]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Add power well arguments to force wake routines.
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
CommitLineData
85208be0
ED
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
2b4e57bd 28#include <linux/cpufreq.h>
85208be0
ED
29#include "i915_drv.h"
30#include "intel_drv.h"
eb48eb00
DV
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
f4db9321 33#include <drm/i915_powerwell.h>
85208be0 34
dc39fff7
BW
35/**
36 * RC6 is a special power stage which allows the GPU to enter an very
37 * low-voltage mode when idle, using down to 0V while at this stage. This
38 * stage is entered automatically when the GPU is idle when RC6 support is
39 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40 *
41 * There are different RC6 modes available in Intel GPU, which differentiate
42 * among each other with the latency required to enter and leave RC6 and
43 * voltage consumed by the GPU in different states.
44 *
45 * The combination of the following flags define which states GPU is allowed
46 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
47 * RC6pp is deepest RC6. Their support by hardware varies according to the
48 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
49 * which brings the most power savings; deeper states save more power, but
50 * require higher latency to switch to and wake up.
51 */
52#define INTEL_RC6_ENABLE (1<<0)
53#define INTEL_RC6p_ENABLE (1<<1)
54#define INTEL_RC6pp_ENABLE (1<<2)
55
f6750b3c
ED
56/* FBC, or Frame Buffer Compression, is a technique employed to compress the
57 * framebuffer contents in-memory, aiming at reducing the required bandwidth
58 * during in-memory transfers and, therefore, reduce the power packet.
85208be0 59 *
f6750b3c
ED
60 * The benefits of FBC are mostly visible with solid backgrounds and
61 * variation-less patterns.
85208be0 62 *
f6750b3c
ED
63 * FBC-related functionality can be enabled by the means of the
64 * i915.i915_enable_fbc parameter
85208be0
ED
65 */
66
1fa61106 67static void i8xx_disable_fbc(struct drm_device *dev)
85208be0
ED
68{
69 struct drm_i915_private *dev_priv = dev->dev_private;
70 u32 fbc_ctl;
71
72 /* Disable compression */
73 fbc_ctl = I915_READ(FBC_CONTROL);
74 if ((fbc_ctl & FBC_CTL_EN) == 0)
75 return;
76
77 fbc_ctl &= ~FBC_CTL_EN;
78 I915_WRITE(FBC_CONTROL, fbc_ctl);
79
80 /* Wait for compressing bit to clear */
81 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
82 DRM_DEBUG_KMS("FBC idle timed out\n");
83 return;
84 }
85
86 DRM_DEBUG_KMS("disabled FBC\n");
87}
88
1fa61106 89static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
90{
91 struct drm_device *dev = crtc->dev;
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct drm_framebuffer *fb = crtc->fb;
94 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
95 struct drm_i915_gem_object *obj = intel_fb->obj;
96 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
97 int cfb_pitch;
98 int plane, i;
99 u32 fbc_ctl, fbc_ctl2;
100
5c3fe8b0 101 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
85208be0
ED
102 if (fb->pitches[0] < cfb_pitch)
103 cfb_pitch = fb->pitches[0];
104
105 /* FBC_CTL wants 64B units */
106 cfb_pitch = (cfb_pitch / 64) - 1;
107 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
108
109 /* Clear old tags */
110 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
111 I915_WRITE(FBC_TAG + (i * 4), 0);
112
113 /* Set it up... */
114 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
115 fbc_ctl2 |= plane;
116 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
117 I915_WRITE(FBC_FENCE_OFF, crtc->y);
118
119 /* enable it... */
120 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
121 if (IS_I945GM(dev))
122 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
123 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
124 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
125 fbc_ctl |= obj->fence_reg;
126 I915_WRITE(FBC_CONTROL, fbc_ctl);
127
84f44ce7
VS
128 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
129 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
85208be0
ED
130}
131
1fa61106 132static bool i8xx_fbc_enabled(struct drm_device *dev)
85208be0
ED
133{
134 struct drm_i915_private *dev_priv = dev->dev_private;
135
136 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
137}
138
1fa61106 139static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
140{
141 struct drm_device *dev = crtc->dev;
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 struct drm_framebuffer *fb = crtc->fb;
144 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
145 struct drm_i915_gem_object *obj = intel_fb->obj;
146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
147 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
148 unsigned long stall_watermark = 200;
149 u32 dpfc_ctl;
150
151 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
152 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
153 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
154
155 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
156 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
157 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
158 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
159
160 /* enable it... */
161 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
162
84f44ce7 163 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
164}
165
1fa61106 166static void g4x_disable_fbc(struct drm_device *dev)
85208be0
ED
167{
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 u32 dpfc_ctl;
170
171 /* Disable compression */
172 dpfc_ctl = I915_READ(DPFC_CONTROL);
173 if (dpfc_ctl & DPFC_CTL_EN) {
174 dpfc_ctl &= ~DPFC_CTL_EN;
175 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
176
177 DRM_DEBUG_KMS("disabled FBC\n");
178 }
179}
180
1fa61106 181static bool g4x_fbc_enabled(struct drm_device *dev)
85208be0
ED
182{
183 struct drm_i915_private *dev_priv = dev->dev_private;
184
185 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
186}
187
188static void sandybridge_blit_fbc_update(struct drm_device *dev)
189{
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 u32 blt_ecoskpd;
192
193 /* Make sure blitter notifies FBC of writes */
c8d9a590
D
194 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
195
85208be0
ED
196 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
197 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
198 GEN6_BLITTER_LOCK_SHIFT;
199 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
200 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
201 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
202 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
203 GEN6_BLITTER_LOCK_SHIFT);
204 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
205 POSTING_READ(GEN6_BLITTER_ECOSKPD);
c8d9a590
D
206
207 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
85208be0
ED
208}
209
1fa61106 210static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
211{
212 struct drm_device *dev = crtc->dev;
213 struct drm_i915_private *dev_priv = dev->dev_private;
214 struct drm_framebuffer *fb = crtc->fb;
215 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
216 struct drm_i915_gem_object *obj = intel_fb->obj;
217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
218 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
219 unsigned long stall_watermark = 200;
220 u32 dpfc_ctl;
221
222 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
223 dpfc_ctl &= DPFC_RESERVED;
224 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
225 /* Set persistent mode for front-buffer rendering, ala X. */
226 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
d629336b
VS
227 dpfc_ctl |= DPFC_CTL_FENCE_EN;
228 if (IS_GEN5(dev))
229 dpfc_ctl |= obj->fence_reg;
85208be0
ED
230 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
231
232 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
233 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
234 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
235 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
f343c5f6 236 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
85208be0
ED
237 /* enable it... */
238 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
239
240 if (IS_GEN6(dev)) {
241 I915_WRITE(SNB_DPFC_CTL_SA,
242 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
243 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
244 sandybridge_blit_fbc_update(dev);
245 }
246
84f44ce7 247 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
248}
249
1fa61106 250static void ironlake_disable_fbc(struct drm_device *dev)
85208be0
ED
251{
252 struct drm_i915_private *dev_priv = dev->dev_private;
253 u32 dpfc_ctl;
254
255 /* Disable compression */
256 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
257 if (dpfc_ctl & DPFC_CTL_EN) {
258 dpfc_ctl &= ~DPFC_CTL_EN;
259 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
260
261 DRM_DEBUG_KMS("disabled FBC\n");
262 }
263}
264
1fa61106 265static bool ironlake_fbc_enabled(struct drm_device *dev)
85208be0
ED
266{
267 struct drm_i915_private *dev_priv = dev->dev_private;
268
269 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
270}
271
abe959c7
RV
272static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
273{
274 struct drm_device *dev = crtc->dev;
275 struct drm_i915_private *dev_priv = dev->dev_private;
276 struct drm_framebuffer *fb = crtc->fb;
277 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
278 struct drm_i915_gem_object *obj = intel_fb->obj;
279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
280
f343c5f6 281 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
abe959c7
RV
282
283 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
284 IVB_DPFC_CTL_FENCE_EN |
285 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
286
891348b2 287 if (IS_IVYBRIDGE(dev)) {
7dd23ba0 288 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
891348b2 289 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
28554164 290 } else {
7dd23ba0 291 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
28554164
RV
292 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
293 HSW_BYPASS_FBC_QUEUE);
891348b2 294 }
b74ea102 295
abe959c7
RV
296 I915_WRITE(SNB_DPFC_CTL_SA,
297 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
298 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
299
300 sandybridge_blit_fbc_update(dev);
301
b19870ee 302 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
abe959c7
RV
303}
304
85208be0
ED
305bool intel_fbc_enabled(struct drm_device *dev)
306{
307 struct drm_i915_private *dev_priv = dev->dev_private;
308
309 if (!dev_priv->display.fbc_enabled)
310 return false;
311
312 return dev_priv->display.fbc_enabled(dev);
313}
314
315static void intel_fbc_work_fn(struct work_struct *__work)
316{
317 struct intel_fbc_work *work =
318 container_of(to_delayed_work(__work),
319 struct intel_fbc_work, work);
320 struct drm_device *dev = work->crtc->dev;
321 struct drm_i915_private *dev_priv = dev->dev_private;
322
323 mutex_lock(&dev->struct_mutex);
5c3fe8b0 324 if (work == dev_priv->fbc.fbc_work) {
85208be0
ED
325 /* Double check that we haven't switched fb without cancelling
326 * the prior work.
327 */
328 if (work->crtc->fb == work->fb) {
329 dev_priv->display.enable_fbc(work->crtc,
330 work->interval);
331
5c3fe8b0
BW
332 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
333 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
334 dev_priv->fbc.y = work->crtc->y;
85208be0
ED
335 }
336
5c3fe8b0 337 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
338 }
339 mutex_unlock(&dev->struct_mutex);
340
341 kfree(work);
342}
343
344static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
345{
5c3fe8b0 346 if (dev_priv->fbc.fbc_work == NULL)
85208be0
ED
347 return;
348
349 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
350
351 /* Synchronisation is provided by struct_mutex and checking of
5c3fe8b0 352 * dev_priv->fbc.fbc_work, so we can perform the cancellation
85208be0
ED
353 * entirely asynchronously.
354 */
5c3fe8b0 355 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
85208be0 356 /* tasklet was killed before being run, clean up */
5c3fe8b0 357 kfree(dev_priv->fbc.fbc_work);
85208be0
ED
358
359 /* Mark the work as no longer wanted so that if it does
360 * wake-up (because the work was already running and waiting
361 * for our mutex), it will discover that is no longer
362 * necessary to run.
363 */
5c3fe8b0 364 dev_priv->fbc.fbc_work = NULL;
85208be0
ED
365}
366
b63fb44c 367static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
368{
369 struct intel_fbc_work *work;
370 struct drm_device *dev = crtc->dev;
371 struct drm_i915_private *dev_priv = dev->dev_private;
372
373 if (!dev_priv->display.enable_fbc)
374 return;
375
376 intel_cancel_fbc_work(dev_priv);
377
b14c5679 378 work = kzalloc(sizeof(*work), GFP_KERNEL);
85208be0 379 if (work == NULL) {
6cdcb5e7 380 DRM_ERROR("Failed to allocate FBC work structure\n");
85208be0
ED
381 dev_priv->display.enable_fbc(crtc, interval);
382 return;
383 }
384
385 work->crtc = crtc;
386 work->fb = crtc->fb;
387 work->interval = interval;
388 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
389
5c3fe8b0 390 dev_priv->fbc.fbc_work = work;
85208be0 391
85208be0
ED
392 /* Delay the actual enabling to let pageflipping cease and the
393 * display to settle before starting the compression. Note that
394 * this delay also serves a second purpose: it allows for a
395 * vblank to pass after disabling the FBC before we attempt
396 * to modify the control registers.
397 *
398 * A more complicated solution would involve tracking vblanks
399 * following the termination of the page-flipping sequence
400 * and indeed performing the enable as a co-routine and not
401 * waiting synchronously upon the vblank.
7457d617
DL
402 *
403 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
85208be0
ED
404 */
405 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
406}
407
408void intel_disable_fbc(struct drm_device *dev)
409{
410 struct drm_i915_private *dev_priv = dev->dev_private;
411
412 intel_cancel_fbc_work(dev_priv);
413
414 if (!dev_priv->display.disable_fbc)
415 return;
416
417 dev_priv->display.disable_fbc(dev);
5c3fe8b0 418 dev_priv->fbc.plane = -1;
85208be0
ED
419}
420
29ebf90f
CW
421static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
422 enum no_fbc_reason reason)
423{
424 if (dev_priv->fbc.no_fbc_reason == reason)
425 return false;
426
427 dev_priv->fbc.no_fbc_reason = reason;
428 return true;
429}
430
85208be0
ED
431/**
432 * intel_update_fbc - enable/disable FBC as needed
433 * @dev: the drm_device
434 *
435 * Set up the framebuffer compression hardware at mode set time. We
436 * enable it if possible:
437 * - plane A only (on pre-965)
438 * - no pixel mulitply/line duplication
439 * - no alpha buffer discard
440 * - no dual wide
f85da868 441 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
85208be0
ED
442 *
443 * We can't assume that any compression will take place (worst case),
444 * so the compressed buffer has to be the same size as the uncompressed
445 * one. It also must reside (along with the line length buffer) in
446 * stolen memory.
447 *
448 * We need to enable/disable FBC on a global basis.
449 */
450void intel_update_fbc(struct drm_device *dev)
451{
452 struct drm_i915_private *dev_priv = dev->dev_private;
453 struct drm_crtc *crtc = NULL, *tmp_crtc;
454 struct intel_crtc *intel_crtc;
455 struct drm_framebuffer *fb;
456 struct intel_framebuffer *intel_fb;
457 struct drm_i915_gem_object *obj;
ef644fda 458 const struct drm_display_mode *adjusted_mode;
37327abd 459 unsigned int max_width, max_height;
85208be0 460
29ebf90f
CW
461 if (!I915_HAS_FBC(dev)) {
462 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
85208be0 463 return;
29ebf90f 464 }
85208be0 465
29ebf90f
CW
466 if (!i915_powersave) {
467 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
468 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0 469 return;
29ebf90f 470 }
85208be0
ED
471
472 /*
473 * If FBC is already on, we just have to verify that we can
474 * keep it that way...
475 * Need to disable if:
476 * - more than one pipe is active
477 * - changing FBC params (stride, fence, mode)
478 * - new fb is too large to fit in compressed buffer
479 * - going to an unsupported config (interlace, pixel multiply, etc.)
480 */
481 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 482 if (intel_crtc_active(tmp_crtc) &&
4c445e0e 483 to_intel_crtc(tmp_crtc)->primary_enabled) {
85208be0 484 if (crtc) {
29ebf90f
CW
485 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
486 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
85208be0
ED
487 goto out_disable;
488 }
489 crtc = tmp_crtc;
490 }
491 }
492
493 if (!crtc || crtc->fb == NULL) {
29ebf90f
CW
494 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
495 DRM_DEBUG_KMS("no output, disabling\n");
85208be0
ED
496 goto out_disable;
497 }
498
499 intel_crtc = to_intel_crtc(crtc);
500 fb = crtc->fb;
501 intel_fb = to_intel_framebuffer(fb);
502 obj = intel_fb->obj;
ef644fda 503 adjusted_mode = &intel_crtc->config.adjusted_mode;
85208be0 504
8a5729a3
DL
505 if (i915_enable_fbc < 0 &&
506 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
29ebf90f
CW
507 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
508 DRM_DEBUG_KMS("disabled per chip default\n");
8a5729a3 509 goto out_disable;
85208be0 510 }
8a5729a3 511 if (!i915_enable_fbc) {
29ebf90f
CW
512 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
513 DRM_DEBUG_KMS("fbc disabled per module param\n");
85208be0
ED
514 goto out_disable;
515 }
ef644fda
VS
516 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
517 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
29ebf90f
CW
518 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
519 DRM_DEBUG_KMS("mode incompatible with compression, "
520 "disabling\n");
85208be0
ED
521 goto out_disable;
522 }
f85da868
PZ
523
524 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
37327abd
VS
525 max_width = 4096;
526 max_height = 2048;
f85da868 527 } else {
37327abd
VS
528 max_width = 2048;
529 max_height = 1536;
f85da868 530 }
37327abd
VS
531 if (intel_crtc->config.pipe_src_w > max_width ||
532 intel_crtc->config.pipe_src_h > max_height) {
29ebf90f
CW
533 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
534 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
85208be0
ED
535 goto out_disable;
536 }
891348b2
RV
537 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
538 intel_crtc->plane != 0) {
29ebf90f
CW
539 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
540 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
85208be0
ED
541 goto out_disable;
542 }
543
544 /* The use of a CPU fence is mandatory in order to detect writes
545 * by the CPU to the scanout and trigger updates to the FBC.
546 */
547 if (obj->tiling_mode != I915_TILING_X ||
548 obj->fence_reg == I915_FENCE_REG_NONE) {
29ebf90f
CW
549 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
550 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
85208be0
ED
551 goto out_disable;
552 }
553
554 /* If the kernel debugger is active, always disable compression */
555 if (in_dbg_master())
556 goto out_disable;
557
11be49eb 558 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
29ebf90f
CW
559 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
560 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
11be49eb
CW
561 goto out_disable;
562 }
563
85208be0
ED
564 /* If the scanout has not changed, don't modify the FBC settings.
565 * Note that we make the fundamental assumption that the fb->obj
566 * cannot be unpinned (and have its GTT offset and fence revoked)
567 * without first being decoupled from the scanout and FBC disabled.
568 */
5c3fe8b0
BW
569 if (dev_priv->fbc.plane == intel_crtc->plane &&
570 dev_priv->fbc.fb_id == fb->base.id &&
571 dev_priv->fbc.y == crtc->y)
85208be0
ED
572 return;
573
574 if (intel_fbc_enabled(dev)) {
575 /* We update FBC along two paths, after changing fb/crtc
576 * configuration (modeswitching) and after page-flipping
577 * finishes. For the latter, we know that not only did
578 * we disable the FBC at the start of the page-flip
579 * sequence, but also more than one vblank has passed.
580 *
581 * For the former case of modeswitching, it is possible
582 * to switch between two FBC valid configurations
583 * instantaneously so we do need to disable the FBC
584 * before we can modify its control registers. We also
585 * have to wait for the next vblank for that to take
586 * effect. However, since we delay enabling FBC we can
587 * assume that a vblank has passed since disabling and
588 * that we can safely alter the registers in the deferred
589 * callback.
590 *
591 * In the scenario that we go from a valid to invalid
592 * and then back to valid FBC configuration we have
593 * no strict enforcement that a vblank occurred since
594 * disabling the FBC. However, along all current pipe
595 * disabling paths we do need to wait for a vblank at
596 * some point. And we wait before enabling FBC anyway.
597 */
598 DRM_DEBUG_KMS("disabling active FBC for update\n");
599 intel_disable_fbc(dev);
600 }
601
602 intel_enable_fbc(crtc, 500);
29ebf90f 603 dev_priv->fbc.no_fbc_reason = FBC_OK;
85208be0
ED
604 return;
605
606out_disable:
607 /* Multiple disables should be harmless */
608 if (intel_fbc_enabled(dev)) {
609 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
610 intel_disable_fbc(dev);
611 }
11be49eb 612 i915_gem_stolen_cleanup_compression(dev);
85208be0
ED
613}
614
c921aba8
DV
615static void i915_pineview_get_mem_freq(struct drm_device *dev)
616{
617 drm_i915_private_t *dev_priv = dev->dev_private;
618 u32 tmp;
619
620 tmp = I915_READ(CLKCFG);
621
622 switch (tmp & CLKCFG_FSB_MASK) {
623 case CLKCFG_FSB_533:
624 dev_priv->fsb_freq = 533; /* 133*4 */
625 break;
626 case CLKCFG_FSB_800:
627 dev_priv->fsb_freq = 800; /* 200*4 */
628 break;
629 case CLKCFG_FSB_667:
630 dev_priv->fsb_freq = 667; /* 167*4 */
631 break;
632 case CLKCFG_FSB_400:
633 dev_priv->fsb_freq = 400; /* 100*4 */
634 break;
635 }
636
637 switch (tmp & CLKCFG_MEM_MASK) {
638 case CLKCFG_MEM_533:
639 dev_priv->mem_freq = 533;
640 break;
641 case CLKCFG_MEM_667:
642 dev_priv->mem_freq = 667;
643 break;
644 case CLKCFG_MEM_800:
645 dev_priv->mem_freq = 800;
646 break;
647 }
648
649 /* detect pineview DDR3 setting */
650 tmp = I915_READ(CSHRDDR3CTL);
651 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
652}
653
654static void i915_ironlake_get_mem_freq(struct drm_device *dev)
655{
656 drm_i915_private_t *dev_priv = dev->dev_private;
657 u16 ddrpll, csipll;
658
659 ddrpll = I915_READ16(DDRMPLL1);
660 csipll = I915_READ16(CSIPLL0);
661
662 switch (ddrpll & 0xff) {
663 case 0xc:
664 dev_priv->mem_freq = 800;
665 break;
666 case 0x10:
667 dev_priv->mem_freq = 1066;
668 break;
669 case 0x14:
670 dev_priv->mem_freq = 1333;
671 break;
672 case 0x18:
673 dev_priv->mem_freq = 1600;
674 break;
675 default:
676 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
677 ddrpll & 0xff);
678 dev_priv->mem_freq = 0;
679 break;
680 }
681
20e4d407 682 dev_priv->ips.r_t = dev_priv->mem_freq;
c921aba8
DV
683
684 switch (csipll & 0x3ff) {
685 case 0x00c:
686 dev_priv->fsb_freq = 3200;
687 break;
688 case 0x00e:
689 dev_priv->fsb_freq = 3733;
690 break;
691 case 0x010:
692 dev_priv->fsb_freq = 4266;
693 break;
694 case 0x012:
695 dev_priv->fsb_freq = 4800;
696 break;
697 case 0x014:
698 dev_priv->fsb_freq = 5333;
699 break;
700 case 0x016:
701 dev_priv->fsb_freq = 5866;
702 break;
703 case 0x018:
704 dev_priv->fsb_freq = 6400;
705 break;
706 default:
707 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
708 csipll & 0x3ff);
709 dev_priv->fsb_freq = 0;
710 break;
711 }
712
713 if (dev_priv->fsb_freq == 3200) {
20e4d407 714 dev_priv->ips.c_m = 0;
c921aba8 715 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
20e4d407 716 dev_priv->ips.c_m = 1;
c921aba8 717 } else {
20e4d407 718 dev_priv->ips.c_m = 2;
c921aba8
DV
719 }
720}
721
b445e3b0
ED
722static const struct cxsr_latency cxsr_latency_table[] = {
723 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
724 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
725 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
726 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
727 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
728
729 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
730 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
731 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
732 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
733 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
734
735 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
736 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
737 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
738 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
739 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
740
741 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
742 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
743 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
744 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
745 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
746
747 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
748 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
749 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
750 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
751 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
752
753 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
754 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
755 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
756 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
757 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
758};
759
63c62275 760static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
b445e3b0
ED
761 int is_ddr3,
762 int fsb,
763 int mem)
764{
765 const struct cxsr_latency *latency;
766 int i;
767
768 if (fsb == 0 || mem == 0)
769 return NULL;
770
771 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
772 latency = &cxsr_latency_table[i];
773 if (is_desktop == latency->is_desktop &&
774 is_ddr3 == latency->is_ddr3 &&
775 fsb == latency->fsb_freq && mem == latency->mem_freq)
776 return latency;
777 }
778
779 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
780
781 return NULL;
782}
783
1fa61106 784static void pineview_disable_cxsr(struct drm_device *dev)
b445e3b0
ED
785{
786 struct drm_i915_private *dev_priv = dev->dev_private;
787
788 /* deactivate cxsr */
789 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
790}
791
792/*
793 * Latency for FIFO fetches is dependent on several factors:
794 * - memory configuration (speed, channels)
795 * - chipset
796 * - current MCH state
797 * It can be fairly high in some situations, so here we assume a fairly
798 * pessimal value. It's a tradeoff between extra memory fetches (if we
799 * set this value too high, the FIFO will fetch frequently to stay full)
800 * and power consumption (set it too low to save power and we might see
801 * FIFO underruns and display "flicker").
802 *
803 * A value of 5us seems to be a good balance; safe for very low end
804 * platforms but not overly aggressive on lower latency configs.
