]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ide/ide-iops.c
ide: add IDE_HFLAG_MMIO host flag (take 2)
[mirror_ubuntu-bionic-kernel.git] / drivers / ide / ide-iops.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
1e86240f 24#include <linux/nmi.h>
1da177e4
LT
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 * Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37 return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42 return (u16) inw(port);
43}
44
45static void ide_insw (unsigned long port, void *addr, u32 count)
46{
47 insw(port, addr, count);
48}
49
1da177e4
LT
50static void ide_insl (unsigned long port, void *addr, u32 count)
51{
52 insl(port, addr, count);
53}
54
55static void ide_outb (u8 val, unsigned long port)
56{
57 outb(val, port);
58}
59
60static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61{
62 outb(addr, port);
63}
64
65static void ide_outw (u16 val, unsigned long port)
66{
67 outw(val, port);
68}
69
70static void ide_outsw (unsigned long port, void *addr, u32 count)
71{
72 outsw(port, addr, count);
73}
74
1da177e4
LT
75static void ide_outsl (unsigned long port, void *addr, u32 count)
76{
77 outsl(port, addr, count);
78}
79
80void default_hwif_iops (ide_hwif_t *hwif)
81{
82 hwif->OUTB = ide_outb;
83 hwif->OUTBSYNC = ide_outbsync;
84 hwif->OUTW = ide_outw;
1da177e4
LT
85 hwif->OUTSW = ide_outsw;
86 hwif->OUTSL = ide_outsl;
87 hwif->INB = ide_inb;
88 hwif->INW = ide_inw;
1da177e4
LT
89 hwif->INSW = ide_insw;
90 hwif->INSL = ide_insl;
91}
92
1da177e4
LT
93/*
94 * MMIO operations, typically used for SATA controllers
95 */
96
97static u8 ide_mm_inb (unsigned long port)
98{
99 return (u8) readb((void __iomem *) port);
100}
101
102static u16 ide_mm_inw (unsigned long port)
103{
104 return (u16) readw((void __iomem *) port);
105}
106
107static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108{
109 __ide_mm_insw((void __iomem *) port, addr, count);
110}
111
1da177e4
LT
112static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113{
114 __ide_mm_insl((void __iomem *) port, addr, count);
115}
116
117static void ide_mm_outb (u8 value, unsigned long port)
118{
119 writeb(value, (void __iomem *) port);
120}
121
122static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123{
124 writeb(value, (void __iomem *) port);
125}
126
127static void ide_mm_outw (u16 value, unsigned long port)
128{
129 writew(value, (void __iomem *) port);
130}
131
132static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133{
134 __ide_mm_outsw((void __iomem *) port, addr, count);
135}
136
1da177e4
LT
137static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138{
139 __ide_mm_outsl((void __iomem *) port, addr, count);
140}
141
142void default_hwif_mmiops (ide_hwif_t *hwif)
143{
144 hwif->OUTB = ide_mm_outb;
145 /* Most systems will need to override OUTBSYNC, alas however
146 this one is controller specific! */
147 hwif->OUTBSYNC = ide_mm_outbsync;
148 hwif->OUTW = ide_mm_outw;
1da177e4
LT
149 hwif->OUTSW = ide_mm_outsw;
150 hwif->OUTSL = ide_mm_outsl;
151 hwif->INB = ide_mm_inb;
152 hwif->INW = ide_mm_inw;
1da177e4
LT
153 hwif->INSW = ide_mm_insw;
154 hwif->INSL = ide_mm_insl;
155}
156
157EXPORT_SYMBOL(default_hwif_mmiops);
158
1da177e4
LT
159void SELECT_DRIVE (ide_drive_t *drive)
160{
23579a2a 161 ide_hwif_t *hwif = drive->hwif;
ac95beed 162 const struct ide_port_ops *port_ops = hwif->port_ops;
23579a2a 163
ac95beed
BZ
164 if (port_ops && port_ops->selectproc)
165 port_ops->selectproc(drive);
23579a2a 166
4c3032d8 167 hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
1da177e4
LT
168}
169
1da177e4
LT
170void SELECT_MASK (ide_drive_t *drive, int mask)
171{
ac95beed
BZ
172 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
173
174 if (port_ops && port_ops->maskproc)
175 port_ops->maskproc(drive, mask);
1da177e4
LT
176}
177
1da177e4
LT
178/*
179 * Some localbus EIDE interfaces require a special access sequence
180 * when using 32-bit I/O instructions to transfer data. We call this
181 * the "vlb_sync" sequence, which consists of three successive reads
182 * of the sector count register location, with interrupts disabled
183 * to ensure that the reads all happen together.
