]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Unify active context tracking between legacy/execlists/guc
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
a3aabe86
CW
229#define WA_TAIL_DWORDS 2
230
e2efd130 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 232 struct intel_engine_cs *engine);
a3aabe86
CW
233static void execlists_init_reg_state(u32 *reg_state,
234 struct i915_gem_context *ctx,
235 struct intel_engine_cs *engine,
236 struct intel_ring *ring);
7ba717cf 237
73e4d07f
OM
238/**
239 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 240 * @dev_priv: i915 device private
73e4d07f
OM
241 * @enable_execlists: value of i915.enable_execlists module parameter.
242 *
243 * Only certain platforms support Execlists (the prerequisites being
27401d12 244 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
245 *
246 * Return: 1 if Execlists is supported and has to be enabled.
247 */
c033666a 248int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 249{
a0bd6c31
ZL
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
252 */
c033666a 253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
254 return 1;
255
c033666a 256 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
257 return 1;
258
127f1003
OM
259 if (enable_execlists == 0)
260 return 0;
261
5a21b665
DV
262 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
263 USES_PPGTT(dev_priv) &&
264 i915.use_mmio_flip >= 0)
127f1003
OM
265 return 1;
266
267 return 0;
268}
ede7d42b 269
ca82580c 270static void
0bc40be8 271logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 272{
c033666a 273 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 274
70c2a24d 275 engine->disable_lite_restore_wa =
a117f378 276 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
70c2a24d 277 (engine->id == VCS || engine->id == VCS2);
ca82580c 278
0bc40be8 279 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 280 if (IS_GEN8(dev_priv))
0bc40be8
TU
281 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
282 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
283
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
287
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
290 if (engine->disable_lite_restore_wa)
291 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
292}
293
73e4d07f 294/**
ca82580c
TU
295 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
296 * descriptor for a pinned context
ca82580c 297 * @ctx: Context to work on
9021ad03 298 * @engine: Engine the descriptor will be used with
73e4d07f 299 *
ca82580c
TU
300 * The context descriptor encodes various attributes of a context,
301 * including its GTT address and some flags. Because it's fairly
302 * expensive to calculate, we'll just do it once and cache the result,
303 * which remains valid until the context is unpinned.
304 *
6e5248b5
DV
305 * This is what a descriptor looks like, from LSB to MSB::
306 *
307 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
308 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
309 * bits 32-52: ctx ID, a globally unique tag
310 * bits 53-54: mbz, reserved for use by hardware
311 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 312 */
ca82580c 313static void
e2efd130 314intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 315 struct intel_engine_cs *engine)
84b790f8 316{
9021ad03 317 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 318 u64 desc;
84b790f8 319
7069b144 320 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 321
c01fc532
ZW
322 desc = ctx->desc_template; /* bits 3-4 */
323 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 324 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 325 /* bits 12-31 */
7069b144 326 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 327
9021ad03 328 ce->lrc_desc = desc;
5af05fef
MT
329}
330
e2efd130 331uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 332 struct intel_engine_cs *engine)
84b790f8 333{
0bc40be8 334 return ctx->engine[engine->id].lrc_desc;
ca82580c 335}
203a571b 336
bbd6c47e
CW
337static inline void
338execlists_context_status_change(struct drm_i915_gem_request *rq,
339 unsigned long status)
84b790f8 340{
bbd6c47e
CW
341 /*
342 * Only used when GVT-g is enabled now. When GVT-g is disabled,
343 * The compiler should eliminate this function as dead-code.
344 */
345 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
346 return;
6daccb0b 347
bbd6c47e 348 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
349}
350
c6a2ac71
TU
351static void
352execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
353{
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
358}
359
70c2a24d 360static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 361{
70c2a24d 362 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 363 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 364 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 365
caddfe71 366 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 367
c6a2ac71
TU
368 /* True 32b PPGTT with dynamic page allocation: update PDP
369 * registers and point the unallocated PDPs to scratch page.
370 * PML4 is allocated during ppgtt init, so this is not needed
371 * in 48-bit mode.
372 */
373 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
374 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
375
376 return ce->lrc_desc;
ae1250b9
OM
377}
378
70c2a24d 379static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 380{
70c2a24d
CW
381 struct drm_i915_private *dev_priv = engine->i915;
382 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
383 u32 __iomem *elsp =
384 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
385 u64 desc[2];
386
70c2a24d
CW
387 if (!port[0].count)
388 execlists_context_status_change(port[0].request,
389 INTEL_CONTEXT_SCHEDULE_IN);
390 desc[0] = execlists_update_context(port[0].request);
391 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
392
393 if (port[1].request) {
394 GEM_BUG_ON(port[1].count);
395 execlists_context_status_change(port[1].request,
396 INTEL_CONTEXT_SCHEDULE_IN);
397 desc[1] = execlists_update_context(port[1].request);
398 port[1].count = 1;
bbd6c47e
CW
399 } else {
400 desc[1] = 0;
401 }
70c2a24d 402 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
403
404 /* You must always write both descriptors in the order below. */
405 writel(upper_32_bits(desc[1]), elsp);
406 writel(lower_32_bits(desc[1]), elsp);
407
408 writel(upper_32_bits(desc[0]), elsp);
409 /* The context is automatically loaded after the following */
410 writel(lower_32_bits(desc[0]), elsp);
411}
412
70c2a24d 413static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 414{
70c2a24d
CW
415 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
416 ctx->execlists_force_single_submission);
417}
84b790f8 418
70c2a24d
CW
419static bool can_merge_ctx(const struct i915_gem_context *prev,
420 const struct i915_gem_context *next)
421{
422 if (prev != next)
423 return false;
26720ab9 424
70c2a24d
CW
425 if (ctx_single_port_submission(prev))
426 return false;
26720ab9 427
70c2a24d 428 return true;
84b790f8
BW
429}
430
70c2a24d 431static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 432{
20311bd3 433 struct drm_i915_gem_request *last;
70c2a24d 434 struct execlist_port *port = engine->execlist_port;
d55ac5bf 435 unsigned long flags;
20311bd3 436 struct rb_node *rb;
70c2a24d
CW
437 bool submit = false;
438
439 last = port->request;
440 if (last)
441 /* WaIdleLiteRestore:bdw,skl
442 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 443 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
444 * for where we prepare the padding after the end of the
445 * request.
446 */
447 last->tail = last->wa_tail;
e981e7b1 448
70c2a24d 449 GEM_BUG_ON(port[1].request);
acdd884a 450
70c2a24d
CW
451 /* Hardware submission is through 2 ports. Conceptually each port
452 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
453 * static for a context, and unique to each, so we only execute
454 * requests belonging to a single context from each ring. RING_HEAD
455 * is maintained by the CS in the context image, it marks the place
456 * where it got up to last time, and through RING_TAIL we tell the CS
457 * where we want to execute up to this time.
458 *
459 * In this list the requests are in order of execution. Consecutive
460 * requests from the same context are adjacent in the ringbuffer. We
461 * can combine these requests into a single RING_TAIL update:
462 *
463 * RING_HEAD...req1...req2
464 * ^- RING_TAIL
465 * since to execute req2 the CS must first execute req1.
466 *
467 * Our goal then is to point each port to the end of a consecutive
468 * sequence of requests as being the most optimal (fewest wake ups
469 * and context switches) submission.
779949f4 470 */
acdd884a 471
d55ac5bf 472 spin_lock_irqsave(&engine->timeline->lock, flags);
20311bd3
CW
473 rb = engine->execlist_first;
474 while (rb) {
475 struct drm_i915_gem_request *cursor =
476 rb_entry(rb, typeof(*cursor), priotree.node);
477
70c2a24d
CW
478 /* Can we combine this request with the current port? It has to
479 * be the same context/ringbuffer and not have any exceptions
480 * (e.g. GVT saying never to combine contexts).
c6a2ac71 481 *
70c2a24d
CW
482 * If we can combine the requests, we can execute both by
483 * updating the RING_TAIL to point to the end of the second
484 * request, and so we never need to tell the hardware about
485 * the first.
