]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Record space required for breadcrumb emission
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
a3aabe86
CW
229#define WA_TAIL_DWORDS 2
230
e2efd130 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 232 struct intel_engine_cs *engine);
e2efd130 233static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 234 struct intel_engine_cs *engine);
a3aabe86
CW
235static void execlists_init_reg_state(u32 *reg_state,
236 struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine,
238 struct intel_ring *ring);
7ba717cf 239
73e4d07f
OM
240/**
241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 242 * @dev_priv: i915 device private
73e4d07f
OM
243 * @enable_execlists: value of i915.enable_execlists module parameter.
244 *
245 * Only certain platforms support Execlists (the prerequisites being
27401d12 246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
247 *
248 * Return: 1 if Execlists is supported and has to be enabled.
249 */
c033666a 250int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 251{
a0bd6c31
ZL
252 /* On platforms with execlist available, vGPU will only
253 * support execlist mode, no ring buffer mode.
254 */
c033666a 255 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
256 return 1;
257
c033666a 258 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
259 return 1;
260
127f1003
OM
261 if (enable_execlists == 0)
262 return 0;
263
5a21b665
DV
264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 USES_PPGTT(dev_priv) &&
266 i915.use_mmio_flip >= 0)
127f1003
OM
267 return 1;
268
269 return 0;
270}
ede7d42b 271
ca82580c 272static void
0bc40be8 273logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 274{
c033666a 275 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 276
70c2a24d 277 engine->disable_lite_restore_wa =
a117f378 278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
70c2a24d 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 if (IS_GEN8(dev_priv))
0bc40be8
TU
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
294}
295
73e4d07f 296/**
ca82580c
TU
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
ca82580c 299 * @ctx: Context to work on
9021ad03 300 * @engine: Engine the descriptor will be used with
73e4d07f 301 *
ca82580c
TU
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
6e5248b5
DV
307 * This is what a descriptor looks like, from LSB to MSB::
308 *
309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
311 * bits 32-52: ctx ID, a globally unique tag
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 314 */
ca82580c 315static void
e2efd130 316intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
9021ad03 319 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 320 u64 desc;
84b790f8 321
7069b144 322 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 323
c01fc532
ZW
324 desc = ctx->desc_template; /* bits 3-4 */
325 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 326 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 327 /* bits 12-31 */
7069b144 328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
9021ad03 330 ce->lrc_desc = desc;
5af05fef
MT
331}
332
e2efd130 333uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
bbd6c47e
CW
339static inline void
340execlists_context_status_change(struct drm_i915_gem_request *rq,
341 unsigned long status)
84b790f8 342{
bbd6c47e
CW
343 /*
344 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 * The compiler should eliminate this function as dead-code.
346 */
347 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 return;
6daccb0b 349
bbd6c47e 350 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
351}
352
c6a2ac71
TU
353static void
354execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355{
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360}
361
70c2a24d 362static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
70c2a24d 364 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 366 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 367
8f942018 368 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
ae1250b9 369
c6a2ac71
TU
370 /* True 32b PPGTT with dynamic page allocation: update PDP
371 * registers and point the unallocated PDPs to scratch page.
372 * PML4 is allocated during ppgtt init, so this is not needed
373 * in 48-bit mode.
374 */
375 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
377
378 return ce->lrc_desc;
ae1250b9
OM
379}
380
70c2a24d 381static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 382{
70c2a24d
CW
383 struct drm_i915_private *dev_priv = engine->i915;
384 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
385 u32 __iomem *elsp =
386 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387 u64 desc[2];
388
70c2a24d
CW
389 if (!port[0].count)
390 execlists_context_status_change(port[0].request,
391 INTEL_CONTEXT_SCHEDULE_IN);
392 desc[0] = execlists_update_context(port[0].request);
393 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395 if (port[1].request) {
396 GEM_BUG_ON(port[1].count);
397 execlists_context_status_change(port[1].request,
398 INTEL_CONTEXT_SCHEDULE_IN);
399 desc[1] = execlists_update_context(port[1].request);
400 port[1].count = 1;
bbd6c47e
CW
401 } else {
402 desc[1] = 0;
403 }
70c2a24d 404 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
405
406 /* You must always write both descriptors in the order below. */
407 writel(upper_32_bits(desc[1]), elsp);
408 writel(lower_32_bits(desc[1]), elsp);
409
410 writel(upper_32_bits(desc[0]), elsp);
411 /* The context is automatically loaded after the following */
412 writel(lower_32_bits(desc[0]), elsp);
413}
414
70c2a24d 415static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 416{
70c2a24d
CW
417 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418 ctx->execlists_force_single_submission);
419}
84b790f8 420
70c2a24d
CW
421static bool can_merge_ctx(const struct i915_gem_context *prev,
422 const struct i915_gem_context *next)
423{
424 if (prev != next)
425 return false;
26720ab9 426
70c2a24d
CW
427 if (ctx_single_port_submission(prev))
428 return false;
26720ab9 429
70c2a24d 430 return true;
84b790f8
BW
431}
432
70c2a24d 433static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 434{
70c2a24d
CW
435 struct drm_i915_gem_request *cursor, *last;
436 struct execlist_port *port = engine->execlist_port;
437 bool submit = false;
438
439 last = port->request;
440 if (last)
441 /* WaIdleLiteRestore:bdw,skl
442 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 443 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
444 * for where we prepare the padding after the end of the
445 * request.
446 */
447 last->tail = last->wa_tail;
e981e7b1 448
70c2a24d 449 GEM_BUG_ON(port[1].request);
acdd884a 450
70c2a24d
CW
451 /* Hardware submission is through 2 ports. Conceptually each port
452 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
453 * static for a context, and unique to each, so we only execute
454 * requests belonging to a single context from each ring. RING_HEAD
455 * is maintained by the CS in the context image, it marks the place
456 * where it got up to last time, and through RING_TAIL we tell the CS
457 * where we want to execute up to this time.
458 *
459 * In this list the requests are in order of execution. Consecutive
460 * requests from the same context are adjacent in the ringbuffer. We
461 * can combine these requests into a single RING_TAIL update:
462 *
463 * RING_HEAD...req1...req2
464 * ^- RING_TAIL
465 * since to execute req2 the CS must first execute req1.
466 *
467 * Our goal then is to point each port to the end of a consecutive
468 * sequence of requests as being the most optimal (fewest wake ups
469 * and context switches) submission.
779949f4 470 */
acdd884a 471
70c2a24d
CW
472 spin_lock(&engine->execlist_lock);
473 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
474 /* Can we combine this request with the current port? It has to
475 * be the same context/ringbuffer and not have any exceptions
476 * (e.g. GVT saying never to combine contexts).
c6a2ac71 477 *
70c2a24d
CW
478 * If we can combine the requests, we can execute both by
479 * updating the RING_TAIL to point to the end of the second
480 * request, and so we never need to tell the hardware about
481 * the first.
53292cdb 482 */
70c2a24d
CW
483 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
484 /* If we are on the second port and cannot combine
485 * this request with the last, then we are done.
486 */
487 if (port != engine->execlist_port)
488 break;
489
490 /* If GVT overrides us we only ever submit port[0],
491 * leaving port[1] empty. Note that we also have
492 * to be careful that we don't queue the same
493 * context (even though a different request) to
494 * the second port.
