]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/vc4/vc4_dsi.c
Merge tag 'drm-misc-next-2017-03-06' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / vc4 / vc4_dsi.c
CommitLineData
4078f575
EA
1/*
2 * Copyright (C) 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17/**
18 * DOC: VC4 DSI0/DSI1 module
19 *
20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22 * controller.
23 *
24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25 * while the compute module brings both DSI0 and DSI1 out.
26 *
27 * This driver has been tested for DSI1 video-mode display only
28 * currently, with most of the information necessary for DSI0
29 * hopefully present.
30 */
31
32#include "drm_atomic_helper.h"
33#include "drm_crtc_helper.h"
34#include "drm_edid.h"
35#include "drm_mipi_dsi.h"
36#include "drm_panel.h"
37#include "linux/clk.h"
38#include "linux/clk-provider.h"
39#include "linux/completion.h"
40#include "linux/component.h"
41#include "linux/dmaengine.h"
42#include "linux/i2c.h"
43#include "linux/of_address.h"
44#include "linux/of_platform.h"
45#include "linux/pm_runtime.h"
46#include "vc4_drv.h"
47#include "vc4_regs.h"
48
49#define DSI_CMD_FIFO_DEPTH 16
50#define DSI_PIX_FIFO_DEPTH 256
51#define DSI_PIX_FIFO_WIDTH 4
52
53#define DSI0_CTRL 0x00
54
55/* Command packet control. */
56#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
57#define DSI1_TXPKT1C 0x04
58# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
59# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
60# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
61# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
62
63# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
64# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
65/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
67/* Primary display where cmdfifo provides part of the payload and
68 * pixelvalve the rest.
69 */
70# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
71/* Secondary display where cmdfifo provides part of the payload and
72 * pixfifo the rest.
73 */
74# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
75
76# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
77# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
78
79# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
80# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
81/* Command only. Uses TXPKT1H and DISPLAY_NO */
82# define DSI_TXPKT1C_CMD_CTRL_TX 0
83/* Command with BTA for either ack or read data. */
84# define DSI_TXPKT1C_CMD_CTRL_RX 1
85/* Trigger according to TRIG_CMD */
86# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
87/* BTA alone for getting error status after a command, or a TE trigger
88 * without a previous command.
89 */
90# define DSI_TXPKT1C_CMD_CTRL_BTA 3
91
92# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
93# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
94# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
95# define DSI_TXPKT1C_CMD_EN BIT(0)
96
97/* Command packet header. */
98#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
99#define DSI1_TXPKT1H 0x08
100# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
101# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
102# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
103# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
104# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
105# define DSI_TXPKT1H_BC_DT_SHIFT 0
106
107#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
108#define DSI1_RXPKT1H 0x14
109# define DSI_RXPKT1H_CRC_ERR BIT(31)
110# define DSI_RXPKT1H_DET_ERR BIT(30)
111# define DSI_RXPKT1H_ECC_ERR BIT(29)
112# define DSI_RXPKT1H_COR_ERR BIT(28)
113# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
114# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
115/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
117# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
118/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
120# define DSI_RXPKT1H_SHORT_1_SHIFT 16
121# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
122# define DSI_RXPKT1H_SHORT_0_SHIFT 8
123# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
124# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
125
126#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
127#define DSI1_RXPKT2H 0x18
128# define DSI_RXPKT1H_DET_ERR BIT(30)
129# define DSI_RXPKT1H_ECC_ERR BIT(29)
130# define DSI_RXPKT1H_COR_ERR BIT(28)
131# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
132# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
133# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
134# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
135# define DSI_RXPKT1H_DT_SHIFT 0
136
137#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
138#define DSI1_TXPKT_CMD_FIFO 0x1c
139
140#define DSI0_DISP0_CTRL 0x18
141# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
142# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
143# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
144# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
145# define DSI_DISP0_LP_STOP_DISABLE 0
146# define DSI_DISP0_LP_STOP_PERLINE 1
147# define DSI_DISP0_LP_STOP_PERFRAME 2
148
149/* Transmit RGB pixels and null packets only during HACTIVE, instead
150 * of going to LP-STOP.
151 */
152# define DSI_DISP_HACTIVE_NULL BIT(10)
153/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154# define DSI_DISP_VBLP_CTRL BIT(9)
155/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156# define DSI_DISP_HFP_CTRL BIT(8)
157/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158# define DSI_DISP_HBP_CTRL BIT(7)
159# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
160# define DSI_DISP0_CHANNEL_SHIFT 5
161/* Enables end events for HSYNC/VSYNC, not just start events. */
162# define DSI_DISP0_ST_END BIT(4)
163# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
164# define DSI_DISP0_PFORMAT_SHIFT 2
165# define DSI_PFORMAT_RGB565 0
166# define DSI_PFORMAT_RGB666_PACKED 1
167# define DSI_PFORMAT_RGB666 2
168# define DSI_PFORMAT_RGB888 3
169/* Default is VIDEO mode. */
170# define DSI_DISP0_COMMAND_MODE BIT(1)
171# define DSI_DISP0_ENABLE BIT(0)
172
173#define DSI0_DISP1_CTRL 0x1c
174#define DSI1_DISP1_CTRL 0x2c
175/* Format of the data written to TXPKT_PIX_FIFO. */
176# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
177# define DSI_DISP1_PFORMAT_SHIFT 1
178# define DSI_DISP1_PFORMAT_16BIT 0
179# define DSI_DISP1_PFORMAT_24BIT 1
180# define DSI_DISP1_PFORMAT_32BIT_LE 2
181# define DSI_DISP1_PFORMAT_32BIT_BE 3
182
183/* DISP1 is always command mode. */
184# define DSI_DISP1_ENABLE BIT(0)
185
186#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
187
188#define DSI0_INT_STAT 0x24
189#define DSI0_INT_EN 0x28
190# define DSI1_INT_PHY_D3_ULPS BIT(30)
191# define DSI1_INT_PHY_D3_STOP BIT(29)
192# define DSI1_INT_PHY_D2_ULPS BIT(28)
193# define DSI1_INT_PHY_D2_STOP BIT(27)
194# define DSI1_INT_PHY_D1_ULPS BIT(26)
195# define DSI1_INT_PHY_D1_STOP BIT(25)
196# define DSI1_INT_PHY_D0_ULPS BIT(24)
197# define DSI1_INT_PHY_D0_STOP BIT(23)
198# define DSI1_INT_FIFO_ERR BIT(22)
199# define DSI1_INT_PHY_DIR_RTF BIT(21)
200# define DSI1_INT_PHY_RXLPDT BIT(20)
201# define DSI1_INT_PHY_RXTRIG BIT(19)
202# define DSI1_INT_PHY_D0_LPDT BIT(18)
203# define DSI1_INT_PHY_DIR_FTR BIT(17)
204
205/* Signaled when the clock lane enters the given state. */
206# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
207# define DSI1_INT_PHY_CLOCK_HS BIT(15)
208# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
209
210/* Signaled on timeouts */
211# define DSI1_INT_PR_TO BIT(13)
212# define DSI1_INT_TA_TO BIT(12)
213# define DSI1_INT_LPRX_TO BIT(11)
214# define DSI1_INT_HSTX_TO BIT(10)
215
216/* Contention on a line when trying to drive the line low */
217# define DSI1_INT_ERR_CONT_LP1 BIT(9)
218# define DSI1_INT_ERR_CONT_LP0 BIT(8)
219
220/* Control error: incorrect line state sequence on data lane 0. */
221# define DSI1_INT_ERR_CONTROL BIT(7)
222/* LPDT synchronization error (bits received not a multiple of 8. */
223
224# define DSI1_INT_ERR_SYNC_ESC BIT(6)
225/* Signaled after receiving an error packet from the display in
226 * response to a read.
