_B)
5e69f97f 6932 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
6933
6934 /* Set up Tx target for periodic Rcomp update */
ab3c759a 6935 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
6936
6937 /* Disable target IRef on PLL */
ab3c759a 6938 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 6939 reg_val &= 0x00ffffff;
ab3c759a 6940 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
6941
6942 /* Disable fast lock */
ab3c759a 6943 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
6944
6945 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
6946 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6947 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6948 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 6949 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
6950
6951 /*
6952 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6953 * but we don't support that).
6954 * Note: don't use the DAC post divider as it seems unstable.
6955 */
6956 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 6957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6958
a0c4da24 6959 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 6960 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6961
89b667f8 6962 /* Set HBR and RBR LPF coefficients */
d288f65f 6963 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
6964 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6965 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 6966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 6967 0x009f0003);
89b667f8 6968 else
ab3c759a 6969 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
6970 0x00d0000f);
6971
681a8504 6972 if (pipe_config->has_dp_encoder) {
89b667f8 6973 /* Use SSC source */
bdd4b6a6 6974 if (pipe == PIPE_A)
ab3c759a 6975 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6976 0x0df40000);
6977 else
ab3c759a 6978 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6979 0x0df70000);
6980 } else { /* HDMI or VGA */
6981 /* Use bend source */
bdd4b6a6 6982 if (pipe == PIPE_A)
ab3c759a 6983 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6984 0x0df70000);
6985 else
ab3c759a 6986 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6987 0x0df40000);
6988 }
a0c4da24 6989
ab3c759a 6990 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6991 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6992 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6993 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6994 coreclk |= 0x01000000;
ab3c759a 6995 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6996
ab3c759a 6997 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6998 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6999}
7000
d288f65f 7001static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 7002 struct intel_crtc_state *pipe_config)
1ae0d137 7003{
d288f65f 7004 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
7005 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7006 DPLL_VCO_ENABLE;
7007 if (crtc->pipe != PIPE_A)
d288f65f 7008 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7009
d288f65f
VS
7010 pipe_config->dpll_hw_state.dpll_md =
7011 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7012}
7013
d288f65f 7014static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7015 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7016{
7017 struct drm_device *dev = crtc->base.dev;
7018 struct drm_i915_private *dev_priv = dev->dev_private;
7019 int pipe = crtc->pipe;
7020 int dpll_reg = DPLL(crtc->pipe);
7021 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7022 u32 loopfilter, tribuf_calcntr;
9d556c99 7023 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7024 u32 dpio_val;
9cbe40c1 7025 int vco;
9d556c99 7026
d288f65f
VS
7027 bestn = pipe_config->dpll.n;
7028 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7029 bestm1 = pipe_config->dpll.m1;
7030 bestm2 = pipe_config->dpll.m2 >> 22;
7031 bestp1 = pipe_config->dpll.p1;
7032 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7033 vco = pipe_config->dpll.vco;
a945ce7e 7034 dpio_val = 0;
9cbe40c1 7035 loopfilter = 0;
9d556c99
CML
7036
7037 /*
7038 * Enable Refclk and SSC
7039 */
a11b0703 7040 I915_WRITE(dpll_reg,
d288f65f 7041 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
7042
7043 mutex_lock(&dev_priv->dpio_lock);
9d556c99 7044
9d556c99
CML
7045 /* p1 and p2 divider */
7046 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7047 5 << DPIO_CHV_S1_DIV_SHIFT |
7048 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7049 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7050 1 << DPIO_CHV_K_DIV_SHIFT);
7051
7052 /* Feedback post-divider - m2 */
7053 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7054
7055 /* Feedback refclk divider - n and m1 */
7056 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7057 DPIO_CHV_M1_DIV_BY_2 |
7058 1 << DPIO_CHV_N_DIV_SHIFT);
7059
7060 /* M2 fraction division */
a945ce7e
VP
7061 if (bestm2_frac)
7062 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7063
7064 /* M2 fraction division enable */
a945ce7e
VP
7065 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7066 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7067 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7068 if (bestm2_frac)
7069 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7070 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7071
de3a0fde
VP
7072 /* Program digital lock detect threshold */
7073 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7074 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7075 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7076 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7077 if (!bestm2_frac)
7078 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7079 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7080
9d556c99 7081 /* Loop filter */
9cbe40c1
VP
7082 if (vco == 5400000) {
7083 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7084 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7085 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7086 tribuf_calcntr = 0x9;
7087 } else if (vco <= 6200000) {
7088 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7089 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7090 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7091 tribuf_calcntr = 0x9;
7092 } else if (vco <= 6480000) {
7093 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7094 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7095 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7096 tribuf_calcntr = 0x8;
7097 } else {
7098 /* Not supported. Apply the same limits as in the max case */
7099 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7100 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7101 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7102 tribuf_calcntr = 0;
7103 }
9d556c99
CML
7104 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7105
968040b2 7106 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7107 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7108 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7109 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7110
9d556c99
CML
7111 /* AFC Recal */
7112 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7113 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7114 DPIO_AFC_RECAL);
7115
7116 mutex_unlock(&dev_priv->dpio_lock);
7117}
7118
d288f65f
VS
7119/**
7120 * vlv_force_pll_on - forcibly enable just the PLL
7121 * @dev_priv: i915 private structure
7122 * @pipe: pipe PLL to enable
7123 * @dpll: PLL configuration
7124 *
7125 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7126 * in cases where we need the PLL enabled even when @pipe is not going to
7127 * be enabled.
7128 */
7129void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7130 const struct dpll *dpll)
7131{
7132 struct intel_crtc *crtc =
7133 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7134 struct intel_crtc_state pipe_config = {
a93e255f 7135 .base.crtc = &crtc->base,
d288f65f
VS
7136 .pixel_multiplier = 1,
7137 .dpll = *dpll,
7138 };
7139
7140 if (IS_CHERRYVIEW(dev)) {
7141 chv_update_pll(crtc, &pipe_config);
7142 chv_prepare_pll(crtc, &pipe_config);
7143 chv_enable_pll(crtc, &pipe_config);
7144 } else {
7145 vlv_update_pll(crtc, &pipe_config);
7146 vlv_prepare_pll(crtc, &pipe_config);
7147 vlv_enable_pll(crtc, &pipe_config);
7148 }
7149}
7150
7151/**
7152 * vlv_force_pll_off - forcibly disable just the PLL
7153 * @dev_priv: i915 private structure
7154 * @pipe: pipe PLL to disable
7155 *
7156 * Disable the PLL for @pipe. To be used in cases where we need
7157 * the PLL enabled even when @pipe is not going to be enabled.
7158 */
7159void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7160{
7161 if (IS_CHERRYVIEW(dev))
7162 chv_disable_pll(to_i915(dev), pipe);
7163 else
7164 vlv_disable_pll(to_i915(dev), pipe);
7165}
7166
f47709a9 7167static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 7168 struct intel_crtc_state *crtc_state,
f47709a9 7169 intel_clock_t *reduced_clock,
eb1cbe48
DV
7170 int num_connectors)
7171{
f47709a9 7172 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7173 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7174 u32 dpll;
7175 bool is_sdvo;
190f68c5 7176 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7177
190f68c5 7178 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7179
a93e255f
ACO
7180 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7181 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7182
7183 dpll = DPLL_VGA_MODE_DIS;
7184
a93e255f 7185 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7186 dpll |= DPLLB_MODE_LVDS;
7187 else
7188 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7189
ef1b460d 7190 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7191 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7192 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7193 }
198a037f
DV
7194
7195 if (is_sdvo)
4a33e48d 7196 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7197
190f68c5 7198 if (crtc_state->has_dp_encoder)
4a33e48d 7199 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7200
7201 /* compute bitmask from p1 value */
7202 if (IS_PINEVIEW(dev))
7203 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7204 else {
7205 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7206 if (IS_G4X(dev) && reduced_clock)
7207 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7208 }
7209 switch (clock->p2) {
7210 case 5:
7211 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7212 break;
7213 case 7:
7214 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7215 break;
7216 case 10:
7217 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7218 break;
7219 case 14:
7220 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7221 break;
7222 }
7223 if (INTEL_INFO(dev)->gen >= 4)
7224 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7225
190f68c5 7226 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7227 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7228 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7229 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7230 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7231 else
7232 dpll |= PLL_REF_INPUT_DREFCLK;
7233
7234 dpll |= DPLL_VCO_ENABLE;
190f68c5 7235 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7236
eb1cbe48 7237 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7238 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7239 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7240 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7241 }
7242}
7243
f47709a9 7244static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 7245 struct intel_crtc_state *crtc_state,
f47709a9 7246 intel_clock_t *reduced_clock,
eb1cbe48
DV
7247 int num_connectors)
7248{
f47709a9 7249 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7250 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7251 u32 dpll;
190f68c5 7252 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7253
190f68c5 7254 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7255
eb1cbe48
DV
7256 dpll = DPLL_VGA_MODE_DIS;
7257
a93e255f 7258 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7259 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7260 } else {
7261 if (clock->p1 == 2)
7262 dpll |= PLL_P1_DIVIDE_BY_TWO;
7263 else
7264 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7265 if (clock->p2 == 4)
7266 dpll |= PLL_P2_DIVIDE_BY_4;
7267 }
7268
a93e255f 7269 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7270 dpll |= DPLL_DVO_2X_MODE;
7271
a93e255f 7272 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7273 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7274 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7275 else
7276 dpll |= PLL_REF_INPUT_DREFCLK;
7277
7278 dpll |= DPLL_VCO_ENABLE;
190f68c5 7279 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7280}
7281
8a654f3b 7282static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7283{
7284 struct drm_device *dev = intel_crtc->base.dev;
7285 struct drm_i915_private *dev_priv = dev->dev_private;
7286 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7287 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 7288 struct drm_display_mode *adjusted_mode =
6e3c9717 7289 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7290 uint32_t crtc_vtotal, crtc_vblank_end;
7291 int vsyncshift = 0;
4d8a62ea
DV
7292
7293 /* We need to be careful not to changed the adjusted mode, for otherwise
7294 * the hw state checker will get angry at the mismatch. */
7295 crtc_vtotal = adjusted_mode->crtc_vtotal;
7296 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7297
609aeaca 7298 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7299 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7300 crtc_vtotal -= 1;
7301 crtc_vblank_end -= 1;
609aeaca 7302
409ee761 7303 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7304 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7305 else
7306 vsyncshift = adjusted_mode->crtc_hsync_start -
7307 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7308 if (vsyncshift < 0)
7309 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7310 }
7311
7312 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7313 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7314
fe2b8f9d 7315 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7316 (adjusted_mode->crtc_hdisplay - 1) |
7317 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7318 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7319 (adjusted_mode->crtc_hblank_start - 1) |
7320 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7321 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7322 (adjusted_mode->crtc_hsync_start - 1) |
7323 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7324
fe2b8f9d 7325 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7326 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7327 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7328 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7329 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7330 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7331 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7332 (adjusted_mode->crtc_vsync_start - 1) |
7333 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7334
b5e508d4
PZ
7335 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7336 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7337 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7338 * bits. */
7339 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7340 (pipe == PIPE_B || pipe == PIPE_C))
7341 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7342
b0e77b9c
PZ
7343 /* pipesrc controls the size that is scaled from, which should
7344 * always be the user's requested size.
7345 */
7346 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7347 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7348 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7349}
7350
1bd1bd80 7351static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7352 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7353{
7354 struct drm_device *dev = crtc->base.dev;
7355 struct drm_i915_private *dev_priv = dev->dev_private;
7356 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7357 uint32_t tmp;
7358
7359 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7360 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7361 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7362 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7363 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7364 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7365 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7366 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7367 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7368
7369 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7370 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7371 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7372 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7373 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7374 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7375 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7376 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7377 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7378
7379 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7380 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7381 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7382 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7383 }
7384
7385 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7386 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7387 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7388
2d112de7
ACO
7389 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7390 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7391}
7392
f6a83288 7393void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7394 struct intel_crtc_state *pipe_config)
babea61d 7395{
2d112de7
ACO
7396 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7397 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7398 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7399 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7400
2d112de7
ACO
7401 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7402 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7403 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7404 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7405
2d112de7 7406 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 7407
2d112de7
ACO
7408 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7409 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
7410}
7411
84b046f3
DV
7412static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7413{
7414 struct drm_device *dev = intel_crtc->base.dev;
7415 struct drm_i915_private *dev_priv = dev->dev_private;
7416 uint32_t pipeconf;
7417
9f11a9e4 7418 pipeconf = 0;
84b046f3 7419
b6b5d049
VS
7420 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7421 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7422 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7423
6e3c9717 7424 if (intel_crtc->config->double_wide)
cf532bb2 7425 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7426
ff9ce46e
DV
7427 /* only g4x and later have fancy bpc/dither controls */
7428 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7429 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7430 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7431 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7432 PIPECONF_DITHER_TYPE_SP;
84b046f3 7433
6e3c9717 7434 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7435 case 18:
7436 pipeconf |= PIPECONF_6BPC;
7437 break;
7438 case 24:
7439 pipeconf |= PIPECONF_8BPC;
7440 break;
7441 case 30:
7442 pipeconf |= PIPECONF_10BPC;
7443 break;
7444 default:
7445 /* Case prevented by intel_choose_pipe_bpp_dither. */
7446 BUG();
84b046f3
DV
7447 }
7448 }
7449
7450 if (HAS_PIPE_CXSR(dev)) {
7451 if (intel_crtc->lowfreq_avail) {
7452 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7453 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7454 } else {
7455 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7456 }
7457 }
7458
6e3c9717 7459 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7460 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7461 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7462 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7463 else
7464 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7465 } else
84b046f3
DV
7466 pipeconf |= PIPECONF_PROGRESSIVE;
7467
6e3c9717 7468 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7469 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7470
84b046f3
DV
7471 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7472 POSTING_READ(PIPECONF(intel_crtc->pipe));
7473}
7474
190f68c5
ACO
7475static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7476 struct intel_crtc_state *crtc_state)
79e53945 7477{
c7653199 7478 struct drm_device *dev = crtc->base.dev;
79e53945 7479 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7480 int refclk, num_connectors = 0;
652c393a 7481 intel_clock_t clock, reduced_clock;
a16af721 7482 bool ok, has_reduced_clock = false;
e9fd1c02 7483 bool is_lvds = false, is_dsi = false;
5eddb70b 7484 struct intel_encoder *encoder;
d4906093 7485 const intel_limit_t *limit;
55bb9992 7486 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7487 struct drm_connector *connector;
55bb9992
ACO
7488 struct drm_connector_state *connector_state;
7489 int i;
79e53945 7490
da3ced29 7491 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
7492 if (connector_state->crtc != &crtc->base)
7493 continue;
7494
7495 encoder = to_intel_encoder(connector_state->best_encoder);
7496
5eddb70b 7497 switch (encoder->type) {
79e53945
JB
7498 case INTEL_OUTPUT_LVDS:
7499 is_lvds = true;
7500 break;
e9fd1c02
JN
7501 case INTEL_OUTPUT_DSI:
7502 is_dsi = true;
7503 break;
6847d71b
PZ
7504 default:
7505 break;
79e53945 7506 }
43565a06 7507
c751ce4f 7508 num_connectors++;
79e53945
JB
7509 }
7510
f2335330 7511 if (is_dsi)
5b18e57c 7512 return 0;
f2335330 7513
190f68c5 7514 if (!crtc_state->clock_set) {
a93e255f 7515 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7516
e9fd1c02
JN
7517 /*
7518 * Returns a set of divisors for the desired target clock with
7519 * the given refclk, or FALSE. The returned values represent
7520 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7521 * 2) / p1 / p2.
7522 */
a93e255f
ACO
7523 limit = intel_limit(crtc_state, refclk);
7524 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7525 crtc_state->port_clock,
e9fd1c02 7526 refclk, NULL, &clock);
f2335330 7527 if (!ok) {
e9fd1c02
JN
7528 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7529 return -EINVAL;
7530 }
79e53945 7531
f2335330
JN
7532 if (is_lvds && dev_priv->lvds_downclock_avail) {
7533 /*
7534 * Ensure we match the reduced clock's P to the target
7535 * clock. If the clocks don't match, we can't switch
7536 * the display clock by using the FP0/FP1. In such case
7537 * we will disable the LVDS downclock feature.
7538 */
7539 has_reduced_clock =
a93e255f 7540 dev_priv->display.find_dpll(limit, crtc_state,
f2335330
JN
7541 dev_priv->lvds_downclock,
7542 refclk, &clock,
7543 &reduced_clock);
7544 }
7545 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7546 crtc_state->dpll.n = clock.n;
7547 crtc_state->dpll.m1 = clock.m1;
7548 crtc_state->dpll.m2 = clock.m2;
7549 crtc_state->dpll.p1 = clock.p1;
7550 crtc_state->dpll.p2 = clock.p2;
f47709a9 7551 }
7026d4ac 7552
e9fd1c02 7553 if (IS_GEN2(dev)) {
190f68c5 7554 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
7555 has_reduced_clock ? &reduced_clock : NULL,
7556 num_connectors);
9d556c99 7557 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 7558 chv_update_pll(crtc, crtc_state);
e9fd1c02 7559 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 7560 vlv_update_pll(crtc, crtc_state);
e9fd1c02 7561 } else {
190f68c5 7562 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 7563 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 7564 num_connectors);
e9fd1c02 7565 }
79e53945 7566
c8f7a0db 7567 return 0;
f564048e
EA
7568}
7569
2fa2fe9a 7570static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7571 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7572{
7573 struct drm_device *dev = crtc->base.dev;
7574 struct drm_i915_private *dev_priv = dev->dev_private;
7575 uint32_t tmp;
7576
dc9e7dec
VS
7577 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7578 return;
7579
2fa2fe9a 7580 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7581 if (!(tmp & PFIT_ENABLE))
7582 return;
2fa2fe9a 7583
06922821 7584 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7585 if (INTEL_INFO(dev)->gen < 4) {
7586 if (crtc->pipe != PIPE_B)
7587 return;
2fa2fe9a
DV
7588 } else {
7589 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7590 return;
7591 }
7592
06922821 7593 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7594 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7595 if (INTEL_INFO(dev)->gen < 5)
7596 pipe_config->gmch_pfit.lvds_border_bits =
7597 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7598}
7599
acbec814 7600static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7601 struct intel_crtc_state *pipe_config)
acbec814
JB
7602{
7603 struct drm_device *dev = crtc->base.dev;
7604 struct drm_i915_private *dev_priv = dev->dev_private;
7605 int pipe = pipe_config->cpu_transcoder;
7606 intel_clock_t clock;
7607 u32 mdiv;
662c6ecb 7608 int refclk = 100000;
acbec814 7609
f573de5a
SK
7610 /* In case of MIPI DPLL will not even be used */
7611 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7612 return;
7613
acbec814 7614 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 7615 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
7616 mutex_unlock(&dev_priv->dpio_lock);
7617
7618 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7619 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7620 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7621 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7622 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7623
f646628b 7624 vlv_clock(refclk, &clock);
acbec814 7625
f646628b
VS
7626 /* clock.dot is the fast clock */
7627 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
7628}
7629
5724dbd1
DL
7630static void
7631i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7632 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7633{
7634 struct drm_device *dev = crtc->base.dev;
7635 struct drm_i915_private *dev_priv = dev->dev_private;
7636 u32 val, base, offset;
7637 int pipe = crtc->pipe, plane = crtc->plane;
7638 int fourcc, pixel_format;
6761dd31 7639 unsigned int aligned_height;
b113d5ee 7640 struct drm_framebuffer *fb;
1b842c89 7641 struct intel_framebuffer *intel_fb;
1ad292b5 7642
42a7b088
DL
7643 val = I915_READ(DSPCNTR(plane));
7644 if (!(val & DISPLAY_PLANE_ENABLE))
7645 return;
7646
d9806c9f 7647 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7648 if (!intel_fb) {
1ad292b5
JB
7649 DRM_DEBUG_KMS("failed to alloc fb\n");
7650 return;
7651 }
7652
1b842c89
DL
7653 fb = &intel_fb->base;
7654
18c5247e
DV
7655 if (INTEL_INFO(dev)->gen >= 4) {
7656 if (val & DISPPLANE_TILED) {
49af449b 7657 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7658 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7659 }
7660 }
1ad292b5
JB
7661
7662 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7663 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7664 fb->pixel_format = fourcc;
7665 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
7666
7667 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 7668 if (plane_config->tiling)
1ad292b5
JB
7669 offset = I915_READ(DSPTILEOFF(plane));
7670 else
7671 offset = I915_READ(DSPLINOFF(plane));
7672 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7673 } else {
7674 base = I915_READ(DSPADDR(plane));
7675 }
7676 plane_config->base = base;
7677
7678 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7679 fb->width = ((val >> 16) & 0xfff) + 1;
7680 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
7681
7682 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7683 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 7684
b113d5ee 7685 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7686 fb->pixel_format,
7687 fb->modifier[0]);
1ad292b5 7688
f37b5c2b 7689 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 7690
2844a921
DL
7691 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7692 pipe_name(pipe), plane, fb->width, fb->height,
7693 fb->bits_per_pixel, base, fb->pitches[0],
7694 plane_config->size);
1ad292b5 7695
2d14030b 7696 plane_config->fb = intel_fb;
1ad292b5
JB
7697}
7698
70b23a98 7699static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7700 struct intel_crtc_state *pipe_config)
70b23a98
VS
7701{
7702 struct drm_device *dev = crtc->base.dev;
7703 struct drm_i915_private *dev_priv = dev->dev_private;
7704 int pipe = pipe_config->cpu_transcoder;
7705 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7706 intel_clock_t clock;
7707 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7708 int refclk = 100000;
7709
7710 mutex_lock(&dev_priv->dpio_lock);
7711 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7712 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7713 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7714 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7715 mutex_unlock(&dev_priv->dpio_lock);
7716
7717 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7718 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7719 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7720 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7721 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7722
7723 chv_clock(refclk, &clock);
7724
7725 /* clock.dot is the fast clock */
7726 pipe_config->port_clock = clock.dot / 5;
7727}
7728
0e8ffe1b 7729static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7730 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7731{
7732 struct drm_device *dev = crtc->base.dev;
7733 struct drm_i915_private *dev_priv = dev->dev_private;
7734 uint32_t tmp;
7735
f458ebbc
DV
7736 if (!intel_display_power_is_enabled(dev_priv,
7737 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
7738 return false;
7739
e143a21c 7740 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7741 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7742
0e8ffe1b
DV
7743 tmp = I915_READ(PIPECONF(crtc->pipe));
7744 if (!(tmp & PIPECONF_ENABLE))
7745 return false;
7746
42571aef
VS
7747 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7748 switch (tmp & PIPECONF_BPC_MASK) {
7749 case PIPECONF_6BPC:
7750 pipe_config->pipe_bpp = 18;
7751 break;
7752 case PIPECONF_8BPC:
7753 pipe_config->pipe_bpp = 24;
7754 break;
7755 case PIPECONF_10BPC:
7756 pipe_config->pipe_bpp = 30;
7757 break;
7758 default:
7759 break;
7760 }
7761 }
7762
b5a9fa09
DV
7763 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7764 pipe_config->limited_color_range = true;
7765
282740f7
VS
7766 if (INTEL_INFO(dev)->gen < 4)
7767 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7768
1bd1bd80
DV
7769 intel_get_pipe_timings(crtc, pipe_config);
7770
2fa2fe9a
DV
7771 i9xx_get_pfit_config(crtc, pipe_config);
7772
6c49f241
DV
7773 if (INTEL_INFO(dev)->gen >= 4) {
7774 tmp = I915_READ(DPLL_MD(crtc->pipe));
7775 pipe_config->pixel_multiplier =
7776 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7777 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 7778 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
7779 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7780 tmp = I915_READ(DPLL(crtc->pipe));
7781 pipe_config->pixel_multiplier =
7782 ((tmp & SDVO_MULTIPLIER_MASK)
7783 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7784 } else {
7785 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7786 * port and will be fixed up in the encoder->get_config
7787 * function. */
7788 pipe_config->pixel_multiplier = 1;
7789 }
8bcc2795
DV
7790 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7791 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
7792 /*
7793 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7794 * on 830. Filter it out here so that we don't
7795 * report errors due to that.
7796 */
7797 if (IS_I830(dev))
7798 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7799
8bcc2795
DV
7800 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7801 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
7802 } else {
7803 /* Mask out read-only status bits. */
7804 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7805 DPLL_PORTC_READY_MASK |
7806 DPLL_PORTB_READY_MASK);
8bcc2795 7807 }
6c49f241 7808
70b23a98
VS
7809 if (IS_CHERRYVIEW(dev))
7810 chv_crtc_clock_get(crtc, pipe_config);
7811 else if (IS_VALLEYVIEW(dev))
acbec814
JB
7812 vlv_crtc_clock_get(crtc, pipe_config);
7813 else
7814 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 7815
0e8ffe1b
DV
7816 return true;
7817}
7818
dde86e2d 7819static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
7820{
7821 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 7822 struct intel_encoder *encoder;
74cfd7ac 7823 u32 val, final;
13d83a67 7824 bool has_lvds = false;
199e5d79 7825 bool has_cpu_edp = false;
199e5d79 7826 bool has_panel = false;
99eb6a01
KP
7827 bool has_ck505 = false;
7828 bool can_ssc = false;
13d83a67
JB
7829
7830 /* We need to take the global config into account */
b2784e15 7831 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
7832 switch (encoder->type) {
7833 case INTEL_OUTPUT_LVDS:
7834 has_panel = true;
7835 has_lvds = true;
7836 break;
7837 case INTEL_OUTPUT_EDP:
7838 has_panel = true;
2de6905f 7839 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
7840 has_cpu_edp = true;
7841 break;
6847d71b
PZ
7842 default:
7843 break;
13d83a67
JB
7844 }
7845 }
7846
99eb6a01 7847 if (HAS_PCH_IBX(dev)) {
41aa3448 7848 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
7849 can_ssc = has_ck505;
7850 } else {
7851 has_ck505 = false;
7852 can_ssc = true;
7853 }
7854
2de6905f
ID
7855 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7856 has_panel, has_lvds, has_ck505);
13d83a67
JB
7857
7858 /* Ironlake: try to setup display ref clock before DPLL
7859 * enabling. This is only under driver's control after
7860 * PCH B stepping, previous chipset stepping should be
7861 * ignoring this setting.
7862 */
74cfd7ac
CW
7863 val = I915_READ(PCH_DREF_CONTROL);
7864
7865 /* As we must carefully and slowly disable/enable each source in turn,
7866 * compute the final state we want first and check if we need to
7867 * make any changes at all.
7868 */
7869 final = val;
7870 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7871 if (has_ck505)
7872 final |= DREF_NONSPREAD_CK505_ENABLE;
7873 else
7874 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7875
7876 final &= ~DREF_SSC_SOURCE_MASK;
7877 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7878 final &= ~DREF_SSC1_ENABLE;
7879
7880 if (has_panel) {
7881 final |= DREF_SSC_SOURCE_ENABLE;
7882
7883 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7884 final |= DREF_SSC1_ENABLE;
7885
7886 if (has_cpu_edp) {
7887 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7888 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7889 else
7890 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7891 } else
7892 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7893 } else {
7894 final |= DREF_SSC_SOURCE_DISABLE;
7895 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7896 }
7897
7898 if (final == val)
7899 return;
7900
13d83a67 7901 /* Always enable nonspread source */
74cfd7ac 7902 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 7903
99eb6a01 7904 if (has_ck505)
74cfd7ac 7905 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 7906 else
74cfd7ac 7907 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 7908
199e5d79 7909 if (has_panel) {
74cfd7ac
CW
7910 val &= ~DREF_SSC_SOURCE_MASK;
7911 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 7912
199e5d79 7913 /* SSC must be turned on before enabling the CPU output */
99eb6a01 7914 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7915 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 7916 val |= DREF_SSC1_ENABLE;
e77166b5 7917 } else
74cfd7ac 7918 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
7919
7920 /* Get SSC going before enabling the outputs */
74cfd7ac 7921 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7922 POSTING_READ(PCH_DREF_CONTROL);
7923 udelay(200);
7924
74cfd7ac 7925 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
7926
7927 /* Enable CPU source on CPU attached eDP */
199e5d79 7928 if (has_cpu_edp) {
99eb6a01 7929 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7930 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 7931 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 7932 } else
74cfd7ac 7933 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 7934 } else
74cfd7ac 7935 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7936
74cfd7ac 7937 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7938 POSTING_READ(PCH_DREF_CONTROL);
7939 udelay(200);
7940 } else {
7941 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7942
74cfd7ac 7943 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
7944
7945 /* Turn off CPU output */
74cfd7ac 7946 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7947
74cfd7ac 7948 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7949 POSTING_READ(PCH_DREF_CONTROL);
7950 udelay(200);
7951
7952 /* Turn off the SSC source */
74cfd7ac
CW
7953 val &= ~DREF_SSC_SOURCE_MASK;
7954 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
7955
7956 /* Turn off SSC1 */
74cfd7ac 7957 val &= ~DREF_SSC1_ENABLE;
199e5d79 7958
74cfd7ac 7959 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
7960 POSTING_READ(PCH_DREF_CONTROL);
7961 udelay(200);
7962 }
74cfd7ac
CW
7963
7964 BUG_ON(val != final);
13d83a67
JB
7965}
7966
f31f2d55 7967static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 7968{
f31f2d55 7969 uint32_t tmp;
dde86e2d 7970
0ff066a9
PZ
7971 tmp = I915_READ(SOUTH_CHICKEN2);
7972 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7973 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7974
0ff066a9
PZ
7975 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7976 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7977 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 7978
0ff066a9
PZ
7979 tmp = I915_READ(SOUTH_CHICKEN2);
7980 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7981 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7982
0ff066a9
PZ
7983 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7984 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7985 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
7986}
7987
7988/* WaMPhyProgramming:hsw */
7989static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7990{
7991 uint32_t tmp;
dde86e2d
PZ
7992
7993 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7994 tmp &= ~(0xFF << 24);
7995 tmp |= (0x12 << 24);
7996 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7997
dde86e2d
PZ
7998 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7999 tmp |= (1 << 11);
8000 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8001
8002 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8003 tmp |= (1 << 11);
8004 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8005
dde86e2d
PZ
8006 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8007 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8008 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8009
8010 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8011 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8012 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8013
0ff066a9
PZ
8014 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8015 tmp &= ~(7 << 13);
8016 tmp |= (5 << 13);
8017 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8018
0ff066a9
PZ
8019 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8020 tmp &= ~(7 << 13);
8021 tmp |= (5 << 13);
8022 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8023
8024 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8025 tmp &= ~0xFF;
8026 tmp |= 0x1C;
8027 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8028
8029 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8030 tmp &= ~0xFF;
8031 tmp |= 0x1C;
8032 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8033
8034 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8035 tmp &= ~(0xFF << 16);
8036 tmp |= (0x1C << 16);
8037 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8038
8039 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8040 tmp &= ~(0xFF << 16);
8041 tmp |= (0x1C << 16);
8042 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8043
0ff066a9
PZ
8044 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8045 tmp |= (1 << 27);
8046 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8047
0ff066a9
PZ
8048 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8049 tmp |= (1 << 27);
8050 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8051
0ff066a9
PZ
8052 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8053 tmp &= ~(0xF << 28);
8054 tmp |= (4 << 28);
8055 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8056
0ff066a9
PZ
8057 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8058 tmp &= ~(0xF << 28);
8059 tmp |= (4 << 28);
8060 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8061}
8062
2fa86a1f
PZ
8063/* Implements 3 different sequences from BSpec chapter "Display iCLK
8064 * Programming" based on the parameters passed:
8065 * - Sequence to enable CLKOUT_DP
8066 * - Sequence to enable CLKOUT_DP without spread
8067 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8068 */
8069static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8070 bool with_fdi)
f31f2d55
PZ
8071{
8072 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8073 uint32_t reg, tmp;
8074
8075 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8076 with_spread = true;
8077 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8078 with_fdi, "LP PCH doesn't have FDI\n"))
8079 with_fdi = false;
f31f2d55
PZ
8080
8081 mutex_lock(&dev_priv->dpio_lock);
8082
8083 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8084 tmp &= ~SBI_SSCCTL_DISABLE;
8085 tmp |= SBI_SSCCTL_PATHALT;
8086 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8087
8088 udelay(24);
8089
2fa86a1f
PZ
8090 if (with_spread) {
8091 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8092 tmp &= ~SBI_SSCCTL_PATHALT;
8093 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8094
2fa86a1f
PZ
8095 if (with_fdi) {
8096 lpt_reset_fdi_mphy(dev_priv);
8097 lpt_program_fdi_mphy(dev_priv);
8098 }
8099 }
dde86e2d 8100
2fa86a1f
PZ
8101 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8102 SBI_GEN0 : SBI_DBUFF0;
8103 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8104 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8105 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
8106
8107 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
8108}
8109
47701c3b
PZ
8110/* Sequence to disable CLKOUT_DP */
8111static void lpt_disable_clkout_dp(struct drm_device *dev)
8112{
8113 struct drm_i915_private *dev_priv = dev->dev_private;
8114 uint32_t reg, tmp;
8115
8116 mutex_lock(&dev_priv->dpio_lock);
8117
8118 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8119 SBI_GEN0 : SBI_DBUFF0;
8120 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8121 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8122 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8123
8124 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8125 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8126 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8127 tmp |= SBI_SSCCTL_PATHALT;
8128 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8129 udelay(32);
8130 }
8131 tmp |= SBI_SSCCTL_DISABLE;
8132 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8133 }
8134
8135 mutex_unlock(&dev_priv->dpio_lock);
8136}
8137
bf8fa3d3
PZ
8138static void lpt_init_pch_refclk(struct drm_device *dev)
8139{
bf8fa3d3
PZ
8140 struct intel_encoder *encoder;
8141 bool has_vga = false;
8142
b2784e15 8143 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8144 switch (encoder->type) {
8145 case INTEL_OUTPUT_ANALOG:
8146 has_vga = true;
8147 break;
6847d71b
PZ
8148 default:
8149 break;
bf8fa3d3
PZ
8150 }
8151 }
8152
47701c3b
PZ
8153 if (has_vga)
8154 lpt_enable_clkout_dp(dev, true, true);
8155 else
8156 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8157}
8158
dde86e2d
PZ
8159/*
8160 * Initialize reference clocks when the driver loads
8161 */
8162void intel_init_pch_refclk(struct drm_device *dev)
8163{
8164 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8165 ironlake_init_pch_refclk(dev);
8166 else if (HAS_PCH_LPT(dev))
8167 lpt_init_pch_refclk(dev);
8168}
8169
55bb9992 8170static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8171{
55bb9992 8172 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8173 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8174 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8175 struct drm_connector *connector;
55bb9992 8176 struct drm_connector_state *connector_state;
d9d444cb 8177 struct intel_encoder *encoder;
55bb9992 8178 int num_connectors = 0, i;
d9d444cb
JB
8179 bool is_lvds = false;
8180
da3ced29 8181 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8182 if (connector_state->crtc != crtc_state->base.crtc)
8183 continue;
8184
8185 encoder = to_intel_encoder(connector_state->best_encoder);
8186
d9d444cb
JB
8187 switch (encoder->type) {
8188 case INTEL_OUTPUT_LVDS:
8189 is_lvds = true;
8190 break;
6847d71b
PZ
8191 default:
8192 break;
d9d444cb
JB
8193 }
8194 num_connectors++;
8195 }
8196
8197 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8198 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8199 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8200 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8201 }
8202
8203 return 120000;
8204}
8205
6ff93609 8206static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8207{
c8203565 8208 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8210 int pipe = intel_crtc->pipe;
c8203565
PZ
8211 uint32_t val;
8212
78114071 8213 val = 0;
c8203565 8214
6e3c9717 8215 switch (intel_crtc->config->pipe_bpp) {
c8203565 8216 case 18:
dfd07d72 8217 val |= PIPECONF_6BPC;
c8203565
PZ
8218 break;
8219 case 24:
dfd07d72 8220 val |= PIPECONF_8BPC;
c8203565
PZ
8221 break;
8222 case 30:
dfd07d72 8223 val |= PIPECONF_10BPC;
c8203565
PZ
8224 break;
8225 case 36:
dfd07d72 8226 val |= PIPECONF_12BPC;
c8203565
PZ
8227 break;
8228 default:
cc769b62
PZ
8229 /* Case prevented by intel_choose_pipe_bpp_dither. */
8230 BUG();
c8203565
PZ
8231 }
8232
6e3c9717 8233 if (intel_crtc->config->dither)
c8203565
PZ
8234 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8235
6e3c9717 8236 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8237 val |= PIPECONF_INTERLACED_ILK;
8238 else
8239 val |= PIPECONF_PROGRESSIVE;
8240
6e3c9717 8241 if (intel_crtc->config->limited_color_range)
3685a8f3 8242 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8243
c8203565
PZ
8244 I915_WRITE(PIPECONF(pipe), val);
8245 POSTING_READ(PIPECONF(pipe));
8246}
8247
86d3efce
VS
8248/*
8249 * Set up the pipe CSC unit.
