]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/infiniband/hw/hfi1/chip.c
Merge tag 'perf-urgent-for-mingo-4.14-20170928' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / hw / hfi1 / chip.c
CommitLineData
77241056 1/*
5e6e9424 2 * Copyright(c) 2015 - 2017 Intel Corporation.
77241056
MM
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
77241056
MM
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
77241056
MM
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48/*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52#include <linux/pci.h>
53#include <linux/delay.h>
54#include <linux/interrupt.h>
55#include <linux/module.h>
56
57#include "hfi.h"
58#include "trace.h"
59#include "mad.h"
60#include "pio.h"
61#include "sdma.h"
62#include "eprom.h"
5d9157aa 63#include "efivar.h"
8ebd4cf1 64#include "platform.h"
affa48de 65#include "aspm.h"
4197344b 66#include "affinity.h"
243d9f43 67#include "debugfs.h"
77241056
MM
68
69#define NUM_IB_PORTS 1
70
71uint kdeth_qp;
72module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76module_param(num_vls, uint, S_IRUGO);
77MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79/*
80 * Default time to aggregate two 10K packets from the idle state
81 * (timer not running). The timer starts at the end of the first packet,
82 * so only the time for one 10K packet and header plus a bit extra is needed.
83 * 10 * 1024 + 64 header byte = 10304 byte
84 * 10304 byte / 12.5 GB/s = 824.32ns
85 */
86uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87module_param(rcv_intr_timeout, uint, S_IRUGO);
88MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90uint rcv_intr_count = 16; /* same as qib */
91module_param(rcv_intr_count, uint, S_IRUGO);
92MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94ushort link_crc_mask = SUPPORTED_CRCS;
95module_param(link_crc_mask, ushort, S_IRUGO);
96MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98uint loopback;
99module_param_named(loopback, loopback, uint, S_IRUGO);
100MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102/* Other driver tunables */
103uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104static ushort crc_14b_sideband = 1;
105static uint use_flr = 1;
106uint quick_linkup; /* skip LNI */
107
108struct flag_table {
109 u64 flag; /* the flag */
110 char *str; /* description string */
111 u16 extra; /* extra information */
112 u16 unused0;
113 u32 unused1;
114};
115
116/* str must be a string constant */
117#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118#define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120/* Send Error Consequences */
121#define SEC_WRITE_DROPPED 0x1
122#define SEC_PACKET_DROPPED 0x2
123#define SEC_SC_HALTED 0x4 /* per-context only */
124#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
125
8784ac02 126#define DEFAULT_KRCVQS 2
77241056 127#define MIN_KERNEL_KCTXTS 2
82c2611d 128#define FIRST_KERNEL_KCTXT 1
2280740f
VN
129
130/*
131 * RSM instance allocation
132 * 0 - Verbs
133 * 1 - User Fecn Handling
134 * 2 - Vnic
135 */
136#define RSM_INS_VERBS 0
137#define RSM_INS_FECN 1
138#define RSM_INS_VNIC 2
77241056
MM
139
140/* Bit offset into the GUID which carries HFI id information */
141#define GUID_HFI_INDEX_SHIFT 39
142
143/* extract the emulation revision */
144#define emulator_rev(dd) ((dd)->irev >> 8)
145/* parallel and serial emulation versions are 3 and 4 respectively */
146#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
2280740f 149/* RSM fields for Verbs */
77241056
MM
150/* packet type */
151#define IB_PACKET_TYPE 2ull
152#define QW_SHIFT 6ull
153/* QPN[7..1] */
154#define QPN_WIDTH 7ull
155
156/* LRH.BTH: QW 0, OFFSET 48 - for match */
157#define LRH_BTH_QW 0ull
158#define LRH_BTH_BIT_OFFSET 48ull
159#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
160#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161#define LRH_BTH_SELECT
162#define LRH_BTH_MASK 3ull
163#define LRH_BTH_VALUE 2ull
164
165/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166#define LRH_SC_QW 0ull
167#define LRH_SC_BIT_OFFSET 56ull
168#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
169#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170#define LRH_SC_MASK 128ull
171#define LRH_SC_VALUE 0ull
172
173/* SC[n..0] QW 0, OFFSET 60 - for select */
174#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176/* QPN[m+n:1] QW 1, OFFSET 1 */
177#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
178
2280740f
VN
179/* RSM fields for Vnic */
180/* L2_TYPE: QW 0, OFFSET 61 - for match */
181#define L2_TYPE_QW 0ull
182#define L2_TYPE_BIT_OFFSET 61ull
183#define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
184#define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185#define L2_TYPE_MASK 3ull
186#define L2_16B_VALUE 2ull
187
188/* L4_TYPE QW 1, OFFSET 0 - for match */
189#define L4_TYPE_QW 1ull
190#define L4_TYPE_BIT_OFFSET 0ull
191#define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
192#define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193#define L4_16B_TYPE_MASK 0xFFull
194#define L4_16B_ETH_VALUE 0x78ull
195
196/* 16B VESWID - for select */
197#define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
198/* 16B ENTROPY - for select */
199#define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
200
77241056
MM
201/* defines to build power on SC2VL table */
202#define SC2VL_VAL( \
203 num, \
204 sc0, sc0val, \
205 sc1, sc1val, \
206 sc2, sc2val, \
207 sc3, sc3val, \
208 sc4, sc4val, \
209 sc5, sc5val, \
210 sc6, sc6val, \
211 sc7, sc7val) \
212( \
213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
221)
222
223#define DC_SC_VL_VAL( \
224 range, \
225 e0, e0val, \
226 e1, e1val, \
227 e2, e2val, \
228 e3, e3val, \
229 e4, e4val, \
230 e5, e5val, \
231 e6, e6val, \
232 e7, e7val, \
233 e8, e8val, \
234 e9, e9val, \
235 e10, e10val, \
236 e11, e11val, \
237 e12, e12val, \
238 e13, e13val, \
239 e14, e14val, \
240 e15, e15val) \
241( \
242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258)
259
260/* all CceStatus sub-block freeze bits */
261#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 | CCE_STATUS_RXE_FROZE_SMASK \
263 | CCE_STATUS_TXE_FROZE_SMASK \
264 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265/* all CceStatus sub-block TXE pause bits */
266#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 | CCE_STATUS_TXE_PAUSED_SMASK \
268 | CCE_STATUS_SDMA_PAUSED_SMASK)
269/* all CceStatus sub-block RXE pause bits */
270#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
2b719046
JP
272#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
77241056
MM
275/*
276 * CCE Error flags.
277 */
278static struct flag_table cce_err_status_flags[] = {
279/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341/*31*/ FLAG_ENTRY0("LATriggered",
342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361/*41-63 reserved*/
362};
363
364/*
365 * Misc Error flags
366 */
367#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368static struct flag_table misc_err_status_flags[] = {
369/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382};
383
384/*
385 * TXE PIO Error flags and consequences
386 */
387static struct flag_table pio_err_status_flags[] = {
388/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
389 SEC_WRITE_DROPPED,
390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
392 SEC_SPC_FREEZE,
393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394/* 2*/ FLAG_ENTRY("PioCsrParity",
395 SEC_SPC_FREEZE,
396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403/* 5*/ FLAG_ENTRY("PioPccFifoParity",
404 SEC_SPC_FREEZE,
405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406/* 6*/ FLAG_ENTRY("PioPecFifoParity",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 SEC_SPC_FREEZE,
414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418/*10*/ FLAG_ENTRY("PioSmPktResetParity",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
422 SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
425 SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
428 0,
429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
431 0,
432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439/*17*/ FLAG_ENTRY("PioInitSmIn",
440 0,
441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 SEC_SPC_FREEZE,
444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
446 SEC_SPC_FREEZE,
447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
449 0,
450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451/*21*/ FLAG_ENTRY("PioWriteDataParity",
452 SEC_SPC_FREEZE,
453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454/*22*/ FLAG_ENTRY("PioStateMachine",
455 SEC_SPC_FREEZE,
456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
8638b77f 458 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
77241056
MM
459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
8638b77f 461 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
77241056
MM
462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
464 SEC_SPC_FREEZE,
465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466/*26*/ FLAG_ENTRY("PioVlfSopParity",
467 SEC_SPC_FREEZE,
468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469/*27*/ FLAG_ENTRY("PioVlFifoParity",
470 SEC_SPC_FREEZE,
471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
473 SEC_SPC_FREEZE,
474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475/*29*/ FLAG_ENTRY("PioPpmcSopLen",
476 SEC_SPC_FREEZE,
477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478/*30-31 reserved*/
479/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
480 SEC_SPC_FREEZE,
481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
483 SEC_SPC_FREEZE,
484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
486 SEC_SPC_FREEZE,
487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
489 SEC_SPC_FREEZE,
490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491/*36-63 reserved*/
492};
493
494/* TXE PIO errors that cause an SPC freeze */
495#define ALL_PIO_FREEZE_ERR \
496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526/*
527 * TXE SDMA Error flags
528 */
529static struct flag_table sdma_err_status_flags[] = {
530/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538/*04-63 reserved*/
539};
540
541/* TXE SDMA errors that cause an SPC freeze */
542#define ALL_SDMA_FREEZE_ERR \
543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
69a00b8e
MM
547/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548#define PORT_DISCARD_EGRESS_ERRS \
549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
77241056
MM
553/*
554 * TXE Egress Error flags
555 */
556#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557static struct flag_table egress_err_status_flags[] = {
558/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560/* 2 reserved */
561/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565/* 6 reserved */
566/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570/* 9-10 reserved */
571/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652};
653
654/*
655 * TXE Egress Error Info flags
656 */
657#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658static struct flag_table egress_err_info_flags[] = {
659/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
660/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
661/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
668/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681};
682
683/* TXE Egress errors that cause an SPC freeze */
684#define ALL_TXE_EGRESS_FREEZE_ERR \
685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 | SEES(TX_LAUNCH_CSR_PARITY) \
690 | SEES(TX_SBRD_CTL_CSR_PARITY) \
691 | SEES(TX_CONFIG_PARITY) \
692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 | SEES(TX_CREDIT_RETURN_PARITY))
702
703/*
704 * TXE Send error flags
705 */
706#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707static struct flag_table send_err_status_flags[] = {
2c5b521a 708/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
77241056
MM
709/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711};
712
713/*
714 * TXE Send Context Error flags and consequences
715 */
716static struct flag_table sc_err_status_flags[] = {
717/* 0*/ FLAG_ENTRY("InconsistentSop",
718 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720/* 1*/ FLAG_ENTRY("DisallowedPacket",
721 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
724 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726/* 3*/ FLAG_ENTRY("WriteOverflow",
727 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
730 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732/* 5-63 reserved*/
733};
734
735/*
736 * RXE Receive Error flags
737 */
738#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739static struct flag_table rxe_err_status_flags[] = {
740/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 RXES(RBUF_BLOCK_LIST_READ_COR)),
764/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 RXES(RBUF_FL_INITDONE_PARITY)),
785/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 RXES(LOOKUP_DES_PART1_UNC_COR)),
792/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 RXES(LOOKUP_DES_PART2_PARITY)),
794/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816};
817
818/* RXE errors that will trigger an SPC freeze */
819#define ALL_RXE_FREEZE_ERR \
820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865#define RXE_FREEZE_ABORT_MASK \
866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870/*
871 * DCC Error Flags
872 */
873#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874static struct flag_table dcc_err_flags[] = {
875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921};
922
923/*
924 * LCB error flags
925 */
926#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927static struct flag_table lcb_err_flags[] = {
928/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964};
965
966/*
967 * DC8051 Error Flags
968 */
969#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970static struct flag_table dc8051_err_flags[] = {
971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
17fb4f29 980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
77241056
MM
981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982};
983
984/*
985 * DC8051 Information Error flags
986 *
987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988 */
989static struct flag_table dc8051_info_err_flags[] = {
990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
993 FLAG_ENTRY0("Serdes internal loopback failure",
17fb4f29 994 FAILED_SERDES_INTERNAL_LOOPBACK),
77241056
MM
995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
8fefef12 1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
50921be0
DL
1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
1004 FLAG_ENTRY0("External Device Request Timeout",
1005 EXTERNAL_DEVICE_REQ_TIMEOUT),
77241056
MM
1006};
1007
1008/*
1009 * DC8051 Information Host Information flags
1010 *
1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012 */
1013static struct flag_table dc8051_info_host_msg_flags[] = {
1014 FLAG_ENTRY0("Host request done", 0x0001),
ddbf2eff
BD
1015 FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 FLAG_ENTRY0("BC SMA message", 0x0004),
77241056
MM
1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 FLAG_ENTRY0("External device config request", 0x0020),
1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 FLAG_ENTRY0("Link going down", 0x0100),
ddbf2eff 1023 FLAG_ENTRY0("Link width downgraded", 0x0200),
77241056
MM
1024};
1025
77241056
MM
1026static u32 encoded_size(u32 size);
1027static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 u8 *continuous);
1031static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 u8 *remote_tx_rate, u16 *link_widths);
1035static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 u8 *flag_bits, u16 *link_widths);
1037static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 u8 *device_rev);
1039static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 u8 *tx_polarity_inversion,
1043 u8 *rx_polarity_inversion, u8 *max_rate);
1044static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 unsigned int context, u64 err_status);
1046static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047static void handle_dcc_err(struct hfi1_devdata *dd,
1048 unsigned int context, u64 err_status);
1049static void handle_lcb_err(struct hfi1_devdata *dd,
1050 unsigned int context, u64 err_status);
1051static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
f4cd8765 1059static void set_partition_keys(struct hfi1_pportdata *ppd);
77241056
MM
1060static const char *link_state_name(u32 state);
1061static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 u32 state);
1063static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 u64 *out_data);
1065static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066static int thermal_init(struct hfi1_devdata *dd);
1067
02a222c7 1068static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
df5efdd9
SS
1069static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070 int msecs);
77241056
MM
1071static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072 int msecs);
d392a673
JB
1073static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
bec7c79c
BJ
1075static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076 int msecs);
77241056 1077static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
feb831dd 1078static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
f4cd8765
MR
1079static void handle_temp_err(struct hfi1_devdata *dd);
1080static void dc_shutdown(struct hfi1_devdata *dd);
1081static void dc_start(struct hfi1_devdata *dd);
8f000f7f
DL
1082static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 unsigned int *np);
3ec5fa28 1084static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
ec8a1423 1085static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
2280740f 1086static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
77241056
MM
1087
1088/*
1089 * Error interrupt table entry. This is used as input to the interrupt
1090 * "clear down" routine used for all second tier error interrupt register.
1091 * Second tier interrupt registers have a single bit representing them
1092 * in the top-level CceIntStatus.
1093 */
1094struct err_reg_info {
1095 u32 status; /* status CSR offset */
1096 u32 clear; /* clear CSR offset */
1097 u32 mask; /* mask CSR offset */
1098 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1099 const char *desc;
1100};
1101
1102#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1103#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1104#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1105
1106/*
1107 * Helpers for building HFI and DC error interrupt table entries. Different
1108 * helpers are needed because of inconsistent register names.
1109 */
1110#define EE(reg, handler, desc) \
1111 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1112 handler, desc }
1113#define DC_EE1(reg, handler, desc) \
1114 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1115#define DC_EE2(reg, handler, desc) \
1116 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1117
1118/*
1119 * Table of the "misc" grouping of error interrupts. Each entry refers to
1120 * another register containing more information.
1121 */
1122static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1123/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1124/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1125/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1126/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1127/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1128/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1129/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1130/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1131 /* the rest are reserved */
1132};
1133
1134/*
1135 * Index into the Various section of the interrupt sources
1136 * corresponding to the Critical Temperature interrupt.
1137 */
1138#define TCRIT_INT_SOURCE 4
1139
1140/*
1141 * SDMA error interrupt entry - refers to another register containing more
1142 * information.
1143 */
1144static const struct err_reg_info sdma_eng_err =
1145 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1146
1147static const struct err_reg_info various_err[NUM_VARIOUS] = {
1148/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1149/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1150/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1151/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1152/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1153 /* rest are reserved */
1154};
1155
1156/*
1157 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1158 * register can not be derived from the MTU value because 10K is not
1159 * a power of 2. Therefore, we need a constant. Everything else can
1160 * be calculated.
1161 */
1162#define DCC_CFG_PORT_MTU_CAP_10240 7
1163
1164/*
1165 * Table of the DC grouping of error interrupts. Each entry refers to
1166 * another register containing more information.
1167 */
1168static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1169/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1170/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1171/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1172/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1173 /* the rest are reserved */
1174};
1175
1176struct cntr_entry {
1177 /*
1178 * counter name
1179 */
1180 char *name;
1181
1182 /*
1183 * csr to read for name (if applicable)
1184 */
1185 u64 csr;
1186
1187 /*
1188 * offset into dd or ppd to store the counter's value
1189 */
1190 int offset;
1191
1192 /*
1193 * flags
1194 */
1195 u8 flags;
1196
1197 /*
1198 * accessor for stat element, context either dd or ppd
1199 */
17fb4f29
JJ
1200 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1201 int mode, u64 data);
77241056
MM
1202};
1203
1204#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1205#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1206
1207#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1208{ \
1209 name, \
1210 csr, \
1211 offset, \
1212 flags, \
1213 accessor \
1214}
1215
1216/* 32bit RXE */
1217#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1218CNTR_ELEM(#name, \
1219 (counter * 8 + RCV_COUNTER_ARRAY32), \
1220 0, flags | CNTR_32BIT, \
1221 port_access_u32_csr)
1222
1223#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1224CNTR_ELEM(#name, \
1225 (counter * 8 + RCV_COUNTER_ARRAY32), \
1226 0, flags | CNTR_32BIT, \
1227 dev_access_u32_csr)
1228
1229/* 64bit RXE */
1230#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1231CNTR_ELEM(#name, \
1232 (counter * 8 + RCV_COUNTER_ARRAY64), \
1233 0, flags, \
1234 port_access_u64_csr)
1235
1236#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1237CNTR_ELEM(#name, \
1238 (counter * 8 + RCV_COUNTER_ARRAY64), \
1239 0, flags, \
1240 dev_access_u64_csr)
1241
1242#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1243#define OVR_ELM(ctx) \
1244CNTR_ELEM("RcvHdrOvr" #ctx, \
8638b77f 1245 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
77241056
MM
1246 0, CNTR_NORMAL, port_access_u64_csr)
1247
1248/* 32bit TXE */
1249#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1250CNTR_ELEM(#name, \
1251 (counter * 8 + SEND_COUNTER_ARRAY32), \
1252 0, flags | CNTR_32BIT, \
1253 port_access_u32_csr)
1254
1255/* 64bit TXE */
1256#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1257CNTR_ELEM(#name, \
1258 (counter * 8 + SEND_COUNTER_ARRAY64), \
1259 0, flags, \
1260 port_access_u64_csr)
1261
1262# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1263CNTR_ELEM(#name,\
1264 counter * 8 + SEND_COUNTER_ARRAY64, \
1265 0, \
1266 flags, \
1267 dev_access_u64_csr)
1268
1269/* CCE */
1270#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1271CNTR_ELEM(#name, \
1272 (counter * 8 + CCE_COUNTER_ARRAY32), \
1273 0, flags | CNTR_32BIT, \
1274 dev_access_u32_csr)
1275
1276#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1277CNTR_ELEM(#name, \
1278 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1279 0, flags | CNTR_32BIT, \
1280 dev_access_u32_csr)
1281
1282/* DC */
1283#define DC_PERF_CNTR(name, counter, flags) \
1284CNTR_ELEM(#name, \
1285 counter, \
1286 0, \
1287 flags, \
1288 dev_access_u64_csr)
1289
1290#define DC_PERF_CNTR_LCB(name, counter, flags) \
1291CNTR_ELEM(#name, \
1292 counter, \
1293 0, \
1294 flags, \
1295 dc_access_lcb_cntr)
1296
1297/* ibp counters */
1298#define SW_IBP_CNTR(name, cntr) \
1299CNTR_ELEM(#name, \
1300 0, \
1301 0, \
1302 CNTR_SYNTH, \
1303 access_ibp_##cntr)
1304
cb51c5d2
MM
1305/**
1306 * hfi_addr_from_offset - return addr for readq/writeq
1307 * @dd - the dd device
1308 * @offset - the offset of the CSR within bar0
1309 *
1310 * This routine selects the appropriate base address
1311 * based on the indicated offset.
1312 */
1313static inline void __iomem *hfi1_addr_from_offset(
1314 const struct hfi1_devdata *dd,
1315 u32 offset)
1316{
1317 if (offset >= dd->base2_start)
1318 return dd->kregbase2 + (offset - dd->base2_start);
1319 return dd->kregbase1 + offset;
1320}
1321
1322/**
1323 * read_csr - read CSR at the indicated offset
1324 * @dd - the dd device
1325 * @offset - the offset of the CSR within bar0
1326 *
1327 * Return: the value read or all FF's if there
1328 * is no mapping
1329 */
77241056
MM
1330u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1331{
cb51c5d2
MM
1332 if (dd->flags & HFI1_PRESENT)
1333 return readq(hfi1_addr_from_offset(dd, offset));
77241056
MM
1334 return -1;
1335}
1336
cb51c5d2
MM
1337/**
1338 * write_csr - write CSR at the indicated offset
1339 * @dd - the dd device
1340 * @offset - the offset of the CSR within bar0
1341 * @value - value to write
1342 */
77241056
MM
1343void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1344{
cb51c5d2
MM
1345 if (dd->flags & HFI1_PRESENT) {
1346 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1347
1348 /* avoid write to RcvArray */
1349 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1350 return;
1351 writeq(value, base);
1352 }
77241056
MM
1353}
1354
cb51c5d2
MM
1355/**
1356 * get_csr_addr - return te iomem address for offset
1357 * @dd - the dd device
1358 * @offset - the offset of the CSR within bar0
1359 *
1360 * Return: The iomem address to use in subsequent
1361 * writeq/readq operations.
