]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Add new PHY reg definitions for lock threshold
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
c196e1d6 40#include <drm/drm_atomic_helper.h>
760285e7
DH
41#include <drm/drm_dp_helper.h>
42#include <drm/drm_crtc_helper.h>
465c120c
MR
43#include <drm/drm_plane_helper.h>
44#include <drm/drm_rect.h>
c0f372b3 45#include <linux/dma_remapping.h>
79e53945 46
465c120c
MR
47/* Primary plane formats supported by all gen */
48#define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
53
54/* Primary plane formats for gen <= 3 */
55static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
59};
60
61/* Primary plane formats for gen >= 4 */
62static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
70};
71
3d7d6510
MR
72/* Cursor formats */
73static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
75};
76
6b383a7f 77static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 78
f1f644dc 79static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 80 struct intel_crtc_state *pipe_config);
18442d08 81static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 82 struct intel_crtc_state *pipe_config);
f1f644dc 83
e7457a9a
DL
84static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
86static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
5b18e57c
DV
90static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 92static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
29407aab 95static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
96static void haswell_set_pipeconf(struct drm_crtc *crtc);
97static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 98static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 99 const struct intel_crtc_state *pipe_config);
d288f65f 100static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
102static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
4093561b 414bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 415{
409ee761 416 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
417 struct intel_encoder *encoder;
418
409ee761 419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
d0737e1d
ACO
426/**
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
431 */
432static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433{
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
440
441 return false;
442}
443
409ee761 444static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 445 int refclk)
2c07245f 446{
409ee761 447 struct drm_device *dev = crtc->base.dev;
2c07245f 448 const intel_limit_t *limit;
b91ad0ec 449
d0737e1d 450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 451 if (intel_is_dual_link_lvds(dev)) {
1b894b59 452 if (refclk == 100000)
b91ad0ec
ZW
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
1b894b59 457 if (refclk == 100000)
b91ad0ec
ZW
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
461 }
c6bb3538 462 } else
b91ad0ec 463 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
464
465 return limit;
466}
467
409ee761 468static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 469{
409ee761 470 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
471 const intel_limit_t *limit;
472
d0737e1d 473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 474 if (intel_is_dual_link_lvds(dev))
e4b36699 475 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 476 else
e4b36699 477 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 480 limit = &intel_limits_g4x_hdmi;
d0737e1d 481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 482 limit = &intel_limits_g4x_sdvo;
044c7c41 483 } else /* The option is for other outputs */
e4b36699 484 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
485
486 return limit;
487}
488
409ee761 489static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 490{
409ee761 491 struct drm_device *dev = crtc->base.dev;
79e53945
JB
492 const intel_limit_t *limit;
493
bad720ff 494 if (HAS_PCH_SPLIT(dev))
1b894b59 495 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 496 else if (IS_G4X(dev)) {
044c7c41 497 limit = intel_g4x_limit(crtc);
f2b115e6 498 } else if (IS_PINEVIEW(dev)) {
d0737e1d 499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 500 limit = &intel_limits_pineview_lvds;
2177832f 501 else
f2b115e6 502 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
a0c4da24 505 } else if (IS_VALLEYVIEW(dev)) {
dc730512 506 limit = &intel_limits_vlv;
a6c45cf0 507 } else if (!IS_GEN2(dev)) {
d0737e1d 508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
79e53945 512 } else {
d0737e1d 513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 514 limit = &intel_limits_i8xx_lvds;
d0737e1d 515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 516 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
517 else
518 limit = &intel_limits_i8xx_dac;
79e53945
JB
519 }
520 return limit;
521}
522
f2b115e6
AJ
523/* m1 is reserved as 0 in Pineview, n is a ring counter */
524static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 525{
2177832f
SL
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
fb03ac01
VS
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
532}
533
7429e9d4
DV
534static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535{
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537}
538
ac58c3f0 539static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 540{
7429e9d4 541 clock->m = i9xx_dpll_compute_m(clock);
79e53945 542 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
fb03ac01
VS
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
547}
548
ef9348c8
CML
549static void chv_clock(int refclk, intel_clock_t *clock)
550{
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558}
559
7c04d1d9 560#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
561/**
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
564 */
565
1b894b59
CW
566static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
79e53945 569{
f01b7962
VS
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
79e53945 572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 573 INTELPllInvalid("p1 out of range\n");
79e53945 574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 575 INTELPllInvalid("m2 out of range\n");
79e53945 576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 577 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
578
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
582
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 }
589
79e53945 590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 591 INTELPllInvalid("vco out of range\n");
79e53945
JB
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 596 INTELPllInvalid("dot out of range\n");
79e53945
JB
597
598 return true;
599}
600
d4906093 601static bool
a919ff14 602i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
79e53945 605{
a919ff14 606 struct drm_device *dev = crtc->base.dev;
79e53945 607 intel_clock_t clock;
79e53945
JB
608 int err = target;
609
d0737e1d 610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 611 /*
a210b028
DV
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
79e53945 615 */
1974cad0 616 if (intel_is_dual_link_lvds(dev))
79e53945
JB
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
625 }
626
0206e353 627 memset(best_clock, 0, sizeof(*best_clock));
79e53945 628
42158660
ZY
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 633 if (clock.m2 >= clock.m1)
42158660
ZY
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
639 int this_err;
640
ac58c3f0
DV
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
653 }
654 }
655 }
656 }
657 }
658
659 return (err != target);
660}
661
662static bool
a919ff14 663pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
79e53945 666{
a919ff14 667 struct drm_device *dev = crtc->base.dev;
79e53945 668 intel_clock_t clock;
79e53945
JB
669 int err = target;
670
d0737e1d 671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 672 /*
a210b028
DV
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
79e53945 676 */
1974cad0 677 if (intel_is_dual_link_lvds(dev))
79e53945
JB
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
686 }
687
0206e353 688 memset(best_clock, 0, sizeof(*best_clock));
79e53945 689
42158660
ZY
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
698 int this_err;
699
ac58c3f0 700 pineview_clock(refclk, &clock);
1b894b59
CW
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
79e53945 703 continue;
cec2f356
SP
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
79e53945
JB
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719}
720
d4906093 721static bool
a919ff14 722g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
d4906093 725{
a919ff14 726 struct drm_device *dev = crtc->base.dev;
d4906093
ML
727 intel_clock_t clock;
728 int max_n;
729 bool found;
6ba770dc
AJ
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
732 found = false;
733
d0737e1d 734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 735 if (intel_is_dual_link_lvds(dev))
d4906093
ML
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
f77f13e2 748 /* based on hardware requirement, prefer smaller n to precision */
d4906093 749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 750 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
ac58c3f0 759 i9xx_clock(refclk, &clock);
1b894b59
CW
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
d4906093 762 continue;
1b894b59
CW
763
764 this_err = abs(clock.dot - target);
d4906093
ML
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
2c07245f
ZW
775 return found;
776}
777
a0c4da24 778static bool
a919ff14 779vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
a0c4da24 782{
a919ff14 783 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 784 intel_clock_t clock;
69e4f900 785 unsigned int bestppm = 1000000;
27e639bf
VS
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 788 bool found = false;
a0c4da24 789
6b4bf1c4
VS
790 target *= 5; /* fast clock */
791
792 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
793
794 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 799 clock.p = clock.p1 * clock.p2;
a0c4da24 800 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
802 unsigned int ppm, diff;
803
6b4bf1c4
VS
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
806
807 vlv_clock(refclk, &clock);
43b0ac53 808
f01b7962
VS
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
43b0ac53
VS
811 continue;
812
6b4bf1c4
VS
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
815
816 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 817 bestppm = 0;
6b4bf1c4 818 *best_clock = clock;
49e497ef 819 found = true;
43b0ac53 820 }
6b4bf1c4 821
c686122c 822 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 823 bestppm = ppm;
6b4bf1c4 824 *best_clock = clock;
49e497ef 825 found = true;
a0c4da24
JB
826 }
827 }
828 }
829 }
830 }
a0c4da24 831
49e497ef 832 return found;
a0c4da24 833}
a4fc5ed6 834
ef9348c8 835static bool
a919ff14 836chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839{
a919ff14 840 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
844
845 memset(best_clock, 0, sizeof(*best_clock));
846
847 /*
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
851 */
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
854
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860 clock.p = clock.p1 * clock.p2;
861
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
864
865 if (m2 > INT_MAX/clock.m1)
866 continue;
867
868 clock.m2 = m2;
869
870 chv_clock(refclk, &clock);
871
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
874
875 /* based on hardware requirement, prefer bigger p
876 */
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
880 }
881 }
882 }
883
884 return found;
885}
886
20ddf665
VS
887bool intel_crtc_active(struct drm_crtc *crtc)
888{
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
893 *
241bfc38 894 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
895 * as Haswell has gained clock readout/fastboot support.
896 *
66e514c1 897 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
898 * properly reconstruct framebuffers.
899 */
f4510a27 900 return intel_crtc->active && crtc->primary->fb &&
6e3c9717 901 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
902}
903
a5c961d1
PZ
904enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905 enum pipe pipe)
906{
907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
6e3c9717 910 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
911}
912
fbf49ea2
VS
913static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
914{
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 reg = PIPEDSL(pipe);
917 u32 line1, line2;
918 u32 line_mask;
919
920 if (IS_GEN2(dev))
921 line_mask = DSL_LINEMASK_GEN2;
922 else
923 line_mask = DSL_LINEMASK_GEN3;
924
925 line1 = I915_READ(reg) & line_mask;
926 mdelay(5);
927 line2 = I915_READ(reg) & line_mask;
928
929 return line1 == line2;
930}
931
ab7ad7f6
KP
932/*
933 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 934 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
935 *
936 * After disabling a pipe, we can't wait for vblank in the usual way,
937 * spinning on the vblank interrupt status bit, since we won't actually
938 * see an interrupt when the pipe is disabled.
939 *
ab7ad7f6
KP
940 * On Gen4 and above:
941 * wait for the pipe register state bit to turn off
942 *
943 * Otherwise:
944 * wait for the display line value to settle (it usually
945 * ends up stopping at the start of the next frame).
58e10eb9 946 *
9d0498a2 947 */
575f7ab7 948static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 949{
575f7ab7 950 struct drm_device *dev = crtc->base.dev;
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 952 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 953 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
954
955 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 956 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
957
958 /* Wait for the Pipe State to go off */
58e10eb9
CW
959 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960 100))
284637d9 961 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 962 } else {
ab7ad7f6 963 /* Wait for the display line to settle */
fbf49ea2 964 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 965 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 966 }
79e53945
JB
967}
968
b0ea7d37
DL
969/*
970 * ibx_digital_port_connected - is the specified port connected?
971 * @dev_priv: i915 private structure
972 * @port: the port to test
973 *
974 * Returns true if @port is connected, false otherwise.
975 */
976bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977 struct intel_digital_port *port)
978{
979 u32 bit;
980
c36346e3 981 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 982 switch (port->port) {
c36346e3
DL
983 case PORT_B:
984 bit = SDE_PORTB_HOTPLUG;
985 break;
986 case PORT_C:
987 bit = SDE_PORTC_HOTPLUG;
988 break;
989 case PORT_D:
990 bit = SDE_PORTD_HOTPLUG;
991 break;
992 default:
993 return true;
994 }
995 } else {
eba905b2 996 switch (port->port) {
c36346e3
DL
997 case PORT_B:
998 bit = SDE_PORTB_HOTPLUG_CPT;
999 break;
1000 case PORT_C:
1001 bit = SDE_PORTC_HOTPLUG_CPT;
1002 break;
1003 case PORT_D:
1004 bit = SDE_PORTD_HOTPLUG_CPT;
1005 break;
1006 default:
1007 return true;
1008 }
b0ea7d37
DL
1009 }
1010
1011 return I915_READ(SDEISR) & bit;
1012}
1013
b24e7179
JB
1014static const char *state_string(bool enabled)
1015{
1016 return enabled ? "on" : "off";
1017}
1018
1019/* Only for pre-ILK configs */
55607e8a
DV
1020void assert_pll(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, bool state)
b24e7179
JB
1022{
1023 int reg;
1024 u32 val;
1025 bool cur_state;
1026
1027 reg = DPLL(pipe);
1028 val = I915_READ(reg);
1029 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1030 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1031 "PLL state assertion failure (expected %s, current %s)\n",
1032 state_string(state), state_string(cur_state));
1033}
b24e7179 1034
23538ef1
JN
1035/* XXX: the dsi pll is shared between MIPI DSI ports */
1036static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1037{
1038 u32 val;
1039 bool cur_state;
1040
1041 mutex_lock(&dev_priv->dpio_lock);
1042 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043 mutex_unlock(&dev_priv->dpio_lock);
1044
1045 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1046 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1047 "DSI PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1049}
1050#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1052
55607e8a 1053struct intel_shared_dpll *
e2b78267
DV
1054intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1055{
1056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1057
6e3c9717 1058 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1059 return NULL;
1060
6e3c9717 1061 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1062}
1063
040484af 1064/* For ILK+ */
55607e8a
DV
1065void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066 struct intel_shared_dpll *pll,
1067 bool state)
040484af 1068{
040484af 1069 bool cur_state;
5358901f 1070 struct intel_dpll_hw_state hw_state;
040484af 1071
92b27b08 1072 if (WARN (!pll,
46edb027 1073 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1074 return;
ee7b9f93 1075
5358901f 1076 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1077 I915_STATE_WARN(cur_state != state,
5358901f
DV
1078 "%s assertion failure (expected %s, current %s)\n",
1079 pll->name, state_string(state), state_string(cur_state));
040484af 1080}
040484af
JB
1081
1082static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083 enum pipe pipe, bool state)
1084{
1085 int reg;
1086 u32 val;
1087 bool cur_state;
ad80a810
PZ
1088 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089 pipe);
040484af 1090
affa9354
PZ
1091 if (HAS_DDI(dev_priv->dev)) {
1092 /* DDI does not have a specific FDI_TX register */
ad80a810 1093 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1094 val = I915_READ(reg);
ad80a810 1095 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1096 } else {
1097 reg = FDI_TX_CTL(pipe);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & FDI_TX_ENABLE);
1100 }
e2c719b7 1101 I915_STATE_WARN(cur_state != state,
040484af
JB
1102 "FDI TX state assertion failure (expected %s, current %s)\n",
1103 state_string(state), state_string(cur_state));
1104}
1105#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1107
1108static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1110{
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1114
d63fa0dc
PZ
1115 reg = FDI_RX_CTL(pipe);
1116 val = I915_READ(reg);
1117 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1118 I915_STATE_WARN(cur_state != state,
040484af
JB
1119 "FDI RX state assertion failure (expected %s, current %s)\n",
1120 state_string(state), state_string(cur_state));
1121}
1122#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1124
1125static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127{
1128 int reg;
1129 u32 val;
1130
1131 /* ILK FDI PLL is always enabled */
3d13ef2e 1132 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1133 return;
1134
bf507ef7 1135 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1136 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1137 return;
1138
040484af
JB
1139 reg = FDI_TX_CTL(pipe);
1140 val = I915_READ(reg);
e2c719b7 1141 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1142}
1143
55607e8a
DV
1144void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
040484af
JB
1146{
1147 int reg;
1148 u32 val;
55607e8a 1149 bool cur_state;
040484af
JB
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
55607e8a 1153 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1154 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1155 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
040484af
JB
1157}
1158
b680c37a
DV
1159void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
ea0760cf 1161{
bedd4dba
JN
1162 struct drm_device *dev = dev_priv->dev;
1163 int pp_reg;
ea0760cf
JB
1164 u32 val;
1165 enum pipe panel_pipe = PIPE_A;
0de3b485 1166 bool locked = true;
ea0760cf 1167
bedd4dba
JN
1168 if (WARN_ON(HAS_DDI(dev)))
1169 return;
1170
1171 if (HAS_PCH_SPLIT(dev)) {
1172 u32 port_sel;
1173
ea0760cf 1174 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1175 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1176
1177 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179 panel_pipe = PIPE_B;
1180 /* XXX: else fix for eDP */
1181 } else if (IS_VALLEYVIEW(dev)) {
1182 /* presumably write lock depends on pipe, not port select */
1183 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184 panel_pipe = pipe;
ea0760cf
JB
1185 } else {
1186 pp_reg = PP_CONTROL;
bedd4dba
JN
1187 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188 panel_pipe = PIPE_B;
ea0760cf
JB
1189 }
1190
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1193 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1194 locked = false;
1195
e2c719b7 1196 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1197 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1198 pipe_name(pipe));
ea0760cf
JB
1199}
1200
93ce0ba6
JN
1201static void assert_cursor(struct drm_i915_private *dev_priv,
1202 enum pipe pipe, bool state)
1203{
1204 struct drm_device *dev = dev_priv->dev;
1205 bool cur_state;
1206
d9d82081 1207 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1208 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1209 else
5efb3e28 1210 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1211
e2c719b7 1212 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1213 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214 pipe_name(pipe), state_string(state), state_string(cur_state));
1215}
1216#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1218
b840d907
JB
1219void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
b24e7179
JB
1221{
1222 int reg;
1223 u32 val;
63d7bbe9 1224 bool cur_state;
702e7a56
PZ
1225 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226 pipe);
b24e7179 1227
b6b5d049
VS
1228 /* if we need the pipe quirk it must be always on */
1229 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1231 state = true;
1232
f458ebbc 1233 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1234 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1235 cur_state = false;
1236 } else {
1237 reg = PIPECONF(cpu_transcoder);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & PIPECONF_ENABLE);
1240 }
1241
e2c719b7 1242 I915_STATE_WARN(cur_state != state,
63d7bbe9 1243 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1244 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1245}
1246
931872fc
CW
1247static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
b24e7179
JB
1249{
1250 int reg;
1251 u32 val;
931872fc 1252 bool cur_state;
b24e7179
JB
1253
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
931872fc 1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1257 I915_STATE_WARN(cur_state != state,
931872fc
CW
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1260}
1261
931872fc
CW
1262#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
b24e7179
JB
1265static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267{
653e1026 1268 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1269 int reg, i;
1270 u32 val;
1271 int cur_pipe;
1272
653e1026
VS
1273 /* Primary planes are fixed to pipes on gen4+ */
1274 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1275 reg = DSPCNTR(pipe);
1276 val = I915_READ(reg);
e2c719b7 1277 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1278 "plane %c assertion failure, should be disabled but not\n",
1279 plane_name(pipe));
19ec1358 1280 return;
28c05794 1281 }
19ec1358 1282
b24e7179 1283 /* Need to check both planes against the pipe */
055e393f 1284 for_each_pipe(dev_priv, i) {
b24e7179
JB
1285 reg = DSPCNTR(i);
1286 val = I915_READ(reg);
1287 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1289 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1290 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291 plane_name(i), pipe_name(pipe));
b24e7179
JB
1292 }
1293}
1294
19332d7a
JB
1295static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe)
1297{
20674eef 1298 struct drm_device *dev = dev_priv->dev;
1fe47785 1299 int reg, sprite;
19332d7a
JB
1300 u32 val;
1301
7feb8b88
DL
1302 if (INTEL_INFO(dev)->gen >= 9) {
1303 for_each_sprite(pipe, sprite) {
1304 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1305 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1306 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307 sprite, pipe_name(pipe));
1308 }
1309 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1310 for_each_sprite(pipe, sprite) {
1311 reg = SPCNTR(pipe, sprite);
20674eef 1312 val = I915_READ(reg);
e2c719b7 1313 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1314 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1315 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1316 }
1317 } else if (INTEL_INFO(dev)->gen >= 7) {
1318 reg = SPRCTL(pipe);
19332d7a 1319 val = I915_READ(reg);
e2c719b7 1320 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1321 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1322 plane_name(pipe), pipe_name(pipe));
1323 } else if (INTEL_INFO(dev)->gen >= 5) {
1324 reg = DVSCNTR(pipe);
19332d7a 1325 val = I915_READ(reg);
e2c719b7 1326 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1328 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1329 }
1330}
1331
08c71e5e
VS
1332static void assert_vblank_disabled(struct drm_crtc *crtc)
1333{
e2c719b7 1334 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1335 drm_crtc_vblank_put(crtc);
1336}
1337
89eff4be 1338static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1339{
1340 u32 val;
1341 bool enabled;
1342
e2c719b7 1343 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1344
92f2584a
JB
1345 val = I915_READ(PCH_DREF_CONTROL);
1346 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1348 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1349}
1350
ab9412ba
DV
1351static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe)
92f2584a
JB
1353{
1354 int reg;
1355 u32 val;
1356 bool enabled;
1357
ab9412ba 1358 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1359 val = I915_READ(reg);
1360 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1361 I915_STATE_WARN(enabled,
9db4a9c7
JB
1362 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363 pipe_name(pipe));
92f2584a
JB
1364}
1365
4e634389
KP
1366static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1368{
1369 if ((val & DP_PORT_EN) == 0)
1370 return false;
1371
1372 if (HAS_PCH_CPT(dev_priv->dev)) {
1373 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
44f37d1f
CML
1377 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
f0575e92
KP
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385}
1386
1519b995
KP
1387static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389{
dc0fa718 1390 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1395 return false;
44f37d1f
CML
1396 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1519b995 1399 } else {
dc0fa718 1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1401 return false;
1402 }
1403 return true;
1404}
1405
1406static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408{
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv->dev)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420}
1421
1422static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424{
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv->dev)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435}
1436
291906f1 1437static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1438 enum pipe pipe, int reg, u32 port_sel)
291906f1 1439{
47a05eca 1440 u32 val = I915_READ(reg);
e2c719b7 1441 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1442 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1443 reg, pipe_name(pipe));
de9a35ab 1444
e2c719b7 1445 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1446 && (val & DP_PIPEB_SELECT),
de9a35ab 1447 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1448}
1449
1450static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, int reg)
1452{
47a05eca 1453 u32 val = I915_READ(reg);
e2c719b7 1454 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1455 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1456 reg, pipe_name(pipe));
de9a35ab 1457
e2c719b7 1458 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1459 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1460 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1461}
1462
1463static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465{
1466 int reg;
1467 u32 val;
291906f1 1468
f0575e92
KP
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1472
1473 reg = PCH_ADPA;
1474 val = I915_READ(reg);
e2c719b7 1475 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1476 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1477 pipe_name(pipe));
291906f1
JB
1478
1479 reg = PCH_LVDS;
1480 val = I915_READ(reg);
e2c719b7 1481 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1482 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1483 pipe_name(pipe));
291906f1 1484
e2debe91
PZ
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1488}
1489
40e9cf64
JB
1490static void intel_init_dpio(struct drm_device *dev)
1491{
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494 if (!IS_VALLEYVIEW(dev))
1495 return;
1496
a09caddd
CML
1497 /*
1498 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499 * CHV x1 PHY (DP/HDMI D)
1500 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1501 */
1502 if (IS_CHERRYVIEW(dev)) {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505 } else {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1507 }
5382f5f3
JB
1508}
1509
d288f65f 1510static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1511 const struct intel_crtc_state *pipe_config)
87442f73 1512{
426115cf
DV
1513 struct drm_device *dev = crtc->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 int reg = DPLL(crtc->pipe);
d288f65f 1516 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1517
426115cf 1518 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1519
1520 /* No really, not for ILK+ */
1521 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1522
1523 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1524 if (IS_MOBILE(dev_priv->dev))
426115cf 1525 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1526
426115cf
DV
1527 I915_WRITE(reg, dpll);
1528 POSTING_READ(reg);
1529 udelay(150);
1530
1531 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1533
d288f65f 1534 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1535 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1536
1537 /* We do this three times for luck */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
426115cf 1544 I915_WRITE(reg, dpll);
87442f73
DV
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
1547}
1548
d288f65f 1549static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1550 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1551{
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int pipe = crtc->pipe;
1555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1556 u32 tmp;
1557
1558 assert_pipe_disabled(dev_priv, crtc->pipe);
1559
1560 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1561
1562 mutex_lock(&dev_priv->dpio_lock);
1563
1564 /* Enable back the 10bit clock to display controller */
1565 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566 tmp |= DPIO_DCLKP_EN;
1567 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1568
1569 /*
1570 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1571 */
1572 udelay(1);
1573
1574 /* Enable PLL */
d288f65f 1575 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1576
1577 /* Check PLL is locked */
a11b0703 1578 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1579 DRM_ERROR("PLL %d failed to lock\n", pipe);
1580
a11b0703 1581 /* not sure when this should be written */
d288f65f 1582 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1583 POSTING_READ(DPLL_MD(pipe));
1584
9d556c99
CML
1585 mutex_unlock(&dev_priv->dpio_lock);
1586}
1587
1c4e0274
VS
1588static int intel_num_dvo_pipes(struct drm_device *dev)
1589{
1590 struct intel_crtc *crtc;
1591 int count = 0;
1592
1593 for_each_intel_crtc(dev, crtc)
1594 count += crtc->active &&
409ee761 1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1596
1597 return count;
1598}
1599
66e3d5c0 1600static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1601{
66e3d5c0
DV
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 int reg = DPLL(crtc->pipe);
6e3c9717 1605 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1606
66e3d5c0 1607 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1608
63d7bbe9 1609 /* No really, not for ILK+ */
3d13ef2e 1610 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1611
1612 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1613 if (IS_MOBILE(dev) && !IS_I830(dev))
1614 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1615
1c4e0274
VS
1616 /* Enable DVO 2x clock on both PLLs if necessary */
1617 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1618 /*
1619 * It appears to be important that we don't enable this
1620 * for the current pipe before otherwise configuring the
1621 * PLL. No idea how this should be handled if multiple
1622 * DVO outputs are enabled simultaneosly.
1623 */
1624 dpll |= DPLL_DVO_2X_MODE;
1625 I915_WRITE(DPLL(!crtc->pipe),
1626 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1627 }
66e3d5c0
DV
1628
1629 /* Wait for the clocks to stabilize. */
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (INTEL_INFO(dev)->gen >= 4) {
1634 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1635 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1636 } else {
1637 /* The pixel multiplier can only be updated once the
1638 * DPLL is enabled and the clocks are stable.
1639 *
1640 * So write it again.
1641 */
1642 I915_WRITE(reg, dpll);
1643 }
63d7bbe9
JB
1644
1645 /* We do this three times for luck */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655}
1656
1657/**
50b44a44 1658 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1659 * @dev_priv: i915 private structure
1660 * @pipe: pipe PLL to disable
1661 *
1662 * Disable the PLL for @pipe, making sure the pipe is off first.
1663 *
1664 * Note! This is for pre-ILK only.
1665 */
1c4e0274 1666static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1667{
1c4e0274
VS
1668 struct drm_device *dev = crtc->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 enum pipe pipe = crtc->pipe;
1671
1672 /* Disable DVO 2x clock on both PLLs if necessary */
1673 if (IS_I830(dev) &&
409ee761 1674 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1675 intel_num_dvo_pipes(dev) == 1) {
1676 I915_WRITE(DPLL(PIPE_B),
1677 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678 I915_WRITE(DPLL(PIPE_A),
1679 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1680 }
1681
b6b5d049
VS
1682 /* Don't disable pipe or pipe PLLs if needed */
1683 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1685 return;
1686
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1689
50b44a44
DV
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1692}
1693
f6071166
JB
1694static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695{
1696 u32 val = 0;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
e5cbfbfb
ID
1701 /*
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1704 */
f6071166 1705 if (pipe == PIPE_B)
e5cbfbfb 1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1709
1710}
1711
1712static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713{
d752048d 1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1715 u32 val;
1716
a11b0703
VS
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1719
a11b0703 1720 /* Set PLL en = 0 */
d17ec4ce 1721 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
d752048d
VS
1726
1727 mutex_lock(&dev_priv->dpio_lock);
1728
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
61407f6d
VS
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743 }
1744
d752048d 1745 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1746}
1747
e4607fcf
CML
1748void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
89b667f8
JB
1750{
1751 u32 port_mask;
00fc31b7 1752 int dpll_reg;
89b667f8 1753
e4607fcf
CML
1754 switch (dport->port) {
1755 case PORT_B:
89b667f8 1756 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1757 dpll_reg = DPLL(0);
e4607fcf
CML
1758 break;
1759 case PORT_C:
89b667f8 1760 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1766 break;
1767 default:
1768 BUG();
1769 }
89b667f8 1770
00fc31b7 1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1773 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1774}
1775
b14b1055
DV
1776static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777{
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
be19f0ff
CW
1782 if (WARN_ON(pll == NULL))
1783 return;
1784
3e369b76 1785 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791 pll->mode_set(dev_priv, pll);
1792 }
1793}
1794
92f2584a 1795/**
85b3894f 1796 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1799 *
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1802 */
85b3894f 1803static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1804{
3d13ef2e
DL
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1808
87a875bb 1809 if (WARN_ON(pll == NULL))
48da64a8
CW
1810 return;
1811
3e369b76 1812 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1813 return;
ee7b9f93 1814
74dd6928 1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1816 pll->name, pll->active, pll->on,
e2b78267 1817 crtc->base.base.id);
92f2584a 1818
cdbd2316
DV
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
e9d6944e 1821 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1822 return;
1823 }
f4a091c7 1824 WARN_ON(pll->on);
ee7b9f93 1825
bd2bb1b9
PZ
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
46edb027 1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1829 pll->enable(dev_priv, pll);
ee7b9f93 1830 pll->on = true;
92f2584a
JB
1831}
1832
f6daaec2 1833static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1834{
3d13ef2e
DL
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1838
92f2584a 1839 /* PCH only available on ILK+ */
3d13ef2e 1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1841 if (WARN_ON(pll == NULL))
ee7b9f93 1842 return;
92f2584a 1843
3e369b76 1844 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1845 return;
7a419866 1846
46edb027
DV
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
e2b78267 1849 crtc->base.base.id);
7a419866 1850
48da64a8 1851 if (WARN_ON(pll->active == 0)) {
e9d6944e 1852 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1853 return;
1854 }
1855
e9d6944e 1856 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1857 WARN_ON(!pll->on);
cdbd2316 1858 if (--pll->active)
7a419866 1859 return;
ee7b9f93 1860
46edb027 1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1862 pll->disable(dev_priv, pll);
ee7b9f93 1863 pll->on = false;
bd2bb1b9
PZ
1864
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1866}
1867
b8a4f404
PZ
1868static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
040484af 1870{
23670b32 1871 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1874 uint32_t reg, val, pipeconf_val;
040484af
JB
1875
1876 /* PCH only available on ILK+ */
55522f37 1877 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1878
1879 /* Make sure PCH DPLL is enabled */
e72f9fbf 1880 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1881 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1882
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1886
23670b32
DV
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
59c859d6 1894 }
23670b32 1895
ab9412ba 1896 reg = PCH_TRANSCONF(pipe);
040484af 1897 val = I915_READ(reg);
5f7f726d 1898 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1899
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1901 /*
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1904 */
dfd07d72
DV
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1907 }
5f7f726d
PZ
1908
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1911 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1912 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
5f7f726d
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
040484af
JB
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1922}
1923
8fb033d7 1924static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1925 enum transcoder cpu_transcoder)
040484af 1926{
8fb033d7 1927 u32 val, pipeconf_val;
8fb033d7
PZ
1928
1929 /* PCH only available on ILK+ */
55522f37 1930 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1931
8fb033d7 1932 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1935
223a6fdf
PZ
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1940
25f3ef11 1941 val = TRANS_ENABLE;
937bb610 1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1943
9a76b1c6
PZ
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
a35f2679 1946 val |= TRANS_INTERLACED;
8fb033d7
PZ
1947 else
1948 val |= TRANS_PROGRESSIVE;
1949
ab9412ba
DV
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1952 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1953}
1954
b8a4f404
PZ
1955static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
040484af 1957{
23670b32
DV
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
040484af
JB
1960
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1964
291906f1
JB
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1967
ab9412ba 1968 reg = PCH_TRANSCONF(pipe);
040484af
JB
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1975
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1982 }
040484af
JB
1983}
1984
ab4d966c 1985static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1986{
8fb033d7
PZ
1987 u32 val;
1988
ab9412ba 1989 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1990 val &= ~TRANS_ENABLE;
ab9412ba 1991 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1992 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1994 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1995
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1999 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2000}
2001
b24e7179 2002/**
309cfea8 2003 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2004 * @crtc: crtc responsible for the pipe
b24e7179 2005 *
0372264a 2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2008 */
e1fdc473 2009static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2010{
0372264a
PZ
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
1a240d4d 2016 enum pipe pch_transcoder;
b24e7179
JB
2017 int reg;
2018 u32 val;
2019
58c6eaa2 2020 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2021 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2022 assert_sprites_disabled(dev_priv, pipe);
2023
681e5811 2024 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2028
b24e7179
JB
2029 /*
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2033 */
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2035 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
040484af 2039 else {
6e3c9717 2040 if (crtc->config->has_pch_encoder) {
040484af 2041 /* if driving the PCH, we need FDI enabled */
cc391bbb 2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
040484af
JB
2045 }
2046 /* FIXME: assert CPU port conditions for SNB+ */
2047 }
b24e7179 2048
702e7a56 2049 reg = PIPECONF(cpu_transcoder);
b24e7179 2050 val = I915_READ(reg);
7ad25d48 2051 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2052 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2054 return;
7ad25d48 2055 }
00d70b15
CW
2056
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2058 POSTING_READ(reg);
b24e7179
JB
2059}
2060
2061/**
309cfea8 2062 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2063 * @crtc: crtc whose pipes is to be disabled
b24e7179 2064 *
575f7ab7
VS
2065 * Disable the pipe of @crtc, making sure that various hardware
2066 * specific requirements are met, if applicable, e.g. plane
2067 * disabled, panel fitter off, etc.
b24e7179
JB
2068 *
2069 * Will wait until the pipe has shut down before returning.
2070 */
575f7ab7 2071static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2072{
575f7ab7 2073 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2075 enum pipe pipe = crtc->pipe;
b24e7179
JB
2076 int reg;
2077 u32 val;
2078
2079 /*
2080 * Make sure planes won't keep trying to pump pixels to us,
2081 * or we might hang the display.
2082 */
2083 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2084 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2085 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2086
702e7a56 2087 reg = PIPECONF(cpu_transcoder);
b24e7179 2088 val = I915_READ(reg);
00d70b15
CW
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
67adc644
VS
2092 /*
2093 * Double wide has implications for planes
2094 * so best keep it disabled when not needed.
2095 */
6e3c9717 2096 if (crtc->config->double_wide)
67adc644
VS
2097 val &= ~PIPECONF_DOUBLE_WIDE;
2098
2099 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2100 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2102 val &= ~PIPECONF_ENABLE;
2103
2104 I915_WRITE(reg, val);
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2107}
2108
d74362c9
KP
2109/*
2110 * Plane regs are double buffered, going from enabled->disabled needs a
2111 * trigger in order to latch. The display address reg provides this.
2112 */
1dba99f4
VS
2113void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114 enum plane plane)
d74362c9 2115{
3d13ef2e
DL
2116 struct drm_device *dev = dev_priv->dev;
2117 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2118
2119 I915_WRITE(reg, I915_READ(reg));
2120 POSTING_READ(reg);
d74362c9
KP
2121}
2122
b24e7179 2123/**
262ca2b0 2124 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2125 * @plane: plane to be enabled
2126 * @crtc: crtc for the plane
b24e7179 2127 *
fdd508a6 2128 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2129 */
fdd508a6
VS
2130static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131 struct drm_crtc *crtc)
b24e7179 2132{
fdd508a6
VS
2133 struct drm_device *dev = plane->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2136
2137 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2138 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2139
98ec7739
VS
2140 if (intel_crtc->primary_enabled)
2141 return;
0037f71c 2142
4c445e0e 2143 intel_crtc->primary_enabled = true;
939c2fe8 2144
fdd508a6
VS
2145 dev_priv->display.update_primary_plane(crtc, plane->fb,
2146 crtc->x, crtc->y);
33c3b0d1
VS
2147
2148 /*
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2152 */
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2155}
2156
b24e7179 2157/**
262ca2b0 2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2159 * @plane: plane to be disabled
2160 * @crtc: crtc for the plane
b24e7179 2161 *
fdd508a6 2162 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2163 */
fdd508a6
VS
2164static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165 struct drm_crtc *crtc)
b24e7179 2166{
fdd508a6
VS
2167 struct drm_device *dev = plane->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170
32b7eeec
MR
2171 if (WARN_ON(!intel_crtc->active))
2172 return;
b24e7179 2173
98ec7739
VS
2174 if (!intel_crtc->primary_enabled)
2175 return;
0037f71c 2176
4c445e0e 2177 intel_crtc->primary_enabled = false;
939c2fe8 2178
fdd508a6
VS
2179 dev_priv->display.update_primary_plane(crtc, plane->fb,
2180 crtc->x, crtc->y);
b24e7179
JB
2181}
2182
693db184
CW
2183static bool need_vtd_wa(struct drm_device *dev)
2184{
2185#ifdef CONFIG_INTEL_IOMMU
2186 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187 return true;
2188#endif
2189 return false;
2190}
2191
ec2c981e 2192int
091df6cb
DV
2193intel_fb_align_height(struct drm_device *dev, int height,
2194 uint32_t pixel_format,
2195 uint64_t fb_format_modifier)
a57ce0b2
JB
2196{
2197 int tile_height;
2198
091df6cb
DV
2199 tile_height = fb_format_modifier == I915_FORMAT_MOD_X_TILED ?
2200 (IS_GEN2(dev) ? 16 : 8) : 1;
2201
a57ce0b2
JB
2202 return ALIGN(height, tile_height);
2203}
2204
127bd2ac 2205int
850c4cdc
TU
2206intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2207 struct drm_framebuffer *fb,
a4872ba6 2208 struct intel_engine_cs *pipelined)
6b95a207 2209{
850c4cdc 2210 struct drm_device *dev = fb->dev;
ce453d81 2211 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2212 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207
KH
2213 u32 alignment;
2214 int ret;
2215
ebcdd39e
MR
2216 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2217
7b911adc
TU
2218 switch (fb->modifier[0]) {
2219 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2220 if (INTEL_INFO(dev)->gen >= 9)
2221 alignment = 256 * 1024;
2222 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2223 alignment = 128 * 1024;
a6c45cf0 2224 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2225 alignment = 4 * 1024;
2226 else
2227 alignment = 64 * 1024;
6b95a207 2228 break;
7b911adc 2229 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2230 if (INTEL_INFO(dev)->gen >= 9)
2231 alignment = 256 * 1024;
2232 else {
2233 /* pin() will align the object as required by fence */
2234 alignment = 0;
2235 }
6b95a207 2236 break;
7b911adc 2237 case I915_FORMAT_MOD_Y_TILED:
80075d49 2238 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2239 return -EINVAL;
2240 default:
7b911adc
TU
2241 MISSING_CASE(fb->modifier[0]);
2242 return -EINVAL;
6b95a207
KH
2243 }
2244
693db184
CW
2245 /* Note that the w/a also requires 64 PTE of padding following the
2246 * bo. We currently fill all unused PTE with the shadow page and so
2247 * we should always have valid PTE following the scanout preventing
2248 * the VT-d warning.
2249 */
2250 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2251 alignment = 256 * 1024;
2252
d6dd6843
PZ
2253 /*
2254 * Global gtt pte registers are special registers which actually forward
2255 * writes to a chunk of system memory. Which means that there is no risk
2256 * that the register values disappear as soon as we call
2257 * intel_runtime_pm_put(), so it is correct to wrap only the
2258 * pin/unpin/fence and not more.
2259 */
2260 intel_runtime_pm_get(dev_priv);
2261
ce453d81 2262 dev_priv->mm.interruptible = false;
2da3b9b9 2263 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2264 if (ret)
ce453d81 2265 goto err_interruptible;
6b95a207
KH
2266
2267 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2268 * fence, whereas 965+ only requires a fence if using
2269 * framebuffer compression. For simplicity, we always install
2270 * a fence as the cost is not that onerous.
2271 */
06d98131 2272 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2273 if (ret)
2274 goto err_unpin;
1690e1eb 2275
9a5a53b3 2276 i915_gem_object_pin_fence(obj);
6b95a207 2277
ce453d81 2278 dev_priv->mm.interruptible = true;
d6dd6843 2279 intel_runtime_pm_put(dev_priv);
6b95a207 2280 return 0;
48b956c5
CW
2281
2282err_unpin:
cc98b413 2283 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2284err_interruptible:
2285 dev_priv->mm.interruptible = true;
d6dd6843 2286 intel_runtime_pm_put(dev_priv);
48b956c5 2287 return ret;
6b95a207
KH
2288}
2289
f63bdb5f 2290static void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1690e1eb 2291{
ebcdd39e
MR
2292 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2293
1690e1eb 2294 i915_gem_object_unpin_fence(obj);
cc98b413 2295 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2296}
2297
c2c75131
DV
2298/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2299 * is assumed to be a power-of-two. */
bc752862
CW
2300unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2301 unsigned int tiling_mode,
2302 unsigned int cpp,
2303 unsigned int pitch)
c2c75131 2304{
bc752862
CW
2305 if (tiling_mode != I915_TILING_NONE) {
2306 unsigned int tile_rows, tiles;
c2c75131 2307
bc752862
CW
2308 tile_rows = *y / 8;
2309 *y %= 8;
c2c75131 2310
bc752862
CW
2311 tiles = *x / (512/cpp);
2312 *x %= 512/cpp;
2313
2314 return tile_rows * pitch * 8 + tiles * 4096;
2315 } else {
2316 unsigned int offset;
2317
2318 offset = *y * pitch + *x * cpp;
2319 *y = 0;
2320 *x = (offset & 4095) / cpp;
2321 return offset & -4096;
2322 }
c2c75131
DV
2323}
2324
b35d63fa 2325static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2326{
2327 switch (format) {
2328 case DISPPLANE_8BPP:
2329 return DRM_FORMAT_C8;
2330 case DISPPLANE_BGRX555:
2331 return DRM_FORMAT_XRGB1555;
2332 case DISPPLANE_BGRX565:
2333 return DRM_FORMAT_RGB565;
2334 default:
2335 case DISPPLANE_BGRX888:
2336 return DRM_FORMAT_XRGB8888;
2337 case DISPPLANE_RGBX888:
2338 return DRM_FORMAT_XBGR8888;
2339 case DISPPLANE_BGRX101010:
2340 return DRM_FORMAT_XRGB2101010;
2341 case DISPPLANE_RGBX101010:
2342 return DRM_FORMAT_XBGR2101010;
2343 }
2344}
2345
bc8d7dff
DL
2346static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2347{
2348 switch (format) {
2349 case PLANE_CTL_FORMAT_RGB_565:
2350 return DRM_FORMAT_RGB565;
2351 default:
2352 case PLANE_CTL_FORMAT_XRGB_8888:
2353 if (rgb_order) {
2354 if (alpha)
2355 return DRM_FORMAT_ABGR8888;
2356 else
2357 return DRM_FORMAT_XBGR8888;
2358 } else {
2359 if (alpha)
2360 return DRM_FORMAT_ARGB8888;
2361 else
2362 return DRM_FORMAT_XRGB8888;
2363 }
2364 case PLANE_CTL_FORMAT_XRGB_2101010:
2365 if (rgb_order)
2366 return DRM_FORMAT_XBGR2101010;
2367 else
2368 return DRM_FORMAT_XRGB2101010;
2369 }
2370}
2371
5724dbd1
DL
2372static bool
2373intel_alloc_plane_obj(struct intel_crtc *crtc,
2374 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2375{
2376 struct drm_device *dev = crtc->base.dev;
2377 struct drm_i915_gem_object *obj = NULL;
2378 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2379 struct drm_framebuffer *fb = &plane_config->fb->base;
46f297fb
JB
2380 u32 base = plane_config->base;
2381
ff2652ea
CW
2382 if (plane_config->size == 0)
2383 return false;
2384
46f297fb
JB
2385 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2386 plane_config->size);
2387 if (!obj)
484b41dd 2388 return false;
46f297fb 2389
49af449b
DL
2390 obj->tiling_mode = plane_config->tiling;
2391 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2392 obj->stride = fb->pitches[0];
46f297fb 2393
6bf129df
DL
2394 mode_cmd.pixel_format = fb->pixel_format;
2395 mode_cmd.width = fb->width;
2396 mode_cmd.height = fb->height;
2397 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2398 mode_cmd.modifier[0] = fb->modifier[0];
2399 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2400
2401 mutex_lock(&dev->struct_mutex);
2402
6bf129df 2403 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2404 &mode_cmd, obj)) {
46f297fb
JB
2405 DRM_DEBUG_KMS("intel fb init failed\n");
2406 goto out_unref_obj;
2407 }
2408
a071fa00 2409 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2410 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2411
2412 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2413 return true;
46f297fb
JB
2414
2415out_unref_obj:
2416 drm_gem_object_unreference(&obj->base);
2417 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2418 return false;
2419}
2420
afd65eb4
MR
2421/* Update plane->state->fb to match plane->fb after driver-internal updates */
2422static void
2423update_state_fb(struct drm_plane *plane)
2424{
2425 if (plane->fb == plane->state->fb)
2426 return;
2427
2428 if (plane->state->fb)
2429 drm_framebuffer_unreference(plane->state->fb);
2430 plane->state->fb = plane->fb;
2431 if (plane->state->fb)
2432 drm_framebuffer_reference(plane->state->fb);
2433}
2434
5724dbd1
DL
2435static void
2436intel_find_plane_obj(struct intel_crtc *intel_crtc,
2437 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2438{
2439 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2440 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2441 struct drm_crtc *c;
2442 struct intel_crtc *i;
2ff8fde1 2443 struct drm_i915_gem_object *obj;
484b41dd 2444
2d14030b 2445 if (!plane_config->fb)
484b41dd
JB
2446 return;
2447
f55548b5 2448 if (intel_alloc_plane_obj(intel_crtc, plane_config)) {
fb9981aa
DL
2449 struct drm_plane *primary = intel_crtc->base.primary;
2450
2451 primary->fb = &plane_config->fb->base;
2452 primary->state->crtc = &intel_crtc->base;
2453 update_state_fb(primary);
2454
484b41dd 2455 return;
f55548b5 2456 }
484b41dd 2457
2d14030b 2458 kfree(plane_config->fb);
484b41dd
JB
2459
2460 /*
2461 * Failed to alloc the obj, check to see if we should share
2462 * an fb with another CRTC instead
2463 */
70e1e0ec 2464 for_each_crtc(dev, c) {
484b41dd
JB
2465 i = to_intel_crtc(c);
2466
2467 if (c == &intel_crtc->base)
2468 continue;
2469
2ff8fde1
MR
2470 if (!i->active)
2471 continue;
2472
2473 obj = intel_fb_obj(c->primary->fb);
2474 if (obj == NULL)
484b41dd
JB
2475 continue;
2476
2ff8fde1 2477 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
fb9981aa
DL
2478 struct drm_plane *primary = intel_crtc->base.primary;
2479
d9ceb816
JB
2480 if (obj->tiling_mode != I915_TILING_NONE)
2481 dev_priv->preserve_bios_swizzle = true;
2482
66e514c1 2483 drm_framebuffer_reference(c->primary->fb);
fb9981aa
DL
2484 primary->fb = c->primary->fb;
2485 primary->state->crtc = &intel_crtc->base;
5ba76c41 2486 update_state_fb(intel_crtc->base.primary);
2ff8fde1 2487 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2488 break;
2489 }
2490 }
afd65eb4 2491
46f297fb
JB
2492}
2493
29b9bde6
DV
2494static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2495 struct drm_framebuffer *fb,
2496 int x, int y)
81255565
JB
2497{
2498 struct drm_device *dev = crtc->dev;
2499 struct drm_i915_private *dev_priv = dev->dev_private;
2500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2501 struct drm_i915_gem_object *obj;
81255565 2502 int plane = intel_crtc->plane;
e506a0c6 2503 unsigned long linear_offset;
81255565 2504 u32 dspcntr;
f45651ba 2505 u32 reg = DSPCNTR(plane);
48404c1e 2506 int pixel_size;
f45651ba 2507
fdd508a6
VS
2508 if (!intel_crtc->primary_enabled) {
2509 I915_WRITE(reg, 0);
2510 if (INTEL_INFO(dev)->gen >= 4)
2511 I915_WRITE(DSPSURF(plane), 0);
2512 else
2513 I915_WRITE(DSPADDR(plane), 0);
2514 POSTING_READ(reg);
2515 return;
2516 }
2517
c9ba6fad
VS
2518 obj = intel_fb_obj(fb);
2519 if (WARN_ON(obj == NULL))
2520 return;
2521
2522 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2523
f45651ba
VS
2524 dspcntr = DISPPLANE_GAMMA_ENABLE;
2525
fdd508a6 2526 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2527
2528 if (INTEL_INFO(dev)->gen < 4) {
2529 if (intel_crtc->pipe == PIPE_B)
2530 dspcntr |= DISPPLANE_SEL_PIPE_B;
2531
2532 /* pipesrc and dspsize control the size that is scaled from,
2533 * which should always be the user's requested size.