495 */
496 if (ctx_single_port_submission(cursor->ctx))
497 break;
498
499 GEM_BUG_ON(last->ctx == cursor->ctx);
500
501 i915_gem_request_assign(&port->request, last);
502 port++;
503 }
504 last = cursor;
505 submit = true;
506 }
507 if (submit) {
508 /* Decouple all the requests submitted from the queue */
509 engine->execlist_queue.next = &cursor->execlist_link;
510 cursor->execlist_link.prev = &engine->execlist_queue;
511
512 i915_gem_request_assign(&port->request, last);
53292cdb 513 }
70c2a24d 514 spin_unlock(&engine->execlist_lock);
53292cdb 515
70c2a24d
CW
516 if (submit)
517 execlists_submit_ports(engine);
acdd884a
MT
518}
519
70c2a24d 520static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 521{
70c2a24d 522 return !engine->execlist_port[0].request;
e981e7b1
TD
523}
524
70c2a24d 525static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 526{
70c2a24d 527 int port;
91a41032 528
70c2a24d
CW
529 port = 1; /* wait for a free slot */
530 if (engine->disable_lite_restore_wa || engine->preempt_wa)
531 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 532
70c2a24d 533 return !engine->execlist_port[port].request;
91a41032
BW
534}
535
6e5248b5 536/*
73e4d07f
OM
537 * Check the unread Context Status Buffers and manage the submission of new
538 * contexts to the ELSP accordingly.
539 */
27af5eea 540static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 541{
27af5eea 542 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 543 struct execlist_port *port = engine->execlist_port;
c033666a 544 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 545
3756685a 546 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 547
70c2a24d
CW
548 if (!execlists_elsp_idle(engine)) {
549 u32 __iomem *csb_mmio =
550 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
551 u32 __iomem *buf =
552 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
553 unsigned int csb, head, tail;
554
555 csb = readl(csb_mmio);
556 head = GEN8_CSB_READ_PTR(csb);
557 tail = GEN8_CSB_WRITE_PTR(csb);
558 if (tail < head)
559 tail += GEN8_CSB_ENTRIES;
560 while (head < tail) {
561 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
562 unsigned int status = readl(buf + 2 * idx);
563
564 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
565 continue;
566
567 GEM_BUG_ON(port[0].count == 0);
568 if (--port[0].count == 0) {
569 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
570 execlists_context_status_change(port[0].request,
571 INTEL_CONTEXT_SCHEDULE_OUT);
572
573 i915_gem_request_put(port[0].request);
574 port[0] = port[1];
575 memset(&port[1], 0, sizeof(port[1]));
576
577 engine->preempt_wa = false;
578 }
26720ab9 579
70c2a24d
CW
580 GEM_BUG_ON(port[0].count == 0 &&
581 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
582 }
583
70c2a24d
CW
584 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
585 GEN8_CSB_WRITE_PTR(csb) << 8),
586 csb_mmio);
e981e7b1
TD
587 }
588
70c2a24d
CW
589 if (execlists_elsp_ready(engine))
590 execlists_dequeue(engine);
c6a2ac71 591
70c2a24d 592 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
593}
594
f4ea6bdd 595static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 596{
4a570db5 597 struct intel_engine_cs *engine = request->engine;
5590af3e 598 unsigned long flags;
acdd884a 599
5590af3e 600 spin_lock_irqsave(&engine->execlist_lock, flags);
acdd884a 601
ba49b2f8 602 list_add_tail(&request->execlist_link, &engine->execlist_queue);
70c2a24d
CW
603 if (execlists_elsp_idle(engine))
604 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 605
5590af3e 606 spin_unlock_irqrestore(&engine->execlist_lock, flags);
acdd884a
MT
607}
608
40e895ce 609int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 610{
24f1d3cc 611 struct intel_engine_cs *engine = request->engine;
9021ad03 612 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 613 int ret;
bc0dce3f 614
6310346e
CW
615 /* Flush enough space to reduce the likelihood of waiting after
616 * we start building the request - in which case we will just
617 * have to repeat work.
618 */
0e93cdd4 619 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 620
9021ad03 621 if (!ce->state) {
978f1e09
CW
622 ret = execlists_context_deferred_alloc(request->ctx, engine);
623 if (ret)
624 return ret;
625 }
626
dca33ecc 627 request->ring = ce->ring;
f3cc01f0 628
5ba89908
CW
629 ret = intel_lr_context_pin(request->ctx, engine);
630 if (ret)
631 return ret;
632
a7e02199
AD
633 if (i915.enable_guc_submission) {
634 /*
635 * Check that the GuC has space for the request before
636 * going any further, as the i915_add_request() call
637 * later on mustn't fail ...
638 */
7a9347f9 639 ret = i915_guc_wq_reserve(request);
a7e02199 640 if (ret)
5ba89908 641 goto err_unpin;
a7e02199
AD
642 }
643
bfa01200
CW
644 ret = intel_ring_begin(request, 0);
645 if (ret)
5ba89908 646 goto err_unreserve;
bfa01200 647
9021ad03 648 if (!ce->initialised) {
24f1d3cc
CW
649 ret = engine->init_context(request);
650 if (ret)
5ba89908 651 goto err_unreserve;
24f1d3cc 652
9021ad03 653 ce->initialised = true;
24f1d3cc
CW
654 }
655
656 /* Note that after this point, we have committed to using
657 * this request as it is being used to both track the
658 * state of engine initialisation and liveness of the
659 * golden renderstate above. Think twice before you try
660 * to cancel/unwind this request now.
661 */
662
0e93cdd4 663 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
664 return 0;
665
5ba89908
CW
666err_unreserve:
667 if (i915.enable_guc_submission)
668 i915_guc_wq_unreserve(request);
bfa01200 669err_unpin:
24f1d3cc 670 intel_lr_context_unpin(request->ctx, engine);
e28e404c 671 return ret;
bc0dce3f
JH
672}
673
bc0dce3f 674/*
ddd66c51 675 * intel_logical_ring_advance() - advance the tail and prepare for submission
ae70797d 676 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
677 *
678 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
679 * really happens during submission is that the context and current tail will be placed
680 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
681 * point, the tail *inside* the context is updated and the ELSP written to.
682 */
7c17d377 683static int
ddd66c51 684intel_logical_ring_advance(struct drm_i915_gem_request *request)
bc0dce3f 685{
7e37f889 686 struct intel_ring *ring = request->ring;
4a570db5 687 struct intel_engine_cs *engine = request->engine;
bc0dce3f 688
1dae2dfb
CW
689 intel_ring_advance(ring);
690 request->tail = ring->tail;
bc0dce3f 691
7c17d377
CW
692 /*
693 * Here we add two extra NOOPs as padding to avoid
694 * lite restore of a context with HEAD==TAIL.
695 *
696 * Caller must reserve WA_TAIL_DWORDS for us!
697 */
1dae2dfb
CW
698 intel_ring_emit(ring, MI_NOOP);
699 intel_ring_emit(ring, MI_NOOP);
700 intel_ring_advance(ring);
a52abd2f 701 request->wa_tail = ring->tail;
d1675198 702
a16a4052
CW
703 /* We keep the previous context alive until we retire the following
704 * request. This ensures that any the context object is still pinned
705 * for any residual writes the HW makes into it on the context switch
706 * into the next object following the breadcrumb. Otherwise, we may
707 * retire the context too early.
