]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_pm.c
Revert "drm/i915: no lvds quirk for Zotac ZDBOX SD ID12/ID13"
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
CommitLineData
85208be0
ED
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
2b4e57bd 28#include <linux/cpufreq.h>
85208be0
ED
29#include "i915_drv.h"
30#include "intel_drv.h"
eb48eb00
DV
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
85208be0 33
057d3860 34#define FORCEWAKE_ACK_TIMEOUT_MS 2
b67a4376 35
f6750b3c
ED
36/* FBC, or Frame Buffer Compression, is a technique employed to compress the
37 * framebuffer contents in-memory, aiming at reducing the required bandwidth
38 * during in-memory transfers and, therefore, reduce the power packet.
85208be0 39 *
f6750b3c
ED
40 * The benefits of FBC are mostly visible with solid backgrounds and
41 * variation-less patterns.
85208be0 42 *
f6750b3c
ED
43 * FBC-related functionality can be enabled by the means of the
44 * i915.i915_enable_fbc parameter
85208be0
ED
45 */
46
1fa61106 47static void i8xx_disable_fbc(struct drm_device *dev)
85208be0
ED
48{
49 struct drm_i915_private *dev_priv = dev->dev_private;
50 u32 fbc_ctl;
51
52 /* Disable compression */
53 fbc_ctl = I915_READ(FBC_CONTROL);
54 if ((fbc_ctl & FBC_CTL_EN) == 0)
55 return;
56
57 fbc_ctl &= ~FBC_CTL_EN;
58 I915_WRITE(FBC_CONTROL, fbc_ctl);
59
60 /* Wait for compressing bit to clear */
61 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
62 DRM_DEBUG_KMS("FBC idle timed out\n");
63 return;
64 }
65
66 DRM_DEBUG_KMS("disabled FBC\n");
67}
68
1fa61106 69static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
70{
71 struct drm_device *dev = crtc->dev;
72 struct drm_i915_private *dev_priv = dev->dev_private;
73 struct drm_framebuffer *fb = crtc->fb;
74 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
75 struct drm_i915_gem_object *obj = intel_fb->obj;
76 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
77 int cfb_pitch;
78 int plane, i;
79 u32 fbc_ctl, fbc_ctl2;
80
81 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
82 if (fb->pitches[0] < cfb_pitch)
83 cfb_pitch = fb->pitches[0];
84
85 /* FBC_CTL wants 64B units */
86 cfb_pitch = (cfb_pitch / 64) - 1;
87 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
88
89 /* Clear old tags */
90 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
91 I915_WRITE(FBC_TAG + (i * 4), 0);
92
93 /* Set it up... */
94 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
95 fbc_ctl2 |= plane;
96 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
97 I915_WRITE(FBC_FENCE_OFF, crtc->y);
98
99 /* enable it... */
100 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
101 if (IS_I945GM(dev))
102 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
103 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
104 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
105 fbc_ctl |= obj->fence_reg;
106 I915_WRITE(FBC_CONTROL, fbc_ctl);
107
108 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
109 cfb_pitch, crtc->y, intel_crtc->plane);
110}
111
1fa61106 112static bool i8xx_fbc_enabled(struct drm_device *dev)
85208be0
ED
113{
114 struct drm_i915_private *dev_priv = dev->dev_private;
115
116 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
117}
118
1fa61106 119static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
120{
121 struct drm_device *dev = crtc->dev;
122 struct drm_i915_private *dev_priv = dev->dev_private;
123 struct drm_framebuffer *fb = crtc->fb;
124 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
125 struct drm_i915_gem_object *obj = intel_fb->obj;
126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
127 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
128 unsigned long stall_watermark = 200;
129 u32 dpfc_ctl;
130
131 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
132 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
133 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
134
135 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
136 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
137 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
138 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
139
140 /* enable it... */
141 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
142
143 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
144}
145
1fa61106 146static void g4x_disable_fbc(struct drm_device *dev)
85208be0
ED
147{
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 u32 dpfc_ctl;
150
151 /* Disable compression */
152 dpfc_ctl = I915_READ(DPFC_CONTROL);
153 if (dpfc_ctl & DPFC_CTL_EN) {
154 dpfc_ctl &= ~DPFC_CTL_EN;
155 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
156
157 DRM_DEBUG_KMS("disabled FBC\n");
158 }
159}
160
1fa61106 161static bool g4x_fbc_enabled(struct drm_device *dev)
85208be0
ED
162{
163 struct drm_i915_private *dev_priv = dev->dev_private;
164
165 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
166}
167
168static void sandybridge_blit_fbc_update(struct drm_device *dev)
169{
170 struct drm_i915_private *dev_priv = dev->dev_private;
171 u32 blt_ecoskpd;
172
173 /* Make sure blitter notifies FBC of writes */
174 gen6_gt_force_wake_get(dev_priv);
175 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
176 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
177 GEN6_BLITTER_LOCK_SHIFT;
178 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
180 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
181 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
182 GEN6_BLITTER_LOCK_SHIFT);
183 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
184 POSTING_READ(GEN6_BLITTER_ECOSKPD);
185 gen6_gt_force_wake_put(dev_priv);
186}
187
1fa61106 188static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
189{
190 struct drm_device *dev = crtc->dev;
191 struct drm_i915_private *dev_priv = dev->dev_private;
192 struct drm_framebuffer *fb = crtc->fb;
193 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
194 struct drm_i915_gem_object *obj = intel_fb->obj;
195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
196 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
197 unsigned long stall_watermark = 200;
198 u32 dpfc_ctl;
199
200 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
201 dpfc_ctl &= DPFC_RESERVED;
202 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
203 /* Set persistent mode for front-buffer rendering, ala X. */
204 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
205 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
206 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
207
208 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
209 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
210 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
211 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
212 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
213 /* enable it... */
214 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
215
216 if (IS_GEN6(dev)) {
217 I915_WRITE(SNB_DPFC_CTL_SA,
218 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
219 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
220 sandybridge_blit_fbc_update(dev);
221 }
222
223 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
224}
225
1fa61106 226static void ironlake_disable_fbc(struct drm_device *dev)
85208be0
ED
227{
228 struct drm_i915_private *dev_priv = dev->dev_private;
229 u32 dpfc_ctl;
230
231 /* Disable compression */
232 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
233 if (dpfc_ctl & DPFC_CTL_EN) {
234 dpfc_ctl &= ~DPFC_CTL_EN;
235 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
236
237 DRM_DEBUG_KMS("disabled FBC\n");
238 }
239}
240
1fa61106 241static bool ironlake_fbc_enabled(struct drm_device *dev)
85208be0
ED
242{
243 struct drm_i915_private *dev_priv = dev->dev_private;
244
245 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
246}
247
248bool intel_fbc_enabled(struct drm_device *dev)
249{
250 struct drm_i915_private *dev_priv = dev->dev_private;
251
252 if (!dev_priv->display.fbc_enabled)
253 return false;
254
255 return dev_priv->display.fbc_enabled(dev);
256}
257
258static void intel_fbc_work_fn(struct work_struct *__work)
259{
260 struct intel_fbc_work *work =
261 container_of(to_delayed_work(__work),
262 struct intel_fbc_work, work);
263 struct drm_device *dev = work->crtc->dev;
264 struct drm_i915_private *dev_priv = dev->dev_private;
265
266 mutex_lock(&dev->struct_mutex);
267 if (work == dev_priv->fbc_work) {
268 /* Double check that we haven't switched fb without cancelling
269 * the prior work.
270 */
271 if (work->crtc->fb == work->fb) {
272 dev_priv->display.enable_fbc(work->crtc,
273 work->interval);
274
275 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
276 dev_priv->cfb_fb = work->crtc->fb->base.id;
277 dev_priv->cfb_y = work->crtc->y;
278 }
279
280 dev_priv->fbc_work = NULL;
281 }
282 mutex_unlock(&dev->struct_mutex);
283
284 kfree(work);
285}
286
287static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
288{
289 if (dev_priv->fbc_work == NULL)
290 return;
291
292 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
293
294 /* Synchronisation is provided by struct_mutex and checking of
295 * dev_priv->fbc_work, so we can perform the cancellation
296 * entirely asynchronously.
297 */
298 if (cancel_delayed_work(&dev_priv->fbc_work->work))
299 /* tasklet was killed before being run, clean up */
300 kfree(dev_priv->fbc_work);
301
302 /* Mark the work as no longer wanted so that if it does
303 * wake-up (because the work was already running and waiting
304 * for our mutex), it will discover that is no longer
305 * necessary to run.
306 */
307 dev_priv->fbc_work = NULL;
308}
309
310void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
311{
312 struct intel_fbc_work *work;
313 struct drm_device *dev = crtc->dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 if (!dev_priv->display.enable_fbc)
317 return;
318
319 intel_cancel_fbc_work(dev_priv);
320
321 work = kzalloc(sizeof *work, GFP_KERNEL);
322 if (work == NULL) {
323 dev_priv->display.enable_fbc(crtc, interval);
324 return;
325 }
326
327 work->crtc = crtc;
328 work->fb = crtc->fb;
329 work->interval = interval;
330 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
331
332 dev_priv->fbc_work = work;
333
334 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
335
336 /* Delay the actual enabling to let pageflipping cease and the
337 * display to settle before starting the compression. Note that
338 * this delay also serves a second purpose: it allows for a
339 * vblank to pass after disabling the FBC before we attempt
340 * to modify the control registers.
341 *
342 * A more complicated solution would involve tracking vblanks
343 * following the termination of the page-flipping sequence
344 * and indeed performing the enable as a co-routine and not
345 * waiting synchronously upon the vblank.
346 */
347 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
348}
349
350void intel_disable_fbc(struct drm_device *dev)
351{
352 struct drm_i915_private *dev_priv = dev->dev_private;
353
354 intel_cancel_fbc_work(dev_priv);
355
356 if (!dev_priv->display.disable_fbc)
357 return;
358
359 dev_priv->display.disable_fbc(dev);
360 dev_priv->cfb_plane = -1;
361}
362
363/**
364 * intel_update_fbc - enable/disable FBC as needed
365 * @dev: the drm_device
366 *
367 * Set up the framebuffer compression hardware at mode set time. We
368 * enable it if possible:
369 * - plane A only (on pre-965)
370 * - no pixel mulitply/line duplication
371 * - no alpha buffer discard
372 * - no dual wide
373 * - framebuffer <= 2048 in width, 1536 in height
374 *
375 * We can't assume that any compression will take place (worst case),
376 * so the compressed buffer has to be the same size as the uncompressed
377 * one. It also must reside (along with the line length buffer) in
378 * stolen memory.
379 *
380 * We need to enable/disable FBC on a global basis.
381 */
382void intel_update_fbc(struct drm_device *dev)
383{
384 struct drm_i915_private *dev_priv = dev->dev_private;
385 struct drm_crtc *crtc = NULL, *tmp_crtc;
386 struct intel_crtc *intel_crtc;
387 struct drm_framebuffer *fb;
388 struct intel_framebuffer *intel_fb;
389 struct drm_i915_gem_object *obj;
390 int enable_fbc;
391
85208be0
ED
392 if (!i915_powersave)
393 return;
394
395 if (!I915_HAS_FBC(dev))
396 return;
397
398 /*
399 * If FBC is already on, we just have to verify that we can
400 * keep it that way...
401 * Need to disable if:
402 * - more than one pipe is active
403 * - changing FBC params (stride, fence, mode)
404 * - new fb is too large to fit in compressed buffer
405 * - going to an unsupported config (interlace, pixel multiply, etc.)
406 */
407 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
f20e0b08 408 if (to_intel_crtc(tmp_crtc)->active &&
93314b5b
CW
409 !to_intel_crtc(tmp_crtc)->primary_disabled &&
410 tmp_crtc->fb) {
85208be0
ED
411 if (crtc) {
412 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
413 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
414 goto out_disable;
415 }
416 crtc = tmp_crtc;
417 }
418 }
419
420 if (!crtc || crtc->fb == NULL) {
421 DRM_DEBUG_KMS("no output, disabling\n");
422 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
423 goto out_disable;
424 }
425
426 intel_crtc = to_intel_crtc(crtc);
427 fb = crtc->fb;
428 intel_fb = to_intel_framebuffer(fb);
429 obj = intel_fb->obj;
430
431 enable_fbc = i915_enable_fbc;
432 if (enable_fbc < 0) {
433 DRM_DEBUG_KMS("fbc set to per-chip default\n");
434 enable_fbc = 1;
435 if (INTEL_INFO(dev)->gen <= 6)
436 enable_fbc = 0;
437 }
438 if (!enable_fbc) {
439 DRM_DEBUG_KMS("fbc disabled per module param\n");
440 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
441 goto out_disable;
442 }
443 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
444 DRM_DEBUG_KMS("framebuffer too large, disabling "
445 "compression\n");
446 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
447 goto out_disable;
448 }
449 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
450 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
451 DRM_DEBUG_KMS("mode incompatible with compression, "
452 "disabling\n");
453 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
454 goto out_disable;
455 }
456 if ((crtc->mode.hdisplay > 2048) ||
457 (crtc->mode.vdisplay > 1536)) {
458 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
459 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
460 goto out_disable;
461 }
462 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
463 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
464 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
465 goto out_disable;
466 }
467
468 /* The use of a CPU fence is mandatory in order to detect writes
469 * by the CPU to the scanout and trigger updates to the FBC.
470 */
471 if (obj->tiling_mode != I915_TILING_X ||
472 obj->fence_reg == I915_FENCE_REG_NONE) {
473 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
474 dev_priv->no_fbc_reason = FBC_NOT_TILED;
475 goto out_disable;
476 }
477
478 /* If the kernel debugger is active, always disable compression */
479 if (in_dbg_master())
480 goto out_disable;
481
482 /* If the scanout has not changed, don't modify the FBC settings.
483 * Note that we make the fundamental assumption that the fb->obj
484 * cannot be unpinned (and have its GTT offset and fence revoked)
485 * without first being decoupled from the scanout and FBC disabled.
486 */
487 if (dev_priv->cfb_plane == intel_crtc->plane &&
488 dev_priv->cfb_fb == fb->base.id &&
489 dev_priv->cfb_y == crtc->y)
490 return;
491
492 if (intel_fbc_enabled(dev)) {
493 /* We update FBC along two paths, after changing fb/crtc
494 * configuration (modeswitching) and after page-flipping
495 * finishes. For the latter, we know that not only did
496 * we disable the FBC at the start of the page-flip
497 * sequence, but also more than one vblank has passed.
498 *
499 * For the former case of modeswitching, it is possible
500 * to switch between two FBC valid configurations
501 * instantaneously so we do need to disable the FBC
502 * before we can modify its control registers. We also
503 * have to wait for the next vblank for that to take
504 * effect. However, since we delay enabling FBC we can
505 * assume that a vblank has passed since disabling and
506 * that we can safely alter the registers in the deferred
507 * callback.
508 *
509 * In the scenario that we go from a valid to invalid
510 * and then back to valid FBC configuration we have
511 * no strict enforcement that a vblank occurred since
512 * disabling the FBC. However, along all current pipe
513 * disabling paths we do need to wait for a vblank at
514 * some point. And we wait before enabling FBC anyway.
515 */
516 DRM_DEBUG_KMS("disabling active FBC for update\n");
517 intel_disable_fbc(dev);
518 }
519
520 intel_enable_fbc(crtc, 500);
521 return;
522
523out_disable:
524 /* Multiple disables should be harmless */
525 if (intel_fbc_enabled(dev)) {
526 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
527 intel_disable_fbc(dev);
528 }
529}
530
c921aba8
DV
531static void i915_pineview_get_mem_freq(struct drm_device *dev)
532{
533 drm_i915_private_t *dev_priv = dev->dev_private;
534 u32 tmp;
535
536 tmp = I915_READ(CLKCFG);
537
538 switch (tmp & CLKCFG_FSB_MASK) {
539 case CLKCFG_FSB_533:
540 dev_priv->fsb_freq = 533; /* 133*4 */
541 break;
542 case CLKCFG_FSB_800:
543 dev_priv->fsb_freq = 800; /* 200*4 */
544 break;
545 case CLKCFG_FSB_667:
546 dev_priv->fsb_freq = 667; /* 167*4 */
547 break;
548 case CLKCFG_FSB_400:
549 dev_priv->fsb_freq = 400; /* 100*4 */
550 break;
551 }
552
553 switch (tmp & CLKCFG_MEM_MASK) {
554 case CLKCFG_MEM_533:
555 dev_priv->mem_freq = 533;
556 break;
557 case CLKCFG_MEM_667:
558 dev_priv->mem_freq = 667;
559 break;
560 case CLKCFG_MEM_800:
561 dev_priv->mem_freq = 800;
562 break;
563 }
564
565 /* detect pineview DDR3 setting */
566 tmp = I915_READ(CSHRDDR3CTL);
567 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
568}
569
570static void i915_ironlake_get_mem_freq(struct drm_device *dev)
571{
572 drm_i915_private_t *dev_priv = dev->dev_private;
573 u16 ddrpll, csipll;
574
575 ddrpll = I915_READ16(DDRMPLL1);
576 csipll = I915_READ16(CSIPLL0);
577
578 switch (ddrpll & 0xff) {
579 case 0xc:
580 dev_priv->mem_freq = 800;
581 break;
582 case 0x10:
583 dev_priv->mem_freq = 1066;
584 break;
585 case 0x14:
586 dev_priv->mem_freq = 1333;
587 break;
588 case 0x18:
589 dev_priv->mem_freq = 1600;
590 break;
591 default:
592 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
593 ddrpll & 0xff);
594 dev_priv->mem_freq = 0;
595 break;
596 }
597
20e4d407 598 dev_priv->ips.r_t = dev_priv->mem_freq;
c921aba8
DV
599
600 switch (csipll & 0x3ff) {
601 case 0x00c:
602 dev_priv->fsb_freq = 3200;
603 break;
604 case 0x00e:
605 dev_priv->fsb_freq = 3733;
606 break;
607 case 0x010:
608 dev_priv->fsb_freq = 4266;
609 break;
610 case 0x012:
611 dev_priv->fsb_freq = 4800;
612 break;
613 case 0x014:
614 dev_priv->fsb_freq = 5333;
615 break;
616 case 0x016:
617 dev_priv->fsb_freq = 5866;
618 break;
619 case 0x018:
620 dev_priv->fsb_freq = 6400;
621 break;
622 default:
623 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
624 csipll & 0x3ff);
625 dev_priv->fsb_freq = 0;
626 break;
627 }
628
629 if (dev_priv->fsb_freq == 3200) {
20e4d407 630 dev_priv->ips.c_m = 0;
c921aba8 631 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
20e4d407 632 dev_priv->ips.c_m = 1;
c921aba8 633 } else {
20e4d407 634 dev_priv->ips.c_m = 2;
c921aba8
DV
635 }
636}
637
b445e3b0
ED
638static const struct cxsr_latency cxsr_latency_table[] = {
639 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
640 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
641 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
642 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
643 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
644
645 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
646 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
647 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
648 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
649 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
650
651 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
652 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
653 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
654 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
655 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
656
657 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
658 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
659 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
660 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
661 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
662
663 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
664 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
665 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
666 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
667 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
668
669 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
670 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
671 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
672 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
673 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
674};
675
63c62275 676static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
b445e3b0
ED
677 int is_ddr3,
678 int fsb,
679 int mem)
680{
681 const struct cxsr_latency *latency;
682 int i;
683
684 if (fsb == 0 || mem == 0)
685 return NULL;
686
687 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
688 latency = &cxsr_latency_table[i];
689 if (is_desktop == latency->is_desktop &&
690 is_ddr3 == latency->is_ddr3 &&
691 fsb == latency->fsb_freq && mem == latency->mem_freq)
692 return latency;
693 }
694
695 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
696
697 return NULL;
698}
699
1fa61106 700static void pineview_disable_cxsr(struct drm_device *dev)
b445e3b0
ED
701{
702 struct drm_i915_private *dev_priv = dev->dev_private;
703
704 /* deactivate cxsr */
705 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
706}
707
708/*
709 * Latency for FIFO fetches is dependent on several factors:
710 * - memory configuration (speed, channels)
711 * - chipset
712 * - current MCH state
713 * It can be fairly high in some situations, so here we assume a fairly
714 * pessimal value. It's a tradeoff between extra memory fetches (if we
715 * set this value too high, the FIFO will fetch frequently to stay full)
716 * and power consumption (set it too low to save power and we might see
717 * FIFO underruns and display "flicker").