2534 */
2535 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2536 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2537 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2538 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2539 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2540 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2541 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2542 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2543 I915_WRITE(PRIMPOS(plane), 0);
2544 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2545 }
81255565 2546
57779d06
VS
2547 switch (fb->pixel_format) {
2548 case DRM_FORMAT_C8:
81255565
JB
2549 dspcntr |= DISPPLANE_8BPP;
2550 break;
57779d06
VS
2551 case DRM_FORMAT_XRGB1555:
2552 case DRM_FORMAT_ARGB1555:
2553 dspcntr |= DISPPLANE_BGRX555;
81255565 2554 break;
57779d06
VS
2555 case DRM_FORMAT_RGB565:
2556 dspcntr |= DISPPLANE_BGRX565;
2557 break;
2558 case DRM_FORMAT_XRGB8888:
2559 case DRM_FORMAT_ARGB8888:
2560 dspcntr |= DISPPLANE_BGRX888;
2561 break;
2562 case DRM_FORMAT_XBGR8888:
2563 case DRM_FORMAT_ABGR8888:
2564 dspcntr |= DISPPLANE_RGBX888;
2565 break;
2566 case DRM_FORMAT_XRGB2101010:
2567 case DRM_FORMAT_ARGB2101010:
2568 dspcntr |= DISPPLANE_BGRX101010;
2569 break;
2570 case DRM_FORMAT_XBGR2101010:
2571 case DRM_FORMAT_ABGR2101010:
2572 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2573 break;
2574 default:
baba133a 2575 BUG();
81255565 2576 }
57779d06 2577
f45651ba
VS
2578 if (INTEL_INFO(dev)->gen >= 4 &&
2579 obj->tiling_mode != I915_TILING_NONE)
2580 dspcntr |= DISPPLANE_TILED;
81255565 2581
de1aa629
VS
2582 if (IS_G4X(dev))
2583 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2584
b9897127 2585 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2586
c2c75131
DV
2587 if (INTEL_INFO(dev)->gen >= 4) {
2588 intel_crtc->dspaddr_offset =
bc752862 2589 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2590 pixel_size,
bc752862 2591 fb->pitches[0]);
c2c75131
DV
2592 linear_offset -= intel_crtc->dspaddr_offset;
2593 } else {
e506a0c6 2594 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2595 }
e506a0c6 2596
8e7d688b 2597 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2598 dspcntr |= DISPPLANE_ROTATE_180;
2599
6e3c9717
ACO
2600 x += (intel_crtc->config->pipe_src_w - 1);
2601 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2602
2603 /* Finding the last pixel of the last line of the display
2604 data and adding to linear_offset*/
2605 linear_offset +=
6e3c9717
ACO
2606 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2607 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2608 }
2609
2610 I915_WRITE(reg, dspcntr);
2611
f343c5f6
BW
2612 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2613 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2614 fb->pitches[0]);
01f2c773 2615 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2616 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2617 I915_WRITE(DSPSURF(plane),
2618 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2619 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2620 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2621 } else
f343c5f6 2622 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2623 POSTING_READ(reg);
17638cd6
JB
2624}
2625
29b9bde6
DV
2626static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2627 struct drm_framebuffer *fb,
2628 int x, int y)
17638cd6
JB
2629{
2630 struct drm_device *dev = crtc->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2633 struct drm_i915_gem_object *obj;
17638cd6 2634 int plane = intel_crtc->plane;
e506a0c6 2635 unsigned long linear_offset;
17638cd6 2636 u32 dspcntr;
f45651ba 2637 u32 reg = DSPCNTR(plane);
48404c1e 2638 int pixel_size;
f45651ba 2639
fdd508a6
VS
2640 if (!intel_crtc->primary_enabled) {
2641 I915_WRITE(reg, 0);
2642 I915_WRITE(DSPSURF(plane), 0);
2643 POSTING_READ(reg);
2644 return;
2645 }
2646
c9ba6fad
VS
2647 obj = intel_fb_obj(fb);
2648 if (WARN_ON(obj == NULL))
2649 return;
2650
2651 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2652
f45651ba
VS
2653 dspcntr = DISPPLANE_GAMMA_ENABLE;
2654
fdd508a6 2655 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2656
2657 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2658 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2659
57779d06
VS
2660 switch (fb->pixel_format) {
2661 case DRM_FORMAT_C8:
17638cd6
JB
2662 dspcntr |= DISPPLANE_8BPP;
2663 break;
57779d06
VS
2664 case DRM_FORMAT_RGB565:
2665 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2666 break;
57779d06
VS
2667 case DRM_FORMAT_XRGB8888:
2668 case DRM_FORMAT_ARGB8888:
2669 dspcntr |= DISPPLANE_BGRX888;
2670 break;
2671 case DRM_FORMAT_XBGR8888:
2672 case DRM_FORMAT_ABGR8888:
2673 dspcntr |= DISPPLANE_RGBX888;
2674 break;
2675 case DRM_FORMAT_XRGB2101010:
2676 case DRM_FORMAT_ARGB2101010:
2677 dspcntr |= DISPPLANE_BGRX101010;
2678 break;
2679 case DRM_FORMAT_XBGR2101010:
2680 case DRM_FORMAT_ABGR2101010:
2681 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2682 break;
2683 default:
baba133a 2684 BUG();
17638cd6
JB
2685 }
2686
2687 if (obj->tiling_mode != I915_TILING_NONE)
2688 dspcntr |= DISPPLANE_TILED;
17638cd6 2689
f45651ba 2690 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2691 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2692
b9897127 2693 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2694 intel_crtc->dspaddr_offset =
bc752862 2695 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2696 pixel_size,
bc752862 2697 fb->pitches[0]);
c2c75131 2698 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2699 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2700 dspcntr |= DISPPLANE_ROTATE_180;
2701
2702 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2703 x += (intel_crtc->config->pipe_src_w - 1);
2704 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2705
2706 /* Finding the last pixel of the last line of the display
2707 data and adding to linear_offset*/
2708 linear_offset +=
6e3c9717
ACO
2709 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2710 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2711 }
2712 }
2713
2714 I915_WRITE(reg, dspcntr);
17638cd6 2715
f343c5f6
BW
2716 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2717 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2718 fb->pitches[0]);
01f2c773 2719 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2720 I915_WRITE(DSPSURF(plane),
2721 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2722 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2723 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2724 } else {
2725 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2726 I915_WRITE(DSPLINOFF(plane), linear_offset);
2727 }
17638cd6 2728 POSTING_READ(reg);
17638cd6
JB
2729}
2730
70d21f0e
DL
2731static void skylake_update_primary_plane(struct drm_crtc *crtc,
2732 struct drm_framebuffer *fb,
2733 int x, int y)
2734{
2735 struct drm_device *dev = crtc->dev;
2736 struct drm_i915_private *dev_priv = dev->dev_private;
2737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2738 struct intel_framebuffer *intel_fb;
2739 struct drm_i915_gem_object *obj;
2740 int pipe = intel_crtc->pipe;
2741 u32 plane_ctl, stride;
2742
2743 if (!intel_crtc->primary_enabled) {
2744 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2745 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2746 POSTING_READ(PLANE_CTL(pipe, 0));
2747 return;
2748 }
2749
2750 plane_ctl = PLANE_CTL_ENABLE |
2751 PLANE_CTL_PIPE_GAMMA_ENABLE |
2752 PLANE_CTL_PIPE_CSC_ENABLE;
2753
2754 switch (fb->pixel_format) {
2755 case DRM_FORMAT_RGB565:
2756 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2757 break;
2758 case DRM_FORMAT_XRGB8888:
2759 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2760 break;
2761 case DRM_FORMAT_XBGR8888:
2762 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2763 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2764 break;
2765 case DRM_FORMAT_XRGB2101010:
2766 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2767 break;
2768 case DRM_FORMAT_XBGR2101010:
2769 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2770 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2771 break;
2772 default:
2773 BUG();
2774 }
2775
2776 intel_fb = to_intel_framebuffer(fb);
2777 obj = intel_fb->obj;
2778
2779 /*
2780 * The stride is either expressed as a multiple of 64 bytes chunks for
2781 * linear buffers or in number of tiles for tiled buffers.
2782 */
30af77c4
DV
2783 switch (fb->modifier[0]) {
2784 case DRM_FORMAT_MOD_NONE:
70d21f0e
DL
2785 stride = fb->pitches[0] >> 6;
2786 break;
30af77c4 2787 case I915_FORMAT_MOD_X_TILED:
70d21f0e
DL
2788 plane_ctl |= PLANE_CTL_TILED_X;
2789 stride = fb->pitches[0] >> 9;
2790 break;
2791 default:
2792 BUG();
2793 }
2794
2795 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 2796 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 2797 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2798
2799 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2800
2801 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2802 i915_gem_obj_ggtt_offset(obj),
2803 x, y, fb->width, fb->height,
2804 fb->pitches[0]);
2805
2806 I915_WRITE(PLANE_POS(pipe, 0), 0);
2807 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2808 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2809 (intel_crtc->config->pipe_src_h - 1) << 16 |
2810 (intel_crtc->config->pipe_src_w - 1));
70d21f0e
DL
2811 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2812 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2813
2814 POSTING_READ(PLANE_SURF(pipe, 0));
2815}
2816
17638cd6
JB
2817/* Assume fb object is pinned & idle & fenced and just update base pointers */
2818static int
2819intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2820 int x, int y, enum mode_set_atomic state)
2821{
2822 struct drm_device *dev = crtc->dev;
2823 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2824
6b8e6ed0
CW
2825 if (dev_priv->display.disable_fbc)
2826 dev_priv->display.disable_fbc(dev);
81255565 2827
29b9bde6
DV
2828 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2829
2830 return 0;
81255565
JB
2831}
2832
7514747d 2833static void intel_complete_page_flips(struct drm_device *dev)
96a02917 2834{
96a02917
VS
2835 struct drm_crtc *crtc;
2836
70e1e0ec 2837 for_each_crtc(dev, crtc) {
96a02917
VS
2838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839 enum plane plane = intel_crtc->plane;
2840
2841 intel_prepare_page_flip(dev, plane);
2842 intel_finish_page_flip_plane(dev, plane);
2843 }
7514747d
VS
2844}
2845
2846static void intel_update_primary_planes(struct drm_device *dev)
2847{
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849 struct drm_crtc *crtc;
96a02917 2850
70e1e0ec 2851 for_each_crtc(dev, crtc) {
96a02917
VS
2852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2853
51fd371b 2854 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2855 /*
2856 * FIXME: Once we have proper support for primary planes (and
2857 * disabling them without disabling the entire crtc) allow again
66e514c1 2858 * a NULL crtc->primary->fb.
947fdaad 2859 */
f4510a27 2860 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2861 dev_priv->display.update_primary_plane(crtc,
66e514c1 2862 crtc->primary->fb,
262ca2b0
MR
2863 crtc->x,
2864 crtc->y);
51fd371b 2865 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2866 }
2867}
2868
7514747d
VS
2869void intel_prepare_reset(struct drm_device *dev)
2870{
f98ce92f
VS
2871 struct drm_i915_private *dev_priv = to_i915(dev);
2872 struct intel_crtc *crtc;
2873
7514747d
VS
2874 /* no reset support for gen2 */
2875 if (IS_GEN2(dev))
2876 return;
2877
2878 /* reset doesn't touch the display */
2879 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2880 return;
2881
2882 drm_modeset_lock_all(dev);
f98ce92f
VS
2883
2884 /*
2885 * Disabling the crtcs gracefully seems nicer. Also the
2886 * g33 docs say we should at least disable all the planes.
2887 */
2888 for_each_intel_crtc(dev, crtc) {
2889 if (crtc->active)
2890 dev_priv->display.crtc_disable(&crtc->base);
2891 }
7514747d
VS
2892}
2893
2894void intel_finish_reset(struct drm_device *dev)
2895{
2896 struct drm_i915_private *dev_priv = to_i915(dev);
2897
2898 /*
2899 * Flips in the rings will be nuked by the reset,
2900 * so complete all pending flips so that user space
2901 * will get its events and not get stuck.
2902 */
2903 intel_complete_page_flips(dev);
2904
2905 /* no reset support for gen2 */
2906 if (IS_GEN2(dev))
2907 return;
2908
2909 /* reset doesn't touch the display */
2910 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2911 /*
2912 * Flips in the rings have been nuked by the reset,
2913 * so update the base address of all primary
2914 * planes to the the last fb to make sure we're
2915 * showing the correct fb after a reset.
2916 */
2917 intel_update_primary_planes(dev);
2918 return;
2919 }
2920
2921 /*
2922 * The display has been reset as well,
2923 * so need a full re-initialization.
2924 */
2925 intel_runtime_pm_disable_interrupts(dev_priv);
2926 intel_runtime_pm_enable_interrupts(dev_priv);
2927
2928 intel_modeset_init_hw(dev);
2929
2930 spin_lock_irq(&dev_priv->irq_lock);
2931 if (dev_priv->display.hpd_irq_setup)
2932 dev_priv->display.hpd_irq_setup(dev);
2933 spin_unlock_irq(&dev_priv->irq_lock);
2934
2935 intel_modeset_setup_hw_state(dev, true);
2936
2937 intel_hpd_init(dev_priv);
2938
2939 drm_modeset_unlock_all(dev);
2940}
2941
14667a4b
CW
2942static int
2943intel_finish_fb(struct drm_framebuffer *old_fb)
2944{
2ff8fde1 2945 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2946 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2947 bool was_interruptible = dev_priv->mm.interruptible;
2948 int ret;
2949
14667a4b
CW
2950 /* Big Hammer, we also need to ensure that any pending
2951 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2952 * current scanout is retired before unpinning the old
2953 * framebuffer.
2954 *
2955 * This should only fail upon a hung GPU, in which case we
2956 * can safely continue.
2957 */
2958 dev_priv->mm.interruptible = false;
2959 ret = i915_gem_object_finish_gpu(obj);
2960 dev_priv->mm.interruptible = was_interruptible;
2961
2962 return ret;
2963}
2964
7d5e3799
CW
2965static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2966{
2967 struct drm_device *dev = crtc->dev;
2968 struct drm_i915_private *dev_priv = dev->dev_private;
2969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2970 bool pending;
2971
2972 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2973 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2974 return false;
2975
5e2d7afc 2976 spin_lock_irq(&dev->event_lock);
7d5e3799 2977 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2978 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2979
2980 return pending;
2981}
2982
e30e8f75
GP
2983static void intel_update_pipe_size(struct intel_crtc *crtc)
2984{
2985 struct drm_device *dev = crtc->base.dev;
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 const struct drm_display_mode *adjusted_mode;
2988
2989 if (!i915.fastboot)
2990 return;
2991
2992 /*
2993 * Update pipe size and adjust fitter if needed: the reason for this is
2994 * that in compute_mode_changes we check the native mode (not the pfit
2995 * mode) to see if we can flip rather than do a full mode set. In the
2996 * fastboot case, we'll flip, but if we don't update the pipesrc and
2997 * pfit state, we'll end up with a big fb scanned out into the wrong
2998 * sized surface.
2999 *
3000 * To fix this properly, we need to hoist the checks up into
3001 * compute_mode_changes (or above), check the actual pfit state and
3002 * whether the platform allows pfit disable with pipe active, and only
3003 * then update the pipesrc and pfit state, even on the flip path.
3004 */
3005
6e3c9717 3006 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3007
3008 I915_WRITE(PIPESRC(crtc->pipe),
3009 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3010 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3011 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3012 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3013 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3014 I915_WRITE(PF_CTL(crtc->pipe), 0);
3015 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3016 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3017 }
6e3c9717
ACO
3018 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3019 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3020}
3021
5e84e1a4
ZW
3022static void intel_fdi_normal_train(struct drm_crtc *crtc)
3023{
3024 struct drm_device *dev = crtc->dev;
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027 int pipe = intel_crtc->pipe;
3028 u32 reg, temp;
3029
3030 /* enable normal train */
3031 reg = FDI_TX_CTL(pipe);
3032 temp = I915_READ(reg);
61e499bf 3033 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3034 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3035 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3036 } else {
3037 temp &= ~FDI_LINK_TRAIN_NONE;
3038 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3039 }
5e84e1a4
ZW
3040 I915_WRITE(reg, temp);
3041
3042 reg = FDI_RX_CTL(pipe);
3043 temp = I915_READ(reg);
3044 if (HAS_PCH_CPT(dev)) {
3045 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3047 } else {
3048 temp &= ~FDI_LINK_TRAIN_NONE;
3049 temp |= FDI_LINK_TRAIN_NONE;
3050 }
3051 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3052
3053 /* wait one idle pattern time */
3054 POSTING_READ(reg);
3055 udelay(1000);
357555c0
JB
3056
3057 /* IVB wants error correction enabled */
3058 if (IS_IVYBRIDGE(dev))
3059 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3060 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3061}
3062
1fbc0d78 3063static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3064{
1fbc0d78 3065 return crtc->base.enabled && crtc->active &&
6e3c9717 3066 crtc->config->has_pch_encoder;
1e833f40
DV
3067}
3068
01a415fd
DV
3069static void ivb_modeset_global_resources(struct drm_device *dev)
3070{
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_crtc *pipe_B_crtc =
3073 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3074 struct intel_crtc *pipe_C_crtc =
3075 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3076 uint32_t temp;
3077
1e833f40
DV
3078 /*
3079 * When everything is off disable fdi C so that we could enable fdi B
3080 * with all lanes. Note that we don't care about enabled pipes without
3081 * an enabled pch encoder.
3082 */
3083 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3084 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3085 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3086 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3087
3088 temp = I915_READ(SOUTH_CHICKEN1);
3089 temp &= ~FDI_BC_BIFURCATION_SELECT;
3090 DRM_DEBUG_KMS("disabling fdi C rx\n");
3091 I915_WRITE(SOUTH_CHICKEN1, temp);
3092 }
3093}
3094
8db9d77b
ZW
3095/* The FDI link training functions for ILK/Ibexpeak. */
3096static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3097{
3098 struct drm_device *dev = crtc->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
5eddb70b 3102 u32 reg, temp, tries;
8db9d77b 3103
1c8562f6 3104 /* FDI needs bits from pipe first */
0fc932b8 3105 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3106
e1a44743
AJ
3107 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108 for train result */
5eddb70b
CW
3109 reg = FDI_RX_IMR(pipe);
3110 temp = I915_READ(reg);
e1a44743
AJ
3111 temp &= ~FDI_RX_SYMBOL_LOCK;
3112 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3113 I915_WRITE(reg, temp);
3114 I915_READ(reg);
e1a44743
AJ
3115 udelay(150);
3116
8db9d77b 3117 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3118 reg = FDI_TX_CTL(pipe);
3119 temp = I915_READ(reg);
627eb5a3 3120 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3121 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3122 temp &= ~FDI_LINK_TRAIN_NONE;
3123 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3124 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3125
5eddb70b
CW
3126 reg = FDI_RX_CTL(pipe);
3127 temp = I915_READ(reg);
8db9d77b
ZW
3128 temp &= ~FDI_LINK_TRAIN_NONE;
3129 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3130 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3131
3132 POSTING_READ(reg);
8db9d77b
ZW
3133 udelay(150);
3134
5b2adf89 3135 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3136 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3137 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3138 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3139
5eddb70b 3140 reg = FDI_RX_IIR(pipe);
e1a44743 3141 for (tries = 0; tries < 5; tries++) {
5eddb70b 3142 temp = I915_READ(reg);
8db9d77b
ZW
3143 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3144
3145 if ((temp & FDI_RX_BIT_LOCK)) {
3146 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3147 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3148 break;
3149 }
8db9d77b 3150 }
e1a44743 3151 if (tries == 5)
5eddb70b 3152 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3153
3154 /* Train 2 */
5eddb70b
CW
3155 reg = FDI_TX_CTL(pipe);
3156 temp = I915_READ(reg);
8db9d77b
ZW
3157 temp &= ~FDI_LINK_TRAIN_NONE;
3158 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3159 I915_WRITE(reg, temp);
8db9d77b 3160
5eddb70b
CW
3161 reg = FDI_RX_CTL(pipe);
3162 temp = I915_READ(reg);
8db9d77b
ZW
3163 temp &= ~FDI_LINK_TRAIN_NONE;
3164 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3165 I915_WRITE(reg, temp);
8db9d77b 3166
5eddb70b
CW
3167 POSTING_READ(reg);
3168 udelay(150);
8db9d77b 3169
5eddb70b 3170 reg = FDI_RX_IIR(pipe);
e1a44743 3171 for (tries = 0; tries < 5; tries++) {
5eddb70b 3172 temp = I915_READ(reg);
8db9d77b
ZW
3173 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3174
3175 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3176 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3177 DRM_DEBUG_KMS("FDI train 2 done.\n");
3178 break;
3179 }
8db9d77b 3180 }
e1a44743 3181 if (tries == 5)
5eddb70b 3182 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3183
3184 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3185
8db9d77b
ZW
3186}
3187
0206e353 3188static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3189 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3190 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3191 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3192 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3193};
3194
3195/* The FDI link training functions for SNB/Cougarpoint. */
3196static void gen6_fdi_link_train(struct drm_crtc *crtc)
3197{
3198 struct drm_device *dev = crtc->dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201 int pipe = intel_crtc->pipe;
fa37d39e 3202 u32 reg, temp, i, retry;
8db9d77b 3203
e1a44743
AJ
3204 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3205 for train result */
5eddb70b
CW
3206 reg = FDI_RX_IMR(pipe);
3207 temp = I915_READ(reg);
e1a44743
AJ
3208 temp &= ~FDI_RX_SYMBOL_LOCK;
3209 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3210 I915_WRITE(reg, temp);
3211
3212 POSTING_READ(reg);
e1a44743
AJ
3213 udelay(150);
3214
8db9d77b 3215 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3216 reg = FDI_TX_CTL(pipe);
3217 temp = I915_READ(reg);
627eb5a3 3218 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3219 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3220 temp &= ~FDI_LINK_TRAIN_NONE;
3221 temp |= FDI_LINK_TRAIN_PATTERN_1;
3222 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3223 /* SNB-B */
3224 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3225 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3226
d74cf324
DV
3227 I915_WRITE(FDI_RX_MISC(pipe),
3228 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3229
5eddb70b
CW
3230 reg = FDI_RX_CTL(pipe);
3231 temp = I915_READ(reg);
8db9d77b
ZW
3232 if (HAS_PCH_CPT(dev)) {
3233 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3234 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3235 } else {
3236 temp &= ~FDI_LINK_TRAIN_NONE;
3237 temp |= FDI_LINK_TRAIN_PATTERN_1;
3238 }
5eddb70b
CW
3239 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3240
3241 POSTING_READ(reg);
8db9d77b
ZW
3242 udelay(150);
3243
0206e353 3244 for (i = 0; i < 4; i++) {
5eddb70b
CW
3245 reg = FDI_TX_CTL(pipe);
3246 temp = I915_READ(reg);
8db9d77b
ZW
3247 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3248 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3249 I915_WRITE(reg, temp);
3250
3251 POSTING_READ(reg);
8db9d77b
ZW
3252 udelay(500);
3253
fa37d39e
SP
3254 for (retry = 0; retry < 5; retry++) {
3255 reg = FDI_RX_IIR(pipe);
3256 temp = I915_READ(reg);
3257 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3258 if (temp & FDI_RX_BIT_LOCK) {
3259 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3260 DRM_DEBUG_KMS("FDI train 1 done.\n");
3261 break;
3262 }
3263 udelay(50);
8db9d77b 3264 }
fa37d39e
SP
3265 if (retry < 5)
3266 break;
8db9d77b
ZW
3267 }
3268 if (i == 4)
5eddb70b 3269 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3270
3271 /* Train 2 */
5eddb70b
CW
3272 reg = FDI_TX_CTL(pipe);
3273 temp = I915_READ(reg);
8db9d77b
ZW
3274 temp &= ~FDI_LINK_TRAIN_NONE;
3275 temp |= FDI_LINK_TRAIN_PATTERN_2;
3276 if (IS_GEN6(dev)) {
3277 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3278 /* SNB-B */
3279 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3280 }
5eddb70b 3281 I915_WRITE(reg, temp);
8db9d77b 3282
5eddb70b
CW
3283 reg = FDI_RX_CTL(pipe);
3284 temp = I915_READ(reg);
8db9d77b
ZW
3285 if (HAS_PCH_CPT(dev)) {
3286 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3287 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3288 } else {
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_2;
3291 }
5eddb70b
CW
3292 I915_WRITE(reg, temp);
3293
3294 POSTING_READ(reg);
8db9d77b
ZW
3295 udelay(150);
3296
0206e353 3297 for (i = 0; i < 4; i++) {
5eddb70b
CW
3298 reg = FDI_TX_CTL(pipe);
3299 temp = I915_READ(reg);
8db9d77b
ZW
3300 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3301 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3302 I915_WRITE(reg, temp);
3303
3304 POSTING_READ(reg);
8db9d77b
ZW
3305 udelay(500);
3306
fa37d39e
SP
3307 for (retry = 0; retry < 5; retry++) {
3308 reg = FDI_RX_IIR(pipe);
3309 temp = I915_READ(reg);
3310 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3311 if (temp & FDI_RX_SYMBOL_LOCK) {
3312 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3313 DRM_DEBUG_KMS("FDI train 2 done.\n");
3314 break;
3315 }
3316 udelay(50);
8db9d77b 3317 }
fa37d39e
SP
3318 if (retry < 5)
3319 break;
8db9d77b
ZW
3320 }
3321 if (i == 4)
5eddb70b 3322 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3323
3324 DRM_DEBUG_KMS("FDI train done.\n");
3325}
3326
357555c0
JB
3327/* Manual link training for Ivy Bridge A0 parts */
3328static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3329{
3330 struct drm_device *dev = crtc->dev;
3331 struct drm_i915_private *dev_priv = dev->dev_private;
3332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333 int pipe = intel_crtc->pipe;
139ccd3f 3334 u32 reg, temp, i, j;
357555c0
JB
3335
3336 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3337 for train result */
3338 reg = FDI_RX_IMR(pipe);
3339 temp = I915_READ(reg);
3340 temp &= ~FDI_RX_SYMBOL_LOCK;
3341 temp &= ~FDI_RX_BIT_LOCK;
3342 I915_WRITE(reg, temp);
3343
3344 POSTING_READ(reg);
3345 udelay(150);
3346
01a415fd
DV
3347 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3348 I915_READ(FDI_RX_IIR(pipe)));
3349
139ccd3f
JB
3350 /* Try each vswing and preemphasis setting twice before moving on */
3351 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3352 /* disable first in case we need to retry */
3353 reg = FDI_TX_CTL(pipe);
3354 temp = I915_READ(reg);
3355 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3356 temp &= ~FDI_TX_ENABLE;
3357 I915_WRITE(reg, temp);
357555c0 3358
139ccd3f
JB
3359 reg = FDI_RX_CTL(pipe);
3360 temp = I915_READ(reg);
3361 temp &= ~FDI_LINK_TRAIN_AUTO;
3362 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3363 temp &= ~FDI_RX_ENABLE;
3364 I915_WRITE(reg, temp);
357555c0 3365
139ccd3f 3366 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3367 reg = FDI_TX_CTL(pipe);
3368 temp = I915_READ(reg);
139ccd3f 3369 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3370 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3371 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3372 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3373 temp |= snb_b_fdi_train_param[j/2];
3374 temp |= FDI_COMPOSITE_SYNC;
3375 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3376
139ccd3f
JB
3377 I915_WRITE(FDI_RX_MISC(pipe),
3378 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3379
139ccd3f 3380 reg = FDI_RX_CTL(pipe);
357555c0 3381 temp = I915_READ(reg);
139ccd3f
JB
3382 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3383 temp |= FDI_COMPOSITE_SYNC;
3384 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3385
139ccd3f
JB
3386 POSTING_READ(reg);
3387 udelay(1); /* should be 0.5us */
357555c0 3388
139ccd3f
JB
3389 for (i = 0; i < 4; i++) {
3390 reg = FDI_RX_IIR(pipe);
3391 temp = I915_READ(reg);
3392 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3393
139ccd3f
JB
3394 if (temp & FDI_RX_BIT_LOCK ||
3395 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3396 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3397 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3398 i);
3399 break;
3400 }
3401 udelay(1); /* should be 0.5us */
3402 }
3403 if (i == 4) {
3404 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3405 continue;
3406 }
357555c0 3407
139ccd3f 3408 /* Train 2 */
357555c0
JB
3409 reg = FDI_TX_CTL(pipe);
3410 temp = I915_READ(reg);
139ccd3f
JB
3411 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3412 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3413 I915_WRITE(reg, temp);
3414
3415 reg = FDI_RX_CTL(pipe);
3416 temp = I915_READ(reg);
3417 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3418 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3419 I915_WRITE(reg, temp);
3420
3421 POSTING_READ(reg);
139ccd3f 3422 udelay(2); /* should be 1.5us */
357555c0 3423
139ccd3f
JB
3424 for (i = 0; i < 4; i++) {
3425 reg = FDI_RX_IIR(pipe);
3426 temp = I915_READ(reg);
3427 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3428
139ccd3f
JB
3429 if (temp & FDI_RX_SYMBOL_LOCK ||
3430 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3431 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3432 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3433 i);
3434 goto train_done;
3435 }
3436 udelay(2); /* should be 1.5us */
357555c0 3437 }
139ccd3f
JB
3438 if (i == 4)
3439 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3440 }
357555c0 3441
139ccd3f 3442train_done:
357555c0
JB
3443 DRM_DEBUG_KMS("FDI train done.\n");
3444}
3445
88cefb6c 3446static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3447{
88cefb6c 3448 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3449 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3450 int pipe = intel_crtc->pipe;
5eddb70b 3451 u32 reg, temp;
79e53945 3452
c64e311e 3453
c98e9dcf 3454 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3455 reg = FDI_RX_CTL(pipe);
3456 temp = I915_READ(reg);
627eb5a3 3457 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3458 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3459 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3460 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3461
3462 POSTING_READ(reg);
c98e9dcf
JB
3463 udelay(200);
3464
3465 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3466 temp = I915_READ(reg);
3467 I915_WRITE(reg, temp | FDI_PCDCLK);
3468
3469 POSTING_READ(reg);
c98e9dcf
JB
3470 udelay(200);
3471
20749730
PZ
3472 /* Enable CPU FDI TX PLL, always on for Ironlake */
3473 reg = FDI_TX_CTL(pipe);
3474 temp = I915_READ(reg);
3475 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3476 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3477
20749730
PZ
3478 POSTING_READ(reg);
3479 udelay(100);
6be4a607 3480 }
0e23b99d
JB
3481}
3482
88cefb6c
DV
3483static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3484{
3485 struct drm_device *dev = intel_crtc->base.dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 int pipe = intel_crtc->pipe;
3488 u32 reg, temp;
3489
3490 /* Switch from PCDclk to Rawclk */
3491 reg = FDI_RX_CTL(pipe);
3492 temp = I915_READ(reg);
3493 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3494
3495 /* Disable CPU FDI TX PLL */
3496 reg = FDI_TX_CTL(pipe);
3497 temp = I915_READ(reg);
3498 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3499
3500 POSTING_READ(reg);
3501 udelay(100);
3502
3503 reg = FDI_RX_CTL(pipe);
3504 temp = I915_READ(reg);
3505 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3506
3507 /* Wait for the clocks to turn off. */
3508 POSTING_READ(reg);
3509 udelay(100);
3510}
3511
0fc932b8
JB
3512static void ironlake_fdi_disable(struct drm_crtc *crtc)
3513{
3514 struct drm_device *dev = crtc->dev;
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517 int pipe = intel_crtc->pipe;
3518 u32 reg, temp;
3519
3520 /* disable CPU FDI tx and PCH FDI rx */
3521 reg = FDI_TX_CTL(pipe);
3522 temp = I915_READ(reg);
3523 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3524 POSTING_READ(reg);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 temp &= ~(0x7 << 16);
dfd07d72 3529 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3530 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3531
3532 POSTING_READ(reg);
3533 udelay(100);
3534
3535 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3536 if (HAS_PCH_IBX(dev))
6f06ce18 3537 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3538
3539 /* still set train pattern 1 */
3540 reg = FDI_TX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_NONE;
3543 temp |= FDI_LINK_TRAIN_PATTERN_1;
3544 I915_WRITE(reg, temp);
3545
3546 reg = FDI_RX_CTL(pipe);
3547 temp = I915_READ(reg);
3548 if (HAS_PCH_CPT(dev)) {
3549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3551 } else {
3552 temp &= ~FDI_LINK_TRAIN_NONE;
3553 temp |= FDI_LINK_TRAIN_PATTERN_1;
3554 }
3555 /* BPC in FDI rx is consistent with that in PIPECONF */
3556 temp &= ~(0x07 << 16);
dfd07d72 3557 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3558 I915_WRITE(reg, temp);
3559
3560 POSTING_READ(reg);
3561 udelay(100);
3562}
3563
5dce5b93
CW
3564bool intel_has_pending_fb_unpin(struct drm_device *dev)
3565{
3566 struct intel_crtc *crtc;
3567
3568 /* Note that we don't need to be called with mode_config.lock here
3569 * as our list of CRTC objects is static for the lifetime of the
3570 * device and so cannot disappear as we iterate. Similarly, we can
3571 * happily treat the predicates as racy, atomic checks as userspace
3572 * cannot claim and pin a new fb without at least acquring the
3573 * struct_mutex and so serialising with us.
3574 */
d3fcc808 3575 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3576 if (atomic_read(&crtc->unpin_work_count) == 0)
3577 continue;
3578
3579 if (crtc->unpin_work)
3580 intel_wait_for_vblank(dev, crtc->pipe);
3581
3582 return true;
3583 }
3584
3585 return false;
3586}
3587
d6bbafa1
CW
3588static void page_flip_completed(struct intel_crtc *intel_crtc)
3589{
3590 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3591 struct intel_unpin_work *work = intel_crtc->unpin_work;
3592
3593 /* ensure that the unpin work is consistent wrt ->pending. */
3594 smp_rmb();
3595 intel_crtc->unpin_work = NULL;
3596
3597 if (work->event)
3598 drm_send_vblank_event(intel_crtc->base.dev,
3599 intel_crtc->pipe,
3600 work->event);
3601
3602 drm_crtc_vblank_put(&intel_crtc->base);
3603
3604 wake_up_all(&dev_priv->pending_flip_queue);
3605 queue_work(dev_priv->wq, &work->work);
3606
3607 trace_i915_flip_complete(intel_crtc->plane,
3608 work->pending_flip_obj);
3609}
3610
46a55d30 3611void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3612{
0f91128d 3613 struct drm_device *dev = crtc->dev;
5bb61643 3614 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3615
2c10d571 3616 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3617 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3618 !intel_crtc_has_pending_flip(crtc),
3619 60*HZ) == 0)) {
3620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3621
5e2d7afc 3622 spin_lock_irq(&dev->event_lock);
9c787942
CW
3623 if (intel_crtc->unpin_work) {
3624 WARN_ONCE(1, "Removing stuck page flip\n");
3625 page_flip_completed(intel_crtc);
3626 }
5e2d7afc 3627 spin_unlock_irq(&dev->event_lock);
9c787942 3628 }
5bb61643 3629
975d568a
CW
3630 if (crtc->primary->fb) {
3631 mutex_lock(&dev->struct_mutex);
3632 intel_finish_fb(crtc->primary->fb);
3633 mutex_unlock(&dev->struct_mutex);
3634 }
e6c3a2a6
CW
3635}
3636
e615efe4
ED
3637/* Program iCLKIP clock to the desired frequency */
3638static void lpt_program_iclkip(struct drm_crtc *crtc)
3639{
3640 struct drm_device *dev = crtc->dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3642 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3643 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3644 u32 temp;
3645
09153000
DV
3646 mutex_lock(&dev_priv->dpio_lock);
3647
e615efe4
ED
3648 /* It is necessary to ungate the pixclk gate prior to programming
3649 * the divisors, and gate it back when it is done.
3650 */
3651 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3652
3653 /* Disable SSCCTL */
3654 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3655 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3656 SBI_SSCCTL_DISABLE,
3657 SBI_ICLK);
e615efe4
ED
3658
3659 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3660 if (clock == 20000) {
e615efe4
ED
3661 auxdiv = 1;
3662 divsel = 0x41;
3663 phaseinc = 0x20;
3664 } else {
3665 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3666 * but the adjusted_mode->crtc_clock in in KHz. To get the
3667 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3668 * convert the virtual clock precision to KHz here for higher
3669 * precision.
3670 */
3671 u32 iclk_virtual_root_freq = 172800 * 1000;
3672 u32 iclk_pi_range = 64;
3673 u32 desired_divisor, msb_divisor_value, pi_value;
3674
12d7ceed 3675 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3676 msb_divisor_value = desired_divisor / iclk_pi_range;
3677 pi_value = desired_divisor % iclk_pi_range;
3678
3679 auxdiv = 0;
3680 divsel = msb_divisor_value - 2;
3681 phaseinc = pi_value;
3682 }
3683
3684 /* This should not happen with any sane values */
3685 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3686 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3687 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3688 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3689
3690 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3691 clock,
e615efe4
ED
3692 auxdiv,
3693 divsel,
3694 phasedir,
3695 phaseinc);
3696
3697 /* Program SSCDIVINTPHASE6 */
988d6ee8 3698 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3699 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3700 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3701 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3702 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3703 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3704 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3705 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3706
3707 /* Program SSCAUXDIV */
988d6ee8 3708 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3709 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3710 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3711 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3712
3713 /* Enable modulator and associated divider */
988d6ee8 3714 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3715 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3716 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3717
3718 /* Wait for initialization time */
3719 udelay(24);
3720
3721 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3722
3723 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3724}
3725
275f01b2
DV
3726static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3727 enum pipe pch_transcoder)
3728{
3729 struct drm_device *dev = crtc->base.dev;
3730 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3731 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3732
3733 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3734 I915_READ(HTOTAL(cpu_transcoder)));
3735 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3736 I915_READ(HBLANK(cpu_transcoder)));
3737 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3738 I915_READ(HSYNC(cpu_transcoder)));
3739
3740 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3741 I915_READ(VTOTAL(cpu_transcoder)));
3742 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3743 I915_READ(VBLANK(cpu_transcoder)));
3744 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3745 I915_READ(VSYNC(cpu_transcoder)));
3746 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3747 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3748}
3749
1fbc0d78
DV
3750static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3751{
3752 struct drm_i915_private *dev_priv = dev->dev_private;
3753 uint32_t temp;
3754
3755 temp = I915_READ(SOUTH_CHICKEN1);
3756 if (temp & FDI_BC_BIFURCATION_SELECT)
3757 return;
3758
3759 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3760 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3761
3762 temp |= FDI_BC_BIFURCATION_SELECT;
3763 DRM_DEBUG_KMS("enabling fdi C rx\n");
3764 I915_WRITE(SOUTH_CHICKEN1, temp);
3765 POSTING_READ(SOUTH_CHICKEN1);
3766}
3767
3768static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3769{
3770 struct drm_device *dev = intel_crtc->base.dev;
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773 switch (intel_crtc->pipe) {
3774 case PIPE_A:
3775 break;
3776 case PIPE_B:
6e3c9717 3777 if (intel_crtc->config->fdi_lanes > 2)
1fbc0d78
DV
3778 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3779 else
3780 cpt_enable_fdi_bc_bifurcation(dev);
3781
3782 break;
3783 case PIPE_C:
3784 cpt_enable_fdi_bc_bifurcation(dev);
3785
3786 break;
3787 default:
3788 BUG();
3789 }
3790}
3791
f67a559d
JB
3792/*
3793 * Enable PCH resources required for PCH ports:
3794 * - PCH PLLs
3795 * - FDI training & RX/TX
3796 * - update transcoder timings
3797 * - DP transcoding bits
3798 * - transcoder
3799 */
3800static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3801{
3802 struct drm_device *dev = crtc->dev;
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3805 int pipe = intel_crtc->pipe;
ee7b9f93 3806 u32 reg, temp;
2c07245f 3807
ab9412ba 3808 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3809
1fbc0d78
DV
3810 if (IS_IVYBRIDGE(dev))
3811 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3812
cd986abb
DV
3813 /* Write the TU size bits before fdi link training, so that error
3814 * detection works. */
3815 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3816 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3817
c98e9dcf 3818 /* For PCH output, training FDI link */
674cf967 3819 dev_priv->display.fdi_link_train(crtc);
2c07245f 3820
3ad8a208
DV
3821 /* We need to program the right clock selection before writing the pixel
3822 * mutliplier into the DPLL. */
303b81e0 3823 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3824 u32 sel;
4b645f14 3825
c98e9dcf 3826 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3827 temp |= TRANS_DPLL_ENABLE(pipe);
3828 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3829 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3830 temp |= sel;
3831 else
3832 temp &= ~sel;
c98e9dcf 3833 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3834 }
5eddb70b 3835
3ad8a208
DV
3836 /* XXX: pch pll's can be enabled any time before we enable the PCH
3837 * transcoder, and we actually should do this to not upset any PCH
3838 * transcoder that already use the clock when we share it.
3839 *
3840 * Note that enable_shared_dpll tries to do the right thing, but
3841 * get_shared_dpll unconditionally resets the pll - we need that to have
3842 * the right LVDS enable sequence. */
85b3894f 3843 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3844
d9b6cb56
JB
3845 /* set transcoder timing, panel must allow it */
3846 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3847 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3848
303b81e0 3849 intel_fdi_normal_train(crtc);
5e84e1a4 3850
c98e9dcf 3851 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 3852 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 3853 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3854 reg = TRANS_DP_CTL(pipe);
3855 temp = I915_READ(reg);
3856 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3857 TRANS_DP_SYNC_MASK |
3858 TRANS_DP_BPC_MASK);
5eddb70b
CW
3859 temp |= (TRANS_DP_OUTPUT_ENABLE |
3860 TRANS_DP_ENH_FRAMING);
9325c9f0 3861 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3862
3863 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3864 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3865 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3866 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3867
3868 switch (intel_trans_dp_port_sel(crtc)) {
3869 case PCH_DP_B:
5eddb70b 3870 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3871 break;
3872 case PCH_DP_C:
5eddb70b 3873 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3874 break;
3875 case PCH_DP_D:
5eddb70b 3876 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3877 break;
3878 default:
e95d41e1 3879 BUG();
32f9d658 3880 }
2c07245f 3881
5eddb70b 3882 I915_WRITE(reg, temp);
6be4a607 3883 }
b52eb4dc 3884
b8a4f404 3885 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3886}
3887
1507e5bd
PZ
3888static void lpt_pch_enable(struct drm_crtc *crtc)
3889{
3890 struct drm_device *dev = crtc->dev;
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 3893 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 3894
ab9412ba 3895 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3896
8c52b5e8 3897 lpt_program_iclkip(crtc);
1507e5bd 3898
0540e488 3899 /* Set transcoder timing. */
275f01b2 3900 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3901
937bb610 3902 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3903}
3904
716c2e55 3905void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3906{
e2b78267 3907 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3908
3909 if (pll == NULL)
3910 return;
3911
3e369b76 3912 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3913 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3914 return;
3915 }
3916
3e369b76
ACO
3917 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3918 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3919 WARN_ON(pll->on);
3920 WARN_ON(pll->active);
3921 }
3922
6e3c9717 3923 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3924}
3925
190f68c5
ACO
3926struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3927 struct intel_crtc_state *crtc_state)
ee7b9f93 3928{
e2b78267 3929 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3930 struct intel_shared_dpll *pll;
e2b78267 3931 enum intel_dpll_id i;
ee7b9f93 3932
98b6bd99
DV
3933 if (HAS_PCH_IBX(dev_priv->dev)) {
3934 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3935 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3936 pll = &dev_priv->shared_dplls[i];
98b6bd99 3937
46edb027
DV
3938 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3939 crtc->base.base.id, pll->name);
98b6bd99 3940
8bd31e67 3941 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3942
98b6bd99
DV
3943 goto found;
3944 }
3945
e72f9fbf
DV
3946 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3947 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3948
3949 /* Only want to check enabled timings first */
8bd31e67 3950 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3951 continue;
3952
190f68c5 3953 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
3954 &pll->new_config->hw_state,
3955 sizeof(pll->new_config->hw_state)) == 0) {
3956 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3957 crtc->base.base.id, pll->name,
8bd31e67
ACO
3958 pll->new_config->crtc_mask,
3959 pll->active);
ee7b9f93
JB
3960 goto found;
3961 }
3962 }
3963
3964 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3965 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3966 pll = &dev_priv->shared_dplls[i];
8bd31e67 3967 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3968 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3969 crtc->base.base.id, pll->name);
ee7b9f93
JB
3970 goto found;
3971 }
3972 }
3973
3974 return NULL;
3975
3976found:
8bd31e67 3977 if (pll->new_config->crtc_mask == 0)
190f68c5 3978 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 3979
190f68c5 3980 crtc_state->shared_dpll = i;
46edb027
DV
3981 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3982 pipe_name(crtc->pipe));
ee7b9f93 3983
8bd31e67 3984 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3985
ee7b9f93
JB
3986 return pll;
3987}
3988
8bd31e67
ACO
3989/**
3990 * intel_shared_dpll_start_config - start a new PLL staged config
3991 * @dev_priv: DRM device
3992 * @clear_pipes: mask of pipes that will have their PLLs freed
3993 *
3994 * Starts a new PLL staged config, copying the current config but
3995 * releasing the references of pipes specified in clear_pipes.
3996 */
3997static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3998 unsigned clear_pipes)
3999{
4000 struct intel_shared_dpll *pll;
4001 enum intel_dpll_id i;
4002
4003 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4004 pll = &dev_priv->shared_dplls[i];
4005
4006 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4007 GFP_KERNEL);
4008 if (!pll->new_config)
4009 goto cleanup;
4010
4011 pll->new_config->crtc_mask &= ~clear_pipes;
4012 }
4013
4014 return 0;
4015
4016cleanup:
4017 while (--i >= 0) {
4018 pll = &dev_priv->shared_dplls[i];
f354d733 4019 kfree(pll->new_config);
8bd31e67
ACO
4020 pll->new_config = NULL;
4021 }
4022
4023 return -ENOMEM;
4024}
4025
4026static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4027{
4028 struct intel_shared_dpll *pll;
4029 enum intel_dpll_id i;
4030
4031 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4032 pll = &dev_priv->shared_dplls[i];
4033
4034 WARN_ON(pll->new_config == &pll->config);
4035
4036 pll->config = *pll->new_config;
4037 kfree(pll->new_config);
4038 pll->new_config = NULL;
4039 }
4040}
4041
4042static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4043{
4044 struct intel_shared_dpll *pll;
4045 enum intel_dpll_id i;
4046
4047 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4048 pll = &dev_priv->shared_dplls[i];
4049
4050 WARN_ON(pll->new_config == &pll->config);
4051
4052 kfree(pll->new_config);
4053 pll->new_config = NULL;
4054 }
4055}
4056
a1520318 4057static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4058{
4059 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4060 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4061 u32 temp;
4062
4063 temp = I915_READ(dslreg);
4064 udelay(500);
4065 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4066 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4067 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4068 }
4069}
4070
bd2e244f
JB
4071static void skylake_pfit_enable(struct intel_crtc *crtc)
4072{
4073 struct drm_device *dev = crtc->base.dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 int pipe = crtc->pipe;
4076
6e3c9717 4077 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4078 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4079 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4080 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4081 }
4082}
4083
b074cec8
JB
4084static void ironlake_pfit_enable(struct intel_crtc *crtc)
4085{
4086 struct drm_device *dev = crtc->base.dev;
4087 struct drm_i915_private *dev_priv = dev->dev_private;
4088 int pipe = crtc->pipe;
4089
6e3c9717 4090 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4091 /* Force use of hard-coded filter coefficients
4092 * as some pre-programmed values are broken,
4093 * e.g. x201.
4094 */
4095 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4096 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4097 PF_PIPE_SEL_IVB(pipe));
4098 else
4099 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4100 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4101 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4102 }
4103}
4104
4a3b8769 4105static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4106{
4107 struct drm_device *dev = crtc->dev;
4108 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4109 struct drm_plane *plane;
bb53d4ae
VS
4110 struct intel_plane *intel_plane;
4111
af2b653b
MR
4112 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4113 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4114 if (intel_plane->pipe == pipe)
4115 intel_plane_restore(&intel_plane->base);
af2b653b 4116 }
bb53d4ae
VS
4117}
4118
4a3b8769 4119static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4120{
4121 struct drm_device *dev = crtc->dev;
4122 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4123 struct drm_plane *plane;
bb53d4ae
VS
4124 struct intel_plane *intel_plane;
4125
af2b653b
MR
4126 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4127 intel_plane = to_intel_plane(plane);
bb53d4ae 4128 if (intel_plane->pipe == pipe)
cf4c7c12 4129 plane->funcs->disable_plane(plane);
af2b653b 4130 }
bb53d4ae
VS
4131}
4132
20bc8673 4133void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4134{
cea165c3
VS
4135 struct drm_device *dev = crtc->base.dev;
4136 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4137
6e3c9717 4138 if (!crtc->config->ips_enabled)
d77e4531
PZ
4139 return;
4140
cea165c3
VS
4141 /* We can only enable IPS after we enable a plane and wait for a vblank */
4142 intel_wait_for_vblank(dev, crtc->pipe);
4143
d77e4531 4144 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4145 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4146 mutex_lock(&dev_priv->rps.hw_lock);
4147 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4148 mutex_unlock(&dev_priv->rps.hw_lock);
4149 /* Quoting Art Runyan: "its not safe to expect any particular
4150 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4151 * mailbox." Moreover, the mailbox may return a bogus state,
4152 * so we need to just enable it and continue on.
2a114cc1
BW
4153 */
4154 } else {
4155 I915_WRITE(IPS_CTL, IPS_ENABLE);
4156 /* The bit only becomes 1 in the next vblank, so this wait here
4157 * is essentially intel_wait_for_vblank. If we don't have this
4158 * and don't wait for vblanks until the end of crtc_enable, then
4159 * the HW state readout code will complain that the expected
4160 * IPS_CTL value is not the one we read. */
4161 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4162 DRM_ERROR("Timed out waiting for IPS enable\n");
4163 }
d77e4531
PZ
4164}
4165
20bc8673 4166void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4167{
4168 struct drm_device *dev = crtc->base.dev;
4169 struct drm_i915_private *dev_priv = dev->dev_private;
4170
6e3c9717 4171 if (!crtc->config->ips_enabled)
d77e4531
PZ
4172 return;
4173
4174 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4175 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4176 mutex_lock(&dev_priv->rps.hw_lock);
4177 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4178 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4179 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4180 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4181 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4182 } else {
2a114cc1 4183 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4184 POSTING_READ(IPS_CTL);
4185 }
d77e4531
PZ
4186
4187 /* We need to wait for a vblank before we can disable the plane. */
4188 intel_wait_for_vblank(dev, crtc->pipe);
4189}
4190
4191/** Loads the palette/gamma unit for the CRTC with the prepared values */
4192static void intel_crtc_load_lut(struct drm_crtc *crtc)
4193{
4194 struct drm_device *dev = crtc->dev;
4195 struct drm_i915_private *dev_priv = dev->dev_private;
4196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4197 enum pipe pipe = intel_crtc->pipe;
4198 int palreg = PALETTE(pipe);
4199 int i;
4200 bool reenable_ips = false;
4201
4202 /* The clocks have to be on to load the palette. */
4203 if (!crtc->enabled || !intel_crtc->active)
4204 return;
4205
4206 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4207 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4208 assert_dsi_pll_enabled(dev_priv);
4209 else
4210 assert_pll_enabled(dev_priv, pipe);
4211 }
4212
4213 /* use legacy palette for Ironlake */
7a1db49a 4214 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4215 palreg = LGC_PALETTE(pipe);
4216
4217 /* Workaround : Do not read or write the pipe palette/gamma data while
4218 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4219 */
6e3c9717 4220 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4221 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4222 GAMMA_MODE_MODE_SPLIT)) {
4223 hsw_disable_ips(intel_crtc);
4224 reenable_ips = true;
4225 }
4226
4227 for (i = 0; i < 256; i++) {
4228 I915_WRITE(palreg + 4 * i,
4229 (intel_crtc->lut_r[i] << 16) |
4230 (intel_crtc->lut_g[i] << 8) |
4231 intel_crtc->lut_b[i]);
4232 }
4233
4234 if (reenable_ips)
4235 hsw_enable_ips(intel_crtc);
4236}
4237
d3eedb1a
VS
4238static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4239{
4240 if (!enable && intel_crtc->overlay) {
4241 struct drm_device *dev = intel_crtc->base.dev;
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243
4244 mutex_lock(&dev->struct_mutex);
4245 dev_priv->mm.interruptible = false;
4246 (void) intel_overlay_switch_off(intel_crtc->overlay);
4247 dev_priv->mm.interruptible = true;
4248 mutex_unlock(&dev->struct_mutex);
4249 }
4250
4251 /* Let userspace switch the overlay on again. In most cases userspace
4252 * has to recompute where to put it anyway.