8250 *
8251 * Currently only full range RGB to limited range RGB conversion
8252 * is supported, but eventually this should handle various
8253 * RGB<->YCbCr scenarios as well.
8254 */
50f3b016 8255static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8256{
8257 struct drm_device *dev = crtc->dev;
8258 struct drm_i915_private *dev_priv = dev->dev_private;
8259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8260 int pipe = intel_crtc->pipe;
8261 uint16_t coeff = 0x7800; /* 1.0 */
8262
8263 /*
8264 * TODO: Check what kind of values actually come out of the pipe
8265 * with these coeff/postoff values and adjust to get the best
8266 * accuracy. Perhaps we even need to take the bpc value into
8267 * consideration.
8268 */
8269
6e3c9717 8270 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8271 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8272
8273 /*
8274 * GY/GU and RY/RU should be the other way around according
8275 * to BSpec, but reality doesn't agree. Just set them up in
8276 * a way that results in the correct picture.
8277 */
8278 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8279 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8280
8281 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8282 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8283
8284 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8285 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8286
8287 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8288 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8289 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8290
8291 if (INTEL_INFO(dev)->gen > 6) {
8292 uint16_t postoff = 0;
8293
6e3c9717 8294 if (intel_crtc->config->limited_color_range)
32cf0cb0 8295 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8296
8297 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8298 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8299 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8300
8301 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8302 } else {
8303 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8304
6e3c9717 8305 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8306 mode |= CSC_BLACK_SCREEN_OFFSET;
8307
8308 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8309 }
8310}
8311
6ff93609 8312static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8313{
756f85cf
PZ
8314 struct drm_device *dev = crtc->dev;
8315 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8317 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8318 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8319 uint32_t val;
8320
3eff4faa 8321 val = 0;
ee2b0b38 8322
6e3c9717 8323 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8324 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8325
6e3c9717 8326 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8327 val |= PIPECONF_INTERLACED_ILK;
8328 else
8329 val |= PIPECONF_PROGRESSIVE;
8330
702e7a56
PZ
8331 I915_WRITE(PIPECONF(cpu_transcoder), val);
8332 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8333
8334 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8335 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8336
3cdf122c 8337 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8338 val = 0;
8339
6e3c9717 8340 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8341 case 18:
8342 val |= PIPEMISC_DITHER_6_BPC;
8343 break;
8344 case 24:
8345 val |= PIPEMISC_DITHER_8_BPC;
8346 break;
8347 case 30:
8348 val |= PIPEMISC_DITHER_10_BPC;
8349 break;
8350 case 36:
8351 val |= PIPEMISC_DITHER_12_BPC;
8352 break;
8353 default:
8354 /* Case prevented by pipe_config_set_bpp. */
8355 BUG();
8356 }
8357
6e3c9717 8358 if (intel_crtc->config->dither)
756f85cf
PZ
8359 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8360
8361 I915_WRITE(PIPEMISC(pipe), val);
8362 }
ee2b0b38
PZ
8363}
8364
6591c6e4 8365static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8366 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8367 intel_clock_t *clock,
8368 bool *has_reduced_clock,
8369 intel_clock_t *reduced_clock)
8370{
8371 struct drm_device *dev = crtc->dev;
8372 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8373 int refclk;
d4906093 8374 const intel_limit_t *limit;
a16af721 8375 bool ret, is_lvds = false;
79e53945 8376
a93e255f 8377 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8378
55bb9992 8379 refclk = ironlake_get_refclk(crtc_state);
79e53945 8380
d4906093
ML
8381 /*
8382 * Returns a set of divisors for the desired target clock with the given
8383 * refclk, or FALSE. The returned values represent the clock equation:
8384 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8385 */
a93e255f
ACO
8386 limit = intel_limit(crtc_state, refclk);
8387 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8388 crtc_state->port_clock,
ee9300bb 8389 refclk, NULL, clock);
6591c6e4
PZ
8390 if (!ret)
8391 return false;
cda4b7d3 8392
ddc9003c 8393 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
8394 /*
8395 * Ensure we match the reduced clock's P to the target clock.
8396 * If the clocks don't match, we can't switch the display clock
8397 * by using the FP0/FP1. In such case we will disable the LVDS
8398 * downclock feature.
8399 */
ee9300bb 8400 *has_reduced_clock =
a93e255f 8401 dev_priv->display.find_dpll(limit, crtc_state,
ee9300bb
DV
8402 dev_priv->lvds_downclock,
8403 refclk, clock,
8404 reduced_clock);
652c393a 8405 }
61e9653f 8406
6591c6e4
PZ
8407 return true;
8408}
8409
d4b1931c
PZ
8410int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8411{
8412 /*
8413 * Account for spread spectrum to avoid
8414 * oversubscribing the link. Max center spread
8415 * is 2.5%; use 5% for safety's sake.
8416 */
8417 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8418 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8419}
8420
7429e9d4 8421static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8422{
7429e9d4 8423 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8424}
8425
de13a2e3 8426static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8427 struct intel_crtc_state *crtc_state,
7429e9d4 8428 u32 *fp,
9a7c7890 8429 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8430{
de13a2e3 8431 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8432 struct drm_device *dev = crtc->dev;
8433 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8434 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8435 struct drm_connector *connector;
55bb9992
ACO
8436 struct drm_connector_state *connector_state;
8437 struct intel_encoder *encoder;
de13a2e3 8438 uint32_t dpll;
55bb9992 8439 int factor, num_connectors = 0, i;
09ede541 8440 bool is_lvds = false, is_sdvo = false;
79e53945 8441
da3ced29 8442 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8443 if (connector_state->crtc != crtc_state->base.crtc)
8444 continue;
8445
8446 encoder = to_intel_encoder(connector_state->best_encoder);
8447
8448 switch (encoder->type) {
79e53945
JB
8449 case INTEL_OUTPUT_LVDS:
8450 is_lvds = true;
8451 break;
8452 case INTEL_OUTPUT_SDVO:
7d57382e 8453 case INTEL_OUTPUT_HDMI:
79e53945 8454 is_sdvo = true;
79e53945 8455 break;
6847d71b
PZ
8456 default:
8457 break;
79e53945 8458 }
43565a06 8459
c751ce4f 8460 num_connectors++;
79e53945 8461 }
79e53945 8462
c1858123 8463 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8464 factor = 21;
8465 if (is_lvds) {
8466 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8467 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8468 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8469 factor = 25;
190f68c5 8470 } else if (crtc_state->sdvo_tv_clock)
8febb297 8471 factor = 20;
c1858123 8472
190f68c5 8473 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8474 *fp |= FP_CB_TUNE;
2c07245f 8475
9a7c7890
DV
8476 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8477 *fp2 |= FP_CB_TUNE;
8478
5eddb70b 8479 dpll = 0;
2c07245f 8480
a07d6787
EA
8481 if (is_lvds)
8482 dpll |= DPLLB_MODE_LVDS;
8483 else
8484 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8485
190f68c5 8486 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8487 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8488
8489 if (is_sdvo)
4a33e48d 8490 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8491 if (crtc_state->has_dp_encoder)
4a33e48d 8492 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8493
a07d6787 8494 /* compute bitmask from p1 value */
190f68c5 8495 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8496 /* also FPA1 */
190f68c5 8497 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8498
190f68c5 8499 switch (crtc_state->dpll.p2) {
a07d6787
EA
8500 case 5:
8501 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8502 break;
8503 case 7:
8504 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8505 break;
8506 case 10:
8507 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8508 break;
8509 case 14:
8510 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8511 break;
79e53945
JB
8512 }
8513
b4c09f3b 8514 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8515 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8516 else
8517 dpll |= PLL_REF_INPUT_DREFCLK;
8518
959e16d6 8519 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8520}
8521
190f68c5
ACO
8522static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8523 struct intel_crtc_state *crtc_state)
de13a2e3 8524{
c7653199 8525 struct drm_device *dev = crtc->base.dev;
de13a2e3 8526 intel_clock_t clock, reduced_clock;
cbbab5bd 8527 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8528 bool ok, has_reduced_clock = false;
8b47047b 8529 bool is_lvds = false;
e2b78267 8530 struct intel_shared_dpll *pll;
de13a2e3 8531
409ee761 8532 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 8533
5dc5298b
PZ
8534 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8535 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8536
190f68c5 8537 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8538 &has_reduced_clock, &reduced_clock);
190f68c5 8539 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8540 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8541 return -EINVAL;
79e53945 8542 }
f47709a9 8543 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8544 if (!crtc_state->clock_set) {
8545 crtc_state->dpll.n = clock.n;
8546 crtc_state->dpll.m1 = clock.m1;
8547 crtc_state->dpll.m2 = clock.m2;
8548 crtc_state->dpll.p1 = clock.p1;
8549 crtc_state->dpll.p2 = clock.p2;
f47709a9 8550 }
79e53945 8551
5dc5298b 8552 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8553 if (crtc_state->has_pch_encoder) {
8554 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8555 if (has_reduced_clock)
7429e9d4 8556 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8557
190f68c5 8558 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8559 &fp, &reduced_clock,
8560 has_reduced_clock ? &fp2 : NULL);
8561
190f68c5
ACO
8562 crtc_state->dpll_hw_state.dpll = dpll;
8563 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8564 if (has_reduced_clock)
190f68c5 8565 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8566 else
190f68c5 8567 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8568
190f68c5 8569 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8570 if (pll == NULL) {
84f44ce7 8571 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8572 pipe_name(crtc->pipe));
4b645f14
JB
8573 return -EINVAL;
8574 }
3fb37703 8575 }
79e53945 8576
ab585dea 8577 if (is_lvds && has_reduced_clock)
c7653199 8578 crtc->lowfreq_avail = true;
bcd644e0 8579 else
c7653199 8580 crtc->lowfreq_avail = false;
e2b78267 8581
c8f7a0db 8582 return 0;
79e53945
JB
8583}
8584
eb14cb74
VS
8585static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8586 struct intel_link_m_n *m_n)
8587{
8588 struct drm_device *dev = crtc->base.dev;
8589 struct drm_i915_private *dev_priv = dev->dev_private;
8590 enum pipe pipe = crtc->pipe;
8591
8592 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8593 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8594 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8595 & ~TU_SIZE_MASK;
8596 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8597 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8598 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8599}
8600
8601static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8602 enum transcoder transcoder,
b95af8be
VK
8603 struct intel_link_m_n *m_n,
8604 struct intel_link_m_n *m2_n2)
72419203
DV
8605{
8606 struct drm_device *dev = crtc->base.dev;
8607 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8608 enum pipe pipe = crtc->pipe;
72419203 8609
eb14cb74
VS
8610 if (INTEL_INFO(dev)->gen >= 5) {
8611 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8612 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8613 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8614 & ~TU_SIZE_MASK;
8615 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8616 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8617 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8618 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8619 * gen < 8) and if DRRS is supported (to make sure the
8620 * registers are not unnecessarily read).
8621 */
8622 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 8623 crtc->config->has_drrs) {
b95af8be
VK
8624 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8625 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8626 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8627 & ~TU_SIZE_MASK;
8628 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8629 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8630 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8631 }
eb14cb74
VS
8632 } else {
8633 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8634 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8635 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8636 & ~TU_SIZE_MASK;
8637 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8638 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8639 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8640 }
8641}
8642
8643void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 8644 struct intel_crtc_state *pipe_config)
eb14cb74 8645{
681a8504 8646 if (pipe_config->has_pch_encoder)
eb14cb74
VS
8647 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8648 else
8649 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
8650 &pipe_config->dp_m_n,
8651 &pipe_config->dp_m2_n2);
eb14cb74 8652}
72419203 8653
eb14cb74 8654static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 8655 struct intel_crtc_state *pipe_config)
eb14cb74
VS
8656{
8657 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 8658 &pipe_config->fdi_m_n, NULL);
72419203
DV
8659}
8660
bd2e244f 8661static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8662 struct intel_crtc_state *pipe_config)
bd2e244f
JB
8663{
8664 struct drm_device *dev = crtc->base.dev;
8665 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
8666 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8667 uint32_t ps_ctrl = 0;
8668 int id = -1;
8669 int i;
bd2e244f 8670
a1b2278e
CK
8671 /* find scaler attached to this pipe */
8672 for (i = 0; i < crtc->num_scalers; i++) {
8673 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8674 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8675 id = i;
8676 pipe_config->pch_pfit.enabled = true;
8677 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8678 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8679 break;
8680 }
8681 }
bd2e244f 8682
a1b2278e
CK
8683 scaler_state->scaler_id = id;
8684 if (id >= 0) {
8685 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8686 } else {
8687 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
8688 }
8689}
8690
5724dbd1
DL
8691static void
8692skylake_get_initial_plane_config(struct intel_crtc *crtc,
8693 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
8694{
8695 struct drm_device *dev = crtc->base.dev;
8696 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 8697 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
8698 int pipe = crtc->pipe;
8699 int fourcc, pixel_format;
6761dd31 8700 unsigned int aligned_height;
bc8d7dff 8701 struct drm_framebuffer *fb;
1b842c89 8702 struct intel_framebuffer *intel_fb;
bc8d7dff 8703
d9806c9f 8704 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8705 if (!intel_fb) {
bc8d7dff
DL
8706 DRM_DEBUG_KMS("failed to alloc fb\n");
8707 return;
8708 }
8709
1b842c89
DL
8710 fb = &intel_fb->base;
8711
bc8d7dff 8712 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
8713 if (!(val & PLANE_CTL_ENABLE))
8714 goto error;
8715
bc8d7dff
DL
8716 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8717 fourcc = skl_format_to_fourcc(pixel_format,
8718 val & PLANE_CTL_ORDER_RGBX,
8719 val & PLANE_CTL_ALPHA_MASK);
8720 fb->pixel_format = fourcc;
8721 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8722
40f46283
DL
8723 tiling = val & PLANE_CTL_TILED_MASK;
8724 switch (tiling) {
8725 case PLANE_CTL_TILED_LINEAR:
8726 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8727 break;
8728 case PLANE_CTL_TILED_X:
8729 plane_config->tiling = I915_TILING_X;
8730 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8731 break;
8732 case PLANE_CTL_TILED_Y:
8733 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8734 break;
8735 case PLANE_CTL_TILED_YF:
8736 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8737 break;
8738 default:
8739 MISSING_CASE(tiling);
8740 goto error;
8741 }
8742
bc8d7dff
DL
8743 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8744 plane_config->base = base;
8745
8746 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8747
8748 val = I915_READ(PLANE_SIZE(pipe, 0));
8749 fb->height = ((val >> 16) & 0xfff) + 1;
8750 fb->width = ((val >> 0) & 0x1fff) + 1;
8751
8752 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
8753 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8754 fb->pixel_format);
bc8d7dff
DL
8755 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8756
8757 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8758 fb->pixel_format,
8759 fb->modifier[0]);
bc8d7dff 8760
f37b5c2b 8761 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
8762
8763 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8764 pipe_name(pipe), fb->width, fb->height,
8765 fb->bits_per_pixel, base, fb->pitches[0],
8766 plane_config->size);
8767
2d14030b 8768 plane_config->fb = intel_fb;
bc8d7dff
DL
8769 return;
8770
8771error:
8772 kfree(fb);
8773}
8774
2fa2fe9a 8775static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8776 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8777{
8778 struct drm_device *dev = crtc->base.dev;
8779 struct drm_i915_private *dev_priv = dev->dev_private;
8780 uint32_t tmp;
8781
8782 tmp = I915_READ(PF_CTL(crtc->pipe));
8783
8784 if (tmp & PF_ENABLE) {
fd4daa9c 8785 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
8786 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8787 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
8788
8789 /* We currently do not free assignements of panel fitters on
8790 * ivb/hsw (since we don't use the higher upscaling modes which
8791 * differentiates them) so just WARN about this case for now. */
8792 if (IS_GEN7(dev)) {
8793 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8794 PF_PIPE_SEL_IVB(crtc->pipe));
8795 }
2fa2fe9a 8796 }
79e53945
JB
8797}
8798
5724dbd1
DL
8799static void
8800ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8801 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
8802{
8803 struct drm_device *dev = crtc->base.dev;
8804 struct drm_i915_private *dev_priv = dev->dev_private;
8805 u32 val, base, offset;
aeee5a49 8806 int pipe = crtc->pipe;
4c6baa59 8807 int fourcc, pixel_format;
6761dd31 8808 unsigned int aligned_height;
b113d5ee 8809 struct drm_framebuffer *fb;
1b842c89 8810 struct intel_framebuffer *intel_fb;
4c6baa59 8811
42a7b088
DL
8812 val = I915_READ(DSPCNTR(pipe));
8813 if (!(val & DISPLAY_PLANE_ENABLE))
8814 return;
8815
d9806c9f 8816 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8817 if (!intel_fb) {
4c6baa59
JB
8818 DRM_DEBUG_KMS("failed to alloc fb\n");
8819 return;
8820 }
8821
1b842c89
DL
8822 fb = &intel_fb->base;
8823
18c5247e
DV
8824 if (INTEL_INFO(dev)->gen >= 4) {
8825 if (val & DISPPLANE_TILED) {
49af449b 8826 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8827 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8828 }
8829 }
4c6baa59
JB
8830
8831 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8832 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8833 fb->pixel_format = fourcc;
8834 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 8835
aeee5a49 8836 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 8837 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 8838 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 8839 } else {
49af449b 8840 if (plane_config->tiling)
aeee5a49 8841 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 8842 else
aeee5a49 8843 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
8844 }
8845 plane_config->base = base;
8846
8847 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8848 fb->width = ((val >> 16) & 0xfff) + 1;
8849 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
8850
8851 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8852 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 8853
b113d5ee 8854 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8855 fb->pixel_format,
8856 fb->modifier[0]);
4c6baa59 8857
f37b5c2b 8858 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 8859
2844a921
DL
8860 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8861 pipe_name(pipe), fb->width, fb->height,
8862 fb->bits_per_pixel, base, fb->pitches[0],
8863 plane_config->size);
b113d5ee 8864
2d14030b 8865 plane_config->fb = intel_fb;
4c6baa59
JB
8866}
8867
0e8ffe1b 8868static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8869 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8870{
8871 struct drm_device *dev = crtc->base.dev;
8872 struct drm_i915_private *dev_priv = dev->dev_private;
8873 uint32_t tmp;
8874
f458ebbc
DV
8875 if (!intel_display_power_is_enabled(dev_priv,
8876 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
8877 return false;
8878
e143a21c 8879 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8880 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8881
0e8ffe1b
DV
8882 tmp = I915_READ(PIPECONF(crtc->pipe));
8883 if (!(tmp & PIPECONF_ENABLE))
8884 return false;
8885
42571aef
VS
8886 switch (tmp & PIPECONF_BPC_MASK) {
8887 case PIPECONF_6BPC:
8888 pipe_config->pipe_bpp = 18;
8889 break;
8890 case PIPECONF_8BPC:
8891 pipe_config->pipe_bpp = 24;
8892 break;
8893 case PIPECONF_10BPC:
8894 pipe_config->pipe_bpp = 30;
8895 break;
8896 case PIPECONF_12BPC:
8897 pipe_config->pipe_bpp = 36;
8898 break;
8899 default:
8900 break;
8901 }
8902
b5a9fa09
DV
8903 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8904 pipe_config->limited_color_range = true;
8905
ab9412ba 8906 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
8907 struct intel_shared_dpll *pll;
8908
88adfff1
DV
8909 pipe_config->has_pch_encoder = true;
8910
627eb5a3
DV
8911 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8912 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8913 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
8914
8915 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 8916
c0d43d62 8917 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
8918 pipe_config->shared_dpll =
8919 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
8920 } else {
8921 tmp = I915_READ(PCH_DPLL_SEL);
8922 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8923 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8924 else
8925 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8926 }
66e985c0
DV
8927
8928 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8929
8930 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8931 &pipe_config->dpll_hw_state));
c93f54cf
DV
8932
8933 tmp = pipe_config->dpll_hw_state.dpll;
8934 pipe_config->pixel_multiplier =
8935 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8936 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
8937
8938 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
8939 } else {
8940 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
8941 }
8942
1bd1bd80
DV
8943 intel_get_pipe_timings(crtc, pipe_config);
8944
2fa2fe9a
DV
8945 ironlake_get_pfit_config(crtc, pipe_config);
8946
0e8ffe1b
DV
8947 return true;
8948}
8949
be256dc7
PZ
8950static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8951{
8952 struct drm_device *dev = dev_priv->dev;
be256dc7 8953 struct intel_crtc *crtc;
be256dc7 8954
d3fcc808 8955 for_each_intel_crtc(dev, crtc)
e2c719b7 8956 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
8957 pipe_name(crtc->pipe));
8958
e2c719b7
RC
8959 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8960 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8961 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8962 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8963 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8964 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 8965 "CPU PWM1 enabled\n");
c5107b87 8966 if (IS_HASWELL(dev))
e2c719b7 8967 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 8968 "CPU PWM2 enabled\n");
e2c719b7 8969 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 8970 "PCH PWM1 enabled\n");
e2c719b7 8971 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 8972 "Utility pin enabled\n");
e2c719b7 8973 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 8974
9926ada1
PZ
8975 /*
8976 * In theory we can still leave IRQs enabled, as long as only the HPD
8977 * interrupts remain enabled. We used to check for that, but since it's
8978 * gen-specific and since we only disable LCPLL after we fully disable
8979 * the interrupts, the check below should be enough.
8980 */
e2c719b7 8981 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
8982}
8983
9ccd5aeb
PZ
8984static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8985{
8986 struct drm_device *dev = dev_priv->dev;
8987
8988 if (IS_HASWELL(dev))
8989 return I915_READ(D_COMP_HSW);
8990 else
8991 return I915_READ(D_COMP_BDW);
8992}
8993
3c4c9b81
PZ
8994static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8995{
8996 struct drm_device *dev = dev_priv->dev;
8997
8998 if (IS_HASWELL(dev)) {
8999 mutex_lock(&dev_priv->rps.hw_lock);
9000 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9001 val))
f475dadf 9002 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9003 mutex_unlock(&dev_priv->rps.hw_lock);
9004 } else {
9ccd5aeb
PZ
9005 I915_WRITE(D_COMP_BDW, val);
9006 POSTING_READ(D_COMP_BDW);
3c4c9b81 9007 }
be256dc7
PZ
9008}
9009
9010/*
9011 * This function implements pieces of two sequences from BSpec:
9012 * - Sequence for display software to disable LCPLL
9013 * - Sequence for display software to allow package C8+
9014 * The steps implemented here are just the steps that actually touch the LCPLL
9015 * register. Callers should take care of disabling all the display engine
9016 * functions, doing the mode unset, fixing interrupts, etc.
9017 */
6ff58d53
PZ
9018static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9019 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9020{
9021 uint32_t val;
9022
9023 assert_can_disable_lcpll(dev_priv);
9024
9025 val = I915_READ(LCPLL_CTL);
9026
9027 if (switch_to_fclk) {
9028 val |= LCPLL_CD_SOURCE_FCLK;
9029 I915_WRITE(LCPLL_CTL, val);
9030
9031 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9032 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9033 DRM_ERROR("Switching to FCLK failed\n");
9034
9035 val = I915_READ(LCPLL_CTL);
9036 }
9037
9038 val |= LCPLL_PLL_DISABLE;
9039 I915_WRITE(LCPLL_CTL, val);
9040 POSTING_READ(LCPLL_CTL);
9041
9042 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9043 DRM_ERROR("LCPLL still locked\n");
9044
9ccd5aeb 9045 val = hsw_read_dcomp(dev_priv);
be256dc7 9046 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9047 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9048 ndelay(100);
9049
9ccd5aeb
PZ
9050 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9051 1))
be256dc7
PZ
9052 DRM_ERROR("D_COMP RCOMP still in progress\n");
9053
9054 if (allow_power_down) {
9055 val = I915_READ(LCPLL_CTL);
9056 val |= LCPLL_POWER_DOWN_ALLOW;
9057 I915_WRITE(LCPLL_CTL, val);
9058 POSTING_READ(LCPLL_CTL);
9059 }
9060}
9061
9062/*
9063 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9064 * source.
9065 */
6ff58d53 9066static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9067{
9068 uint32_t val;
9069
9070 val = I915_READ(LCPLL_CTL);
9071
9072 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9073 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9074 return;
9075
a8a8bd54
PZ
9076 /*
9077 * Make sure we're not on PC8 state before disabling PC8, otherwise
9078 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9079 */
59bad947 9080 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9081
be256dc7
PZ
9082 if (val & LCPLL_POWER_DOWN_ALLOW) {
9083 val &= ~LCPLL_POWER_DOWN_ALLOW;
9084 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9085 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9086 }
9087
9ccd5aeb 9088 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9089 val |= D_COMP_COMP_FORCE;
9090 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9091 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9092
9093 val = I915_READ(LCPLL_CTL);
9094 val &= ~LCPLL_PLL_DISABLE;
9095 I915_WRITE(LCPLL_CTL, val);
9096
9097 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9098 DRM_ERROR("LCPLL not locked yet\n");
9099
9100 if (val & LCPLL_CD_SOURCE_FCLK) {
9101 val = I915_READ(LCPLL_CTL);
9102 val &= ~LCPLL_CD_SOURCE_FCLK;
9103 I915_WRITE(LCPLL_CTL, val);
9104
9105 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9106 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9107 DRM_ERROR("Switching back to LCPLL failed\n");
9108 }
215733fa 9109
59bad947 9110 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
9111}
9112
765dab67
PZ
9113/*
9114 * Package states C8 and deeper are really deep PC states that can only be
9115 * reached when all the devices on the system allow it, so even if the graphics
9116 * device allows PC8+, it doesn't mean the system will actually get to these
9117 * states. Our driver only allows PC8+ when going into runtime PM.
9118 *
9119 * The requirements for PC8+ are that all the outputs are disabled, the power
9120 * well is disabled and most interrupts are disabled, and these are also
9121 * requirements for runtime PM. When these conditions are met, we manually do
9122 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9123 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9124 * hang the machine.
9125 *
9126 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9127 * the state of some registers, so when we come back from PC8+ we need to
9128 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9129 * need to take care of the registers kept by RC6. Notice that this happens even
9130 * if we don't put the device in PCI D3 state (which is what currently happens
9131 * because of the runtime PM support).
9132 *
9133 * For more, read "Display Sequences for Package C8" on the hardware
9134 * documentation.
9135 */
a14cb6fc 9136void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9137{
c67a470b
PZ
9138 struct drm_device *dev = dev_priv->dev;
9139 uint32_t val;
9140
c67a470b
PZ
9141 DRM_DEBUG_KMS("Enabling package C8+\n");
9142
c67a470b
PZ
9143 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9144 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9145 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9146 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9147 }
9148
9149 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9150 hsw_disable_lcpll(dev_priv, true, true);
9151}
9152
a14cb6fc 9153void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9154{
9155 struct drm_device *dev = dev_priv->dev;
9156 uint32_t val;
9157
c67a470b
PZ
9158 DRM_DEBUG_KMS("Disabling package C8+\n");
9159
9160 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9161 lpt_init_pch_refclk(dev);
9162
9163 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9164 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9165 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9166 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9167 }
9168
9169 intel_prepare_ddi(dev);
c67a470b
PZ
9170}
9171
a821fc46 9172static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
f8437dd1 9173{
a821fc46 9174 struct drm_device *dev = old_state->dev;
f8437dd1 9175 struct drm_i915_private *dev_priv = dev->dev_private;
a821fc46 9176 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
f8437dd1
VK
9177 int req_cdclk;
9178
9179 /* see the comment in valleyview_modeset_global_resources */
9180 if (WARN_ON(max_pixclk < 0))
9181 return;
9182
9183 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9184
9185 if (req_cdclk != dev_priv->cdclk_freq)
9186 broxton_set_cdclk(dev, req_cdclk);
9187}
9188
190f68c5
ACO
9189static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9190 struct intel_crtc_state *crtc_state)
09b4ddf9 9191{
190f68c5 9192 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9193 return -EINVAL;
716c2e55 9194
c7653199 9195 crtc->lowfreq_avail = false;
644cef34 9196
c8f7a0db 9197 return 0;
79e53945
JB
9198}
9199
3760b59c
S
9200static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9201 enum port port,
9202 struct intel_crtc_state *pipe_config)
9203{
9204 switch (port) {
9205 case PORT_A:
9206 pipe_config->ddi_pll_sel = SKL_DPLL0;
9207 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9208 break;
9209 case PORT_B:
9210 pipe_config->ddi_pll_sel = SKL_DPLL1;
9211 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9212 break;
9213 case PORT_C:
9214 pipe_config->ddi_pll_sel = SKL_DPLL2;
9215 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9216 break;
9217 default:
9218 DRM_ERROR("Incorrect port type\n");
9219 }
9220}
9221
96b7dfb7
S
9222static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9223 enum port port,
5cec258b 9224 struct intel_crtc_state *pipe_config)
96b7dfb7 9225{
3148ade7 9226 u32 temp, dpll_ctl1;
96b7dfb7
S
9227
9228 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9229 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9230
9231 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9232 case SKL_DPLL0:
9233 /*
9234 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9235 * of the shared DPLL framework and thus needs to be read out
9236 * separately
9237 */
9238 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9239 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9240 break;
96b7dfb7
S
9241 case SKL_DPLL1:
9242 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9243 break;
9244 case SKL_DPLL2:
9245 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9246 break;
9247 case SKL_DPLL3:
9248 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9249 break;
96b7dfb7
S
9250 }
9251}
9252
7d2c8175
DL
9253static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9254 enum port port,
5cec258b 9255 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9256{
9257 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9258
9259 switch (pipe_config->ddi_pll_sel) {
9260 case PORT_CLK_SEL_WRPLL1:
9261 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9262 break;
9263 case PORT_CLK_SEL_WRPLL2:
9264 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9265 break;
9266 }
9267}
9268
26804afd 9269static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9270 struct intel_crtc_state *pipe_config)
26804afd
DV
9271{
9272 struct drm_device *dev = crtc->base.dev;
9273 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9274 struct intel_shared_dpll *pll;
26804afd
DV
9275 enum port port;
9276 uint32_t tmp;
9277
9278 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9279
9280 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9281
96b7dfb7
S
9282 if (IS_SKYLAKE(dev))
9283 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9284 else if (IS_BROXTON(dev))
9285 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9286 else
9287 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9288
d452c5b6
DV
9289 if (pipe_config->shared_dpll >= 0) {
9290 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9291
9292 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9293 &pipe_config->dpll_hw_state));
9294 }
9295
26804afd
DV
9296 /*
9297 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9298 * DDI E. So just check whether this pipe is wired to DDI E and whether
9299 * the PCH transcoder is on.