708 */
709 request->previous_context = engine->last_context;
710 engine->last_context = request->ctx;
7c17d377 711 return 0;
bc0dce3f
JH
712}
713
e2efd130 714static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 715 struct intel_engine_cs *engine)
dcb4c12a 716{
9021ad03 717 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 718 void *vaddr;
ca82580c 719 int ret;
dcb4c12a 720
91c8a326 721 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 722
9021ad03 723 if (ce->pin_count++)
24f1d3cc
CW
724 return 0;
725
bf3783e5
CW
726 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
727 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 728 if (ret)
24f1d3cc 729 goto err;
7ba717cf 730
bf3783e5 731 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
732 if (IS_ERR(vaddr)) {
733 ret = PTR_ERR(vaddr);
bf3783e5 734 goto unpin_vma;
82352e90
TU
735 }
736
aad29fbb 737 ret = intel_ring_pin(ce->ring);
e84fe803 738 if (ret)
7d774cac 739 goto unpin_map;
d1675198 740
0bc40be8 741 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 742
a3aabe86
CW
743 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
744 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 745 i915_ggtt_offset(ce->ring->vma);
a3aabe86 746
a4f5ea64 747 ce->state->obj->mm.dirty = true;
e93c28f3 748
e84fe803 749 /* Invalidate GuC TLB. */
bf3783e5
CW
750 if (i915.enable_guc_submission) {
751 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 752 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 753 }
dcb4c12a 754
9a6feaf0 755 i915_gem_context_get(ctx);
24f1d3cc 756 return 0;
7ba717cf 757
7d774cac 758unpin_map:
bf3783e5
CW
759 i915_gem_object_unpin_map(ce->state->obj);
760unpin_vma:
761 __i915_vma_unpin(ce->state);
24f1d3cc 762err:
9021ad03 763 ce->pin_count = 0;
e84fe803
NH
764 return ret;
765}
766
e2efd130 767void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 768 struct intel_engine_cs *engine)
e84fe803 769{
9021ad03 770 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 771
91c8a326 772 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 773 GEM_BUG_ON(ce->pin_count == 0);
321fe304 774
9021ad03 775 if (--ce->pin_count)
24f1d3cc 776 return;
e84fe803 777
aad29fbb 778 intel_ring_unpin(ce->ring);
dcb4c12a 779
bf3783e5
CW
780 i915_gem_object_unpin_map(ce->state->obj);
781 i915_vma_unpin(ce->state);
321fe304 782
9a6feaf0 783 i915_gem_context_put(ctx);
dcb4c12a
OM
784}
785
e2be4faf 786static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
787{
788 int ret, i;
7e37f889 789 struct intel_ring *ring = req->ring;
c033666a 790 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 791
cd7feaaa 792 if (w->count == 0)
771b9a53
MT
793 return 0;
794
7c9cf4e3 795 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
796 if (ret)
797 return ret;
798
987046ad 799 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
800 if (ret)
801 return ret;
802
1dae2dfb 803 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 804 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
805 intel_ring_emit_reg(ring, w->reg[i].addr);
806 intel_ring_emit(ring, w->reg[i].value);
771b9a53 807 }
1dae2dfb 808 intel_ring_emit(ring, MI_NOOP);
771b9a53 809
1dae2dfb 810 intel_ring_advance(ring);
771b9a53 811
7c9cf4e3 812 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
813 if (ret)
814 return ret;
815
816 return 0;
817}
818
83b8a982 819#define wa_ctx_emit(batch, index, cmd) \
17ee950d 820 do { \
83b8a982
AS
821 int __index = (index)++; \
822 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
823 return -ENOSPC; \
824 } \
83b8a982 825 batch[__index] = (cmd); \
17ee950d
AS
826 } while (0)
827
8f40db77 828#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 829 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
830
831/*
832 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
833 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
834 * but there is a slight complication as this is applied in WA batch where the
835 * values are only initialized once so we cannot take register value at the
836 * beginning and reuse it further; hence we save its value to memory, upload a
837 * constant value with bit21 set and then we restore it back with the saved value.
838 * To simplify the WA, a constant value is formed by using the default value
839 * of this register. This shouldn't be a problem because we are only modifying
840 * it for a short period and this batch in non-premptible. We can ofcourse
841 * use additional instructions that read the actual value of the register
842 * at that time and set our bit of interest but it makes the WA complicated.
843 *
844 * This WA is also required for Gen9 so extracting as a function avoids
845 * code duplication.
846 */
0bc40be8 847static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 848 uint32_t *batch,
9e000847
AS
849 uint32_t index)
850{
5e580523 851 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
852 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
853
a4106a78 854 /*
3be192e9 855 * WaDisableLSQCROPERFforOCL:kbl
a4106a78
AS
856 * This WA is implemented in skl_init_clock_gating() but since
857 * this batch updates GEN8_L3SQCREG4 with default value we need to
858 * set this bit here to retain the WA during flush.
859 */
3be192e9 860 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
861 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
862
f1afe24f 863 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 864 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 865 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 866 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
867 wa_ctx_emit(batch, index, 0);
868
869 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 870 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
871 wa_ctx_emit(batch, index, l3sqc4_flush);
872
873 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
874 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
875 PIPE_CONTROL_DC_FLUSH_ENABLE));
876 wa_ctx_emit(batch, index, 0);
877 wa_ctx_emit(batch, index, 0);
878 wa_ctx_emit(batch, index, 0);
879 wa_ctx_emit(batch, index, 0);
880
f1afe24f 881 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 882 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 883 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 884 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 885 wa_ctx_emit(batch, index, 0);
9e000847
AS
886
887 return index;
888}
889
17ee950d
AS
890static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
891 uint32_t offset,
892 uint32_t start_alignment)
893{
894 return wa_ctx->offset = ALIGN(offset, start_alignment);
895}
896
897static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
898 uint32_t offset,
899 uint32_t size_alignment)
900{
901 wa_ctx->size = offset - wa_ctx->offset;
902
903 WARN(wa_ctx->size % size_alignment,
904 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
905 wa_ctx->size, size_alignment);
906 return 0;
907}
908
6e5248b5
DV
909/*
910 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
911 * initialized at the beginning and shared across all contexts but this field
912 * helps us to have multiple batches at different offsets and select them based
913 * on a criteria. At the moment this batch always start at the beginning of the page
914 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 915 *
6e5248b5
DV
916 * The number of WA applied are not known at the beginning; we use this field
917 * to return the no of DWORDS written.
17ee950d 918 *
6e5248b5
DV
919 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
920 * so it adds NOOPs as padding to make it cacheline aligned.
921 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
922 * makes a complete batch buffer.
17ee950d 923 */
0bc40be8 924static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 925 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 926 uint32_t *batch,
17ee950d
AS
927 uint32_t *offset)
928{
0160f055 929 uint32_t scratch_addr;
17ee950d
AS
930 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
931
7ad00d1a 932 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 933 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 934
c82435bb 935 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 936 if (IS_BROADWELL(engine->i915)) {
0bc40be8 937 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
938 if (rc < 0)
939 return rc;
940 index = rc;
c82435bb
AS
941 }
942
0160f055
AS
943 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
944 /* Actual scratch location is at 128 bytes offset */
bde13ebd 945 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 946
83b8a982
AS
947 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
948 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
949 PIPE_CONTROL_GLOBAL_GTT_IVB |
950 PIPE_CONTROL_CS_STALL |
951 PIPE_CONTROL_QW_WRITE));
952 wa_ctx_emit(batch, index, scratch_addr);
953 wa_ctx_emit(batch, index, 0);
954 wa_ctx_emit(batch, index, 0);
955 wa_ctx_emit(batch, index, 0);
0160f055 956
17ee950d
AS
957 /* Pad to end of cacheline */
958 while (index % CACHELINE_DWORDS)
83b8a982 959 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
960
961 /*
962 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
963 * execution depends on the length specified in terms of cache lines
964 * in the register CTX_RCS_INDIRECT_CTX
965 */
966
967 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
968}
969
6e5248b5
DV
970/*
971 * This batch is started immediately after indirect_ctx batch. Since we ensure
972 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 973 *
6e5248b5 974 * The number of DWORDS written are returned using this field.