4253 */
4254}
4255
d3eedb1a 4256static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4257{
4258 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4260 int pipe = intel_crtc->pipe;
a5c4d7bc 4261
fdd508a6 4262 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4263 intel_enable_sprite_planes(crtc);
a5c4d7bc 4264 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4265 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4266
4267 hsw_enable_ips(intel_crtc);
4268
4269 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4270 intel_fbc_update(dev);
a5c4d7bc 4271 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4272
4273 /*
4274 * FIXME: Once we grow proper nuclear flip support out of this we need
4275 * to compute the mask of flip planes precisely. For the time being
4276 * consider this a flip from a NULL plane.
4277 */
4278 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4279}
4280
d3eedb1a 4281static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4282{
4283 struct drm_device *dev = crtc->dev;
4284 struct drm_i915_private *dev_priv = dev->dev_private;
4285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4286 int pipe = intel_crtc->pipe;
a5c4d7bc
VS
4287
4288 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc 4289
e35fef21 4290 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4291 intel_fbc_disable(dev);
a5c4d7bc
VS
4292
4293 hsw_disable_ips(intel_crtc);
4294
d3eedb1a 4295 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4296 intel_crtc_update_cursor(crtc, false);
4a3b8769 4297 intel_disable_sprite_planes(crtc);
fdd508a6 4298 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4299
f99d7069
DV
4300 /*
4301 * FIXME: Once we grow proper nuclear flip support out of this we need
4302 * to compute the mask of flip planes precisely. For the time being
4303 * consider this a flip to a NULL plane.
4304 */
4305 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4306}
4307
f67a559d
JB
4308static void ironlake_crtc_enable(struct drm_crtc *crtc)
4309{
4310 struct drm_device *dev = crtc->dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4313 struct intel_encoder *encoder;
f67a559d 4314 int pipe = intel_crtc->pipe;
f67a559d 4315
08a48469
DV
4316 WARN_ON(!crtc->enabled);
4317
f67a559d
JB
4318 if (intel_crtc->active)
4319 return;
4320
6e3c9717 4321 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4322 intel_prepare_shared_dpll(intel_crtc);
4323
6e3c9717 4324 if (intel_crtc->config->has_dp_encoder)
29407aab
DV
4325 intel_dp_set_m_n(intel_crtc);
4326
4327 intel_set_pipe_timings(intel_crtc);
4328
6e3c9717 4329 if (intel_crtc->config->has_pch_encoder) {
29407aab 4330 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4331 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4332 }
4333
4334 ironlake_set_pipeconf(crtc);
4335
f67a559d 4336 intel_crtc->active = true;
8664281b 4337
a72e4c9f
DV
4338 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4339 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4340
f6736a1a 4341 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4342 if (encoder->pre_enable)
4343 encoder->pre_enable(encoder);
f67a559d 4344
6e3c9717 4345 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4346 /* Note: FDI PLL enabling _must_ be done before we enable the
4347 * cpu pipes, hence this is separate from all the other fdi/pch
4348 * enabling. */
88cefb6c 4349 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4350 } else {
4351 assert_fdi_tx_disabled(dev_priv, pipe);
4352 assert_fdi_rx_disabled(dev_priv, pipe);
4353 }
f67a559d 4354
b074cec8 4355 ironlake_pfit_enable(intel_crtc);
f67a559d 4356
9c54c0dd
JB
4357 /*
4358 * On ILK+ LUT must be loaded before the pipe is running but with
4359 * clocks enabled
4360 */
4361 intel_crtc_load_lut(crtc);
4362
f37fcc2a 4363 intel_update_watermarks(crtc);
e1fdc473 4364 intel_enable_pipe(intel_crtc);
f67a559d 4365
6e3c9717 4366 if (intel_crtc->config->has_pch_encoder)
f67a559d 4367 ironlake_pch_enable(crtc);
c98e9dcf 4368
f9b61ff6
DV
4369 assert_vblank_disabled(crtc);
4370 drm_crtc_vblank_on(crtc);
4371
fa5c73b1
DV
4372 for_each_encoder_on_crtc(dev, crtc, encoder)
4373 encoder->enable(encoder);
61b77ddd
DV
4374
4375 if (HAS_PCH_CPT(dev))
a1520318 4376 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4377
d3eedb1a 4378 intel_crtc_enable_planes(crtc);
6be4a607
JB
4379}
4380
42db64ef
PZ
4381/* IPS only exists on ULT machines and is tied to pipe A. */
4382static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4383{
f5adf94e 4384 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4385}
4386
e4916946
PZ
4387/*
4388 * This implements the workaround described in the "notes" section of the mode
4389 * set sequence documentation. When going from no pipes or single pipe to
4390 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4391 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4392 */
4393static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4394{
4395 struct drm_device *dev = crtc->base.dev;
4396 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4397
4398 /* We want to get the other_active_crtc only if there's only 1 other
4399 * active crtc. */
d3fcc808 4400 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4401 if (!crtc_it->active || crtc_it == crtc)
4402 continue;
4403
4404 if (other_active_crtc)
4405 return;
4406
4407 other_active_crtc = crtc_it;
4408 }
4409 if (!other_active_crtc)
4410 return;
4411
4412 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4414}
4415
4f771f10
PZ
4416static void haswell_crtc_enable(struct drm_crtc *crtc)
4417{
4418 struct drm_device *dev = crtc->dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421 struct intel_encoder *encoder;
4422 int pipe = intel_crtc->pipe;
4f771f10
PZ
4423
4424 WARN_ON(!crtc->enabled);
4425
4426 if (intel_crtc->active)
4427 return;
4428
df8ad70c
DV
4429 if (intel_crtc_to_shared_dpll(intel_crtc))
4430 intel_enable_shared_dpll(intel_crtc);
4431
6e3c9717 4432 if (intel_crtc->config->has_dp_encoder)
229fca97
DV
4433 intel_dp_set_m_n(intel_crtc);
4434
4435 intel_set_pipe_timings(intel_crtc);
4436
6e3c9717
ACO
4437 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4438 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4439 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4440 }
4441
6e3c9717 4442 if (intel_crtc->config->has_pch_encoder) {
229fca97 4443 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4444 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4445 }
4446
4447 haswell_set_pipeconf(crtc);
4448
4449 intel_set_pipe_csc(crtc);
4450
4f771f10 4451 intel_crtc->active = true;
8664281b 4452
a72e4c9f 4453 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4454 for_each_encoder_on_crtc(dev, crtc, encoder)
4455 if (encoder->pre_enable)
4456 encoder->pre_enable(encoder);
4457
6e3c9717 4458 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4459 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4460 true);
4fe9467d
ID
4461 dev_priv->display.fdi_link_train(crtc);
4462 }
4463
1f544388 4464 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4465
bd2e244f
JB
4466 if (IS_SKYLAKE(dev))
4467 skylake_pfit_enable(intel_crtc);
4468 else
4469 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4470
4471 /*
4472 * On ILK+ LUT must be loaded before the pipe is running but with
4473 * clocks enabled
4474 */
4475 intel_crtc_load_lut(crtc);
4476
1f544388 4477 intel_ddi_set_pipe_settings(crtc);
8228c251 4478 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4479
f37fcc2a 4480 intel_update_watermarks(crtc);
e1fdc473 4481 intel_enable_pipe(intel_crtc);
42db64ef 4482
6e3c9717 4483 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4484 lpt_pch_enable(crtc);
4f771f10 4485
6e3c9717 4486 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4487 intel_ddi_set_vc_payload_alloc(crtc, true);
4488
f9b61ff6
DV
4489 assert_vblank_disabled(crtc);
4490 drm_crtc_vblank_on(crtc);
4491
8807e55b 4492 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4493 encoder->enable(encoder);
8807e55b
JN
4494 intel_opregion_notify_encoder(encoder, true);
4495 }
4f771f10 4496
e4916946
PZ
4497 /* If we change the relative order between pipe/planes enabling, we need
4498 * to change the workaround. */
4499 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4500 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4501}
4502
bd2e244f
JB
4503static void skylake_pfit_disable(struct intel_crtc *crtc)
4504{
4505 struct drm_device *dev = crtc->base.dev;
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 int pipe = crtc->pipe;
4508
4509 /* To avoid upsetting the power well on haswell only disable the pfit if
4510 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4511 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4512 I915_WRITE(PS_CTL(pipe), 0);
4513 I915_WRITE(PS_WIN_POS(pipe), 0);
4514 I915_WRITE(PS_WIN_SZ(pipe), 0);
4515 }
4516}
4517
3f8dce3a
DV
4518static void ironlake_pfit_disable(struct intel_crtc *crtc)
4519{
4520 struct drm_device *dev = crtc->base.dev;
4521 struct drm_i915_private *dev_priv = dev->dev_private;
4522 int pipe = crtc->pipe;
4523
4524 /* To avoid upsetting the power well on haswell only disable the pfit if
4525 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4526 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4527 I915_WRITE(PF_CTL(pipe), 0);
4528 I915_WRITE(PF_WIN_POS(pipe), 0);
4529 I915_WRITE(PF_WIN_SZ(pipe), 0);
4530 }
4531}
4532
6be4a607
JB
4533static void ironlake_crtc_disable(struct drm_crtc *crtc)
4534{
4535 struct drm_device *dev = crtc->dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4538 struct intel_encoder *encoder;
6be4a607 4539 int pipe = intel_crtc->pipe;
5eddb70b 4540 u32 reg, temp;
b52eb4dc 4541
f7abfe8b
CW
4542 if (!intel_crtc->active)
4543 return;
4544
d3eedb1a 4545 intel_crtc_disable_planes(crtc);
a5c4d7bc 4546
ea9d758d
DV
4547 for_each_encoder_on_crtc(dev, crtc, encoder)
4548 encoder->disable(encoder);
4549
f9b61ff6
DV
4550 drm_crtc_vblank_off(crtc);
4551 assert_vblank_disabled(crtc);
4552
6e3c9717 4553 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4554 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4555
575f7ab7 4556 intel_disable_pipe(intel_crtc);
32f9d658 4557
3f8dce3a 4558 ironlake_pfit_disable(intel_crtc);
2c07245f 4559
bf49ec8c
DV
4560 for_each_encoder_on_crtc(dev, crtc, encoder)
4561 if (encoder->post_disable)
4562 encoder->post_disable(encoder);
2c07245f 4563
6e3c9717 4564 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4565 ironlake_fdi_disable(crtc);
913d8d11 4566
d925c59a 4567 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4568
d925c59a
DV
4569 if (HAS_PCH_CPT(dev)) {
4570 /* disable TRANS_DP_CTL */
4571 reg = TRANS_DP_CTL(pipe);
4572 temp = I915_READ(reg);
4573 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4574 TRANS_DP_PORT_SEL_MASK);
4575 temp |= TRANS_DP_PORT_SEL_NONE;
4576 I915_WRITE(reg, temp);
4577
4578 /* disable DPLL_SEL */
4579 temp = I915_READ(PCH_DPLL_SEL);
11887397 4580 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4581 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4582 }
e3421a18 4583
d925c59a 4584 /* disable PCH DPLL */
e72f9fbf 4585 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4586
d925c59a
DV
4587 ironlake_fdi_pll_disable(intel_crtc);
4588 }
6b383a7f 4589
f7abfe8b 4590 intel_crtc->active = false;
46ba614c 4591 intel_update_watermarks(crtc);
d1ebd816
BW
4592
4593 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4594 intel_fbc_update(dev);
d1ebd816 4595 mutex_unlock(&dev->struct_mutex);
6be4a607 4596}
1b3c7a47 4597
4f771f10 4598static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4599{
4f771f10
PZ
4600 struct drm_device *dev = crtc->dev;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4603 struct intel_encoder *encoder;
6e3c9717 4604 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4605
4f771f10
PZ
4606 if (!intel_crtc->active)
4607 return;
4608
d3eedb1a 4609 intel_crtc_disable_planes(crtc);
dda9a66a 4610
8807e55b
JN
4611 for_each_encoder_on_crtc(dev, crtc, encoder) {
4612 intel_opregion_notify_encoder(encoder, false);
4f771f10 4613 encoder->disable(encoder);
8807e55b 4614 }
4f771f10 4615
f9b61ff6
DV
4616 drm_crtc_vblank_off(crtc);
4617 assert_vblank_disabled(crtc);
4618
6e3c9717 4619 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4620 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4621 false);
575f7ab7 4622 intel_disable_pipe(intel_crtc);
4f771f10 4623
6e3c9717 4624 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4625 intel_ddi_set_vc_payload_alloc(crtc, false);
4626
ad80a810 4627 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4628
bd2e244f
JB
4629 if (IS_SKYLAKE(dev))
4630 skylake_pfit_disable(intel_crtc);
4631 else
4632 ironlake_pfit_disable(intel_crtc);
4f771f10 4633
1f544388 4634 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4635
6e3c9717 4636 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4637 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4638 intel_ddi_fdi_disable(crtc);
83616634 4639 }
4f771f10 4640
97b040aa
ID
4641 for_each_encoder_on_crtc(dev, crtc, encoder)
4642 if (encoder->post_disable)
4643 encoder->post_disable(encoder);
4644
4f771f10 4645 intel_crtc->active = false;
46ba614c 4646 intel_update_watermarks(crtc);
4f771f10
PZ
4647
4648 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4649 intel_fbc_update(dev);
4f771f10 4650 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4651
4652 if (intel_crtc_to_shared_dpll(intel_crtc))
4653 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4654}
4655
ee7b9f93
JB
4656static void ironlake_crtc_off(struct drm_crtc *crtc)
4657{
4658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4659 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4660}
4661
6441ab5f 4662
2dd24552
JB
4663static void i9xx_pfit_enable(struct intel_crtc *crtc)
4664{
4665 struct drm_device *dev = crtc->base.dev;
4666 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4667 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4668
681a8504 4669 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4670 return;
4671
2dd24552 4672 /*
c0b03411
DV
4673 * The panel fitter should only be adjusted whilst the pipe is disabled,
4674 * according to register description and PRM.
2dd24552 4675 */
c0b03411
DV
4676 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4677 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4678
b074cec8
JB
4679 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4680 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4681
4682 /* Border color in case we don't scale up to the full screen. Black by
4683 * default, change to something else for debugging. */
4684 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4685}
4686
d05410f9
DA
4687static enum intel_display_power_domain port_to_power_domain(enum port port)
4688{
4689 switch (port) {
4690 case PORT_A:
4691 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4692 case PORT_B:
4693 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4694 case PORT_C:
4695 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4696 case PORT_D:
4697 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4698 default:
4699 WARN_ON_ONCE(1);
4700 return POWER_DOMAIN_PORT_OTHER;
4701 }
4702}
4703
77d22dca
ID
4704#define for_each_power_domain(domain, mask) \
4705 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4706 if ((1 << (domain)) & (mask))
4707
319be8ae
ID
4708enum intel_display_power_domain
4709intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4710{
4711 struct drm_device *dev = intel_encoder->base.dev;
4712 struct intel_digital_port *intel_dig_port;
4713
4714 switch (intel_encoder->type) {
4715 case INTEL_OUTPUT_UNKNOWN:
4716 /* Only DDI platforms should ever use this output type */
4717 WARN_ON_ONCE(!HAS_DDI(dev));
4718 case INTEL_OUTPUT_DISPLAYPORT:
4719 case INTEL_OUTPUT_HDMI:
4720 case INTEL_OUTPUT_EDP:
4721 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4722 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4723 case INTEL_OUTPUT_DP_MST:
4724 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4725 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4726 case INTEL_OUTPUT_ANALOG:
4727 return POWER_DOMAIN_PORT_CRT;
4728 case INTEL_OUTPUT_DSI:
4729 return POWER_DOMAIN_PORT_DSI;
4730 default:
4731 return POWER_DOMAIN_PORT_OTHER;
4732 }
4733}
4734
4735static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4736{
319be8ae
ID
4737 struct drm_device *dev = crtc->dev;
4738 struct intel_encoder *intel_encoder;
4739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4741 unsigned long mask;
4742 enum transcoder transcoder;
4743
4744 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4745
4746 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4747 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4748 if (intel_crtc->config->pch_pfit.enabled ||
4749 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4750 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4751
319be8ae
ID
4752 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4753 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4754
77d22dca
ID
4755 return mask;
4756}
4757
77d22dca
ID
4758static void modeset_update_crtc_power_domains(struct drm_device *dev)
4759{
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4762 struct intel_crtc *crtc;
4763
4764 /*
4765 * First get all needed power domains, then put all unneeded, to avoid
4766 * any unnecessary toggling of the power wells.
4767 */
d3fcc808 4768 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4769 enum intel_display_power_domain domain;
4770
4771 if (!crtc->base.enabled)
4772 continue;
4773
319be8ae 4774 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4775
4776 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4777 intel_display_power_get(dev_priv, domain);
4778 }
4779
50f6e502
VS
4780 if (dev_priv->display.modeset_global_resources)
4781 dev_priv->display.modeset_global_resources(dev);
4782
d3fcc808 4783 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4784 enum intel_display_power_domain domain;
4785
4786 for_each_power_domain(domain, crtc->enabled_power_domains)
4787 intel_display_power_put(dev_priv, domain);
4788
4789 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4790 }
4791
4792 intel_display_set_init_power(dev_priv, false);
4793}
4794
dfcab17e 4795/* returns HPLL frequency in kHz */
f8bf63fd 4796static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4797{
586f49dc 4798 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4799
586f49dc
JB
4800 /* Obtain SKU information */
4801 mutex_lock(&dev_priv->dpio_lock);
4802 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4803 CCK_FUSE_HPLL_FREQ_MASK;
4804 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4805
dfcab17e 4806 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4807}
4808
f8bf63fd
VS
4809static void vlv_update_cdclk(struct drm_device *dev)
4810{
4811 struct drm_i915_private *dev_priv = dev->dev_private;
4812
4813 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4814 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4815 dev_priv->vlv_cdclk_freq);
4816
4817 /*
4818 * Program the gmbus_freq based on the cdclk frequency.
4819 * BSpec erroneously claims we should aim for 4MHz, but
4820 * in fact 1MHz is the correct frequency.
4821 */
6be1e3d3 4822 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4823}
4824
30a970c6
JB
4825/* Adjust CDclk dividers to allow high res or save power if possible */
4826static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4827{
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 u32 val, cmd;
4830
d197b7d3 4831 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4832
dfcab17e 4833 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4834 cmd = 2;
dfcab17e 4835 else if (cdclk == 266667)
30a970c6
JB
4836 cmd = 1;
4837 else
4838 cmd = 0;
4839
4840 mutex_lock(&dev_priv->rps.hw_lock);
4841 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4842 val &= ~DSPFREQGUAR_MASK;
4843 val |= (cmd << DSPFREQGUAR_SHIFT);
4844 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4845 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4846 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4847 50)) {
4848 DRM_ERROR("timed out waiting for CDclk change\n");
4849 }
4850 mutex_unlock(&dev_priv->rps.hw_lock);
4851
dfcab17e 4852 if (cdclk == 400000) {
6bcda4f0 4853 u32 divider;
30a970c6 4854
6bcda4f0 4855 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
4856
4857 mutex_lock(&dev_priv->dpio_lock);
4858 /* adjust cdclk divider */
4859 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4860 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4861 val |= divider;
4862 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4863
4864 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4865 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4866 50))
4867 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4868 mutex_unlock(&dev_priv->dpio_lock);
4869 }
4870
4871 mutex_lock(&dev_priv->dpio_lock);
4872 /* adjust self-refresh exit latency value */
4873 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4874 val &= ~0x7f;
4875
4876 /*
4877 * For high bandwidth configs, we set a higher latency in the bunit
4878 * so that the core display fetch happens in time to avoid underruns.
4879 */
dfcab17e 4880 if (cdclk == 400000)
30a970c6
JB
4881 val |= 4500 / 250; /* 4.5 usec */
4882 else
4883 val |= 3000 / 250; /* 3.0 usec */
4884 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4885 mutex_unlock(&dev_priv->dpio_lock);
4886
f8bf63fd 4887 vlv_update_cdclk(dev);
30a970c6
JB
4888}
4889
383c5a6a
VS
4890static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4891{
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 u32 val, cmd;
4894
4895 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4896
4897 switch (cdclk) {
4898 case 400000:
4899 cmd = 3;
4900 break;
4901 case 333333:
4902 case 320000:
4903 cmd = 2;
4904 break;
4905 case 266667:
4906 cmd = 1;
4907 break;
4908 case 200000:
4909 cmd = 0;
4910 break;
4911 default:
5f77eeb0 4912 MISSING_CASE(cdclk);
383c5a6a
VS
4913 return;
4914 }
4915
4916 mutex_lock(&dev_priv->rps.hw_lock);
4917 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4918 val &= ~DSPFREQGUAR_MASK_CHV;
4919 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4920 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4921 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4922 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4923 50)) {
4924 DRM_ERROR("timed out waiting for CDclk change\n");
4925 }
4926 mutex_unlock(&dev_priv->rps.hw_lock);
4927
4928 vlv_update_cdclk(dev);
4929}
4930
30a970c6
JB
4931static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4932 int max_pixclk)
4933{
6bcda4f0 4934 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
29dc7ef3 4935
d49a340d
VS
4936 /* FIXME: Punit isn't quite ready yet */
4937 if (IS_CHERRYVIEW(dev_priv->dev))
4938 return 400000;
4939
30a970c6
JB
4940 /*
4941 * Really only a few cases to deal with, as only 4 CDclks are supported:
4942 * 200MHz
4943 * 267MHz
29dc7ef3 4944 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4945 * 400MHz
4946 * So we check to see whether we're above 90% of the lower bin and
4947 * adjust if needed.
e37c67a1
VS
4948 *
4949 * We seem to get an unstable or solid color picture at 200MHz.
4950 * Not sure what's wrong. For now use 200MHz only when all pipes
4951 * are off.
30a970c6 4952 */
29dc7ef3 4953 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4954 return 400000;
4955 else if (max_pixclk > 266667*9/10)
29dc7ef3 4956 return freq_320;
e37c67a1 4957 else if (max_pixclk > 0)
dfcab17e 4958 return 266667;
e37c67a1
VS
4959 else
4960 return 200000;
30a970c6
JB
4961}
4962
2f2d7aa1
VS
4963/* compute the max pixel clock for new configuration */
4964static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4965{
4966 struct drm_device *dev = dev_priv->dev;
4967 struct intel_crtc *intel_crtc;
4968 int max_pixclk = 0;
4969
d3fcc808 4970 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4971 if (intel_crtc->new_enabled)
30a970c6 4972 max_pixclk = max(max_pixclk,
2d112de7 4973 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
4974 }
4975
4976 return max_pixclk;
4977}
4978
4979static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4980 unsigned *prepare_pipes)
30a970c6
JB
4981{
4982 struct drm_i915_private *dev_priv = dev->dev_private;
4983 struct intel_crtc *intel_crtc;
2f2d7aa1 4984 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4985
d60c4473
ID
4986 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4987 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4988 return;
4989
2f2d7aa1 4990 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4991 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4992 if (intel_crtc->base.enabled)
4993 *prepare_pipes |= (1 << intel_crtc->pipe);
4994}
4995
4996static void valleyview_modeset_global_resources(struct drm_device *dev)
4997{
4998 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4999 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
5000 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5001
383c5a6a 5002 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
5003 /*
5004 * FIXME: We can end up here with all power domains off, yet
5005 * with a CDCLK frequency other than the minimum. To account
5006 * for this take the PIPE-A power domain, which covers the HW
5007 * blocks needed for the following programming. This can be
5008 * removed once it's guaranteed that we get here either with
5009 * the minimum CDCLK set, or the required power domains
5010 * enabled.
5011 */
5012 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5013
383c5a6a
VS
5014 if (IS_CHERRYVIEW(dev))
5015 cherryview_set_cdclk(dev, req_cdclk);
5016 else
5017 valleyview_set_cdclk(dev, req_cdclk);
738c05c0
ID
5018
5019 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5020 }
30a970c6
JB
5021}
5022
89b667f8
JB
5023static void valleyview_crtc_enable(struct drm_crtc *crtc)
5024{
5025 struct drm_device *dev = crtc->dev;
a72e4c9f 5026 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5028 struct intel_encoder *encoder;
5029 int pipe = intel_crtc->pipe;
23538ef1 5030 bool is_dsi;
89b667f8
JB
5031
5032 WARN_ON(!crtc->enabled);
5033
5034 if (intel_crtc->active)
5035 return;
5036
409ee761 5037 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5038
1ae0d137
VS
5039 if (!is_dsi) {
5040 if (IS_CHERRYVIEW(dev))
6e3c9717 5041 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5042 else
6e3c9717 5043 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5044 }
5b18e57c 5045
6e3c9717 5046 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5047 intel_dp_set_m_n(intel_crtc);
5048
5049 intel_set_pipe_timings(intel_crtc);
5050
c14b0485
VS
5051 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5052 struct drm_i915_private *dev_priv = dev->dev_private;
5053
5054 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5055 I915_WRITE(CHV_CANVAS(pipe), 0);
5056 }
5057
5b18e57c
DV
5058 i9xx_set_pipeconf(intel_crtc);
5059
89b667f8 5060 intel_crtc->active = true;
89b667f8 5061
a72e4c9f 5062 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5063
89b667f8
JB
5064 for_each_encoder_on_crtc(dev, crtc, encoder)
5065 if (encoder->pre_pll_enable)
5066 encoder->pre_pll_enable(encoder);
5067
9d556c99
CML
5068 if (!is_dsi) {
5069 if (IS_CHERRYVIEW(dev))
6e3c9717 5070 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5071 else
6e3c9717 5072 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5073 }
89b667f8
JB
5074
5075 for_each_encoder_on_crtc(dev, crtc, encoder)
5076 if (encoder->pre_enable)
5077 encoder->pre_enable(encoder);
5078
2dd24552
JB
5079 i9xx_pfit_enable(intel_crtc);
5080
63cbb074
VS
5081 intel_crtc_load_lut(crtc);
5082
f37fcc2a 5083 intel_update_watermarks(crtc);
e1fdc473 5084 intel_enable_pipe(intel_crtc);
be6a6f8e 5085
4b3a9526
VS
5086 assert_vblank_disabled(crtc);
5087 drm_crtc_vblank_on(crtc);
5088
f9b61ff6
DV
5089 for_each_encoder_on_crtc(dev, crtc, encoder)
5090 encoder->enable(encoder);
5091
9ab0460b 5092 intel_crtc_enable_planes(crtc);
d40d9187 5093
56b80e1f 5094 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5095 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5096}
5097
f13c2ef3
DV
5098static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5099{
5100 struct drm_device *dev = crtc->base.dev;
5101 struct drm_i915_private *dev_priv = dev->dev_private;
5102
6e3c9717
ACO
5103 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5104 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5105}
5106
0b8765c6 5107static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5108{
5109 struct drm_device *dev = crtc->dev;
a72e4c9f 5110 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5112 struct intel_encoder *encoder;
79e53945 5113 int pipe = intel_crtc->pipe;
79e53945 5114
08a48469
DV
5115 WARN_ON(!crtc->enabled);
5116
f7abfe8b
CW
5117 if (intel_crtc->active)
5118 return;
5119
f13c2ef3
DV
5120 i9xx_set_pll_dividers(intel_crtc);
5121
6e3c9717 5122 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5123 intel_dp_set_m_n(intel_crtc);
5124
5125 intel_set_pipe_timings(intel_crtc);
5126
5b18e57c
DV
5127 i9xx_set_pipeconf(intel_crtc);
5128
f7abfe8b 5129 intel_crtc->active = true;
6b383a7f 5130
4a3436e8 5131 if (!IS_GEN2(dev))
a72e4c9f 5132 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5133
9d6d9f19
MK
5134 for_each_encoder_on_crtc(dev, crtc, encoder)
5135 if (encoder->pre_enable)
5136 encoder->pre_enable(encoder);
5137
f6736a1a
DV
5138 i9xx_enable_pll(intel_crtc);
5139
2dd24552
JB
5140 i9xx_pfit_enable(intel_crtc);
5141
63cbb074
VS
5142 intel_crtc_load_lut(crtc);
5143
f37fcc2a 5144 intel_update_watermarks(crtc);
e1fdc473 5145 intel_enable_pipe(intel_crtc);
be6a6f8e 5146
4b3a9526
VS
5147 assert_vblank_disabled(crtc);
5148 drm_crtc_vblank_on(crtc);
5149
f9b61ff6
DV
5150 for_each_encoder_on_crtc(dev, crtc, encoder)
5151 encoder->enable(encoder);
5152
9ab0460b 5153 intel_crtc_enable_planes(crtc);
d40d9187 5154
4a3436e8
VS
5155 /*
5156 * Gen2 reports pipe underruns whenever all planes are disabled.
5157 * So don't enable underrun reporting before at least some planes
5158 * are enabled.
5159 * FIXME: Need to fix the logic to work when we turn off all planes
5160 * but leave the pipe running.
5161 */
5162 if (IS_GEN2(dev))
a72e4c9f 5163 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5164
56b80e1f 5165 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5166 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5167}
79e53945 5168
87476d63
DV
5169static void i9xx_pfit_disable(struct intel_crtc *crtc)
5170{
5171 struct drm_device *dev = crtc->base.dev;
5172 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5173
6e3c9717 5174 if (!crtc->config->gmch_pfit.control)
328d8e82 5175 return;
87476d63 5176
328d8e82 5177 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5178
328d8e82
DV
5179 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5180 I915_READ(PFIT_CONTROL));
5181 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5182}
5183
0b8765c6
JB
5184static void i9xx_crtc_disable(struct drm_crtc *crtc)
5185{
5186 struct drm_device *dev = crtc->dev;
5187 struct drm_i915_private *dev_priv = dev->dev_private;
5188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5189 struct intel_encoder *encoder;
0b8765c6 5190 int pipe = intel_crtc->pipe;
ef9c3aee 5191
f7abfe8b
CW
5192 if (!intel_crtc->active)
5193 return;
5194
4a3436e8
VS
5195 /*
5196 * Gen2 reports pipe underruns whenever all planes are disabled.
5197 * So diasble underrun reporting before all the planes get disabled.
5198 * FIXME: Need to fix the logic to work when we turn off all planes
5199 * but leave the pipe running.
5200 */
5201 if (IS_GEN2(dev))
a72e4c9f 5202 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5203
564ed191
ID
5204 /*
5205 * Vblank time updates from the shadow to live plane control register
5206 * are blocked if the memory self-refresh mode is active at that
5207 * moment. So to make sure the plane gets truly disabled, disable
5208 * first the self-refresh mode. The self-refresh enable bit in turn
5209 * will be checked/applied by the HW only at the next frame start
5210 * event which is after the vblank start event, so we need to have a
5211 * wait-for-vblank between disabling the plane and the pipe.
5212 */
5213 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5214 intel_crtc_disable_planes(crtc);
5215
6304cd91
VS
5216 /*
5217 * On gen2 planes are double buffered but the pipe isn't, so we must
5218 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5219 * We also need to wait on all gmch platforms because of the
5220 * self-refresh mode constraint explained above.
6304cd91 5221 */
564ed191 5222 intel_wait_for_vblank(dev, pipe);
6304cd91 5223
4b3a9526
VS
5224 for_each_encoder_on_crtc(dev, crtc, encoder)
5225 encoder->disable(encoder);
5226
f9b61ff6
DV
5227 drm_crtc_vblank_off(crtc);
5228 assert_vblank_disabled(crtc);
5229
575f7ab7 5230 intel_disable_pipe(intel_crtc);
24a1f16d 5231
87476d63 5232 i9xx_pfit_disable(intel_crtc);
24a1f16d 5233
89b667f8
JB
5234 for_each_encoder_on_crtc(dev, crtc, encoder)
5235 if (encoder->post_disable)
5236 encoder->post_disable(encoder);
5237
409ee761 5238 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5239 if (IS_CHERRYVIEW(dev))
5240 chv_disable_pll(dev_priv, pipe);
5241 else if (IS_VALLEYVIEW(dev))
5242 vlv_disable_pll(dev_priv, pipe);
5243 else
1c4e0274 5244 i9xx_disable_pll(intel_crtc);
076ed3b2 5245 }
0b8765c6 5246
4a3436e8 5247 if (!IS_GEN2(dev))
a72e4c9f 5248 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5249
f7abfe8b 5250 intel_crtc->active = false;
46ba614c 5251 intel_update_watermarks(crtc);
f37fcc2a 5252
efa9624e 5253 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5254 intel_fbc_update(dev);
efa9624e 5255 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5256}
5257
ee7b9f93
JB
5258static void i9xx_crtc_off(struct drm_crtc *crtc)
5259{
5260}
5261
b04c5bd6
BF
5262/* Master function to enable/disable CRTC and corresponding power wells */
5263void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5264{
5265 struct drm_device *dev = crtc->dev;
5266 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5268 enum intel_display_power_domain domain;
5269 unsigned long domains;
976f8a20 5270
0e572fe7
DV
5271 if (enable) {
5272 if (!intel_crtc->active) {
e1e9fb84
DV
5273 domains = get_crtc_power_domains(crtc);
5274 for_each_power_domain(domain, domains)
5275 intel_display_power_get(dev_priv, domain);
5276 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5277
5278 dev_priv->display.crtc_enable(crtc);
5279 }
5280 } else {
5281 if (intel_crtc->active) {
5282 dev_priv->display.crtc_disable(crtc);
5283
e1e9fb84
DV
5284 domains = intel_crtc->enabled_power_domains;
5285 for_each_power_domain(domain, domains)
5286 intel_display_power_put(dev_priv, domain);
5287 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5288 }
5289 }
b04c5bd6
BF
5290}
5291
5292/**
5293 * Sets the power management mode of the pipe and plane.
5294 */
5295void intel_crtc_update_dpms(struct drm_crtc *crtc)
5296{
5297 struct drm_device *dev = crtc->dev;
5298 struct intel_encoder *intel_encoder;
5299 bool enable = false;
5300
5301 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5302 enable |= intel_encoder->connectors_active;
5303
5304 intel_crtc_control(crtc, enable);
976f8a20
DV
5305}
5306
cdd59983
CW
5307static void intel_crtc_disable(struct drm_crtc *crtc)
5308{
cdd59983 5309 struct drm_device *dev = crtc->dev;
976f8a20 5310 struct drm_connector *connector;
ee7b9f93 5311 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5312
976f8a20
DV
5313 /* crtc should still be enabled when we disable it. */
5314 WARN_ON(!crtc->enabled);
5315
5316 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5317 dev_priv->display.off(crtc);
5318
455a6808 5319 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5320
5321 /* Update computed state. */
5322 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5323 if (!connector->encoder || !connector->encoder->crtc)
5324 continue;
5325
5326 if (connector->encoder->crtc != crtc)
5327 continue;
5328
5329 connector->dpms = DRM_MODE_DPMS_OFF;
5330 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5331 }
5332}
5333
ea5b213a 5334void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5335{
4ef69c7a 5336 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5337
ea5b213a
CW
5338 drm_encoder_cleanup(encoder);
5339 kfree(intel_encoder);
7e7d76c3
JB
5340}
5341
9237329d 5342/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5343 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5344 * state of the entire output pipe. */
9237329d 5345static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5346{
5ab432ef
DV
5347 if (mode == DRM_MODE_DPMS_ON) {
5348 encoder->connectors_active = true;
5349
b2cabb0e 5350 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5351 } else {
5352 encoder->connectors_active = false;
5353
b2cabb0e 5354 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5355 }
79e53945
JB
5356}
5357
0a91ca29
DV
5358/* Cross check the actual hw state with our own modeset state tracking (and it's
5359 * internal consistency). */
b980514c 5360static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5361{
0a91ca29
DV
5362 if (connector->get_hw_state(connector)) {
5363 struct intel_encoder *encoder = connector->encoder;
5364 struct drm_crtc *crtc;
5365 bool encoder_enabled;
5366 enum pipe pipe;
5367
5368 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5369 connector->base.base.id,
c23cc417 5370 connector->base.name);
0a91ca29 5371
0e32b39c
DA
5372 /* there is no real hw state for MST connectors */
5373 if (connector->mst_port)
5374 return;
5375
e2c719b7 5376 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5377 "wrong connector dpms state\n");
e2c719b7 5378 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5379 "active connector not linked to encoder\n");
0a91ca29 5380
36cd7444 5381 if (encoder) {
e2c719b7 5382 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5383 "encoder->connectors_active not set\n");
5384
5385 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5386 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5387 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5388 return;
0a91ca29 5389
36cd7444 5390 crtc = encoder->base.crtc;
0a91ca29 5391
e2c719b7
RC
5392 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5393 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5394 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5395 "encoder active on the wrong pipe\n");
5396 }
0a91ca29 5397 }
79e53945
JB
5398}
5399
5ab432ef
DV
5400/* Even simpler default implementation, if there's really no special case to
5401 * consider. */
5402void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5403{
5ab432ef
DV
5404 /* All the simple cases only support two dpms states. */
5405 if (mode != DRM_MODE_DPMS_ON)
5406 mode = DRM_MODE_DPMS_OFF;
d4270e57 5407
5ab432ef
DV
5408 if (mode == connector->dpms)
5409 return;
5410
5411 connector->dpms = mode;
5412
5413 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5414 if (connector->encoder)
5415 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5416
b980514c 5417 intel_modeset_check_state(connector->dev);
79e53945
JB
5418}
5419
f0947c37
DV
5420/* Simple connector->get_hw_state implementation for encoders that support only
5421 * one connector and no cloning and hence the encoder state determines the state
5422 * of the connector. */
5423bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5424{
24929352 5425 enum pipe pipe = 0;
f0947c37 5426 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5427
f0947c37 5428 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5429}
5430
1857e1da 5431static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5432 struct intel_crtc_state *pipe_config)
1857e1da
DV
5433{
5434 struct drm_i915_private *dev_priv = dev->dev_private;
5435 struct intel_crtc *pipe_B_crtc =
5436 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5437
5438 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5439 pipe_name(pipe), pipe_config->fdi_lanes);
5440 if (pipe_config->fdi_lanes > 4) {
5441 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5442 pipe_name(pipe), pipe_config->fdi_lanes);
5443 return false;
5444 }
5445
bafb6553 5446 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5447 if (pipe_config->fdi_lanes > 2) {
5448 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5449 pipe_config->fdi_lanes);
5450 return false;
5451 } else {
5452 return true;
5453 }
5454 }
5455
5456 if (INTEL_INFO(dev)->num_pipes == 2)
5457 return true;
5458
5459 /* Ivybridge 3 pipe is really complicated */
5460 switch (pipe) {
5461 case PIPE_A:
5462 return true;
5463 case PIPE_B:
5464 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5465 pipe_config->fdi_lanes > 2) {
5466 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5467 pipe_name(pipe), pipe_config->fdi_lanes);
5468 return false;
5469 }
5470 return true;
5471 case PIPE_C:
1e833f40 5472 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
6e3c9717 5473 pipe_B_crtc->config->fdi_lanes <= 2) {
1857e1da
DV
5474 if (pipe_config->fdi_lanes > 2) {
5475 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5476 pipe_name(pipe), pipe_config->fdi_lanes);
5477 return false;
5478 }
5479 } else {
5480 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5481 return false;
5482 }
5483 return true;
5484 default:
5485 BUG();
5486 }
5487}
5488
e29c22c0
DV
5489#define RETRY 1
5490static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5491 struct intel_crtc_state *pipe_config)
877d48d5 5492{
1857e1da 5493 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5494 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5495 int lane, link_bw, fdi_dotclock;
e29c22c0 5496 bool setup_ok, needs_recompute = false;
877d48d5 5497
e29c22c0 5498retry:
877d48d5
DV
5499 /* FDI is a binary signal running at ~2.7GHz, encoding
5500 * each output octet as 10 bits. The actual frequency
5501 * is stored as a divider into a 100MHz clock, and the
5502 * mode pixel clock is stored in units of 1KHz.
5503 * Hence the bw of each lane in terms of the mode signal
5504 * is:
5505 */
5506 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5507
241bfc38 5508 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5509
2bd89a07 5510 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5511 pipe_config->pipe_bpp);
5512
5513 pipe_config->fdi_lanes = lane;
5514
2bd89a07 5515 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5516 link_bw, &pipe_config->fdi_m_n);
1857e1da 5517
e29c22c0
DV
5518 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5519 intel_crtc->pipe, pipe_config);
5520 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5521 pipe_config->pipe_bpp -= 2*3;
5522 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5523 pipe_config->pipe_bpp);
5524 needs_recompute = true;
5525 pipe_config->bw_constrained = true;
5526
5527 goto retry;
5528 }
5529
5530 if (needs_recompute)
5531 return RETRY;
5532
5533 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5534}
5535
42db64ef 5536static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5537 struct intel_crtc_state *pipe_config)
42db64ef 5538{
d330a953 5539 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5540 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5541 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5542}
5543
a43f6e0f 5544static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5545 struct intel_crtc_state *pipe_config)
79e53945 5546{
a43f6e0f 5547 struct drm_device *dev = crtc->base.dev;
8bd31e67 5548 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5549 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5550
ad3a4479 5551 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5552 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5553 int clock_limit =
5554 dev_priv->display.get_display_clock_speed(dev);
5555
5556 /*
5557 * Enable pixel doubling when the dot clock
5558 * is > 90% of the (display) core speed.
5559 *
b397c96b
VS
5560 * GDG double wide on either pipe,
5561 * otherwise pipe A only.
cf532bb2 5562 */
b397c96b 5563 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5564 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5565 clock_limit *= 2;
cf532bb2 5566 pipe_config->double_wide = true;
ad3a4479
VS
5567 }
5568
241bfc38 5569 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5570 return -EINVAL;
2c07245f 5571 }
89749350 5572
1d1d0e27
VS
5573 /*
5574 * Pipe horizontal size must be even in:
5575 * - DVO ganged mode
5576 * - LVDS dual channel mode
5577 * - Double wide pipe
5578 */
409ee761 5579 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5580 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5581 pipe_config->pipe_src_w &= ~1;
5582
8693a824
DL
5583 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5584 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5585 */
5586 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5587 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5588 return -EINVAL;
44f46b42 5589
bd080ee5 5590 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5591 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5592 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5593 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5594 * for lvds. */
5595 pipe_config->pipe_bpp = 8*3;
5596 }
5597
f5adf94e 5598 if (HAS_IPS(dev))
a43f6e0f
DV
5599 hsw_compute_ips_config(crtc, pipe_config);
5600
877d48d5 5601 if (pipe_config->has_pch_encoder)
a43f6e0f 5602 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5603
e29c22c0 5604 return 0;
79e53945
JB
5605}
5606
25eb05fc
JB
5607static int valleyview_get_display_clock_speed(struct drm_device *dev)
5608{
d197b7d3 5609 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5610 u32 val;
5611 int divider;
5612
d49a340d
VS
5613 /* FIXME: Punit isn't quite ready yet */
5614 if (IS_CHERRYVIEW(dev))
5615 return 400000;
5616
6bcda4f0
VS
5617 if (dev_priv->hpll_freq == 0)
5618 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5619
d197b7d3
VS
5620 mutex_lock(&dev_priv->dpio_lock);
5621 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5622 mutex_unlock(&dev_priv->dpio_lock);
5623
5624 divider = val & DISPLAY_FREQUENCY_VALUES;
5625
7d007f40
VS
5626 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5627 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5628 "cdclk change in progress\n");
5629
6bcda4f0 5630 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5631}
5632
e70236a8
JB
5633static int i945_get_display_clock_speed(struct drm_device *dev)
5634{
5635 return 400000;
5636}
79e53945 5637
e70236a8 5638static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5639{
e70236a8
JB
5640 return 333000;
5641}
79e53945 5642
e70236a8
JB
5643static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5644{
5645 return 200000;
5646}
79e53945 5647
257a7ffc
DV
5648static int pnv_get_display_clock_speed(struct drm_device *dev)
5649{
5650 u16 gcfgc = 0;
5651
5652 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5653
5654 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5655 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5656 return 267000;
5657 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5658 return 333000;
5659 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5660 return 444000;
5661 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5662 return 200000;
5663 default:
5664 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5665 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5666 return 133000;
5667 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5668 return 167000;
5669 }
5670}
5671
e70236a8
JB
5672static int i915gm_get_display_clock_speed(struct drm_device *dev)
5673{
5674 u16 gcfgc = 0;
79e53945 5675
e70236a8
JB
5676 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5677
5678 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5679 return 133000;
5680 else {
5681 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5682 case GC_DISPLAY_CLOCK_333_MHZ:
5683 return 333000;
5684 default:
5685 case GC_DISPLAY_CLOCK_190_200_MHZ:
5686 return 190000;
79e53945 5687 }
e70236a8
JB
5688 }
5689}
5690
5691static int i865_get_display_clock_speed(struct drm_device *dev)
5692{
5693 return 266000;
5694}
5695
5696static int i855_get_display_clock_speed(struct drm_device *dev)
5697{
5698 u16 hpllcc = 0;
5699 /* Assume that the hardware is in the high speed state. This
5700 * should be the default.
5701 */
5702 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5703 case GC_CLOCK_133_200:
5704 case GC_CLOCK_100_200:
5705 return 200000;
5706 case GC_CLOCK_166_250:
5707 return 250000;
5708 case GC_CLOCK_100_133:
79e53945 5709 return 133000;
e70236a8 5710 }
79e53945 5711
e70236a8
JB
5712 /* Shouldn't happen */
5713 return 0;
5714}
79e53945 5715
e70236a8
JB
5716static int i830_get_display_clock_speed(struct drm_device *dev)
5717{
5718 return 133000;
79e53945
JB
5719}
5720
2c07245f 5721static void
a65851af 5722intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5723{
a65851af
VS
5724 while (*num > DATA_LINK_M_N_MASK ||
5725 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5726 *num >>= 1;
5727 *den >>= 1;
5728 }
5729}
5730
a65851af
VS
5731static void compute_m_n(unsigned int m, unsigned int n,
5732 uint32_t *ret_m, uint32_t *ret_n)
5733{
5734 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5735 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5736 intel_reduce_m_n_ratio(ret_m, ret_n);
5737}
5738
e69d0bc1
DV
5739void
5740intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5741 int pixel_clock, int link_clock,
5742 struct intel_link_m_n *m_n)
2c07245f 5743{
e69d0bc1 5744 m_n->tu = 64;
a65851af
VS
5745
5746 compute_m_n(bits_per_pixel * pixel_clock,
5747 link_clock * nlanes * 8,
5748 &m_n->gmch_m, &m_n->gmch_n);
5749
5750 compute_m_n(pixel_clock, link_clock,
5751 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5752}
5753
a7615030
CW
5754static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5755{
d330a953
JN
5756 if (i915.panel_use_ssc >= 0)
5757 return i915.panel_use_ssc != 0;
41aa3448 5758 return dev_priv->vbt.lvds_use_ssc
435793df 5759 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5760}
5761
409ee761 5762static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5763{
409ee761 5764 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5765 struct drm_i915_private *dev_priv = dev->dev_private;
5766 int refclk;
5767
a0c4da24 5768 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5769 refclk = 100000;
d0737e1d 5770 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5771 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5772 refclk = dev_priv->vbt.lvds_ssc_freq;
5773 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5774 } else if (!IS_GEN2(dev)) {
5775 refclk = 96000;
5776 } else {
5777 refclk = 48000;
5778 }
5779
5780 return refclk;
5781}
5782
7429e9d4 5783static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5784{
7df00d7a 5785 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5786}
f47709a9 5787
7429e9d4
DV
5788static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5789{
5790 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5791}
5792
f47709a9 5793static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 5794 struct intel_crtc_state *crtc_state,
a7516a05
JB
5795 intel_clock_t *reduced_clock)
5796{
f47709a9 5797 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5798 u32 fp, fp2 = 0;
5799
5800 if (IS_PINEVIEW(dev)) {
190f68c5 5801 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5802 if (reduced_clock)
7429e9d4 5803 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5804 } else {
190f68c5 5805 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5806 if (reduced_clock)
7429e9d4 5807 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5808 }
5809
190f68c5 5810 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 5811
f47709a9 5812 crtc->lowfreq_avail = false;
e1f234bd 5813 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5814 reduced_clock && i915.powersave) {
190f68c5 5815 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 5816 crtc->lowfreq_avail = true;
a7516a05 5817 } else {
190f68c5 5818 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
5819 }
5820}
5821
5e69f97f
CML
5822static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5823 pipe)
89b667f8
JB
5824{
5825 u32 reg_val;
5826
5827 /*
5828 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5829 * and set it to a reasonable value instead.