53292cdb 486 */
70c2a24d
CW
487 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
488 /* If we are on the second port and cannot combine
489 * this request with the last, then we are done.
490 */
491 if (port != engine->execlist_port)
492 break;
493
494 /* If GVT overrides us we only ever submit port[0],
495 * leaving port[1] empty. Note that we also have
496 * to be careful that we don't queue the same
497 * context (even though a different request) to
498 * the second port.
499 */
d7ab992c
MH
500 if (ctx_single_port_submission(last->ctx) ||
501 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
502 break;
503
504 GEM_BUG_ON(last->ctx == cursor->ctx);
505
506 i915_gem_request_assign(&port->request, last);
507 port++;
508 }
d55ac5bf 509
20311bd3
CW
510 rb = rb_next(rb);
511 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
512 RB_CLEAR_NODE(&cursor->priotree.node);
513 cursor->priotree.priority = INT_MAX;
514
d55ac5bf 515 __i915_gem_request_submit(cursor);
70c2a24d
CW
516 last = cursor;
517 submit = true;
518 }
519 if (submit) {
70c2a24d 520 i915_gem_request_assign(&port->request, last);
20311bd3 521 engine->execlist_first = rb;
53292cdb 522 }
d55ac5bf 523 spin_unlock_irqrestore(&engine->timeline->lock, flags);
53292cdb 524
70c2a24d
CW
525 if (submit)
526 execlists_submit_ports(engine);
acdd884a
MT
527}
528
70c2a24d 529static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 530{
70c2a24d 531 return !engine->execlist_port[0].request;
e981e7b1
TD
532}
533
0cb5670b
ID
534/**
535 * intel_execlists_idle() - Determine if all engine submission ports are idle
536 * @dev_priv: i915 device private
537 *
538 * Return true if there are no requests pending on any of the submission ports
539 * of any engines.
540 */
541bool intel_execlists_idle(struct drm_i915_private *dev_priv)
542{
543 struct intel_engine_cs *engine;
544 enum intel_engine_id id;
545
546 if (!i915.enable_execlists)
547 return true;
548
549 for_each_engine(engine, dev_priv, id)
550 if (!execlists_elsp_idle(engine))
551 return false;
552
553 return true;
554}
555
70c2a24d 556static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 557{
70c2a24d 558 int port;
91a41032 559
70c2a24d
CW
560 port = 1; /* wait for a free slot */
561 if (engine->disable_lite_restore_wa || engine->preempt_wa)
562 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 563
70c2a24d 564 return !engine->execlist_port[port].request;
91a41032
BW
565}
566
6e5248b5 567/*
73e4d07f
OM
568 * Check the unread Context Status Buffers and manage the submission of new
569 * contexts to the ELSP accordingly.
570 */
27af5eea 571static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 572{
27af5eea 573 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 574 struct execlist_port *port = engine->execlist_port;
c033666a 575 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 576
3756685a 577 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 578
70c2a24d
CW
579 if (!execlists_elsp_idle(engine)) {
580 u32 __iomem *csb_mmio =
581 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
582 u32 __iomem *buf =
583 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
584 unsigned int csb, head, tail;
585
586 csb = readl(csb_mmio);
587 head = GEN8_CSB_READ_PTR(csb);
588 tail = GEN8_CSB_WRITE_PTR(csb);
589 if (tail < head)
590 tail += GEN8_CSB_ENTRIES;
591 while (head < tail) {
592 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
593 unsigned int status = readl(buf + 2 * idx);
594
595 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
596 continue;
597
598 GEM_BUG_ON(port[0].count == 0);
599 if (--port[0].count == 0) {
600 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
601 execlists_context_status_change(port[0].request,
602 INTEL_CONTEXT_SCHEDULE_OUT);
603
604 i915_gem_request_put(port[0].request);
605 port[0] = port[1];
606 memset(&port[1], 0, sizeof(port[1]));
607
608 engine->preempt_wa = false;
609 }
26720ab9 610
70c2a24d
CW
611 GEM_BUG_ON(port[0].count == 0 &&
612 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
613 }
614
70c2a24d
CW
615 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
616 GEN8_CSB_WRITE_PTR(csb) << 8),
617 csb_mmio);
e981e7b1
TD
618 }
619
70c2a24d
CW
620 if (execlists_elsp_ready(engine))
621 execlists_dequeue(engine);
c6a2ac71 622
70c2a24d 623 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
624}
625
20311bd3
CW
626static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
627{
628 struct rb_node **p, *rb;
629 bool first = true;
630
631 /* most positive priority is scheduled first, equal priorities fifo */
632 rb = NULL;
633 p = &root->rb_node;
634 while (*p) {
635 struct i915_priotree *pos;
636
637 rb = *p;
638 pos = rb_entry(rb, typeof(*pos), node);
639 if (pt->priority > pos->priority) {
640 p = &rb->rb_left;
641 } else {
642 p = &rb->rb_right;
643 first = false;
644 }
645 }
646 rb_link_node(&pt->node, rb, p);
647 rb_insert_color(&pt->node, root);
648
649 return first;
650}
651
f4ea6bdd 652static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 653{
4a570db5 654 struct intel_engine_cs *engine = request->engine;
5590af3e 655 unsigned long flags;
acdd884a 656
663f71e7
CW
657 /* Will be called from irq-context when using foreign fences. */
658 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 659
20311bd3
CW
660 if (insert_request(&request->priotree, &engine->execlist_queue))
661 engine->execlist_first = &request->priotree.node;
70c2a24d
CW
662 if (execlists_elsp_idle(engine))
663 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 664
663f71e7 665 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
666}
667
20311bd3
CW
668static struct intel_engine_cs *
669pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
670{
671 struct intel_engine_cs *engine;
672
673 engine = container_of(pt,
674 struct drm_i915_gem_request,
675 priotree)->engine;
676 if (engine != locked) {
677 if (locked)
678 spin_unlock_irq(&locked->timeline->lock);
679 spin_lock_irq(&engine->timeline->lock);
680 }
681
682 return engine;
683}
684
685static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
686{
687 struct intel_engine_cs *engine = NULL;
688 struct i915_dependency *dep, *p;
689 struct i915_dependency stack;
690 LIST_HEAD(dfs);
691
692 if (prio <= READ_ONCE(request->priotree.priority))
693 return;
694
70cd1476
CW
695 /* Need BKL in order to use the temporary link inside i915_dependency */
696 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
697
698 stack.signaler = &request->priotree;
699 list_add(&stack.dfs_link, &dfs);
700
701 /* Recursively bump all dependent priorities to match the new request.
702 *
703 * A naive approach would be to use recursion:
704 * static void update_priorities(struct i915_priotree *pt, prio) {
705 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
706 * update_priorities(dep->signal, prio)
707 * insert_request(pt);
708 * }
709 * but that may have unlimited recursion depth and so runs a very
710 * real risk of overunning the kernel stack. Instead, we build
711 * a flat list of all dependencies starting with the current request.
712 * As we walk the list of dependencies, we add all of its dependencies
713 * to the end of the list (this may include an already visited
714 * request) and continue to walk onwards onto the new dependencies. The
715 * end result is a topological list of requests in reverse order, the
716 * last element in the list is the request we must execute first.
717 */
718 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
719 struct i915_priotree *pt = dep->signaler;
720
721 list_for_each_entry(p, &pt->signalers_list, signal_link)
722 if (prio > READ_ONCE(p->signaler->priority))
723 list_move_tail(&p->dfs_link, &dfs);
724
0798cff4 725 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
726 if (!RB_EMPTY_NODE(&pt->node))
727 continue;
728
729 engine = pt_lock_engine(pt, engine);
730
731 /* If it is not already in the rbtree, we can update the
732 * priority inplace and skip over it (and its dependencies)
733 * if it is referenced *again* as we descend the dfs.