718 *
719 * A value of 5us seems to be a good balance; safe for very low end
720 * platforms but not overly aggressive on lower latency configs.
721 */
722static const int latency_ns = 5000;
723
1fa61106 724static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
725{
726 struct drm_i915_private *dev_priv = dev->dev_private;
727 uint32_t dsparb = I915_READ(DSPARB);
728 int size;
729
730 size = dsparb & 0x7f;
731 if (plane)
732 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
733
734 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
735 plane ? "B" : "A", size);
736
737 return size;
738}
739
1fa61106 740static int i85x_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
741{
742 struct drm_i915_private *dev_priv = dev->dev_private;
743 uint32_t dsparb = I915_READ(DSPARB);
744 int size;
745
746 size = dsparb & 0x1ff;
747 if (plane)
748 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
749 size >>= 1; /* Convert to cachelines */
750
751 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
752 plane ? "B" : "A", size);
753
754 return size;
755}
756
1fa61106 757static int i845_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
758{
759 struct drm_i915_private *dev_priv = dev->dev_private;
760 uint32_t dsparb = I915_READ(DSPARB);
761 int size;
762
763 size = dsparb & 0x7f;
764 size >>= 2; /* Convert to cachelines */
765
766 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
767 plane ? "B" : "A",
768 size);
769
770 return size;
771}
772
1fa61106 773static int i830_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
774{
775 struct drm_i915_private *dev_priv = dev->dev_private;
776 uint32_t dsparb = I915_READ(DSPARB);
777 int size;
778
779 size = dsparb & 0x7f;
780 size >>= 1; /* Convert to cachelines */
781
782 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
783 plane ? "B" : "A", size);
784
785 return size;
786}
787
788/* Pineview has different values for various configs */
789static const struct intel_watermark_params pineview_display_wm = {
790 PINEVIEW_DISPLAY_FIFO,
791 PINEVIEW_MAX_WM,
792 PINEVIEW_DFT_WM,
793 PINEVIEW_GUARD_WM,
794 PINEVIEW_FIFO_LINE_SIZE
795};
796static const struct intel_watermark_params pineview_display_hplloff_wm = {
797 PINEVIEW_DISPLAY_FIFO,
798 PINEVIEW_MAX_WM,
799 PINEVIEW_DFT_HPLLOFF_WM,
800 PINEVIEW_GUARD_WM,
801 PINEVIEW_FIFO_LINE_SIZE
802};
803static const struct intel_watermark_params pineview_cursor_wm = {
804 PINEVIEW_CURSOR_FIFO,
805 PINEVIEW_CURSOR_MAX_WM,
806 PINEVIEW_CURSOR_DFT_WM,
807 PINEVIEW_CURSOR_GUARD_WM,
808 PINEVIEW_FIFO_LINE_SIZE,
809};
810static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
811 PINEVIEW_CURSOR_FIFO,
812 PINEVIEW_CURSOR_MAX_WM,
813 PINEVIEW_CURSOR_DFT_WM,
814 PINEVIEW_CURSOR_GUARD_WM,
815 PINEVIEW_FIFO_LINE_SIZE
816};
817static const struct intel_watermark_params g4x_wm_info = {
818 G4X_FIFO_SIZE,
819 G4X_MAX_WM,
820 G4X_MAX_WM,
821 2,
822 G4X_FIFO_LINE_SIZE,
823};
824static const struct intel_watermark_params g4x_cursor_wm_info = {
825 I965_CURSOR_FIFO,
826 I965_CURSOR_MAX_WM,
827 I965_CURSOR_DFT_WM,
828 2,
829 G4X_FIFO_LINE_SIZE,
830};
831static const struct intel_watermark_params valleyview_wm_info = {
832 VALLEYVIEW_FIFO_SIZE,
833 VALLEYVIEW_MAX_WM,
834 VALLEYVIEW_MAX_WM,
835 2,
836 G4X_FIFO_LINE_SIZE,
837};
838static const struct intel_watermark_params valleyview_cursor_wm_info = {
839 I965_CURSOR_FIFO,
840 VALLEYVIEW_CURSOR_MAX_WM,
841 I965_CURSOR_DFT_WM,
842 2,
843 G4X_FIFO_LINE_SIZE,
844};
845static const struct intel_watermark_params i965_cursor_wm_info = {
846 I965_CURSOR_FIFO,
847 I965_CURSOR_MAX_WM,
848 I965_CURSOR_DFT_WM,
849 2,
850 I915_FIFO_LINE_SIZE,
851};
852static const struct intel_watermark_params i945_wm_info = {
853 I945_FIFO_SIZE,
854 I915_MAX_WM,
855 1,
856 2,
857 I915_FIFO_LINE_SIZE
858};
859static const struct intel_watermark_params i915_wm_info = {
860 I915_FIFO_SIZE,
861 I915_MAX_WM,
862 1,
863 2,
864 I915_FIFO_LINE_SIZE
865};
866static const struct intel_watermark_params i855_wm_info = {
867 I855GM_FIFO_SIZE,
868 I915_MAX_WM,
869 1,
870 2,
871 I830_FIFO_LINE_SIZE
872};
873static const struct intel_watermark_params i830_wm_info = {
874 I830_FIFO_SIZE,
875 I915_MAX_WM,
876 1,
877 2,
878 I830_FIFO_LINE_SIZE
879};
880
881static const struct intel_watermark_params ironlake_display_wm_info = {
882 ILK_DISPLAY_FIFO,
883 ILK_DISPLAY_MAXWM,
884 ILK_DISPLAY_DFTWM,
885 2,
886 ILK_FIFO_LINE_SIZE
887};
888static const struct intel_watermark_params ironlake_cursor_wm_info = {
889 ILK_CURSOR_FIFO,
890 ILK_CURSOR_MAXWM,
891 ILK_CURSOR_DFTWM,
892 2,
893 ILK_FIFO_LINE_SIZE
894};
895static const struct intel_watermark_params ironlake_display_srwm_info = {
896 ILK_DISPLAY_SR_FIFO,
897 ILK_DISPLAY_MAX_SRWM,
898 ILK_DISPLAY_DFT_SRWM,
899 2,
900 ILK_FIFO_LINE_SIZE
901};
902static const struct intel_watermark_params ironlake_cursor_srwm_info = {
903 ILK_CURSOR_SR_FIFO,
904 ILK_CURSOR_MAX_SRWM,
905 ILK_CURSOR_DFT_SRWM,
906 2,
907 ILK_FIFO_LINE_SIZE
908};
909
910static const struct intel_watermark_params sandybridge_display_wm_info = {
911 SNB_DISPLAY_FIFO,
912 SNB_DISPLAY_MAXWM,
913 SNB_DISPLAY_DFTWM,
914 2,
915 SNB_FIFO_LINE_SIZE
916};
917static const struct intel_watermark_params sandybridge_cursor_wm_info = {
918 SNB_CURSOR_FIFO,
919 SNB_CURSOR_MAXWM,
920 SNB_CURSOR_DFTWM,
921 2,
922 SNB_FIFO_LINE_SIZE
923};
924static const struct intel_watermark_params sandybridge_display_srwm_info = {
925 SNB_DISPLAY_SR_FIFO,
926 SNB_DISPLAY_MAX_SRWM,
927 SNB_DISPLAY_DFT_SRWM,
928 2,
929 SNB_FIFO_LINE_SIZE
930};
931static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
932 SNB_CURSOR_SR_FIFO,
933 SNB_CURSOR_MAX_SRWM,
934 SNB_CURSOR_DFT_SRWM,
935 2,
936 SNB_FIFO_LINE_SIZE
937};
938
939
940/**
941 * intel_calculate_wm - calculate watermark level
942 * @clock_in_khz: pixel clock
943 * @wm: chip FIFO params
944 * @pixel_size: display pixel size
945 * @latency_ns: memory latency for the platform
946 *
947 * Calculate the watermark level (the level at which the display plane will
948 * start fetching from memory again). Each chip has a different display
949 * FIFO size and allocation, so the caller needs to figure that out and pass
950 * in the correct intel_watermark_params structure.
951 *
952 * As the pixel clock runs, the FIFO will be drained at a rate that depends
953 * on the pixel size. When it reaches the watermark level, it'll start
954 * fetching FIFO line sized based chunks from memory until the FIFO fills
955 * past the watermark point. If the FIFO drains completely, a FIFO underrun
956 * will occur, and a display engine hang could result.
957 */
958static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
959 const struct intel_watermark_params *wm,
960 int fifo_size,
961 int pixel_size,
962 unsigned long latency_ns)
963{
964 long entries_required, wm_size;
965
966 /*
967 * Note: we need to make sure we don't overflow for various clock &
968 * latency values.
969 * clocks go from a few thousand to several hundred thousand.
970 * latency is usually a few thousand
971 */
972 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
973 1000;
974 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
975
976 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
977
978 wm_size = fifo_size - (entries_required + wm->guard_size);
979
980 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
981
982 /* Don't promote wm_size to unsigned... */
983 if (wm_size > (long)wm->max_wm)
984 wm_size = wm->max_wm;
985 if (wm_size <= 0)
986 wm_size = wm->default_wm;
987 return wm_size;
988}
989
990static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
991{
992 struct drm_crtc *crtc, *enabled = NULL;
993
994 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
f20e0b08 995 if (to_intel_crtc(crtc)->active && crtc->fb) {
b445e3b0
ED
996 if (enabled)
997 return NULL;
998 enabled = crtc;
999 }
1000 }
1001
1002 return enabled;
1003}
1004
1fa61106 1005static void pineview_update_wm(struct drm_device *dev)
b445e3b0
ED
1006{
1007 struct drm_i915_private *dev_priv = dev->dev_private;
1008 struct drm_crtc *crtc;
1009 const struct cxsr_latency *latency;
1010 u32 reg;
1011 unsigned long wm;
1012
1013 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1014 dev_priv->fsb_freq, dev_priv->mem_freq);
1015 if (!latency) {
1016 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1017 pineview_disable_cxsr(dev);
1018 return;
1019 }
1020
1021 crtc = single_enabled_crtc(dev);
1022 if (crtc) {
1023 int clock = crtc->mode.clock;
1024 int pixel_size = crtc->fb->bits_per_pixel / 8;
1025
1026 /* Display SR */
1027 wm = intel_calculate_wm(clock, &pineview_display_wm,
1028 pineview_display_wm.fifo_size,
1029 pixel_size, latency->display_sr);
1030 reg = I915_READ(DSPFW1);
1031 reg &= ~DSPFW_SR_MASK;
1032 reg |= wm << DSPFW_SR_SHIFT;
1033 I915_WRITE(DSPFW1, reg);
1034 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1035
1036 /* cursor SR */
1037 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1038 pineview_display_wm.fifo_size,
1039 pixel_size, latency->cursor_sr);
1040 reg = I915_READ(DSPFW3);
1041 reg &= ~DSPFW_CURSOR_SR_MASK;
1042 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1043 I915_WRITE(DSPFW3, reg);
1044
1045 /* Display HPLL off SR */
1046 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1047 pineview_display_hplloff_wm.fifo_size,
1048 pixel_size, latency->display_hpll_disable);
1049 reg = I915_READ(DSPFW3);
1050 reg &= ~DSPFW_HPLL_SR_MASK;
1051 reg |= wm & DSPFW_HPLL_SR_MASK;
1052 I915_WRITE(DSPFW3, reg);
1053
1054 /* cursor HPLL off SR */
1055 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1056 pineview_display_hplloff_wm.fifo_size,
1057 pixel_size, latency->cursor_hpll_disable);
1058 reg = I915_READ(DSPFW3);
1059 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1060 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1061 I915_WRITE(DSPFW3, reg);
1062 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1063
1064 /* activate cxsr */
1065 I915_WRITE(DSPFW3,
1066 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1067 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1068 } else {
1069 pineview_disable_cxsr(dev);
1070 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1071 }
1072}
1073
1074static bool g4x_compute_wm0(struct drm_device *dev,
1075 int plane,
1076 const struct intel_watermark_params *display,
1077 int display_latency_ns,
1078 const struct intel_watermark_params *cursor,
1079 int cursor_latency_ns,
1080 int *plane_wm,
1081 int *cursor_wm)
1082{
1083 struct drm_crtc *crtc;
1084 int htotal, hdisplay, clock, pixel_size;
1085 int line_time_us, line_count;
1086 int entries, tlb_miss;
1087
1088 crtc = intel_get_crtc_for_plane(dev, plane);
f20e0b08 1089 if (crtc->fb == NULL || !to_intel_crtc(crtc)->active) {
b445e3b0
ED
1090 *cursor_wm = cursor->guard_size;
1091 *plane_wm = display->guard_size;
1092 return false;
1093 }
1094
1095 htotal = crtc->mode.htotal;
1096 hdisplay = crtc->mode.hdisplay;
1097 clock = crtc->mode.clock;
1098 pixel_size = crtc->fb->bits_per_pixel / 8;
1099
1100 /* Use the small buffer method to calculate plane watermark */
1101 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1102 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1103 if (tlb_miss > 0)
1104 entries += tlb_miss;
1105 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1106 *plane_wm = entries + display->guard_size;
1107 if (*plane_wm > (int)display->max_wm)
1108 *plane_wm = display->max_wm;
1109
1110 /* Use the large buffer method to calculate cursor watermark */
1111 line_time_us = ((htotal * 1000) / clock);
1112 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1113 entries = line_count * 64 * pixel_size;
1114 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1115 if (tlb_miss > 0)
1116 entries += tlb_miss;
1117 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1118 *cursor_wm = entries + cursor->guard_size;
1119 if (*cursor_wm > (int)cursor->max_wm)
1120 *cursor_wm = (int)cursor->max_wm;
1121
1122 return true;
1123}
1124
1125/*
1126 * Check the wm result.
1127 *
1128 * If any calculated watermark values is larger than the maximum value that
1129 * can be programmed into the associated watermark register, that watermark
1130 * must be disabled.
1131 */
1132static bool g4x_check_srwm(struct drm_device *dev,
1133 int display_wm, int cursor_wm,
1134 const struct intel_watermark_params *display,
1135 const struct intel_watermark_params *cursor)
1136{
1137 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1138 display_wm, cursor_wm);
1139
1140 if (display_wm > display->max_wm) {
1141 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1142 display_wm, display->max_wm);
1143 return false;
1144 }
1145
1146 if (cursor_wm > cursor->max_wm) {
1147 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1148 cursor_wm, cursor->max_wm);
1149 return false;
1150 }
1151
1152 if (!(display_wm || cursor_wm)) {
1153 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1154 return false;
1155 }
1156
1157 return true;
1158}
1159
1160static bool g4x_compute_srwm(struct drm_device *dev,
1161 int plane,
1162 int latency_ns,
1163 const struct intel_watermark_params *display,
1164 const struct intel_watermark_params *cursor,
1165 int *display_wm, int *cursor_wm)
1166{
1167 struct drm_crtc *crtc;
1168 int hdisplay, htotal, pixel_size, clock;
1169 unsigned long line_time_us;
1170 int line_count, line_size;
1171 int small, large;
1172 int entries;
1173
1174 if (!latency_ns) {
1175 *display_wm = *cursor_wm = 0;
1176 return false;
1177 }
1178
1179 crtc = intel_get_crtc_for_plane(dev, plane);
1180 hdisplay = crtc->mode.hdisplay;
1181 htotal = crtc->mode.htotal;
1182 clock = crtc->mode.clock;
1183 pixel_size = crtc->fb->bits_per_pixel / 8;
1184
1185 line_time_us = (htotal * 1000) / clock;
1186 line_count = (latency_ns / line_time_us + 1000) / 1000;
1187 line_size = hdisplay * pixel_size;
1188
1189 /* Use the minimum of the small and large buffer method for primary */
1190 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1191 large = line_count * line_size;
1192
1193 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1194 *display_wm = entries + display->guard_size;
1195
1196 /* calculate the self-refresh watermark for display cursor */
1197 entries = line_count * pixel_size * 64;
1198 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1199 *cursor_wm = entries + cursor->guard_size;
1200
1201 return g4x_check_srwm(dev,
1202 *display_wm, *cursor_wm,
1203 display, cursor);
1204}
1205
1206static bool vlv_compute_drain_latency(struct drm_device *dev,
1207 int plane,
1208 int *plane_prec_mult,
1209 int *plane_dl,
1210 int *cursor_prec_mult,
1211 int *cursor_dl)
1212{
1213 struct drm_crtc *crtc;
1214 int clock, pixel_size;
1215 int entries;
1216
1217 crtc = intel_get_crtc_for_plane(dev, plane);
f20e0b08 1218 if (crtc->fb == NULL || !to_intel_crtc(crtc)->active)
b445e3b0
ED
1219 return false;
1220
1221 clock = crtc->mode.clock; /* VESA DOT Clock */
1222 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1223
1224 entries = (clock / 1000) * pixel_size;
1225 *plane_prec_mult = (entries > 256) ?