1362 */
77241056 1363void __iomem *get_csr_addr(
cb51c5d2 1364 const struct hfi1_devdata *dd,
77241056
MM
1365 u32 offset)
1366{
cb51c5d2
MM
1367 if (dd->flags & HFI1_PRESENT)
1368 return hfi1_addr_from_offset(dd, offset);
1369 return NULL;
77241056
MM
1370}
1371
1372static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1373 int mode, u64 value)
1374{
1375 u64 ret;
1376
77241056
MM
1377 if (mode == CNTR_MODE_R) {
1378 ret = read_csr(dd, csr);
1379 } else if (mode == CNTR_MODE_W) {
1380 write_csr(dd, csr, value);
1381 ret = value;
1382 } else {
1383 dd_dev_err(dd, "Invalid cntr register access mode");
1384 return 0;
1385 }
1386
1387 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1388 return ret;
1389}
1390
1391/* Dev Access */
1392static u64 dev_access_u32_csr(const struct cntr_entry *entry,
17fb4f29 1393 void *context, int vl, int mode, u64 data)
77241056 1394{
a787bde8 1395 struct hfi1_devdata *dd = context;
a699c6c2 1396 u64 csr = entry->csr;
77241056 1397
a699c6c2
VM
1398 if (entry->flags & CNTR_SDMA) {
1399 if (vl == CNTR_INVALID_VL)
1400 return 0;
1401 csr += 0x100 * vl;
1402 } else {
1403 if (vl != CNTR_INVALID_VL)
1404 return 0;
1405 }
1406 return read_write_csr(dd, csr, mode, data);
1407}
1408
1409static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1410 void *context, int idx, int mode, u64 data)
1411{
1412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1413
1414 if (dd->per_sdma && idx < dd->num_sdma)
1415 return dd->per_sdma[idx].err_cnt;
1416 return 0;
1417}
1418
1419static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1420 void *context, int idx, int mode, u64 data)
1421{
1422 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1423
1424 if (dd->per_sdma && idx < dd->num_sdma)
1425 return dd->per_sdma[idx].sdma_int_cnt;
1426 return 0;
1427}
1428
1429static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1430 void *context, int idx, int mode, u64 data)
1431{
1432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1433
1434 if (dd->per_sdma && idx < dd->num_sdma)
1435 return dd->per_sdma[idx].idle_int_cnt;
1436 return 0;
1437}
1438
1439static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1440 void *context, int idx, int mode,
1441 u64 data)
1442{
1443 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1444
1445 if (dd->per_sdma && idx < dd->num_sdma)
1446 return dd->per_sdma[idx].progress_int_cnt;
1447 return 0;
77241056
MM
1448}
1449
1450static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
17fb4f29 1451 int vl, int mode, u64 data)
77241056 1452{
a787bde8 1453 struct hfi1_devdata *dd = context;
77241056
MM
1454
1455 u64 val = 0;
1456 u64 csr = entry->csr;
1457
1458 if (entry->flags & CNTR_VL) {
1459 if (vl == CNTR_INVALID_VL)
1460 return 0;
1461 csr += 8 * vl;
1462 } else {
1463 if (vl != CNTR_INVALID_VL)
1464 return 0;
1465 }
1466
1467 val = read_write_csr(dd, csr, mode, data);
1468 return val;
1469}
1470
1471static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
17fb4f29 1472 int vl, int mode, u64 data)
77241056 1473{
a787bde8 1474 struct hfi1_devdata *dd = context;
77241056
MM
1475 u32 csr = entry->csr;
1476 int ret = 0;
1477
1478 if (vl != CNTR_INVALID_VL)
1479 return 0;
1480 if (mode == CNTR_MODE_R)
1481 ret = read_lcb_csr(dd, csr, &data);
1482 else if (mode == CNTR_MODE_W)
1483 ret = write_lcb_csr(dd, csr, data);
1484
1485 if (ret) {
1486 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1487 return 0;
1488 }
1489
1490 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1491 return data;
1492}
1493
1494/* Port Access */
1495static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
17fb4f29 1496 int vl, int mode, u64 data)
77241056 1497{
a787bde8 1498 struct hfi1_pportdata *ppd = context;
77241056
MM
1499
1500 if (vl != CNTR_INVALID_VL)
1501 return 0;
1502 return read_write_csr(ppd->dd, entry->csr, mode, data);
1503}
1504
1505static u64 port_access_u64_csr(const struct cntr_entry *entry,
17fb4f29 1506 void *context, int vl, int mode, u64 data)
77241056 1507{
a787bde8 1508 struct hfi1_pportdata *ppd = context;
77241056
MM
1509 u64 val;
1510 u64 csr = entry->csr;
1511
1512 if (entry->flags & CNTR_VL) {
1513 if (vl == CNTR_INVALID_VL)
1514 return 0;
1515 csr += 8 * vl;
1516 } else {
1517 if (vl != CNTR_INVALID_VL)
1518 return 0;
1519 }
1520 val = read_write_csr(ppd->dd, csr, mode, data);
1521 return val;
1522}
1523
1524/* Software defined */
1525static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1526 u64 data)
1527{
1528 u64 ret;
1529
1530 if (mode == CNTR_MODE_R) {
1531 ret = *cntr;
1532 } else if (mode == CNTR_MODE_W) {
1533 *cntr = data;
1534 ret = data;
1535 } else {
1536 dd_dev_err(dd, "Invalid cntr sw access mode");
1537 return 0;
1538 }
1539
1540 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1541
1542 return ret;
1543}
1544
1545static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
17fb4f29 1546 int vl, int mode, u64 data)
77241056 1547{
a787bde8 1548 struct hfi1_pportdata *ppd = context;
77241056
MM
1549
1550 if (vl != CNTR_INVALID_VL)
1551 return 0;
1552 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1553}
1554
1555static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
17fb4f29 1556 int vl, int mode, u64 data)
77241056 1557{
a787bde8 1558 struct hfi1_pportdata *ppd = context;
77241056
MM
1559
1560 if (vl != CNTR_INVALID_VL)
1561 return 0;
1562 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1563}
1564
6d014530
DL
1565static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1566 void *context, int vl, int mode,
1567 u64 data)
1568{
1569 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1570
1571 if (vl != CNTR_INVALID_VL)
1572 return 0;
1573 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1574}
1575
77241056 1576static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
17fb4f29 1577 void *context, int vl, int mode, u64 data)
77241056 1578{
69a00b8e
MM
1579 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1580 u64 zero = 0;
1581 u64 *counter;
77241056 1582
69a00b8e
MM
1583 if (vl == CNTR_INVALID_VL)
1584 counter = &ppd->port_xmit_discards;
1585 else if (vl >= 0 && vl < C_VL_COUNT)
1586 counter = &ppd->port_xmit_discards_vl[vl];
1587 else
1588 counter = &zero;
77241056 1589
69a00b8e 1590 return read_write_sw(ppd->dd, counter, mode, data);
77241056
MM
1591}
1592
1593static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
17fb4f29
JJ
1594 void *context, int vl, int mode,
1595 u64 data)
77241056 1596{
a787bde8 1597 struct hfi1_pportdata *ppd = context;
77241056
MM
1598
1599 if (vl != CNTR_INVALID_VL)
1600 return 0;
1601
1602 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1603 mode, data);
1604}
1605
1606static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
17fb4f29 1607 void *context, int vl, int mode, u64 data)
77241056 1608{
a787bde8 1609 struct hfi1_pportdata *ppd = context;
77241056
MM
1610
1611 if (vl != CNTR_INVALID_VL)
1612 return 0;
1613
1614 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1615 mode, data);
1616}
1617
1618u64 get_all_cpu_total(u64 __percpu *cntr)
1619{
1620 int cpu;
1621 u64 counter = 0;
1622
1623 for_each_possible_cpu(cpu)
1624 counter += *per_cpu_ptr(cntr, cpu);
1625 return counter;
1626}
1627
1628static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1629 u64 __percpu *cntr,
1630 int vl, int mode, u64 data)
1631{
77241056
MM
1632 u64 ret = 0;
1633
1634 if (vl != CNTR_INVALID_VL)
1635 return 0;
1636
1637 if (mode == CNTR_MODE_R) {
1638 ret = get_all_cpu_total(cntr) - *z_val;
1639 } else if (mode == CNTR_MODE_W) {
1640 /* A write can only zero the counter */
1641 if (data == 0)
1642 *z_val = get_all_cpu_total(cntr);
1643 else
1644 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1645 } else {
1646 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1647 return 0;
1648 }
1649
1650 return ret;
1651}
1652
1653static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1654 void *context, int vl, int mode, u64 data)
1655{
a787bde8 1656 struct hfi1_devdata *dd = context;
77241056
MM
1657
1658 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1659 mode, data);
1660}
1661
1662static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
17fb4f29 1663 void *context, int vl, int mode, u64 data)
77241056 1664{
a787bde8 1665 struct hfi1_devdata *dd = context;
77241056
MM
1666
1667 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1668 mode, data);
1669}
1670
1671static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1672 void *context, int vl, int mode, u64 data)
1673{
a787bde8 1674 struct hfi1_devdata *dd = context;
77241056
MM
1675
1676 return dd->verbs_dev.n_piowait;
1677}
1678
14553ca1
MM
1679static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1680 void *context, int vl, int mode, u64 data)
1681{
1682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1683
1684 return dd->verbs_dev.n_piodrain;
1685}
1686
77241056
MM
1687static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1688 void *context, int vl, int mode, u64 data)
1689{
a787bde8 1690 struct hfi1_devdata *dd = context;
77241056
MM
1691
1692 return dd->verbs_dev.n_txwait;
1693}
1694
1695static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1696 void *context, int vl, int mode, u64 data)
1697{
a787bde8 1698 struct hfi1_devdata *dd = context;
77241056
MM
1699
1700 return dd->verbs_dev.n_kmem_wait;
1701}
1702
b421922e 1703static u64 access_sw_send_schedule(const struct cntr_entry *entry,
17fb4f29 1704 void *context, int vl, int mode, u64 data)
b421922e
DL
1705{
1706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1707
89abfc8d
VM
1708 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1709 mode, data);
b421922e
DL
1710}
1711
2c5b521a
JR
1712/* Software counters for the error status bits within MISC_ERR_STATUS */
1713static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1714 void *context, int vl, int mode,
1715 u64 data)
1716{
1717 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718
1719 return dd->misc_err_status_cnt[12];
1720}
1721
1722static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1723 void *context, int vl, int mode,
1724 u64 data)
1725{
1726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727
1728 return dd->misc_err_status_cnt[11];
1729}
1730
1731static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1732 void *context, int vl, int mode,
1733 u64 data)
1734{
1735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736
1737 return dd->misc_err_status_cnt[10];
1738}
1739
1740static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1741 void *context, int vl,
1742 int mode, u64 data)
1743{
1744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746 return dd->misc_err_status_cnt[9];
1747}
1748
1749static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1750 void *context, int vl, int mode,
1751 u64 data)
1752{
1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755 return dd->misc_err_status_cnt[8];
1756}
1757
1758static u64 access_misc_efuse_read_bad_addr_err_cnt(
1759 const struct cntr_entry *entry,
1760 void *context, int vl, int mode, u64 data)
1761{
1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764 return dd->misc_err_status_cnt[7];
1765}
1766
1767static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 void *context, int vl,
1769 int mode, u64 data)
1770{
1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773 return dd->misc_err_status_cnt[6];
1774}
1775
1776static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1777 void *context, int vl, int mode,
1778 u64 data)
1779{
1780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781
1782 return dd->misc_err_status_cnt[5];
1783}
1784
1785static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1786 void *context, int vl, int mode,
1787 u64 data)
1788{
1789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790
1791 return dd->misc_err_status_cnt[4];
1792}
1793
1794static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1795 void *context, int vl,
1796 int mode, u64 data)
1797{
1798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799
1800 return dd->misc_err_status_cnt[3];
1801}
1802
1803static u64 access_misc_csr_write_bad_addr_err_cnt(
1804 const struct cntr_entry *entry,
1805 void *context, int vl, int mode, u64 data)
1806{
1807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808
1809 return dd->misc_err_status_cnt[2];
1810}
1811
1812static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1813 void *context, int vl,
1814 int mode, u64 data)
1815{
1816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817
1818 return dd->misc_err_status_cnt[1];
1819}
1820
1821static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1822 void *context, int vl, int mode,
1823 u64 data)
1824{
1825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827 return dd->misc_err_status_cnt[0];
1828}
1829
1830/*
1831 * Software counter for the aggregate of
1832 * individual CceErrStatus counters
1833 */
1834static u64 access_sw_cce_err_status_aggregated_cnt(
1835 const struct cntr_entry *entry,
1836 void *context, int vl, int mode, u64 data)
1837{
1838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839
1840 return dd->sw_cce_err_status_aggregate;
1841}
1842
1843/*
1844 * Software counters corresponding to each of the
1845 * error status bits within CceErrStatus
1846 */
1847static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1848 void *context, int vl, int mode,
1849 u64 data)
1850{
1851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852
1853 return dd->cce_err_status_cnt[40];
1854}
1855
1856static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1857 void *context, int vl, int mode,
1858 u64 data)
1859{
1860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861
1862 return dd->cce_err_status_cnt[39];
1863}
1864
1865static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1866 void *context, int vl, int mode,
1867 u64 data)
1868{
1869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870
1871 return dd->cce_err_status_cnt[38];
1872}
1873
1874static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1875 void *context, int vl, int mode,
1876 u64 data)
1877{
1878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879
1880 return dd->cce_err_status_cnt[37];
1881}
1882
1883static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1884 void *context, int vl, int mode,
1885 u64 data)
1886{
1887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888
1889 return dd->cce_err_status_cnt[36];
1890}
1891
1892static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1893 const struct cntr_entry *entry,
1894 void *context, int vl, int mode, u64 data)
1895{
1896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897
1898 return dd->cce_err_status_cnt[35];
1899}
1900
1901static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1902 const struct cntr_entry *entry,
1903 void *context, int vl, int mode, u64 data)
1904{
1905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906
1907 return dd->cce_err_status_cnt[34];
1908}
1909
1910static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1911 void *context, int vl,
1912 int mode, u64 data)
1913{
1914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915
1916 return dd->cce_err_status_cnt[33];
1917}
1918
1919static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1920 void *context, int vl, int mode,
1921 u64 data)
1922{
1923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924
1925 return dd->cce_err_status_cnt[32];
1926}
1927
1928static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1929 void *context, int vl, int mode, u64 data)
1930{
1931 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932
1933 return dd->cce_err_status_cnt[31];
1934}
1935
1936static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1937 void *context, int vl, int mode,
1938 u64 data)
1939{
1940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941
1942 return dd->cce_err_status_cnt[30];
1943}
1944
1945static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1946 void *context, int vl, int mode,
1947 u64 data)
1948{
1949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950
1951 return dd->cce_err_status_cnt[29];
1952}
1953
1954static u64 access_pcic_transmit_back_parity_err_cnt(
1955 const struct cntr_entry *entry,
1956 void *context, int vl, int mode, u64 data)
1957{
1958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960 return dd->cce_err_status_cnt[28];
1961}
1962
1963static u64 access_pcic_transmit_front_parity_err_cnt(
1964 const struct cntr_entry *entry,
1965 void *context, int vl, int mode, u64 data)
1966{
1967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969 return dd->cce_err_status_cnt[27];
1970}
1971
1972static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1973 void *context, int vl, int mode,
1974 u64 data)
1975{
1976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978 return dd->cce_err_status_cnt[26];
1979}
1980
1981static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1982 void *context, int vl, int mode,
1983 u64 data)
1984{
1985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987 return dd->cce_err_status_cnt[25];
1988}
1989
1990static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1991 void *context, int vl, int mode,
1992 u64 data)
1993{
1994 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996 return dd->cce_err_status_cnt[24];
1997}
1998
1999static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2000 void *context, int vl, int mode,
2001 u64 data)
2002{
2003 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005 return dd->cce_err_status_cnt[23];
2006}
2007
2008static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2009 void *context, int vl,
2010 int mode, u64 data)
2011{
2012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014 return dd->cce_err_status_cnt[22];
2015}
2016
2017static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2018 void *context, int vl, int mode,
2019 u64 data)
2020{
2021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023 return dd->cce_err_status_cnt[21];
2024}
2025
2026static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2027 const struct cntr_entry *entry,
2028 void *context, int vl, int mode, u64 data)
2029{
2030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032 return dd->cce_err_status_cnt[20];
2033}
2034
2035static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2036 void *context, int vl,
2037 int mode, u64 data)
2038{
2039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041 return dd->cce_err_status_cnt[19];
2042}
2043
2044static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2045 void *context, int vl, int mode,
2046 u64 data)
2047{
2048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050 return dd->cce_err_status_cnt[18];
2051}
2052
2053static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2054 void *context, int vl, int mode,
2055 u64 data)
2056{
2057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059 return dd->cce_err_status_cnt[17];
2060}
2061
2062static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2063 void *context, int vl, int mode,
2064 u64 data)
2065{
2066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068 return dd->cce_err_status_cnt[16];
2069}
2070
2071static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2072 void *context, int vl, int mode,
2073 u64 data)
2074{
2075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077 return dd->cce_err_status_cnt[15];
2078}
2079
2080static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2081 void *context, int vl,
2082 int mode, u64 data)
2083{
2084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086 return dd->cce_err_status_cnt[14];
2087}
2088
2089static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2090 void *context, int vl, int mode,
2091 u64 data)
2092{
2093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095 return dd->cce_err_status_cnt[13];
2096}
2097
2098static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2099 const struct cntr_entry *entry,
2100 void *context, int vl, int mode, u64 data)
2101{
2102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104 return dd->cce_err_status_cnt[12];
2105}
2106
2107static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2108 const struct cntr_entry *entry,
2109 void *context, int vl, int mode, u64 data)
2110{
2111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113 return dd->cce_err_status_cnt[11];
2114}
2115
2116static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2117 const struct cntr_entry *entry,
2118 void *context, int vl, int mode, u64 data)
2119{
2120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122 return dd->cce_err_status_cnt[10];
2123}
2124
2125static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2126 const struct cntr_entry *entry,
2127 void *context, int vl, int mode, u64 data)
2128{
2129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131 return dd->cce_err_status_cnt[9];
2132}
2133
2134static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2135 const struct cntr_entry *entry,
2136 void *context, int vl, int mode, u64 data)
2137{
2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140 return dd->cce_err_status_cnt[8];
2141}
2142
2143static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2144 void *context, int vl,
2145 int mode, u64 data)
2146{
2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149 return dd->cce_err_status_cnt[7];
2150}
2151
2152static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2153 const struct cntr_entry *entry,
2154 void *context, int vl, int mode, u64 data)
2155{
2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158 return dd->cce_err_status_cnt[6];
2159}
2160
2161static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2162 void *context, int vl, int mode,
2163 u64 data)
2164{
2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166
2167 return dd->cce_err_status_cnt[5];
2168}
2169
2170static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2171 void *context, int vl, int mode,
2172 u64 data)
2173{
2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175
2176 return dd->cce_err_status_cnt[4];
2177}
2178
2179static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2180 const struct cntr_entry *entry,
2181 void *context, int vl, int mode, u64 data)
2182{
2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184
2185 return dd->cce_err_status_cnt[3];
2186}
2187
2188static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2189 void *context, int vl,
2190 int mode, u64 data)
2191{
2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193
2194 return dd->cce_err_status_cnt[2];
2195}
2196
2197static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2198 void *context, int vl,
2199 int mode, u64 data)
2200{
2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202
2203 return dd->cce_err_status_cnt[1];
2204}
2205
2206static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2207 void *context, int vl, int mode,
2208 u64 data)
2209{
2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212 return dd->cce_err_status_cnt[0];
2213}
2214
2215/*
2216 * Software counters corresponding to each of the
2217 * error status bits within RcvErrStatus
2218 */
2219static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 void *context, int vl, int mode,
2221 u64 data)
2222{
2223 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224
2225 return dd->rcv_err_status_cnt[63];
2226}
2227
2228static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2229 void *context, int vl,
2230 int mode, u64 data)
2231{
2232 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233
2234 return dd->rcv_err_status_cnt[62];
2235}
2236
2237static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2238 void *context, int vl, int mode,
2239 u64 data)
2240{
2241 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242
2243 return dd->rcv_err_status_cnt[61];
2244}
2245
2246static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2247 void *context, int vl, int mode,
2248 u64 data)
2249{
2250 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252 return dd->rcv_err_status_cnt[60];
2253}
2254
2255static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2256 void *context, int vl,
2257 int mode, u64 data)
2258{
2259 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261 return dd->rcv_err_status_cnt[59];
2262}
2263
2264static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2265 void *context, int vl,
2266 int mode, u64 data)
2267{
2268 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270 return dd->rcv_err_status_cnt[58];
2271}
2272
2273static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2274 void *context, int vl, int mode,
2275 u64 data)
2276{
2277 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279 return dd->rcv_err_status_cnt[57];
2280}
2281
2282static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2283 void *context, int vl, int mode,
2284 u64 data)
2285{
2286 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288 return dd->rcv_err_status_cnt[56];
2289}
2290
2291static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2292 void *context, int vl, int mode,
2293 u64 data)
2294{
2295 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297 return dd->rcv_err_status_cnt[55];
2298}
2299
2300static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2301 const struct cntr_entry *entry,
2302 void *context, int vl, int mode, u64 data)
2303{
2304 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306 return dd->rcv_err_status_cnt[54];
2307}
2308
2309static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2310 const struct cntr_entry *entry,
2311 void *context, int vl, int mode, u64 data)
2312{
2313 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315 return dd->rcv_err_status_cnt[53];
2316}
2317
2318static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2319 void *context, int vl,
2320 int mode, u64 data)
2321{
2322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324 return dd->rcv_err_status_cnt[52];
2325}
2326
2327static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2328 void *context, int vl,
2329 int mode, u64 data)
2330{
2331 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333 return dd->rcv_err_status_cnt[51];
2334}
2335
2336static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2337 void *context, int vl,
2338 int mode, u64 data)
2339{
2340 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342 return dd->rcv_err_status_cnt[50];
2343}
2344
2345static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2346 void *context, int vl,
2347 int mode, u64 data)
2348{
2349 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351 return dd->rcv_err_status_cnt[49];
2352}
2353
2354static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2355 void *context, int vl,
2356 int mode, u64 data)
2357{
2358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360 return dd->rcv_err_status_cnt[48];
2361}
2362
2363static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2364 void *context, int vl,
2365 int mode, u64 data)
2366{
2367 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369 return dd->rcv_err_status_cnt[47];
2370}
2371
2372static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2373 void *context, int vl, int mode,
2374 u64 data)
2375{
2376 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378 return dd->rcv_err_status_cnt[46];
2379}
2380
2381static u64 access_rx_hq_intr_csr_parity_err_cnt(
2382 const struct cntr_entry *entry,
2383 void *context, int vl, int mode, u64 data)
2384{
2385 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387 return dd->rcv_err_status_cnt[45];
2388}
2389
2390static u64 access_rx_lookup_csr_parity_err_cnt(
2391 const struct cntr_entry *entry,
2392 void *context, int vl, int mode, u64 data)
2393{
2394 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396 return dd->rcv_err_status_cnt[44];
2397}
2398
2399static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2400 const struct cntr_entry *entry,
2401 void *context, int vl, int mode, u64 data)
2402{
2403 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405 return dd->rcv_err_status_cnt[43];
2406}
2407
2408static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2409 const struct cntr_entry *entry,
2410 void *context, int vl, int mode, u64 data)
2411{
2412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414 return dd->rcv_err_status_cnt[42];
2415}
2416
2417static u64 access_rx_lookup_des_part2_parity_err_cnt(
2418 const struct cntr_entry *entry,
2419 void *context, int vl, int mode, u64 data)
2420{
2421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423 return dd->rcv_err_status_cnt[41];
2424}
2425
2426static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2427 const struct cntr_entry *entry,
2428 void *context, int vl, int mode, u64 data)
2429{
2430 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432 return dd->rcv_err_status_cnt[40];
2433}
2434
2435static u64 access_rx_lookup_des_part1_unc_err_cnt(
2436 const struct cntr_entry *entry,
2437 void *context, int vl, int mode, u64 data)
2438{
2439 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441 return dd->rcv_err_status_cnt[39];
2442}
2443
2444static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2445 const struct cntr_entry *entry,
2446 void *context, int vl, int mode, u64 data)
2447{
2448 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450 return dd->rcv_err_status_cnt[38];
2451}
2452
2453static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2454 const struct cntr_entry *entry,
2455 void *context, int vl, int mode, u64 data)
2456{
2457 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459 return dd->rcv_err_status_cnt[37];
2460}
2461
2462static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2463 const struct cntr_entry *entry,
2464 void *context, int vl, int mode, u64 data)
2465{
2466 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468 return dd->rcv_err_status_cnt[36];
2469}
2470
2471static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2472 const struct cntr_entry *entry,
2473 void *context, int vl, int mode, u64 data)
2474{
2475 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477 return dd->rcv_err_status_cnt[35];
2478}
2479
2480static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2481 const struct cntr_entry *entry,
2482 void *context, int vl, int mode, u64 data)
2483{
2484 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486 return dd->rcv_err_status_cnt[34];
2487}
2488
2489static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2490 const struct cntr_entry *entry,
2491 void *context, int vl, int mode, u64 data)
2492{
2493 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495 return dd->rcv_err_status_cnt[33];
2496}
2497
2498static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2499 void *context, int vl, int mode,
2500 u64 data)
2501{
2502 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504 return dd->rcv_err_status_cnt[32];
2505}
2506
2507static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2508 void *context, int vl, int mode,
2509 u64 data)
2510{
2511 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513 return dd->rcv_err_status_cnt[31];
2514}
2515
2516static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2517 void *context, int vl, int mode,
2518 u64 data)
2519{
2520 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522 return dd->rcv_err_status_cnt[30];
2523}
2524
2525static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2526 void *context, int vl, int mode,
2527 u64 data)
2528{
2529 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531 return dd->rcv_err_status_cnt[29];
2532}
2533
2534static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2535 void *context, int vl,
2536 int mode, u64 data)
2537{
2538 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540 return dd->rcv_err_status_cnt[28];
2541}
2542
2543static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2544 const struct cntr_entry *entry,
2545 void *context, int vl, int mode, u64 data)
2546{
2547 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549 return dd->rcv_err_status_cnt[27];
2550}
2551
2552static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2553 const struct cntr_entry *entry,
2554 void *context, int vl, int mode, u64 data)
2555{
2556 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558 return dd->rcv_err_status_cnt[26];
2559}
2560
2561static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2562 const struct cntr_entry *entry,
2563 void *context, int vl, int mode, u64 data)
2564{
2565 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567 return dd->rcv_err_status_cnt[25];
2568}
2569
2570static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2571 const struct cntr_entry *entry,
2572 void *context, int vl, int mode, u64 data)
2573{
2574 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576 return dd->rcv_err_status_cnt[24];
2577}
2578
2579static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2580 const struct cntr_entry *entry,
2581 void *context, int vl, int mode, u64 data)
2582{
2583 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585 return dd->rcv_err_status_cnt[23];
2586}
2587
2588static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2589 const struct cntr_entry *entry,
2590 void *context, int vl, int mode, u64 data)
2591{
2592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594 return dd->rcv_err_status_cnt[22];
2595}
2596
2597static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2598 const struct cntr_entry *entry,
2599 void *context, int vl, int mode, u64 data)
2600{
2601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603 return dd->rcv_err_status_cnt[21];
2604}
2605
2606static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2607 const struct cntr_entry *entry,
2608 void *context, int vl, int mode, u64 data)
2609{
2610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612 return dd->rcv_err_status_cnt[20];
2613}
2614
2615static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2616 const struct cntr_entry *entry,
2617 void *context, int vl, int mode, u64 data)
2618{
2619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621 return dd->rcv_err_status_cnt[19];
2622}
2623
2624static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2625 void *context, int vl,
2626 int mode, u64 data)
2627{
2628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630 return dd->rcv_err_status_cnt[18];
2631}
2632
2633static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2634 void *context, int vl,
2635 int mode, u64 data)
2636{
2637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639 return dd->rcv_err_status_cnt[17];
2640}
2641
2642static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2643 const struct cntr_entry *entry,