805 */
806static const int latency_ns = 5000;
807
1fa61106 808static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
809{
810 struct drm_i915_private *dev_priv = dev->dev_private;
811 uint32_t dsparb = I915_READ(DSPARB);
812 int size;
813
814 size = dsparb & 0x7f;
815 if (plane)
816 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
817
818 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
819 plane ? "B" : "A", size);
820
821 return size;
822}
823
1fa61106 824static int i85x_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
825{
826 struct drm_i915_private *dev_priv = dev->dev_private;
827 uint32_t dsparb = I915_READ(DSPARB);
828 int size;
829
830 size = dsparb & 0x1ff;
831 if (plane)
832 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
833 size >>= 1; /* Convert to cachelines */
834
835 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
836 plane ? "B" : "A", size);
837
838 return size;
839}
840
1fa61106 841static int i845_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
842{
843 struct drm_i915_private *dev_priv = dev->dev_private;
844 uint32_t dsparb = I915_READ(DSPARB);
845 int size;
846
847 size = dsparb & 0x7f;
848 size >>= 2; /* Convert to cachelines */
849
850 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
851 plane ? "B" : "A",
852 size);
853
854 return size;
855}
856
1fa61106 857static int i830_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
858{
859 struct drm_i915_private *dev_priv = dev->dev_private;
860 uint32_t dsparb = I915_READ(DSPARB);
861 int size;
862
863 size = dsparb & 0x7f;
864 size >>= 1; /* Convert to cachelines */
865
866 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
867 plane ? "B" : "A", size);
868
869 return size;
870}
871
872/* Pineview has different values for various configs */
873static const struct intel_watermark_params pineview_display_wm = {
874 PINEVIEW_DISPLAY_FIFO,
875 PINEVIEW_MAX_WM,
876 PINEVIEW_DFT_WM,
877 PINEVIEW_GUARD_WM,
878 PINEVIEW_FIFO_LINE_SIZE
879};
880static const struct intel_watermark_params pineview_display_hplloff_wm = {
881 PINEVIEW_DISPLAY_FIFO,
882 PINEVIEW_MAX_WM,
883 PINEVIEW_DFT_HPLLOFF_WM,
884 PINEVIEW_GUARD_WM,
885 PINEVIEW_FIFO_LINE_SIZE
886};
887static const struct intel_watermark_params pineview_cursor_wm = {
888 PINEVIEW_CURSOR_FIFO,
889 PINEVIEW_CURSOR_MAX_WM,
890 PINEVIEW_CURSOR_DFT_WM,
891 PINEVIEW_CURSOR_GUARD_WM,
892 PINEVIEW_FIFO_LINE_SIZE,
893};
894static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
895 PINEVIEW_CURSOR_FIFO,
896 PINEVIEW_CURSOR_MAX_WM,
897 PINEVIEW_CURSOR_DFT_WM,
898 PINEVIEW_CURSOR_GUARD_WM,
899 PINEVIEW_FIFO_LINE_SIZE
900};
901static const struct intel_watermark_params g4x_wm_info = {
902 G4X_FIFO_SIZE,
903 G4X_MAX_WM,
904 G4X_MAX_WM,
905 2,
906 G4X_FIFO_LINE_SIZE,
907};
908static const struct intel_watermark_params g4x_cursor_wm_info = {
909 I965_CURSOR_FIFO,
910 I965_CURSOR_MAX_WM,
911 I965_CURSOR_DFT_WM,
912 2,
913 G4X_FIFO_LINE_SIZE,
914};
915static const struct intel_watermark_params valleyview_wm_info = {
916 VALLEYVIEW_FIFO_SIZE,
917 VALLEYVIEW_MAX_WM,
918 VALLEYVIEW_MAX_WM,
919 2,
920 G4X_FIFO_LINE_SIZE,
921};
922static const struct intel_watermark_params valleyview_cursor_wm_info = {
923 I965_CURSOR_FIFO,
924 VALLEYVIEW_CURSOR_MAX_WM,
925 I965_CURSOR_DFT_WM,
926 2,
927 G4X_FIFO_LINE_SIZE,
928};
929static const struct intel_watermark_params i965_cursor_wm_info = {
930 I965_CURSOR_FIFO,
931 I965_CURSOR_MAX_WM,
932 I965_CURSOR_DFT_WM,
933 2,
934 I915_FIFO_LINE_SIZE,
935};
936static const struct intel_watermark_params i945_wm_info = {
937 I945_FIFO_SIZE,
938 I915_MAX_WM,
939 1,
940 2,
941 I915_FIFO_LINE_SIZE
942};
943static const struct intel_watermark_params i915_wm_info = {
944 I915_FIFO_SIZE,
945 I915_MAX_WM,
946 1,
947 2,
948 I915_FIFO_LINE_SIZE
949};
950static const struct intel_watermark_params i855_wm_info = {
951 I855GM_FIFO_SIZE,
952 I915_MAX_WM,
953 1,
954 2,
955 I830_FIFO_LINE_SIZE
956};
957static const struct intel_watermark_params i830_wm_info = {
958 I830_FIFO_SIZE,
959 I915_MAX_WM,
960 1,
961 2,
962 I830_FIFO_LINE_SIZE
963};
964
965static const struct intel_watermark_params ironlake_display_wm_info = {
966 ILK_DISPLAY_FIFO,
967 ILK_DISPLAY_MAXWM,
968 ILK_DISPLAY_DFTWM,
969 2,
970 ILK_FIFO_LINE_SIZE
971};
972static const struct intel_watermark_params ironlake_cursor_wm_info = {
973 ILK_CURSOR_FIFO,
974 ILK_CURSOR_MAXWM,
975 ILK_CURSOR_DFTWM,
976 2,
977 ILK_FIFO_LINE_SIZE
978};
979static const struct intel_watermark_params ironlake_display_srwm_info = {
980 ILK_DISPLAY_SR_FIFO,
981 ILK_DISPLAY_MAX_SRWM,
982 ILK_DISPLAY_DFT_SRWM,
983 2,
984 ILK_FIFO_LINE_SIZE
985};
986static const struct intel_watermark_params ironlake_cursor_srwm_info = {
987 ILK_CURSOR_SR_FIFO,
988 ILK_CURSOR_MAX_SRWM,
989 ILK_CURSOR_DFT_SRWM,
990 2,
991 ILK_FIFO_LINE_SIZE
992};
993
994static const struct intel_watermark_params sandybridge_display_wm_info = {
995 SNB_DISPLAY_FIFO,
996 SNB_DISPLAY_MAXWM,
997 SNB_DISPLAY_DFTWM,
998 2,
999 SNB_FIFO_LINE_SIZE
1000};
1001static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1002 SNB_CURSOR_FIFO,
1003 SNB_CURSOR_MAXWM,
1004 SNB_CURSOR_DFTWM,
1005 2,
1006 SNB_FIFO_LINE_SIZE
1007};
1008static const struct intel_watermark_params sandybridge_display_srwm_info = {
1009 SNB_DISPLAY_SR_FIFO,
1010 SNB_DISPLAY_MAX_SRWM,
1011 SNB_DISPLAY_DFT_SRWM,
1012 2,
1013 SNB_FIFO_LINE_SIZE
1014};
1015static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1016 SNB_CURSOR_SR_FIFO,
1017 SNB_CURSOR_MAX_SRWM,
1018 SNB_CURSOR_DFT_SRWM,
1019 2,
1020 SNB_FIFO_LINE_SIZE
1021};
1022
1023
1024/**
1025 * intel_calculate_wm - calculate watermark level
1026 * @clock_in_khz: pixel clock
1027 * @wm: chip FIFO params
1028 * @pixel_size: display pixel size
1029 * @latency_ns: memory latency for the platform
1030 *
1031 * Calculate the watermark level (the level at which the display plane will
1032 * start fetching from memory again). Each chip has a different display
1033 * FIFO size and allocation, so the caller needs to figure that out and pass
1034 * in the correct intel_watermark_params structure.
1035 *
1036 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1037 * on the pixel size. When it reaches the watermark level, it'll start
1038 * fetching FIFO line sized based chunks from memory until the FIFO fills
1039 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1040 * will occur, and a display engine hang could result.
1041 */
1042static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1043 const struct intel_watermark_params *wm,
1044 int fifo_size,
1045 int pixel_size,
1046 unsigned long latency_ns)
1047{
1048 long entries_required, wm_size;
1049
1050 /*
1051 * Note: we need to make sure we don't overflow for various clock &
1052 * latency values.
1053 * clocks go from a few thousand to several hundred thousand.
1054 * latency is usually a few thousand
1055 */
1056 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1057 1000;
1058 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1059
1060 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1061
1062 wm_size = fifo_size - (entries_required + wm->guard_size);
1063
1064 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1065
1066 /* Don't promote wm_size to unsigned... */
1067 if (wm_size > (long)wm->max_wm)
1068 wm_size = wm->max_wm;
1069 if (wm_size <= 0)
1070 wm_size = wm->default_wm;
1071 return wm_size;
1072}
1073
1074static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1075{
1076 struct drm_crtc *crtc, *enabled = NULL;
1077
1078 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 1079 if (intel_crtc_active(crtc)) {
b445e3b0
ED
1080 if (enabled)
1081 return NULL;
1082 enabled = crtc;
1083 }
1084 }
1085
1086 return enabled;
1087}
1088
46ba614c 1089static void pineview_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1090{
46ba614c 1091 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 struct drm_crtc *crtc;
1094 const struct cxsr_latency *latency;
1095 u32 reg;
1096 unsigned long wm;
1097
1098 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099 dev_priv->fsb_freq, dev_priv->mem_freq);
1100 if (!latency) {
1101 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102 pineview_disable_cxsr(dev);
1103 return;
1104 }
1105
1106 crtc = single_enabled_crtc(dev);
1107 if (crtc) {
241bfc38 1108 const struct drm_display_mode *adjusted_mode;
b445e3b0 1109 int pixel_size = crtc->fb->bits_per_pixel / 8;
241bfc38
DL
1110 int clock;
1111
1112 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1113 clock = adjusted_mode->crtc_clock;
b445e3b0
ED
1114
1115 /* Display SR */
1116 wm = intel_calculate_wm(clock, &pineview_display_wm,
1117 pineview_display_wm.fifo_size,
1118 pixel_size, latency->display_sr);
1119 reg = I915_READ(DSPFW1);
1120 reg &= ~DSPFW_SR_MASK;
1121 reg |= wm << DSPFW_SR_SHIFT;
1122 I915_WRITE(DSPFW1, reg);
1123 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1124
1125 /* cursor SR */
1126 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1127 pineview_display_wm.fifo_size,
1128 pixel_size, latency->cursor_sr);
1129 reg = I915_READ(DSPFW3);
1130 reg &= ~DSPFW_CURSOR_SR_MASK;
1131 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1132 I915_WRITE(DSPFW3, reg);
1133
1134 /* Display HPLL off SR */
1135 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1136 pineview_display_hplloff_wm.fifo_size,
1137 pixel_size, latency->display_hpll_disable);
1138 reg = I915_READ(DSPFW3);
1139 reg &= ~DSPFW_HPLL_SR_MASK;
1140 reg |= wm & DSPFW_HPLL_SR_MASK;
1141 I915_WRITE(DSPFW3, reg);
1142
1143 /* cursor HPLL off SR */
1144 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1145 pineview_display_hplloff_wm.fifo_size,
1146 pixel_size, latency->cursor_hpll_disable);
1147 reg = I915_READ(DSPFW3);
1148 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1149 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1150 I915_WRITE(DSPFW3, reg);
1151 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1152
1153 /* activate cxsr */
1154 I915_WRITE(DSPFW3,
1155 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1156 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1157 } else {
1158 pineview_disable_cxsr(dev);
1159 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1160 }
1161}
1162
1163static bool g4x_compute_wm0(struct drm_device *dev,
1164 int plane,
1165 const struct intel_watermark_params *display,
1166 int display_latency_ns,
1167 const struct intel_watermark_params *cursor,
1168 int cursor_latency_ns,
1169 int *plane_wm,
1170 int *cursor_wm)
1171{
1172 struct drm_crtc *crtc;
4fe8590a 1173 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1174 int htotal, hdisplay, clock, pixel_size;
1175 int line_time_us, line_count;
1176 int entries, tlb_miss;
1177
1178 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1179 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
1180 *cursor_wm = cursor->guard_size;
1181 *plane_wm = display->guard_size;
1182 return false;
1183 }
1184
4fe8590a 1185 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1186 clock = adjusted_mode->crtc_clock;
4fe8590a 1187 htotal = adjusted_mode->htotal;
37327abd 1188 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1189 pixel_size = crtc->fb->bits_per_pixel / 8;
1190
1191 /* Use the small buffer method to calculate plane watermark */
1192 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1193 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1194 if (tlb_miss > 0)
1195 entries += tlb_miss;
1196 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1197 *plane_wm = entries + display->guard_size;
1198 if (*plane_wm > (int)display->max_wm)
1199 *plane_wm = display->max_wm;
1200
1201 /* Use the large buffer method to calculate cursor watermark */
1202 line_time_us = ((htotal * 1000) / clock);
1203 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1204 entries = line_count * 64 * pixel_size;
1205 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1206 if (tlb_miss > 0)
1207 entries += tlb_miss;
1208 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1209 *cursor_wm = entries + cursor->guard_size;
1210 if (*cursor_wm > (int)cursor->max_wm)
1211 *cursor_wm = (int)cursor->max_wm;
1212
1213 return true;
1214}
1215
1216/*
1217 * Check the wm result.
1218 *
1219 * If any calculated watermark values is larger than the maximum value that
1220 * can be programmed into the associated watermark register, that watermark
1221 * must be disabled.
1222 */
1223static bool g4x_check_srwm(struct drm_device *dev,
1224 int display_wm, int cursor_wm,
1225 const struct intel_watermark_params *display,
1226 const struct intel_watermark_params *cursor)
1227{
1228 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1229 display_wm, cursor_wm);
1230
1231 if (display_wm > display->max_wm) {
1232 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1233 display_wm, display->max_wm);
1234 return false;
1235 }
1236
1237 if (cursor_wm > cursor->max_wm) {
1238 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1239 cursor_wm, cursor->max_wm);
1240 return false;
1241 }
1242
1243 if (!(display_wm || cursor_wm)) {
1244 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1245 return false;
1246 }
1247
1248 return true;
1249}
1250
1251static bool g4x_compute_srwm(struct drm_device *dev,
1252 int plane,
1253 int latency_ns,
1254 const struct intel_watermark_params *display,
1255 const struct intel_watermark_params *cursor,
1256 int *display_wm, int *cursor_wm)
1257{
1258 struct drm_crtc *crtc;
4fe8590a 1259 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1260 int hdisplay, htotal, pixel_size, clock;
1261 unsigned long line_time_us;
1262 int line_count, line_size;
1263 int small, large;
1264 int entries;
1265
1266 if (!latency_ns) {
1267 *display_wm = *cursor_wm = 0;
1268 return false;
1269 }
1270
1271 crtc = intel_get_crtc_for_plane(dev, plane);
4fe8590a 1272 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1273 clock = adjusted_mode->crtc_clock;
4fe8590a 1274 htotal = adjusted_mode->htotal;
37327abd 1275 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1276 pixel_size = crtc->fb->bits_per_pixel / 8;
1277
1278 line_time_us = (htotal * 1000) / clock;
1279 line_count = (latency_ns / line_time_us + 1000) / 1000;
1280 line_size = hdisplay * pixel_size;
1281
1282 /* Use the minimum of the small and large buffer method for primary */
1283 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1284 large = line_count * line_size;
1285
1286 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1287 *display_wm = entries + display->guard_size;
1288
1289 /* calculate the self-refresh watermark for display cursor */
1290 entries = line_count * pixel_size * 64;
1291 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1292 *cursor_wm = entries + cursor->guard_size;
1293
1294 return g4x_check_srwm(dev,
1295 *display_wm, *cursor_wm,
1296 display, cursor);
1297}
1298
1299static bool vlv_compute_drain_latency(struct drm_device *dev,
1300 int plane,
1301 int *plane_prec_mult,
1302 int *plane_dl,
1303 int *cursor_prec_mult,
1304 int *cursor_dl)
1305{
1306 struct drm_crtc *crtc;
1307 int clock, pixel_size;
1308 int entries;
1309
1310 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1311 if (!intel_crtc_active(crtc))
b445e3b0
ED
1312 return false;
1313
241bfc38 1314 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
b445e3b0
ED
1315 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1316
1317 entries = (clock / 1000) * pixel_size;
1318 *plane_prec_mult = (entries > 256) ?
1319 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1320 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1321 pixel_size);
1322
1323 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1324 *cursor_prec_mult = (entries > 256) ?
1325 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1326 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1327
1328 return true;
1329}
1330
1331/*
1332 * Update drain latency registers of memory arbiter
1333 *
1334 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1335 * to be programmed. Each plane has a drain latency multiplier and a drain
1336 * latency value.
1337 */
1338
1339static void vlv_update_drain_latency(struct drm_device *dev)
1340{
1341 struct drm_i915_private *dev_priv = dev->dev_private;
1342 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1343 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1344 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1345 either 16 or 32 */
1346
1347 /* For plane A, Cursor A */
1348 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1349 &cursor_prec_mult, &cursora_dl)) {
1350 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1351 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1352 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1353 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1354
1355 I915_WRITE(VLV_DDL1, cursora_prec |
1356 (cursora_dl << DDL_CURSORA_SHIFT) |
1357 planea_prec | planea_dl);
1358 }
1359
1360 /* For plane B, Cursor B */
1361 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1362 &cursor_prec_mult, &cursorb_dl)) {
1363 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1364 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1365 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1366 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1367
1368 I915_WRITE(VLV_DDL2, cursorb_prec |
1369 (cursorb_dl << DDL_CURSORB_SHIFT) |
1370 planeb_prec | planeb_dl);
1371 }
1372}
1373
1374#define single_plane_enabled(mask) is_power_of_2(mask)
1375
46ba614c 1376static void valleyview_update_wm(struct drm_crtc *crtc)
b445e3b0 1377{
46ba614c 1378 struct drm_device *dev = crtc->dev;
b445e3b0
ED
1379 static const int sr_latency_ns = 12000;
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1382 int plane_sr, cursor_sr;
af6c4575 1383 int ignore_plane_sr, ignore_cursor_sr;
b445e3b0
ED
1384 unsigned int enabled = 0;
1385
1386 vlv_update_drain_latency(dev);
1387
51cea1f4 1388 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1389 &valleyview_wm_info, latency_ns,
1390 &valleyview_cursor_wm_info, latency_ns,
1391 &planea_wm, &cursora_wm))
51cea1f4 1392 enabled |= 1 << PIPE_A;
b445e3b0 1393
51cea1f4 1394 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1395 &valleyview_wm_info, latency_ns,
1396 &valleyview_cursor_wm_info, latency_ns,
1397 &planeb_wm, &cursorb_wm))
51cea1f4 1398 enabled |= 1 << PIPE_B;
b445e3b0 1399
b445e3b0
ED
1400 if (single_plane_enabled(enabled) &&
1401 g4x_compute_srwm(dev, ffs(enabled) - 1,
1402 sr_latency_ns,
1403 &valleyview_wm_info,
1404 &valleyview_cursor_wm_info,
af6c4575
CW
1405 &plane_sr, &ignore_cursor_sr) &&
1406 g4x_compute_srwm(dev, ffs(enabled) - 1,
1407 2*sr_latency_ns,
1408 &valleyview_wm_info,
1409 &valleyview_cursor_wm_info,
52bd02d8 1410 &ignore_plane_sr, &cursor_sr)) {
b445e3b0 1411 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
52bd02d8 1412 } else {
b445e3b0
ED
1413 I915_WRITE(FW_BLC_SELF_VLV,
1414 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
52bd02d8
CW
1415 plane_sr = cursor_sr = 0;
1416 }
b445e3b0
ED
1417
1418 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1419 planea_wm, cursora_wm,
1420 planeb_wm, cursorb_wm,
1421 plane_sr, cursor_sr);
1422
1423 I915_WRITE(DSPFW1,
1424 (plane_sr << DSPFW_SR_SHIFT) |
1425 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1426 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1427 planea_wm);
1428 I915_WRITE(DSPFW2,
8c919b28 1429 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1430 (cursora_wm << DSPFW_CURSORA_SHIFT));
1431 I915_WRITE(DSPFW3,
8c919b28
CW
1432 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1433 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
b445e3b0
ED
1434}
1435
46ba614c 1436static void g4x_update_wm(struct drm_crtc *crtc)
b445e3b0 1437{
46ba614c 1438 struct drm_device *dev = crtc->dev;
b445e3b0
ED
1439 static const int sr_latency_ns = 12000;
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1442 int plane_sr, cursor_sr;
1443 unsigned int enabled = 0;
1444
51cea1f4 1445 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1446 &g4x_wm_info, latency_ns,
1447 &g4x_cursor_wm_info, latency_ns,
1448 &planea_wm, &cursora_wm))
51cea1f4 1449 enabled |= 1 << PIPE_A;
b445e3b0 1450
51cea1f4 1451 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1452 &g4x_wm_info, latency_ns,
1453 &g4x_cursor_wm_info, latency_ns,
1454 &planeb_wm, &cursorb_wm))
51cea1f4 1455 enabled |= 1 << PIPE_B;
b445e3b0 1456
b445e3b0
ED
1457 if (single_plane_enabled(enabled) &&
1458 g4x_compute_srwm(dev, ffs(enabled) - 1,
1459 sr_latency_ns,
1460 &g4x_wm_info,
1461 &g4x_cursor_wm_info,
52bd02d8 1462 &plane_sr, &cursor_sr)) {
b445e3b0 1463 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
52bd02d8 1464 } else {
b445e3b0
ED
1465 I915_WRITE(FW_BLC_SELF,
1466 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
52bd02d8
CW
1467 plane_sr = cursor_sr = 0;
1468 }
b445e3b0
ED
1469
1470 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1471 planea_wm, cursora_wm,
1472 planeb_wm, cursorb_wm,
1473 plane_sr, cursor_sr);
1474
1475 I915_WRITE(DSPFW1,
1476 (plane_sr << DSPFW_SR_SHIFT) |
1477 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1478 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1479 planea_wm);
1480 I915_WRITE(DSPFW2,
8c919b28 1481 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1482 (cursora_wm << DSPFW_CURSORA_SHIFT));
1483 /* HPLL off in SR has some issues on G4x... disable it */
1484 I915_WRITE(DSPFW3,
8c919b28 1485 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
b445e3b0
ED
1486 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1487}
1488
46ba614c 1489static void i965_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1490{
46ba614c 1491 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493 struct drm_crtc *crtc;
1494 int srwm = 1;
1495 int cursor_sr = 16;
1496
1497 /* Calc sr entries for one plane configs */
1498 crtc = single_enabled_crtc(dev);
1499 if (crtc) {
1500 /* self-refresh has much higher latency */
1501 static const int sr_latency_ns = 12000;
4fe8590a
VS
1502 const struct drm_display_mode *adjusted_mode =
1503 &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1504 int clock = adjusted_mode->crtc_clock;
4fe8590a 1505 int htotal = adjusted_mode->htotal;
37327abd 1506 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1507 int pixel_size = crtc->fb->bits_per_pixel / 8;
1508 unsigned long line_time_us;
1509 int entries;
1510
1511 line_time_us = ((htotal * 1000) / clock);
1512
1513 /* Use ns/us then divide to preserve precision */
1514 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1515 pixel_size * hdisplay;
1516 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1517 srwm = I965_FIFO_SIZE - entries;
1518 if (srwm < 0)
1519 srwm = 1;
1520 srwm &= 0x1ff;
1521 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1522 entries, srwm);
1523
1524 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1525 pixel_size * 64;
1526 entries = DIV_ROUND_UP(entries,
1527 i965_cursor_wm_info.cacheline_size);
1528 cursor_sr = i965_cursor_wm_info.fifo_size -
1529 (entries + i965_cursor_wm_info.guard_size);
1530
1531 if (cursor_sr > i965_cursor_wm_info.max_wm)
1532 cursor_sr = i965_cursor_wm_info.max_wm;
1533
1534 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1535 "cursor %d\n", srwm, cursor_sr);
1536
1537 if (IS_CRESTLINE(dev))
1538 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1539 } else {
1540 /* Turn off self refresh if both pipes are enabled */
1541 if (IS_CRESTLINE(dev))
1542 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1543 & ~FW_BLC_SELF_EN);
1544 }
1545
1546 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1547 srwm);
1548
1549 /* 965 has limitations... */
1550 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1551 (8 << 16) | (8 << 8) | (8 << 0));
1552 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1553 /* update cursor SR watermark */
1554 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1555}
1556
46ba614c 1557static void i9xx_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1558{
46ba614c 1559 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 const struct intel_watermark_params *wm_info;
1562 uint32_t fwater_lo;
1563 uint32_t fwater_hi;
1564 int cwm, srwm = 1;
1565 int fifo_size;
1566 int planea_wm, planeb_wm;
1567 struct drm_crtc *crtc, *enabled = NULL;
1568
1569 if (IS_I945GM(dev))
1570 wm_info = &i945_wm_info;
1571 else if (!IS_GEN2(dev))
1572 wm_info = &i915_wm_info;
1573 else
1574 wm_info = &i855_wm_info;
1575
1576 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1577 crtc = intel_get_crtc_for_plane(dev, 0);
3490ea5d 1578 if (intel_crtc_active(crtc)) {
241bfc38 1579 const struct drm_display_mode *adjusted_mode;
b9e0bda3
CW
1580 int cpp = crtc->fb->bits_per_pixel / 8;
1581 if (IS_GEN2(dev))
1582 cpp = 4;
1583
241bfc38
DL
1584 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1585 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 1586 wm_info, fifo_size, cpp,
b445e3b0
ED
1587 latency_ns);
1588 enabled = crtc;
1589 } else
1590 planea_wm = fifo_size - wm_info->guard_size;
1591
1592 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1593 crtc = intel_get_crtc_for_plane(dev, 1);
3490ea5d 1594 if (intel_crtc_active(crtc)) {
241bfc38 1595 const struct drm_display_mode *adjusted_mode;
b9e0bda3
CW
1596 int cpp = crtc->fb->bits_per_pixel / 8;
1597 if (IS_GEN2(dev))
1598 cpp = 4;
1599
241bfc38
DL
1600 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1601 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 1602 wm_info, fifo_size, cpp,
b445e3b0
ED
1603 latency_ns);
1604 if (enabled == NULL)
1605 enabled = crtc;
1606 else
1607 enabled = NULL;
1608 } else
1609 planeb_wm = fifo_size - wm_info->guard_size;
1610
1611 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1612
1613 /*
1614 * Overlay gets an aggressive default since video jitter is bad.
1615 */
1616 cwm = 2;
1617
1618 /* Play safe and disable self-refresh before adjusting watermarks. */
1619 if (IS_I945G(dev) || IS_I945GM(dev))
1620 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1621 else if (IS_I915GM(dev))
1622 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1623
1624 /* Calc sr entries for one plane configs */
1625 if (HAS_FW_BLC(dev) && enabled) {
1626 /* self-refresh has much higher latency */
1627 static const int sr_latency_ns = 6000;
4fe8590a
VS
1628 const struct drm_display_mode *adjusted_mode =
1629 &to_intel_crtc(enabled)->config.adjusted_mode;
241bfc38 1630 int clock = adjusted_mode->crtc_clock;
4fe8590a 1631 int htotal = adjusted_mode->htotal;
37327abd 1632 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1633 int pixel_size = enabled->fb->bits_per_pixel / 8;
1634 unsigned long line_time_us;
1635 int entries;
1636
1637 line_time_us = (htotal * 1000) / clock;
1638
1639 /* Use ns/us then divide to preserve precision */
1640 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1641 pixel_size * hdisplay;
1642 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1643 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1644 srwm = wm_info->fifo_size - entries;
1645 if (srwm < 0)
1646 srwm = 1;
1647
1648 if (IS_I945G(dev) || IS_I945GM(dev))
1649 I915_WRITE(FW_BLC_SELF,
1650 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1651 else if (IS_I915GM(dev))
1652 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1653 }
1654
1655 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1656 planea_wm, planeb_wm, cwm, srwm);
1657
1658 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1659 fwater_hi = (cwm & 0x1f);
1660
1661 /* Set request length to 8 cachelines per fetch */
1662 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1663 fwater_hi = fwater_hi | (1 << 8);
1664
1665 I915_WRITE(FW_BLC, fwater_lo);
1666 I915_WRITE(FW_BLC2, fwater_hi);
1667
1668 if (HAS_FW_BLC(dev)) {
1669 if (enabled) {
1670 if (IS_I945G(dev) || IS_I945GM(dev))
1671 I915_WRITE(FW_BLC_SELF,
1672 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1673 else if (IS_I915GM(dev))
1674 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1675 DRM_DEBUG_KMS("memory self refresh enabled\n");
1676 } else
1677 DRM_DEBUG_KMS("memory self refresh disabled\n");
1678 }
1679}
1680
46ba614c 1681static void i830_update_wm(struct drm_crtc *unused_crtc)
b445e3b0 1682{
46ba614c 1683 struct drm_device *dev = unused_crtc->dev;
b445e3b0
ED
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 struct drm_crtc *crtc;
241bfc38 1686 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1687 uint32_t fwater_lo;
1688 int planea_wm;
1689
1690 crtc = single_enabled_crtc(dev);
1691 if (crtc == NULL)
1692 return;
1693
241bfc38
DL
1694 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1695 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
4fe8590a 1696 &i830_wm_info,
b445e3b0 1697 dev_priv->display.get_fifo_size(dev, 0),
b9e0bda3 1698 4, latency_ns);
b445e3b0
ED
1699 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1700 fwater_lo |= (3<<8) | planea_wm;
1701
1702 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1703
1704 I915_WRITE(FW_BLC, fwater_lo);
1705}
1706
b445e3b0
ED
1707/*
1708 * Check the wm result.