734 */
735 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
736 pt->priority = prio;
737 list_del_init(&dep->dfs_link);
738 }
739 }
740
741 /* Fifo and depth-first replacement ensure our deps execute before us */
742 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
743 struct i915_priotree *pt = dep->signaler;
744
745 INIT_LIST_HEAD(&dep->dfs_link);
746
747 engine = pt_lock_engine(pt, engine);
748
749 if (prio <= pt->priority)
750 continue;
751
752 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
753
754 pt->priority = prio;
755 rb_erase(&pt->node, &engine->execlist_queue);
756 if (insert_request(pt, &engine->execlist_queue))
757 engine->execlist_first = &pt->node;
758 }
759
760 if (engine)
761 spin_unlock_irq(&engine->timeline->lock);
762
763 /* XXX Do we need to preempt to make room for us and our deps? */
764}
765
e8a9c58f
CW
766static int execlists_context_pin(struct intel_engine_cs *engine,
767 struct i915_gem_context *ctx)
dcb4c12a 768{
9021ad03 769 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 770 void *vaddr;
ca82580c 771 int ret;
dcb4c12a 772
91c8a326 773 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 774
9021ad03 775 if (ce->pin_count++)
24f1d3cc
CW
776 return 0;
777
e8a9c58f
CW
778 if (!ce->state) {
779 ret = execlists_context_deferred_alloc(ctx, engine);
780 if (ret)
781 goto err;
782 }
783
bf3783e5
CW
784 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
785 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 786 if (ret)
24f1d3cc 787 goto err;
7ba717cf 788
bf3783e5 789 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
790 if (IS_ERR(vaddr)) {
791 ret = PTR_ERR(vaddr);
bf3783e5 792 goto unpin_vma;
82352e90
TU
793 }
794
aad29fbb 795 ret = intel_ring_pin(ce->ring);
e84fe803 796 if (ret)
7d774cac 797 goto unpin_map;
d1675198 798
0bc40be8 799 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 800
a3aabe86
CW
801 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
802 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 803 i915_ggtt_offset(ce->ring->vma);
a3aabe86 804
a4f5ea64 805 ce->state->obj->mm.dirty = true;
e93c28f3 806
e84fe803 807 /* Invalidate GuC TLB. */
bf3783e5
CW
808 if (i915.enable_guc_submission) {
809 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 810 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 811 }
dcb4c12a 812
9a6feaf0 813 i915_gem_context_get(ctx);
24f1d3cc 814 return 0;
7ba717cf 815
7d774cac 816unpin_map:
bf3783e5
CW
817 i915_gem_object_unpin_map(ce->state->obj);
818unpin_vma:
819 __i915_vma_unpin(ce->state);
24f1d3cc 820err:
9021ad03 821 ce->pin_count = 0;
e84fe803
NH
822 return ret;
823}
824
e8a9c58f
CW
825static void execlists_context_unpin(struct intel_engine_cs *engine,
826 struct i915_gem_context *ctx)
e84fe803 827{
9021ad03 828 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 829
91c8a326 830 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 831 GEM_BUG_ON(ce->pin_count == 0);
321fe304 832
9021ad03 833 if (--ce->pin_count)
24f1d3cc 834 return;
e84fe803 835
aad29fbb 836 intel_ring_unpin(ce->ring);
dcb4c12a 837
bf3783e5
CW
838 i915_gem_object_unpin_map(ce->state->obj);
839 i915_vma_unpin(ce->state);
321fe304 840
9a6feaf0 841 i915_gem_context_put(ctx);
dcb4c12a
OM
842}
843
ef11c01d
CW
844int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
845{
846 struct intel_engine_cs *engine = request->engine;
847 struct intel_context *ce = &request->ctx->engine[engine->id];
848 int ret;
849
e8a9c58f
CW
850 GEM_BUG_ON(!ce->pin_count);
851
ef11c01d
CW
852 /* Flush enough space to reduce the likelihood of waiting after
853 * we start building the request - in which case we will just
854 * have to repeat work.
855 */
856 request->reserved_space += EXECLISTS_REQUEST_SIZE;
857
e8a9c58f 858 GEM_BUG_ON(!ce->ring);
ef11c01d
CW
859 request->ring = ce->ring;
860
ef11c01d
CW
861 if (i915.enable_guc_submission) {
862 /*
863 * Check that the GuC has space for the request before
864 * going any further, as the i915_add_request() call
865 * later on mustn't fail ...
866 */
867 ret = i915_guc_wq_reserve(request);
868 if (ret)
e8a9c58f 869 goto err;
ef11c01d
CW
870 }
871
872 ret = intel_ring_begin(request, 0);
873 if (ret)
874 goto err_unreserve;
875
876 if (!ce->initialised) {
877 ret = engine->init_context(request);
878 if (ret)
879 goto err_unreserve;
880
881 ce->initialised = true;
882 }
883
884 /* Note that after this point, we have committed to using
885 * this request as it is being used to both track the
886 * state of engine initialisation and liveness of the
887 * golden renderstate above. Think twice before you try
888 * to cancel/unwind this request now.
889 */
890
891 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
892 return 0;
893
894err_unreserve:
895 if (i915.enable_guc_submission)
896 i915_guc_wq_unreserve(request);
e8a9c58f 897err:
ef11c01d
CW
898 return ret;
899}
900
e2be4faf 901static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
902{
903 int ret, i;
7e37f889 904 struct intel_ring *ring = req->ring;
c033666a 905 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 906
cd7feaaa 907 if (w->count == 0)
771b9a53
MT
908 return 0;
909
7c9cf4e3 910 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
911 if (ret)
912 return ret;
913
987046ad 914 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
915 if (ret)
916 return ret;
917
1dae2dfb 918 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 919 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
920 intel_ring_emit_reg(ring, w->reg[i].addr);
921 intel_ring_emit(ring, w->reg[i].value);
771b9a53 922 }
1dae2dfb 923 intel_ring_emit(ring, MI_NOOP);
771b9a53 924
1dae2dfb 925 intel_ring_advance(ring);
771b9a53 926
7c9cf4e3 927 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
928 if (ret)
929 return ret;
930
931 return 0;
932}
933
83b8a982 934#define wa_ctx_emit(batch, index, cmd) \
17ee950d 935 do { \
83b8a982
AS
936 int __index = (index)++; \
937 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
938 return -ENOSPC; \
939 } \
83b8a982 940 batch[__index] = (cmd); \
17ee950d
AS
941 } while (0)
942
8f40db77 943#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 944 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
945
946/*
947 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
948 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
949 * but there is a slight complication as this is applied in WA batch where the
950 * values are only initialized once so we cannot take register value at the
951 * beginning and reuse it further; hence we save its value to memory, upload a
952 * constant value with bit21 set and then we restore it back with the saved value.
953 * To simplify the WA, a constant value is formed by using the default value
954 * of this register. This shouldn't be a problem because we are only modifying
955 * it for a short period and this batch in non-premptible. We can ofcourse
956 * use additional instructions that read the actual value of the register
957 * at that time and set our bit of interest but it makes the WA complicated.
958 *
959 * This WA is also required for Gen9 so extracting as a function avoids
960 * code duplication.
961 */
0bc40be8 962static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 963 uint32_t *batch,
9e000847
AS
964 uint32_t index)
965{
5e580523 966 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
967 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
968
a4106a78 969 /*
3be192e9 970 * WaDisableLSQCROPERFforOCL:kbl
a4106a78
AS
971 * This WA is implemented in skl_init_clock_gating() but since
972 * this batch updates GEN8_L3SQCREG4 with default value we need to
973 * set this bit here to retain the WA during flush.