9300 */
ca370455
DL
9301 if (INTEL_INFO(dev)->gen < 9 &&
9302 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9303 pipe_config->has_pch_encoder = true;
9304
9305 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9306 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9307 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9308
9309 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9310 }
9311}
9312
0e8ffe1b 9313static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9314 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9315{
9316 struct drm_device *dev = crtc->base.dev;
9317 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9318 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9319 uint32_t tmp;
9320
f458ebbc 9321 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9322 POWER_DOMAIN_PIPE(crtc->pipe)))
9323 return false;
9324
e143a21c 9325 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9326 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9327
eccb140b
DV
9328 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9329 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9330 enum pipe trans_edp_pipe;
9331 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9332 default:
9333 WARN(1, "unknown pipe linked to edp transcoder\n");
9334 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9335 case TRANS_DDI_EDP_INPUT_A_ON:
9336 trans_edp_pipe = PIPE_A;
9337 break;
9338 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9339 trans_edp_pipe = PIPE_B;
9340 break;
9341 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9342 trans_edp_pipe = PIPE_C;
9343 break;
9344 }
9345
9346 if (trans_edp_pipe == crtc->pipe)
9347 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9348 }
9349
f458ebbc 9350 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9351 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9352 return false;
9353
eccb140b 9354 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9355 if (!(tmp & PIPECONF_ENABLE))
9356 return false;
9357
26804afd 9358 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9359
1bd1bd80
DV
9360 intel_get_pipe_timings(crtc, pipe_config);
9361
a1b2278e
CK
9362 if (INTEL_INFO(dev)->gen >= 9) {
9363 skl_init_scalers(dev, crtc, pipe_config);
9364 }
9365
2fa2fe9a 9366 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9367
9368 if (INTEL_INFO(dev)->gen >= 9) {
9369 pipe_config->scaler_state.scaler_id = -1;
9370 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9371 }
9372
bd2e244f 9373 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
ff6d9f55 9374 if (INTEL_INFO(dev)->gen == 9)
bd2e244f 9375 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9376 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 9377 ironlake_get_pfit_config(crtc, pipe_config);
ff6d9f55
JB
9378 else
9379 MISSING_CASE(INTEL_INFO(dev)->gen);
bd2e244f 9380 }
88adfff1 9381
e59150dc
JB
9382 if (IS_HASWELL(dev))
9383 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9384 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9385
ebb69c95
CT
9386 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9387 pipe_config->pixel_multiplier =
9388 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9389 } else {
9390 pipe_config->pixel_multiplier = 1;
9391 }
6c49f241 9392
0e8ffe1b
DV
9393 return true;
9394}
9395
560b85bb
CW
9396static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9397{
9398 struct drm_device *dev = crtc->dev;
9399 struct drm_i915_private *dev_priv = dev->dev_private;
9400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9401 uint32_t cntl = 0, size = 0;
560b85bb 9402
dc41c154 9403 if (base) {
3dd512fb
MR
9404 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9405 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9406 unsigned int stride = roundup_pow_of_two(width) * 4;
9407
9408 switch (stride) {
9409 default:
9410 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9411 width, stride);
9412 stride = 256;
9413 /* fallthrough */
9414 case 256:
9415 case 512:
9416 case 1024:
9417 case 2048:
9418 break;
4b0e333e
CW
9419 }
9420
dc41c154
VS
9421 cntl |= CURSOR_ENABLE |
9422 CURSOR_GAMMA_ENABLE |
9423 CURSOR_FORMAT_ARGB |
9424 CURSOR_STRIDE(stride);
9425
9426 size = (height << 12) | width;
4b0e333e 9427 }
560b85bb 9428
dc41c154
VS
9429 if (intel_crtc->cursor_cntl != 0 &&
9430 (intel_crtc->cursor_base != base ||
9431 intel_crtc->cursor_size != size ||
9432 intel_crtc->cursor_cntl != cntl)) {
9433 /* On these chipsets we can only modify the base/size/stride
9434 * whilst the cursor is disabled.
9435 */
9436 I915_WRITE(_CURACNTR, 0);
4b0e333e 9437 POSTING_READ(_CURACNTR);
dc41c154 9438 intel_crtc->cursor_cntl = 0;
4b0e333e 9439 }
560b85bb 9440
99d1f387 9441 if (intel_crtc->cursor_base != base) {
9db4a9c7 9442 I915_WRITE(_CURABASE, base);
99d1f387
VS
9443 intel_crtc->cursor_base = base;
9444 }
4726e0b0 9445
dc41c154
VS
9446 if (intel_crtc->cursor_size != size) {
9447 I915_WRITE(CURSIZE, size);
9448 intel_crtc->cursor_size = size;
4b0e333e 9449 }
560b85bb 9450
4b0e333e 9451 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
9452 I915_WRITE(_CURACNTR, cntl);
9453 POSTING_READ(_CURACNTR);
4b0e333e 9454 intel_crtc->cursor_cntl = cntl;
560b85bb 9455 }
560b85bb
CW
9456}
9457
560b85bb 9458static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
9459{
9460 struct drm_device *dev = crtc->dev;
9461 struct drm_i915_private *dev_priv = dev->dev_private;
9462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9463 int pipe = intel_crtc->pipe;
4b0e333e
CW
9464 uint32_t cntl;
9465
9466 cntl = 0;
9467 if (base) {
9468 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 9469 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
9470 case 64:
9471 cntl |= CURSOR_MODE_64_ARGB_AX;
9472 break;
9473 case 128:
9474 cntl |= CURSOR_MODE_128_ARGB_AX;
9475 break;
9476 case 256:
9477 cntl |= CURSOR_MODE_256_ARGB_AX;
9478 break;
9479 default:
3dd512fb 9480 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 9481 return;
65a21cd6 9482 }
4b0e333e 9483 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
9484
9485 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9486 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 9487 }
65a21cd6 9488
8e7d688b 9489 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
9490 cntl |= CURSOR_ROTATE_180;
9491
4b0e333e
CW
9492 if (intel_crtc->cursor_cntl != cntl) {
9493 I915_WRITE(CURCNTR(pipe), cntl);
9494 POSTING_READ(CURCNTR(pipe));
9495 intel_crtc->cursor_cntl = cntl;
65a21cd6 9496 }
4b0e333e 9497
65a21cd6 9498 /* and commit changes on next vblank */
5efb3e28
VS
9499 I915_WRITE(CURBASE(pipe), base);
9500 POSTING_READ(CURBASE(pipe));
99d1f387
VS
9501
9502 intel_crtc->cursor_base = base;
65a21cd6
JB
9503}
9504
cda4b7d3 9505/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
9506static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9507 bool on)
cda4b7d3
CW
9508{
9509 struct drm_device *dev = crtc->dev;
9510 struct drm_i915_private *dev_priv = dev->dev_private;
9511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9512 int pipe = intel_crtc->pipe;
3d7d6510
MR
9513 int x = crtc->cursor_x;
9514 int y = crtc->cursor_y;
d6e4db15 9515 u32 base = 0, pos = 0;
cda4b7d3 9516
d6e4db15 9517 if (on)
cda4b7d3 9518 base = intel_crtc->cursor_addr;
cda4b7d3 9519
6e3c9717 9520 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
9521 base = 0;
9522
6e3c9717 9523 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
9524 base = 0;
9525
9526 if (x < 0) {
3dd512fb 9527 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
9528 base = 0;
9529
9530 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9531 x = -x;
9532 }
9533 pos |= x << CURSOR_X_SHIFT;
9534
9535 if (y < 0) {
3dd512fb 9536 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
9537 base = 0;
9538
9539 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9540 y = -y;
9541 }
9542 pos |= y << CURSOR_Y_SHIFT;
9543
4b0e333e 9544 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
9545 return;
9546
5efb3e28
VS
9547 I915_WRITE(CURPOS(pipe), pos);
9548
4398ad45
VS
9549 /* ILK+ do this automagically */
9550 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 9551 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
9552 base += (intel_crtc->base.cursor->state->crtc_h *
9553 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
9554 }
9555
8ac54669 9556 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
9557 i845_update_cursor(crtc, base);
9558 else
9559 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
9560}
9561
dc41c154
VS
9562static bool cursor_size_ok(struct drm_device *dev,
9563 uint32_t width, uint32_t height)
9564{
9565 if (width == 0 || height == 0)
9566 return false;
9567
9568 /*
9569 * 845g/865g are special in that they are only limited by
9570 * the width of their cursors, the height is arbitrary up to
9571 * the precision of the register. Everything else requires
9572 * square cursors, limited to a few power-of-two sizes.
9573 */
9574 if (IS_845G(dev) || IS_I865G(dev)) {
9575 if ((width & 63) != 0)
9576 return false;
9577
9578 if (width > (IS_845G(dev) ? 64 : 512))
9579 return false;
9580
9581 if (height > 1023)
9582 return false;
9583 } else {
9584 switch (width | height) {
9585 case 256:
9586 case 128:
9587 if (IS_GEN2(dev))
9588 return false;
9589 case 64:
9590 break;
9591 default:
9592 return false;
9593 }
9594 }
9595
9596 return true;
9597}
9598
79e53945 9599static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 9600 u16 *blue, uint32_t start, uint32_t size)
79e53945 9601{
7203425a 9602 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 9603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 9604
7203425a 9605 for (i = start; i < end; i++) {
79e53945
JB
9606 intel_crtc->lut_r[i] = red[i] >> 8;
9607 intel_crtc->lut_g[i] = green[i] >> 8;
9608 intel_crtc->lut_b[i] = blue[i] >> 8;
9609 }
9610
9611 intel_crtc_load_lut(crtc);
9612}
9613
79e53945
JB
9614/* VESA 640x480x72Hz mode to set on the pipe */
9615static struct drm_display_mode load_detect_mode = {
9616 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9617 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9618};
9619
a8bb6818
DV
9620struct drm_framebuffer *
9621__intel_framebuffer_create(struct drm_device *dev,
9622 struct drm_mode_fb_cmd2 *mode_cmd,
9623 struct drm_i915_gem_object *obj)
d2dff872
CW
9624{
9625 struct intel_framebuffer *intel_fb;
9626 int ret;
9627
9628 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9629 if (!intel_fb) {
6ccb81f2 9630 drm_gem_object_unreference(&obj->base);
d2dff872
CW
9631 return ERR_PTR(-ENOMEM);
9632 }
9633
9634 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
9635 if (ret)
9636 goto err;
d2dff872
CW
9637
9638 return &intel_fb->base;
dd4916c5 9639err:
6ccb81f2 9640 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
9641 kfree(intel_fb);
9642
9643 return ERR_PTR(ret);
d2dff872
CW
9644}
9645
b5ea642a 9646static struct drm_framebuffer *
a8bb6818
DV
9647intel_framebuffer_create(struct drm_device *dev,
9648 struct drm_mode_fb_cmd2 *mode_cmd,
9649 struct drm_i915_gem_object *obj)
9650{
9651 struct drm_framebuffer *fb;
9652 int ret;
9653
9654 ret = i915_mutex_lock_interruptible(dev);
9655 if (ret)
9656 return ERR_PTR(ret);
9657 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9658 mutex_unlock(&dev->struct_mutex);
9659
9660 return fb;
9661}
9662
d2dff872
CW
9663static u32
9664intel_framebuffer_pitch_for_width(int width, int bpp)
9665{
9666 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9667 return ALIGN(pitch, 64);
9668}
9669
9670static u32
9671intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9672{
9673 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 9674 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
9675}
9676
9677static struct drm_framebuffer *
9678intel_framebuffer_create_for_mode(struct drm_device *dev,
9679 struct drm_display_mode *mode,
9680 int depth, int bpp)
9681{
9682 struct drm_i915_gem_object *obj;
0fed39bd 9683 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
9684
9685 obj = i915_gem_alloc_object(dev,
9686 intel_framebuffer_size_for_mode(mode, bpp));
9687 if (obj == NULL)
9688 return ERR_PTR(-ENOMEM);
9689
9690 mode_cmd.width = mode->hdisplay;
9691 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
9692 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9693 bpp);
5ca0c34a 9694 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
9695
9696 return intel_framebuffer_create(dev, &mode_cmd, obj);
9697}
9698
9699static struct drm_framebuffer *
9700mode_fits_in_fbdev(struct drm_device *dev,
9701 struct drm_display_mode *mode)
9702{
4520f53a 9703#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
9704 struct drm_i915_private *dev_priv = dev->dev_private;
9705 struct drm_i915_gem_object *obj;
9706 struct drm_framebuffer *fb;
9707
4c0e5528 9708 if (!dev_priv->fbdev)
d2dff872
CW
9709 return NULL;
9710
4c0e5528 9711 if (!dev_priv->fbdev->fb)
d2dff872
CW
9712 return NULL;
9713
4c0e5528
DV
9714 obj = dev_priv->fbdev->fb->obj;
9715 BUG_ON(!obj);
9716
8bcd4553 9717 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
9718 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9719 fb->bits_per_pixel))
d2dff872
CW
9720 return NULL;
9721
01f2c773 9722 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
9723 return NULL;
9724
9725 return fb;
4520f53a
DV
9726#else
9727 return NULL;
9728#endif
d2dff872
CW
9729}
9730
d3a40d1b
ACO
9731static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9732 struct drm_crtc *crtc,
9733 struct drm_display_mode *mode,
9734 struct drm_framebuffer *fb,
9735 int x, int y)
9736{
9737 struct drm_plane_state *plane_state;
9738 int hdisplay, vdisplay;
9739 int ret;
9740
9741 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9742 if (IS_ERR(plane_state))
9743 return PTR_ERR(plane_state);
9744
9745 if (mode)
9746 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9747 else
9748 hdisplay = vdisplay = 0;
9749
9750 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9751 if (ret)
9752 return ret;
9753 drm_atomic_set_fb_for_plane(plane_state, fb);
9754 plane_state->crtc_x = 0;
9755 plane_state->crtc_y = 0;
9756 plane_state->crtc_w = hdisplay;
9757 plane_state->crtc_h = vdisplay;
9758 plane_state->src_x = x << 16;
9759 plane_state->src_y = y << 16;
9760 plane_state->src_w = hdisplay << 16;
9761 plane_state->src_h = vdisplay << 16;
9762
9763 return 0;
9764}
9765
d2434ab7 9766bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 9767 struct drm_display_mode *mode,
51fd371b
RC
9768 struct intel_load_detect_pipe *old,
9769 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
9770{
9771 struct intel_crtc *intel_crtc;
d2434ab7
DV
9772 struct intel_encoder *intel_encoder =
9773 intel_attached_encoder(connector);
79e53945 9774 struct drm_crtc *possible_crtc;
4ef69c7a 9775 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
9776 struct drm_crtc *crtc = NULL;
9777 struct drm_device *dev = encoder->dev;
94352cf9 9778 struct drm_framebuffer *fb;
51fd371b 9779 struct drm_mode_config *config = &dev->mode_config;
83a57153 9780 struct drm_atomic_state *state = NULL;
944b0c76 9781 struct drm_connector_state *connector_state;
4be07317 9782 struct intel_crtc_state *crtc_state;
51fd371b 9783 int ret, i = -1;
79e53945 9784
d2dff872 9785 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9786 connector->base.id, connector->name,
8e329a03 9787 encoder->base.id, encoder->name);
d2dff872 9788
51fd371b
RC
9789retry:
9790 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9791 if (ret)
9792 goto fail_unlock;
6e9f798d 9793
79e53945
JB
9794 /*
9795 * Algorithm gets a little messy:
7a5e4805 9796 *
79e53945
JB
9797 * - if the connector already has an assigned crtc, use it (but make
9798 * sure it's on first)
7a5e4805 9799 *
79e53945
JB
9800 * - try to find the first unused crtc that can drive this connector,
9801 * and use that if we find one
79e53945
JB
9802 */
9803
9804 /* See if we already have a CRTC for this connector */
9805 if (encoder->crtc) {
9806 crtc = encoder->crtc;
8261b191 9807
51fd371b 9808 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
9809 if (ret)
9810 goto fail_unlock;
9811 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
9812 if (ret)
9813 goto fail_unlock;
7b24056b 9814
24218aac 9815 old->dpms_mode = connector->dpms;
8261b191
CW
9816 old->load_detect_temp = false;
9817
9818 /* Make sure the crtc and connector are running */
24218aac
DV
9819 if (connector->dpms != DRM_MODE_DPMS_ON)
9820 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 9821
7173188d 9822 return true;
79e53945
JB
9823 }
9824
9825 /* Find an unused one (if possible) */
70e1e0ec 9826 for_each_crtc(dev, possible_crtc) {
79e53945
JB
9827 i++;
9828 if (!(encoder->possible_crtcs & (1 << i)))
9829 continue;
83d65738 9830 if (possible_crtc->state->enable)
a459249c
VS
9831 continue;
9832 /* This can occur when applying the pipe A quirk on resume. */
9833 if (to_intel_crtc(possible_crtc)->new_enabled)
9834 continue;
9835
9836 crtc = possible_crtc;
9837 break;
79e53945
JB
9838 }
9839
9840 /*
9841 * If we didn't find an unused CRTC, don't use any.
9842 */
9843 if (!crtc) {
7173188d 9844 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 9845 goto fail_unlock;
79e53945
JB
9846 }
9847
51fd371b
RC
9848 ret = drm_modeset_lock(&crtc->mutex, ctx);
9849 if (ret)
4d02e2de
DV
9850 goto fail_unlock;
9851 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9852 if (ret)
51fd371b 9853 goto fail_unlock;
fc303101
DV
9854 intel_encoder->new_crtc = to_intel_crtc(crtc);
9855 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
9856
9857 intel_crtc = to_intel_crtc(crtc);
412b61d8 9858 intel_crtc->new_enabled = true;
24218aac 9859 old->dpms_mode = connector->dpms;
8261b191 9860 old->load_detect_temp = true;
d2dff872 9861 old->release_fb = NULL;
79e53945 9862
83a57153
ACO
9863 state = drm_atomic_state_alloc(dev);
9864 if (!state)
9865 return false;
9866
9867 state->acquire_ctx = ctx;
9868
944b0c76
ACO
9869 connector_state = drm_atomic_get_connector_state(state, connector);
9870 if (IS_ERR(connector_state)) {
9871 ret = PTR_ERR(connector_state);
9872 goto fail;
9873 }
9874
9875 connector_state->crtc = crtc;
9876 connector_state->best_encoder = &intel_encoder->base;
9877
4be07317
ACO
9878 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9879 if (IS_ERR(crtc_state)) {
9880 ret = PTR_ERR(crtc_state);
9881 goto fail;
9882 }
9883
49d6fa21 9884 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 9885
6492711d
CW
9886 if (!mode)
9887 mode = &load_detect_mode;
79e53945 9888
d2dff872
CW
9889 /* We need a framebuffer large enough to accommodate all accesses
9890 * that the plane may generate whilst we perform load detection.
9891 * We can not rely on the fbcon either being present (we get called
9892 * during its initialisation to detect all boot displays, or it may
9893 * not even exist) or that it is large enough to satisfy the
9894 * requested mode.
9895 */
94352cf9
DV
9896 fb = mode_fits_in_fbdev(dev, mode);
9897 if (fb == NULL) {
d2dff872 9898 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
9899 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9900 old->release_fb = fb;
d2dff872
CW
9901 } else
9902 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 9903 if (IS_ERR(fb)) {
d2dff872 9904 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 9905 goto fail;
79e53945 9906 }
79e53945 9907
d3a40d1b
ACO
9908 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9909 if (ret)
9910 goto fail;
9911
8c7b5ccb
ACO
9912 drm_mode_copy(&crtc_state->base.mode, mode);
9913
9914 if (intel_set_mode(crtc, state)) {
6492711d 9915 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
9916 if (old->release_fb)
9917 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 9918 goto fail;
79e53945 9919 }
9128b040 9920 crtc->primary->crtc = crtc;
7173188d 9921
79e53945 9922 /* let the connector get through one full cycle before testing */
9d0498a2 9923 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 9924 return true;
412b61d8
VS
9925
9926 fail:
83d65738 9927 intel_crtc->new_enabled = crtc->state->enable;
51fd371b 9928fail_unlock:
e5d958ef
ACO
9929 drm_atomic_state_free(state);
9930 state = NULL;
83a57153 9931
51fd371b
RC
9932 if (ret == -EDEADLK) {
9933 drm_modeset_backoff(ctx);
9934 goto retry;
9935 }
9936
412b61d8 9937 return false;
79e53945
JB
9938}
9939
d2434ab7 9940void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
9941 struct intel_load_detect_pipe *old,
9942 struct drm_modeset_acquire_ctx *ctx)
79e53945 9943{
83a57153 9944 struct drm_device *dev = connector->dev;
d2434ab7
DV
9945 struct intel_encoder *intel_encoder =
9946 intel_attached_encoder(connector);
4ef69c7a 9947 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 9948 struct drm_crtc *crtc = encoder->crtc;
412b61d8 9949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 9950 struct drm_atomic_state *state;
944b0c76 9951 struct drm_connector_state *connector_state;
4be07317 9952 struct intel_crtc_state *crtc_state;
d3a40d1b 9953 int ret;
79e53945 9954
d2dff872 9955 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9956 connector->base.id, connector->name,
8e329a03 9957 encoder->base.id, encoder->name);
d2dff872 9958
8261b191 9959 if (old->load_detect_temp) {
83a57153 9960 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
9961 if (!state)
9962 goto fail;
83a57153
ACO
9963
9964 state->acquire_ctx = ctx;
9965
944b0c76
ACO
9966 connector_state = drm_atomic_get_connector_state(state, connector);
9967 if (IS_ERR(connector_state))
9968 goto fail;
9969
4be07317
ACO
9970 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9971 if (IS_ERR(crtc_state))
9972 goto fail;
9973
fc303101
DV
9974 to_intel_connector(connector)->new_encoder = NULL;
9975 intel_encoder->new_crtc = NULL;
412b61d8 9976 intel_crtc->new_enabled = false;
944b0c76
ACO
9977
9978 connector_state->best_encoder = NULL;
9979 connector_state->crtc = NULL;
9980
49d6fa21 9981 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 9982
d3a40d1b
ACO
9983 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
9984 0, 0);
9985 if (ret)
9986 goto fail;
9987
2bfb4627
ACO
9988 ret = intel_set_mode(crtc, state);
9989 if (ret)
9990 goto fail;
d2dff872 9991
36206361
DV
9992 if (old->release_fb) {
9993 drm_framebuffer_unregister_private(old->release_fb);
9994 drm_framebuffer_unreference(old->release_fb);
9995 }
d2dff872 9996
0622a53c 9997 return;
79e53945
JB
9998 }
9999
c751ce4f 10000 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10001 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10002 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10003
10004 return;
10005fail:
10006 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10007 drm_atomic_state_free(state);
79e53945
JB
10008}
10009
da4a1efa 10010static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10011 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10012{
10013 struct drm_i915_private *dev_priv = dev->dev_private;
10014 u32 dpll = pipe_config->dpll_hw_state.dpll;
10015
10016 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10017 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10018 else if (HAS_PCH_SPLIT(dev))
10019 return 120000;
10020 else if (!IS_GEN2(dev))
10021 return 96000;
10022 else
10023 return 48000;
10024}
10025
79e53945 10026/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10027static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10028 struct intel_crtc_state *pipe_config)
79e53945 10029{
f1f644dc 10030 struct drm_device *dev = crtc->base.dev;
79e53945 10031 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10032 int pipe = pipe_config->cpu_transcoder;
293623f7 10033 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10034 u32 fp;
10035 intel_clock_t clock;
da4a1efa 10036 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10037
10038 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10039 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10040 else
293623f7 10041 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10042
10043 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10044 if (IS_PINEVIEW(dev)) {
10045 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10046 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10047 } else {
10048 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10049 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10050 }
10051
a6c45cf0 10052 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10053 if (IS_PINEVIEW(dev))
10054 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10055 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10056 else
10057 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10058 DPLL_FPA01_P1_POST_DIV_SHIFT);
10059
10060 switch (dpll & DPLL_MODE_MASK) {
10061 case DPLLB_MODE_DAC_SERIAL:
10062 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10063 5 : 10;
10064 break;
10065 case DPLLB_MODE_LVDS:
10066 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10067 7 : 14;
10068 break;
10069 default:
28c97730 10070 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10071 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10072 return;
79e53945
JB
10073 }
10074
ac58c3f0 10075 if (IS_PINEVIEW(dev))
da4a1efa 10076 pineview_clock(refclk, &clock);
ac58c3f0 10077 else
da4a1efa 10078 i9xx_clock(refclk, &clock);
79e53945 10079 } else {
0fb58223 10080 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10081 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10082
10083 if (is_lvds) {
10084 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10085 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10086
10087 if (lvds & LVDS_CLKB_POWER_UP)
10088 clock.p2 = 7;
10089 else
10090 clock.p2 = 14;
79e53945
JB
10091 } else {
10092 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10093 clock.p1 = 2;
10094 else {
10095 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10096 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10097 }
10098 if (dpll & PLL_P2_DIVIDE_BY_4)
10099 clock.p2 = 4;
10100 else
10101 clock.p2 = 2;
79e53945 10102 }
da4a1efa
VS
10103
10104 i9xx_clock(refclk, &clock);
79e53945
JB
10105 }
10106
18442d08
VS
10107 /*
10108 * This value includes pixel_multiplier. We will use
241bfc38 10109 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10110 * encoder's get_config() function.
10111 */
10112 pipe_config->port_clock = clock.dot;
f1f644dc
JB
10113}
10114
6878da05
VS
10115int intel_dotclock_calculate(int link_freq,
10116 const struct intel_link_m_n *m_n)
f1f644dc 10117{
f1f644dc
JB
10118 /*
10119 * The calculation for the data clock is:
1041a02f 10120 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10121 * But we want to avoid losing precison if possible, so:
1041a02f 10122 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10123 *
10124 * and the link clock is simpler:
1041a02f 10125 * link_clock = (m * link_clock) / n
f1f644dc
JB
10126 */
10127
6878da05
VS
10128 if (!m_n->link_n)
10129 return 0;
f1f644dc 10130
6878da05
VS
10131 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10132}
f1f644dc 10133
18442d08 10134static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10135 struct intel_crtc_state *pipe_config)
6878da05
VS
10136{
10137 struct drm_device *dev = crtc->base.dev;
79e53945 10138
18442d08
VS
10139 /* read out port_clock from the DPLL */
10140 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10141
f1f644dc 10142 /*
18442d08 10143 * This value does not include pixel_multiplier.
241bfc38 10144 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10145 * agree once we know their relationship in the encoder's
10146 * get_config() function.
79e53945 10147 */
2d112de7 10148 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10149 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10150 &pipe_config->fdi_m_n);
79e53945
JB
10151}
10152
10153/** Returns the currently programmed mode of the given pipe. */
10154struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10155 struct drm_crtc *crtc)
10156{
548f245b 10157 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10159 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10160 struct drm_display_mode *mode;
5cec258b 10161 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10162 int htot = I915_READ(HTOTAL(cpu_transcoder));
10163 int hsync = I915_READ(HSYNC(cpu_transcoder));
10164 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10165 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10166 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10167
10168 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10169 if (!mode)
10170 return NULL;
10171
f1f644dc
JB
10172 /*
10173 * Construct a pipe_config sufficient for getting the clock info
10174 * back out of crtc_clock_get.
10175 *
10176 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10177 * to use a real value here instead.
10178 */
293623f7 10179 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10180 pipe_config.pixel_multiplier = 1;
293623f7
VS
10181 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10182 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10183 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10184 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10185
773ae034 10186 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10187 mode->hdisplay = (htot & 0xffff) + 1;
10188 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10189 mode->hsync_start = (hsync & 0xffff) + 1;
10190 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10191 mode->vdisplay = (vtot & 0xffff) + 1;
10192 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10193 mode->vsync_start = (vsync & 0xffff) + 1;
10194 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10195
10196 drm_mode_set_name(mode);
79e53945
JB
10197
10198 return mode;
10199}
10200
652c393a
JB
10201static void intel_decrease_pllclock(struct drm_crtc *crtc)
10202{
10203 struct drm_device *dev = crtc->dev;
fbee40df 10204 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 10206
baff296c 10207 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
10208 return;
10209
10210 if (!dev_priv->lvds_downclock_avail)
10211 return;
10212
10213 /*
10214 * Since this is called by a timer, we should never get here in
10215 * the manual case.
10216 */
10217 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
10218 int pipe = intel_crtc->pipe;
10219 int dpll_reg = DPLL(pipe);
10220 int dpll;
f6e5b160 10221
44d98a61 10222 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 10223
8ac5a6d5 10224 assert_panel_unlocked(dev_priv, pipe);
652c393a 10225
dc257cf1 10226 dpll = I915_READ(dpll_reg);
652c393a
JB
10227 dpll |= DISPLAY_RATE_SELECT_FPA1;
10228 I915_WRITE(dpll_reg, dpll);
9d0498a2 10229 intel_wait_for_vblank(dev, pipe);
652c393a
JB
10230 dpll = I915_READ(dpll_reg);
10231 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 10232 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
10233 }
10234
10235}
10236
f047e395
CW
10237void intel_mark_busy(struct drm_device *dev)
10238{
c67a470b
PZ
10239 struct drm_i915_private *dev_priv = dev->dev_private;
10240
f62a0076
CW
10241 if (dev_priv->mm.busy)
10242 return;
10243
43694d69 10244 intel_runtime_pm_get(dev_priv);
c67a470b 10245 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10246 if (INTEL_INFO(dev)->gen >= 6)
10247 gen6_rps_busy(dev_priv);
f62a0076 10248 dev_priv->mm.busy = true;
f047e395
CW
10249}
10250
10251void intel_mark_idle(struct drm_device *dev)
652c393a 10252{
c67a470b 10253 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10254 struct drm_crtc *crtc;
652c393a 10255
f62a0076
CW
10256 if (!dev_priv->mm.busy)
10257 return;
10258
10259 dev_priv->mm.busy = false;
10260
70e1e0ec 10261 for_each_crtc(dev, crtc) {
f4510a27 10262 if (!crtc->primary->fb)
652c393a
JB
10263 continue;
10264
725a5b54 10265 intel_decrease_pllclock(crtc);
652c393a 10266 }
b29c19b6 10267
3d13ef2e 10268 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10269 gen6_rps_idle(dev->dev_private);
bb4cdd53 10270
43694d69 10271 intel_runtime_pm_put(dev_priv);
652c393a
JB
10272}
10273
79e53945
JB
10274static void intel_crtc_destroy(struct drm_crtc *crtc)
10275{
10276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10277 struct drm_device *dev = crtc->dev;
10278 struct intel_unpin_work *work;
67e77c5a 10279
5e2d7afc 10280 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10281 work = intel_crtc->unpin_work;
10282 intel_crtc->unpin_work = NULL;
5e2d7afc 10283 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10284
10285 if (work) {
10286 cancel_work_sync(&work->work);
10287 kfree(work);
10288 }
79e53945
JB
10289
10290 drm_crtc_cleanup(crtc);
67e77c5a 10291
79e53945
JB
10292 kfree(intel_crtc);
10293}
10294
6b95a207
KH
10295static void intel_unpin_work_fn(struct work_struct *__work)
10296{
10297 struct intel_unpin_work *work =
10298 container_of(__work, struct intel_unpin_work, work);
b4a98e57 10299 struct drm_device *dev = work->crtc->dev;
f99d7069 10300 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 10301
b4a98e57 10302 mutex_lock(&dev->struct_mutex);
82bc3b2d 10303 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 10304 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10305
7ff0ebcc 10306 intel_fbc_update(dev);
f06cc1b9
JH
10307
10308 if (work->flip_queued_req)
146d84f0 10309 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10310 mutex_unlock(&dev->struct_mutex);
10311
f99d7069 10312 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 10313 drm_framebuffer_unreference(work->old_fb);
f99d7069 10314
b4a98e57
CW
10315 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10316 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10317
6b95a207
KH
10318 kfree(work);
10319}
10320
1afe3e9d 10321static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10322 struct drm_crtc *crtc)
6b95a207 10323{
6b95a207
KH
10324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10325 struct intel_unpin_work *work;
6b95a207
KH
10326 unsigned long flags;
10327
10328 /* Ignore early vblank irqs */
10329 if (intel_crtc == NULL)
10330 return;
10331
f326038a
DV
10332 /*
10333 * This is called both by irq handlers and the reset code (to complete
10334 * lost pageflips) so needs the full irqsave spinlocks.