17ee950d
AS
975 *
976 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
977 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
978 */
0bc40be8 979static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 980 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 981 uint32_t *batch,
17ee950d
AS
982 uint32_t *offset)
983{
984 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
985
7ad00d1a 986 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 987 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 988
83b8a982 989 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
990
991 return wa_ctx_end(wa_ctx, *offset = index, 1);
992}
993
0bc40be8 994static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 995 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 996 uint32_t *batch,
0504cffc
AS
997 uint32_t *offset)
998{
a4106a78 999 int ret;
5e580523 1000 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
1001 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1002
9fc736e8
JN
1003 /* WaDisableCtxRestoreArbitration:bxt */
1004 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1005 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1006
a4106a78 1007 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1008 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1009 if (ret < 0)
1010 return ret;
1011 index = ret;
1012
873e8171
MK
1013 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1014 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1015 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1016 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1017 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1018 wa_ctx_emit(batch, index, MI_NOOP);
1019
066d4628
MK
1020 /* WaClearSlmSpaceAtContextSwitch:kbl */
1021 /* Actual scratch location is at 128 bytes offset */
703d1282 1022 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1023 u32 scratch_addr =
bde13ebd 1024 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1025
1026 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1027 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1028 PIPE_CONTROL_GLOBAL_GTT_IVB |
1029 PIPE_CONTROL_CS_STALL |
1030 PIPE_CONTROL_QW_WRITE));
1031 wa_ctx_emit(batch, index, scratch_addr);
1032 wa_ctx_emit(batch, index, 0);
1033 wa_ctx_emit(batch, index, 0);
1034 wa_ctx_emit(batch, index, 0);
1035 }
3485d99e
TG
1036
1037 /* WaMediaPoolStateCmdInWABB:bxt */
1038 if (HAS_POOLED_EU(engine->i915)) {
1039 /*
1040 * EU pool configuration is setup along with golden context
1041 * during context initialization. This value depends on
1042 * device type (2x6 or 3x6) and needs to be updated based
1043 * on which subslice is disabled especially for 2x6
1044 * devices, however it is safe to load default
1045 * configuration of 3x6 device instead of masking off
1046 * corresponding bits because HW ignores bits of a disabled
1047 * subslice and drops down to appropriate config. Please
1048 * see render_state_setup() in i915_gem_render_state.c for
1049 * possible configurations, to avoid duplication they are
1050 * not shown here again.
1051 */
1052 u32 eu_pool_config = 0x00777000;
1053 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1054 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1055 wa_ctx_emit(batch, index, eu_pool_config);
1056 wa_ctx_emit(batch, index, 0);
1057 wa_ctx_emit(batch, index, 0);
1058 wa_ctx_emit(batch, index, 0);
1059 }
1060
0504cffc
AS
1061 /* Pad to end of cacheline */
1062 while (index % CACHELINE_DWORDS)
1063 wa_ctx_emit(batch, index, MI_NOOP);
1064
1065 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1066}
1067
0bc40be8 1068static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1069 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1070 uint32_t *batch,
0504cffc
AS
1071 uint32_t *offset)
1072{
1073 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1074
a117f378
JN
1075 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1076 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1077 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1078 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1079 wa_ctx_emit(batch, index,
1080 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1081 wa_ctx_emit(batch, index, MI_NOOP);
1082 }
1083
b1e429fe 1084 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1085 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1086 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1087
1088 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1089 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1090
1091 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1092 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1093
1094 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1095 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1096
1097 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1098 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1099 wa_ctx_emit(batch, index, 0x0);
1100 wa_ctx_emit(batch, index, MI_NOOP);
1101 }
1102
9fc736e8
JN
1103 /* WaDisableCtxRestoreArbitration:bxt */
1104 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1105 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1106
0504cffc
AS
1107 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1108
1109 return wa_ctx_end(wa_ctx, *offset = index, 1);
1110}
1111
0bc40be8 1112static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1113{
48bb74e4
CW
1114 struct drm_i915_gem_object *obj;
1115 struct i915_vma *vma;
1116 int err;
17ee950d 1117
48bb74e4
CW
1118 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1119 if (IS_ERR(obj))
1120 return PTR_ERR(obj);
17ee950d 1121
48bb74e4
CW
1122 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1123 if (IS_ERR(vma)) {
1124 err = PTR_ERR(vma);
1125 goto err;
17ee950d
AS
1126 }
1127
48bb74e4
CW
1128 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1129 if (err)
1130 goto err;
1131
1132 engine->wa_ctx.vma = vma;
17ee950d 1133 return 0;
48bb74e4
CW
1134
1135err:
1136 i915_gem_object_put(obj);
1137 return err;
17ee950d
AS
1138}
1139
0bc40be8 1140static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1141{
19880c4a 1142 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1143}
1144
0bc40be8 1145static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1146{
48bb74e4 1147 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1148 uint32_t *batch;
1149 uint32_t offset;
1150 struct page *page;
48bb74e4 1151 int ret;
17ee950d 1152
0bc40be8 1153 WARN_ON(engine->id != RCS);
17ee950d 1154
5e60d790 1155 /* update this when WA for higher Gen are added */
c033666a 1156 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1157 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1158 INTEL_GEN(engine->i915));
5e60d790 1159 return 0;
0504cffc 1160 }
5e60d790 1161
c4db7599 1162 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1163 if (!engine->scratch) {
0bc40be8 1164 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1165 return -EINVAL;
1166 }
1167
0bc40be8 1168 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1169 if (ret) {
1170 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1171 return ret;
1172 }
1173
48bb74e4 1174 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1175 batch = kmap_atomic(page);
1176 offset = 0;
1177
c033666a 1178 if (IS_GEN8(engine->i915)) {
0bc40be8 1179 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1180 &wa_ctx->indirect_ctx,
1181 batch,
1182 &offset);
1183 if (ret)
1184 goto out;
1185
0bc40be8 1186 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1187 &wa_ctx->per_ctx,
1188 batch,
1189 &offset);
1190 if (ret)
1191 goto out;
c033666a 1192 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1193 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1194 &wa_ctx->indirect_ctx,
1195 batch,
1196 &offset);
1197 if (ret)
1198 goto out;
1199
0bc40be8 1200 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1201 &wa_ctx->per_ctx,
1202 batch,
1203 &offset);
1204 if (ret)
1205 goto out;
17ee950d
AS
1206 }
1207
1208out:
1209 kunmap_atomic(batch);
1210 if (ret)
0bc40be8 1211 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1212
1213 return ret;
1214}
1215
04794adb
TU
1216static void lrc_init_hws(struct intel_engine_cs *engine)
1217{
c033666a 1218 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1219
1220 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1221 engine->status_page.ggtt_offset);
04794adb
TU
1222 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1223}
1224
0bc40be8 1225static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1226{
c033666a 1227 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1228 int ret;
1229
1230 ret = intel_mocs_init_engine(engine);
1231 if (ret)
1232 return ret;
9b1136d5 1233
04794adb 1234 lrc_init_hws(engine);
e84fe803 1235
ad07dfcd 1236 intel_engine_reset_breadcrumbs(engine);
821ed7df 1237
0bc40be8 1238 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1239
0bc40be8 1240 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1241 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1242 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1243
0bc40be8 1244 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1245
fc0768ce 1246 intel_engine_init_hangcheck(engine);
9b1136d5 1247
c87d50cc
CW
1248 /* After a GPU reset, we may have requests to replay */
1249 if (!execlists_elsp_idle(engine)) {
1250 engine->execlist_port[0].count = 0;
1251 engine->execlist_port[1].count = 0;
821ed7df 1252 execlists_submit_ports(engine);
c87d50cc 1253 }
821ed7df
CW
1254
1255 return 0;
9b1136d5
OM
1256}
1257
0bc40be8 1258static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1259{
c033666a 1260 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1261 int ret;
1262
0bc40be8 1263 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1264 if (ret)
1265 return ret;
1266
1267 /* We need to disable the AsyncFlip performance optimisations in order
1268 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1269 * programmed to '1' on all products.