5830 */
ab3c759a 5831 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5832 reg_val &= 0xffffff00;
5833 reg_val |= 0x00000030;
ab3c759a 5834 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5835
ab3c759a 5836 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5837 reg_val &= 0x8cffffff;
5838 reg_val = 0x8c000000;
ab3c759a 5839 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5840
ab3c759a 5841 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5842 reg_val &= 0xffffff00;
ab3c759a 5843 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5844
ab3c759a 5845 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5846 reg_val &= 0x00ffffff;
5847 reg_val |= 0xb0000000;
ab3c759a 5848 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5849}
5850
b551842d
DV
5851static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5852 struct intel_link_m_n *m_n)
5853{
5854 struct drm_device *dev = crtc->base.dev;
5855 struct drm_i915_private *dev_priv = dev->dev_private;
5856 int pipe = crtc->pipe;
5857
e3b95f1e
DV
5858 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5859 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5860 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5861 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5862}
5863
5864static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5865 struct intel_link_m_n *m_n,
5866 struct intel_link_m_n *m2_n2)
b551842d
DV
5867{
5868 struct drm_device *dev = crtc->base.dev;
5869 struct drm_i915_private *dev_priv = dev->dev_private;
5870 int pipe = crtc->pipe;
6e3c9717 5871 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
5872
5873 if (INTEL_INFO(dev)->gen >= 5) {
5874 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5875 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5876 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5877 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5878 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5879 * for gen < 8) and if DRRS is supported (to make sure the
5880 * registers are not unnecessarily accessed).
5881 */
5882 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 5883 crtc->config->has_drrs) {
f769cd24
VK
5884 I915_WRITE(PIPE_DATA_M2(transcoder),
5885 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5886 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5887 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5888 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5889 }
b551842d 5890 } else {
e3b95f1e
DV
5891 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5892 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5893 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5894 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5895 }
5896}
5897
f769cd24 5898void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2 5899{
6e3c9717
ACO
5900 if (crtc->config->has_pch_encoder)
5901 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 5902 else
6e3c9717
ACO
5903 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5904 &crtc->config->dp_m2_n2);
03afc4a2
DV
5905}
5906
d288f65f 5907static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 5908 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
5909{
5910 u32 dpll, dpll_md;
5911
5912 /*
5913 * Enable DPIO clock input. We should never disable the reference
5914 * clock for pipe B, since VGA hotplug / manual detection depends
5915 * on it.
5916 */
5917 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5918 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5919 /* We should never disable this, set it here for state tracking */
5920 if (crtc->pipe == PIPE_B)
5921 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5922 dpll |= DPLL_VCO_ENABLE;
d288f65f 5923 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5924
d288f65f 5925 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5926 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5927 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5928}
5929
d288f65f 5930static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 5931 const struct intel_crtc_state *pipe_config)
a0c4da24 5932{
f47709a9 5933 struct drm_device *dev = crtc->base.dev;
a0c4da24 5934 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5935 int pipe = crtc->pipe;
bdd4b6a6 5936 u32 mdiv;
a0c4da24 5937 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5938 u32 coreclk, reg_val;
a0c4da24 5939
09153000
DV
5940 mutex_lock(&dev_priv->dpio_lock);
5941
d288f65f
VS
5942 bestn = pipe_config->dpll.n;
5943 bestm1 = pipe_config->dpll.m1;
5944 bestm2 = pipe_config->dpll.m2;
5945 bestp1 = pipe_config->dpll.p1;
5946 bestp2 = pipe_config->dpll.p2;
a0c4da24 5947
89b667f8
JB
5948 /* See eDP HDMI DPIO driver vbios notes doc */
5949
5950 /* PLL B needs special handling */
bdd4b6a6 5951 if (pipe == PIPE_B)
5e69f97f 5952 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5953
5954 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5955 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5956
5957 /* Disable target IRef on PLL */
ab3c759a 5958 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5959 reg_val &= 0x00ffffff;
ab3c759a 5960 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5961
5962 /* Disable fast lock */
ab3c759a 5963 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5964
5965 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5966 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5967 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5968 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5969 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5970
5971 /*
5972 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5973 * but we don't support that).
5974 * Note: don't use the DAC post divider as it seems unstable.
5975 */
5976 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5977 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5978
a0c4da24 5979 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5980 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5981
89b667f8 5982 /* Set HBR and RBR LPF coefficients */
d288f65f 5983 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5984 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5985 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5986 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5987 0x009f0003);
89b667f8 5988 else
ab3c759a 5989 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5990 0x00d0000f);
5991
681a8504 5992 if (pipe_config->has_dp_encoder) {
89b667f8 5993 /* Use SSC source */
bdd4b6a6 5994 if (pipe == PIPE_A)
ab3c759a 5995 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5996 0x0df40000);
5997 else
ab3c759a 5998 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5999 0x0df70000);
6000 } else { /* HDMI or VGA */
6001 /* Use bend source */
bdd4b6a6 6002 if (pipe == PIPE_A)
ab3c759a 6003 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6004 0x0df70000);
6005 else
ab3c759a 6006 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6007 0x0df40000);
6008 }
a0c4da24 6009
ab3c759a 6010 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6011 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6012 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6013 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6014 coreclk |= 0x01000000;
ab3c759a 6015 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6016
ab3c759a 6017 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6018 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6019}
6020
d288f65f 6021static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 6022 struct intel_crtc_state *pipe_config)
1ae0d137 6023{
d288f65f 6024 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6025 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6026 DPLL_VCO_ENABLE;
6027 if (crtc->pipe != PIPE_A)
d288f65f 6028 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6029
d288f65f
VS
6030 pipe_config->dpll_hw_state.dpll_md =
6031 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6032}
6033
d288f65f 6034static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6035 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6036{
6037 struct drm_device *dev = crtc->base.dev;
6038 struct drm_i915_private *dev_priv = dev->dev_private;
6039 int pipe = crtc->pipe;
6040 int dpll_reg = DPLL(crtc->pipe);
6041 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 6042 u32 loopfilter, intcoeff;
9d556c99
CML
6043 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6044 int refclk;
6045
d288f65f
VS
6046 bestn = pipe_config->dpll.n;
6047 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6048 bestm1 = pipe_config->dpll.m1;
6049 bestm2 = pipe_config->dpll.m2 >> 22;
6050 bestp1 = pipe_config->dpll.p1;
6051 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
6052
6053 /*
6054 * Enable Refclk and SSC
6055 */
a11b0703 6056 I915_WRITE(dpll_reg,
d288f65f 6057 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6058
6059 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6060
9d556c99
CML
6061 /* p1 and p2 divider */
6062 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6063 5 << DPIO_CHV_S1_DIV_SHIFT |
6064 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6065 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6066 1 << DPIO_CHV_K_DIV_SHIFT);
6067
6068 /* Feedback post-divider - m2 */
6069 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6070
6071 /* Feedback refclk divider - n and m1 */
6072 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6073 DPIO_CHV_M1_DIV_BY_2 |
6074 1 << DPIO_CHV_N_DIV_SHIFT);
6075
6076 /* M2 fraction division */
6077 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6078
6079 /* M2 fraction division enable */
6080 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6081 DPIO_CHV_FRAC_DIV_EN |
6082 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6083
6084 /* Loop filter */
409ee761 6085 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6086 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6087 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6088 if (refclk == 100000)
6089 intcoeff = 11;
6090 else if (refclk == 38400)
6091 intcoeff = 10;
6092 else
6093 intcoeff = 9;
6094 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6095 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6096
6097 /* AFC Recal */
6098 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6099 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6100 DPIO_AFC_RECAL);
6101
6102 mutex_unlock(&dev_priv->dpio_lock);
6103}
6104
d288f65f
VS
6105/**
6106 * vlv_force_pll_on - forcibly enable just the PLL
6107 * @dev_priv: i915 private structure
6108 * @pipe: pipe PLL to enable
6109 * @dpll: PLL configuration
6110 *
6111 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6112 * in cases where we need the PLL enabled even when @pipe is not going to
6113 * be enabled.
6114 */
6115void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6116 const struct dpll *dpll)
6117{
6118 struct intel_crtc *crtc =
6119 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6120 struct intel_crtc_state pipe_config = {
d288f65f
VS
6121 .pixel_multiplier = 1,
6122 .dpll = *dpll,
6123 };
6124
6125 if (IS_CHERRYVIEW(dev)) {
6126 chv_update_pll(crtc, &pipe_config);
6127 chv_prepare_pll(crtc, &pipe_config);
6128 chv_enable_pll(crtc, &pipe_config);
6129 } else {
6130 vlv_update_pll(crtc, &pipe_config);
6131 vlv_prepare_pll(crtc, &pipe_config);
6132 vlv_enable_pll(crtc, &pipe_config);
6133 }
6134}
6135
6136/**
6137 * vlv_force_pll_off - forcibly disable just the PLL
6138 * @dev_priv: i915 private structure
6139 * @pipe: pipe PLL to disable
6140 *
6141 * Disable the PLL for @pipe. To be used in cases where we need
6142 * the PLL enabled even when @pipe is not going to be enabled.
6143 */
6144void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6145{
6146 if (IS_CHERRYVIEW(dev))
6147 chv_disable_pll(to_i915(dev), pipe);
6148 else
6149 vlv_disable_pll(to_i915(dev), pipe);
6150}
6151
f47709a9 6152static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6153 struct intel_crtc_state *crtc_state,
f47709a9 6154 intel_clock_t *reduced_clock,
eb1cbe48
DV
6155 int num_connectors)
6156{
f47709a9 6157 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6158 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6159 u32 dpll;
6160 bool is_sdvo;
190f68c5 6161 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6162
190f68c5 6163 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6164
d0737e1d
ACO
6165 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6166 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6167
6168 dpll = DPLL_VGA_MODE_DIS;
6169
d0737e1d 6170 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6171 dpll |= DPLLB_MODE_LVDS;
6172 else
6173 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6174
ef1b460d 6175 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6176 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6177 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6178 }
198a037f
DV
6179
6180 if (is_sdvo)
4a33e48d 6181 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6182
190f68c5 6183 if (crtc_state->has_dp_encoder)
4a33e48d 6184 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6185
6186 /* compute bitmask from p1 value */
6187 if (IS_PINEVIEW(dev))
6188 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6189 else {
6190 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6191 if (IS_G4X(dev) && reduced_clock)
6192 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6193 }
6194 switch (clock->p2) {
6195 case 5:
6196 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6197 break;
6198 case 7:
6199 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6200 break;
6201 case 10:
6202 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6203 break;
6204 case 14:
6205 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6206 break;
6207 }
6208 if (INTEL_INFO(dev)->gen >= 4)
6209 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6210
190f68c5 6211 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6212 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6213 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6214 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6215 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6216 else
6217 dpll |= PLL_REF_INPUT_DREFCLK;
6218
6219 dpll |= DPLL_VCO_ENABLE;
190f68c5 6220 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6221
eb1cbe48 6222 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6223 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6224 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6225 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6226 }
6227}
6228
f47709a9 6229static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6230 struct intel_crtc_state *crtc_state,
f47709a9 6231 intel_clock_t *reduced_clock,
eb1cbe48
DV
6232 int num_connectors)
6233{
f47709a9 6234 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6235 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6236 u32 dpll;
190f68c5 6237 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6238
190f68c5 6239 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6240
eb1cbe48
DV
6241 dpll = DPLL_VGA_MODE_DIS;
6242
d0737e1d 6243 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6244 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6245 } else {
6246 if (clock->p1 == 2)
6247 dpll |= PLL_P1_DIVIDE_BY_TWO;
6248 else
6249 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6250 if (clock->p2 == 4)
6251 dpll |= PLL_P2_DIVIDE_BY_4;
6252 }
6253
d0737e1d 6254 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6255 dpll |= DPLL_DVO_2X_MODE;
6256
d0737e1d 6257 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6258 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6259 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6260 else
6261 dpll |= PLL_REF_INPUT_DREFCLK;
6262
6263 dpll |= DPLL_VCO_ENABLE;
190f68c5 6264 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6265}
6266
8a654f3b 6267static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6268{
6269 struct drm_device *dev = intel_crtc->base.dev;
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6272 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6273 struct drm_display_mode *adjusted_mode =
6e3c9717 6274 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6275 uint32_t crtc_vtotal, crtc_vblank_end;
6276 int vsyncshift = 0;
4d8a62ea
DV
6277
6278 /* We need to be careful not to changed the adjusted mode, for otherwise
6279 * the hw state checker will get angry at the mismatch. */
6280 crtc_vtotal = adjusted_mode->crtc_vtotal;
6281 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6282
609aeaca 6283 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6284 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6285 crtc_vtotal -= 1;
6286 crtc_vblank_end -= 1;
609aeaca 6287
409ee761 6288 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6289 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6290 else
6291 vsyncshift = adjusted_mode->crtc_hsync_start -
6292 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6293 if (vsyncshift < 0)
6294 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6295 }
6296
6297 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6298 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6299
fe2b8f9d 6300 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6301 (adjusted_mode->crtc_hdisplay - 1) |
6302 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6303 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6304 (adjusted_mode->crtc_hblank_start - 1) |
6305 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6306 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6307 (adjusted_mode->crtc_hsync_start - 1) |
6308 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6309
fe2b8f9d 6310 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6311 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6312 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6313 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6314 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6315 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6316 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6317 (adjusted_mode->crtc_vsync_start - 1) |
6318 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6319
b5e508d4
PZ
6320 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6321 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6322 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6323 * bits. */
6324 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6325 (pipe == PIPE_B || pipe == PIPE_C))
6326 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6327
b0e77b9c
PZ
6328 /* pipesrc controls the size that is scaled from, which should
6329 * always be the user's requested size.
6330 */
6331 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6332 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6333 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6334}
6335
1bd1bd80 6336static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6337 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6338{
6339 struct drm_device *dev = crtc->base.dev;
6340 struct drm_i915_private *dev_priv = dev->dev_private;
6341 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6342 uint32_t tmp;
6343
6344 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6345 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6346 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6347 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6348 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6349 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6350 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6351 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6352 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6353
6354 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6355 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6356 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6357 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6358 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6359 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6360 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6361 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6362 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6363
6364 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6365 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6366 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6367 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6368 }
6369
6370 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6371 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6372 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6373
2d112de7
ACO
6374 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6375 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6376}
6377
f6a83288 6378void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6379 struct intel_crtc_state *pipe_config)
babea61d 6380{
2d112de7
ACO
6381 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6382 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6383 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6384 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6385
2d112de7
ACO
6386 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6387 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6388 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6389 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6390
2d112de7 6391 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6392
2d112de7
ACO
6393 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6394 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6395}
6396
84b046f3
DV
6397static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6398{
6399 struct drm_device *dev = intel_crtc->base.dev;
6400 struct drm_i915_private *dev_priv = dev->dev_private;
6401 uint32_t pipeconf;
6402
9f11a9e4 6403 pipeconf = 0;
84b046f3 6404
b6b5d049
VS
6405 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6406 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6407 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6408
6e3c9717 6409 if (intel_crtc->config->double_wide)
cf532bb2 6410 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6411
ff9ce46e
DV
6412 /* only g4x and later have fancy bpc/dither controls */
6413 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6414 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6415 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6416 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6417 PIPECONF_DITHER_TYPE_SP;
84b046f3 6418
6e3c9717 6419 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6420 case 18:
6421 pipeconf |= PIPECONF_6BPC;
6422 break;
6423 case 24:
6424 pipeconf |= PIPECONF_8BPC;
6425 break;
6426 case 30:
6427 pipeconf |= PIPECONF_10BPC;
6428 break;
6429 default:
6430 /* Case prevented by intel_choose_pipe_bpp_dither. */
6431 BUG();
84b046f3
DV
6432 }
6433 }
6434
6435 if (HAS_PIPE_CXSR(dev)) {
6436 if (intel_crtc->lowfreq_avail) {
6437 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6438 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6439 } else {
6440 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6441 }
6442 }
6443
6e3c9717 6444 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6445 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6446 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6447 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6448 else
6449 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6450 } else
84b046f3
DV
6451 pipeconf |= PIPECONF_PROGRESSIVE;
6452
6e3c9717 6453 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6454 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6455
84b046f3
DV
6456 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6457 POSTING_READ(PIPECONF(intel_crtc->pipe));
6458}
6459
190f68c5
ACO
6460static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6461 struct intel_crtc_state *crtc_state)
79e53945 6462{
c7653199 6463 struct drm_device *dev = crtc->base.dev;
79e53945 6464 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6465 int refclk, num_connectors = 0;
652c393a 6466 intel_clock_t clock, reduced_clock;
a16af721 6467 bool ok, has_reduced_clock = false;
e9fd1c02 6468 bool is_lvds = false, is_dsi = false;
5eddb70b 6469 struct intel_encoder *encoder;
d4906093 6470 const intel_limit_t *limit;
79e53945 6471
d0737e1d
ACO
6472 for_each_intel_encoder(dev, encoder) {
6473 if (encoder->new_crtc != crtc)
6474 continue;
6475
5eddb70b 6476 switch (encoder->type) {
79e53945
JB
6477 case INTEL_OUTPUT_LVDS:
6478 is_lvds = true;
6479 break;
e9fd1c02
JN
6480 case INTEL_OUTPUT_DSI:
6481 is_dsi = true;
6482 break;
6847d71b
PZ
6483 default:
6484 break;
79e53945 6485 }
43565a06 6486
c751ce4f 6487 num_connectors++;
79e53945
JB
6488 }
6489
f2335330 6490 if (is_dsi)
5b18e57c 6491 return 0;
f2335330 6492
190f68c5 6493 if (!crtc_state->clock_set) {
409ee761 6494 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6495
e9fd1c02
JN
6496 /*
6497 * Returns a set of divisors for the desired target clock with
6498 * the given refclk, or FALSE. The returned values represent
6499 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6500 * 2) / p1 / p2.
6501 */
409ee761 6502 limit = intel_limit(crtc, refclk);
c7653199 6503 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6504 crtc_state->port_clock,
e9fd1c02 6505 refclk, NULL, &clock);
f2335330 6506 if (!ok) {
e9fd1c02
JN
6507 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6508 return -EINVAL;
6509 }
79e53945 6510
f2335330
JN
6511 if (is_lvds && dev_priv->lvds_downclock_avail) {
6512 /*
6513 * Ensure we match the reduced clock's P to the target
6514 * clock. If the clocks don't match, we can't switch
6515 * the display clock by using the FP0/FP1. In such case
6516 * we will disable the LVDS downclock feature.
6517 */
6518 has_reduced_clock =
c7653199 6519 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6520 dev_priv->lvds_downclock,
6521 refclk, &clock,
6522 &reduced_clock);
6523 }
6524 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6525 crtc_state->dpll.n = clock.n;
6526 crtc_state->dpll.m1 = clock.m1;
6527 crtc_state->dpll.m2 = clock.m2;
6528 crtc_state->dpll.p1 = clock.p1;
6529 crtc_state->dpll.p2 = clock.p2;
f47709a9 6530 }
7026d4ac 6531
e9fd1c02 6532 if (IS_GEN2(dev)) {
190f68c5 6533 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6534 has_reduced_clock ? &reduced_clock : NULL,
6535 num_connectors);
9d556c99 6536 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6537 chv_update_pll(crtc, crtc_state);
e9fd1c02 6538 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6539 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6540 } else {
190f68c5 6541 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6542 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6543 num_connectors);
e9fd1c02 6544 }
79e53945 6545
c8f7a0db 6546 return 0;
f564048e
EA
6547}
6548
2fa2fe9a 6549static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6550 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6551{
6552 struct drm_device *dev = crtc->base.dev;
6553 struct drm_i915_private *dev_priv = dev->dev_private;
6554 uint32_t tmp;
6555
dc9e7dec
VS
6556 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6557 return;
6558
2fa2fe9a 6559 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6560 if (!(tmp & PFIT_ENABLE))
6561 return;
2fa2fe9a 6562
06922821 6563 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6564 if (INTEL_INFO(dev)->gen < 4) {
6565 if (crtc->pipe != PIPE_B)
6566 return;
2fa2fe9a
DV
6567 } else {
6568 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6569 return;
6570 }
6571
06922821 6572 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6573 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6574 if (INTEL_INFO(dev)->gen < 5)
6575 pipe_config->gmch_pfit.lvds_border_bits =
6576 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6577}
6578
acbec814 6579static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6580 struct intel_crtc_state *pipe_config)
acbec814
JB
6581{
6582 struct drm_device *dev = crtc->base.dev;
6583 struct drm_i915_private *dev_priv = dev->dev_private;
6584 int pipe = pipe_config->cpu_transcoder;
6585 intel_clock_t clock;
6586 u32 mdiv;
662c6ecb 6587 int refclk = 100000;
acbec814 6588
f573de5a
SK
6589 /* In case of MIPI DPLL will not even be used */
6590 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6591 return;
6592
acbec814 6593 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6594 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6595 mutex_unlock(&dev_priv->dpio_lock);
6596
6597 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6598 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6599 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6600 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6601 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6602
f646628b 6603 vlv_clock(refclk, &clock);
acbec814 6604
f646628b
VS
6605 /* clock.dot is the fast clock */
6606 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6607}
6608
5724dbd1
DL
6609static void
6610i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6611 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6612{
6613 struct drm_device *dev = crtc->base.dev;
6614 struct drm_i915_private *dev_priv = dev->dev_private;
6615 u32 val, base, offset;
6616 int pipe = crtc->pipe, plane = crtc->plane;
6617 int fourcc, pixel_format;
6618 int aligned_height;
b113d5ee 6619 struct drm_framebuffer *fb;
1b842c89 6620 struct intel_framebuffer *intel_fb;
1ad292b5 6621
42a7b088
DL
6622 val = I915_READ(DSPCNTR(plane));
6623 if (!(val & DISPLAY_PLANE_ENABLE))
6624 return;
6625
d9806c9f 6626 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6627 if (!intel_fb) {
1ad292b5
JB
6628 DRM_DEBUG_KMS("failed to alloc fb\n");
6629 return;
6630 }
6631
1b842c89
DL
6632 fb = &intel_fb->base;
6633
18c5247e
DV
6634 if (INTEL_INFO(dev)->gen >= 4) {
6635 if (val & DISPPLANE_TILED) {
49af449b 6636 plane_config->tiling = I915_TILING_X;
18c5247e
DV
6637 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6638 }
6639 }
1ad292b5
JB
6640
6641 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6642 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6643 fb->pixel_format = fourcc;
6644 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6645
6646 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6647 if (plane_config->tiling)
1ad292b5
JB
6648 offset = I915_READ(DSPTILEOFF(plane));
6649 else
6650 offset = I915_READ(DSPLINOFF(plane));
6651 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6652 } else {
6653 base = I915_READ(DSPADDR(plane));
6654 }
6655 plane_config->base = base;
6656
6657 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6658 fb->width = ((val >> 16) & 0xfff) + 1;
6659 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6660
6661 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6662 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6663
b113d5ee 6664 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
6665 fb->pixel_format,
6666 fb->modifier[0]);
1ad292b5 6667
b113d5ee 6668 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
1ad292b5 6669
2844a921
DL
6670 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6671 pipe_name(pipe), plane, fb->width, fb->height,
6672 fb->bits_per_pixel, base, fb->pitches[0],
6673 plane_config->size);
1ad292b5 6674
2d14030b 6675 plane_config->fb = intel_fb;
1ad292b5
JB
6676}
6677
70b23a98 6678static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6679 struct intel_crtc_state *pipe_config)
70b23a98
VS
6680{
6681 struct drm_device *dev = crtc->base.dev;
6682 struct drm_i915_private *dev_priv = dev->dev_private;
6683 int pipe = pipe_config->cpu_transcoder;
6684 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6685 intel_clock_t clock;
6686 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6687 int refclk = 100000;
6688
6689 mutex_lock(&dev_priv->dpio_lock);
6690 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6691 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6692 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6693 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6694 mutex_unlock(&dev_priv->dpio_lock);
6695
6696 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6697 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6698 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6699 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6700 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6701
6702 chv_clock(refclk, &clock);
6703
6704 /* clock.dot is the fast clock */
6705 pipe_config->port_clock = clock.dot / 5;
6706}
6707
0e8ffe1b 6708static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6709 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6710{
6711 struct drm_device *dev = crtc->base.dev;
6712 struct drm_i915_private *dev_priv = dev->dev_private;
6713 uint32_t tmp;
6714
f458ebbc
DV
6715 if (!intel_display_power_is_enabled(dev_priv,
6716 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6717 return false;
6718
e143a21c 6719 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6720 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6721
0e8ffe1b
DV
6722 tmp = I915_READ(PIPECONF(crtc->pipe));
6723 if (!(tmp & PIPECONF_ENABLE))
6724 return false;
6725
42571aef
VS
6726 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6727 switch (tmp & PIPECONF_BPC_MASK) {
6728 case PIPECONF_6BPC:
6729 pipe_config->pipe_bpp = 18;
6730 break;
6731 case PIPECONF_8BPC:
6732 pipe_config->pipe_bpp = 24;
6733 break;
6734 case PIPECONF_10BPC:
6735 pipe_config->pipe_bpp = 30;
6736 break;
6737 default:
6738 break;
6739 }
6740 }
6741
b5a9fa09
DV
6742 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6743 pipe_config->limited_color_range = true;
6744
282740f7
VS
6745 if (INTEL_INFO(dev)->gen < 4)
6746 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6747
1bd1bd80
DV
6748 intel_get_pipe_timings(crtc, pipe_config);
6749
2fa2fe9a
DV
6750 i9xx_get_pfit_config(crtc, pipe_config);
6751
6c49f241
DV
6752 if (INTEL_INFO(dev)->gen >= 4) {
6753 tmp = I915_READ(DPLL_MD(crtc->pipe));
6754 pipe_config->pixel_multiplier =
6755 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6756 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6757 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6758 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6759 tmp = I915_READ(DPLL(crtc->pipe));
6760 pipe_config->pixel_multiplier =
6761 ((tmp & SDVO_MULTIPLIER_MASK)
6762 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6763 } else {
6764 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6765 * port and will be fixed up in the encoder->get_config
6766 * function. */
6767 pipe_config->pixel_multiplier = 1;
6768 }
8bcc2795
DV
6769 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6770 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6771 /*
6772 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6773 * on 830. Filter it out here so that we don't
6774 * report errors due to that.
6775 */
6776 if (IS_I830(dev))
6777 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6778
8bcc2795
DV
6779 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6780 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6781 } else {
6782 /* Mask out read-only status bits. */
6783 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6784 DPLL_PORTC_READY_MASK |
6785 DPLL_PORTB_READY_MASK);
8bcc2795 6786 }
6c49f241 6787
70b23a98
VS
6788 if (IS_CHERRYVIEW(dev))
6789 chv_crtc_clock_get(crtc, pipe_config);
6790 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6791 vlv_crtc_clock_get(crtc, pipe_config);
6792 else
6793 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6794
0e8ffe1b
DV
6795 return true;
6796}
6797
dde86e2d 6798static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6799{
6800 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6801 struct intel_encoder *encoder;
74cfd7ac 6802 u32 val, final;
13d83a67 6803 bool has_lvds = false;
199e5d79 6804 bool has_cpu_edp = false;
199e5d79 6805 bool has_panel = false;
99eb6a01
KP
6806 bool has_ck505 = false;
6807 bool can_ssc = false;
13d83a67
JB
6808
6809 /* We need to take the global config into account */
b2784e15 6810 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6811 switch (encoder->type) {
6812 case INTEL_OUTPUT_LVDS:
6813 has_panel = true;
6814 has_lvds = true;
6815 break;
6816 case INTEL_OUTPUT_EDP:
6817 has_panel = true;
2de6905f 6818 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6819 has_cpu_edp = true;
6820 break;
6847d71b
PZ
6821 default:
6822 break;
13d83a67
JB
6823 }
6824 }
6825
99eb6a01 6826 if (HAS_PCH_IBX(dev)) {
41aa3448 6827 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6828 can_ssc = has_ck505;
6829 } else {
6830 has_ck505 = false;
6831 can_ssc = true;
6832 }
6833
2de6905f
ID
6834 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6835 has_panel, has_lvds, has_ck505);
13d83a67
JB
6836
6837 /* Ironlake: try to setup display ref clock before DPLL
6838 * enabling. This is only under driver's control after
6839 * PCH B stepping, previous chipset stepping should be
6840 * ignoring this setting.
6841 */
74cfd7ac
CW
6842 val = I915_READ(PCH_DREF_CONTROL);
6843
6844 /* As we must carefully and slowly disable/enable each source in turn,
6845 * compute the final state we want first and check if we need to
6846 * make any changes at all.
6847 */
6848 final = val;
6849 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6850 if (has_ck505)
6851 final |= DREF_NONSPREAD_CK505_ENABLE;
6852 else
6853 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6854
6855 final &= ~DREF_SSC_SOURCE_MASK;
6856 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6857 final &= ~DREF_SSC1_ENABLE;
6858
6859 if (has_panel) {
6860 final |= DREF_SSC_SOURCE_ENABLE;
6861
6862 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6863 final |= DREF_SSC1_ENABLE;
6864
6865 if (has_cpu_edp) {
6866 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6867 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6868 else
6869 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6870 } else
6871 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6872 } else {
6873 final |= DREF_SSC_SOURCE_DISABLE;
6874 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6875 }
6876
6877 if (final == val)
6878 return;
6879
13d83a67 6880 /* Always enable nonspread source */
74cfd7ac 6881 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6882
99eb6a01 6883 if (has_ck505)
74cfd7ac 6884 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6885 else
74cfd7ac 6886 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6887
199e5d79 6888 if (has_panel) {
74cfd7ac
CW
6889 val &= ~DREF_SSC_SOURCE_MASK;
6890 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6891
199e5d79 6892 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6893 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6894 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6895 val |= DREF_SSC1_ENABLE;
e77166b5 6896 } else
74cfd7ac 6897 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6898
6899 /* Get SSC going before enabling the outputs */
74cfd7ac 6900 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6901 POSTING_READ(PCH_DREF_CONTROL);
6902 udelay(200);
6903
74cfd7ac 6904 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6905
6906 /* Enable CPU source on CPU attached eDP */
199e5d79 6907 if (has_cpu_edp) {
99eb6a01 6908 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6909 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6910 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6911 } else
74cfd7ac 6912 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6913 } else
74cfd7ac 6914 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6915
74cfd7ac 6916 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6917 POSTING_READ(PCH_DREF_CONTROL);
6918 udelay(200);
6919 } else {
6920 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6921
74cfd7ac 6922 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6923
6924 /* Turn off CPU output */
74cfd7ac 6925 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6926
74cfd7ac 6927 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6928 POSTING_READ(PCH_DREF_CONTROL);
6929 udelay(200);
6930
6931 /* Turn off the SSC source */
74cfd7ac
CW
6932 val &= ~DREF_SSC_SOURCE_MASK;
6933 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6934
6935 /* Turn off SSC1 */
74cfd7ac 6936 val &= ~DREF_SSC1_ENABLE;
199e5d79 6937
74cfd7ac 6938 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6939 POSTING_READ(PCH_DREF_CONTROL);
6940 udelay(200);
6941 }
74cfd7ac
CW
6942
6943 BUG_ON(val != final);
13d83a67
JB
6944}
6945
f31f2d55 6946static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6947{
f31f2d55 6948 uint32_t tmp;
dde86e2d 6949
0ff066a9
PZ
6950 tmp = I915_READ(SOUTH_CHICKEN2);
6951 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6952 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6953
0ff066a9
PZ
6954 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6955 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6956 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6957
0ff066a9
PZ
6958 tmp = I915_READ(SOUTH_CHICKEN2);
6959 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6960 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6961
0ff066a9
PZ
6962 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6963 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6964 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6965}
6966
6967/* WaMPhyProgramming:hsw */
6968static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6969{
6970 uint32_t tmp;
dde86e2d
PZ
6971
6972 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6973 tmp &= ~(0xFF << 24);
6974 tmp |= (0x12 << 24);
6975 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6976
dde86e2d
PZ
6977 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6978 tmp |= (1 << 11);
6979 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6980
6981 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6982 tmp |= (1 << 11);
6983 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6984
dde86e2d
PZ
6985 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6986 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6987 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6988
6989 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6990 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6991 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6992
0ff066a9
PZ
6993 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6994 tmp &= ~(7 << 13);
6995 tmp |= (5 << 13);
6996 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6997
0ff066a9
PZ
6998 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6999 tmp &= ~(7 << 13);
7000 tmp |= (5 << 13);
7001 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7002
7003 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7004 tmp &= ~0xFF;
7005 tmp |= 0x1C;
7006 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7007
7008 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7009 tmp &= ~0xFF;
7010 tmp |= 0x1C;
7011 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7012
7013 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7014 tmp &= ~(0xFF << 16);
7015 tmp |= (0x1C << 16);
7016 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7017
7018 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7019 tmp &= ~(0xFF << 16);
7020 tmp |= (0x1C << 16);
7021 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7022
0ff066a9
PZ
7023 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7024 tmp |= (1 << 27);
7025 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7026
0ff066a9
PZ
7027 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7028 tmp |= (1 << 27);
7029 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7030
0ff066a9
PZ
7031 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7032 tmp &= ~(0xF << 28);
7033 tmp |= (4 << 28);
7034 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7035
0ff066a9
PZ
7036 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7037 tmp &= ~(0xF << 28);
7038 tmp |= (4 << 28);
7039 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7040}
7041
2fa86a1f
PZ
7042/* Implements 3 different sequences from BSpec chapter "Display iCLK
7043 * Programming" based on the parameters passed:
7044 * - Sequence to enable CLKOUT_DP
7045 * - Sequence to enable CLKOUT_DP without spread
7046 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7047 */
7048static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7049 bool with_fdi)
f31f2d55
PZ
7050{
7051 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7052 uint32_t reg, tmp;
7053
7054 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7055 with_spread = true;
7056 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7057 with_fdi, "LP PCH doesn't have FDI\n"))
7058 with_fdi = false;
f31f2d55
PZ
7059
7060 mutex_lock(&dev_priv->dpio_lock);
7061
7062 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7063 tmp &= ~SBI_SSCCTL_DISABLE;
7064 tmp |= SBI_SSCCTL_PATHALT;
7065 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7066
7067 udelay(24);
7068
2fa86a1f
PZ
7069 if (with_spread) {
7070 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7071 tmp &= ~SBI_SSCCTL_PATHALT;
7072 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7073
2fa86a1f
PZ
7074 if (with_fdi) {
7075 lpt_reset_fdi_mphy(dev_priv);
7076 lpt_program_fdi_mphy(dev_priv);
7077 }
7078 }
dde86e2d 7079
2fa86a1f
PZ
7080 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7081 SBI_GEN0 : SBI_DBUFF0;
7082 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7083 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7084 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7085
7086 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7087}
7088
47701c3b
PZ
7089/* Sequence to disable CLKOUT_DP */
7090static void lpt_disable_clkout_dp(struct drm_device *dev)
7091{
7092 struct drm_i915_private *dev_priv = dev->dev_private;
7093 uint32_t reg, tmp;
7094
7095 mutex_lock(&dev_priv->dpio_lock);
7096
7097 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7098 SBI_GEN0 : SBI_DBUFF0;
7099 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7100 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7101 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7102
7103 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7104 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7105 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7106 tmp |= SBI_SSCCTL_PATHALT;
7107 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7108 udelay(32);
7109 }
7110 tmp |= SBI_SSCCTL_DISABLE;
7111 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7112 }
7113
7114 mutex_unlock(&dev_priv->dpio_lock);
7115}
7116
bf8fa3d3
PZ
7117static void lpt_init_pch_refclk(struct drm_device *dev)
7118{
bf8fa3d3
PZ
7119 struct intel_encoder *encoder;
7120 bool has_vga = false;
7121
b2784e15 7122 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7123 switch (encoder->type) {
7124 case INTEL_OUTPUT_ANALOG:
7125 has_vga = true;
7126 break;
6847d71b
PZ
7127 default:
7128 break;
bf8fa3d3
PZ
7129 }
7130 }
7131
47701c3b
PZ
7132 if (has_vga)
7133 lpt_enable_clkout_dp(dev, true, true);
7134 else
7135 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7136}
7137
dde86e2d
PZ
7138/*
7139 * Initialize reference clocks when the driver loads
7140 */
7141void intel_init_pch_refclk(struct drm_device *dev)
7142{
7143 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7144 ironlake_init_pch_refclk(dev);
7145 else if (HAS_PCH_LPT(dev))
7146 lpt_init_pch_refclk(dev);
7147}
7148
d9d444cb
JB
7149static int ironlake_get_refclk(struct drm_crtc *crtc)
7150{
7151 struct drm_device *dev = crtc->dev;
7152 struct drm_i915_private *dev_priv = dev->dev_private;
7153 struct intel_encoder *encoder;
d9d444cb
JB
7154 int num_connectors = 0;
7155 bool is_lvds = false;
7156
d0737e1d
ACO
7157 for_each_intel_encoder(dev, encoder) {
7158 if (encoder->new_crtc != to_intel_crtc(crtc))
7159 continue;
7160
d9d444cb
JB
7161 switch (encoder->type) {
7162 case INTEL_OUTPUT_LVDS:
7163 is_lvds = true;
7164 break;
6847d71b
PZ
7165 default:
7166 break;
d9d444cb
JB
7167 }
7168 num_connectors++;
7169 }
7170
7171 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7172 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7173 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7174 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7175 }
7176
7177 return 120000;
7178}
7179
6ff93609 7180static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7181{
c8203565 7182 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7184 int pipe = intel_crtc->pipe;
c8203565
PZ
7185 uint32_t val;
7186
78114071 7187 val = 0;
c8203565 7188
6e3c9717 7189 switch (intel_crtc->config->pipe_bpp) {
c8203565 7190 case 18:
dfd07d72 7191 val |= PIPECONF_6BPC;
c8203565
PZ
7192 break;
7193 case 24:
dfd07d72 7194 val |= PIPECONF_8BPC;
c8203565
PZ
7195 break;
7196 case 30:
dfd07d72 7197 val |= PIPECONF_10BPC;
c8203565
PZ
7198 break;
7199 case 36:
dfd07d72 7200 val |= PIPECONF_12BPC;
c8203565
PZ
7201 break;
7202 default:
cc769b62
PZ
7203 /* Case prevented by intel_choose_pipe_bpp_dither. */
7204 BUG();
c8203565
PZ
7205 }
7206
6e3c9717 7207 if (intel_crtc->config->dither)
c8203565
PZ
7208 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7209
6e3c9717 7210 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7211 val |= PIPECONF_INTERLACED_ILK;
7212 else
7213 val |= PIPECONF_PROGRESSIVE;
7214
6e3c9717 7215 if (intel_crtc->config->limited_color_range)
3685a8f3 7216 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7217
c8203565
PZ
7218 I915_WRITE(PIPECONF(pipe), val);
7219 POSTING_READ(PIPECONF(pipe));
7220}
7221
86d3efce
VS
7222/*
7223 * Set up the pipe CSC unit.
7224 *
7225 * Currently only full range RGB to limited range RGB conversion
7226 * is supported, but eventually this should handle various
7227 * RGB<->YCbCr scenarios as well.
7228 */
50f3b016 7229static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7230{
7231 struct drm_device *dev = crtc->dev;
7232 struct drm_i915_private *dev_priv = dev->dev_private;
7233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7234 int pipe = intel_crtc->pipe;
7235 uint16_t coeff = 0x7800; /* 1.0 */
7236
7237 /*
7238 * TODO: Check what kind of values actually come out of the pipe
7239 * with these coeff/postoff values and adjust to get the best
7240 * accuracy. Perhaps we even need to take the bpc value into
7241 * consideration.
7242 */
7243
6e3c9717 7244 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7245 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7246
7247 /*
7248 * GY/GU and RY/RU should be the other way around according
7249 * to BSpec, but reality doesn't agree. Just set them up in
7250 * a way that results in the correct picture.
7251 */
7252 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7253 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7254
7255 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7256 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7257
7258 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7259 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7260
7261 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7262 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7263 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7264
7265 if (INTEL_INFO(dev)->gen > 6) {
7266 uint16_t postoff = 0;
7267
6e3c9717 7268 if (intel_crtc->config->limited_color_range)
32cf0cb0 7269 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7270
7271 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7272 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7273 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7274
7275 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7276 } else {
7277 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7278
6e3c9717 7279 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7280 mode |= CSC_BLACK_SCREEN_OFFSET;
7281
7282 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7283 }
7284}
7285
6ff93609 7286static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7287{
756f85cf
PZ
7288 struct drm_device *dev = crtc->dev;
7289 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7291 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7292 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7293 uint32_t val;
7294
3eff4faa 7295 val = 0;
ee2b0b38 7296
6e3c9717 7297 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7298 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7299
6e3c9717 7300 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7301 val |= PIPECONF_INTERLACED_ILK;
7302 else
7303 val |= PIPECONF_PROGRESSIVE;
7304
702e7a56
PZ
7305 I915_WRITE(PIPECONF(cpu_transcoder), val);
7306 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7307
7308 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7309 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7310
3cdf122c 7311 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7312 val = 0;
7313
6e3c9717 7314 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7315 case 18:
7316 val |= PIPEMISC_DITHER_6_BPC;
7317 break;
7318 case 24:
7319 val |= PIPEMISC_DITHER_8_BPC;
7320 break;
7321 case 30:
7322 val |= PIPEMISC_DITHER_10_BPC;
7323 break;
7324 case 36:
7325 val |= PIPEMISC_DITHER_12_BPC;
7326 break;
7327 default:
7328 /* Case prevented by pipe_config_set_bpp. */
7329 BUG();
7330 }
7331
6e3c9717 7332 if (intel_crtc->config->dither)
756f85cf
PZ
7333 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7334
7335 I915_WRITE(PIPEMISC(pipe), val);
7336 }
ee2b0b38
PZ
7337}
7338
6591c6e4 7339static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7340 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7341 intel_clock_t *clock,
7342 bool *has_reduced_clock,
7343 intel_clock_t *reduced_clock)
7344{
7345 struct drm_device *dev = crtc->dev;
7346 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7348 int refclk;
d4906093 7349 const intel_limit_t *limit;
a16af721 7350 bool ret, is_lvds = false;
79e53945 7351
d0737e1d 7352 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7353
d9d444cb 7354 refclk = ironlake_get_refclk(crtc);
79e53945 7355
d4906093
ML
7356 /*
7357 * Returns a set of divisors for the desired target clock with the given
7358 * refclk, or FALSE. The returned values represent the clock equation:
7359 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7360 */
409ee761 7361 limit = intel_limit(intel_crtc, refclk);
a919ff14 7362 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7363 crtc_state->port_clock,
ee9300bb 7364 refclk, NULL, clock);
6591c6e4
PZ
7365 if (!ret)
7366 return false;
cda4b7d3 7367
ddc9003c 7368 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7369 /*
7370 * Ensure we match the reduced clock's P to the target clock.
7371 * If the clocks don't match, we can't switch the display clock
7372 * by using the FP0/FP1. In such case we will disable the LVDS
7373 * downclock feature.
7374 */
ee9300bb 7375 *has_reduced_clock =
a919ff14 7376 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7377 dev_priv->lvds_downclock,
7378 refclk, clock,
7379 reduced_clock);
652c393a 7380 }
61e9653f 7381
6591c6e4
PZ
7382 return true;
7383}
7384
d4b1931c
PZ
7385int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7386{
7387 /*
7388 * Account for spread spectrum to avoid
7389 * oversubscribing the link. Max center spread
7390 * is 2.5%; use 5% for safety's sake.
7391 */
7392 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7393 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7394}
7395
7429e9d4 7396static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7397{
7429e9d4 7398 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7399}
7400
de13a2e3 7401static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7402 struct intel_crtc_state *crtc_state,
7429e9d4 7403 u32 *fp,
9a7c7890 7404 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7405{
de13a2e3 7406 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7407 struct drm_device *dev = crtc->dev;
7408 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7409 struct intel_encoder *intel_encoder;
7410 uint32_t dpll;
6cc5f341 7411 int factor, num_connectors = 0;
09ede541 7412 bool is_lvds = false, is_sdvo = false;
79e53945 7413
d0737e1d
ACO
7414 for_each_intel_encoder(dev, intel_encoder) {
7415 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7416 continue;
7417
de13a2e3 7418 switch (intel_encoder->type) {
79e53945
JB
7419 case INTEL_OUTPUT_LVDS:
7420 is_lvds = true;
7421 break;
7422 case INTEL_OUTPUT_SDVO:
7d57382e 7423 case INTEL_OUTPUT_HDMI:
79e53945 7424 is_sdvo = true;
79e53945 7425 break;
6847d71b
PZ
7426 default:
7427 break;
79e53945 7428 }
43565a06 7429
c751ce4f 7430 num_connectors++;
79e53945 7431 }
79e53945 7432
c1858123 7433 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7434 factor = 21;
7435 if (is_lvds) {
7436 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7437 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7438 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7439 factor = 25;
190f68c5 7440 } else if (crtc_state->sdvo_tv_clock)
8febb297 7441 factor = 20;
c1858123 7442
190f68c5 7443 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7444 *fp |= FP_CB_TUNE;
2c07245f 7445
9a7c7890
DV
7446 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7447 *fp2 |= FP_CB_TUNE;
7448
5eddb70b 7449 dpll = 0;
2c07245f 7450
a07d6787
EA
7451 if (is_lvds)
7452 dpll |= DPLLB_MODE_LVDS;
7453 else
7454 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7455
190f68c5 7456 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7457 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7458
7459 if (is_sdvo)
4a33e48d 7460 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7461 if (crtc_state->has_dp_encoder)
4a33e48d 7462 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7463
a07d6787 7464 /* compute bitmask from p1 value */
190f68c5 7465 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7466 /* also FPA1 */
190f68c5 7467 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7468
190f68c5 7469 switch (crtc_state->dpll.p2) {
a07d6787
EA
7470 case 5:
7471 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7472 break;
7473 case 7:
7474 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7475 break;
7476 case 10:
7477 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7478 break;
7479 case 14:
7480 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7481 break;
79e53945
JB
7482 }
7483
b4c09f3b 7484 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7485 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7486 else
7487 dpll |= PLL_REF_INPUT_DREFCLK;
7488
959e16d6 7489 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7490}
7491
190f68c5
ACO
7492static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7493 struct intel_crtc_state *crtc_state)
de13a2e3 7494{
c7653199 7495 struct drm_device *dev = crtc->base.dev;
de13a2e3 7496 intel_clock_t clock, reduced_clock;
cbbab5bd 7497 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7498 bool ok, has_reduced_clock = false;
8b47047b 7499 bool is_lvds = false;
e2b78267 7500 struct intel_shared_dpll *pll;
de13a2e3 7501
409ee761 7502 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7503
5dc5298b
PZ
7504 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7505 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7506
190f68c5 7507 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7508 &has_reduced_clock, &reduced_clock);
190f68c5 7509 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7510 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7511 return -EINVAL;
79e53945 7512 }
f47709a9 7513 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7514 if (!crtc_state->clock_set) {
7515 crtc_state->dpll.n = clock.n;
7516 crtc_state->dpll.m1 = clock.m1;
7517 crtc_state->dpll.m2 = clock.m2;
7518 crtc_state->dpll.p1 = clock.p1;
7519 crtc_state->dpll.p2 = clock.p2;
f47709a9 7520 }
79e53945 7521
5dc5298b 7522 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7523 if (crtc_state->has_pch_encoder) {
7524 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7525 if (has_reduced_clock)
7429e9d4 7526 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7527
190f68c5 7528 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7529 &fp, &reduced_clock,
7530 has_reduced_clock ? &fp2 : NULL);
7531
190f68c5
ACO
7532 crtc_state->dpll_hw_state.dpll = dpll;
7533 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7534 if (has_reduced_clock)
190f68c5 7535 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7536 else
190f68c5 7537 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7538
190f68c5 7539 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7540 if (pll == NULL) {
84f44ce7 7541 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7542 pipe_name(crtc->pipe));
4b645f14
JB
7543 return -EINVAL;
7544 }
3fb37703 7545 }
79e53945 7546
d330a953 7547 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7548 crtc->lowfreq_avail = true;
bcd644e0 7549 else
c7653199 7550 crtc->lowfreq_avail = false;
e2b78267 7551
c8f7a0db 7552 return 0;
79e53945
JB
7553}
7554
eb14cb74
VS
7555static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7556 struct intel_link_m_n *m_n)
7557{
7558 struct drm_device *dev = crtc->base.dev;
7559 struct drm_i915_private *dev_priv = dev->dev_private;
7560 enum pipe pipe = crtc->pipe;
7561
7562 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7563 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7564 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7565 & ~TU_SIZE_MASK;
7566 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7567 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7568 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7569}
7570
7571static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7572 enum transcoder transcoder,
b95af8be
VK
7573 struct intel_link_m_n *m_n,
7574 struct intel_link_m_n *m2_n2)
72419203
DV
7575{
7576 struct drm_device *dev = crtc->base.dev;
7577 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7578 enum pipe pipe = crtc->pipe;
72419203 7579
eb14cb74
VS
7580 if (INTEL_INFO(dev)->gen >= 5) {
7581 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7582 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7583 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7584 & ~TU_SIZE_MASK;
7585 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7586 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7587 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7588 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7589 * gen < 8) and if DRRS is supported (to make sure the
7590 * registers are not unnecessarily read).