10335 */
6b95a207
KH
10336 spin_lock_irqsave(&dev->event_lock, flags);
10337 work = intel_crtc->unpin_work;
e7d841ca
CW
10338
10339 /* Ensure we don't miss a work->pending update ... */
10340 smp_rmb();
10341
10342 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10343 spin_unlock_irqrestore(&dev->event_lock, flags);
10344 return;
10345 }
10346
d6bbafa1 10347 page_flip_completed(intel_crtc);
0af7e4df 10348
6b95a207 10349 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10350}
10351
1afe3e9d
JB
10352void intel_finish_page_flip(struct drm_device *dev, int pipe)
10353{
fbee40df 10354 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10355 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10356
49b14a5c 10357 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10358}
10359
10360void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10361{
fbee40df 10362 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10363 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10364
49b14a5c 10365 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10366}
10367
75f7f3ec
VS
10368/* Is 'a' after or equal to 'b'? */
10369static bool g4x_flip_count_after_eq(u32 a, u32 b)
10370{
10371 return !((a - b) & 0x80000000);
10372}
10373
10374static bool page_flip_finished(struct intel_crtc *crtc)
10375{
10376 struct drm_device *dev = crtc->base.dev;
10377 struct drm_i915_private *dev_priv = dev->dev_private;
10378
bdfa7542
VS
10379 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10380 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10381 return true;
10382
75f7f3ec
VS
10383 /*
10384 * The relevant registers doen't exist on pre-ctg.
10385 * As the flip done interrupt doesn't trigger for mmio
10386 * flips on gmch platforms, a flip count check isn't
10387 * really needed there. But since ctg has the registers,
10388 * include it in the check anyway.
10389 */
10390 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10391 return true;
10392
10393 /*
10394 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10395 * used the same base address. In that case the mmio flip might
10396 * have completed, but the CS hasn't even executed the flip yet.
10397 *
10398 * A flip count check isn't enough as the CS might have updated
10399 * the base address just after start of vblank, but before we
10400 * managed to process the interrupt. This means we'd complete the
10401 * CS flip too soon.
10402 *
10403 * Combining both checks should get us a good enough result. It may
10404 * still happen that the CS flip has been executed, but has not
10405 * yet actually completed. But in case the base address is the same
10406 * anyway, we don't really care.
10407 */
10408 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10409 crtc->unpin_work->gtt_offset &&
10410 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10411 crtc->unpin_work->flip_count);
10412}
10413
6b95a207
KH
10414void intel_prepare_page_flip(struct drm_device *dev, int plane)
10415{
fbee40df 10416 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10417 struct intel_crtc *intel_crtc =
10418 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10419 unsigned long flags;
10420
f326038a
DV
10421
10422 /*
10423 * This is called both by irq handlers and the reset code (to complete
10424 * lost pageflips) so needs the full irqsave spinlocks.
10425 *
10426 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10427 * generate a page-flip completion irq, i.e. every modeset
10428 * is also accompanied by a spurious intel_prepare_page_flip().
10429 */
6b95a207 10430 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10431 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10432 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10433 spin_unlock_irqrestore(&dev->event_lock, flags);
10434}
10435
eba905b2 10436static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
10437{
10438 /* Ensure that the work item is consistent when activating it ... */
10439 smp_wmb();
10440 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10441 /* and that it is marked active as soon as the irq could fire. */
10442 smp_wmb();
10443}
10444
8c9f3aaf
JB
10445static int intel_gen2_queue_flip(struct drm_device *dev,
10446 struct drm_crtc *crtc,
10447 struct drm_framebuffer *fb,
ed8d1975 10448 struct drm_i915_gem_object *obj,
a4872ba6 10449 struct intel_engine_cs *ring,
ed8d1975 10450 uint32_t flags)
8c9f3aaf 10451{
8c9f3aaf 10452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10453 u32 flip_mask;
10454 int ret;
10455
6d90c952 10456 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10457 if (ret)
4fa62c89 10458 return ret;
8c9f3aaf
JB
10459
10460 /* Can't queue multiple flips, so wait for the previous
10461 * one to finish before executing the next.
10462 */
10463 if (intel_crtc->plane)
10464 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10465 else
10466 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10467 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10468 intel_ring_emit(ring, MI_NOOP);
10469 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10470 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10471 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10472 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10473 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
10474
10475 intel_mark_page_flip_active(intel_crtc);
09246732 10476 __intel_ring_advance(ring);
83d4092b 10477 return 0;
8c9f3aaf
JB
10478}
10479
10480static int intel_gen3_queue_flip(struct drm_device *dev,
10481 struct drm_crtc *crtc,
10482 struct drm_framebuffer *fb,
ed8d1975 10483 struct drm_i915_gem_object *obj,
a4872ba6 10484 struct intel_engine_cs *ring,
ed8d1975 10485 uint32_t flags)
8c9f3aaf 10486{
8c9f3aaf 10487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10488 u32 flip_mask;
10489 int ret;
10490
6d90c952 10491 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10492 if (ret)
4fa62c89 10493 return ret;
8c9f3aaf
JB
10494
10495 if (intel_crtc->plane)
10496 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10497 else
10498 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10499 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10500 intel_ring_emit(ring, MI_NOOP);
10501 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10502 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10503 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10504 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
10505 intel_ring_emit(ring, MI_NOOP);
10506
e7d841ca 10507 intel_mark_page_flip_active(intel_crtc);
09246732 10508 __intel_ring_advance(ring);
83d4092b 10509 return 0;
8c9f3aaf
JB
10510}
10511
10512static int intel_gen4_queue_flip(struct drm_device *dev,
10513 struct drm_crtc *crtc,
10514 struct drm_framebuffer *fb,
ed8d1975 10515 struct drm_i915_gem_object *obj,
a4872ba6 10516 struct intel_engine_cs *ring,
ed8d1975 10517 uint32_t flags)
8c9f3aaf
JB
10518{
10519 struct drm_i915_private *dev_priv = dev->dev_private;
10520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10521 uint32_t pf, pipesrc;
10522 int ret;
10523
6d90c952 10524 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10525 if (ret)
4fa62c89 10526 return ret;
8c9f3aaf
JB
10527
10528 /* i965+ uses the linear or tiled offsets from the
10529 * Display Registers (which do not change across a page-flip)
10530 * so we need only reprogram the base address.
10531 */
6d90c952
DV
10532 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10533 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10534 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10535 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 10536 obj->tiling_mode);
8c9f3aaf
JB
10537
10538 /* XXX Enabling the panel-fitter across page-flip is so far
10539 * untested on non-native modes, so ignore it for now.
10540 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10541 */
10542 pf = 0;
10543 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10544 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
10545
10546 intel_mark_page_flip_active(intel_crtc);
09246732 10547 __intel_ring_advance(ring);
83d4092b 10548 return 0;
8c9f3aaf
JB
10549}
10550
10551static int intel_gen6_queue_flip(struct drm_device *dev,
10552 struct drm_crtc *crtc,
10553 struct drm_framebuffer *fb,
ed8d1975 10554 struct drm_i915_gem_object *obj,
a4872ba6 10555 struct intel_engine_cs *ring,
ed8d1975 10556 uint32_t flags)
8c9f3aaf
JB
10557{
10558 struct drm_i915_private *dev_priv = dev->dev_private;
10559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10560 uint32_t pf, pipesrc;
10561 int ret;
10562
6d90c952 10563 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10564 if (ret)
4fa62c89 10565 return ret;
8c9f3aaf 10566
6d90c952
DV
10567 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10568 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10569 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 10570 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 10571
dc257cf1
DV
10572 /* Contrary to the suggestions in the documentation,
10573 * "Enable Panel Fitter" does not seem to be required when page
10574 * flipping with a non-native mode, and worse causes a normal
10575 * modeset to fail.
10576 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10577 */
10578 pf = 0;
8c9f3aaf 10579 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10580 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
10581
10582 intel_mark_page_flip_active(intel_crtc);
09246732 10583 __intel_ring_advance(ring);
83d4092b 10584 return 0;
8c9f3aaf
JB
10585}
10586
7c9017e5
JB
10587static int intel_gen7_queue_flip(struct drm_device *dev,
10588 struct drm_crtc *crtc,
10589 struct drm_framebuffer *fb,
ed8d1975 10590 struct drm_i915_gem_object *obj,
a4872ba6 10591 struct intel_engine_cs *ring,
ed8d1975 10592 uint32_t flags)
7c9017e5 10593{
7c9017e5 10594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 10595 uint32_t plane_bit = 0;
ffe74d75
CW
10596 int len, ret;
10597
eba905b2 10598 switch (intel_crtc->plane) {
cb05d8de
DV
10599 case PLANE_A:
10600 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10601 break;
10602 case PLANE_B:
10603 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10604 break;
10605 case PLANE_C:
10606 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10607 break;
10608 default:
10609 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 10610 return -ENODEV;
cb05d8de
DV
10611 }
10612
ffe74d75 10613 len = 4;
f476828a 10614 if (ring->id == RCS) {
ffe74d75 10615 len += 6;
f476828a
DL
10616 /*
10617 * On Gen 8, SRM is now taking an extra dword to accommodate
10618 * 48bits addresses, and we need a NOOP for the batch size to
10619 * stay even.
10620 */
10621 if (IS_GEN8(dev))
10622 len += 2;
10623 }
ffe74d75 10624
f66fab8e
VS
10625 /*
10626 * BSpec MI_DISPLAY_FLIP for IVB:
10627 * "The full packet must be contained within the same cache line."
10628 *
10629 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10630 * cacheline, if we ever start emitting more commands before
10631 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10632 * then do the cacheline alignment, and finally emit the
10633 * MI_DISPLAY_FLIP.
10634 */
10635 ret = intel_ring_cacheline_align(ring);
10636 if (ret)
4fa62c89 10637 return ret;
f66fab8e 10638
ffe74d75 10639 ret = intel_ring_begin(ring, len);
7c9017e5 10640 if (ret)
4fa62c89 10641 return ret;
7c9017e5 10642
ffe74d75
CW
10643 /* Unmask the flip-done completion message. Note that the bspec says that
10644 * we should do this for both the BCS and RCS, and that we must not unmask
10645 * more than one flip event at any time (or ensure that one flip message
10646 * can be sent by waiting for flip-done prior to queueing new flips).
10647 * Experimentation says that BCS works despite DERRMR masking all
10648 * flip-done completion events and that unmasking all planes at once
10649 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10650 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10651 */
10652 if (ring->id == RCS) {
10653 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10654 intel_ring_emit(ring, DERRMR);
10655 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10656 DERRMR_PIPEB_PRI_FLIP_DONE |
10657 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
10658 if (IS_GEN8(dev))
10659 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10660 MI_SRM_LRM_GLOBAL_GTT);
10661 else
10662 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10663 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
10664 intel_ring_emit(ring, DERRMR);
10665 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
10666 if (IS_GEN8(dev)) {
10667 intel_ring_emit(ring, 0);
10668 intel_ring_emit(ring, MI_NOOP);
10669 }
ffe74d75
CW
10670 }
10671
cb05d8de 10672 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 10673 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 10674 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 10675 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
10676
10677 intel_mark_page_flip_active(intel_crtc);
09246732 10678 __intel_ring_advance(ring);
83d4092b 10679 return 0;
7c9017e5
JB
10680}
10681
84c33a64
SG
10682static bool use_mmio_flip(struct intel_engine_cs *ring,
10683 struct drm_i915_gem_object *obj)
10684{
10685 /*
10686 * This is not being used for older platforms, because
10687 * non-availability of flip done interrupt forces us to use
10688 * CS flips. Older platforms derive flip done using some clever
10689 * tricks involving the flip_pending status bits and vblank irqs.
10690 * So using MMIO flips there would disrupt this mechanism.
10691 */
10692
8e09bf83
CW
10693 if (ring == NULL)
10694 return true;
10695
84c33a64
SG
10696 if (INTEL_INFO(ring->dev)->gen < 5)
10697 return false;
10698
10699 if (i915.use_mmio_flip < 0)
10700 return false;
10701 else if (i915.use_mmio_flip > 0)
10702 return true;
14bf993e
OM
10703 else if (i915.enable_execlists)
10704 return true;
84c33a64 10705 else
41c52415 10706 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
10707}
10708
ff944564
DL
10709static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10710{
10711 struct drm_device *dev = intel_crtc->base.dev;
10712 struct drm_i915_private *dev_priv = dev->dev_private;
10713 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564
DL
10714 const enum pipe pipe = intel_crtc->pipe;
10715 u32 ctl, stride;
10716
10717 ctl = I915_READ(PLANE_CTL(pipe, 0));
10718 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
10719 switch (fb->modifier[0]) {
10720 case DRM_FORMAT_MOD_NONE:
10721 break;
10722 case I915_FORMAT_MOD_X_TILED:
ff944564 10723 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
10724 break;
10725 case I915_FORMAT_MOD_Y_TILED:
10726 ctl |= PLANE_CTL_TILED_Y;
10727 break;
10728 case I915_FORMAT_MOD_Yf_TILED:
10729 ctl |= PLANE_CTL_TILED_YF;
10730 break;
10731 default:
10732 MISSING_CASE(fb->modifier[0]);
10733 }
ff944564
DL
10734
10735 /*
10736 * The stride is either expressed as a multiple of 64 bytes chunks for
10737 * linear buffers or in number of tiles for tiled buffers.
10738 */
2ebef630
TU
10739 stride = fb->pitches[0] /
10740 intel_fb_stride_alignment(dev, fb->modifier[0],
10741 fb->pixel_format);
ff944564
DL
10742
10743 /*
10744 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10745 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10746 */
10747 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10748 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10749
10750 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10751 POSTING_READ(PLANE_SURF(pipe, 0));
10752}
10753
10754static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
10755{
10756 struct drm_device *dev = intel_crtc->base.dev;
10757 struct drm_i915_private *dev_priv = dev->dev_private;
10758 struct intel_framebuffer *intel_fb =
10759 to_intel_framebuffer(intel_crtc->base.primary->fb);
10760 struct drm_i915_gem_object *obj = intel_fb->obj;
10761 u32 dspcntr;
10762 u32 reg;
10763
84c33a64
SG
10764 reg = DSPCNTR(intel_crtc->plane);
10765 dspcntr = I915_READ(reg);
10766
c5d97472
DL
10767 if (obj->tiling_mode != I915_TILING_NONE)
10768 dspcntr |= DISPPLANE_TILED;
10769 else
10770 dspcntr &= ~DISPPLANE_TILED;
10771
84c33a64
SG
10772 I915_WRITE(reg, dspcntr);
10773
10774 I915_WRITE(DSPSURF(intel_crtc->plane),
10775 intel_crtc->unpin_work->gtt_offset);
10776 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 10777
ff944564
DL
10778}
10779
10780/*
10781 * XXX: This is the temporary way to update the plane registers until we get
10782 * around to using the usual plane update functions for MMIO flips
10783 */
10784static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10785{
10786 struct drm_device *dev = intel_crtc->base.dev;
10787 bool atomic_update;
10788 u32 start_vbl_count;
10789
10790 intel_mark_page_flip_active(intel_crtc);
10791
10792 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10793
10794 if (INTEL_INFO(dev)->gen >= 9)
10795 skl_do_mmio_flip(intel_crtc);
10796 else
10797 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10798 ilk_do_mmio_flip(intel_crtc);
10799
9362c7c5
ACO
10800 if (atomic_update)
10801 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
10802}
10803
9362c7c5 10804static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 10805{
b2cfe0ab
CW
10806 struct intel_mmio_flip *mmio_flip =
10807 container_of(work, struct intel_mmio_flip, work);
84c33a64 10808
b2cfe0ab
CW
10809 if (mmio_flip->rq)
10810 WARN_ON(__i915_wait_request(mmio_flip->rq,
10811 mmio_flip->crtc->reset_counter,
10812 false, NULL, NULL));
84c33a64 10813
b2cfe0ab
CW
10814 intel_do_mmio_flip(mmio_flip->crtc);
10815
10816 i915_gem_request_unreference__unlocked(mmio_flip->rq);
10817 kfree(mmio_flip);
84c33a64
SG
10818}
10819
10820static int intel_queue_mmio_flip(struct drm_device *dev,
10821 struct drm_crtc *crtc,
10822 struct drm_framebuffer *fb,
10823 struct drm_i915_gem_object *obj,
10824 struct intel_engine_cs *ring,
10825 uint32_t flags)
10826{
b2cfe0ab
CW
10827 struct intel_mmio_flip *mmio_flip;
10828
10829 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
10830 if (mmio_flip == NULL)
10831 return -ENOMEM;
84c33a64 10832
b2cfe0ab
CW
10833 mmio_flip->rq = i915_gem_request_reference(obj->last_write_req);
10834 mmio_flip->crtc = to_intel_crtc(crtc);
536f5b5e 10835
b2cfe0ab
CW
10836 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
10837 schedule_work(&mmio_flip->work);
84c33a64 10838
84c33a64
SG
10839 return 0;
10840}
10841
8c9f3aaf
JB
10842static int intel_default_queue_flip(struct drm_device *dev,
10843 struct drm_crtc *crtc,
10844 struct drm_framebuffer *fb,
ed8d1975 10845 struct drm_i915_gem_object *obj,
a4872ba6 10846 struct intel_engine_cs *ring,
ed8d1975 10847 uint32_t flags)
8c9f3aaf
JB
10848{
10849 return -ENODEV;
10850}
10851
d6bbafa1
CW
10852static bool __intel_pageflip_stall_check(struct drm_device *dev,
10853 struct drm_crtc *crtc)
10854{
10855 struct drm_i915_private *dev_priv = dev->dev_private;
10856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10857 struct intel_unpin_work *work = intel_crtc->unpin_work;
10858 u32 addr;
10859
10860 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10861 return true;
10862
10863 if (!work->enable_stall_check)
10864 return false;
10865
10866 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
10867 if (work->flip_queued_req &&
10868 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
10869 return false;
10870
1e3feefd 10871 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
10872 }
10873
1e3feefd 10874 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
10875 return false;
10876
10877 /* Potential stall - if we see that the flip has happened,
10878 * assume a missed interrupt. */
10879 if (INTEL_INFO(dev)->gen >= 4)
10880 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10881 else
10882 addr = I915_READ(DSPADDR(intel_crtc->plane));
10883
10884 /* There is a potential issue here with a false positive after a flip
10885 * to the same address. We could address this by checking for a
10886 * non-incrementing frame counter.
10887 */
10888 return addr == work->gtt_offset;
10889}
10890
10891void intel_check_page_flip(struct drm_device *dev, int pipe)
10892{
10893 struct drm_i915_private *dev_priv = dev->dev_private;
10894 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 10896 struct intel_unpin_work *work;
f326038a 10897
6c51d46f 10898 WARN_ON(!in_interrupt());
d6bbafa1
CW
10899
10900 if (crtc == NULL)
10901 return;
10902
f326038a 10903 spin_lock(&dev->event_lock);
6ad790c0
CW
10904 work = intel_crtc->unpin_work;
10905 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 10906 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 10907 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 10908 page_flip_completed(intel_crtc);
6ad790c0 10909 work = NULL;
d6bbafa1 10910 }
6ad790c0
CW
10911 if (work != NULL &&
10912 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
10913 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 10914 spin_unlock(&dev->event_lock);
d6bbafa1
CW
10915}
10916
6b95a207
KH
10917static int intel_crtc_page_flip(struct drm_crtc *crtc,
10918 struct drm_framebuffer *fb,
ed8d1975
KP
10919 struct drm_pending_vblank_event *event,
10920 uint32_t page_flip_flags)
6b95a207
KH
10921{
10922 struct drm_device *dev = crtc->dev;
10923 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 10924 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 10925 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 10926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 10927 struct drm_plane *primary = crtc->primary;
a071fa00 10928 enum pipe pipe = intel_crtc->pipe;
6b95a207 10929 struct intel_unpin_work *work;
a4872ba6 10930 struct intel_engine_cs *ring;
cf5d8a46 10931 bool mmio_flip;
52e68630 10932 int ret;
6b95a207 10933
2ff8fde1
MR
10934 /*
10935 * drm_mode_page_flip_ioctl() should already catch this, but double
10936 * check to be safe. In the future we may enable pageflipping from
10937 * a disabled primary plane.
10938 */
10939 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10940 return -EBUSY;
10941
e6a595d2 10942 /* Can't change pixel format via MI display flips. */
f4510a27 10943 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
10944 return -EINVAL;
10945
10946 /*
10947 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10948 * Note that pitch changes could also affect these register.
10949 */
10950 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
10951 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10952 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
10953 return -EINVAL;
10954
f900db47
CW
10955 if (i915_terminally_wedged(&dev_priv->gpu_error))
10956 goto out_hang;
10957
b14c5679 10958 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
10959 if (work == NULL)
10960 return -ENOMEM;
10961
6b95a207 10962 work->event = event;
b4a98e57 10963 work->crtc = crtc;
ab8d6675 10964 work->old_fb = old_fb;
6b95a207
KH
10965 INIT_WORK(&work->work, intel_unpin_work_fn);
10966
87b6b101 10967 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
10968 if (ret)
10969 goto free_work;
10970
6b95a207 10971 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 10972 spin_lock_irq(&dev->event_lock);
6b95a207 10973 if (intel_crtc->unpin_work) {
d6bbafa1
CW
10974 /* Before declaring the flip queue wedged, check if
10975 * the hardware completed the operation behind our backs.
10976 */
10977 if (__intel_pageflip_stall_check(dev, crtc)) {
10978 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10979 page_flip_completed(intel_crtc);
10980 } else {
10981 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 10982 spin_unlock_irq(&dev->event_lock);
468f0b44 10983
d6bbafa1
CW
10984 drm_crtc_vblank_put(crtc);
10985 kfree(work);
10986 return -EBUSY;
10987 }
6b95a207
KH
10988 }
10989 intel_crtc->unpin_work = work;
5e2d7afc 10990 spin_unlock_irq(&dev->event_lock);
6b95a207 10991
b4a98e57
CW
10992 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10993 flush_workqueue(dev_priv->wq);
10994
75dfca80 10995 /* Reference the objects for the scheduled work. */
ab8d6675 10996 drm_framebuffer_reference(work->old_fb);
05394f39 10997 drm_gem_object_reference(&obj->base);
6b95a207 10998
f4510a27 10999 crtc->primary->fb = fb;
afd65eb4 11000 update_state_fb(crtc->primary);
1ed1f968 11001
e1f99ce6 11002 work->pending_flip_obj = obj;
e1f99ce6 11003
89ed88ba
CW
11004 ret = i915_mutex_lock_interruptible(dev);
11005 if (ret)
11006 goto cleanup;
11007
b4a98e57 11008 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11009 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11010
75f7f3ec 11011 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 11012 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 11013
4fa62c89
VS
11014 if (IS_VALLEYVIEW(dev)) {
11015 ring = &dev_priv->ring[BCS];
ab8d6675 11016 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11017 /* vlv: DISPLAY_FLIP fails to change tiling */
11018 ring = NULL;
48bf5b2d 11019 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11020 ring = &dev_priv->ring[BCS];
4fa62c89 11021 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 11022 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
11023 if (ring == NULL || ring->id != RCS)
11024 ring = &dev_priv->ring[BCS];
11025 } else {
11026 ring = &dev_priv->ring[RCS];
11027 }
11028
cf5d8a46
CW
11029 mmio_flip = use_mmio_flip(ring, obj);
11030
11031 /* When using CS flips, we want to emit semaphores between rings.
11032 * However, when using mmio flips we will create a task to do the
11033 * synchronisation, so all we want here is to pin the framebuffer
11034 * into the display plane and skip any waits.
11035 */
82bc3b2d 11036 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
cf5d8a46
CW
11037 crtc->primary->state,
11038 mmio_flip ? i915_gem_request_get_ring(obj->last_read_req) : ring);
8c9f3aaf
JB
11039 if (ret)
11040 goto cleanup_pending;
6b95a207 11041
121920fa
TU
11042 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11043 + intel_crtc->dspaddr_offset;
4fa62c89 11044
cf5d8a46 11045 if (mmio_flip) {
84c33a64
SG
11046 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11047 page_flip_flags);
d6bbafa1
CW
11048 if (ret)
11049 goto cleanup_unpin;
11050
f06cc1b9
JH
11051 i915_gem_request_assign(&work->flip_queued_req,
11052 obj->last_write_req);
d6bbafa1 11053 } else {
d94b5030
CW
11054 if (obj->last_write_req) {
11055 ret = i915_gem_check_olr(obj->last_write_req);
11056 if (ret)
11057 goto cleanup_unpin;
11058 }
11059
84c33a64 11060 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
11061 page_flip_flags);
11062 if (ret)
11063 goto cleanup_unpin;
11064
f06cc1b9
JH
11065 i915_gem_request_assign(&work->flip_queued_req,
11066 intel_ring_get_request(ring));
d6bbafa1
CW
11067 }
11068
1e3feefd 11069 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11070 work->enable_stall_check = true;
4fa62c89 11071
ab8d6675 11072 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
11073 INTEL_FRONTBUFFER_PRIMARY(pipe));
11074
7ff0ebcc 11075 intel_fbc_disable(dev);
f99d7069 11076 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
11077 mutex_unlock(&dev->struct_mutex);
11078
e5510fac
JB
11079 trace_i915_flip_request(intel_crtc->plane, obj);
11080
6b95a207 11081 return 0;
96b099fd 11082
4fa62c89 11083cleanup_unpin:
82bc3b2d 11084 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11085cleanup_pending:
b4a98e57 11086 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11087 mutex_unlock(&dev->struct_mutex);
11088cleanup:
f4510a27 11089 crtc->primary->fb = old_fb;
afd65eb4 11090 update_state_fb(crtc->primary);
89ed88ba
CW
11091
11092 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11093 drm_framebuffer_unreference(work->old_fb);
96b099fd 11094
5e2d7afc 11095 spin_lock_irq(&dev->event_lock);
96b099fd 11096 intel_crtc->unpin_work = NULL;
5e2d7afc 11097 spin_unlock_irq(&dev->event_lock);
96b099fd 11098
87b6b101 11099 drm_crtc_vblank_put(crtc);
7317c75e 11100free_work:
96b099fd
CW
11101 kfree(work);
11102
f900db47
CW
11103 if (ret == -EIO) {
11104out_hang:
53a366b9 11105 ret = intel_plane_restore(primary);
f0d3dad3 11106 if (ret == 0 && event) {
5e2d7afc 11107 spin_lock_irq(&dev->event_lock);
a071fa00 11108 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11109 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11110 }
f900db47 11111 }
96b099fd 11112 return ret;
6b95a207
KH
11113}
11114
65b38e0d 11115static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11116 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11117 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11118 .atomic_begin = intel_begin_crtc_commit,
11119 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
11120};
11121
9a935856
DV
11122/**
11123 * intel_modeset_update_staged_output_state
11124 *
11125 * Updates the staged output configuration state, e.g. after we've read out the
11126 * current hw state.
11127 */
11128static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 11129{
7668851f 11130 struct intel_crtc *crtc;
9a935856
DV
11131 struct intel_encoder *encoder;
11132 struct intel_connector *connector;
f6e5b160 11133
3a3371ff 11134 for_each_intel_connector(dev, connector) {
9a935856
DV
11135 connector->new_encoder =
11136 to_intel_encoder(connector->base.encoder);
11137 }
f6e5b160 11138
b2784e15 11139 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11140 encoder->new_crtc =
11141 to_intel_crtc(encoder->base.crtc);
11142 }
7668851f 11143
d3fcc808 11144 for_each_intel_crtc(dev, crtc) {
83d65738 11145 crtc->new_enabled = crtc->base.state->enable;
7668851f 11146 }
f6e5b160
CW
11147}
11148
d29b2f9d
ACO
11149/* Transitional helper to copy current connector/encoder state to
11150 * connector->state. This is needed so that code that is partially
11151 * converted to atomic does the right thing.
11152 */
11153static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11154{
11155 struct intel_connector *connector;
11156
11157 for_each_intel_connector(dev, connector) {
11158 if (connector->base.encoder) {
11159 connector->base.state->best_encoder =
11160 connector->base.encoder;
11161 connector->base.state->crtc =
11162 connector->base.encoder->crtc;
11163 } else {
11164 connector->base.state->best_encoder = NULL;
11165 connector->base.state->crtc = NULL;
11166 }
11167 }
11168}
11169
a821fc46 11170/* Fixup legacy state after an atomic state swap.