227 */
228# define DSI1_INT_RXPKT2 BIT(5)
229/* Signaled after receiving a packet. The header and optional short
230 * response will be in RXPKT1H, and a long response will be in the
231 * RXPKT_FIFO.
232 */
233# define DSI1_INT_RXPKT1 BIT(4)
234# define DSI1_INT_TXPKT2_DONE BIT(3)
235# define DSI1_INT_TXPKT2_END BIT(2)
236/* Signaled after all repeats of TXPKT1 are transferred. */
237# define DSI1_INT_TXPKT1_DONE BIT(1)
238/* Signaled after each TXPKT1 repeat is scheduled. */
239# define DSI1_INT_TXPKT1_END BIT(0)
240
241#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
242 DSI1_INT_ERR_CONTROL | \
243 DSI1_INT_ERR_CONT_LP0 | \
244 DSI1_INT_ERR_CONT_LP1 | \
245 DSI1_INT_HSTX_TO | \
246 DSI1_INT_LPRX_TO | \
247 DSI1_INT_TA_TO | \
248 DSI1_INT_PR_TO)
249
250#define DSI0_STAT 0x2c
251#define DSI0_HSTX_TO_CNT 0x30
252#define DSI0_LPRX_TO_CNT 0x34
253#define DSI0_TA_TO_CNT 0x38
254#define DSI0_PR_TO_CNT 0x3c
255#define DSI0_PHYC 0x40
256# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
257# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
258# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
259# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
260# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
261# define DSI1_PHYC_CLANE_ULPS BIT(17)
262# define DSI1_PHYC_CLANE_ENABLE BIT(16)
263# define DSI_PHYC_DLANE3_ULPS BIT(13)
264# define DSI_PHYC_DLANE3_ENABLE BIT(12)
265# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
266# define DSI0_PHYC_CLANE_ULPS BIT(9)
267# define DSI_PHYC_DLANE2_ULPS BIT(9)
268# define DSI0_PHYC_CLANE_ENABLE BIT(8)
269# define DSI_PHYC_DLANE2_ENABLE BIT(8)
270# define DSI_PHYC_DLANE1_ULPS BIT(5)
271# define DSI_PHYC_DLANE1_ENABLE BIT(4)
272# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
273# define DSI_PHYC_DLANE0_ULPS BIT(1)
274# define DSI_PHYC_DLANE0_ENABLE BIT(0)
275
276#define DSI0_HS_CLT0 0x44
277#define DSI0_HS_CLT1 0x48
278#define DSI0_HS_CLT2 0x4c
279#define DSI0_HS_DLT3 0x50
280#define DSI0_HS_DLT4 0x54
281#define DSI0_HS_DLT5 0x58
282#define DSI0_HS_DLT6 0x5c
283#define DSI0_HS_DLT7 0x60
284
285#define DSI0_PHY_AFEC0 0x64
286# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
287# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
288# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
289# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
290# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
291# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
292# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
293# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
294# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
295# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
296# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
297# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
298# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
299# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
300# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
301# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
302# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
303# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
304# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
305# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
306# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
307# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
308# define DSI1_PHY_AFEC0_RESET BIT(13)
309# define DSI1_PHY_AFEC0_PD BIT(12)
310# define DSI0_PHY_AFEC0_RESET BIT(11)
311# define DSI1_PHY_AFEC0_PD_BG BIT(11)
312# define DSI0_PHY_AFEC0_PD BIT(10)
313# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
314# define DSI0_PHY_AFEC0_PD_BG BIT(9)
315# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
316# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
317# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
318# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
319# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
320# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
321# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
322
323#define DSI0_PHY_AFEC1 0x68
324# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
325# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
326# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
327# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
328# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
329# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
330
331#define DSI0_TST_SEL 0x6c
332#define DSI0_TST_MON 0x70
333#define DSI0_ID 0x74
334# define DSI_ID_VALUE 0x00647369
335
336#define DSI1_CTRL 0x00
337# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
338# define DSI_CTRL_HS_CLKC_SHIFT 14
339# define DSI_CTRL_HS_CLKC_BYTE 0
340# define DSI_CTRL_HS_CLKC_DDR2 1
341# define DSI_CTRL_HS_CLKC_DDR 2
342
343# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
344# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
345# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
346# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
347# define DSI_CTRL_CAL_BYTE BIT(9)
348# define DSI_CTRL_INV_BYTE BIT(8)
349# define DSI_CTRL_CLR_LDF BIT(7)
350# define DSI0_CTRL_CLR_PBCF BIT(6)
351# define DSI1_CTRL_CLR_RXF BIT(6)
352# define DSI0_CTRL_CLR_CPBCF BIT(5)
353# define DSI1_CTRL_CLR_PDF BIT(5)
354# define DSI0_CTRL_CLR_PDF BIT(4)
355# define DSI1_CTRL_CLR_CDF BIT(4)
356# define DSI0_CTRL_CLR_CDF BIT(3)
357# define DSI0_CTRL_CTRL2 BIT(2)
358# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
359# define DSI0_CTRL_CTRL1 BIT(1)
360# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
361# define DSI0_CTRL_CTRL0 BIT(0)
362# define DSI1_CTRL_EN BIT(0)
363# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
364 DSI0_CTRL_CLR_PBCF | \
365 DSI0_CTRL_CLR_CPBCF | \
366 DSI0_CTRL_CLR_PDF | \
367 DSI0_CTRL_CLR_CDF)
368# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
369 DSI1_CTRL_CLR_RXF | \
370 DSI1_CTRL_CLR_PDF | \
371 DSI1_CTRL_CLR_CDF)
372
373#define DSI1_TXPKT2C 0x0c
374#define DSI1_TXPKT2H 0x10
375#define DSI1_TXPKT_PIX_FIFO 0x20
376#define DSI1_RXPKT_FIFO 0x24
377#define DSI1_DISP0_CTRL 0x28
378#define DSI1_INT_STAT 0x30
379#define DSI1_INT_EN 0x34
380/* State reporting bits. These mostly behave like INT_STAT, where
381 * writing a 1 clears the bit.