7591 */
7592 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7593 crtc->config->has_drrs) {
b95af8be
VK
7594 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7595 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7596 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7597 & ~TU_SIZE_MASK;
7598 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7599 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7600 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7601 }
eb14cb74
VS
7602 } else {
7603 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7604 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7605 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7606 & ~TU_SIZE_MASK;
7607 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7608 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7609 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7610 }
7611}
7612
7613void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7614 struct intel_crtc_state *pipe_config)
eb14cb74 7615{
681a8504 7616 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7617 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7618 else
7619 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7620 &pipe_config->dp_m_n,
7621 &pipe_config->dp_m2_n2);
eb14cb74 7622}
72419203 7623
eb14cb74 7624static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7625 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7626{
7627 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7628 &pipe_config->fdi_m_n, NULL);
72419203
DV
7629}
7630
bd2e244f 7631static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7632 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7633{
7634 struct drm_device *dev = crtc->base.dev;
7635 struct drm_i915_private *dev_priv = dev->dev_private;
7636 uint32_t tmp;
7637
7638 tmp = I915_READ(PS_CTL(crtc->pipe));
7639
7640 if (tmp & PS_ENABLE) {
7641 pipe_config->pch_pfit.enabled = true;
7642 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7643 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7644 }
7645}
7646
5724dbd1
DL
7647static void
7648skylake_get_initial_plane_config(struct intel_crtc *crtc,
7649 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7650{
7651 struct drm_device *dev = crtc->base.dev;
7652 struct drm_i915_private *dev_priv = dev->dev_private;
7653 u32 val, base, offset, stride_mult;
7654 int pipe = crtc->pipe;
7655 int fourcc, pixel_format;
7656 int aligned_height;
7657 struct drm_framebuffer *fb;
1b842c89 7658 struct intel_framebuffer *intel_fb;
bc8d7dff 7659
d9806c9f 7660 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7661 if (!intel_fb) {
bc8d7dff
DL
7662 DRM_DEBUG_KMS("failed to alloc fb\n");
7663 return;
7664 }
7665
1b842c89
DL
7666 fb = &intel_fb->base;
7667
bc8d7dff 7668 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
7669 if (!(val & PLANE_CTL_ENABLE))
7670 goto error;
7671
18c5247e 7672 if (val & PLANE_CTL_TILED_MASK) {
bc8d7dff 7673 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7674 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7675 }
bc8d7dff
DL
7676
7677 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7678 fourcc = skl_format_to_fourcc(pixel_format,
7679 val & PLANE_CTL_ORDER_RGBX,
7680 val & PLANE_CTL_ALPHA_MASK);
7681 fb->pixel_format = fourcc;
7682 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7683
7684 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7685 plane_config->base = base;
7686
7687 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7688
7689 val = I915_READ(PLANE_SIZE(pipe, 0));
7690 fb->height = ((val >> 16) & 0xfff) + 1;
7691 fb->width = ((val >> 0) & 0x1fff) + 1;
7692
7693 val = I915_READ(PLANE_STRIDE(pipe, 0));
7694 switch (plane_config->tiling) {
7695 case I915_TILING_NONE:
7696 stride_mult = 64;
7697 break;
7698 case I915_TILING_X:
7699 stride_mult = 512;
7700 break;
7701 default:
7702 MISSING_CASE(plane_config->tiling);
7703 goto error;
7704 }
7705 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7706
7707 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7708 fb->pixel_format,
7709 fb->modifier[0]);
bc8d7dff
DL
7710
7711 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7712
7713 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7714 pipe_name(pipe), fb->width, fb->height,
7715 fb->bits_per_pixel, base, fb->pitches[0],
7716 plane_config->size);
7717
2d14030b 7718 plane_config->fb = intel_fb;
bc8d7dff
DL
7719 return;
7720
7721error:
7722 kfree(fb);
7723}
7724
2fa2fe9a 7725static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7726 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7727{
7728 struct drm_device *dev = crtc->base.dev;
7729 struct drm_i915_private *dev_priv = dev->dev_private;
7730 uint32_t tmp;
7731
7732 tmp = I915_READ(PF_CTL(crtc->pipe));
7733
7734 if (tmp & PF_ENABLE) {
fd4daa9c 7735 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7736 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7737 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7738
7739 /* We currently do not free assignements of panel fitters on
7740 * ivb/hsw (since we don't use the higher upscaling modes which
7741 * differentiates them) so just WARN about this case for now. */
7742 if (IS_GEN7(dev)) {
7743 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7744 PF_PIPE_SEL_IVB(crtc->pipe));
7745 }
2fa2fe9a 7746 }
79e53945
JB
7747}
7748
5724dbd1
DL
7749static void
7750ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7751 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
7752{
7753 struct drm_device *dev = crtc->base.dev;
7754 struct drm_i915_private *dev_priv = dev->dev_private;
7755 u32 val, base, offset;
aeee5a49 7756 int pipe = crtc->pipe;
4c6baa59
JB
7757 int fourcc, pixel_format;
7758 int aligned_height;
b113d5ee 7759 struct drm_framebuffer *fb;
1b842c89 7760 struct intel_framebuffer *intel_fb;
4c6baa59 7761
42a7b088
DL
7762 val = I915_READ(DSPCNTR(pipe));
7763 if (!(val & DISPLAY_PLANE_ENABLE))
7764 return;
7765
d9806c9f 7766 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7767 if (!intel_fb) {
4c6baa59
JB
7768 DRM_DEBUG_KMS("failed to alloc fb\n");
7769 return;
7770 }
7771
1b842c89
DL
7772 fb = &intel_fb->base;
7773
18c5247e
DV
7774 if (INTEL_INFO(dev)->gen >= 4) {
7775 if (val & DISPPLANE_TILED) {
49af449b 7776 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7777 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7778 }
7779 }
4c6baa59
JB
7780
7781 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7782 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7783 fb->pixel_format = fourcc;
7784 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 7785
aeee5a49 7786 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 7787 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 7788 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 7789 } else {
49af449b 7790 if (plane_config->tiling)
aeee5a49 7791 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 7792 else
aeee5a49 7793 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
7794 }
7795 plane_config->base = base;
7796
7797 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7798 fb->width = ((val >> 16) & 0xfff) + 1;
7799 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7800
7801 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7802 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7803
b113d5ee 7804 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7805 fb->pixel_format,
7806 fb->modifier[0]);
4c6baa59 7807
b113d5ee 7808 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
4c6baa59 7809
2844a921
DL
7810 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7811 pipe_name(pipe), fb->width, fb->height,
7812 fb->bits_per_pixel, base, fb->pitches[0],
7813 plane_config->size);
b113d5ee 7814
2d14030b 7815 plane_config->fb = intel_fb;
4c6baa59
JB
7816}
7817
0e8ffe1b 7818static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7819 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7820{
7821 struct drm_device *dev = crtc->base.dev;
7822 struct drm_i915_private *dev_priv = dev->dev_private;
7823 uint32_t tmp;
7824
f458ebbc
DV
7825 if (!intel_display_power_is_enabled(dev_priv,
7826 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7827 return false;
7828
e143a21c 7829 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7830 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7831
0e8ffe1b
DV
7832 tmp = I915_READ(PIPECONF(crtc->pipe));
7833 if (!(tmp & PIPECONF_ENABLE))
7834 return false;
7835
42571aef
VS
7836 switch (tmp & PIPECONF_BPC_MASK) {
7837 case PIPECONF_6BPC:
7838 pipe_config->pipe_bpp = 18;
7839 break;
7840 case PIPECONF_8BPC:
7841 pipe_config->pipe_bpp = 24;
7842 break;
7843 case PIPECONF_10BPC:
7844 pipe_config->pipe_bpp = 30;
7845 break;
7846 case PIPECONF_12BPC:
7847 pipe_config->pipe_bpp = 36;
7848 break;
7849 default:
7850 break;
7851 }
7852
b5a9fa09
DV
7853 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7854 pipe_config->limited_color_range = true;
7855
ab9412ba 7856 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7857 struct intel_shared_dpll *pll;
7858
88adfff1
DV
7859 pipe_config->has_pch_encoder = true;
7860
627eb5a3
DV
7861 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7862 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7863 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7864
7865 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7866
c0d43d62 7867 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7868 pipe_config->shared_dpll =
7869 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7870 } else {
7871 tmp = I915_READ(PCH_DPLL_SEL);
7872 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7873 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7874 else
7875 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7876 }
66e985c0
DV
7877
7878 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7879
7880 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7881 &pipe_config->dpll_hw_state));
c93f54cf
DV
7882
7883 tmp = pipe_config->dpll_hw_state.dpll;
7884 pipe_config->pixel_multiplier =
7885 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7886 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7887
7888 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7889 } else {
7890 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7891 }
7892
1bd1bd80
DV
7893 intel_get_pipe_timings(crtc, pipe_config);
7894
2fa2fe9a
DV
7895 ironlake_get_pfit_config(crtc, pipe_config);
7896
0e8ffe1b
DV
7897 return true;
7898}
7899
be256dc7
PZ
7900static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7901{
7902 struct drm_device *dev = dev_priv->dev;
be256dc7 7903 struct intel_crtc *crtc;
be256dc7 7904
d3fcc808 7905 for_each_intel_crtc(dev, crtc)
e2c719b7 7906 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7907 pipe_name(crtc->pipe));
7908
e2c719b7
RC
7909 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7910 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7911 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7912 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7913 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7914 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 7915 "CPU PWM1 enabled\n");
c5107b87 7916 if (IS_HASWELL(dev))
e2c719b7 7917 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 7918 "CPU PWM2 enabled\n");
e2c719b7 7919 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 7920 "PCH PWM1 enabled\n");
e2c719b7 7921 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 7922 "Utility pin enabled\n");
e2c719b7 7923 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 7924
9926ada1
PZ
7925 /*
7926 * In theory we can still leave IRQs enabled, as long as only the HPD
7927 * interrupts remain enabled. We used to check for that, but since it's
7928 * gen-specific and since we only disable LCPLL after we fully disable
7929 * the interrupts, the check below should be enough.
7930 */
e2c719b7 7931 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7932}
7933
9ccd5aeb
PZ
7934static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7935{
7936 struct drm_device *dev = dev_priv->dev;
7937
7938 if (IS_HASWELL(dev))
7939 return I915_READ(D_COMP_HSW);
7940 else
7941 return I915_READ(D_COMP_BDW);
7942}
7943
3c4c9b81
PZ
7944static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7945{
7946 struct drm_device *dev = dev_priv->dev;
7947
7948 if (IS_HASWELL(dev)) {
7949 mutex_lock(&dev_priv->rps.hw_lock);
7950 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7951 val))
f475dadf 7952 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7953 mutex_unlock(&dev_priv->rps.hw_lock);
7954 } else {
9ccd5aeb
PZ
7955 I915_WRITE(D_COMP_BDW, val);
7956 POSTING_READ(D_COMP_BDW);
3c4c9b81 7957 }
be256dc7
PZ
7958}
7959
7960/*
7961 * This function implements pieces of two sequences from BSpec:
7962 * - Sequence for display software to disable LCPLL
7963 * - Sequence for display software to allow package C8+
7964 * The steps implemented here are just the steps that actually touch the LCPLL
7965 * register. Callers should take care of disabling all the display engine
7966 * functions, doing the mode unset, fixing interrupts, etc.
7967 */
6ff58d53
PZ
7968static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7969 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7970{
7971 uint32_t val;
7972
7973 assert_can_disable_lcpll(dev_priv);
7974
7975 val = I915_READ(LCPLL_CTL);
7976
7977 if (switch_to_fclk) {
7978 val |= LCPLL_CD_SOURCE_FCLK;
7979 I915_WRITE(LCPLL_CTL, val);
7980
7981 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7982 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7983 DRM_ERROR("Switching to FCLK failed\n");
7984
7985 val = I915_READ(LCPLL_CTL);
7986 }
7987
7988 val |= LCPLL_PLL_DISABLE;
7989 I915_WRITE(LCPLL_CTL, val);
7990 POSTING_READ(LCPLL_CTL);
7991
7992 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7993 DRM_ERROR("LCPLL still locked\n");
7994
9ccd5aeb 7995 val = hsw_read_dcomp(dev_priv);
be256dc7 7996 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7997 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7998 ndelay(100);
7999
9ccd5aeb
PZ
8000 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8001 1))
be256dc7
PZ
8002 DRM_ERROR("D_COMP RCOMP still in progress\n");
8003
8004 if (allow_power_down) {
8005 val = I915_READ(LCPLL_CTL);
8006 val |= LCPLL_POWER_DOWN_ALLOW;
8007 I915_WRITE(LCPLL_CTL, val);
8008 POSTING_READ(LCPLL_CTL);
8009 }
8010}
8011
8012/*
8013 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8014 * source.
8015 */
6ff58d53 8016static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
8017{
8018 uint32_t val;
8019
8020 val = I915_READ(LCPLL_CTL);
8021
8022 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8023 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8024 return;
8025
a8a8bd54
PZ
8026 /*
8027 * Make sure we're not on PC8 state before disabling PC8, otherwise
8028 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 8029 */
59bad947 8030 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 8031
be256dc7
PZ
8032 if (val & LCPLL_POWER_DOWN_ALLOW) {
8033 val &= ~LCPLL_POWER_DOWN_ALLOW;
8034 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 8035 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
8036 }
8037
9ccd5aeb 8038 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
8039 val |= D_COMP_COMP_FORCE;
8040 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8041 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8042
8043 val = I915_READ(LCPLL_CTL);
8044 val &= ~LCPLL_PLL_DISABLE;
8045 I915_WRITE(LCPLL_CTL, val);
8046
8047 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8048 DRM_ERROR("LCPLL not locked yet\n");
8049
8050 if (val & LCPLL_CD_SOURCE_FCLK) {
8051 val = I915_READ(LCPLL_CTL);
8052 val &= ~LCPLL_CD_SOURCE_FCLK;
8053 I915_WRITE(LCPLL_CTL, val);
8054
8055 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8056 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8057 DRM_ERROR("Switching back to LCPLL failed\n");
8058 }
215733fa 8059
59bad947 8060 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8061}
8062
765dab67
PZ
8063/*
8064 * Package states C8 and deeper are really deep PC states that can only be
8065 * reached when all the devices on the system allow it, so even if the graphics
8066 * device allows PC8+, it doesn't mean the system will actually get to these
8067 * states. Our driver only allows PC8+ when going into runtime PM.
8068 *
8069 * The requirements for PC8+ are that all the outputs are disabled, the power
8070 * well is disabled and most interrupts are disabled, and these are also
8071 * requirements for runtime PM. When these conditions are met, we manually do
8072 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8073 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8074 * hang the machine.
8075 *
8076 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8077 * the state of some registers, so when we come back from PC8+ we need to
8078 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8079 * need to take care of the registers kept by RC6. Notice that this happens even
8080 * if we don't put the device in PCI D3 state (which is what currently happens
8081 * because of the runtime PM support).
8082 *
8083 * For more, read "Display Sequences for Package C8" on the hardware
8084 * documentation.
8085 */
a14cb6fc 8086void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8087{
c67a470b
PZ
8088 struct drm_device *dev = dev_priv->dev;
8089 uint32_t val;
8090
c67a470b
PZ
8091 DRM_DEBUG_KMS("Enabling package C8+\n");
8092
c67a470b
PZ
8093 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8094 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8095 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8096 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8097 }
8098
8099 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8100 hsw_disable_lcpll(dev_priv, true, true);
8101}
8102
a14cb6fc 8103void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8104{
8105 struct drm_device *dev = dev_priv->dev;
8106 uint32_t val;
8107
c67a470b
PZ
8108 DRM_DEBUG_KMS("Disabling package C8+\n");
8109
8110 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8111 lpt_init_pch_refclk(dev);
8112
8113 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8114 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8115 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8116 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8117 }
8118
8119 intel_prepare_ddi(dev);
c67a470b
PZ
8120}
8121
190f68c5
ACO
8122static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8123 struct intel_crtc_state *crtc_state)
09b4ddf9 8124{
190f68c5 8125 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8126 return -EINVAL;
716c2e55 8127
c7653199 8128 crtc->lowfreq_avail = false;
644cef34 8129
c8f7a0db 8130 return 0;
79e53945
JB
8131}
8132
96b7dfb7
S
8133static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8134 enum port port,
5cec258b 8135 struct intel_crtc_state *pipe_config)
96b7dfb7 8136{
3148ade7 8137 u32 temp, dpll_ctl1;
96b7dfb7
S
8138
8139 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8140 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8141
8142 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8143 case SKL_DPLL0:
8144 /*
8145 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8146 * of the shared DPLL framework and thus needs to be read out
8147 * separately
8148 */
8149 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8150 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8151 break;
96b7dfb7
S
8152 case SKL_DPLL1:
8153 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8154 break;
8155 case SKL_DPLL2:
8156 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8157 break;
8158 case SKL_DPLL3:
8159 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8160 break;
96b7dfb7
S
8161 }
8162}
8163
7d2c8175
DL
8164static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8165 enum port port,
5cec258b 8166 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8167{
8168 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8169
8170 switch (pipe_config->ddi_pll_sel) {
8171 case PORT_CLK_SEL_WRPLL1:
8172 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8173 break;
8174 case PORT_CLK_SEL_WRPLL2:
8175 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8176 break;
8177 }
8178}
8179
26804afd 8180static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8181 struct intel_crtc_state *pipe_config)
26804afd
DV
8182{
8183 struct drm_device *dev = crtc->base.dev;
8184 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8185 struct intel_shared_dpll *pll;
26804afd
DV
8186 enum port port;
8187 uint32_t tmp;
8188
8189 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8190
8191 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8192
96b7dfb7
S
8193 if (IS_SKYLAKE(dev))
8194 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8195 else
8196 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8197
d452c5b6
DV
8198 if (pipe_config->shared_dpll >= 0) {
8199 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8200
8201 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8202 &pipe_config->dpll_hw_state));
8203 }
8204
26804afd
DV
8205 /*
8206 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8207 * DDI E. So just check whether this pipe is wired to DDI E and whether
8208 * the PCH transcoder is on.
8209 */
ca370455
DL
8210 if (INTEL_INFO(dev)->gen < 9 &&
8211 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8212 pipe_config->has_pch_encoder = true;
8213
8214 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8215 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8216 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8217
8218 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8219 }
8220}
8221
0e8ffe1b 8222static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8223 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8224{
8225 struct drm_device *dev = crtc->base.dev;
8226 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8227 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8228 uint32_t tmp;
8229
f458ebbc 8230 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8231 POWER_DOMAIN_PIPE(crtc->pipe)))
8232 return false;
8233
e143a21c 8234 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8235 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8236
eccb140b
DV
8237 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8238 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8239 enum pipe trans_edp_pipe;
8240 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8241 default:
8242 WARN(1, "unknown pipe linked to edp transcoder\n");
8243 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8244 case TRANS_DDI_EDP_INPUT_A_ON:
8245 trans_edp_pipe = PIPE_A;
8246 break;
8247 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8248 trans_edp_pipe = PIPE_B;
8249 break;
8250 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8251 trans_edp_pipe = PIPE_C;
8252 break;
8253 }
8254
8255 if (trans_edp_pipe == crtc->pipe)
8256 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8257 }
8258
f458ebbc 8259 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8260 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8261 return false;
8262
eccb140b 8263 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8264 if (!(tmp & PIPECONF_ENABLE))
8265 return false;
8266
26804afd 8267 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8268
1bd1bd80
DV
8269 intel_get_pipe_timings(crtc, pipe_config);
8270
2fa2fe9a 8271 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8272 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8273 if (IS_SKYLAKE(dev))
8274 skylake_get_pfit_config(crtc, pipe_config);
8275 else
8276 ironlake_get_pfit_config(crtc, pipe_config);
8277 }
88adfff1 8278
e59150dc
JB
8279 if (IS_HASWELL(dev))
8280 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8281 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8282
ebb69c95
CT
8283 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8284 pipe_config->pixel_multiplier =
8285 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8286 } else {
8287 pipe_config->pixel_multiplier = 1;
8288 }
6c49f241 8289
0e8ffe1b
DV
8290 return true;
8291}
8292
560b85bb
CW
8293static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8294{
8295 struct drm_device *dev = crtc->dev;
8296 struct drm_i915_private *dev_priv = dev->dev_private;
8297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8298 uint32_t cntl = 0, size = 0;
560b85bb 8299
dc41c154
VS
8300 if (base) {
8301 unsigned int width = intel_crtc->cursor_width;
8302 unsigned int height = intel_crtc->cursor_height;
8303 unsigned int stride = roundup_pow_of_two(width) * 4;
8304
8305 switch (stride) {
8306 default:
8307 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8308 width, stride);
8309 stride = 256;
8310 /* fallthrough */
8311 case 256:
8312 case 512:
8313 case 1024:
8314 case 2048:
8315 break;
4b0e333e
CW
8316 }
8317
dc41c154
VS
8318 cntl |= CURSOR_ENABLE |
8319 CURSOR_GAMMA_ENABLE |
8320 CURSOR_FORMAT_ARGB |
8321 CURSOR_STRIDE(stride);
8322
8323 size = (height << 12) | width;
4b0e333e 8324 }
560b85bb 8325
dc41c154
VS
8326 if (intel_crtc->cursor_cntl != 0 &&
8327 (intel_crtc->cursor_base != base ||
8328 intel_crtc->cursor_size != size ||
8329 intel_crtc->cursor_cntl != cntl)) {
8330 /* On these chipsets we can only modify the base/size/stride
8331 * whilst the cursor is disabled.
8332 */
8333 I915_WRITE(_CURACNTR, 0);
4b0e333e 8334 POSTING_READ(_CURACNTR);
dc41c154 8335 intel_crtc->cursor_cntl = 0;
4b0e333e 8336 }
560b85bb 8337
99d1f387 8338 if (intel_crtc->cursor_base != base) {
9db4a9c7 8339 I915_WRITE(_CURABASE, base);
99d1f387
VS
8340 intel_crtc->cursor_base = base;
8341 }
4726e0b0 8342
dc41c154
VS
8343 if (intel_crtc->cursor_size != size) {
8344 I915_WRITE(CURSIZE, size);
8345 intel_crtc->cursor_size = size;
4b0e333e 8346 }
560b85bb 8347
4b0e333e 8348 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8349 I915_WRITE(_CURACNTR, cntl);
8350 POSTING_READ(_CURACNTR);
4b0e333e 8351 intel_crtc->cursor_cntl = cntl;
560b85bb 8352 }
560b85bb
CW
8353}
8354
560b85bb 8355static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8356{
8357 struct drm_device *dev = crtc->dev;
8358 struct drm_i915_private *dev_priv = dev->dev_private;
8359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8360 int pipe = intel_crtc->pipe;
4b0e333e
CW
8361 uint32_t cntl;
8362
8363 cntl = 0;
8364 if (base) {
8365 cntl = MCURSOR_GAMMA_ENABLE;
8366 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8367 case 64:
8368 cntl |= CURSOR_MODE_64_ARGB_AX;
8369 break;
8370 case 128:
8371 cntl |= CURSOR_MODE_128_ARGB_AX;
8372 break;
8373 case 256:
8374 cntl |= CURSOR_MODE_256_ARGB_AX;
8375 break;
8376 default:
5f77eeb0 8377 MISSING_CASE(intel_crtc->cursor_width);
4726e0b0 8378 return;
65a21cd6 8379 }
4b0e333e 8380 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8381
8382 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8383 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8384 }
65a21cd6 8385
8e7d688b 8386 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8387 cntl |= CURSOR_ROTATE_180;
8388
4b0e333e
CW
8389 if (intel_crtc->cursor_cntl != cntl) {
8390 I915_WRITE(CURCNTR(pipe), cntl);
8391 POSTING_READ(CURCNTR(pipe));
8392 intel_crtc->cursor_cntl = cntl;
65a21cd6 8393 }
4b0e333e 8394
65a21cd6 8395 /* and commit changes on next vblank */
5efb3e28
VS
8396 I915_WRITE(CURBASE(pipe), base);
8397 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8398
8399 intel_crtc->cursor_base = base;
65a21cd6
JB
8400}
8401
cda4b7d3 8402/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8403static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8404 bool on)
cda4b7d3
CW
8405{
8406 struct drm_device *dev = crtc->dev;
8407 struct drm_i915_private *dev_priv = dev->dev_private;
8408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8409 int pipe = intel_crtc->pipe;
3d7d6510
MR
8410 int x = crtc->cursor_x;
8411 int y = crtc->cursor_y;
d6e4db15 8412 u32 base = 0, pos = 0;
cda4b7d3 8413
d6e4db15 8414 if (on)
cda4b7d3 8415 base = intel_crtc->cursor_addr;
cda4b7d3 8416
6e3c9717 8417 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8418 base = 0;
8419
6e3c9717 8420 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8421 base = 0;
8422
8423 if (x < 0) {
efc9064e 8424 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8425 base = 0;
8426
8427 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8428 x = -x;
8429 }
8430 pos |= x << CURSOR_X_SHIFT;
8431
8432 if (y < 0) {
efc9064e 8433 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8434 base = 0;
8435
8436 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8437 y = -y;
8438 }
8439 pos |= y << CURSOR_Y_SHIFT;
8440
4b0e333e 8441 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8442 return;
8443
5efb3e28
VS
8444 I915_WRITE(CURPOS(pipe), pos);
8445
4398ad45
VS
8446 /* ILK+ do this automagically */
8447 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8448 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
4398ad45
VS
8449 base += (intel_crtc->cursor_height *
8450 intel_crtc->cursor_width - 1) * 4;
8451 }
8452
8ac54669 8453 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8454 i845_update_cursor(crtc, base);
8455 else
8456 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8457}
8458
dc41c154
VS
8459static bool cursor_size_ok(struct drm_device *dev,
8460 uint32_t width, uint32_t height)
8461{
8462 if (width == 0 || height == 0)
8463 return false;
8464
8465 /*
8466 * 845g/865g are special in that they are only limited by
8467 * the width of their cursors, the height is arbitrary up to
8468 * the precision of the register. Everything else requires
8469 * square cursors, limited to a few power-of-two sizes.
8470 */
8471 if (IS_845G(dev) || IS_I865G(dev)) {
8472 if ((width & 63) != 0)
8473 return false;
8474
8475 if (width > (IS_845G(dev) ? 64 : 512))
8476 return false;
8477
8478 if (height > 1023)
8479 return false;
8480 } else {
8481 switch (width | height) {
8482 case 256:
8483 case 128:
8484 if (IS_GEN2(dev))
8485 return false;
8486 case 64:
8487 break;
8488 default:
8489 return false;
8490 }
8491 }
8492
8493 return true;
8494}
8495
79e53945 8496static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8497 u16 *blue, uint32_t start, uint32_t size)
79e53945 8498{
7203425a 8499 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8501
7203425a 8502 for (i = start; i < end; i++) {
79e53945
JB
8503 intel_crtc->lut_r[i] = red[i] >> 8;
8504 intel_crtc->lut_g[i] = green[i] >> 8;
8505 intel_crtc->lut_b[i] = blue[i] >> 8;
8506 }
8507
8508 intel_crtc_load_lut(crtc);
8509}
8510
79e53945
JB
8511/* VESA 640x480x72Hz mode to set on the pipe */
8512static struct drm_display_mode load_detect_mode = {
8513 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8514 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8515};
8516
a8bb6818
DV
8517struct drm_framebuffer *
8518__intel_framebuffer_create(struct drm_device *dev,
8519 struct drm_mode_fb_cmd2 *mode_cmd,
8520 struct drm_i915_gem_object *obj)
d2dff872
CW
8521{
8522 struct intel_framebuffer *intel_fb;
8523 int ret;
8524
8525 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8526 if (!intel_fb) {
6ccb81f2 8527 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8528 return ERR_PTR(-ENOMEM);
8529 }
8530
8531 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8532 if (ret)
8533 goto err;
d2dff872
CW
8534
8535 return &intel_fb->base;
dd4916c5 8536err:
6ccb81f2 8537 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8538 kfree(intel_fb);
8539
8540 return ERR_PTR(ret);
d2dff872
CW
8541}
8542
b5ea642a 8543static struct drm_framebuffer *
a8bb6818
DV
8544intel_framebuffer_create(struct drm_device *dev,
8545 struct drm_mode_fb_cmd2 *mode_cmd,
8546 struct drm_i915_gem_object *obj)
8547{
8548 struct drm_framebuffer *fb;
8549 int ret;
8550
8551 ret = i915_mutex_lock_interruptible(dev);
8552 if (ret)
8553 return ERR_PTR(ret);
8554 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8555 mutex_unlock(&dev->struct_mutex);
8556
8557 return fb;
8558}
8559
d2dff872
CW
8560static u32
8561intel_framebuffer_pitch_for_width(int width, int bpp)
8562{
8563 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8564 return ALIGN(pitch, 64);
8565}
8566
8567static u32
8568intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8569{
8570 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8571 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8572}
8573
8574static struct drm_framebuffer *
8575intel_framebuffer_create_for_mode(struct drm_device *dev,
8576 struct drm_display_mode *mode,
8577 int depth, int bpp)
8578{
8579 struct drm_i915_gem_object *obj;
0fed39bd 8580 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8581
8582 obj = i915_gem_alloc_object(dev,
8583 intel_framebuffer_size_for_mode(mode, bpp));
8584 if (obj == NULL)
8585 return ERR_PTR(-ENOMEM);
8586
8587 mode_cmd.width = mode->hdisplay;
8588 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8589 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8590 bpp);
5ca0c34a 8591 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8592
8593 return intel_framebuffer_create(dev, &mode_cmd, obj);
8594}
8595
8596static struct drm_framebuffer *
8597mode_fits_in_fbdev(struct drm_device *dev,
8598 struct drm_display_mode *mode)
8599{
4520f53a 8600#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8601 struct drm_i915_private *dev_priv = dev->dev_private;
8602 struct drm_i915_gem_object *obj;
8603 struct drm_framebuffer *fb;
8604
4c0e5528 8605 if (!dev_priv->fbdev)
d2dff872
CW
8606 return NULL;
8607
4c0e5528 8608 if (!dev_priv->fbdev->fb)
d2dff872
CW
8609 return NULL;
8610
4c0e5528
DV
8611 obj = dev_priv->fbdev->fb->obj;
8612 BUG_ON(!obj);
8613
8bcd4553 8614 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8615 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8616 fb->bits_per_pixel))
d2dff872
CW
8617 return NULL;
8618
01f2c773 8619 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8620 return NULL;
8621
8622 return fb;
4520f53a
DV
8623#else
8624 return NULL;
8625#endif
d2dff872
CW
8626}
8627
d2434ab7 8628bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8629 struct drm_display_mode *mode,
51fd371b
RC
8630 struct intel_load_detect_pipe *old,
8631 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8632{
8633 struct intel_crtc *intel_crtc;
d2434ab7
DV
8634 struct intel_encoder *intel_encoder =
8635 intel_attached_encoder(connector);
79e53945 8636 struct drm_crtc *possible_crtc;
4ef69c7a 8637 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8638 struct drm_crtc *crtc = NULL;
8639 struct drm_device *dev = encoder->dev;
94352cf9 8640 struct drm_framebuffer *fb;
51fd371b
RC
8641 struct drm_mode_config *config = &dev->mode_config;
8642 int ret, i = -1;
79e53945 8643
d2dff872 8644 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8645 connector->base.id, connector->name,
8e329a03 8646 encoder->base.id, encoder->name);
d2dff872 8647
51fd371b
RC
8648retry:
8649 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8650 if (ret)
8651 goto fail_unlock;
6e9f798d 8652
79e53945
JB
8653 /*
8654 * Algorithm gets a little messy:
7a5e4805 8655 *
79e53945
JB
8656 * - if the connector already has an assigned crtc, use it (but make
8657 * sure it's on first)
7a5e4805 8658 *
79e53945
JB
8659 * - try to find the first unused crtc that can drive this connector,
8660 * and use that if we find one
79e53945
JB
8661 */
8662
8663 /* See if we already have a CRTC for this connector */
8664 if (encoder->crtc) {
8665 crtc = encoder->crtc;
8261b191 8666
51fd371b 8667 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8668 if (ret)
8669 goto fail_unlock;
8670 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8671 if (ret)
8672 goto fail_unlock;
7b24056b 8673
24218aac 8674 old->dpms_mode = connector->dpms;
8261b191
CW
8675 old->load_detect_temp = false;
8676
8677 /* Make sure the crtc and connector are running */
24218aac
DV
8678 if (connector->dpms != DRM_MODE_DPMS_ON)
8679 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8680
7173188d 8681 return true;
79e53945
JB
8682 }
8683
8684 /* Find an unused one (if possible) */
70e1e0ec 8685 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8686 i++;
8687 if (!(encoder->possible_crtcs & (1 << i)))
8688 continue;
a459249c
VS
8689 if (possible_crtc->enabled)
8690 continue;
8691 /* This can occur when applying the pipe A quirk on resume. */
8692 if (to_intel_crtc(possible_crtc)->new_enabled)
8693 continue;
8694
8695 crtc = possible_crtc;
8696 break;
79e53945
JB
8697 }
8698
8699 /*
8700 * If we didn't find an unused CRTC, don't use any.
8701 */
8702 if (!crtc) {
7173188d 8703 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8704 goto fail_unlock;
79e53945
JB
8705 }
8706
51fd371b
RC
8707 ret = drm_modeset_lock(&crtc->mutex, ctx);
8708 if (ret)
4d02e2de
DV
8709 goto fail_unlock;
8710 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8711 if (ret)
51fd371b 8712 goto fail_unlock;
fc303101
DV
8713 intel_encoder->new_crtc = to_intel_crtc(crtc);
8714 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8715
8716 intel_crtc = to_intel_crtc(crtc);
412b61d8 8717 intel_crtc->new_enabled = true;
6e3c9717 8718 intel_crtc->new_config = intel_crtc->config;
24218aac 8719 old->dpms_mode = connector->dpms;
8261b191 8720 old->load_detect_temp = true;
d2dff872 8721 old->release_fb = NULL;
79e53945 8722
6492711d
CW
8723 if (!mode)
8724 mode = &load_detect_mode;
79e53945 8725
d2dff872
CW
8726 /* We need a framebuffer large enough to accommodate all accesses
8727 * that the plane may generate whilst we perform load detection.
8728 * We can not rely on the fbcon either being present (we get called
8729 * during its initialisation to detect all boot displays, or it may
8730 * not even exist) or that it is large enough to satisfy the
8731 * requested mode.
8732 */
94352cf9
DV
8733 fb = mode_fits_in_fbdev(dev, mode);
8734 if (fb == NULL) {
d2dff872 8735 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8736 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8737 old->release_fb = fb;
d2dff872
CW
8738 } else
8739 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8740 if (IS_ERR(fb)) {
d2dff872 8741 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8742 goto fail;
79e53945 8743 }
79e53945 8744
c0c36b94 8745 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8746 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8747 if (old->release_fb)
8748 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8749 goto fail;
79e53945 8750 }
7173188d 8751
79e53945 8752 /* let the connector get through one full cycle before testing */
9d0498a2 8753 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8754 return true;
412b61d8
VS
8755
8756 fail:
8757 intel_crtc->new_enabled = crtc->enabled;
8758 if (intel_crtc->new_enabled)
6e3c9717 8759 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
8760 else
8761 intel_crtc->new_config = NULL;
51fd371b
RC
8762fail_unlock:
8763 if (ret == -EDEADLK) {
8764 drm_modeset_backoff(ctx);
8765 goto retry;
8766 }
8767
412b61d8 8768 return false;
79e53945
JB
8769}
8770
d2434ab7 8771void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8772 struct intel_load_detect_pipe *old)
79e53945 8773{
d2434ab7
DV
8774 struct intel_encoder *intel_encoder =
8775 intel_attached_encoder(connector);
4ef69c7a 8776 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8777 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8779
d2dff872 8780 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8781 connector->base.id, connector->name,
8e329a03 8782 encoder->base.id, encoder->name);
d2dff872 8783
8261b191 8784 if (old->load_detect_temp) {
fc303101
DV
8785 to_intel_connector(connector)->new_encoder = NULL;
8786 intel_encoder->new_crtc = NULL;
412b61d8
VS
8787 intel_crtc->new_enabled = false;
8788 intel_crtc->new_config = NULL;
fc303101 8789 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8790
36206361
DV
8791 if (old->release_fb) {
8792 drm_framebuffer_unregister_private(old->release_fb);
8793 drm_framebuffer_unreference(old->release_fb);
8794 }
d2dff872 8795
0622a53c 8796 return;
79e53945
JB
8797 }
8798
c751ce4f 8799 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8800 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8801 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8802}
8803
da4a1efa 8804static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 8805 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
8806{
8807 struct drm_i915_private *dev_priv = dev->dev_private;
8808 u32 dpll = pipe_config->dpll_hw_state.dpll;
8809
8810 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8811 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8812 else if (HAS_PCH_SPLIT(dev))
8813 return 120000;
8814 else if (!IS_GEN2(dev))
8815 return 96000;
8816 else
8817 return 48000;
8818}
8819
79e53945 8820/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 8821static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8822 struct intel_crtc_state *pipe_config)
79e53945 8823{
f1f644dc 8824 struct drm_device *dev = crtc->base.dev;
79e53945 8825 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8826 int pipe = pipe_config->cpu_transcoder;
293623f7 8827 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8828 u32 fp;
8829 intel_clock_t clock;
da4a1efa 8830 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8831
8832 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8833 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8834 else
293623f7 8835 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8836
8837 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8838 if (IS_PINEVIEW(dev)) {
8839 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8840 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8841 } else {
8842 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8843 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8844 }
8845
a6c45cf0 8846 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8847 if (IS_PINEVIEW(dev))
8848 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8849 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8850 else
8851 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8852 DPLL_FPA01_P1_POST_DIV_SHIFT);
8853
8854 switch (dpll & DPLL_MODE_MASK) {
8855 case DPLLB_MODE_DAC_SERIAL:
8856 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8857 5 : 10;
8858 break;
8859 case DPLLB_MODE_LVDS:
8860 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8861 7 : 14;
8862 break;
8863 default:
28c97730 8864 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8865 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8866 return;
79e53945
JB
8867 }
8868
ac58c3f0 8869 if (IS_PINEVIEW(dev))
da4a1efa 8870 pineview_clock(refclk, &clock);
ac58c3f0 8871 else
da4a1efa 8872 i9xx_clock(refclk, &clock);
79e53945 8873 } else {
0fb58223 8874 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8875 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8876
8877 if (is_lvds) {
8878 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8879 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8880
8881 if (lvds & LVDS_CLKB_POWER_UP)
8882 clock.p2 = 7;
8883 else
8884 clock.p2 = 14;
79e53945
JB
8885 } else {
8886 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8887 clock.p1 = 2;
8888 else {
8889 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8890 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8891 }
8892 if (dpll & PLL_P2_DIVIDE_BY_4)
8893 clock.p2 = 4;
8894 else
8895 clock.p2 = 2;
79e53945 8896 }
da4a1efa
VS
8897
8898 i9xx_clock(refclk, &clock);
79e53945
JB
8899 }
8900
18442d08
VS
8901 /*
8902 * This value includes pixel_multiplier. We will use
241bfc38 8903 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8904 * encoder's get_config() function.
8905 */
8906 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8907}
8908
6878da05
VS
8909int intel_dotclock_calculate(int link_freq,
8910 const struct intel_link_m_n *m_n)
f1f644dc 8911{
f1f644dc
JB
8912 /*
8913 * The calculation for the data clock is:
1041a02f 8914 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8915 * But we want to avoid losing precison if possible, so:
1041a02f 8916 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8917 *
8918 * and the link clock is simpler:
1041a02f 8919 * link_clock = (m * link_clock) / n
f1f644dc
JB
8920 */
8921
6878da05
VS
8922 if (!m_n->link_n)
8923 return 0;
f1f644dc 8924
6878da05
VS
8925 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8926}
f1f644dc 8927
18442d08 8928static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 8929 struct intel_crtc_state *pipe_config)
6878da05
VS
8930{
8931 struct drm_device *dev = crtc->base.dev;
79e53945 8932
18442d08
VS
8933 /* read out port_clock from the DPLL */
8934 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8935
f1f644dc 8936 /*
18442d08 8937 * This value does not include pixel_multiplier.
241bfc38 8938 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8939 * agree once we know their relationship in the encoder's
8940 * get_config() function.
79e53945 8941 */
2d112de7 8942 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
8943 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8944 &pipe_config->fdi_m_n);
79e53945
JB
8945}
8946
8947/** Returns the currently programmed mode of the given pipe. */
8948struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8949 struct drm_crtc *crtc)
8950{
548f245b 8951 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8953 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 8954 struct drm_display_mode *mode;
5cec258b 8955 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
8956 int htot = I915_READ(HTOTAL(cpu_transcoder));
8957 int hsync = I915_READ(HSYNC(cpu_transcoder));
8958 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8959 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8960 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8961
8962 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8963 if (!mode)
8964 return NULL;
8965
f1f644dc
JB
8966 /*
8967 * Construct a pipe_config sufficient for getting the clock info
8968 * back out of crtc_clock_get.
8969 *
8970 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8971 * to use a real value here instead.
8972 */
293623f7 8973 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8974 pipe_config.pixel_multiplier = 1;
293623f7
VS
8975 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8976 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8977 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8978 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8979
773ae034 8980 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8981 mode->hdisplay = (htot & 0xffff) + 1;
8982 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8983 mode->hsync_start = (hsync & 0xffff) + 1;
8984 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8985 mode->vdisplay = (vtot & 0xffff) + 1;
8986 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8987 mode->vsync_start = (vsync & 0xffff) + 1;
8988 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8989
8990 drm_mode_set_name(mode);
79e53945
JB
8991
8992 return mode;
8993}
8994
652c393a
JB
8995static void intel_decrease_pllclock(struct drm_crtc *crtc)
8996{
8997 struct drm_device *dev = crtc->dev;
fbee40df 8998 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9000
baff296c 9001 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9002 return;
9003
9004 if (!dev_priv->lvds_downclock_avail)
9005 return;
9006
9007 /*
9008 * Since this is called by a timer, we should never get here in
9009 * the manual case.
9010 */
9011 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9012 int pipe = intel_crtc->pipe;
9013 int dpll_reg = DPLL(pipe);
9014 int dpll;
f6e5b160 9015
44d98a61 9016 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9017
8ac5a6d5 9018 assert_panel_unlocked(dev_priv, pipe);
652c393a 9019
dc257cf1 9020 dpll = I915_READ(dpll_reg);
652c393a
JB
9021 dpll |= DISPLAY_RATE_SELECT_FPA1;
9022 I915_WRITE(dpll_reg, dpll);
9d0498a2 9023 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9024 dpll = I915_READ(dpll_reg);
9025 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9026 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9027 }
9028
9029}
9030
f047e395
CW
9031void intel_mark_busy(struct drm_device *dev)
9032{
c67a470b
PZ
9033 struct drm_i915_private *dev_priv = dev->dev_private;
9034
f62a0076
CW
9035 if (dev_priv->mm.busy)
9036 return;
9037
43694d69 9038 intel_runtime_pm_get(dev_priv);
c67a470b 9039 i915_update_gfx_val(dev_priv);
f62a0076 9040 dev_priv->mm.busy = true;
f047e395
CW
9041}
9042
9043void intel_mark_idle(struct drm_device *dev)
652c393a 9044{
c67a470b 9045 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9046 struct drm_crtc *crtc;
652c393a 9047
f62a0076
CW
9048 if (!dev_priv->mm.busy)
9049 return;
9050
9051 dev_priv->mm.busy = false;
9052
d330a953 9053 if (!i915.powersave)
bb4cdd53 9054 goto out;
652c393a 9055
70e1e0ec 9056 for_each_crtc(dev, crtc) {
f4510a27 9057 if (!crtc->primary->fb)
652c393a
JB
9058 continue;
9059
725a5b54 9060 intel_decrease_pllclock(crtc);
652c393a 9061 }
b29c19b6 9062
3d13ef2e 9063 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9064 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9065
9066out:
43694d69 9067 intel_runtime_pm_put(dev_priv);
652c393a
JB
9068}
9069
f5de6e07
ACO
9070static void intel_crtc_set_state(struct intel_crtc *crtc,
9071 struct intel_crtc_state *crtc_state)
9072{
9073 kfree(crtc->config);
9074 crtc->config = crtc_state;
16f3f658 9075 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9076}
9077
79e53945
JB
9078static void intel_crtc_destroy(struct drm_crtc *crtc)
9079{
9080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9081 struct drm_device *dev = crtc->dev;
9082 struct intel_unpin_work *work;
67e77c5a 9083
5e2d7afc 9084 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9085 work = intel_crtc->unpin_work;
9086 intel_crtc->unpin_work = NULL;
5e2d7afc 9087 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9088
9089 if (work) {
9090 cancel_work_sync(&work->work);
9091 kfree(work);
9092 }
79e53945 9093
f5de6e07 9094 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9095 drm_crtc_cleanup(crtc);
67e77c5a 9096
79e53945
JB
9097 kfree(intel_crtc);
9098}
9099
6b95a207
KH
9100static void intel_unpin_work_fn(struct work_struct *__work)
9101{
9102 struct intel_unpin_work *work =
9103 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9104 struct drm_device *dev = work->crtc->dev;
f99d7069 9105 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9106
b4a98e57 9107 mutex_lock(&dev->struct_mutex);
ab8d6675 9108 intel_unpin_fb_obj(intel_fb_obj(work->old_fb));
05394f39 9109 drm_gem_object_unreference(&work->pending_flip_obj->base);
ab8d6675 9110 drm_framebuffer_unreference(work->old_fb);
d9e86c0e 9111
7ff0ebcc 9112 intel_fbc_update(dev);
f06cc1b9
JH
9113
9114 if (work->flip_queued_req)
146d84f0 9115 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9116 mutex_unlock(&dev->struct_mutex);
9117
f99d7069
DV
9118 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9119
b4a98e57
CW
9120 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9121 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9122
6b95a207
KH
9123 kfree(work);
9124}
9125
1afe3e9d 9126static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9127 struct drm_crtc *crtc)
6b95a207 9128{
6b95a207
KH
9129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9130 struct intel_unpin_work *work;
6b95a207
KH
9131 unsigned long flags;
9132
9133 /* Ignore early vblank irqs */
9134 if (intel_crtc == NULL)
9135 return;
9136
f326038a
DV
9137 /*
9138 * This is called both by irq handlers and the reset code (to complete
9139 * lost pageflips) so needs the full irqsave spinlocks.
9140 */
6b95a207
KH
9141 spin_lock_irqsave(&dev->event_lock, flags);
9142 work = intel_crtc->unpin_work;
e7d841ca
CW
9143
9144 /* Ensure we don't miss a work->pending update ... */
9145 smp_rmb();
9146
9147 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9148 spin_unlock_irqrestore(&dev->event_lock, flags);
9149 return;
9150 }
9151
d6bbafa1 9152 page_flip_completed(intel_crtc);
0af7e4df 9153
6b95a207 9154 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9155}
9156
1afe3e9d
JB
9157void intel_finish_page_flip(struct drm_device *dev, int pipe)
9158{
fbee40df 9159 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9160 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9161
49b14a5c 9162 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9163}
9164
9165void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9166{
fbee40df 9167 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9168 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9169
49b14a5c 9170 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9171}
9172
75f7f3ec
VS
9173/* Is 'a' after or equal to 'b'? */
9174static bool g4x_flip_count_after_eq(u32 a, u32 b)
9175{
9176 return !((a - b) & 0x80000000);
9177}
9178
9179static bool page_flip_finished(struct intel_crtc *crtc)
9180{
9181 struct drm_device *dev = crtc->base.dev;
9182 struct drm_i915_private *dev_priv = dev->dev_private;
9183
bdfa7542
VS
9184 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9185 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9186 return true;
9187
75f7f3ec
VS
9188 /*
9189 * The relevant registers doen't exist on pre-ctg.
9190 * As the flip done interrupt doesn't trigger for mmio
9191 * flips on gmch platforms, a flip count check isn't
9192 * really needed there. But since ctg has the registers,
9193 * include it in the check anyway.
9194 */
9195 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9196 return true;
9197
9198 /*
9199 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9200 * used the same base address. In that case the mmio flip might
9201 * have completed, but the CS hasn't even executed the flip yet.
9202 *
9203 * A flip count check isn't enough as the CS might have updated
9204 * the base address just after start of vblank, but before we
9205 * managed to process the interrupt. This means we'd complete the
9206 * CS flip too soon.
9207 *
9208 * Combining both checks should get us a good enough result. It may
9209 * still happen that the CS flip has been executed, but has not
9210 * yet actually completed. But in case the base address is the same
9211 * anyway, we don't really care.
9212 */
9213 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9214 crtc->unpin_work->gtt_offset &&
9215 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9216 crtc->unpin_work->flip_count);
9217}
9218
6b95a207
KH
9219void intel_prepare_page_flip(struct drm_device *dev, int plane)
9220{
fbee40df 9221 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9222 struct intel_crtc *intel_crtc =
9223 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9224 unsigned long flags;
9225
f326038a
DV
9226
9227 /*
9228 * This is called both by irq handlers and the reset code (to complete
9229 * lost pageflips) so needs the full irqsave spinlocks.
9230 *
9231 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9232 * generate a page-flip completion irq, i.e. every modeset
9233 * is also accompanied by a spurious intel_prepare_page_flip().
9234 */
6b95a207 9235 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9236 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9237 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9238 spin_unlock_irqrestore(&dev->event_lock, flags);
9239}
9240
eba905b2 9241static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9242{
9243 /* Ensure that the work item is consistent when activating it ... */
9244 smp_wmb();
9245 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9246 /* and that it is marked active as soon as the irq could fire. */
9247 smp_wmb();
9248}
9249
8c9f3aaf
JB
9250static int intel_gen2_queue_flip(struct drm_device *dev,
9251 struct drm_crtc *crtc,
9252 struct drm_framebuffer *fb,
ed8d1975 9253 struct drm_i915_gem_object *obj,
a4872ba6 9254 struct intel_engine_cs *ring,
ed8d1975 9255 uint32_t flags)
8c9f3aaf 9256{
8c9f3aaf 9257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9258 u32 flip_mask;
9259 int ret;
9260
6d90c952 9261 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9262 if (ret)
4fa62c89 9263 return ret;
8c9f3aaf
JB
9264
9265 /* Can't queue multiple flips, so wait for the previous
9266 * one to finish before executing the next.
9267 */
9268 if (intel_crtc->plane)
9269 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9270 else
9271 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9272 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9273 intel_ring_emit(ring, MI_NOOP);
9274 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9275 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9276 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9277 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9278 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9279
9280 intel_mark_page_flip_active(intel_crtc);
09246732 9281 __intel_ring_advance(ring);
83d4092b 9282 return 0;
8c9f3aaf
JB
9283}
9284
9285static int intel_gen3_queue_flip(struct drm_device *dev,
9286 struct drm_crtc *crtc,
9287 struct drm_framebuffer *fb,
ed8d1975 9288 struct drm_i915_gem_object *obj,
a4872ba6 9289 struct intel_engine_cs *ring,
ed8d1975 9290 uint32_t flags)
8c9f3aaf 9291{
8c9f3aaf 9292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9293 u32 flip_mask;
9294 int ret;
9295
6d90c952 9296 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9297 if (ret)
4fa62c89 9298 return ret;
8c9f3aaf
JB
9299
9300 if (intel_crtc->plane)
9301 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9302 else
9303 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9304 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9305 intel_ring_emit(ring, MI_NOOP);
9306 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9307 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9308 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9309 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9310 intel_ring_emit(ring, MI_NOOP);
9311
e7d841ca 9312 intel_mark_page_flip_active(intel_crtc);
09246732 9313 __intel_ring_advance(ring);
83d4092b 9314 return 0;
8c9f3aaf
JB
9315}
9316
9317static int intel_gen4_queue_flip(struct drm_device *dev,
9318 struct drm_crtc *crtc,
9319 struct drm_framebuffer *fb,
ed8d1975 9320 struct drm_i915_gem_object *obj,
a4872ba6 9321 struct intel_engine_cs *ring,
ed8d1975 9322 uint32_t flags)
8c9f3aaf
JB
9323{
9324 struct drm_i915_private *dev_priv = dev->dev_private;
9325 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9326 uint32_t pf, pipesrc;
9327 int ret;
9328
6d90c952 9329 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9330 if (ret)
4fa62c89 9331 return ret;
8c9f3aaf
JB
9332
9333 /* i965+ uses the linear or tiled offsets from the
9334 * Display Registers (which do not change across a page-flip)
9335 * so we need only reprogram the base address.