184 */
185static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
186{
187 (void) HWIF(drive)->INB(port);
188 (void) HWIF(drive)->INB(port);
189 (void) HWIF(drive)->INB(port);
190}
191
192/*
193 * This is used for most PIO data transfers *from* the IDE interface
9567b349
BZ
194 *
195 * These routines will round up any request for an odd number of bytes,
196 * so if an odd len is specified, be sure that there's at least one
197 * extra byte allocated for the buffer.
1da177e4 198 */
92d3ab27 199static void ata_input_data(ide_drive_t *drive, struct request *rq,
9567b349 200 void *buf, unsigned int len)
1da177e4 201{
4c3032d8
BZ
202 ide_hwif_t *hwif = drive->hwif;
203 struct ide_io_ports *io_ports = &hwif->io_ports;
9567b349 204 unsigned long data_addr = io_ports->data_addr;
4c3032d8 205 u8 io_32bit = drive->io_32bit;
1da177e4 206
9567b349
BZ
207 len++;
208
1da177e4
LT
209 if (io_32bit) {
210 if (io_32bit & 2) {
211 unsigned long flags;
23579a2a 212
1da177e4 213 local_irq_save(flags);
4c3032d8 214 ata_vlb_sync(drive, io_ports->nsect_addr);
9567b349 215 hwif->INSL(data_addr, buf, len / 4);
1da177e4
LT
216 local_irq_restore(flags);
217 } else
9567b349
BZ
218 hwif->INSL(data_addr, buf, len / 4);
219
220 if ((len & 3) >= 2)
221 hwif->INSW(data_addr, (u8 *)buf + (len & ~3), 1);
23579a2a 222 } else
9567b349 223 hwif->INSW(data_addr, buf, len / 2);
1da177e4
LT
224}
225
226/*
227 * This is used for most PIO data transfers *to* the IDE interface
228 */
92d3ab27 229static void ata_output_data(ide_drive_t *drive, struct request *rq,
9567b349 230 void *buf, unsigned int len)
1da177e4 231{
4c3032d8
BZ
232 ide_hwif_t *hwif = drive->hwif;
233 struct ide_io_ports *io_ports = &hwif->io_ports;
9567b349 234 unsigned long data_addr = io_ports->data_addr;
4c3032d8 235 u8 io_32bit = drive->io_32bit;
1da177e4
LT
236
237 if (io_32bit) {
238 if (io_32bit & 2) {
239 unsigned long flags;
23579a2a 240
1da177e4 241 local_irq_save(flags);
4c3032d8 242 ata_vlb_sync(drive, io_ports->nsect_addr);
9567b349 243 hwif->OUTSL(data_addr, buf, len / 4);
1da177e4
LT
244 local_irq_restore(flags);
245 } else
9567b349 246 hwif->OUTSL(data_addr, buf, len / 4);
1da177e4 247
9567b349
BZ
248 if ((len & 3) >= 2)
249 hwif->OUTSW(data_addr, (u8 *)buf + (len & ~3), 1);
250 } else
251 hwif->OUTSW(data_addr, buf, len / 2);
1da177e4
LT
252}
253
254void default_hwif_transport(ide_hwif_t *hwif)
255{
9567b349
BZ
256 hwif->input_data = ata_input_data;
257 hwif->output_data = ata_output_data;
1da177e4
LT
258}
259
1da177e4
LT
260void ide_fix_driveid (struct hd_driveid *id)
261{
262#ifndef __LITTLE_ENDIAN
263# ifdef __BIG_ENDIAN
264 int i;
265 u16 *stringcast;
266
267 id->config = __le16_to_cpu(id->config);
268 id->cyls = __le16_to_cpu(id->cyls);
269 id->reserved2 = __le16_to_cpu(id->reserved2);
270 id->heads = __le16_to_cpu(id->heads);
271 id->track_bytes = __le16_to_cpu(id->track_bytes);
272 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
273 id->sectors = __le16_to_cpu(id->sectors);
274 id->vendor0 = __le16_to_cpu(id->vendor0);
275 id->vendor1 = __le16_to_cpu(id->vendor1);
276 id->vendor2 = __le16_to_cpu(id->vendor2);
277 stringcast = (u16 *)&id->serial_no[0];
278 for (i = 0; i < (20/2); i++)
279 stringcast[i] = __le16_to_cpu(stringcast[i]);
280 id->buf_type = __le16_to_cpu(id->buf_type);
281 id->buf_size = __le16_to_cpu(id->buf_size);
282 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
283 stringcast = (u16 *)&id->fw_rev[0];
284 for (i = 0; i < (8/2); i++)
285 stringcast[i] = __le16_to_cpu(stringcast[i]);
286 stringcast = (u16 *)&id->model[0];
287 for (i = 0; i < (40/2); i++)
288 stringcast[i] = __le16_to_cpu(stringcast[i]);
289 id->dword_io = __le16_to_cpu(id->dword_io);
290 id->reserved50 = __le16_to_cpu(id->reserved50);
291 id->field_valid = __le16_to_cpu(id->field_valid);
292 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
293 id->cur_heads = __le16_to_cpu(id->cur_heads);
294 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
295 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
296 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
297 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
298 id->dma_1word = __le16_to_cpu(id->dma_1word);
299 id->dma_mword = __le16_to_cpu(id->dma_mword);
300 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
301 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
302 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
303 id->eide_pio = __le16_to_cpu(id->eide_pio);