1270 *
1271 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1272 */
1273 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1274
9b1136d5
OM
1275 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1276
0bc40be8 1277 return init_workarounds_ring(engine);
9b1136d5
OM
1278}
1279
0bc40be8 1280static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1281{
1282 int ret;
1283
0bc40be8 1284 ret = gen8_init_common_ring(engine);
82ef822e
DL
1285 if (ret)
1286 return ret;
1287
0bc40be8 1288 return init_workarounds_ring(engine);
82ef822e
DL
1289}
1290
821ed7df
CW
1291static void reset_common_ring(struct intel_engine_cs *engine,
1292 struct drm_i915_gem_request *request)
1293{
1294 struct drm_i915_private *dev_priv = engine->i915;
1295 struct execlist_port *port = engine->execlist_port;
1296 struct intel_context *ce = &request->ctx->engine[engine->id];
1297
a3aabe86
CW
1298 /* We want a simple context + ring to execute the breadcrumb update.
1299 * We cannot rely on the context being intact across the GPU hang,
1300 * so clear it and rebuild just what we need for the breadcrumb.
1301 * All pending requests for this context will be zapped, and any
1302 * future request will be after userspace has had the opportunity
1303 * to recreate its own state.
1304 */
1305 execlists_init_reg_state(ce->lrc_reg_state,
1306 request->ctx, engine, ce->ring);
1307
821ed7df 1308 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1309 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1310 i915_ggtt_offset(ce->ring->vma);
821ed7df 1311 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1312
821ed7df
CW
1313 request->ring->head = request->postfix;
1314 request->ring->last_retired_head = -1;
1315 intel_ring_update_space(request->ring);
1316
1317 if (i915.enable_guc_submission)
1318 return;
1319
1320 /* Catch up with any missed context-switch interrupts */
1321 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1322 if (request->ctx != port[0].request->ctx) {
1323 i915_gem_request_put(port[0].request);
1324 port[0] = port[1];
1325 memset(&port[1], 0, sizeof(port[1]));
1326 }
1327
821ed7df 1328 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1329
1330 /* Reset WaIdleLiteRestore:bdw,skl as well */
1331 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
821ed7df
CW
1332}
1333
7a01a0a2
MT
1334static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1335{
1336 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1337 struct intel_ring *ring = req->ring;
4a570db5 1338 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1339 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1340 int i, ret;
1341
987046ad 1342 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1343 if (ret)
1344 return ret;
1345
b5321f30 1346 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1347 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1348 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1349
b5321f30
CW
1350 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1351 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1352 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1353 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1354 }
1355
b5321f30
CW
1356 intel_ring_emit(ring, MI_NOOP);
1357 intel_ring_advance(ring);
7a01a0a2
MT
1358
1359 return 0;
1360}
1361
be795fc1 1362static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1363 u64 offset, u32 len,
1364 unsigned int dispatch_flags)
15648585 1365{
7e37f889 1366 struct intel_ring *ring = req->ring;
8e004efc 1367 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1368 int ret;
1369
7a01a0a2
MT
1370 /* Don't rely in hw updating PDPs, specially in lite-restore.
1371 * Ideally, we should set Force PD Restore in ctx descriptor,
1372 * but we can't. Force Restore would be a second option, but
1373 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1374 * not idle). PML4 is allocated during ppgtt init so this is
1375 * not needed in 48-bit.*/
7a01a0a2 1376 if (req->ctx->ppgtt &&
666796da 1377 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1378 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1379 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1380 ret = intel_logical_ring_emit_pdps(req);
1381 if (ret)
1382 return ret;
1383 }
7a01a0a2 1384
666796da 1385 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1386 }
1387
987046ad 1388 ret = intel_ring_begin(req, 4);
15648585
OM
1389 if (ret)
1390 return ret;
1391
1392 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1393 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1394 (ppgtt<<8) |
1395 (dispatch_flags & I915_DISPATCH_RS ?
1396 MI_BATCH_RESOURCE_STREAMER : 0));
1397 intel_ring_emit(ring, lower_32_bits(offset));
1398 intel_ring_emit(ring, upper_32_bits(offset));
1399 intel_ring_emit(ring, MI_NOOP);
1400 intel_ring_advance(ring);
15648585
OM
1401
1402 return 0;
1403}
1404
31bb59cc 1405static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1406{
c033666a 1407 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1408 I915_WRITE_IMR(engine,
1409 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1410 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1411}
1412
31bb59cc 1413static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1414{
c033666a 1415 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1416 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1417}
1418
7c9cf4e3 1419static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1420{
7e37f889
CW
1421 struct intel_ring *ring = request->ring;
1422 u32 cmd;
4712274c
OM
1423 int ret;
1424
987046ad 1425 ret = intel_ring_begin(request, 4);
4712274c
OM
1426 if (ret)
1427 return ret;
1428
1429 cmd = MI_FLUSH_DW + 1;
1430
f0a1fb10
CW
1431 /* We always require a command barrier so that subsequent
1432 * commands, such as breadcrumb interrupts, are strictly ordered
1433 * wrt the contents of the write cache being flushed to memory
1434 * (and thus being coherent from the CPU).
1435 */
1436 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1437
7c9cf4e3 1438 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1439 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1440 if (request->engine->id == VCS)
f0a1fb10 1441 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1442 }
1443
b5321f30
CW
1444 intel_ring_emit(ring, cmd);
1445 intel_ring_emit(ring,
1446 I915_GEM_HWS_SCRATCH_ADDR |
1447 MI_FLUSH_DW_USE_GTT);
1448 intel_ring_emit(ring, 0); /* upper addr */
1449 intel_ring_emit(ring, 0); /* value */
1450 intel_ring_advance(ring);
4712274c
OM
1451
1452 return 0;
1453}
1454
7deb4d39 1455static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1456 u32 mode)
4712274c 1457{
7e37f889 1458 struct intel_ring *ring = request->ring;
b5321f30 1459 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1460 u32 scratch_addr =
1461 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1462 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1463 u32 flags = 0;
1464 int ret;
0b2d0934 1465 int len;
4712274c
OM
1466
1467 flags |= PIPE_CONTROL_CS_STALL;
1468
7c9cf4e3 1469 if (mode & EMIT_FLUSH) {
4712274c
OM
1470 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1471 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1472 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1473 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1474 }
1475
7c9cf4e3 1476 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1477 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1478 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1479 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1480 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1481 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1482 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1483 flags |= PIPE_CONTROL_QW_WRITE;
1484 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1485
1a5a9ce7
BW
1486 /*
1487 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1488 * pipe control.