1709 *
1710 * If any calculated watermark values is larger than the maximum value that
1711 * can be programmed into the associated watermark register, that watermark
1712 * must be disabled.
1713 */
1714static bool ironlake_check_srwm(struct drm_device *dev, int level,
1715 int fbc_wm, int display_wm, int cursor_wm,
1716 const struct intel_watermark_params *display,
1717 const struct intel_watermark_params *cursor)
1718{
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1722 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1723
1724 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1725 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1726 fbc_wm, SNB_FBC_MAX_SRWM, level);
1727
1728 /* fbc has it's own way to disable FBC WM */
1729 I915_WRITE(DISP_ARB_CTL,
1730 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1731 return false;
615aaa5f
VS
1732 } else if (INTEL_INFO(dev)->gen >= 6) {
1733 /* enable FBC WM (except on ILK, where it must remain off) */
1734 I915_WRITE(DISP_ARB_CTL,
1735 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
b445e3b0
ED
1736 }
1737
1738 if (display_wm > display->max_wm) {
1739 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1740 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1741 return false;
1742 }
1743
1744 if (cursor_wm > cursor->max_wm) {
1745 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1746 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1747 return false;
1748 }
1749
1750 if (!(fbc_wm || display_wm || cursor_wm)) {
1751 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1752 return false;
1753 }
1754
1755 return true;
1756}
1757
1758/*
1759 * Compute watermark values of WM[1-3],
1760 */
1761static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1762 int latency_ns,
1763 const struct intel_watermark_params *display,
1764 const struct intel_watermark_params *cursor,
1765 int *fbc_wm, int *display_wm, int *cursor_wm)
1766{
1767 struct drm_crtc *crtc;
4fe8590a 1768 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
1769 unsigned long line_time_us;
1770 int hdisplay, htotal, pixel_size, clock;
1771 int line_count, line_size;
1772 int small, large;
1773 int entries;
1774
1775 if (!latency_ns) {
1776 *fbc_wm = *display_wm = *cursor_wm = 0;
1777 return false;
1778 }
1779
1780 crtc = intel_get_crtc_for_plane(dev, plane);
4fe8590a 1781 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
241bfc38 1782 clock = adjusted_mode->crtc_clock;
4fe8590a 1783 htotal = adjusted_mode->htotal;
37327abd 1784 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
b445e3b0
ED
1785 pixel_size = crtc->fb->bits_per_pixel / 8;
1786
1787 line_time_us = (htotal * 1000) / clock;
1788 line_count = (latency_ns / line_time_us + 1000) / 1000;
1789 line_size = hdisplay * pixel_size;
1790
1791 /* Use the minimum of the small and large buffer method for primary */
1792 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1793 large = line_count * line_size;
1794
1795 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1796 *display_wm = entries + display->guard_size;
1797
1798 /*
1799 * Spec says:
1800 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1801 */
1802 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1803
1804 /* calculate the self-refresh watermark for display cursor */
1805 entries = line_count * pixel_size * 64;
1806 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1807 *cursor_wm = entries + cursor->guard_size;
1808
1809 return ironlake_check_srwm(dev, level,
1810 *fbc_wm, *display_wm, *cursor_wm,
1811 display, cursor);
1812}
1813
46ba614c 1814static void ironlake_update_wm(struct drm_crtc *crtc)
b445e3b0 1815{
46ba614c 1816 struct drm_device *dev = crtc->dev;
b445e3b0
ED
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 int fbc_wm, plane_wm, cursor_wm;
1819 unsigned int enabled;
1820
1821 enabled = 0;
51cea1f4 1822 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0 1823 &ironlake_display_wm_info,
b0aea5dc 1824 dev_priv->wm.pri_latency[0] * 100,
b445e3b0 1825 &ironlake_cursor_wm_info,
b0aea5dc 1826 dev_priv->wm.cur_latency[0] * 100,
b445e3b0
ED
1827 &plane_wm, &cursor_wm)) {
1828 I915_WRITE(WM0_PIPEA_ILK,
1829 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1830 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1831 " plane %d, " "cursor: %d\n",
1832 plane_wm, cursor_wm);
51cea1f4 1833 enabled |= 1 << PIPE_A;
b445e3b0
ED
1834 }
1835
51cea1f4 1836 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0 1837 &ironlake_display_wm_info,
b0aea5dc 1838 dev_priv->wm.pri_latency[0] * 100,
b445e3b0 1839 &ironlake_cursor_wm_info,
b0aea5dc 1840 dev_priv->wm.cur_latency[0] * 100,
b445e3b0
ED
1841 &plane_wm, &cursor_wm)) {
1842 I915_WRITE(WM0_PIPEB_ILK,
1843 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1844 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1845 " plane %d, cursor: %d\n",
1846 plane_wm, cursor_wm);
51cea1f4 1847 enabled |= 1 << PIPE_B;
b445e3b0
ED
1848 }
1849
1850 /*
1851 * Calculate and update the self-refresh watermark only when one
1852 * display plane is used.
1853 */
1854 I915_WRITE(WM3_LP_ILK, 0);
1855 I915_WRITE(WM2_LP_ILK, 0);
1856 I915_WRITE(WM1_LP_ILK, 0);
1857
1858 if (!single_plane_enabled(enabled))
1859 return;
1860 enabled = ffs(enabled) - 1;
1861
1862 /* WM1 */
1863 if (!ironlake_compute_srwm(dev, 1, enabled,
b0aea5dc 1864 dev_priv->wm.pri_latency[1] * 500,
b445e3b0
ED
1865 &ironlake_display_srwm_info,
1866 &ironlake_cursor_srwm_info,
1867 &fbc_wm, &plane_wm, &cursor_wm))
1868 return;
1869
1870 I915_WRITE(WM1_LP_ILK,
1871 WM1_LP_SR_EN |
b0aea5dc 1872 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
1873 (fbc_wm << WM1_LP_FBC_SHIFT) |
1874 (plane_wm << WM1_LP_SR_SHIFT) |
1875 cursor_wm);
1876
1877 /* WM2 */
1878 if (!ironlake_compute_srwm(dev, 2, enabled,
b0aea5dc 1879 dev_priv->wm.pri_latency[2] * 500,
b445e3b0
ED
1880 &ironlake_display_srwm_info,
1881 &ironlake_cursor_srwm_info,
1882 &fbc_wm, &plane_wm, &cursor_wm))
1883 return;
1884
1885 I915_WRITE(WM2_LP_ILK,
1886 WM2_LP_EN |
b0aea5dc 1887 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
1888 (fbc_wm << WM1_LP_FBC_SHIFT) |
1889 (plane_wm << WM1_LP_SR_SHIFT) |
1890 cursor_wm);
1891
1892 /*
1893 * WM3 is unsupported on ILK, probably because we don't have latency
1894 * data for that power state
1895 */
1896}
1897
46ba614c 1898static void sandybridge_update_wm(struct drm_crtc *crtc)
b445e3b0 1899{
46ba614c 1900 struct drm_device *dev = crtc->dev;
b445e3b0 1901 struct drm_i915_private *dev_priv = dev->dev_private;
b0aea5dc 1902 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
b445e3b0
ED
1903 u32 val;
1904 int fbc_wm, plane_wm, cursor_wm;
1905 unsigned int enabled;
1906
1907 enabled = 0;
51cea1f4 1908 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1909 &sandybridge_display_wm_info, latency,
1910 &sandybridge_cursor_wm_info, latency,
1911 &plane_wm, &cursor_wm)) {
1912 val = I915_READ(WM0_PIPEA_ILK);
1913 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1914 I915_WRITE(WM0_PIPEA_ILK, val |
1915 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1916 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1917 " plane %d, " "cursor: %d\n",
1918 plane_wm, cursor_wm);
51cea1f4 1919 enabled |= 1 << PIPE_A;
b445e3b0
ED
1920 }
1921
51cea1f4 1922 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1923 &sandybridge_display_wm_info, latency,
1924 &sandybridge_cursor_wm_info, latency,
1925 &plane_wm, &cursor_wm)) {
1926 val = I915_READ(WM0_PIPEB_ILK);
1927 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1928 I915_WRITE(WM0_PIPEB_ILK, val |
1929 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1930 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1931 " plane %d, cursor: %d\n",
1932 plane_wm, cursor_wm);
51cea1f4 1933 enabled |= 1 << PIPE_B;
b445e3b0
ED
1934 }
1935
c43d0188
CW
1936 /*
1937 * Calculate and update the self-refresh watermark only when one
1938 * display plane is used.
1939 *
1940 * SNB support 3 levels of watermark.
1941 *
1942 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1943 * and disabled in the descending order
1944 *
1945 */
1946 I915_WRITE(WM3_LP_ILK, 0);
1947 I915_WRITE(WM2_LP_ILK, 0);
1948 I915_WRITE(WM1_LP_ILK, 0);
1949
1950 if (!single_plane_enabled(enabled) ||
1951 dev_priv->sprite_scaling_enabled)
1952 return;
1953 enabled = ffs(enabled) - 1;
1954
1955 /* WM1 */
1956 if (!ironlake_compute_srwm(dev, 1, enabled,
b0aea5dc 1957 dev_priv->wm.pri_latency[1] * 500,
c43d0188
CW
1958 &sandybridge_display_srwm_info,
1959 &sandybridge_cursor_srwm_info,
1960 &fbc_wm, &plane_wm, &cursor_wm))
1961 return;
1962
1963 I915_WRITE(WM1_LP_ILK,
1964 WM1_LP_SR_EN |
b0aea5dc 1965 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
c43d0188
CW
1966 (fbc_wm << WM1_LP_FBC_SHIFT) |
1967 (plane_wm << WM1_LP_SR_SHIFT) |
1968 cursor_wm);
1969
1970 /* WM2 */
1971 if (!ironlake_compute_srwm(dev, 2, enabled,
b0aea5dc 1972 dev_priv->wm.pri_latency[2] * 500,
c43d0188
CW
1973 &sandybridge_display_srwm_info,
1974 &sandybridge_cursor_srwm_info,
1975 &fbc_wm, &plane_wm, &cursor_wm))
1976 return;
1977
1978 I915_WRITE(WM2_LP_ILK,
1979 WM2_LP_EN |
b0aea5dc 1980 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
c43d0188
CW
1981 (fbc_wm << WM1_LP_FBC_SHIFT) |
1982 (plane_wm << WM1_LP_SR_SHIFT) |
1983 cursor_wm);
1984
1985 /* WM3 */
1986 if (!ironlake_compute_srwm(dev, 3, enabled,
b0aea5dc 1987 dev_priv->wm.pri_latency[3] * 500,
c43d0188
CW
1988 &sandybridge_display_srwm_info,
1989 &sandybridge_cursor_srwm_info,
1990 &fbc_wm, &plane_wm, &cursor_wm))
1991 return;
1992
1993 I915_WRITE(WM3_LP_ILK,
1994 WM3_LP_EN |
b0aea5dc 1995 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
c43d0188
CW
1996 (fbc_wm << WM1_LP_FBC_SHIFT) |
1997 (plane_wm << WM1_LP_SR_SHIFT) |
1998 cursor_wm);
1999}
2000
46ba614c 2001static void ivybridge_update_wm(struct drm_crtc *crtc)
c43d0188 2002{
46ba614c 2003 struct drm_device *dev = crtc->dev;
c43d0188 2004 struct drm_i915_private *dev_priv = dev->dev_private;
b0aea5dc 2005 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
c43d0188
CW
2006 u32 val;
2007 int fbc_wm, plane_wm, cursor_wm;
2008 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
2009 unsigned int enabled;
2010
2011 enabled = 0;
51cea1f4 2012 if (g4x_compute_wm0(dev, PIPE_A,
c43d0188
CW
2013 &sandybridge_display_wm_info, latency,
2014 &sandybridge_cursor_wm_info, latency,
2015 &plane_wm, &cursor_wm)) {
2016 val = I915_READ(WM0_PIPEA_ILK);
2017 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2018 I915_WRITE(WM0_PIPEA_ILK, val |
2019 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2020 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2021 " plane %d, " "cursor: %d\n",
2022 plane_wm, cursor_wm);
51cea1f4 2023 enabled |= 1 << PIPE_A;
c43d0188
CW
2024 }
2025
51cea1f4 2026 if (g4x_compute_wm0(dev, PIPE_B,
c43d0188
CW
2027 &sandybridge_display_wm_info, latency,
2028 &sandybridge_cursor_wm_info, latency,
2029 &plane_wm, &cursor_wm)) {
2030 val = I915_READ(WM0_PIPEB_ILK);
2031 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2032 I915_WRITE(WM0_PIPEB_ILK, val |
2033 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2034 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2035 " plane %d, cursor: %d\n",
2036 plane_wm, cursor_wm);
51cea1f4 2037 enabled |= 1 << PIPE_B;
c43d0188
CW
2038 }
2039
51cea1f4 2040 if (g4x_compute_wm0(dev, PIPE_C,
b445e3b0
ED
2041 &sandybridge_display_wm_info, latency,
2042 &sandybridge_cursor_wm_info, latency,
2043 &plane_wm, &cursor_wm)) {
2044 val = I915_READ(WM0_PIPEC_IVB);
2045 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2046 I915_WRITE(WM0_PIPEC_IVB, val |
2047 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2048 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2049 " plane %d, cursor: %d\n",
2050 plane_wm, cursor_wm);
51cea1f4 2051 enabled |= 1 << PIPE_C;
b445e3b0
ED
2052 }
2053
2054 /*
2055 * Calculate and update the self-refresh watermark only when one
2056 * display plane is used.
2057 *
2058 * SNB support 3 levels of watermark.
2059 *
2060 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2061 * and disabled in the descending order
2062 *
2063 */
2064 I915_WRITE(WM3_LP_ILK, 0);
2065 I915_WRITE(WM2_LP_ILK, 0);
2066 I915_WRITE(WM1_LP_ILK, 0);
2067
2068 if (!single_plane_enabled(enabled) ||
2069 dev_priv->sprite_scaling_enabled)
2070 return;
2071 enabled = ffs(enabled) - 1;
2072
2073 /* WM1 */
2074 if (!ironlake_compute_srwm(dev, 1, enabled,
b0aea5dc 2075 dev_priv->wm.pri_latency[1] * 500,
b445e3b0
ED
2076 &sandybridge_display_srwm_info,
2077 &sandybridge_cursor_srwm_info,
2078 &fbc_wm, &plane_wm, &cursor_wm))
2079 return;
2080
2081 I915_WRITE(WM1_LP_ILK,
2082 WM1_LP_SR_EN |
b0aea5dc 2083 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
2084 (fbc_wm << WM1_LP_FBC_SHIFT) |
2085 (plane_wm << WM1_LP_SR_SHIFT) |
2086 cursor_wm);
2087
2088 /* WM2 */
2089 if (!ironlake_compute_srwm(dev, 2, enabled,
b0aea5dc 2090 dev_priv->wm.pri_latency[2] * 500,
b445e3b0
ED
2091 &sandybridge_display_srwm_info,
2092 &sandybridge_cursor_srwm_info,
2093 &fbc_wm, &plane_wm, &cursor_wm))
2094 return;
2095
2096 I915_WRITE(WM2_LP_ILK,
2097 WM2_LP_EN |
b0aea5dc 2098 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
2099 (fbc_wm << WM1_LP_FBC_SHIFT) |
2100 (plane_wm << WM1_LP_SR_SHIFT) |
2101 cursor_wm);
2102
c43d0188 2103 /* WM3, note we have to correct the cursor latency */
b445e3b0 2104 if (!ironlake_compute_srwm(dev, 3, enabled,
b0aea5dc 2105 dev_priv->wm.pri_latency[3] * 500,
b445e3b0
ED
2106 &sandybridge_display_srwm_info,
2107 &sandybridge_cursor_srwm_info,
c43d0188
CW
2108 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2109 !ironlake_compute_srwm(dev, 3, enabled,
b0aea5dc 2110 dev_priv->wm.cur_latency[3] * 500,
c43d0188
CW
2111 &sandybridge_display_srwm_info,
2112 &sandybridge_cursor_srwm_info,
2113 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
b445e3b0
ED
2114 return;
2115
2116 I915_WRITE(WM3_LP_ILK,
2117 WM3_LP_EN |
b0aea5dc 2118 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
b445e3b0
ED
2119 (fbc_wm << WM1_LP_FBC_SHIFT) |
2120 (plane_wm << WM1_LP_SR_SHIFT) |
2121 cursor_wm);
2122}
2123
3658729a
VS
2124static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2125 struct drm_crtc *crtc)
801bcfff
PZ
2126{
2127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fd4daa9c 2128 uint32_t pixel_rate;
801bcfff 2129
241bfc38 2130 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
801bcfff
PZ
2131
2132 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2133 * adjust the pixel_rate here. */
2134
fd4daa9c 2135 if (intel_crtc->config.pch_pfit.enabled) {
801bcfff 2136 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
fd4daa9c 2137 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
801bcfff 2138
37327abd
VS
2139 pipe_w = intel_crtc->config.pipe_src_w;
2140 pipe_h = intel_crtc->config.pipe_src_h;
801bcfff
PZ
2141 pfit_w = (pfit_size >> 16) & 0xFFFF;
2142 pfit_h = pfit_size & 0xFFFF;
2143 if (pipe_w < pfit_w)
2144 pipe_w = pfit_w;
2145 if (pipe_h < pfit_h)
2146 pipe_h = pfit_h;
2147
2148 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2149 pfit_w * pfit_h);
2150 }
2151
2152 return pixel_rate;
2153}
2154
37126462 2155/* latency must be in 0.1us units. */
23297044 2156static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
801bcfff
PZ
2157 uint32_t latency)
2158{
2159 uint64_t ret;
2160
3312ba65
VS
2161 if (WARN(latency == 0, "Latency value missing\n"))
2162 return UINT_MAX;
2163
801bcfff
PZ
2164 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2165 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2166
2167 return ret;
2168}
2169
37126462 2170/* latency must be in 0.1us units. */
23297044 2171static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
801bcfff
PZ
2172 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2173 uint32_t latency)
2174{
2175 uint32_t ret;
2176
3312ba65
VS
2177 if (WARN(latency == 0, "Latency value missing\n"))
2178 return UINT_MAX;
2179
801bcfff
PZ
2180 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2181 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2182 ret = DIV_ROUND_UP(ret, 64) + 2;
2183 return ret;
2184}
2185
23297044 2186static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
cca32e9a
PZ
2187 uint8_t bytes_per_pixel)
2188{
2189 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2190}
2191
801bcfff
PZ
2192struct hsw_pipe_wm_parameters {
2193 bool active;
801bcfff
PZ
2194 uint32_t pipe_htotal;
2195 uint32_t pixel_rate;
c35426d2
VS
2196 struct intel_plane_wm_parameters pri;
2197 struct intel_plane_wm_parameters spr;
2198 struct intel_plane_wm_parameters cur;
801bcfff
PZ
2199};
2200
cca32e9a
PZ
2201struct hsw_wm_maximums {
2202 uint16_t pri;
2203 uint16_t spr;
2204 uint16_t cur;
2205 uint16_t fbc;
2206};
2207
240264f4
VS
2208/* used in computing the new watermarks state */
2209struct intel_wm_config {
2210 unsigned int num_pipes_active;
2211 bool sprites_enabled;
2212 bool sprites_scaled;
240264f4
VS
2213};
2214
37126462
VS
2215/*
2216 * For both WM_PIPE and WM_LP.
2217 * mem_value must be in 0.1us units.
2218 */
ac830fe1 2219static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
cca32e9a
PZ
2220 uint32_t mem_value,
2221 bool is_lp)
801bcfff 2222{
cca32e9a
PZ
2223 uint32_t method1, method2;
2224
c35426d2 2225 if (!params->active || !params->pri.enabled)
801bcfff
PZ
2226 return 0;
2227
23297044 2228 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 2229 params->pri.bytes_per_pixel,
cca32e9a
PZ
2230 mem_value);
2231
2232 if (!is_lp)
2233 return method1;
2234
23297044 2235 method2 = ilk_wm_method2(params->pixel_rate,
cca32e9a 2236 params->pipe_htotal,
c35426d2
VS
2237 params->pri.horiz_pixels,
2238 params->pri.bytes_per_pixel,
cca32e9a
PZ
2239 mem_value);
2240
2241 return min(method1, method2);
801bcfff
PZ
2242}
2243
37126462
VS
2244/*
2245 * For both WM_PIPE and WM_LP.
2246 * mem_value must be in 0.1us units.
2247 */
ac830fe1 2248static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
801bcfff
PZ
2249 uint32_t mem_value)
2250{
2251 uint32_t method1, method2;
2252
c35426d2 2253 if (!params->active || !params->spr.enabled)
801bcfff
PZ
2254 return 0;
2255
23297044 2256 method1 = ilk_wm_method1(params->pixel_rate,
c35426d2 2257 params->spr.bytes_per_pixel,
801bcfff 2258 mem_value);
23297044 2259 method2 = ilk_wm_method2(params->pixel_rate,
801bcfff 2260 params->pipe_htotal,
c35426d2
VS
2261 params->spr.horiz_pixels,
2262 params->spr.bytes_per_pixel,
801bcfff
PZ
2263 mem_value);
2264 return min(method1, method2);
2265}
2266
37126462
VS
2267/*
2268 * For both WM_PIPE and WM_LP.
2269 * mem_value must be in 0.1us units.
2270 */
ac830fe1 2271static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
801bcfff
PZ
2272 uint32_t mem_value)
2273{
c35426d2 2274 if (!params->active || !params->cur.enabled)
801bcfff
PZ
2275 return 0;
2276
23297044 2277 return ilk_wm_method2(params->pixel_rate,
801bcfff 2278 params->pipe_htotal,
c35426d2
VS
2279 params->cur.horiz_pixels,
2280 params->cur.bytes_per_pixel,
801bcfff
PZ
2281 mem_value);
2282}
2283
cca32e9a 2284/* Only for WM_LP. */
ac830fe1 2285static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
1fda9882 2286 uint32_t pri_val)
cca32e9a 2287{
c35426d2 2288 if (!params->active || !params->pri.enabled)
cca32e9a
PZ
2289 return 0;
2290
23297044 2291 return ilk_wm_fbc(pri_val,
c35426d2
VS
2292 params->pri.horiz_pixels,
2293 params->pri.bytes_per_pixel);
cca32e9a
PZ
2294}
2295
158ae64f
VS
2296static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2297{
416f4727
VS
2298 if (INTEL_INFO(dev)->gen >= 8)
2299 return 3072;
2300 else if (INTEL_INFO(dev)->gen >= 7)
158ae64f
VS
2301 return 768;
2302 else
2303 return 512;
2304}
2305
2306/* Calculate the maximum primary/sprite plane watermark */
2307static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2308 int level,
240264f4 2309 const struct intel_wm_config *config,
158ae64f
VS
2310 enum intel_ddb_partitioning ddb_partitioning,
2311 bool is_sprite)
2312{
2313 unsigned int fifo_size = ilk_display_fifo_size(dev);
2314 unsigned int max;
2315
2316 /* if sprites aren't enabled, sprites get nothing */
240264f4 2317 if (is_sprite && !config->sprites_enabled)
158ae64f
VS
2318 return 0;
2319
2320 /* HSW allows LP1+ watermarks even with multiple pipes */
240264f4 2321 if (level == 0 || config->num_pipes_active > 1) {
158ae64f
VS
2322 fifo_size /= INTEL_INFO(dev)->num_pipes;
2323
2324 /*
2325 * For some reason the non self refresh
2326 * FIFO size is only half of the self
2327 * refresh FIFO size on ILK/SNB.
2328 */
2329 if (INTEL_INFO(dev)->gen <= 6)
2330 fifo_size /= 2;
2331 }
2332
240264f4 2333 if (config->sprites_enabled) {
158ae64f
VS
2334 /* level 0 is always calculated with 1:1 split */
2335 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2336 if (is_sprite)
2337 fifo_size *= 5;
2338 fifo_size /= 6;
2339 } else {
2340 fifo_size /= 2;
2341 }
2342 }
2343
2344 /* clamp to max that the registers can hold */
416f4727
VS
2345 if (INTEL_INFO(dev)->gen >= 8)
2346 max = level == 0 ? 255 : 2047;
2347 else if (INTEL_INFO(dev)->gen >= 7)
158ae64f
VS
2348 /* IVB/HSW primary/sprite plane watermarks */
2349 max = level == 0 ? 127 : 1023;
2350 else if (!is_sprite)
2351 /* ILK/SNB primary plane watermarks */
2352 max = level == 0 ? 127 : 511;
2353 else
2354 /* ILK/SNB sprite plane watermarks */
2355 max = level == 0 ? 63 : 255;
2356
2357 return min(fifo_size, max);
2358}
2359
2360/* Calculate the maximum cursor plane watermark */
2361static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
240264f4
VS
2362 int level,
2363 const struct intel_wm_config *config)
158ae64f
VS
2364{
2365 /* HSW LP1+ watermarks w/ multiple pipes */
240264f4 2366 if (level > 0 && config->num_pipes_active > 1)
158ae64f
VS
2367 return 64;
2368
2369 /* otherwise just report max that registers can hold */
2370 if (INTEL_INFO(dev)->gen >= 7)
2371 return level == 0 ? 63 : 255;
2372 else
2373 return level == 0 ? 31 : 63;
2374}
2375
2376/* Calculate the maximum FBC watermark */
416f4727 2377static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
158ae64f
VS
2378{
2379 /* max that registers can hold */
416f4727
VS
2380 if (INTEL_INFO(dev)->gen >= 8)
2381 return 31;
2382 else
2383 return 15;
158ae64f
VS
2384}
2385
34982fe1
VS
2386static void ilk_compute_wm_maximums(struct drm_device *dev,
2387 int level,
2388 const struct intel_wm_config *config,
2389 enum intel_ddb_partitioning ddb_partitioning,
2390 struct hsw_wm_maximums *max)
158ae64f 2391{
240264f4
VS
2392 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2393 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2394 max->cur = ilk_cursor_wm_max(dev, level, config);
416f4727 2395 max->fbc = ilk_fbc_wm_max(dev);
158ae64f
VS
2396}
2397
d9395655
VS
2398static bool ilk_validate_wm_level(int level,
2399 const struct hsw_wm_maximums *max,
2400 struct intel_wm_level *result)
a9786a11
VS
2401{
2402 bool ret;
2403
2404 /* already determined to be invalid? */
2405 if (!result->enable)
2406 return false;
2407
2408 result->enable = result->pri_val <= max->pri &&
2409 result->spr_val <= max->spr &&
2410 result->cur_val <= max->cur;
2411
2412 ret = result->enable;
2413
2414 /*
2415 * HACK until we can pre-compute everything,
2416 * and thus fail gracefully if LP0 watermarks
2417 * are exceeded...