304 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
305 for (i = 0; i < 2; ++i)
306 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
307 for (i = 0; i < 4; ++i)
308 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
309 id->queue_depth = __le16_to_cpu(id->queue_depth);
310 for (i = 0; i < 4; ++i)
311 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
312 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
313 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
314 id->command_set_1 = __le16_to_cpu(id->command_set_1);
315 id->command_set_2 = __le16_to_cpu(id->command_set_2);
316 id->cfsse = __le16_to_cpu(id->cfsse);
317 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
318 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
319 id->csf_default = __le16_to_cpu(id->csf_default);
320 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
321 id->trseuc = __le16_to_cpu(id->trseuc);
322 id->trsEuc = __le16_to_cpu(id->trsEuc);
323 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
324 id->mprc = __le16_to_cpu(id->mprc);
325 id->hw_config = __le16_to_cpu(id->hw_config);
326 id->acoustic = __le16_to_cpu(id->acoustic);
327 id->msrqs = __le16_to_cpu(id->msrqs);
328 id->sxfert = __le16_to_cpu(id->sxfert);
329 id->sal = __le16_to_cpu(id->sal);
330 id->spg = __le32_to_cpu(id->spg);
331 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
332 for (i = 0; i < 22; i++)
333 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
334 id->last_lun = __le16_to_cpu(id->last_lun);
335 id->word127 = __le16_to_cpu(id->word127);
336 id->dlf = __le16_to_cpu(id->dlf);
337 id->csfo = __le16_to_cpu(id->csfo);
338 for (i = 0; i < 26; i++)
339 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
340 id->word156 = __le16_to_cpu(id->word156);
341 for (i = 0; i < 3; i++)
342 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
343 id->cfa_power = __le16_to_cpu(id->cfa_power);
344 for (i = 0; i < 14; i++)
345 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
346 for (i = 0; i < 31; i++)
347 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
348 for (i = 0; i < 48; i++)
349 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
350 id->integrity_word = __le16_to_cpu(id->integrity_word);
351# else
352# error "Please fix <asm/byteorder.h>"
353# endif
354#endif
355}
356
01745112
BZ
357/*
358 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
359 * removing leading/trailing blanks and compressing internal blanks.
360 * It is primarily used to tidy up the model name/number fields as
361 * returned by the WIN_[P]IDENTIFY commands.
362 */
363
1da177e4
LT
364void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
365{
366 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
367
368 if (byteswap) {
369 /* convert from big-endian to host byte order */
370 for (p = end ; p != s;) {
371 unsigned short *pp = (unsigned short *) (p -= 2);
372 *pp = ntohs(*pp);
373 }
374 }
375 /* strip leading blanks */
376 while (s != end && *s == ' ')
377 ++s;
378 /* compress internal blanks and strip trailing blanks */
379 while (s != end && *s) {
380 if (*s++ != ' ' || (s != end && *s && *s != ' '))
381 *p++ = *(s-1);
382 }
383 /* wipe out trailing garbage */
384 while (p != end)
385 *p++ = '\0';
386}
387
388EXPORT_SYMBOL(ide_fixstring);
389
390/*
391 * Needed for PCI irq sharing
392 */
393int drive_is_ready (ide_drive_t *drive)
394{
395 ide_hwif_t *hwif = HWIF(drive);
396 u8 stat = 0;
397
398 if (drive->waiting_for_dma)
5e37bdc0 399 return hwif->dma_ops->dma_test_irq(drive);
1da177e4
LT
400
401#if 0
402 /* need to guarantee 400ns since last command was issued */
403 udelay(1);
404#endif
405
1da177e4
LT
406 /*
407 * We do a passive status test under shared PCI interrupts on
408 * cards that truly share the ATA side interrupt, but may also share
409 * an interrupt with another pci card/device. We make no assumptions
410 * about possible isa-pnp and pci-pnp issues yet.
411 */
4c3032d8 412 if (hwif->io_ports.ctl_addr)
c47137a9 413 stat = ide_read_altstatus(drive);
1da177e4 414 else
1da177e4 415 /* Note: this may clear a pending IRQ!! */
c47137a9 416 stat = ide_read_status(drive);
1da177e4
LT
417
418 if (stat & BUSY_STAT)
419 /* drive busy: definitely not interrupting */
420 return 0;
421
422 /* drive ready: *might* be interrupting */
423 return 1;
424}
425
426EXPORT_SYMBOL(drive_is_ready);
427
1da177e4
LT
428/*
429 * This routine busy-waits for the drive status to be not "busy".