9a935856 11171 */
a821fc46 11172static void intel_modeset_fixup_state(struct drm_atomic_state *state)
9a935856 11173{
a821fc46 11174 struct intel_crtc *crtc;
9a935856 11175 struct intel_encoder *encoder;
a821fc46 11176 struct intel_connector *connector;
d5432a9d 11177
a821fc46
ACO
11178 for_each_intel_connector(state->dev, connector) {
11179 connector->base.encoder = connector->base.state->best_encoder;
11180 if (connector->base.encoder)
11181 connector->base.encoder->crtc =
11182 connector->base.state->crtc;
9a935856 11183 }
f6e5b160 11184
d5432a9d
ACO
11185 /* Update crtc of disabled encoders */
11186 for_each_intel_encoder(state->dev, encoder) {
11187 int num_connectors = 0;
11188
a821fc46
ACO
11189 for_each_intel_connector(state->dev, connector)
11190 if (connector->base.encoder == &encoder->base)
d5432a9d
ACO
11191 num_connectors++;
11192
11193 if (num_connectors == 0)
11194 encoder->base.crtc = NULL;
9a935856 11195 }
7668851f 11196
a821fc46
ACO
11197 for_each_intel_crtc(state->dev, crtc) {
11198 crtc->base.enabled = crtc->base.state->enable;
11199 crtc->config = to_intel_crtc_state(crtc->base.state);
7668851f 11200 }
d29b2f9d 11201
d5432a9d
ACO
11202 /* Copy the new configuration to the staged state, to keep the few
11203 * pieces of code that haven't been converted yet happy */
11204 intel_modeset_update_staged_output_state(state->dev);
9a935856
DV
11205}
11206
050f7aeb 11207static void
eba905b2 11208connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11209 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11210{
11211 int bpp = pipe_config->pipe_bpp;
11212
11213 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11214 connector->base.base.id,
c23cc417 11215 connector->base.name);
050f7aeb
DV
11216
11217 /* Don't use an invalid EDID bpc value */
11218 if (connector->base.display_info.bpc &&
11219 connector->base.display_info.bpc * 3 < bpp) {
11220 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11221 bpp, connector->base.display_info.bpc*3);
11222 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11223 }
11224
11225 /* Clamp bpp to 8 on screens without EDID 1.4 */
11226 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11227 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11228 bpp);
11229 pipe_config->pipe_bpp = 24;
11230 }
11231}
11232
4e53c2e0 11233static int
050f7aeb 11234compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 11235 struct intel_crtc_state *pipe_config)
4e53c2e0 11236{
050f7aeb 11237 struct drm_device *dev = crtc->base.dev;
1486017f 11238 struct drm_atomic_state *state;
da3ced29
ACO
11239 struct drm_connector *connector;
11240 struct drm_connector_state *connector_state;
1486017f 11241 int bpp, i;
4e53c2e0 11242
d328c9d7 11243 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 11244 bpp = 10*3;
d328c9d7
DV
11245 else if (INTEL_INFO(dev)->gen >= 5)
11246 bpp = 12*3;
11247 else
11248 bpp = 8*3;
11249
4e53c2e0 11250
4e53c2e0
DV
11251 pipe_config->pipe_bpp = bpp;
11252
1486017f
ACO
11253 state = pipe_config->base.state;
11254
4e53c2e0 11255 /* Clamp display bpp to EDID value */
da3ced29
ACO
11256 for_each_connector_in_state(state, connector, connector_state, i) {
11257 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
11258 continue;
11259
da3ced29
ACO
11260 connected_sink_compute_bpp(to_intel_connector(connector),
11261 pipe_config);
4e53c2e0
DV
11262 }
11263
11264 return bpp;
11265}
11266
644db711
DV
11267static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11268{
11269 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11270 "type: 0x%x flags: 0x%x\n",
1342830c 11271 mode->crtc_clock,
644db711
DV
11272 mode->crtc_hdisplay, mode->crtc_hsync_start,
11273 mode->crtc_hsync_end, mode->crtc_htotal,
11274 mode->crtc_vdisplay, mode->crtc_vsync_start,
11275 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11276}
11277
c0b03411 11278static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 11279 struct intel_crtc_state *pipe_config,
c0b03411
DV
11280 const char *context)
11281{
6a60cd87
CK
11282 struct drm_device *dev = crtc->base.dev;
11283 struct drm_plane *plane;
11284 struct intel_plane *intel_plane;
11285 struct intel_plane_state *state;
11286 struct drm_framebuffer *fb;
11287
11288 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11289 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
11290
11291 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11292 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11293 pipe_config->pipe_bpp, pipe_config->dither);
11294 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11295 pipe_config->has_pch_encoder,
11296 pipe_config->fdi_lanes,
11297 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11298 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11299 pipe_config->fdi_m_n.tu);
eb14cb74
VS
11300 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11301 pipe_config->has_dp_encoder,
11302 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11303 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11304 pipe_config->dp_m_n.tu);
b95af8be
VK
11305
11306 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11307 pipe_config->has_dp_encoder,
11308 pipe_config->dp_m2_n2.gmch_m,
11309 pipe_config->dp_m2_n2.gmch_n,
11310 pipe_config->dp_m2_n2.link_m,
11311 pipe_config->dp_m2_n2.link_n,
11312 pipe_config->dp_m2_n2.tu);
11313
55072d19
DV
11314 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11315 pipe_config->has_audio,
11316 pipe_config->has_infoframe);
11317
c0b03411 11318 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 11319 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 11320 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
11321 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11322 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 11323 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
11324 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11325 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
6a60cd87
CK
11326 DRM_DEBUG_KMS("num_scalers: %d\n", crtc->num_scalers);
11327 DRM_DEBUG_KMS("scaler_users: 0x%x\n", pipe_config->scaler_state.scaler_users);
11328 DRM_DEBUG_KMS("scaler id: %d\n", pipe_config->scaler_state.scaler_id);
c0b03411
DV
11329 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11330 pipe_config->gmch_pfit.control,
11331 pipe_config->gmch_pfit.pgm_ratios,
11332 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 11333 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 11334 pipe_config->pch_pfit.pos,
fd4daa9c
CW
11335 pipe_config->pch_pfit.size,
11336 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 11337 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 11338 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87
CK
11339
11340 DRM_DEBUG_KMS("planes on this crtc\n");
11341 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11342 intel_plane = to_intel_plane(plane);
11343 if (intel_plane->pipe != crtc->pipe)
11344 continue;
11345
11346 state = to_intel_plane_state(plane->state);
11347 fb = state->base.fb;
11348 if (!fb) {
11349 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11350 "disabled, scaler_id = %d\n",
11351 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11352 plane->base.id, intel_plane->pipe,
11353 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11354 drm_plane_index(plane), state->scaler_id);
11355 continue;
11356 }
11357
11358 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11359 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11360 plane->base.id, intel_plane->pipe,
11361 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11362 drm_plane_index(plane));
11363 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11364 fb->base.id, fb->width, fb->height, fb->pixel_format);
11365 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11366 state->scaler_id,
11367 state->src.x1 >> 16, state->src.y1 >> 16,
11368 drm_rect_width(&state->src) >> 16,
11369 drm_rect_height(&state->src) >> 16,
11370 state->dst.x1, state->dst.y1,
11371 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11372 }
c0b03411
DV
11373}
11374
bc079e8b
VS
11375static bool encoders_cloneable(const struct intel_encoder *a,
11376 const struct intel_encoder *b)
accfc0c5 11377{
bc079e8b
VS
11378 /* masks could be asymmetric, so check both ways */
11379 return a == b || (a->cloneable & (1 << b->type) &&
11380 b->cloneable & (1 << a->type));
11381}
11382
98a221da
ACO
11383static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11384 struct intel_crtc *crtc,
bc079e8b
VS
11385 struct intel_encoder *encoder)
11386{
bc079e8b 11387 struct intel_encoder *source_encoder;
da3ced29 11388 struct drm_connector *connector;
98a221da
ACO
11389 struct drm_connector_state *connector_state;
11390 int i;
bc079e8b 11391
da3ced29 11392 for_each_connector_in_state(state, connector, connector_state, i) {
98a221da 11393 if (connector_state->crtc != &crtc->base)
bc079e8b
VS
11394 continue;
11395
98a221da
ACO
11396 source_encoder =
11397 to_intel_encoder(connector_state->best_encoder);
bc079e8b
VS
11398 if (!encoders_cloneable(encoder, source_encoder))
11399 return false;
11400 }
11401
11402 return true;
11403}
11404
98a221da
ACO
11405static bool check_encoder_cloning(struct drm_atomic_state *state,
11406 struct intel_crtc *crtc)
bc079e8b 11407{
accfc0c5 11408 struct intel_encoder *encoder;
da3ced29 11409 struct drm_connector *connector;
98a221da
ACO
11410 struct drm_connector_state *connector_state;
11411 int i;
accfc0c5 11412
da3ced29 11413 for_each_connector_in_state(state, connector, connector_state, i) {
98a221da
ACO
11414 if (connector_state->crtc != &crtc->base)
11415 continue;
11416
11417 encoder = to_intel_encoder(connector_state->best_encoder);
11418 if (!check_single_encoder_cloning(state, crtc, encoder))
bc079e8b 11419 return false;
accfc0c5
DV
11420 }
11421
bc079e8b 11422 return true;
accfc0c5
DV
11423}
11424
5448a00d 11425static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 11426{
5448a00d
ACO
11427 struct drm_device *dev = state->dev;
11428 struct intel_encoder *encoder;
da3ced29 11429 struct drm_connector *connector;
5448a00d 11430 struct drm_connector_state *connector_state;
00f0b378 11431 unsigned int used_ports = 0;
5448a00d 11432 int i;
00f0b378
VS
11433
11434 /*
11435 * Walk the connector list instead of the encoder
11436 * list to detect the problem on ddi platforms
11437 * where there's just one encoder per digital port.
11438 */
da3ced29 11439 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 11440 if (!connector_state->best_encoder)
00f0b378
VS
11441 continue;
11442
5448a00d
ACO
11443 encoder = to_intel_encoder(connector_state->best_encoder);
11444
11445 WARN_ON(!connector_state->crtc);
00f0b378
VS
11446
11447 switch (encoder->type) {
11448 unsigned int port_mask;
11449 case INTEL_OUTPUT_UNKNOWN:
11450 if (WARN_ON(!HAS_DDI(dev)))
11451 break;
11452 case INTEL_OUTPUT_DISPLAYPORT:
11453 case INTEL_OUTPUT_HDMI:
11454 case INTEL_OUTPUT_EDP:
11455 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11456
11457 /* the same port mustn't appear more than once */
11458 if (used_ports & port_mask)
11459 return false;
11460
11461 used_ports |= port_mask;
11462 default:
11463 break;
11464 }
11465 }
11466
11467 return true;
11468}
11469
83a57153
ACO
11470static void
11471clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11472{
11473 struct drm_crtc_state tmp_state;
663a3640 11474 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
11475 struct intel_dpll_hw_state dpll_hw_state;
11476 enum intel_dpll_id shared_dpll;
83a57153 11477
663a3640 11478 /* Clear only the intel specific part of the crtc state excluding scalers */
83a57153 11479 tmp_state = crtc_state->base;
663a3640 11480 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
11481 shared_dpll = crtc_state->shared_dpll;
11482 dpll_hw_state = crtc_state->dpll_hw_state;
11483
83a57153 11484 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 11485
83a57153 11486 crtc_state->base = tmp_state;
663a3640 11487 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
11488 crtc_state->shared_dpll = shared_dpll;
11489 crtc_state->dpll_hw_state = dpll_hw_state;
83a57153
ACO
11490}
11491
548ee15b 11492static int
b8cecdf5 11493intel_modeset_pipe_config(struct drm_crtc *crtc,
548ee15b
ACO
11494 struct drm_atomic_state *state,
11495 struct intel_crtc_state *pipe_config)
ee7b9f93 11496{
7758a113 11497 struct intel_encoder *encoder;
da3ced29 11498 struct drm_connector *connector;
0b901879 11499 struct drm_connector_state *connector_state;
d328c9d7 11500 int base_bpp, ret = -EINVAL;
0b901879 11501 int i;
e29c22c0 11502 bool retry = true;
ee7b9f93 11503
98a221da 11504 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
accfc0c5 11505 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
548ee15b 11506 return -EINVAL;
accfc0c5
DV
11507 }
11508
5448a00d 11509 if (!check_digital_port_conflicts(state)) {
00f0b378 11510 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
548ee15b 11511 return -EINVAL;
00f0b378
VS
11512 }
11513
83a57153 11514 clear_intel_crtc_state(pipe_config);
7758a113 11515
e143a21c
DV
11516 pipe_config->cpu_transcoder =
11517 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 11518
2960bc9c
ID
11519 /*
11520 * Sanitize sync polarity flags based on requested ones. If neither
11521 * positive or negative polarity is requested, treat this as meaning
11522 * negative polarity.
11523 */
2d112de7 11524 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 11525 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 11526 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 11527
2d112de7 11528 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 11529 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 11530 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 11531
050f7aeb
DV
11532 /* Compute a starting value for pipe_config->pipe_bpp taking the source
11533 * plane pixel format and any sink constraints into account. Returns the
11534 * source plane bpp so that dithering can be selected on mismatches
11535 * after encoders and crtc also have had their say. */
d328c9d7
DV
11536 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11537 pipe_config);
11538 if (base_bpp < 0)
4e53c2e0
DV
11539 goto fail;
11540
e41a56be
VS
11541 /*
11542 * Determine the real pipe dimensions. Note that stereo modes can
11543 * increase the actual pipe size due to the frame doubling and
11544 * insertion of additional space for blanks between the frame. This
11545 * is stored in the crtc timings. We use the requested mode to do this
11546 * computation to clearly distinguish it from the adjusted mode, which
11547 * can be changed by the connectors in the below retry loop.
11548 */
2d112de7 11549 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
11550 &pipe_config->pipe_src_w,
11551 &pipe_config->pipe_src_h);
e41a56be 11552
e29c22c0 11553encoder_retry:
ef1b460d 11554 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 11555 pipe_config->port_clock = 0;
ef1b460d 11556 pipe_config->pixel_multiplier = 1;
ff9a6750 11557
135c81b8 11558 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
11559 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11560 CRTC_STEREO_DOUBLE);
135c81b8 11561
7758a113
DV
11562 /* Pass our mode to the connectors and the CRTC to give them a chance to
11563 * adjust it according to limitations or connector properties, and also
11564 * a chance to reject the mode entirely.
47f1c6c9 11565 */
da3ced29 11566 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 11567 if (connector_state->crtc != crtc)
7758a113 11568 continue;
7ae89233 11569
0b901879
ACO
11570 encoder = to_intel_encoder(connector_state->best_encoder);
11571
efea6e8e
DV
11572 if (!(encoder->compute_config(encoder, pipe_config))) {
11573 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
11574 goto fail;
11575 }
ee7b9f93 11576 }
47f1c6c9 11577
ff9a6750
DV
11578 /* Set default port clock if not overwritten by the encoder. Needs to be
11579 * done afterwards in case the encoder adjusts the mode. */
11580 if (!pipe_config->port_clock)
2d112de7 11581 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 11582 * pipe_config->pixel_multiplier;
ff9a6750 11583
a43f6e0f 11584 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 11585 if (ret < 0) {
7758a113
DV
11586 DRM_DEBUG_KMS("CRTC fixup failed\n");
11587 goto fail;
ee7b9f93 11588 }
e29c22c0
DV
11589
11590 if (ret == RETRY) {
11591 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11592 ret = -EINVAL;
11593 goto fail;
11594 }
11595
11596 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11597 retry = false;
11598 goto encoder_retry;
11599 }
11600
d328c9d7 11601 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
4e53c2e0 11602 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 11603 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 11604
548ee15b 11605 return 0;
7758a113 11606fail:
548ee15b 11607 return ret;
ee7b9f93 11608}
47f1c6c9 11609
ea9d758d 11610static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 11611{
ea9d758d 11612 struct drm_encoder *encoder;
f6e5b160 11613 struct drm_device *dev = crtc->dev;
f6e5b160 11614
ea9d758d
DV
11615 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11616 if (encoder->crtc == crtc)
11617 return true;
11618
11619 return false;
11620}
11621
0a9ab303
ACO
11622static bool
11623needs_modeset(struct drm_crtc_state *state)
11624{
11625 return state->mode_changed || state->active_changed;
11626}
11627
ea9d758d 11628static void
0a9ab303 11629intel_modeset_update_state(struct drm_atomic_state *state)
ea9d758d 11630{
0a9ab303 11631 struct drm_device *dev = state->dev;
ba41c0de 11632 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d 11633 struct intel_encoder *intel_encoder;
0a9ab303
ACO
11634 struct drm_crtc *crtc;
11635 struct drm_crtc_state *crtc_state;
ea9d758d 11636 struct drm_connector *connector;
0a9ab303 11637 int i;
ea9d758d 11638
ba41c0de
DV
11639 intel_shared_dpll_commit(dev_priv);
11640
b2784e15 11641 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
11642 if (!intel_encoder->base.crtc)
11643 continue;
11644
0a9ab303
ACO
11645 for_each_crtc_in_state(state, crtc, crtc_state, i)
11646 if (crtc == intel_encoder->base.crtc)
11647 break;
11648
11649 if (crtc != intel_encoder->base.crtc)
11650 continue;
ea9d758d 11651
0a9ab303 11652 if (crtc_state->enable && needs_modeset(crtc_state))
ea9d758d
DV
11653 intel_encoder->connectors_active = false;
11654 }
11655
a821fc46
ACO
11656 drm_atomic_helper_swap_state(state->dev, state);
11657 intel_modeset_fixup_state(state);
ea9d758d 11658
7668851f 11659 /* Double check state. */
0a9ab303
ACO
11660 for_each_crtc(dev, crtc) {
11661 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
ea9d758d
DV
11662 }
11663
11664 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11665 if (!connector->encoder || !connector->encoder->crtc)
11666 continue;
11667
0a9ab303
ACO
11668 for_each_crtc_in_state(state, crtc, crtc_state, i)
11669 if (crtc == connector->encoder->crtc)
11670 break;
11671
11672 if (crtc != connector->encoder->crtc)
11673 continue;
ea9d758d 11674
a821fc46 11675 if (crtc->state->enable && needs_modeset(crtc->state)) {
68d34720
DV
11676 struct drm_property *dpms_property =
11677 dev->mode_config.dpms_property;
11678
ea9d758d 11679 connector->dpms = DRM_MODE_DPMS_ON;
662595df 11680 drm_object_property_set_value(&connector->base,
68d34720
DV
11681 dpms_property,
11682 DRM_MODE_DPMS_ON);
ea9d758d
DV
11683
11684 intel_encoder = to_intel_encoder(connector->encoder);
11685 intel_encoder->connectors_active = true;
11686 }
11687 }
11688
11689}
11690
3bd26263 11691static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 11692{
3bd26263 11693 int diff;
f1f644dc
JB
11694
11695 if (clock1 == clock2)
11696 return true;
11697
11698 if (!clock1 || !clock2)
11699 return false;
11700
11701 diff = abs(clock1 - clock2);
11702
11703 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11704 return true;
11705
11706 return false;
11707}
11708
25c5b266
DV
11709#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11710 list_for_each_entry((intel_crtc), \
11711 &(dev)->mode_config.crtc_list, \
11712 base.head) \
0973f18f 11713 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 11714
0e8ffe1b 11715static bool
2fa2fe9a 11716intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
11717 struct intel_crtc_state *current_config,
11718 struct intel_crtc_state *pipe_config)
0e8ffe1b 11719{
66e985c0
DV
11720#define PIPE_CONF_CHECK_X(name) \
11721 if (current_config->name != pipe_config->name) { \
11722 DRM_ERROR("mismatch in " #name " " \
11723 "(expected 0x%08x, found 0x%08x)\n", \
11724 current_config->name, \
11725 pipe_config->name); \
11726 return false; \
11727 }
11728
08a24034
DV
11729#define PIPE_CONF_CHECK_I(name) \
11730 if (current_config->name != pipe_config->name) { \
11731 DRM_ERROR("mismatch in " #name " " \
11732 "(expected %i, found %i)\n", \
11733 current_config->name, \
11734 pipe_config->name); \
11735 return false; \
88adfff1
DV
11736 }
11737
b95af8be
VK
11738/* This is required for BDW+ where there is only one set of registers for
11739 * switching between high and low RR.
11740 * This macro can be used whenever a comparison has to be made between one
11741 * hw state and multiple sw state variables.
11742 */
11743#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11744 if ((current_config->name != pipe_config->name) && \
11745 (current_config->alt_name != pipe_config->name)) { \
11746 DRM_ERROR("mismatch in " #name " " \
11747 "(expected %i or %i, found %i)\n", \
11748 current_config->name, \
11749 current_config->alt_name, \
11750 pipe_config->name); \
11751 return false; \
11752 }
11753
1bd1bd80
DV
11754#define PIPE_CONF_CHECK_FLAGS(name, mask) \
11755 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 11756 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
11757 "(expected %i, found %i)\n", \
11758 current_config->name & (mask), \
11759 pipe_config->name & (mask)); \
11760 return false; \
11761 }
11762
5e550656
VS
11763#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11764 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11765 DRM_ERROR("mismatch in " #name " " \
11766 "(expected %i, found %i)\n", \
11767 current_config->name, \
11768 pipe_config->name); \
11769 return false; \
11770 }
11771
bb760063
DV
11772#define PIPE_CONF_QUIRK(quirk) \
11773 ((current_config->quirks | pipe_config->quirks) & (quirk))
11774
eccb140b
DV
11775 PIPE_CONF_CHECK_I(cpu_transcoder);
11776
08a24034
DV
11777 PIPE_CONF_CHECK_I(has_pch_encoder);
11778 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
11779 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11780 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11781 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11782 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11783 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 11784
eb14cb74 11785 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
11786
11787 if (INTEL_INFO(dev)->gen < 8) {
11788 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11789 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11790 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11791 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11792 PIPE_CONF_CHECK_I(dp_m_n.tu);
11793
11794 if (current_config->has_drrs) {
11795 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11796 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11797 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11798 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11799 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11800 }
11801 } else {
11802 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11803 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11804 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11805 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11806 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11807 }
eb14cb74 11808
2d112de7
ACO
11809 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11810 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11811 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11812 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11813 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11814 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 11815
2d112de7
ACO
11816 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11817 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11818 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11819 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11820 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11821 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 11822
c93f54cf 11823 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 11824 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
11825 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11826 IS_VALLEYVIEW(dev))
11827 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 11828 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 11829
9ed109a7
DV
11830 PIPE_CONF_CHECK_I(has_audio);
11831
2d112de7 11832 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
11833 DRM_MODE_FLAG_INTERLACE);
11834
bb760063 11835 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 11836 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11837 DRM_MODE_FLAG_PHSYNC);
2d112de7 11838 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11839 DRM_MODE_FLAG_NHSYNC);
2d112de7 11840 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11841 DRM_MODE_FLAG_PVSYNC);
2d112de7 11842 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
11843 DRM_MODE_FLAG_NVSYNC);
11844 }
045ac3b5 11845
37327abd
VS
11846 PIPE_CONF_CHECK_I(pipe_src_w);
11847 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 11848
9953599b
DV
11849 /*
11850 * FIXME: BIOS likes to set up a cloned config with lvds+external
11851 * screen. Since we don't yet re-compute the pipe config when moving
11852 * just the lvds port away to another pipe the sw tracking won't match.
11853 *
11854 * Proper atomic modesets with recomputed global state will fix this.
11855 * Until then just don't check gmch state for inherited modes.
11856 */
11857 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11858 PIPE_CONF_CHECK_I(gmch_pfit.control);
11859 /* pfit ratios are autocomputed by the hw on gen4+ */
11860 if (INTEL_INFO(dev)->gen < 4)
11861 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11862 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11863 }
11864
fd4daa9c
CW
11865 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11866 if (current_config->pch_pfit.enabled) {
11867 PIPE_CONF_CHECK_I(pch_pfit.pos);
11868 PIPE_CONF_CHECK_I(pch_pfit.size);
11869 }
2fa2fe9a 11870
a1b2278e
CK
11871 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11872
e59150dc
JB
11873 /* BDW+ don't expose a synchronous way to read the state */
11874 if (IS_HASWELL(dev))
11875 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 11876
282740f7
VS
11877 PIPE_CONF_CHECK_I(double_wide);
11878
26804afd
DV
11879 PIPE_CONF_CHECK_X(ddi_pll_sel);
11880
c0d43d62 11881 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 11882 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 11883 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
11884 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11885 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 11886 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
11887 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11888 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11889 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 11890
42571aef
VS
11891 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11892 PIPE_CONF_CHECK_I(pipe_bpp);
11893
2d112de7 11894 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 11895 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 11896
66e985c0 11897#undef PIPE_CONF_CHECK_X
08a24034 11898#undef PIPE_CONF_CHECK_I
b95af8be 11899#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 11900#undef PIPE_CONF_CHECK_FLAGS
5e550656 11901#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 11902#undef PIPE_CONF_QUIRK
88adfff1 11903
0e8ffe1b
DV
11904 return true;
11905}
11906
08db6652
DL
11907static void check_wm_state(struct drm_device *dev)
11908{
11909 struct drm_i915_private *dev_priv = dev->dev_private;
11910 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11911 struct intel_crtc *intel_crtc;
11912 int plane;
11913
11914 if (INTEL_INFO(dev)->gen < 9)
11915 return;
11916
11917 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11918 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11919
11920 for_each_intel_crtc(dev, intel_crtc) {
11921 struct skl_ddb_entry *hw_entry, *sw_entry;
11922 const enum pipe pipe = intel_crtc->pipe;
11923
11924 if (!intel_crtc->active)
11925 continue;
11926
11927 /* planes */
dd740780 11928 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
11929 hw_entry = &hw_ddb.plane[pipe][plane];
11930 sw_entry = &sw_ddb->plane[pipe][plane];
11931
11932 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11933 continue;
11934
11935 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11936 "(expected (%u,%u), found (%u,%u))\n",
11937 pipe_name(pipe), plane + 1,
11938 sw_entry->start, sw_entry->end,
11939 hw_entry->start, hw_entry->end);
11940 }
11941
11942 /* cursor */
11943 hw_entry = &hw_ddb.cursor[pipe];
11944 sw_entry = &sw_ddb->cursor[pipe];
11945
11946 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11947 continue;
11948
11949 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11950 "(expected (%u,%u), found (%u,%u))\n",
11951 pipe_name(pipe),
11952 sw_entry->start, sw_entry->end,
11953 hw_entry->start, hw_entry->end);
11954 }
11955}
11956
91d1b4bd
DV
11957static void
11958check_connector_state(struct drm_device *dev)
8af6cf88 11959{
8af6cf88
DV
11960 struct intel_connector *connector;
11961
3a3371ff 11962 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11963 /* This also checks the encoder/connector hw state with the
11964 * ->get_hw_state callbacks. */
11965 intel_connector_check_state(connector);
11966
e2c719b7 11967 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
11968 "connector's staged encoder doesn't match current encoder\n");
11969 }
91d1b4bd
DV
11970}
11971
11972static void
11973check_encoder_state(struct drm_device *dev)
11974{
11975 struct intel_encoder *encoder;
11976 struct intel_connector *connector;
8af6cf88 11977
b2784e15 11978 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11979 bool enabled = false;
11980 bool active = false;
11981 enum pipe pipe, tracked_pipe;
11982
11983 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11984 encoder->base.base.id,
8e329a03 11985 encoder->base.name);
8af6cf88 11986
e2c719b7 11987 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 11988 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 11989 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
11990 "encoder's active_connectors set, but no crtc\n");
11991
3a3371ff 11992 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11993 if (connector->base.encoder != &encoder->base)
11994 continue;
11995 enabled = true;
11996 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11997 active = true;
11998 }
0e32b39c
DA
11999 /*
12000 * for MST connectors if we unplug the connector is gone
12001 * away but the encoder is still connected to a crtc
12002 * until a modeset happens in response to the hotplug.
12003 */
12004 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12005 continue;
12006
e2c719b7 12007 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12008 "encoder's enabled state mismatch "
12009 "(expected %i, found %i)\n",
12010 !!encoder->base.crtc, enabled);
e2c719b7 12011 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
12012 "active encoder with no crtc\n");
12013
e2c719b7 12014 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
12015 "encoder's computed active state doesn't match tracked active state "
12016 "(expected %i, found %i)\n", active, encoder->connectors_active);
12017
12018 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 12019 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
12020 "encoder's hw state doesn't match sw tracking "
12021 "(expected %i, found %i)\n",
12022 encoder->connectors_active, active);
12023
12024 if (!encoder->base.crtc)
12025 continue;
12026
12027 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 12028 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
12029 "active encoder's pipe doesn't match"
12030 "(expected %i, found %i)\n",
12031 tracked_pipe, pipe);
12032
12033 }
91d1b4bd
DV
12034}
12035
12036static void
12037check_crtc_state(struct drm_device *dev)
12038{
fbee40df 12039 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12040 struct intel_crtc *crtc;
12041 struct intel_encoder *encoder;
5cec258b 12042 struct intel_crtc_state pipe_config;
8af6cf88 12043
d3fcc808 12044 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
12045 bool enabled = false;
12046 bool active = false;
12047
045ac3b5
JB
12048 memset(&pipe_config, 0, sizeof(pipe_config));
12049
8af6cf88
DV
12050 DRM_DEBUG_KMS("[CRTC:%d]\n",
12051 crtc->base.base.id);
12052
83d65738 12053 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
12054 "active crtc, but not enabled in sw tracking\n");
12055
b2784e15 12056 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12057 if (encoder->base.crtc != &crtc->base)
12058 continue;
12059 enabled = true;
12060 if (encoder->connectors_active)
12061 active = true;
12062 }
6c49f241 12063
e2c719b7 12064 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
12065 "crtc's computed active state doesn't match tracked active state "
12066 "(expected %i, found %i)\n", active, crtc->active);
83d65738 12067 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 12068 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
12069 "(expected %i, found %i)\n", enabled,
12070 crtc->base.state->enable);
8af6cf88 12071
0e8ffe1b
DV
12072 active = dev_priv->display.get_pipe_config(crtc,
12073 &pipe_config);
d62cf62a 12074
b6b5d049
VS
12075 /* hw state is inconsistent with the pipe quirk */
12076 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12077 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
12078 active = crtc->active;
12079
b2784e15 12080 for_each_intel_encoder(dev, encoder) {
3eaba51c 12081 enum pipe pipe;
6c49f241
DV
12082 if (encoder->base.crtc != &crtc->base)
12083 continue;
1d37b689 12084 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
12085 encoder->get_config(encoder, &pipe_config);
12086 }
12087
e2c719b7 12088 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
12089 "crtc active state doesn't match with hw state "
12090 "(expected %i, found %i)\n", crtc->active, active);
12091
c0b03411 12092 if (active &&
6e3c9717 12093 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 12094 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
12095 intel_dump_pipe_config(crtc, &pipe_config,
12096 "[hw state]");
6e3c9717 12097 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
12098 "[sw state]");
12099 }
8af6cf88
DV
12100 }
12101}
12102
91d1b4bd
DV
12103static void
12104check_shared_dpll_state(struct drm_device *dev)
12105{
fbee40df 12106 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12107 struct intel_crtc *crtc;
12108 struct intel_dpll_hw_state dpll_hw_state;
12109 int i;
5358901f
DV
12110
12111 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12112 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12113 int enabled_crtcs = 0, active_crtcs = 0;
12114 bool active;
12115
12116 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12117
12118 DRM_DEBUG_KMS("%s\n", pll->name);
12119
12120 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12121
e2c719b7 12122 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12123 "more active pll users than references: %i vs %i\n",
3e369b76 12124 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12125 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12126 "pll in active use but not on in sw tracking\n");
e2c719b7 12127 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12128 "pll in on but not on in use in sw tracking\n");
e2c719b7 12129 I915_STATE_WARN(pll->on != active,
5358901f
DV
12130 "pll on state mismatch (expected %i, found %i)\n",
12131 pll->on, active);
12132
d3fcc808 12133 for_each_intel_crtc(dev, crtc) {
83d65738 12134 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12135 enabled_crtcs++;
12136 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12137 active_crtcs++;
12138 }
e2c719b7 12139 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12140 "pll active crtcs mismatch (expected %i, found %i)\n",
12141 pll->active, active_crtcs);
e2c719b7 12142 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12143 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12144 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12145
e2c719b7 12146 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12147 sizeof(dpll_hw_state)),
12148 "pll hw state mismatch\n");
5358901f 12149 }
8af6cf88
DV
12150}
12151
91d1b4bd
DV
12152void
12153intel_modeset_check_state(struct drm_device *dev)
12154{
08db6652 12155 check_wm_state(dev);
91d1b4bd
DV
12156 check_connector_state(dev);
12157 check_encoder_state(dev);
12158 check_crtc_state(dev);
12159 check_shared_dpll_state(dev);
12160}
12161
5cec258b 12162void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12163 int dotclock)
12164{
12165 /*
12166 * FDI already provided one idea for the dotclock.
12167 * Yell if the encoder disagrees.
12168 */
2d112de7 12169 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12170 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12171 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12172}
12173
80715b2f
VS
12174static void update_scanline_offset(struct intel_crtc *crtc)
12175{
12176 struct drm_device *dev = crtc->base.dev;
12177
12178 /*
12179 * The scanline counter increments at the leading edge of hsync.
12180 *
12181 * On most platforms it starts counting from vtotal-1 on the
12182 * first active line. That means the scanline counter value is
12183 * always one less than what we would expect. Ie. just after
12184 * start of vblank, which also occurs at start of hsync (on the
12185 * last active line), the scanline counter will read vblank_start-1.
12186 *
12187 * On gen2 the scanline counter starts counting from 1 instead
12188 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12189 * to keep the value positive), instead of adding one.
12190 *
12191 * On HSW+ the behaviour of the scanline counter depends on the output
12192 * type. For DP ports it behaves like most other platforms, but on HDMI
12193 * there's an extra 1 line difference. So we need to add two instead of
12194 * one to the value.
12195 */
12196 if (IS_GEN2(dev)) {
6e3c9717 12197 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12198 int vtotal;
12199
12200 vtotal = mode->crtc_vtotal;
12201 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12202 vtotal /= 2;
12203
12204 crtc->scanline_offset = vtotal - 1;
12205 } else if (HAS_DDI(dev) &&
409ee761 12206 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12207 crtc->scanline_offset = 2;
12208 } else
12209 crtc->scanline_offset = 1;
12210}
12211
5cec258b 12212static struct intel_crtc_state *
7f27126e 12213intel_modeset_compute_config(struct drm_crtc *crtc,
0a9ab303 12214 struct drm_atomic_state *state)
7f27126e 12215{
548ee15b 12216 struct intel_crtc_state *pipe_config;
0b901879
ACO
12217 int ret = 0;
12218
12219 ret = drm_atomic_add_affected_connectors(state, crtc);
12220 if (ret)
12221 return ERR_PTR(ret);
7f27126e 12222
8c7b5ccb
ACO
12223 ret = drm_atomic_helper_check_modeset(state->dev, state);
12224 if (ret)
12225 return ERR_PTR(ret);
7f27126e 12226
7f27126e
JB
12227 /*
12228 * Note this needs changes when we start tracking multiple modes
12229 * and crtcs. At that point we'll need to compute the whole config
12230 * (i.e. one pipe_config for each crtc) rather than just the one
12231 * for this crtc.
12232 */
548ee15b
ACO
12233 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12234 if (IS_ERR(pipe_config))
12235 return pipe_config;
83a57153 12236
4fed33f6 12237 if (!pipe_config->base.enable)
548ee15b 12238 return pipe_config;
7f27126e 12239
8c7b5ccb 12240 ret = intel_modeset_pipe_config(crtc, state, pipe_config);
548ee15b
ACO
12241 if (ret)
12242 return ERR_PTR(ret);
12243
8d8c9b51
ACO
12244 /* Check things that can only be changed through modeset */
12245 if (pipe_config->has_audio !=
12246 to_intel_crtc(crtc)->config->has_audio)
12247 pipe_config->base.mode_changed = true;
12248
12249 /*
12250 * Note we have an issue here with infoframes: current code
12251 * only updates them on the full mode set path per hw
12252 * requirements. So here we should be checking for any
12253 * required changes and forcing a mode set.
12254 */
12255
548ee15b 12256 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
db7542dd 12257
8c7b5ccb
ACO
12258 ret = drm_atomic_helper_check_planes(state->dev, state);
12259 if (ret)
12260 return ERR_PTR(ret);
12261
548ee15b 12262 return pipe_config;
7f27126e
JB
12263}
12264
0a9ab303 12265static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
ed6739ef 12266{
225da59b 12267 struct drm_device *dev = state->dev;
ed6739ef 12268 struct drm_i915_private *dev_priv = to_i915(dev);
0a9ab303 12269 unsigned clear_pipes = 0;
ed6739ef 12270 struct intel_crtc *intel_crtc;
0a9ab303
ACO
12271 struct intel_crtc_state *intel_crtc_state;
12272 struct drm_crtc *crtc;
12273 struct drm_crtc_state *crtc_state;
ed6739ef 12274 int ret = 0;
0a9ab303 12275 int i;
ed6739ef
ACO
12276
12277 if (!dev_priv->display.crtc_compute_clock)
12278 return 0;
12279
0a9ab303
ACO
12280 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12281 intel_crtc = to_intel_crtc(crtc);
4978cc93 12282 intel_crtc_state = to_intel_crtc_state(crtc_state);
0a9ab303 12283
4978cc93 12284 if (needs_modeset(crtc_state)) {
0a9ab303 12285 clear_pipes |= 1 << intel_crtc->pipe;
4978cc93
ACO
12286 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12287 memset(&intel_crtc_state->dpll_hw_state, 0,
12288 sizeof(intel_crtc_state->dpll_hw_state));
12289 }
0a9ab303
ACO
12290 }
12291
ed6739ef
ACO
12292 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12293 if (ret)
12294 goto done;
12295
0a9ab303
ACO
12296 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12297 if (!needs_modeset(crtc_state) || !crtc_state->enable)
225da59b
ACO
12298 continue;
12299
0a9ab303
ACO
12300 intel_crtc = to_intel_crtc(crtc);
12301 intel_crtc_state = to_intel_crtc_state(crtc_state);
12302
ed6739ef 12303 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
0a9ab303 12304 intel_crtc_state);
ed6739ef
ACO
12305 if (ret) {
12306 intel_shared_dpll_abort_config(dev_priv);
12307 goto done;
12308 }
12309 }
12310
12311done:
12312 return ret;
12313}
12314
054518dd
ACO
12315/* Code that should eventually be part of atomic_check() */
12316static int __intel_set_mode_checks(struct drm_atomic_state *state)
12317{
12318 struct drm_device *dev = state->dev;
12319 int ret;
12320
12321 /*
12322 * See if the config requires any additional preparation, e.g.