2418 */
2419 if (level == 0 && !result->enable) {
2420 if (result->pri_val > max->pri)
2421 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2422 level, result->pri_val, max->pri);
2423 if (result->spr_val > max->spr)
2424 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2425 level, result->spr_val, max->spr);
2426 if (result->cur_val > max->cur)
2427 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2428 level, result->cur_val, max->cur);
2429
2430 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2431 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2432 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2433 result->enable = true;
2434 }
2435
a9786a11
VS
2436 return ret;
2437}
2438
6f5ddd17
VS
2439static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2440 int level,
ac830fe1 2441 const struct hsw_pipe_wm_parameters *p,
1fd527cc 2442 struct intel_wm_level *result)
6f5ddd17
VS
2443{
2444 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2445 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2446 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2447
2448 /* WM1+ latency values stored in 0.5us units */
2449 if (level > 0) {
2450 pri_latency *= 5;
2451 spr_latency *= 5;
2452 cur_latency *= 5;
2453 }
2454
2455 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2456 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2457 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2458 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2459 result->enable = true;
2460}
2461
801bcfff
PZ
2462static uint32_t
2463hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1f8eeabf
ED
2464{
2465 struct drm_i915_private *dev_priv = dev->dev_private;
1011d8c4 2466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011d8c4 2467 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
85a02deb 2468 u32 linetime, ips_linetime;
1f8eeabf 2469
801bcfff
PZ
2470 if (!intel_crtc_active(crtc))
2471 return 0;
1011d8c4 2472
1f8eeabf
ED
2473 /* The WM are computed with base on how long it takes to fill a single
2474 * row at the given clock rate, multiplied by 8.
2475 * */
85a02deb
PZ
2476 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2477 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2478 intel_ddi_get_cdclk_freq(dev_priv));
1f8eeabf 2479
801bcfff
PZ
2480 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2481 PIPE_WM_LINETIME_TIME(linetime);
1f8eeabf
ED
2482}
2483
12b134df
VS
2484static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2485{
2486 struct drm_i915_private *dev_priv = dev->dev_private;
2487
2488 if (IS_HASWELL(dev)) {
2489 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2490
2491 wm[0] = (sskpd >> 56) & 0xFF;
2492 if (wm[0] == 0)
2493 wm[0] = sskpd & 0xF;
e5d5019e
VS
2494 wm[1] = (sskpd >> 4) & 0xFF;
2495 wm[2] = (sskpd >> 12) & 0xFF;
2496 wm[3] = (sskpd >> 20) & 0x1FF;
2497 wm[4] = (sskpd >> 32) & 0x1FF;
63cf9a13
VS
2498 } else if (INTEL_INFO(dev)->gen >= 6) {
2499 uint32_t sskpd = I915_READ(MCH_SSKPD);
2500
2501 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2502 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2503 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2504 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
3a88d0ac
VS
2505 } else if (INTEL_INFO(dev)->gen >= 5) {
2506 uint32_t mltr = I915_READ(MLTR_ILK);
2507
2508 /* ILK primary LP0 latency is 700 ns */
2509 wm[0] = 7;
2510 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2511 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
12b134df
VS
2512 }
2513}
2514
53615a5e
VS
2515static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2516{
2517 /* ILK sprite LP0 latency is 1300 ns */
2518 if (INTEL_INFO(dev)->gen == 5)
2519 wm[0] = 13;
2520}
2521
2522static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2523{
2524 /* ILK cursor LP0 latency is 1300 ns */
2525 if (INTEL_INFO(dev)->gen == 5)
2526 wm[0] = 13;
2527
2528 /* WaDoubleCursorLP3Latency:ivb */
2529 if (IS_IVYBRIDGE(dev))
2530 wm[3] *= 2;
2531}
2532
ad0d6dc4 2533static int ilk_wm_max_level(const struct drm_device *dev)
26ec971e 2534{
26ec971e
VS
2535 /* how many WM levels are we expecting */
2536 if (IS_HASWELL(dev))
ad0d6dc4 2537 return 4;
26ec971e 2538 else if (INTEL_INFO(dev)->gen >= 6)
ad0d6dc4 2539 return 3;
26ec971e 2540 else
ad0d6dc4
VS
2541 return 2;
2542}
2543
2544static void intel_print_wm_latency(struct drm_device *dev,
2545 const char *name,
2546 const uint16_t wm[5])
2547{
2548 int level, max_level = ilk_wm_max_level(dev);
26ec971e
VS
2549
2550 for (level = 0; level <= max_level; level++) {
2551 unsigned int latency = wm[level];
2552
2553 if (latency == 0) {
2554 DRM_ERROR("%s WM%d latency not provided\n",
2555 name, level);
2556 continue;
2557 }
2558
2559 /* WM1+ latency values in 0.5us units */
2560 if (level > 0)
2561 latency *= 5;
2562
2563 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2564 name, level, wm[level],
2565 latency / 10, latency % 10);
2566 }
2567}
2568
53615a5e
VS
2569static void intel_setup_wm_latency(struct drm_device *dev)
2570{
2571 struct drm_i915_private *dev_priv = dev->dev_private;
2572
2573 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2574
2575 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2576 sizeof(dev_priv->wm.pri_latency));
2577 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2578 sizeof(dev_priv->wm.pri_latency));
2579
2580 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2581 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
26ec971e
VS
2582
2583 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2584 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2585 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
53615a5e
VS
2586}
2587
7c4a395f
VS
2588static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2589 struct hsw_pipe_wm_parameters *p,
a485bfb8 2590 struct intel_wm_config *config)
1011d8c4 2591{
7c4a395f
VS
2592 struct drm_device *dev = crtc->dev;
2593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2594 enum pipe pipe = intel_crtc->pipe;
7c4a395f 2595 struct drm_plane *plane;
1011d8c4 2596
7c4a395f
VS
2597 p->active = intel_crtc_active(crtc);
2598 if (p->active) {
801bcfff 2599 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
3658729a 2600 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
c35426d2
VS
2601 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2602 p->cur.bytes_per_pixel = 4;
37327abd 2603 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
c35426d2
VS
2604 p->cur.horiz_pixels = 64;
2605 /* TODO: for now, assume primary and cursor planes are always enabled. */
2606 p->pri.enabled = true;
2607 p->cur.enabled = true;
801bcfff
PZ
2608 }
2609
7c4a395f 2610 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
a485bfb8 2611 config->num_pipes_active += intel_crtc_active(crtc);
7c4a395f 2612
801bcfff
PZ
2613 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2614 struct intel_plane *intel_plane = to_intel_plane(plane);
801bcfff 2615
7c4a395f
VS
2616 if (intel_plane->pipe == pipe)
2617 p->spr = intel_plane->wm;
cca32e9a 2618
a485bfb8
VS
2619 config->sprites_enabled |= intel_plane->wm.enabled;
2620 config->sprites_scaled |= intel_plane->wm.scaled;
cca32e9a 2621 }
801bcfff
PZ
2622}
2623
0b2ae6d7
VS
2624/* Compute new watermarks for the pipe */
2625static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2626 const struct hsw_pipe_wm_parameters *params,
2627 struct intel_pipe_wm *pipe_wm)
2628{
2629 struct drm_device *dev = crtc->dev;
2630 struct drm_i915_private *dev_priv = dev->dev_private;
2631 int level, max_level = ilk_wm_max_level(dev);
2632 /* LP0 watermark maximums depend on this pipe alone */
2633 struct intel_wm_config config = {
2634 .num_pipes_active = 1,
2635 .sprites_enabled = params->spr.enabled,
2636 .sprites_scaled = params->spr.scaled,
2637 };
2638 struct hsw_wm_maximums max;
2639
0b2ae6d7 2640 /* LP0 watermarks always use 1/2 DDB partitioning */
34982fe1 2641 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
0b2ae6d7
VS
2642
2643 for (level = 0; level <= max_level; level++)
2644 ilk_compute_wm_level(dev_priv, level, params,
2645 &pipe_wm->wm[level]);
2646
2647 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2648
2649 /* At least LP0 must be valid */
d9395655 2650 return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
0b2ae6d7
VS
2651}
2652
2653/*
2654 * Merge the watermarks from all active pipes for a specific level.
2655 */
2656static void ilk_merge_wm_level(struct drm_device *dev,
2657 int level,
2658 struct intel_wm_level *ret_wm)
2659{
2660 const struct intel_crtc *intel_crtc;
2661
2662 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2663 const struct intel_wm_level *wm =
2664 &intel_crtc->wm.active.wm[level];
2665
2666 if (!wm->enable)
2667 return;
2668
2669 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2670 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2671 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2672 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2673 }
2674
2675 ret_wm->enable = true;
2676}
2677
2678/*
2679 * Merge all low power watermarks for all active pipes.
2680 */
2681static void ilk_wm_merge(struct drm_device *dev,
2682 const struct hsw_wm_maximums *max,
2683 struct intel_pipe_wm *merged)
2684{
2685 int level, max_level = ilk_wm_max_level(dev);
2686
2687 merged->fbc_wm_enabled = true;
2688
2689 /* merge each WM1+ level */
2690 for (level = 1; level <= max_level; level++) {
2691 struct intel_wm_level *wm = &merged->wm[level];
2692
2693 ilk_merge_wm_level(dev, level, wm);
2694
d9395655 2695 if (!ilk_validate_wm_level(level, max, wm))
0b2ae6d7
VS
2696 break;
2697
2698 /*
2699 * The spec says it is preferred to disable
2700 * FBC WMs instead of disabling a WM level.
2701 */
2702 if (wm->fbc_val > max->fbc) {
2703 merged->fbc_wm_enabled = false;
2704 wm->fbc_val = 0;
2705 }
2706 }
2707}
2708
b380ca3c
VS
2709static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2710{
2711 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2712 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2713}
2714
801bcfff 2715static void hsw_compute_wm_results(struct drm_device *dev,
0362c781 2716 const struct intel_pipe_wm *merged,
609cedef 2717 enum intel_ddb_partitioning partitioning,
801bcfff
PZ
2718 struct hsw_wm_values *results)
2719{
0b2ae6d7
VS
2720 struct intel_crtc *intel_crtc;
2721 int level, wm_lp;
cca32e9a 2722
0362c781 2723 results->enable_fbc_wm = merged->fbc_wm_enabled;
609cedef 2724 results->partitioning = partitioning;
cca32e9a 2725
0b2ae6d7 2726 /* LP1+ register values */
cca32e9a 2727 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
1fd527cc 2728 const struct intel_wm_level *r;
801bcfff 2729
b380ca3c 2730 level = ilk_wm_lp_to_level(wm_lp, merged);
0b2ae6d7 2731
0362c781 2732 r = &merged->wm[level];
0b2ae6d7 2733 if (!r->enable)
cca32e9a
PZ
2734 break;
2735
416f4727
VS
2736 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2737 ((level * 2) << WM1_LP_LATENCY_SHIFT) |
2738 (r->pri_val << WM1_LP_SR_SHIFT) |
2739 r->cur_val;
2740
2741 if (INTEL_INFO(dev)->gen >= 8)
2742 results->wm_lp[wm_lp - 1] |=
2743 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2744 else
2745 results->wm_lp[wm_lp - 1] |=
2746 r->fbc_val << WM1_LP_FBC_SHIFT;
2747
cca32e9a
PZ
2748 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2749 }
801bcfff 2750
0b2ae6d7
VS
2751 /* LP0 register values */
2752 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2753 enum pipe pipe = intel_crtc->pipe;
2754 const struct intel_wm_level *r =
2755 &intel_crtc->wm.active.wm[0];
2756
2757 if (WARN_ON(!r->enable))
2758 continue;
2759
2760 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
1011d8c4 2761
0b2ae6d7
VS
2762 results->wm_pipe[pipe] =
2763 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2764 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2765 r->cur_val;
801bcfff
PZ
2766 }
2767}
2768
861f3389
PZ
2769/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2770 * case both are at the same level. Prefer r1 in case they're the same. */
198a1e9b
VS
2771static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2772 struct intel_pipe_wm *r1,
2773 struct intel_pipe_wm *r2)
861f3389 2774{
198a1e9b
VS
2775 int level, max_level = ilk_wm_max_level(dev);
2776 int level1 = 0, level2 = 0;
861f3389 2777
198a1e9b
VS
2778 for (level = 1; level <= max_level; level++) {
2779 if (r1->wm[level].enable)
2780 level1 = level;
2781 if (r2->wm[level].enable)
2782 level2 = level;
861f3389
PZ
2783 }
2784
198a1e9b
VS
2785 if (level1 == level2) {
2786 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
861f3389
PZ
2787 return r2;
2788 else
2789 return r1;
198a1e9b 2790 } else if (level1 > level2) {
861f3389
PZ
2791 return r1;
2792 } else {
2793 return r2;
2794 }
2795}
2796
49a687c4
VS
2797/* dirty bits used to track which watermarks need changes */
2798#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2799#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2800#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2801#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2802#define WM_DIRTY_FBC (1 << 24)
2803#define WM_DIRTY_DDB (1 << 25)
2804
2805static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2806 const struct hsw_wm_values *old,
2807 const struct hsw_wm_values *new)
2808{
2809 unsigned int dirty = 0;
2810 enum pipe pipe;
2811 int wm_lp;
2812
2813 for_each_pipe(pipe) {
2814 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2815 dirty |= WM_DIRTY_LINETIME(pipe);
2816 /* Must disable LP1+ watermarks too */
2817 dirty |= WM_DIRTY_LP_ALL;
2818 }
2819
2820 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2821 dirty |= WM_DIRTY_PIPE(pipe);
2822 /* Must disable LP1+ watermarks too */
2823 dirty |= WM_DIRTY_LP_ALL;
2824 }
2825 }
2826
2827 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2828 dirty |= WM_DIRTY_FBC;
2829 /* Must disable LP1+ watermarks too */
2830 dirty |= WM_DIRTY_LP_ALL;
2831 }
2832
2833 if (old->partitioning != new->partitioning) {
2834 dirty |= WM_DIRTY_DDB;
2835 /* Must disable LP1+ watermarks too */
2836 dirty |= WM_DIRTY_LP_ALL;
2837 }
2838
2839 /* LP1+ watermarks already deemed dirty, no need to continue */
2840 if (dirty & WM_DIRTY_LP_ALL)
2841 return dirty;
2842
2843 /* Find the lowest numbered LP1+ watermark in need of an update... */
2844 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2845 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2846 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2847 break;
2848 }
2849
2850 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2851 for (; wm_lp <= 3; wm_lp++)
2852 dirty |= WM_DIRTY_LP(wm_lp);
2853
2854 return dirty;
2855}
2856
801bcfff
PZ
2857/*
2858 * The spec says we shouldn't write when we don't need, because every write
2859 * causes WMs to be re-evaluated, expending some power.
2860 */
2861static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
609cedef 2862 struct hsw_wm_values *results)
801bcfff 2863{
243e6a44 2864 struct hsw_wm_values *previous = &dev_priv->wm.hw;
49a687c4 2865 unsigned int dirty;
801bcfff 2866 uint32_t val;
801bcfff 2867
243e6a44 2868 dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
49a687c4 2869 if (!dirty)
801bcfff
PZ
2870 return;
2871
243e6a44 2872 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
801bcfff 2873 I915_WRITE(WM3_LP_ILK, 0);
243e6a44 2874 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
801bcfff 2875 I915_WRITE(WM2_LP_ILK, 0);
243e6a44 2876 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
801bcfff
PZ
2877 I915_WRITE(WM1_LP_ILK, 0);
2878
49a687c4 2879 if (dirty & WM_DIRTY_PIPE(PIPE_A))
801bcfff 2880 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
49a687c4 2881 if (dirty & WM_DIRTY_PIPE(PIPE_B))
801bcfff 2882 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
49a687c4 2883 if (dirty & WM_DIRTY_PIPE(PIPE_C))
801bcfff
PZ
2884 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2885
49a687c4 2886 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
801bcfff 2887 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
49a687c4 2888 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
801bcfff 2889 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
49a687c4 2890 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
801bcfff
PZ
2891 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2892
49a687c4 2893 if (dirty & WM_DIRTY_DDB) {
801bcfff 2894 val = I915_READ(WM_MISC);
609cedef 2895 if (results->partitioning == INTEL_DDB_PART_1_2)
801bcfff
PZ
2896 val &= ~WM_MISC_DATA_PARTITION_5_6;
2897 else
2898 val |= WM_MISC_DATA_PARTITION_5_6;
2899 I915_WRITE(WM_MISC, val);
1011d8c4
PZ
2900 }
2901
49a687c4 2902 if (dirty & WM_DIRTY_FBC) {
cca32e9a
PZ
2903 val = I915_READ(DISP_ARB_CTL);
2904 if (results->enable_fbc_wm)
2905 val &= ~DISP_FBC_WM_DIS;
2906 else
2907 val |= DISP_FBC_WM_DIS;
2908 I915_WRITE(DISP_ARB_CTL, val);
2909 }
2910
243e6a44 2911 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
801bcfff 2912 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
243e6a44 2913 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
801bcfff 2914 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
243e6a44 2915 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
801bcfff
PZ
2916 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2917
49a687c4 2918 if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
801bcfff 2919 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
49a687c4 2920 if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
801bcfff 2921 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
49a687c4 2922 if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
801bcfff 2923 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
609cedef
VS
2924
2925 dev_priv->wm.hw = *results;
801bcfff
PZ
2926}
2927
46ba614c 2928static void haswell_update_wm(struct drm_crtc *crtc)
801bcfff 2929{
7c4a395f 2930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
46ba614c 2931 struct drm_device *dev = crtc->dev;
801bcfff 2932 struct drm_i915_private *dev_priv = dev->dev_private;
a485bfb8 2933 struct hsw_wm_maximums max;
7c4a395f 2934 struct hsw_pipe_wm_parameters params = {};
198a1e9b 2935 struct hsw_wm_values results = {};
77c122bc 2936 enum intel_ddb_partitioning partitioning;
7c4a395f 2937 struct intel_pipe_wm pipe_wm = {};
198a1e9b 2938 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
a485bfb8 2939 struct intel_wm_config config = {};
7c4a395f 2940
a485bfb8 2941 hsw_compute_wm_parameters(crtc, &params, &config);
7c4a395f
VS
2942
2943 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2944
2945 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2946 return;
861f3389 2947
7c4a395f 2948 intel_crtc->wm.active = pipe_wm;
861f3389 2949
34982fe1 2950 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
a485bfb8
VS
2951 ilk_wm_merge(dev, &max, &lp_wm_1_2);
2952
2953 /* 5/6 split only in single pipe config on IVB+ */
ec98c8d1
VS
2954 if (INTEL_INFO(dev)->gen >= 7 &&
2955 config.num_pipes_active == 1 && config.sprites_enabled) {
34982fe1 2956 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
a485bfb8 2957 ilk_wm_merge(dev, &max, &lp_wm_5_6);
0362c781 2958
198a1e9b 2959 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
861f3389 2960 } else {
198a1e9b 2961 best_lp_wm = &lp_wm_1_2;
861f3389
PZ
2962 }
2963
198a1e9b 2964 partitioning = (best_lp_wm == &lp_wm_1_2) ?
77c122bc 2965 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
801bcfff 2966
609cedef
VS
2967 hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2968
2969 hsw_write_wm_values(dev_priv, &results);
1011d8c4
PZ
2970}
2971
adf3d35e
VS
2972static void haswell_update_sprite_wm(struct drm_plane *plane,
2973 struct drm_crtc *crtc,
526682e9 2974 uint32_t sprite_width, int pixel_size,
bdd57d03 2975 bool enabled, bool scaled)
526682e9 2976{
adf3d35e 2977 struct intel_plane *intel_plane = to_intel_plane(plane);
526682e9 2978
adf3d35e
VS
2979 intel_plane->wm.enabled = enabled;
2980 intel_plane->wm.scaled = scaled;
2981 intel_plane->wm.horiz_pixels = sprite_width;
2982 intel_plane->wm.bytes_per_pixel = pixel_size;
526682e9 2983
46ba614c 2984 haswell_update_wm(crtc);
526682e9
PZ
2985}
2986
b445e3b0
ED
2987static bool
2988sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2989 uint32_t sprite_width, int pixel_size,
2990 const struct intel_watermark_params *display,
2991 int display_latency_ns, int *sprite_wm)
2992{
2993 struct drm_crtc *crtc;
2994 int clock;
2995 int entries, tlb_miss;
2996
2997 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 2998 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
2999 *sprite_wm = display->guard_size;
3000 return false;
3001 }
3002
241bfc38 3003 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
b445e3b0
ED
3004
3005 /* Use the small buffer method to calculate the sprite watermark */
3006 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3007 tlb_miss = display->fifo_size*display->cacheline_size -
3008 sprite_width * 8;
3009 if (tlb_miss > 0)
3010 entries += tlb_miss;
3011 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3012 *sprite_wm = entries + display->guard_size;
3013 if (*sprite_wm > (int)display->max_wm)
3014 *sprite_wm = display->max_wm;
3015
3016 return true;
3017}
3018
3019static bool
3020sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
3021 uint32_t sprite_width, int pixel_size,
3022 const struct intel_watermark_params *display,
3023 int latency_ns, int *sprite_wm)
3024{
3025 struct drm_crtc *crtc;
3026 unsigned long line_time_us;
3027 int clock;
3028 int line_count, line_size;
3029 int small, large;
3030 int entries;
3031
3032 if (!latency_ns) {
3033 *sprite_wm = 0;
3034 return false;
3035 }
3036
3037 crtc = intel_get_crtc_for_plane(dev, plane);
241bfc38 3038 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
b445e3b0
ED
3039 if (!clock) {
3040 *sprite_wm = 0;
3041 return false;
3042 }
3043
3044 line_time_us = (sprite_width * 1000) / clock;
3045 if (!line_time_us) {
3046 *sprite_wm = 0;
3047 return false;
3048 }
3049
3050 line_count = (latency_ns / line_time_us + 1000) / 1000;
3051 line_size = sprite_width * pixel_size;
3052
3053 /* Use the minimum of the small and large buffer method for primary */
3054 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3055 large = line_count * line_size;
3056
3057 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3058 *sprite_wm = entries + display->guard_size;
3059
3060 return *sprite_wm > 0x3ff ? false : true;
3061}
3062
adf3d35e
VS
3063static void sandybridge_update_sprite_wm(struct drm_plane *plane,
3064 struct drm_crtc *crtc,
4c4ff43a 3065 uint32_t sprite_width, int pixel_size,
39db4a4d 3066 bool enabled, bool scaled)
b445e3b0 3067{
adf3d35e 3068 struct drm_device *dev = plane->dev;
b445e3b0 3069 struct drm_i915_private *dev_priv = dev->dev_private;
adf3d35e 3070 int pipe = to_intel_plane(plane)->pipe;
b0aea5dc 3071 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
b445e3b0
ED
3072 u32 val;
3073 int sprite_wm, reg;
3074 int ret;
3075
39db4a4d 3076 if (!enabled)
4c4ff43a
PZ
3077 return;
3078
b445e3b0
ED
3079 switch (pipe) {
3080 case 0:
3081 reg = WM0_PIPEA_ILK;
3082 break;
3083 case 1:
3084 reg = WM0_PIPEB_ILK;
3085 break;
3086 case 2:
3087 reg = WM0_PIPEC_IVB;
3088 break;
3089 default:
3090 return; /* bad pipe */
3091 }
3092
3093 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3094 &sandybridge_display_wm_info,
3095 latency, &sprite_wm);
3096 if (!ret) {
84f44ce7
VS
3097 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3098 pipe_name(pipe));
b445e3b0
ED
3099 return;
3100 }
3101
3102 val = I915_READ(reg);
3103 val &= ~WM0_PIPE_SPRITE_MASK;
3104 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
84f44ce7 3105 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
b445e3b0
ED
3106
3107
3108 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3109 pixel_size,
3110 &sandybridge_display_srwm_info,
b0aea5dc 3111 dev_priv->wm.spr_latency[1] * 500,
b445e3b0
ED
3112 &sprite_wm);
3113 if (!ret) {
84f44ce7
VS
3114 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3115 pipe_name(pipe));
b445e3b0
ED
3116 return;
3117 }
3118 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3119
3120 /* Only IVB has two more LP watermarks for sprite */
3121 if (!IS_IVYBRIDGE(dev))
3122 return;
3123
3124 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3125 pixel_size,
3126 &sandybridge_display_srwm_info,
b0aea5dc 3127 dev_priv->wm.spr_latency[2] * 500,
b445e3b0
ED
3128 &sprite_wm);
3129 if (!ret) {
84f44ce7
VS
3130 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3131 pipe_name(pipe));
b445e3b0
ED
3132 return;
3133 }
3134 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3135
3136 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3137 pixel_size,
3138 &sandybridge_display_srwm_info,
b0aea5dc 3139 dev_priv->wm.spr_latency[3] * 500,
b445e3b0
ED
3140 &sprite_wm);
3141 if (!ret) {
84f44ce7
VS
3142 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3143 pipe_name(pipe));
b445e3b0
ED
3144 return;
3145 }
3146 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3147}
3148
243e6a44
VS
3149static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3150{
3151 struct drm_device *dev = crtc->dev;
3152 struct drm_i915_private *dev_priv = dev->dev_private;
3153 struct hsw_wm_values *hw = &dev_priv->wm.hw;
3154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3155 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3156 enum pipe pipe = intel_crtc->pipe;
3157 static const unsigned int wm0_pipe_reg[] = {
3158 [PIPE_A] = WM0_PIPEA_ILK,
3159 [PIPE_B] = WM0_PIPEB_ILK,
3160 [PIPE_C] = WM0_PIPEC_IVB,
3161 };
3162
3163 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3164 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3165
3166 if (intel_crtc_active(crtc)) {
3167 u32 tmp = hw->wm_pipe[pipe];
3168
3169 /*
3170 * For active pipes LP0 watermark is marked as
3171 * enabled, and LP1+ watermaks as disabled since
3172 * we can't really reverse compute them in case
3173 * multiple pipes are active.