1226 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1227 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1228 pixel_size);
1229
1230 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1231 *cursor_prec_mult = (entries > 256) ?
1232 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1233 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1234
1235 return true;
1236}
1237
1238/*
1239 * Update drain latency registers of memory arbiter
1240 *
1241 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1242 * to be programmed. Each plane has a drain latency multiplier and a drain
1243 * latency value.
1244 */
1245
1246static void vlv_update_drain_latency(struct drm_device *dev)
1247{
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1250 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1251 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1252 either 16 or 32 */
1253
1254 /* For plane A, Cursor A */
1255 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1256 &cursor_prec_mult, &cursora_dl)) {
1257 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1259 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1260 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1261
1262 I915_WRITE(VLV_DDL1, cursora_prec |
1263 (cursora_dl << DDL_CURSORA_SHIFT) |
1264 planea_prec | planea_dl);
1265 }
1266
1267 /* For plane B, Cursor B */
1268 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1269 &cursor_prec_mult, &cursorb_dl)) {
1270 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1272 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1273 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1274
1275 I915_WRITE(VLV_DDL2, cursorb_prec |
1276 (cursorb_dl << DDL_CURSORB_SHIFT) |
1277 planeb_prec | planeb_dl);
1278 }
1279}
1280
1281#define single_plane_enabled(mask) is_power_of_2(mask)
1282
1fa61106 1283static void valleyview_update_wm(struct drm_device *dev)
b445e3b0
ED
1284{
1285 static const int sr_latency_ns = 12000;
1286 struct drm_i915_private *dev_priv = dev->dev_private;
1287 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1288 int plane_sr, cursor_sr;
af6c4575 1289 int ignore_plane_sr, ignore_cursor_sr;
b445e3b0
ED
1290 unsigned int enabled = 0;
1291
1292 vlv_update_drain_latency(dev);
1293
1294 if (g4x_compute_wm0(dev, 0,
1295 &valleyview_wm_info, latency_ns,
1296 &valleyview_cursor_wm_info, latency_ns,
1297 &planea_wm, &cursora_wm))
1298 enabled |= 1;
1299
1300 if (g4x_compute_wm0(dev, 1,
1301 &valleyview_wm_info, latency_ns,
1302 &valleyview_cursor_wm_info, latency_ns,
1303 &planeb_wm, &cursorb_wm))
1304 enabled |= 2;
1305
b445e3b0
ED
1306 if (single_plane_enabled(enabled) &&
1307 g4x_compute_srwm(dev, ffs(enabled) - 1,
1308 sr_latency_ns,
1309 &valleyview_wm_info,
1310 &valleyview_cursor_wm_info,
af6c4575
CW
1311 &plane_sr, &ignore_cursor_sr) &&
1312 g4x_compute_srwm(dev, ffs(enabled) - 1,
1313 2*sr_latency_ns,
1314 &valleyview_wm_info,
1315 &valleyview_cursor_wm_info,
52bd02d8 1316 &ignore_plane_sr, &cursor_sr)) {
b445e3b0 1317 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
52bd02d8 1318 } else {
b445e3b0
ED
1319 I915_WRITE(FW_BLC_SELF_VLV,
1320 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
52bd02d8
CW
1321 plane_sr = cursor_sr = 0;
1322 }
b445e3b0
ED
1323
1324 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1325 planea_wm, cursora_wm,
1326 planeb_wm, cursorb_wm,
1327 plane_sr, cursor_sr);
1328
1329 I915_WRITE(DSPFW1,
1330 (plane_sr << DSPFW_SR_SHIFT) |
1331 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1332 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1333 planea_wm);
1334 I915_WRITE(DSPFW2,
8c919b28 1335 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1336 (cursora_wm << DSPFW_CURSORA_SHIFT));
1337 I915_WRITE(DSPFW3,
8c919b28
CW
1338 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1339 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
b445e3b0
ED
1340}
1341
1fa61106 1342static void g4x_update_wm(struct drm_device *dev)
b445e3b0
ED
1343{
1344 static const int sr_latency_ns = 12000;
1345 struct drm_i915_private *dev_priv = dev->dev_private;
1346 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1347 int plane_sr, cursor_sr;
1348 unsigned int enabled = 0;
1349
1350 if (g4x_compute_wm0(dev, 0,
1351 &g4x_wm_info, latency_ns,
1352 &g4x_cursor_wm_info, latency_ns,
1353 &planea_wm, &cursora_wm))
1354 enabled |= 1;
1355
1356 if (g4x_compute_wm0(dev, 1,
1357 &g4x_wm_info, latency_ns,
1358 &g4x_cursor_wm_info, latency_ns,
1359 &planeb_wm, &cursorb_wm))
1360 enabled |= 2;
1361
b445e3b0
ED
1362 if (single_plane_enabled(enabled) &&
1363 g4x_compute_srwm(dev, ffs(enabled) - 1,
1364 sr_latency_ns,
1365 &g4x_wm_info,
1366 &g4x_cursor_wm_info,
52bd02d8 1367 &plane_sr, &cursor_sr)) {
b445e3b0 1368 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
52bd02d8 1369 } else {
b445e3b0
ED
1370 I915_WRITE(FW_BLC_SELF,
1371 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
52bd02d8
CW
1372 plane_sr = cursor_sr = 0;
1373 }
b445e3b0
ED
1374
1375 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1376 planea_wm, cursora_wm,
1377 planeb_wm, cursorb_wm,
1378 plane_sr, cursor_sr);
1379
1380 I915_WRITE(DSPFW1,
1381 (plane_sr << DSPFW_SR_SHIFT) |
1382 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1383 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1384 planea_wm);
1385 I915_WRITE(DSPFW2,
8c919b28 1386 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1387 (cursora_wm << DSPFW_CURSORA_SHIFT));
1388 /* HPLL off in SR has some issues on G4x... disable it */
1389 I915_WRITE(DSPFW3,
8c919b28 1390 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
b445e3b0
ED
1391 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1392}
1393
1fa61106 1394static void i965_update_wm(struct drm_device *dev)
b445e3b0
ED
1395{
1396 struct drm_i915_private *dev_priv = dev->dev_private;
1397 struct drm_crtc *crtc;
1398 int srwm = 1;
1399 int cursor_sr = 16;
1400
1401 /* Calc sr entries for one plane configs */
1402 crtc = single_enabled_crtc(dev);
1403 if (crtc) {
1404 /* self-refresh has much higher latency */
1405 static const int sr_latency_ns = 12000;
1406 int clock = crtc->mode.clock;
1407 int htotal = crtc->mode.htotal;
1408 int hdisplay = crtc->mode.hdisplay;
1409 int pixel_size = crtc->fb->bits_per_pixel / 8;
1410 unsigned long line_time_us;
1411 int entries;
1412
1413 line_time_us = ((htotal * 1000) / clock);
1414
1415 /* Use ns/us then divide to preserve precision */
1416 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1417 pixel_size * hdisplay;
1418 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1419 srwm = I965_FIFO_SIZE - entries;
1420 if (srwm < 0)
1421 srwm = 1;
1422 srwm &= 0x1ff;
1423 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1424 entries, srwm);
1425
1426 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1427 pixel_size * 64;
1428 entries = DIV_ROUND_UP(entries,
1429 i965_cursor_wm_info.cacheline_size);
1430 cursor_sr = i965_cursor_wm_info.fifo_size -
1431 (entries + i965_cursor_wm_info.guard_size);
1432
1433 if (cursor_sr > i965_cursor_wm_info.max_wm)
1434 cursor_sr = i965_cursor_wm_info.max_wm;
1435
1436 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1437 "cursor %d\n", srwm, cursor_sr);
1438
1439 if (IS_CRESTLINE(dev))
1440 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1441 } else {
1442 /* Turn off self refresh if both pipes are enabled */
1443 if (IS_CRESTLINE(dev))
1444 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1445 & ~FW_BLC_SELF_EN);
1446 }
1447
1448 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1449 srwm);
1450
1451 /* 965 has limitations... */
1452 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1453 (8 << 16) | (8 << 8) | (8 << 0));
1454 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1455 /* update cursor SR watermark */
1456 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1457}
1458
1fa61106 1459static void i9xx_update_wm(struct drm_device *dev)
b445e3b0
ED
1460{
1461 struct drm_i915_private *dev_priv = dev->dev_private;
1462 const struct intel_watermark_params *wm_info;
1463 uint32_t fwater_lo;
1464 uint32_t fwater_hi;
1465 int cwm, srwm = 1;
1466 int fifo_size;
1467 int planea_wm, planeb_wm;
1468 struct drm_crtc *crtc, *enabled = NULL;
1469
1470 if (IS_I945GM(dev))
1471 wm_info = &i945_wm_info;
1472 else if (!IS_GEN2(dev))
1473 wm_info = &i915_wm_info;
1474 else
1475 wm_info = &i855_wm_info;
1476
1477 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1478 crtc = intel_get_crtc_for_plane(dev, 0);
f20e0b08 1479 if (to_intel_crtc(crtc)->active && crtc->fb) {
b9e0bda3
CW
1480 int cpp = crtc->fb->bits_per_pixel / 8;
1481 if (IS_GEN2(dev))
1482 cpp = 4;
1483
b445e3b0 1484 planea_wm = intel_calculate_wm(crtc->mode.clock,
b9e0bda3 1485 wm_info, fifo_size, cpp,
b445e3b0
ED
1486 latency_ns);
1487 enabled = crtc;
1488 } else
1489 planea_wm = fifo_size - wm_info->guard_size;
1490
1491 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1492 crtc = intel_get_crtc_for_plane(dev, 1);
f20e0b08 1493 if (to_intel_crtc(crtc)->active && crtc->fb) {
b9e0bda3
CW
1494 int cpp = crtc->fb->bits_per_pixel / 8;
1495 if (IS_GEN2(dev))
1496 cpp = 4;
1497
b445e3b0 1498 planeb_wm = intel_calculate_wm(crtc->mode.clock,
b9e0bda3 1499 wm_info, fifo_size, cpp,
b445e3b0
ED
1500 latency_ns);
1501 if (enabled == NULL)
1502 enabled = crtc;
1503 else
1504 enabled = NULL;
1505 } else
1506 planeb_wm = fifo_size - wm_info->guard_size;
1507
1508 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1509
1510 /*
1511 * Overlay gets an aggressive default since video jitter is bad.
1512 */
1513 cwm = 2;
1514
1515 /* Play safe and disable self-refresh before adjusting watermarks. */
1516 if (IS_I945G(dev) || IS_I945GM(dev))
1517 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1518 else if (IS_I915GM(dev))
1519 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1520
1521 /* Calc sr entries for one plane configs */
1522 if (HAS_FW_BLC(dev) && enabled) {
1523 /* self-refresh has much higher latency */
1524 static const int sr_latency_ns = 6000;
1525 int clock = enabled->mode.clock;
1526 int htotal = enabled->mode.htotal;
1527 int hdisplay = enabled->mode.hdisplay;
1528 int pixel_size = enabled->fb->bits_per_pixel / 8;
1529 unsigned long line_time_us;
1530 int entries;
1531
1532 line_time_us = (htotal * 1000) / clock;
1533
1534 /* Use ns/us then divide to preserve precision */
1535 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1536 pixel_size * hdisplay;
1537 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1538 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1539 srwm = wm_info->fifo_size - entries;
1540 if (srwm < 0)
1541 srwm = 1;
1542
1543 if (IS_I945G(dev) || IS_I945GM(dev))
1544 I915_WRITE(FW_BLC_SELF,
1545 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1546 else if (IS_I915GM(dev))
1547 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1548 }
1549
1550 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1551 planea_wm, planeb_wm, cwm, srwm);
1552
1553 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1554 fwater_hi = (cwm & 0x1f);
1555
1556 /* Set request length to 8 cachelines per fetch */
1557 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1558 fwater_hi = fwater_hi | (1 << 8);
1559
1560 I915_WRITE(FW_BLC, fwater_lo);
1561 I915_WRITE(FW_BLC2, fwater_hi);
1562
1563 if (HAS_FW_BLC(dev)) {
1564 if (enabled) {
1565 if (IS_I945G(dev) || IS_I945GM(dev))
1566 I915_WRITE(FW_BLC_SELF,
1567 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1568 else if (IS_I915GM(dev))
1569 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1570 DRM_DEBUG_KMS("memory self refresh enabled\n");
1571 } else
1572 DRM_DEBUG_KMS("memory self refresh disabled\n");
1573 }
1574}
1575
1fa61106 1576static void i830_update_wm(struct drm_device *dev)
b445e3b0
ED
1577{
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1579 struct drm_crtc *crtc;
1580 uint32_t fwater_lo;
1581 int planea_wm;
1582
1583 crtc = single_enabled_crtc(dev);
1584 if (crtc == NULL)
1585 return;
1586
1587 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1588 dev_priv->display.get_fifo_size(dev, 0),
b9e0bda3 1589 4, latency_ns);
b445e3b0
ED
1590 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1591 fwater_lo |= (3<<8) | planea_wm;
1592
1593 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1594
1595 I915_WRITE(FW_BLC, fwater_lo);
1596}
1597
1598#define ILK_LP0_PLANE_LATENCY 700
1599#define ILK_LP0_CURSOR_LATENCY 1300
1600
1601/*
1602 * Check the wm result.
1603 *
1604 * If any calculated watermark values is larger than the maximum value that
1605 * can be programmed into the associated watermark register, that watermark
1606 * must be disabled.
1607 */
1608static bool ironlake_check_srwm(struct drm_device *dev, int level,
1609 int fbc_wm, int display_wm, int cursor_wm,
1610 const struct intel_watermark_params *display,
1611 const struct intel_watermark_params *cursor)
1612{
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614
1615 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1616 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1617
1618 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1619 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1620 fbc_wm, SNB_FBC_MAX_SRWM, level);
1621
1622 /* fbc has it's own way to disable FBC WM */
1623 I915_WRITE(DISP_ARB_CTL,
1624 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1625 return false;
1626 }
1627
1628 if (display_wm > display->max_wm) {
1629 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1630 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1631 return false;
1632 }
1633
1634 if (cursor_wm > cursor->max_wm) {
1635 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1636 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1637 return false;
1638 }
1639
1640 if (!(fbc_wm || display_wm || cursor_wm)) {
1641 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1642 return false;
1643 }
1644
1645 return true;
1646}
1647
1648/*
1649 * Compute watermark values of WM[1-3],
1650 */
1651static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1652 int latency_ns,
1653 const struct intel_watermark_params *display,
1654 const struct intel_watermark_params *cursor,
1655 int *fbc_wm, int *display_wm, int *cursor_wm)
1656{
1657 struct drm_crtc *crtc;
1658 unsigned long line_time_us;
1659 int hdisplay, htotal, pixel_size, clock;
1660 int line_count, line_size;
1661 int small, large;
1662 int entries;
1663
1664 if (!latency_ns) {
1665 *fbc_wm = *display_wm = *cursor_wm = 0;
1666 return false;
1667 }
1668
1669 crtc = intel_get_crtc_for_plane(dev, plane);
1670 hdisplay = crtc->mode.hdisplay;
1671 htotal = crtc->mode.htotal;
1672 clock = crtc->mode.clock;
1673 pixel_size = crtc->fb->bits_per_pixel / 8;
1674
1675 line_time_us = (htotal * 1000) / clock;
1676 line_count = (latency_ns / line_time_us + 1000) / 1000;
1677 line_size = hdisplay * pixel_size;
1678
1679 /* Use the minimum of the small and large buffer method for primary */
1680 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1681 large = line_count * line_size;
1682
1683 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1684 *display_wm = entries + display->guard_size;
1685
1686 /*
1687 * Spec says:
1688 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1689 */
1690 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1691
1692 /* calculate the self-refresh watermark for display cursor */
1693 entries = line_count * pixel_size * 64;
1694 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1695 *cursor_wm = entries + cursor->guard_size;
1696
1697 return ironlake_check_srwm(dev, level,
1698 *fbc_wm, *display_wm, *cursor_wm,
1699 display, cursor);
1700}
1701
1fa61106 1702static void ironlake_update_wm(struct drm_device *dev)
b445e3b0
ED
1703{
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705 int fbc_wm, plane_wm, cursor_wm;
1706 unsigned int enabled;
1707
1708 enabled = 0;
1709 if (g4x_compute_wm0(dev, 0,
1710 &ironlake_display_wm_info,
1711 ILK_LP0_PLANE_LATENCY,
1712 &ironlake_cursor_wm_info,
1713 ILK_LP0_CURSOR_LATENCY,
1714 &plane_wm, &cursor_wm)) {
1715 I915_WRITE(WM0_PIPEA_ILK,
1716 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1717 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1718 " plane %d, " "cursor: %d\n",
1719 plane_wm, cursor_wm);
1720 enabled |= 1;
1721 }
1722
1723 if (g4x_compute_wm0(dev, 1,
1724 &ironlake_display_wm_info,
1725 ILK_LP0_PLANE_LATENCY,
1726 &ironlake_cursor_wm_info,
1727 ILK_LP0_CURSOR_LATENCY,
1728 &plane_wm, &cursor_wm)) {
1729 I915_WRITE(WM0_PIPEB_ILK,
1730 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1731 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1732 " plane %d, cursor: %d\n",
1733 plane_wm, cursor_wm);
1734 enabled |= 2;
1735 }
1736
1737 /*
1738 * Calculate and update the self-refresh watermark only when one
1739 * display plane is used.