12323 * to adjust global state with pipes off. We need to do this
12324 * here so we can get the modeset_pipe updated config for the new
12325 * mode set on this crtc. For other crtcs we need to use the
12326 * adjusted_mode bits in the crtc directly.
12327 */
12328 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12329 ret = valleyview_modeset_global_pipes(state);
12330 if (ret)
12331 return ret;
12332 }
12333
12334 ret = __intel_set_mode_setup_plls(state);
12335 if (ret)
12336 return ret;
12337
12338 return 0;
12339}
12340
0a9ab303 12341static int __intel_set_mode(struct drm_crtc *modeset_crtc,
0a9ab303 12342 struct intel_crtc_state *pipe_config)
a6778b3c 12343{
0a9ab303 12344 struct drm_device *dev = modeset_crtc->dev;
fbee40df 12345 struct drm_i915_private *dev_priv = dev->dev_private;
304603f4 12346 struct drm_atomic_state *state = pipe_config->base.state;
0a9ab303
ACO
12347 struct drm_crtc *crtc;
12348 struct drm_crtc_state *crtc_state;
c0c36b94 12349 int ret = 0;
0a9ab303 12350 int i;
a6778b3c 12351
054518dd
ACO
12352 ret = __intel_set_mode_checks(state);
12353 if (ret < 0)
12354 return ret;
12355
d4afb8cc
ACO
12356 ret = drm_atomic_helper_prepare_planes(dev, state);
12357 if (ret)
12358 return ret;
12359
0a9ab303
ACO
12360 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12361 if (!needs_modeset(crtc_state))
12362 continue;
460da916 12363
0a9ab303
ACO
12364 if (!crtc_state->enable) {
12365 intel_crtc_disable(crtc);
12366 } else if (crtc->state->enable) {
12367 intel_crtc_disable_planes(crtc);
12368 dev_priv->display.crtc_disable(crtc);
ce22dba9 12369 }
ea9d758d 12370 }
a6778b3c 12371
6c4c86f5
DV
12372 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12373 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
12374 *
12375 * Note we'll need to fix this up when we start tracking multiple
12376 * pipes; here we assume a single modeset_pipe and only track the
12377 * single crtc and mode.
f6e5b160 12378 */
0a9ab303 12379 if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
8c7b5ccb 12380 modeset_crtc->mode = pipe_config->base.mode;
c326c0a9
VS
12381
12382 /*
12383 * Calculate and store various constants which
12384 * are later needed by vblank and swap-completion
12385 * timestamping. They are derived from true hwmode.
12386 */
0a9ab303 12387 drm_calc_timestamping_constants(modeset_crtc,
2d112de7 12388 &pipe_config->base.adjusted_mode);
b8cecdf5 12389 }
7758a113 12390
ea9d758d
DV
12391 /* Only after disabling all output pipelines that will be changed can we
12392 * update the the output configuration. */
0a9ab303 12393 intel_modeset_update_state(state);
f6e5b160 12394
a821fc46
ACO
12395 /* The state has been swaped above, so state actually contains the
12396 * old state now. */
12397
304603f4 12398 modeset_update_crtc_power_domains(state);
47fab737 12399
d4afb8cc 12400 drm_atomic_helper_commit_planes(dev, state);
a6778b3c
DV
12401
12402 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 12403 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a821fc46 12404 if (!needs_modeset(crtc->state) || !crtc->state->enable)
0a9ab303
ACO
12405 continue;
12406
12407 update_scanline_offset(to_intel_crtc(crtc));
80715b2f 12408
0a9ab303
ACO
12409 dev_priv->display.crtc_enable(crtc);
12410 intel_crtc_enable_planes(crtc);
80715b2f 12411 }
a6778b3c 12412
a6778b3c 12413 /* FIXME: add subpixel order */
83a57153 12414
d4afb8cc
ACO
12415 drm_atomic_helper_cleanup_planes(dev, state);
12416
2bfb4627
ACO
12417 drm_atomic_state_free(state);
12418
9eb45f22 12419 return 0;
f6e5b160
CW
12420}
12421
0a9ab303 12422static int intel_set_mode_with_config(struct drm_crtc *crtc,
0a9ab303 12423 struct intel_crtc_state *pipe_config)
f30da187
DV
12424{
12425 int ret;
12426
8c7b5ccb 12427 ret = __intel_set_mode(crtc, pipe_config);
f30da187
DV
12428
12429 if (ret == 0)
12430 intel_modeset_check_state(crtc->dev);
12431
12432 return ret;
12433}
12434
7f27126e 12435static int intel_set_mode(struct drm_crtc *crtc,
83a57153 12436 struct drm_atomic_state *state)
7f27126e 12437{
5cec258b 12438 struct intel_crtc_state *pipe_config;
83a57153 12439 int ret = 0;
7f27126e 12440
8c7b5ccb 12441 pipe_config = intel_modeset_compute_config(crtc, state);
83a57153
ACO
12442 if (IS_ERR(pipe_config)) {
12443 ret = PTR_ERR(pipe_config);
12444 goto out;
12445 }
12446
8c7b5ccb 12447 ret = intel_set_mode_with_config(crtc, pipe_config);
83a57153
ACO
12448 if (ret)
12449 goto out;
7f27126e 12450
83a57153
ACO
12451out:
12452 return ret;
7f27126e
JB
12453}
12454
c0c36b94
CW
12455void intel_crtc_restore_mode(struct drm_crtc *crtc)
12456{
83a57153
ACO
12457 struct drm_device *dev = crtc->dev;
12458 struct drm_atomic_state *state;
4be07317 12459 struct intel_crtc *intel_crtc;
83a57153
ACO
12460 struct intel_encoder *encoder;
12461 struct intel_connector *connector;
12462 struct drm_connector_state *connector_state;
4be07317 12463 struct intel_crtc_state *crtc_state;
2bfb4627 12464 int ret;
83a57153
ACO
12465
12466 state = drm_atomic_state_alloc(dev);
12467 if (!state) {
12468 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12469 crtc->base.id);
12470 return;
12471 }
12472
12473 state->acquire_ctx = dev->mode_config.acquire_ctx;
12474
12475 /* The force restore path in the HW readout code relies on the staged
12476 * config still keeping the user requested config while the actual
12477 * state has been overwritten by the configuration read from HW. We
12478 * need to copy the staged config to the atomic state, otherwise the
12479 * mode set will just reapply the state the HW is already in. */
12480 for_each_intel_encoder(dev, encoder) {
12481 if (&encoder->new_crtc->base != crtc)
12482 continue;
12483
12484 for_each_intel_connector(dev, connector) {
12485 if (connector->new_encoder != encoder)
12486 continue;
12487
12488 connector_state = drm_atomic_get_connector_state(state, &connector->base);
12489 if (IS_ERR(connector_state)) {
12490 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12491 connector->base.base.id,
12492 connector->base.name,
12493 PTR_ERR(connector_state));
12494 continue;
12495 }
12496
12497 connector_state->crtc = crtc;
12498 connector_state->best_encoder = &encoder->base;
12499 }
12500 }
12501
4be07317
ACO
12502 for_each_intel_crtc(dev, intel_crtc) {
12503 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
12504 continue;
12505
12506 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12507 if (IS_ERR(crtc_state)) {
12508 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12509 intel_crtc->base.base.id,
12510 PTR_ERR(crtc_state));
12511 continue;
12512 }
12513
49d6fa21
ML
12514 crtc_state->base.active = crtc_state->base.enable =
12515 intel_crtc->new_enabled;
8c7b5ccb
ACO
12516
12517 if (&intel_crtc->base == crtc)
12518 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
4be07317
ACO
12519 }
12520
d3a40d1b
ACO
12521 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12522 crtc->primary->fb, crtc->x, crtc->y);
12523
2bfb4627
ACO
12524 ret = intel_set_mode(crtc, state);
12525 if (ret)
12526 drm_atomic_state_free(state);
c0c36b94
CW
12527}
12528
25c5b266
DV
12529#undef for_each_intel_crtc_masked
12530
b7885264
ACO
12531static bool intel_connector_in_mode_set(struct intel_connector *connector,
12532 struct drm_mode_set *set)
12533{
12534 int ro;
12535
12536 for (ro = 0; ro < set->num_connectors; ro++)
12537 if (set->connectors[ro] == &connector->base)
12538 return true;
12539
12540 return false;
12541}
12542
2e431051 12543static int
9a935856
DV
12544intel_modeset_stage_output_state(struct drm_device *dev,
12545 struct drm_mode_set *set,
944b0c76 12546 struct drm_atomic_state *state)
50f56119 12547{
9a935856 12548 struct intel_connector *connector;
d5432a9d 12549 struct drm_connector *drm_connector;
944b0c76 12550 struct drm_connector_state *connector_state;
d5432a9d
ACO
12551 struct drm_crtc *crtc;
12552 struct drm_crtc_state *crtc_state;
12553 int i, ret;
50f56119 12554
9abdda74 12555 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
12556 * of connectors. For paranoia, double-check this. */
12557 WARN_ON(!set->fb && (set->num_connectors != 0));
12558 WARN_ON(set->fb && (set->num_connectors == 0));
12559
3a3371ff 12560 for_each_intel_connector(dev, connector) {
b7885264
ACO
12561 bool in_mode_set = intel_connector_in_mode_set(connector, set);
12562
d5432a9d
ACO
12563 if (!in_mode_set && connector->base.state->crtc != set->crtc)
12564 continue;
12565
12566 connector_state =
12567 drm_atomic_get_connector_state(state, &connector->base);
12568 if (IS_ERR(connector_state))
12569 return PTR_ERR(connector_state);
12570
b7885264
ACO
12571 if (in_mode_set) {
12572 int pipe = to_intel_crtc(set->crtc)->pipe;
d5432a9d
ACO
12573 connector_state->best_encoder =
12574 &intel_find_encoder(connector, pipe)->base;
50f56119
DV
12575 }
12576
d5432a9d 12577 if (connector->base.state->crtc != set->crtc)
b7885264
ACO
12578 continue;
12579
9a935856
DV
12580 /* If we disable the crtc, disable all its connectors. Also, if
12581 * the connector is on the changing crtc but not on the new
12582 * connector list, disable it. */
b7885264 12583 if (!set->fb || !in_mode_set) {
d5432a9d 12584 connector_state->best_encoder = NULL;
9a935856
DV
12585
12586 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12587 connector->base.base.id,
c23cc417 12588 connector->base.name);
9a935856 12589 }
50f56119 12590 }
9a935856 12591 /* connector->new_encoder is now updated for all connectors. */
50f56119 12592
d5432a9d
ACO
12593 for_each_connector_in_state(state, drm_connector, connector_state, i) {
12594 connector = to_intel_connector(drm_connector);
12595
12596 if (!connector_state->best_encoder) {
12597 ret = drm_atomic_set_crtc_for_connector(connector_state,
12598 NULL);
12599 if (ret)
12600 return ret;
7668851f 12601
50f56119 12602 continue;
d5432a9d 12603 }
50f56119 12604
d5432a9d
ACO
12605 if (intel_connector_in_mode_set(connector, set)) {
12606 struct drm_crtc *crtc = connector->base.state->crtc;
12607
12608 /* If this connector was in a previous crtc, add it
12609 * to the state. We might need to disable it. */
12610 if (crtc) {
12611 crtc_state =
12612 drm_atomic_get_crtc_state(state, crtc);
12613 if (IS_ERR(crtc_state))
12614 return PTR_ERR(crtc_state);
12615 }
12616
12617 ret = drm_atomic_set_crtc_for_connector(connector_state,
12618 set->crtc);
12619 if (ret)
12620 return ret;
12621 }
50f56119
DV
12622
12623 /* Make sure the new CRTC will work with the encoder */
d5432a9d
ACO
12624 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12625 connector_state->crtc)) {
5e2b584e 12626 return -EINVAL;
50f56119 12627 }
944b0c76 12628
9a935856
DV
12629 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12630 connector->base.base.id,
c23cc417 12631 connector->base.name,
d5432a9d 12632 connector_state->crtc->base.id);
944b0c76 12633
d5432a9d
ACO
12634 if (connector_state->best_encoder != &connector->encoder->base)
12635 connector->encoder =
12636 to_intel_encoder(connector_state->best_encoder);
0e32b39c 12637 }
7668851f 12638
d5432a9d 12639 for_each_crtc_in_state(state, crtc, crtc_state, i) {
49d6fa21
ML
12640 bool has_connectors;
12641
d5432a9d
ACO
12642 ret = drm_atomic_add_affected_connectors(state, crtc);
12643 if (ret)
12644 return ret;
4be07317 12645
49d6fa21
ML
12646 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12647 if (has_connectors != crtc_state->enable)
12648 crtc_state->enable =
12649 crtc_state->active = has_connectors;
7668851f
VS
12650 }
12651
8c7b5ccb
ACO
12652 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12653 set->fb, set->x, set->y);
12654 if (ret)
12655 return ret;
12656
12657 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12658 if (IS_ERR(crtc_state))
12659 return PTR_ERR(crtc_state);
12660
12661 if (set->mode)
12662 drm_mode_copy(&crtc_state->mode, set->mode);
12663
12664 if (set->num_connectors)
12665 crtc_state->active = true;
12666
2e431051
DV
12667 return 0;
12668}
12669
bb546623
ACO
12670static bool primary_plane_visible(struct drm_crtc *crtc)
12671{
12672 struct intel_plane_state *plane_state =
12673 to_intel_plane_state(crtc->primary->state);
12674
12675 return plane_state->visible;
12676}
12677
2e431051
DV
12678static int intel_crtc_set_config(struct drm_mode_set *set)
12679{
12680 struct drm_device *dev;
83a57153 12681 struct drm_atomic_state *state = NULL;
5cec258b 12682 struct intel_crtc_state *pipe_config;
bb546623 12683 bool primary_plane_was_visible;
2e431051 12684 int ret;
2e431051 12685
8d3e375e
DV
12686 BUG_ON(!set);
12687 BUG_ON(!set->crtc);
12688 BUG_ON(!set->crtc->helper_private);
2e431051 12689
7e53f3a4
DV
12690 /* Enforce sane interface api - has been abused by the fb helper. */
12691 BUG_ON(!set->mode && set->fb);
12692 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 12693
2e431051
DV
12694 if (set->fb) {
12695 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12696 set->crtc->base.id, set->fb->base.id,
12697 (int)set->num_connectors, set->x, set->y);
12698 } else {
12699 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
12700 }
12701
12702 dev = set->crtc->dev;
12703
83a57153 12704 state = drm_atomic_state_alloc(dev);
7cbf41d6
ACO
12705 if (!state)
12706 return -ENOMEM;
83a57153
ACO
12707
12708 state->acquire_ctx = dev->mode_config.acquire_ctx;
12709
462a425a 12710 ret = intel_modeset_stage_output_state(dev, set, state);
2e431051 12711 if (ret)
7cbf41d6 12712 goto out;
2e431051 12713
8c7b5ccb 12714 pipe_config = intel_modeset_compute_config(set->crtc, state);
20664591 12715 if (IS_ERR(pipe_config)) {
6ac0483b 12716 ret = PTR_ERR(pipe_config);
7cbf41d6 12717 goto out;
20664591 12718 }
50f52756 12719
1f9954d0
JB
12720 intel_update_pipe_size(to_intel_crtc(set->crtc));
12721
bb546623
ACO
12722 primary_plane_was_visible = primary_plane_visible(set->crtc);
12723
8c7b5ccb 12724 ret = intel_set_mode_with_config(set->crtc, pipe_config);
bb546623
ACO
12725
12726 if (ret == 0 &&
12727 pipe_config->base.enable &&
12728 pipe_config->base.planes_changed &&
12729 !needs_modeset(&pipe_config->base)) {
3b150f08 12730 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
3b150f08
MR
12731
12732 /*
12733 * We need to make sure the primary plane is re-enabled if it
12734 * has previously been turned off.
12735 */
bb546623
ACO
12736 if (ret == 0 && !primary_plane_was_visible &&
12737 primary_plane_visible(set->crtc)) {
3b150f08 12738 WARN_ON(!intel_crtc->active);
87d4300a 12739 intel_post_enable_primary(set->crtc);
3b150f08
MR
12740 }
12741
7ca51a3a
JB
12742 /*
12743 * In the fastboot case this may be our only check of the
12744 * state after boot. It would be better to only do it on
12745 * the first update, but we don't have a nice way of doing that
12746 * (and really, set_config isn't used much for high freq page
12747 * flipping, so increasing its cost here shouldn't be a big
12748 * deal).
12749 */
d330a953 12750 if (i915.fastboot && ret == 0)
7ca51a3a 12751 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
12752 }
12753
2d05eae1 12754 if (ret) {
bf67dfeb
DV
12755 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12756 set->crtc->base.id, ret);
2d05eae1 12757 }
50f56119 12758
7cbf41d6 12759out:
2bfb4627
ACO
12760 if (ret)
12761 drm_atomic_state_free(state);
50f56119
DV
12762 return ret;
12763}
f6e5b160
CW
12764
12765static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 12766 .gamma_set = intel_crtc_gamma_set,
50f56119 12767 .set_config = intel_crtc_set_config,
f6e5b160
CW
12768 .destroy = intel_crtc_destroy,
12769 .page_flip = intel_crtc_page_flip,
1356837e
MR
12770 .atomic_duplicate_state = intel_crtc_duplicate_state,
12771 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
12772};
12773
5358901f
DV
12774static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12775 struct intel_shared_dpll *pll,
12776 struct intel_dpll_hw_state *hw_state)
ee7b9f93 12777{
5358901f 12778 uint32_t val;
ee7b9f93 12779
f458ebbc 12780 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
12781 return false;
12782
5358901f 12783 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
12784 hw_state->dpll = val;
12785 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12786 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
12787
12788 return val & DPLL_VCO_ENABLE;
12789}
12790
15bdd4cf
DV
12791static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12792 struct intel_shared_dpll *pll)
12793{
3e369b76
ACO
12794 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12795 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
12796}
12797
e7b903d2
DV
12798static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12799 struct intel_shared_dpll *pll)
12800{
e7b903d2 12801 /* PCH refclock must be enabled first */
89eff4be 12802 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 12803
3e369b76 12804 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
12805
12806 /* Wait for the clocks to stabilize. */
12807 POSTING_READ(PCH_DPLL(pll->id));
12808 udelay(150);
12809
12810 /* The pixel multiplier can only be updated once the
12811 * DPLL is enabled and the clocks are stable.
12812 *
12813 * So write it again.
12814 */
3e369b76 12815 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 12816 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12817 udelay(200);
12818}
12819
12820static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12821 struct intel_shared_dpll *pll)
12822{
12823 struct drm_device *dev = dev_priv->dev;
12824 struct intel_crtc *crtc;
e7b903d2
DV
12825
12826 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 12827 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
12828 if (intel_crtc_to_shared_dpll(crtc) == pll)
12829 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
12830 }
12831
15bdd4cf
DV
12832 I915_WRITE(PCH_DPLL(pll->id), 0);
12833 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12834 udelay(200);
12835}
12836
46edb027
DV
12837static char *ibx_pch_dpll_names[] = {
12838 "PCH DPLL A",
12839 "PCH DPLL B",
12840};
12841
7c74ade1 12842static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 12843{
e7b903d2 12844 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
12845 int i;
12846
7c74ade1 12847 dev_priv->num_shared_dpll = 2;
ee7b9f93 12848
e72f9fbf 12849 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
12850 dev_priv->shared_dplls[i].id = i;
12851 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 12852 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
12853 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12854 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
12855 dev_priv->shared_dplls[i].get_hw_state =
12856 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
12857 }
12858}
12859
7c74ade1
DV
12860static void intel_shared_dpll_init(struct drm_device *dev)
12861{
e7b903d2 12862 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 12863
9cd86933
DV
12864 if (HAS_DDI(dev))
12865 intel_ddi_pll_init(dev);
12866 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
12867 ibx_pch_dpll_init(dev);
12868 else
12869 dev_priv->num_shared_dpll = 0;
12870
12871 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
12872}
12873
1fc0a8f7
TU
12874/**
12875 * intel_wm_need_update - Check whether watermarks need updating
12876 * @plane: drm plane
12877 * @state: new plane state
12878 *
12879 * Check current plane state versus the new one to determine whether
12880 * watermarks need to be recalculated.
12881 *
12882 * Returns true or false.
12883 */
12884bool intel_wm_need_update(struct drm_plane *plane,
12885 struct drm_plane_state *state)
12886{
12887 /* Update watermarks on tiling changes. */
12888 if (!plane->state->fb || !state->fb ||
12889 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12890 plane->state->rotation != state->rotation)
12891 return true;
12892
12893 return false;
12894}
12895
6beb8c23
MR
12896/**
12897 * intel_prepare_plane_fb - Prepare fb for usage on plane
12898 * @plane: drm plane to prepare for
12899 * @fb: framebuffer to prepare for presentation
12900 *
12901 * Prepares a framebuffer for usage on a display plane. Generally this
12902 * involves pinning the underlying object and updating the frontbuffer tracking
12903 * bits. Some older platforms need special physical address handling for
12904 * cursor planes.
12905 *
12906 * Returns 0 on success, negative error code on failure.
12907 */
12908int
12909intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
12910 struct drm_framebuffer *fb,
12911 const struct drm_plane_state *new_state)
465c120c
MR
12912{
12913 struct drm_device *dev = plane->dev;
6beb8c23
MR
12914 struct intel_plane *intel_plane = to_intel_plane(plane);
12915 enum pipe pipe = intel_plane->pipe;
12916 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12917 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12918 unsigned frontbuffer_bits = 0;
12919 int ret = 0;
465c120c 12920
ea2c67bb 12921 if (!obj)
465c120c
MR
12922 return 0;
12923
6beb8c23
MR
12924 switch (plane->type) {
12925 case DRM_PLANE_TYPE_PRIMARY:
12926 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12927 break;
12928 case DRM_PLANE_TYPE_CURSOR:
12929 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12930 break;
12931 case DRM_PLANE_TYPE_OVERLAY:
12932 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12933 break;
12934 }
465c120c 12935
6beb8c23 12936 mutex_lock(&dev->struct_mutex);
465c120c 12937
6beb8c23
MR
12938 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12939 INTEL_INFO(dev)->cursor_needs_physical) {
12940 int align = IS_I830(dev) ? 16 * 1024 : 256;
12941 ret = i915_gem_object_attach_phys(obj, align);
12942 if (ret)
12943 DRM_DEBUG_KMS("failed to attach phys object\n");
12944 } else {
82bc3b2d 12945 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 12946 }
465c120c 12947
6beb8c23
MR
12948 if (ret == 0)
12949 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 12950
4c34574f 12951 mutex_unlock(&dev->struct_mutex);
465c120c 12952
6beb8c23
MR
12953 return ret;
12954}
12955
38f3ce3a
MR
12956/**
12957 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12958 * @plane: drm plane to clean up for
12959 * @fb: old framebuffer that was on plane
12960 *
12961 * Cleans up a framebuffer that has just been removed from a plane.
12962 */
12963void
12964intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
12965 struct drm_framebuffer *fb,
12966 const struct drm_plane_state *old_state)
38f3ce3a
MR
12967{
12968 struct drm_device *dev = plane->dev;
12969 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12970
12971 if (WARN_ON(!obj))
12972 return;
12973
12974 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12975 !INTEL_INFO(dev)->cursor_needs_physical) {
12976 mutex_lock(&dev->struct_mutex);
82bc3b2d 12977 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
12978 mutex_unlock(&dev->struct_mutex);
12979 }
465c120c
MR
12980}
12981
6156a456
CK
12982int
12983skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12984{
12985 int max_scale;
12986 struct drm_device *dev;
12987 struct drm_i915_private *dev_priv;
12988 int crtc_clock, cdclk;
12989
12990 if (!intel_crtc || !crtc_state)
12991 return DRM_PLANE_HELPER_NO_SCALING;
12992
12993 dev = intel_crtc->base.dev;
12994 dev_priv = dev->dev_private;
12995 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12996 cdclk = dev_priv->display.get_display_clock_speed(dev);
12997
12998 if (!crtc_clock || !cdclk)
12999 return DRM_PLANE_HELPER_NO_SCALING;
13000
13001 /*
13002 * skl max scale is lower of:
13003 * close to 3 but not 3, -1 is for that purpose
13004 * or
13005 * cdclk/crtc_clock
13006 */
13007 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13008
13009 return max_scale;
13010}
13011
465c120c 13012static int
3c692a41
GP
13013intel_check_primary_plane(struct drm_plane *plane,
13014 struct intel_plane_state *state)
13015{
32b7eeec
MR
13016 struct drm_device *dev = plane->dev;
13017 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 13018 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13019 struct intel_crtc *intel_crtc;
6156a456 13020 struct intel_crtc_state *crtc_state;
2b875c22 13021 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
13022 struct drm_rect *dest = &state->dst;
13023 struct drm_rect *src = &state->src;
13024 const struct drm_rect *clip = &state->clip;
d8106366 13025 bool can_position = false;
6156a456
CK
13026 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13027 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
465c120c
MR
13028 int ret;
13029
ea2c67bb
MR
13030 crtc = crtc ? crtc : plane->crtc;
13031 intel_crtc = to_intel_crtc(crtc);
6156a456
CK
13032 crtc_state = state->base.state ?
13033 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
ea2c67bb 13034
6156a456
CK
13035 if (INTEL_INFO(dev)->gen >= 9) {
13036 min_scale = 1;
13037 max_scale = skl_max_scale(intel_crtc, crtc_state);
d8106366 13038 can_position = true;
6156a456 13039 }
d8106366 13040
c59cb179
MR
13041 ret = drm_plane_helper_check_update(plane, crtc, fb,
13042 src, dest, clip,
6156a456
CK
13043 min_scale,
13044 max_scale,
d8106366
SJ
13045 can_position, true,
13046 &state->visible);
c59cb179
MR
13047 if (ret)
13048 return ret;
465c120c 13049
32b7eeec 13050 if (intel_crtc->active) {
b70709a6
ML
13051 struct intel_plane_state *old_state =
13052 to_intel_plane_state(plane->state);
13053
32b7eeec
MR
13054 intel_crtc->atomic.wait_for_flips = true;
13055
13056 /*
13057 * FBC does not work on some platforms for rotated
13058 * planes, so disable it when rotation is not 0 and
13059 * update it when rotation is set back to 0.
13060 *
13061 * FIXME: This is redundant with the fbc update done in
13062 * the primary plane enable function except that that
13063 * one is done too late. We eventually need to unify
13064 * this.
13065 */
b70709a6 13066 if (state->visible &&
32b7eeec 13067 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 13068 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 13069 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
13070 intel_crtc->atomic.disable_fbc = true;
13071 }
13072
b70709a6 13073 if (state->visible && !old_state->visible) {
32b7eeec
MR
13074 /*
13075 * BDW signals flip done immediately if the plane
13076 * is disabled, even if the plane enable is already
13077 * armed to occur at the next vblank :(
13078 */
b70709a6 13079 if (IS_BROADWELL(dev))
32b7eeec
MR
13080 intel_crtc->atomic.wait_vblank = true;
13081 }
13082
13083 intel_crtc->atomic.fb_bits |=
13084 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13085
13086 intel_crtc->atomic.update_fbc = true;
0fda6568 13087
1fc0a8f7 13088 if (intel_wm_need_update(plane, &state->base))
0fda6568 13089 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
13090 }
13091
6156a456
CK
13092 if (INTEL_INFO(dev)->gen >= 9) {
13093 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13094 to_intel_plane(plane), state, 0);
13095 if (ret)
13096 return ret;
13097 }
13098
14af293f
GP
13099 return 0;
13100}
13101
13102static void
13103intel_commit_primary_plane(struct drm_plane *plane,
13104 struct intel_plane_state *state)
13105{
2b875c22
MR
13106 struct drm_crtc *crtc = state->base.crtc;
13107 struct drm_framebuffer *fb = state->base.fb;
13108 struct drm_device *dev = plane->dev;
14af293f 13109 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 13110 struct intel_crtc *intel_crtc;
14af293f
GP
13111 struct drm_rect *src = &state->src;
13112
ea2c67bb
MR
13113 crtc = crtc ? crtc : plane->crtc;
13114 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
13115
13116 plane->fb = fb;
9dc806fc
MR
13117 crtc->x = src->x1 >> 16;
13118 crtc->y = src->y1 >> 16;
ccc759dc 13119
ccc759dc 13120 if (intel_crtc->active) {
27321ae8 13121 if (state->visible)
ccc759dc
GP
13122 /* FIXME: kill this fastboot hack */
13123 intel_update_pipe_size(intel_crtc);
465c120c 13124
27321ae8
ML
13125 dev_priv->display.update_primary_plane(crtc, plane->fb,
13126 crtc->x, crtc->y);
ccc759dc 13127 }
465c120c
MR
13128}
13129
a8ad0d8e
ML
13130static void
13131intel_disable_primary_plane(struct drm_plane *plane,
13132 struct drm_crtc *crtc,
13133 bool force)
13134{
13135 struct drm_device *dev = plane->dev;
13136 struct drm_i915_private *dev_priv = dev->dev_private;
13137
a8ad0d8e
ML
13138 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13139}
13140
32b7eeec 13141static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 13142{
32b7eeec 13143 struct drm_device *dev = crtc->dev;
140fd38d 13144 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 13145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
13146 struct intel_plane *intel_plane;
13147 struct drm_plane *p;
13148 unsigned fb_bits = 0;
13149
13150 /* Track fb's for any planes being disabled */
13151 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13152 intel_plane = to_intel_plane(p);
13153
13154 if (intel_crtc->atomic.disabled_planes &
13155 (1 << drm_plane_index(p))) {
13156 switch (p->type) {
13157 case DRM_PLANE_TYPE_PRIMARY:
13158 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13159 break;
13160 case DRM_PLANE_TYPE_CURSOR:
13161 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13162 break;
13163 case DRM_PLANE_TYPE_OVERLAY:
13164 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13165 break;
13166 }
3c692a41 13167
ea2c67bb
MR
13168 mutex_lock(&dev->struct_mutex);
13169 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13170 mutex_unlock(&dev->struct_mutex);
13171 }
13172 }
3c692a41 13173
32b7eeec
MR
13174 if (intel_crtc->atomic.wait_for_flips)
13175 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 13176
32b7eeec
MR
13177 if (intel_crtc->atomic.disable_fbc)
13178 intel_fbc_disable(dev);
3c692a41 13179
32b7eeec
MR
13180 if (intel_crtc->atomic.pre_disable_primary)
13181 intel_pre_disable_primary(crtc);
3c692a41 13182
32b7eeec
MR
13183 if (intel_crtc->atomic.update_wm)
13184 intel_update_watermarks(crtc);
3c692a41 13185
32b7eeec 13186 intel_runtime_pm_get(dev_priv);
3c692a41 13187
c34c9ee4
MR
13188 /* Perform vblank evasion around commit operation */
13189 if (intel_crtc->active)
13190 intel_crtc->atomic.evade =
13191 intel_pipe_update_start(intel_crtc,
13192 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
13193}
13194
13195static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13196{
13197 struct drm_device *dev = crtc->dev;
13198 struct drm_i915_private *dev_priv = dev->dev_private;
13199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13200 struct drm_plane *p;
13201
c34c9ee4
MR
13202 if (intel_crtc->atomic.evade)
13203 intel_pipe_update_end(intel_crtc,
13204 intel_crtc->atomic.start_vbl_count);
3c692a41 13205
140fd38d 13206 intel_runtime_pm_put(dev_priv);
3c692a41 13207
32b7eeec
MR
13208 if (intel_crtc->atomic.wait_vblank)
13209 intel_wait_for_vblank(dev, intel_crtc->pipe);
13210
13211 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13212
13213 if (intel_crtc->atomic.update_fbc) {
ccc759dc 13214 mutex_lock(&dev->struct_mutex);
7ff0ebcc 13215 intel_fbc_update(dev);
ccc759dc 13216 mutex_unlock(&dev->struct_mutex);
38f3ce3a 13217 }
3c692a41 13218
32b7eeec
MR
13219 if (intel_crtc->atomic.post_enable_primary)
13220 intel_post_enable_primary(crtc);
3c692a41 13221
32b7eeec
MR
13222 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13223 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13224 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13225 false, false);
13226
13227 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
13228}
13229
cf4c7c12 13230/**
4a3b8769
MR
13231 * intel_plane_destroy - destroy a plane
13232 * @plane: plane to destroy
cf4c7c12 13233 *
4a3b8769
MR
13234 * Common destruction function for all types of planes (primary, cursor,
13235 * sprite).