974 */
3be192e9 975 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
976 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
977
f1afe24f 978 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 979 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 980 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 981 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
982 wa_ctx_emit(batch, index, 0);
983
984 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 985 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
986 wa_ctx_emit(batch, index, l3sqc4_flush);
987
988 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
989 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
990 PIPE_CONTROL_DC_FLUSH_ENABLE));
991 wa_ctx_emit(batch, index, 0);
992 wa_ctx_emit(batch, index, 0);
993 wa_ctx_emit(batch, index, 0);
994 wa_ctx_emit(batch, index, 0);
995
f1afe24f 996 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 997 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 998 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 999 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 1000 wa_ctx_emit(batch, index, 0);
9e000847
AS
1001
1002 return index;
1003}
1004
17ee950d
AS
1005static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1006 uint32_t offset,
1007 uint32_t start_alignment)
1008{
1009 return wa_ctx->offset = ALIGN(offset, start_alignment);
1010}
1011
1012static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1013 uint32_t offset,
1014 uint32_t size_alignment)
1015{
1016 wa_ctx->size = offset - wa_ctx->offset;
1017
1018 WARN(wa_ctx->size % size_alignment,
1019 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1020 wa_ctx->size, size_alignment);
1021 return 0;
1022}
1023
6e5248b5
DV
1024/*
1025 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1026 * initialized at the beginning and shared across all contexts but this field
1027 * helps us to have multiple batches at different offsets and select them based
1028 * on a criteria. At the moment this batch always start at the beginning of the page
1029 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1030 *
6e5248b5
DV
1031 * The number of WA applied are not known at the beginning; we use this field
1032 * to return the no of DWORDS written.
17ee950d 1033 *
6e5248b5
DV
1034 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1035 * so it adds NOOPs as padding to make it cacheline aligned.
1036 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1037 * makes a complete batch buffer.
17ee950d 1038 */
0bc40be8 1039static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 1040 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1041 uint32_t *batch,
17ee950d
AS
1042 uint32_t *offset)
1043{
0160f055 1044 uint32_t scratch_addr;
17ee950d
AS
1045 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1046
7ad00d1a 1047 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1048 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1049
c82435bb 1050 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1051 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1052 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1053 if (rc < 0)
1054 return rc;
1055 index = rc;
c82435bb
AS
1056 }
1057
0160f055
AS
1058 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1059 /* Actual scratch location is at 128 bytes offset */
bde13ebd 1060 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 1061
83b8a982
AS
1062 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1063 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1064 PIPE_CONTROL_GLOBAL_GTT_IVB |
1065 PIPE_CONTROL_CS_STALL |
1066 PIPE_CONTROL_QW_WRITE));
1067 wa_ctx_emit(batch, index, scratch_addr);
1068 wa_ctx_emit(batch, index, 0);
1069 wa_ctx_emit(batch, index, 0);
1070 wa_ctx_emit(batch, index, 0);
0160f055 1071
17ee950d
AS
1072 /* Pad to end of cacheline */
1073 while (index % CACHELINE_DWORDS)
83b8a982 1074 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1075
1076 /*
1077 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1078 * execution depends on the length specified in terms of cache lines
1079 * in the register CTX_RCS_INDIRECT_CTX
1080 */
1081
1082 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1083}
1084
6e5248b5
DV
1085/*
1086 * This batch is started immediately after indirect_ctx batch. Since we ensure
1087 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1088 *
6e5248b5 1089 * The number of DWORDS written are returned using this field.
17ee950d
AS
1090 *
1091 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1092 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1093 */
0bc40be8 1094static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 1095 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1096 uint32_t *batch,
17ee950d
AS
1097 uint32_t *offset)
1098{
1099 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1100
7ad00d1a 1101 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1102 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1103
83b8a982 1104 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1105
1106 return wa_ctx_end(wa_ctx, *offset = index, 1);
1107}
1108
0bc40be8 1109static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 1110 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1111 uint32_t *batch,
0504cffc
AS
1112 uint32_t *offset)
1113{
a4106a78 1114 int ret;
5e580523 1115 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
1116 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1117
9fc736e8
JN
1118 /* WaDisableCtxRestoreArbitration:bxt */
1119 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1120 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1121
a4106a78 1122 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1123 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1124 if (ret < 0)
1125 return ret;
1126 index = ret;
1127
873e8171
MK
1128 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1129 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1130 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1131 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1132 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1133 wa_ctx_emit(batch, index, MI_NOOP);
1134
066d4628
MK
1135 /* WaClearSlmSpaceAtContextSwitch:kbl */
1136 /* Actual scratch location is at 128 bytes offset */
703d1282 1137 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1138 u32 scratch_addr =
bde13ebd 1139 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1140
1141 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1142 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1143 PIPE_CONTROL_GLOBAL_GTT_IVB |
1144 PIPE_CONTROL_CS_STALL |
1145 PIPE_CONTROL_QW_WRITE));
1146 wa_ctx_emit(batch, index, scratch_addr);
1147 wa_ctx_emit(batch, index, 0);
1148 wa_ctx_emit(batch, index, 0);
1149 wa_ctx_emit(batch, index, 0);
1150 }
3485d99e
TG
1151
1152 /* WaMediaPoolStateCmdInWABB:bxt */
1153 if (HAS_POOLED_EU(engine->i915)) {
1154 /*
1155 * EU pool configuration is setup along with golden context
1156 * during context initialization. This value depends on
1157 * device type (2x6 or 3x6) and needs to be updated based
1158 * on which subslice is disabled especially for 2x6
1159 * devices, however it is safe to load default
1160 * configuration of 3x6 device instead of masking off
1161 * corresponding bits because HW ignores bits of a disabled
1162 * subslice and drops down to appropriate config. Please
1163 * see render_state_setup() in i915_gem_render_state.c for
1164 * possible configurations, to avoid duplication they are
1165 * not shown here again.