430 * It then checks the status for all of the "good" bits and none
431 * of the "bad" bits, and if all is okay it returns 0. All other
74af21cf 432 * cases return error -- caller may then invoke ide_error().
1da177e4
LT
433 *
434 * This routine should get fixed to not hog the cpu during extra long waits..
435 * That could be done by busy-waiting for the first jiffy or two, and then
436 * setting a timer to wake up at half second intervals thereafter,
437 * until timeout is achieved, before timing out.
438 */
aedea591 439static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
1da177e4 440{
1da177e4 441 unsigned long flags;
74af21cf
BZ
442 int i;
443 u8 stat;
1da177e4
LT
444
445 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
c47137a9
BZ
446 stat = ide_read_status(drive);
447
448 if (stat & BUSY_STAT) {
1da177e4
LT
449 local_irq_set(flags);
450 timeout += jiffies;
c47137a9 451 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
1da177e4
LT
452 if (time_after(jiffies, timeout)) {
453 /*
454 * One last read after the timeout in case
455 * heavy interrupt load made us not make any
456 * progress during the timeout..
457 */
c47137a9 458 stat = ide_read_status(drive);
1da177e4
LT
459 if (!(stat & BUSY_STAT))
460 break;
461
462 local_irq_restore(flags);
74af21cf
BZ
463 *rstat = stat;
464 return -EBUSY;
1da177e4
LT
465 }
466 }
467 local_irq_restore(flags);
468 }
469 /*
470 * Allow status to settle, then read it again.
471 * A few rare drives vastly violate the 400ns spec here,
472 * so we'll wait up to 10usec for a "good" status
473 * rather than expensively fail things immediately.
474 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
475 */
476 for (i = 0; i < 10; i++) {
477 udelay(1);
c47137a9
BZ
478 stat = ide_read_status(drive);
479
480 if (OK_STAT(stat, good, bad)) {
74af21cf 481 *rstat = stat;
1da177e4 482 return 0;
74af21cf 483 }
1da177e4 484 }
74af21cf
BZ
485 *rstat = stat;
486 return -EFAULT;
487}
488
489/*
490 * In case of error returns error value after doing "*startstop = ide_error()".
491 * The caller should return the updated value of "startstop" in this case,
492 * "startstop" is unchanged when the function returns 0.
493 */
494int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
495{
496 int err;
497 u8 stat;
498
499 /* bail early if we've exceeded max_failures */
500 if (drive->max_failures && (drive->failures > drive->max_failures)) {
501 *startstop = ide_stopped;
502 return 1;
503 }
504
505 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
506
507 if (err) {
508 char *s = (err == -EBUSY) ? "status timeout" : "status error";
509 *startstop = ide_error(drive, s, stat);
510 }
511
512 return err;
1da177e4
LT
513}
514
515EXPORT_SYMBOL(ide_wait_stat);
516
a5b7e70d
BZ
517/**
518 * ide_in_drive_list - look for drive in black/white list
519 * @id: drive identifier
520 * @drive_table: list to inspect
521 *
522 * Look for a drive in the blacklist and the whitelist tables
523 * Returns 1 if the drive is found in the table.
524 */
525
526int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
527{
528 for ( ; drive_table->id_model; drive_table++)
529 if ((!strcmp(drive_table->id_model, id->model)) &&
530 (!drive_table->id_firmware ||
531 strstr(id->fw_rev, drive_table->id_firmware)))
532 return 1;
533 return 0;
534}
535
b0244a00
BZ
536EXPORT_SYMBOL_GPL(ide_in_drive_list);
537
a5b7e70d
BZ
538/*
539 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
540 * We list them here and depend on the device side cable detection for them.
8588a2b7
BZ
541 *
542 * Some optical devices with the buggy firmwares have the same problem.
a5b7e70d
BZ
543 */
544static const struct drive_list_entry ivb_list[] = {
545 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
8588a2b7 546 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
e97564f3
PM
547 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
548 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
549 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
a5b7e70d
BZ
550 { NULL , NULL }
551};
552
1da177e4
LT
553/*
554 * All hosts that use the 80c ribbon must use!
555 * The name is derived from upper byte of word 93 and the 80c ribbon.