cf4c7c12 13236 */
4a3b8769 13237void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13238{
13239 struct intel_plane *intel_plane = to_intel_plane(plane);
13240 drm_plane_cleanup(plane);
13241 kfree(intel_plane);
13242}
13243
65a3fea0 13244const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13245 .update_plane = drm_atomic_helper_update_plane,
13246 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13247 .destroy = intel_plane_destroy,
c196e1d6 13248 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13249 .atomic_get_property = intel_plane_atomic_get_property,
13250 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13251 .atomic_duplicate_state = intel_plane_duplicate_state,
13252 .atomic_destroy_state = intel_plane_destroy_state,
13253
465c120c
MR
13254};
13255
13256static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13257 int pipe)
13258{
13259 struct intel_plane *primary;
8e7d688b 13260 struct intel_plane_state *state;
465c120c
MR
13261 const uint32_t *intel_primary_formats;
13262 int num_formats;
13263
13264 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13265 if (primary == NULL)
13266 return NULL;
13267
8e7d688b
MR
13268 state = intel_create_plane_state(&primary->base);
13269 if (!state) {
ea2c67bb
MR
13270 kfree(primary);
13271 return NULL;
13272 }
8e7d688b 13273 primary->base.state = &state->base;
ea2c67bb 13274
465c120c
MR
13275 primary->can_scale = false;
13276 primary->max_downscale = 1;
6156a456
CK
13277 if (INTEL_INFO(dev)->gen >= 9) {
13278 primary->can_scale = true;
af99ceda 13279 state->scaler_id = -1;
6156a456 13280 }
465c120c
MR
13281 primary->pipe = pipe;
13282 primary->plane = pipe;
c59cb179
MR
13283 primary->check_plane = intel_check_primary_plane;
13284 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13285 primary->disable_plane = intel_disable_primary_plane;
08e221fb 13286 primary->ckey.flags = I915_SET_COLORKEY_NONE;
465c120c
MR
13287 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13288 primary->plane = !pipe;
13289
13290 if (INTEL_INFO(dev)->gen <= 3) {
568db4f2
DL
13291 intel_primary_formats = i8xx_primary_formats;
13292 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c 13293 } else {
568db4f2
DL
13294 intel_primary_formats = i965_primary_formats;
13295 num_formats = ARRAY_SIZE(i965_primary_formats);
465c120c
MR
13296 }
13297
13298 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13299 &intel_plane_funcs,
465c120c
MR
13300 intel_primary_formats, num_formats,
13301 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13302
3b7a5119
SJ
13303 if (INTEL_INFO(dev)->gen >= 4)
13304 intel_create_rotation_property(dev, primary);
48404c1e 13305
ea2c67bb
MR
13306 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13307
465c120c
MR
13308 return &primary->base;
13309}
13310
3b7a5119
SJ
13311void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13312{
13313 if (!dev->mode_config.rotation_property) {
13314 unsigned long flags = BIT(DRM_ROTATE_0) |
13315 BIT(DRM_ROTATE_180);
13316
13317 if (INTEL_INFO(dev)->gen >= 9)
13318 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13319
13320 dev->mode_config.rotation_property =
13321 drm_mode_create_rotation_property(dev, flags);
13322 }
13323 if (dev->mode_config.rotation_property)
13324 drm_object_attach_property(&plane->base.base,
13325 dev->mode_config.rotation_property,
13326 plane->base.state->rotation);
13327}
13328
3d7d6510 13329static int
852e787c
GP
13330intel_check_cursor_plane(struct drm_plane *plane,
13331 struct intel_plane_state *state)
3d7d6510 13332{
2b875c22 13333 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13334 struct drm_device *dev = plane->dev;
2b875c22 13335 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
13336 struct drm_rect *dest = &state->dst;
13337 struct drm_rect *src = &state->src;
13338 const struct drm_rect *clip = &state->clip;
757f9a3e 13339 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 13340 struct intel_crtc *intel_crtc;
757f9a3e
GP
13341 unsigned stride;
13342 int ret;
3d7d6510 13343
ea2c67bb
MR
13344 crtc = crtc ? crtc : plane->crtc;
13345 intel_crtc = to_intel_crtc(crtc);
13346
757f9a3e 13347 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 13348 src, dest, clip,
3d7d6510
MR
13349 DRM_PLANE_HELPER_NO_SCALING,
13350 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13351 true, true, &state->visible);
757f9a3e
GP
13352 if (ret)
13353 return ret;
13354
13355
13356 /* if we want to turn off the cursor ignore width and height */
13357 if (!obj)
32b7eeec 13358 goto finish;
757f9a3e 13359
757f9a3e 13360 /* Check for which cursor types we support */
ea2c67bb
MR
13361 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13362 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13363 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
13364 return -EINVAL;
13365 }
13366
ea2c67bb
MR
13367 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13368 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
13369 DRM_DEBUG_KMS("buffer is too small\n");
13370 return -ENOMEM;
13371 }
13372
3a656b54 13373 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
13374 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13375 ret = -EINVAL;
13376 }
757f9a3e 13377
32b7eeec
MR
13378finish:
13379 if (intel_crtc->active) {
3749f463 13380 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
13381 intel_crtc->atomic.update_wm = true;
13382
13383 intel_crtc->atomic.fb_bits |=
13384 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13385 }
13386
757f9a3e 13387 return ret;
852e787c 13388}
3d7d6510 13389
a8ad0d8e
ML
13390static void
13391intel_disable_cursor_plane(struct drm_plane *plane,
13392 struct drm_crtc *crtc,
13393 bool force)
13394{
13395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13396
13397 if (!force) {
13398 plane->fb = NULL;
13399 intel_crtc->cursor_bo = NULL;
13400 intel_crtc->cursor_addr = 0;
13401 }
13402
13403 intel_crtc_update_cursor(crtc, false);
13404}
13405
f4a2cf29 13406static void
852e787c
GP
13407intel_commit_cursor_plane(struct drm_plane *plane,
13408 struct intel_plane_state *state)
13409{
2b875c22 13410 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
13411 struct drm_device *dev = plane->dev;
13412 struct intel_crtc *intel_crtc;
2b875c22 13413 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 13414 uint32_t addr;
852e787c 13415
ea2c67bb
MR
13416 crtc = crtc ? crtc : plane->crtc;
13417 intel_crtc = to_intel_crtc(crtc);
13418
2b875c22 13419 plane->fb = state->base.fb;
ea2c67bb
MR
13420 crtc->cursor_x = state->base.crtc_x;
13421 crtc->cursor_y = state->base.crtc_y;
13422
a912f12f
GP
13423 if (intel_crtc->cursor_bo == obj)
13424 goto update;
4ed91096 13425
f4a2cf29 13426 if (!obj)
a912f12f 13427 addr = 0;
f4a2cf29 13428 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 13429 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 13430 else
a912f12f 13431 addr = obj->phys_handle->busaddr;
852e787c 13432
a912f12f
GP
13433 intel_crtc->cursor_addr = addr;
13434 intel_crtc->cursor_bo = obj;
13435update:
852e787c 13436
32b7eeec 13437 if (intel_crtc->active)
a912f12f 13438 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
13439}
13440
3d7d6510
MR
13441static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13442 int pipe)
13443{
13444 struct intel_plane *cursor;
8e7d688b 13445 struct intel_plane_state *state;
3d7d6510
MR
13446
13447 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13448 if (cursor == NULL)
13449 return NULL;
13450
8e7d688b
MR
13451 state = intel_create_plane_state(&cursor->base);
13452 if (!state) {
ea2c67bb
MR
13453 kfree(cursor);
13454 return NULL;
13455 }
8e7d688b 13456 cursor->base.state = &state->base;
ea2c67bb 13457
3d7d6510
MR
13458 cursor->can_scale = false;
13459 cursor->max_downscale = 1;
13460 cursor->pipe = pipe;
13461 cursor->plane = pipe;
c59cb179
MR
13462 cursor->check_plane = intel_check_cursor_plane;
13463 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 13464 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
13465
13466 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 13467 &intel_plane_funcs,
3d7d6510
MR
13468 intel_cursor_formats,
13469 ARRAY_SIZE(intel_cursor_formats),
13470 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
13471
13472 if (INTEL_INFO(dev)->gen >= 4) {
13473 if (!dev->mode_config.rotation_property)
13474 dev->mode_config.rotation_property =
13475 drm_mode_create_rotation_property(dev,
13476 BIT(DRM_ROTATE_0) |
13477 BIT(DRM_ROTATE_180));
13478 if (dev->mode_config.rotation_property)
13479 drm_object_attach_property(&cursor->base.base,
13480 dev->mode_config.rotation_property,
8e7d688b 13481 state->base.rotation);
4398ad45
VS
13482 }
13483
af99ceda
CK
13484 if (INTEL_INFO(dev)->gen >=9)
13485 state->scaler_id = -1;
13486
ea2c67bb
MR
13487 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13488
3d7d6510
MR
13489 return &cursor->base;
13490}
13491
549e2bfb
CK
13492static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13493 struct intel_crtc_state *crtc_state)
13494{
13495 int i;
13496 struct intel_scaler *intel_scaler;
13497 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13498
13499 for (i = 0; i < intel_crtc->num_scalers; i++) {
13500 intel_scaler = &scaler_state->scalers[i];
13501 intel_scaler->in_use = 0;
13502 intel_scaler->id = i;
13503
13504 intel_scaler->mode = PS_SCALER_MODE_DYN;
13505 }
13506
13507 scaler_state->scaler_id = -1;
13508}
13509
b358d0a6 13510static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 13511{
fbee40df 13512 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 13513 struct intel_crtc *intel_crtc;
f5de6e07 13514 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
13515 struct drm_plane *primary = NULL;
13516 struct drm_plane *cursor = NULL;
465c120c 13517 int i, ret;
79e53945 13518
955382f3 13519 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
13520 if (intel_crtc == NULL)
13521 return;
13522
f5de6e07
ACO
13523 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13524 if (!crtc_state)
13525 goto fail;
550acefd
ACO
13526 intel_crtc->config = crtc_state;
13527 intel_crtc->base.state = &crtc_state->base;
07878248 13528 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 13529
549e2bfb
CK
13530 /* initialize shared scalers */
13531 if (INTEL_INFO(dev)->gen >= 9) {
13532 if (pipe == PIPE_C)
13533 intel_crtc->num_scalers = 1;
13534 else
13535 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13536
13537 skl_init_scalers(dev, intel_crtc, crtc_state);
13538 }
13539
465c120c 13540 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
13541 if (!primary)
13542 goto fail;
13543
13544 cursor = intel_cursor_plane_create(dev, pipe);
13545 if (!cursor)
13546 goto fail;
13547
465c120c 13548 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
13549 cursor, &intel_crtc_funcs);
13550 if (ret)
13551 goto fail;
79e53945
JB
13552
13553 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
13554 for (i = 0; i < 256; i++) {
13555 intel_crtc->lut_r[i] = i;
13556 intel_crtc->lut_g[i] = i;
13557 intel_crtc->lut_b[i] = i;
13558 }
13559
1f1c2e24
VS
13560 /*
13561 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 13562 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 13563 */
80824003
JB
13564 intel_crtc->pipe = pipe;
13565 intel_crtc->plane = pipe;
3a77c4c4 13566 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 13567 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 13568 intel_crtc->plane = !pipe;
80824003
JB
13569 }
13570
4b0e333e
CW
13571 intel_crtc->cursor_base = ~0;
13572 intel_crtc->cursor_cntl = ~0;
dc41c154 13573 intel_crtc->cursor_size = ~0;
8d7849db 13574
22fd0fab
JB
13575 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13576 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13577 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13578 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13579
79e53945 13580 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
13581
13582 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
13583 return;
13584
13585fail:
13586 if (primary)
13587 drm_plane_cleanup(primary);
13588 if (cursor)
13589 drm_plane_cleanup(cursor);
f5de6e07 13590 kfree(crtc_state);
3d7d6510 13591 kfree(intel_crtc);
79e53945
JB
13592}
13593
752aa88a
JB
13594enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13595{
13596 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 13597 struct drm_device *dev = connector->base.dev;
752aa88a 13598
51fd371b 13599 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 13600
d3babd3f 13601 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
13602 return INVALID_PIPE;
13603
13604 return to_intel_crtc(encoder->crtc)->pipe;
13605}
13606
08d7b3d1 13607int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 13608 struct drm_file *file)
08d7b3d1 13609{
08d7b3d1 13610 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 13611 struct drm_crtc *drmmode_crtc;
c05422d5 13612 struct intel_crtc *crtc;
08d7b3d1 13613
7707e653 13614 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 13615
7707e653 13616 if (!drmmode_crtc) {
08d7b3d1 13617 DRM_ERROR("no such CRTC id\n");
3f2c2057 13618 return -ENOENT;
08d7b3d1
CW
13619 }
13620
7707e653 13621 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 13622 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 13623
c05422d5 13624 return 0;
08d7b3d1
CW
13625}
13626
66a9278e 13627static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 13628{
66a9278e
DV
13629 struct drm_device *dev = encoder->base.dev;
13630 struct intel_encoder *source_encoder;
79e53945 13631 int index_mask = 0;
79e53945
JB
13632 int entry = 0;
13633
b2784e15 13634 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 13635 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
13636 index_mask |= (1 << entry);
13637
79e53945
JB
13638 entry++;
13639 }
4ef69c7a 13640
79e53945
JB
13641 return index_mask;
13642}
13643
4d302442
CW
13644static bool has_edp_a(struct drm_device *dev)
13645{
13646 struct drm_i915_private *dev_priv = dev->dev_private;
13647
13648 if (!IS_MOBILE(dev))
13649 return false;
13650
13651 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13652 return false;
13653
e3589908 13654 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
13655 return false;
13656
13657 return true;
13658}
13659
84b4e042
JB
13660static bool intel_crt_present(struct drm_device *dev)
13661{
13662 struct drm_i915_private *dev_priv = dev->dev_private;
13663
884497ed
DL
13664 if (INTEL_INFO(dev)->gen >= 9)
13665 return false;
13666
cf404ce4 13667 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
13668 return false;
13669
13670 if (IS_CHERRYVIEW(dev))
13671 return false;
13672
13673 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13674 return false;
13675
13676 return true;
13677}
13678
79e53945
JB
13679static void intel_setup_outputs(struct drm_device *dev)
13680{
725e30ad 13681 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 13682 struct intel_encoder *encoder;
cb0953d7 13683 bool dpd_is_edp = false;
79e53945 13684
c9093354 13685 intel_lvds_init(dev);
79e53945 13686
84b4e042 13687 if (intel_crt_present(dev))
79935fca 13688 intel_crt_init(dev);
cb0953d7 13689
c776eb2e
VK
13690 if (IS_BROXTON(dev)) {
13691 /*
13692 * FIXME: Broxton doesn't support port detection via the
13693 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13694 * detect the ports.
13695 */
13696 intel_ddi_init(dev, PORT_A);
13697 intel_ddi_init(dev, PORT_B);
13698 intel_ddi_init(dev, PORT_C);
13699 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
13700 int found;
13701
de31facd
JB
13702 /*
13703 * Haswell uses DDI functions to detect digital outputs.
13704 * On SKL pre-D0 the strap isn't connected, so we assume
13705 * it's there.
13706 */
0e72a5b5 13707 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
13708 /* WaIgnoreDDIAStrap: skl */
13709 if (found ||
13710 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
13711 intel_ddi_init(dev, PORT_A);
13712
13713 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13714 * register */
13715 found = I915_READ(SFUSE_STRAP);
13716
13717 if (found & SFUSE_STRAP_DDIB_DETECTED)
13718 intel_ddi_init(dev, PORT_B);
13719 if (found & SFUSE_STRAP_DDIC_DETECTED)
13720 intel_ddi_init(dev, PORT_C);
13721 if (found & SFUSE_STRAP_DDID_DETECTED)
13722 intel_ddi_init(dev, PORT_D);
13723 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 13724 int found;
5d8a7752 13725 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
13726
13727 if (has_edp_a(dev))
13728 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 13729
dc0fa718 13730 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 13731 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 13732 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 13733 if (!found)
e2debe91 13734 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 13735 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 13736 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
13737 }
13738
dc0fa718 13739 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 13740 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 13741
dc0fa718 13742 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 13743 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 13744
5eb08b69 13745 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 13746 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 13747
270b3042 13748 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 13749 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 13750 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
13751 /*
13752 * The DP_DETECTED bit is the latched state of the DDC
13753 * SDA pin at boot. However since eDP doesn't require DDC
13754 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13755 * eDP ports may have been muxed to an alternate function.
13756 * Thus we can't rely on the DP_DETECTED bit alone to detect
13757 * eDP ports. Consult the VBT as well as DP_DETECTED to
13758 * detect eDP ports.
13759 */
d2182a66
VS
13760 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13761 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
13762 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13763 PORT_B);
e17ac6db
VS
13764 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13765 intel_dp_is_edp(dev, PORT_B))
13766 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 13767
d2182a66
VS
13768 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13769 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
13770 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13771 PORT_C);
e17ac6db
VS
13772 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13773 intel_dp_is_edp(dev, PORT_C))
13774 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 13775
9418c1f1 13776 if (IS_CHERRYVIEW(dev)) {
e17ac6db 13777 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
13778 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13779 PORT_D);
e17ac6db
VS
13780 /* eDP not supported on port D, so don't check VBT */
13781 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13782 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
13783 }
13784
3cfca973 13785 intel_dsi_init(dev);
103a196f 13786 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 13787 bool found = false;
7d57382e 13788
e2debe91 13789 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13790 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 13791 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
13792 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13793 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 13794 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 13795 }
27185ae1 13796
e7281eab 13797 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13798 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 13799 }
13520b05
KH
13800
13801 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 13802
e2debe91 13803 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13804 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 13805 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 13806 }
27185ae1 13807
e2debe91 13808 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 13809
b01f2c3a
JB
13810 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13811 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 13812 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 13813 }
e7281eab 13814 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13815 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 13816 }
27185ae1 13817
b01f2c3a 13818 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 13819 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 13820 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 13821 } else if (IS_GEN2(dev))
79e53945
JB
13822 intel_dvo_init(dev);
13823
103a196f 13824 if (SUPPORTS_TV(dev))
79e53945
JB
13825 intel_tv_init(dev);
13826
0bc12bcb 13827 intel_psr_init(dev);
7c8f8a70 13828
b2784e15 13829 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
13830 encoder->base.possible_crtcs = encoder->crtc_mask;
13831 encoder->base.possible_clones =
66a9278e 13832 intel_encoder_clones(encoder);
79e53945 13833 }
47356eb6 13834
dde86e2d 13835 intel_init_pch_refclk(dev);
270b3042
DV
13836
13837 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
13838}
13839
13840static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13841{
60a5ca01 13842 struct drm_device *dev = fb->dev;
79e53945 13843 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 13844
ef2d633e 13845 drm_framebuffer_cleanup(fb);
60a5ca01 13846 mutex_lock(&dev->struct_mutex);
ef2d633e 13847 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
13848 drm_gem_object_unreference(&intel_fb->obj->base);
13849 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13850 kfree(intel_fb);
13851}
13852
13853static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 13854 struct drm_file *file,
79e53945
JB
13855 unsigned int *handle)
13856{
13857 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 13858 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 13859
05394f39 13860 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
13861}
13862
13863static const struct drm_framebuffer_funcs intel_fb_funcs = {
13864 .destroy = intel_user_framebuffer_destroy,
13865 .create_handle = intel_user_framebuffer_create_handle,
13866};
13867
b321803d
DL
13868static
13869u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13870 uint32_t pixel_format)
13871{
13872 u32 gen = INTEL_INFO(dev)->gen;
13873
13874 if (gen >= 9) {
13875 /* "The stride in bytes must not exceed the of the size of 8K
13876 * pixels and 32K bytes."
13877 */
13878 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13879 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13880 return 32*1024;
13881 } else if (gen >= 4) {
13882 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13883 return 16*1024;
13884 else
13885 return 32*1024;
13886 } else if (gen >= 3) {
13887 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13888 return 8*1024;
13889 else
13890 return 16*1024;
13891 } else {
13892 /* XXX DSPC is limited to 4k tiled */
13893 return 8*1024;
13894 }
13895}
13896
b5ea642a
DV
13897static int intel_framebuffer_init(struct drm_device *dev,
13898 struct intel_framebuffer *intel_fb,
13899 struct drm_mode_fb_cmd2 *mode_cmd,
13900 struct drm_i915_gem_object *obj)
79e53945 13901{
6761dd31 13902 unsigned int aligned_height;
79e53945 13903 int ret;
b321803d 13904 u32 pitch_limit, stride_alignment;
79e53945 13905
dd4916c5
DV
13906 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13907
2a80eada
DV
13908 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13909 /* Enforce that fb modifier and tiling mode match, but only for
13910 * X-tiled. This is needed for FBC. */
13911 if (!!(obj->tiling_mode == I915_TILING_X) !=
13912 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13913 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13914 return -EINVAL;
13915 }
13916 } else {
13917 if (obj->tiling_mode == I915_TILING_X)
13918 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13919 else if (obj->tiling_mode == I915_TILING_Y) {
13920 DRM_DEBUG("No Y tiling for legacy addfb\n");
13921 return -EINVAL;
13922 }
13923 }
13924
9a8f0a12
TU
13925 /* Passed in modifier sanity checking. */
13926 switch (mode_cmd->modifier[0]) {
13927 case I915_FORMAT_MOD_Y_TILED:
13928 case I915_FORMAT_MOD_Yf_TILED:
13929 if (INTEL_INFO(dev)->gen < 9) {
13930 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13931 mode_cmd->modifier[0]);
13932 return -EINVAL;
13933 }
13934 case DRM_FORMAT_MOD_NONE:
13935 case I915_FORMAT_MOD_X_TILED:
13936 break;
13937 default:
c0f40428
JB
13938 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13939 mode_cmd->modifier[0]);
57cd6508 13940 return -EINVAL;
c16ed4be 13941 }
57cd6508 13942
b321803d
DL
13943 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13944 mode_cmd->pixel_format);
13945 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13946 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13947 mode_cmd->pitches[0], stride_alignment);
57cd6508 13948 return -EINVAL;
c16ed4be 13949 }
57cd6508 13950
b321803d
DL
13951 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13952 mode_cmd->pixel_format);
a35cdaa0 13953 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
13954 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13955 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 13956 "tiled" : "linear",
a35cdaa0 13957 mode_cmd->pitches[0], pitch_limit);
5d7bd705 13958 return -EINVAL;
c16ed4be 13959 }
5d7bd705 13960
2a80eada 13961 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
13962 mode_cmd->pitches[0] != obj->stride) {
13963 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13964 mode_cmd->pitches[0], obj->stride);
5d7bd705 13965 return -EINVAL;
c16ed4be 13966 }
5d7bd705 13967
57779d06 13968 /* Reject formats not supported by any plane early. */
308e5bcb 13969 switch (mode_cmd->pixel_format) {
57779d06 13970 case DRM_FORMAT_C8:
04b3924d
VS
13971 case DRM_FORMAT_RGB565:
13972 case DRM_FORMAT_XRGB8888:
13973 case DRM_FORMAT_ARGB8888:
57779d06
VS
13974 break;
13975 case DRM_FORMAT_XRGB1555:
13976 case DRM_FORMAT_ARGB1555:
c16ed4be 13977 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
13978 DRM_DEBUG("unsupported pixel format: %s\n",
13979 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13980 return -EINVAL;
c16ed4be 13981 }
57779d06
VS
13982 break;
13983 case DRM_FORMAT_XBGR8888:
13984 case DRM_FORMAT_ABGR8888:
04b3924d
VS
13985 case DRM_FORMAT_XRGB2101010:
13986 case DRM_FORMAT_ARGB2101010:
57779d06
VS
13987 case DRM_FORMAT_XBGR2101010:
13988 case DRM_FORMAT_ABGR2101010:
c16ed4be 13989 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
13990 DRM_DEBUG("unsupported pixel format: %s\n",
13991 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13992 return -EINVAL;
c16ed4be 13993 }
b5626747 13994 break;
04b3924d
VS
13995 case DRM_FORMAT_YUYV:
13996 case DRM_FORMAT_UYVY:
13997 case DRM_FORMAT_YVYU:
13998 case DRM_FORMAT_VYUY:
c16ed4be 13999 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14000 DRM_DEBUG("unsupported pixel format: %s\n",
14001 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14002 return -EINVAL;
c16ed4be 14003 }
57cd6508
CW
14004 break;
14005 default:
4ee62c76
VS
14006 DRM_DEBUG("unsupported pixel format: %s\n",
14007 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14008 return -EINVAL;
14009 }
14010
90f9a336
VS
14011 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14012 if (mode_cmd->offsets[0] != 0)
14013 return -EINVAL;
14014
ec2c981e 14015 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14016 mode_cmd->pixel_format,
14017 mode_cmd->modifier[0]);
53155c0a
DV
14018 /* FIXME drm helper for size checks (especially planar formats)? */
14019 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14020 return -EINVAL;
14021
c7d73f6a
DV
14022 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14023 intel_fb->obj = obj;
80075d49 14024 intel_fb->obj->framebuffer_references++;
c7d73f6a 14025
79e53945
JB
14026 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14027 if (ret) {
14028 DRM_ERROR("framebuffer init failed %d\n", ret);
14029 return ret;
14030 }
14031
79e53945
JB
14032 return 0;
14033}
14034
79e53945
JB
14035static struct drm_framebuffer *
14036intel_user_framebuffer_create(struct drm_device *dev,
14037 struct drm_file *filp,
308e5bcb 14038 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 14039{
05394f39 14040 struct drm_i915_gem_object *obj;
79e53945 14041
308e5bcb
JB
14042 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14043 mode_cmd->handles[0]));
c8725226 14044 if (&obj->base == NULL)
cce13ff7 14045 return ERR_PTR(-ENOENT);
79e53945 14046
d2dff872 14047 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
14048}
14049
4520f53a 14050#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 14051static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14052{
14053}
14054#endif
14055
79e53945 14056static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14057 .fb_create = intel_user_framebuffer_create,
0632fef6 14058 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14059 .atomic_check = intel_atomic_check,
14060 .atomic_commit = intel_atomic_commit,
79e53945
JB
14061};
14062
e70236a8
JB
14063/* Set up chip specific display functions */
14064static void intel_init_display(struct drm_device *dev)
14065{
14066 struct drm_i915_private *dev_priv = dev->dev_private;
14067
ee9300bb
DV
14068 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14069 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14070 else if (IS_CHERRYVIEW(dev))
14071 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14072 else if (IS_VALLEYVIEW(dev))
14073 dev_priv->display.find_dpll = vlv_find_best_dpll;
14074 else if (IS_PINEVIEW(dev))
14075 dev_priv->display.find_dpll = pnv_find_best_dpll;
14076 else
14077 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14078
bc8d7dff
DL
14079 if (INTEL_INFO(dev)->gen >= 9) {
14080 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14081 dev_priv->display.get_initial_plane_config =
14082 skylake_get_initial_plane_config;
bc8d7dff
DL
14083 dev_priv->display.crtc_compute_clock =
14084 haswell_crtc_compute_clock;
14085 dev_priv->display.crtc_enable = haswell_crtc_enable;
14086 dev_priv->display.crtc_disable = haswell_crtc_disable;
14087 dev_priv->display.off = ironlake_crtc_off;
14088 dev_priv->display.update_primary_plane =
14089 skylake_update_primary_plane;
14090 } else if (HAS_DDI(dev)) {
0e8ffe1b 14091 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14092 dev_priv->display.get_initial_plane_config =
14093 ironlake_get_initial_plane_config;
797d0259
ACO
14094 dev_priv->display.crtc_compute_clock =
14095 haswell_crtc_compute_clock;
4f771f10
PZ
14096 dev_priv->display.crtc_enable = haswell_crtc_enable;
14097 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 14098 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
14099 dev_priv->display.update_primary_plane =
14100 ironlake_update_primary_plane;
09b4ddf9 14101 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14102 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14103 dev_priv->display.get_initial_plane_config =
14104 ironlake_get_initial_plane_config;
3fb37703
ACO
14105 dev_priv->display.crtc_compute_clock =
14106 ironlake_crtc_compute_clock;
76e5a89c
DV
14107 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14108 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 14109 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
14110 dev_priv->display.update_primary_plane =
14111 ironlake_update_primary_plane;
89b667f8
JB
14112 } else if (IS_VALLEYVIEW(dev)) {
14113 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14114 dev_priv->display.get_initial_plane_config =
14115 i9xx_get_initial_plane_config;
d6dfee7a 14116 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14117 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14118 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14119 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14120 dev_priv->display.update_primary_plane =
14121 i9xx_update_primary_plane;
f564048e 14122 } else {
0e8ffe1b 14123 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14124 dev_priv->display.get_initial_plane_config =
14125 i9xx_get_initial_plane_config;
d6dfee7a 14126 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14127 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14128 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 14129 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14130 dev_priv->display.update_primary_plane =
14131 i9xx_update_primary_plane;
f564048e 14132 }
e70236a8 14133
e70236a8 14134 /* Returns the core display clock speed */
1652d19e
VS
14135 if (IS_SKYLAKE(dev))
14136 dev_priv->display.get_display_clock_speed =
14137 skylake_get_display_clock_speed;
14138 else if (IS_BROADWELL(dev))
14139 dev_priv->display.get_display_clock_speed =
14140 broadwell_get_display_clock_speed;
14141 else if (IS_HASWELL(dev))
14142 dev_priv->display.get_display_clock_speed =
14143 haswell_get_display_clock_speed;
14144 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14145 dev_priv->display.get_display_clock_speed =
14146 valleyview_get_display_clock_speed;
b37a6434
VS
14147 else if (IS_GEN5(dev))
14148 dev_priv->display.get_display_clock_speed =
14149 ilk_get_display_clock_speed;
a7c66cd8
VS
14150 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14151 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
14152 dev_priv->display.get_display_clock_speed =
14153 i945_get_display_clock_speed;
14154 else if (IS_I915G(dev))
14155 dev_priv->display.get_display_clock_speed =
14156 i915_get_display_clock_speed;
257a7ffc 14157 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14158 dev_priv->display.get_display_clock_speed =
14159 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
14160 else if (IS_PINEVIEW(dev))
14161 dev_priv->display.get_display_clock_speed =
14162 pnv_get_display_clock_speed;
e70236a8
JB
14163 else if (IS_I915GM(dev))
14164 dev_priv->display.get_display_clock_speed =
14165 i915gm_get_display_clock_speed;
14166 else if (IS_I865G(dev))
14167 dev_priv->display.get_display_clock_speed =
14168 i865_get_display_clock_speed;
f0f8a9ce 14169 else if (IS_I85X(dev))
e70236a8
JB
14170 dev_priv->display.get_display_clock_speed =
14171 i855_get_display_clock_speed;
14172 else /* 852, 830 */
14173 dev_priv->display.get_display_clock_speed =
14174 i830_get_display_clock_speed;
14175
7c10a2b5 14176 if (IS_GEN5(dev)) {
3bb11b53 14177 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14178 } else if (IS_GEN6(dev)) {
14179 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14180 } else if (IS_IVYBRIDGE(dev)) {
14181 /* FIXME: detect B0+ stepping and use auto training */
14182 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14183 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14184 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
14185 } else if (IS_VALLEYVIEW(dev)) {
14186 dev_priv->display.modeset_global_resources =
14187 valleyview_modeset_global_resources;
f8437dd1
VK
14188 } else if (IS_BROXTON(dev)) {
14189 dev_priv->display.modeset_global_resources =
14190 broxton_modeset_global_resources;
e70236a8 14191 }
8c9f3aaf 14192
8c9f3aaf
JB
14193 switch (INTEL_INFO(dev)->gen) {
14194 case 2:
14195 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14196 break;
14197
14198 case 3:
14199 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14200 break;
14201
14202 case 4:
14203 case 5:
14204 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14205 break;
14206
14207 case 6:
14208 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14209 break;
7c9017e5 14210 case 7:
4e0bbc31 14211 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14212 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14213 break;
830c81db 14214 case 9:
ba343e02
TU
14215 /* Drop through - unsupported since execlist only. */
14216 default:
14217 /* Default just returns -ENODEV to indicate unsupported */
14218 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14219 }
7bd688cd
JN
14220
14221 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
14222
14223 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14224}
14225
b690e96c
JB
14226/*
14227 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14228 * resume, or other times. This quirk makes sure that's the case for
14229 * affected systems.