1166 */
1167 u32 eu_pool_config = 0x00777000;
1168 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1169 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1170 wa_ctx_emit(batch, index, eu_pool_config);
1171 wa_ctx_emit(batch, index, 0);
1172 wa_ctx_emit(batch, index, 0);
1173 wa_ctx_emit(batch, index, 0);
1174 }
1175
0504cffc
AS
1176 /* Pad to end of cacheline */
1177 while (index % CACHELINE_DWORDS)
1178 wa_ctx_emit(batch, index, MI_NOOP);
1179
1180 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1181}
1182
0bc40be8 1183static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1184 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1185 uint32_t *batch,
0504cffc
AS
1186 uint32_t *offset)
1187{
1188 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1189
a117f378
JN
1190 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1191 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1192 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1193 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1194 wa_ctx_emit(batch, index,
1195 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1196 wa_ctx_emit(batch, index, MI_NOOP);
1197 }
1198
b1e429fe 1199 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1200 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1201 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1202
1203 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1204 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1205
1206 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1207 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1208
1209 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1210 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1211
1212 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1213 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1214 wa_ctx_emit(batch, index, 0x0);
1215 wa_ctx_emit(batch, index, MI_NOOP);
1216 }
1217
9fc736e8
JN
1218 /* WaDisableCtxRestoreArbitration:bxt */
1219 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1220 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1221
0504cffc
AS
1222 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1223
1224 return wa_ctx_end(wa_ctx, *offset = index, 1);
1225}
1226
0bc40be8 1227static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1228{
48bb74e4
CW
1229 struct drm_i915_gem_object *obj;
1230 struct i915_vma *vma;
1231 int err;
17ee950d 1232
12d79d78 1233 obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
48bb74e4
CW
1234 if (IS_ERR(obj))
1235 return PTR_ERR(obj);
17ee950d 1236
48bb74e4
CW
1237 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1238 if (IS_ERR(vma)) {
1239 err = PTR_ERR(vma);
1240 goto err;
17ee950d
AS
1241 }
1242
48bb74e4
CW
1243 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1244 if (err)
1245 goto err;
1246
1247 engine->wa_ctx.vma = vma;
17ee950d 1248 return 0;
48bb74e4
CW
1249
1250err:
1251 i915_gem_object_put(obj);
1252 return err;
17ee950d
AS
1253}
1254
0bc40be8 1255static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1256{
19880c4a 1257 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1258}
1259
0bc40be8 1260static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1261{
48bb74e4 1262 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1263 uint32_t *batch;
1264 uint32_t offset;
1265 struct page *page;
48bb74e4 1266 int ret;
17ee950d 1267
0bc40be8 1268 WARN_ON(engine->id != RCS);
17ee950d 1269
5e60d790 1270 /* update this when WA for higher Gen are added */
c033666a 1271 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1272 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1273 INTEL_GEN(engine->i915));
5e60d790 1274 return 0;
0504cffc 1275 }
5e60d790 1276
c4db7599 1277 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1278 if (!engine->scratch) {
0bc40be8 1279 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1280 return -EINVAL;
1281 }
1282
0bc40be8 1283 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1284 if (ret) {
1285 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1286 return ret;
1287 }
1288
48bb74e4 1289 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1290 batch = kmap_atomic(page);
1291 offset = 0;
1292
c033666a 1293 if (IS_GEN8(engine->i915)) {
0bc40be8 1294 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1295 &wa_ctx->indirect_ctx,
1296 batch,
1297 &offset);
1298 if (ret)
1299 goto out;
1300
0bc40be8 1301 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1302 &wa_ctx->per_ctx,
1303 batch,
1304 &offset);
1305 if (ret)
1306 goto out;
c033666a 1307 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1308 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1309 &wa_ctx->indirect_ctx,
1310 batch,
1311 &offset);
1312 if (ret)
1313 goto out;
1314
0bc40be8 1315 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1316 &wa_ctx->per_ctx,
1317 batch,
1318 &offset);
1319 if (ret)
1320 goto out;
17ee950d
AS
1321 }
1322
1323out:
1324 kunmap_atomic(batch);
1325 if (ret)
0bc40be8 1326 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1327
1328 return ret;
1329}
1330
04794adb
TU
1331static void lrc_init_hws(struct intel_engine_cs *engine)
1332{
c033666a 1333 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1334
1335 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1336 engine->status_page.ggtt_offset);
04794adb
TU
1337 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1338}
1339
0bc40be8 1340static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1341{
c033666a 1342 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1343 int ret;
1344
1345 ret = intel_mocs_init_engine(engine);
1346 if (ret)
1347 return ret;
9b1136d5 1348
04794adb 1349 lrc_init_hws(engine);
e84fe803 1350
ad07dfcd 1351 intel_engine_reset_breadcrumbs(engine);
821ed7df 1352
0bc40be8 1353 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1354
0bc40be8 1355 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1356 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1357 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1358
0bc40be8 1359 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1360
fc0768ce 1361 intel_engine_init_hangcheck(engine);
9b1136d5 1362
c87d50cc
CW
1363 /* After a GPU reset, we may have requests to replay */
1364 if (!execlists_elsp_idle(engine)) {
1365 engine->execlist_port[0].count = 0;
1366 engine->execlist_port[1].count = 0;
821ed7df 1367 execlists_submit_ports(engine);
c87d50cc 1368 }
821ed7df
CW
1369
1370 return 0;
9b1136d5
OM
1371}
1372
0bc40be8 1373static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1374{
c033666a 1375 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1376 int ret;
1377
0bc40be8 1378 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1379 if (ret)
1380 return ret;
1381
1382 /* We need to disable the AsyncFlip performance optimisations in order
1383 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1384 * programmed to '1' on all products.
1385 *
1386 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1387 */
1388 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1389
9b1136d5
OM
1390 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1391
0bc40be8 1392 return init_workarounds_ring(engine);
9b1136d5
OM
1393}
1394
0bc40be8 1395static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1396{
1397 int ret;
1398
0bc40be8 1399 ret = gen8_init_common_ring(engine);
82ef822e
DL
1400 if (ret)
1401 return ret;
1402
0bc40be8 1403 return init_workarounds_ring(engine);
82ef822e
DL
1404}
1405
821ed7df
CW
1406static void reset_common_ring(struct intel_engine_cs *engine,
1407 struct drm_i915_gem_request *request)
1408{
1409 struct drm_i915_private *dev_priv = engine->i915;
1410 struct execlist_port *port = engine->execlist_port;
1411 struct intel_context *ce = &request->ctx->engine[engine->id];
1412
a3aabe86
CW
1413 /* We want a simple context + ring to execute the breadcrumb update.
1414 * We cannot rely on the context being intact across the GPU hang,
1415 * so clear it and rebuild just what we need for the breadcrumb.
1416 * All pending requests for this context will be zapped, and any
1417 * future request will be after userspace has had the opportunity
1418 * to recreate its own state.
1419 */
1420 execlists_init_reg_state(ce->lrc_reg_state,
1421 request->ctx, engine, ce->ring);
1422
821ed7df 1423 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1424 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1425 i915_ggtt_offset(ce->ring->vma);
821ed7df 1426 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1427
821ed7df
CW
1428 request->ring->head = request->postfix;
1429 request->ring->last_retired_head = -1;
1430 intel_ring_update_space(request->ring);
1431
1432 if (i915.enable_guc_submission)
1433 return;
1434
1435 /* Catch up with any missed context-switch interrupts */
1436 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1437 if (request->ctx != port[0].request->ctx) {
1438 i915_gem_request_put(port[0].request);
1439 port[0] = port[1];
1440 memset(&port[1], 0, sizeof(port[1]));
1441 }
1442
821ed7df 1443 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1444
1445 /* Reset WaIdleLiteRestore:bdw,skl as well */
1446 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
821ed7df
CW
1447}
1448
7a01a0a2
MT
1449static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1450{
1451 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1452 struct intel_ring *ring = req->ring;
4a570db5 1453 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1454 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1455 int i, ret;
1456
987046ad 1457 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1458 if (ret)
1459 return ret;
1460
b5321f30 1461 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1462 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1463 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1464
b5321f30
CW
1465 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1466 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1467 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1468 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1469 }
1470
b5321f30
CW
1471 intel_ring_emit(ring, MI_NOOP);
1472 intel_ring_advance(ring);
7a01a0a2
MT
1473
1474 return 0;
1475}
1476
be795fc1 1477static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1478 u64 offset, u32 len,
1479 unsigned int dispatch_flags)
15648585 1480{
7e37f889 1481 struct intel_ring *ring = req->ring;
8e004efc 1482 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1483 int ret;
1484
7a01a0a2
MT
1485 /* Don't rely in hw updating PDPs, specially in lite-restore.
1486 * Ideally, we should set Force PD Restore in ctx descriptor,
1487 * but we can't. Force Restore would be a second option, but
1488 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1489 * not idle). PML4 is allocated during ppgtt init so this is
1490 * not needed in 48-bit.*/
7a01a0a2 1491 if (req->ctx->ppgtt &&
666796da 1492 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1493 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1494 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1495 ret = intel_logical_ring_emit_pdps(req);
1496 if (ret)
1497 return ret;
1498 }
7a01a0a2 1499
666796da 1500 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1501 }
1502
987046ad 1503 ret = intel_ring_begin(req, 4);
15648585
OM
1504 if (ret)
1505 return ret;
1506
1507 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1508 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1509 (ppgtt<<8) |
1510 (dispatch_flags & I915_DISPATCH_RS ?