9336 */
6d90c952
DV
9337 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9338 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9339 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9340 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9341 obj->tiling_mode);
8c9f3aaf
JB
9342
9343 /* XXX Enabling the panel-fitter across page-flip is so far
9344 * untested on non-native modes, so ignore it for now.
9345 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9346 */
9347 pf = 0;
9348 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9349 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9350
9351 intel_mark_page_flip_active(intel_crtc);
09246732 9352 __intel_ring_advance(ring);
83d4092b 9353 return 0;
8c9f3aaf
JB
9354}
9355
9356static int intel_gen6_queue_flip(struct drm_device *dev,
9357 struct drm_crtc *crtc,
9358 struct drm_framebuffer *fb,
ed8d1975 9359 struct drm_i915_gem_object *obj,
a4872ba6 9360 struct intel_engine_cs *ring,
ed8d1975 9361 uint32_t flags)
8c9f3aaf
JB
9362{
9363 struct drm_i915_private *dev_priv = dev->dev_private;
9364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9365 uint32_t pf, pipesrc;
9366 int ret;
9367
6d90c952 9368 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9369 if (ret)
4fa62c89 9370 return ret;
8c9f3aaf 9371
6d90c952
DV
9372 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9373 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9374 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9375 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9376
dc257cf1
DV
9377 /* Contrary to the suggestions in the documentation,
9378 * "Enable Panel Fitter" does not seem to be required when page
9379 * flipping with a non-native mode, and worse causes a normal
9380 * modeset to fail.
9381 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9382 */
9383 pf = 0;
8c9f3aaf 9384 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9385 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9386
9387 intel_mark_page_flip_active(intel_crtc);
09246732 9388 __intel_ring_advance(ring);
83d4092b 9389 return 0;
8c9f3aaf
JB
9390}
9391
7c9017e5
JB
9392static int intel_gen7_queue_flip(struct drm_device *dev,
9393 struct drm_crtc *crtc,
9394 struct drm_framebuffer *fb,
ed8d1975 9395 struct drm_i915_gem_object *obj,
a4872ba6 9396 struct intel_engine_cs *ring,
ed8d1975 9397 uint32_t flags)
7c9017e5 9398{
7c9017e5 9399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9400 uint32_t plane_bit = 0;
ffe74d75
CW
9401 int len, ret;
9402
eba905b2 9403 switch (intel_crtc->plane) {
cb05d8de
DV
9404 case PLANE_A:
9405 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9406 break;
9407 case PLANE_B:
9408 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9409 break;
9410 case PLANE_C:
9411 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9412 break;
9413 default:
9414 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9415 return -ENODEV;
cb05d8de
DV
9416 }
9417
ffe74d75 9418 len = 4;
f476828a 9419 if (ring->id == RCS) {
ffe74d75 9420 len += 6;
f476828a
DL
9421 /*
9422 * On Gen 8, SRM is now taking an extra dword to accommodate
9423 * 48bits addresses, and we need a NOOP for the batch size to
9424 * stay even.
9425 */
9426 if (IS_GEN8(dev))
9427 len += 2;
9428 }
ffe74d75 9429
f66fab8e
VS
9430 /*
9431 * BSpec MI_DISPLAY_FLIP for IVB:
9432 * "The full packet must be contained within the same cache line."
9433 *
9434 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9435 * cacheline, if we ever start emitting more commands before
9436 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9437 * then do the cacheline alignment, and finally emit the
9438 * MI_DISPLAY_FLIP.
9439 */
9440 ret = intel_ring_cacheline_align(ring);
9441 if (ret)
4fa62c89 9442 return ret;
f66fab8e 9443
ffe74d75 9444 ret = intel_ring_begin(ring, len);
7c9017e5 9445 if (ret)
4fa62c89 9446 return ret;
7c9017e5 9447
ffe74d75
CW
9448 /* Unmask the flip-done completion message. Note that the bspec says that
9449 * we should do this for both the BCS and RCS, and that we must not unmask
9450 * more than one flip event at any time (or ensure that one flip message
9451 * can be sent by waiting for flip-done prior to queueing new flips).
9452 * Experimentation says that BCS works despite DERRMR masking all
9453 * flip-done completion events and that unmasking all planes at once
9454 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9455 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9456 */
9457 if (ring->id == RCS) {
9458 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9459 intel_ring_emit(ring, DERRMR);
9460 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9461 DERRMR_PIPEB_PRI_FLIP_DONE |
9462 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9463 if (IS_GEN8(dev))
9464 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9465 MI_SRM_LRM_GLOBAL_GTT);
9466 else
9467 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9468 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9469 intel_ring_emit(ring, DERRMR);
9470 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9471 if (IS_GEN8(dev)) {
9472 intel_ring_emit(ring, 0);
9473 intel_ring_emit(ring, MI_NOOP);
9474 }
ffe74d75
CW
9475 }
9476
cb05d8de 9477 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9478 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9479 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9480 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9481
9482 intel_mark_page_flip_active(intel_crtc);
09246732 9483 __intel_ring_advance(ring);
83d4092b 9484 return 0;
7c9017e5
JB
9485}
9486
84c33a64
SG
9487static bool use_mmio_flip(struct intel_engine_cs *ring,
9488 struct drm_i915_gem_object *obj)
9489{
9490 /*
9491 * This is not being used for older platforms, because
9492 * non-availability of flip done interrupt forces us to use
9493 * CS flips. Older platforms derive flip done using some clever
9494 * tricks involving the flip_pending status bits and vblank irqs.
9495 * So using MMIO flips there would disrupt this mechanism.
9496 */
9497
8e09bf83
CW
9498 if (ring == NULL)
9499 return true;
9500
84c33a64
SG
9501 if (INTEL_INFO(ring->dev)->gen < 5)
9502 return false;
9503
9504 if (i915.use_mmio_flip < 0)
9505 return false;
9506 else if (i915.use_mmio_flip > 0)
9507 return true;
14bf993e
OM
9508 else if (i915.enable_execlists)
9509 return true;
84c33a64 9510 else
41c52415 9511 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9512}
9513
ff944564
DL
9514static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9515{
9516 struct drm_device *dev = intel_crtc->base.dev;
9517 struct drm_i915_private *dev_priv = dev->dev_private;
9518 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9519 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9520 struct drm_i915_gem_object *obj = intel_fb->obj;
9521 const enum pipe pipe = intel_crtc->pipe;
9522 u32 ctl, stride;
9523
9524 ctl = I915_READ(PLANE_CTL(pipe, 0));
9525 ctl &= ~PLANE_CTL_TILED_MASK;
9526 if (obj->tiling_mode == I915_TILING_X)
9527 ctl |= PLANE_CTL_TILED_X;
9528
9529 /*
9530 * The stride is either expressed as a multiple of 64 bytes chunks for
9531 * linear buffers or in number of tiles for tiled buffers.
9532 */
9533 stride = fb->pitches[0] >> 6;
9534 if (obj->tiling_mode == I915_TILING_X)
9535 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9536
9537 /*
9538 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9539 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9540 */
9541 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9542 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9543
9544 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9545 POSTING_READ(PLANE_SURF(pipe, 0));
9546}
9547
9548static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9549{
9550 struct drm_device *dev = intel_crtc->base.dev;
9551 struct drm_i915_private *dev_priv = dev->dev_private;
9552 struct intel_framebuffer *intel_fb =
9553 to_intel_framebuffer(intel_crtc->base.primary->fb);
9554 struct drm_i915_gem_object *obj = intel_fb->obj;
9555 u32 dspcntr;
9556 u32 reg;
9557
84c33a64
SG
9558 reg = DSPCNTR(intel_crtc->plane);
9559 dspcntr = I915_READ(reg);
9560
c5d97472
DL
9561 if (obj->tiling_mode != I915_TILING_NONE)
9562 dspcntr |= DISPPLANE_TILED;
9563 else
9564 dspcntr &= ~DISPPLANE_TILED;
9565
84c33a64
SG
9566 I915_WRITE(reg, dspcntr);
9567
9568 I915_WRITE(DSPSURF(intel_crtc->plane),
9569 intel_crtc->unpin_work->gtt_offset);
9570 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9571
ff944564
DL
9572}
9573
9574/*
9575 * XXX: This is the temporary way to update the plane registers until we get
9576 * around to using the usual plane update functions for MMIO flips
9577 */
9578static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9579{
9580 struct drm_device *dev = intel_crtc->base.dev;
9581 bool atomic_update;
9582 u32 start_vbl_count;
9583
9584 intel_mark_page_flip_active(intel_crtc);
9585
9586 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9587
9588 if (INTEL_INFO(dev)->gen >= 9)
9589 skl_do_mmio_flip(intel_crtc);
9590 else
9591 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9592 ilk_do_mmio_flip(intel_crtc);
9593
9362c7c5
ACO
9594 if (atomic_update)
9595 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9596}
9597
9362c7c5 9598static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9599{
cc8c4cc2 9600 struct intel_crtc *crtc =
9362c7c5 9601 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9602 struct intel_mmio_flip *mmio_flip;
84c33a64 9603
cc8c4cc2
JH
9604 mmio_flip = &crtc->mmio_flip;
9605 if (mmio_flip->req)
9c654818
JH
9606 WARN_ON(__i915_wait_request(mmio_flip->req,
9607 crtc->reset_counter,
9608 false, NULL, NULL) != 0);
84c33a64 9609
cc8c4cc2
JH
9610 intel_do_mmio_flip(crtc);
9611 if (mmio_flip->req) {
9612 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9613 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9614 mutex_unlock(&crtc->base.dev->struct_mutex);
9615 }
84c33a64
SG
9616}
9617
9618static int intel_queue_mmio_flip(struct drm_device *dev,
9619 struct drm_crtc *crtc,
9620 struct drm_framebuffer *fb,
9621 struct drm_i915_gem_object *obj,
9622 struct intel_engine_cs *ring,
9623 uint32_t flags)
9624{
84c33a64 9625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9626
cc8c4cc2
JH
9627 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9628 obj->last_write_req);
536f5b5e
ACO
9629
9630 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9631
84c33a64
SG
9632 return 0;
9633}
9634
8c9f3aaf
JB
9635static int intel_default_queue_flip(struct drm_device *dev,
9636 struct drm_crtc *crtc,
9637 struct drm_framebuffer *fb,
ed8d1975 9638 struct drm_i915_gem_object *obj,
a4872ba6 9639 struct intel_engine_cs *ring,
ed8d1975 9640 uint32_t flags)
8c9f3aaf
JB
9641{
9642 return -ENODEV;
9643}
9644
d6bbafa1
CW
9645static bool __intel_pageflip_stall_check(struct drm_device *dev,
9646 struct drm_crtc *crtc)
9647{
9648 struct drm_i915_private *dev_priv = dev->dev_private;
9649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9650 struct intel_unpin_work *work = intel_crtc->unpin_work;
9651 u32 addr;
9652
9653 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9654 return true;
9655
9656 if (!work->enable_stall_check)
9657 return false;
9658
9659 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9660 if (work->flip_queued_req &&
9661 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9662 return false;
9663
1e3feefd 9664 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
9665 }
9666
1e3feefd 9667 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
9668 return false;
9669
9670 /* Potential stall - if we see that the flip has happened,
9671 * assume a missed interrupt. */
9672 if (INTEL_INFO(dev)->gen >= 4)
9673 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9674 else
9675 addr = I915_READ(DSPADDR(intel_crtc->plane));
9676
9677 /* There is a potential issue here with a false positive after a flip
9678 * to the same address. We could address this by checking for a
9679 * non-incrementing frame counter.
9680 */
9681 return addr == work->gtt_offset;
9682}
9683
9684void intel_check_page_flip(struct drm_device *dev, int pipe)
9685{
9686 struct drm_i915_private *dev_priv = dev->dev_private;
9687 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9689
9690 WARN_ON(!in_irq());
d6bbafa1
CW
9691
9692 if (crtc == NULL)
9693 return;
9694
f326038a 9695 spin_lock(&dev->event_lock);
d6bbafa1
CW
9696 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9697 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
1e3feefd
DV
9698 intel_crtc->unpin_work->flip_queued_vblank,
9699 drm_vblank_count(dev, pipe));
d6bbafa1
CW
9700 page_flip_completed(intel_crtc);
9701 }
f326038a 9702 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9703}
9704
6b95a207
KH
9705static int intel_crtc_page_flip(struct drm_crtc *crtc,
9706 struct drm_framebuffer *fb,
ed8d1975
KP
9707 struct drm_pending_vblank_event *event,
9708 uint32_t page_flip_flags)
6b95a207
KH
9709{
9710 struct drm_device *dev = crtc->dev;
9711 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9712 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9713 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9714 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 9715 struct drm_plane *primary = crtc->primary;
a071fa00 9716 enum pipe pipe = intel_crtc->pipe;
6b95a207 9717 struct intel_unpin_work *work;
a4872ba6 9718 struct intel_engine_cs *ring;
52e68630 9719 int ret;
6b95a207 9720
2ff8fde1
MR
9721 /*
9722 * drm_mode_page_flip_ioctl() should already catch this, but double
9723 * check to be safe. In the future we may enable pageflipping from
9724 * a disabled primary plane.
9725 */
9726 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9727 return -EBUSY;
9728
e6a595d2 9729 /* Can't change pixel format via MI display flips. */
f4510a27 9730 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9731 return -EINVAL;
9732
9733 /*
9734 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9735 * Note that pitch changes could also affect these register.
9736 */
9737 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9738 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9739 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9740 return -EINVAL;
9741
f900db47
CW
9742 if (i915_terminally_wedged(&dev_priv->gpu_error))
9743 goto out_hang;
9744
b14c5679 9745 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9746 if (work == NULL)
9747 return -ENOMEM;
9748
6b95a207 9749 work->event = event;
b4a98e57 9750 work->crtc = crtc;
ab8d6675 9751 work->old_fb = old_fb;
6b95a207
KH
9752 INIT_WORK(&work->work, intel_unpin_work_fn);
9753
87b6b101 9754 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9755 if (ret)
9756 goto free_work;
9757
6b95a207 9758 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9759 spin_lock_irq(&dev->event_lock);
6b95a207 9760 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9761 /* Before declaring the flip queue wedged, check if
9762 * the hardware completed the operation behind our backs.
9763 */
9764 if (__intel_pageflip_stall_check(dev, crtc)) {
9765 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9766 page_flip_completed(intel_crtc);
9767 } else {
9768 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9769 spin_unlock_irq(&dev->event_lock);
468f0b44 9770
d6bbafa1
CW
9771 drm_crtc_vblank_put(crtc);
9772 kfree(work);
9773 return -EBUSY;
9774 }
6b95a207
KH
9775 }
9776 intel_crtc->unpin_work = work;
5e2d7afc 9777 spin_unlock_irq(&dev->event_lock);
6b95a207 9778
b4a98e57
CW
9779 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9780 flush_workqueue(dev_priv->wq);
9781
79158103
CW
9782 ret = i915_mutex_lock_interruptible(dev);
9783 if (ret)
9784 goto cleanup;
6b95a207 9785
75dfca80 9786 /* Reference the objects for the scheduled work. */
ab8d6675 9787 drm_framebuffer_reference(work->old_fb);
05394f39 9788 drm_gem_object_reference(&obj->base);
6b95a207 9789
f4510a27 9790 crtc->primary->fb = fb;
afd65eb4 9791 update_state_fb(crtc->primary);
1ed1f968 9792
e1f99ce6 9793 work->pending_flip_obj = obj;
e1f99ce6 9794
b4a98e57 9795 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9796 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9797
75f7f3ec 9798 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9799 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9800
4fa62c89
VS
9801 if (IS_VALLEYVIEW(dev)) {
9802 ring = &dev_priv->ring[BCS];
ab8d6675 9803 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
9804 /* vlv: DISPLAY_FLIP fails to change tiling */
9805 ring = NULL;
48bf5b2d 9806 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 9807 ring = &dev_priv->ring[BCS];
4fa62c89 9808 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 9809 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
9810 if (ring == NULL || ring->id != RCS)
9811 ring = &dev_priv->ring[BCS];
9812 } else {
9813 ring = &dev_priv->ring[RCS];
9814 }
9815
850c4cdc 9816 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
8c9f3aaf
JB
9817 if (ret)
9818 goto cleanup_pending;
6b95a207 9819
4fa62c89
VS
9820 work->gtt_offset =
9821 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9822
d6bbafa1 9823 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9824 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9825 page_flip_flags);
d6bbafa1
CW
9826 if (ret)
9827 goto cleanup_unpin;
9828
f06cc1b9
JH
9829 i915_gem_request_assign(&work->flip_queued_req,
9830 obj->last_write_req);
d6bbafa1 9831 } else {
84c33a64 9832 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9833 page_flip_flags);
9834 if (ret)
9835 goto cleanup_unpin;
9836
f06cc1b9
JH
9837 i915_gem_request_assign(&work->flip_queued_req,
9838 intel_ring_get_request(ring));
d6bbafa1
CW
9839 }
9840
1e3feefd 9841 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 9842 work->enable_stall_check = true;
4fa62c89 9843
ab8d6675 9844 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
9845 INTEL_FRONTBUFFER_PRIMARY(pipe));
9846
7ff0ebcc 9847 intel_fbc_disable(dev);
f99d7069 9848 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9849 mutex_unlock(&dev->struct_mutex);
9850
e5510fac
JB
9851 trace_i915_flip_request(intel_crtc->plane, obj);
9852
6b95a207 9853 return 0;
96b099fd 9854
4fa62c89
VS
9855cleanup_unpin:
9856 intel_unpin_fb_obj(obj);
8c9f3aaf 9857cleanup_pending:
b4a98e57 9858 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9859 crtc->primary->fb = old_fb;
afd65eb4 9860 update_state_fb(crtc->primary);
ab8d6675 9861 drm_framebuffer_unreference(work->old_fb);
05394f39 9862 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9863 mutex_unlock(&dev->struct_mutex);
9864
79158103 9865cleanup:
5e2d7afc 9866 spin_lock_irq(&dev->event_lock);
96b099fd 9867 intel_crtc->unpin_work = NULL;
5e2d7afc 9868 spin_unlock_irq(&dev->event_lock);
96b099fd 9869
87b6b101 9870 drm_crtc_vblank_put(crtc);
7317c75e 9871free_work:
96b099fd
CW
9872 kfree(work);
9873
f900db47
CW
9874 if (ret == -EIO) {
9875out_hang:
53a366b9 9876 ret = intel_plane_restore(primary);
f0d3dad3 9877 if (ret == 0 && event) {
5e2d7afc 9878 spin_lock_irq(&dev->event_lock);
a071fa00 9879 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9880 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9881 }
f900db47 9882 }
96b099fd 9883 return ret;
6b95a207
KH
9884}
9885
f6e5b160 9886static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9887 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9888 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
9889 .atomic_begin = intel_begin_crtc_commit,
9890 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
9891};
9892
9a935856
DV
9893/**
9894 * intel_modeset_update_staged_output_state
9895 *
9896 * Updates the staged output configuration state, e.g. after we've read out the
9897 * current hw state.
9898 */
9899static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9900{
7668851f 9901 struct intel_crtc *crtc;
9a935856
DV
9902 struct intel_encoder *encoder;
9903 struct intel_connector *connector;
f6e5b160 9904
9a935856
DV
9905 list_for_each_entry(connector, &dev->mode_config.connector_list,
9906 base.head) {
9907 connector->new_encoder =
9908 to_intel_encoder(connector->base.encoder);
9909 }
f6e5b160 9910
b2784e15 9911 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9912 encoder->new_crtc =
9913 to_intel_crtc(encoder->base.crtc);
9914 }
7668851f 9915
d3fcc808 9916 for_each_intel_crtc(dev, crtc) {
7668851f 9917 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9918
9919 if (crtc->new_enabled)
6e3c9717 9920 crtc->new_config = crtc->config;
7bd0a8e7
VS
9921 else
9922 crtc->new_config = NULL;
7668851f 9923 }
f6e5b160
CW
9924}
9925
9a935856
DV
9926/**
9927 * intel_modeset_commit_output_state
9928 *
9929 * This function copies the stage display pipe configuration to the real one.
9930 */
9931static void intel_modeset_commit_output_state(struct drm_device *dev)
9932{
7668851f 9933 struct intel_crtc *crtc;
9a935856
DV
9934 struct intel_encoder *encoder;
9935 struct intel_connector *connector;
f6e5b160 9936
9a935856
DV
9937 list_for_each_entry(connector, &dev->mode_config.connector_list,
9938 base.head) {
9939 connector->base.encoder = &connector->new_encoder->base;
9940 }
f6e5b160 9941
b2784e15 9942 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9943 encoder->base.crtc = &encoder->new_crtc->base;
9944 }
7668851f 9945
d3fcc808 9946 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9947 crtc->base.enabled = crtc->new_enabled;
9948 }
9a935856
DV
9949}
9950
050f7aeb 9951static void
eba905b2 9952connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 9953 struct intel_crtc_state *pipe_config)
050f7aeb
DV
9954{
9955 int bpp = pipe_config->pipe_bpp;
9956
9957 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9958 connector->base.base.id,
c23cc417 9959 connector->base.name);
050f7aeb
DV
9960
9961 /* Don't use an invalid EDID bpc value */
9962 if (connector->base.display_info.bpc &&
9963 connector->base.display_info.bpc * 3 < bpp) {
9964 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9965 bpp, connector->base.display_info.bpc*3);
9966 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9967 }
9968
9969 /* Clamp bpp to 8 on screens without EDID 1.4 */
9970 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9971 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9972 bpp);
9973 pipe_config->pipe_bpp = 24;
9974 }
9975}
9976
4e53c2e0 9977static int
050f7aeb
DV
9978compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9979 struct drm_framebuffer *fb,
5cec258b 9980 struct intel_crtc_state *pipe_config)
4e53c2e0 9981{
050f7aeb
DV
9982 struct drm_device *dev = crtc->base.dev;
9983 struct intel_connector *connector;
4e53c2e0
DV
9984 int bpp;
9985
d42264b1
DV
9986 switch (fb->pixel_format) {
9987 case DRM_FORMAT_C8:
4e53c2e0
DV
9988 bpp = 8*3; /* since we go through a colormap */
9989 break;
d42264b1
DV
9990 case DRM_FORMAT_XRGB1555:
9991 case DRM_FORMAT_ARGB1555:
9992 /* checked in intel_framebuffer_init already */
9993 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9994 return -EINVAL;
9995 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9996 bpp = 6*3; /* min is 18bpp */
9997 break;
d42264b1
DV
9998 case DRM_FORMAT_XBGR8888:
9999 case DRM_FORMAT_ABGR8888:
10000 /* checked in intel_framebuffer_init already */
10001 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10002 return -EINVAL;
10003 case DRM_FORMAT_XRGB8888:
10004 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10005 bpp = 8*3;
10006 break;
d42264b1
DV
10007 case DRM_FORMAT_XRGB2101010:
10008 case DRM_FORMAT_ARGB2101010:
10009 case DRM_FORMAT_XBGR2101010:
10010 case DRM_FORMAT_ABGR2101010:
10011 /* checked in intel_framebuffer_init already */
10012 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10013 return -EINVAL;
4e53c2e0
DV
10014 bpp = 10*3;
10015 break;
baba133a 10016 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10017 default:
10018 DRM_DEBUG_KMS("unsupported depth\n");
10019 return -EINVAL;
10020 }
10021
4e53c2e0
DV
10022 pipe_config->pipe_bpp = bpp;
10023
10024 /* Clamp display bpp to EDID value */
10025 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10026 base.head) {
1b829e05
DV
10027 if (!connector->new_encoder ||
10028 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10029 continue;
10030
050f7aeb 10031 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10032 }
10033
10034 return bpp;
10035}
10036
644db711
DV
10037static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10038{
10039 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10040 "type: 0x%x flags: 0x%x\n",
1342830c 10041 mode->crtc_clock,
644db711
DV
10042 mode->crtc_hdisplay, mode->crtc_hsync_start,
10043 mode->crtc_hsync_end, mode->crtc_htotal,
10044 mode->crtc_vdisplay, mode->crtc_vsync_start,
10045 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10046}
10047
c0b03411 10048static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10049 struct intel_crtc_state *pipe_config,
c0b03411
DV
10050 const char *context)
10051{
10052 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10053 context, pipe_name(crtc->pipe));
10054
10055 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10056 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10057 pipe_config->pipe_bpp, pipe_config->dither);
10058 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10059 pipe_config->has_pch_encoder,
10060 pipe_config->fdi_lanes,
10061 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10062 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10063 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10064 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10065 pipe_config->has_dp_encoder,
10066 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10067 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10068 pipe_config->dp_m_n.tu);
b95af8be
VK
10069
10070 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10071 pipe_config->has_dp_encoder,
10072 pipe_config->dp_m2_n2.gmch_m,
10073 pipe_config->dp_m2_n2.gmch_n,
10074 pipe_config->dp_m2_n2.link_m,
10075 pipe_config->dp_m2_n2.link_n,
10076 pipe_config->dp_m2_n2.tu);
10077
55072d19
DV
10078 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10079 pipe_config->has_audio,
10080 pipe_config->has_infoframe);
10081
c0b03411 10082 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10083 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10084 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10085 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10086 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10087 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10088 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10089 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10090 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10091 pipe_config->gmch_pfit.control,
10092 pipe_config->gmch_pfit.pgm_ratios,
10093 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10094 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10095 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10096 pipe_config->pch_pfit.size,
10097 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10098 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10099 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10100}
10101
bc079e8b
VS
10102static bool encoders_cloneable(const struct intel_encoder *a,
10103 const struct intel_encoder *b)
accfc0c5 10104{
bc079e8b
VS
10105 /* masks could be asymmetric, so check both ways */
10106 return a == b || (a->cloneable & (1 << b->type) &&
10107 b->cloneable & (1 << a->type));
10108}
10109
10110static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10111 struct intel_encoder *encoder)
10112{
10113 struct drm_device *dev = crtc->base.dev;
10114 struct intel_encoder *source_encoder;
10115
b2784e15 10116 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10117 if (source_encoder->new_crtc != crtc)
10118 continue;
10119
10120 if (!encoders_cloneable(encoder, source_encoder))
10121 return false;
10122 }
10123
10124 return true;
10125}
10126
10127static bool check_encoder_cloning(struct intel_crtc *crtc)
10128{
10129 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10130 struct intel_encoder *encoder;
10131
b2784e15 10132 for_each_intel_encoder(dev, encoder) {
bc079e8b 10133 if (encoder->new_crtc != crtc)
accfc0c5
DV
10134 continue;
10135
bc079e8b
VS
10136 if (!check_single_encoder_cloning(crtc, encoder))
10137 return false;
accfc0c5
DV
10138 }
10139
bc079e8b 10140 return true;
accfc0c5
DV
10141}
10142
00f0b378
VS
10143static bool check_digital_port_conflicts(struct drm_device *dev)
10144{
10145 struct intel_connector *connector;
10146 unsigned int used_ports = 0;
10147
10148 /*
10149 * Walk the connector list instead of the encoder
10150 * list to detect the problem on ddi platforms
10151 * where there's just one encoder per digital port.
10152 */
10153 list_for_each_entry(connector,
10154 &dev->mode_config.connector_list, base.head) {
10155 struct intel_encoder *encoder = connector->new_encoder;
10156
10157 if (!encoder)
10158 continue;
10159
10160 WARN_ON(!encoder->new_crtc);
10161
10162 switch (encoder->type) {
10163 unsigned int port_mask;
10164 case INTEL_OUTPUT_UNKNOWN:
10165 if (WARN_ON(!HAS_DDI(dev)))
10166 break;
10167 case INTEL_OUTPUT_DISPLAYPORT:
10168 case INTEL_OUTPUT_HDMI:
10169 case INTEL_OUTPUT_EDP:
10170 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10171
10172 /* the same port mustn't appear more than once */
10173 if (used_ports & port_mask)
10174 return false;
10175
10176 used_ports |= port_mask;
10177 default:
10178 break;
10179 }
10180 }
10181
10182 return true;
10183}
10184
5cec258b 10185static struct intel_crtc_state *
b8cecdf5 10186intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10187 struct drm_framebuffer *fb,
b8cecdf5 10188 struct drm_display_mode *mode)
ee7b9f93 10189{
7758a113 10190 struct drm_device *dev = crtc->dev;
7758a113 10191 struct intel_encoder *encoder;
5cec258b 10192 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10193 int plane_bpp, ret = -EINVAL;
10194 bool retry = true;
ee7b9f93 10195
bc079e8b 10196 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10197 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10198 return ERR_PTR(-EINVAL);
10199 }
10200
00f0b378
VS
10201 if (!check_digital_port_conflicts(dev)) {
10202 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10203 return ERR_PTR(-EINVAL);
10204 }
10205
b8cecdf5
DV
10206 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10207 if (!pipe_config)
7758a113
DV
10208 return ERR_PTR(-ENOMEM);
10209
2d112de7
ACO
10210 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10211 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10212
e143a21c
DV
10213 pipe_config->cpu_transcoder =
10214 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10215 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10216
2960bc9c
ID
10217 /*
10218 * Sanitize sync polarity flags based on requested ones. If neither
10219 * positive or negative polarity is requested, treat this as meaning
10220 * negative polarity.
10221 */
2d112de7 10222 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10223 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10224 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10225
2d112de7 10226 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10227 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10228 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10229
050f7aeb
DV
10230 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10231 * plane pixel format and any sink constraints into account. Returns the
10232 * source plane bpp so that dithering can be selected on mismatches
10233 * after encoders and crtc also have had their say. */
10234 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10235 fb, pipe_config);
4e53c2e0
DV
10236 if (plane_bpp < 0)
10237 goto fail;
10238
e41a56be
VS
10239 /*
10240 * Determine the real pipe dimensions. Note that stereo modes can
10241 * increase the actual pipe size due to the frame doubling and
10242 * insertion of additional space for blanks between the frame. This
10243 * is stored in the crtc timings. We use the requested mode to do this
10244 * computation to clearly distinguish it from the adjusted mode, which
10245 * can be changed by the connectors in the below retry loop.
10246 */
2d112de7 10247 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10248 &pipe_config->pipe_src_w,
10249 &pipe_config->pipe_src_h);
e41a56be 10250
e29c22c0 10251encoder_retry:
ef1b460d 10252 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10253 pipe_config->port_clock = 0;
ef1b460d 10254 pipe_config->pixel_multiplier = 1;
ff9a6750 10255
135c81b8 10256 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10257 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10258 CRTC_STEREO_DOUBLE);
135c81b8 10259
7758a113
DV
10260 /* Pass our mode to the connectors and the CRTC to give them a chance to
10261 * adjust it according to limitations or connector properties, and also
10262 * a chance to reject the mode entirely.
47f1c6c9 10263 */
b2784e15 10264 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10265
7758a113
DV
10266 if (&encoder->new_crtc->base != crtc)
10267 continue;
7ae89233 10268
efea6e8e
DV
10269 if (!(encoder->compute_config(encoder, pipe_config))) {
10270 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10271 goto fail;
10272 }
ee7b9f93 10273 }
47f1c6c9 10274
ff9a6750
DV
10275 /* Set default port clock if not overwritten by the encoder. Needs to be
10276 * done afterwards in case the encoder adjusts the mode. */
10277 if (!pipe_config->port_clock)
2d112de7 10278 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10279 * pipe_config->pixel_multiplier;
ff9a6750 10280
a43f6e0f 10281 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10282 if (ret < 0) {
7758a113
DV
10283 DRM_DEBUG_KMS("CRTC fixup failed\n");
10284 goto fail;
ee7b9f93 10285 }
e29c22c0
DV
10286
10287 if (ret == RETRY) {
10288 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10289 ret = -EINVAL;
10290 goto fail;
10291 }
10292
10293 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10294 retry = false;
10295 goto encoder_retry;
10296 }
10297
4e53c2e0
DV
10298 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10299 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10300 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10301
b8cecdf5 10302 return pipe_config;
7758a113 10303fail:
b8cecdf5 10304 kfree(pipe_config);
e29c22c0 10305 return ERR_PTR(ret);
ee7b9f93 10306}
47f1c6c9 10307
e2e1ed41
DV
10308/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10309 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10310static void
10311intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10312 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10313{
10314 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10315 struct drm_device *dev = crtc->dev;
10316 struct intel_encoder *encoder;
10317 struct intel_connector *connector;
10318 struct drm_crtc *tmp_crtc;
79e53945 10319
e2e1ed41 10320 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10321
e2e1ed41
DV
10322 /* Check which crtcs have changed outputs connected to them, these need
10323 * to be part of the prepare_pipes mask. We don't (yet) support global
10324 * modeset across multiple crtcs, so modeset_pipes will only have one
10325 * bit set at most. */
10326 list_for_each_entry(connector, &dev->mode_config.connector_list,
10327 base.head) {
10328 if (connector->base.encoder == &connector->new_encoder->base)
10329 continue;
79e53945 10330
e2e1ed41
DV
10331 if (connector->base.encoder) {
10332 tmp_crtc = connector->base.encoder->crtc;
10333
10334 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10335 }
10336
10337 if (connector->new_encoder)
10338 *prepare_pipes |=
10339 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10340 }
10341
b2784e15 10342 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10343 if (encoder->base.crtc == &encoder->new_crtc->base)
10344 continue;
10345
10346 if (encoder->base.crtc) {
10347 tmp_crtc = encoder->base.crtc;
10348
10349 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10350 }
10351
10352 if (encoder->new_crtc)
10353 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10354 }
10355
7668851f 10356 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10357 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10358 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10359 continue;
7e7d76c3 10360
7668851f 10361 if (!intel_crtc->new_enabled)
e2e1ed41 10362 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10363 else
10364 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10365 }
10366
e2e1ed41
DV
10367
10368 /* set_mode is also used to update properties on life display pipes. */
10369 intel_crtc = to_intel_crtc(crtc);
7668851f 10370 if (intel_crtc->new_enabled)
e2e1ed41
DV
10371 *prepare_pipes |= 1 << intel_crtc->pipe;
10372
b6c5164d
DV
10373 /*
10374 * For simplicity do a full modeset on any pipe where the output routing
10375 * changed. We could be more clever, but that would require us to be
10376 * more careful with calling the relevant encoder->mode_set functions.
10377 */
e2e1ed41
DV
10378 if (*prepare_pipes)
10379 *modeset_pipes = *prepare_pipes;
10380
10381 /* ... and mask these out. */
10382 *modeset_pipes &= ~(*disable_pipes);
10383 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10384
10385 /*
10386 * HACK: We don't (yet) fully support global modesets. intel_set_config
10387 * obies this rule, but the modeset restore mode of
10388 * intel_modeset_setup_hw_state does not.
10389 */
10390 *modeset_pipes &= 1 << intel_crtc->pipe;
10391 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10392
10393 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10394 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10395}
79e53945 10396
ea9d758d 10397static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10398{
ea9d758d 10399 struct drm_encoder *encoder;
f6e5b160 10400 struct drm_device *dev = crtc->dev;
f6e5b160 10401
ea9d758d
DV
10402 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10403 if (encoder->crtc == crtc)
10404 return true;
10405
10406 return false;
10407}
10408
10409static void
10410intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10411{
ba41c0de 10412 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10413 struct intel_encoder *intel_encoder;
10414 struct intel_crtc *intel_crtc;
10415 struct drm_connector *connector;
10416
ba41c0de
DV
10417 intel_shared_dpll_commit(dev_priv);
10418
b2784e15 10419 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10420 if (!intel_encoder->base.crtc)
10421 continue;
10422
10423 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10424
10425 if (prepare_pipes & (1 << intel_crtc->pipe))
10426 intel_encoder->connectors_active = false;
10427 }
10428
10429 intel_modeset_commit_output_state(dev);
10430
7668851f 10431 /* Double check state. */
d3fcc808 10432 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10433 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10434 WARN_ON(intel_crtc->new_config &&
6e3c9717 10435 intel_crtc->new_config != intel_crtc->config);
7bd0a8e7 10436 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10437 }
10438
10439 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10440 if (!connector->encoder || !connector->encoder->crtc)
10441 continue;
10442
10443 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10444
10445 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10446 struct drm_property *dpms_property =
10447 dev->mode_config.dpms_property;
10448
ea9d758d 10449 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10450 drm_object_property_set_value(&connector->base,
68d34720
DV
10451 dpms_property,
10452 DRM_MODE_DPMS_ON);
ea9d758d
DV
10453
10454 intel_encoder = to_intel_encoder(connector->encoder);
10455 intel_encoder->connectors_active = true;
10456 }
10457 }
10458
10459}
10460
3bd26263 10461static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10462{
3bd26263 10463 int diff;
f1f644dc
JB
10464
10465 if (clock1 == clock2)
10466 return true;
10467
10468 if (!clock1 || !clock2)
10469 return false;
10470
10471 diff = abs(clock1 - clock2);
10472
10473 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10474 return true;
10475
10476 return false;
10477}
10478
25c5b266
DV
10479#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10480 list_for_each_entry((intel_crtc), \
10481 &(dev)->mode_config.crtc_list, \
10482 base.head) \
0973f18f 10483 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10484
0e8ffe1b 10485static bool
2fa2fe9a 10486intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10487 struct intel_crtc_state *current_config,
10488 struct intel_crtc_state *pipe_config)
0e8ffe1b 10489{
66e985c0
DV
10490#define PIPE_CONF_CHECK_X(name) \
10491 if (current_config->name != pipe_config->name) { \
10492 DRM_ERROR("mismatch in " #name " " \
10493 "(expected 0x%08x, found 0x%08x)\n", \
10494 current_config->name, \
10495 pipe_config->name); \
10496 return false; \
10497 }
10498
08a24034
DV
10499#define PIPE_CONF_CHECK_I(name) \
10500 if (current_config->name != pipe_config->name) { \
10501 DRM_ERROR("mismatch in " #name " " \
10502 "(expected %i, found %i)\n", \
10503 current_config->name, \
10504 pipe_config->name); \
10505 return false; \
88adfff1
DV
10506 }
10507
b95af8be
VK
10508/* This is required for BDW+ where there is only one set of registers for
10509 * switching between high and low RR.
10510 * This macro can be used whenever a comparison has to be made between one
10511 * hw state and multiple sw state variables.
10512 */
10513#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10514 if ((current_config->name != pipe_config->name) && \
10515 (current_config->alt_name != pipe_config->name)) { \
10516 DRM_ERROR("mismatch in " #name " " \
10517 "(expected %i or %i, found %i)\n", \
10518 current_config->name, \
10519 current_config->alt_name, \
10520 pipe_config->name); \
10521 return false; \
10522 }
10523
1bd1bd80
DV
10524#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10525 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10526 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10527 "(expected %i, found %i)\n", \
10528 current_config->name & (mask), \
10529 pipe_config->name & (mask)); \
10530 return false; \
10531 }
10532
5e550656
VS
10533#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10534 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10535 DRM_ERROR("mismatch in " #name " " \
10536 "(expected %i, found %i)\n", \
10537 current_config->name, \
10538 pipe_config->name); \
10539 return false; \
10540 }
10541
bb760063
DV
10542#define PIPE_CONF_QUIRK(quirk) \
10543 ((current_config->quirks | pipe_config->quirks) & (quirk))
10544
eccb140b
DV
10545 PIPE_CONF_CHECK_I(cpu_transcoder);
10546
08a24034
DV
10547 PIPE_CONF_CHECK_I(has_pch_encoder);
10548 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10549 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10550 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10551 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10552 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10553 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10554
eb14cb74 10555 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10556
10557 if (INTEL_INFO(dev)->gen < 8) {
10558 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10559 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10560 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10561 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10562 PIPE_CONF_CHECK_I(dp_m_n.tu);
10563
10564 if (current_config->has_drrs) {
10565 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10566 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10567 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10568 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10569 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10570 }
10571 } else {
10572 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10573 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10574 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10575 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10576 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10577 }
eb14cb74 10578
2d112de7
ACO
10579 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10580 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10581 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10582 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10583 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10584 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10585
2d112de7
ACO
10586 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10587 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10588 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10589 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10590 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10591 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10592
c93f54cf 10593 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10594 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10595 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10596 IS_VALLEYVIEW(dev))
10597 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10598 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10599
9ed109a7
DV
10600 PIPE_CONF_CHECK_I(has_audio);
10601
2d112de7 10602 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10603 DRM_MODE_FLAG_INTERLACE);
10604
bb760063 10605 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10606 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10607 DRM_MODE_FLAG_PHSYNC);
2d112de7 10608 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10609 DRM_MODE_FLAG_NHSYNC);
2d112de7 10610 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10611 DRM_MODE_FLAG_PVSYNC);
2d112de7 10612 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10613 DRM_MODE_FLAG_NVSYNC);
10614 }
045ac3b5 10615
37327abd
VS
10616 PIPE_CONF_CHECK_I(pipe_src_w);
10617 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10618
9953599b
DV
10619 /*
10620 * FIXME: BIOS likes to set up a cloned config with lvds+external
10621 * screen. Since we don't yet re-compute the pipe config when moving
10622 * just the lvds port away to another pipe the sw tracking won't match.
10623 *
10624 * Proper atomic modesets with recomputed global state will fix this.
10625 * Until then just don't check gmch state for inherited modes.
10626 */
10627 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10628 PIPE_CONF_CHECK_I(gmch_pfit.control);
10629 /* pfit ratios are autocomputed by the hw on gen4+ */
10630 if (INTEL_INFO(dev)->gen < 4)
10631 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10632 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10633 }
10634
fd4daa9c
CW
10635 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10636 if (current_config->pch_pfit.enabled) {
10637 PIPE_CONF_CHECK_I(pch_pfit.pos);
10638 PIPE_CONF_CHECK_I(pch_pfit.size);
10639 }
2fa2fe9a 10640
e59150dc
JB
10641 /* BDW+ don't expose a synchronous way to read the state */
10642 if (IS_HASWELL(dev))
10643 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10644
282740f7
VS
10645 PIPE_CONF_CHECK_I(double_wide);
10646
26804afd
DV
10647 PIPE_CONF_CHECK_X(ddi_pll_sel);
10648
c0d43d62 10649 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10650 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10651 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10652 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10653 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10654 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10655 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10656 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10657 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10658
42571aef
VS
10659 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10660 PIPE_CONF_CHECK_I(pipe_bpp);
10661
2d112de7 10662 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 10663 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10664
66e985c0 10665#undef PIPE_CONF_CHECK_X
08a24034 10666#undef PIPE_CONF_CHECK_I
b95af8be 10667#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10668#undef PIPE_CONF_CHECK_FLAGS
5e550656 10669#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10670#undef PIPE_CONF_QUIRK
88adfff1 10671
0e8ffe1b
DV
10672 return true;
10673}
10674
08db6652
DL
10675static void check_wm_state(struct drm_device *dev)
10676{
10677 struct drm_i915_private *dev_priv = dev->dev_private;
10678 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10679 struct intel_crtc *intel_crtc;
10680 int plane;
10681
10682 if (INTEL_INFO(dev)->gen < 9)
10683 return;
10684
10685 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10686 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10687
10688 for_each_intel_crtc(dev, intel_crtc) {
10689 struct skl_ddb_entry *hw_entry, *sw_entry;
10690 const enum pipe pipe = intel_crtc->pipe;
10691
10692 if (!intel_crtc->active)
10693 continue;
10694
10695 /* planes */
10696 for_each_plane(pipe, plane) {
10697 hw_entry = &hw_ddb.plane[pipe][plane];
10698 sw_entry = &sw_ddb->plane[pipe][plane];
10699
10700 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10701 continue;
10702
10703 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10704 "(expected (%u,%u), found (%u,%u))\n",
10705 pipe_name(pipe), plane + 1,
10706 sw_entry->start, sw_entry->end,
10707 hw_entry->start, hw_entry->end);
10708 }
10709
10710 /* cursor */
10711 hw_entry = &hw_ddb.cursor[pipe];
10712 sw_entry = &sw_ddb->cursor[pipe];
10713
10714 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10715 continue;
10716
10717 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10718 "(expected (%u,%u), found (%u,%u))\n",
10719 pipe_name(pipe),
10720 sw_entry->start, sw_entry->end,
10721 hw_entry->start, hw_entry->end);
10722 }
10723}
10724
91d1b4bd
DV
10725static void
10726check_connector_state(struct drm_device *dev)
8af6cf88 10727{
8af6cf88
DV
10728 struct intel_connector *connector;
10729
10730 list_for_each_entry(connector, &dev->mode_config.connector_list,
10731 base.head) {
10732 /* This also checks the encoder/connector hw state with the
10733 * ->get_hw_state callbacks. */
10734 intel_connector_check_state(connector);
10735
e2c719b7 10736 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
10737 "connector's staged encoder doesn't match current encoder\n");
10738 }
91d1b4bd
DV
10739}
10740
10741static void
10742check_encoder_state(struct drm_device *dev)
10743{
10744 struct intel_encoder *encoder;
10745 struct intel_connector *connector;
8af6cf88 10746
b2784e15 10747 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10748 bool enabled = false;
10749 bool active = false;
10750 enum pipe pipe, tracked_pipe;
10751
10752 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10753 encoder->base.base.id,
8e329a03 10754 encoder->base.name);
8af6cf88 10755
e2c719b7 10756 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 10757 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 10758 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
10759 "encoder's active_connectors set, but no crtc\n");
10760
10761 list_for_each_entry(connector, &dev->mode_config.connector_list,
10762 base.head) {
10763 if (connector->base.encoder != &encoder->base)
10764 continue;
10765 enabled = true;
10766 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10767 active = true;
10768 }
0e32b39c
DA
10769 /*
10770 * for MST connectors if we unplug the connector is gone
10771 * away but the encoder is still connected to a crtc
10772 * until a modeset happens in response to the hotplug.
10773 */
10774 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10775 continue;
10776
e2c719b7 10777 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
10778 "encoder's enabled state mismatch "
10779 "(expected %i, found %i)\n",
10780 !!encoder->base.crtc, enabled);
e2c719b7 10781 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
10782 "active encoder with no crtc\n");
10783
e2c719b7 10784 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
10785 "encoder's computed active state doesn't match tracked active state "
10786 "(expected %i, found %i)\n", active, encoder->connectors_active);
10787
10788 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 10789 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
10790 "encoder's hw state doesn't match sw tracking "
10791 "(expected %i, found %i)\n",
10792 encoder->connectors_active, active);
10793
10794 if (!encoder->base.crtc)
10795 continue;
10796
10797 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 10798 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
10799 "active encoder's pipe doesn't match"
10800 "(expected %i, found %i)\n",
10801 tracked_pipe, pipe);
10802
10803 }
91d1b4bd
DV
10804}
10805
10806static void
10807check_crtc_state(struct drm_device *dev)
10808{
fbee40df 10809 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10810 struct intel_crtc *crtc;
10811 struct intel_encoder *encoder;
5cec258b 10812 struct intel_crtc_state pipe_config;
8af6cf88 10813
d3fcc808 10814 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10815 bool enabled = false;
10816 bool active = false;
10817
045ac3b5
JB
10818 memset(&pipe_config, 0, sizeof(pipe_config));
10819
8af6cf88
DV
10820 DRM_DEBUG_KMS("[CRTC:%d]\n",
10821 crtc->base.base.id);
10822
e2c719b7 10823 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
8af6cf88
DV
10824 "active crtc, but not enabled in sw tracking\n");
10825
b2784e15 10826 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10827 if (encoder->base.crtc != &crtc->base)
10828 continue;
10829 enabled = true;
10830 if (encoder->connectors_active)
10831 active = true;
10832 }
6c49f241 10833
e2c719b7 10834 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
10835 "crtc's computed active state doesn't match tracked active state "
10836 "(expected %i, found %i)\n", active, crtc->active);
e2c719b7 10837 I915_STATE_WARN(enabled != crtc->base.enabled,
8af6cf88
DV
10838 "crtc's computed enabled state doesn't match tracked enabled state "
10839 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10840
0e8ffe1b
DV
10841 active = dev_priv->display.get_pipe_config(crtc,
10842 &pipe_config);
d62cf62a 10843
b6b5d049
VS
10844 /* hw state is inconsistent with the pipe quirk */
10845 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10846 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10847 active = crtc->active;
10848
b2784e15 10849 for_each_intel_encoder(dev, encoder) {
3eaba51c 10850 enum pipe pipe;
6c49f241
DV
10851 if (encoder->base.crtc != &crtc->base)
10852 continue;
1d37b689 10853 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10854 encoder->get_config(encoder, &pipe_config);
10855 }
10856
e2c719b7 10857 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
10858 "crtc active state doesn't match with hw state "
10859 "(expected %i, found %i)\n", crtc->active, active);
10860
c0b03411 10861 if (active &&
6e3c9717 10862 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 10863 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
10864 intel_dump_pipe_config(crtc, &pipe_config,
10865 "[hw state]");
6e3c9717 10866 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
10867 "[sw state]");
10868 }
8af6cf88
DV
10869 }
10870}
10871
91d1b4bd
DV
10872static void
10873check_shared_dpll_state(struct drm_device *dev)
10874{
fbee40df 10875 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10876 struct intel_crtc *crtc;
10877 struct intel_dpll_hw_state dpll_hw_state;
10878 int i;
5358901f
DV
10879
10880 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10881 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10882 int enabled_crtcs = 0, active_crtcs = 0;
10883 bool active;
10884
10885 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10886
10887 DRM_DEBUG_KMS("%s\n", pll->name);
10888
10889 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10890
e2c719b7 10891 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10892 "more active pll users than references: %i vs %i\n",
3e369b76 10893 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 10894 I915_STATE_WARN(pll->active && !pll->on,
5358901f 10895 "pll in active use but not on in sw tracking\n");
e2c719b7 10896 I915_STATE_WARN(pll->on && !pll->active,
35c95375 10897 "pll in on but not on in use in sw tracking\n");
e2c719b7 10898 I915_STATE_WARN(pll->on != active,
5358901f
DV
10899 "pll on state mismatch (expected %i, found %i)\n",
10900 pll->on, active);
10901
d3fcc808 10902 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10903 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10904 enabled_crtcs++;
10905 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10906 active_crtcs++;
10907 }
e2c719b7 10908 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
10909 "pll active crtcs mismatch (expected %i, found %i)\n",
10910 pll->active, active_crtcs);
e2c719b7 10911 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10912 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10913 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10914
e2c719b7 10915 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10916 sizeof(dpll_hw_state)),
10917 "pll hw state mismatch\n");
5358901f 10918 }
8af6cf88
DV
10919}
10920
91d1b4bd
DV
10921void
10922intel_modeset_check_state(struct drm_device *dev)
10923{
08db6652 10924 check_wm_state(dev);
91d1b4bd
DV
10925 check_connector_state(dev);
10926 check_encoder_state(dev);
10927 check_crtc_state(dev);
10928 check_shared_dpll_state(dev);
10929}
10930
5cec258b 10931void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
10932 int dotclock)
10933{
10934 /*
10935 * FDI already provided one idea for the dotclock.