3174 */
3175 active->wm[0].enable = true;
3176 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3177 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3178 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3179 active->linetime = hw->wm_linetime[pipe];
3180 } else {
3181 int level, max_level = ilk_wm_max_level(dev);
3182
3183 /*
3184 * For inactive pipes, all watermark levels
3185 * should be marked as enabled but zeroed,
3186 * which is what we'd compute them to.
3187 */
3188 for (level = 0; level <= max_level; level++)
3189 active->wm[level].enable = true;
3190 }
3191}
3192
3193void ilk_wm_get_hw_state(struct drm_device *dev)
3194{
3195 struct drm_i915_private *dev_priv = dev->dev_private;
3196 struct hsw_wm_values *hw = &dev_priv->wm.hw;
3197 struct drm_crtc *crtc;
3198
3199 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3200 ilk_pipe_wm_get_hw_state(crtc);
3201
3202 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3203 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3204 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3205
3206 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3207 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3208 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3209
3210 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3211 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3212
3213 hw->enable_fbc_wm =
3214 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3215}
3216
b445e3b0
ED
3217/**
3218 * intel_update_watermarks - update FIFO watermark values based on current modes
3219 *
3220 * Calculate watermark values for the various WM regs based on current mode
3221 * and plane configuration.
3222 *
3223 * There are several cases to deal with here:
3224 * - normal (i.e. non-self-refresh)
3225 * - self-refresh (SR) mode
3226 * - lines are large relative to FIFO size (buffer can hold up to 2)
3227 * - lines are small relative to FIFO size (buffer can hold more than 2
3228 * lines), so need to account for TLB latency
3229 *
3230 * The normal calculation is:
3231 * watermark = dotclock * bytes per pixel * latency
3232 * where latency is platform & configuration dependent (we assume pessimal
3233 * values here).
3234 *
3235 * The SR calculation is:
3236 * watermark = (trunc(latency/line time)+1) * surface width *
3237 * bytes per pixel
3238 * where
3239 * line time = htotal / dotclock
3240 * surface width = hdisplay for normal plane and 64 for cursor
3241 * and latency is assumed to be high, as above.
3242 *
3243 * The final value programmed to the register should always be rounded up,
3244 * and include an extra 2 entries to account for clock crossings.
3245 *
3246 * We don't use the sprite, so we can ignore that. And on Crestline we have
3247 * to set the non-SR watermarks to 8.
3248 */
46ba614c 3249void intel_update_watermarks(struct drm_crtc *crtc)
b445e3b0 3250{
46ba614c 3251 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
b445e3b0
ED
3252
3253 if (dev_priv->display.update_wm)
46ba614c 3254 dev_priv->display.update_wm(crtc);
b445e3b0
ED
3255}
3256
adf3d35e
VS
3257void intel_update_sprite_watermarks(struct drm_plane *plane,
3258 struct drm_crtc *crtc,
4c4ff43a 3259 uint32_t sprite_width, int pixel_size,
39db4a4d 3260 bool enabled, bool scaled)
b445e3b0 3261{
adf3d35e 3262 struct drm_i915_private *dev_priv = plane->dev->dev_private;
b445e3b0
ED
3263
3264 if (dev_priv->display.update_sprite_wm)
adf3d35e 3265 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
39db4a4d 3266 pixel_size, enabled, scaled);
b445e3b0
ED
3267}
3268
2b4e57bd
ED
3269static struct drm_i915_gem_object *
3270intel_alloc_context_page(struct drm_device *dev)
3271{
3272 struct drm_i915_gem_object *ctx;
3273 int ret;
3274
3275 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3276
3277 ctx = i915_gem_alloc_object(dev, 4096);
3278 if (!ctx) {
3279 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3280 return NULL;
3281 }
3282
c37e2204 3283 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2b4e57bd
ED
3284 if (ret) {
3285 DRM_ERROR("failed to pin power context: %d\n", ret);
3286 goto err_unref;
3287 }
3288
3289 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3290 if (ret) {
3291 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3292 goto err_unpin;
3293 }
3294
3295 return ctx;
3296
3297err_unpin:
3298 i915_gem_object_unpin(ctx);
3299err_unref:
3300 drm_gem_object_unreference(&ctx->base);
2b4e57bd
ED
3301 return NULL;
3302}
3303
9270388e
DV
3304/**
3305 * Lock protecting IPS related data structures
9270388e
DV
3306 */
3307DEFINE_SPINLOCK(mchdev_lock);
3308
3309/* Global for IPS driver to get at the current i915 device. Protected by
3310 * mchdev_lock. */
3311static struct drm_i915_private *i915_mch_dev;
3312
2b4e57bd
ED
3313bool ironlake_set_drps(struct drm_device *dev, u8 val)
3314{
3315 struct drm_i915_private *dev_priv = dev->dev_private;
3316 u16 rgvswctl;
3317
9270388e
DV
3318 assert_spin_locked(&mchdev_lock);
3319
2b4e57bd
ED
3320 rgvswctl = I915_READ16(MEMSWCTL);
3321 if (rgvswctl & MEMCTL_CMD_STS) {
3322 DRM_DEBUG("gpu busy, RCS change rejected\n");
3323 return false; /* still busy with another command */
3324 }
3325
3326 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3327 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3328 I915_WRITE16(MEMSWCTL, rgvswctl);
3329 POSTING_READ16(MEMSWCTL);
3330
3331 rgvswctl |= MEMCTL_CMD_STS;
3332 I915_WRITE16(MEMSWCTL, rgvswctl);
3333
3334 return true;
3335}
3336
8090c6b9 3337static void ironlake_enable_drps(struct drm_device *dev)
2b4e57bd
ED
3338{
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 u32 rgvmodectl = I915_READ(MEMMODECTL);
3341 u8 fmax, fmin, fstart, vstart;
3342
9270388e
DV
3343 spin_lock_irq(&mchdev_lock);
3344
2b4e57bd
ED
3345 /* Enable temp reporting */
3346 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3347 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3348
3349 /* 100ms RC evaluation intervals */
3350 I915_WRITE(RCUPEI, 100000);
3351 I915_WRITE(RCDNEI, 100000);
3352
3353 /* Set max/min thresholds to 90ms and 80ms respectively */
3354 I915_WRITE(RCBMAXAVG, 90000);
3355 I915_WRITE(RCBMINAVG, 80000);
3356
3357 I915_WRITE(MEMIHYST, 1);
3358
3359 /* Set up min, max, and cur for interrupt handling */
3360 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3361 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3362 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3363 MEMMODE_FSTART_SHIFT;
3364
3365 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3366 PXVFREQ_PX_SHIFT;
3367
20e4d407
DV
3368 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3369 dev_priv->ips.fstart = fstart;
2b4e57bd 3370
20e4d407
DV
3371 dev_priv->ips.max_delay = fstart;
3372 dev_priv->ips.min_delay = fmin;
3373 dev_priv->ips.cur_delay = fstart;
2b4e57bd
ED
3374
3375 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3376 fmax, fmin, fstart);
3377
3378 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3379
3380 /*
3381 * Interrupts will be enabled in ironlake_irq_postinstall
3382 */
3383
3384 I915_WRITE(VIDSTART, vstart);
3385 POSTING_READ(VIDSTART);
3386
3387 rgvmodectl |= MEMMODE_SWMODE_EN;
3388 I915_WRITE(MEMMODECTL, rgvmodectl);
3389
9270388e 3390 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2b4e57bd 3391 DRM_ERROR("stuck trying to change perf mode\n");
9270388e 3392 mdelay(1);
2b4e57bd
ED
3393
3394 ironlake_set_drps(dev, fstart);
3395
20e4d407 3396 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2b4e57bd 3397 I915_READ(0x112e0);
20e4d407
DV
3398 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3399 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3400 getrawmonotonic(&dev_priv->ips.last_time2);
9270388e
DV
3401
3402 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
3403}
3404
8090c6b9 3405static void ironlake_disable_drps(struct drm_device *dev)
2b4e57bd
ED
3406{
3407 struct drm_i915_private *dev_priv = dev->dev_private;
9270388e
DV
3408 u16 rgvswctl;
3409
3410 spin_lock_irq(&mchdev_lock);
3411
3412 rgvswctl = I915_READ16(MEMSWCTL);
2b4e57bd
ED
3413
3414 /* Ack interrupts, disable EFC interrupt */
3415 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3416 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3417 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3418 I915_WRITE(DEIIR, DE_PCU_EVENT);
3419 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3420
3421 /* Go back to the starting frequency */
20e4d407 3422 ironlake_set_drps(dev, dev_priv->ips.fstart);
9270388e 3423 mdelay(1);
2b4e57bd
ED
3424 rgvswctl |= MEMCTL_CMD_STS;
3425 I915_WRITE(MEMSWCTL, rgvswctl);
9270388e 3426 mdelay(1);
2b4e57bd 3427
9270388e 3428 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
3429}
3430
acbe9475
DV
3431/* There's a funny hw issue where the hw returns all 0 when reading from
3432 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3433 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3434 * all limits and the gpu stuck at whatever frequency it is at atm).
3435 */
6917c7b9 3436static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2b4e57bd 3437{
7b9e0ae6 3438 u32 limits;
2b4e57bd 3439
20b46e59
DV
3440 /* Only set the down limit when we've reached the lowest level to avoid
3441 * getting more interrupts, otherwise leave this clear. This prevents a
3442 * race in the hw when coming out of rc6: There's a tiny window where
3443 * the hw runs at the minimal clock before selecting the desired
3444 * frequency, if the down threshold expires in that window we will not
3445 * receive a down interrupt. */
6917c7b9
CW
3446 limits = dev_priv->rps.max_delay << 24;
3447 if (val <= dev_priv->rps.min_delay)
c6a828d3 3448 limits |= dev_priv->rps.min_delay << 16;
20b46e59
DV
3449
3450 return limits;
3451}
3452
dd75fdc8
CW
3453static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3454{
3455 int new_power;
3456
3457 new_power = dev_priv->rps.power;
3458 switch (dev_priv->rps.power) {
3459 case LOW_POWER:
3460 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
3461 new_power = BETWEEN;
3462 break;
3463
3464 case BETWEEN:
3465 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
3466 new_power = LOW_POWER;
3467 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
3468 new_power = HIGH_POWER;
3469 break;
3470
3471 case HIGH_POWER:
3472 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
3473 new_power = BETWEEN;
3474 break;
3475 }
3476 /* Max/min bins are special */
3477 if (val == dev_priv->rps.min_delay)
3478 new_power = LOW_POWER;
3479 if (val == dev_priv->rps.max_delay)
3480 new_power = HIGH_POWER;
3481 if (new_power == dev_priv->rps.power)
3482 return;
3483
3484 /* Note the units here are not exactly 1us, but 1280ns. */
3485 switch (new_power) {
3486 case LOW_POWER:
3487 /* Upclock if more than 95% busy over 16ms */
3488 I915_WRITE(GEN6_RP_UP_EI, 12500);
3489 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3490
3491 /* Downclock if less than 85% busy over 32ms */
3492 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3493 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3494
3495 I915_WRITE(GEN6_RP_CONTROL,
3496 GEN6_RP_MEDIA_TURBO |
3497 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3498 GEN6_RP_MEDIA_IS_GFX |
3499 GEN6_RP_ENABLE |
3500 GEN6_RP_UP_BUSY_AVG |
3501 GEN6_RP_DOWN_IDLE_AVG);
3502 break;
3503
3504 case BETWEEN:
3505 /* Upclock if more than 90% busy over 13ms */
3506 I915_WRITE(GEN6_RP_UP_EI, 10250);
3507 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3508
3509 /* Downclock if less than 75% busy over 32ms */
3510 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3511 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3512
3513 I915_WRITE(GEN6_RP_CONTROL,
3514 GEN6_RP_MEDIA_TURBO |
3515 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3516 GEN6_RP_MEDIA_IS_GFX |
3517 GEN6_RP_ENABLE |
3518 GEN6_RP_UP_BUSY_AVG |
3519 GEN6_RP_DOWN_IDLE_AVG);
3520 break;
3521
3522 case HIGH_POWER:
3523 /* Upclock if more than 85% busy over 10ms */
3524 I915_WRITE(GEN6_RP_UP_EI, 8000);
3525 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3526
3527 /* Downclock if less than 60% busy over 32ms */
3528 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3529 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3530
3531 I915_WRITE(GEN6_RP_CONTROL,
3532 GEN6_RP_MEDIA_TURBO |
3533 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3534 GEN6_RP_MEDIA_IS_GFX |
3535 GEN6_RP_ENABLE |
3536 GEN6_RP_UP_BUSY_AVG |
3537 GEN6_RP_DOWN_IDLE_AVG);
3538 break;
3539 }
3540
3541 dev_priv->rps.power = new_power;
3542 dev_priv->rps.last_adj = 0;
3543}
3544
20b46e59
DV
3545void gen6_set_rps(struct drm_device *dev, u8 val)
3546{
3547 struct drm_i915_private *dev_priv = dev->dev_private;
7b9e0ae6 3548
4fc688ce 3549 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79249636
BW
3550 WARN_ON(val > dev_priv->rps.max_delay);
3551 WARN_ON(val < dev_priv->rps.min_delay);
004777cb 3552
c6a828d3 3553 if (val == dev_priv->rps.cur_delay)
7b9e0ae6
CW
3554 return;
3555
dd75fdc8
CW
3556 gen6_set_rps_thresholds(dev_priv, val);
3557
92bd1bf0
RV
3558 if (IS_HASWELL(dev))
3559 I915_WRITE(GEN6_RPNSWREQ,
3560 HSW_FREQUENCY(val));
3561 else
3562 I915_WRITE(GEN6_RPNSWREQ,
3563 GEN6_FREQUENCY(val) |
3564 GEN6_OFFSET(0) |
3565 GEN6_AGGRESSIVE_TURBO);
7b9e0ae6
CW
3566
3567 /* Make sure we continue to get interrupts
3568 * until we hit the minimum or maximum frequencies.
3569 */
6917c7b9
CW
3570 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3571 gen6_rps_limits(dev_priv, val));
7b9e0ae6 3572
d5570a72
BW
3573 POSTING_READ(GEN6_RPNSWREQ);
3574
c6a828d3 3575 dev_priv->rps.cur_delay = val;
be2cde9a
DV
3576
3577 trace_intel_gpu_freq_change(val * 50);
2b4e57bd
ED
3578}
3579
b29c19b6
CW
3580void gen6_rps_idle(struct drm_i915_private *dev_priv)
3581{
3582 mutex_lock(&dev_priv->rps.hw_lock);
c0951f0c
CW
3583 if (dev_priv->rps.enabled) {
3584 if (dev_priv->info->is_valleyview)
3585 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3586 else
3587 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3588 dev_priv->rps.last_adj = 0;
3589 }
b29c19b6
CW
3590 mutex_unlock(&dev_priv->rps.hw_lock);
3591}
3592
3593void gen6_rps_boost(struct drm_i915_private *dev_priv)
3594{
3595 mutex_lock(&dev_priv->rps.hw_lock);
c0951f0c
CW
3596 if (dev_priv->rps.enabled) {
3597 if (dev_priv->info->is_valleyview)
3598 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3599 else
3600 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3601 dev_priv->rps.last_adj = 0;
3602 }
b29c19b6
CW
3603 mutex_unlock(&dev_priv->rps.hw_lock);
3604}
3605
0a073b84
JB
3606void valleyview_set_rps(struct drm_device *dev, u8 val)
3607{
3608 struct drm_i915_private *dev_priv = dev->dev_private;
7a67092a 3609
0a073b84
JB
3610 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3611 WARN_ON(val > dev_priv->rps.max_delay);
3612 WARN_ON(val < dev_priv->rps.min_delay);
3613
73008b98 3614 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
2ec3815f 3615 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
73008b98 3616 dev_priv->rps.cur_delay,
2ec3815f 3617 vlv_gpu_freq(dev_priv, val), val);
0a073b84
JB
3618
3619 if (val == dev_priv->rps.cur_delay)
3620 return;
3621
ae99258f 3622 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
0a073b84 3623
80814ae4 3624 dev_priv->rps.cur_delay = val;
0a073b84 3625
2ec3815f 3626 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
0a073b84
JB
3627}
3628
44fc7d5c 3629static void gen6_disable_rps_interrupts(struct drm_device *dev)
2b4e57bd
ED
3630{
3631 struct drm_i915_private *dev_priv = dev->dev_private;
3632
2b4e57bd 3633 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4848405c 3634 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3635 /* Complete PM interrupt masking here doesn't race with the rps work
3636 * item again unmasking PM interrupts because that is using a different
3637 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3638 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3639
59cdb63d 3640 spin_lock_irq(&dev_priv->irq_lock);
c6a828d3 3641 dev_priv->rps.pm_iir = 0;
59cdb63d 3642 spin_unlock_irq(&dev_priv->irq_lock);
2b4e57bd 3643
4848405c 3644 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3645}
3646
44fc7d5c 3647static void gen6_disable_rps(struct drm_device *dev)
d20d4f0c
JB
3648{
3649 struct drm_i915_private *dev_priv = dev->dev_private;
3650
3651 I915_WRITE(GEN6_RC_CONTROL, 0);
44fc7d5c 3652 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
d20d4f0c 3653
44fc7d5c
DV
3654 gen6_disable_rps_interrupts(dev);
3655}
3656
3657static void valleyview_disable_rps(struct drm_device *dev)
3658{
3659 struct drm_i915_private *dev_priv = dev->dev_private;
3660
3661 I915_WRITE(GEN6_RC_CONTROL, 0);
d20d4f0c 3662
44fc7d5c 3663 gen6_disable_rps_interrupts(dev);
c9cddffc
JB
3664
3665 if (dev_priv->vlv_pctx) {
3666 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3667 dev_priv->vlv_pctx = NULL;
3668 }
d20d4f0c
JB
3669}
3670
dc39fff7
BW
3671static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3672{
3673 if (IS_GEN6(dev))
3674 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3675
3676 if (IS_HASWELL(dev))
3677 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3678
3679 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3680 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3681 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3682 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3683}
3684
2b4e57bd
ED
3685int intel_enable_rc6(const struct drm_device *dev)
3686{
eb4926e4
DL
3687 /* No RC6 before Ironlake */
3688 if (INTEL_INFO(dev)->gen < 5)
3689 return 0;
3690
456470eb 3691 /* Respect the kernel parameter if it is set */
2b4e57bd
ED
3692 if (i915_enable_rc6 >= 0)
3693 return i915_enable_rc6;
3694
6567d748
CW
3695 /* Disable RC6 on Ironlake */
3696 if (INTEL_INFO(dev)->gen == 5)
3697 return 0;
2b4e57bd 3698
dc39fff7 3699 if (IS_HASWELL(dev))
4a637c2c 3700 return INTEL_RC6_ENABLE;
2b4e57bd 3701
456470eb 3702 /* snb/ivb have more than one rc6 state. */
dc39fff7 3703 if (INTEL_INFO(dev)->gen == 6)
2b4e57bd 3704 return INTEL_RC6_ENABLE;
456470eb 3705
2b4e57bd
ED
3706 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3707}
3708
44fc7d5c
DV
3709static void gen6_enable_rps_interrupts(struct drm_device *dev)
3710{
3711 struct drm_i915_private *dev_priv = dev->dev_private;
a9c1f90c 3712 u32 enabled_intrs;
44fc7d5c
DV
3713
3714 spin_lock_irq(&dev_priv->irq_lock);
a0b3335a 3715 WARN_ON(dev_priv->rps.pm_iir);
edbfdb45 3716 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
44fc7d5c
DV
3717 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3718 spin_unlock_irq(&dev_priv->irq_lock);
a9c1f90c 3719
fd547d25 3720 /* only unmask PM interrupts we need. Mask all others. */
a9c1f90c
MK
3721 enabled_intrs = GEN6_PM_RPS_EVENTS;
3722
3723 /* IVB and SNB hard hangs on looping batchbuffer
3724 * if GEN6_PM_UP_EI_EXPIRED is masked.
3725 */
3726 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3727 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3728
3729 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
44fc7d5c
DV
3730}
3731
6edee7f3
BW
3732static void gen8_enable_rps(struct drm_device *dev)
3733{
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735 struct intel_ring_buffer *ring;
3736 uint32_t rc6_mask = 0, rp_state_cap;
3737 int unused;
3738
3739 /* 1a: Software RC state - RC0 */
3740 I915_WRITE(GEN6_RC_STATE, 0);
3741
3742 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3743 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
c8d9a590 3744 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
3745
3746 /* 2a: Disable RC states. */
3747 I915_WRITE(GEN6_RC_CONTROL, 0);
3748
3749 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3750
3751 /* 2b: Program RC6 thresholds.*/
3752 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3753 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3754 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3755 for_each_ring(ring, dev_priv, unused)
3756 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3757 I915_WRITE(GEN6_RC_SLEEP, 0);
3758 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3759
3760 /* 3: Enable RC6 */
3761 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3762 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3763 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3764 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3765 GEN6_RC_CTL_EI_MODE(1) |
3766 rc6_mask);
3767
3768 /* 4 Program defaults and thresholds for RPS*/
3769 I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3770 I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3771 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3772 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3773
3774 /* Docs recommend 900MHz, and 300 MHz respectively */
3775 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3776 dev_priv->rps.max_delay << 24 |
3777 dev_priv->rps.min_delay << 16);
3778
3779 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3780 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3781 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3782 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3783
3784 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3785
3786 /* 5: Enable RPS */
3787 I915_WRITE(GEN6_RP_CONTROL,
3788 GEN6_RP_MEDIA_TURBO |
3789 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3790 GEN6_RP_MEDIA_IS_GFX |
3791 GEN6_RP_ENABLE |
3792 GEN6_RP_UP_BUSY_AVG |
3793 GEN6_RP_DOWN_IDLE_AVG);
3794
3795 /* 6: Ring frequency + overclocking (our driver does this later */
3796
3797 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3798
3799 gen6_enable_rps_interrupts(dev);
3800
c8d9a590 3801 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
3802}
3803
79f5b2c7 3804static void gen6_enable_rps(struct drm_device *dev)
2b4e57bd 3805{
79f5b2c7 3806 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 3807 struct intel_ring_buffer *ring;
7b9e0ae6
CW
3808 u32 rp_state_cap;
3809 u32 gt_perf_status;
31643d54 3810 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2b4e57bd 3811 u32 gtfifodbg;
2b4e57bd 3812 int rc6_mode;
42c0526c 3813 int i, ret;
2b4e57bd 3814
4fc688ce 3815 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3816
2b4e57bd
ED
3817 /* Here begins a magic sequence of register writes to enable
3818 * auto-downclocking.
3819 *
3820 * Perhaps there might be some value in exposing these to
3821 * userspace...
3822 */
3823 I915_WRITE(GEN6_RC_STATE, 0);
2b4e57bd
ED
3824
3825 /* Clear the DBG now so we don't confuse earlier errors */
3826 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3827 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3828 I915_WRITE(GTFIFODBG, gtfifodbg);
3829 }
3830
c8d9a590 3831 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
2b4e57bd 3832
7b9e0ae6
CW
3833 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3834 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3835
31c77388
BW
3836 /* In units of 50MHz */
3837 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
dd75fdc8
CW
3838 dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3839 dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
3840 dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
3841 dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
c6a828d3 3842 dev_priv->rps.cur_delay = 0;
7b9e0ae6 3843
2b4e57bd
ED
3844 /* disable the counters and set deterministic thresholds */
3845 I915_WRITE(GEN6_RC_CONTROL, 0);
3846
3847 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3848 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3849 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3850 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3851 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3852
b4519513
CW
3853 for_each_ring(ring, dev_priv, i)
3854 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2b4e57bd
ED
3855
3856 I915_WRITE(GEN6_RC_SLEEP, 0);
3857 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
351aa566
SM
3858 if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3859 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3860 else
3861 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
0920a487 3862 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2b4e57bd
ED
3863 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3864
5a7dc92a 3865 /* Check if we are enabling RC6 */
2b4e57bd
ED
3866 rc6_mode = intel_enable_rc6(dev_priv->dev);
3867 if (rc6_mode & INTEL_RC6_ENABLE)
3868 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3869
5a7dc92a
ED
3870 /* We don't use those on Haswell */
3871 if (!IS_HASWELL(dev)) {
3872 if (rc6_mode & INTEL_RC6p_ENABLE)
3873 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2b4e57bd 3874
5a7dc92a
ED
3875 if (rc6_mode & INTEL_RC6pp_ENABLE)
3876 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3877 }
2b4e57bd 3878
dc39fff7 3879 intel_print_rc6_info(dev, rc6_mask);
2b4e57bd
ED
3880
3881 I915_WRITE(GEN6_RC_CONTROL,
3882 rc6_mask |
3883 GEN6_RC_CTL_EI_MODE(1) |
3884 GEN6_RC_CTL_HW_ENABLE);
3885
dd75fdc8
CW
3886 /* Power down if completely idle for over 50ms */
3887 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
2b4e57bd 3888 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2b4e57bd 3889
42c0526c 3890 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
988b36e5 3891 if (!ret) {
42c0526c
BW
3892 pcu_mbox = 0;
3893 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
a2b3fc01 3894 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
10e08497 3895 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
a2b3fc01
BW
3896 (dev_priv->rps.max_delay & 0xff) * 50,
3897 (pcu_mbox & 0xff) * 50);
31c77388 3898 dev_priv->rps.hw_max = pcu_mbox & 0xff;
42c0526c
BW
3899 }
3900 } else {
3901 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2b4e57bd
ED
3902 }
3903
dd75fdc8
CW
3904 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3905 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
2b4e57bd 3906
44fc7d5c 3907 gen6_enable_rps_interrupts(dev);
2b4e57bd 3908
31643d54
BW
3909 rc6vids = 0;
3910 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3911 if (IS_GEN6(dev) && ret) {
3912 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3913 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3914 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3915 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3916 rc6vids &= 0xffff00;
3917 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3918 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3919 if (ret)
3920 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3921 }
3922
c8d9a590 3923 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
2b4e57bd
ED
3924}
3925
c67a470b 3926void gen6_update_ring_freq(struct drm_device *dev)
2b4e57bd 3927{
79f5b2c7 3928 struct drm_i915_private *dev_priv = dev->dev_private;
2b4e57bd 3929 int min_freq = 15;
3ebecd07
CW
3930 unsigned int gpu_freq;
3931 unsigned int max_ia_freq, min_ring_freq;
2b4e57bd 3932 int scaling_factor = 180;
eda79642 3933 struct cpufreq_policy *policy;
2b4e57bd 3934
4fc688ce 3935 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3936
eda79642
BW
3937 policy = cpufreq_cpu_get(0);
3938 if (policy) {
3939 max_ia_freq = policy->cpuinfo.max_freq;
3940 cpufreq_cpu_put(policy);
3941 } else {
3942 /*
3943 * Default to measured freq if none found, PCU will ensure we
3944 * don't go over
3945 */
2b4e57bd 3946 max_ia_freq = tsc_khz;
eda79642 3947 }
2b4e57bd
ED
3948
3949 /* Convert from kHz to MHz */
3950 max_ia_freq /= 1000;
3951
153b4b95 3952 min_ring_freq = I915_READ(DCLK) & 0xf;
f6aca45c
BW
3953 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3954 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3ebecd07 3955
2b4e57bd
ED
3956 /*
3957 * For each potential GPU frequency, load a ring frequency we'd like
3958 * to use for memory access. We do this by specifying the IA frequency
3959 * the PCU should use as a reference to determine the ring frequency.