382 */
383#define DSI1_STAT 0x38
384# define DSI1_STAT_PHY_D3_ULPS BIT(31)
385# define DSI1_STAT_PHY_D3_STOP BIT(30)
386# define DSI1_STAT_PHY_D2_ULPS BIT(29)
387# define DSI1_STAT_PHY_D2_STOP BIT(28)
388# define DSI1_STAT_PHY_D1_ULPS BIT(27)
389# define DSI1_STAT_PHY_D1_STOP BIT(26)
390# define DSI1_STAT_PHY_D0_ULPS BIT(25)
391# define DSI1_STAT_PHY_D0_STOP BIT(24)
392# define DSI1_STAT_FIFO_ERR BIT(23)
393# define DSI1_STAT_PHY_RXLPDT BIT(22)
394# define DSI1_STAT_PHY_RXTRIG BIT(21)
395# define DSI1_STAT_PHY_D0_LPDT BIT(20)
396/* Set when in forward direction */
397# define DSI1_STAT_PHY_DIR BIT(19)
398# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
399# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
400# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
401# define DSI1_STAT_PR_TO BIT(15)
402# define DSI1_STAT_TA_TO BIT(14)
403# define DSI1_STAT_LPRX_TO BIT(13)
404# define DSI1_STAT_HSTX_TO BIT(12)
405# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
406# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
407# define DSI1_STAT_ERR_CONTROL BIT(9)
408# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
409# define DSI1_STAT_RXPKT2 BIT(7)
410# define DSI1_STAT_RXPKT1 BIT(6)
411# define DSI1_STAT_TXPKT2_BUSY BIT(5)
412# define DSI1_STAT_TXPKT2_DONE BIT(4)
413# define DSI1_STAT_TXPKT2_END BIT(3)
414# define DSI1_STAT_TXPKT1_BUSY BIT(2)
415# define DSI1_STAT_TXPKT1_DONE BIT(1)
416# define DSI1_STAT_TXPKT1_END BIT(0)
417
418#define DSI1_HSTX_TO_CNT 0x3c
419#define DSI1_LPRX_TO_CNT 0x40
420#define DSI1_TA_TO_CNT 0x44
421#define DSI1_PR_TO_CNT 0x48
422#define DSI1_PHYC 0x4c
423
424#define DSI1_HS_CLT0 0x50
425# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
426# define DSI_HS_CLT0_CZERO_SHIFT 18
427# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
428# define DSI_HS_CLT0_CPRE_SHIFT 9
429# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
430# define DSI_HS_CLT0_CPREP_SHIFT 0
431
432#define DSI1_HS_CLT1 0x54
433# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
434# define DSI_HS_CLT1_CTRAIL_SHIFT 9
435# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
436# define DSI_HS_CLT1_CPOST_SHIFT 0
437
438#define DSI1_HS_CLT2 0x58
439# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
440# define DSI_HS_CLT2_WUP_SHIFT 0
441
442#define DSI1_HS_DLT3 0x5c
443# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
444# define DSI_HS_DLT3_EXIT_SHIFT 18
445# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
446# define DSI_HS_DLT3_ZERO_SHIFT 9
447# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
448# define DSI_HS_DLT3_PRE_SHIFT 0
449
450#define DSI1_HS_DLT4 0x60
451# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
452# define DSI_HS_DLT4_ANLAT_SHIFT 18
453# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
454# define DSI_HS_DLT4_TRAIL_SHIFT 9
455# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
456# define DSI_HS_DLT4_LPX_SHIFT 0
457
458#define DSI1_HS_DLT5 0x64
459# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
460# define DSI_HS_DLT5_INIT_SHIFT 0
461
462#define DSI1_HS_DLT6 0x68
463# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
464# define DSI_HS_DLT6_TA_GET_SHIFT 24
465# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
466# define DSI_HS_DLT6_TA_SURE_SHIFT 16
467# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
468# define DSI_HS_DLT6_TA_GO_SHIFT 8
469# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
470# define DSI_HS_DLT6_LP_LPX_SHIFT 0
471
472#define DSI1_HS_DLT7 0x6c
473# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
474# define DSI_HS_DLT7_LP_WUP_SHIFT 0
475
476#define DSI1_PHY_AFEC0 0x70
477
478#define DSI1_PHY_AFEC1 0x74
479# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
480# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
481# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
482# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
483# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
484# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
485# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
486# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
487# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
488# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
489
490#define DSI1_TST_SEL 0x78
491#define DSI1_TST_MON 0x7c
492#define DSI1_PHY_TST1 0x80
493#define DSI1_PHY_TST2 0x84
494#define DSI1_PHY_FIFO_STAT 0x88
495/* Actually, all registers in the range that aren't otherwise claimed
496 * will return the ID.
497 */
498#define DSI1_ID 0x8c
499
500/* General DSI hardware state. */
501struct vc4_dsi {
502 struct platform_device *pdev;
503
504 struct mipi_dsi_host dsi_host;
505 struct drm_encoder *encoder;
506 struct drm_connector *connector;
507 struct drm_panel *panel;
508
509 void __iomem *regs;
510
511 struct dma_chan *reg_dma_chan;
512 dma_addr_t reg_dma_paddr;
513 u32 *reg_dma_mem;
514 dma_addr_t reg_paddr;
515
516 /* Whether we're on bcm2835's DSI0 or DSI1. */
517 int port;
518
519 /* DSI channel for the panel we're connected to. */
520 u32 channel;
521 u32 lanes;
522 enum mipi_dsi_pixel_format format;
523 u32 mode_flags;
524
525 /* Input clock from CPRMAN to the digital PHY, for the DSI
526 * escape clock.
527 */
528 struct clk *escape_clock;
529
530 /* Input clock to the analog PHY, used to generate the DSI bit
531 * clock.
532 */
533 struct clk *pll_phy_clock;
534
535 /* HS Clocks generated within the DSI analog PHY. */
536 struct clk_fixed_factor phy_clocks[3];
537
538 struct clk_hw_onecell_data *clk_onecell;
539
540 /* Pixel clock output to the pixelvalve, generated from the HS
541 * clock.