1740 */
1741 I915_WRITE(WM3_LP_ILK, 0);
1742 I915_WRITE(WM2_LP_ILK, 0);
1743 I915_WRITE(WM1_LP_ILK, 0);
1744
1745 if (!single_plane_enabled(enabled))
1746 return;
1747 enabled = ffs(enabled) - 1;
1748
1749 /* WM1 */
1750 if (!ironlake_compute_srwm(dev, 1, enabled,
1751 ILK_READ_WM1_LATENCY() * 500,
1752 &ironlake_display_srwm_info,
1753 &ironlake_cursor_srwm_info,
1754 &fbc_wm, &plane_wm, &cursor_wm))
1755 return;
1756
1757 I915_WRITE(WM1_LP_ILK,
1758 WM1_LP_SR_EN |
1759 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1760 (fbc_wm << WM1_LP_FBC_SHIFT) |
1761 (plane_wm << WM1_LP_SR_SHIFT) |
1762 cursor_wm);
1763
1764 /* WM2 */
1765 if (!ironlake_compute_srwm(dev, 2, enabled,
1766 ILK_READ_WM2_LATENCY() * 500,
1767 &ironlake_display_srwm_info,
1768 &ironlake_cursor_srwm_info,
1769 &fbc_wm, &plane_wm, &cursor_wm))
1770 return;
1771
1772 I915_WRITE(WM2_LP_ILK,
1773 WM2_LP_EN |
1774 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1775 (fbc_wm << WM1_LP_FBC_SHIFT) |
1776 (plane_wm << WM1_LP_SR_SHIFT) |
1777 cursor_wm);
1778
1779 /*
1780 * WM3 is unsupported on ILK, probably because we don't have latency
1781 * data for that power state
1782 */
1783}
1784
1fa61106 1785static void sandybridge_update_wm(struct drm_device *dev)
b445e3b0
ED
1786{
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1789 u32 val;
1790 int fbc_wm, plane_wm, cursor_wm;
1791 unsigned int enabled;
1792
1793 enabled = 0;
1794 if (g4x_compute_wm0(dev, 0,
1795 &sandybridge_display_wm_info, latency,
1796 &sandybridge_cursor_wm_info, latency,
1797 &plane_wm, &cursor_wm)) {
1798 val = I915_READ(WM0_PIPEA_ILK);
1799 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1800 I915_WRITE(WM0_PIPEA_ILK, val |
1801 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1802 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1803 " plane %d, " "cursor: %d\n",
1804 plane_wm, cursor_wm);
1805 enabled |= 1;
1806 }
1807
1808 if (g4x_compute_wm0(dev, 1,
1809 &sandybridge_display_wm_info, latency,
1810 &sandybridge_cursor_wm_info, latency,
1811 &plane_wm, &cursor_wm)) {
1812 val = I915_READ(WM0_PIPEB_ILK);
1813 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1814 I915_WRITE(WM0_PIPEB_ILK, val |
1815 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1816 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1817 " plane %d, cursor: %d\n",
1818 plane_wm, cursor_wm);
1819 enabled |= 2;
1820 }
1821
c43d0188
CW
1822 /*
1823 * Calculate and update the self-refresh watermark only when one
1824 * display plane is used.
1825 *
1826 * SNB support 3 levels of watermark.
1827 *
1828 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1829 * and disabled in the descending order
1830 *
1831 */
1832 I915_WRITE(WM3_LP_ILK, 0);
1833 I915_WRITE(WM2_LP_ILK, 0);
1834 I915_WRITE(WM1_LP_ILK, 0);
1835
1836 if (!single_plane_enabled(enabled) ||
1837 dev_priv->sprite_scaling_enabled)
1838 return;
1839 enabled = ffs(enabled) - 1;
1840
1841 /* WM1 */
1842 if (!ironlake_compute_srwm(dev, 1, enabled,
1843 SNB_READ_WM1_LATENCY() * 500,
1844 &sandybridge_display_srwm_info,
1845 &sandybridge_cursor_srwm_info,
1846 &fbc_wm, &plane_wm, &cursor_wm))
1847 return;
1848
1849 I915_WRITE(WM1_LP_ILK,
1850 WM1_LP_SR_EN |
1851 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1852 (fbc_wm << WM1_LP_FBC_SHIFT) |
1853 (plane_wm << WM1_LP_SR_SHIFT) |
1854 cursor_wm);
1855
1856 /* WM2 */
1857 if (!ironlake_compute_srwm(dev, 2, enabled,
1858 SNB_READ_WM2_LATENCY() * 500,
1859 &sandybridge_display_srwm_info,
1860 &sandybridge_cursor_srwm_info,
1861 &fbc_wm, &plane_wm, &cursor_wm))
1862 return;
1863
1864 I915_WRITE(WM2_LP_ILK,
1865 WM2_LP_EN |
1866 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1867 (fbc_wm << WM1_LP_FBC_SHIFT) |
1868 (plane_wm << WM1_LP_SR_SHIFT) |
1869 cursor_wm);
1870
1871 /* WM3 */
1872 if (!ironlake_compute_srwm(dev, 3, enabled,
1873 SNB_READ_WM3_LATENCY() * 500,
1874 &sandybridge_display_srwm_info,
1875 &sandybridge_cursor_srwm_info,
1876 &fbc_wm, &plane_wm, &cursor_wm))
1877 return;
1878
1879 I915_WRITE(WM3_LP_ILK,
1880 WM3_LP_EN |
1881 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1882 (fbc_wm << WM1_LP_FBC_SHIFT) |
1883 (plane_wm << WM1_LP_SR_SHIFT) |
1884 cursor_wm);
1885}
1886
1887static void ivybridge_update_wm(struct drm_device *dev)
1888{
1889 struct drm_i915_private *dev_priv = dev->dev_private;
1890 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1891 u32 val;
1892 int fbc_wm, plane_wm, cursor_wm;
1893 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1894 unsigned int enabled;
1895
1896 enabled = 0;
1897 if (g4x_compute_wm0(dev, 0,
1898 &sandybridge_display_wm_info, latency,
1899 &sandybridge_cursor_wm_info, latency,
1900 &plane_wm, &cursor_wm)) {
1901 val = I915_READ(WM0_PIPEA_ILK);
1902 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1903 I915_WRITE(WM0_PIPEA_ILK, val |
1904 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1905 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1906 " plane %d, " "cursor: %d\n",
1907 plane_wm, cursor_wm);
1908 enabled |= 1;
1909 }
1910
1911 if (g4x_compute_wm0(dev, 1,
1912 &sandybridge_display_wm_info, latency,
1913 &sandybridge_cursor_wm_info, latency,
1914 &plane_wm, &cursor_wm)) {
1915 val = I915_READ(WM0_PIPEB_ILK);
1916 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1917 I915_WRITE(WM0_PIPEB_ILK, val |
1918 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1919 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1920 " plane %d, cursor: %d\n",
1921 plane_wm, cursor_wm);
1922 enabled |= 2;
1923 }
1924
1925 if (g4x_compute_wm0(dev, 2,
b445e3b0
ED
1926 &sandybridge_display_wm_info, latency,
1927 &sandybridge_cursor_wm_info, latency,
1928 &plane_wm, &cursor_wm)) {
1929 val = I915_READ(WM0_PIPEC_IVB);
1930 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1931 I915_WRITE(WM0_PIPEC_IVB, val |
1932 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1933 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1934 " plane %d, cursor: %d\n",
1935 plane_wm, cursor_wm);
1936 enabled |= 3;
1937 }
1938
1939 /*
1940 * Calculate and update the self-refresh watermark only when one
1941 * display plane is used.
1942 *
1943 * SNB support 3 levels of watermark.
1944 *
1945 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1946 * and disabled in the descending order
1947 *
1948 */
1949 I915_WRITE(WM3_LP_ILK, 0);
1950 I915_WRITE(WM2_LP_ILK, 0);
1951 I915_WRITE(WM1_LP_ILK, 0);
1952
1953 if (!single_plane_enabled(enabled) ||
1954 dev_priv->sprite_scaling_enabled)
1955 return;
1956 enabled = ffs(enabled) - 1;
1957
1958 /* WM1 */
1959 if (!ironlake_compute_srwm(dev, 1, enabled,
1960 SNB_READ_WM1_LATENCY() * 500,
1961 &sandybridge_display_srwm_info,
1962 &sandybridge_cursor_srwm_info,
1963 &fbc_wm, &plane_wm, &cursor_wm))
1964 return;
1965
1966 I915_WRITE(WM1_LP_ILK,
1967 WM1_LP_SR_EN |
1968 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1969 (fbc_wm << WM1_LP_FBC_SHIFT) |
1970 (plane_wm << WM1_LP_SR_SHIFT) |
1971 cursor_wm);
1972
1973 /* WM2 */
1974 if (!ironlake_compute_srwm(dev, 2, enabled,
1975 SNB_READ_WM2_LATENCY() * 500,
1976 &sandybridge_display_srwm_info,
1977 &sandybridge_cursor_srwm_info,
1978 &fbc_wm, &plane_wm, &cursor_wm))
1979 return;
1980
1981 I915_WRITE(WM2_LP_ILK,
1982 WM2_LP_EN |
1983 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1984 (fbc_wm << WM1_LP_FBC_SHIFT) |
1985 (plane_wm << WM1_LP_SR_SHIFT) |
1986 cursor_wm);
1987
c43d0188 1988 /* WM3, note we have to correct the cursor latency */
b445e3b0
ED
1989 if (!ironlake_compute_srwm(dev, 3, enabled,
1990 SNB_READ_WM3_LATENCY() * 500,
1991 &sandybridge_display_srwm_info,
1992 &sandybridge_cursor_srwm_info,
c43d0188
CW
1993 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
1994 !ironlake_compute_srwm(dev, 3, enabled,
1995 2 * SNB_READ_WM3_LATENCY() * 500,
1996 &sandybridge_display_srwm_info,
1997 &sandybridge_cursor_srwm_info,
1998 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
b445e3b0
ED
1999 return;
2000
2001 I915_WRITE(WM3_LP_ILK,
2002 WM3_LP_EN |
2003 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2004 (fbc_wm << WM1_LP_FBC_SHIFT) |
2005 (plane_wm << WM1_LP_SR_SHIFT) |
2006 cursor_wm);
2007}
2008
1f8eeabf
ED
2009static void
2010haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2011 struct drm_display_mode *mode)
2012{
2013 struct drm_i915_private *dev_priv = dev->dev_private;
2014 u32 temp;
2015
2016 temp = I915_READ(PIPE_WM_LINETIME(pipe));
2017 temp &= ~PIPE_WM_LINETIME_MASK;
2018
2019 /* The WM are computed with base on how long it takes to fill a single
2020 * row at the given clock rate, multiplied by 8.
2021 * */
2022 temp |= PIPE_WM_LINETIME_TIME(
2023 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2024
2025 /* IPS watermarks are only used by pipe A, and are ignored by
2026 * pipes B and C. They are calculated similarly to the common
2027 * linetime values, except that we are using CD clock frequency
2028 * in MHz instead of pixel rate for the division.
2029 *
2030 * This is a placeholder for the IPS watermark calculation code.
2031 */
2032
2033 I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2034}
2035
b445e3b0
ED
2036static bool
2037sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2038 uint32_t sprite_width, int pixel_size,
2039 const struct intel_watermark_params *display,
2040 int display_latency_ns, int *sprite_wm)
2041{
2042 struct drm_crtc *crtc;
2043 int clock;
2044 int entries, tlb_miss;
2045
2046 crtc = intel_get_crtc_for_plane(dev, plane);
f20e0b08 2047 if (crtc->fb == NULL || !to_intel_crtc(crtc)->active) {
b445e3b0
ED
2048 *sprite_wm = display->guard_size;
2049 return false;
2050 }
2051
2052 clock = crtc->mode.clock;
2053
2054 /* Use the small buffer method to calculate the sprite watermark */
2055 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2056 tlb_miss = display->fifo_size*display->cacheline_size -
2057 sprite_width * 8;
2058 if (tlb_miss > 0)
2059 entries += tlb_miss;
2060 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2061 *sprite_wm = entries + display->guard_size;
2062 if (*sprite_wm > (int)display->max_wm)
2063 *sprite_wm = display->max_wm;
2064
2065 return true;
2066}
2067
2068static bool
2069sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2070 uint32_t sprite_width, int pixel_size,
2071 const struct intel_watermark_params *display,
2072 int latency_ns, int *sprite_wm)
2073{
2074 struct drm_crtc *crtc;
2075 unsigned long line_time_us;
2076 int clock;
2077 int line_count, line_size;
2078 int small, large;
2079 int entries;
2080
2081 if (!latency_ns) {
2082 *sprite_wm = 0;
2083 return false;
2084 }
2085
2086 crtc = intel_get_crtc_for_plane(dev, plane);
2087 clock = crtc->mode.clock;
2088 if (!clock) {
2089 *sprite_wm = 0;
2090 return false;
2091 }
2092
2093 line_time_us = (sprite_width * 1000) / clock;
2094 if (!line_time_us) {
2095 *sprite_wm = 0;
2096 return false;
2097 }
2098
2099 line_count = (latency_ns / line_time_us + 1000) / 1000;
2100 line_size = sprite_width * pixel_size;
2101
2102 /* Use the minimum of the small and large buffer method for primary */
2103 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2104 large = line_count * line_size;
2105
2106 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2107 *sprite_wm = entries + display->guard_size;
2108
2109 return *sprite_wm > 0x3ff ? false : true;
2110}
2111
1fa61106 2112static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
b445e3b0
ED
2113 uint32_t sprite_width, int pixel_size)
2114{
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2117 u32 val;
2118 int sprite_wm, reg;
2119 int ret;
2120
2121 switch (pipe) {
2122 case 0:
2123 reg = WM0_PIPEA_ILK;
2124 break;
2125 case 1:
2126 reg = WM0_PIPEB_ILK;
2127 break;
2128 case 2:
2129 reg = WM0_PIPEC_IVB;
2130 break;
2131 default:
2132 return; /* bad pipe */
2133 }
2134
2135 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2136 &sandybridge_display_wm_info,
2137 latency, &sprite_wm);
2138 if (!ret) {
2139 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2140 pipe);
2141 return;
2142 }
2143
2144 val = I915_READ(reg);
2145 val &= ~WM0_PIPE_SPRITE_MASK;
2146 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2147 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2148
2149
2150 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2151 pixel_size,
2152 &sandybridge_display_srwm_info,
2153 SNB_READ_WM1_LATENCY() * 500,
2154 &sprite_wm);
2155 if (!ret) {
2156 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2157 pipe);
2158 return;
2159 }
2160 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2161
2162 /* Only IVB has two more LP watermarks for sprite */
2163 if (!IS_IVYBRIDGE(dev))
2164 return;
2165
2166 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2167 pixel_size,
2168 &sandybridge_display_srwm_info,
2169 SNB_READ_WM2_LATENCY() * 500,
2170 &sprite_wm);
2171 if (!ret) {
2172 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2173 pipe);
2174 return;
2175 }
2176 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2177
2178 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2179 pixel_size,
2180 &sandybridge_display_srwm_info,
2181 SNB_READ_WM3_LATENCY() * 500,
2182 &sprite_wm);
2183 if (!ret) {
2184 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2185 pipe);
2186 return;
2187 }
2188 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2189}
2190
2191/**
2192 * intel_update_watermarks - update FIFO watermark values based on current modes
2193 *
2194 * Calculate watermark values for the various WM regs based on current mode
2195 * and plane configuration.
2196 *
2197 * There are several cases to deal with here:
2198 * - normal (i.e. non-self-refresh)
2199 * - self-refresh (SR) mode
2200 * - lines are large relative to FIFO size (buffer can hold up to 2)
2201 * - lines are small relative to FIFO size (buffer can hold more than 2
2202 * lines), so need to account for TLB latency
2203 *
2204 * The normal calculation is:
2205 * watermark = dotclock * bytes per pixel * latency
2206 * where latency is platform & configuration dependent (we assume pessimal
2207 * values here).
2208 *
2209 * The SR calculation is:
2210 * watermark = (trunc(latency/line time)+1) * surface width *
2211 * bytes per pixel
2212 * where
2213 * line time = htotal / dotclock
2214 * surface width = hdisplay for normal plane and 64 for cursor
2215 * and latency is assumed to be high, as above.
2216 *
2217 * The final value programmed to the register should always be rounded up,
2218 * and include an extra 2 entries to account for clock crossings.
2219 *
2220 * We don't use the sprite, so we can ignore that. And on Crestline we have
2221 * to set the non-SR watermarks to 8.