3960 */
c6a828d3 3961 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2b4e57bd 3962 gpu_freq--) {
c6a828d3 3963 int diff = dev_priv->rps.max_delay - gpu_freq;
3ebecd07
CW
3964 unsigned int ia_freq = 0, ring_freq = 0;
3965
46c764d4
BW
3966 if (INTEL_INFO(dev)->gen >= 8) {
3967 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3968 ring_freq = max(min_ring_freq, gpu_freq);
3969 } else if (IS_HASWELL(dev)) {
f6aca45c 3970 ring_freq = mult_frac(gpu_freq, 5, 4);
3ebecd07
CW
3971 ring_freq = max(min_ring_freq, ring_freq);
3972 /* leave ia_freq as the default, chosen by cpufreq */
3973 } else {
3974 /* On older processors, there is no separate ring
3975 * clock domain, so in order to boost the bandwidth
3976 * of the ring, we need to upclock the CPU (ia_freq).
3977 *
3978 * For GPU frequencies less than 750MHz,
3979 * just use the lowest ring freq.
3980 */
3981 if (gpu_freq < min_freq)
3982 ia_freq = 800;
3983 else
3984 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3985 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3986 }
2b4e57bd 3987
42c0526c
BW
3988 sandybridge_pcode_write(dev_priv,
3989 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3ebecd07
CW
3990 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3991 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3992 gpu_freq);
2b4e57bd 3993 }
2b4e57bd
ED
3994}
3995
0a073b84
JB
3996int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3997{
3998 u32 val, rp0;
3999
64936258 4000 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
0a073b84
JB
4001
4002 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4003 /* Clamp to max */
4004 rp0 = min_t(u32, rp0, 0xea);
4005
4006 return rp0;
4007}
4008
4009static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4010{
4011 u32 val, rpe;
4012
64936258 4013 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
0a073b84 4014 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
64936258 4015 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
0a073b84
JB
4016 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4017
4018 return rpe;
4019}
4020
4021int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4022{
64936258 4023 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
0a073b84
JB
4024}
4025
c9cddffc
JB
4026static void valleyview_setup_pctx(struct drm_device *dev)
4027{
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 struct drm_i915_gem_object *pctx;
4030 unsigned long pctx_paddr;
4031 u32 pcbr;
4032 int pctx_size = 24*1024;
4033
4034 pcbr = I915_READ(VLV_PCBR);
4035 if (pcbr) {
4036 /* BIOS set it up already, grab the pre-alloc'd space */
4037 int pcbr_offset;
4038
4039 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4040 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4041 pcbr_offset,
190d6cd5 4042 I915_GTT_OFFSET_NONE,
c9cddffc
JB
4043 pctx_size);
4044 goto out;
4045 }
4046
4047 /*
4048 * From the Gunit register HAS:
4049 * The Gfx driver is expected to program this register and ensure
4050 * proper allocation within Gfx stolen memory. For example, this
4051 * register should be programmed such than the PCBR range does not
4052 * overlap with other ranges, such as the frame buffer, protected
4053 * memory, or any other relevant ranges.
4054 */
4055 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4056 if (!pctx) {
4057 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4058 return;
4059 }
4060
4061 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4062 I915_WRITE(VLV_PCBR, pctx_paddr);
4063
4064out:
4065 dev_priv->vlv_pctx = pctx;
4066}
4067
0a073b84
JB
4068static void valleyview_enable_rps(struct drm_device *dev)
4069{
4070 struct drm_i915_private *dev_priv = dev->dev_private;
4071 struct intel_ring_buffer *ring;
a2b23fe0 4072 u32 gtfifodbg, val, rc6_mode = 0;
0a073b84
JB
4073 int i;
4074
4075 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4076
4077 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
f7d85c1e
JB
4078 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4079 gtfifodbg);
0a073b84
JB
4080 I915_WRITE(GTFIFODBG, gtfifodbg);
4081 }
4082
c9cddffc
JB
4083 valleyview_setup_pctx(dev);
4084
c8d9a590
D
4085 /* If VLV, Forcewake all wells, else re-direct to regular path */
4086 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
0a073b84
JB
4087
4088 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4089 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4090 I915_WRITE(GEN6_RP_UP_EI, 66000);
4091 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4092
4093 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4094
4095 I915_WRITE(GEN6_RP_CONTROL,
4096 GEN6_RP_MEDIA_TURBO |
4097 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4098 GEN6_RP_MEDIA_IS_GFX |
4099 GEN6_RP_ENABLE |
4100 GEN6_RP_UP_BUSY_AVG |
4101 GEN6_RP_DOWN_IDLE_CONT);
4102
4103 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4104 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4105 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4106
4107 for_each_ring(ring, dev_priv, i)
4108 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4109
4110 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
4111
4112 /* allows RC6 residency counter to work */
49798eb2
JB
4113 I915_WRITE(VLV_COUNTER_CONTROL,
4114 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4115 VLV_MEDIA_RC6_COUNT_EN |
4116 VLV_RENDER_RC6_COUNT_EN));
a2b23fe0
JB
4117 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4118 rc6_mode = GEN7_RC_CTL_TO_MODE;
dc39fff7
BW
4119
4120 intel_print_rc6_info(dev, rc6_mode);
4121
a2b23fe0 4122 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
0a073b84 4123
64936258 4124 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
0a073b84
JB
4125
4126 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4127 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4128
0a073b84 4129 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
73008b98 4130 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
2ec3815f 4131 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
73008b98 4132 dev_priv->rps.cur_delay);
0a073b84
JB
4133
4134 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
4135 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
73008b98 4136 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
2ec3815f 4137 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
73008b98 4138 dev_priv->rps.max_delay);
0a073b84 4139
73008b98
VS
4140 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
4141 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
2ec3815f 4142 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
73008b98 4143 dev_priv->rps.rpe_delay);
0a073b84 4144
73008b98
VS
4145 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
4146 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
2ec3815f 4147 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
73008b98 4148 dev_priv->rps.min_delay);
0a073b84 4149
73008b98 4150 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
2ec3815f 4151 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
73008b98 4152 dev_priv->rps.rpe_delay);
0a073b84 4153
73008b98 4154 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
0a073b84 4155
44fc7d5c 4156 gen6_enable_rps_interrupts(dev);
0a073b84 4157
c8d9a590 4158 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
0a073b84
JB
4159}
4160
930ebb46 4161void ironlake_teardown_rc6(struct drm_device *dev)
2b4e57bd
ED
4162{
4163 struct drm_i915_private *dev_priv = dev->dev_private;
4164
3e373948
DV
4165 if (dev_priv->ips.renderctx) {
4166 i915_gem_object_unpin(dev_priv->ips.renderctx);
4167 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4168 dev_priv->ips.renderctx = NULL;
2b4e57bd
ED
4169 }
4170
3e373948
DV
4171 if (dev_priv->ips.pwrctx) {
4172 i915_gem_object_unpin(dev_priv->ips.pwrctx);
4173 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4174 dev_priv->ips.pwrctx = NULL;
2b4e57bd
ED
4175 }
4176}
4177
930ebb46 4178static void ironlake_disable_rc6(struct drm_device *dev)
2b4e57bd
ED
4179{
4180 struct drm_i915_private *dev_priv = dev->dev_private;
4181
4182 if (I915_READ(PWRCTXA)) {
4183 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4184 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4185 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4186 50);
4187
4188 I915_WRITE(PWRCTXA, 0);
4189 POSTING_READ(PWRCTXA);
4190
4191 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4192 POSTING_READ(RSTDBYCTL);
4193 }
2b4e57bd
ED
4194}
4195
4196static int ironlake_setup_rc6(struct drm_device *dev)
4197{
4198 struct drm_i915_private *dev_priv = dev->dev_private;
4199
3e373948
DV
4200 if (dev_priv->ips.renderctx == NULL)
4201 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4202 if (!dev_priv->ips.renderctx)
2b4e57bd
ED
4203 return -ENOMEM;
4204
3e373948
DV
4205 if (dev_priv->ips.pwrctx == NULL)
4206 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4207 if (!dev_priv->ips.pwrctx) {
2b4e57bd
ED
4208 ironlake_teardown_rc6(dev);
4209 return -ENOMEM;
4210 }
4211
4212 return 0;
4213}
4214
930ebb46 4215static void ironlake_enable_rc6(struct drm_device *dev)
2b4e57bd
ED
4216{
4217 struct drm_i915_private *dev_priv = dev->dev_private;
6d90c952 4218 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3e960501 4219 bool was_interruptible;
2b4e57bd
ED
4220 int ret;
4221
4222 /* rc6 disabled by default due to repeated reports of hanging during
4223 * boot and resume.
4224 */
4225 if (!intel_enable_rc6(dev))
4226 return;
4227
79f5b2c7
DV
4228 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4229
2b4e57bd 4230 ret = ironlake_setup_rc6(dev);
79f5b2c7 4231 if (ret)
2b4e57bd 4232 return;
2b4e57bd 4233
3e960501
CW
4234 was_interruptible = dev_priv->mm.interruptible;
4235 dev_priv->mm.interruptible = false;
4236
2b4e57bd
ED
4237 /*
4238 * GPU can automatically power down the render unit if given a page
4239 * to save state.
4240 */
6d90c952 4241 ret = intel_ring_begin(ring, 6);
2b4e57bd
ED
4242 if (ret) {
4243 ironlake_teardown_rc6(dev);
3e960501 4244 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd
ED
4245 return;
4246 }
4247
6d90c952
DV
4248 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4249 intel_ring_emit(ring, MI_SET_CONTEXT);
f343c5f6 4250 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
6d90c952
DV
4251 MI_MM_SPACE_GTT |
4252 MI_SAVE_EXT_STATE_EN |
4253 MI_RESTORE_EXT_STATE_EN |
4254 MI_RESTORE_INHIBIT);
4255 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4256 intel_ring_emit(ring, MI_NOOP);
4257 intel_ring_emit(ring, MI_FLUSH);
4258 intel_ring_advance(ring);
2b4e57bd
ED
4259
4260 /*
4261 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4262 * does an implicit flush, combined with MI_FLUSH above, it should be
4263 * safe to assume that renderctx is valid
4264 */
3e960501
CW
4265 ret = intel_ring_idle(ring);
4266 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd 4267 if (ret) {
def27a58 4268 DRM_ERROR("failed to enable ironlake power savings\n");
2b4e57bd 4269 ironlake_teardown_rc6(dev);
2b4e57bd
ED
4270 return;
4271 }
4272
f343c5f6 4273 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
2b4e57bd 4274 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
dc39fff7
BW
4275
4276 intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
2b4e57bd
ED
4277}
4278
dde18883
ED
4279static unsigned long intel_pxfreq(u32 vidfreq)
4280{
4281 unsigned long freq;
4282 int div = (vidfreq & 0x3f0000) >> 16;
4283 int post = (vidfreq & 0x3000) >> 12;
4284 int pre = (vidfreq & 0x7);
4285
4286 if (!pre)
4287 return 0;
4288
4289 freq = ((div * 133333) / ((1<<post) * pre));
4290
4291 return freq;
4292}
4293
eb48eb00
DV
4294static const struct cparams {
4295 u16 i;
4296 u16 t;
4297 u16 m;
4298 u16 c;
4299} cparams[] = {
4300 { 1, 1333, 301, 28664 },
4301 { 1, 1066, 294, 24460 },
4302 { 1, 800, 294, 25192 },
4303 { 0, 1333, 276, 27605 },
4304 { 0, 1066, 276, 27605 },
4305 { 0, 800, 231, 23784 },
4306};
4307
f531dcb2 4308static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4309{
4310 u64 total_count, diff, ret;
4311 u32 count1, count2, count3, m = 0, c = 0;
4312 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4313 int i;
4314
02d71956
DV
4315 assert_spin_locked(&mchdev_lock);
4316
20e4d407 4317 diff1 = now - dev_priv->ips.last_time1;
eb48eb00
DV
4318
4319 /* Prevent division-by-zero if we are asking too fast.
4320 * Also, we don't get interesting results if we are polling
4321 * faster than once in 10ms, so just return the saved value
4322 * in such cases.
4323 */
4324 if (diff1 <= 10)
20e4d407 4325 return dev_priv->ips.chipset_power;
eb48eb00
DV
4326
4327 count1 = I915_READ(DMIEC);
4328 count2 = I915_READ(DDREC);
4329 count3 = I915_READ(CSIEC);
4330
4331 total_count = count1 + count2 + count3;
4332
4333 /* FIXME: handle per-counter overflow */
20e4d407
DV
4334 if (total_count < dev_priv->ips.last_count1) {
4335 diff = ~0UL - dev_priv->ips.last_count1;
eb48eb00
DV
4336 diff += total_count;
4337 } else {
20e4d407 4338 diff = total_count - dev_priv->ips.last_count1;
eb48eb00
DV
4339 }
4340
4341 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
20e4d407
DV
4342 if (cparams[i].i == dev_priv->ips.c_m &&
4343 cparams[i].t == dev_priv->ips.r_t) {
eb48eb00
DV
4344 m = cparams[i].m;
4345 c = cparams[i].c;
4346 break;
4347 }
4348 }
4349
4350 diff = div_u64(diff, diff1);
4351 ret = ((m * diff) + c);
4352 ret = div_u64(ret, 10);
4353
20e4d407
DV
4354 dev_priv->ips.last_count1 = total_count;
4355 dev_priv->ips.last_time1 = now;
eb48eb00 4356
20e4d407 4357 dev_priv->ips.chipset_power = ret;
eb48eb00
DV
4358
4359 return ret;
4360}
4361
f531dcb2
CW
4362unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4363{
4364 unsigned long val;
4365
4366 if (dev_priv->info->gen != 5)
4367 return 0;
4368
4369 spin_lock_irq(&mchdev_lock);
4370
4371 val = __i915_chipset_val(dev_priv);
4372
4373 spin_unlock_irq(&mchdev_lock);
4374
4375 return val;
4376}
4377
eb48eb00
DV
4378unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4379{
4380 unsigned long m, x, b;
4381 u32 tsfs;
4382
4383 tsfs = I915_READ(TSFS);
4384
4385 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4386 x = I915_READ8(TR1);
4387
4388 b = tsfs & TSFS_INTR_MASK;
4389
4390 return ((m * x) / 127) - b;
4391}
4392
4393static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4394{
4395 static const struct v_table {
4396 u16 vd; /* in .1 mil */
4397 u16 vm; /* in .1 mil */
4398 } v_table[] = {
4399 { 0, 0, },
4400 { 375, 0, },
4401 { 500, 0, },
4402 { 625, 0, },
4403 { 750, 0, },
4404 { 875, 0, },
4405 { 1000, 0, },
4406 { 1125, 0, },
4407 { 4125, 3000, },
4408 { 4125, 3000, },
4409 { 4125, 3000, },
4410 { 4125, 3000, },
4411 { 4125, 3000, },
4412 { 4125, 3000, },
4413 { 4125, 3000, },
4414 { 4125, 3000, },
4415 { 4125, 3000, },
4416 { 4125, 3000, },
4417 { 4125, 3000, },
4418 { 4125, 3000, },
4419 { 4125, 3000, },
4420 { 4125, 3000, },
4421 { 4125, 3000, },
4422 { 4125, 3000, },
4423 { 4125, 3000, },
4424 { 4125, 3000, },
4425 { 4125, 3000, },
4426 { 4125, 3000, },
4427 { 4125, 3000, },
4428 { 4125, 3000, },
4429 { 4125, 3000, },
4430 { 4125, 3000, },
4431 { 4250, 3125, },
4432 { 4375, 3250, },
4433 { 4500, 3375, },
4434 { 4625, 3500, },
4435 { 4750, 3625, },
4436 { 4875, 3750, },
4437 { 5000, 3875, },
4438 { 5125, 4000, },
4439 { 5250, 4125, },
4440 { 5375, 4250, },
4441 { 5500, 4375, },
4442 { 5625, 4500, },
4443 { 5750, 4625, },
4444 { 5875, 4750, },
4445 { 6000, 4875, },
4446 { 6125, 5000, },
4447 { 6250, 5125, },
4448 { 6375, 5250, },
4449 { 6500, 5375, },
4450 { 6625, 5500, },
4451 { 6750, 5625, },
4452 { 6875, 5750, },
4453 { 7000, 5875, },
4454 { 7125, 6000, },
4455 { 7250, 6125, },
4456 { 7375, 6250, },
4457 { 7500, 6375, },
4458 { 7625, 6500, },
4459 { 7750, 6625, },
4460 { 7875, 6750, },
4461 { 8000, 6875, },
4462 { 8125, 7000, },
4463 { 8250, 7125, },
4464 { 8375, 7250, },
4465 { 8500, 7375, },
4466 { 8625, 7500, },
4467 { 8750, 7625, },
4468 { 8875, 7750, },
4469 { 9000, 7875, },
4470 { 9125, 8000, },
4471 { 9250, 8125, },
4472 { 9375, 8250, },
4473 { 9500, 8375, },
4474 { 9625, 8500, },
4475 { 9750, 8625, },
4476 { 9875, 8750, },
4477 { 10000, 8875, },
4478 { 10125, 9000, },
4479 { 10250, 9125, },
4480 { 10375, 9250, },
4481 { 10500, 9375, },
4482 { 10625, 9500, },
4483 { 10750, 9625, },
4484 { 10875, 9750, },
4485 { 11000, 9875, },
4486 { 11125, 10000, },
4487 { 11250, 10125, },
4488 { 11375, 10250, },
4489 { 11500, 10375, },
4490 { 11625, 10500, },
4491 { 11750, 10625, },
4492 { 11875, 10750, },
4493 { 12000, 10875, },
4494 { 12125, 11000, },
4495 { 12250, 11125, },
4496 { 12375, 11250, },
4497 { 12500, 11375, },
4498 { 12625, 11500, },
4499 { 12750, 11625, },
4500 { 12875, 11750, },
4501 { 13000, 11875, },
4502 { 13125, 12000, },
4503 { 13250, 12125, },
4504 { 13375, 12250, },
4505 { 13500, 12375, },
4506 { 13625, 12500, },
4507 { 13750, 12625, },
4508 { 13875, 12750, },
4509 { 14000, 12875, },
4510 { 14125, 13000, },
4511 { 14250, 13125, },
4512 { 14375, 13250, },
4513 { 14500, 13375, },
4514 { 14625, 13500, },
4515 { 14750, 13625, },
4516 { 14875, 13750, },
4517 { 15000, 13875, },
4518 { 15125, 14000, },
4519 { 15250, 14125, },
4520 { 15375, 14250, },
4521 { 15500, 14375, },
4522 { 15625, 14500, },
4523 { 15750, 14625, },
4524 { 15875, 14750, },
4525 { 16000, 14875, },
4526 { 16125, 15000, },
4527 };
4528 if (dev_priv->info->is_mobile)
4529 return v_table[pxvid].vm;
4530 else
4531 return v_table[pxvid].vd;
4532}
4533
02d71956 4534static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4535{
4536 struct timespec now, diff1;
4537 u64 diff;
4538 unsigned long diffms;
4539 u32 count;
4540
02d71956 4541 assert_spin_locked(&mchdev_lock);
eb48eb00
DV
4542
4543 getrawmonotonic(&now);
20e4d407 4544 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
eb48eb00
DV
4545
4546 /* Don't divide by 0 */
4547 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4548 if (!diffms)
4549 return;
4550
4551 count = I915_READ(GFXEC);
4552
20e4d407
DV
4553 if (count < dev_priv->ips.last_count2) {
4554 diff = ~0UL - dev_priv->ips.last_count2;
eb48eb00
DV
4555 diff += count;
4556 } else {
20e4d407 4557 diff = count - dev_priv->ips.last_count2;
eb48eb00
DV
4558 }
4559
20e4d407
DV
4560 dev_priv->ips.last_count2 = count;
4561 dev_priv->ips.last_time2 = now;
eb48eb00
DV
4562
4563 /* More magic constants... */
4564 diff = diff * 1181;
4565 diff = div_u64(diff, diffms * 10);
20e4d407 4566 dev_priv->ips.gfx_power = diff;
eb48eb00
DV
4567}
4568
02d71956
DV
4569void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4570{
4571 if (dev_priv->info->gen != 5)
4572 return;
4573
9270388e 4574 spin_lock_irq(&mchdev_lock);
02d71956
DV
4575
4576 __i915_update_gfx_val(dev_priv);
4577
9270388e 4578 spin_unlock_irq(&mchdev_lock);
02d71956
DV
4579}
4580
f531dcb2 4581static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4582{
4583 unsigned long t, corr, state1, corr2, state2;
4584 u32 pxvid, ext_v;
4585
02d71956
DV
4586 assert_spin_locked(&mchdev_lock);
4587
c6a828d3 4588 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
eb48eb00
DV
4589 pxvid = (pxvid >> 24) & 0x7f;
4590 ext_v = pvid_to_extvid(dev_priv, pxvid);
4591
4592 state1 = ext_v;
4593
4594 t = i915_mch_val(dev_priv);
4595
4596 /* Revel in the empirically derived constants */
4597
4598 /* Correction factor in 1/100000 units */
4599 if (t > 80)
4600 corr = ((t * 2349) + 135940);
4601 else if (t >= 50)
4602 corr = ((t * 964) + 29317);
4603 else /* < 50 */
4604 corr = ((t * 301) + 1004);
4605
4606 corr = corr * ((150142 * state1) / 10000 - 78642);
4607 corr /= 100000;
20e4d407 4608 corr2 = (corr * dev_priv->ips.corr);
eb48eb00
DV
4609
4610 state2 = (corr2 * state1) / 10000;
4611 state2 /= 100; /* convert to mW */
4612
02d71956 4613 __i915_update_gfx_val(dev_priv);
eb48eb00 4614
20e4d407 4615 return dev_priv->ips.gfx_power + state2;
eb48eb00
DV
4616}
4617
f531dcb2
CW
4618unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4619{
4620 unsigned long val;
4621
4622 if (dev_priv->info->gen != 5)
4623 return 0;
4624
4625 spin_lock_irq(&mchdev_lock);
4626
4627 val = __i915_gfx_val(dev_priv);
4628
4629 spin_unlock_irq(&mchdev_lock);
4630
4631 return val;
4632}
4633
eb48eb00
DV
4634/**
4635 * i915_read_mch_val - return value for IPS use
4636 *
4637 * Calculate and return a value for the IPS driver to use when deciding whether
4638 * we have thermal and power headroom to increase CPU or GPU power budget.
4639 */
4640unsigned long i915_read_mch_val(void)
4641{
4642 struct drm_i915_private *dev_priv;
4643 unsigned long chipset_val, graphics_val, ret = 0;
4644
9270388e 4645 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4646 if (!i915_mch_dev)
4647 goto out_unlock;
4648 dev_priv = i915_mch_dev;
4649
f531dcb2
CW
4650 chipset_val = __i915_chipset_val(dev_priv);
4651 graphics_val = __i915_gfx_val(dev_priv);
eb48eb00
DV
4652
4653 ret = chipset_val + graphics_val;
4654
4655out_unlock:
9270388e 4656 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4657
4658 return ret;
4659}
4660EXPORT_SYMBOL_GPL(i915_read_mch_val);
4661
4662/**
4663 * i915_gpu_raise - raise GPU frequency limit
4664 *
4665 * Raise the limit; IPS indicates we have thermal headroom.
4666 */
4667bool i915_gpu_raise(void)
4668{
4669 struct drm_i915_private *dev_priv;
4670 bool ret = true;
4671
9270388e 4672 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4673 if (!i915_mch_dev) {
4674 ret = false;
4675 goto out_unlock;
4676 }
4677 dev_priv = i915_mch_dev;
4678
20e4d407
DV
4679 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4680 dev_priv->ips.max_delay--;
eb48eb00
DV
4681
4682out_unlock:
9270388e 4683 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4684
4685 return ret;
4686}
4687EXPORT_SYMBOL_GPL(i915_gpu_raise);
4688
4689/**
4690 * i915_gpu_lower - lower GPU frequency limit
4691 *
4692 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4693 * frequency maximum.
4694 */
4695bool i915_gpu_lower(void)
4696{
4697 struct drm_i915_private *dev_priv;
4698 bool ret = true;
4699
9270388e 4700 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4701 if (!i915_mch_dev) {
4702 ret = false;
4703 goto out_unlock;
4704 }
4705 dev_priv = i915_mch_dev;
4706
20e4d407
DV
4707 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4708 dev_priv->ips.max_delay++;
eb48eb00
DV
4709
4710out_unlock:
9270388e 4711 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4712
4713 return ret;
4714}
4715EXPORT_SYMBOL_GPL(i915_gpu_lower);
4716
4717/**
4718 * i915_gpu_busy - indicate GPU business to IPS
4719 *
4720 * Tell the IPS driver whether or not the GPU is busy.