2644 void *context, int vl, int mode, u64 data)
2645{
2646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648 return dd->rcv_err_status_cnt[16];
2649}
2650
2651static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2652 const struct cntr_entry *entry,
2653 void *context, int vl, int mode, u64 data)
2654{
2655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657 return dd->rcv_err_status_cnt[15];
2658}
2659
2660static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2661 void *context, int vl,
2662 int mode, u64 data)
2663{
2664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666 return dd->rcv_err_status_cnt[14];
2667}
2668
2669static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2670 void *context, int vl,
2671 int mode, u64 data)
2672{
2673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675 return dd->rcv_err_status_cnt[13];
2676}
2677
2678static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2679 void *context, int vl, int mode,
2680 u64 data)
2681{
2682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684 return dd->rcv_err_status_cnt[12];
2685}
2686
2687static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2688 void *context, int vl, int mode,
2689 u64 data)
2690{
2691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693 return dd->rcv_err_status_cnt[11];
2694}
2695
2696static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2697 void *context, int vl, int mode,
2698 u64 data)
2699{
2700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702 return dd->rcv_err_status_cnt[10];
2703}
2704
2705static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2706 void *context, int vl, int mode,
2707 u64 data)
2708{
2709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711 return dd->rcv_err_status_cnt[9];
2712}
2713
2714static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2715 void *context, int vl, int mode,
2716 u64 data)
2717{
2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720 return dd->rcv_err_status_cnt[8];
2721}
2722
2723static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2724 const struct cntr_entry *entry,
2725 void *context, int vl, int mode, u64 data)
2726{
2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729 return dd->rcv_err_status_cnt[7];
2730}
2731
2732static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2733 const struct cntr_entry *entry,
2734 void *context, int vl, int mode, u64 data)
2735{
2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738 return dd->rcv_err_status_cnt[6];
2739}
2740
2741static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2742 void *context, int vl, int mode,
2743 u64 data)
2744{
2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746
2747 return dd->rcv_err_status_cnt[5];
2748}
2749
2750static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2751 void *context, int vl, int mode,
2752 u64 data)
2753{
2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755
2756 return dd->rcv_err_status_cnt[4];
2757}
2758
2759static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2760 void *context, int vl, int mode,
2761 u64 data)
2762{
2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764
2765 return dd->rcv_err_status_cnt[3];
2766}
2767
2768static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2769 void *context, int vl, int mode,
2770 u64 data)
2771{
2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773
2774 return dd->rcv_err_status_cnt[2];
2775}
2776
2777static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2778 void *context, int vl, int mode,
2779 u64 data)
2780{
2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782
2783 return dd->rcv_err_status_cnt[1];
2784}
2785
2786static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2787 void *context, int vl, int mode,
2788 u64 data)
2789{
2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792 return dd->rcv_err_status_cnt[0];
2793}
2794
2795/*
2796 * Software counters corresponding to each of the
2797 * error status bits within SendPioErrStatus
2798 */
2799static u64 access_pio_pec_sop_head_parity_err_cnt(
2800 const struct cntr_entry *entry,
2801 void *context, int vl, int mode, u64 data)
2802{
2803 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804
2805 return dd->send_pio_err_status_cnt[35];
2806}
2807
2808static u64 access_pio_pcc_sop_head_parity_err_cnt(
2809 const struct cntr_entry *entry,
2810 void *context, int vl, int mode, u64 data)
2811{
2812 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813
2814 return dd->send_pio_err_status_cnt[34];
2815}
2816
2817static u64 access_pio_last_returned_cnt_parity_err_cnt(
2818 const struct cntr_entry *entry,
2819 void *context, int vl, int mode, u64 data)
2820{
2821 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822
2823 return dd->send_pio_err_status_cnt[33];
2824}
2825
2826static u64 access_pio_current_free_cnt_parity_err_cnt(
2827 const struct cntr_entry *entry,
2828 void *context, int vl, int mode, u64 data)
2829{
2830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832 return dd->send_pio_err_status_cnt[32];
2833}
2834
2835static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2836 void *context, int vl, int mode,
2837 u64 data)
2838{
2839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841 return dd->send_pio_err_status_cnt[31];
2842}
2843
2844static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2845 void *context, int vl, int mode,
2846 u64 data)
2847{
2848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850 return dd->send_pio_err_status_cnt[30];
2851}
2852
2853static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2854 void *context, int vl, int mode,
2855 u64 data)
2856{
2857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859 return dd->send_pio_err_status_cnt[29];
2860}
2861
2862static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2863 const struct cntr_entry *entry,
2864 void *context, int vl, int mode, u64 data)
2865{
2866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868 return dd->send_pio_err_status_cnt[28];
2869}
2870
2871static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2872 void *context, int vl, int mode,
2873 u64 data)
2874{
2875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877 return dd->send_pio_err_status_cnt[27];
2878}
2879
2880static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2881 void *context, int vl, int mode,
2882 u64 data)
2883{
2884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886 return dd->send_pio_err_status_cnt[26];
2887}
2888
2889static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2890 void *context, int vl,
2891 int mode, u64 data)
2892{
2893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895 return dd->send_pio_err_status_cnt[25];
2896}
2897
2898static u64 access_pio_block_qw_count_parity_err_cnt(
2899 const struct cntr_entry *entry,
2900 void *context, int vl, int mode, u64 data)
2901{
2902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904 return dd->send_pio_err_status_cnt[24];
2905}
2906
2907static u64 access_pio_write_qw_valid_parity_err_cnt(
2908 const struct cntr_entry *entry,
2909 void *context, int vl, int mode, u64 data)
2910{
2911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913 return dd->send_pio_err_status_cnt[23];
2914}
2915
2916static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2917 void *context, int vl, int mode,
2918 u64 data)
2919{
2920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922 return dd->send_pio_err_status_cnt[22];
2923}
2924
2925static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2926 void *context, int vl,
2927 int mode, u64 data)
2928{
2929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931 return dd->send_pio_err_status_cnt[21];
2932}
2933
2934static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2935 void *context, int vl,
2936 int mode, u64 data)
2937{
2938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940 return dd->send_pio_err_status_cnt[20];
2941}
2942
2943static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2944 void *context, int vl,
2945 int mode, u64 data)
2946{
2947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949 return dd->send_pio_err_status_cnt[19];
2950}
2951
2952static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2953 const struct cntr_entry *entry,
2954 void *context, int vl, int mode, u64 data)
2955{
2956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958 return dd->send_pio_err_status_cnt[18];
2959}
2960
2961static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2962 void *context, int vl, int mode,
2963 u64 data)
2964{
2965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967 return dd->send_pio_err_status_cnt[17];
2968}
2969
2970static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2971 void *context, int vl, int mode,
2972 u64 data)
2973{
2974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976 return dd->send_pio_err_status_cnt[16];
2977}
2978
2979static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2980 const struct cntr_entry *entry,
2981 void *context, int vl, int mode, u64 data)
2982{
2983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985 return dd->send_pio_err_status_cnt[15];
2986}
2987
2988static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2989 const struct cntr_entry *entry,
2990 void *context, int vl, int mode, u64 data)
2991{
2992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994 return dd->send_pio_err_status_cnt[14];
2995}
2996
2997static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2998 const struct cntr_entry *entry,
2999 void *context, int vl, int mode, u64 data)
3000{
3001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003 return dd->send_pio_err_status_cnt[13];
3004}
3005
3006static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3007 const struct cntr_entry *entry,
3008 void *context, int vl, int mode, u64 data)
3009{
3010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012 return dd->send_pio_err_status_cnt[12];
3013}
3014
3015static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3016 const struct cntr_entry *entry,
3017 void *context, int vl, int mode, u64 data)
3018{
3019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021 return dd->send_pio_err_status_cnt[11];
3022}
3023
3024static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3025 const struct cntr_entry *entry,
3026 void *context, int vl, int mode, u64 data)
3027{
3028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030 return dd->send_pio_err_status_cnt[10];
3031}
3032
3033static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3034 const struct cntr_entry *entry,
3035 void *context, int vl, int mode, u64 data)
3036{
3037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039 return dd->send_pio_err_status_cnt[9];
3040}
3041
3042static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3043 const struct cntr_entry *entry,
3044 void *context, int vl, int mode, u64 data)
3045{
3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048 return dd->send_pio_err_status_cnt[8];
3049}
3050
3051static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3052 const struct cntr_entry *entry,
3053 void *context, int vl, int mode, u64 data)
3054{
3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057 return dd->send_pio_err_status_cnt[7];
3058}
3059
3060static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3061 void *context, int vl, int mode,
3062 u64 data)
3063{
3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066 return dd->send_pio_err_status_cnt[6];
3067}
3068
3069static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3070 void *context, int vl, int mode,
3071 u64 data)
3072{
3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075 return dd->send_pio_err_status_cnt[5];
3076}
3077
3078static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3079 void *context, int vl, int mode,
3080 u64 data)
3081{
3082 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083
3084 return dd->send_pio_err_status_cnt[4];
3085}
3086
3087static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3088 void *context, int vl, int mode,
3089 u64 data)
3090{
3091 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092
3093 return dd->send_pio_err_status_cnt[3];
3094}
3095
3096static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3097 void *context, int vl, int mode,
3098 u64 data)
3099{
3100 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101
3102 return dd->send_pio_err_status_cnt[2];
3103}
3104
3105static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3106 void *context, int vl,
3107 int mode, u64 data)
3108{
3109 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110
3111 return dd->send_pio_err_status_cnt[1];
3112}
3113
3114static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3115 void *context, int vl, int mode,
3116 u64 data)
3117{
3118 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120 return dd->send_pio_err_status_cnt[0];
3121}
3122
3123/*
3124 * Software counters corresponding to each of the
3125 * error status bits within SendDmaErrStatus
3126 */
3127static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3128 const struct cntr_entry *entry,
3129 void *context, int vl, int mode, u64 data)
3130{
3131 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132
3133 return dd->send_dma_err_status_cnt[3];
3134}
3135
3136static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3137 const struct cntr_entry *entry,
3138 void *context, int vl, int mode, u64 data)
3139{
3140 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141
3142 return dd->send_dma_err_status_cnt[2];
3143}
3144
3145static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3146 void *context, int vl, int mode,
3147 u64 data)
3148{
3149 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150
3151 return dd->send_dma_err_status_cnt[1];
3152}
3153
3154static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3155 void *context, int vl, int mode,
3156 u64 data)
3157{
3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160 return dd->send_dma_err_status_cnt[0];
3161}
3162
3163/*
3164 * Software counters corresponding to each of the
3165 * error status bits within SendEgressErrStatus
3166 */
3167static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3168 const struct cntr_entry *entry,
3169 void *context, int vl, int mode, u64 data)
3170{
3171 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172
3173 return dd->send_egress_err_status_cnt[63];
3174}
3175
3176static u64 access_tx_read_sdma_memory_csr_err_cnt(
3177 const struct cntr_entry *entry,
3178 void *context, int vl, int mode, u64 data)
3179{
3180 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181
3182 return dd->send_egress_err_status_cnt[62];
3183}
3184
3185static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3186 void *context, int vl, int mode,
3187 u64 data)
3188{
3189 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190
3191 return dd->send_egress_err_status_cnt[61];
3192}
3193
3194static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3195 void *context, int vl,
3196 int mode, u64 data)
3197{
3198 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200 return dd->send_egress_err_status_cnt[60];
3201}
3202
3203static u64 access_tx_read_sdma_memory_cor_err_cnt(
3204 const struct cntr_entry *entry,
3205 void *context, int vl, int mode, u64 data)
3206{
3207 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209 return dd->send_egress_err_status_cnt[59];
3210}
3211
3212static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3213 void *context, int vl, int mode,
3214 u64 data)
3215{
3216 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218 return dd->send_egress_err_status_cnt[58];
3219}
3220
3221static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3222 void *context, int vl, int mode,
3223 u64 data)
3224{
3225 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227 return dd->send_egress_err_status_cnt[57];
3228}
3229
3230static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3231 void *context, int vl, int mode,
3232 u64 data)
3233{
3234 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236 return dd->send_egress_err_status_cnt[56];
3237}
3238
3239static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3240 void *context, int vl, int mode,
3241 u64 data)
3242{
3243 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245 return dd->send_egress_err_status_cnt[55];
3246}
3247
3248static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3249 void *context, int vl, int mode,
3250 u64 data)
3251{
3252 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254 return dd->send_egress_err_status_cnt[54];
3255}
3256
3257static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3258 void *context, int vl, int mode,
3259 u64 data)
3260{
3261 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263 return dd->send_egress_err_status_cnt[53];
3264}
3265
3266static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3267 void *context, int vl, int mode,
3268 u64 data)
3269{
3270 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272 return dd->send_egress_err_status_cnt[52];
3273}
3274
3275static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3276 void *context, int vl, int mode,
3277 u64 data)
3278{
3279 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281 return dd->send_egress_err_status_cnt[51];
3282}
3283
3284static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3285 void *context, int vl, int mode,
3286 u64 data)
3287{
3288 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290 return dd->send_egress_err_status_cnt[50];
3291}
3292
3293static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3294 void *context, int vl, int mode,
3295 u64 data)
3296{
3297 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299 return dd->send_egress_err_status_cnt[49];
3300}
3301
3302static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3303 void *context, int vl, int mode,
3304 u64 data)
3305{
3306 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308 return dd->send_egress_err_status_cnt[48];
3309}
3310
3311static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3312 void *context, int vl, int mode,
3313 u64 data)
3314{
3315 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317 return dd->send_egress_err_status_cnt[47];
3318}
3319
3320static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3321 void *context, int vl, int mode,
3322 u64 data)
3323{
3324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326 return dd->send_egress_err_status_cnt[46];
3327}
3328
3329static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3330 void *context, int vl, int mode,
3331 u64 data)
3332{
3333 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335 return dd->send_egress_err_status_cnt[45];
3336}
3337
3338static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3339 void *context, int vl,
3340 int mode, u64 data)
3341{
3342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344 return dd->send_egress_err_status_cnt[44];
3345}
3346
3347static u64 access_tx_read_sdma_memory_unc_err_cnt(
3348 const struct cntr_entry *entry,
3349 void *context, int vl, int mode, u64 data)
3350{
3351 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353 return dd->send_egress_err_status_cnt[43];
3354}
3355
3356static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3357 void *context, int vl, int mode,
3358 u64 data)
3359{
3360 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362 return dd->send_egress_err_status_cnt[42];
3363}
3364
3365static u64 access_tx_credit_return_partiy_err_cnt(
3366 const struct cntr_entry *entry,
3367 void *context, int vl, int mode, u64 data)
3368{
3369 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371 return dd->send_egress_err_status_cnt[41];
3372}
3373
3374static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3375 const struct cntr_entry *entry,
3376 void *context, int vl, int mode, u64 data)
3377{
3378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380 return dd->send_egress_err_status_cnt[40];
3381}
3382
3383static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3384 const struct cntr_entry *entry,
3385 void *context, int vl, int mode, u64 data)
3386{
3387 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389 return dd->send_egress_err_status_cnt[39];
3390}
3391
3392static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3393 const struct cntr_entry *entry,
3394 void *context, int vl, int mode, u64 data)
3395{
3396 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398 return dd->send_egress_err_status_cnt[38];
3399}
3400
3401static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3402 const struct cntr_entry *entry,
3403 void *context, int vl, int mode, u64 data)
3404{
3405 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407 return dd->send_egress_err_status_cnt[37];
3408}
3409
3410static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3411 const struct cntr_entry *entry,
3412 void *context, int vl, int mode, u64 data)
3413{
3414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416 return dd->send_egress_err_status_cnt[36];
3417}
3418
3419static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3420 const struct cntr_entry *entry,
3421 void *context, int vl, int mode, u64 data)
3422{
3423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425 return dd->send_egress_err_status_cnt[35];
3426}
3427
3428static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3429 const struct cntr_entry *entry,
3430 void *context, int vl, int mode, u64 data)
3431{
3432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434 return dd->send_egress_err_status_cnt[34];
3435}
3436
3437static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3438 const struct cntr_entry *entry,
3439 void *context, int vl, int mode, u64 data)
3440{
3441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443 return dd->send_egress_err_status_cnt[33];
3444}
3445
3446static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3447 const struct cntr_entry *entry,
3448 void *context, int vl, int mode, u64 data)
3449{
3450 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452 return dd->send_egress_err_status_cnt[32];
3453}
3454
3455static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3456 const struct cntr_entry *entry,
3457 void *context, int vl, int mode, u64 data)
3458{
3459 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461 return dd->send_egress_err_status_cnt[31];
3462}
3463
3464static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3465 const struct cntr_entry *entry,
3466 void *context, int vl, int mode, u64 data)
3467{
3468 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470 return dd->send_egress_err_status_cnt[30];
3471}
3472
3473static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3474 const struct cntr_entry *entry,
3475 void *context, int vl, int mode, u64 data)
3476{
3477 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479 return dd->send_egress_err_status_cnt[29];
3480}
3481
3482static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3483 const struct cntr_entry *entry,
3484 void *context, int vl, int mode, u64 data)
3485{
3486 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488 return dd->send_egress_err_status_cnt[28];
3489}
3490
3491static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3492 const struct cntr_entry *entry,
3493 void *context, int vl, int mode, u64 data)
3494{
3495 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497 return dd->send_egress_err_status_cnt[27];
3498}
3499
3500static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3501 const struct cntr_entry *entry,
3502 void *context, int vl, int mode, u64 data)
3503{
3504 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506 return dd->send_egress_err_status_cnt[26];
3507}
3508
3509static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3510 const struct cntr_entry *entry,
3511 void *context, int vl, int mode, u64 data)
3512{
3513 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515 return dd->send_egress_err_status_cnt[25];
3516}
3517
3518static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3519 const struct cntr_entry *entry,
3520 void *context, int vl, int mode, u64 data)
3521{
3522 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524 return dd->send_egress_err_status_cnt[24];
3525}
3526
3527static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3528 const struct cntr_entry *entry,
3529 void *context, int vl, int mode, u64 data)
3530{
3531 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533 return dd->send_egress_err_status_cnt[23];
3534}
3535
3536static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3537 const struct cntr_entry *entry,
3538 void *context, int vl, int mode, u64 data)
3539{
3540 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542 return dd->send_egress_err_status_cnt[22];
3543}
3544
3545static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3546 const struct cntr_entry *entry,
3547 void *context, int vl, int mode, u64 data)
3548{
3549 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551 return dd->send_egress_err_status_cnt[21];
3552}
3553
3554static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3555 const struct cntr_entry *entry,
3556 void *context, int vl, int mode, u64 data)
3557{
3558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560 return dd->send_egress_err_status_cnt[20];
3561}
3562
3563static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3564 const struct cntr_entry *entry,
3565 void *context, int vl, int mode, u64 data)
3566{
3567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569 return dd->send_egress_err_status_cnt[19];
3570}
3571
3572static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3573 const struct cntr_entry *entry,
3574 void *context, int vl, int mode, u64 data)
3575{
3576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578 return dd->send_egress_err_status_cnt[18];
3579}
3580
3581static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3582 const struct cntr_entry *entry,
3583 void *context, int vl, int mode, u64 data)
3584{
3585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587 return dd->send_egress_err_status_cnt[17];
3588}
3589
3590static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3591 const struct cntr_entry *entry,
3592 void *context, int vl, int mode, u64 data)
3593{
3594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596 return dd->send_egress_err_status_cnt[16];
3597}
3598
3599static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3600 void *context, int vl, int mode,
3601 u64 data)
3602{
3603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605 return dd->send_egress_err_status_cnt[15];
3606}
3607
3608static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3609 void *context, int vl,
3610 int mode, u64 data)
3611{
3612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614 return dd->send_egress_err_status_cnt[14];
3615}
3616
3617static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3618 void *context, int vl, int mode,
3619 u64 data)
3620{
3621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623 return dd->send_egress_err_status_cnt[13];
3624}
3625
3626static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3627 void *context, int vl, int mode,
3628 u64 data)
3629{
3630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632 return dd->send_egress_err_status_cnt[12];
3633}
3634
3635static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3636 const struct cntr_entry *entry,
3637 void *context, int vl, int mode, u64 data)
3638{
3639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641 return dd->send_egress_err_status_cnt[11];
3642}
3643
3644static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3645 void *context, int vl, int mode,
3646 u64 data)
3647{
3648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650 return dd->send_egress_err_status_cnt[10];
3651}
3652
3653static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3654 void *context, int vl, int mode,
3655 u64 data)
3656{
3657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659 return dd->send_egress_err_status_cnt[9];
3660}
3661
3662static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3663 const struct cntr_entry *entry,
3664 void *context, int vl, int mode, u64 data)
3665{
3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668 return dd->send_egress_err_status_cnt[8];
3669}
3670
3671static u64 access_tx_pio_launch_intf_parity_err_cnt(
3672 const struct cntr_entry *entry,
3673 void *context, int vl, int mode, u64 data)
3674{
3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677 return dd->send_egress_err_status_cnt[7];
3678}
3679
3680static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3681 void *context, int vl, int mode,
3682 u64 data)
3683{
3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686 return dd->send_egress_err_status_cnt[6];
3687}
3688
3689static u64 access_tx_incorrect_link_state_err_cnt(
3690 const struct cntr_entry *entry,
3691 void *context, int vl, int mode, u64 data)
3692{
3693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694
3695 return dd->send_egress_err_status_cnt[5];
3696}
3697
3698static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3699 void *context, int vl, int mode,
3700 u64 data)
3701{
3702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703
3704 return dd->send_egress_err_status_cnt[4];
3705}
3706
3707static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3708 const struct cntr_entry *entry,
3709 void *context, int vl, int mode, u64 data)
3710{
3711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712
3713 return dd->send_egress_err_status_cnt[3];
3714}
3715
3716static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3717 void *context, int vl, int mode,
3718 u64 data)
3719{
3720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721
3722 return dd->send_egress_err_status_cnt[2];
3723}
3724
3725static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3726 const struct cntr_entry *entry,
3727 void *context, int vl, int mode, u64 data)
3728{
3729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730
3731 return dd->send_egress_err_status_cnt[1];
3732}
3733
3734static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3735 const struct cntr_entry *entry,
3736 void *context, int vl, int mode, u64 data)
3737{
3738 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740 return dd->send_egress_err_status_cnt[0];
3741}
3742
3743/*
3744 * Software counters corresponding to each of the
3745 * error status bits within SendErrStatus
3746 */
3747static u64 access_send_csr_write_bad_addr_err_cnt(
3748 const struct cntr_entry *entry,
3749 void *context, int vl, int mode, u64 data)
3750{
3751 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3752
3753 return dd->send_err_status_cnt[2];
3754}
3755
3756static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3757 void *context, int vl,
3758 int mode, u64 data)
3759{
3760 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761
3762 return dd->send_err_status_cnt[1];
3763}
3764
3765static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3766 void *context, int vl, int mode,
3767 u64 data)
3768{
3769 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770
3771 return dd->send_err_status_cnt[0];
3772}
3773
3774/*
3775 * Software counters corresponding to each of the
3776 * error status bits within SendCtxtErrStatus
3777 */
3778static u64 access_pio_write_out_of_bounds_err_cnt(
3779 const struct cntr_entry *entry,
3780 void *context, int vl, int mode, u64 data)
3781{
3782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783
3784 return dd->sw_ctxt_err_status_cnt[4];
3785}
3786
3787static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3788 void *context, int vl, int mode,
3789 u64 data)
3790{
3791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792
3793 return dd->sw_ctxt_err_status_cnt[3];
3794}
3795
3796static u64 access_pio_write_crosses_boundary_err_cnt(
3797 const struct cntr_entry *entry,
3798 void *context, int vl, int mode, u64 data)
3799{
3800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801
3802 return dd->sw_ctxt_err_status_cnt[2];
3803}
3804
3805static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3806 void *context, int vl,
3807 int mode, u64 data)
3808{
3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810
3811 return dd->sw_ctxt_err_status_cnt[1];
3812}
3813
3814static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3815 void *context, int vl, int mode,
3816 u64 data)
3817{
3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820 return dd->sw_ctxt_err_status_cnt[0];
3821}
3822
3823/*
3824 * Software counters corresponding to each of the
3825 * error status bits within SendDmaEngErrStatus
3826 */
3827static u64 access_sdma_header_request_fifo_cor_err_cnt(
3828 const struct cntr_entry *entry,
3829 void *context, int vl, int mode, u64 data)
3830{
3831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832
3833 return dd->sw_send_dma_eng_err_status_cnt[23];
3834}
3835
3836static u64 access_sdma_header_storage_cor_err_cnt(
3837 const struct cntr_entry *entry,
3838 void *context, int vl, int mode, u64 data)
3839{
3840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841
3842 return dd->sw_send_dma_eng_err_status_cnt[22];
3843}
3844
3845static u64 access_sdma_packet_tracking_cor_err_cnt(
3846 const struct cntr_entry *entry,
3847 void *context, int vl, int mode, u64 data)
3848{
3849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850
3851 return dd->sw_send_dma_eng_err_status_cnt[21];
3852}
3853
3854static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3855 void *context, int vl, int mode,
3856 u64 data)
3857{
3858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860 return dd->sw_send_dma_eng_err_status_cnt[20];
3861}
3862
3863static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3864 void *context, int vl, int mode,
3865 u64 data)
3866{
3867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869 return dd->sw_send_dma_eng_err_status_cnt[19];
3870}
3871
3872static u64 access_sdma_header_request_fifo_unc_err_cnt(
3873 const struct cntr_entry *entry,
3874 void *context, int vl, int mode, u64 data)
3875{
3876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878 return dd->sw_send_dma_eng_err_status_cnt[18];
3879}
3880
3881static u64 access_sdma_header_storage_unc_err_cnt(
3882 const struct cntr_entry *entry,
3883 void *context, int vl, int mode, u64 data)
3884{
3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887 return dd->sw_send_dma_eng_err_status_cnt[17];
3888}
3889
3890static u64 access_sdma_packet_tracking_unc_err_cnt(
3891 const struct cntr_entry *entry,
3892 void *context, int vl, int mode, u64 data)
3893{