10936 * Yell if the encoder disagrees.
10937 */
2d112de7 10938 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 10939 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 10940 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10941}
10942
80715b2f
VS
10943static void update_scanline_offset(struct intel_crtc *crtc)
10944{
10945 struct drm_device *dev = crtc->base.dev;
10946
10947 /*
10948 * The scanline counter increments at the leading edge of hsync.
10949 *
10950 * On most platforms it starts counting from vtotal-1 on the
10951 * first active line. That means the scanline counter value is
10952 * always one less than what we would expect. Ie. just after
10953 * start of vblank, which also occurs at start of hsync (on the
10954 * last active line), the scanline counter will read vblank_start-1.
10955 *
10956 * On gen2 the scanline counter starts counting from 1 instead
10957 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10958 * to keep the value positive), instead of adding one.
10959 *
10960 * On HSW+ the behaviour of the scanline counter depends on the output
10961 * type. For DP ports it behaves like most other platforms, but on HDMI
10962 * there's an extra 1 line difference. So we need to add two instead of
10963 * one to the value.
10964 */
10965 if (IS_GEN2(dev)) {
6e3c9717 10966 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
10967 int vtotal;
10968
10969 vtotal = mode->crtc_vtotal;
10970 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10971 vtotal /= 2;
10972
10973 crtc->scanline_offset = vtotal - 1;
10974 } else if (HAS_DDI(dev) &&
409ee761 10975 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10976 crtc->scanline_offset = 2;
10977 } else
10978 crtc->scanline_offset = 1;
10979}
10980
5cec258b 10981static struct intel_crtc_state *
7f27126e
JB
10982intel_modeset_compute_config(struct drm_crtc *crtc,
10983 struct drm_display_mode *mode,
10984 struct drm_framebuffer *fb,
10985 unsigned *modeset_pipes,
10986 unsigned *prepare_pipes,
10987 unsigned *disable_pipes)
10988{
5cec258b 10989 struct intel_crtc_state *pipe_config = NULL;
7f27126e
JB
10990
10991 intel_modeset_affected_pipes(crtc, modeset_pipes,
10992 prepare_pipes, disable_pipes);
10993
10994 if ((*modeset_pipes) == 0)
10995 goto out;
10996
10997 /*
10998 * Note this needs changes when we start tracking multiple modes
10999 * and crtcs. At that point we'll need to compute the whole config
11000 * (i.e. one pipe_config for each crtc) rather than just the one
11001 * for this crtc.
11002 */
11003 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11004 if (IS_ERR(pipe_config)) {
11005 goto out;
11006 }
11007 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11008 "[modeset]");
7f27126e
JB
11009
11010out:
11011 return pipe_config;
11012}
11013
ed6739ef
ACO
11014static int __intel_set_mode_setup_plls(struct drm_device *dev,
11015 unsigned modeset_pipes,
11016 unsigned disable_pipes)
11017{
11018 struct drm_i915_private *dev_priv = to_i915(dev);
11019 unsigned clear_pipes = modeset_pipes | disable_pipes;
11020 struct intel_crtc *intel_crtc;
11021 int ret = 0;
11022
11023 if (!dev_priv->display.crtc_compute_clock)
11024 return 0;
11025
11026 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11027 if (ret)
11028 goto done;
11029
11030 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11031 struct intel_crtc_state *state = intel_crtc->new_config;
11032 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11033 state);
11034 if (ret) {
11035 intel_shared_dpll_abort_config(dev_priv);
11036 goto done;
11037 }
11038 }
11039
11040done:
11041 return ret;
11042}
11043
f30da187
DV
11044static int __intel_set_mode(struct drm_crtc *crtc,
11045 struct drm_display_mode *mode,
7f27126e 11046 int x, int y, struct drm_framebuffer *fb,
5cec258b 11047 struct intel_crtc_state *pipe_config,
7f27126e
JB
11048 unsigned modeset_pipes,
11049 unsigned prepare_pipes,
11050 unsigned disable_pipes)
a6778b3c
DV
11051{
11052 struct drm_device *dev = crtc->dev;
fbee40df 11053 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11054 struct drm_display_mode *saved_mode;
25c5b266 11055 struct intel_crtc *intel_crtc;
c0c36b94 11056 int ret = 0;
a6778b3c 11057
4b4b9238 11058 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11059 if (!saved_mode)
11060 return -ENOMEM;
a6778b3c 11061
3ac18232 11062 *saved_mode = crtc->mode;
a6778b3c 11063
b9950a13
VS
11064 if (modeset_pipes)
11065 to_intel_crtc(crtc)->new_config = pipe_config;
11066
30a970c6
JB
11067 /*
11068 * See if the config requires any additional preparation, e.g.
11069 * to adjust global state with pipes off. We need to do this
11070 * here so we can get the modeset_pipe updated config for the new
11071 * mode set on this crtc. For other crtcs we need to use the
11072 * adjusted_mode bits in the crtc directly.
11073 */
c164f833 11074 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11075 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11076
c164f833
VS
11077 /* may have added more to prepare_pipes than we should */
11078 prepare_pipes &= ~disable_pipes;
11079 }
11080
ed6739ef
ACO
11081 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11082 if (ret)
11083 goto done;
8bd31e67 11084
460da916
DV
11085 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11086 intel_crtc_disable(&intel_crtc->base);
11087
ea9d758d
DV
11088 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11089 if (intel_crtc->base.enabled)
11090 dev_priv->display.crtc_disable(&intel_crtc->base);
11091 }
a6778b3c 11092
6c4c86f5
DV
11093 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11094 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11095 *
11096 * Note we'll need to fix this up when we start tracking multiple
11097 * pipes; here we assume a single modeset_pipe and only track the
11098 * single crtc and mode.
f6e5b160 11099 */
b8cecdf5 11100 if (modeset_pipes) {
25c5b266 11101 crtc->mode = *mode;
b8cecdf5
DV
11102 /* mode_set/enable/disable functions rely on a correct pipe
11103 * config. */
f5de6e07 11104 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11105
11106 /*
11107 * Calculate and store various constants which
11108 * are later needed by vblank and swap-completion
11109 * timestamping. They are derived from true hwmode.
11110 */
11111 drm_calc_timestamping_constants(crtc,
2d112de7 11112 &pipe_config->base.adjusted_mode);
b8cecdf5 11113 }
7758a113 11114
ea9d758d
DV
11115 /* Only after disabling all output pipelines that will be changed can we
11116 * update the the output configuration. */
11117 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11118
50f6e502 11119 modeset_update_crtc_power_domains(dev);
47fab737 11120
a6778b3c
DV
11121 /* Set up the DPLL and any encoders state that needs to adjust or depend
11122 * on the DPLL.
f6e5b160 11123 */
25c5b266 11124 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11125 struct drm_plane *primary = intel_crtc->base.primary;
11126 int vdisplay, hdisplay;
4c10794f 11127
455a6808
GP
11128 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11129 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11130 fb, 0, 0,
11131 hdisplay, vdisplay,
11132 x << 16, y << 16,
11133 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11134 }
11135
11136 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11137 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11138 update_scanline_offset(intel_crtc);
11139
25c5b266 11140 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11141 }
a6778b3c 11142
a6778b3c
DV
11143 /* FIXME: add subpixel order */
11144done:
4b4b9238 11145 if (ret && crtc->enabled)
3ac18232 11146 crtc->mode = *saved_mode;
a6778b3c 11147
3ac18232 11148 kfree(saved_mode);
a6778b3c 11149 return ret;
f6e5b160
CW
11150}
11151
7f27126e
JB
11152static int intel_set_mode_pipes(struct drm_crtc *crtc,
11153 struct drm_display_mode *mode,
11154 int x, int y, struct drm_framebuffer *fb,
5cec258b 11155 struct intel_crtc_state *pipe_config,
7f27126e
JB
11156 unsigned modeset_pipes,
11157 unsigned prepare_pipes,
11158 unsigned disable_pipes)
f30da187
DV
11159{
11160 int ret;
11161
7f27126e
JB
11162 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11163 prepare_pipes, disable_pipes);
f30da187
DV
11164
11165 if (ret == 0)
11166 intel_modeset_check_state(crtc->dev);
11167
11168 return ret;
11169}
11170
7f27126e
JB
11171static int intel_set_mode(struct drm_crtc *crtc,
11172 struct drm_display_mode *mode,
11173 int x, int y, struct drm_framebuffer *fb)
11174{
5cec258b 11175 struct intel_crtc_state *pipe_config;
7f27126e
JB
11176 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11177
11178 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11179 &modeset_pipes,
11180 &prepare_pipes,
11181 &disable_pipes);
11182
11183 if (IS_ERR(pipe_config))
11184 return PTR_ERR(pipe_config);
11185
11186 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11187 modeset_pipes, prepare_pipes,
11188 disable_pipes);
11189}
11190
c0c36b94
CW
11191void intel_crtc_restore_mode(struct drm_crtc *crtc)
11192{
f4510a27 11193 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11194}
11195
25c5b266
DV
11196#undef for_each_intel_crtc_masked
11197
d9e55608
DV
11198static void intel_set_config_free(struct intel_set_config *config)
11199{
11200 if (!config)
11201 return;
11202
1aa4b628
DV
11203 kfree(config->save_connector_encoders);
11204 kfree(config->save_encoder_crtcs);
7668851f 11205 kfree(config->save_crtc_enabled);
d9e55608
DV
11206 kfree(config);
11207}
11208
85f9eb71
DV
11209static int intel_set_config_save_state(struct drm_device *dev,
11210 struct intel_set_config *config)
11211{
7668851f 11212 struct drm_crtc *crtc;
85f9eb71
DV
11213 struct drm_encoder *encoder;
11214 struct drm_connector *connector;
11215 int count;
11216
7668851f
VS
11217 config->save_crtc_enabled =
11218 kcalloc(dev->mode_config.num_crtc,
11219 sizeof(bool), GFP_KERNEL);
11220 if (!config->save_crtc_enabled)
11221 return -ENOMEM;
11222
1aa4b628
DV
11223 config->save_encoder_crtcs =
11224 kcalloc(dev->mode_config.num_encoder,
11225 sizeof(struct drm_crtc *), GFP_KERNEL);
11226 if (!config->save_encoder_crtcs)
85f9eb71
DV
11227 return -ENOMEM;
11228
1aa4b628
DV
11229 config->save_connector_encoders =
11230 kcalloc(dev->mode_config.num_connector,
11231 sizeof(struct drm_encoder *), GFP_KERNEL);
11232 if (!config->save_connector_encoders)
85f9eb71
DV
11233 return -ENOMEM;
11234
11235 /* Copy data. Note that driver private data is not affected.
11236 * Should anything bad happen only the expected state is
11237 * restored, not the drivers personal bookkeeping.
11238 */
7668851f 11239 count = 0;
70e1e0ec 11240 for_each_crtc(dev, crtc) {
7668851f
VS
11241 config->save_crtc_enabled[count++] = crtc->enabled;
11242 }
11243
85f9eb71
DV
11244 count = 0;
11245 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11246 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11247 }
11248
11249 count = 0;
11250 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11251 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11252 }
11253
11254 return 0;
11255}
11256
11257static void intel_set_config_restore_state(struct drm_device *dev,
11258 struct intel_set_config *config)
11259{
7668851f 11260 struct intel_crtc *crtc;
9a935856
DV
11261 struct intel_encoder *encoder;
11262 struct intel_connector *connector;
85f9eb71
DV
11263 int count;
11264
7668851f 11265 count = 0;
d3fcc808 11266 for_each_intel_crtc(dev, crtc) {
7668851f 11267 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11268
11269 if (crtc->new_enabled)
6e3c9717 11270 crtc->new_config = crtc->config;
7bd0a8e7
VS
11271 else
11272 crtc->new_config = NULL;
7668851f
VS
11273 }
11274
85f9eb71 11275 count = 0;
b2784e15 11276 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11277 encoder->new_crtc =
11278 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11279 }
11280
11281 count = 0;
9a935856
DV
11282 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11283 connector->new_encoder =
11284 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11285 }
11286}
11287
e3de42b6 11288static bool
2e57f47d 11289is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11290{
11291 int i;
11292
2e57f47d
CW
11293 if (set->num_connectors == 0)
11294 return false;
11295
11296 if (WARN_ON(set->connectors == NULL))
11297 return false;
11298
11299 for (i = 0; i < set->num_connectors; i++)
11300 if (set->connectors[i]->encoder &&
11301 set->connectors[i]->encoder->crtc == set->crtc &&
11302 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11303 return true;
11304
11305 return false;
11306}
11307
5e2b584e
DV
11308static void
11309intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11310 struct intel_set_config *config)
11311{
11312
11313 /* We should be able to check here if the fb has the same properties
11314 * and then just flip_or_move it */
2e57f47d
CW
11315 if (is_crtc_connector_off(set)) {
11316 config->mode_changed = true;
f4510a27 11317 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11318 /*
11319 * If we have no fb, we can only flip as long as the crtc is
11320 * active, otherwise we need a full mode set. The crtc may
11321 * be active if we've only disabled the primary plane, or
11322 * in fastboot situations.
11323 */
f4510a27 11324 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11325 struct intel_crtc *intel_crtc =
11326 to_intel_crtc(set->crtc);
11327
3b150f08 11328 if (intel_crtc->active) {
319d9827
JB
11329 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11330 config->fb_changed = true;
11331 } else {
11332 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11333 config->mode_changed = true;
11334 }
5e2b584e
DV
11335 } else if (set->fb == NULL) {
11336 config->mode_changed = true;
72f4901e 11337 } else if (set->fb->pixel_format !=
f4510a27 11338 set->crtc->primary->fb->pixel_format) {
5e2b584e 11339 config->mode_changed = true;
e3de42b6 11340 } else {
5e2b584e 11341 config->fb_changed = true;
e3de42b6 11342 }
5e2b584e
DV
11343 }
11344
835c5873 11345 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11346 config->fb_changed = true;
11347
11348 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11349 DRM_DEBUG_KMS("modes are different, full mode set\n");
11350 drm_mode_debug_printmodeline(&set->crtc->mode);
11351 drm_mode_debug_printmodeline(set->mode);
11352 config->mode_changed = true;
11353 }
a1d95703
CW
11354
11355 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11356 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11357}
11358
2e431051 11359static int
9a935856
DV
11360intel_modeset_stage_output_state(struct drm_device *dev,
11361 struct drm_mode_set *set,
11362 struct intel_set_config *config)
50f56119 11363{
9a935856
DV
11364 struct intel_connector *connector;
11365 struct intel_encoder *encoder;
7668851f 11366 struct intel_crtc *crtc;
f3f08572 11367 int ro;
50f56119 11368
9abdda74 11369 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11370 * of connectors. For paranoia, double-check this. */
11371 WARN_ON(!set->fb && (set->num_connectors != 0));
11372 WARN_ON(set->fb && (set->num_connectors == 0));
11373
9a935856
DV
11374 list_for_each_entry(connector, &dev->mode_config.connector_list,
11375 base.head) {
11376 /* Otherwise traverse passed in connector list and get encoders
11377 * for them. */
50f56119 11378 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11379 if (set->connectors[ro] == &connector->base) {
0e32b39c 11380 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11381 break;
11382 }
11383 }
11384
9a935856
DV
11385 /* If we disable the crtc, disable all its connectors. Also, if
11386 * the connector is on the changing crtc but not on the new
11387 * connector list, disable it. */
11388 if ((!set->fb || ro == set->num_connectors) &&
11389 connector->base.encoder &&
11390 connector->base.encoder->crtc == set->crtc) {
11391 connector->new_encoder = NULL;
11392
11393 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11394 connector->base.base.id,
c23cc417 11395 connector->base.name);
9a935856
DV
11396 }
11397
11398
11399 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11400 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11401 config->mode_changed = true;
50f56119
DV
11402 }
11403 }
9a935856 11404 /* connector->new_encoder is now updated for all connectors. */
50f56119 11405
9a935856 11406 /* Update crtc of enabled connectors. */
9a935856
DV
11407 list_for_each_entry(connector, &dev->mode_config.connector_list,
11408 base.head) {
7668851f
VS
11409 struct drm_crtc *new_crtc;
11410
9a935856 11411 if (!connector->new_encoder)
50f56119
DV
11412 continue;
11413
9a935856 11414 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11415
11416 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11417 if (set->connectors[ro] == &connector->base)
50f56119
DV
11418 new_crtc = set->crtc;
11419 }
11420
11421 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11422 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11423 new_crtc)) {
5e2b584e 11424 return -EINVAL;
50f56119 11425 }
0e32b39c 11426 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11427
11428 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11429 connector->base.base.id,
c23cc417 11430 connector->base.name,
9a935856
DV
11431 new_crtc->base.id);
11432 }
11433
11434 /* Check for any encoders that needs to be disabled. */
b2784e15 11435 for_each_intel_encoder(dev, encoder) {
5a65f358 11436 int num_connectors = 0;
9a935856
DV
11437 list_for_each_entry(connector,
11438 &dev->mode_config.connector_list,
11439 base.head) {
11440 if (connector->new_encoder == encoder) {
11441 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11442 num_connectors++;
9a935856
DV
11443 }
11444 }
5a65f358
PZ
11445
11446 if (num_connectors == 0)
11447 encoder->new_crtc = NULL;
11448 else if (num_connectors > 1)
11449 return -EINVAL;
11450
9a935856
DV
11451 /* Only now check for crtc changes so we don't miss encoders
11452 * that will be disabled. */
11453 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11454 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11455 config->mode_changed = true;
50f56119
DV
11456 }
11457 }
9a935856 11458 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11459 list_for_each_entry(connector, &dev->mode_config.connector_list,
11460 base.head) {
11461 if (connector->new_encoder)
11462 if (connector->new_encoder != connector->encoder)
11463 connector->encoder = connector->new_encoder;
11464 }
d3fcc808 11465 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11466 crtc->new_enabled = false;
11467
b2784e15 11468 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11469 if (encoder->new_crtc == crtc) {
11470 crtc->new_enabled = true;
11471 break;
11472 }
11473 }
11474
11475 if (crtc->new_enabled != crtc->base.enabled) {
11476 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11477 crtc->new_enabled ? "en" : "dis");
11478 config->mode_changed = true;
11479 }
7bd0a8e7
VS
11480
11481 if (crtc->new_enabled)
6e3c9717 11482 crtc->new_config = crtc->config;
7bd0a8e7
VS
11483 else
11484 crtc->new_config = NULL;
7668851f
VS
11485 }
11486
2e431051
DV
11487 return 0;
11488}
11489
7d00a1f5
VS
11490static void disable_crtc_nofb(struct intel_crtc *crtc)
11491{
11492 struct drm_device *dev = crtc->base.dev;
11493 struct intel_encoder *encoder;
11494 struct intel_connector *connector;
11495
11496 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11497 pipe_name(crtc->pipe));
11498
11499 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11500 if (connector->new_encoder &&
11501 connector->new_encoder->new_crtc == crtc)
11502 connector->new_encoder = NULL;
11503 }
11504
b2784e15 11505 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11506 if (encoder->new_crtc == crtc)
11507 encoder->new_crtc = NULL;
11508 }
11509
11510 crtc->new_enabled = false;
7bd0a8e7 11511 crtc->new_config = NULL;
7d00a1f5
VS
11512}
11513
2e431051
DV
11514static int intel_crtc_set_config(struct drm_mode_set *set)
11515{
11516 struct drm_device *dev;
2e431051
DV
11517 struct drm_mode_set save_set;
11518 struct intel_set_config *config;
5cec258b 11519 struct intel_crtc_state *pipe_config;
50f52756 11520 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11521 int ret;
2e431051 11522
8d3e375e
DV
11523 BUG_ON(!set);
11524 BUG_ON(!set->crtc);
11525 BUG_ON(!set->crtc->helper_private);
2e431051 11526
7e53f3a4
DV
11527 /* Enforce sane interface api - has been abused by the fb helper. */
11528 BUG_ON(!set->mode && set->fb);
11529 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11530
2e431051
DV
11531 if (set->fb) {
11532 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11533 set->crtc->base.id, set->fb->base.id,
11534 (int)set->num_connectors, set->x, set->y);
11535 } else {
11536 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11537 }
11538
11539 dev = set->crtc->dev;
11540
11541 ret = -ENOMEM;
11542 config = kzalloc(sizeof(*config), GFP_KERNEL);
11543 if (!config)
11544 goto out_config;
11545
11546 ret = intel_set_config_save_state(dev, config);
11547 if (ret)
11548 goto out_config;
11549
11550 save_set.crtc = set->crtc;
11551 save_set.mode = &set->crtc->mode;
11552 save_set.x = set->crtc->x;
11553 save_set.y = set->crtc->y;
f4510a27 11554 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11555
11556 /* Compute whether we need a full modeset, only an fb base update or no
11557 * change at all. In the future we might also check whether only the
11558 * mode changed, e.g. for LVDS where we only change the panel fitter in
11559 * such cases. */
11560 intel_set_config_compute_mode_changes(set, config);
11561
9a935856 11562 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11563 if (ret)
11564 goto fail;
11565
50f52756
JB
11566 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11567 set->fb,
11568 &modeset_pipes,
11569 &prepare_pipes,
11570 &disable_pipes);
20664591 11571 if (IS_ERR(pipe_config)) {
6ac0483b 11572 ret = PTR_ERR(pipe_config);
50f52756 11573 goto fail;
20664591 11574 } else if (pipe_config) {
b9950a13 11575 if (pipe_config->has_audio !=
6e3c9717 11576 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
11577 config->mode_changed = true;
11578
af15d2ce
JB
11579 /*
11580 * Note we have an issue here with infoframes: current code
11581 * only updates them on the full mode set path per hw
11582 * requirements. So here we should be checking for any
11583 * required changes and forcing a mode set.
11584 */
20664591 11585 }
50f52756
JB
11586
11587 /* set_mode will free it in the mode_changed case */
11588 if (!config->mode_changed)
11589 kfree(pipe_config);
11590
1f9954d0
JB
11591 intel_update_pipe_size(to_intel_crtc(set->crtc));
11592
5e2b584e 11593 if (config->mode_changed) {
50f52756
JB
11594 ret = intel_set_mode_pipes(set->crtc, set->mode,
11595 set->x, set->y, set->fb, pipe_config,
11596 modeset_pipes, prepare_pipes,
11597 disable_pipes);
5e2b584e 11598 } else if (config->fb_changed) {
3b150f08 11599 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
11600 struct drm_plane *primary = set->crtc->primary;
11601 int vdisplay, hdisplay;
3b150f08 11602
455a6808
GP
11603 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11604 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11605 0, 0, hdisplay, vdisplay,
11606 set->x << 16, set->y << 16,
11607 hdisplay << 16, vdisplay << 16);
3b150f08
MR
11608
11609 /*
11610 * We need to make sure the primary plane is re-enabled if it
11611 * has previously been turned off.
11612 */
11613 if (!intel_crtc->primary_enabled && ret == 0) {
11614 WARN_ON(!intel_crtc->active);
fdd508a6 11615 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11616 }
11617
7ca51a3a
JB
11618 /*
11619 * In the fastboot case this may be our only check of the
11620 * state after boot. It would be better to only do it on
11621 * the first update, but we don't have a nice way of doing that
11622 * (and really, set_config isn't used much for high freq page
11623 * flipping, so increasing its cost here shouldn't be a big
11624 * deal).
11625 */
d330a953 11626 if (i915.fastboot && ret == 0)
7ca51a3a 11627 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11628 }
11629
2d05eae1 11630 if (ret) {
bf67dfeb
DV
11631 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11632 set->crtc->base.id, ret);
50f56119 11633fail:
2d05eae1 11634 intel_set_config_restore_state(dev, config);
50f56119 11635
7d00a1f5
VS
11636 /*
11637 * HACK: if the pipe was on, but we didn't have a framebuffer,
11638 * force the pipe off to avoid oopsing in the modeset code
11639 * due to fb==NULL. This should only happen during boot since
11640 * we don't yet reconstruct the FB from the hardware state.
11641 */
11642 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11643 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11644
2d05eae1
CW
11645 /* Try to restore the config */
11646 if (config->mode_changed &&
11647 intel_set_mode(save_set.crtc, save_set.mode,
11648 save_set.x, save_set.y, save_set.fb))
11649 DRM_ERROR("failed to restore config after modeset failure\n");
11650 }
50f56119 11651
d9e55608
DV
11652out_config:
11653 intel_set_config_free(config);
50f56119
DV
11654 return ret;
11655}
f6e5b160
CW
11656
11657static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11658 .gamma_set = intel_crtc_gamma_set,
50f56119 11659 .set_config = intel_crtc_set_config,
f6e5b160
CW
11660 .destroy = intel_crtc_destroy,
11661 .page_flip = intel_crtc_page_flip,
1356837e
MR
11662 .atomic_duplicate_state = intel_crtc_duplicate_state,
11663 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
11664};
11665
5358901f
DV
11666static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11667 struct intel_shared_dpll *pll,
11668 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11669{
5358901f 11670 uint32_t val;
ee7b9f93 11671
f458ebbc 11672 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11673 return false;
11674
5358901f 11675 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11676 hw_state->dpll = val;
11677 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11678 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11679
11680 return val & DPLL_VCO_ENABLE;
11681}
11682
15bdd4cf
DV
11683static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11684 struct intel_shared_dpll *pll)
11685{
3e369b76
ACO
11686 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11687 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11688}
11689
e7b903d2
DV
11690static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11691 struct intel_shared_dpll *pll)
11692{
e7b903d2 11693 /* PCH refclock must be enabled first */
89eff4be 11694 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11695
3e369b76 11696 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11697
11698 /* Wait for the clocks to stabilize. */
11699 POSTING_READ(PCH_DPLL(pll->id));
11700 udelay(150);
11701
11702 /* The pixel multiplier can only be updated once the
11703 * DPLL is enabled and the clocks are stable.
11704 *
11705 * So write it again.
11706 */
3e369b76 11707 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11708 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11709 udelay(200);
11710}
11711
11712static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11713 struct intel_shared_dpll *pll)
11714{
11715 struct drm_device *dev = dev_priv->dev;
11716 struct intel_crtc *crtc;
e7b903d2
DV
11717
11718 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11719 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11720 if (intel_crtc_to_shared_dpll(crtc) == pll)
11721 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11722 }
11723
15bdd4cf
DV
11724 I915_WRITE(PCH_DPLL(pll->id), 0);
11725 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11726 udelay(200);
11727}
11728
46edb027
DV
11729static char *ibx_pch_dpll_names[] = {
11730 "PCH DPLL A",
11731 "PCH DPLL B",
11732};
11733
7c74ade1 11734static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11735{
e7b903d2 11736 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11737 int i;
11738
7c74ade1 11739 dev_priv->num_shared_dpll = 2;
ee7b9f93 11740
e72f9fbf 11741 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11742 dev_priv->shared_dplls[i].id = i;
11743 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11744 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11745 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11746 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11747 dev_priv->shared_dplls[i].get_hw_state =
11748 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11749 }
11750}
11751
7c74ade1
DV
11752static void intel_shared_dpll_init(struct drm_device *dev)
11753{
e7b903d2 11754 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11755
9cd86933
DV
11756 if (HAS_DDI(dev))
11757 intel_ddi_pll_init(dev);
11758 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11759 ibx_pch_dpll_init(dev);
11760 else
11761 dev_priv->num_shared_dpll = 0;
11762
11763 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11764}
11765
6beb8c23
MR
11766/**
11767 * intel_prepare_plane_fb - Prepare fb for usage on plane
11768 * @plane: drm plane to prepare for
11769 * @fb: framebuffer to prepare for presentation
11770 *
11771 * Prepares a framebuffer for usage on a display plane. Generally this
11772 * involves pinning the underlying object and updating the frontbuffer tracking
11773 * bits. Some older platforms need special physical address handling for
11774 * cursor planes.
11775 *
11776 * Returns 0 on success, negative error code on failure.
11777 */
11778int
11779intel_prepare_plane_fb(struct drm_plane *plane,
11780 struct drm_framebuffer *fb)
465c120c
MR
11781{
11782 struct drm_device *dev = plane->dev;
6beb8c23
MR
11783 struct intel_plane *intel_plane = to_intel_plane(plane);
11784 enum pipe pipe = intel_plane->pipe;
11785 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11786 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11787 unsigned frontbuffer_bits = 0;
11788 int ret = 0;
465c120c 11789
ea2c67bb 11790 if (!obj)
465c120c
MR
11791 return 0;
11792
6beb8c23
MR
11793 switch (plane->type) {
11794 case DRM_PLANE_TYPE_PRIMARY:
11795 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11796 break;
11797 case DRM_PLANE_TYPE_CURSOR:
11798 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11799 break;
11800 case DRM_PLANE_TYPE_OVERLAY:
11801 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11802 break;
11803 }
465c120c 11804
6beb8c23 11805 mutex_lock(&dev->struct_mutex);
465c120c 11806
6beb8c23
MR
11807 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11808 INTEL_INFO(dev)->cursor_needs_physical) {
11809 int align = IS_I830(dev) ? 16 * 1024 : 256;
11810 ret = i915_gem_object_attach_phys(obj, align);
11811 if (ret)
11812 DRM_DEBUG_KMS("failed to attach phys object\n");
11813 } else {
11814 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11815 }
465c120c 11816
6beb8c23
MR
11817 if (ret == 0)
11818 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 11819
4c34574f 11820 mutex_unlock(&dev->struct_mutex);
465c120c 11821
6beb8c23
MR
11822 return ret;
11823}
11824
38f3ce3a
MR
11825/**
11826 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11827 * @plane: drm plane to clean up for
11828 * @fb: old framebuffer that was on plane
11829 *
11830 * Cleans up a framebuffer that has just been removed from a plane.
11831 */
11832void
11833intel_cleanup_plane_fb(struct drm_plane *plane,
11834 struct drm_framebuffer *fb)
11835{
11836 struct drm_device *dev = plane->dev;
11837 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11838
11839 if (WARN_ON(!obj))
11840 return;
11841
11842 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11843 !INTEL_INFO(dev)->cursor_needs_physical) {
11844 mutex_lock(&dev->struct_mutex);
11845 intel_unpin_fb_obj(obj);
11846 mutex_unlock(&dev->struct_mutex);
11847 }
465c120c
MR
11848}
11849
11850static int
3c692a41
GP
11851intel_check_primary_plane(struct drm_plane *plane,
11852 struct intel_plane_state *state)
11853{
32b7eeec
MR
11854 struct drm_device *dev = plane->dev;
11855 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 11856 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 11857 struct intel_crtc *intel_crtc;
2b875c22 11858 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
11859 struct drm_rect *dest = &state->dst;
11860 struct drm_rect *src = &state->src;
11861 const struct drm_rect *clip = &state->clip;
465c120c
MR
11862 int ret;
11863
ea2c67bb
MR
11864 crtc = crtc ? crtc : plane->crtc;
11865 intel_crtc = to_intel_crtc(crtc);
11866
c59cb179
MR
11867 ret = drm_plane_helper_check_update(plane, crtc, fb,
11868 src, dest, clip,
11869 DRM_PLANE_HELPER_NO_SCALING,
11870 DRM_PLANE_HELPER_NO_SCALING,
11871 false, true, &state->visible);
11872 if (ret)
11873 return ret;
465c120c 11874
32b7eeec
MR
11875 if (intel_crtc->active) {
11876 intel_crtc->atomic.wait_for_flips = true;
11877
11878 /*
11879 * FBC does not work on some platforms for rotated
11880 * planes, so disable it when rotation is not 0 and
11881 * update it when rotation is set back to 0.
11882 *
11883 * FIXME: This is redundant with the fbc update done in
11884 * the primary plane enable function except that that
11885 * one is done too late. We eventually need to unify
11886 * this.
11887 */
11888 if (intel_crtc->primary_enabled &&
11889 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 11890 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 11891 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
11892 intel_crtc->atomic.disable_fbc = true;
11893 }
11894
11895 if (state->visible) {
11896 /*
11897 * BDW signals flip done immediately if the plane
11898 * is disabled, even if the plane enable is already
11899 * armed to occur at the next vblank :(
11900 */
11901 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11902 intel_crtc->atomic.wait_vblank = true;
11903 }
11904
11905 intel_crtc->atomic.fb_bits |=
11906 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11907
11908 intel_crtc->atomic.update_fbc = true;
ccc759dc
GP
11909 }
11910
14af293f
GP
11911 return 0;
11912}
11913
11914static void
11915intel_commit_primary_plane(struct drm_plane *plane,
11916 struct intel_plane_state *state)
11917{
2b875c22
MR
11918 struct drm_crtc *crtc = state->base.crtc;
11919 struct drm_framebuffer *fb = state->base.fb;
11920 struct drm_device *dev = plane->dev;
14af293f 11921 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 11922 struct intel_crtc *intel_crtc;
14af293f 11923 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14af293f
GP
11924 struct intel_plane *intel_plane = to_intel_plane(plane);
11925 struct drm_rect *src = &state->src;
11926
ea2c67bb
MR
11927 crtc = crtc ? crtc : plane->crtc;
11928 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
11929
11930 plane->fb = fb;
9dc806fc
MR
11931 crtc->x = src->x1 >> 16;
11932 crtc->y = src->y1 >> 16;
ccc759dc 11933
ccc759dc 11934 intel_plane->obj = obj;
4c34574f 11935
ccc759dc 11936 if (intel_crtc->active) {
ccc759dc 11937 if (state->visible) {
ccc759dc
GP
11938 /* FIXME: kill this fastboot hack */
11939 intel_update_pipe_size(intel_crtc);
465c120c 11940
ccc759dc 11941 intel_crtc->primary_enabled = true;
465c120c 11942
ccc759dc
GP
11943 dev_priv->display.update_primary_plane(crtc, plane->fb,
11944 crtc->x, crtc->y);
ccc759dc
GP
11945 } else {
11946 /*
11947 * If clipping results in a non-visible primary plane,
11948 * we'll disable the primary plane. Note that this is
11949 * a bit different than what happens if userspace
11950 * explicitly disables the plane by passing fb=0
11951 * because plane->fb still gets set and pinned.
11952 */
11953 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11954 }
ccc759dc 11955 }
465c120c
MR
11956}
11957
32b7eeec 11958static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 11959{
32b7eeec 11960 struct drm_device *dev = crtc->dev;
140fd38d 11961 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 11962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
11963 struct intel_plane *intel_plane;
11964 struct drm_plane *p;
11965 unsigned fb_bits = 0;
11966
11967 /* Track fb's for any planes being disabled */
11968 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11969 intel_plane = to_intel_plane(p);
11970
11971 if (intel_crtc->atomic.disabled_planes &
11972 (1 << drm_plane_index(p))) {
11973 switch (p->type) {
11974 case DRM_PLANE_TYPE_PRIMARY:
11975 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11976 break;
11977 case DRM_PLANE_TYPE_CURSOR:
11978 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11979 break;
11980 case DRM_PLANE_TYPE_OVERLAY:
11981 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11982 break;
11983 }
3c692a41 11984
ea2c67bb
MR
11985 mutex_lock(&dev->struct_mutex);
11986 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
11987 mutex_unlock(&dev->struct_mutex);
11988 }
11989 }
3c692a41 11990
32b7eeec
MR
11991 if (intel_crtc->atomic.wait_for_flips)
11992 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 11993
32b7eeec
MR
11994 if (intel_crtc->atomic.disable_fbc)
11995 intel_fbc_disable(dev);
3c692a41 11996
32b7eeec
MR
11997 if (intel_crtc->atomic.pre_disable_primary)
11998 intel_pre_disable_primary(crtc);
3c692a41 11999
32b7eeec
MR
12000 if (intel_crtc->atomic.update_wm)
12001 intel_update_watermarks(crtc);
3c692a41 12002
32b7eeec 12003 intel_runtime_pm_get(dev_priv);
3c692a41 12004
c34c9ee4
MR
12005 /* Perform vblank evasion around commit operation */
12006 if (intel_crtc->active)
12007 intel_crtc->atomic.evade =
12008 intel_pipe_update_start(intel_crtc,
12009 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12010}
12011
12012static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12013{
12014 struct drm_device *dev = crtc->dev;
12015 struct drm_i915_private *dev_priv = dev->dev_private;
12016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12017 struct drm_plane *p;
12018
c34c9ee4
MR
12019 if (intel_crtc->atomic.evade)
12020 intel_pipe_update_end(intel_crtc,
12021 intel_crtc->atomic.start_vbl_count);
3c692a41 12022
140fd38d 12023 intel_runtime_pm_put(dev_priv);
3c692a41 12024
32b7eeec
MR
12025 if (intel_crtc->atomic.wait_vblank)
12026 intel_wait_for_vblank(dev, intel_crtc->pipe);
12027
12028 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12029
12030 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12031 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12032 intel_fbc_update(dev);
ccc759dc 12033 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12034 }
3c692a41 12035
32b7eeec
MR
12036 if (intel_crtc->atomic.post_enable_primary)
12037 intel_post_enable_primary(crtc);
3c692a41 12038
32b7eeec
MR
12039 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12040 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12041 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12042 false, false);
12043
12044 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12045}
12046
cf4c7c12 12047/**
4a3b8769
MR
12048 * intel_plane_destroy - destroy a plane
12049 * @plane: plane to destroy
cf4c7c12 12050 *
4a3b8769
MR
12051 * Common destruction function for all types of planes (primary, cursor,
12052 * sprite).
cf4c7c12 12053 */
4a3b8769 12054void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12055{
12056 struct intel_plane *intel_plane = to_intel_plane(plane);
12057 drm_plane_cleanup(plane);
12058 kfree(intel_plane);
12059}
12060
65a3fea0 12061const struct drm_plane_funcs intel_plane_funcs = {
3f678c96
MR
12062 .update_plane = drm_atomic_helper_update_plane,
12063 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 12064 .destroy = intel_plane_destroy,
c196e1d6 12065 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12066 .atomic_get_property = intel_plane_atomic_get_property,
12067 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12068 .atomic_duplicate_state = intel_plane_duplicate_state,
12069 .atomic_destroy_state = intel_plane_destroy_state,
12070
465c120c
MR
12071};
12072
12073static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12074 int pipe)
12075{
12076 struct intel_plane *primary;
8e7d688b 12077 struct intel_plane_state *state;
465c120c
MR
12078 const uint32_t *intel_primary_formats;
12079 int num_formats;
12080
12081 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12082 if (primary == NULL)
12083 return NULL;
12084
8e7d688b
MR
12085 state = intel_create_plane_state(&primary->base);
12086 if (!state) {
ea2c67bb
MR
12087 kfree(primary);
12088 return NULL;
12089 }
8e7d688b 12090 primary->base.state = &state->base;
ea2c67bb 12091
465c120c
MR
12092 primary->can_scale = false;
12093 primary->max_downscale = 1;
12094 primary->pipe = pipe;
12095 primary->plane = pipe;
c59cb179
MR
12096 primary->check_plane = intel_check_primary_plane;
12097 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12098 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12099 primary->plane = !pipe;
12100
12101 if (INTEL_INFO(dev)->gen <= 3) {
12102 intel_primary_formats = intel_primary_formats_gen2;
12103 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12104 } else {
12105 intel_primary_formats = intel_primary_formats_gen4;
12106 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12107 }
12108
12109 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12110 &intel_plane_funcs,
465c120c
MR
12111 intel_primary_formats, num_formats,
12112 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12113
12114 if (INTEL_INFO(dev)->gen >= 4) {
12115 if (!dev->mode_config.rotation_property)
12116 dev->mode_config.rotation_property =
12117 drm_mode_create_rotation_property(dev,
12118 BIT(DRM_ROTATE_0) |
12119 BIT(DRM_ROTATE_180));
12120 if (dev->mode_config.rotation_property)
12121 drm_object_attach_property(&primary->base.base,
12122 dev->mode_config.rotation_property,
8e7d688b 12123 state->base.rotation);
48404c1e
SJ
12124 }
12125
ea2c67bb
MR
12126 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12127
465c120c
MR
12128 return &primary->base;
12129}
12130
3d7d6510 12131static int
852e787c
GP
12132intel_check_cursor_plane(struct drm_plane *plane,
12133 struct intel_plane_state *state)
3d7d6510 12134{
2b875c22 12135 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12136 struct drm_device *dev = plane->dev;
2b875c22 12137 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12138 struct drm_rect *dest = &state->dst;
12139 struct drm_rect *src = &state->src;
12140 const struct drm_rect *clip = &state->clip;
757f9a3e 12141 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12142 struct intel_crtc *intel_crtc;
757f9a3e
GP
12143 unsigned stride;
12144 int ret;
3d7d6510 12145
ea2c67bb
MR
12146 crtc = crtc ? crtc : plane->crtc;
12147 intel_crtc = to_intel_crtc(crtc);
12148
757f9a3e 12149 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12150 src, dest, clip,
3d7d6510
MR
12151 DRM_PLANE_HELPER_NO_SCALING,
12152 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12153 true, true, &state->visible);
757f9a3e
GP
12154 if (ret)
12155 return ret;
12156
12157
12158 /* if we want to turn off the cursor ignore width and height */
12159 if (!obj)
32b7eeec 12160 goto finish;
757f9a3e 12161
757f9a3e 12162 /* Check for which cursor types we support */
ea2c67bb
MR
12163 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12164 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12165 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12166 return -EINVAL;
12167 }
12168
ea2c67bb
MR
12169 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12170 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12171 DRM_DEBUG_KMS("buffer is too small\n");
12172 return -ENOMEM;
12173 }
12174
e391ea88
GP
12175 if (fb == crtc->cursor->fb)
12176 return 0;
12177
6a418fcd 12178 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
12179 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12180 ret = -EINVAL;
12181 }
757f9a3e 12182
32b7eeec
MR
12183finish:
12184 if (intel_crtc->active) {
ea2c67bb 12185 if (intel_crtc->cursor_width != state->base.crtc_w)
32b7eeec
MR
12186 intel_crtc->atomic.update_wm = true;
12187
12188 intel_crtc->atomic.fb_bits |=
12189 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12190 }
12191
757f9a3e 12192 return ret;
852e787c 12193}
3d7d6510 12194
f4a2cf29 12195static void
852e787c
GP
12196intel_commit_cursor_plane(struct drm_plane *plane,
12197 struct intel_plane_state *state)
12198{
2b875c22 12199 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12200 struct drm_device *dev = plane->dev;
12201 struct intel_crtc *intel_crtc;
a919db90 12202 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 12203 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12204 uint32_t addr;
852e787c 12205
ea2c67bb
MR
12206 crtc = crtc ? crtc : plane->crtc;
12207 intel_crtc = to_intel_crtc(crtc);
12208
2b875c22 12209 plane->fb = state->base.fb;
ea2c67bb
MR
12210 crtc->cursor_x = state->base.crtc_x;
12211 crtc->cursor_y = state->base.crtc_y;
12212
a919db90
SJ
12213 intel_plane->obj = obj;
12214
a912f12f
GP
12215 if (intel_crtc->cursor_bo == obj)
12216 goto update;
4ed91096 12217
f4a2cf29 12218 if (!obj)
a912f12f 12219 addr = 0;
f4a2cf29 12220 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12221 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12222 else
a912f12f 12223 addr = obj->phys_handle->busaddr;
852e787c 12224
a912f12f
GP
12225 intel_crtc->cursor_addr = addr;
12226 intel_crtc->cursor_bo = obj;
12227update:
ea2c67bb
MR
12228 intel_crtc->cursor_width = state->base.crtc_w;
12229 intel_crtc->cursor_height = state->base.crtc_h;
852e787c 12230
32b7eeec 12231 if (intel_crtc->active)
a912f12f 12232 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12233}
12234
3d7d6510
MR
12235static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12236 int pipe)
12237{
12238 struct intel_plane *cursor;
8e7d688b 12239 struct intel_plane_state *state;
3d7d6510
MR
12240
12241 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12242 if (cursor == NULL)
12243 return NULL;
12244
8e7d688b
MR
12245 state = intel_create_plane_state(&cursor->base);
12246 if (!state) {
ea2c67bb
MR
12247 kfree(cursor);
12248 return NULL;
12249 }
8e7d688b 12250 cursor->base.state = &state->base;
ea2c67bb 12251
3d7d6510
MR
12252 cursor->can_scale = false;
12253 cursor->max_downscale = 1;
12254 cursor->pipe = pipe;
12255 cursor->plane = pipe;
c59cb179
MR
12256 cursor->check_plane = intel_check_cursor_plane;
12257 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12258
12259 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12260 &intel_plane_funcs,
3d7d6510
MR
12261 intel_cursor_formats,
12262 ARRAY_SIZE(intel_cursor_formats),
12263 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12264
12265 if (INTEL_INFO(dev)->gen >= 4) {
12266 if (!dev->mode_config.rotation_property)
12267 dev->mode_config.rotation_property =
12268 drm_mode_create_rotation_property(dev,
12269 BIT(DRM_ROTATE_0) |
12270 BIT(DRM_ROTATE_180));
12271 if (dev->mode_config.rotation_property)
12272 drm_object_attach_property(&cursor->base.base,
12273 dev->mode_config.rotation_property,
8e7d688b 12274 state->base.rotation);
4398ad45
VS
12275 }
12276
ea2c67bb
MR
12277 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12278
3d7d6510
MR
12279 return &cursor->base;
12280}
12281
b358d0a6 12282static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12283{
fbee40df 12284 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12285 struct intel_crtc *intel_crtc;
f5de6e07 12286 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12287 struct drm_plane *primary = NULL;
12288 struct drm_plane *cursor = NULL;
465c120c 12289 int i, ret;
79e53945 12290
955382f3 12291 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12292 if (intel_crtc == NULL)
12293 return;
12294
f5de6e07
ACO
12295 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12296 if (!crtc_state)
12297 goto fail;
12298 intel_crtc_set_state(intel_crtc, crtc_state);
12299
465c120c 12300 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12301 if (!primary)
12302 goto fail;
12303
12304 cursor = intel_cursor_plane_create(dev, pipe);
12305 if (!cursor)
12306 goto fail;
12307
465c120c 12308 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12309 cursor, &intel_crtc_funcs);
12310 if (ret)
12311 goto fail;
79e53945
JB
12312
12313 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12314 for (i = 0; i < 256; i++) {
12315 intel_crtc->lut_r[i] = i;
12316 intel_crtc->lut_g[i] = i;
12317 intel_crtc->lut_b[i] = i;
12318 }
12319
1f1c2e24
VS
12320 /*
12321 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12322 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12323 */
80824003
JB
12324 intel_crtc->pipe = pipe;
12325 intel_crtc->plane = pipe;
3a77c4c4 12326 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12327 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12328 intel_crtc->plane = !pipe;
80824003
JB
12329 }
12330
4b0e333e
CW
12331 intel_crtc->cursor_base = ~0;
12332 intel_crtc->cursor_cntl = ~0;
dc41c154 12333 intel_crtc->cursor_size = ~0;
8d7849db 12334
22fd0fab
JB
12335 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12336 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12337 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12338 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12339
9362c7c5
ACO
12340 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12341
79e53945 12342 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12343
12344 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12345 return;
12346
12347fail:
12348 if (primary)
12349 drm_plane_cleanup(primary);
12350 if (cursor)
12351 drm_plane_cleanup(cursor);
f5de6e07 12352 kfree(crtc_state);
3d7d6510 12353 kfree(intel_crtc);
79e53945
JB
12354}
12355
752aa88a
JB
12356enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12357{
12358 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12359 struct drm_device *dev = connector->base.dev;
752aa88a 12360
51fd371b 12361 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12362
d3babd3f 12363 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12364 return INVALID_PIPE;
12365
12366 return to_intel_crtc(encoder->crtc)->pipe;
12367}
12368
08d7b3d1 12369int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12370 struct drm_file *file)
08d7b3d1 12371{
08d7b3d1 12372 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12373 struct drm_crtc *drmmode_crtc;
c05422d5 12374 struct intel_crtc *crtc;
08d7b3d1 12375
1cff8f6b
DV
12376 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12377 return -ENODEV;
08d7b3d1 12378
7707e653 12379 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12380
7707e653 12381 if (!drmmode_crtc) {
08d7b3d1 12382 DRM_ERROR("no such CRTC id\n");
3f2c2057 12383 return -ENOENT;
08d7b3d1
CW
12384 }
12385
7707e653 12386 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12387 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12388
c05422d5 12389 return 0;
08d7b3d1
CW
12390}
12391
66a9278e 12392static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12393{
66a9278e
DV
12394 struct drm_device *dev = encoder->base.dev;
12395 struct intel_encoder *source_encoder;
79e53945 12396 int index_mask = 0;
79e53945
JB
12397 int entry = 0;
12398
b2784e15 12399 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12400 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12401 index_mask |= (1 << entry);
12402
79e53945
JB
12403 entry++;
12404 }
4ef69c7a 12405
79e53945
JB
12406 return index_mask;
12407}
12408
4d302442
CW
12409static bool has_edp_a(struct drm_device *dev)
12410{
12411 struct drm_i915_private *dev_priv = dev->dev_private;
12412
12413 if (!IS_MOBILE(dev))
12414 return false;
12415
12416 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12417 return false;
12418
e3589908 12419 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12420 return false;
12421
12422 return true;
12423}
12424
84b4e042
JB
12425static bool intel_crt_present(struct drm_device *dev)
12426{
12427 struct drm_i915_private *dev_priv = dev->dev_private;
12428
884497ed
DL
12429 if (INTEL_INFO(dev)->gen >= 9)
12430 return false;
12431
cf404ce4 12432 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12433 return false;
12434
12435 if (IS_CHERRYVIEW(dev))
12436 return false;
12437
12438 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12439 return false;
12440
12441 return true;
12442}
12443
79e53945
JB
12444static void intel_setup_outputs(struct drm_device *dev)
12445{
725e30ad 12446 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12447 struct intel_encoder *encoder;
c6f95f27 12448 struct drm_connector *connector;
cb0953d7 12449 bool dpd_is_edp = false;
79e53945 12450
c9093354 12451 intel_lvds_init(dev);
79e53945 12452
84b4e042 12453 if (intel_crt_present(dev))
79935fca 12454 intel_crt_init(dev);
cb0953d7 12455
affa9354 12456 if (HAS_DDI(dev)) {
0e72a5b5
ED
12457 int found;
12458
12459 /* Haswell uses DDI functions to detect digital outputs */
12460 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12461 /* DDI A only supports eDP */
12462 if (found)
12463 intel_ddi_init(dev, PORT_A);
12464
12465 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12466 * register */
12467 found = I915_READ(SFUSE_STRAP);
12468
12469 if (found & SFUSE_STRAP_DDIB_DETECTED)
12470 intel_ddi_init(dev, PORT_B);
12471 if (found & SFUSE_STRAP_DDIC_DETECTED)
12472 intel_ddi_init(dev, PORT_C);
12473 if (found & SFUSE_STRAP_DDID_DETECTED)
12474 intel_ddi_init(dev, PORT_D);
12475 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12476 int found;
5d8a7752 12477 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12478
12479 if (has_edp_a(dev))
12480 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12481
dc0fa718 12482 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12483 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12484 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12485 if (!found)
e2debe91 12486 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12487 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12488 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12489 }
12490
dc0fa718 12491 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12492 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12493
dc0fa718 12494 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12495 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12496
5eb08b69 12497 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12498 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12499
270b3042 12500 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12501 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12502 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12503 /*
12504 * The DP_DETECTED bit is the latched state of the DDC
12505 * SDA pin at boot. However since eDP doesn't require DDC
12506 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12507 * eDP ports may have been muxed to an alternate function.