542 */
543 struct clk *pixel_clock;
544
545 struct completion xfer_completion;
546 int xfer_result;
547};
548
549#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
550
551static inline void
552dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
553{
554 struct dma_chan *chan = dsi->reg_dma_chan;
555 struct dma_async_tx_descriptor *tx;
556 dma_cookie_t cookie;
557 int ret;
558
559 /* DSI0 should be able to write normally. */
560 if (!chan) {
561 writel(val, dsi->regs + offset);
562 return;
563 }
564
565 *dsi->reg_dma_mem = val;
566
567 tx = chan->device->device_prep_dma_memcpy(chan,
568 dsi->reg_paddr + offset,
569 dsi->reg_dma_paddr,
570 4, 0);
571 if (!tx) {
572 DRM_ERROR("Failed to set up DMA register write\n");
573 return;
574 }
575
576 cookie = tx->tx_submit(tx);
577 ret = dma_submit_error(cookie);
578 if (ret) {
579 DRM_ERROR("Failed to submit DMA: %d\n", ret);
580 return;
581 }
582 ret = dma_sync_wait(chan, cookie);
583 if (ret)
584 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
585}
586
587#define DSI_READ(offset) readl(dsi->regs + (offset))
588#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
589#define DSI_PORT_READ(offset) \
590 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
591#define DSI_PORT_WRITE(offset, val) \
592 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
593#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
594
595/* VC4 DSI encoder KMS struct */
596struct vc4_dsi_encoder {
597 struct vc4_encoder base;
598 struct vc4_dsi *dsi;
599};
600
601static inline struct vc4_dsi_encoder *
602to_vc4_dsi_encoder(struct drm_encoder *encoder)
603{
604 return container_of(encoder, struct vc4_dsi_encoder, base.base);
605}
606
607/* VC4 DSI connector KMS struct */
608struct vc4_dsi_connector {
609 struct drm_connector base;
610 struct vc4_dsi *dsi;
611};
612
613static inline struct vc4_dsi_connector *
614to_vc4_dsi_connector(struct drm_connector *connector)
615{
616 return container_of(connector, struct vc4_dsi_connector, base);
617}
618
619#define DSI_REG(reg) { reg, #reg }
620static const struct {
621 u32 reg;
622 const char *name;
623} dsi0_regs[] = {
624 DSI_REG(DSI0_CTRL),
625 DSI_REG(DSI0_STAT),
626 DSI_REG(DSI0_HSTX_TO_CNT),
627 DSI_REG(DSI0_LPRX_TO_CNT),
628 DSI_REG(DSI0_TA_TO_CNT),
629 DSI_REG(DSI0_PR_TO_CNT),
630 DSI_REG(DSI0_DISP0_CTRL),
631 DSI_REG(DSI0_DISP1_CTRL),
632 DSI_REG(DSI0_INT_STAT),
633 DSI_REG(DSI0_INT_EN),
634 DSI_REG(DSI0_PHYC),
635 DSI_REG(DSI0_HS_CLT0),
636 DSI_REG(DSI0_HS_CLT1),
637 DSI_REG(DSI0_HS_CLT2),
638 DSI_REG(DSI0_HS_DLT3),
639 DSI_REG(DSI0_HS_DLT4),
640 DSI_REG(DSI0_HS_DLT5),
641 DSI_REG(DSI0_HS_DLT6),
642 DSI_REG(DSI0_HS_DLT7),
643 DSI_REG(DSI0_PHY_AFEC0),
644 DSI_REG(DSI0_PHY_AFEC1),
645 DSI_REG(DSI0_ID),
646};
647
648static const struct {
649 u32 reg;
650 const char *name;
651} dsi1_regs[] = {
652 DSI_REG(DSI1_CTRL),
653 DSI_REG(DSI1_STAT),
654 DSI_REG(DSI1_HSTX_TO_CNT),
655 DSI_REG(DSI1_LPRX_TO_CNT),
656 DSI_REG(DSI1_TA_TO_CNT),
657 DSI_REG(DSI1_PR_TO_CNT),
658 DSI_REG(DSI1_DISP0_CTRL),
659 DSI_REG(DSI1_DISP1_CTRL),
660 DSI_REG(DSI1_INT_STAT),
661 DSI_REG(DSI1_INT_EN),
662 DSI_REG(DSI1_PHYC),
663 DSI_REG(DSI1_HS_CLT0),
664 DSI_REG(DSI1_HS_CLT1),
665 DSI_REG(DSI1_HS_CLT2),
666 DSI_REG(DSI1_HS_DLT3),
667 DSI_REG(DSI1_HS_DLT4),
668 DSI_REG(DSI1_HS_DLT5),
669 DSI_REG(DSI1_HS_DLT6),
670 DSI_REG(DSI1_HS_DLT7),
671 DSI_REG(DSI1_PHY_AFEC0),
672 DSI_REG(DSI1_PHY_AFEC1),
673 DSI_REG(DSI1_ID),
674};
675
676static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
677{
678 int i;
679
680 if (dsi->port == 0) {
681 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
682 DRM_INFO("0x%04x (%s): 0x%08x\n",
683 dsi0_regs[i].reg, dsi0_regs[i].name,
684 DSI_READ(dsi0_regs[i].reg));
685 }
686 } else {
687 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
688 DRM_INFO("0x%04x (%s): 0x%08x\n",
689 dsi1_regs[i].reg, dsi1_regs[i].name,
690 DSI_READ(dsi1_regs[i].reg));
691 }
692 }
693}
694
695#ifdef CONFIG_DEBUG_FS
696int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
697{
698 struct drm_info_node *node = (struct drm_info_node *)m->private;
699 struct drm_device *drm = node->minor->dev;
700 struct vc4_dev *vc4 = to_vc4_dev(drm);
701 int dsi_index = (uintptr_t)node->info_ent->data;
702 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
703 int i;
704
705 if (!dsi)
706 return 0;
707
708 if (dsi->port == 0) {
709 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
710 seq_printf(m, "0x%04x (%s): 0x%08x\n",
711 dsi0_regs[i].reg, dsi0_regs[i].name,
712 DSI_READ(dsi0_regs[i].reg));
713 }
714 } else {
715 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
716 seq_printf(m, "0x%04x (%s): 0x%08x\n",
717 dsi1_regs[i].reg, dsi1_regs[i].name,
718 DSI_READ(dsi1_regs[i].reg));
719 }
720 }
721
722 return 0;
723}
724#endif
725
726static enum drm_connector_status
727vc4_dsi_connector_detect(struct drm_connector *connector, bool force)
728{
729 struct vc4_dsi_connector *vc4_connector =
730 to_vc4_dsi_connector(connector);
731 struct vc4_dsi *dsi = vc4_connector->dsi;
732
733 if (dsi->panel)
734 return connector_status_connected;
735 else
736 return connector_status_disconnected;
737}
738
739static void vc4_dsi_connector_destroy(struct drm_connector *connector)
740{
741 drm_connector_unregister(connector);
742 drm_connector_cleanup(connector);
743}
744
745static int vc4_dsi_connector_get_modes(struct drm_connector *connector)
746{
747 struct vc4_dsi_connector *vc4_connector =
748 to_vc4_dsi_connector(connector);
749 struct vc4_dsi *dsi = vc4_connector->dsi;
750
751 if (dsi->panel)
752 return drm_panel_get_modes(dsi->panel);
753
754 return 0;
755}
756
757static const struct drm_connector_funcs vc4_dsi_connector_funcs = {
758 .dpms = drm_atomic_helper_connector_dpms,
759 .detect = vc4_dsi_connector_detect,
760 .fill_modes = drm_helper_probe_single_connector_modes,
761 .destroy = vc4_dsi_connector_destroy,
762 .reset = drm_atomic_helper_connector_reset,
763 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
764 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
765};
766
767static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = {
768 .get_modes = vc4_dsi_connector_get_modes,
769};
770
771static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev,
772 struct vc4_dsi *dsi)
773{
fce6a7bc 774 struct drm_connector *connector;
4078f575 775 struct vc4_dsi_connector *dsi_connector;
4078f575
EA
776
777 dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector),
778 GFP_KERNEL);
fce6a7bc
CIK
779 if (!dsi_connector)
780 return ERR_PTR(-ENOMEM);
781
4078f575
EA
782 connector = &dsi_connector->base;
783
784 dsi_connector->dsi = dsi;
785
786 drm_connector_init(dev, connector, &vc4_dsi_connector_funcs,
787 DRM_MODE_CONNECTOR_DSI);
788 drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs);
789
790 connector->polled = 0;
791 connector->interlace_allowed = 0;
792 connector->doublescan_allowed = 0;
793
794 drm_mode_connector_attach_encoder(connector, dsi->encoder);
795
796 return connector;
4078f575
EA
797}
798
799static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
800{
801 drm_encoder_cleanup(encoder);
802}
803
804static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
805 .destroy = vc4_dsi_encoder_destroy,
806};
807
808static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
809{
810 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
811
812 if (latch)
813 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
814 else
815 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
816
817 DSI_PORT_WRITE(PHY_AFEC0, afec0);
818}
819
820/* Enters or exits Ultra Low Power State. */
821static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
822{
823 bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
824 u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
825 DSI_PHYC_DLANE0_ULPS |
826 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
827 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
828 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
829 u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
830 DSI1_STAT_PHY_D0_ULPS |
831 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
832 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
833 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
834 u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
835 DSI1_STAT_PHY_D0_STOP |
836 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
837 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
838 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
839 int ret;
840
841 DSI_PORT_WRITE(STAT, stat_ulps);
842 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
843 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
844 if (ret) {
845 dev_warn(&dsi->pdev->dev,
846 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
847 DSI_PORT_READ(STAT));
848 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
849 vc4_dsi_latch_ulps(dsi, false);
850 return;
851 }
852
853 /* The DSI module can't be disabled while the module is
854 * generating ULPS state. So, to be able to disable the
855 * module, we have the AFE latch the ULPS state and continue
856 * on to having the module enter STOP.