556 */
557u8 eighty_ninty_three (ide_drive_t *drive)
558{
7f8f48af
BZ
559 ide_hwif_t *hwif = drive->hwif;
560 struct hd_driveid *id = drive->id;
a5b7e70d 561 int ivb = ide_in_drive_list(id, ivb_list);
7f8f48af 562
49521f97
BZ
563 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
564 return 1;
565
a5b7e70d
BZ
566 if (ivb)
567 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
568 drive->name);
569
b98f8803
GK
570 if (ide_dev_is_sata(id) && !ivb)
571 return 1;
572
a5b7e70d 573 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
7f8f48af 574 goto no_80w;
1a1276e7 575
f68d9320
BZ
576 /*
577 * FIXME:
f367bed0 578 * - change master/slave IDENTIFY order
a5b7e70d 579 * - force bit13 (80c cable present) check also for !ivb devices
f68d9320
BZ
580 * (unless the slave device is pre-ATA3)
581 */
a5b7e70d 582 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
7f8f48af
BZ
583 return 1;
584
585no_80w:
586 if (drive->udma33_warned == 1)
587 return 0;
588
589 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
590 "limiting max speed to UDMA33\n",
49521f97
BZ
591 drive->name,
592 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
7f8f48af
BZ
593
594 drive->udma33_warned = 1;
595
596 return 0;
1da177e4
LT
597}
598
8a455134 599int ide_driveid_update(ide_drive_t *drive)
1da177e4 600{
8a455134 601 ide_hwif_t *hwif = drive->hwif;
1da177e4 602 struct hd_driveid *id;
8a455134 603 unsigned long timeout, flags;
c47137a9 604 u8 stat;
1da177e4 605
1da177e4
LT
606 /*
607 * Re-read drive->id for possible DMA mode
608 * change (copied from ide-probe.c)
609 */
1da177e4
LT
610
611 SELECT_MASK(drive, 1);
81ca6919 612 ide_set_irq(drive, 1);
1da177e4 613 msleep(50);
4c3032d8 614 hwif->OUTB(WIN_IDENTIFY, hwif->io_ports.command_addr);
1da177e4
LT
615 timeout = jiffies + WAIT_WORSTCASE;
616 do {
617 if (time_after(jiffies, timeout)) {
618 SELECT_MASK(drive, 0);
619 return 0; /* drive timed-out */
620 }
c47137a9 621
1da177e4 622 msleep(50); /* give drive a breather */
c47137a9
BZ
623 stat = ide_read_altstatus(drive);
624 } while (stat & BUSY_STAT);
625
1da177e4 626 msleep(50); /* wait for IRQ and DRQ_STAT */
c47137a9
BZ
627 stat = ide_read_status(drive);
628
629 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
1da177e4
LT
630 SELECT_MASK(drive, 0);
631 printk("%s: CHECK for good STATUS\n", drive->name);
632 return 0;
633 }
634 local_irq_save(flags);
635 SELECT_MASK(drive, 0);
636 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
637 if (!id) {
638 local_irq_restore(flags);
639 return 0;
640 }
9567b349 641 hwif->input_data(drive, NULL, id, SECTOR_SIZE);
c47137a9 642 (void)ide_read_status(drive); /* clear drive IRQ */
1da177e4
LT
643 local_irq_enable();
644 local_irq_restore(flags);
645 ide_fix_driveid(id);
646 if (id) {
647 drive->id->dma_ultra = id->dma_ultra;
648 drive->id->dma_mword = id->dma_mword;
649 drive->id->dma_1word = id->dma_1word;
650 /* anything more ? */
651 kfree(id);
3ab7efe8
BZ
652
653 if (drive->using_dma && ide_id_dma_bug(drive))
654 ide_dma_off(drive);
1da177e4
LT
655 }
656
657 return 1;
1da177e4
LT
658}
659
74af21cf 660int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
1da177e4 661{
74af21cf 662 ide_hwif_t *hwif = drive->hwif;
4c3032d8 663 struct ide_io_ports *io_ports = &hwif->io_ports;
89613e66 664 int error = 0;
1da177e4
LT
665 u8 stat;
666
667// while (HWGROUP(drive)->busy)
668// msleep(50);
669
670#ifdef CONFIG_BLK_DEV_IDEDMA
5e37bdc0
BZ
671 if (hwif->dma_ops) /* check if host supports DMA */
672 hwif->dma_ops->dma_host_set(drive, 0);
1da177e4
LT
673#endif
674
89613e66
SS
675 /* Skip setting PIO flow-control modes on pre-EIDE drives */
676 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
677 goto skip;
678
1da177e4
LT
679 /*
680 * Don't use ide_wait_cmd here - it will
681 * attempt to set_geometry and recalibrate,
682 * but for some reason these don't work at
683 * this point (lost interrupt).
684 */
685 /*
686 * Select the drive, and issue the SETFEATURES command
687 */
688 disable_irq_nosync(hwif->irq);
689
690 /*
691 * FIXME: we race against the running IRQ here if
692 * this is called from non IRQ context. If we use
693 * disable_irq() we hang on the error path. Work
694 * is needed.