3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896 return dd->sw_send_dma_eng_err_status_cnt[16];
3897}
3898
3899static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3900 void *context, int vl, int mode,
3901 u64 data)
3902{
3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905 return dd->sw_send_dma_eng_err_status_cnt[15];
3906}
3907
3908static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3909 void *context, int vl, int mode,
3910 u64 data)
3911{
3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914 return dd->sw_send_dma_eng_err_status_cnt[14];
3915}
3916
3917static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3918 void *context, int vl, int mode,
3919 u64 data)
3920{
3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923 return dd->sw_send_dma_eng_err_status_cnt[13];
3924}
3925
3926static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3927 void *context, int vl, int mode,
3928 u64 data)
3929{
3930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931
3932 return dd->sw_send_dma_eng_err_status_cnt[12];
3933}
3934
3935static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3936 void *context, int vl, int mode,
3937 u64 data)
3938{
3939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940
3941 return dd->sw_send_dma_eng_err_status_cnt[11];
3942}
3943
3944static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3945 void *context, int vl, int mode,
3946 u64 data)
3947{
3948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949
3950 return dd->sw_send_dma_eng_err_status_cnt[10];
3951}
3952
3953static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3954 void *context, int vl, int mode,
3955 u64 data)
3956{
3957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958
3959 return dd->sw_send_dma_eng_err_status_cnt[9];
3960}
3961
3962static u64 access_sdma_packet_desc_overflow_err_cnt(
3963 const struct cntr_entry *entry,
3964 void *context, int vl, int mode, u64 data)
3965{
3966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967
3968 return dd->sw_send_dma_eng_err_status_cnt[8];
3969}
3970
3971static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3972 void *context, int vl,
3973 int mode, u64 data)
3974{
3975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976
3977 return dd->sw_send_dma_eng_err_status_cnt[7];
3978}
3979
3980static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3981 void *context, int vl, int mode, u64 data)
3982{
3983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984
3985 return dd->sw_send_dma_eng_err_status_cnt[6];
3986}
3987
3988static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3989 void *context, int vl, int mode,
3990 u64 data)
3991{
3992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993
3994 return dd->sw_send_dma_eng_err_status_cnt[5];
3995}
3996
3997static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3998 void *context, int vl, int mode,
3999 u64 data)
4000{
4001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4002
4003 return dd->sw_send_dma_eng_err_status_cnt[4];
4004}
4005
4006static u64 access_sdma_tail_out_of_bounds_err_cnt(
4007 const struct cntr_entry *entry,
4008 void *context, int vl, int mode, u64 data)
4009{
4010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011
4012 return dd->sw_send_dma_eng_err_status_cnt[3];
4013}
4014
4015static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4016 void *context, int vl, int mode,
4017 u64 data)
4018{
4019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020
4021 return dd->sw_send_dma_eng_err_status_cnt[2];
4022}
4023
4024static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4025 void *context, int vl, int mode,
4026 u64 data)
4027{
4028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029
4030 return dd->sw_send_dma_eng_err_status_cnt[1];
4031}
4032
4033static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4034 void *context, int vl, int mode,
4035 u64 data)
4036{
4037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038
4039 return dd->sw_send_dma_eng_err_status_cnt[0];
4040}
4041
2b719046
JP
4042static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4043 void *context, int vl, int mode,
4044 u64 data)
4045{
4046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047
4048 u64 val = 0;
4049 u64 csr = entry->csr;
4050
4051 val = read_write_csr(dd, csr, mode, data);
4052 if (mode == CNTR_MODE_R) {
4053 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4054 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4055 } else if (mode == CNTR_MODE_W) {
4056 dd->sw_rcv_bypass_packet_errors = 0;
4057 } else {
4058 dd_dev_err(dd, "Invalid cntr register access mode");
4059 return 0;
4060 }
4061 return val;
4062}
4063
77241056
MM
4064#define def_access_sw_cpu(cntr) \
4065static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
4066 void *context, int vl, int mode, u64 data) \
4067{ \
4068 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4eb06882
DD
4069 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
4070 ppd->ibport_data.rvp.cntr, vl, \
77241056
MM
4071 mode, data); \
4072}
4073
4074def_access_sw_cpu(rc_acks);
4075def_access_sw_cpu(rc_qacks);
4076def_access_sw_cpu(rc_delayed_comp);
4077
4078#define def_access_ibp_counter(cntr) \
4079static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
4080 void *context, int vl, int mode, u64 data) \
4081{ \
4082 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
4083 \
4084 if (vl != CNTR_INVALID_VL) \
4085 return 0; \
4086 \
4eb06882 4087 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
77241056
MM
4088 mode, data); \
4089}
4090
4091def_access_ibp_counter(loop_pkts);
4092def_access_ibp_counter(rc_resends);
4093def_access_ibp_counter(rnr_naks);
4094def_access_ibp_counter(other_naks);
4095def_access_ibp_counter(rc_timeouts);
4096def_access_ibp_counter(pkt_drops);
4097def_access_ibp_counter(dmawait);
4098def_access_ibp_counter(rc_seqnak);
4099def_access_ibp_counter(rc_dupreq);
4100def_access_ibp_counter(rdma_seq);
4101def_access_ibp_counter(unaligned);
4102def_access_ibp_counter(seq_naks);
4103
4104static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4105[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4106[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4107 CNTR_NORMAL),
4108[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4109 CNTR_NORMAL),
4110[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4111 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4112 CNTR_NORMAL),
77241056
MM
4113[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4114 CNTR_NORMAL),
4115[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4116 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4117[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4118 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4119[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4120 CNTR_NORMAL),
4121[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4122 CNTR_NORMAL),
4123[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4124 CNTR_NORMAL),
4125[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4126 CNTR_NORMAL),
4127[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4128 CNTR_NORMAL),
4129[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4130 CNTR_NORMAL),
4131[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4132 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4133[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4134 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4135[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4136 CNTR_SYNTH),
2b719046
JP
4137[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4138 access_dc_rcv_err_cnt),
77241056
MM
4139[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4140 CNTR_SYNTH),
4141[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4142 CNTR_SYNTH),
4143[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4144 CNTR_SYNTH),
4145[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4146 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4147[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4148 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4149 CNTR_SYNTH),
4150[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4151 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4152[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4153 CNTR_SYNTH),
4154[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4155 CNTR_SYNTH),
4156[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4157 CNTR_SYNTH),
4158[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4159 CNTR_SYNTH),
4160[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4161 CNTR_SYNTH),
4162[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4163 CNTR_SYNTH),
4164[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4165 CNTR_SYNTH),
4166[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4167 CNTR_SYNTH | CNTR_VL),
4168[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4169 CNTR_SYNTH | CNTR_VL),
4170[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4171[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4172 CNTR_SYNTH | CNTR_VL),
4173[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4174[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4175 CNTR_SYNTH | CNTR_VL),
4176[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4177 CNTR_SYNTH),
4178[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4179 CNTR_SYNTH | CNTR_VL),
4180[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4181 CNTR_SYNTH),
4182[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4183 CNTR_SYNTH | CNTR_VL),
4184[C_DC_TOTAL_CRC] =
4185 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4186 CNTR_SYNTH),
4187[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4188 CNTR_SYNTH),
4189[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4190 CNTR_SYNTH),
4191[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4192 CNTR_SYNTH),
4193[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4194 CNTR_SYNTH),
4195[C_DC_CRC_MULT_LN] =
4196 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4197 CNTR_SYNTH),
4198[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4199 CNTR_SYNTH),
4200[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4201 CNTR_SYNTH),
4202[C_DC_SEQ_CRC_CNT] =
4203 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4204 CNTR_SYNTH),
4205[C_DC_ESC0_ONLY_CNT] =
4206 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4207 CNTR_SYNTH),
4208[C_DC_ESC0_PLUS1_CNT] =
4209 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4210 CNTR_SYNTH),
4211[C_DC_ESC0_PLUS2_CNT] =
4212 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4213 CNTR_SYNTH),
4214[C_DC_REINIT_FROM_PEER_CNT] =
4215 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4216 CNTR_SYNTH),
4217[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4218 CNTR_SYNTH),
4219[C_DC_MISC_FLG_CNT] =
4220 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4221 CNTR_SYNTH),
4222[C_DC_PRF_GOOD_LTP_CNT] =
4223 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4224[C_DC_PRF_ACCEPTED_LTP_CNT] =
4225 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4226 CNTR_SYNTH),
4227[C_DC_PRF_RX_FLIT_CNT] =
4228 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4229[C_DC_PRF_TX_FLIT_CNT] =
4230 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4231[C_DC_PRF_CLK_CNTR] =
4232 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4233[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4234 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4235[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4236 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4237 CNTR_SYNTH),
4238[C_DC_PG_STS_TX_SBE_CNT] =
4239 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4240[C_DC_PG_STS_TX_MBE_CNT] =
4241 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4242 CNTR_SYNTH),
4243[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4244 access_sw_cpu_intr),
4245[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4246 access_sw_cpu_rcv_limit),
4247[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4248 access_sw_vtx_wait),
4249[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4250 access_sw_pio_wait),
14553ca1
MM
4251[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4252 access_sw_pio_drain),
77241056
MM
4253[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4254 access_sw_kmem_wait),
b421922e
DL
4255[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4256 access_sw_send_schedule),
a699c6c2
VM
4257[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4258 SEND_DMA_DESC_FETCHED_CNT, 0,
4259 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4260 dev_access_u32_csr),
4261[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4262 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263 access_sde_int_cnt),
4264[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4265 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 access_sde_err_cnt),
4267[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4268 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4269 access_sde_idle_int_cnt),
4270[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4271 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272 access_sde_progress_int_cnt),
2c5b521a
JR
4273/* MISC_ERR_STATUS */
4274[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4275 CNTR_NORMAL,
4276 access_misc_pll_lock_fail_err_cnt),
4277[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4278 CNTR_NORMAL,
4279 access_misc_mbist_fail_err_cnt),
4280[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4281 CNTR_NORMAL,
4282 access_misc_invalid_eep_cmd_err_cnt),
4283[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4284 CNTR_NORMAL,
4285 access_misc_efuse_done_parity_err_cnt),
4286[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4287 CNTR_NORMAL,
4288 access_misc_efuse_write_err_cnt),
4289[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4290 0, CNTR_NORMAL,
4291 access_misc_efuse_read_bad_addr_err_cnt),
4292[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4293 CNTR_NORMAL,
4294 access_misc_efuse_csr_parity_err_cnt),
4295[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4296 CNTR_NORMAL,
4297 access_misc_fw_auth_failed_err_cnt),
4298[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4299 CNTR_NORMAL,
4300 access_misc_key_mismatch_err_cnt),
4301[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4302 CNTR_NORMAL,
4303 access_misc_sbus_write_failed_err_cnt),
4304[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4305 CNTR_NORMAL,
4306 access_misc_csr_write_bad_addr_err_cnt),
4307[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4308 CNTR_NORMAL,
4309 access_misc_csr_read_bad_addr_err_cnt),
4310[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4311 CNTR_NORMAL,
4312 access_misc_csr_parity_err_cnt),
4313/* CceErrStatus */
4314[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4315 CNTR_NORMAL,
4316 access_sw_cce_err_status_aggregated_cnt),
4317[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4318 CNTR_NORMAL,
4319 access_cce_msix_csr_parity_err_cnt),
4320[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4321 CNTR_NORMAL,
4322 access_cce_int_map_unc_err_cnt),
4323[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4324 CNTR_NORMAL,
4325 access_cce_int_map_cor_err_cnt),
4326[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4327 CNTR_NORMAL,
4328 access_cce_msix_table_unc_err_cnt),
4329[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_cce_msix_table_cor_err_cnt),
4332[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4333 0, CNTR_NORMAL,
4334 access_cce_rxdma_conv_fifo_parity_err_cnt),
4335[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4336 0, CNTR_NORMAL,
4337 access_cce_rcpl_async_fifo_parity_err_cnt),
4338[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_cce_seg_write_bad_addr_err_cnt),
4341[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_cce_seg_read_bad_addr_err_cnt),
4344[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4345 CNTR_NORMAL,
4346 access_la_triggered_cnt),
4347[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4348 CNTR_NORMAL,
4349 access_cce_trgt_cpl_timeout_err_cnt),
4350[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4351 CNTR_NORMAL,
4352 access_pcic_receive_parity_err_cnt),
4353[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4354 CNTR_NORMAL,
4355 access_pcic_transmit_back_parity_err_cnt),
4356[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4357 0, CNTR_NORMAL,
4358 access_pcic_transmit_front_parity_err_cnt),
4359[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4360 CNTR_NORMAL,
4361 access_pcic_cpl_dat_q_unc_err_cnt),
4362[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4363 CNTR_NORMAL,
4364 access_pcic_cpl_hd_q_unc_err_cnt),
4365[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4366 CNTR_NORMAL,
4367 access_pcic_post_dat_q_unc_err_cnt),
4368[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4369 CNTR_NORMAL,
4370 access_pcic_post_hd_q_unc_err_cnt),
4371[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4372 CNTR_NORMAL,
4373 access_pcic_retry_sot_mem_unc_err_cnt),
4374[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4375 CNTR_NORMAL,
4376 access_pcic_retry_mem_unc_err),
4377[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4378 CNTR_NORMAL,
4379 access_pcic_n_post_dat_q_parity_err_cnt),
4380[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4381 CNTR_NORMAL,
4382 access_pcic_n_post_h_q_parity_err_cnt),
4383[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4384 CNTR_NORMAL,
4385 access_pcic_cpl_dat_q_cor_err_cnt),
4386[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4387 CNTR_NORMAL,
4388 access_pcic_cpl_hd_q_cor_err_cnt),
4389[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4390 CNTR_NORMAL,
4391 access_pcic_post_dat_q_cor_err_cnt),
4392[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4393 CNTR_NORMAL,
4394 access_pcic_post_hd_q_cor_err_cnt),
4395[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4396 CNTR_NORMAL,
4397 access_pcic_retry_sot_mem_cor_err_cnt),
4398[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4399 CNTR_NORMAL,
4400 access_pcic_retry_mem_cor_err_cnt),
4401[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4402 "CceCli1AsyncFifoDbgParityError", 0, 0,
4403 CNTR_NORMAL,
4404 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4405[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4406 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4407 CNTR_NORMAL,
4408 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4409 ),
4410[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4411 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4412 CNTR_NORMAL,
4413 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4414[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4415 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4416 CNTR_NORMAL,
4417 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4418[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4419 0, CNTR_NORMAL,
4420 access_cce_cli2_async_fifo_parity_err_cnt),
4421[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4422 CNTR_NORMAL,
4423 access_cce_csr_cfg_bus_parity_err_cnt),
4424[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4425 0, CNTR_NORMAL,
4426 access_cce_cli0_async_fifo_parity_err_cnt),
4427[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4428 CNTR_NORMAL,
4429 access_cce_rspd_data_parity_err_cnt),
4430[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4431 CNTR_NORMAL,
4432 access_cce_trgt_access_err_cnt),
4433[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4434 0, CNTR_NORMAL,
4435 access_cce_trgt_async_fifo_parity_err_cnt),
4436[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4437 CNTR_NORMAL,
4438 access_cce_csr_write_bad_addr_err_cnt),
4439[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4440 CNTR_NORMAL,
4441 access_cce_csr_read_bad_addr_err_cnt),
4442[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4443 CNTR_NORMAL,
4444 access_ccs_csr_parity_err_cnt),
4445
4446/* RcvErrStatus */
4447[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4448 CNTR_NORMAL,
4449 access_rx_csr_parity_err_cnt),
4450[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4451 CNTR_NORMAL,
4452 access_rx_csr_write_bad_addr_err_cnt),
4453[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4454 CNTR_NORMAL,
4455 access_rx_csr_read_bad_addr_err_cnt),
4456[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4457 CNTR_NORMAL,
4458 access_rx_dma_csr_unc_err_cnt),
4459[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4460 CNTR_NORMAL,
4461 access_rx_dma_dq_fsm_encoding_err_cnt),
4462[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4463 CNTR_NORMAL,
4464 access_rx_dma_eq_fsm_encoding_err_cnt),
4465[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_dma_csr_parity_err_cnt),
4468[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_rbuf_data_cor_err_cnt),
4471[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4472 CNTR_NORMAL,
4473 access_rx_rbuf_data_unc_err_cnt),
4474[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4475 CNTR_NORMAL,
4476 access_rx_dma_data_fifo_rd_cor_err_cnt),
4477[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4478 CNTR_NORMAL,
4479 access_rx_dma_data_fifo_rd_unc_err_cnt),
4480[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4481 CNTR_NORMAL,
4482 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4483[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4484 CNTR_NORMAL,
4485 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4486[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4487 CNTR_NORMAL,
4488 access_rx_rbuf_desc_part2_cor_err_cnt),
4489[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4490 CNTR_NORMAL,
4491 access_rx_rbuf_desc_part2_unc_err_cnt),
4492[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4493 CNTR_NORMAL,
4494 access_rx_rbuf_desc_part1_cor_err_cnt),
4495[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4496 CNTR_NORMAL,
4497 access_rx_rbuf_desc_part1_unc_err_cnt),
4498[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4499 CNTR_NORMAL,
4500 access_rx_hq_intr_fsm_err_cnt),
4501[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4502 CNTR_NORMAL,
4503 access_rx_hq_intr_csr_parity_err_cnt),
4504[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4505 CNTR_NORMAL,
4506 access_rx_lookup_csr_parity_err_cnt),
4507[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4508 CNTR_NORMAL,
4509 access_rx_lookup_rcv_array_cor_err_cnt),
4510[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4511 CNTR_NORMAL,
4512 access_rx_lookup_rcv_array_unc_err_cnt),
4513[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4514 0, CNTR_NORMAL,
4515 access_rx_lookup_des_part2_parity_err_cnt),
4516[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4517 0, CNTR_NORMAL,
4518 access_rx_lookup_des_part1_unc_cor_err_cnt),
4519[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4520 CNTR_NORMAL,
4521 access_rx_lookup_des_part1_unc_err_cnt),
4522[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4523 CNTR_NORMAL,
4524 access_rx_rbuf_next_free_buf_cor_err_cnt),
4525[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4526 CNTR_NORMAL,
4527 access_rx_rbuf_next_free_buf_unc_err_cnt),
4528[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4529 "RxRbufFlInitWrAddrParityErr", 0, 0,
4530 CNTR_NORMAL,
4531 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4532[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4533 0, CNTR_NORMAL,
4534 access_rx_rbuf_fl_initdone_parity_err_cnt),
4535[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4536 0, CNTR_NORMAL,
4537 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4538[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4539 CNTR_NORMAL,
4540 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4541[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4542 CNTR_NORMAL,
4543 access_rx_rbuf_empty_err_cnt),
4544[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4545 CNTR_NORMAL,
4546 access_rx_rbuf_full_err_cnt),
4547[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4548 CNTR_NORMAL,
4549 access_rbuf_bad_lookup_err_cnt),
4550[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4551 CNTR_NORMAL,
4552 access_rbuf_ctx_id_parity_err_cnt),
4553[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4554 CNTR_NORMAL,
4555 access_rbuf_csr_qeopdw_parity_err_cnt),
4556[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4557 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4558 CNTR_NORMAL,
4559 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4560[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4561 "RxRbufCsrQTlPtrParityErr", 0, 0,
4562 CNTR_NORMAL,
4563 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4564[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4565 0, CNTR_NORMAL,
4566 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4567[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4568 0, CNTR_NORMAL,
4569 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4570[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4571 0, 0, CNTR_NORMAL,
4572 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4573[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4574 0, CNTR_NORMAL,
4575 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4576[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4577 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4578 CNTR_NORMAL,
4579 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4580[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4581 0, CNTR_NORMAL,
4582 access_rx_rbuf_block_list_read_cor_err_cnt),
4583[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4584 0, CNTR_NORMAL,
4585 access_rx_rbuf_block_list_read_unc_err_cnt),
4586[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4587 CNTR_NORMAL,
4588 access_rx_rbuf_lookup_des_cor_err_cnt),
4589[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4590 CNTR_NORMAL,
4591 access_rx_rbuf_lookup_des_unc_err_cnt),
4592[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4593 "RxRbufLookupDesRegUncCorErr", 0, 0,
4594 CNTR_NORMAL,
4595 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4596[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4597 CNTR_NORMAL,
4598 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4599[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4600 CNTR_NORMAL,
4601 access_rx_rbuf_free_list_cor_err_cnt),
4602[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4603 CNTR_NORMAL,
4604 access_rx_rbuf_free_list_unc_err_cnt),
4605[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4606 CNTR_NORMAL,
4607 access_rx_rcv_fsm_encoding_err_cnt),
4608[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4609 CNTR_NORMAL,
4610 access_rx_dma_flag_cor_err_cnt),
4611[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4612 CNTR_NORMAL,
4613 access_rx_dma_flag_unc_err_cnt),
4614[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4615 CNTR_NORMAL,
4616 access_rx_dc_sop_eop_parity_err_cnt),
4617[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4618 CNTR_NORMAL,
4619 access_rx_rcv_csr_parity_err_cnt),
4620[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4621 CNTR_NORMAL,
4622 access_rx_rcv_qp_map_table_cor_err_cnt),
4623[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4624 CNTR_NORMAL,
4625 access_rx_rcv_qp_map_table_unc_err_cnt),
4626[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4627 CNTR_NORMAL,
4628 access_rx_rcv_data_cor_err_cnt),
4629[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4630 CNTR_NORMAL,
4631 access_rx_rcv_data_unc_err_cnt),
4632[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4633 CNTR_NORMAL,
4634 access_rx_rcv_hdr_cor_err_cnt),
4635[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4636 CNTR_NORMAL,
4637 access_rx_rcv_hdr_unc_err_cnt),
4638[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4639 CNTR_NORMAL,
4640 access_rx_dc_intf_parity_err_cnt),
4641[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4642 CNTR_NORMAL,
4643 access_rx_dma_csr_cor_err_cnt),
4644/* SendPioErrStatus */
4645[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4646 CNTR_NORMAL,
4647 access_pio_pec_sop_head_parity_err_cnt),
4648[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4649 CNTR_NORMAL,
4650 access_pio_pcc_sop_head_parity_err_cnt),
4651[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4652 0, 0, CNTR_NORMAL,
4653 access_pio_last_returned_cnt_parity_err_cnt),
4654[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4655 0, CNTR_NORMAL,
4656 access_pio_current_free_cnt_parity_err_cnt),
4657[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4658 CNTR_NORMAL,
4659 access_pio_reserved_31_err_cnt),
4660[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4661 CNTR_NORMAL,
4662 access_pio_reserved_30_err_cnt),
4663[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4664 CNTR_NORMAL,
4665 access_pio_ppmc_sop_len_err_cnt),
4666[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4667 CNTR_NORMAL,
4668 access_pio_ppmc_bqc_mem_parity_err_cnt),
4669[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4670 CNTR_NORMAL,
4671 access_pio_vl_fifo_parity_err_cnt),
4672[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4673 CNTR_NORMAL,
4674 access_pio_vlf_sop_parity_err_cnt),
4675[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4676 CNTR_NORMAL,
4677 access_pio_vlf_v1_len_parity_err_cnt),
4678[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4679 CNTR_NORMAL,
4680 access_pio_block_qw_count_parity_err_cnt),
4681[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4682 CNTR_NORMAL,
4683 access_pio_write_qw_valid_parity_err_cnt),
4684[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4685 CNTR_NORMAL,
4686 access_pio_state_machine_err_cnt),
4687[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4688 CNTR_NORMAL,
4689 access_pio_write_data_parity_err_cnt),
4690[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4691 CNTR_NORMAL,
4692 access_pio_host_addr_mem_cor_err_cnt),
4693[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4694 CNTR_NORMAL,
4695 access_pio_host_addr_mem_unc_err_cnt),
4696[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4697 CNTR_NORMAL,
4698 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4699[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4700 CNTR_NORMAL,
4701 access_pio_init_sm_in_err_cnt),
4702[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4703 CNTR_NORMAL,
4704 access_pio_ppmc_pbl_fifo_err_cnt),
4705[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4706 0, CNTR_NORMAL,
4707 access_pio_credit_ret_fifo_parity_err_cnt),
4708[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4709 CNTR_NORMAL,
4710 access_pio_v1_len_mem_bank1_cor_err_cnt),
4711[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4712 CNTR_NORMAL,
4713 access_pio_v1_len_mem_bank0_cor_err_cnt),
4714[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4715 CNTR_NORMAL,
4716 access_pio_v1_len_mem_bank1_unc_err_cnt),
4717[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4718 CNTR_NORMAL,
4719 access_pio_v1_len_mem_bank0_unc_err_cnt),
4720[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4721 CNTR_NORMAL,
4722 access_pio_sm_pkt_reset_parity_err_cnt),
4723[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4724 CNTR_NORMAL,
4725 access_pio_pkt_evict_fifo_parity_err_cnt),
4726[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4727 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4728 CNTR_NORMAL,
4729 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4730[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4731 CNTR_NORMAL,
4732 access_pio_sbrdctl_crrel_parity_err_cnt),
4733[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4734 CNTR_NORMAL,
4735 access_pio_pec_fifo_parity_err_cnt),
4736[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4737 CNTR_NORMAL,
4738 access_pio_pcc_fifo_parity_err_cnt),
4739[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4740 CNTR_NORMAL,
4741 access_pio_sb_mem_fifo1_err_cnt),
4742[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4743 CNTR_NORMAL,
4744 access_pio_sb_mem_fifo0_err_cnt),
4745[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4746 CNTR_NORMAL,
4747 access_pio_csr_parity_err_cnt),
4748[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4749 CNTR_NORMAL,
4750 access_pio_write_addr_parity_err_cnt),
4751[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4752 CNTR_NORMAL,
4753 access_pio_write_bad_ctxt_err_cnt),
4754/* SendDmaErrStatus */
4755[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4756 0, CNTR_NORMAL,
4757 access_sdma_pcie_req_tracking_cor_err_cnt),
4758[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4759 0, CNTR_NORMAL,
4760 access_sdma_pcie_req_tracking_unc_err_cnt),
4761[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4762 CNTR_NORMAL,
4763 access_sdma_csr_parity_err_cnt),
4764[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4765 CNTR_NORMAL,
4766 access_sdma_rpy_tag_err_cnt),
4767/* SendEgressErrStatus */
4768[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4769 CNTR_NORMAL,
4770 access_tx_read_pio_memory_csr_unc_err_cnt),
4771[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4772 0, CNTR_NORMAL,
4773 access_tx_read_sdma_memory_csr_err_cnt),
4774[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4775 CNTR_NORMAL,
4776 access_tx_egress_fifo_cor_err_cnt),
4777[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4778 CNTR_NORMAL,
4779 access_tx_read_pio_memory_cor_err_cnt),
4780[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4781 CNTR_NORMAL,
4782 access_tx_read_sdma_memory_cor_err_cnt),
4783[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4784 CNTR_NORMAL,
4785 access_tx_sb_hdr_cor_err_cnt),
4786[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4787 CNTR_NORMAL,
4788 access_tx_credit_overrun_err_cnt),
4789[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4790 CNTR_NORMAL,
4791 access_tx_launch_fifo8_cor_err_cnt),
4792[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4793 CNTR_NORMAL,
4794 access_tx_launch_fifo7_cor_err_cnt),
4795[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4796 CNTR_NORMAL,
4797 access_tx_launch_fifo6_cor_err_cnt),
4798[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4799 CNTR_NORMAL,
4800 access_tx_launch_fifo5_cor_err_cnt),
4801[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4802 CNTR_NORMAL,
4803 access_tx_launch_fifo4_cor_err_cnt),
4804[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4805 CNTR_NORMAL,
4806 access_tx_launch_fifo3_cor_err_cnt),
4807[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4808 CNTR_NORMAL,
4809 access_tx_launch_fifo2_cor_err_cnt),
4810[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4811 CNTR_NORMAL,
4812 access_tx_launch_fifo1_cor_err_cnt),