1489 */
c033666a 1490 if (IS_GEN9(request->i915))
1a5a9ce7 1491 vf_flush_wa = true;
0b2d0934
MK
1492
1493 /* WaForGAMHang:kbl */
1494 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1495 dc_flush_wa = true;
1a5a9ce7 1496 }
9647ff36 1497
0b2d0934
MK
1498 len = 6;
1499
1500 if (vf_flush_wa)
1501 len += 6;
1502
1503 if (dc_flush_wa)
1504 len += 12;
1505
1506 ret = intel_ring_begin(request, len);
4712274c
OM
1507 if (ret)
1508 return ret;
1509
9647ff36 1510 if (vf_flush_wa) {
b5321f30
CW
1511 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1512 intel_ring_emit(ring, 0);
1513 intel_ring_emit(ring, 0);
1514 intel_ring_emit(ring, 0);
1515 intel_ring_emit(ring, 0);
1516 intel_ring_emit(ring, 0);
9647ff36
ID
1517 }
1518
0b2d0934 1519 if (dc_flush_wa) {
b5321f30
CW
1520 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1521 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1522 intel_ring_emit(ring, 0);
1523 intel_ring_emit(ring, 0);
1524 intel_ring_emit(ring, 0);
1525 intel_ring_emit(ring, 0);
0b2d0934
MK
1526 }
1527
b5321f30
CW
1528 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1529 intel_ring_emit(ring, flags);
1530 intel_ring_emit(ring, scratch_addr);
1531 intel_ring_emit(ring, 0);
1532 intel_ring_emit(ring, 0);
1533 intel_ring_emit(ring, 0);
0b2d0934
MK
1534
1535 if (dc_flush_wa) {
b5321f30
CW
1536 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1537 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1538 intel_ring_emit(ring, 0);
1539 intel_ring_emit(ring, 0);
1540 intel_ring_emit(ring, 0);
1541 intel_ring_emit(ring, 0);
0b2d0934
MK
1542 }
1543
b5321f30 1544 intel_ring_advance(ring);
4712274c
OM
1545
1546 return 0;
1547}
1548
c04e0f3b 1549static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1550{
319404df
ID
1551 /*
1552 * On BXT A steppings there is a HW coherency issue whereby the
1553 * MI_STORE_DATA_IMM storing the completed request's seqno
1554 * occasionally doesn't invalidate the CPU cache. Work around this by
1555 * clflushing the corresponding cacheline whenever the caller wants
1556 * the coherency to be guaranteed. Note that this cacheline is known
1557 * to be clean at this point, since we only write it in
1558 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1559 * this clflush in practice becomes an invalidate operation.
1560 */
c04e0f3b 1561 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1562}
1563
7c17d377
CW
1564/*
1565 * Reserve space for 2 NOOPs at the end of each request to be
1566 * used as a workaround for not being allowed to do lite
1567 * restore with HEAD==TAIL (WaIdleLiteRestore).
1568 */
7c17d377 1569
9b81d556 1570static int gen8_emit_breadcrumb(struct drm_i915_gem_request *request)
4da46e1e 1571{
7e37f889 1572 struct intel_ring *ring = request->ring;
4da46e1e
OM
1573 int ret;
1574
987046ad 1575 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1576 if (ret)
1577 return ret;
1578
7c17d377
CW
1579 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1580 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1581
b5321f30
CW
1582 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1583 intel_ring_emit(ring,
1584 intel_hws_seqno_address(request->engine) |
1585 MI_FLUSH_DW_USE_GTT);
1586 intel_ring_emit(ring, 0);
65e4760e 1587 intel_ring_emit(ring, request->global_seqno);
b5321f30
CW
1588 intel_ring_emit(ring, MI_USER_INTERRUPT);
1589 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1590 return intel_logical_ring_advance(request);
7c17d377 1591}
4da46e1e 1592
98f29e8d
CW
1593static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1594
9b81d556 1595static int gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request)
7c17d377 1596{
7e37f889 1597 struct intel_ring *ring = request->ring;
7c17d377 1598 int ret;
53292cdb 1599
987046ad 1600 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1601 if (ret)
1602 return ret;
1603
ce81a65c
MW
1604 /* We're using qword write, seqno should be aligned to 8 bytes. */
1605 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1606
7c17d377
CW
1607 /* w/a for post sync ops following a GPGPU operation we
1608 * need a prior CS_STALL, which is emitted by the flush
1609 * following the batch.
1610 */
b5321f30
CW
1611 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1612 intel_ring_emit(ring,
1613 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1614 PIPE_CONTROL_CS_STALL |
1615 PIPE_CONTROL_QW_WRITE));
1616 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1617 intel_ring_emit(ring, 0);
65e4760e 1618 intel_ring_emit(ring, request->global_seqno);
ce81a65c 1619 /* We're thrashing one dword of HWS. */
b5321f30
CW
1620 intel_ring_emit(ring, 0);
1621 intel_ring_emit(ring, MI_USER_INTERRUPT);
1622 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1623 return intel_logical_ring_advance(request);
4da46e1e
OM
1624}
1625
98f29e8d
CW
1626static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1627
8753181e 1628static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1629{
1630 int ret;
1631
e2be4faf 1632 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1633 if (ret)
1634 return ret;
1635
3bbaba0c
PA
1636 ret = intel_rcs_context_init_mocs(req);
1637 /*
1638 * Failing to program the MOCS is non-fatal.The system will not
1639 * run at peak performance. So generate an error and carry on.
1640 */
1641 if (ret)
1642 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1643
4e50f082 1644 return i915_gem_render_state_emit(req);
e7778be1
TD
1645}
1646
73e4d07f
OM
1647/**
1648 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1649 * @engine: Engine Command Streamer.
73e4d07f 1650 */
0bc40be8 1651void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1652{
6402c330 1653 struct drm_i915_private *dev_priv;
9832b9da 1654
27af5eea
TU
1655 /*
1656 * Tasklet cannot be active at this point due intel_mark_active/idle
1657 * so this is just for documentation.