12508 * Thus we can't rely on the DP_DETECTED bit alone to detect
12509 * eDP ports. Consult the VBT as well as DP_DETECTED to
12510 * detect eDP ports.
12511 */
d2182a66
VS
12512 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12513 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12514 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12515 PORT_B);
e17ac6db
VS
12516 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12517 intel_dp_is_edp(dev, PORT_B))
12518 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12519
d2182a66
VS
12520 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12521 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
12522 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12523 PORT_C);
e17ac6db
VS
12524 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12525 intel_dp_is_edp(dev, PORT_C))
12526 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12527
9418c1f1 12528 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12529 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12530 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12531 PORT_D);
e17ac6db
VS
12532 /* eDP not supported on port D, so don't check VBT */
12533 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12534 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12535 }
12536
3cfca973 12537 intel_dsi_init(dev);
103a196f 12538 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12539 bool found = false;
7d57382e 12540
e2debe91 12541 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12542 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12543 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12544 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12545 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12546 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12547 }
27185ae1 12548
e7281eab 12549 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12550 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12551 }
13520b05
KH
12552
12553 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12554
e2debe91 12555 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12556 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12557 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12558 }
27185ae1 12559
e2debe91 12560 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12561
b01f2c3a
JB
12562 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12563 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12564 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12565 }
e7281eab 12566 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12567 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12568 }
27185ae1 12569
b01f2c3a 12570 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12571 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12572 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12573 } else if (IS_GEN2(dev))
79e53945
JB
12574 intel_dvo_init(dev);
12575
103a196f 12576 if (SUPPORTS_TV(dev))
79e53945
JB
12577 intel_tv_init(dev);
12578
c6f95f27
MR
12579 /*
12580 * FIXME: We don't have full atomic support yet, but we want to be
12581 * able to enable/test plane updates via the atomic interface in the
12582 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12583 * will take some atomic codepaths to lookup properties during
12584 * drmModeGetConnector() that unconditionally dereference
12585 * connector->state.
12586 *
12587 * We create a dummy connector state here for each connector to ensure
12588 * the DRM core doesn't try to dereference a NULL connector->state.
12589 * The actual connector properties will never be updated or contain
12590 * useful information, but since we're doing this specifically for
12591 * testing/debug of the plane operations (and only when a specific
12592 * kernel module option is given), that shouldn't really matter.
12593 *
12594 * Once atomic support for crtc's + connectors lands, this loop should
12595 * be removed since we'll be setting up real connector state, which
12596 * will contain Intel-specific properties.
12597 */
12598 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12599 list_for_each_entry(connector,
12600 &dev->mode_config.connector_list,
12601 head) {
12602 if (!WARN_ON(connector->state)) {
12603 connector->state =
12604 kzalloc(sizeof(*connector->state),
12605 GFP_KERNEL);
12606 }
12607 }
12608 }
12609
0bc12bcb 12610 intel_psr_init(dev);
7c8f8a70 12611
b2784e15 12612 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12613 encoder->base.possible_crtcs = encoder->crtc_mask;
12614 encoder->base.possible_clones =
66a9278e 12615 intel_encoder_clones(encoder);
79e53945 12616 }
47356eb6 12617
dde86e2d 12618 intel_init_pch_refclk(dev);
270b3042
DV
12619
12620 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12621}
12622
12623static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12624{
60a5ca01 12625 struct drm_device *dev = fb->dev;
79e53945 12626 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12627
ef2d633e 12628 drm_framebuffer_cleanup(fb);
60a5ca01 12629 mutex_lock(&dev->struct_mutex);
ef2d633e 12630 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12631 drm_gem_object_unreference(&intel_fb->obj->base);
12632 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12633 kfree(intel_fb);
12634}
12635
12636static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12637 struct drm_file *file,
79e53945
JB
12638 unsigned int *handle)
12639{
12640 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12641 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12642
05394f39 12643 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12644}
12645
12646static const struct drm_framebuffer_funcs intel_fb_funcs = {
12647 .destroy = intel_user_framebuffer_destroy,
12648 .create_handle = intel_user_framebuffer_create_handle,
12649};
12650
b5ea642a
DV
12651static int intel_framebuffer_init(struct drm_device *dev,
12652 struct intel_framebuffer *intel_fb,
12653 struct drm_mode_fb_cmd2 *mode_cmd,
12654 struct drm_i915_gem_object *obj)
79e53945 12655{
a57ce0b2 12656 int aligned_height;
a35cdaa0 12657 int pitch_limit;
79e53945
JB
12658 int ret;
12659
dd4916c5
DV
12660 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12661
2a80eada
DV
12662 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12663 /* Enforce that fb modifier and tiling mode match, but only for
12664 * X-tiled. This is needed for FBC. */
12665 if (!!(obj->tiling_mode == I915_TILING_X) !=
12666 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12667 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12668 return -EINVAL;
12669 }
12670 } else {
12671 if (obj->tiling_mode == I915_TILING_X)
12672 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12673 else if (obj->tiling_mode == I915_TILING_Y) {
12674 DRM_DEBUG("No Y tiling for legacy addfb\n");
12675 return -EINVAL;
12676 }
12677 }
12678
12679 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_Y_TILED) {
c16ed4be 12680 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12681 return -EINVAL;
c16ed4be 12682 }
57cd6508 12683
c16ed4be
CW
12684 if (mode_cmd->pitches[0] & 63) {
12685 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12686 mode_cmd->pitches[0]);
57cd6508 12687 return -EINVAL;
c16ed4be 12688 }
57cd6508 12689
a35cdaa0
CW
12690 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12691 pitch_limit = 32*1024;
12692 } else if (INTEL_INFO(dev)->gen >= 4) {
2a80eada 12693 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)
a35cdaa0
CW
12694 pitch_limit = 16*1024;
12695 else
12696 pitch_limit = 32*1024;
12697 } else if (INTEL_INFO(dev)->gen >= 3) {
2a80eada 12698 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)
a35cdaa0
CW
12699 pitch_limit = 8*1024;
12700 else
12701 pitch_limit = 16*1024;
12702 } else
12703 /* XXX DSPC is limited to 4k tiled */
12704 pitch_limit = 8*1024;
12705
12706 if (mode_cmd->pitches[0] > pitch_limit) {
12707 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
2a80eada
DV
12708 mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED ?
12709 "tiled" : "linear",
a35cdaa0 12710 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12711 return -EINVAL;
c16ed4be 12712 }
5d7bd705 12713
2a80eada 12714 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
12715 mode_cmd->pitches[0] != obj->stride) {
12716 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12717 mode_cmd->pitches[0], obj->stride);
5d7bd705 12718 return -EINVAL;
c16ed4be 12719 }
5d7bd705 12720
57779d06 12721 /* Reject formats not supported by any plane early. */
308e5bcb 12722 switch (mode_cmd->pixel_format) {
57779d06 12723 case DRM_FORMAT_C8:
04b3924d
VS
12724 case DRM_FORMAT_RGB565:
12725 case DRM_FORMAT_XRGB8888:
12726 case DRM_FORMAT_ARGB8888:
57779d06
VS
12727 break;
12728 case DRM_FORMAT_XRGB1555:
12729 case DRM_FORMAT_ARGB1555:
c16ed4be 12730 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12731 DRM_DEBUG("unsupported pixel format: %s\n",
12732 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12733 return -EINVAL;
c16ed4be 12734 }
57779d06
VS
12735 break;
12736 case DRM_FORMAT_XBGR8888:
12737 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12738 case DRM_FORMAT_XRGB2101010:
12739 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12740 case DRM_FORMAT_XBGR2101010:
12741 case DRM_FORMAT_ABGR2101010:
c16ed4be 12742 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12743 DRM_DEBUG("unsupported pixel format: %s\n",
12744 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12745 return -EINVAL;
c16ed4be 12746 }
b5626747 12747 break;
04b3924d
VS
12748 case DRM_FORMAT_YUYV:
12749 case DRM_FORMAT_UYVY:
12750 case DRM_FORMAT_YVYU:
12751 case DRM_FORMAT_VYUY:
c16ed4be 12752 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12753 DRM_DEBUG("unsupported pixel format: %s\n",
12754 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12755 return -EINVAL;
c16ed4be 12756 }
57cd6508
CW
12757 break;
12758 default:
4ee62c76
VS
12759 DRM_DEBUG("unsupported pixel format: %s\n",
12760 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12761 return -EINVAL;
12762 }
12763
90f9a336
VS
12764 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12765 if (mode_cmd->offsets[0] != 0)
12766 return -EINVAL;
12767
ec2c981e 12768 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
12769 mode_cmd->pixel_format,
12770 mode_cmd->modifier[0]);
53155c0a
DV
12771 /* FIXME drm helper for size checks (especially planar formats)? */
12772 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12773 return -EINVAL;
12774
c7d73f6a
DV
12775 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12776 intel_fb->obj = obj;
80075d49 12777 intel_fb->obj->framebuffer_references++;
c7d73f6a 12778
79e53945
JB
12779 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12780 if (ret) {
12781 DRM_ERROR("framebuffer init failed %d\n", ret);
12782 return ret;
12783 }
12784
79e53945
JB
12785 return 0;
12786}
12787
79e53945
JB
12788static struct drm_framebuffer *
12789intel_user_framebuffer_create(struct drm_device *dev,
12790 struct drm_file *filp,
308e5bcb 12791 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12792{
05394f39 12793 struct drm_i915_gem_object *obj;
79e53945 12794
308e5bcb
JB
12795 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12796 mode_cmd->handles[0]));
c8725226 12797 if (&obj->base == NULL)
cce13ff7 12798 return ERR_PTR(-ENOENT);
79e53945 12799
d2dff872 12800 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12801}
12802
4520f53a 12803#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12804static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12805{
12806}
12807#endif
12808
79e53945 12809static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12810 .fb_create = intel_user_framebuffer_create,
0632fef6 12811 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
12812 .atomic_check = intel_atomic_check,
12813 .atomic_commit = intel_atomic_commit,
79e53945
JB
12814};
12815
e70236a8
JB
12816/* Set up chip specific display functions */
12817static void intel_init_display(struct drm_device *dev)
12818{
12819 struct drm_i915_private *dev_priv = dev->dev_private;
12820
ee9300bb
DV
12821 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12822 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12823 else if (IS_CHERRYVIEW(dev))
12824 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12825 else if (IS_VALLEYVIEW(dev))
12826 dev_priv->display.find_dpll = vlv_find_best_dpll;
12827 else if (IS_PINEVIEW(dev))
12828 dev_priv->display.find_dpll = pnv_find_best_dpll;
12829 else
12830 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12831
bc8d7dff
DL
12832 if (INTEL_INFO(dev)->gen >= 9) {
12833 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12834 dev_priv->display.get_initial_plane_config =
12835 skylake_get_initial_plane_config;
bc8d7dff
DL
12836 dev_priv->display.crtc_compute_clock =
12837 haswell_crtc_compute_clock;
12838 dev_priv->display.crtc_enable = haswell_crtc_enable;
12839 dev_priv->display.crtc_disable = haswell_crtc_disable;
12840 dev_priv->display.off = ironlake_crtc_off;
12841 dev_priv->display.update_primary_plane =
12842 skylake_update_primary_plane;
12843 } else if (HAS_DDI(dev)) {
0e8ffe1b 12844 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12845 dev_priv->display.get_initial_plane_config =
12846 ironlake_get_initial_plane_config;
797d0259
ACO
12847 dev_priv->display.crtc_compute_clock =
12848 haswell_crtc_compute_clock;
4f771f10
PZ
12849 dev_priv->display.crtc_enable = haswell_crtc_enable;
12850 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12851 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
12852 dev_priv->display.update_primary_plane =
12853 ironlake_update_primary_plane;
09b4ddf9 12854 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12855 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
12856 dev_priv->display.get_initial_plane_config =
12857 ironlake_get_initial_plane_config;
3fb37703
ACO
12858 dev_priv->display.crtc_compute_clock =
12859 ironlake_crtc_compute_clock;
76e5a89c
DV
12860 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12861 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12862 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12863 dev_priv->display.update_primary_plane =
12864 ironlake_update_primary_plane;
89b667f8
JB
12865 } else if (IS_VALLEYVIEW(dev)) {
12866 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12867 dev_priv->display.get_initial_plane_config =
12868 i9xx_get_initial_plane_config;
d6dfee7a 12869 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
12870 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12871 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12872 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12873 dev_priv->display.update_primary_plane =
12874 i9xx_update_primary_plane;
f564048e 12875 } else {
0e8ffe1b 12876 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12877 dev_priv->display.get_initial_plane_config =
12878 i9xx_get_initial_plane_config;
d6dfee7a 12879 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
12880 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12881 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12882 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12883 dev_priv->display.update_primary_plane =
12884 i9xx_update_primary_plane;
f564048e 12885 }
e70236a8 12886
e70236a8 12887 /* Returns the core display clock speed */
25eb05fc
JB
12888 if (IS_VALLEYVIEW(dev))
12889 dev_priv->display.get_display_clock_speed =
12890 valleyview_get_display_clock_speed;
12891 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12892 dev_priv->display.get_display_clock_speed =
12893 i945_get_display_clock_speed;
12894 else if (IS_I915G(dev))
12895 dev_priv->display.get_display_clock_speed =
12896 i915_get_display_clock_speed;
257a7ffc 12897 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12898 dev_priv->display.get_display_clock_speed =
12899 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12900 else if (IS_PINEVIEW(dev))
12901 dev_priv->display.get_display_clock_speed =
12902 pnv_get_display_clock_speed;
e70236a8
JB
12903 else if (IS_I915GM(dev))
12904 dev_priv->display.get_display_clock_speed =
12905 i915gm_get_display_clock_speed;
12906 else if (IS_I865G(dev))
12907 dev_priv->display.get_display_clock_speed =
12908 i865_get_display_clock_speed;
f0f8a9ce 12909 else if (IS_I85X(dev))
e70236a8
JB
12910 dev_priv->display.get_display_clock_speed =
12911 i855_get_display_clock_speed;
12912 else /* 852, 830 */
12913 dev_priv->display.get_display_clock_speed =
12914 i830_get_display_clock_speed;
12915
7c10a2b5 12916 if (IS_GEN5(dev)) {
3bb11b53 12917 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12918 } else if (IS_GEN6(dev)) {
12919 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12920 } else if (IS_IVYBRIDGE(dev)) {
12921 /* FIXME: detect B0+ stepping and use auto training */
12922 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12923 dev_priv->display.modeset_global_resources =
12924 ivb_modeset_global_resources;
059b2fe9 12925 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12926 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
12927 } else if (IS_VALLEYVIEW(dev)) {
12928 dev_priv->display.modeset_global_resources =
12929 valleyview_modeset_global_resources;
e70236a8 12930 }
8c9f3aaf 12931
8c9f3aaf
JB
12932 switch (INTEL_INFO(dev)->gen) {
12933 case 2:
12934 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12935 break;
12936
12937 case 3:
12938 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12939 break;
12940
12941 case 4:
12942 case 5:
12943 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12944 break;
12945
12946 case 6:
12947 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12948 break;
7c9017e5 12949 case 7:
4e0bbc31 12950 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12951 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12952 break;
830c81db 12953 case 9:
ba343e02
TU
12954 /* Drop through - unsupported since execlist only. */
12955 default:
12956 /* Default just returns -ENODEV to indicate unsupported */
12957 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 12958 }
7bd688cd
JN
12959
12960 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12961
12962 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12963}
12964
b690e96c
JB
12965/*
12966 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12967 * resume, or other times. This quirk makes sure that's the case for
12968 * affected systems.
12969 */
0206e353 12970static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12971{
12972 struct drm_i915_private *dev_priv = dev->dev_private;
12973
12974 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12975 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12976}
12977
b6b5d049
VS
12978static void quirk_pipeb_force(struct drm_device *dev)
12979{
12980 struct drm_i915_private *dev_priv = dev->dev_private;
12981
12982 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12983 DRM_INFO("applying pipe b force quirk\n");
12984}
12985
435793df
KP
12986/*
12987 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12988 */
12989static void quirk_ssc_force_disable(struct drm_device *dev)
12990{
12991 struct drm_i915_private *dev_priv = dev->dev_private;
12992 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12993 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12994}
12995
4dca20ef 12996/*
5a15ab5b
CE
12997 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12998 * brightness value
4dca20ef
CE
12999 */
13000static void quirk_invert_brightness(struct drm_device *dev)
13001{
13002 struct drm_i915_private *dev_priv = dev->dev_private;
13003 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13004 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13005}
13006
9c72cc6f
SD
13007/* Some VBT's incorrectly indicate no backlight is present */
13008static void quirk_backlight_present(struct drm_device *dev)
13009{
13010 struct drm_i915_private *dev_priv = dev->dev_private;
13011 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13012 DRM_INFO("applying backlight present quirk\n");
13013}
13014
b690e96c
JB
13015struct intel_quirk {
13016 int device;
13017 int subsystem_vendor;
13018 int subsystem_device;
13019 void (*hook)(struct drm_device *dev);
13020};
13021
5f85f176
EE
13022/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13023struct intel_dmi_quirk {
13024 void (*hook)(struct drm_device *dev);
13025 const struct dmi_system_id (*dmi_id_list)[];
13026};
13027
13028static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13029{
13030 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13031 return 1;
13032}
13033
13034static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13035 {
13036 .dmi_id_list = &(const struct dmi_system_id[]) {
13037 {
13038 .callback = intel_dmi_reverse_brightness,
13039 .ident = "NCR Corporation",
13040 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13041 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13042 },
13043 },
13044 { } /* terminating entry */
13045 },
13046 .hook = quirk_invert_brightness,
13047 },
13048};
13049
c43b5634 13050static struct intel_quirk intel_quirks[] = {
b690e96c 13051 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13052 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13053
b690e96c
JB
13054 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13055 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13056
b690e96c
JB
13057 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13058 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13059
5f080c0f
VS
13060 /* 830 needs to leave pipe A & dpll A up */
13061 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13062
b6b5d049
VS
13063 /* 830 needs to leave pipe B & dpll B up */
13064 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13065
435793df
KP
13066 /* Lenovo U160 cannot use SSC on LVDS */
13067 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13068
13069 /* Sony Vaio Y cannot use SSC on LVDS */
13070 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13071
be505f64
AH
13072 /* Acer Aspire 5734Z must invert backlight brightness */
13073 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13074
13075 /* Acer/eMachines G725 */
13076 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13077
13078 /* Acer/eMachines e725 */
13079 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13080
13081 /* Acer/Packard Bell NCL20 */
13082 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13083
13084 /* Acer Aspire 4736Z */
13085 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13086
13087 /* Acer Aspire 5336 */
13088 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13089
13090 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13091 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13092
dfb3d47b
SD
13093 /* Acer C720 Chromebook (Core i3 4005U) */
13094 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13095
b2a9601c 13096 /* Apple Macbook 2,1 (Core 2 T7400) */
13097 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13098
d4967d8c
SD
13099 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13100 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13101
13102 /* HP Chromebook 14 (Celeron 2955U) */
13103 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
13104};
13105
13106static void intel_init_quirks(struct drm_device *dev)
13107{
13108 struct pci_dev *d = dev->pdev;
13109 int i;
13110
13111 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13112 struct intel_quirk *q = &intel_quirks[i];
13113
13114 if (d->device == q->device &&
13115 (d->subsystem_vendor == q->subsystem_vendor ||
13116 q->subsystem_vendor == PCI_ANY_ID) &&
13117 (d->subsystem_device == q->subsystem_device ||
13118 q->subsystem_device == PCI_ANY_ID))
13119 q->hook(dev);
13120 }
5f85f176
EE
13121 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13122 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13123 intel_dmi_quirks[i].hook(dev);
13124 }
b690e96c
JB
13125}
13126
9cce37f4
JB
13127/* Disable the VGA plane that we never use */
13128static void i915_disable_vga(struct drm_device *dev)
13129{
13130 struct drm_i915_private *dev_priv = dev->dev_private;
13131 u8 sr1;
766aa1c4 13132 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13133
2b37c616 13134 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13135 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13136 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13137 sr1 = inb(VGA_SR_DATA);
13138 outb(sr1 | 1<<5, VGA_SR_DATA);
13139 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13140 udelay(300);
13141
01f5a626 13142 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13143 POSTING_READ(vga_reg);
13144}
13145
f817586c
DV
13146void intel_modeset_init_hw(struct drm_device *dev)
13147{
a8f78b58
ED
13148 intel_prepare_ddi(dev);
13149
f8bf63fd
VS
13150 if (IS_VALLEYVIEW(dev))
13151 vlv_update_cdclk(dev);
13152
f817586c
DV
13153 intel_init_clock_gating(dev);
13154
8090c6b9 13155 intel_enable_gt_powersave(dev);
f817586c
DV
13156}
13157
79e53945
JB
13158void intel_modeset_init(struct drm_device *dev)
13159{
652c393a 13160 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13161 int sprite, ret;
8cc87b75 13162 enum pipe pipe;
46f297fb 13163 struct intel_crtc *crtc;
79e53945
JB
13164
13165 drm_mode_config_init(dev);
13166
13167 dev->mode_config.min_width = 0;
13168 dev->mode_config.min_height = 0;
13169
019d96cb
DA
13170 dev->mode_config.preferred_depth = 24;
13171 dev->mode_config.prefer_shadow = 1;
13172
25bab385
TU
13173 dev->mode_config.allow_fb_modifiers = true;
13174
e6ecefaa 13175 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13176
b690e96c
JB
13177 intel_init_quirks(dev);
13178
1fa61106
ED
13179 intel_init_pm(dev);
13180
e3c74757
BW
13181 if (INTEL_INFO(dev)->num_pipes == 0)
13182 return;
13183
e70236a8 13184 intel_init_display(dev);
7c10a2b5 13185 intel_init_audio(dev);
e70236a8 13186
a6c45cf0
CW
13187 if (IS_GEN2(dev)) {
13188 dev->mode_config.max_width = 2048;
13189 dev->mode_config.max_height = 2048;
13190 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13191 dev->mode_config.max_width = 4096;
13192 dev->mode_config.max_height = 4096;
79e53945 13193 } else {
a6c45cf0
CW
13194 dev->mode_config.max_width = 8192;
13195 dev->mode_config.max_height = 8192;
79e53945 13196 }
068be561 13197
dc41c154
VS
13198 if (IS_845G(dev) || IS_I865G(dev)) {
13199 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13200 dev->mode_config.cursor_height = 1023;
13201 } else if (IS_GEN2(dev)) {
068be561
DL
13202 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13203 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13204 } else {
13205 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13206 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13207 }
13208
5d4545ae 13209 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13210
28c97730 13211 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13212 INTEL_INFO(dev)->num_pipes,
13213 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13214
055e393f 13215 for_each_pipe(dev_priv, pipe) {
8cc87b75 13216 intel_crtc_init(dev, pipe);
1fe47785
DL
13217 for_each_sprite(pipe, sprite) {
13218 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13219 if (ret)
06da8da2 13220 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13221 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13222 }
79e53945
JB
13223 }
13224
f42bb70d
JB
13225 intel_init_dpio(dev);
13226
e72f9fbf 13227 intel_shared_dpll_init(dev);
ee7b9f93 13228
9cce37f4
JB
13229 /* Just disable it once at startup */
13230 i915_disable_vga(dev);
79e53945 13231 intel_setup_outputs(dev);
11be49eb
CW
13232
13233 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13234 intel_fbc_disable(dev);
fa9fa083 13235
6e9f798d 13236 drm_modeset_lock_all(dev);
fa9fa083 13237 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13238 drm_modeset_unlock_all(dev);
46f297fb 13239
d3fcc808 13240 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13241 if (!crtc->active)
13242 continue;
13243
46f297fb 13244 /*
46f297fb
JB
13245 * Note that reserving the BIOS fb up front prevents us
13246 * from stuffing other stolen allocations like the ring
13247 * on top. This prevents some ugliness at boot time, and
13248 * can even allow for smooth boot transitions if the BIOS
13249 * fb is large enough for the active pipe configuration.
13250 */
5724dbd1
DL
13251 if (dev_priv->display.get_initial_plane_config) {
13252 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13253 &crtc->plane_config);
13254 /*
13255 * If the fb is shared between multiple heads, we'll
13256 * just get the first one.
13257 */
484b41dd 13258 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13259 }
46f297fb 13260 }
2c7111db
CW
13261}
13262
7fad798e
DV
13263static void intel_enable_pipe_a(struct drm_device *dev)
13264{
13265 struct intel_connector *connector;
13266 struct drm_connector *crt = NULL;
13267 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13268 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13269
13270 /* We can't just switch on the pipe A, we need to set things up with a
13271 * proper mode and output configuration. As a gross hack, enable pipe A
13272 * by enabling the load detect pipe once. */
13273 list_for_each_entry(connector,
13274 &dev->mode_config.connector_list,
13275 base.head) {
13276 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13277 crt = &connector->base;
13278 break;
13279 }
13280 }
13281
13282 if (!crt)
13283 return;
13284
208bf9fd
VS
13285 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13286 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13287}
13288
fa555837
DV
13289static bool
13290intel_check_plane_mapping(struct intel_crtc *crtc)
13291{
7eb552ae
BW
13292 struct drm_device *dev = crtc->base.dev;
13293 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13294 u32 reg, val;
13295
7eb552ae 13296 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13297 return true;
13298
13299 reg = DSPCNTR(!crtc->plane);
13300 val = I915_READ(reg);
13301
13302 if ((val & DISPLAY_PLANE_ENABLE) &&
13303 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13304 return false;
13305
13306 return true;
13307}
13308
24929352
DV
13309static void intel_sanitize_crtc(struct intel_crtc *crtc)
13310{
13311 struct drm_device *dev = crtc->base.dev;
13312 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13313 u32 reg;
24929352 13314
24929352 13315 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13316 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13317 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13318
d3eaf884 13319 /* restore vblank interrupts to correct state */
9625604c 13320 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
13321 if (crtc->active) {
13322 update_scanline_offset(crtc);
9625604c
DV
13323 drm_crtc_vblank_on(&crtc->base);
13324 }
d3eaf884 13325
24929352 13326 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13327 * disable the crtc (and hence change the state) if it is wrong. Note
13328 * that gen4+ has a fixed plane -> pipe mapping. */
13329 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13330 struct intel_connector *connector;
13331 bool plane;
13332
24929352
DV
13333 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13334 crtc->base.base.id);
13335
13336 /* Pipe has the wrong plane attached and the plane is active.
13337 * Temporarily change the plane mapping and disable everything
13338 * ... */
13339 plane = crtc->plane;
13340 crtc->plane = !plane;
9c8958bc 13341 crtc->primary_enabled = true;
24929352
DV
13342 dev_priv->display.crtc_disable(&crtc->base);
13343 crtc->plane = plane;
13344
13345 /* ... and break all links. */
13346 list_for_each_entry(connector, &dev->mode_config.connector_list,
13347 base.head) {
13348 if (connector->encoder->base.crtc != &crtc->base)
13349 continue;
13350
7f1950fb
EE
13351 connector->base.dpms = DRM_MODE_DPMS_OFF;
13352 connector->base.encoder = NULL;
24929352 13353 }
7f1950fb
EE
13354 /* multiple connectors may have the same encoder:
13355 * handle them and break crtc link separately */
13356 list_for_each_entry(connector, &dev->mode_config.connector_list,
13357 base.head)
13358 if (connector->encoder->base.crtc == &crtc->base) {
13359 connector->encoder->base.crtc = NULL;
13360 connector->encoder->connectors_active = false;
13361 }
24929352
DV
13362
13363 WARN_ON(crtc->active);
13364 crtc->base.enabled = false;
13365 }
24929352 13366
7fad798e
DV
13367 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13368 crtc->pipe == PIPE_A && !crtc->active) {
13369 /* BIOS forgot to enable pipe A, this mostly happens after
13370 * resume. Force-enable the pipe to fix this, the update_dpms
13371 * call below we restore the pipe to the right state, but leave
13372 * the required bits on. */
13373 intel_enable_pipe_a(dev);
13374 }
13375
24929352
DV
13376 /* Adjust the state of the output pipe according to whether we
13377 * have active connectors/encoders. */
13378 intel_crtc_update_dpms(&crtc->base);
13379
13380 if (crtc->active != crtc->base.enabled) {
13381 struct intel_encoder *encoder;
13382
13383 /* This can happen either due to bugs in the get_hw_state
13384 * functions or because the pipe is force-enabled due to the
13385 * pipe A quirk. */
13386 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13387 crtc->base.base.id,
13388 crtc->base.enabled ? "enabled" : "disabled",
13389 crtc->active ? "enabled" : "disabled");
13390
13391 crtc->base.enabled = crtc->active;
13392
13393 /* Because we only establish the connector -> encoder ->
13394 * crtc links if something is active, this means the
13395 * crtc is now deactivated. Break the links. connector
13396 * -> encoder links are only establish when things are
13397 * actually up, hence no need to break them. */
13398 WARN_ON(crtc->active);
13399
13400 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13401 WARN_ON(encoder->connectors_active);
13402 encoder->base.crtc = NULL;
13403 }
13404 }
c5ab3bc0 13405
a3ed6aad 13406 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13407 /*
13408 * We start out with underrun reporting disabled to avoid races.
13409 * For correct bookkeeping mark this on active crtcs.
13410 *
c5ab3bc0
DV
13411 * Also on gmch platforms we dont have any hardware bits to
13412 * disable the underrun reporting. Which means we need to start
13413 * out with underrun reporting disabled also on inactive pipes,
13414 * since otherwise we'll complain about the garbage we read when
13415 * e.g. coming up after runtime pm.
13416 *
4cc31489
DV
13417 * No protection against concurrent access is required - at
13418 * worst a fifo underrun happens which also sets this to false.
13419 */
13420 crtc->cpu_fifo_underrun_disabled = true;
13421 crtc->pch_fifo_underrun_disabled = true;
13422 }
24929352
DV
13423}
13424
13425static void intel_sanitize_encoder(struct intel_encoder *encoder)
13426{
13427 struct intel_connector *connector;
13428 struct drm_device *dev = encoder->base.dev;
13429
13430 /* We need to check both for a crtc link (meaning that the
13431 * encoder is active and trying to read from a pipe) and the
13432 * pipe itself being active. */
13433 bool has_active_crtc = encoder->base.crtc &&
13434 to_intel_crtc(encoder->base.crtc)->active;
13435
13436 if (encoder->connectors_active && !has_active_crtc) {
13437 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13438 encoder->base.base.id,
8e329a03 13439 encoder->base.name);
24929352
DV
13440
13441 /* Connector is active, but has no active pipe. This is
13442 * fallout from our resume register restoring. Disable
13443 * the encoder manually again. */
13444 if (encoder->base.crtc) {
13445 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13446 encoder->base.base.id,
8e329a03 13447 encoder->base.name);
24929352 13448 encoder->disable(encoder);
a62d1497
VS
13449 if (encoder->post_disable)
13450 encoder->post_disable(encoder);
24929352 13451 }
7f1950fb
EE
13452 encoder->base.crtc = NULL;
13453 encoder->connectors_active = false;
24929352
DV
13454
13455 /* Inconsistent output/port/pipe state happens presumably due to
13456 * a bug in one of the get_hw_state functions. Or someplace else
13457 * in our code, like the register restore mess on resume. Clamp
13458 * things to off as a safer default. */
13459 list_for_each_entry(connector,
13460 &dev->mode_config.connector_list,
13461 base.head) {
13462 if (connector->encoder != encoder)
13463 continue;
7f1950fb
EE
13464 connector->base.dpms = DRM_MODE_DPMS_OFF;
13465 connector->base.encoder = NULL;
24929352
DV
13466 }
13467 }
13468 /* Enabled encoders without active connectors will be fixed in
13469 * the crtc fixup. */
13470}
13471
04098753 13472void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13473{
13474 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13475 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13476
04098753
ID
13477 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13478 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13479 i915_disable_vga(dev);
13480 }
13481}
13482
13483void i915_redisable_vga(struct drm_device *dev)
13484{
13485 struct drm_i915_private *dev_priv = dev->dev_private;
13486
8dc8a27c
PZ
13487 /* This function can be called both from intel_modeset_setup_hw_state or
13488 * at a very early point in our resume sequence, where the power well
13489 * structures are not yet restored. Since this function is at a very
13490 * paranoid "someone might have enabled VGA while we were not looking"
13491 * level, just check if the power well is enabled instead of trying to
13492 * follow the "don't touch the power well if we don't need it" policy
13493 * the rest of the driver uses. */
f458ebbc 13494 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13495 return;
13496
04098753 13497 i915_redisable_vga_power_on(dev);
0fde901f
KM
13498}
13499
98ec7739
VS
13500static bool primary_get_hw_state(struct intel_crtc *crtc)
13501{
13502 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13503
13504 if (!crtc->active)
13505 return false;
13506
13507 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13508}
13509
30e984df 13510static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13511{
13512 struct drm_i915_private *dev_priv = dev->dev_private;
13513 enum pipe pipe;
24929352
DV
13514 struct intel_crtc *crtc;
13515 struct intel_encoder *encoder;
13516 struct intel_connector *connector;
5358901f 13517 int i;
24929352 13518
d3fcc808 13519 for_each_intel_crtc(dev, crtc) {
6e3c9717 13520 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 13521
6e3c9717 13522 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 13523
0e8ffe1b 13524 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 13525 crtc->config);
24929352
DV
13526
13527 crtc->base.enabled = crtc->active;
98ec7739 13528 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13529
13530 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13531 crtc->base.base.id,
13532 crtc->active ? "enabled" : "disabled");
13533 }
13534
5358901f
DV
13535 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13536 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13537
3e369b76
ACO
13538 pll->on = pll->get_hw_state(dev_priv, pll,
13539 &pll->config.hw_state);
5358901f 13540 pll->active = 0;
3e369b76 13541 pll->config.crtc_mask = 0;
d3fcc808 13542 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13543 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13544 pll->active++;
3e369b76 13545 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13546 }
5358901f 13547 }
5358901f 13548
1e6f2ddc 13549 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13550 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13551
3e369b76 13552 if (pll->config.crtc_mask)
bd2bb1b9 13553 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13554 }
13555
b2784e15 13556 for_each_intel_encoder(dev, encoder) {
24929352
DV
13557 pipe = 0;
13558
13559 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13560 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13561 encoder->base.crtc = &crtc->base;
6e3c9717 13562 encoder->get_config(encoder, crtc->config);
24929352
DV
13563 } else {
13564 encoder->base.crtc = NULL;
13565 }
13566
13567 encoder->connectors_active = false;
6f2bcceb 13568 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13569 encoder->base.base.id,
8e329a03 13570 encoder->base.name,
24929352 13571 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13572 pipe_name(pipe));
24929352
DV
13573 }
13574
13575 list_for_each_entry(connector, &dev->mode_config.connector_list,
13576 base.head) {
13577 if (connector->get_hw_state(connector)) {
13578 connector->base.dpms = DRM_MODE_DPMS_ON;
13579 connector->encoder->connectors_active = true;
13580 connector->base.encoder = &connector->encoder->base;
13581 } else {
13582 connector->base.dpms = DRM_MODE_DPMS_OFF;
13583 connector->base.encoder = NULL;
13584 }
13585 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13586 connector->base.base.id,
c23cc417 13587 connector->base.name,
24929352
DV
13588 connector->base.encoder ? "enabled" : "disabled");
13589 }
30e984df
DV
13590}
13591
13592/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13593 * and i915 state tracking structures. */
13594void intel_modeset_setup_hw_state(struct drm_device *dev,
13595 bool force_restore)
13596{
13597 struct drm_i915_private *dev_priv = dev->dev_private;
13598 enum pipe pipe;
30e984df
DV
13599 struct intel_crtc *crtc;
13600 struct intel_encoder *encoder;
35c95375 13601 int i;
30e984df
DV
13602
13603 intel_modeset_readout_hw_state(dev);
24929352 13604
babea61d
JB
13605 /*
13606 * Now that we have the config, copy it to each CRTC struct
13607 * Note that this could go away if we move to using crtc_config
13608 * checking everywhere.
13609 */
d3fcc808 13610 for_each_intel_crtc(dev, crtc) {
d330a953 13611 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
13612 intel_mode_from_pipe_config(&crtc->base.mode,
13613 crtc->config);
babea61d
JB
13614 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13615 crtc->base.base.id);
13616 drm_mode_debug_printmodeline(&crtc->base.mode);
13617 }
13618 }
13619
24929352 13620 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13621 for_each_intel_encoder(dev, encoder) {
24929352
DV
13622 intel_sanitize_encoder(encoder);
13623 }
13624
055e393f 13625 for_each_pipe(dev_priv, pipe) {
24929352
DV
13626 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13627 intel_sanitize_crtc(crtc);
6e3c9717
ACO
13628 intel_dump_pipe_config(crtc, crtc->config,
13629 "[setup_hw_state]");
24929352 13630 }
9a935856 13631
35c95375
DV
13632 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13633 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13634
13635 if (!pll->on || pll->active)
13636 continue;
13637
13638 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13639
13640 pll->disable(dev_priv, pll);
13641 pll->on = false;
13642 }
13643
3078999f
PB
13644 if (IS_GEN9(dev))
13645 skl_wm_get_hw_state(dev);
13646 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13647 ilk_wm_get_hw_state(dev);
13648
45e2b5f6 13649 if (force_restore) {
7d0bc1ea
VS
13650 i915_redisable_vga(dev);
13651
f30da187
DV
13652 /*
13653 * We need to use raw interfaces for restoring state to avoid
13654 * checking (bogus) intermediate states.
13655 */
055e393f 13656 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13657 struct drm_crtc *crtc =
13658 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13659
7f27126e
JB
13660 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13661 crtc->primary->fb);
45e2b5f6
DV
13662 }
13663 } else {
13664 intel_modeset_update_staged_output_state(dev);
13665 }
8af6cf88
DV
13666
13667 intel_modeset_check_state(dev);
2c7111db
CW
13668}
13669
13670void intel_modeset_gem_init(struct drm_device *dev)
13671{
92122789 13672 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13673 struct drm_crtc *c;
2ff8fde1 13674 struct drm_i915_gem_object *obj;
484b41dd 13675
ae48434c
ID
13676 mutex_lock(&dev->struct_mutex);
13677 intel_init_gt_powersave(dev);
13678 mutex_unlock(&dev->struct_mutex);
13679
92122789
JB
13680 /*
13681 * There may be no VBT; and if the BIOS enabled SSC we can
13682 * just keep using it to avoid unnecessary flicker. Whereas if the
13683 * BIOS isn't using it, don't assume it will work even if the VBT
13684 * indicates as much.
13685 */
13686 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13687 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13688 DREF_SSC1_ENABLE);
13689
1833b134 13690 intel_modeset_init_hw(dev);
02e792fb
DV
13691
13692 intel_setup_overlay(dev);
484b41dd
JB
13693
13694 /*
13695 * Make sure any fbs we allocated at startup are properly
13696 * pinned & fenced. When we do the allocation it's too early
13697 * for this.
13698 */
13699 mutex_lock(&dev->struct_mutex);
70e1e0ec 13700 for_each_crtc(dev, c) {
2ff8fde1
MR
13701 obj = intel_fb_obj(c->primary->fb);
13702 if (obj == NULL)
484b41dd
JB
13703 continue;
13704
850c4cdc
TU
13705 if (intel_pin_and_fence_fb_obj(c->primary,
13706 c->primary->fb,
13707 NULL)) {
484b41dd
JB
13708 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13709 to_intel_crtc(c)->pipe);
66e514c1
DA
13710 drm_framebuffer_unreference(c->primary->fb);
13711 c->primary->fb = NULL;
afd65eb4 13712 update_state_fb(c->primary);
484b41dd
JB
13713 }
13714 }
13715 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
13716
13717 intel_backlight_register(dev);
79e53945
JB
13718}
13719
4932e2c3
ID
13720void intel_connector_unregister(struct intel_connector *intel_connector)
13721{
13722 struct drm_connector *connector = &intel_connector->base;
13723
13724 intel_panel_destroy_backlight(connector);
34ea3d38 13725 drm_connector_unregister(connector);
4932e2c3
ID
13726}
13727
79e53945
JB
13728void intel_modeset_cleanup(struct drm_device *dev)
13729{
652c393a 13730 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13731 struct drm_connector *connector;
652c393a 13732
2eb5252e
ID
13733 intel_disable_gt_powersave(dev);
13734
0962c3c9
VS
13735 intel_backlight_unregister(dev);
13736
fd0c0642
DV
13737 /*
13738 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 13739 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
13740 * experience fancy races otherwise.
13741 */
2aeb7d3a 13742 intel_irq_uninstall(dev_priv);
eb21b92b 13743
fd0c0642
DV
13744 /*
13745 * Due to the hpd irq storm handling the hotplug work can re-arm the
13746 * poll handlers. Hence disable polling after hpd handling is shut down.
13747 */
f87ea761 13748 drm_kms_helper_poll_fini(dev);
fd0c0642 13749
652c393a
JB
13750 mutex_lock(&dev->struct_mutex);
13751
723bfd70
JB
13752 intel_unregister_dsm_handler();
13753
7ff0ebcc 13754 intel_fbc_disable(dev);
e70236a8 13755
930ebb46
DV
13756 ironlake_teardown_rc6(dev);
13757
69341a5e
KH
13758 mutex_unlock(&dev->struct_mutex);
13759
1630fe75
CW
13760 /* flush any delayed tasks or pending work */
13761 flush_scheduled_work();
13762
db31af1d
JN
13763 /* destroy the backlight and sysfs files before encoders/connectors */
13764 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13765 struct intel_connector *intel_connector;
13766
13767 intel_connector = to_intel_connector(connector);
13768 intel_connector->unregister(intel_connector);
db31af1d 13769 }
d9255d57 13770
79e53945 13771 drm_mode_config_cleanup(dev);
4d7bb011
DV
13772
13773 intel_cleanup_overlay(dev);
ae48434c
ID
13774
13775 mutex_lock(&dev->struct_mutex);
13776 intel_cleanup_gt_powersave(dev);
13777 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13778}
13779
f1c79df3
ZW
13780/*
13781 * Return which encoder is currently attached for connector.
13782 */
df0e9248 13783struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13784{
df0e9248
CW
13785 return &intel_attached_encoder(connector)->base;
13786}
f1c79df3 13787
df0e9248
CW
13788void intel_connector_attach_encoder(struct intel_connector *connector,
13789 struct intel_encoder *encoder)
13790{
13791 connector->encoder = encoder;
13792 drm_mode_connector_attach_encoder(&connector->base,
13793 &encoder->base);
79e53945 13794}
28d52043
DA
13795
13796/*
13797 * set vga decode state - true == enable VGA decode
13798 */
13799int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13800{
13801 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13802 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13803 u16 gmch_ctrl;
13804
75fa041d
CW
13805 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13806 DRM_ERROR("failed to read control word\n");
13807 return -EIO;
13808 }
13809
c0cc8a55
CW
13810 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13811 return 0;
13812
28d52043
DA
13813 if (state)
13814 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13815 else
13816 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13817
13818 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13819 DRM_ERROR("failed to write control word\n");
13820 return -EIO;
13821 }
13822
28d52043
DA
13823 return 0;
13824}
c4a1d9e4 13825
c4a1d9e4 13826struct intel_display_error_state {
ff57f1b0
PZ
13827
13828 u32 power_well_driver;
13829
63b66e5b
CW
13830 int num_transcoders;
13831
c4a1d9e4
CW
13832 struct intel_cursor_error_state {
13833 u32 control;
13834 u32 position;
13835 u32 base;
13836 u32 size;
52331309 13837 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13838
13839 struct intel_pipe_error_state {
ddf9c536 13840 bool power_domain_on;
c4a1d9e4 13841 u32 source;
f301b1e1 13842 u32 stat;
52331309 13843 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13844
13845 struct intel_plane_error_state {
13846 u32 control;
13847 u32 stride;
13848 u32 size;
13849 u32 pos;
13850 u32 addr;
13851 u32 surface;
13852 u32 tile_offset;
52331309 13853 } plane[I915_MAX_PIPES];
63b66e5b
CW
13854
13855 struct intel_transcoder_error_state {
ddf9c536 13856 bool power_domain_on;
63b66e5b
CW
13857 enum transcoder cpu_transcoder;
13858
13859 u32 conf;
13860
13861 u32 htotal;
13862 u32 hblank;
13863 u32 hsync;
13864 u32 vtotal;
13865 u32 vblank;
13866 u32 vsync;
13867 } transcoder[4];
c4a1d9e4
CW
13868};
13869
13870struct intel_display_error_state *
13871intel_display_capture_error_state(struct drm_device *dev)
13872{
fbee40df 13873 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13874 struct intel_display_error_state *error;
63b66e5b
CW
13875 int transcoders[] = {
13876 TRANSCODER_A,
13877 TRANSCODER_B,
13878 TRANSCODER_C,
13879 TRANSCODER_EDP,
13880 };
c4a1d9e4
CW
13881 int i;
13882
63b66e5b
CW
13883 if (INTEL_INFO(dev)->num_pipes == 0)
13884 return NULL;
13885
9d1cb914 13886 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13887 if (error == NULL)
13888 return NULL;
13889
190be112 13890 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13891 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13892
055e393f 13893 for_each_pipe(dev_priv, i) {
ddf9c536 13894 error->pipe[i].power_domain_on =
f458ebbc
DV
13895 __intel_display_power_is_enabled(dev_priv,
13896 POWER_DOMAIN_PIPE(i));
ddf9c536 13897 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13898 continue;
13899
5efb3e28
VS
13900 error->cursor[i].control = I915_READ(CURCNTR(i));
13901 error->cursor[i].position = I915_READ(CURPOS(i));
13902 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13903
13904 error->plane[i].control = I915_READ(DSPCNTR(i));
13905 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13906 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13907 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13908 error->plane[i].pos = I915_READ(DSPPOS(i));
13909 }
ca291363
PZ
13910 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13911 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13912 if (INTEL_INFO(dev)->gen >= 4) {
13913 error->plane[i].surface = I915_READ(DSPSURF(i));
13914 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13915 }
13916
c4a1d9e4 13917 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13918
3abfce77 13919 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13920 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13921 }
13922
13923 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13924 if (HAS_DDI(dev_priv->dev))
13925 error->num_transcoders++; /* Account for eDP. */
13926
13927 for (i = 0; i < error->num_transcoders; i++) {
13928 enum transcoder cpu_transcoder = transcoders[i];
13929
ddf9c536 13930 error->transcoder[i].power_domain_on =
f458ebbc 13931 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13932 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13933 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13934 continue;
13935
63b66e5b
CW
13936 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13937
13938 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13939 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13940 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13941 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13942 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13943 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13944 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13945 }
13946
13947 return error;
13948}
13949
edc3d884
MK
13950#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13951
c4a1d9e4 13952void
edc3d884 13953intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13954 struct drm_device *dev,
13955 struct intel_display_error_state *error)
13956{
055e393f 13957 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13958 int i;
13959
63b66e5b
CW
13960 if (!error)
13961 return;
13962
edc3d884 13963 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13964 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13965 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13966 error->power_well_driver);
055e393f 13967 for_each_pipe(dev_priv, i) {
edc3d884 13968 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13969 err_printf(m, " Power: %s\n",
13970 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13971 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13972 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13973
13974 err_printf(m, "Plane [%d]:\n", i);
13975 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13976 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13977 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13978 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13979 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13980 }
4b71a570 13981 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13982 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13983 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13984 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13985 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13986 }
13987
edc3d884
MK
13988 err_printf(m, "Cursor [%d]:\n", i);
13989 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13990 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13991 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13992 }
63b66e5b
CW
13993
13994 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13995 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13996 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13997 err_printf(m, " Power: %s\n",
13998 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13999 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14000 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14001 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14002 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14003 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14004 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14005 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14006 }
c4a1d9e4 14007}
e2fcdaa9
VS
14008
14009void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14010{
14011 struct intel_crtc *crtc;
14012
14013 for_each_intel_crtc(dev, crtc) {
14014 struct intel_unpin_work *work;
e2fcdaa9 14015
5e2d7afc 14016 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14017
14018 work = crtc->unpin_work;
14019
14020 if (work && work->event &&
14021 work->event->base.file_priv == file) {
14022 kfree(work->event);
14023 work->event = NULL;
14024 }
14025
5e2d7afc 14026 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14027 }
14028}