695 */
696
697 udelay(1);
698 SELECT_DRIVE(drive);
699 SELECT_MASK(drive, 0);
700 udelay(1);
81ca6919 701 ide_set_irq(drive, 0);
4c3032d8
BZ
702 hwif->OUTB(speed, io_ports->nsect_addr);
703 hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
704 hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
81ca6919
BZ
705 if (drive->quirk_list == 2)
706 ide_set_irq(drive, 1);
1da177e4 707
74af21cf
BZ
708 error = __ide_wait_stat(drive, drive->ready_stat,
709 BUSY_STAT|DRQ_STAT|ERR_STAT,
710 WAIT_CMD, &stat);
1da177e4
LT
711
712 SELECT_MASK(drive, 0);
713
714 enable_irq(hwif->irq);
715
716 if (error) {
717 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
718 return error;
719 }
720
721 drive->id->dma_ultra &= ~0xFF00;
722 drive->id->dma_mword &= ~0x0F00;
723 drive->id->dma_1word &= ~0x0F00;
724
89613e66 725 skip:
1da177e4 726#ifdef CONFIG_BLK_DEV_IDEDMA
f37aaf9e
BZ
727 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
728 drive->using_dma)
5e37bdc0
BZ
729 hwif->dma_ops->dma_host_set(drive, 1);
730 else if (hwif->dma_ops) /* check if host supports DMA */
4a546e04 731 ide_dma_off_quietly(drive);
1da177e4
LT
732#endif
733
734 switch(speed) {
735 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
736 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
737 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
738 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
739 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
740 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
741 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
742 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
743 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
744 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
745 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
746 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
747 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
748 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
749 default: break;
750 }
751 if (!drive->init_speed)
752 drive->init_speed = speed;
753 drive->current_speed = speed;
754 return error;
755}
756
1da177e4
LT
757/*
758 * This should get invoked any time we exit the driver to
759 * wait for an interrupt response from a drive. handler() points
760 * at the appropriate code to handle the next interrupt, and a
761 * timer is started to prevent us from waiting forever in case
762 * something goes wrong (see the ide_timer_expiry() handler later on).
763 *
764 * See also ide_execute_command
765 */
766static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
767 unsigned int timeout, ide_expiry_t *expiry)
768{
769 ide_hwgroup_t *hwgroup = HWGROUP(drive);
770
d30a426d 771 BUG_ON(hwgroup->handler);
1da177e4
LT
772 hwgroup->handler = handler;
773 hwgroup->expiry = expiry;
774 hwgroup->timer.expires = jiffies + timeout;
d30a426d 775 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
776 add_timer(&hwgroup->timer);
777}
778
779void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
780 unsigned int timeout, ide_expiry_t *expiry)
781{
782 unsigned long flags;
783 spin_lock_irqsave(&ide_lock, flags);
784 __ide_set_handler(drive, handler, timeout, expiry);
785 spin_unlock_irqrestore(&ide_lock, flags);
786}
787
788EXPORT_SYMBOL(ide_set_handler);
789
790/**
791 * ide_execute_command - execute an IDE command
792 * @drive: IDE drive to issue the command against
793 * @command: command byte to write
794 * @handler: handler for next phase
795 * @timeout: timeout for command
796 * @expiry: handler to run on timeout
797 *
798 * Helper function to issue an IDE command. This handles the
799 * atomicity requirements, command timing and ensures that the
800 * handler and IRQ setup do not race. All IDE command kick off
801 * should go via this function or do equivalent locking.
802 */
cd2a2d96
BZ
803
804void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
805 unsigned timeout, ide_expiry_t *expiry)
1da177e4
LT
806{
807 unsigned long flags;
1da177e4 808 ide_hwif_t *hwif = HWIF(drive);
629f944b 809
1da177e4 810 spin_lock_irqsave(&ide_lock, flags);
629f944b 811 __ide_set_handler(drive, handler, timeout, expiry);
4c3032d8 812 hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
629f944b
BZ
813 /*
814 * Drive takes 400nS to respond, we must avoid the IRQ being
815 * serviced before that.
816 *
817 * FIXME: we could skip this delay with care on non shared devices
818 */
1da177e4
LT
819 ndelay(400);
820 spin_unlock_irqrestore(&ide_lock, flags);
821}
822
823EXPORT_SYMBOL(ide_execute_command);
824
825
826/* needed below */
827static ide_startstop_t do_reset1 (ide_drive_t *, int);
828
829/*
830 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
831 * during an atapi drive reset operation. If the drive has not yet responded,
832 * and we have not yet hit our maximum waiting time, then the timer is restarted
833 * for another 50ms.