857 */
858 vc4_dsi_latch_ulps(dsi, ulps);
859
860 DSI_PORT_WRITE(STAT, stat_stop);
861 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
862 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
863 if (ret) {
864 dev_warn(&dsi->pdev->dev,
865 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
866 DSI_PORT_READ(STAT));
867 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
868 return;
869 }
870}
871
872static u32
873dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
874{
875 /* The HS timings have to be rounded up to a multiple of 8
876 * because we're using the byte clock.
877 */
878 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
879}
880
881/* ESC always runs at 100Mhz. */
882#define ESC_TIME_NS 10
883
884static u32
885dsi_esc_timing(u32 ns)
886{
887 return DIV_ROUND_UP(ns, ESC_TIME_NS);
888}
889
890static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
891{
892 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
893 struct vc4_dsi *dsi = vc4_encoder->dsi;
894 struct device *dev = &dsi->pdev->dev;
895
896 drm_panel_disable(dsi->panel);
897
898 vc4_dsi_ulps(dsi, true);
899
900 drm_panel_unprepare(dsi->panel);
901
902 clk_disable_unprepare(dsi->pll_phy_clock);
903 clk_disable_unprepare(dsi->escape_clock);
904 clk_disable_unprepare(dsi->pixel_clock);
905
906 pm_runtime_put(dev);
907}
908
909static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
910{
911 struct drm_display_mode *mode = &encoder->crtc->mode;
912 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
913 struct vc4_dsi *dsi = vc4_encoder->dsi;
914 struct device *dev = &dsi->pdev->dev;
915 u32 format = 0, divider = 0;
916 bool debug_dump_regs = false;
917 unsigned long hs_clock;
918 u32 ui_ns;
919 /* Minimum LP state duration in escape clock cycles. */
920 u32 lpx = dsi_esc_timing(60);
921 unsigned long pixel_clock_hz = mode->clock * 1000;
922 unsigned long dsip_clock;
923 unsigned long phy_clock;
924 int ret;
925
926 ret = pm_runtime_get_sync(dev);
927 if (ret) {
928 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
929 return;
930 }
931
932 ret = drm_panel_prepare(dsi->panel);
933 if (ret) {
934 DRM_ERROR("Panel failed to prepare\n");
935 return;
936 }
937
938 if (debug_dump_regs) {
939 DRM_INFO("DSI regs before:\n");
940 vc4_dsi_dump_regs(dsi);
941 }
942
943 switch (dsi->format) {
944 case MIPI_DSI_FMT_RGB888:
945 format = DSI_PFORMAT_RGB888;
946 divider = 24 / dsi->lanes;
947 break;
948 case MIPI_DSI_FMT_RGB666:
949 format = DSI_PFORMAT_RGB666;
950 divider = 24 / dsi->lanes;
951 break;
952 case MIPI_DSI_FMT_RGB666_PACKED:
953 format = DSI_PFORMAT_RGB666_PACKED;
954 divider = 18 / dsi->lanes;
955 break;
956 case MIPI_DSI_FMT_RGB565:
957 format = DSI_PFORMAT_RGB565;
958 divider = 16 / dsi->lanes;
959 break;
960 }
961
962 phy_clock = pixel_clock_hz * divider;
963 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
964 if (ret) {
965 dev_err(&dsi->pdev->dev,
966 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
967 }
968
969 /* Reset the DSI and all its fifos. */
970 DSI_PORT_WRITE(CTRL,
971 DSI_CTRL_SOFT_RESET_CFG |
972 DSI_PORT_BIT(CTRL_RESET_FIFOS));
973
974 DSI_PORT_WRITE(CTRL,
975 DSI_CTRL_HSDT_EOT_DISABLE |
976 DSI_CTRL_RX_LPDT_EOT_DISABLE);
977
978 /* Clear all stat bits so we see what has happened during enable. */
979 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
980
981 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
982 if (dsi->port == 0) {
983 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
984 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
985
986 if (dsi->lanes < 2)
987 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
988
989 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
990 afec0 |= DSI0_PHY_AFEC0_RESET;
991
992 DSI_PORT_WRITE(PHY_AFEC0, afec0);
993
994 DSI_PORT_WRITE(PHY_AFEC1,
995 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
996 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
997 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
998 } else {
999 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
1000 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
1001 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
1002 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
1003 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
1004 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
1005 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
1006
1007 if (dsi->lanes < 4)
1008 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
1009 if (dsi->lanes < 3)
1010 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
1011 if (dsi->lanes < 2)
1012 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
1013
1014 afec0 |= DSI1_PHY_AFEC0_RESET;
1015
1016 DSI_PORT_WRITE(PHY_AFEC0, afec0);
1017
1018 DSI_PORT_WRITE(PHY_AFEC1, 0);
1019
1020 /* AFEC reset hold time */
1021 mdelay(1);
1022 }
1023
1024 ret = clk_prepare_enable(dsi->escape_clock);
1025 if (ret) {
1026 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
1027 return;
1028 }
1029
1030 ret = clk_prepare_enable(dsi->pll_phy_clock);
1031 if (ret) {
1032 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
1033 return;
1034 }
1035
1036 hs_clock = clk_get_rate(dsi->pll_phy_clock);
1037
1038 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1039 * not the pixel clock rate. DSIxP take from the APHY's byte,
1040 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1041 * that rate. Separately, a value derived from PIX_CLK_DIV
1042 * and HS_CLKC is fed into the PV to divide down to the actual
1043 * pixel clock for pushing pixels into DSI.