1658 */
1659 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1660 tasklet_kill(&engine->irq_tasklet);
1661
c033666a 1662 dev_priv = engine->i915;
6402c330 1663
0bc40be8 1664 if (engine->buffer) {
0bc40be8 1665 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1666 }
48d82387 1667
0bc40be8
TU
1668 if (engine->cleanup)
1669 engine->cleanup(engine);
48d82387 1670
96a945aa 1671 intel_engine_cleanup_common(engine);
688e6c72 1672
57e88531
CW
1673 if (engine->status_page.vma) {
1674 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1675 engine->status_page.vma = NULL;
48d82387 1676 }
24f1d3cc 1677 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1678
0bc40be8 1679 lrc_destroy_wa_ctx_obj(engine);
c033666a 1680 engine->i915 = NULL;
3b3f1650
AG
1681 dev_priv->engine[engine->id] = NULL;
1682 kfree(engine);
454afebd
OM
1683}
1684
ddd66c51
CW
1685void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1686{
1687 struct intel_engine_cs *engine;
3b3f1650 1688 enum intel_engine_id id;
ddd66c51 1689
3b3f1650 1690 for_each_engine(engine, dev_priv, id)
f4ea6bdd 1691 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1692}
1693
c9cacf93 1694static void
e1382efb 1695logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1696{
1697 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1698 engine->init_hw = gen8_init_common_ring;
821ed7df 1699 engine->reset_hw = reset_common_ring;
0bc40be8 1700 engine->emit_flush = gen8_emit_flush;
9b81d556 1701 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1702 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1703 engine->submit_request = execlists_submit_request;
ddd66c51 1704
31bb59cc
CW
1705 engine->irq_enable = gen8_logical_ring_enable_irq;
1706 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1707 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1708 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1709 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1710}
1711
d9f3af96 1712static inline void
c2c7f240 1713logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1714{
c2c7f240 1715 unsigned shift = engine->irq_shift;
0bc40be8
TU
1716 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1717 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1718}
1719
7d774cac 1720static int
bf3783e5 1721lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1722{
57e88531 1723 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1724 void *hws;
04794adb
TU
1725
1726 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1727 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1728 if (IS_ERR(hws))
1729 return PTR_ERR(hws);
57e88531
CW
1730
1731 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1732 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1733 engine->status_page.vma = vma;
7d774cac
TU
1734
1735 return 0;
04794adb
TU
1736}
1737
bb45438f
TU
1738static void
1739logical_ring_setup(struct intel_engine_cs *engine)
1740{
1741 struct drm_i915_private *dev_priv = engine->i915;
1742 enum forcewake_domains fw_domains;
1743
019bf277
TU
1744 intel_engine_setup_common(engine);
1745
bb45438f
TU
1746 /* Intentionally left blank. */
1747 engine->buffer = NULL;
1748
1749 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1750 RING_ELSP(engine),
1751 FW_REG_WRITE);
1752
1753 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1754 RING_CONTEXT_STATUS_PTR(engine),
1755 FW_REG_READ | FW_REG_WRITE);
1756
1757 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1758 RING_CONTEXT_STATUS_BUF_BASE(engine),
1759 FW_REG_READ);
1760
1761 engine->fw_domains = fw_domains;
1762
bb45438f
TU
1763 tasklet_init(&engine->irq_tasklet,
1764 intel_lrc_irq_handler, (unsigned long)engine);
1765
1766 logical_ring_init_platform_invariants(engine);
1767 logical_ring_default_vfuncs(engine);
1768 logical_ring_default_irqs(engine);
bb45438f
TU
1769}
1770
a19d6ff2
TU
1771static int
1772logical_ring_init(struct intel_engine_cs *engine)
1773{
1774 struct i915_gem_context *dctx = engine->i915->kernel_context;
1775 int ret;
1776
019bf277 1777 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1778 if (ret)
1779 goto error;
1780
1781 ret = execlists_context_deferred_alloc(dctx, engine);
1782 if (ret)
1783 goto error;
1784
1785 /* As this is the default context, always pin it */
1786 ret = intel_lr_context_pin(dctx, engine);
1787 if (ret) {
1788 DRM_ERROR("Failed to pin context for %s: %d\n",
1789 engine->name, ret);
1790 goto error;
1791 }
1792
1793 /* And setup the hardware status page. */
1794 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1795 if (ret) {
1796 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1797 goto error;
1798 }
1799
1800 return 0;
1801
1802error:
1803 intel_logical_ring_cleanup(engine);
1804 return ret;
1805}
1806
88d2ba2e 1807int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1808{
1809 struct drm_i915_private *dev_priv = engine->i915;
1810 int ret;
1811
bb45438f
TU
1812 logical_ring_setup(engine);
1813
a19d6ff2
TU
1814 if (HAS_L3_DPF(dev_priv))
1815 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1816
1817 /* Override some for render ring. */
1818 if (INTEL_GEN(dev_priv) >= 9)
1819 engine->init_hw = gen9_init_render_ring;
1820 else
1821 engine->init_hw = gen8_init_render_ring;
1822 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1823 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1824 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1825 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1826
56c0f1a7 1827 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1828 if (ret)
1829 return ret;
1830
1831 ret = intel_init_workaround_bb(engine);
1832 if (ret) {
1833 /*
1834 * We continue even if we fail to initialize WA batch
1835 * because we only expect rare glitches but nothing
1836 * critical to prevent us from using GPU
1837 */
1838 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1839 ret);
1840 }
1841
1842 ret = logical_ring_init(engine);
1843 if (ret) {
1844 lrc_destroy_wa_ctx_obj(engine);
1845 }
1846
1847 return ret;
1848}
1849
88d2ba2e 1850int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1851{
1852 logical_ring_setup(engine);
1853
1854 return logical_ring_init(engine);
454afebd
OM
1855}
1856
0cea6502 1857static u32
c033666a 1858make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1859{
1860 u32 rpcs = 0;
1861
1862 /*
1863 * No explicit RPCS request is needed to ensure full
1864 * slice/subslice/EU enablement prior to Gen9.
1865 */
c033666a 1866 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1867 return 0;
1868
1869 /*
1870 * Starting in Gen9, render power gating can leave
1871 * slice/subslice/EU in a partially enabled state. We
1872 * must make an explicit request through RPCS for full
1873 * enablement.
1874 */
43b67998 1875 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1876 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1877 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1878 GEN8_RPCS_S_CNT_SHIFT;
1879 rpcs |= GEN8_RPCS_ENABLE;
1880 }
1881
43b67998 1882 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1883 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1884 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1885 GEN8_RPCS_SS_CNT_SHIFT;
1886 rpcs |= GEN8_RPCS_ENABLE;
1887 }
1888
43b67998
ID
1889 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1890 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1891 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1892 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1893 GEN8_RPCS_EU_MAX_SHIFT;
1894 rpcs |= GEN8_RPCS_ENABLE;
1895 }
1896
1897 return rpcs;
1898}
1899
0bc40be8 1900static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1901{
1902 u32 indirect_ctx_offset;
1903
c033666a 1904 switch (INTEL_GEN(engine->i915)) {
71562919 1905 default:
c033666a 1906 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1907 /* fall through */
1908 case 9:
1909 indirect_ctx_offset =
1910 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1911 break;
1912 case 8:
1913 indirect_ctx_offset =
1914 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1915 break;
1916 }
1917
1918 return indirect_ctx_offset;
1919}
1920
a3aabe86
CW
1921static void execlists_init_reg_state(u32 *reg_state,
1922 struct i915_gem_context *ctx,
1923 struct intel_engine_cs *engine,
1924 struct intel_ring *ring)
8670d6f9 1925{
a3aabe86
CW
1926 struct drm_i915_private *dev_priv = engine->i915;
1927 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
1928
1929 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1930 * commands followed by (reg, value) pairs. The values we are setting here are
1931 * only for the first context restore: on a subsequent save, the GPU will
1932 * recreate this batchbuffer with new values (including all the missing
1933 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1934 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1935 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1936 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1937 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1938 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1939 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1940 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 1941 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1942 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1943 0);
1944 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1945 0);
0bc40be8
TU
1946 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1947 RING_START(engine->mmio_base), 0);
1948 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1949 RING_CTL(engine->mmio_base),
62ae14b1 1950 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
1951 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1952 RING_BBADDR_UDW(engine->mmio_base), 0);
1953 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1954 RING_BBADDR(engine->mmio_base), 0);
1955 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1956 RING_BBSTATE(engine->mmio_base),
0d925ea0 1957 RING_BB_PPGTT);
0bc40be8
TU
1958 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1959 RING_SBBADDR_UDW(engine->mmio_base), 0);
1960 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1961 RING_SBBADDR(engine->mmio_base), 0);
1962 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1963 RING_SBBSTATE(engine->mmio_base), 0);
1964 if (engine->id == RCS) {
1965 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1966 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1967 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1968 RING_INDIRECT_CTX(engine->mmio_base), 0);
1969 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1970 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1971 if (engine->wa_ctx.vma) {
0bc40be8 1972 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1973 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
1974
1975 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1976 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1977 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1978
1979 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 1980 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
1981
1982 reg_state[CTX_BB_PER_CTX_PTR+1] =
1983 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1984 0x01;
1985 }
8670d6f9 1986 }
0d925ea0 1987 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
1988 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1989 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 1990 /* PDP values well be assigned later if needed */
0bc40be8
TU
1991 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1992 0);
1993 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1994 0);
1995 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1996 0);
1997 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1998 0);
1999 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2000 0);
2001 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2002 0);
2003 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2004 0);
2005 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2006 0);
d7b2633d 2007
2dba3239
MT
2008 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2009 /* 64b PPGTT (48bit canonical)
2010 * PDP0_DESCRIPTOR contains the base address to PML4 and
2011 * other PDP Descriptors are ignored.