4813[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4814 CNTR_NORMAL,
4815 access_tx_launch_fifo0_cor_err_cnt),
4816[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4817 CNTR_NORMAL,
4818 access_tx_credit_return_vl_err_cnt),
4819[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4820 CNTR_NORMAL,
4821 access_tx_hcrc_insertion_err_cnt),
4822[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4823 CNTR_NORMAL,
4824 access_tx_egress_fifo_unc_err_cnt),
4825[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_tx_read_pio_memory_unc_err_cnt),
4828[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4829 CNTR_NORMAL,
4830 access_tx_read_sdma_memory_unc_err_cnt),
4831[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4832 CNTR_NORMAL,
4833 access_tx_sb_hdr_unc_err_cnt),
4834[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4835 CNTR_NORMAL,
4836 access_tx_credit_return_partiy_err_cnt),
4837[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4838 0, 0, CNTR_NORMAL,
4839 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4840[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4841 0, 0, CNTR_NORMAL,
4842 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4843[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4844 0, 0, CNTR_NORMAL,
4845 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4846[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4847 0, 0, CNTR_NORMAL,
4848 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4849[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4850 0, 0, CNTR_NORMAL,
4851 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4852[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4853 0, 0, CNTR_NORMAL,
4854 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4855[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4856 0, 0, CNTR_NORMAL,
4857 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4858[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4859 0, 0, CNTR_NORMAL,
4860 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4861[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4862 0, 0, CNTR_NORMAL,
4863 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4864[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4865 0, 0, CNTR_NORMAL,
4866 access_tx_sdma15_disallowed_packet_err_cnt),
4867[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4868 0, 0, CNTR_NORMAL,
4869 access_tx_sdma14_disallowed_packet_err_cnt),
4870[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4871 0, 0, CNTR_NORMAL,
4872 access_tx_sdma13_disallowed_packet_err_cnt),
4873[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4874 0, 0, CNTR_NORMAL,
4875 access_tx_sdma12_disallowed_packet_err_cnt),
4876[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4877 0, 0, CNTR_NORMAL,
4878 access_tx_sdma11_disallowed_packet_err_cnt),
4879[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4880 0, 0, CNTR_NORMAL,
4881 access_tx_sdma10_disallowed_packet_err_cnt),
4882[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4883 0, 0, CNTR_NORMAL,
4884 access_tx_sdma9_disallowed_packet_err_cnt),
4885[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4886 0, 0, CNTR_NORMAL,
4887 access_tx_sdma8_disallowed_packet_err_cnt),
4888[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4889 0, 0, CNTR_NORMAL,
4890 access_tx_sdma7_disallowed_packet_err_cnt),
4891[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4892 0, 0, CNTR_NORMAL,
4893 access_tx_sdma6_disallowed_packet_err_cnt),
4894[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4895 0, 0, CNTR_NORMAL,
4896 access_tx_sdma5_disallowed_packet_err_cnt),
4897[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4898 0, 0, CNTR_NORMAL,
4899 access_tx_sdma4_disallowed_packet_err_cnt),
4900[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4901 0, 0, CNTR_NORMAL,
4902 access_tx_sdma3_disallowed_packet_err_cnt),
4903[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4904 0, 0, CNTR_NORMAL,
4905 access_tx_sdma2_disallowed_packet_err_cnt),
4906[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4907 0, 0, CNTR_NORMAL,
4908 access_tx_sdma1_disallowed_packet_err_cnt),
4909[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4910 0, 0, CNTR_NORMAL,
4911 access_tx_sdma0_disallowed_packet_err_cnt),
4912[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4913 CNTR_NORMAL,
4914 access_tx_config_parity_err_cnt),
4915[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4916 CNTR_NORMAL,
4917 access_tx_sbrd_ctl_csr_parity_err_cnt),
4918[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4919 CNTR_NORMAL,
4920 access_tx_launch_csr_parity_err_cnt),
4921[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4922 CNTR_NORMAL,
4923 access_tx_illegal_vl_err_cnt),
4924[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4925 "TxSbrdCtlStateMachineParityErr", 0, 0,
4926 CNTR_NORMAL,
4927 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4928[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4929 CNTR_NORMAL,
4930 access_egress_reserved_10_err_cnt),
4931[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4932 CNTR_NORMAL,
4933 access_egress_reserved_9_err_cnt),
4934[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4935 0, 0, CNTR_NORMAL,
4936 access_tx_sdma_launch_intf_parity_err_cnt),
4937[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4938 CNTR_NORMAL,
4939 access_tx_pio_launch_intf_parity_err_cnt),
4940[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4941 CNTR_NORMAL,
4942 access_egress_reserved_6_err_cnt),
4943[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4944 CNTR_NORMAL,
4945 access_tx_incorrect_link_state_err_cnt),
4946[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4947 CNTR_NORMAL,
4948 access_tx_linkdown_err_cnt),
4949[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4950 "EgressFifoUnderrunOrParityErr", 0, 0,
4951 CNTR_NORMAL,
4952 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4953[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4954 CNTR_NORMAL,
4955 access_egress_reserved_2_err_cnt),
4956[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4957 CNTR_NORMAL,
4958 access_tx_pkt_integrity_mem_unc_err_cnt),
4959[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4960 CNTR_NORMAL,
4961 access_tx_pkt_integrity_mem_cor_err_cnt),
4962/* SendErrStatus */
4963[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4964 CNTR_NORMAL,
4965 access_send_csr_write_bad_addr_err_cnt),
4966[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4967 CNTR_NORMAL,
4968 access_send_csr_read_bad_addr_err_cnt),
4969[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4970 CNTR_NORMAL,
4971 access_send_csr_parity_cnt),
4972/* SendCtxtErrStatus */
4973[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4974 CNTR_NORMAL,
4975 access_pio_write_out_of_bounds_err_cnt),
4976[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4977 CNTR_NORMAL,
4978 access_pio_write_overflow_err_cnt),
4979[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4980 0, 0, CNTR_NORMAL,
4981 access_pio_write_crosses_boundary_err_cnt),
4982[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4983 CNTR_NORMAL,
4984 access_pio_disallowed_packet_err_cnt),
4985[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4986 CNTR_NORMAL,
4987 access_pio_inconsistent_sop_err_cnt),
4988/* SendDmaEngErrStatus */
4989[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4990 0, 0, CNTR_NORMAL,
4991 access_sdma_header_request_fifo_cor_err_cnt),
4992[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4993 CNTR_NORMAL,
4994 access_sdma_header_storage_cor_err_cnt),
4995[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4996 CNTR_NORMAL,
4997 access_sdma_packet_tracking_cor_err_cnt),
4998[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4999 CNTR_NORMAL,
5000 access_sdma_assembly_cor_err_cnt),
5001[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5002 CNTR_NORMAL,
5003 access_sdma_desc_table_cor_err_cnt),
5004[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5005 0, 0, CNTR_NORMAL,
5006 access_sdma_header_request_fifo_unc_err_cnt),
5007[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5008 CNTR_NORMAL,
5009 access_sdma_header_storage_unc_err_cnt),
5010[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5011 CNTR_NORMAL,
5012 access_sdma_packet_tracking_unc_err_cnt),
5013[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5014 CNTR_NORMAL,
5015 access_sdma_assembly_unc_err_cnt),
5016[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5017 CNTR_NORMAL,
5018 access_sdma_desc_table_unc_err_cnt),
5019[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5020 CNTR_NORMAL,
5021 access_sdma_timeout_err_cnt),
5022[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5023 CNTR_NORMAL,
5024 access_sdma_header_length_err_cnt),
5025[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5026 CNTR_NORMAL,
5027 access_sdma_header_address_err_cnt),
5028[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5029 CNTR_NORMAL,
5030 access_sdma_header_select_err_cnt),
5031[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5032 CNTR_NORMAL,
5033 access_sdma_reserved_9_err_cnt),
5034[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5035 CNTR_NORMAL,
5036 access_sdma_packet_desc_overflow_err_cnt),
5037[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5038 CNTR_NORMAL,
5039 access_sdma_length_mismatch_err_cnt),
5040[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5041 CNTR_NORMAL,
5042 access_sdma_halt_err_cnt),
5043[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5044 CNTR_NORMAL,
5045 access_sdma_mem_read_err_cnt),
5046[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5047 CNTR_NORMAL,
5048 access_sdma_first_desc_err_cnt),
5049[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5050 CNTR_NORMAL,
5051 access_sdma_tail_out_of_bounds_err_cnt),
5052[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5053 CNTR_NORMAL,
5054 access_sdma_too_long_err_cnt),
5055[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5056 CNTR_NORMAL,
5057 access_sdma_gen_mismatch_err_cnt),
5058[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5059 CNTR_NORMAL,
5060 access_sdma_wrong_dw_err_cnt),
77241056
MM
5061};
5062
5063static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5064[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5065 CNTR_NORMAL),
5066[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5067 CNTR_NORMAL),
5068[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5069 CNTR_NORMAL),
5070[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5071 CNTR_NORMAL),
5072[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5073 CNTR_NORMAL),
5074[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5075 CNTR_NORMAL),
5076[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5077 CNTR_NORMAL),
5078[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5079[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5080[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5081[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
17fb4f29 5082 CNTR_SYNTH | CNTR_VL),
77241056 5083[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
17fb4f29 5084 CNTR_SYNTH | CNTR_VL),
77241056 5085[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
17fb4f29 5086 CNTR_SYNTH | CNTR_VL),
77241056
MM
5087[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5088[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5089[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 5090 access_sw_link_dn_cnt),
77241056 5091[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 5092 access_sw_link_up_cnt),
6d014530
DL
5093[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5094 access_sw_unknown_frame_cnt),
77241056 5095[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
17fb4f29 5096 access_sw_xmit_discards),
77241056 5097[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
17fb4f29
JJ
5098 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5099 access_sw_xmit_discards),
77241056 5100[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
17fb4f29 5101 access_xmit_constraint_errs),
77241056 5102[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
17fb4f29 5103 access_rcv_constraint_errs),
77241056
MM
5104[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5105[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5106[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5107[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5108[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5109[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5110[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5111[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5112[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5113[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5114[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5115[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5116[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5117 access_sw_cpu_rc_acks),
5118[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
17fb4f29 5119 access_sw_cpu_rc_qacks),
77241056 5120[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
17fb4f29 5121 access_sw_cpu_rc_delayed_comp),
77241056
MM
5122[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5123[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5124[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5125[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5126[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5127[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5128[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5129[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5130[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5131[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5132[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5133[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5134[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5135[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5136[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5137[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5138[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5139[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5140[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5141[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5142[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5143[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5144[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5145[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5146[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5147[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5148[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5149[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5150[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5151[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5152[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5153[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5154[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5155[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5156[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5157[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5158[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5159[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5160[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5161[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5162[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5163[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5164[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5165[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5166[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5167[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5168[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5169[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5170[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5171[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5172[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5173[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5174[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5175[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5176[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5177[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5178[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5179[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5180[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5181[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5182[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5183[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5184[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5185[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5186[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5187[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5188[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5189[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5190[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5191[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5192[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5193[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5194[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5195[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5196[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5197[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5198[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5199[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5200[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5201[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5202};
5203
5204/* ======================================================================== */
5205
77241056
MM
5206/* return true if this is chip revision revision a */
5207int is_ax(struct hfi1_devdata *dd)
5208{
5209 u8 chip_rev_minor =
5210 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5211 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5212 return (chip_rev_minor & 0xf0) == 0;
5213}
5214
5215/* return true if this is chip revision revision b */
5216int is_bx(struct hfi1_devdata *dd)
5217{
5218 u8 chip_rev_minor =
5219 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5220 & CCE_REVISION_CHIP_REV_MINOR_MASK;
995deafa 5221 return (chip_rev_minor & 0xF0) == 0x10;
77241056
MM
5222}
5223
5224/*
5225 * Append string s to buffer buf. Arguments curp and len are the current
5226 * position and remaining length, respectively.
5227 *
5228 * return 0 on success, 1 on out of room
5229 */
5230static int append_str(char *buf, char **curp, int *lenp, const char *s)
5231{
5232 char *p = *curp;
5233 int len = *lenp;
5234 int result = 0; /* success */
5235 char c;
5236
5237 /* add a comma, if first in the buffer */
5238 if (p != buf) {
5239 if (len == 0) {
5240 result = 1; /* out of room */
5241 goto done;
5242 }
5243 *p++ = ',';
5244 len--;
5245 }
5246
5247 /* copy the string */
5248 while ((c = *s++) != 0) {
5249 if (len == 0) {
5250 result = 1; /* out of room */
5251 goto done;
5252 }
5253 *p++ = c;
5254 len--;
5255 }
5256
5257done:
5258 /* write return values */
5259 *curp = p;
5260 *lenp = len;
5261
5262 return result;
5263}
5264
5265/*
5266 * Using the given flag table, print a comma separated string into
5267 * the buffer. End in '*' if the buffer is too short.
5268 */
5269static char *flag_string(char *buf, int buf_len, u64 flags,
17fb4f29 5270 struct flag_table *table, int table_size)
77241056
MM
5271{
5272 char extra[32];
5273 char *p = buf;
5274 int len = buf_len;
5275 int no_room = 0;
5276 int i;
5277
5278 /* make sure there is at least 2 so we can form "*" */
5279 if (len < 2)
5280 return "";
5281
5282 len--; /* leave room for a nul */
5283 for (i = 0; i < table_size; i++) {
5284 if (flags & table[i].flag) {
5285 no_room = append_str(buf, &p, &len, table[i].str);
5286 if (no_room)
5287 break;
5288 flags &= ~table[i].flag;
5289 }
5290 }
5291
5292 /* any undocumented bits left? */
5293 if (!no_room && flags) {
5294 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5295 no_room = append_str(buf, &p, &len, extra);
5296 }
5297
5298 /* add * if ran out of room */
5299 if (no_room) {
5300 /* may need to back up to add space for a '*' */
5301 if (len == 0)
5302 --p;
5303 *p++ = '*';
5304 }
5305
5306 /* add final nul - space already allocated above */
5307 *p = 0;
5308 return buf;
5309}
5310
5311/* first 8 CCE error interrupt source names */
5312static const char * const cce_misc_names[] = {
5313 "CceErrInt", /* 0 */
5314 "RxeErrInt", /* 1 */
5315 "MiscErrInt", /* 2 */
5316 "Reserved3", /* 3 */
5317 "PioErrInt", /* 4 */
5318 "SDmaErrInt", /* 5 */
5319 "EgressErrInt", /* 6 */
5320 "TxeErrInt" /* 7 */
5321};
5322
5323/*
5324 * Return the miscellaneous error interrupt name.
5325 */
5326static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5327{
5328 if (source < ARRAY_SIZE(cce_misc_names))
5329 strncpy(buf, cce_misc_names[source], bsize);
5330 else
17fb4f29
JJ
5331 snprintf(buf, bsize, "Reserved%u",
5332 source + IS_GENERAL_ERR_START);
77241056
MM
5333
5334 return buf;
5335}
5336
5337/*
5338 * Return the SDMA engine error interrupt name.
5339 */
5340static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5341{
5342 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5343 return buf;
5344}
5345
5346/*
5347 * Return the send context error interrupt name.
5348 */
5349static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5350{
5351 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5352 return buf;
5353}
5354
5355static const char * const various_names[] = {
5356 "PbcInt",
5357 "GpioAssertInt",
5358 "Qsfp1Int",
5359 "Qsfp2Int",
5360 "TCritInt"
5361};
5362
5363/*
5364 * Return the various interrupt name.
5365 */
5366static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5367{
5368 if (source < ARRAY_SIZE(various_names))
5369 strncpy(buf, various_names[source], bsize);
5370 else
8638b77f 5371 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
77241056
MM
5372 return buf;
5373}
5374
5375/*
5376 * Return the DC interrupt name.
5377 */
5378static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5379{
5380 static const char * const dc_int_names[] = {
5381 "common",
5382 "lcb",
5383 "8051",
5384 "lbm" /* local block merge */
5385 };
5386
5387 if (source < ARRAY_SIZE(dc_int_names))
5388 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5389 else
5390 snprintf(buf, bsize, "DCInt%u", source);
5391 return buf;
5392}
5393
5394static const char * const sdma_int_names[] = {
5395 "SDmaInt",
5396 "SdmaIdleInt",
5397 "SdmaProgressInt",
5398};
5399
5400/*
5401 * Return the SDMA engine interrupt name.
5402 */
5403static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5404{
5405 /* what interrupt */
5406 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5407 /* which engine */
5408 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5409
5410 if (likely(what < 3))
5411 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5412 else
5413 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5414 return buf;
5415}
5416
5417/*
5418 * Return the receive available interrupt name.
5419 */
5420static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5421{
5422 snprintf(buf, bsize, "RcvAvailInt%u", source);
5423 return buf;
5424}
5425
5426/*
5427 * Return the receive urgent interrupt name.
5428 */
5429static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5430{
5431 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5432 return buf;
5433}
5434
5435/*
5436 * Return the send credit interrupt name.
5437 */
5438static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5439{
5440 snprintf(buf, bsize, "SendCreditInt%u", source);
5441 return buf;
5442}
5443
5444/*
5445 * Return the reserved interrupt name.
5446 */
5447static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5448{
5449 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5450 return buf;
5451}
5452
5453static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5454{
5455 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5456 cce_err_status_flags,
5457 ARRAY_SIZE(cce_err_status_flags));
77241056
MM
5458}
5459
5460static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5461{
5462 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5463 rxe_err_status_flags,
5464 ARRAY_SIZE(rxe_err_status_flags));
77241056
MM
5465}
5466
5467static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5468{
5469 return flag_string(buf, buf_len, flags, misc_err_status_flags,
17fb4f29 5470 ARRAY_SIZE(misc_err_status_flags));
77241056
MM
5471}
5472
5473static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5474{
5475 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5476 pio_err_status_flags,
5477 ARRAY_SIZE(pio_err_status_flags));
77241056
MM
5478}
5479
5480static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5481{
5482 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5483 sdma_err_status_flags,
5484 ARRAY_SIZE(sdma_err_status_flags));
77241056
MM
5485}
5486
5487static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5488{
5489 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5490 egress_err_status_flags,
5491 ARRAY_SIZE(egress_err_status_flags));
77241056
MM
5492}
5493
5494static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5495{
5496 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5497 egress_err_info_flags,
5498 ARRAY_SIZE(egress_err_info_flags));
77241056
MM
5499}
5500
5501static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5502{
5503 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5504 send_err_status_flags,
5505 ARRAY_SIZE(send_err_status_flags));
77241056
MM
5506}
5507
5508static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5509{
5510 char buf[96];
2c5b521a 5511 int i = 0;
77241056
MM
5512
5513 /*
5514 * For most these errors, there is nothing that can be done except
5515 * report or record it.
5516 */
5517 dd_dev_info(dd, "CCE Error: %s\n",
17fb4f29 5518 cce_err_status_string(buf, sizeof(buf), reg));
77241056 5519
995deafa
MM
5520 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5521 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
5522 /* this error requires a manual drop into SPC freeze mode */
5523 /* then a fix up */
5524 start_freeze_handling(dd->pport, FREEZE_SELF);
5525 }
2c5b521a
JR
5526
5527 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5528 if (reg & (1ull << i)) {
5529 incr_cntr64(&dd->cce_err_status_cnt[i]);
5530 /* maintain a counter over all cce_err_status errors */
5531 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5532 }
5533 }
77241056
MM
5534}
5535
5536/*
5537 * Check counters for receive errors that do not have an interrupt
5538 * associated with them.
5539 */
5540#define RCVERR_CHECK_TIME 10
5541static void update_rcverr_timer(unsigned long opaque)
5542{
5543 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5544 struct hfi1_pportdata *ppd = dd->pport;
5545 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5546
5547 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
17fb4f29 5548 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
77241056 5549 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
17fb4f29
JJ
5550 set_link_down_reason(
5551 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5552 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
71d47008 5553 queue_work(ppd->link_wq, &ppd->link_bounce_work);
77241056 5554 }
50e5dcbe 5555 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
77241056
MM
5556
5557 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5558}
5559
5560static int init_rcverr(struct hfi1_devdata *dd)
5561{
24523a94 5562 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
77241056
MM
5563 /* Assume the hardware counter has been reset */
5564 dd->rcv_ovfl_cnt = 0;
5565 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566}
5567
5568static void free_rcverr(struct hfi1_devdata *dd)
5569{
5570 if (dd->rcverr_timer.data)
5571 del_timer_sync(&dd->rcverr_timer);
5572 dd->rcverr_timer.data = 0;
5573}
5574
5575static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576{
5577 char buf[96];
2c5b521a 5578 int i = 0;
77241056
MM
5579
5580 dd_dev_info(dd, "Receive Error: %s\n",
17fb4f29 5581 rxe_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5582
5583 if (reg & ALL_RXE_FREEZE_ERR) {
5584 int flags = 0;
5585
5586 /*
5587 * Freeze mode recovery is disabled for the errors
5588 * in RXE_FREEZE_ABORT_MASK
5589 */
995deafa 5590 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
77241056
MM
5591 flags = FREEZE_ABORT;
5592
5593 start_freeze_handling(dd->pport, flags);
5594 }
2c5b521a
JR
5595
5596 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597 if (reg & (1ull << i))
5598 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599 }
77241056
MM
5600}
5601
5602static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603{
5604 char buf[96];
2c5b521a 5605 int i = 0;
77241056
MM
5606
5607 dd_dev_info(dd, "Misc Error: %s",
17fb4f29 5608 misc_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5609 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610 if (reg & (1ull << i))
5611 incr_cntr64(&dd->misc_err_status_cnt[i]);
5612 }
77241056
MM
5613}
5614
5615static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616{
5617 char buf[96];
2c5b521a 5618 int i = 0;
77241056
MM
5619
5620 dd_dev_info(dd, "PIO Error: %s\n",
17fb4f29 5621 pio_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5622
5623 if (reg & ALL_PIO_FREEZE_ERR)
5624 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5625
5626 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627 if (reg & (1ull << i))
5628 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629 }
77241056
MM
5630}
5631
5632static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633{
5634 char buf[96];
2c5b521a 5635 int i = 0;
77241056
MM
5636
5637 dd_dev_info(dd, "SDMA Error: %s\n",
17fb4f29 5638 sdma_err_status_string(buf, sizeof(buf), reg));
77241056
MM
5639
5640 if (reg & ALL_SDMA_FREEZE_ERR)
5641 start_freeze_handling(dd->pport, 0);
2c5b521a
JR
5642
5643 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644 if (reg & (1ull << i))
5645 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646 }
77241056
MM
5647}
5648
69a00b8e 5649static inline void __count_port_discards(struct hfi1_pportdata *ppd)
77241056 5650{
69a00b8e
MM
5651 incr_cntr64(&ppd->port_xmit_discards);
5652}
77241056 5653
69a00b8e
MM
5654static void count_port_inactive(struct hfi1_devdata *dd)
5655{
5656 __count_port_discards(dd->pport);
77241056
MM
5657}
5658
5659/*
5660 * We have had a "disallowed packet" error during egress. Determine the
5661 * integrity check which failed, and update relevant error counter, etc.
5662 *
5663 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664 * bit of state per integrity check, and so we can miss the reason for an
5665 * egress error if more than one packet fails the same integrity check
5666 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667 */
69a00b8e
MM
5668static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669 int vl)
77241056
MM
5670{
5671 struct hfi1_pportdata *ppd = dd->pport;
5672 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674 char buf[96];
5675
5676 /* clear down all observed info as quickly as possible after read */
5677 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678
5679 dd_dev_info(dd,
17fb4f29
JJ
5680 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681 info, egress_err_info_string(buf, sizeof(buf), info), src);
77241056
MM
5682
5683 /* Eventually add other counters for each bit */
69a00b8e
MM
5684 if (info & PORT_DISCARD_EGRESS_ERRS) {
5685 int weight, i;
77241056 5686
69a00b8e 5687 /*
4c9e7aac
DL
5688 * Count all applicable bits as individual errors and
5689 * attribute them to the packet that triggered this handler.
5690 * This may not be completely accurate due to limitations
5691 * on the available hardware error information. There is
5692 * a single information register and any number of error
5693 * packets may have occurred and contributed to it before
5694 * this routine is called. This means that:
5695 * a) If multiple packets with the same error occur before
5696 * this routine is called, earlier packets are missed.
5697 * There is only a single bit for each error type.
5698 * b) Errors may not be attributed to the correct VL.
5699 * The driver is attributing all bits in the info register
5700 * to the packet that triggered this call, but bits
5701 * could be an accumulation of different packets with
5702 * different VLs.
5703 * c) A single error packet may have multiple counts attached
5704 * to it. There is no way for the driver to know if
5705 * multiple bits set in the info register are due to a
5706 * single packet or multiple packets. The driver assumes
5707 * multiple packets.
69a00b8e 5708 */
4c9e7aac 5709 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
69a00b8e
MM
5710 for (i = 0; i < weight; i++) {
5711 __count_port_discards(ppd);
5712 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714 else if (vl == 15)
5715 incr_cntr64(&ppd->port_xmit_discards_vl
5716 [C_VL_15]);
5717 }
77241056
MM
5718 }
5719}
5720
5721/*
5722 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723 * register. Does it represent a 'port inactive' error?
5724 */
5725static inline int port_inactive_err(u64 posn)
5726{
5727 return (posn >= SEES(TX_LINKDOWN) &&
5728 posn <= SEES(TX_INCORRECT_LINK_STATE));
5729}
5730
5731/*
5732 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733 * register. Does it represent a 'disallowed packet' error?
5734 */
69a00b8e 5735static inline int disallowed_pkt_err(int posn)
77241056
MM
5736{
5737 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739}
5740
69a00b8e
MM
5741/*
5742 * Input value is a bit position of one of the SDMA engine disallowed
5743 * packet errors. Return which engine. Use of this must be guarded by
5744 * disallowed_pkt_err().
5745 */
5746static inline int disallowed_pkt_engine(int posn)
5747{
5748 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749}
5750
5751/*
5752 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5753 * be done.
5754 */
5755static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756{
5757 struct sdma_vl_map *m;
5758 int vl;
5759
5760 /* range check */
5761 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762 return -1;
5763
5764 rcu_read_lock();
5765 m = rcu_dereference(dd->sdma_map);
5766 vl = m->engine_to_vl[engine];
5767 rcu_read_unlock();
5768
5769 return vl;
5770}
5771
5772/*
5773 * Translate the send context (sofware index) into a VL. Return -1 if the
5774 * translation cannot be done.