2222 */
2223void intel_update_watermarks(struct drm_device *dev)
2224{
2225 struct drm_i915_private *dev_priv = dev->dev_private;
2226
2227 if (dev_priv->display.update_wm)
2228 dev_priv->display.update_wm(dev);
2229}
2230
1f8eeabf
ED
2231void intel_update_linetime_watermarks(struct drm_device *dev,
2232 int pipe, struct drm_display_mode *mode)
2233{
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235
2236 if (dev_priv->display.update_linetime_wm)
2237 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2238}
2239
b445e3b0
ED
2240void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2241 uint32_t sprite_width, int pixel_size)
2242{
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244
2245 if (dev_priv->display.update_sprite_wm)
2246 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2247 pixel_size);
2248}
2249
2b4e57bd
ED
2250static struct drm_i915_gem_object *
2251intel_alloc_context_page(struct drm_device *dev)
2252{
2253 struct drm_i915_gem_object *ctx;
2254 int ret;
2255
2256 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2257
2258 ctx = i915_gem_alloc_object(dev, 4096);
2259 if (!ctx) {
2260 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2261 return NULL;
2262 }
2263
86a1ee26 2264 ret = i915_gem_object_pin(ctx, 4096, true, false);
2b4e57bd
ED
2265 if (ret) {
2266 DRM_ERROR("failed to pin power context: %d\n", ret);
2267 goto err_unref;
2268 }
2269
2270 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2271 if (ret) {
2272 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2273 goto err_unpin;
2274 }
2275
2276 return ctx;
2277
2278err_unpin:
2279 i915_gem_object_unpin(ctx);
2280err_unref:
2281 drm_gem_object_unreference(&ctx->base);
2282 mutex_unlock(&dev->struct_mutex);
2283 return NULL;
2284}
2285
9270388e
DV
2286/**
2287 * Lock protecting IPS related data structures
9270388e
DV
2288 */
2289DEFINE_SPINLOCK(mchdev_lock);
2290
2291/* Global for IPS driver to get at the current i915 device. Protected by
2292 * mchdev_lock. */
2293static struct drm_i915_private *i915_mch_dev;
2294
2b4e57bd
ED
2295bool ironlake_set_drps(struct drm_device *dev, u8 val)
2296{
2297 struct drm_i915_private *dev_priv = dev->dev_private;
2298 u16 rgvswctl;
2299
9270388e
DV
2300 assert_spin_locked(&mchdev_lock);
2301
2b4e57bd
ED
2302 rgvswctl = I915_READ16(MEMSWCTL);
2303 if (rgvswctl & MEMCTL_CMD_STS) {
2304 DRM_DEBUG("gpu busy, RCS change rejected\n");
2305 return false; /* still busy with another command */
2306 }
2307
2308 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2309 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2310 I915_WRITE16(MEMSWCTL, rgvswctl);
2311 POSTING_READ16(MEMSWCTL);
2312
2313 rgvswctl |= MEMCTL_CMD_STS;
2314 I915_WRITE16(MEMSWCTL, rgvswctl);
2315
2316 return true;
2317}
2318
8090c6b9 2319static void ironlake_enable_drps(struct drm_device *dev)
2b4e57bd
ED
2320{
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 u32 rgvmodectl = I915_READ(MEMMODECTL);
2323 u8 fmax, fmin, fstart, vstart;
2324
9270388e
DV
2325 spin_lock_irq(&mchdev_lock);
2326
2b4e57bd
ED
2327 /* Enable temp reporting */
2328 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2329 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2330
2331 /* 100ms RC evaluation intervals */
2332 I915_WRITE(RCUPEI, 100000);
2333 I915_WRITE(RCDNEI, 100000);
2334
2335 /* Set max/min thresholds to 90ms and 80ms respectively */
2336 I915_WRITE(RCBMAXAVG, 90000);
2337 I915_WRITE(RCBMINAVG, 80000);
2338
2339 I915_WRITE(MEMIHYST, 1);
2340
2341 /* Set up min, max, and cur for interrupt handling */
2342 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2343 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2344 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2345 MEMMODE_FSTART_SHIFT;
2346
2347 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2348 PXVFREQ_PX_SHIFT;
2349
20e4d407
DV
2350 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2351 dev_priv->ips.fstart = fstart;
2b4e57bd 2352
20e4d407
DV
2353 dev_priv->ips.max_delay = fstart;
2354 dev_priv->ips.min_delay = fmin;
2355 dev_priv->ips.cur_delay = fstart;
2b4e57bd
ED
2356
2357 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2358 fmax, fmin, fstart);
2359
2360 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2361
2362 /*
2363 * Interrupts will be enabled in ironlake_irq_postinstall
2364 */
2365
2366 I915_WRITE(VIDSTART, vstart);
2367 POSTING_READ(VIDSTART);
2368
2369 rgvmodectl |= MEMMODE_SWMODE_EN;
2370 I915_WRITE(MEMMODECTL, rgvmodectl);
2371
9270388e 2372 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2b4e57bd 2373 DRM_ERROR("stuck trying to change perf mode\n");
9270388e 2374 mdelay(1);
2b4e57bd
ED
2375
2376 ironlake_set_drps(dev, fstart);
2377
20e4d407 2378 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2b4e57bd 2379 I915_READ(0x112e0);
20e4d407
DV
2380 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2381 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2382 getrawmonotonic(&dev_priv->ips.last_time2);
9270388e
DV
2383
2384 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
2385}
2386
8090c6b9 2387static void ironlake_disable_drps(struct drm_device *dev)
2b4e57bd
ED
2388{
2389 struct drm_i915_private *dev_priv = dev->dev_private;
9270388e
DV
2390 u16 rgvswctl;
2391
2392 spin_lock_irq(&mchdev_lock);
2393
2394 rgvswctl = I915_READ16(MEMSWCTL);
2b4e57bd
ED
2395
2396 /* Ack interrupts, disable EFC interrupt */
2397 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2398 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2399 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2400 I915_WRITE(DEIIR, DE_PCU_EVENT);
2401 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2402
2403 /* Go back to the starting frequency */
20e4d407 2404 ironlake_set_drps(dev, dev_priv->ips.fstart);
9270388e 2405 mdelay(1);
2b4e57bd
ED
2406 rgvswctl |= MEMCTL_CMD_STS;
2407 I915_WRITE(MEMSWCTL, rgvswctl);
9270388e 2408 mdelay(1);
2b4e57bd 2409
9270388e 2410 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
2411}
2412
acbe9475
DV
2413/* There's a funny hw issue where the hw returns all 0 when reading from
2414 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2415 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2416 * all limits and the gpu stuck at whatever frequency it is at atm).
2417 */
65bccb5c 2418static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2b4e57bd 2419{
7b9e0ae6 2420 u32 limits;
2b4e57bd 2421
7b9e0ae6 2422 limits = 0;
c6a828d3
DV
2423
2424 if (*val >= dev_priv->rps.max_delay)
2425 *val = dev_priv->rps.max_delay;
2426 limits |= dev_priv->rps.max_delay << 24;
20b46e59
DV
2427
2428 /* Only set the down limit when we've reached the lowest level to avoid
2429 * getting more interrupts, otherwise leave this clear. This prevents a
2430 * race in the hw when coming out of rc6: There's a tiny window where
2431 * the hw runs at the minimal clock before selecting the desired
2432 * frequency, if the down threshold expires in that window we will not
2433 * receive a down interrupt. */
c6a828d3
DV
2434 if (*val <= dev_priv->rps.min_delay) {
2435 *val = dev_priv->rps.min_delay;
2436 limits |= dev_priv->rps.min_delay << 16;
20b46e59
DV
2437 }
2438
2439 return limits;
2440}
2441
2442void gen6_set_rps(struct drm_device *dev, u8 val)
2443{
2444 struct drm_i915_private *dev_priv = dev->dev_private;
65bccb5c 2445 u32 limits = gen6_rps_limits(dev_priv, &val);
7b9e0ae6 2446
4fc688ce 2447 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79249636
BW
2448 WARN_ON(val > dev_priv->rps.max_delay);
2449 WARN_ON(val < dev_priv->rps.min_delay);
004777cb 2450
c6a828d3 2451 if (val == dev_priv->rps.cur_delay)
7b9e0ae6
CW
2452 return;
2453
2454 I915_WRITE(GEN6_RPNSWREQ,
2455 GEN6_FREQUENCY(val) |
2456 GEN6_OFFSET(0) |
2457 GEN6_AGGRESSIVE_TURBO);
2458
2459 /* Make sure we continue to get interrupts
2460 * until we hit the minimum or maximum frequencies.
2461 */
2462 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2463
d5570a72
BW
2464 POSTING_READ(GEN6_RPNSWREQ);
2465
c6a828d3 2466 dev_priv->rps.cur_delay = val;
be2cde9a
DV
2467
2468 trace_intel_gpu_freq_change(val * 50);
2b4e57bd
ED
2469}
2470
8090c6b9 2471static void gen6_disable_rps(struct drm_device *dev)
2b4e57bd
ED
2472{
2473 struct drm_i915_private *dev_priv = dev->dev_private;
2474
88509484 2475 I915_WRITE(GEN6_RC_CONTROL, 0);
2b4e57bd
ED
2476 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2477 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2478 I915_WRITE(GEN6_PMIER, 0);
2479 /* Complete PM interrupt masking here doesn't race with the rps work
2480 * item again unmasking PM interrupts because that is using a different
2481 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2482 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2483
c6a828d3
DV
2484 spin_lock_irq(&dev_priv->rps.lock);
2485 dev_priv->rps.pm_iir = 0;
2486 spin_unlock_irq(&dev_priv->rps.lock);
2b4e57bd
ED
2487
2488 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2489}
2490
2491int intel_enable_rc6(const struct drm_device *dev)
2492{
456470eb 2493 /* Respect the kernel parameter if it is set */
2b4e57bd
ED
2494 if (i915_enable_rc6 >= 0)
2495 return i915_enable_rc6;
2496
6567d748
CW
2497 /* Disable RC6 on Ironlake */
2498 if (INTEL_INFO(dev)->gen == 5)
2499 return 0;
2b4e57bd 2500
456470eb
DV
2501 if (IS_HASWELL(dev)) {
2502 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
4a637c2c 2503 return INTEL_RC6_ENABLE;
456470eb 2504 }
2b4e57bd 2505
456470eb 2506 /* snb/ivb have more than one rc6 state. */
2b4e57bd
ED
2507 if (INTEL_INFO(dev)->gen == 6) {
2508 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2509 return INTEL_RC6_ENABLE;
2510 }
456470eb 2511
2b4e57bd
ED
2512 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2513 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2514}
2515
79f5b2c7 2516static void gen6_enable_rps(struct drm_device *dev)
2b4e57bd 2517{
79f5b2c7 2518 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2519 struct intel_ring_buffer *ring;
7b9e0ae6
CW
2520 u32 rp_state_cap;
2521 u32 gt_perf_status;
31643d54 2522 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2b4e57bd 2523 u32 gtfifodbg;
2b4e57bd 2524 int rc6_mode;
42c0526c 2525 int i, ret;
2b4e57bd 2526
4fc688ce 2527 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 2528
2b4e57bd
ED
2529 /* Here begins a magic sequence of register writes to enable
2530 * auto-downclocking.
2531 *
2532 * Perhaps there might be some value in exposing these to
2533 * userspace...
2534 */
2535 I915_WRITE(GEN6_RC_STATE, 0);
2b4e57bd
ED
2536
2537 /* Clear the DBG now so we don't confuse earlier errors */
2538 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2539 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2540 I915_WRITE(GTFIFODBG, gtfifodbg);
2541 }
2542
2543 gen6_gt_force_wake_get(dev_priv);
2544
7b9e0ae6
CW
2545 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2546 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2547
2548 /* In units of 100MHz */
c6a828d3
DV
2549 dev_priv->rps.max_delay = rp_state_cap & 0xff;
2550 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2551 dev_priv->rps.cur_delay = 0;
7b9e0ae6 2552
2b4e57bd
ED
2553 /* disable the counters and set deterministic thresholds */
2554 I915_WRITE(GEN6_RC_CONTROL, 0);
2555
2556 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2557 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2558 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2559 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2560 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2561
b4519513
CW
2562 for_each_ring(ring, dev_priv, i)
2563 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2b4e57bd
ED
2564
2565 I915_WRITE(GEN6_RC_SLEEP, 0);
2566 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2567 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2568 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2569 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2570
5a7dc92a 2571 /* Check if we are enabling RC6 */
2b4e57bd
ED
2572 rc6_mode = intel_enable_rc6(dev_priv->dev);
2573 if (rc6_mode & INTEL_RC6_ENABLE)
2574 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2575
5a7dc92a
ED
2576 /* We don't use those on Haswell */
2577 if (!IS_HASWELL(dev)) {
2578 if (rc6_mode & INTEL_RC6p_ENABLE)
2579 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2b4e57bd 2580
5a7dc92a
ED
2581 if (rc6_mode & INTEL_RC6pp_ENABLE)
2582 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2583 }
2b4e57bd
ED
2584
2585 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
5a7dc92a
ED
2586 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2587 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2588 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2b4e57bd
ED
2589
2590 I915_WRITE(GEN6_RC_CONTROL,
2591 rc6_mask |
2592 GEN6_RC_CTL_EI_MODE(1) |
2593 GEN6_RC_CTL_HW_ENABLE);
2594
2595 I915_WRITE(GEN6_RPNSWREQ,
2596 GEN6_FREQUENCY(10) |
2597 GEN6_OFFSET(0) |
2598 GEN6_AGGRESSIVE_TURBO);
2599 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2600 GEN6_FREQUENCY(12));
2601
2602 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2603 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
c6a828d3
DV
2604 dev_priv->rps.max_delay << 24 |
2605 dev_priv->rps.min_delay << 16);
5a7dc92a 2606
1ee9ae32
DV
2607 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2608 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2609 I915_WRITE(GEN6_RP_UP_EI, 66000);
2610 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5a7dc92a 2611
2b4e57bd
ED
2612 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2613 I915_WRITE(GEN6_RP_CONTROL,
2614 GEN6_RP_MEDIA_TURBO |
89ba829e 2615 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2b4e57bd
ED
2616 GEN6_RP_MEDIA_IS_GFX |
2617 GEN6_RP_ENABLE |
2618 GEN6_RP_UP_BUSY_AVG |
5a7dc92a 2619 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2b4e57bd 2620
42c0526c
BW
2621 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2622 if (!ret) {
2623 pcu_mbox = 0;
2624 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2625 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2626 dev_priv->rps.max_delay = pcu_mbox & 0xff;
2627 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2628 }
2629 } else {
2630 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2b4e57bd
ED
2631 }
2632
7b9e0ae6 2633 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2b4e57bd
ED
2634
2635 /* requires MSI enabled */
ff928261 2636 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
c6a828d3
DV
2637 spin_lock_irq(&dev_priv->rps.lock);
2638 WARN_ON(dev_priv->rps.pm_iir != 0);
2b4e57bd 2639 I915_WRITE(GEN6_PMIMR, 0);
c6a828d3 2640 spin_unlock_irq(&dev_priv->rps.lock);
2b4e57bd
ED
2641 /* enable all PM interrupts */
2642 I915_WRITE(GEN6_PMINTRMSK, 0);
2643
31643d54
BW
2644 rc6vids = 0;
2645 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2646 if (IS_GEN6(dev) && ret) {
2647 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2648 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2649 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2650 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2651 rc6vids &= 0xffff00;
2652 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2653 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2654 if (ret)
2655 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2656 }
2657
2b4e57bd 2658 gen6_gt_force_wake_put(dev_priv);
2b4e57bd
ED
2659}
2660
79f5b2c7 2661static void gen6_update_ring_freq(struct drm_device *dev)
2b4e57bd 2662{
79f5b2c7 2663 struct drm_i915_private *dev_priv = dev->dev_private;
2b4e57bd 2664 int min_freq = 15;
e3fef09d
JD
2665 int gpu_freq;
2666 unsigned int ia_freq, max_ia_freq;
2b4e57bd
ED
2667 int scaling_factor = 180;
2668
4fc688ce 2669 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 2670
2b4e57bd
ED
2671 max_ia_freq = cpufreq_quick_get_max(0);
2672 /*
2673 * Default to measured freq if none found, PCU will ensure we don't go
2674 * over
2675 */
2676 if (!max_ia_freq)
2677 max_ia_freq = tsc_khz;
2678
2679 /* Convert from kHz to MHz */
2680 max_ia_freq /= 1000;
2681
2b4e57bd
ED
2682 /*
2683 * For each potential GPU frequency, load a ring frequency we'd like
2684 * to use for memory access. We do this by specifying the IA frequency
2685 * the PCU should use as a reference to determine the ring frequency.
2686 */
c6a828d3 2687 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2b4e57bd 2688 gpu_freq--) {
c6a828d3 2689 int diff = dev_priv->rps.max_delay - gpu_freq;
2b4e57bd
ED
2690
2691 /*
2692 * For GPU frequencies less than 750MHz, just use the lowest
2693 * ring freq.
2694 */
2695 if (gpu_freq < min_freq)
2696 ia_freq = 800;
2697 else
2698 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2699 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
42c0526c 2700 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2b4e57bd 2701
42c0526c
BW
2702 sandybridge_pcode_write(dev_priv,
2703 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2704 ia_freq | gpu_freq);
2b4e57bd 2705 }
2b4e57bd
ED
2706}
2707
930ebb46 2708void ironlake_teardown_rc6(struct drm_device *dev)
2b4e57bd
ED
2709{
2710 struct drm_i915_private *dev_priv = dev->dev_private;
2711
3e373948
DV
2712 if (dev_priv->ips.renderctx) {
2713 i915_gem_object_unpin(dev_priv->ips.renderctx);
2714 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2715 dev_priv->ips.renderctx = NULL;
2b4e57bd
ED
2716 }
2717
3e373948
DV
2718 if (dev_priv->ips.pwrctx) {
2719 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2720 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2721 dev_priv->ips.pwrctx = NULL;
2b4e57bd
ED
2722 }
2723}
2724
930ebb46 2725static void ironlake_disable_rc6(struct drm_device *dev)
2b4e57bd
ED
2726{
2727 struct drm_i915_private *dev_priv = dev->dev_private;
2728
2729 if (I915_READ(PWRCTXA)) {
2730 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2731 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2732 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2733 50);
2734
2735 I915_WRITE(PWRCTXA, 0);
2736 POSTING_READ(PWRCTXA);
2737
2738 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2739 POSTING_READ(RSTDBYCTL);
2740 }
2b4e57bd
ED
2741}
2742
2743static int ironlake_setup_rc6(struct drm_device *dev)
2744{
2745 struct drm_i915_private *dev_priv = dev->dev_private;
2746
3e373948
DV
2747 if (dev_priv->ips.renderctx == NULL)
2748 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2749 if (!dev_priv->ips.renderctx)
2b4e57bd
ED
2750 return -ENOMEM;
2751
3e373948
DV
2752 if (dev_priv->ips.pwrctx == NULL)
2753 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2754 if (!dev_priv->ips.pwrctx) {
2b4e57bd
ED
2755 ironlake_teardown_rc6(dev);
2756 return -ENOMEM;
2757 }
2758
2759 return 0;
2760}
2761
930ebb46 2762static void ironlake_enable_rc6(struct drm_device *dev)
2b4e57bd
ED
2763{
2764 struct drm_i915_private *dev_priv = dev->dev_private;
6d90c952 2765 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3e960501 2766 bool was_interruptible;
2b4e57bd
ED
2767 int ret;
2768
2769 /* rc6 disabled by default due to repeated reports of hanging during
2770 * boot and resume.
2771 */
2772 if (!intel_enable_rc6(dev))
2773 return;
2774
79f5b2c7
DV
2775 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2776
2b4e57bd 2777 ret = ironlake_setup_rc6(dev);
79f5b2c7 2778 if (ret)
2b4e57bd 2779 return;
2b4e57bd 2780
3e960501
CW
2781 was_interruptible = dev_priv->mm.interruptible;
2782 dev_priv->mm.interruptible = false;
2783
2b4e57bd
ED
2784 /*
2785 * GPU can automatically power down the render unit if given a page
2786 * to save state.