1511 MI_BATCH_RESOURCE_STREAMER : 0));
1512 intel_ring_emit(ring, lower_32_bits(offset));
1513 intel_ring_emit(ring, upper_32_bits(offset));
1514 intel_ring_emit(ring, MI_NOOP);
1515 intel_ring_advance(ring);
15648585
OM
1516
1517 return 0;
1518}
1519
31bb59cc 1520static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1521{
c033666a 1522 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1523 I915_WRITE_IMR(engine,
1524 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1525 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1526}
1527
31bb59cc 1528static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1529{
c033666a 1530 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1531 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1532}
1533
7c9cf4e3 1534static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1535{
7e37f889
CW
1536 struct intel_ring *ring = request->ring;
1537 u32 cmd;
4712274c
OM
1538 int ret;
1539
987046ad 1540 ret = intel_ring_begin(request, 4);
4712274c
OM
1541 if (ret)
1542 return ret;
1543
1544 cmd = MI_FLUSH_DW + 1;
1545
f0a1fb10
CW
1546 /* We always require a command barrier so that subsequent
1547 * commands, such as breadcrumb interrupts, are strictly ordered
1548 * wrt the contents of the write cache being flushed to memory
1549 * (and thus being coherent from the CPU).
1550 */
1551 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1552
7c9cf4e3 1553 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1554 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1555 if (request->engine->id == VCS)
f0a1fb10 1556 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1557 }
1558
b5321f30
CW
1559 intel_ring_emit(ring, cmd);
1560 intel_ring_emit(ring,
1561 I915_GEM_HWS_SCRATCH_ADDR |
1562 MI_FLUSH_DW_USE_GTT);
1563 intel_ring_emit(ring, 0); /* upper addr */
1564 intel_ring_emit(ring, 0); /* value */
1565 intel_ring_advance(ring);
4712274c
OM
1566
1567 return 0;
1568}
1569
7deb4d39 1570static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1571 u32 mode)
4712274c 1572{
7e37f889 1573 struct intel_ring *ring = request->ring;
b5321f30 1574 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1575 u32 scratch_addr =
1576 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1577 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1578 u32 flags = 0;
1579 int ret;
0b2d0934 1580 int len;
4712274c
OM
1581
1582 flags |= PIPE_CONTROL_CS_STALL;
1583
7c9cf4e3 1584 if (mode & EMIT_FLUSH) {
4712274c
OM
1585 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1586 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1587 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1588 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1589 }
1590
7c9cf4e3 1591 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1592 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1593 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1594 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1595 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1596 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1597 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1598 flags |= PIPE_CONTROL_QW_WRITE;
1599 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1600
1a5a9ce7
BW
1601 /*
1602 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1603 * pipe control.
1604 */
c033666a 1605 if (IS_GEN9(request->i915))
1a5a9ce7 1606 vf_flush_wa = true;
0b2d0934
MK
1607
1608 /* WaForGAMHang:kbl */
1609 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1610 dc_flush_wa = true;
1a5a9ce7 1611 }
9647ff36 1612
0b2d0934
MK
1613 len = 6;
1614
1615 if (vf_flush_wa)
1616 len += 6;
1617
1618 if (dc_flush_wa)
1619 len += 12;
1620
1621 ret = intel_ring_begin(request, len);
4712274c
OM
1622 if (ret)
1623 return ret;
1624
9647ff36 1625 if (vf_flush_wa) {
b5321f30
CW
1626 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1627 intel_ring_emit(ring, 0);
1628 intel_ring_emit(ring, 0);
1629 intel_ring_emit(ring, 0);
1630 intel_ring_emit(ring, 0);
1631 intel_ring_emit(ring, 0);
9647ff36
ID
1632 }
1633
0b2d0934 1634 if (dc_flush_wa) {
b5321f30
CW
1635 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1636 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1637 intel_ring_emit(ring, 0);
1638 intel_ring_emit(ring, 0);
1639 intel_ring_emit(ring, 0);
1640 intel_ring_emit(ring, 0);
0b2d0934
MK
1641 }
1642
b5321f30
CW
1643 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1644 intel_ring_emit(ring, flags);
1645 intel_ring_emit(ring, scratch_addr);
1646 intel_ring_emit(ring, 0);
1647 intel_ring_emit(ring, 0);
1648 intel_ring_emit(ring, 0);
0b2d0934
MK
1649
1650 if (dc_flush_wa) {
b5321f30
CW
1651 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1652 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1653 intel_ring_emit(ring, 0);
1654 intel_ring_emit(ring, 0);
1655 intel_ring_emit(ring, 0);
1656 intel_ring_emit(ring, 0);
0b2d0934
MK
1657 }
1658
b5321f30 1659 intel_ring_advance(ring);
4712274c
OM
1660
1661 return 0;
1662}
1663
c04e0f3b 1664static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1665{
319404df
ID
1666 /*
1667 * On BXT A steppings there is a HW coherency issue whereby the
1668 * MI_STORE_DATA_IMM storing the completed request's seqno
1669 * occasionally doesn't invalidate the CPU cache. Work around this by
1670 * clflushing the corresponding cacheline whenever the caller wants
1671 * the coherency to be guaranteed. Note that this cacheline is known
1672 * to be clean at this point, since we only write it in
1673 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1674 * this clflush in practice becomes an invalidate operation.
1675 */
c04e0f3b 1676 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1677}
1678
7c17d377
CW
1679/*
1680 * Reserve space for 2 NOOPs at the end of each request to be
1681 * used as a workaround for not being allowed to do lite
1682 * restore with HEAD==TAIL (WaIdleLiteRestore).
1683 */
caddfe71 1684static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
4da46e1e 1685{
caddfe71
CW
1686 *out++ = MI_NOOP;
1687 *out++ = MI_NOOP;
1688 request->wa_tail = intel_ring_offset(request->ring, out);
1689}
4da46e1e 1690
caddfe71
CW
1691static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1692 u32 *out)
1693{
7c17d377
CW
1694 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1695 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1696
caddfe71
CW
1697 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1698 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1699 *out++ = 0;
1700 *out++ = request->global_seqno;
1701 *out++ = MI_USER_INTERRUPT;
1702 *out++ = MI_NOOP;
1703 request->tail = intel_ring_offset(request->ring, out);
1704
1705 gen8_emit_wa_tail(request, out);
7c17d377 1706}
4da46e1e 1707
98f29e8d
CW
1708static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1709
caddfe71
CW
1710static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1711 u32 *out)
7c17d377 1712{
ce81a65c
MW
1713 /* We're using qword write, seqno should be aligned to 8 bytes. */
1714 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1715
7c17d377
CW
1716 /* w/a for post sync ops following a GPGPU operation we
1717 * need a prior CS_STALL, which is emitted by the flush
1718 * following the batch.
1719 */
caddfe71
CW
1720 *out++ = GFX_OP_PIPE_CONTROL(6);
1721 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1722 PIPE_CONTROL_CS_STALL |
1723 PIPE_CONTROL_QW_WRITE);
1724 *out++ = intel_hws_seqno_address(request->engine);
1725 *out++ = 0;
1726 *out++ = request->global_seqno;
ce81a65c 1727 /* We're thrashing one dword of HWS. */
caddfe71
CW
1728 *out++ = 0;
1729 *out++ = MI_USER_INTERRUPT;
1730 *out++ = MI_NOOP;
1731 request->tail = intel_ring_offset(request->ring, out);
1732
1733 gen8_emit_wa_tail(request, out);
4da46e1e
OM
1734}
1735
98f29e8d
CW
1736static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1737
8753181e 1738static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1739{
1740 int ret;
1741
e2be4faf 1742 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1743 if (ret)
1744 return ret;
1745
3bbaba0c
PA
1746 ret = intel_rcs_context_init_mocs(req);
1747 /*
1748 * Failing to program the MOCS is non-fatal.The system will not
1749 * run at peak performance. So generate an error and carry on.
1750 */
1751 if (ret)
1752 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1753
4e50f082 1754 return i915_gem_render_state_emit(req);
e7778be1
TD
1755}
1756
73e4d07f
OM
1757/**
1758 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1759 * @engine: Engine Command Streamer.