5775 */
5776static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777{
5778 struct send_context_info *sci;
5779 struct send_context *sc;
5780 int i;
5781
5782 sci = &dd->send_contexts[sw_index];
5783
5784 /* there is no information for user (PSM) and ack contexts */
44306f15 5785 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
69a00b8e
MM
5786 return -1;
5787
5788 sc = sci->sc;
5789 if (!sc)
5790 return -1;
5791 if (dd->vld[15].sc == sc)
5792 return 15;
5793 for (i = 0; i < num_vls; i++)
5794 if (dd->vld[i].sc == sc)
5795 return i;
5796
5797 return -1;
5798}
5799
77241056
MM
5800static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801{
5802 u64 reg_copy = reg, handled = 0;
5803 char buf[96];
2c5b521a 5804 int i = 0;
77241056
MM
5805
5806 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807 start_freeze_handling(dd->pport, 0);
69a00b8e
MM
5808 else if (is_ax(dd) &&
5809 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
77241056
MM
5811 start_freeze_handling(dd->pport, 0);
5812
5813 while (reg_copy) {
5814 int posn = fls64(reg_copy);
69a00b8e 5815 /* fls64() returns a 1-based offset, we want it zero based */
77241056 5816 int shift = posn - 1;
69a00b8e 5817 u64 mask = 1ULL << shift;
77241056
MM
5818
5819 if (port_inactive_err(shift)) {
5820 count_port_inactive(dd);
69a00b8e 5821 handled |= mask;
77241056 5822 } else if (disallowed_pkt_err(shift)) {
69a00b8e
MM
5823 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824
5825 handle_send_egress_err_info(dd, vl);
5826 handled |= mask;
77241056 5827 }
69a00b8e 5828 reg_copy &= ~mask;
77241056
MM
5829 }
5830
5831 reg &= ~handled;
5832
5833 if (reg)
5834 dd_dev_info(dd, "Egress Error: %s\n",
17fb4f29 5835 egress_err_status_string(buf, sizeof(buf), reg));
2c5b521a
JR
5836
5837 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838 if (reg & (1ull << i))
5839 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840 }
77241056
MM
5841}
5842
5843static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844{
5845 char buf[96];
2c5b521a 5846 int i = 0;
77241056
MM
5847
5848 dd_dev_info(dd, "Send Error: %s\n",
17fb4f29 5849 send_err_status_string(buf, sizeof(buf), reg));
77241056 5850
2c5b521a
JR
5851 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852 if (reg & (1ull << i))
5853 incr_cntr64(&dd->send_err_status_cnt[i]);
5854 }
77241056
MM
5855}
5856
5857/*
5858 * The maximum number of times the error clear down will loop before
5859 * blocking a repeating error. This value is arbitrary.
5860 */
5861#define MAX_CLEAR_COUNT 20
5862
5863/*
5864 * Clear and handle an error register. All error interrupts are funneled
5865 * through here to have a central location to correctly handle single-
5866 * or multi-shot errors.
5867 *
5868 * For non per-context registers, call this routine with a context value
5869 * of 0 so the per-context offset is zero.
5870 *
5871 * If the handler loops too many times, assume that something is wrong
5872 * and can't be fixed, so mask the error bits.
5873 */
5874static void interrupt_clear_down(struct hfi1_devdata *dd,
5875 u32 context,
5876 const struct err_reg_info *eri)
5877{
5878 u64 reg;
5879 u32 count;
5880
5881 /* read in a loop until no more errors are seen */
5882 count = 0;
5883 while (1) {
5884 reg = read_kctxt_csr(dd, context, eri->status);
5885 if (reg == 0)
5886 break;
5887 write_kctxt_csr(dd, context, eri->clear, reg);
5888 if (likely(eri->handler))
5889 eri->handler(dd, context, reg);
5890 count++;
5891 if (count > MAX_CLEAR_COUNT) {
5892 u64 mask;
5893
5894 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
17fb4f29 5895 eri->desc, reg);
77241056
MM
5896 /*
5897 * Read-modify-write so any other masked bits
5898 * remain masked.
5899 */
5900 mask = read_kctxt_csr(dd, context, eri->mask);
5901 mask &= ~reg;
5902 write_kctxt_csr(dd, context, eri->mask, mask);
5903 break;
5904 }
5905 }
5906}
5907
5908/*
5909 * CCE block "misc" interrupt. Source is < 16.
5910 */
5911static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912{
5913 const struct err_reg_info *eri = &misc_errs[source];
5914
5915 if (eri->handler) {
5916 interrupt_clear_down(dd, 0, eri);
5917 } else {
5918 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
17fb4f29 5919 source);
77241056
MM
5920 }
5921}
5922
5923static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924{
5925 return flag_string(buf, buf_len, flags,
17fb4f29
JJ
5926 sc_err_status_flags,
5927 ARRAY_SIZE(sc_err_status_flags));
77241056
MM
5928}
5929
5930/*
5931 * Send context error interrupt. Source (hw_context) is < 160.
5932 *
5933 * All send context errors cause the send context to halt. The normal
5934 * clear-down mechanism cannot be used because we cannot clear the
5935 * error bits until several other long-running items are done first.
5936 * This is OK because with the context halted, nothing else is going
5937 * to happen on it anyway.
5938 */
5939static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940 unsigned int hw_context)
5941{
5942 struct send_context_info *sci;
5943 struct send_context *sc;
5944 char flags[96];
5945 u64 status;
5946 u32 sw_index;
2c5b521a 5947 int i = 0;
77241056
MM
5948
5949 sw_index = dd->hw_to_sw[hw_context];
5950 if (sw_index >= dd->num_send_contexts) {
5951 dd_dev_err(dd,
17fb4f29
JJ
5952 "out of range sw index %u for send context %u\n",
5953 sw_index, hw_context);
77241056
MM
5954 return;
5955 }
5956 sci = &dd->send_contexts[sw_index];
5957 sc = sci->sc;
5958 if (!sc) {
5959 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
17fb4f29 5960 sw_index, hw_context);
77241056
MM
5961 return;
5962 }
5963
5964 /* tell the software that a halt has begun */
5965 sc_stop(sc, SCF_HALTED);
5966
5967 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5968
5969 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
17fb4f29
JJ
5970 send_context_err_status_string(flags, sizeof(flags),
5971 status));
77241056
MM
5972
5973 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
69a00b8e 5974 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
77241056
MM
5975
5976 /*
5977 * Automatically restart halted kernel contexts out of interrupt
5978 * context. User contexts must ask the driver to restart the context.
5979 */
5980 if (sc->type != SC_USER)
5981 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2c5b521a
JR
5982
5983 /*
5984 * Update the counters for the corresponding status bits.
5985 * Note that these particular counters are aggregated over all
5986 * 160 contexts.
5987 */
5988 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5989 if (status & (1ull << i))
5990 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5991 }
77241056
MM
5992}
5993
5994static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5995 unsigned int source, u64 status)
5996{
5997 struct sdma_engine *sde;
2c5b521a 5998 int i = 0;
77241056
MM
5999
6000 sde = &dd->per_sdma[source];
6001#ifdef CONFIG_SDMA_VERBOSITY
6002 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6003 slashstrip(__FILE__), __LINE__, __func__);
6004 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6005 sde->this_idx, source, (unsigned long long)status);
6006#endif
a699c6c2 6007 sde->err_cnt++;
77241056 6008 sdma_engine_error(sde, status);
2c5b521a
JR
6009
6010 /*
6011 * Update the counters for the corresponding status bits.
6012 * Note that these particular counters are aggregated over
6013 * all 16 DMA engines.
6014 */
6015 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6016 if (status & (1ull << i))
6017 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6018 }
77241056
MM
6019}
6020
6021/*
6022 * CCE block SDMA error interrupt. Source is < 16.
6023 */
6024static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6025{
6026#ifdef CONFIG_SDMA_VERBOSITY
6027 struct sdma_engine *sde = &dd->per_sdma[source];
6028
6029 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6030 slashstrip(__FILE__), __LINE__, __func__);
6031 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6032 source);
6033 sdma_dumpstate(sde);
6034#endif
6035 interrupt_clear_down(dd, source, &sdma_eng_err);
6036}
6037
6038/*
6039 * CCE block "various" interrupt. Source is < 8.
6040 */
6041static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6042{
6043 const struct err_reg_info *eri = &various_err[source];
6044
6045 /*
6046 * TCritInt cannot go through interrupt_clear_down()
6047 * because it is not a second tier interrupt. The handler
6048 * should be called directly.
6049 */
6050 if (source == TCRIT_INT_SOURCE)
6051 handle_temp_err(dd);
6052 else if (eri->handler)
6053 interrupt_clear_down(dd, 0, eri);
6054 else
6055 dd_dev_info(dd,
17fb4f29
JJ
6056 "%s: Unimplemented/reserved interrupt %d\n",
6057 __func__, source);
77241056
MM
6058}
6059
6060static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6061{
8ebd4cf1 6062 /* src_ctx is always zero */
77241056
MM
6063 struct hfi1_pportdata *ppd = dd->pport;
6064 unsigned long flags;
6065 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6066
6067 if (reg & QSFP_HFI0_MODPRST_N) {
77241056 6068 if (!qsfp_mod_present(ppd)) {
e8aa284b
EH
6069 dd_dev_info(dd, "%s: QSFP module removed\n",
6070 __func__);
6071
77241056
MM
6072 ppd->driver_link_ready = 0;
6073 /*
6074 * Cable removed, reset all our information about the
6075 * cache and cable capabilities
6076 */
6077
6078 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6079 /*
6080 * We don't set cache_refresh_required here as we expect
6081 * an interrupt when a cable is inserted
6082 */
6083 ppd->qsfp_info.cache_valid = 0;
8ebd4cf1
EH
6084 ppd->qsfp_info.reset_needed = 0;
6085 ppd->qsfp_info.limiting_active = 0;
77241056 6086 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 6087 flags);
8ebd4cf1
EH
6088 /* Invert the ModPresent pin now to detect plug-in */
6089 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6090 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
a9c05e35
BM
6091
6092 if ((ppd->offline_disabled_reason >
6093 HFI1_ODR_MASK(
e1bf0d5e 6094 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
a9c05e35
BM
6095 (ppd->offline_disabled_reason ==
6096 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6097 ppd->offline_disabled_reason =
6098 HFI1_ODR_MASK(
e1bf0d5e 6099 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
a9c05e35 6100
77241056
MM
6101 if (ppd->host_link_state == HLS_DN_POLL) {
6102 /*
6103 * The link is still in POLL. This means
6104 * that the normal link down processing
6105 * will not happen. We have to do it here
6106 * before turning the DC off.
6107 */
71d47008 6108 queue_work(ppd->link_wq, &ppd->link_down_work);
77241056
MM
6109 }
6110 } else {
e8aa284b
EH
6111 dd_dev_info(dd, "%s: QSFP module inserted\n",
6112 __func__);
6113
77241056
MM
6114 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6115 ppd->qsfp_info.cache_valid = 0;
6116 ppd->qsfp_info.cache_refresh_required = 1;
6117 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 6118 flags);
77241056 6119
8ebd4cf1
EH
6120 /*
6121 * Stop inversion of ModPresent pin to detect
6122 * removal of the cable
6123 */
77241056 6124 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
8ebd4cf1
EH
6125 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6126 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6127
6128 ppd->offline_disabled_reason =
6129 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056
MM
6130 }
6131 }
6132
6133 if (reg & QSFP_HFI0_INT_N) {
e8aa284b 6134 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
17fb4f29 6135 __func__);
77241056
MM
6136 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6137 ppd->qsfp_info.check_interrupt_flags = 1;
77241056
MM
6138 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6139 }
6140
6141 /* Schedule the QSFP work only if there is a cable attached. */
6142 if (qsfp_mod_present(ppd))
71d47008 6143 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
77241056
MM
6144}
6145
6146static int request_host_lcb_access(struct hfi1_devdata *dd)
6147{
6148 int ret;
6149
6150 ret = do_8051_command(dd, HCMD_MISC,
17fb4f29
JJ
6151 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6152 LOAD_DATA_FIELD_ID_SHIFT, NULL);
77241056
MM
6153 if (ret != HCMD_SUCCESS) {
6154 dd_dev_err(dd, "%s: command failed with error %d\n",
17fb4f29 6155 __func__, ret);
77241056
MM
6156 }
6157 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6158}
6159
6160static int request_8051_lcb_access(struct hfi1_devdata *dd)
6161{
6162 int ret;
6163
6164 ret = do_8051_command(dd, HCMD_MISC,
17fb4f29
JJ
6165 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6166 LOAD_DATA_FIELD_ID_SHIFT, NULL);
77241056
MM
6167 if (ret != HCMD_SUCCESS) {
6168 dd_dev_err(dd, "%s: command failed with error %d\n",
17fb4f29 6169 __func__, ret);
77241056
MM
6170 }
6171 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6172}
6173
6174/*
6175 * Set the LCB selector - allow host access. The DCC selector always
6176 * points to the host.
6177 */
6178static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6179{
6180 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
17fb4f29
JJ
6181 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6182 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
77241056
MM
6183}
6184
6185/*
6186 * Clear the LCB selector - allow 8051 access. The DCC selector always
6187 * points to the host.
6188 */
6189static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6190{
6191 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
17fb4f29 6192 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
77241056
MM
6193}
6194
6195/*
6196 * Acquire LCB access from the 8051. If the host already has access,
6197 * just increment a counter. Otherwise, inform the 8051 that the
6198 * host is taking access.
6199 *
6200 * Returns:
6201 * 0 on success
6202 * -EBUSY if the 8051 has control and cannot be disturbed
6203 * -errno if unable to acquire access from the 8051
6204 */
6205int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6206{
6207 struct hfi1_pportdata *ppd = dd->pport;
6208 int ret = 0;
6209
6210 /*
6211 * Use the host link state lock so the operation of this routine
6212 * { link state check, selector change, count increment } can occur
6213 * as a unit against a link state change. Otherwise there is a
6214 * race between the state change and the count increment.
6215 */
6216 if (sleep_ok) {
6217 mutex_lock(&ppd->hls_lock);
6218 } else {
951842b0 6219 while (!mutex_trylock(&ppd->hls_lock))
77241056
MM
6220 udelay(1);
6221 }
6222
6223 /* this access is valid only when the link is up */
0c7f77af 6224 if (ppd->host_link_state & HLS_DOWN) {
77241056 6225 dd_dev_info(dd, "%s: link state %s not up\n",
17fb4f29 6226 __func__, link_state_name(ppd->host_link_state));
77241056
MM
6227 ret = -EBUSY;
6228 goto done;
6229 }
6230
6231 if (dd->lcb_access_count == 0) {
6232 ret = request_host_lcb_access(dd);
6233 if (ret) {
6234 dd_dev_err(dd,
17fb4f29
JJ
6235 "%s: unable to acquire LCB access, err %d\n",
6236 __func__, ret);
77241056
MM
6237 goto done;
6238 }
6239 set_host_lcb_access(dd);
6240 }
6241 dd->lcb_access_count++;
6242done:
6243 mutex_unlock(&ppd->hls_lock);
6244 return ret;
6245}
6246
6247/*
6248 * Release LCB access by decrementing the use count. If the count is moving
6249 * from 1 to 0, inform 8051 that it has control back.
6250 *
6251 * Returns:
6252 * 0 on success
6253 * -errno if unable to release access to the 8051
6254 */
6255int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6256{
6257 int ret = 0;
6258
6259 /*
6260 * Use the host link state lock because the acquire needed it.
6261 * Here, we only need to keep { selector change, count decrement }
6262 * as a unit.
6263 */
6264 if (sleep_ok) {
6265 mutex_lock(&dd->pport->hls_lock);
6266 } else {
951842b0 6267 while (!mutex_trylock(&dd->pport->hls_lock))
77241056
MM
6268 udelay(1);
6269 }
6270
6271 if (dd->lcb_access_count == 0) {
6272 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
17fb4f29 6273 __func__);
77241056
MM
6274 goto done;
6275 }
6276
6277 if (dd->lcb_access_count == 1) {
6278 set_8051_lcb_access(dd);
6279 ret = request_8051_lcb_access(dd);
6280 if (ret) {
6281 dd_dev_err(dd,
17fb4f29
JJ
6282 "%s: unable to release LCB access, err %d\n",
6283 __func__, ret);
77241056
MM
6284 /* restore host access if the grant didn't work */
6285 set_host_lcb_access(dd);
6286 goto done;
6287 }
6288 }
6289 dd->lcb_access_count--;
6290done:
6291 mutex_unlock(&dd->pport->hls_lock);
6292 return ret;
6293}
6294
6295/*
6296 * Initialize LCB access variables and state. Called during driver load,
6297 * after most of the initialization is finished.
6298 *
6299 * The DC default is LCB access on for the host. The driver defaults to
6300 * leaving access to the 8051. Assign access now - this constrains the call
6301 * to this routine to be after all LCB set-up is done. In particular, after
6302 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6303 */
6304static void init_lcb_access(struct hfi1_devdata *dd)
6305{
6306 dd->lcb_access_count = 0;
6307}
6308
6309/*
6310 * Write a response back to a 8051 request.
6311 */
6312static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6313{
6314 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
17fb4f29
JJ
6315 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6316 (u64)return_code <<
6317 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6318 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
77241056
MM
6319}
6320
6321/*
cbac386a 6322 * Handle host requests from the 8051.
77241056 6323 */
145dd2b3 6324static void handle_8051_request(struct hfi1_pportdata *ppd)
77241056 6325{
cbac386a 6326 struct hfi1_devdata *dd = ppd->dd;
77241056 6327 u64 reg;
cbac386a 6328 u16 data = 0;
145dd2b3 6329 u8 type;
77241056
MM
6330
6331 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6332 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6333 return; /* no request */
6334
6335 /* zero out COMPLETED so the response is seen */
6336 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6337
6338 /* extract request details */
6339 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6340 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6341 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6342 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6343
6344 switch (type) {
6345 case HREQ_LOAD_CONFIG:
6346 case HREQ_SAVE_CONFIG:
6347 case HREQ_READ_CONFIG:
6348 case HREQ_SET_TX_EQ_ABS:
6349 case HREQ_SET_TX_EQ_REL:
145dd2b3 6350 case HREQ_ENABLE:
77241056 6351 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
17fb4f29 6352 type);
77241056
MM
6353 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6354 break;
77241056
MM
6355 case HREQ_CONFIG_DONE:
6356 hreq_response(dd, HREQ_SUCCESS, 0);
6357 break;
6358
6359 case HREQ_INTERFACE_TEST:
6360 hreq_response(dd, HREQ_SUCCESS, data);
6361 break;
77241056
MM
6362 default:
6363 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6364 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6365 break;
6366 }
6367}
6368
b3e6b4bd
BJ
6369/*
6370 * Set up allocation unit vaulue.
6371 */
6372void set_up_vau(struct hfi1_devdata *dd, u8 vau)
77241056 6373{
b3e6b4bd
BJ
6374 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6375
6376 /* do not modify other values in the register */
6377 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6378 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6379 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
77241056
MM
6380}
6381
6382/*
6383 * Set up initial VL15 credits of the remote. Assumes the rest of
b3e6b4bd
BJ
6384 * the CM credit registers are zero from a previous global or credit reset.
6385 * Shared limit for VL15 will always be 0.
77241056 6386 */
b3e6b4bd 6387void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
77241056 6388{
b3e6b4bd
BJ
6389 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6390
6391 /* set initial values for total and shared credit limit */
6392 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6393 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6394
6395 /*
6396 * Set total limit to be equal to VL15 credits.
6397 * Leave shared limit at 0.
6398 */
6399 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6400 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
77241056 6401
eacc830f
DD
6402 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6403 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
77241056
MM
6404}
6405
6406/*
6407 * Zero all credit details from the previous connection and
6408 * reset the CM manager's internal counters.
6409 */
6410void reset_link_credits(struct hfi1_devdata *dd)
6411{
6412 int i;
6413
6414 /* remove all previous VL credit limits */
6415 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 6416 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
77241056 6417 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
b3e6b4bd 6418 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
77241056
MM
6419 /* reset the CM block */
6420 pio_send_control(dd, PSC_CM_RESET);
b3e6b4bd
BJ
6421 /* reset cached value */
6422 dd->vl15buf_cached = 0;
77241056
MM
6423}
6424
6425/* convert a vCU to a CU */
6426static u32 vcu_to_cu(u8 vcu)
6427{
6428 return 1 << vcu;
6429}
6430
6431/* convert a CU to a vCU */
6432static u8 cu_to_vcu(u32 cu)
6433{
6434 return ilog2(cu);
6435}
6436
6437/* convert a vAU to an AU */
6438static u32 vau_to_au(u8 vau)
6439{
6440 return 8 * (1 << vau);
6441}
6442
6443static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6444{
6445 ppd->sm_trap_qp = 0x0;
6446 ppd->sa_qp = 0x1;
6447}
6448
6449/*
6450 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6451 */
6452static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6453{
6454 u64 reg;
6455
6456 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6457 write_csr(dd, DC_LCB_CFG_RUN, 0);
6458 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6459 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
17fb4f29 6460 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
77241056
MM
6461 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6462 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6463 reg = read_csr(dd, DCC_CFG_RESET);
17fb4f29
JJ
6464 write_csr(dd, DCC_CFG_RESET, reg |
6465 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6466 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
50e5dcbe 6467 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
77241056
MM
6468 if (!abort) {
6469 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6470 write_csr(dd, DCC_CFG_RESET, reg);
6471 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6472 }
6473}
6474
6475/*
6476 * This routine should be called after the link has been transitioned to
6477 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6478 * reset).
6479 *
6480 * The expectation is that the caller of this routine would have taken
6481 * care of properly transitioning the link into the correct state.
22546b74
TS
6482 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6483 * before calling this function.
77241056 6484 */
22546b74 6485static void _dc_shutdown(struct hfi1_devdata *dd)
77241056 6486{
22546b74 6487 lockdep_assert_held(&dd->dc8051_lock);
77241056 6488
22546b74 6489 if (dd->dc_shutdown)
77241056 6490 return;
22546b74 6491
77241056 6492 dd->dc_shutdown = 1;
77241056
MM
6493 /* Shutdown the LCB */
6494 lcb_shutdown(dd, 1);
4d114fdd
JJ
6495 /*
6496 * Going to OFFLINE would have causes the 8051 to put the
77241056 6497 * SerDes into reset already. Just need to shut down the 8051,
4d114fdd
JJ
6498 * itself.
6499 */
77241056
MM
6500 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6501}
6502
22546b74
TS
6503static void dc_shutdown(struct hfi1_devdata *dd)
6504{
6505 mutex_lock(&dd->dc8051_lock);
6506 _dc_shutdown(dd);
6507 mutex_unlock(&dd->dc8051_lock);
6508}
6509
4d114fdd
JJ
6510/*
6511 * Calling this after the DC has been brought out of reset should not
6512 * do any damage.
22546b74
TS
6513 * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6514 * before calling this function.
4d114fdd 6515 */
22546b74 6516static void _dc_start(struct hfi1_devdata *dd)
77241056 6517{
22546b74 6518 lockdep_assert_held(&dd->dc8051_lock);
77241056 6519
77241056 6520 if (!dd->dc_shutdown)
22546b74
TS
6521 return;
6522
77241056
MM
6523 /* Take the 8051 out of reset */
6524 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6525 /* Wait until 8051 is ready */
22546b74 6526 if (wait_fm_ready(dd, TIMEOUT_8051_START))
77241056 6527 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
17fb4f29 6528 __func__);
22546b74 6529
77241056
MM
6530 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6531 write_csr(dd, DCC_CFG_RESET, 0x10);
6532 /* lcb_shutdown() with abort=1 does not restore these */
6533 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
77241056 6534 dd->dc_shutdown = 0;
22546b74
TS
6535}
6536
6537static void dc_start(struct hfi1_devdata *dd)
6538{
6539 mutex_lock(&dd->dc8051_lock);
6540 _dc_start(dd);
6541 mutex_unlock(&dd->dc8051_lock);
77241056
MM
6542}
6543
6544/*
6545 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6546 */
6547static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6548{
6549 u64 rx_radr, tx_radr;
6550 u32 version;
6551
6552 if (dd->icode != ICODE_FPGA_EMULATION)
6553 return;
6554
6555 /*
6556 * These LCB defaults on emulator _s are good, nothing to do here:
6557 * LCB_CFG_TX_FIFOS_RADR
6558 * LCB_CFG_RX_FIFOS_RADR
6559 * LCB_CFG_LN_DCLK
6560 * LCB_CFG_IGNORE_LOST_RCLK
6561 */
6562 if (is_emulator_s(dd))
6563 return;
6564 /* else this is _p */
6565
6566 version = emulator_rev(dd);
995deafa 6567 if (!is_ax(dd))
77241056
MM
6568 version = 0x2d; /* all B0 use 0x2d or higher settings */
6569
6570 if (version <= 0x12) {
6571 /* release 0x12 and below */
6572
6573 /*
6574 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6575 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6576 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6577 */
6578 rx_radr =
6579 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6580 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6581 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6582 /*
6583 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6584 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6585 */
6586 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6587 } else if (version <= 0x18) {
6588 /* release 0x13 up to 0x18 */
6589 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6590 rx_radr =
6591 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6592 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6593 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6594 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6595 } else if (version == 0x19) {
6596 /* release 0x19 */
6597 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6598 rx_radr =
6599 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6600 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6601 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6602 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6603 } else if (version == 0x1a) {
6604 /* release 0x1a */
6605 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6606 rx_radr =
6607 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6608 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6609 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6610 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6611 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6612 } else {
6613 /* release 0x1b and higher */
6614 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6615 rx_radr =
6616 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6617 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6618 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6619 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6620 }
6621
6622 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6623 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6624 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
17fb4f29 6625 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
77241056
MM
6626 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6627}
6628
6629/*
6630 * Handle a SMA idle message
6631 *
6632 * This is a work-queue function outside of the interrupt.
6633 */
6634void handle_sma_message(struct work_struct *work)
6635{
6636 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6637 sma_message_work);
6638 struct hfi1_devdata *dd = ppd->dd;
6639 u64 msg;
6640 int ret;
6641
4d114fdd
JJ
6642 /*
6643 * msg is bytes 1-4 of the 40-bit idle message - the command code
6644 * is stripped off
6645 */
77241056
MM
6646 ret = read_idle_sma(dd, &msg);
6647 if (ret)
6648 return;
6649 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6650 /*
6651 * React to the SMA message. Byte[1] (0 for us) is the command.