4721 */
4722bool i915_gpu_busy(void)
4723{
4724 struct drm_i915_private *dev_priv;
f047e395 4725 struct intel_ring_buffer *ring;
eb48eb00 4726 bool ret = false;
f047e395 4727 int i;
eb48eb00 4728
9270388e 4729 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4730 if (!i915_mch_dev)
4731 goto out_unlock;
4732 dev_priv = i915_mch_dev;
4733
f047e395
CW
4734 for_each_ring(ring, dev_priv, i)
4735 ret |= !list_empty(&ring->request_list);
eb48eb00
DV
4736
4737out_unlock:
9270388e 4738 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4739
4740 return ret;
4741}
4742EXPORT_SYMBOL_GPL(i915_gpu_busy);
4743
4744/**
4745 * i915_gpu_turbo_disable - disable graphics turbo
4746 *
4747 * Disable graphics turbo by resetting the max frequency and setting the
4748 * current frequency to the default.
4749 */
4750bool i915_gpu_turbo_disable(void)
4751{
4752 struct drm_i915_private *dev_priv;
4753 bool ret = true;
4754
9270388e 4755 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4756 if (!i915_mch_dev) {
4757 ret = false;
4758 goto out_unlock;
4759 }
4760 dev_priv = i915_mch_dev;
4761
20e4d407 4762 dev_priv->ips.max_delay = dev_priv->ips.fstart;
eb48eb00 4763
20e4d407 4764 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
eb48eb00
DV
4765 ret = false;
4766
4767out_unlock:
9270388e 4768 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4769
4770 return ret;
4771}
4772EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4773
4774/**
4775 * Tells the intel_ips driver that the i915 driver is now loaded, if
4776 * IPS got loaded first.
4777 *
4778 * This awkward dance is so that neither module has to depend on the
4779 * other in order for IPS to do the appropriate communication of
4780 * GPU turbo limits to i915.
4781 */
4782static void
4783ips_ping_for_i915_load(void)
4784{
4785 void (*link)(void);
4786
4787 link = symbol_get(ips_link_to_i915_driver);
4788 if (link) {
4789 link();
4790 symbol_put(ips_link_to_i915_driver);
4791 }
4792}
4793
4794void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4795{
02d71956
DV
4796 /* We only register the i915 ips part with intel-ips once everything is
4797 * set up, to avoid intel-ips sneaking in and reading bogus values. */
9270388e 4798 spin_lock_irq(&mchdev_lock);
eb48eb00 4799 i915_mch_dev = dev_priv;
9270388e 4800 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4801
4802 ips_ping_for_i915_load();
4803}
4804
4805void intel_gpu_ips_teardown(void)
4806{
9270388e 4807 spin_lock_irq(&mchdev_lock);
eb48eb00 4808 i915_mch_dev = NULL;
9270388e 4809 spin_unlock_irq(&mchdev_lock);
eb48eb00 4810}
8090c6b9 4811static void intel_init_emon(struct drm_device *dev)
dde18883
ED
4812{
4813 struct drm_i915_private *dev_priv = dev->dev_private;
4814 u32 lcfuse;
4815 u8 pxw[16];
4816 int i;
4817
4818 /* Disable to program */
4819 I915_WRITE(ECR, 0);
4820 POSTING_READ(ECR);
4821
4822 /* Program energy weights for various events */
4823 I915_WRITE(SDEW, 0x15040d00);
4824 I915_WRITE(CSIEW0, 0x007f0000);
4825 I915_WRITE(CSIEW1, 0x1e220004);
4826 I915_WRITE(CSIEW2, 0x04000004);
4827
4828 for (i = 0; i < 5; i++)
4829 I915_WRITE(PEW + (i * 4), 0);
4830 for (i = 0; i < 3; i++)
4831 I915_WRITE(DEW + (i * 4), 0);
4832
4833 /* Program P-state weights to account for frequency power adjustment */
4834 for (i = 0; i < 16; i++) {
4835 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4836 unsigned long freq = intel_pxfreq(pxvidfreq);
4837 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4838 PXVFREQ_PX_SHIFT;
4839 unsigned long val;
4840
4841 val = vid * vid;
4842 val *= (freq / 1000);
4843 val *= 255;
4844 val /= (127*127*900);
4845 if (val > 0xff)
4846 DRM_ERROR("bad pxval: %ld\n", val);
4847 pxw[i] = val;
4848 }
4849 /* Render standby states get 0 weight */
4850 pxw[14] = 0;
4851 pxw[15] = 0;
4852
4853 for (i = 0; i < 4; i++) {
4854 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4855 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4856 I915_WRITE(PXW + (i * 4), val);
4857 }
4858
4859 /* Adjust magic regs to magic values (more experimental results) */
4860 I915_WRITE(OGW0, 0);
4861 I915_WRITE(OGW1, 0);
4862 I915_WRITE(EG0, 0x00007f00);
4863 I915_WRITE(EG1, 0x0000000e);
4864 I915_WRITE(EG2, 0x000e0000);
4865 I915_WRITE(EG3, 0x68000300);
4866 I915_WRITE(EG4, 0x42000000);
4867 I915_WRITE(EG5, 0x00140031);
4868 I915_WRITE(EG6, 0);
4869 I915_WRITE(EG7, 0);
4870
4871 for (i = 0; i < 8; i++)
4872 I915_WRITE(PXWL + (i * 4), 0);
4873
4874 /* Enable PMON + select events */
4875 I915_WRITE(ECR, 0x80000019);
4876
4877 lcfuse = I915_READ(LCFUSE02);
4878
20e4d407 4879 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
dde18883
ED
4880}
4881
8090c6b9
DV
4882void intel_disable_gt_powersave(struct drm_device *dev)
4883{
1a01ab3b
JB
4884 struct drm_i915_private *dev_priv = dev->dev_private;
4885
fd0c0642
DV
4886 /* Interrupts should be disabled already to avoid re-arming. */
4887 WARN_ON(dev->irq_enabled);
4888
930ebb46 4889 if (IS_IRONLAKE_M(dev)) {
8090c6b9 4890 ironlake_disable_drps(dev);
930ebb46 4891 ironlake_disable_rc6(dev);
0a073b84 4892 } else if (INTEL_INFO(dev)->gen >= 6) {
1a01ab3b 4893 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
250848ca 4894 cancel_work_sync(&dev_priv->rps.work);
4fc688ce 4895 mutex_lock(&dev_priv->rps.hw_lock);
d20d4f0c
JB
4896 if (IS_VALLEYVIEW(dev))
4897 valleyview_disable_rps(dev);
4898 else
4899 gen6_disable_rps(dev);
c0951f0c 4900 dev_priv->rps.enabled = false;
4fc688ce 4901 mutex_unlock(&dev_priv->rps.hw_lock);
930ebb46 4902 }
8090c6b9
DV
4903}
4904
1a01ab3b
JB
4905static void intel_gen6_powersave_work(struct work_struct *work)
4906{
4907 struct drm_i915_private *dev_priv =
4908 container_of(work, struct drm_i915_private,
4909 rps.delayed_resume_work.work);
4910 struct drm_device *dev = dev_priv->dev;
4911
4fc688ce 4912 mutex_lock(&dev_priv->rps.hw_lock);
0a073b84
JB
4913
4914 if (IS_VALLEYVIEW(dev)) {
4915 valleyview_enable_rps(dev);
6edee7f3
BW
4916 } else if (IS_BROADWELL(dev)) {
4917 gen8_enable_rps(dev);
4918 gen6_update_ring_freq(dev);
0a073b84
JB
4919 } else {
4920 gen6_enable_rps(dev);
4921 gen6_update_ring_freq(dev);
4922 }
c0951f0c 4923 dev_priv->rps.enabled = true;
4fc688ce 4924 mutex_unlock(&dev_priv->rps.hw_lock);
1a01ab3b
JB
4925}
4926
8090c6b9
DV
4927void intel_enable_gt_powersave(struct drm_device *dev)
4928{
1a01ab3b
JB
4929 struct drm_i915_private *dev_priv = dev->dev_private;
4930
8090c6b9
DV
4931 if (IS_IRONLAKE_M(dev)) {
4932 ironlake_enable_drps(dev);
4933 ironlake_enable_rc6(dev);
4934 intel_init_emon(dev);
0a073b84 4935 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1a01ab3b
JB
4936 /*
4937 * PCU communication is slow and this doesn't need to be
4938 * done at any specific time, so do this out of our fast path
4939 * to make resume and init faster.
4940 */
4941 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4942 round_jiffies_up_relative(HZ));
8090c6b9
DV
4943 }
4944}
4945
3107bd48
DV
4946static void ibx_init_clock_gating(struct drm_device *dev)
4947{
4948 struct drm_i915_private *dev_priv = dev->dev_private;
4949
4950 /*
4951 * On Ibex Peak and Cougar Point, we need to disable clock
4952 * gating for the panel power sequencer or it will fail to
4953 * start up when no ports are active.
4954 */
4955 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4956}
4957
0e088b8f
VS
4958static void g4x_disable_trickle_feed(struct drm_device *dev)
4959{
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 int pipe;
4962
4963 for_each_pipe(pipe) {
4964 I915_WRITE(DSPCNTR(pipe),
4965 I915_READ(DSPCNTR(pipe)) |
4966 DISPPLANE_TRICKLE_FEED_DISABLE);
1dba99f4 4967 intel_flush_primary_plane(dev_priv, pipe);
0e088b8f
VS
4968 }
4969}
4970
1fa61106 4971static void ironlake_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4972{
4973 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4974 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4975
f1e8fa56
DL
4976 /*
4977 * Required for FBC
4978 * WaFbcDisableDpfcClockGating:ilk
4979 */
4d47e4f5
DL
4980 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4981 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4982 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4983
4984 I915_WRITE(PCH_3DCGDIS0,
4985 MARIUNIT_CLOCK_GATE_DISABLE |
4986 SVSMUNIT_CLOCK_GATE_DISABLE);
4987 I915_WRITE(PCH_3DCGDIS1,
4988 VFMUNIT_CLOCK_GATE_DISABLE);
4989
6f1d69b0
ED
4990 /*
4991 * According to the spec the following bits should be set in
4992 * order to enable memory self-refresh
4993 * The bit 22/21 of 0x42004
4994 * The bit 5 of 0x42020
4995 * The bit 15 of 0x45000
4996 */
4997 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4998 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4999 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4d47e4f5 5000 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
5001 I915_WRITE(DISP_ARB_CTL,
5002 (I915_READ(DISP_ARB_CTL) |
5003 DISP_FBC_WM_DIS));
5004 I915_WRITE(WM3_LP_ILK, 0);
5005 I915_WRITE(WM2_LP_ILK, 0);
5006 I915_WRITE(WM1_LP_ILK, 0);
5007
5008 /*
5009 * Based on the document from hardware guys the following bits
5010 * should be set unconditionally in order to enable FBC.
5011 * The bit 22 of 0x42000
5012 * The bit 22 of 0x42004
5013 * The bit 7,8,9 of 0x42020.
5014 */
5015 if (IS_IRONLAKE_M(dev)) {
4bb35334 5016 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6f1d69b0
ED
5017 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5018 I915_READ(ILK_DISPLAY_CHICKEN1) |
5019 ILK_FBCQ_DIS);
5020 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5021 I915_READ(ILK_DISPLAY_CHICKEN2) |
5022 ILK_DPARB_GATE);
6f1d69b0
ED
5023 }
5024
4d47e4f5
DL
5025 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5026
6f1d69b0
ED
5027 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5028 I915_READ(ILK_DISPLAY_CHICKEN2) |
5029 ILK_ELPIN_409_SELECT);
5030 I915_WRITE(_3D_CHICKEN2,
5031 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5032 _3D_CHICKEN2_WM_READ_PIPELINED);
4358a374 5033
ecdb4eb7 5034 /* WaDisableRenderCachePipelinedFlush:ilk */
4358a374
DV
5035 I915_WRITE(CACHE_MODE_0,
5036 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3107bd48 5037
0e088b8f 5038 g4x_disable_trickle_feed(dev);
bdad2b2f 5039
3107bd48
DV
5040 ibx_init_clock_gating(dev);
5041}
5042
5043static void cpt_init_clock_gating(struct drm_device *dev)
5044{
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 int pipe;
3f704fa2 5047 uint32_t val;
3107bd48
DV
5048
5049 /*
5050 * On Ibex Peak and Cougar Point, we need to disable clock
5051 * gating for the panel power sequencer or it will fail to
5052 * start up when no ports are active.
5053 */
cd664078
JB
5054 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5055 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5056 PCH_CPUNIT_CLOCK_GATE_DISABLE);
3107bd48
DV
5057 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5058 DPLS_EDP_PPS_FIX_DIS);
335c07b7
TI
5059 /* The below fixes the weird display corruption, a few pixels shifted
5060 * downward, on (only) LVDS of some HP laptops with IVY.
5061 */
3f704fa2 5062 for_each_pipe(pipe) {
dc4bd2d1
PZ
5063 val = I915_READ(TRANS_CHICKEN2(pipe));
5064 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5065 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
41aa3448 5066 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3f704fa2 5067 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
dc4bd2d1
PZ
5068 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5069 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5070 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3f704fa2
PZ
5071 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5072 }
3107bd48
DV
5073 /* WADP0ClockGatingDisable */
5074 for_each_pipe(pipe) {
5075 I915_WRITE(TRANS_CHICKEN1(pipe),
5076 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5077 }
6f1d69b0
ED
5078}
5079
1d7aaa0c
DV
5080static void gen6_check_mch_setup(struct drm_device *dev)
5081{
5082 struct drm_i915_private *dev_priv = dev->dev_private;
5083 uint32_t tmp;
5084
5085 tmp = I915_READ(MCH_SSKPD);
5086 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5087 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5088 DRM_INFO("This can cause pipe underruns and display issues.\n");
5089 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5090 }
5091}
5092
1fa61106 5093static void gen6_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5094{
5095 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 5096 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 5097
231e54f6 5098 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6f1d69b0
ED
5099
5100 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5101 I915_READ(ILK_DISPLAY_CHICKEN2) |
5102 ILK_ELPIN_409_SELECT);
5103
ecdb4eb7 5104 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4283908e
DV
5105 I915_WRITE(_3D_CHICKEN,
5106 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5107
ecdb4eb7 5108 /* WaSetupGtModeTdRowDispatch:snb */
6547fbdb
DV
5109 if (IS_SNB_GT1(dev))
5110 I915_WRITE(GEN6_GT_MODE,
5111 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5112
6f1d69b0
ED
5113 I915_WRITE(WM3_LP_ILK, 0);
5114 I915_WRITE(WM2_LP_ILK, 0);
5115 I915_WRITE(WM1_LP_ILK, 0);
5116
6f1d69b0 5117 I915_WRITE(CACHE_MODE_0,
50743298 5118 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6f1d69b0
ED
5119
5120 I915_WRITE(GEN6_UCGCTL1,
5121 I915_READ(GEN6_UCGCTL1) |
5122 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5123 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5124
5125 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5126 * gating disable must be set. Failure to set it results in
5127 * flickering pixels due to Z write ordering failures after
5128 * some amount of runtime in the Mesa "fire" demo, and Unigine
5129 * Sanctuary and Tropics, and apparently anything else with
5130 * alpha test or pixel discard.
5131 *
5132 * According to the spec, bit 11 (RCCUNIT) must also be set,
5133 * but we didn't debug actual testcases to find it out.
0f846f81 5134 *
ecdb4eb7
DL
5135 * Also apply WaDisableVDSUnitClockGating:snb and
5136 * WaDisableRCPBUnitClockGating:snb.
6f1d69b0
ED
5137 */
5138 I915_WRITE(GEN6_UCGCTL2,
0f846f81 5139 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6f1d69b0
ED
5140 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5141 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5142
5143 /* Bspec says we need to always set all mask bits. */
26b6e44a
KG
5144 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
5145 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
6f1d69b0
ED
5146
5147 /*
5148 * According to the spec the following bits should be
5149 * set in order to enable memory self-refresh and fbc:
5150 * The bit21 and bit22 of 0x42000
5151 * The bit21 and bit22 of 0x42004
5152 * The bit5 and bit7 of 0x42020
5153 * The bit14 of 0x70180
5154 * The bit14 of 0x71180
4bb35334
DL
5155 *
5156 * WaFbcAsynchFlipDisableFbcQueue:snb
6f1d69b0
ED
5157 */
5158 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5159 I915_READ(ILK_DISPLAY_CHICKEN1) |
5160 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5161 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5162 I915_READ(ILK_DISPLAY_CHICKEN2) |
5163 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
231e54f6
DL
5164 I915_WRITE(ILK_DSPCLK_GATE_D,
5165 I915_READ(ILK_DSPCLK_GATE_D) |
5166 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5167 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6f1d69b0 5168
0e088b8f 5169 g4x_disable_trickle_feed(dev);
f8f2ac9a
BW
5170
5171 /* The default value should be 0x200 according to docs, but the two
5172 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
5173 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
5174 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3107bd48
DV
5175
5176 cpt_init_clock_gating(dev);
1d7aaa0c
DV
5177
5178 gen6_check_mch_setup(dev);
6f1d69b0
ED
5179}
5180
5181static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5182{
5183 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5184
5185 reg &= ~GEN7_FF_SCHED_MASK;
5186 reg |= GEN7_FF_TS_SCHED_HW;
5187 reg |= GEN7_FF_VS_SCHED_HW;
5188 reg |= GEN7_FF_DS_SCHED_HW;
5189
41c0b3a8
BW
5190 if (IS_HASWELL(dev_priv->dev))
5191 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
5192
6f1d69b0
ED
5193 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5194}
5195
17a303ec
PZ
5196static void lpt_init_clock_gating(struct drm_device *dev)
5197{
5198 struct drm_i915_private *dev_priv = dev->dev_private;
5199
5200 /*
5201 * TODO: this bit should only be enabled when really needed, then
5202 * disabled when not needed anymore in order to save power.
5203 */
5204 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5205 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5206 I915_READ(SOUTH_DSPCLK_GATE_D) |
5207 PCH_LP_PARTITION_LEVEL_DISABLE);
0a790cdb
PZ
5208
5209 /* WADPOClockGatingDisable:hsw */
5210 I915_WRITE(_TRANSA_CHICKEN1,
5211 I915_READ(_TRANSA_CHICKEN1) |
5212 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
17a303ec
PZ
5213}
5214
7d708ee4
ID
5215static void lpt_suspend_hw(struct drm_device *dev)
5216{
5217 struct drm_i915_private *dev_priv = dev->dev_private;
5218
5219 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5220 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5221
5222 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5223 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5224 }
5225}
5226
1020a5c2
BW
5227static void gen8_init_clock_gating(struct drm_device *dev)
5228{
5229 struct drm_i915_private *dev_priv = dev->dev_private;
fe4ab3ce 5230 enum pipe i;
1020a5c2
BW
5231
5232 I915_WRITE(WM3_LP_ILK, 0);
5233 I915_WRITE(WM2_LP_ILK, 0);
5234 I915_WRITE(WM1_LP_ILK, 0);
50ed5fbd
BW
5235
5236 /* FIXME(BDW): Check all the w/a, some might only apply to
5237 * pre-production hw. */
5238
fd392b60
BW
5239 WARN(!i915_preliminary_hw_support,
5240 "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
5241 I915_WRITE(HALF_SLICE_CHICKEN3,
5242 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
bf66347c
BW
5243 I915_WRITE(HALF_SLICE_CHICKEN3,
5244 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4afe8d33
BW
5245 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5246
7f88da0c
BW
5247 I915_WRITE(_3D_CHICKEN3,
5248 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5249
a75f3628
BW
5250 I915_WRITE(COMMON_SLICE_CHICKEN2,
5251 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5252
4c2e7a5f
BW
5253 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5254 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5255
50ed5fbd
BW
5256 /* WaSwitchSolVfFArbitrationPriority */
5257 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
fe4ab3ce
BW
5258
5259 /* WaPsrDPAMaskVBlankInSRD */
5260 I915_WRITE(CHICKEN_PAR1_1,
5261 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5262
5263 /* WaPsrDPRSUnmaskVBlankInSRD */
5264 for_each_pipe(i) {
5265 I915_WRITE(CHICKEN_PIPESL_1(i),
5266 I915_READ(CHICKEN_PIPESL_1(i) |
5267 DPRS_MASK_VBLANK_SRD));
5268 }
1020a5c2
BW
5269}
5270
cad2a2d7
ED
5271static void haswell_init_clock_gating(struct drm_device *dev)
5272{
5273 struct drm_i915_private *dev_priv = dev->dev_private;
cad2a2d7
ED
5274
5275 I915_WRITE(WM3_LP_ILK, 0);
5276 I915_WRITE(WM2_LP_ILK, 0);
5277 I915_WRITE(WM1_LP_ILK, 0);
5278
5279 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 5280 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
cad2a2d7
ED
5281 */
5282 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5283
ecdb4eb7 5284 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
cad2a2d7
ED
5285 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5286 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5287
ecdb4eb7 5288 /* WaApplyL3ControlAndL3ChickenMode:hsw */
cad2a2d7
ED
5289 I915_WRITE(GEN7_L3CNTLREG1,
5290 GEN7_WA_FOR_GEN7_L3_CONTROL);
5291 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5292 GEN7_WA_L3_CHICKEN_MODE);
5293
f3fc4884
FJ
5294 /* L3 caching of data atomics doesn't work -- disable it. */
5295 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5296 I915_WRITE(HSW_ROW_CHICKEN3,
5297 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5298
ecdb4eb7 5299 /* This is required by WaCatErrorRejectionIssue:hsw */
cad2a2d7
ED
5300 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5301 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5302 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5303
ecdb4eb7 5304 /* WaVSRefCountFullforceMissDisable:hsw */
cad2a2d7
ED
5305 gen7_setup_fixed_func_scheduler(dev_priv);
5306
ecdb4eb7 5307 /* WaDisable4x2SubspanOptimization:hsw */
cad2a2d7
ED
5308 I915_WRITE(CACHE_MODE_1,
5309 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
1544d9d5 5310
ecdb4eb7 5311 /* WaSwitchSolVfFArbitrationPriority:hsw */
e3dff585
BW
5312 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5313
90a88643
PZ
5314 /* WaRsPkgCStateDisplayPMReq:hsw */
5315 I915_WRITE(CHICKEN_PAR1_1,
5316 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
1544d9d5 5317
17a303ec 5318 lpt_init_clock_gating(dev);
cad2a2d7
ED
5319}
5320
1fa61106 5321static void ivybridge_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5322{
5323 struct drm_i915_private *dev_priv = dev->dev_private;
20848223 5324 uint32_t snpcr;
6f1d69b0 5325
6f1d69b0
ED
5326 I915_WRITE(WM3_LP_ILK, 0);
5327 I915_WRITE(WM2_LP_ILK, 0);
5328 I915_WRITE(WM1_LP_ILK, 0);
5329
231e54f6 5330 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 5331
ecdb4eb7 5332 /* WaDisableEarlyCull:ivb */
87f8020e
JB
5333 I915_WRITE(_3D_CHICKEN3,
5334 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5335
ecdb4eb7 5336 /* WaDisableBackToBackFlipFix:ivb */
6f1d69b0
ED
5337 I915_WRITE(IVB_CHICKEN3,
5338 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5339 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5340
ecdb4eb7 5341 /* WaDisablePSDDualDispatchEnable:ivb */
12f3382b
JB
5342 if (IS_IVB_GT1(dev))
5343 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5344 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5345 else
5346 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5347 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5348
ecdb4eb7 5349 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6f1d69b0
ED
5350 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5351 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5352
ecdb4eb7 5353 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6f1d69b0
ED
5354 I915_WRITE(GEN7_L3CNTLREG1,
5355 GEN7_WA_FOR_GEN7_L3_CONTROL);
5356 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8ab43976
JB
5357 GEN7_WA_L3_CHICKEN_MODE);
5358 if (IS_IVB_GT1(dev))
5359 I915_WRITE(GEN7_ROW_CHICKEN2,
5360 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5361 else
5362 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5363 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5364
6f1d69b0 5365
ecdb4eb7 5366 /* WaForceL3Serialization:ivb */
61939d97
JB
5367 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5368 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5369
0f846f81
JB
5370 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5371 * gating disable must be set. Failure to set it results in
5372 * flickering pixels due to Z write ordering failures after
5373 * some amount of runtime in the Mesa "fire" demo, and Unigine
5374 * Sanctuary and Tropics, and apparently anything else with
5375 * alpha test or pixel discard.
5376 *
5377 * According to the spec, bit 11 (RCCUNIT) must also be set,
5378 * but we didn't debug actual testcases to find it out.
5379 *
5380 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 5381 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
0f846f81
JB
5382 */
5383 I915_WRITE(GEN6_UCGCTL2,
5384 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5385 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5386
ecdb4eb7 5387 /* This is required by WaCatErrorRejectionIssue:ivb */
6f1d69b0
ED
5388 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5389 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5390 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5391
0e088b8f 5392 g4x_disable_trickle_feed(dev);
6f1d69b0 5393
ecdb4eb7 5394 /* WaVSRefCountFullforceMissDisable:ivb */
6f1d69b0 5395 gen7_setup_fixed_func_scheduler(dev_priv);
97e1930f 5396
ecdb4eb7 5397 /* WaDisable4x2SubspanOptimization:ivb */
97e1930f
DV
5398 I915_WRITE(CACHE_MODE_1,
5399 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
20848223
BW
5400
5401 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5402 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5403 snpcr |= GEN6_MBC_SNPCR_MED;
5404 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3107bd48 5405
ab5c608b
BW
5406 if (!HAS_PCH_NOP(dev))
5407 cpt_init_clock_gating(dev);
1d7aaa0c
DV
5408
5409 gen6_check_mch_setup(dev);
6f1d69b0
ED
5410}
5411
1fa61106 5412static void valleyview_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5413{
5414 struct drm_i915_private *dev_priv = dev->dev_private;
85b1d7b3
JB
5415 u32 val;
5416
5417 mutex_lock(&dev_priv->rps.hw_lock);
5418 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5419 mutex_unlock(&dev_priv->rps.hw_lock);
5420 switch ((val >> 6) & 3) {
5421 case 0:
85b1d7b3
JB
5422 dev_priv->mem_freq = 800;
5423 break;
f64a28a7 5424 case 1:
85b1d7b3
JB
5425 dev_priv->mem_freq = 1066;
5426 break;
f64a28a7 5427 case 2:
85b1d7b3
JB
5428 dev_priv->mem_freq = 1333;
5429 break;
f64a28a7 5430 case 3:
2325991e 5431 dev_priv->mem_freq = 1333;
f64a28a7 5432 break;
85b1d7b3
JB
5433 }
5434 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
6f1d69b0 5435
d7fe0cc0 5436 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 5437
ecdb4eb7 5438 /* WaDisableEarlyCull:vlv */
87f8020e
JB
5439 I915_WRITE(_3D_CHICKEN3,
5440 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5441
ecdb4eb7 5442 /* WaDisableBackToBackFlipFix:vlv */
6f1d69b0
ED
5443 I915_WRITE(IVB_CHICKEN3,
5444 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5445 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5446
ecdb4eb7 5447 /* WaDisablePSDDualDispatchEnable:vlv */
12f3382b 5448 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
d3bc0303
JB
5449 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5450 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
12f3382b 5451
ecdb4eb7 5452 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
6f1d69b0
ED
5453 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5454 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5455
ecdb4eb7 5456 /* WaApplyL3ControlAndL3ChickenMode:vlv */
d0cf5ead 5457 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
6f1d69b0
ED
5458 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5459
ecdb4eb7 5460 /* WaForceL3Serialization:vlv */
61939d97
JB
5461 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5462 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5463
ecdb4eb7 5464 /* WaDisableDopClockGating:vlv */
8ab43976
JB
5465 I915_WRITE(GEN7_ROW_CHICKEN2,
5466 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5467
ecdb4eb7 5468 /* This is required by WaCatErrorRejectionIssue:vlv */
6f1d69b0
ED
5469 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5470 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5471 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5472
0f846f81
JB
5473 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5474 * gating disable must be set. Failure to set it results in
5475 * flickering pixels due to Z write ordering failures after
5476 * some amount of runtime in the Mesa "fire" demo, and Unigine
5477 * Sanctuary and Tropics, and apparently anything else with
5478 * alpha test or pixel discard.