2012 */
2013 ASSIGN_CTX_PML4(ppgtt, reg_state);
2014 } else {
2015 /* 32b PPGTT
2016 * PDP*_DESCRIPTOR contains the base address of space supported.
2017 * With dynamic page allocation, PDPs may not be allocated at
2018 * this point. Point the unallocated PDPs to the scratch page
2019 */
c6a2ac71 2020 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2021 }
2022
0bc40be8 2023 if (engine->id == RCS) {
8670d6f9 2024 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2025 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2026 make_rpcs(dev_priv));
8670d6f9 2027 }
a3aabe86
CW
2028}
2029
2030static int
2031populate_lr_context(struct i915_gem_context *ctx,
2032 struct drm_i915_gem_object *ctx_obj,
2033 struct intel_engine_cs *engine,
2034 struct intel_ring *ring)
2035{
2036 void *vaddr;
2037 int ret;
2038
2039 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2040 if (ret) {
2041 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2042 return ret;
2043 }
2044
2045 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2046 if (IS_ERR(vaddr)) {
2047 ret = PTR_ERR(vaddr);
2048 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2049 return ret;
2050 }
a4f5ea64 2051 ctx_obj->mm.dirty = true;
a3aabe86
CW
2052
2053 /* The second page of the context object contains some fields which must
2054 * be set up prior to the first execution. */
2055
2056 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2057 ctx, engine, ring);
8670d6f9 2058
7d774cac 2059 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2060
2061 return 0;
2062}
2063
c5d46ee2
DG
2064/**
2065 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2066 * @engine: which engine to find the context size for
c5d46ee2
DG
2067 *
2068 * Each engine may require a different amount of space for a context image,
2069 * so when allocating (or copying) an image, this function can be used to
2070 * find the right size for the specific engine.
2071 *
2072 * Return: size (in bytes) of an engine-specific context image
2073 *
2074 * Note: this size includes the HWSP, which is part of the context image
2075 * in LRC mode, but does not include the "shared data page" used with
2076 * GuC submission. The caller should account for this if using the GuC.
2077 */
0bc40be8 2078uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2079{
2080 int ret = 0;
2081
c033666a 2082 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2083
0bc40be8 2084 switch (engine->id) {
8c857917 2085 case RCS:
c033666a 2086 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2087 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2088 else
2089 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2090 break;
2091 case VCS:
2092 case BCS:
2093 case VECS:
2094 case VCS2:
2095 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2096 break;
2097 }
2098
2099 return ret;
ede7d42b
OM
2100}
2101
e2efd130 2102static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2103 struct intel_engine_cs *engine)
ede7d42b 2104{
8c857917 2105 struct drm_i915_gem_object *ctx_obj;
9021ad03 2106 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2107 struct i915_vma *vma;
8c857917 2108 uint32_t context_size;
7e37f889 2109 struct intel_ring *ring;
8c857917
OM
2110 int ret;
2111
9021ad03 2112 WARN_ON(ce->state);
ede7d42b 2113
0bc40be8 2114 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2115
d1675198
AD
2116 /* One extra page as the sharing data between driver and GuC */
2117 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2118
91c8a326 2119 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2120 if (IS_ERR(ctx_obj)) {
3126a660 2121 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2122 return PTR_ERR(ctx_obj);
8c857917
OM
2123 }
2124
bf3783e5
CW
2125 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2126 if (IS_ERR(vma)) {
2127 ret = PTR_ERR(vma);
2128 goto error_deref_obj;
2129 }
2130
7e37f889 2131 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2132 if (IS_ERR(ring)) {
2133 ret = PTR_ERR(ring);
e84fe803 2134 goto error_deref_obj;
8670d6f9
OM
2135 }
2136
dca33ecc 2137 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2138 if (ret) {
2139 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2140 goto error_ring_free;
84c2377f
OM
2141 }
2142
dca33ecc 2143 ce->ring = ring;
bf3783e5 2144 ce->state = vma;
9021ad03 2145 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2146
2147 return 0;
8670d6f9 2148
dca33ecc 2149error_ring_free:
7e37f889 2150 intel_ring_free(ring);
e84fe803 2151error_deref_obj:
f8c417cd 2152 i915_gem_object_put(ctx_obj);
8670d6f9 2153 return ret;
ede7d42b 2154}
3e5b6f05 2155
821ed7df 2156void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2157{
e2f80391 2158 struct intel_engine_cs *engine;
bafb2f7d 2159 struct i915_gem_context *ctx;
3b3f1650 2160 enum intel_engine_id id;
bafb2f7d
CW
2161
2162 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2163 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2164 * that stored in context. As we only write new commands from
2165 * ce->ring->tail onwards, everything before that is junk. If the GPU
2166 * starts reading from its RING_HEAD from the context, it may try to
2167 * execute that junk and die.
2168 *
2169 * So to avoid that we reset the context images upon resume. For
2170 * simplicity, we just zero everything out.
2171 */
2172 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2173 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2174 struct intel_context *ce = &ctx->engine[engine->id];
2175 u32 *reg;
3e5b6f05 2176
bafb2f7d
CW
2177 if (!ce->state)
2178 continue;
7d774cac 2179
bafb2f7d
CW
2180 reg = i915_gem_object_pin_map(ce->state->obj,
2181 I915_MAP_WB);
2182 if (WARN_ON(IS_ERR(reg)))
2183 continue;
3e5b6f05 2184
bafb2f7d
CW
2185 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2186 reg[CTX_RING_HEAD+1] = 0;
2187 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2188
a4f5ea64 2189 ce->state->obj->mm.dirty = true;
bafb2f7d 2190 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2191
bafb2f7d
CW
2192 ce->ring->head = ce->ring->tail = 0;
2193 ce->ring->last_retired_head = -1;
2194 intel_ring_update_space(ce->ring);
2195 }
3e5b6f05
TD
2196 }
2197}