2787 */
6d90c952 2788 ret = intel_ring_begin(ring, 6);
2b4e57bd
ED
2789 if (ret) {
2790 ironlake_teardown_rc6(dev);
3e960501 2791 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd
ED
2792 return;
2793 }
2794
6d90c952
DV
2795 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2796 intel_ring_emit(ring, MI_SET_CONTEXT);
3e373948 2797 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
6d90c952
DV
2798 MI_MM_SPACE_GTT |
2799 MI_SAVE_EXT_STATE_EN |
2800 MI_RESTORE_EXT_STATE_EN |
2801 MI_RESTORE_INHIBIT);
2802 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2803 intel_ring_emit(ring, MI_NOOP);
2804 intel_ring_emit(ring, MI_FLUSH);
2805 intel_ring_advance(ring);
2b4e57bd
ED
2806
2807 /*
2808 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2809 * does an implicit flush, combined with MI_FLUSH above, it should be
2810 * safe to assume that renderctx is valid
2811 */
3e960501
CW
2812 ret = intel_ring_idle(ring);
2813 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd
ED
2814 if (ret) {
2815 DRM_ERROR("failed to enable ironlake power power savings\n");
2816 ironlake_teardown_rc6(dev);
2b4e57bd
ED
2817 return;
2818 }
2819
3e373948 2820 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2b4e57bd 2821 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2b4e57bd
ED
2822}
2823
dde18883
ED
2824static unsigned long intel_pxfreq(u32 vidfreq)
2825{
2826 unsigned long freq;
2827 int div = (vidfreq & 0x3f0000) >> 16;
2828 int post = (vidfreq & 0x3000) >> 12;
2829 int pre = (vidfreq & 0x7);
2830
2831 if (!pre)
2832 return 0;
2833
2834 freq = ((div * 133333) / ((1<<post) * pre));
2835
2836 return freq;
2837}
2838
eb48eb00
DV
2839static const struct cparams {
2840 u16 i;
2841 u16 t;
2842 u16 m;
2843 u16 c;
2844} cparams[] = {
2845 { 1, 1333, 301, 28664 },
2846 { 1, 1066, 294, 24460 },
2847 { 1, 800, 294, 25192 },
2848 { 0, 1333, 276, 27605 },
2849 { 0, 1066, 276, 27605 },
2850 { 0, 800, 231, 23784 },
2851};
2852
f531dcb2 2853static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
2854{
2855 u64 total_count, diff, ret;
2856 u32 count1, count2, count3, m = 0, c = 0;
2857 unsigned long now = jiffies_to_msecs(jiffies), diff1;
2858 int i;
2859
02d71956
DV
2860 assert_spin_locked(&mchdev_lock);
2861
20e4d407 2862 diff1 = now - dev_priv->ips.last_time1;
eb48eb00
DV
2863
2864 /* Prevent division-by-zero if we are asking too fast.
2865 * Also, we don't get interesting results if we are polling
2866 * faster than once in 10ms, so just return the saved value
2867 * in such cases.
2868 */
2869 if (diff1 <= 10)
20e4d407 2870 return dev_priv->ips.chipset_power;
eb48eb00
DV
2871
2872 count1 = I915_READ(DMIEC);
2873 count2 = I915_READ(DDREC);
2874 count3 = I915_READ(CSIEC);
2875
2876 total_count = count1 + count2 + count3;
2877
2878 /* FIXME: handle per-counter overflow */
20e4d407
DV
2879 if (total_count < dev_priv->ips.last_count1) {
2880 diff = ~0UL - dev_priv->ips.last_count1;
eb48eb00
DV
2881 diff += total_count;
2882 } else {
20e4d407 2883 diff = total_count - dev_priv->ips.last_count1;
eb48eb00
DV
2884 }
2885
2886 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
20e4d407
DV
2887 if (cparams[i].i == dev_priv->ips.c_m &&
2888 cparams[i].t == dev_priv->ips.r_t) {
eb48eb00
DV
2889 m = cparams[i].m;
2890 c = cparams[i].c;
2891 break;
2892 }
2893 }
2894
2895 diff = div_u64(diff, diff1);
2896 ret = ((m * diff) + c);
2897 ret = div_u64(ret, 10);
2898
20e4d407
DV
2899 dev_priv->ips.last_count1 = total_count;
2900 dev_priv->ips.last_time1 = now;
eb48eb00 2901
20e4d407 2902 dev_priv->ips.chipset_power = ret;
eb48eb00
DV
2903
2904 return ret;
2905}
2906
f531dcb2
CW
2907unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2908{
2909 unsigned long val;
2910
2911 if (dev_priv->info->gen != 5)
2912 return 0;
2913
2914 spin_lock_irq(&mchdev_lock);
2915
2916 val = __i915_chipset_val(dev_priv);
2917
2918 spin_unlock_irq(&mchdev_lock);
2919
2920 return val;
2921}
2922
eb48eb00
DV
2923unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2924{
2925 unsigned long m, x, b;
2926 u32 tsfs;
2927
2928 tsfs = I915_READ(TSFS);
2929
2930 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2931 x = I915_READ8(TR1);
2932
2933 b = tsfs & TSFS_INTR_MASK;
2934
2935 return ((m * x) / 127) - b;
2936}
2937
2938static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2939{
2940 static const struct v_table {
2941 u16 vd; /* in .1 mil */
2942 u16 vm; /* in .1 mil */
2943 } v_table[] = {
2944 { 0, 0, },
2945 { 375, 0, },
2946 { 500, 0, },
2947 { 625, 0, },
2948 { 750, 0, },
2949 { 875, 0, },
2950 { 1000, 0, },
2951 { 1125, 0, },
2952 { 4125, 3000, },
2953 { 4125, 3000, },
2954 { 4125, 3000, },
2955 { 4125, 3000, },
2956 { 4125, 3000, },
2957 { 4125, 3000, },
2958 { 4125, 3000, },
2959 { 4125, 3000, },
2960 { 4125, 3000, },
2961 { 4125, 3000, },
2962 { 4125, 3000, },
2963 { 4125, 3000, },
2964 { 4125, 3000, },
2965 { 4125, 3000, },
2966 { 4125, 3000, },
2967 { 4125, 3000, },
2968 { 4125, 3000, },
2969 { 4125, 3000, },
2970 { 4125, 3000, },
2971 { 4125, 3000, },
2972 { 4125, 3000, },
2973 { 4125, 3000, },
2974 { 4125, 3000, },
2975 { 4125, 3000, },
2976 { 4250, 3125, },
2977 { 4375, 3250, },
2978 { 4500, 3375, },
2979 { 4625, 3500, },
2980 { 4750, 3625, },
2981 { 4875, 3750, },
2982 { 5000, 3875, },
2983 { 5125, 4000, },
2984 { 5250, 4125, },
2985 { 5375, 4250, },
2986 { 5500, 4375, },
2987 { 5625, 4500, },
2988 { 5750, 4625, },
2989 { 5875, 4750, },
2990 { 6000, 4875, },
2991 { 6125, 5000, },
2992 { 6250, 5125, },
2993 { 6375, 5250, },
2994 { 6500, 5375, },
2995 { 6625, 5500, },
2996 { 6750, 5625, },
2997 { 6875, 5750, },
2998 { 7000, 5875, },
2999 { 7125, 6000, },
3000 { 7250, 6125, },
3001 { 7375, 6250, },
3002 { 7500, 6375, },
3003 { 7625, 6500, },
3004 { 7750, 6625, },
3005 { 7875, 6750, },
3006 { 8000, 6875, },
3007 { 8125, 7000, },
3008 { 8250, 7125, },
3009 { 8375, 7250, },
3010 { 8500, 7375, },
3011 { 8625, 7500, },
3012 { 8750, 7625, },
3013 { 8875, 7750, },
3014 { 9000, 7875, },
3015 { 9125, 8000, },
3016 { 9250, 8125, },
3017 { 9375, 8250, },
3018 { 9500, 8375, },
3019 { 9625, 8500, },
3020 { 9750, 8625, },
3021 { 9875, 8750, },
3022 { 10000, 8875, },
3023 { 10125, 9000, },
3024 { 10250, 9125, },
3025 { 10375, 9250, },
3026 { 10500, 9375, },
3027 { 10625, 9500, },
3028 { 10750, 9625, },
3029 { 10875, 9750, },
3030 { 11000, 9875, },
3031 { 11125, 10000, },
3032 { 11250, 10125, },
3033 { 11375, 10250, },
3034 { 11500, 10375, },
3035 { 11625, 10500, },
3036 { 11750, 10625, },
3037 { 11875, 10750, },
3038 { 12000, 10875, },
3039 { 12125, 11000, },
3040 { 12250, 11125, },
3041 { 12375, 11250, },
3042 { 12500, 11375, },
3043 { 12625, 11500, },
3044 { 12750, 11625, },
3045 { 12875, 11750, },
3046 { 13000, 11875, },
3047 { 13125, 12000, },
3048 { 13250, 12125, },
3049 { 13375, 12250, },
3050 { 13500, 12375, },
3051 { 13625, 12500, },
3052 { 13750, 12625, },
3053 { 13875, 12750, },
3054 { 14000, 12875, },
3055 { 14125, 13000, },
3056 { 14250, 13125, },
3057 { 14375, 13250, },
3058 { 14500, 13375, },
3059 { 14625, 13500, },
3060 { 14750, 13625, },
3061 { 14875, 13750, },
3062 { 15000, 13875, },
3063 { 15125, 14000, },
3064 { 15250, 14125, },
3065 { 15375, 14250, },
3066 { 15500, 14375, },
3067 { 15625, 14500, },
3068 { 15750, 14625, },
3069 { 15875, 14750, },
3070 { 16000, 14875, },
3071 { 16125, 15000, },
3072 };
3073 if (dev_priv->info->is_mobile)
3074 return v_table[pxvid].vm;
3075 else
3076 return v_table[pxvid].vd;
3077}
3078
02d71956 3079static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3080{
3081 struct timespec now, diff1;
3082 u64 diff;
3083 unsigned long diffms;
3084 u32 count;
3085
02d71956 3086 assert_spin_locked(&mchdev_lock);
eb48eb00
DV
3087
3088 getrawmonotonic(&now);
20e4d407 3089 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
eb48eb00
DV
3090
3091 /* Don't divide by 0 */
3092 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3093 if (!diffms)
3094 return;
3095
3096 count = I915_READ(GFXEC);
3097
20e4d407
DV
3098 if (count < dev_priv->ips.last_count2) {
3099 diff = ~0UL - dev_priv->ips.last_count2;
eb48eb00
DV
3100 diff += count;
3101 } else {
20e4d407 3102 diff = count - dev_priv->ips.last_count2;
eb48eb00
DV
3103 }
3104
20e4d407
DV
3105 dev_priv->ips.last_count2 = count;
3106 dev_priv->ips.last_time2 = now;
eb48eb00
DV
3107
3108 /* More magic constants... */
3109 diff = diff * 1181;
3110 diff = div_u64(diff, diffms * 10);
20e4d407 3111 dev_priv->ips.gfx_power = diff;
eb48eb00
DV
3112}
3113
02d71956
DV
3114void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3115{
3116 if (dev_priv->info->gen != 5)
3117 return;
3118
9270388e 3119 spin_lock_irq(&mchdev_lock);
02d71956
DV
3120
3121 __i915_update_gfx_val(dev_priv);
3122
9270388e 3123 spin_unlock_irq(&mchdev_lock);
02d71956
DV
3124}
3125
f531dcb2 3126static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3127{
3128 unsigned long t, corr, state1, corr2, state2;
3129 u32 pxvid, ext_v;
3130
02d71956
DV
3131 assert_spin_locked(&mchdev_lock);
3132
c6a828d3 3133 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
eb48eb00
DV
3134 pxvid = (pxvid >> 24) & 0x7f;
3135 ext_v = pvid_to_extvid(dev_priv, pxvid);
3136
3137 state1 = ext_v;
3138
3139 t = i915_mch_val(dev_priv);
3140
3141 /* Revel in the empirically derived constants */
3142
3143 /* Correction factor in 1/100000 units */
3144 if (t > 80)
3145 corr = ((t * 2349) + 135940);
3146 else if (t >= 50)
3147 corr = ((t * 964) + 29317);
3148 else /* < 50 */
3149 corr = ((t * 301) + 1004);
3150
3151 corr = corr * ((150142 * state1) / 10000 - 78642);
3152 corr /= 100000;
20e4d407 3153 corr2 = (corr * dev_priv->ips.corr);
eb48eb00
DV
3154
3155 state2 = (corr2 * state1) / 10000;
3156 state2 /= 100; /* convert to mW */
3157
02d71956 3158 __i915_update_gfx_val(dev_priv);
eb48eb00 3159
20e4d407 3160 return dev_priv->ips.gfx_power + state2;
eb48eb00
DV
3161}
3162
f531dcb2
CW
3163unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3164{
3165 unsigned long val;
3166
3167 if (dev_priv->info->gen != 5)
3168 return 0;
3169
3170 spin_lock_irq(&mchdev_lock);
3171
3172 val = __i915_gfx_val(dev_priv);
3173
3174 spin_unlock_irq(&mchdev_lock);
3175
3176 return val;
3177}
3178
eb48eb00
DV
3179/**
3180 * i915_read_mch_val - return value for IPS use
3181 *
3182 * Calculate and return a value for the IPS driver to use when deciding whether
3183 * we have thermal and power headroom to increase CPU or GPU power budget.
3184 */
3185unsigned long i915_read_mch_val(void)
3186{
3187 struct drm_i915_private *dev_priv;
3188 unsigned long chipset_val, graphics_val, ret = 0;
3189
9270388e 3190 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
3191 if (!i915_mch_dev)
3192 goto out_unlock;
3193 dev_priv = i915_mch_dev;
3194
f531dcb2
CW
3195 chipset_val = __i915_chipset_val(dev_priv);
3196 graphics_val = __i915_gfx_val(dev_priv);
eb48eb00
DV
3197
3198 ret = chipset_val + graphics_val;
3199
3200out_unlock:
9270388e 3201 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
3202
3203 return ret;
3204}
3205EXPORT_SYMBOL_GPL(i915_read_mch_val);
3206
3207/**
3208 * i915_gpu_raise - raise GPU frequency limit
3209 *
3210 * Raise the limit; IPS indicates we have thermal headroom.
3211 */
3212bool i915_gpu_raise(void)
3213{
3214 struct drm_i915_private *dev_priv;
3215 bool ret = true;
3216
9270388e 3217 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
3218 if (!i915_mch_dev) {
3219 ret = false;
3220 goto out_unlock;
3221 }
3222 dev_priv = i915_mch_dev;
3223
20e4d407
DV
3224 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3225 dev_priv->ips.max_delay--;
eb48eb00
DV
3226
3227out_unlock:
9270388e 3228 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
3229
3230 return ret;
3231}
3232EXPORT_SYMBOL_GPL(i915_gpu_raise);
3233
3234/**
3235 * i915_gpu_lower - lower GPU frequency limit
3236 *
3237 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3238 * frequency maximum.
3239 */
3240bool i915_gpu_lower(void)
3241{
3242 struct drm_i915_private *dev_priv;
3243 bool ret = true;
3244
9270388e 3245 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
3246 if (!i915_mch_dev) {
3247 ret = false;
3248 goto out_unlock;
3249 }
3250 dev_priv = i915_mch_dev;
3251
20e4d407
DV
3252 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3253 dev_priv->ips.max_delay++;
eb48eb00
DV
3254
3255out_unlock:
9270388e 3256 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
3257
3258 return ret;
3259}
3260EXPORT_SYMBOL_GPL(i915_gpu_lower);
3261
3262/**
3263 * i915_gpu_busy - indicate GPU business to IPS
3264 *
3265 * Tell the IPS driver whether or not the GPU is busy.
3266 */
3267bool i915_gpu_busy(void)
3268{
3269 struct drm_i915_private *dev_priv;
f047e395 3270 struct intel_ring_buffer *ring;
eb48eb00 3271 bool ret = false;
f047e395 3272 int i;
eb48eb00 3273
9270388e 3274 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
3275 if (!i915_mch_dev)
3276 goto out_unlock;
3277 dev_priv = i915_mch_dev;
3278
f047e395
CW
3279 for_each_ring(ring, dev_priv, i)
3280 ret |= !list_empty(&ring->request_list);
eb48eb00
DV
3281
3282out_unlock:
9270388e 3283 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
3284
3285 return ret;
3286}
3287EXPORT_SYMBOL_GPL(i915_gpu_busy);
3288
3289/**
3290 * i915_gpu_turbo_disable - disable graphics turbo
3291 *
3292 * Disable graphics turbo by resetting the max frequency and setting the
3293 * current frequency to the default.
3294 */
3295bool i915_gpu_turbo_disable(void)
3296{
3297 struct drm_i915_private *dev_priv;
3298 bool ret = true;
3299
9270388e 3300 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
3301 if (!i915_mch_dev) {
3302 ret = false;
3303 goto out_unlock;
3304 }
3305 dev_priv = i915_mch_dev;
3306
20e4d407 3307 dev_priv->ips.max_delay = dev_priv->ips.fstart;
eb48eb00 3308
20e4d407 3309 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
eb48eb00
DV
3310 ret = false;
3311
3312out_unlock:
9270388e 3313 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
3314
3315 return ret;
3316}
3317EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3318
3319/**
3320 * Tells the intel_ips driver that the i915 driver is now loaded, if
3321 * IPS got loaded first.
3322 *
3323 * This awkward dance is so that neither module has to depend on the
3324 * other in order for IPS to do the appropriate communication of
3325 * GPU turbo limits to i915.