14230 */
0206e353 14231static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14232{
14233 struct drm_i915_private *dev_priv = dev->dev_private;
14234
14235 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14236 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14237}
14238
b6b5d049
VS
14239static void quirk_pipeb_force(struct drm_device *dev)
14240{
14241 struct drm_i915_private *dev_priv = dev->dev_private;
14242
14243 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14244 DRM_INFO("applying pipe b force quirk\n");
14245}
14246
435793df
KP
14247/*
14248 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14249 */
14250static void quirk_ssc_force_disable(struct drm_device *dev)
14251{
14252 struct drm_i915_private *dev_priv = dev->dev_private;
14253 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14254 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14255}
14256
4dca20ef 14257/*
5a15ab5b
CE
14258 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14259 * brightness value
4dca20ef
CE
14260 */
14261static void quirk_invert_brightness(struct drm_device *dev)
14262{
14263 struct drm_i915_private *dev_priv = dev->dev_private;
14264 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14265 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14266}
14267
9c72cc6f
SD
14268/* Some VBT's incorrectly indicate no backlight is present */
14269static void quirk_backlight_present(struct drm_device *dev)
14270{
14271 struct drm_i915_private *dev_priv = dev->dev_private;
14272 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14273 DRM_INFO("applying backlight present quirk\n");
14274}
14275
b690e96c
JB
14276struct intel_quirk {
14277 int device;
14278 int subsystem_vendor;
14279 int subsystem_device;
14280 void (*hook)(struct drm_device *dev);
14281};
14282
5f85f176
EE
14283/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14284struct intel_dmi_quirk {
14285 void (*hook)(struct drm_device *dev);
14286 const struct dmi_system_id (*dmi_id_list)[];
14287};
14288
14289static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14290{
14291 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14292 return 1;
14293}
14294
14295static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14296 {
14297 .dmi_id_list = &(const struct dmi_system_id[]) {
14298 {
14299 .callback = intel_dmi_reverse_brightness,
14300 .ident = "NCR Corporation",
14301 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14302 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14303 },
14304 },
14305 { } /* terminating entry */
14306 },
14307 .hook = quirk_invert_brightness,
14308 },
14309};
14310
c43b5634 14311static struct intel_quirk intel_quirks[] = {
b690e96c
JB
14312 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14313 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14314
b690e96c
JB
14315 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14316 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14317
5f080c0f
VS
14318 /* 830 needs to leave pipe A & dpll A up */
14319 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14320
b6b5d049
VS
14321 /* 830 needs to leave pipe B & dpll B up */
14322 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14323
435793df
KP
14324 /* Lenovo U160 cannot use SSC on LVDS */
14325 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
14326
14327 /* Sony Vaio Y cannot use SSC on LVDS */
14328 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 14329
be505f64
AH
14330 /* Acer Aspire 5734Z must invert backlight brightness */
14331 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14332
14333 /* Acer/eMachines G725 */
14334 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14335
14336 /* Acer/eMachines e725 */
14337 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14338
14339 /* Acer/Packard Bell NCL20 */
14340 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14341
14342 /* Acer Aspire 4736Z */
14343 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
14344
14345 /* Acer Aspire 5336 */
14346 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
14347
14348 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14349 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 14350
dfb3d47b
SD
14351 /* Acer C720 Chromebook (Core i3 4005U) */
14352 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14353
b2a9601c 14354 /* Apple Macbook 2,1 (Core 2 T7400) */
14355 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14356
d4967d8c
SD
14357 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14358 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
14359
14360 /* HP Chromebook 14 (Celeron 2955U) */
14361 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
14362
14363 /* Dell Chromebook 11 */
14364 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
14365};
14366
14367static void intel_init_quirks(struct drm_device *dev)
14368{
14369 struct pci_dev *d = dev->pdev;
14370 int i;
14371
14372 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14373 struct intel_quirk *q = &intel_quirks[i];
14374
14375 if (d->device == q->device &&
14376 (d->subsystem_vendor == q->subsystem_vendor ||
14377 q->subsystem_vendor == PCI_ANY_ID) &&
14378 (d->subsystem_device == q->subsystem_device ||
14379 q->subsystem_device == PCI_ANY_ID))
14380 q->hook(dev);
14381 }
5f85f176
EE
14382 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14383 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14384 intel_dmi_quirks[i].hook(dev);
14385 }
b690e96c
JB
14386}
14387
9cce37f4
JB
14388/* Disable the VGA plane that we never use */
14389static void i915_disable_vga(struct drm_device *dev)
14390{
14391 struct drm_i915_private *dev_priv = dev->dev_private;
14392 u8 sr1;
766aa1c4 14393 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 14394
2b37c616 14395 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 14396 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 14397 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
14398 sr1 = inb(VGA_SR_DATA);
14399 outb(sr1 | 1<<5, VGA_SR_DATA);
14400 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14401 udelay(300);
14402
01f5a626 14403 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
14404 POSTING_READ(vga_reg);
14405}
14406
f817586c
DV
14407void intel_modeset_init_hw(struct drm_device *dev)
14408{
a8f78b58
ED
14409 intel_prepare_ddi(dev);
14410
f8bf63fd
VS
14411 if (IS_VALLEYVIEW(dev))
14412 vlv_update_cdclk(dev);
14413
f817586c
DV
14414 intel_init_clock_gating(dev);
14415
8090c6b9 14416 intel_enable_gt_powersave(dev);
f817586c
DV
14417}
14418
79e53945
JB
14419void intel_modeset_init(struct drm_device *dev)
14420{
652c393a 14421 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 14422 int sprite, ret;
8cc87b75 14423 enum pipe pipe;
46f297fb 14424 struct intel_crtc *crtc;
79e53945
JB
14425
14426 drm_mode_config_init(dev);
14427
14428 dev->mode_config.min_width = 0;
14429 dev->mode_config.min_height = 0;
14430
019d96cb
DA
14431 dev->mode_config.preferred_depth = 24;
14432 dev->mode_config.prefer_shadow = 1;
14433
25bab385
TU
14434 dev->mode_config.allow_fb_modifiers = true;
14435
e6ecefaa 14436 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 14437
b690e96c
JB
14438 intel_init_quirks(dev);
14439
1fa61106
ED
14440 intel_init_pm(dev);
14441
e3c74757
BW
14442 if (INTEL_INFO(dev)->num_pipes == 0)
14443 return;
14444
e70236a8 14445 intel_init_display(dev);
7c10a2b5 14446 intel_init_audio(dev);
e70236a8 14447
a6c45cf0
CW
14448 if (IS_GEN2(dev)) {
14449 dev->mode_config.max_width = 2048;
14450 dev->mode_config.max_height = 2048;
14451 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
14452 dev->mode_config.max_width = 4096;
14453 dev->mode_config.max_height = 4096;
79e53945 14454 } else {
a6c45cf0
CW
14455 dev->mode_config.max_width = 8192;
14456 dev->mode_config.max_height = 8192;
79e53945 14457 }
068be561 14458
dc41c154
VS
14459 if (IS_845G(dev) || IS_I865G(dev)) {
14460 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14461 dev->mode_config.cursor_height = 1023;
14462 } else if (IS_GEN2(dev)) {
068be561
DL
14463 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14464 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14465 } else {
14466 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14467 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14468 }
14469
5d4545ae 14470 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 14471
28c97730 14472 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
14473 INTEL_INFO(dev)->num_pipes,
14474 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 14475
055e393f 14476 for_each_pipe(dev_priv, pipe) {
8cc87b75 14477 intel_crtc_init(dev, pipe);
3bdcfc0c 14478 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 14479 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 14480 if (ret)
06da8da2 14481 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 14482 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 14483 }
79e53945
JB
14484 }
14485
f42bb70d
JB
14486 intel_init_dpio(dev);
14487
e72f9fbf 14488 intel_shared_dpll_init(dev);
ee7b9f93 14489
9cce37f4
JB
14490 /* Just disable it once at startup */
14491 i915_disable_vga(dev);
79e53945 14492 intel_setup_outputs(dev);
11be49eb
CW
14493
14494 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 14495 intel_fbc_disable(dev);
fa9fa083 14496
6e9f798d 14497 drm_modeset_lock_all(dev);
fa9fa083 14498 intel_modeset_setup_hw_state(dev, false);
6e9f798d 14499 drm_modeset_unlock_all(dev);
46f297fb 14500
d3fcc808 14501 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
14502 if (!crtc->active)
14503 continue;
14504
46f297fb 14505 /*
46f297fb
JB
14506 * Note that reserving the BIOS fb up front prevents us
14507 * from stuffing other stolen allocations like the ring
14508 * on top. This prevents some ugliness at boot time, and
14509 * can even allow for smooth boot transitions if the BIOS
14510 * fb is large enough for the active pipe configuration.
14511 */
5724dbd1
DL
14512 if (dev_priv->display.get_initial_plane_config) {
14513 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
14514 &crtc->plane_config);
14515 /*
14516 * If the fb is shared between multiple heads, we'll
14517 * just get the first one.
14518 */
f6936e29 14519 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 14520 }
46f297fb 14521 }
2c7111db
CW
14522}
14523
7fad798e
DV
14524static void intel_enable_pipe_a(struct drm_device *dev)
14525{
14526 struct intel_connector *connector;
14527 struct drm_connector *crt = NULL;
14528 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 14529 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
14530
14531 /* We can't just switch on the pipe A, we need to set things up with a
14532 * proper mode and output configuration. As a gross hack, enable pipe A
14533 * by enabling the load detect pipe once. */
3a3371ff 14534 for_each_intel_connector(dev, connector) {
7fad798e
DV
14535 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14536 crt = &connector->base;
14537 break;
14538 }
14539 }
14540
14541 if (!crt)
14542 return;
14543
208bf9fd 14544 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 14545 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
14546}
14547
fa555837
DV
14548static bool
14549intel_check_plane_mapping(struct intel_crtc *crtc)
14550{
7eb552ae
BW
14551 struct drm_device *dev = crtc->base.dev;
14552 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
14553 u32 reg, val;
14554
7eb552ae 14555 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
14556 return true;
14557
14558 reg = DSPCNTR(!crtc->plane);
14559 val = I915_READ(reg);
14560
14561 if ((val & DISPLAY_PLANE_ENABLE) &&
14562 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14563 return false;
14564
14565 return true;
14566}
14567
24929352
DV
14568static void intel_sanitize_crtc(struct intel_crtc *crtc)
14569{
14570 struct drm_device *dev = crtc->base.dev;
14571 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 14572 u32 reg;
24929352 14573
24929352 14574 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 14575 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
14576 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14577
d3eaf884 14578 /* restore vblank interrupts to correct state */
9625604c 14579 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
14580 if (crtc->active) {
14581 update_scanline_offset(crtc);
9625604c
DV
14582 drm_crtc_vblank_on(&crtc->base);
14583 }
d3eaf884 14584
24929352 14585 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
14586 * disable the crtc (and hence change the state) if it is wrong. Note
14587 * that gen4+ has a fixed plane -> pipe mapping. */
14588 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
14589 struct intel_connector *connector;
14590 bool plane;
14591
24929352
DV
14592 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14593 crtc->base.base.id);
14594
14595 /* Pipe has the wrong plane attached and the plane is active.
14596 * Temporarily change the plane mapping and disable everything
14597 * ... */
14598 plane = crtc->plane;
b70709a6 14599 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 14600 crtc->plane = !plane;
ce22dba9 14601 intel_crtc_disable_planes(&crtc->base);
24929352
DV
14602 dev_priv->display.crtc_disable(&crtc->base);
14603 crtc->plane = plane;
14604
14605 /* ... and break all links. */
3a3371ff 14606 for_each_intel_connector(dev, connector) {
24929352
DV
14607 if (connector->encoder->base.crtc != &crtc->base)
14608 continue;
14609
7f1950fb
EE
14610 connector->base.dpms = DRM_MODE_DPMS_OFF;
14611 connector->base.encoder = NULL;
24929352 14612 }
7f1950fb
EE
14613 /* multiple connectors may have the same encoder:
14614 * handle them and break crtc link separately */
3a3371ff 14615 for_each_intel_connector(dev, connector)
7f1950fb
EE
14616 if (connector->encoder->base.crtc == &crtc->base) {
14617 connector->encoder->base.crtc = NULL;
14618 connector->encoder->connectors_active = false;
14619 }
24929352
DV
14620
14621 WARN_ON(crtc->active);
83d65738 14622 crtc->base.state->enable = false;
49d6fa21 14623 crtc->base.state->active = false;
24929352
DV
14624 crtc->base.enabled = false;
14625 }
24929352 14626
7fad798e
DV
14627 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14628 crtc->pipe == PIPE_A && !crtc->active) {
14629 /* BIOS forgot to enable pipe A, this mostly happens after
14630 * resume. Force-enable the pipe to fix this, the update_dpms
14631 * call below we restore the pipe to the right state, but leave
14632 * the required bits on. */
14633 intel_enable_pipe_a(dev);
14634 }
14635
24929352
DV
14636 /* Adjust the state of the output pipe according to whether we
14637 * have active connectors/encoders. */
14638 intel_crtc_update_dpms(&crtc->base);
14639
83d65738 14640 if (crtc->active != crtc->base.state->enable) {
24929352
DV
14641 struct intel_encoder *encoder;
14642
14643 /* This can happen either due to bugs in the get_hw_state
14644 * functions or because the pipe is force-enabled due to the
14645 * pipe A quirk. */
14646 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14647 crtc->base.base.id,
83d65738 14648 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
14649 crtc->active ? "enabled" : "disabled");
14650
83d65738 14651 crtc->base.state->enable = crtc->active;
49d6fa21 14652 crtc->base.state->active = crtc->active;
24929352
DV
14653 crtc->base.enabled = crtc->active;
14654
14655 /* Because we only establish the connector -> encoder ->
14656 * crtc links if something is active, this means the
14657 * crtc is now deactivated. Break the links. connector
14658 * -> encoder links are only establish when things are
14659 * actually up, hence no need to break them. */
14660 WARN_ON(crtc->active);
14661
14662 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14663 WARN_ON(encoder->connectors_active);
14664 encoder->base.crtc = NULL;
14665 }
14666 }
c5ab3bc0 14667
a3ed6aad 14668 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
14669 /*
14670 * We start out with underrun reporting disabled to avoid races.
14671 * For correct bookkeeping mark this on active crtcs.
14672 *
c5ab3bc0
DV
14673 * Also on gmch platforms we dont have any hardware bits to
14674 * disable the underrun reporting. Which means we need to start
14675 * out with underrun reporting disabled also on inactive pipes,
14676 * since otherwise we'll complain about the garbage we read when
14677 * e.g. coming up after runtime pm.
14678 *
4cc31489
DV
14679 * No protection against concurrent access is required - at
14680 * worst a fifo underrun happens which also sets this to false.
14681 */
14682 crtc->cpu_fifo_underrun_disabled = true;
14683 crtc->pch_fifo_underrun_disabled = true;
14684 }
24929352
DV
14685}
14686
14687static void intel_sanitize_encoder(struct intel_encoder *encoder)
14688{
14689 struct intel_connector *connector;
14690 struct drm_device *dev = encoder->base.dev;
14691
14692 /* We need to check both for a crtc link (meaning that the
14693 * encoder is active and trying to read from a pipe) and the
14694 * pipe itself being active. */
14695 bool has_active_crtc = encoder->base.crtc &&
14696 to_intel_crtc(encoder->base.crtc)->active;
14697
14698 if (encoder->connectors_active && !has_active_crtc) {
14699 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14700 encoder->base.base.id,
8e329a03 14701 encoder->base.name);
24929352
DV
14702
14703 /* Connector is active, but has no active pipe. This is
14704 * fallout from our resume register restoring. Disable
14705 * the encoder manually again. */
14706 if (encoder->base.crtc) {
14707 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14708 encoder->base.base.id,
8e329a03 14709 encoder->base.name);
24929352 14710 encoder->disable(encoder);
a62d1497
VS
14711 if (encoder->post_disable)
14712 encoder->post_disable(encoder);
24929352 14713 }
7f1950fb
EE
14714 encoder->base.crtc = NULL;
14715 encoder->connectors_active = false;
24929352
DV
14716
14717 /* Inconsistent output/port/pipe state happens presumably due to
14718 * a bug in one of the get_hw_state functions. Or someplace else
14719 * in our code, like the register restore mess on resume. Clamp
14720 * things to off as a safer default. */
3a3371ff 14721 for_each_intel_connector(dev, connector) {
24929352
DV
14722 if (connector->encoder != encoder)
14723 continue;
7f1950fb
EE
14724 connector->base.dpms = DRM_MODE_DPMS_OFF;
14725 connector->base.encoder = NULL;
24929352
DV
14726 }
14727 }
14728 /* Enabled encoders without active connectors will be fixed in
14729 * the crtc fixup. */
14730}
14731
04098753 14732void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
14733{
14734 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 14735 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 14736
04098753
ID
14737 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14738 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14739 i915_disable_vga(dev);
14740 }
14741}
14742
14743void i915_redisable_vga(struct drm_device *dev)
14744{
14745 struct drm_i915_private *dev_priv = dev->dev_private;
14746
8dc8a27c
PZ
14747 /* This function can be called both from intel_modeset_setup_hw_state or
14748 * at a very early point in our resume sequence, where the power well
14749 * structures are not yet restored. Since this function is at a very
14750 * paranoid "someone might have enabled VGA while we were not looking"
14751 * level, just check if the power well is enabled instead of trying to
14752 * follow the "don't touch the power well if we don't need it" policy
14753 * the rest of the driver uses. */
f458ebbc 14754 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
14755 return;
14756
04098753 14757 i915_redisable_vga_power_on(dev);
0fde901f
KM
14758}
14759
98ec7739
VS
14760static bool primary_get_hw_state(struct intel_crtc *crtc)
14761{
14762 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14763
14764 if (!crtc->active)
14765 return false;
14766
14767 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14768}
14769
30e984df 14770static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
14771{
14772 struct drm_i915_private *dev_priv = dev->dev_private;
14773 enum pipe pipe;
24929352
DV
14774 struct intel_crtc *crtc;
14775 struct intel_encoder *encoder;
14776 struct intel_connector *connector;
5358901f 14777 int i;
24929352 14778
d3fcc808 14779 for_each_intel_crtc(dev, crtc) {
b70709a6
ML
14780 struct drm_plane *primary = crtc->base.primary;
14781 struct intel_plane_state *plane_state;
14782
6e3c9717 14783 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 14784
6e3c9717 14785 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 14786
0e8ffe1b 14787 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 14788 crtc->config);
24929352 14789
83d65738 14790 crtc->base.state->enable = crtc->active;
49d6fa21 14791 crtc->base.state->active = crtc->active;
24929352 14792 crtc->base.enabled = crtc->active;
b70709a6
ML
14793
14794 plane_state = to_intel_plane_state(primary->state);
14795 plane_state->visible = primary_get_hw_state(crtc);
24929352
DV
14796
14797 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14798 crtc->base.base.id,
14799 crtc->active ? "enabled" : "disabled");
14800 }
14801
5358901f
DV
14802 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14803 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14804
3e369b76
ACO
14805 pll->on = pll->get_hw_state(dev_priv, pll,
14806 &pll->config.hw_state);
5358901f 14807 pll->active = 0;
3e369b76 14808 pll->config.crtc_mask = 0;
d3fcc808 14809 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 14810 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 14811 pll->active++;
3e369b76 14812 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 14813 }
5358901f 14814 }
5358901f 14815
1e6f2ddc 14816 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 14817 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 14818
3e369b76 14819 if (pll->config.crtc_mask)
bd2bb1b9 14820 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
14821 }
14822
b2784e15 14823 for_each_intel_encoder(dev, encoder) {
24929352
DV
14824 pipe = 0;
14825
14826 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
14827 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14828 encoder->base.crtc = &crtc->base;
6e3c9717 14829 encoder->get_config(encoder, crtc->config);
24929352
DV
14830 } else {
14831 encoder->base.crtc = NULL;
14832 }
14833
14834 encoder->connectors_active = false;
6f2bcceb 14835 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 14836 encoder->base.base.id,
8e329a03 14837 encoder->base.name,
24929352 14838 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 14839 pipe_name(pipe));
24929352
DV
14840 }
14841
3a3371ff 14842 for_each_intel_connector(dev, connector) {
24929352
DV
14843 if (connector->get_hw_state(connector)) {
14844 connector->base.dpms = DRM_MODE_DPMS_ON;
14845 connector->encoder->connectors_active = true;
14846 connector->base.encoder = &connector->encoder->base;
14847 } else {
14848 connector->base.dpms = DRM_MODE_DPMS_OFF;
14849 connector->base.encoder = NULL;
14850 }
14851 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14852 connector->base.base.id,
c23cc417 14853 connector->base.name,
24929352
DV
14854 connector->base.encoder ? "enabled" : "disabled");
14855 }
30e984df
DV
14856}
14857
14858/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14859 * and i915 state tracking structures. */
14860void intel_modeset_setup_hw_state(struct drm_device *dev,
14861 bool force_restore)
14862{
14863 struct drm_i915_private *dev_priv = dev->dev_private;
14864 enum pipe pipe;
30e984df
DV
14865 struct intel_crtc *crtc;
14866 struct intel_encoder *encoder;
35c95375 14867 int i;
30e984df
DV
14868
14869 intel_modeset_readout_hw_state(dev);
24929352 14870
babea61d
JB
14871 /*
14872 * Now that we have the config, copy it to each CRTC struct
14873 * Note that this could go away if we move to using crtc_config
14874 * checking everywhere.
14875 */
d3fcc808 14876 for_each_intel_crtc(dev, crtc) {
d330a953 14877 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
14878 intel_mode_from_pipe_config(&crtc->base.mode,
14879 crtc->config);
babea61d
JB
14880 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14881 crtc->base.base.id);
14882 drm_mode_debug_printmodeline(&crtc->base.mode);
14883 }
14884 }
14885
24929352 14886 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 14887 for_each_intel_encoder(dev, encoder) {
24929352
DV
14888 intel_sanitize_encoder(encoder);
14889 }
14890
055e393f 14891 for_each_pipe(dev_priv, pipe) {
24929352
DV
14892 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14893 intel_sanitize_crtc(crtc);
6e3c9717
ACO
14894 intel_dump_pipe_config(crtc, crtc->config,
14895 "[setup_hw_state]");
24929352 14896 }
9a935856 14897
d29b2f9d
ACO
14898 intel_modeset_update_connector_atomic_state(dev);
14899
35c95375
DV
14900 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14901 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14902
14903 if (!pll->on || pll->active)
14904 continue;
14905
14906 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14907
14908 pll->disable(dev_priv, pll);
14909 pll->on = false;
14910 }
14911
3078999f
PB
14912 if (IS_GEN9(dev))
14913 skl_wm_get_hw_state(dev);
14914 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
14915 ilk_wm_get_hw_state(dev);
14916
45e2b5f6 14917 if (force_restore) {
7d0bc1ea
VS
14918 i915_redisable_vga(dev);
14919
f30da187
DV
14920 /*
14921 * We need to use raw interfaces for restoring state to avoid
14922 * checking (bogus) intermediate states.
14923 */
055e393f 14924 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
14925 struct drm_crtc *crtc =
14926 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 14927
83a57153 14928 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
14929 }
14930 } else {
14931 intel_modeset_update_staged_output_state(dev);
14932 }
8af6cf88
DV
14933
14934 intel_modeset_check_state(dev);
2c7111db
CW
14935}
14936
14937void intel_modeset_gem_init(struct drm_device *dev)
14938{
92122789 14939 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 14940 struct drm_crtc *c;
2ff8fde1 14941 struct drm_i915_gem_object *obj;
e0d6149b 14942 int ret;
484b41dd 14943
ae48434c
ID
14944 mutex_lock(&dev->struct_mutex);
14945 intel_init_gt_powersave(dev);
14946 mutex_unlock(&dev->struct_mutex);
14947
92122789
JB
14948 /*
14949 * There may be no VBT; and if the BIOS enabled SSC we can
14950 * just keep using it to avoid unnecessary flicker. Whereas if the
14951 * BIOS isn't using it, don't assume it will work even if the VBT
14952 * indicates as much.
14953 */
14954 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14955 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14956 DREF_SSC1_ENABLE);
14957
1833b134 14958 intel_modeset_init_hw(dev);
02e792fb
DV
14959
14960 intel_setup_overlay(dev);
484b41dd
JB
14961
14962 /*
14963 * Make sure any fbs we allocated at startup are properly
14964 * pinned & fenced. When we do the allocation it's too early
14965 * for this.
14966 */
70e1e0ec 14967 for_each_crtc(dev, c) {
2ff8fde1
MR
14968 obj = intel_fb_obj(c->primary->fb);
14969 if (obj == NULL)
484b41dd
JB
14970 continue;
14971
e0d6149b
TU
14972 mutex_lock(&dev->struct_mutex);
14973 ret = intel_pin_and_fence_fb_obj(c->primary,
14974 c->primary->fb,
14975 c->primary->state,
14976 NULL);
14977 mutex_unlock(&dev->struct_mutex);
14978 if (ret) {
484b41dd
JB
14979 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14980 to_intel_crtc(c)->pipe);
66e514c1
DA
14981 drm_framebuffer_unreference(c->primary->fb);
14982 c->primary->fb = NULL;
afd65eb4 14983 update_state_fb(c->primary);
484b41dd
JB
14984 }
14985 }
0962c3c9
VS
14986
14987 intel_backlight_register(dev);
79e53945
JB
14988}
14989
4932e2c3
ID
14990void intel_connector_unregister(struct intel_connector *intel_connector)
14991{
14992 struct drm_connector *connector = &intel_connector->base;
14993
14994 intel_panel_destroy_backlight(connector);
34ea3d38 14995 drm_connector_unregister(connector);
4932e2c3
ID
14996}
14997
79e53945
JB
14998void intel_modeset_cleanup(struct drm_device *dev)
14999{
652c393a 15000 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15001 struct drm_connector *connector;
652c393a 15002
2eb5252e
ID
15003 intel_disable_gt_powersave(dev);
15004
0962c3c9
VS
15005 intel_backlight_unregister(dev);
15006
fd0c0642
DV
15007 /*
15008 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15009 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15010 * experience fancy races otherwise.
15011 */
2aeb7d3a 15012 intel_irq_uninstall(dev_priv);
eb21b92b 15013
fd0c0642
DV
15014 /*
15015 * Due to the hpd irq storm handling the hotplug work can re-arm the
15016 * poll handlers. Hence disable polling after hpd handling is shut down.
15017 */
f87ea761 15018 drm_kms_helper_poll_fini(dev);
fd0c0642 15019
652c393a
JB
15020 mutex_lock(&dev->struct_mutex);
15021
723bfd70
JB
15022 intel_unregister_dsm_handler();
15023
7ff0ebcc 15024 intel_fbc_disable(dev);
e70236a8 15025
69341a5e
KH
15026 mutex_unlock(&dev->struct_mutex);
15027
1630fe75
CW
15028 /* flush any delayed tasks or pending work */
15029 flush_scheduled_work();
15030
db31af1d
JN
15031 /* destroy the backlight and sysfs files before encoders/connectors */
15032 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15033 struct intel_connector *intel_connector;
15034
15035 intel_connector = to_intel_connector(connector);
15036 intel_connector->unregister(intel_connector);
db31af1d 15037 }
d9255d57 15038
79e53945 15039 drm_mode_config_cleanup(dev);
4d7bb011
DV
15040
15041 intel_cleanup_overlay(dev);
ae48434c
ID
15042
15043 mutex_lock(&dev->struct_mutex);
15044 intel_cleanup_gt_powersave(dev);
15045 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15046}
15047
f1c79df3
ZW
15048/*
15049 * Return which encoder is currently attached for connector.
15050 */
df0e9248 15051struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15052{
df0e9248
CW
15053 return &intel_attached_encoder(connector)->base;
15054}
f1c79df3 15055
df0e9248
CW
15056void intel_connector_attach_encoder(struct intel_connector *connector,
15057 struct intel_encoder *encoder)
15058{
15059 connector->encoder = encoder;
15060 drm_mode_connector_attach_encoder(&connector->base,
15061 &encoder->base);
79e53945 15062}
28d52043
DA
15063
15064/*
15065 * set vga decode state - true == enable VGA decode
15066 */
15067int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15068{
15069 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15070 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15071 u16 gmch_ctrl;
15072
75fa041d
CW
15073 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15074 DRM_ERROR("failed to read control word\n");
15075 return -EIO;
15076 }
15077
c0cc8a55
CW
15078 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15079 return 0;
15080
28d52043
DA
15081 if (state)
15082 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15083 else
15084 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15085
15086 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15087 DRM_ERROR("failed to write control word\n");
15088 return -EIO;
15089 }
15090
28d52043
DA
15091 return 0;
15092}
c4a1d9e4 15093
c4a1d9e4 15094struct intel_display_error_state {
ff57f1b0
PZ
15095
15096 u32 power_well_driver;
15097
63b66e5b
CW
15098 int num_transcoders;
15099
c4a1d9e4
CW
15100 struct intel_cursor_error_state {
15101 u32 control;
15102 u32 position;
15103 u32 base;
15104 u32 size;
52331309 15105 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15106
15107 struct intel_pipe_error_state {
ddf9c536 15108 bool power_domain_on;
c4a1d9e4 15109 u32 source;
f301b1e1 15110 u32 stat;
52331309 15111 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15112
15113 struct intel_plane_error_state {
15114 u32 control;
15115 u32 stride;
15116 u32 size;
15117 u32 pos;
15118 u32 addr;
15119 u32 surface;
15120 u32 tile_offset;
52331309 15121 } plane[I915_MAX_PIPES];
63b66e5b
CW
15122
15123 struct intel_transcoder_error_state {
ddf9c536 15124 bool power_domain_on;
63b66e5b
CW
15125 enum transcoder cpu_transcoder;
15126
15127 u32 conf;
15128
15129 u32 htotal;
15130 u32 hblank;
15131 u32 hsync;
15132 u32 vtotal;
15133 u32 vblank;
15134 u32 vsync;
15135 } transcoder[4];
c4a1d9e4
CW
15136};
15137
15138struct intel_display_error_state *
15139intel_display_capture_error_state(struct drm_device *dev)
15140{
fbee40df 15141 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15142 struct intel_display_error_state *error;
63b66e5b
CW
15143 int transcoders[] = {
15144 TRANSCODER_A,
15145 TRANSCODER_B,
15146 TRANSCODER_C,
15147 TRANSCODER_EDP,
15148 };
c4a1d9e4
CW
15149 int i;
15150
63b66e5b
CW
15151 if (INTEL_INFO(dev)->num_pipes == 0)
15152 return NULL;
15153
9d1cb914 15154 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15155 if (error == NULL)
15156 return NULL;
15157
190be112 15158 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15159 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15160
055e393f 15161 for_each_pipe(dev_priv, i) {
ddf9c536 15162 error->pipe[i].power_domain_on =
f458ebbc
DV
15163 __intel_display_power_is_enabled(dev_priv,
15164 POWER_DOMAIN_PIPE(i));
ddf9c536 15165 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15166 continue;
15167
5efb3e28
VS
15168 error->cursor[i].control = I915_READ(CURCNTR(i));
15169 error->cursor[i].position = I915_READ(CURPOS(i));
15170 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15171
15172 error->plane[i].control = I915_READ(DSPCNTR(i));
15173 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15174 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15175 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15176 error->plane[i].pos = I915_READ(DSPPOS(i));
15177 }
ca291363
PZ
15178 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15179 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15180 if (INTEL_INFO(dev)->gen >= 4) {
15181 error->plane[i].surface = I915_READ(DSPSURF(i));
15182 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15183 }
15184
c4a1d9e4 15185 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15186
3abfce77 15187 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15188 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15189 }
15190
15191 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15192 if (HAS_DDI(dev_priv->dev))
15193 error->num_transcoders++; /* Account for eDP. */
15194
15195 for (i = 0; i < error->num_transcoders; i++) {
15196 enum transcoder cpu_transcoder = transcoders[i];
15197
ddf9c536 15198 error->transcoder[i].power_domain_on =
f458ebbc 15199 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15200 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15201 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15202 continue;
15203
63b66e5b
CW
15204 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15205
15206 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15207 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15208 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15209 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15210 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15211 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15212 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15213 }
15214
15215 return error;
15216}
15217
edc3d884
MK
15218#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15219
c4a1d9e4 15220void
edc3d884 15221intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15222 struct drm_device *dev,
15223 struct intel_display_error_state *error)
15224{
055e393f 15225 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15226 int i;
15227
63b66e5b
CW
15228 if (!error)
15229 return;
15230
edc3d884 15231 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15232 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 15233 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 15234 error->power_well_driver);
055e393f 15235 for_each_pipe(dev_priv, i) {
edc3d884 15236 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
15237 err_printf(m, " Power: %s\n",
15238 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 15239 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 15240 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
15241
15242 err_printf(m, "Plane [%d]:\n", i);
15243 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15244 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 15245 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
15246 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15247 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 15248 }
4b71a570 15249 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 15250 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 15251 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
15252 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15253 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
15254 }
15255
edc3d884
MK
15256 err_printf(m, "Cursor [%d]:\n", i);
15257 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15258 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15259 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 15260 }
63b66e5b
CW
15261
15262 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 15263 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 15264 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
15265 err_printf(m, " Power: %s\n",
15266 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
15267 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15268 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15269 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15270 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15271 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15272 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15273 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15274 }
c4a1d9e4 15275}
e2fcdaa9
VS
15276
15277void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15278{
15279 struct intel_crtc *crtc;
15280
15281 for_each_intel_crtc(dev, crtc) {
15282 struct intel_unpin_work *work;
e2fcdaa9 15283
5e2d7afc 15284 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
15285
15286 work = crtc->unpin_work;
15287
15288 if (work && work->event &&
15289 work->event->base.file_priv == file) {
15290 kfree(work->event);
15291 work->event = NULL;
15292 }
15293
5e2d7afc 15294 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
15295 }
15296}