1044 */
1045 dsip_clock = phy_clock / 8;
1046 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1047 if (ret) {
1048 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1049 dsip_clock, ret);
1050 }
1051
1052 ret = clk_prepare_enable(dsi->pixel_clock);
1053 if (ret) {
1054 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1055 return;
1056 }
1057
1058 /* How many ns one DSI unit interval is. Note that the clock
1059 * is DDR, so there's an extra divide by 2.
1060 */
1061 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1062
1063 DSI_PORT_WRITE(HS_CLT0,
1064 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1065 DSI_HS_CLT0_CZERO) |
1066 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1067 DSI_HS_CLT0_CPRE) |
1068 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1069 DSI_HS_CLT0_CPREP));
1070
1071 DSI_PORT_WRITE(HS_CLT1,
1072 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1073 DSI_HS_CLT1_CTRAIL) |
1074 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1075 DSI_HS_CLT1_CPOST));
1076
1077 DSI_PORT_WRITE(HS_CLT2,
1078 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1079 DSI_HS_CLT2_WUP));
1080
1081 DSI_PORT_WRITE(HS_DLT3,
1082 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1083 DSI_HS_DLT3_EXIT) |
1084 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1085 DSI_HS_DLT3_ZERO) |
1086 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1087 DSI_HS_DLT3_PRE));
1088
1089 DSI_PORT_WRITE(HS_DLT4,
1090 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1091 DSI_HS_DLT4_LPX) |
1092 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1093 dsi_hs_timing(ui_ns, 60, 4)),
1094 DSI_HS_DLT4_TRAIL) |
1095 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1096
1097 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
1098 DSI_HS_DLT5_INIT));
1099
1100 DSI_PORT_WRITE(HS_DLT6,
1101 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1102 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1103 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1104 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1105
1106 DSI_PORT_WRITE(HS_DLT7,
1107 VC4_SET_FIELD(dsi_esc_timing(1000000),
1108 DSI_HS_DLT7_LP_WUP));
1109
1110 DSI_PORT_WRITE(PHYC,
1111 DSI_PHYC_DLANE0_ENABLE |
1112 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1113 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1114 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1115 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1116 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1117 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1118 (dsi->port == 0 ?
1119 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1120 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1121
1122 DSI_PORT_WRITE(CTRL,
1123 DSI_PORT_READ(CTRL) |
1124 DSI_CTRL_CAL_BYTE);
1125
1126 /* HS timeout in HS clock cycles: disabled. */
1127 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1128 /* LP receive timeout in HS clocks. */
1129 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1130 /* Bus turnaround timeout */
1131 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1132 /* Display reset sequence timeout */
1133 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1134
1135 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1136 DSI_PORT_WRITE(DISP0_CTRL,
1137 VC4_SET_FIELD(divider, DSI_DISP0_PIX_CLK_DIV) |
1138 VC4_SET_FIELD(format, DSI_DISP0_PFORMAT) |
1139 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1140 DSI_DISP0_LP_STOP_CTRL) |
1141 DSI_DISP0_ST_END |
1142 DSI_DISP0_ENABLE);
1143 } else {
1144 DSI_PORT_WRITE(DISP0_CTRL,
1145 DSI_DISP0_COMMAND_MODE |
1146 DSI_DISP0_ENABLE);
1147 }
1148
1149 /* Set up DISP1 for transferring long command payloads through
1150 * the pixfifo.
1151 */
1152 DSI_PORT_WRITE(DISP1_CTRL,
1153 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1154 DSI_DISP1_PFORMAT) |
1155 DSI_DISP1_ENABLE);
1156
1157 /* Ungate the block. */
1158 if (dsi->port == 0)
1159 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1160 else
1161 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1162
1163 /* Bring AFE out of reset. */
1164 if (dsi->port == 0) {
1165 } else {
1166 DSI_PORT_WRITE(PHY_AFEC0,
1167 DSI_PORT_READ(PHY_AFEC0) &
1168 ~DSI1_PHY_AFEC0_RESET);
1169 }
1170
1171 vc4_dsi_ulps(dsi, false);
1172
1173 if (debug_dump_regs) {
1174 DRM_INFO("DSI regs after:\n");
1175 vc4_dsi_dump_regs(dsi);
1176 }
1177
1178 ret = drm_panel_enable(dsi->panel);
1179 if (ret) {
1180 DRM_ERROR("Panel failed to enable\n");
1181 drm_panel_unprepare(dsi->panel);
1182 return;
1183 }
1184}
1185
1186static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1187 const struct mipi_dsi_msg *msg)
1188{
1189 struct vc4_dsi *dsi = host_to_dsi(host);
1190 struct mipi_dsi_packet packet;
1191 u32 pkth = 0, pktc = 0;
1192 int i, ret;
1193 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1194 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1195
1196 mipi_dsi_create_packet(&packet, msg);
1197
1198 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1199 pkth |= VC4_SET_FIELD(packet.header[1] |
1200 (packet.header[2] << 8),
1201 DSI_TXPKT1H_BC_PARAM);
1202 if (is_long) {
1203 /* Divide data across the various FIFOs we have available.
1204 * The command FIFO takes byte-oriented data, but is of
1205 * limited size. The pixel FIFO (never actually used for
1206 * pixel data in reality) is word oriented, and substantially
1207 * larger. So, we use the pixel FIFO for most of the data,
1208 * sending the residual bytes in the command FIFO at the start.
1209 *
1210 * With this arrangement, the command FIFO will never get full.
1211 */
1212 if (packet.payload_length <= 16) {
1213 cmd_fifo_len = packet.payload_length;
1214 pix_fifo_len = 0;
1215 } else {
1216 cmd_fifo_len = (packet.payload_length %
1217 DSI_PIX_FIFO_WIDTH);
1218 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1219 DSI_PIX_FIFO_WIDTH);
1220 }
1221
1222 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1223
1224 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1225 }
1226
1227 if (msg->rx_len) {
1228 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1229 DSI_TXPKT1C_CMD_CTRL);
1230 } else {
1231 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1232 DSI_TXPKT1C_CMD_CTRL);
1233 }
1234
1235 for (i = 0; i < cmd_fifo_len; i++)
1236 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1237 for (i = 0; i < pix_fifo_len; i++) {
1238 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1239
1240 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1241 pix[0] |
1242 pix[1] << 8 |
1243 pix[2] << 16 |
1244 pix[3] << 24);
1245 }
1246
1247 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1248 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1249 if (is_long)
1250 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1251
1252 /* Send one copy of the packet. Larger repeats are used for pixel
1253 * data in command mode.