5479 *
5480 * According to the spec, bit 11 (RCCUNIT) must also be set,
5481 * but we didn't debug actual testcases to find it out.
5482 *
5483 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 5484 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
0f846f81 5485 *
ecdb4eb7
DL
5486 * Also apply WaDisableVDSUnitClockGating:vlv and
5487 * WaDisableRCPBUnitClockGating:vlv.
0f846f81
JB
5488 */
5489 I915_WRITE(GEN6_UCGCTL2,
5490 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6edaa7fc 5491 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
0f846f81
JB
5492 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5493 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5494 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5495
e3f33d46
JB
5496 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5497
e0d8d59b 5498 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6f1d69b0 5499
6b26c86d
DV
5500 I915_WRITE(CACHE_MODE_1,
5501 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7983117f 5502
2d809570 5503 /*
ecdb4eb7 5504 * WaDisableVLVClockGating_VBIIssue:vlv
2d809570
JB
5505 * Disable clock gating on th GCFG unit to prevent a delay
5506 * in the reporting of vblank events.
5507 */
4e8c84a5
JB
5508 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5509
5510 /* Conservative clock gating settings for now */
5511 I915_WRITE(0x9400, 0xffffffff);
5512 I915_WRITE(0x9404, 0xffffffff);
5513 I915_WRITE(0x9408, 0xffffffff);
5514 I915_WRITE(0x940c, 0xffffffff);
5515 I915_WRITE(0x9410, 0xffffffff);
5516 I915_WRITE(0x9414, 0xffffffff);
5517 I915_WRITE(0x9418, 0xffffffff);
6f1d69b0
ED
5518}
5519
1fa61106 5520static void g4x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5521{
5522 struct drm_i915_private *dev_priv = dev->dev_private;
5523 uint32_t dspclk_gate;
5524
5525 I915_WRITE(RENCLK_GATE_D1, 0);
5526 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5527 GS_UNIT_CLOCK_GATE_DISABLE |
5528 CL_UNIT_CLOCK_GATE_DISABLE);
5529 I915_WRITE(RAMCLK_GATE_D, 0);
5530 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5531 OVRUNIT_CLOCK_GATE_DISABLE |
5532 OVCUNIT_CLOCK_GATE_DISABLE;
5533 if (IS_GM45(dev))
5534 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5535 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4358a374
DV
5536
5537 /* WaDisableRenderCachePipelinedFlush */
5538 I915_WRITE(CACHE_MODE_0,
5539 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
de1aa629 5540
0e088b8f 5541 g4x_disable_trickle_feed(dev);
6f1d69b0
ED
5542}
5543
1fa61106 5544static void crestline_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5545{
5546 struct drm_i915_private *dev_priv = dev->dev_private;
5547
5548 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5549 I915_WRITE(RENCLK_GATE_D2, 0);
5550 I915_WRITE(DSPCLK_GATE_D, 0);
5551 I915_WRITE(RAMCLK_GATE_D, 0);
5552 I915_WRITE16(DEUC, 0);
20f94967
VS
5553 I915_WRITE(MI_ARB_STATE,
5554 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5555}
5556
1fa61106 5557static void broadwater_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5558{
5559 struct drm_i915_private *dev_priv = dev->dev_private;
5560
5561 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5562 I965_RCC_CLOCK_GATE_DISABLE |
5563 I965_RCPB_CLOCK_GATE_DISABLE |
5564 I965_ISC_CLOCK_GATE_DISABLE |
5565 I965_FBC_CLOCK_GATE_DISABLE);
5566 I915_WRITE(RENCLK_GATE_D2, 0);
20f94967
VS
5567 I915_WRITE(MI_ARB_STATE,
5568 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
5569}
5570
1fa61106 5571static void gen3_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5572{
5573 struct drm_i915_private *dev_priv = dev->dev_private;
5574 u32 dstate = I915_READ(D_STATE);
5575
5576 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5577 DSTATE_DOT_CLOCK_GATING;
5578 I915_WRITE(D_STATE, dstate);
13a86b85
CW
5579
5580 if (IS_PINEVIEW(dev))
5581 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
974a3b0f
DV
5582
5583 /* IIR "flip pending" means done if this bit is set */
5584 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6f1d69b0
ED
5585}
5586
1fa61106 5587static void i85x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5588{
5589 struct drm_i915_private *dev_priv = dev->dev_private;
5590
5591 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5592}
5593
1fa61106 5594static void i830_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
5595{
5596 struct drm_i915_private *dev_priv = dev->dev_private;
5597
5598 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5599}
5600
6f1d69b0
ED
5601void intel_init_clock_gating(struct drm_device *dev)
5602{
5603 struct drm_i915_private *dev_priv = dev->dev_private;
5604
5605 dev_priv->display.init_clock_gating(dev);
6f1d69b0
ED
5606}
5607
7d708ee4
ID
5608void intel_suspend_hw(struct drm_device *dev)
5609{
5610 if (HAS_PCH_LPT(dev))
5611 lpt_suspend_hw(dev);
5612}
5613
c1ca727f
ID
5614#define for_each_power_well(i, power_well, domain_mask, power_domains) \
5615 for (i = 0; \
5616 i < (power_domains)->power_well_count && \
5617 ((power_well) = &(power_domains)->power_wells[i]); \
5618 i++) \
5619 if ((power_well)->domains & (domain_mask))
5620
5621#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5622 for (i = (power_domains)->power_well_count - 1; \
5623 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5624 i--) \
5625 if ((power_well)->domains & (domain_mask))
5626
15d199ea
PZ
5627/**
5628 * We should only use the power well if we explicitly asked the hardware to
5629 * enable it, so check if it's enabled and also check if we've requested it to
5630 * be enabled.
5631 */
c1ca727f
ID
5632static bool hsw_power_well_enabled(struct drm_device *dev,
5633 struct i915_power_well *power_well)
5634{
5635 struct drm_i915_private *dev_priv = dev->dev_private;
5636
5637 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5638 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5639}
5640
b97186f0
PZ
5641bool intel_display_power_enabled(struct drm_device *dev,
5642 enum intel_display_power_domain domain)
15d199ea
PZ
5643{
5644 struct drm_i915_private *dev_priv = dev->dev_private;
c1ca727f
ID
5645 struct i915_power_domains *power_domains;
5646 struct i915_power_well *power_well;
5647 bool is_enabled;
5648 int i;
15d199ea 5649
c1ca727f
ID
5650 power_domains = &dev_priv->power_domains;
5651
5652 is_enabled = true;
5653
5654 mutex_lock(&power_domains->lock);
5655 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6f3ef5dd
ID
5656 if (power_well->always_on)
5657 continue;
5658
c1ca727f
ID
5659 if (!power_well->is_enabled(dev, power_well)) {
5660 is_enabled = false;
5661 break;
5662 }
5663 }
5664 mutex_unlock(&power_domains->lock);
5665
5666 return is_enabled;
15d199ea
PZ
5667}
5668
c1ca727f
ID
5669static void hsw_set_power_well(struct drm_device *dev,
5670 struct i915_power_well *power_well, bool enable)
d0d3e513
ED
5671{
5672 struct drm_i915_private *dev_priv = dev->dev_private;
fa42e23c 5673 bool is_enabled, enable_requested;
596cc11e 5674 unsigned long irqflags;
fa42e23c 5675 uint32_t tmp;
d0d3e513 5676
fa42e23c 5677 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6aedd1f5
PZ
5678 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5679 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
d0d3e513 5680
fa42e23c
PZ
5681 if (enable) {
5682 if (!enable_requested)
6aedd1f5
PZ
5683 I915_WRITE(HSW_PWR_WELL_DRIVER,
5684 HSW_PWR_WELL_ENABLE_REQUEST);
d0d3e513 5685
fa42e23c
PZ
5686 if (!is_enabled) {
5687 DRM_DEBUG_KMS("Enabling power well\n");
5688 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6aedd1f5 5689 HSW_PWR_WELL_STATE_ENABLED), 20))
fa42e23c
PZ
5690 DRM_ERROR("Timeout enabling power well\n");
5691 }
596cc11e
BW
5692
5693 if (IS_BROADWELL(dev)) {
5694 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5695 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5696 dev_priv->de_irq_mask[PIPE_B]);
5697 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5698 ~dev_priv->de_irq_mask[PIPE_B] |
5699 GEN8_PIPE_VBLANK);
5700 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5701 dev_priv->de_irq_mask[PIPE_C]);
5702 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5703 ~dev_priv->de_irq_mask[PIPE_C] |
5704 GEN8_PIPE_VBLANK);
5705 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5706 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5707 }
fa42e23c
PZ
5708 } else {
5709 if (enable_requested) {
9dbd8feb
PZ
5710 enum pipe p;
5711
fa42e23c 5712 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
9dbd8feb 5713 POSTING_READ(HSW_PWR_WELL_DRIVER);
fa42e23c 5714 DRM_DEBUG_KMS("Requesting to disable the power well\n");
9dbd8feb
PZ
5715
5716 /*
5717 * After this, the registers on the pipes that are part
5718 * of the power well will become zero, so we have to
5719 * adjust our counters according to that.
5720 *
5721 * FIXME: Should we do this in general in
5722 * drm_vblank_post_modeset?
5723 */
5724 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5725 for_each_pipe(p)
5726 if (p != PIPE_A)
5380e929 5727 dev->vblank[p].last = 0;
9dbd8feb 5728 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
d0d3e513
ED
5729 }
5730 }
fa42e23c 5731}
d0d3e513 5732
b4ed4484
ID
5733static void __intel_power_well_get(struct drm_device *dev,
5734 struct i915_power_well *power_well)
2d66aef5 5735{
c1ca727f
ID
5736 if (!power_well->count++ && power_well->set)
5737 power_well->set(dev, power_well, true);
2d66aef5
VS
5738}
5739
b4ed4484
ID
5740static void __intel_power_well_put(struct drm_device *dev,
5741 struct i915_power_well *power_well)
2d66aef5
VS
5742{
5743 WARN_ON(!power_well->count);
c1ca727f
ID
5744
5745 if (!--power_well->count && power_well->set && i915_disable_power_well)
5746 power_well->set(dev, power_well, false);
2d66aef5
VS
5747}
5748
6765625e
VS
5749void intel_display_power_get(struct drm_device *dev,
5750 enum intel_display_power_domain domain)
5751{
5752 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5753 struct i915_power_domains *power_domains;
c1ca727f
ID
5754 struct i915_power_well *power_well;
5755 int i;
6765625e 5756
83c00f55
ID
5757 power_domains = &dev_priv->power_domains;
5758
5759 mutex_lock(&power_domains->lock);
1da51581
ID
5760
5761#if IS_ENABLED(CONFIG_DEBUG_FS)
5762 power_domains->domain_use_count[domain]++;
5763#endif
c1ca727f
ID
5764 for_each_power_well(i, power_well, BIT(domain), power_domains)
5765 __intel_power_well_get(dev, power_well);
1da51581 5766
83c00f55 5767 mutex_unlock(&power_domains->lock);
6765625e
VS
5768}
5769
5770void intel_display_power_put(struct drm_device *dev,
5771 enum intel_display_power_domain domain)
5772{
5773 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5774 struct i915_power_domains *power_domains;
c1ca727f
ID
5775 struct i915_power_well *power_well;
5776 int i;
6765625e 5777
83c00f55
ID
5778 power_domains = &dev_priv->power_domains;
5779
5780 mutex_lock(&power_domains->lock);
1da51581 5781
c1ca727f
ID
5782 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5783 __intel_power_well_put(dev, power_well);
1da51581
ID
5784
5785#if IS_ENABLED(CONFIG_DEBUG_FS)
5786 WARN_ON(!power_domains->domain_use_count[domain]);
5787 power_domains->domain_use_count[domain]--;
5788#endif
5789
83c00f55 5790 mutex_unlock(&power_domains->lock);
6765625e
VS
5791}
5792
83c00f55 5793static struct i915_power_domains *hsw_pwr;
a38911a3
WX
5794
5795/* Display audio driver power well request */
5796void i915_request_power_well(void)
5797{
b4ed4484
ID
5798 struct drm_i915_private *dev_priv;
5799
a38911a3
WX
5800 if (WARN_ON(!hsw_pwr))
5801 return;
5802
b4ed4484
ID
5803 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5804 power_domains);
fbeeaa23 5805 intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
a38911a3
WX
5806}
5807EXPORT_SYMBOL_GPL(i915_request_power_well);
5808
5809/* Display audio driver power well release */
5810void i915_release_power_well(void)
5811{
b4ed4484
ID
5812 struct drm_i915_private *dev_priv;
5813
a38911a3
WX
5814 if (WARN_ON(!hsw_pwr))
5815 return;
5816
b4ed4484
ID
5817 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5818 power_domains);
fbeeaa23 5819 intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
a38911a3
WX
5820}
5821EXPORT_SYMBOL_GPL(i915_release_power_well);
5822
1c2256df
ID
5823static struct i915_power_well i9xx_always_on_power_well[] = {
5824 {
5825 .name = "always-on",
5826 .always_on = 1,
5827 .domains = POWER_DOMAIN_MASK,
5828 },
5829};
5830
c1ca727f 5831static struct i915_power_well hsw_power_wells[] = {
6f3ef5dd
ID
5832 {
5833 .name = "always-on",
5834 .always_on = 1,
5835 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5836 },
c1ca727f
ID
5837 {
5838 .name = "display",
5839 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5840 .is_enabled = hsw_power_well_enabled,
5841 .set = hsw_set_power_well,
5842 },
5843};
5844
5845static struct i915_power_well bdw_power_wells[] = {
6f3ef5dd
ID
5846 {
5847 .name = "always-on",
5848 .always_on = 1,
5849 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5850 },
c1ca727f
ID
5851 {
5852 .name = "display",
5853 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5854 .is_enabled = hsw_power_well_enabled,
5855 .set = hsw_set_power_well,
5856 },
5857};
5858
5859#define set_power_wells(power_domains, __power_wells) ({ \
5860 (power_domains)->power_wells = (__power_wells); \
5861 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
5862})
5863
ddb642fb 5864int intel_power_domains_init(struct drm_device *dev)
a38911a3
WX
5865{
5866 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55 5867 struct i915_power_domains *power_domains = &dev_priv->power_domains;
c1ca727f 5868
83c00f55 5869 mutex_init(&power_domains->lock);
a38911a3 5870
c1ca727f
ID
5871 /*
5872 * The enabling order will be from lower to higher indexed wells,
5873 * the disabling order is reversed.
5874 */
5875 if (IS_HASWELL(dev)) {
5876 set_power_wells(power_domains, hsw_power_wells);
5877 hsw_pwr = power_domains;
5878 } else if (IS_BROADWELL(dev)) {
5879 set_power_wells(power_domains, bdw_power_wells);
5880 hsw_pwr = power_domains;
5881 } else {
1c2256df 5882 set_power_wells(power_domains, i9xx_always_on_power_well);
c1ca727f 5883 }
a38911a3
WX
5884
5885 return 0;
5886}
5887
ddb642fb 5888void intel_power_domains_remove(struct drm_device *dev)
a38911a3
WX
5889{
5890 hsw_pwr = NULL;
5891}
5892
ddb642fb 5893static void intel_power_domains_resume(struct drm_device *dev)
9cdb826c
VS
5894{
5895 struct drm_i915_private *dev_priv = dev->dev_private;
83c00f55
ID
5896 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5897 struct i915_power_well *power_well;
c1ca727f 5898 int i;
9cdb826c 5899
83c00f55 5900 mutex_lock(&power_domains->lock);
c1ca727f
ID
5901 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5902 if (power_well->set)
5903 power_well->set(dev, power_well, power_well->count > 0);
5904 }
83c00f55 5905 mutex_unlock(&power_domains->lock);
a38911a3
WX
5906}
5907
fa42e23c
PZ
5908/*
5909 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5910 * when not needed anymore. We have 4 registers that can request the power well
5911 * to be enabled, and it will only be disabled if none of the registers is
5912 * requesting it to be enabled.
d0d3e513 5913 */
ddb642fb 5914void intel_power_domains_init_hw(struct drm_device *dev)
d0d3e513
ED
5915{
5916 struct drm_i915_private *dev_priv = dev->dev_private;
d0d3e513 5917
fa42e23c 5918 /* For now, we need the power well to be always enabled. */
baa70707 5919 intel_display_set_init_power(dev, true);
ddb642fb 5920 intel_power_domains_resume(dev);
d0d3e513 5921
f7243ac9
ID
5922 if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5923 return;
5924
fa42e23c
PZ
5925 /* We're taking over the BIOS, so clear any requests made by it since
5926 * the driver is in charge now. */
6aedd1f5 5927 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
fa42e23c 5928 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
d0d3e513
ED
5929}
5930
c67a470b
PZ
5931/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5932void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5933{
5934 hsw_disable_package_c8(dev_priv);
5935}
5936
5937void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5938{
5939 hsw_enable_package_c8(dev_priv);
5940}
5941
1fa61106
ED
5942/* Set up chip specific power management-related functions */
5943void intel_init_pm(struct drm_device *dev)
5944{
5945 struct drm_i915_private *dev_priv = dev->dev_private;
5946
5947 if (I915_HAS_FBC(dev)) {
5948 if (HAS_PCH_SPLIT(dev)) {
5949 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
891348b2 5950 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
abe959c7
RV
5951 dev_priv->display.enable_fbc =
5952 gen7_enable_fbc;
5953 else
5954 dev_priv->display.enable_fbc =
5955 ironlake_enable_fbc;
1fa61106
ED
5956 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5957 } else if (IS_GM45(dev)) {
5958 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5959 dev_priv->display.enable_fbc = g4x_enable_fbc;
5960 dev_priv->display.disable_fbc = g4x_disable_fbc;
5961 } else if (IS_CRESTLINE(dev)) {
5962 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5963 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5964 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5965 }
5966 /* 855GM needs testing */
5967 }
5968
c921aba8
DV
5969 /* For cxsr */
5970 if (IS_PINEVIEW(dev))
5971 i915_pineview_get_mem_freq(dev);
5972 else if (IS_GEN5(dev))
5973 i915_ironlake_get_mem_freq(dev);
5974
1fa61106
ED
5975 /* For FIFO watermark updates */
5976 if (HAS_PCH_SPLIT(dev)) {
53615a5e
VS
5977 intel_setup_wm_latency(dev);
5978
1fa61106 5979 if (IS_GEN5(dev)) {
53615a5e
VS
5980 if (dev_priv->wm.pri_latency[1] &&
5981 dev_priv->wm.spr_latency[1] &&
5982 dev_priv->wm.cur_latency[1])
1fa61106
ED
5983 dev_priv->display.update_wm = ironlake_update_wm;
5984 else {
5985 DRM_DEBUG_KMS("Failed to get proper latency. "
5986 "Disable CxSR\n");
5987 dev_priv->display.update_wm = NULL;
5988 }
5989 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5990 } else if (IS_GEN6(dev)) {
53615a5e
VS
5991 if (dev_priv->wm.pri_latency[0] &&
5992 dev_priv->wm.spr_latency[0] &&
5993 dev_priv->wm.cur_latency[0]) {
1fa61106
ED
5994 dev_priv->display.update_wm = sandybridge_update_wm;
5995 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5996 } else {
5997 DRM_DEBUG_KMS("Failed to read display plane latency. "
5998 "Disable CxSR\n");
5999 dev_priv->display.update_wm = NULL;
6000 }
6001 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6002 } else if (IS_IVYBRIDGE(dev)) {
53615a5e
VS
6003 if (dev_priv->wm.pri_latency[0] &&
6004 dev_priv->wm.spr_latency[0] &&
6005 dev_priv->wm.cur_latency[0]) {
c43d0188 6006 dev_priv->display.update_wm = ivybridge_update_wm;
1fa61106
ED
6007 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
6008 } else {
6009 DRM_DEBUG_KMS("Failed to read display plane latency. "
6010 "Disable CxSR\n");
6011 dev_priv->display.update_wm = NULL;
6012 }
6013 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6b8a5eeb 6014 } else if (IS_HASWELL(dev)) {
53615a5e
VS
6015 if (dev_priv->wm.pri_latency[0] &&
6016 dev_priv->wm.spr_latency[0] &&
6017 dev_priv->wm.cur_latency[0]) {
1011d8c4 6018 dev_priv->display.update_wm = haswell_update_wm;
526682e9
PZ
6019 dev_priv->display.update_sprite_wm =
6020 haswell_update_sprite_wm;
6b8a5eeb
ED
6021 } else {
6022 DRM_DEBUG_KMS("Failed to read display plane latency. "
6023 "Disable CxSR\n");
6024 dev_priv->display.update_wm = NULL;
6025 }
cad2a2d7 6026 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
1020a5c2
BW
6027 } else if (INTEL_INFO(dev)->gen == 8) {
6028 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
1fa61106
ED
6029 } else
6030 dev_priv->display.update_wm = NULL;
6031 } else if (IS_VALLEYVIEW(dev)) {
6032 dev_priv->display.update_wm = valleyview_update_wm;
6033 dev_priv->display.init_clock_gating =
6034 valleyview_init_clock_gating;
1fa61106
ED
6035 } else if (IS_PINEVIEW(dev)) {
6036 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6037 dev_priv->is_ddr3,
6038 dev_priv->fsb_freq,
6039 dev_priv->mem_freq)) {
6040 DRM_INFO("failed to find known CxSR latency "
6041 "(found ddr%s fsb freq %d, mem freq %d), "
6042 "disabling CxSR\n",
6043 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6044 dev_priv->fsb_freq, dev_priv->mem_freq);
6045 /* Disable CxSR and never update its watermark again */
6046 pineview_disable_cxsr(dev);
6047 dev_priv->display.update_wm = NULL;
6048 } else
6049 dev_priv->display.update_wm = pineview_update_wm;
6050 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6051 } else if (IS_G4X(dev)) {
6052 dev_priv->display.update_wm = g4x_update_wm;
6053 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6054 } else if (IS_GEN4(dev)) {
6055 dev_priv->display.update_wm = i965_update_wm;
6056 if (IS_CRESTLINE(dev))
6057 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6058 else if (IS_BROADWATER(dev))
6059 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6060 } else if (IS_GEN3(dev)) {
6061 dev_priv->display.update_wm = i9xx_update_wm;
6062 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6063 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6064 } else if (IS_I865G(dev)) {
6065 dev_priv->display.update_wm = i830_update_wm;
6066 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6067 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6068 } else if (IS_I85X(dev)) {
6069 dev_priv->display.update_wm = i9xx_update_wm;
6070 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6071 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6072 } else {
6073 dev_priv->display.update_wm = i830_update_wm;
6074 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6075 if (IS_845G(dev))
6076 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6077 else
6078 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6079 }
6080}
6081
42c0526c
BW
6082int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6083{
4fc688ce 6084 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
6085
6086 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6087 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6088 return -EAGAIN;
6089 }
6090
6091 I915_WRITE(GEN6_PCODE_DATA, *val);
6092 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6093
6094 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6095 500)) {
6096 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6097 return -ETIMEDOUT;
6098 }
6099
6100 *val = I915_READ(GEN6_PCODE_DATA);
6101 I915_WRITE(GEN6_PCODE_DATA, 0);
6102
6103 return 0;
6104}
6105
6106int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6107{
4fc688ce 6108 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
6109
6110 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6111 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6112 return -EAGAIN;
6113 }
6114
6115 I915_WRITE(GEN6_PCODE_DATA, val);
6116 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6117
6118 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6119 500)) {
6120 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6121 return -ETIMEDOUT;
6122 }
6123
6124 I915_WRITE(GEN6_PCODE_DATA, 0);
6125
6126 return 0;
6127}
a0e4e199 6128
2ec3815f 6129int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
855ba3be 6130{
07ab118b 6131 int div;
855ba3be 6132
07ab118b 6133 /* 4 x czclk */
2ec3815f 6134 switch (dev_priv->mem_freq) {
855ba3be 6135 case 800:
07ab118b 6136 div = 10;
855ba3be
JB
6137 break;
6138 case 1066:
07ab118b 6139 div = 12;
855ba3be
JB
6140 break;
6141 case 1333:
07ab118b 6142 div = 16;
855ba3be
JB
6143 break;
6144 default:
6145 return -1;
6146 }
6147
2ec3815f 6148 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
855ba3be
JB
6149}
6150
2ec3815f 6151int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
855ba3be 6152{
07ab118b 6153 int mul;
855ba3be 6154
07ab118b 6155 /* 4 x czclk */
2ec3815f 6156 switch (dev_priv->mem_freq) {
855ba3be 6157 case 800:
07ab118b 6158 mul = 10;
855ba3be
JB
6159 break;
6160 case 1066:
07ab118b 6161 mul = 12;
855ba3be
JB
6162 break;
6163 case 1333:
07ab118b 6164 mul = 16;
855ba3be
JB
6165 break;
6166 default:
6167 return -1;
6168 }
6169
2ec3815f 6170 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
855ba3be
JB
6171}
6172
907b28c5
CW
6173void intel_pm_init(struct drm_device *dev)
6174{
6175 struct drm_i915_private *dev_priv = dev->dev_private;
6176
6177 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6178 intel_gen6_powersave_work);
6179}