3326 */
3327static void
3328ips_ping_for_i915_load(void)
3329{
3330 void (*link)(void);
3331
3332 link = symbol_get(ips_link_to_i915_driver);
3333 if (link) {
3334 link();
3335 symbol_put(ips_link_to_i915_driver);
3336 }
3337}
3338
3339void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3340{
02d71956
DV
3341 /* We only register the i915 ips part with intel-ips once everything is
3342 * set up, to avoid intel-ips sneaking in and reading bogus values. */
9270388e 3343 spin_lock_irq(&mchdev_lock);
eb48eb00 3344 i915_mch_dev = dev_priv;
9270388e 3345 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
3346
3347 ips_ping_for_i915_load();
3348}
3349
3350void intel_gpu_ips_teardown(void)
3351{
9270388e 3352 spin_lock_irq(&mchdev_lock);
eb48eb00 3353 i915_mch_dev = NULL;
9270388e 3354 spin_unlock_irq(&mchdev_lock);
eb48eb00 3355}
8090c6b9 3356static void intel_init_emon(struct drm_device *dev)
dde18883
ED
3357{
3358 struct drm_i915_private *dev_priv = dev->dev_private;
3359 u32 lcfuse;
3360 u8 pxw[16];
3361 int i;
3362
3363 /* Disable to program */
3364 I915_WRITE(ECR, 0);
3365 POSTING_READ(ECR);
3366
3367 /* Program energy weights for various events */
3368 I915_WRITE(SDEW, 0x15040d00);
3369 I915_WRITE(CSIEW0, 0x007f0000);
3370 I915_WRITE(CSIEW1, 0x1e220004);
3371 I915_WRITE(CSIEW2, 0x04000004);
3372
3373 for (i = 0; i < 5; i++)
3374 I915_WRITE(PEW + (i * 4), 0);
3375 for (i = 0; i < 3; i++)
3376 I915_WRITE(DEW + (i * 4), 0);
3377
3378 /* Program P-state weights to account for frequency power adjustment */
3379 for (i = 0; i < 16; i++) {
3380 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3381 unsigned long freq = intel_pxfreq(pxvidfreq);
3382 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3383 PXVFREQ_PX_SHIFT;
3384 unsigned long val;
3385
3386 val = vid * vid;
3387 val *= (freq / 1000);
3388 val *= 255;
3389 val /= (127*127*900);
3390 if (val > 0xff)
3391 DRM_ERROR("bad pxval: %ld\n", val);
3392 pxw[i] = val;
3393 }
3394 /* Render standby states get 0 weight */
3395 pxw[14] = 0;
3396 pxw[15] = 0;
3397
3398 for (i = 0; i < 4; i++) {
3399 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3400 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3401 I915_WRITE(PXW + (i * 4), val);
3402 }
3403
3404 /* Adjust magic regs to magic values (more experimental results) */
3405 I915_WRITE(OGW0, 0);
3406 I915_WRITE(OGW1, 0);
3407 I915_WRITE(EG0, 0x00007f00);
3408 I915_WRITE(EG1, 0x0000000e);
3409 I915_WRITE(EG2, 0x000e0000);
3410 I915_WRITE(EG3, 0x68000300);
3411 I915_WRITE(EG4, 0x42000000);
3412 I915_WRITE(EG5, 0x00140031);
3413 I915_WRITE(EG6, 0);
3414 I915_WRITE(EG7, 0);
3415
3416 for (i = 0; i < 8; i++)
3417 I915_WRITE(PXWL + (i * 4), 0);
3418
3419 /* Enable PMON + select events */
3420 I915_WRITE(ECR, 0x80000019);
3421
3422 lcfuse = I915_READ(LCFUSE02);
3423
20e4d407 3424 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
dde18883
ED
3425}
3426
8090c6b9
DV
3427void intel_disable_gt_powersave(struct drm_device *dev)
3428{
1a01ab3b
JB
3429 struct drm_i915_private *dev_priv = dev->dev_private;
3430
930ebb46 3431 if (IS_IRONLAKE_M(dev)) {
8090c6b9 3432 ironlake_disable_drps(dev);
930ebb46
DV
3433 ironlake_disable_rc6(dev);
3434 } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
1a01ab3b 3435 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4fc688ce 3436 mutex_lock(&dev_priv->rps.hw_lock);
8090c6b9 3437 gen6_disable_rps(dev);
4fc688ce 3438 mutex_unlock(&dev_priv->rps.hw_lock);
930ebb46 3439 }
8090c6b9
DV
3440}
3441
1a01ab3b
JB
3442static void intel_gen6_powersave_work(struct work_struct *work)
3443{
3444 struct drm_i915_private *dev_priv =
3445 container_of(work, struct drm_i915_private,
3446 rps.delayed_resume_work.work);
3447 struct drm_device *dev = dev_priv->dev;
3448
4fc688ce 3449 mutex_lock(&dev_priv->rps.hw_lock);
1a01ab3b
JB
3450 gen6_enable_rps(dev);
3451 gen6_update_ring_freq(dev);
4fc688ce 3452 mutex_unlock(&dev_priv->rps.hw_lock);
1a01ab3b
JB
3453}
3454
8090c6b9
DV
3455void intel_enable_gt_powersave(struct drm_device *dev)
3456{
1a01ab3b
JB
3457 struct drm_i915_private *dev_priv = dev->dev_private;
3458
8090c6b9
DV
3459 if (IS_IRONLAKE_M(dev)) {
3460 ironlake_enable_drps(dev);
3461 ironlake_enable_rc6(dev);
3462 intel_init_emon(dev);
7cf50fc8 3463 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
1a01ab3b
JB
3464 /*
3465 * PCU communication is slow and this doesn't need to be
3466 * done at any specific time, so do this out of our fast path
3467 * to make resume and init faster.
3468 */
3469 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3470 round_jiffies_up_relative(HZ));
8090c6b9
DV
3471 }
3472}
3473
3107bd48
DV
3474static void ibx_init_clock_gating(struct drm_device *dev)
3475{
3476 struct drm_i915_private *dev_priv = dev->dev_private;
3477
3478 /*
3479 * On Ibex Peak and Cougar Point, we need to disable clock
3480 * gating for the panel power sequencer or it will fail to
3481 * start up when no ports are active.
3482 */
3483 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3484}
3485
1fa61106 3486static void ironlake_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
3487{
3488 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 3489 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0
ED
3490
3491 /* Required for FBC */
4d47e4f5
DL
3492 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3493 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3494 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
3495
3496 I915_WRITE(PCH_3DCGDIS0,
3497 MARIUNIT_CLOCK_GATE_DISABLE |
3498 SVSMUNIT_CLOCK_GATE_DISABLE);
3499 I915_WRITE(PCH_3DCGDIS1,
3500 VFMUNIT_CLOCK_GATE_DISABLE);
3501
6f1d69b0
ED
3502 /*
3503 * According to the spec the following bits should be set in
3504 * order to enable memory self-refresh
3505 * The bit 22/21 of 0x42004
3506 * The bit 5 of 0x42020
3507 * The bit 15 of 0x45000
3508 */
3509 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3510 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3511 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4d47e4f5 3512 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
3513 I915_WRITE(DISP_ARB_CTL,
3514 (I915_READ(DISP_ARB_CTL) |
3515 DISP_FBC_WM_DIS));
3516 I915_WRITE(WM3_LP_ILK, 0);
3517 I915_WRITE(WM2_LP_ILK, 0);
3518 I915_WRITE(WM1_LP_ILK, 0);
3519
3520 /*
3521 * Based on the document from hardware guys the following bits
3522 * should be set unconditionally in order to enable FBC.
3523 * The bit 22 of 0x42000
3524 * The bit 22 of 0x42004
3525 * The bit 7,8,9 of 0x42020.
3526 */
3527 if (IS_IRONLAKE_M(dev)) {
3528 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3529 I915_READ(ILK_DISPLAY_CHICKEN1) |
3530 ILK_FBCQ_DIS);
3531 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3532 I915_READ(ILK_DISPLAY_CHICKEN2) |
3533 ILK_DPARB_GATE);
6f1d69b0
ED
3534 }
3535
4d47e4f5
DL
3536 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3537
6f1d69b0
ED
3538 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3539 I915_READ(ILK_DISPLAY_CHICKEN2) |
3540 ILK_ELPIN_409_SELECT);
3541 I915_WRITE(_3D_CHICKEN2,
3542 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3543 _3D_CHICKEN2_WM_READ_PIPELINED);
4358a374
DV
3544
3545 /* WaDisableRenderCachePipelinedFlush */
3546 I915_WRITE(CACHE_MODE_0,
3547 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3107bd48
DV
3548
3549 ibx_init_clock_gating(dev);
3550}
3551
3552static void cpt_init_clock_gating(struct drm_device *dev)
3553{
3554 struct drm_i915_private *dev_priv = dev->dev_private;
3555 int pipe;
3556
3557 /*
3558 * On Ibex Peak and Cougar Point, we need to disable clock
3559 * gating for the panel power sequencer or it will fail to
3560 * start up when no ports are active.
3561 */
3562 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3563 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3564 DPLS_EDP_PPS_FIX_DIS);
335c07b7
TI
3565 /* The below fixes the weird display corruption, a few pixels shifted
3566 * downward, on (only) LVDS of some HP laptops with IVY.
3567 */
3568 for_each_pipe(pipe)
3569 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
3107bd48
DV
3570 /* WADP0ClockGatingDisable */
3571 for_each_pipe(pipe) {
3572 I915_WRITE(TRANS_CHICKEN1(pipe),
3573 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3574 }
6f1d69b0
ED
3575}
3576
1fa61106 3577static void gen6_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
3578{
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580 int pipe;
231e54f6 3581 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 3582
231e54f6 3583 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6f1d69b0
ED
3584
3585 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3586 I915_READ(ILK_DISPLAY_CHICKEN2) |
3587 ILK_ELPIN_409_SELECT);
3588
4283908e
DV
3589 /* WaDisableHiZPlanesWhenMSAAEnabled */
3590 I915_WRITE(_3D_CHICKEN,
3591 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3592
6547fbdb
DV
3593 /* WaSetupGtModeTdRowDispatch */
3594 if (IS_SNB_GT1(dev))
3595 I915_WRITE(GEN6_GT_MODE,
3596 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3597
6f1d69b0
ED
3598 I915_WRITE(WM3_LP_ILK, 0);
3599 I915_WRITE(WM2_LP_ILK, 0);
3600 I915_WRITE(WM1_LP_ILK, 0);
3601
6f1d69b0 3602 I915_WRITE(CACHE_MODE_0,
50743298 3603 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6f1d69b0
ED
3604
3605 I915_WRITE(GEN6_UCGCTL1,
3606 I915_READ(GEN6_UCGCTL1) |
3607 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3608 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3609
3610 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3611 * gating disable must be set. Failure to set it results in
3612 * flickering pixels due to Z write ordering failures after
3613 * some amount of runtime in the Mesa "fire" demo, and Unigine
3614 * Sanctuary and Tropics, and apparently anything else with
3615 * alpha test or pixel discard.
3616 *
3617 * According to the spec, bit 11 (RCCUNIT) must also be set,
3618 * but we didn't debug actual testcases to find it out.
0f846f81
JB
3619 *
3620 * Also apply WaDisableVDSUnitClockGating and
3621 * WaDisableRCPBUnitClockGating.
6f1d69b0
ED
3622 */
3623 I915_WRITE(GEN6_UCGCTL2,
0f846f81 3624 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6f1d69b0
ED
3625 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3626 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3627
3628 /* Bspec says we need to always set all mask bits. */
26b6e44a
KG
3629 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3630 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
6f1d69b0
ED
3631
3632 /*
3633 * According to the spec the following bits should be
3634 * set in order to enable memory self-refresh and fbc:
3635 * The bit21 and bit22 of 0x42000
3636 * The bit21 and bit22 of 0x42004
3637 * The bit5 and bit7 of 0x42020
3638 * The bit14 of 0x70180
3639 * The bit14 of 0x71180
3640 */
3641 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3642 I915_READ(ILK_DISPLAY_CHICKEN1) |
3643 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3644 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3645 I915_READ(ILK_DISPLAY_CHICKEN2) |
3646 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
231e54f6
DL
3647 I915_WRITE(ILK_DSPCLK_GATE_D,
3648 I915_READ(ILK_DSPCLK_GATE_D) |
3649 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
3650 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6f1d69b0 3651
b3bf0766 3652 /* WaMbcDriverBootEnable */
b4ae3f22
JB
3653 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3654 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3655
6f1d69b0
ED
3656 for_each_pipe(pipe) {
3657 I915_WRITE(DSPCNTR(pipe),
3658 I915_READ(DSPCNTR(pipe)) |
3659 DISPPLANE_TRICKLE_FEED_DISABLE);
3660 intel_flush_display_plane(dev_priv, pipe);
3661 }
f8f2ac9a
BW
3662
3663 /* The default value should be 0x200 according to docs, but the two
3664 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3665 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3666 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3107bd48
DV
3667
3668 cpt_init_clock_gating(dev);
6f1d69b0
ED
3669}
3670
3671static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3672{
3673 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3674
3675 reg &= ~GEN7_FF_SCHED_MASK;
3676 reg |= GEN7_FF_TS_SCHED_HW;
3677 reg |= GEN7_FF_VS_SCHED_HW;
3678 reg |= GEN7_FF_DS_SCHED_HW;
3679
3680 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3681}
3682
17a303ec
PZ
3683static void lpt_init_clock_gating(struct drm_device *dev)
3684{
3685 struct drm_i915_private *dev_priv = dev->dev_private;
3686
3687 /*
3688 * TODO: this bit should only be enabled when really needed, then
3689 * disabled when not needed anymore in order to save power.
3690 */
3691 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3692 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3693 I915_READ(SOUTH_DSPCLK_GATE_D) |
3694 PCH_LP_PARTITION_LEVEL_DISABLE);
3695}
3696
cad2a2d7
ED
3697static void haswell_init_clock_gating(struct drm_device *dev)
3698{
3699 struct drm_i915_private *dev_priv = dev->dev_private;
3700 int pipe;
cad2a2d7
ED
3701
3702 I915_WRITE(WM3_LP_ILK, 0);
3703 I915_WRITE(WM2_LP_ILK, 0);
3704 I915_WRITE(WM1_LP_ILK, 0);
3705
3706 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3707 * This implements the WaDisableRCZUnitClockGating workaround.
3708 */
3709 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3710
cad2a2d7
ED
3711 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3712 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3713 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3714
3715 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3716 I915_WRITE(GEN7_L3CNTLREG1,
3717 GEN7_WA_FOR_GEN7_L3_CONTROL);
3718 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3719 GEN7_WA_L3_CHICKEN_MODE);
3720
3721 /* This is required by WaCatErrorRejectionIssue */
3722 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3723 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3724 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3725
3726 for_each_pipe(pipe) {
3727 I915_WRITE(DSPCNTR(pipe),
3728 I915_READ(DSPCNTR(pipe)) |
3729 DISPPLANE_TRICKLE_FEED_DISABLE);
3730 intel_flush_display_plane(dev_priv, pipe);
3731 }
3732
3733 gen7_setup_fixed_func_scheduler(dev_priv);
3734
3735 /* WaDisable4x2SubspanOptimization */
3736 I915_WRITE(CACHE_MODE_1,
3737 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
1544d9d5 3738
b3bf0766
PZ
3739 /* WaMbcDriverBootEnable */
3740 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3741 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3742
1544d9d5
ED
3743 /* XXX: This is a workaround for early silicon revisions and should be
3744 * removed later.
3745 */
3746 I915_WRITE(WM_DBG,
3747 I915_READ(WM_DBG) |
3748 WM_DBG_DISALLOW_MULTIPLE_LP |
3749 WM_DBG_DISALLOW_SPRITE |
3750 WM_DBG_DISALLOW_MAXFIFO);
3751
17a303ec 3752 lpt_init_clock_gating(dev);
cad2a2d7
ED
3753}
3754
1fa61106 3755static void ivybridge_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
3756{
3757 struct drm_i915_private *dev_priv = dev->dev_private;
3758 int pipe;
20848223 3759 uint32_t snpcr;
6f1d69b0 3760
6f1d69b0
ED
3761 I915_WRITE(WM3_LP_ILK, 0);
3762 I915_WRITE(WM2_LP_ILK, 0);
3763 I915_WRITE(WM1_LP_ILK, 0);
3764
231e54f6 3765 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 3766
87f8020e
JB
3767 /* WaDisableEarlyCull */
3768 I915_WRITE(_3D_CHICKEN3,
3769 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3770
62cb944f 3771 /* WaDisableBackToBackFlipFix */
6f1d69b0
ED
3772 I915_WRITE(IVB_CHICKEN3,
3773 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3774 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3775
12f3382b
JB
3776 /* WaDisablePSDDualDispatchEnable */
3777 if (IS_IVB_GT1(dev))
3778 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3779 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3780 else
3781 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3782 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3783
6f1d69b0
ED
3784 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3785 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3786 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3787
3788 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3789 I915_WRITE(GEN7_L3CNTLREG1,
3790 GEN7_WA_FOR_GEN7_L3_CONTROL);
3791 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8ab43976
JB
3792 GEN7_WA_L3_CHICKEN_MODE);
3793 if (IS_IVB_GT1(dev))
3794 I915_WRITE(GEN7_ROW_CHICKEN2,
3795 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3796 else
3797 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3798 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3799
6f1d69b0 3800
61939d97
JB
3801 /* WaForceL3Serialization */
3802 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3803 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3804
0f846f81
JB
3805 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3806 * gating disable must be set. Failure to set it results in
3807 * flickering pixels due to Z write ordering failures after
3808 * some amount of runtime in the Mesa "fire" demo, and Unigine
3809 * Sanctuary and Tropics, and apparently anything else with
3810 * alpha test or pixel discard.
3811 *
3812 * According to the spec, bit 11 (RCCUNIT) must also be set,
3813 * but we didn't debug actual testcases to find it out.
3814 *
3815 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3816 * This implements the WaDisableRCZUnitClockGating workaround.