6652 */
6653 switch (msg & 0xff) {
6654 case SMA_IDLE_ARM:
6655 /*
6656 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6657 * State Transitions
6658 *
6659 * Only expected in INIT or ARMED, discard otherwise.
6660 */
6661 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6662 ppd->neighbor_normal = 1;
6663 break;
6664 case SMA_IDLE_ACTIVE:
6665 /*
6666 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6667 * State Transitions
6668 *
6669 * Can activate the node. Discard otherwise.
6670 */
d0d236ea
JJ
6671 if (ppd->host_link_state == HLS_UP_ARMED &&
6672 ppd->is_active_optimize_enabled) {
77241056
MM
6673 ppd->neighbor_normal = 1;
6674 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6675 if (ret)
6676 dd_dev_err(
6677 dd,
6678 "%s: received Active SMA idle message, couldn't set link to Active\n",
6679 __func__);
6680 }
6681 break;
6682 default:
6683 dd_dev_err(dd,
17fb4f29
JJ
6684 "%s: received unexpected SMA idle message 0x%llx\n",
6685 __func__, msg);
77241056
MM
6686 break;
6687 }
6688}
6689
6690static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6691{
6692 u64 rcvctrl;
6693 unsigned long flags;
6694
6695 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6696 rcvctrl = read_csr(dd, RCV_CTRL);
6697 rcvctrl |= add;
6698 rcvctrl &= ~clear;
6699 write_csr(dd, RCV_CTRL, rcvctrl);
6700 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6701}
6702
6703static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6704{
6705 adjust_rcvctrl(dd, add, 0);
6706}
6707
6708static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6709{
6710 adjust_rcvctrl(dd, 0, clear);
6711}
6712
6713/*
6714 * Called from all interrupt handlers to start handling an SPC freeze.
6715 */
6716void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6717{
6718 struct hfi1_devdata *dd = ppd->dd;
6719 struct send_context *sc;
6720 int i;
6721
6722 if (flags & FREEZE_SELF)
6723 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6724
6725 /* enter frozen mode */
6726 dd->flags |= HFI1_FROZEN;
6727
6728 /* notify all SDMA engines that they are going into a freeze */
6729 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6730
6731 /* do halt pre-handling on all enabled send contexts */
6732 for (i = 0; i < dd->num_send_contexts; i++) {
6733 sc = dd->send_contexts[i].sc;
6734 if (sc && (sc->flags & SCF_ENABLED))
6735 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6736 }
6737
6738 /* Send context are frozen. Notify user space */
6739 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6740
6741 if (flags & FREEZE_ABORT) {
6742 dd_dev_err(dd,
6743 "Aborted freeze recovery. Please REBOOT system\n");
6744 return;
6745 }
6746 /* queue non-interrupt handler */
6747 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6748}
6749
6750/*
6751 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6752 * depending on the "freeze" parameter.
6753 *
6754 * No need to return an error if it times out, our only option
6755 * is to proceed anyway.
6756 */
6757static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6758{
6759 unsigned long timeout;
6760 u64 reg;
6761
6762 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6763 while (1) {
6764 reg = read_csr(dd, CCE_STATUS);
6765 if (freeze) {
6766 /* waiting until all indicators are set */
6767 if ((reg & ALL_FROZE) == ALL_FROZE)
6768 return; /* all done */
6769 } else {
6770 /* waiting until all indicators are clear */
6771 if ((reg & ALL_FROZE) == 0)
6772 return; /* all done */
6773 }
6774
6775 if (time_after(jiffies, timeout)) {
6776 dd_dev_err(dd,
17fb4f29
JJ
6777 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6778 freeze ? "" : "un", reg & ALL_FROZE,
6779 freeze ? ALL_FROZE : 0ull);
77241056
MM
6780 return;
6781 }
6782 usleep_range(80, 120);
6783 }
6784}
6785
6786/*
6787 * Do all freeze handling for the RXE block.
6788 */
6789static void rxe_freeze(struct hfi1_devdata *dd)
6790{
6791 int i;
d295dbeb 6792 struct hfi1_ctxtdata *rcd;
77241056
MM
6793
6794 /* disable port */
6795 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6796
6797 /* disable all receive contexts */
d295dbeb
MR
6798 for (i = 0; i < dd->num_rcv_contexts; i++) {
6799 rcd = hfi1_rcd_get_by_index(dd, i);
6800 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6801 hfi1_rcd_put(rcd);
6802 }
77241056
MM
6803}
6804
6805/*
6806 * Unfreeze handling for the RXE block - kernel contexts only.
6807 * This will also enable the port. User contexts will do unfreeze
6808 * handling on a per-context basis as they call into the driver.
6809 *
6810 */
6811static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6812{
566c157c 6813 u32 rcvmask;
e6f7622d 6814 u16 i;
d295dbeb 6815 struct hfi1_ctxtdata *rcd;
77241056
MM
6816
6817 /* enable all kernel contexts */
2280740f 6818 for (i = 0; i < dd->num_rcv_contexts; i++) {
d295dbeb 6819 rcd = hfi1_rcd_get_by_index(dd, i);
2280740f
VN
6820
6821 /* Ensure all non-user contexts(including vnic) are enabled */
d295dbeb
MR
6822 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
6823 hfi1_rcd_put(rcd);
2280740f 6824 continue;
d295dbeb 6825 }
566c157c
MH
6826 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6827 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
2250563e 6828 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
566c157c 6829 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
2250563e 6830 hfi1_rcvctrl(dd, rcvmask, rcd);
d295dbeb 6831 hfi1_rcd_put(rcd);
566c157c 6832 }
77241056
MM
6833
6834 /* enable port */
6835 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6836}
6837
6838/*
6839 * Non-interrupt SPC freeze handling.
6840 *
6841 * This is a work-queue function outside of the triggering interrupt.
6842 */
6843void handle_freeze(struct work_struct *work)
6844{
6845 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6846 freeze_work);
6847 struct hfi1_devdata *dd = ppd->dd;
6848
6849 /* wait for freeze indicators on all affected blocks */
77241056
MM
6850 wait_for_freeze_status(dd, 1);
6851
6852 /* SPC is now frozen */
6853
6854 /* do send PIO freeze steps */
6855 pio_freeze(dd);
6856
6857 /* do send DMA freeze steps */
6858 sdma_freeze(dd);
6859
6860 /* do send egress freeze steps - nothing to do */
6861
6862 /* do receive freeze steps */
6863 rxe_freeze(dd);
6864
6865 /*
6866 * Unfreeze the hardware - clear the freeze, wait for each
6867 * block's frozen bit to clear, then clear the frozen flag.
6868 */
6869 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6870 wait_for_freeze_status(dd, 0);
6871
995deafa 6872 if (is_ax(dd)) {
77241056
MM
6873 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6874 wait_for_freeze_status(dd, 1);
6875 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6876 wait_for_freeze_status(dd, 0);
6877 }
6878
6879 /* do send PIO unfreeze steps for kernel contexts */
6880 pio_kernel_unfreeze(dd);
6881
6882 /* do send DMA unfreeze steps */
6883 sdma_unfreeze(dd);
6884
6885 /* do send egress unfreeze steps - nothing to do */
6886
6887 /* do receive unfreeze steps for kernel contexts */
6888 rxe_kernel_unfreeze(dd);
6889
6890 /*
6891 * The unfreeze procedure touches global device registers when
6892 * it disables and re-enables RXE. Mark the device unfrozen
6893 * after all that is done so other parts of the driver waiting
6894 * for the device to unfreeze don't do things out of order.
6895 *
6896 * The above implies that the meaning of HFI1_FROZEN flag is
6897 * "Device has gone into freeze mode and freeze mode handling
6898 * is still in progress."
6899 *
6900 * The flag will be removed when freeze mode processing has
6901 * completed.
6902 */
6903 dd->flags &= ~HFI1_FROZEN;
6904 wake_up(&dd->event_queue);
6905
6906 /* no longer frozen */
77241056
MM
6907}
6908
6909/*
6910 * Handle a link up interrupt from the 8051.
6911 *
6912 * This is a work-queue function outside of the interrupt.
6913 */
6914void handle_link_up(struct work_struct *work)
6915{
6916 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
17fb4f29 6917 link_up_work);
b3e6b4bd
BJ
6918 struct hfi1_devdata *dd = ppd->dd;
6919
77241056
MM
6920 set_link_state(ppd, HLS_UP_INIT);
6921
6922 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
b3e6b4bd 6923 read_ltp_rtt(dd);
77241056
MM
6924 /*
6925 * OPA specifies that certain counters are cleared on a transition
6926 * to link up, so do that.
6927 */
b3e6b4bd 6928 clear_linkup_counters(dd);
77241056
MM
6929 /*
6930 * And (re)set link up default values.
6931 */
6932 set_linkup_defaults(ppd);
6933
b3e6b4bd
BJ
6934 /*
6935 * Set VL15 credits. Use cached value from verify cap interrupt.
6936 * In case of quick linkup or simulator, vl15 value will be set by
6937 * handle_linkup_change. VerifyCap interrupt handler will not be
6938 * called in those scenarios.
6939 */
6940 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6941 set_up_vl15(dd, dd->vl15buf_cached);
6942
77241056
MM
6943 /* enforce link speed enabled */
6944 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6945 /* oops - current speed is not enabled, bounce */
b3e6b4bd 6946 dd_dev_err(dd,
17fb4f29
JJ
6947 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6948 ppd->link_speed_active, ppd->link_speed_enabled);
77241056 6949 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
17fb4f29 6950 OPA_LINKDOWN_REASON_SPEED_POLICY);
77241056
MM
6951 set_link_state(ppd, HLS_DN_OFFLINE);
6952 start_link(ppd);
6953 }
6954}
6955
4d114fdd
JJ
6956/*
6957 * Several pieces of LNI information were cached for SMA in ppd.
6958 * Reset these on link down
6959 */
77241056
MM
6960static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6961{
6962 ppd->neighbor_guid = 0;
6963 ppd->neighbor_port_number = 0;
6964 ppd->neighbor_type = 0;
6965 ppd->neighbor_fm_security = 0;
6966}
6967
feb831dd
DL
6968static const char * const link_down_reason_strs[] = {
6969 [OPA_LINKDOWN_REASON_NONE] = "None",
67838e64 6970 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
feb831dd
DL
6971 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6972 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6973 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6974 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6975 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6976 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6977 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6978 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6979 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6980 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6981 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6982 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6983 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6984 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6985 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6986 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6987 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6988 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6989 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6990 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6991 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6992 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6993 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6994 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6995 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6996 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6997 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6998 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6999 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7000 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7001 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7002 "Excessive buffer overrun",
7003 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7004 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7005 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7006 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7007 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7008 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7009 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7010 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7011 "Local media not installed",
7012 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7013 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7014 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7015 "End to end not installed",
7016 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7017 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7018 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7019 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7020 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7021 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7022};
7023
7024/* return the neighbor link down reason string */
7025static const char *link_down_reason_str(u8 reason)
7026{
7027 const char *str = NULL;
7028
7029 if (reason < ARRAY_SIZE(link_down_reason_strs))
7030 str = link_down_reason_strs[reason];
7031 if (!str)
7032 str = "(invalid)";
7033
7034 return str;
7035}
7036
77241056
MM
7037/*
7038 * Handle a link down interrupt from the 8051.
7039 *
7040 * This is a work-queue function outside of the interrupt.
7041 */
7042void handle_link_down(struct work_struct *work)
7043{
7044 u8 lcl_reason, neigh_reason = 0;
feb831dd 7045 u8 link_down_reason;
77241056 7046 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
feb831dd
DL
7047 link_down_work);
7048 int was_up;
7049 static const char ldr_str[] = "Link down reason: ";
77241056 7050
8ebd4cf1
EH
7051 if ((ppd->host_link_state &
7052 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7053 ppd->port_type == PORT_TYPE_FIXED)
7054 ppd->offline_disabled_reason =
7055 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7056
7057 /* Go offline first, then deal with reading/writing through 8051 */
feb831dd 7058 was_up = !!(ppd->host_link_state & HLS_UP);
77241056 7059 set_link_state(ppd, HLS_DN_OFFLINE);
626c077c 7060 xchg(&ppd->is_link_down_queued, 0);
77241056 7061
feb831dd
DL
7062 if (was_up) {
7063 lcl_reason = 0;
7064 /* link down reason is only valid if the link was up */
7065 read_link_down_reason(ppd->dd, &link_down_reason);
7066 switch (link_down_reason) {
7067 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7068 /* the link went down, no idle message reason */
7069 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7070 ldr_str);
7071 break;
7072 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7073 /*
7074 * The neighbor reason is only valid if an idle message
7075 * was received for it.
7076 */
7077 read_planned_down_reason_code(ppd->dd, &neigh_reason);
7078 dd_dev_info(ppd->dd,
7079 "%sNeighbor link down message %d, %s\n",
7080 ldr_str, neigh_reason,
7081 link_down_reason_str(neigh_reason));
7082 break;
7083 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7084 dd_dev_info(ppd->dd,
7085 "%sHost requested link to go offline\n",
7086 ldr_str);
7087 break;
7088 default:
7089 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7090 ldr_str, link_down_reason);
7091 break;
7092 }
77241056 7093
feb831dd
DL
7094 /*
7095 * If no reason, assume peer-initiated but missed
7096 * LinkGoingDown idle flits.
7097 */
7098 if (neigh_reason == 0)
7099 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7100 } else {
7101 /* went down while polling or going up */
7102 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7103 }
77241056
MM
7104
7105 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7106
015e91fb
DL
7107 /* inform the SMA when the link transitions from up to down */
7108 if (was_up && ppd->local_link_down_reason.sma == 0 &&
7109 ppd->neigh_link_down_reason.sma == 0) {
7110 ppd->local_link_down_reason.sma =
7111 ppd->local_link_down_reason.latest;
7112 ppd->neigh_link_down_reason.sma =
7113 ppd->neigh_link_down_reason.latest;
7114 }
7115
77241056
MM
7116 reset_neighbor_info(ppd);
7117
7118 /* disable the port */
7119 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7120
4d114fdd
JJ
7121 /*
7122 * If there is no cable attached, turn the DC off. Otherwise,
7123 * start the link bring up.
7124 */
0db9dec2 7125 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
77241056 7126 dc_shutdown(ppd->dd);
0db9dec2 7127 else
77241056
MM
7128 start_link(ppd);
7129}
7130
7131void handle_link_bounce(struct work_struct *work)
7132{
7133 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7134 link_bounce_work);
7135
7136 /*
7137 * Only do something if the link is currently up.
7138 */
7139 if (ppd->host_link_state & HLS_UP) {
7140 set_link_state(ppd, HLS_DN_OFFLINE);
7141 start_link(ppd);
7142 } else {
7143 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
17fb4f29 7144 __func__, link_state_name(ppd->host_link_state));
77241056
MM
7145 }
7146}
7147
7148/*
7149 * Mask conversion: Capability exchange to Port LTP. The capability
7150 * exchange has an implicit 16b CRC that is mandatory.
7151 */
7152static int cap_to_port_ltp(int cap)
7153{
7154 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7155
7156 if (cap & CAP_CRC_14B)
7157 port_ltp |= PORT_LTP_CRC_MODE_14;
7158 if (cap & CAP_CRC_48B)
7159 port_ltp |= PORT_LTP_CRC_MODE_48;
7160 if (cap & CAP_CRC_12B_16B_PER_LANE)
7161 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7162
7163 return port_ltp;
7164}
7165
7166/*
7167 * Convert an OPA Port LTP mask to capability mask
7168 */
7169int port_ltp_to_cap(int port_ltp)
7170{
7171 int cap_mask = 0;
7172
7173 if (port_ltp & PORT_LTP_CRC_MODE_14)
7174 cap_mask |= CAP_CRC_14B;
7175 if (port_ltp & PORT_LTP_CRC_MODE_48)
7176 cap_mask |= CAP_CRC_48B;
7177 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7178 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7179
7180 return cap_mask;
7181}
7182
7183/*
7184 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7185 */
7186static int lcb_to_port_ltp(int lcb_crc)
7187{
7188 int port_ltp = 0;
7189
7190 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7191 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7192 else if (lcb_crc == LCB_CRC_48B)
7193 port_ltp = PORT_LTP_CRC_MODE_48;
7194 else if (lcb_crc == LCB_CRC_14B)
7195 port_ltp = PORT_LTP_CRC_MODE_14;
7196 else
7197 port_ltp = PORT_LTP_CRC_MODE_16;
7198
7199 return port_ltp;
7200}
7201
7202/*
7203 * Our neighbor has indicated that we are allowed to act as a fabric
7204 * manager, so place the full management partition key in the second
7205 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7206 * that we should already have the limited management partition key in
7207 * array element 1, and also that the port is not yet up when
7208 * add_full_mgmt_pkey() is invoked.
7209 */
7210static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7211{
7212 struct hfi1_devdata *dd = ppd->dd;
7213
a498fbcd 7214 /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
8764522e
DL
7215 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7216 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7217 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
77241056
MM
7218 ppd->pkeys[2] = FULL_MGMT_P_KEY;
7219 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
34d351f8 7220 hfi1_event_pkey_change(ppd->dd, ppd->port);
77241056
MM
7221}
7222
3ec5fa28 7223static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
ce8b2fd0 7224{
3ec5fa28
SS
7225 if (ppd->pkeys[2] != 0) {
7226 ppd->pkeys[2] = 0;
7227 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
34d351f8 7228 hfi1_event_pkey_change(ppd->dd, ppd->port);
3ec5fa28 7229 }
ce8b2fd0
SS
7230}
7231
77241056
MM
7232/*
7233 * Convert the given link width to the OPA link width bitmask.
7234 */
7235static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7236{
7237 switch (width) {
7238 case 0:
7239 /*
7240 * Simulator and quick linkup do not set the width.
7241 * Just set it to 4x without complaint.
7242 */
7243 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7244 return OPA_LINK_WIDTH_4X;
7245 return 0; /* no lanes up */
7246 case 1: return OPA_LINK_WIDTH_1X;
7247 case 2: return OPA_LINK_WIDTH_2X;
7248 case 3: return OPA_LINK_WIDTH_3X;
7249 default:
7250 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
17fb4f29 7251 __func__, width);
77241056
MM
7252 /* fall through */
7253 case 4: return OPA_LINK_WIDTH_4X;
7254 }
7255}
7256
7257/*
7258 * Do a population count on the bottom nibble.
7259 */
7260static const u8 bit_counts[16] = {
7261 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7262};
f4d507cd 7263
77241056
MM
7264static inline u8 nibble_to_count(u8 nibble)
7265{
7266 return bit_counts[nibble & 0xf];
7267}
7268
7269/*
7270 * Read the active lane information from the 8051 registers and return
7271 * their widths.
7272 *
7273 * Active lane information is found in these 8051 registers:
7274 * enable_lane_tx
7275 * enable_lane_rx
7276 */
7277static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7278 u16 *rx_width)
7279{
7280 u16 tx, rx;
7281 u8 enable_lane_rx;
7282 u8 enable_lane_tx;
7283 u8 tx_polarity_inversion;
7284 u8 rx_polarity_inversion;
7285 u8 max_rate;
7286
7287 /* read the active lanes */
7288 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
17fb4f29 7289 &rx_polarity_inversion, &max_rate);
77241056
MM
7290 read_local_lni(dd, &enable_lane_rx);
7291
7292 /* convert to counts */
7293 tx = nibble_to_count(enable_lane_tx);
7294 rx = nibble_to_count(enable_lane_rx);
7295
7296 /*
7297 * Set link_speed_active here, overriding what was set in
7298 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7299 * set the max_rate field in handle_verify_cap until v0.19.
7300 */
d0d236ea 7301 if ((dd->icode == ICODE_RTL_SILICON) &&
5e6e9424 7302 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
77241056
MM
7303 /* max_rate: 0 = 12.5G, 1 = 25G */
7304 switch (max_rate) {
7305 case 0:
7306 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7307 break;
7308 default:
7309 dd_dev_err(dd,
17fb4f29
JJ
7310 "%s: unexpected max rate %d, using 25Gb\n",
7311 __func__, (int)max_rate);
77241056
MM
7312 /* fall through */
7313 case 1:
7314 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7315 break;
7316 }
7317 }
7318
7319 dd_dev_info(dd,
17fb4f29
JJ
7320 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7321 enable_lane_tx, tx, enable_lane_rx, rx);
77241056
MM
7322 *tx_width = link_width_to_bits(dd, tx);
7323 *rx_width = link_width_to_bits(dd, rx);
7324}
7325
7326/*
7327 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7328 * Valid after the end of VerifyCap and during LinkUp. Does not change
7329 * after link up. I.e. look elsewhere for downgrade information.
7330 *
7331 * Bits are:
7332 * + bits [7:4] contain the number of active transmitters
7333 * + bits [3:0] contain the number of active receivers
7334 * These are numbers 1 through 4 and can be different values if the
7335 * link is asymmetric.
7336 *
7337 * verify_cap_local_fm_link_width[0] retains its original value.
7338 */
7339static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7340 u16 *rx_width)
7341{
7342 u16 widths, tx, rx;
7343 u8 misc_bits, local_flags;
7344 u16 active_tx, active_rx;
7345
7346 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7347 tx = widths >> 12;
7348 rx = (widths >> 8) & 0xf;
7349
7350 *tx_width = link_width_to_bits(dd, tx);
7351 *rx_width = link_width_to_bits(dd, rx);
7352
7353 /* print the active widths */
7354 get_link_widths(dd, &active_tx, &active_rx);
7355}
7356
7357/*
7358 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7359 * hardware information when the link first comes up.
7360 *
7361 * The link width is not available until after VerifyCap.AllFramesReceived
7362 * (the trigger for handle_verify_cap), so this is outside that routine
7363 * and should be called when the 8051 signals linkup.
7364 */
7365void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7366{
7367 u16 tx_width, rx_width;
7368
7369 /* get end-of-LNI link widths */
7370 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7371
7372 /* use tx_width as the link is supposed to be symmetric on link up */
7373 ppd->link_width_active = tx_width;
7374 /* link width downgrade active (LWD.A) starts out matching LW.A */
7375 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7376 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7377 /* per OPA spec, on link up LWD.E resets to LWD.S */
7378 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7379 /* cache the active egress rate (units {10^6 bits/sec]) */
7380 ppd->current_egress_rate = active_egress_rate(ppd);
7381}
7382
7383/*
7384 * Handle a verify capabilities interrupt from the 8051.
7385 *
7386 * This is a work-queue function outside of the interrupt.
7387 */
7388void handle_verify_cap(struct work_struct *work)
7389{
7390 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7391 link_vc_work);
7392 struct hfi1_devdata *dd = ppd->dd;
7393 u64 reg;
7394 u8 power_management;
a63aa5db 7395 u8 continuous;
77241056
MM
7396 u8 vcu;
7397 u8 vau;
7398 u8 z;
7399 u16 vl15buf;
7400 u16 link_widths;
7401 u16 crc_mask;
7402 u16 crc_val;
7403 u16 device_id;
7404 u16 active_tx, active_rx;
7405 u8 partner_supported_crc;
7406 u8 remote_tx_rate;
7407 u8 device_rev;
7408
7409 set_link_state(ppd, HLS_VERIFY_CAP);
7410
7411 lcb_shutdown(dd, 0);
7412 adjust_lcb_for_fpga_serdes(dd);
7413
a63aa5db 7414 read_vc_remote_phy(dd, &power_management, &continuous);
17fb4f29
JJ
7415 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7416 &partner_supported_crc);
77241056
MM
7417 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7418 read_remote_device_id(dd, &device_id, &device_rev);
7419 /*
7420 * And the 'MgmtAllowed' information, which is exchanged during
7421 * LNI, is also be available at this point.
7422 */
7423 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7424 /* print the active widths */
7425 get_link_widths(dd, &active_tx, &active_rx);
7426 dd_dev_info(dd,
17fb4f29 7427 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
a63aa5db 7428 (int)power_management, (int)continuous);
77241056 7429 dd_dev_info(dd,
17fb4f29
JJ
7430 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7431 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7432 (int)partner_supported_crc);
77241056 7433 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
17fb4f29 7434 (u32)remote_tx_rate, (u32)link_widths);
77241056 7435 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
17fb4f29 7436 (u32)device_id, (u32)device_rev);
77241056
MM
7437 /*
7438 * The peer vAU value just read is the peer receiver value. HFI does
7439 * not support a transmit vAU of 0 (AU == 8). We advertised that
7440 * with Z=1 in the fabric capabilities sent to the peer. The peer
7441 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7442 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7443 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7444 * subject to the Z value exception.
7445 */
7446 if (vau == 0)
7447 vau = 1;
b3e6b4bd
BJ
7448 set_up_vau(dd, vau);
7449
7450 /*
7451 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7452 * credits value and wait for link-up interrupt ot set it.
7453 */
7454 set_up_vl15(dd, 0);
7455 dd->vl15buf_cached = vl15buf;
77241056
MM
7456
7457 /* set up the LCB CRC mode */
7458 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7459
7460 /* order is important: use the lowest bit in common */
7461 if (crc_mask & CAP_CRC_14B)
7462 crc_val = LCB_CRC_14B;
7463 else if (crc_mask & CAP_CRC_48B)
7464 crc_val = LCB_CRC_48B;
7465 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7466 crc_val = LCB_CRC_12B_16B_PER_LANE;
7467 else
7468 crc_val = LCB_CRC_16B;
7469
7470 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7471 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7472 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7473
7474 /* set (14b only) or clear sideband credit */
7475 reg = read_csr(dd, SEND_CM_CTRL);
7476 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7477 write_csr(dd, SEND_CM_CTRL,
17fb4f29 7478 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
77241056
MM
7479 } else {
7480 write_csr(dd, SEND_CM_CTRL,
17fb4f29 7481 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
77241056
MM
7482 }
7483
7484 ppd->link_speed_active = 0; /* invalid value */
5e6e9424 7485 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
77241056
MM
7486 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7487 switch (remote_tx_rate) {
7488 case 0:
7489 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7490 break;
7491 case 1:
7492 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7493 break;
7494 }
7495 } else {
7496 /* actual rate is highest bit of the ANDed rates */
7497 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7498
7499 if (rate & 2)
7500 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7501 else if (rate & 1)
7502 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7503 }
7504 if (ppd->link_speed_active == 0) {
7505 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
17fb4f29 7506 __func__, (int)remote_tx_rate);
77241056
MM
7507 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7508 }
7509
7510 /*
7511 * Cache the values of the supported, enabled, and active
7512 * LTP CRC modes to return in 'portinfo' queries. But the bit
7513 * flags that are returned in the portinfo query differ from
7514 * what's in the link_crc_mask, crc_sizes, and crc_val
7515 * variables. Convert these here.