73e4d07f 1760 */
0bc40be8 1761void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1762{
6402c330 1763 struct drm_i915_private *dev_priv;
9832b9da 1764
27af5eea
TU
1765 /*
1766 * Tasklet cannot be active at this point due intel_mark_active/idle
1767 * so this is just for documentation.
1768 */
1769 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1770 tasklet_kill(&engine->irq_tasklet);
1771
c033666a 1772 dev_priv = engine->i915;
6402c330 1773
0bc40be8 1774 if (engine->buffer) {
0bc40be8 1775 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1776 }
48d82387 1777
0bc40be8
TU
1778 if (engine->cleanup)
1779 engine->cleanup(engine);
48d82387 1780
57e88531
CW
1781 if (engine->status_page.vma) {
1782 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1783 engine->status_page.vma = NULL;
48d82387 1784 }
e8a9c58f
CW
1785
1786 intel_engine_cleanup_common(engine);
17ee950d 1787
0bc40be8 1788 lrc_destroy_wa_ctx_obj(engine);
c033666a 1789 engine->i915 = NULL;
3b3f1650
AG
1790 dev_priv->engine[engine->id] = NULL;
1791 kfree(engine);
454afebd
OM
1792}
1793
ddd66c51
CW
1794void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1795{
1796 struct intel_engine_cs *engine;
3b3f1650 1797 enum intel_engine_id id;
ddd66c51 1798
20311bd3 1799 for_each_engine(engine, dev_priv, id) {
f4ea6bdd 1800 engine->submit_request = execlists_submit_request;
20311bd3
CW
1801 engine->schedule = execlists_schedule;
1802 }
ddd66c51
CW
1803}
1804
c9cacf93 1805static void
e1382efb 1806logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1807{
1808 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1809 engine->init_hw = gen8_init_common_ring;
821ed7df 1810 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1811
1812 engine->context_pin = execlists_context_pin;
1813 engine->context_unpin = execlists_context_unpin;
1814
0bc40be8 1815 engine->emit_flush = gen8_emit_flush;
9b81d556 1816 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1817 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1818 engine->submit_request = execlists_submit_request;
20311bd3 1819 engine->schedule = execlists_schedule;
ddd66c51 1820
31bb59cc
CW
1821 engine->irq_enable = gen8_logical_ring_enable_irq;
1822 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1823 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1824 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1825 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1826}
1827
d9f3af96 1828static inline void
c2c7f240 1829logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1830{
c2c7f240 1831 unsigned shift = engine->irq_shift;
0bc40be8
TU
1832 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1833 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1834}
1835
7d774cac 1836static int
bf3783e5 1837lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1838{
57e88531 1839 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1840 void *hws;
04794adb
TU
1841
1842 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1843 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1844 if (IS_ERR(hws))
1845 return PTR_ERR(hws);
57e88531
CW
1846
1847 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1848 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1849 engine->status_page.vma = vma;
7d774cac
TU
1850
1851 return 0;
04794adb
TU
1852}
1853
bb45438f
TU
1854static void
1855logical_ring_setup(struct intel_engine_cs *engine)
1856{
1857 struct drm_i915_private *dev_priv = engine->i915;
1858 enum forcewake_domains fw_domains;
1859
019bf277
TU
1860 intel_engine_setup_common(engine);
1861
bb45438f
TU
1862 /* Intentionally left blank. */
1863 engine->buffer = NULL;
1864
1865 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1866 RING_ELSP(engine),
1867 FW_REG_WRITE);
1868
1869 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1870 RING_CONTEXT_STATUS_PTR(engine),
1871 FW_REG_READ | FW_REG_WRITE);
1872
1873 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1874 RING_CONTEXT_STATUS_BUF_BASE(engine),
1875 FW_REG_READ);
1876
1877 engine->fw_domains = fw_domains;
1878
bb45438f
TU
1879 tasklet_init(&engine->irq_tasklet,
1880 intel_lrc_irq_handler, (unsigned long)engine);
1881
1882 logical_ring_init_platform_invariants(engine);
1883 logical_ring_default_vfuncs(engine);
1884 logical_ring_default_irqs(engine);
bb45438f
TU
1885}
1886
a19d6ff2
TU
1887static int
1888logical_ring_init(struct intel_engine_cs *engine)
1889{
1890 struct i915_gem_context *dctx = engine->i915->kernel_context;
1891 int ret;
1892
019bf277 1893 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1894 if (ret)
1895 goto error;
1896
a19d6ff2
TU
1897 /* And setup the hardware status page. */
1898 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1899 if (ret) {
1900 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1901 goto error;
1902 }
1903
1904 return 0;
1905
1906error:
1907 intel_logical_ring_cleanup(engine);
1908 return ret;
1909}
1910
88d2ba2e 1911int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1912{
1913 struct drm_i915_private *dev_priv = engine->i915;
1914 int ret;
1915
bb45438f
TU
1916 logical_ring_setup(engine);
1917
a19d6ff2
TU
1918 if (HAS_L3_DPF(dev_priv))
1919 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1920
1921 /* Override some for render ring. */
1922 if (INTEL_GEN(dev_priv) >= 9)
1923 engine->init_hw = gen9_init_render_ring;
1924 else
1925 engine->init_hw = gen8_init_render_ring;
1926 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1927 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1928 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1929 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1930
56c0f1a7 1931 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1932 if (ret)
1933 return ret;
1934
1935 ret = intel_init_workaround_bb(engine);
1936 if (ret) {
1937 /*
1938 * We continue even if we fail to initialize WA batch
1939 * because we only expect rare glitches but nothing
1940 * critical to prevent us from using GPU
1941 */
1942 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1943 ret);
1944 }
1945
d038fc7e 1946 return logical_ring_init(engine);
a19d6ff2
TU
1947}
1948
88d2ba2e 1949int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1950{
1951 logical_ring_setup(engine);
1952
1953 return logical_ring_init(engine);
454afebd
OM
1954}
1955
0cea6502 1956static u32
c033666a 1957make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1958{
1959 u32 rpcs = 0;
1960
1961 /*
1962 * No explicit RPCS request is needed to ensure full
1963 * slice/subslice/EU enablement prior to Gen9.
1964 */
c033666a 1965 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1966 return 0;
1967
1968 /*
1969 * Starting in Gen9, render power gating can leave
1970 * slice/subslice/EU in a partially enabled state. We
1971 * must make an explicit request through RPCS for full
1972 * enablement.