3817 */
3818 I915_WRITE(GEN6_UCGCTL2,
3819 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3820 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3821
6f1d69b0
ED
3822 /* This is required by WaCatErrorRejectionIssue */
3823 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3824 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3825 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3826
3827 for_each_pipe(pipe) {
3828 I915_WRITE(DSPCNTR(pipe),
3829 I915_READ(DSPCNTR(pipe)) |
3830 DISPPLANE_TRICKLE_FEED_DISABLE);
3831 intel_flush_display_plane(dev_priv, pipe);
3832 }
3833
b3bf0766 3834 /* WaMbcDriverBootEnable */
b4ae3f22
JB
3835 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3836 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3837
6f1d69b0 3838 gen7_setup_fixed_func_scheduler(dev_priv);
97e1930f
DV
3839
3840 /* WaDisable4x2SubspanOptimization */
3841 I915_WRITE(CACHE_MODE_1,
3842 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
20848223
BW
3843
3844 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3845 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3846 snpcr |= GEN6_MBC_SNPCR_MED;
3847 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3107bd48
DV
3848
3849 cpt_init_clock_gating(dev);
6f1d69b0
ED
3850}
3851
1fa61106 3852static void valleyview_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
3853{
3854 struct drm_i915_private *dev_priv = dev->dev_private;
3855 int pipe;
6f1d69b0
ED
3856
3857 I915_WRITE(WM3_LP_ILK, 0);
3858 I915_WRITE(WM2_LP_ILK, 0);
3859 I915_WRITE(WM1_LP_ILK, 0);
3860
231e54f6 3861 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 3862
87f8020e
JB
3863 /* WaDisableEarlyCull */
3864 I915_WRITE(_3D_CHICKEN3,
3865 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3866
62cb944f 3867 /* WaDisableBackToBackFlipFix */
6f1d69b0
ED
3868 I915_WRITE(IVB_CHICKEN3,
3869 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3870 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3871
12f3382b
JB
3872 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3873 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3874
6f1d69b0
ED
3875 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3876 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3877 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3878
3879 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
d0cf5ead 3880 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
6f1d69b0
ED
3881 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3882
61939d97
JB
3883 /* WaForceL3Serialization */
3884 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3885 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3886
8ab43976
JB
3887 /* WaDisableDopClockGating */
3888 I915_WRITE(GEN7_ROW_CHICKEN2,
3889 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3890
5c9664d7
JB
3891 /* WaForceL3Serialization */
3892 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3893 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3894
6f1d69b0
ED
3895 /* This is required by WaCatErrorRejectionIssue */
3896 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3897 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3898 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3899
b3bf0766 3900 /* WaMbcDriverBootEnable */
b4ae3f22
JB
3901 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3902 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3903
0f846f81
JB
3904
3905 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3906 * gating disable must be set. Failure to set it results in
3907 * flickering pixels due to Z write ordering failures after
3908 * some amount of runtime in the Mesa "fire" demo, and Unigine
3909 * Sanctuary and Tropics, and apparently anything else with
3910 * alpha test or pixel discard.
3911 *
3912 * According to the spec, bit 11 (RCCUNIT) must also be set,
3913 * but we didn't debug actual testcases to find it out.
3914 *
3915 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3916 * This implements the WaDisableRCZUnitClockGating workaround.
3917 *
3918 * Also apply WaDisableVDSUnitClockGating and
3919 * WaDisableRCPBUnitClockGating.
3920 */
3921 I915_WRITE(GEN6_UCGCTL2,
3922 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6edaa7fc 3923 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
0f846f81
JB
3924 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3925 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3926 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3927
e3f33d46
JB
3928 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3929
6f1d69b0
ED
3930 for_each_pipe(pipe) {
3931 I915_WRITE(DSPCNTR(pipe),
3932 I915_READ(DSPCNTR(pipe)) |
3933 DISPPLANE_TRICKLE_FEED_DISABLE);
3934 intel_flush_display_plane(dev_priv, pipe);
3935 }
3936
6b26c86d
DV
3937 I915_WRITE(CACHE_MODE_1,
3938 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7983117f
JB
3939
3940 /*
3941 * On ValleyView, the GUnit needs to signal the GT
3942 * when flip and other events complete. So enable
3943 * all the GUnit->GT interrupts here
3944 */
3945 I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3946 PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3947 SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3948 PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3949 PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3950 SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3951 PLANEA_FLIPDONE_INT_EN);
2d809570
JB
3952
3953 /*
3954 * WaDisableVLVClockGating_VBIIssue
3955 * Disable clock gating on th GCFG unit to prevent a delay
3956 * in the reporting of vblank events.
3957 */
3958 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6f1d69b0
ED
3959}
3960
1fa61106 3961static void g4x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
3962{
3963 struct drm_i915_private *dev_priv = dev->dev_private;
3964 uint32_t dspclk_gate;
3965
3966 I915_WRITE(RENCLK_GATE_D1, 0);
3967 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3968 GS_UNIT_CLOCK_GATE_DISABLE |
3969 CL_UNIT_CLOCK_GATE_DISABLE);
3970 I915_WRITE(RAMCLK_GATE_D, 0);
3971 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3972 OVRUNIT_CLOCK_GATE_DISABLE |
3973 OVCUNIT_CLOCK_GATE_DISABLE;
3974 if (IS_GM45(dev))
3975 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3976 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4358a374
DV
3977
3978 /* WaDisableRenderCachePipelinedFlush */
3979 I915_WRITE(CACHE_MODE_0,
3980 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6f1d69b0
ED
3981}
3982
1fa61106 3983static void crestline_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
3984{
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986
3987 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3988 I915_WRITE(RENCLK_GATE_D2, 0);
3989 I915_WRITE(DSPCLK_GATE_D, 0);
3990 I915_WRITE(RAMCLK_GATE_D, 0);
3991 I915_WRITE16(DEUC, 0);
3992}
3993
1fa61106 3994static void broadwater_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
3995{
3996 struct drm_i915_private *dev_priv = dev->dev_private;
3997
3998 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3999 I965_RCC_CLOCK_GATE_DISABLE |
4000 I965_RCPB_CLOCK_GATE_DISABLE |
4001 I965_ISC_CLOCK_GATE_DISABLE |
4002 I965_FBC_CLOCK_GATE_DISABLE);
4003 I915_WRITE(RENCLK_GATE_D2, 0);
4004}
4005
1fa61106 4006static void gen3_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4007{
4008 struct drm_i915_private *dev_priv = dev->dev_private;
4009 u32 dstate = I915_READ(D_STATE);
4010
4011 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4012 DSTATE_DOT_CLOCK_GATING;
4013 I915_WRITE(D_STATE, dstate);
13a86b85
CW
4014
4015 if (IS_PINEVIEW(dev))
4016 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
974a3b0f
DV
4017
4018 /* IIR "flip pending" means done if this bit is set */
4019 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6f1d69b0
ED
4020}
4021
1fa61106 4022static void i85x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4023{
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025
4026 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4027}
4028
1fa61106 4029static void i830_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4030{
4031 struct drm_i915_private *dev_priv = dev->dev_private;
4032
4033 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4034}
4035
6f1d69b0
ED
4036void intel_init_clock_gating(struct drm_device *dev)
4037{
4038 struct drm_i915_private *dev_priv = dev->dev_private;
4039
4040 dev_priv->display.init_clock_gating(dev);
6f1d69b0
ED
4041}
4042
d0d3e513
ED
4043/* Starting with Haswell, we have different power wells for
4044 * different parts of the GPU. This attempts to enable them all.
4045 */
4046void intel_init_power_wells(struct drm_device *dev)
4047{
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 unsigned long power_wells[] = {
4050 HSW_PWR_WELL_CTL1,
4051 HSW_PWR_WELL_CTL2,
4052 HSW_PWR_WELL_CTL4
4053 };
4054 int i;
4055
4056 if (!IS_HASWELL(dev))
4057 return;
4058
4059 mutex_lock(&dev->struct_mutex);
4060
4061 for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4062 int well = I915_READ(power_wells[i]);
4063
4064 if ((well & HSW_PWR_WELL_STATE) == 0) {
4065 I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
263b30d4 4066 if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
d0d3e513
ED
4067 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4068 }
4069 }
4070
4071 mutex_unlock(&dev->struct_mutex);
4072}
4073
1fa61106
ED
4074/* Set up chip specific power management-related functions */
4075void intel_init_pm(struct drm_device *dev)
4076{
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4078
4079 if (I915_HAS_FBC(dev)) {
4080 if (HAS_PCH_SPLIT(dev)) {
4081 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4082 dev_priv->display.enable_fbc = ironlake_enable_fbc;
4083 dev_priv->display.disable_fbc = ironlake_disable_fbc;
4084 } else if (IS_GM45(dev)) {
4085 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4086 dev_priv->display.enable_fbc = g4x_enable_fbc;
4087 dev_priv->display.disable_fbc = g4x_disable_fbc;
4088 } else if (IS_CRESTLINE(dev)) {
4089 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4090 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4091 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4092 }
4093 /* 855GM needs testing */
4094 }
4095
c921aba8
DV
4096 /* For cxsr */
4097 if (IS_PINEVIEW(dev))
4098 i915_pineview_get_mem_freq(dev);
4099 else if (IS_GEN5(dev))
4100 i915_ironlake_get_mem_freq(dev);
4101
1fa61106
ED
4102 /* For FIFO watermark updates */
4103 if (HAS_PCH_SPLIT(dev)) {
1fa61106
ED
4104 if (IS_GEN5(dev)) {
4105 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4106 dev_priv->display.update_wm = ironlake_update_wm;
4107 else {
4108 DRM_DEBUG_KMS("Failed to get proper latency. "
4109 "Disable CxSR\n");
4110 dev_priv->display.update_wm = NULL;
4111 }
4112 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4113 } else if (IS_GEN6(dev)) {
4114 if (SNB_READ_WM0_LATENCY()) {
4115 dev_priv->display.update_wm = sandybridge_update_wm;
4116 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4117 } else {
4118 DRM_DEBUG_KMS("Failed to read display plane latency. "
4119 "Disable CxSR\n");
4120 dev_priv->display.update_wm = NULL;
4121 }
4122 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4123 } else if (IS_IVYBRIDGE(dev)) {
4124 /* FIXME: detect B0+ stepping and use auto training */
4125 if (SNB_READ_WM0_LATENCY()) {
c43d0188 4126 dev_priv->display.update_wm = ivybridge_update_wm;
1fa61106
ED
4127 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4128 } else {
4129 DRM_DEBUG_KMS("Failed to read display plane latency. "
4130 "Disable CxSR\n");
4131 dev_priv->display.update_wm = NULL;
4132 }
4133 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6b8a5eeb
ED
4134 } else if (IS_HASWELL(dev)) {
4135 if (SNB_READ_WM0_LATENCY()) {
4136 dev_priv->display.update_wm = sandybridge_update_wm;
4137 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
1f8eeabf 4138 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
6b8a5eeb
ED
4139 } else {
4140 DRM_DEBUG_KMS("Failed to read display plane latency. "
4141 "Disable CxSR\n");
4142 dev_priv->display.update_wm = NULL;
4143 }
cad2a2d7 4144 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
1fa61106
ED
4145 } else
4146 dev_priv->display.update_wm = NULL;
4147 } else if (IS_VALLEYVIEW(dev)) {
4148 dev_priv->display.update_wm = valleyview_update_wm;
4149 dev_priv->display.init_clock_gating =
4150 valleyview_init_clock_gating;
1fa61106
ED
4151 } else if (IS_PINEVIEW(dev)) {
4152 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4153 dev_priv->is_ddr3,
4154 dev_priv->fsb_freq,
4155 dev_priv->mem_freq)) {
4156 DRM_INFO("failed to find known CxSR latency "
4157 "(found ddr%s fsb freq %d, mem freq %d), "
4158 "disabling CxSR\n",
4159 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4160 dev_priv->fsb_freq, dev_priv->mem_freq);
4161 /* Disable CxSR and never update its watermark again */
4162 pineview_disable_cxsr(dev);
4163 dev_priv->display.update_wm = NULL;
4164 } else
4165 dev_priv->display.update_wm = pineview_update_wm;
4166 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4167 } else if (IS_G4X(dev)) {
4168 dev_priv->display.update_wm = g4x_update_wm;
4169 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4170 } else if (IS_GEN4(dev)) {
4171 dev_priv->display.update_wm = i965_update_wm;
4172 if (IS_CRESTLINE(dev))
4173 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4174 else if (IS_BROADWATER(dev))
4175 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4176 } else if (IS_GEN3(dev)) {
4177 dev_priv->display.update_wm = i9xx_update_wm;
4178 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4179 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4180 } else if (IS_I865G(dev)) {
4181 dev_priv->display.update_wm = i830_update_wm;
4182 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4183 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4184 } else if (IS_I85X(dev)) {
4185 dev_priv->display.update_wm = i9xx_update_wm;
4186 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4187 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4188 } else {
4189 dev_priv->display.update_wm = i830_update_wm;
4190 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4191 if (IS_845G(dev))
4192 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4193 else
4194 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4195 }
4196}
4197
6590190d
ED
4198static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4199{
4200 u32 gt_thread_status_mask;
4201
4202 if (IS_HASWELL(dev_priv->dev))
4203 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4204 else
4205 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4206
4207 /* w/a for a sporadic read returning 0 by waiting for the GT
4208 * thread to wake up.
4209 */
4210 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4211 DRM_ERROR("GT thread status wait timed out\n");
4212}
4213
16995a9f
CW
4214static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4215{
4216 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4217 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4218}
4219
6590190d
ED
4220static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4221{
4222 u32 forcewake_ack;
4223
4224 if (IS_HASWELL(dev_priv->dev))
4225 forcewake_ack = FORCEWAKE_ACK_HSW;
4226 else
4227 forcewake_ack = FORCEWAKE_ACK;
4228
057d3860
BW
4229 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4230 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 4231 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
6590190d 4232
c5836c27 4233 I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
8dee3eea 4234 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
6590190d 4235
057d3860
BW
4236 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4237 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 4238 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
6590190d
ED
4239
4240 __gen6_gt_wait_for_thread_c0(dev_priv);
4241}
4242
16995a9f
CW
4243static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4244{
4245 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4246 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4247}
4248
6590190d
ED
4249static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4250{
4251 u32 forcewake_ack;
4252
4253 if (IS_HASWELL(dev_priv->dev))
4254 forcewake_ack = FORCEWAKE_ACK_HSW;
4255 else
4256 forcewake_ack = FORCEWAKE_MT_ACK;
4257
057d3860
BW
4258 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4259 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 4260 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
6590190d 4261
c5836c27 4262 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
8dee3eea 4263 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
6590190d 4264
057d3860
BW
4265 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4266 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 4267 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
6590190d
ED
4268
4269 __gen6_gt_wait_for_thread_c0(dev_priv);
4270}
4271
4272/*
4273 * Generally this is called implicitly by the register read function. However,
4274 * if some sequence requires the GT to not power down then this function should
4275 * be called at the beginning of the sequence followed by a call to
4276 * gen6_gt_force_wake_put() at the end of the sequence.
4277 */
4278void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4279{
4280 unsigned long irqflags;
4281
4282 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4283 if (dev_priv->forcewake_count++ == 0)
4284 dev_priv->gt.force_wake_get(dev_priv);
4285 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4286}
4287
4288void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4289{
4290 u32 gtfifodbg;
4291 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4292 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4293 "MMIO read or write has been dropped %x\n", gtfifodbg))
4294 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4295}
4296
4297static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4298{
4299 I915_WRITE_NOTRACE(FORCEWAKE, 0);
8dee3eea 4300 /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
6590190d
ED
4301 gen6_gt_check_fifodbg(dev_priv);
4302}
4303
4304static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4305{
c5836c27 4306 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
8dee3eea 4307 /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
6590190d
ED
4308 gen6_gt_check_fifodbg(dev_priv);
4309}
4310
4311/*
4312 * see gen6_gt_force_wake_get()
4313 */
4314void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4315{
4316 unsigned long irqflags;
4317
4318 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4319 if (--dev_priv->forcewake_count == 0)
4320 dev_priv->gt.force_wake_put(dev_priv);
4321 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4322}
4323
4324int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4325{
4326 int ret = 0;
4327
4328 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4329 int loop = 500;
4330 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4331 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4332 udelay(10);
4333 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4334 }
4335 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4336 ++ret;
4337 dev_priv->gt_fifo_count = fifo;
4338 }
4339 dev_priv->gt_fifo_count--;
4340
4341 return ret;
4342}
4343
16995a9f
CW
4344static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4345{
4346 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4347}
4348
6590190d
ED
4349static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4350{
057d3860
BW
4351 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4352 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 4353 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
6590190d 4354
c5836c27 4355 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
6590190d 4356
057d3860
BW
4357 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4358 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 4359 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
6590190d
ED
4360
4361 __gen6_gt_wait_for_thread_c0(dev_priv);
4362}
4363
4364static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4365{
c5836c27 4366 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5ab140a4
DV
4367 /* The below doubles as a POSTING_READ */
4368 gen6_gt_check_fifodbg(dev_priv);
6590190d
ED
4369}
4370
16995a9f
CW
4371void intel_gt_reset(struct drm_device *dev)
4372{
4373 struct drm_i915_private *dev_priv = dev->dev_private;
4374
4375 if (IS_VALLEYVIEW(dev)) {
4376 vlv_force_wake_reset(dev_priv);
4377 } else if (INTEL_INFO(dev)->gen >= 6) {
4378 __gen6_gt_force_wake_reset(dev_priv);
4379 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4380 __gen6_gt_force_wake_mt_reset(dev_priv);
4381 }
4382}
4383
6590190d
ED
4384void intel_gt_init(struct drm_device *dev)
4385{
4386 struct drm_i915_private *dev_priv = dev->dev_private;
4387
4388 spin_lock_init(&dev_priv->gt_lock);
4389
16995a9f
CW
4390 intel_gt_reset(dev);
4391
6590190d
ED
4392 if (IS_VALLEYVIEW(dev)) {
4393 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4394 dev_priv->gt.force_wake_put = vlv_force_wake_put;
36ec8f87
DV
4395 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4396 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4397 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4398 } else if (IS_GEN6(dev)) {
6590190d
ED
4399 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4400 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
6590190d 4401 }
1a01ab3b
JB
4402 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4403 intel_gen6_powersave_work);
6590190d
ED
4404}
4405
42c0526c
BW
4406int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4407{
4fc688ce 4408 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
4409
4410 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4411 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4412 return -EAGAIN;
4413 }
4414
4415 I915_WRITE(GEN6_PCODE_DATA, *val);
4416 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4417
4418 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4419 500)) {
4420 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4421 return -ETIMEDOUT;
4422 }
4423
4424 *val = I915_READ(GEN6_PCODE_DATA);
4425 I915_WRITE(GEN6_PCODE_DATA, 0);
4426
4427 return 0;
4428}
4429
4430int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4431{
4fc688ce 4432 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
4433
4434 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4435 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4436 return -EAGAIN;
4437 }
4438
4439 I915_WRITE(GEN6_PCODE_DATA, val);
4440 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4441
4442 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4443 500)) {
4444 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4445 return -ETIMEDOUT;
4446 }
4447
4448 I915_WRITE(GEN6_PCODE_DATA, 0);
4449
4450 return 0;
4451}