1254 */
1255 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1256
1257 pktc |= DSI_TXPKT1C_CMD_EN;
1258 if (pix_fifo_len) {
1259 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1260 DSI_TXPKT1C_DISPLAY_NO);
1261 } else {
1262 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1263 DSI_TXPKT1C_DISPLAY_NO);
1264 }
1265
1266 /* Enable the appropriate interrupt for the transfer completion. */
1267 dsi->xfer_result = 0;
1268 reinit_completion(&dsi->xfer_completion);
1269 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1270 if (msg->rx_len) {
1271 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1272 DSI1_INT_PHY_DIR_RTF));
1273 } else {
1274 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1275 DSI1_INT_TXPKT1_DONE));
1276 }
1277
1278 /* Send the packet. */
1279 DSI_PORT_WRITE(TXPKT1H, pkth);
1280 DSI_PORT_WRITE(TXPKT1C, pktc);
1281
1282 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1283 msecs_to_jiffies(1000))) {
1284 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1285 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1286 DSI_PORT_READ(INT_STAT));
1287 ret = -ETIMEDOUT;
1288 } else {
1289 ret = dsi->xfer_result;
1290 }
1291
1292 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1293
1294 if (ret)
1295 goto reset_fifo_and_return;
1296
1297 if (ret == 0 && msg->rx_len) {
1298 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1299 u8 *msg_rx = msg->rx_buf;
1300
1301 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1302 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1303 DSI_RXPKT1H_BC_PARAM);
1304
1305 if (rxlen != msg->rx_len) {
1306 DRM_ERROR("DSI returned %db, expecting %db\n",
1307 rxlen, (int)msg->rx_len);
1308 ret = -ENXIO;
1309 goto reset_fifo_and_return;
1310 }
1311
1312 for (i = 0; i < msg->rx_len; i++)
1313 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1314 } else {
1315 /* FINISHME: Handle AWER */
1316
1317 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1318 DSI_RXPKT1H_SHORT_0);
1319 if (msg->rx_len > 1) {
1320 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1321 DSI_RXPKT1H_SHORT_1);
1322 }
1323 }
1324 }
1325
1326 return ret;
1327
1328reset_fifo_and_return:
1329 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1330
1331 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1332 udelay(1);
1333 DSI_PORT_WRITE(CTRL,
1334 DSI_PORT_READ(CTRL) |
1335 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1336
1337 DSI_PORT_WRITE(TXPKT1C, 0);
1338 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1339 return ret;
1340}
1341
1342static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1343 struct mipi_dsi_device *device)
1344{
1345 struct vc4_dsi *dsi = host_to_dsi(host);
1346 int ret = 0;
1347
1348 dsi->lanes = device->lanes;
1349 dsi->channel = device->channel;
1350 dsi->format = device->format;
1351 dsi->mode_flags = device->mode_flags;
1352
1353 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1354 dev_err(&dsi->pdev->dev,
1355 "Only VIDEO mode panels supported currently.\n");
1356 return 0;
1357 }
1358
1359 dsi->panel = of_drm_find_panel(device->dev.of_node);
1360 if (!dsi->panel)
1361 return 0;
1362
1363 ret = drm_panel_attach(dsi->panel, dsi->connector);
1364 if (ret != 0)
1365 return ret;
1366
1367 drm_helper_hpd_irq_event(dsi->connector->dev);
1368
1369 return 0;
1370}
1371
1372static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1373 struct mipi_dsi_device *device)
1374{
1375 struct vc4_dsi *dsi = host_to_dsi(host);
1376
1377 if (dsi->panel) {
1378 int ret = drm_panel_detach(dsi->panel);
1379
1380 if (ret)
1381 return ret;
1382
1383 dsi->panel = NULL;
1384
1385 drm_helper_hpd_irq_event(dsi->connector->dev);
1386 }
1387
1388 return 0;
1389}
1390
1391static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1392 .attach = vc4_dsi_host_attach,
1393 .detach = vc4_dsi_host_detach,
1394 .transfer = vc4_dsi_host_transfer,
1395};
1396
1397static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1398 .disable = vc4_dsi_encoder_disable,
1399 .enable = vc4_dsi_encoder_enable,
1400};
1401
1402static const struct of_device_id vc4_dsi_dt_match[] = {
1403 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1404 {}
1405};
1406
1407static void dsi_handle_error(struct vc4_dsi *dsi,
1408 irqreturn_t *ret, u32 stat, u32 bit,
1409 const char *type)
1410{
1411 if (!(stat & bit))
1412 return;
1413
1414 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1415 *ret = IRQ_HANDLED;
1416}
1417
1418static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1419{
1420 struct vc4_dsi *dsi = data;
1421 u32 stat = DSI_PORT_READ(INT_STAT);
1422 irqreturn_t ret = IRQ_NONE;
1423
1424 DSI_PORT_WRITE(INT_STAT, stat);
1425
1426 dsi_handle_error(dsi, &ret, stat,
1427 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1428 dsi_handle_error(dsi, &ret, stat,
1429 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1430 dsi_handle_error(dsi, &ret, stat,
1431 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1432 dsi_handle_error(dsi, &ret, stat,
1433 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1434 dsi_handle_error(dsi, &ret, stat,
1435 DSI1_INT_HSTX_TO, "HSTX timeout");
1436 dsi_handle_error(dsi, &ret, stat,
1437 DSI1_INT_LPRX_TO, "LPRX timeout");
1438 dsi_handle_error(dsi, &ret, stat,
1439 DSI1_INT_TA_TO, "turnaround timeout");
1440 dsi_handle_error(dsi, &ret, stat,
1441 DSI1_INT_PR_TO, "peripheral reset timeout");
1442
1443 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1444 complete(&dsi->xfer_completion);
1445 ret = IRQ_HANDLED;
1446 } else if (stat & DSI1_INT_HSTX_TO) {
1447 complete(&dsi->xfer_completion);
1448 dsi->xfer_result = -ETIMEDOUT;
1449 ret = IRQ_HANDLED;
1450 }
1451
1452 return ret;
1453}
1454
1455/**
72f793f1
EA
1456 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1457 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1458 * @dsi: DSI encoder
4078f575
EA
1459 */
1460static int
1461vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1462{
1463 struct device *dev = &dsi->pdev->dev;
1464 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1465 static const struct {
1466 const char *dsi0_name, *dsi1_name;
1467 int div;
1468 } phy_clocks[] = {
1469 { "dsi0_byte", "dsi1_byte", 8 },
1470 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1471 { "dsi0_ddr", "dsi1_ddr", 2 },
1472 };
1473 int i;
1474
1475 dsi->clk_onecell = devm_kzalloc(dev,
1476 sizeof(*dsi->clk_onecell) +
1477 ARRAY_SIZE(phy_clocks) *
1478 sizeof(struct clk_hw *),
1479 GFP_KERNEL);
1480 if (!dsi->clk_onecell)
1481 return -ENOMEM;
1482 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1483
1484 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1485 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1486 struct clk_init_data init;
1487 int ret;
1488
1489 /* We just use core fixed factor clock ops for the PHY
1490 * clocks. The clocks are actually gated by the
1491 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1492 * setting if we use the DDR/DDR2 clocks. However,
1493 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1494 * setting both our parent DSI PLL's rate and this
1495 * clock's rate, so it knows if DDR/DDR2 are going to
1496 * be used and could enable the gates itself.