1973 */
43b67998 1974 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1975 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1976 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1977 GEN8_RPCS_S_CNT_SHIFT;
1978 rpcs |= GEN8_RPCS_ENABLE;
1979 }
1980
43b67998 1981 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1982 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1983 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1984 GEN8_RPCS_SS_CNT_SHIFT;
1985 rpcs |= GEN8_RPCS_ENABLE;
1986 }
1987
43b67998
ID
1988 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1989 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1990 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1991 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1992 GEN8_RPCS_EU_MAX_SHIFT;
1993 rpcs |= GEN8_RPCS_ENABLE;
1994 }
1995
1996 return rpcs;
1997}
1998
0bc40be8 1999static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2000{
2001 u32 indirect_ctx_offset;
2002
c033666a 2003 switch (INTEL_GEN(engine->i915)) {
71562919 2004 default:
c033666a 2005 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2006 /* fall through */
2007 case 9:
2008 indirect_ctx_offset =
2009 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2010 break;
2011 case 8:
2012 indirect_ctx_offset =
2013 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2014 break;
2015 }
2016
2017 return indirect_ctx_offset;
2018}
2019
a3aabe86
CW
2020static void execlists_init_reg_state(u32 *reg_state,
2021 struct i915_gem_context *ctx,
2022 struct intel_engine_cs *engine,
2023 struct intel_ring *ring)
8670d6f9 2024{
a3aabe86
CW
2025 struct drm_i915_private *dev_priv = engine->i915;
2026 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
2027
2028 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2029 * commands followed by (reg, value) pairs. The values we are setting here are
2030 * only for the first context restore: on a subsequent save, the GPU will
2031 * recreate this batchbuffer with new values (including all the missing
2032 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2033 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2034 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2035 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2036 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2037 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2038 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2039 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 2040 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2041 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2042 0);
2043 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2044 0);
0bc40be8
TU
2045 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2046 RING_START(engine->mmio_base), 0);
2047 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2048 RING_CTL(engine->mmio_base),
62ae14b1 2049 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
2050 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2051 RING_BBADDR_UDW(engine->mmio_base), 0);
2052 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2053 RING_BBADDR(engine->mmio_base), 0);
2054 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2055 RING_BBSTATE(engine->mmio_base),
0d925ea0 2056 RING_BB_PPGTT);
0bc40be8
TU
2057 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2058 RING_SBBADDR_UDW(engine->mmio_base), 0);
2059 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2060 RING_SBBADDR(engine->mmio_base), 0);
2061 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2062 RING_SBBSTATE(engine->mmio_base), 0);
2063 if (engine->id == RCS) {
2064 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2065 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2066 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2067 RING_INDIRECT_CTX(engine->mmio_base), 0);
2068 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2069 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 2070 if (engine->wa_ctx.vma) {
0bc40be8 2071 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 2072 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
2073
2074 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2075 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2076 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2077
2078 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2079 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2080
2081 reg_state[CTX_BB_PER_CTX_PTR+1] =
2082 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2083 0x01;
2084 }
8670d6f9 2085 }
0d925ea0 2086 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2087 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2088 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2089 /* PDP values well be assigned later if needed */
0bc40be8
TU
2090 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2091 0);
2092 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2093 0);
2094 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2095 0);
2096 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2097 0);
2098 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2099 0);
2100 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2101 0);
2102 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2103 0);
2104 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2105 0);
d7b2633d 2106
2dba3239
MT
2107 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2108 /* 64b PPGTT (48bit canonical)
2109 * PDP0_DESCRIPTOR contains the base address to PML4 and
2110 * other PDP Descriptors are ignored.
2111 */
2112 ASSIGN_CTX_PML4(ppgtt, reg_state);
2113 } else {
2114 /* 32b PPGTT
2115 * PDP*_DESCRIPTOR contains the base address of space supported.
2116 * With dynamic page allocation, PDPs may not be allocated at
2117 * this point. Point the unallocated PDPs to the scratch page
2118 */
c6a2ac71 2119 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2120 }
2121
0bc40be8 2122 if (engine->id == RCS) {
8670d6f9 2123 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2124 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2125 make_rpcs(dev_priv));
8670d6f9 2126 }
a3aabe86
CW
2127}
2128
2129static int
2130populate_lr_context(struct i915_gem_context *ctx,
2131 struct drm_i915_gem_object *ctx_obj,
2132 struct intel_engine_cs *engine,
2133 struct intel_ring *ring)
2134{
2135 void *vaddr;
2136 int ret;
2137
2138 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2139 if (ret) {
2140 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2141 return ret;
2142 }
2143
2144 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2145 if (IS_ERR(vaddr)) {
2146 ret = PTR_ERR(vaddr);
2147 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2148 return ret;
2149 }
a4f5ea64 2150 ctx_obj->mm.dirty = true;
a3aabe86
CW
2151
2152 /* The second page of the context object contains some fields which must
2153 * be set up prior to the first execution. */
2154
2155 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2156 ctx, engine, ring);
8670d6f9 2157
7d774cac 2158 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2159
2160 return 0;
2161}
2162
c5d46ee2
DG
2163/**
2164 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2165 * @engine: which engine to find the context size for
c5d46ee2
DG
2166 *
2167 * Each engine may require a different amount of space for a context image,
2168 * so when allocating (or copying) an image, this function can be used to
2169 * find the right size for the specific engine.
2170 *
2171 * Return: size (in bytes) of an engine-specific context image
2172 *
2173 * Note: this size includes the HWSP, which is part of the context image
2174 * in LRC mode, but does not include the "shared data page" used with
2175 * GuC submission. The caller should account for this if using the GuC.
2176 */
0bc40be8 2177uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2178{
2179 int ret = 0;
2180
c033666a 2181 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2182
0bc40be8 2183 switch (engine->id) {
8c857917 2184 case RCS:
c033666a 2185 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2186 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2187 else
2188 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2189 break;
2190 case VCS:
2191 case BCS:
2192 case VECS:
2193 case VCS2:
2194 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2195 break;
2196 }
2197
2198 return ret;
ede7d42b
OM
2199}
2200
e2efd130 2201static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2202 struct intel_engine_cs *engine)
ede7d42b 2203{
8c857917 2204 struct drm_i915_gem_object *ctx_obj;
9021ad03 2205 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2206 struct i915_vma *vma;
8c857917 2207 uint32_t context_size;
7e37f889 2208 struct intel_ring *ring;
8c857917
OM
2209 int ret;
2210
9021ad03 2211 WARN_ON(ce->state);
ede7d42b 2212
0bc40be8 2213 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2214
d1675198
AD
2215 /* One extra page as the sharing data between driver and GuC */
2216 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2217
12d79d78 2218 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 2219 if (IS_ERR(ctx_obj)) {
3126a660 2220 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2221 return PTR_ERR(ctx_obj);
8c857917
OM
2222 }
2223
bf3783e5
CW
2224 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2225 if (IS_ERR(vma)) {
2226 ret = PTR_ERR(vma);
2227 goto error_deref_obj;
2228 }
2229
7e37f889 2230 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2231 if (IS_ERR(ring)) {
2232 ret = PTR_ERR(ring);
e84fe803 2233 goto error_deref_obj;
8670d6f9
OM
2234 }
2235
dca33ecc 2236 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2237 if (ret) {
2238 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2239 goto error_ring_free;
84c2377f
OM
2240 }
2241
dca33ecc 2242 ce->ring = ring;
bf3783e5 2243 ce->state = vma;
9021ad03 2244 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2245
2246 return 0;
8670d6f9 2247
dca33ecc 2248error_ring_free:
7e37f889 2249 intel_ring_free(ring);
e84fe803 2250error_deref_obj:
f8c417cd 2251 i915_gem_object_put(ctx_obj);
8670d6f9 2252 return ret;
ede7d42b 2253}
3e5b6f05 2254
821ed7df 2255void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2256{
e2f80391 2257 struct intel_engine_cs *engine;
bafb2f7d 2258 struct i915_gem_context *ctx;
3b3f1650 2259 enum intel_engine_id id;
bafb2f7d
CW
2260
2261 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2262 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2263 * that stored in context. As we only write new commands from
2264 * ce->ring->tail onwards, everything before that is junk. If the GPU
2265 * starts reading from its RING_HEAD from the context, it may try to
2266 * execute that junk and die.
2267 *
2268 * So to avoid that we reset the context images upon resume. For
2269 * simplicity, we just zero everything out.
2270 */
2271 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2272 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2273 struct intel_context *ce = &ctx->engine[engine->id];
2274 u32 *reg;
3e5b6f05 2275
bafb2f7d
CW
2276 if (!ce->state)
2277 continue;
7d774cac 2278
bafb2f7d
CW
2279 reg = i915_gem_object_pin_map(ce->state->obj,
2280 I915_MAP_WB);
2281 if (WARN_ON(IS_ERR(reg)))
2282 continue;
3e5b6f05 2283
bafb2f7d
CW
2284 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2285 reg[CTX_RING_HEAD+1] = 0;
2286 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2287
a4f5ea64 2288 ce->state->obj->mm.dirty = true;
bafb2f7d 2289 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2290
bafb2f7d
CW
2291 ce->ring->head = ce->ring->tail = 0;
2292 ce->ring->last_retired_head = -1;
2293 intel_ring_update_space(ce->ring);
2294 }
3e5b6f05
TD
2295 }
2296}