834 */
835static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
836{
837 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1da177e4
LT
838 u8 stat;
839
840 SELECT_DRIVE(drive);
841 udelay (10);
c47137a9 842 stat = ide_read_status(drive);
1da177e4 843
c47137a9 844 if (OK_STAT(stat, 0, BUSY_STAT))
1da177e4 845 printk("%s: ATAPI reset complete\n", drive->name);
c47137a9 846 else {
1da177e4 847 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
848 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
849 /* continue polling */
850 return ide_started;
851 }
852 /* end of polling */
853 hwgroup->polling = 0;
854 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
855 drive->name, stat);
856 /* do it the old fashioned way */
857 return do_reset1(drive, 1);
858 }
859 /* done polling */
860 hwgroup->polling = 0;
913759ac 861 hwgroup->resetting = 0;
1da177e4
LT
862 return ide_stopped;
863}
864
865/*
866 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
867 * during an ide reset operation. If the drives have not yet responded,
868 * and we have not yet hit our maximum waiting time, then the timer is restarted
869 * for another 50ms.
870 */
871static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
872{
873 ide_hwgroup_t *hwgroup = HWGROUP(drive);
874 ide_hwif_t *hwif = HWIF(drive);
ac95beed 875 const struct ide_port_ops *port_ops = hwif->port_ops;
1da177e4
LT
876 u8 tmp;
877
ac95beed
BZ
878 if (port_ops && port_ops->reset_poll) {
879 if (port_ops->reset_poll(drive)) {
1da177e4
LT
880 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
881 hwif->name, drive->name);
882 return ide_stopped;
883 }
884 }
885
c47137a9
BZ
886 tmp = ide_read_status(drive);
887
888 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1da177e4 889 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
890 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
891 /* continue polling */
892 return ide_started;
893 }
894 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
895 drive->failures++;
896 } else {
897 printk("%s: reset: ", hwif->name);
64a57fe4
BZ
898 tmp = ide_read_error(drive);
899
900 if (tmp == 1) {
1da177e4
LT
901 printk("success\n");
902 drive->failures = 0;
903 } else {
904 drive->failures++;
905 printk("master: ");
906 switch (tmp & 0x7f) {
907 case 1: printk("passed");
908 break;
909 case 2: printk("formatter device error");
910 break;
911 case 3: printk("sector buffer error");
912 break;
913 case 4: printk("ECC circuitry error");
914 break;
915 case 5: printk("controlling MPU error");
916 break;
917 default:printk("error (0x%02x?)", tmp);
918 }
919 if (tmp & 0x80)
920 printk("; slave: failed");
921 printk("\n");
922 }
923 }
924 hwgroup->polling = 0; /* done polling */
913759ac 925 hwgroup->resetting = 0; /* done reset attempt */
1da177e4
LT
926 return ide_stopped;
927}
928
1da177e4
LT
929static void ide_disk_pre_reset(ide_drive_t *drive)
930{
931 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
932
933 drive->special.all = 0;
934 drive->special.b.set_geometry = legacy;
935 drive->special.b.recalibrate = legacy;
4ee06b7e 936 drive->mult_count = 0;
1da177e4
LT
937 if (!drive->keep_settings && !drive->using_dma)
938 drive->mult_req = 0;
939 if (drive->mult_req != drive->mult_count)
940 drive->special.b.set_multmode = 1;
941}
942
943static void pre_reset(ide_drive_t *drive)
944{
ac95beed
BZ
945 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
946
1da177e4
LT
947 if (drive->media == ide_disk)
948 ide_disk_pre_reset(drive);
949 else
950 drive->post_reset = 1;
951
99ffbe0e
BZ
952 if (drive->using_dma) {
953 if (drive->crc_count)
578cfa0d 954 ide_check_dma_crc(drive);
99ffbe0e
BZ
955 else
956 ide_dma_off(drive);
957 }
958
959 if (!drive->keep_settings) {
960 if (!drive->using_dma) {
1da177e4
LT
961 drive->unmask = 0;
962 drive->io_32bit = 0;
963 }
964 return;
965 }
1da177e4 966
ac95beed
BZ
967 if (port_ops && port_ops->pre_reset)
968 port_ops->pre_reset(drive);
1da177e4 969
513daadd
SS
970 if (drive->current_speed != 0xff)
971 drive->desired_speed = drive->current_speed;
972 drive->current_speed = 0xff;
1da177e4
LT
973}
974
975/*
976 * do_reset1() attempts to recover a confused drive by resetting it.
977 * Unfortunately, resetting a disk drive actually resets all devices on
978 * the same interface, so it can really be thought of as resetting the
979 * interface rather than resetting the drive.
980 *
981 * ATAPI devices have their own reset mechanism which allows them to be
982 * individually reset without clobbering other devices on the same interface.
983 *
984 * Unfortunately, the IDE interface does not generate an interrupt to let
985 * us know when the reset operation has finished, so we must poll for this.