1497 */
1498 fix->mult = 1;
1499 fix->div = phy_clocks[i].div;
1500 fix->hw.init = &init;
1501
1502 memset(&init, 0, sizeof(init));
1503 init.parent_names = &parent_name;
1504 init.num_parents = 1;
1505 if (dsi->port == 1)
1506 init.name = phy_clocks[i].dsi1_name;
1507 else
1508 init.name = phy_clocks[i].dsi0_name;
1509 init.ops = &clk_fixed_factor_ops;
1510
1511 ret = devm_clk_hw_register(dev, &fix->hw);
1512 if (ret)
1513 return ret;
1514
1515 dsi->clk_onecell->hws[i] = &fix->hw;
1516 }
1517
1518 return of_clk_add_hw_provider(dev->of_node,
1519 of_clk_hw_onecell_get,
1520 dsi->clk_onecell);
1521}
1522
1523static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1524{
1525 struct platform_device *pdev = to_platform_device(dev);
1526 struct drm_device *drm = dev_get_drvdata(master);
1527 struct vc4_dev *vc4 = to_vc4_dev(drm);
1528 struct vc4_dsi *dsi;
1529 struct vc4_dsi_encoder *vc4_dsi_encoder;
1530 const struct of_device_id *match;
1531 dma_cap_mask_t dma_mask;
1532 int ret;
1533
1534 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1535 if (!dsi)
1536 return -ENOMEM;
1537
1538 match = of_match_device(vc4_dsi_dt_match, dev);
1539 if (!match)
1540 return -ENODEV;
1541
1542 dsi->port = (uintptr_t)match->data;
1543
1544 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1545 GFP_KERNEL);
1546 if (!vc4_dsi_encoder)
1547 return -ENOMEM;
1548 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1549 vc4_dsi_encoder->dsi = dsi;
1550 dsi->encoder = &vc4_dsi_encoder->base.base;
1551
1552 dsi->pdev = pdev;
1553 dsi->regs = vc4_ioremap_regs(pdev, 0);
1554 if (IS_ERR(dsi->regs))
1555 return PTR_ERR(dsi->regs);
1556
1557 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1558 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1559 DSI_PORT_READ(ID), DSI_ID_VALUE);
1560 return -ENODEV;
1561 }
1562
1563 /* DSI1 has a broken AXI slave that doesn't respond to writes
1564 * from the ARM. It does handle writes from the DMA engine,
1565 * so set up a channel for talking to it.
1566 */
1567 if (dsi->port == 1) {
1568 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1569 &dsi->reg_dma_paddr,
1570 GFP_KERNEL);
1571 if (!dsi->reg_dma_mem) {
1572 DRM_ERROR("Failed to get DMA memory\n");
1573 return -ENOMEM;
1574 }
1575
1576 dma_cap_zero(dma_mask);
1577 dma_cap_set(DMA_MEMCPY, dma_mask);
1578 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1579 if (IS_ERR(dsi->reg_dma_chan)) {
1580 ret = PTR_ERR(dsi->reg_dma_chan);
1581 if (ret != -EPROBE_DEFER)
1582 DRM_ERROR("Failed to get DMA channel: %d\n",
1583 ret);
1584 return ret;
1585 }
1586
1587 /* Get the physical address of the device's registers. The
1588 * struct resource for the regs gives us the bus address
1589 * instead.
1590 */
1591 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1592 0, NULL, NULL));
1593 }
1594
1595 init_completion(&dsi->xfer_completion);
1596 /* At startup enable error-reporting interrupts and nothing else. */
1597 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1598 /* Clear any existing interrupt state. */
1599 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1600
1601 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1602 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1603 if (ret) {
1604 if (ret != -EPROBE_DEFER)
1605 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1606 return ret;
1607 }
1608
1609 dsi->escape_clock = devm_clk_get(dev, "escape");
1610 if (IS_ERR(dsi->escape_clock)) {
1611 ret = PTR_ERR(dsi->escape_clock);
1612 if (ret != -EPROBE_DEFER)
1613 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1614 return ret;
1615 }
1616
1617 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1618 if (IS_ERR(dsi->pll_phy_clock)) {
1619 ret = PTR_ERR(dsi->pll_phy_clock);
1620 if (ret != -EPROBE_DEFER)
1621 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1622 return ret;
1623 }
1624
1625 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1626 if (IS_ERR(dsi->pixel_clock)) {
1627 ret = PTR_ERR(dsi->pixel_clock);
1628 if (ret != -EPROBE_DEFER)
1629 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1630 return ret;
1631 }
1632
1633 /* The esc clock rate is supposed to always be 100Mhz. */
1634 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1635 if (ret) {
1636 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1637 return ret;
1638 }
1639
1640 ret = vc4_dsi_init_phy_clocks(dsi);
1641 if (ret)
1642 return ret;
1643
1644 if (dsi->port == 1)
1645 vc4->dsi1 = dsi;
1646
1647 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1648 DRM_MODE_ENCODER_DSI, NULL);
1649 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1650
1651 dsi->connector = vc4_dsi_connector_init(drm, dsi);
1652 if (IS_ERR(dsi->connector)) {
1653 ret = PTR_ERR(dsi->connector);
1654 goto err_destroy_encoder;
1655 }
1656
1657 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1658 dsi->dsi_host.dev = dev;
1659
1660 mipi_dsi_host_register(&dsi->dsi_host);
1661
1662 dev_set_drvdata(dev, dsi);
1663
1664 pm_runtime_enable(dev);
1665
1666 return 0;
1667
1668err_destroy_encoder:
1669 vc4_dsi_encoder_destroy(dsi->encoder);
1670
1671 return ret;
1672}
1673
1674static void vc4_dsi_unbind(struct device *dev, struct device *master,
1675 void *data)
1676{
1677 struct drm_device *drm = dev_get_drvdata(master);
1678 struct vc4_dev *vc4 = to_vc4_dev(drm);
1679 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1680
1681 pm_runtime_disable(dev);
1682
1683 vc4_dsi_connector_destroy(dsi->connector);
1684 vc4_dsi_encoder_destroy(dsi->encoder);
1685
1686 mipi_dsi_host_unregister(&dsi->dsi_host);
1687
1688 clk_disable_unprepare(dsi->pll_phy_clock);
1689 clk_disable_unprepare(dsi->escape_clock);
1690
1691 if (dsi->port == 1)
1692 vc4->dsi1 = NULL;
1693}
1694
1695static const struct component_ops vc4_dsi_ops = {
1696 .bind = vc4_dsi_bind,
1697 .unbind = vc4_dsi_unbind,
1698};
1699
1700static int vc4_dsi_dev_probe(struct platform_device *pdev)
1701{
1702 return component_add(&pdev->dev, &vc4_dsi_ops);
1703}
1704
1705static int vc4_dsi_dev_remove(struct platform_device *pdev)
1706{
1707 component_del(&pdev->dev, &vc4_dsi_ops);
1708 return 0;
1709}
1710
1711struct platform_driver vc4_dsi_driver = {
1712 .probe = vc4_dsi_dev_probe,
1713 .remove = vc4_dsi_dev_remove,
1714 .driver = {
1715 .name = "vc4_dsi",
1716 .of_match_table = vc4_dsi_dt_match,
1717 },
1718};