986 * Equally poor, though, is the fact that this may a very long time to complete,
987 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
988 * we set a timer to poll at 50ms intervals.
989 */
990static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
991{
992 unsigned int unit;
993 unsigned long flags;
994 ide_hwif_t *hwif;
995 ide_hwgroup_t *hwgroup;
4c3032d8 996 struct ide_io_ports *io_ports;
ac95beed 997 const struct ide_port_ops *port_ops;
23579a2a
BZ
998 u8 ctl;
999
1da177e4
LT
1000 spin_lock_irqsave(&ide_lock, flags);
1001 hwif = HWIF(drive);
1002 hwgroup = HWGROUP(drive);
1003
4c3032d8
BZ
1004 io_ports = &hwif->io_ports;
1005
1da177e4 1006 /* We must not reset with running handlers */
125e1874 1007 BUG_ON(hwgroup->handler != NULL);
1da177e4
LT
1008
1009 /* For an ATAPI device, first try an ATAPI SRST. */
1010 if (drive->media != ide_disk && !do_not_try_atapi) {
913759ac 1011 hwgroup->resetting = 1;
1da177e4
LT
1012 pre_reset(drive);
1013 SELECT_DRIVE(drive);
1014 udelay (20);
4c3032d8 1015 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
68ad9910 1016 ndelay(400);
1da177e4
LT
1017 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1018 hwgroup->polling = 1;
1019 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1020 spin_unlock_irqrestore(&ide_lock, flags);
1021 return ide_started;
1022 }
1023
1024 /*
1025 * First, reset any device state data we were maintaining
1026 * for any of the drives on this interface.
1027 */
1028 for (unit = 0; unit < MAX_DRIVES; ++unit)
1029 pre_reset(&hwif->drives[unit]);
1030
4c3032d8 1031 if (io_ports->ctl_addr == 0) {
1da177e4
LT
1032 spin_unlock_irqrestore(&ide_lock, flags);
1033 return ide_stopped;
1034 }
1035
913759ac 1036 hwgroup->resetting = 1;
1da177e4
LT
1037 /*
1038 * Note that we also set nIEN while resetting the device,
1039 * to mask unwanted interrupts from the interface during the reset.
1040 * However, due to the design of PC hardware, this will cause an
1041 * immediate interrupt due to the edge transition it produces.
1042 * This single interrupt gives us a "fast poll" for drives that
1043 * recover from reset very quickly, saving us the first 50ms wait time.
1044 */
1045 /* set SRST and nIEN */
4c3032d8 1046 hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1da177e4
LT
1047 /* more than enough time */
1048 udelay(10);
23579a2a
BZ
1049 if (drive->quirk_list == 2)
1050 ctl = drive->ctl; /* clear SRST and nIEN */
1051 else
1052 ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
4c3032d8 1053 hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1da177e4
LT
1054 /* more than enough time */
1055 udelay(10);
1056 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1057 hwgroup->polling = 1;
1058 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1059
1060 /*
1061 * Some weird controller like resetting themselves to a strange
1062 * state when the disks are reset this way. At least, the Winbond
1063 * 553 documentation says that
1064 */
ac95beed
BZ
1065 port_ops = hwif->port_ops;
1066 if (port_ops && port_ops->resetproc)
1067 port_ops->resetproc(drive);
1da177e4
LT
1068
1069 spin_unlock_irqrestore(&ide_lock, flags);
1070 return ide_started;
1071}
1072
1073/*
1074 * ide_do_reset() is the entry point to the drive/interface reset code.
1075 */
1076
1077ide_startstop_t ide_do_reset (ide_drive_t *drive)
1078{
1079 return do_reset1(drive, 0);
1080}
1081
1082EXPORT_SYMBOL(ide_do_reset);
1083
1084/*
1085 * ide_wait_not_busy() waits for the currently selected device on the hwif
9d501529 1086 * to report a non-busy status, see comments in ide_probe_port().
1da177e4
LT
1087 */
1088int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1089{
1090 u8 stat = 0;
1091
1092 while(timeout--) {
1093 /*
1094 * Turn this into a schedule() sleep once I'm sure
1095 * about locking issues (2.5 work ?).
1096 */
1097 mdelay(1);
4c3032d8 1098 stat = hwif->INB(hwif->io_ports.status_addr);
1da177e4
LT
1099 if ((stat & BUSY_STAT) == 0)
1100 return 0;
1101 /*
1102 * Assume a value of 0xff means nothing is connected to
1103 * the interface and it doesn't implement the pull-down
1104 * resistor on D7.
1105 */
1106 if (stat == 0xff)
1107 return -ENODEV;
6842f8c8 1108 touch_softlockup_watchdog();
1e86240f 1109 touch_nmi_watchdog();
1da177e4
LT
1110 }
1111 return -EBUSY;
1112}
1113
1114EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1115