7516 */
7517 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7518 /* supported crc modes */
7519 ppd->port_ltp_crc_mode |=
7520 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7521 /* enabled crc modes */
7522 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7523 /* active crc mode */
7524
7525 /* set up the remote credit return table */
7526 assign_remote_cm_au_table(dd, vcu);
7527
7528 /*
7529 * The LCB is reset on entry to handle_verify_cap(), so this must
7530 * be applied on every link up.
7531 *
7532 * Adjust LCB error kill enable to kill the link if
7533 * these RBUF errors are seen:
7534 * REPLAY_BUF_MBE_SMASK
7535 * FLIT_INPUT_BUF_MBE_SMASK
7536 */
995deafa 7537 if (is_ax(dd)) { /* fixed in B0 */
77241056
MM
7538 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7539 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7540 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7541 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7542 }
7543
7544 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7545 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7546
7547 /* give 8051 access to the LCB CSRs */
7548 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7549 set_8051_lcb_access(dd);
7550
77241056
MM
7551 if (ppd->mgmt_allowed)
7552 add_full_mgmt_pkey(ppd);
7553
7554 /* tell the 8051 to go to LinkUp */
7555 set_link_state(ppd, HLS_GOING_UP);
7556}
7557
7558/*
7559 * Apply the link width downgrade enabled policy against the current active
7560 * link widths.
7561 *
7562 * Called when the enabled policy changes or the active link widths change.
7563 */
7564void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7565{
77241056 7566 int do_bounce = 0;
323fd785
DL
7567 int tries;
7568 u16 lwde;
77241056
MM
7569 u16 tx, rx;
7570
323fd785
DL
7571 /* use the hls lock to avoid a race with actual link up */
7572 tries = 0;
7573retry:
77241056
MM
7574 mutex_lock(&ppd->hls_lock);
7575 /* only apply if the link is up */
0c7f77af 7576 if (ppd->host_link_state & HLS_DOWN) {
323fd785
DL
7577 /* still going up..wait and retry */
7578 if (ppd->host_link_state & HLS_GOING_UP) {
7579 if (++tries < 1000) {
7580 mutex_unlock(&ppd->hls_lock);
7581 usleep_range(100, 120); /* arbitrary */
7582 goto retry;
7583 }
7584 dd_dev_err(ppd->dd,
7585 "%s: giving up waiting for link state change\n",
7586 __func__);
7587 }
7588 goto done;
7589 }
7590
7591 lwde = ppd->link_width_downgrade_enabled;
77241056
MM
7592
7593 if (refresh_widths) {
7594 get_link_widths(ppd->dd, &tx, &rx);
7595 ppd->link_width_downgrade_tx_active = tx;
7596 ppd->link_width_downgrade_rx_active = rx;
7597 }
7598
f9b5635c
DL
7599 if (ppd->link_width_downgrade_tx_active == 0 ||
7600 ppd->link_width_downgrade_rx_active == 0) {
7601 /* the 8051 reported a dead link as a downgrade */
7602 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7603 } else if (lwde == 0) {
77241056
MM
7604 /* downgrade is disabled */
7605
7606 /* bounce if not at starting active width */
7607 if ((ppd->link_width_active !=
17fb4f29
JJ
7608 ppd->link_width_downgrade_tx_active) ||
7609 (ppd->link_width_active !=
7610 ppd->link_width_downgrade_rx_active)) {
77241056 7611 dd_dev_err(ppd->dd,
17fb4f29 7612 "Link downgrade is disabled and link has downgraded, downing link\n");
77241056 7613 dd_dev_err(ppd->dd,
17fb4f29
JJ
7614 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7615 ppd->link_width_active,
7616 ppd->link_width_downgrade_tx_active,
7617 ppd->link_width_downgrade_rx_active);
77241056
MM
7618 do_bounce = 1;
7619 }
d0d236ea
JJ
7620 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7621 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
77241056
MM
7622 /* Tx or Rx is outside the enabled policy */
7623 dd_dev_err(ppd->dd,
17fb4f29 7624 "Link is outside of downgrade allowed, downing link\n");
77241056 7625 dd_dev_err(ppd->dd,
17fb4f29
JJ
7626 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7627 lwde, ppd->link_width_downgrade_tx_active,
7628 ppd->link_width_downgrade_rx_active);
77241056
MM
7629 do_bounce = 1;
7630 }
7631
323fd785
DL
7632done:
7633 mutex_unlock(&ppd->hls_lock);
7634
77241056
MM
7635 if (do_bounce) {
7636 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
17fb4f29 7637 OPA_LINKDOWN_REASON_WIDTH_POLICY);
77241056
MM
7638 set_link_state(ppd, HLS_DN_OFFLINE);
7639 start_link(ppd);
7640 }
7641}
7642
7643/*
7644 * Handle a link downgrade interrupt from the 8051.
7645 *
7646 * This is a work-queue function outside of the interrupt.
7647 */
7648void handle_link_downgrade(struct work_struct *work)
7649{
7650 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7651 link_downgrade_work);
7652
7653 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7654 apply_link_downgrade_policy(ppd, 1);
7655}
7656
7657static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7658{
7659 return flag_string(buf, buf_len, flags, dcc_err_flags,
7660 ARRAY_SIZE(dcc_err_flags));
7661}
7662
7663static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7664{
7665 return flag_string(buf, buf_len, flags, lcb_err_flags,
7666 ARRAY_SIZE(lcb_err_flags));
7667}
7668
7669static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7670{
7671 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7672 ARRAY_SIZE(dc8051_err_flags));
7673}
7674
7675static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7676{
7677 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7678 ARRAY_SIZE(dc8051_info_err_flags));
7679}
7680
7681static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7682{
7683 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7684 ARRAY_SIZE(dc8051_info_host_msg_flags));
7685}
7686
7687static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7688{
7689 struct hfi1_pportdata *ppd = dd->pport;
7690 u64 info, err, host_msg;
7691 int queue_link_down = 0;
7692 char buf[96];
7693
7694 /* look at the flags */
7695 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7696 /* 8051 information set by firmware */
7697 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7698 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7699 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7700 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7701 host_msg = (info >>
7702 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7703 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7704
7705 /*
7706 * Handle error flags.
7707 */
7708 if (err & FAILED_LNI) {
7709 /*
7710 * LNI error indications are cleared by the 8051
7711 * only when starting polling. Only pay attention
7712 * to them when in the states that occur during
7713 * LNI.
7714 */
7715 if (ppd->host_link_state
7716 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7717 queue_link_down = 1;
7718 dd_dev_info(dd, "Link error: %s\n",
17fb4f29
JJ
7719 dc8051_info_err_string(buf,
7720 sizeof(buf),
7721 err &
7722 FAILED_LNI));
77241056
MM
7723 }
7724 err &= ~(u64)FAILED_LNI;
7725 }
6d014530
DL
7726 /* unknown frames can happen durning LNI, just count */
7727 if (err & UNKNOWN_FRAME) {
7728 ppd->unknown_frame_count++;
7729 err &= ~(u64)UNKNOWN_FRAME;
7730 }
77241056
MM
7731 if (err) {
7732 /* report remaining errors, but do not do anything */
7733 dd_dev_err(dd, "8051 info error: %s\n",
17fb4f29
JJ
7734 dc8051_info_err_string(buf, sizeof(buf),
7735 err));
77241056
MM
7736 }
7737
7738 /*
7739 * Handle host message flags.
7740 */
7741 if (host_msg & HOST_REQ_DONE) {
7742 /*
7743 * Presently, the driver does a busy wait for
7744 * host requests to complete. This is only an
7745 * informational message.
7746 * NOTE: The 8051 clears the host message
7747 * information *on the next 8051 command*.
7748 * Therefore, when linkup is achieved,
7749 * this flag will still be set.
7750 */
7751 host_msg &= ~(u64)HOST_REQ_DONE;
7752 }
7753 if (host_msg & BC_SMA_MSG) {
71d47008 7754 queue_work(ppd->link_wq, &ppd->sma_message_work);
77241056
MM
7755 host_msg &= ~(u64)BC_SMA_MSG;
7756 }
7757 if (host_msg & LINKUP_ACHIEVED) {
7758 dd_dev_info(dd, "8051: Link up\n");
71d47008 7759 queue_work(ppd->link_wq, &ppd->link_up_work);
77241056
MM
7760 host_msg &= ~(u64)LINKUP_ACHIEVED;
7761 }
7762 if (host_msg & EXT_DEVICE_CFG_REQ) {
145dd2b3 7763 handle_8051_request(ppd);
77241056
MM
7764 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7765 }
7766 if (host_msg & VERIFY_CAP_FRAME) {
71d47008 7767 queue_work(ppd->link_wq, &ppd->link_vc_work);
77241056
MM
7768 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7769 }
7770 if (host_msg & LINK_GOING_DOWN) {
7771 const char *extra = "";
7772 /* no downgrade action needed if going down */
7773 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7774 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7775 extra = " (ignoring downgrade)";
7776 }
7777 dd_dev_info(dd, "8051: Link down%s\n", extra);
7778 queue_link_down = 1;
7779 host_msg &= ~(u64)LINK_GOING_DOWN;
7780 }
7781 if (host_msg & LINK_WIDTH_DOWNGRADED) {
71d47008 7782 queue_work(ppd->link_wq, &ppd->link_downgrade_work);
77241056
MM
7783 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7784 }
7785 if (host_msg) {
7786 /* report remaining messages, but do not do anything */
7787 dd_dev_info(dd, "8051 info host message: %s\n",
17fb4f29
JJ
7788 dc8051_info_host_msg_string(buf,
7789 sizeof(buf),
7790 host_msg));
77241056
MM
7791 }
7792
7793 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7794 }
7795 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7796 /*
7797 * Lost the 8051 heartbeat. If this happens, we
7798 * receive constant interrupts about it. Disable
7799 * the interrupt after the first.
7800 */
7801 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7802 write_csr(dd, DC_DC8051_ERR_EN,
17fb4f29
JJ
7803 read_csr(dd, DC_DC8051_ERR_EN) &
7804 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
77241056
MM
7805
7806 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7807 }
7808 if (reg) {
7809 /* report the error, but do not do anything */
7810 dd_dev_err(dd, "8051 error: %s\n",
17fb4f29 7811 dc8051_err_string(buf, sizeof(buf), reg));
77241056
MM
7812 }
7813
7814 if (queue_link_down) {
4d114fdd
JJ
7815 /*
7816 * if the link is already going down or disabled, do not
b6422bc0
SS
7817 * queue another. If there's a link down entry already
7818 * queued, don't queue another one.
4d114fdd 7819 */
d0d236ea
JJ
7820 if ((ppd->host_link_state &
7821 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
b6422bc0
SS
7822 ppd->link_enabled == 0) {
7823 dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7824 __func__, ppd->host_link_state,
7825 ppd->link_enabled);
77241056 7826 } else {
b6422bc0
SS
7827 if (xchg(&ppd->is_link_down_queued, 1) == 1)
7828 dd_dev_info(dd,
7829 "%s: link down request already queued\n",
7830 __func__);
7831 else
7832 queue_work(ppd->link_wq, &ppd->link_down_work);
77241056
MM
7833 }
7834 }
7835}
7836
7837static const char * const fm_config_txt[] = {
7838[0] =
7839 "BadHeadDist: Distance violation between two head flits",
7840[1] =
7841 "BadTailDist: Distance violation between two tail flits",
7842[2] =
7843 "BadCtrlDist: Distance violation between two credit control flits",
7844[3] =
7845 "BadCrdAck: Credits return for unsupported VL",
7846[4] =
7847 "UnsupportedVLMarker: Received VL Marker",
7848[5] =
7849 "BadPreempt: Exceeded the preemption nesting level",
7850[6] =
7851 "BadControlFlit: Received unsupported control flit",
7852/* no 7 */
7853[8] =
7854 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7855};
7856
7857static const char * const port_rcv_txt[] = {
7858[1] =
7859 "BadPktLen: Illegal PktLen",
7860[2] =
7861 "PktLenTooLong: Packet longer than PktLen",
7862[3] =
7863 "PktLenTooShort: Packet shorter than PktLen",
7864[4] =
7865 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7866[5] =
7867 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7868[6] =
7869 "BadL2: Illegal L2 opcode",
7870[7] =
7871 "BadSC: Unsupported SC",
7872[9] =
7873 "BadRC: Illegal RC",
7874[11] =
7875 "PreemptError: Preempting with same VL",
7876[12] =
7877 "PreemptVL15: Preempting a VL15 packet",
7878};
7879
7880#define OPA_LDR_FMCONFIG_OFFSET 16
7881#define OPA_LDR_PORTRCV_OFFSET 0
7882static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7883{
7884 u64 info, hdr0, hdr1;
7885 const char *extra;
7886 char buf[96];
7887 struct hfi1_pportdata *ppd = dd->pport;
7888 u8 lcl_reason = 0;
7889 int do_bounce = 0;
7890
7891 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7892 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7893 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7894 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7895 /* set status bit */
7896 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7897 }
7898 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7899 }
7900
7901 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7902 struct hfi1_pportdata *ppd = dd->pport;
7903 /* this counter saturates at (2^32) - 1 */
7904 if (ppd->link_downed < (u32)UINT_MAX)
7905 ppd->link_downed++;
7906 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7907 }
7908
7909 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7910 u8 reason_valid = 1;
7911
7912 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7913 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7914 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7915 /* set status bit */
7916 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7917 }
7918 switch (info) {
7919 case 0:
7920 case 1:
7921 case 2:
7922 case 3:
7923 case 4:
7924 case 5:
7925 case 6:
7926 extra = fm_config_txt[info];
7927 break;
7928 case 8:
7929 extra = fm_config_txt[info];
7930 if (ppd->port_error_action &
7931 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7932 do_bounce = 1;
7933 /*
7934 * lcl_reason cannot be derived from info
7935 * for this error
7936 */
7937 lcl_reason =
7938 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7939 }
7940 break;
7941 default:
7942 reason_valid = 0;
7943 snprintf(buf, sizeof(buf), "reserved%lld", info);
7944 extra = buf;
7945 break;
7946 }
7947
7948 if (reason_valid && !do_bounce) {
7949 do_bounce = ppd->port_error_action &
7950 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7951 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7952 }
7953
7954 /* just report this */
c27aad00
JB
7955 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7956 extra);
77241056
MM
7957 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7958 }
7959
7960 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7961 u8 reason_valid = 1;
7962
7963 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7964 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7965 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7966 if (!(dd->err_info_rcvport.status_and_code &
7967 OPA_EI_STATUS_SMASK)) {
7968 dd->err_info_rcvport.status_and_code =
7969 info & OPA_EI_CODE_SMASK;
7970 /* set status bit */
7971 dd->err_info_rcvport.status_and_code |=
7972 OPA_EI_STATUS_SMASK;
4d114fdd
JJ
7973 /*
7974 * save first 2 flits in the packet that caused
7975 * the error
7976 */
48a0cc13
BVA
7977 dd->err_info_rcvport.packet_flit1 = hdr0;
7978 dd->err_info_rcvport.packet_flit2 = hdr1;
77241056
MM
7979 }
7980 switch (info) {
7981 case 1:
7982 case 2:
7983 case 3:
7984 case 4:
7985 case 5:
7986 case 6:
7987 case 7:
7988 case 9:
7989 case 11:
7990 case 12:
7991 extra = port_rcv_txt[info];
7992 break;
7993 default:
7994 reason_valid = 0;
7995 snprintf(buf, sizeof(buf), "reserved%lld", info);
7996 extra = buf;
7997 break;
7998 }
7999
8000 if (reason_valid && !do_bounce) {
8001 do_bounce = ppd->port_error_action &
8002 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8003 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8004 }
8005
8006 /* just report this */
c27aad00
JB
8007 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8008 " hdr0 0x%llx, hdr1 0x%llx\n",
8009 extra, hdr0, hdr1);
77241056
MM
8010
8011 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8012 }
8013
8014 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8015 /* informative only */
c27aad00 8016 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
77241056
MM
8017 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8018 }
8019 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8020 /* informative only */
c27aad00 8021 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
77241056
MM
8022 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8023 }
8024
243d9f43
DH
8025 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8026 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8027
77241056
MM
8028 /* report any remaining errors */
8029 if (reg)
c27aad00
JB
8030 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8031 dcc_err_string(buf, sizeof(buf), reg));
77241056
MM
8032
8033 if (lcl_reason == 0)
8034 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8035
8036 if (do_bounce) {
c27aad00
JB
8037 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8038 __func__);
77241056 8039 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
71d47008 8040 queue_work(ppd->link_wq, &ppd->link_bounce_work);
77241056
MM
8041 }
8042}
8043
8044static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8045{
8046 char buf[96];
8047
8048 dd_dev_info(dd, "LCB Error: %s\n",
17fb4f29 8049 lcb_err_string(buf, sizeof(buf), reg));
77241056
MM
8050}
8051
8052/*
8053 * CCE block DC interrupt. Source is < 8.
8054 */
8055static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8056{
8057 const struct err_reg_info *eri = &dc_errs[source];
8058
8059 if (eri->handler) {
8060 interrupt_clear_down(dd, 0, eri);
8061 } else if (source == 3 /* dc_lbm_int */) {
8062 /*
8063 * This indicates that a parity error has occurred on the
8064 * address/control lines presented to the LBM. The error
8065 * is a single pulse, there is no associated error flag,
8066 * and it is non-maskable. This is because if a parity
8067 * error occurs on the request the request is dropped.
8068 * This should never occur, but it is nice to know if it
8069 * ever does.
8070 */
8071 dd_dev_err(dd, "Parity error in DC LBM block\n");
8072 } else {
8073 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8074 }
8075}
8076
8077/*
8078 * TX block send credit interrupt. Source is < 160.
8079 */
8080static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8081{
8082 sc_group_release_update(dd, source);
8083}
8084
8085/*
8086 * TX block SDMA interrupt. Source is < 48.
8087 *
8088 * SDMA interrupts are grouped by type:
8089 *
8090 * 0 - N-1 = SDma
8091 * N - 2N-1 = SDmaProgress
8092 * 2N - 3N-1 = SDmaIdle
8093 */
8094static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8095{
8096 /* what interrupt */
8097 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
8098 /* which engine */
8099 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8100
8101#ifdef CONFIG_SDMA_VERBOSITY
8102 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8103 slashstrip(__FILE__), __LINE__, __func__);
8104 sdma_dumpstate(&dd->per_sdma[which]);
8105#endif
8106
8107 if (likely(what < 3 && which < dd->num_sdma)) {
8108 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8109 } else {
8110 /* should not happen */
8111 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8112 }
8113}
8114
8115/*
8116 * RX block receive available interrupt. Source is < 160.
8117 */
8118static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8119{
8120 struct hfi1_ctxtdata *rcd;
8121 char *err_detail;
8122
8123 if (likely(source < dd->num_rcv_contexts)) {
d295dbeb 8124 rcd = hfi1_rcd_get_by_index(dd, source);
77241056 8125 if (rcd) {
2280740f
VN
8126 /* Check for non-user contexts, including vnic */
8127 if ((source < dd->first_dyn_alloc_ctxt) ||
8128 (rcd->sc && (rcd->sc->type == SC_KERNEL)))
f4f30031 8129 rcd->do_interrupt(rcd, 0);
77241056
MM
8130 else
8131 handle_user_interrupt(rcd);
d295dbeb
MR
8132
8133 hfi1_rcd_put(rcd);
77241056
MM
8134 return; /* OK */
8135 }
8136 /* received an interrupt, but no rcd */
8137 err_detail = "dataless";
8138 } else {
8139 /* received an interrupt, but are not using that context */
8140 err_detail = "out of range";
8141 }
8142 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
17fb4f29 8143 err_detail, source);
77241056
MM
8144}
8145
8146/*
8147 * RX block receive urgent interrupt. Source is < 160.
8148 */
8149static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8150{
8151 struct hfi1_ctxtdata *rcd;
8152 char *err_detail;
8153
8154 if (likely(source < dd->num_rcv_contexts)) {
d295dbeb 8155 rcd = hfi1_rcd_get_by_index(dd, source);
77241056
MM
8156 if (rcd) {
8157 /* only pay attention to user urgent interrupts */
2280740f
VN
8158 if ((source >= dd->first_dyn_alloc_ctxt) &&
8159 (!rcd->sc || (rcd->sc->type == SC_USER)))
77241056 8160 handle_user_interrupt(rcd);
d295dbeb
MR
8161
8162 hfi1_rcd_put(rcd);
77241056
MM
8163 return; /* OK */
8164 }
8165 /* received an interrupt, but no rcd */
8166 err_detail = "dataless";
8167 } else {
8168 /* received an interrupt, but are not using that context */
8169 err_detail = "out of range";
8170 }
8171 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
17fb4f29 8172 err_detail, source);
77241056
MM
8173}
8174
8175/*
8176 * Reserved range interrupt. Should not be called in normal operation.
8177 */
8178static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8179{
8180 char name[64];
8181
8182 dd_dev_err(dd, "unexpected %s interrupt\n",
17fb4f29 8183 is_reserved_name(name, sizeof(name), source));
77241056
MM
8184}
8185
8186static const struct is_table is_table[] = {
4d114fdd
JJ
8187/*
8188 * start end
8189 * name func interrupt func
8190 */
77241056
MM
8191{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8192 is_misc_err_name, is_misc_err_int },
8193{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8194 is_sdma_eng_err_name, is_sdma_eng_err_int },
8195{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8196 is_sendctxt_err_name, is_sendctxt_err_int },
8197{ IS_SDMA_START, IS_SDMA_END,
8198 is_sdma_eng_name, is_sdma_eng_int },
8199{ IS_VARIOUS_START, IS_VARIOUS_END,
8200 is_various_name, is_various_int },
8201{ IS_DC_START, IS_DC_END,
8202 is_dc_name, is_dc_int },
8203{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8204 is_rcv_avail_name, is_rcv_avail_int },
8205{ IS_RCVURGENT_START, IS_RCVURGENT_END,
8206 is_rcv_urgent_name, is_rcv_urgent_int },
8207{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8208 is_send_credit_name, is_send_credit_int},
8209{ IS_RESERVED_START, IS_RESERVED_END,
8210 is_reserved_name, is_reserved_int},
8211};
8212
8213/*
8214 * Interrupt source interrupt - called when the given source has an interrupt.
8215 * Source is a bit index into an array of 64-bit integers.
8216 */
8217static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8218{
8219 const struct is_table *entry;
8220
8221 /* avoids a double compare by walking the table in-order */
8222 for (entry = &is_table[0]; entry->is_name; entry++) {
8223 if (source < entry->end) {
8224 trace_hfi1_interrupt(dd, entry, source);
8225 entry->is_int(dd, source - entry->start);
8226 return;
8227 }
8228 }
8229 /* fell off the end */
8230 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8231}
8232
8233/*
8234 * General interrupt handler. This is able to correctly handle
8235 * all interrupts in case INTx is used.
8236 */
8237static irqreturn_t general_interrupt(int irq, void *data)
8238{
8239 struct hfi1_devdata *dd = data;
8240 u64 regs[CCE_NUM_INT_CSRS];
8241 u32 bit;
8242 int i;
09592af5 8243 irqreturn_t handled = IRQ_NONE;
77241056
MM
8244
8245 this_cpu_inc(*dd->int_counter);
8246
8247 /* phase 1: scan and clear all handled interrupts */
8248 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8249 if (dd->gi_mask[i] == 0) {
8250 regs[i] = 0; /* used later */
8251 continue;
8252 }
8253 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8254 dd->gi_mask[i];
8255 /* only clear if anything is set */
8256 if (regs[i])
8257 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8258 }
8259
8260 /* phase 2: call the appropriate handler */
8261 for_each_set_bit(bit, (unsigned long *)&regs[0],
17fb4f29 8262 CCE_NUM_INT_CSRS * 64) {
77241056 8263 is_interrupt(dd, bit);
09592af5 8264 handled = IRQ_HANDLED;
77241056
MM
8265 }
8266
09592af5 8267 return handled;
77241056
MM
8268}
8269
8270static irqreturn_t sdma_interrupt(int irq, void *data)
8271{
8272 struct sdma_engine *sde = data;
8273 struct hfi1_devdata *dd = sde->dd;
8274 u64 status;
8275
8276#ifdef CONFIG_SDMA_VERBOSITY
8277 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8278 slashstrip(__FILE__), __LINE__, __func__);
8279 sdma_dumpstate(sde);
8280#endif
8281
8282 this_cpu_inc(*dd->int_counter);
8283
8284 /* This read_csr is really bad in the hot path */
8285 status = read_csr(dd,
17fb4f29
JJ
8286 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8287 & sde->imask;
77241056
MM
8288 if (likely(status)) {
8289 /* clear the interrupt(s) */
8290 write_csr(dd,
17fb4f29
JJ
8291 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8292 status);
77241056
MM
8293
8294 /* handle the interrupt(s) */
8295 sdma_engine_interrupt(sde, status);
ee495ada 8296 } else {
de42de80
GM
8297 dd_dev_err_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8298 sde->this_idx);
ee495ada 8299 }
77241056
MM
8300 return IRQ_HANDLED;
8301}
8302
8303/*
ecd42f8d
DL
8304 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8305 * to insure that the write completed. This does NOT guarantee that
8306 * queued DMA writes to memory from the chip are pushed.
f4f30031
DL
8307 */
8308static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8309{
8310 struct hfi1_devdata *dd = rcd->dd;
8311 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8312
8313 mmiowb(); /* make sure everything before is written */
8314 write_csr(dd, addr, rcd->imask);
8315 /* force the above write on the chip and get a value back */
8316 (void)read_csr(dd, addr);
8317}
8318
8319/* force the receive interrupt */
fb9036dd 8320void force_recv_intr(struct hfi1_ctxtdata *rcd)
f4f30031
DL
8321{
8322 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8323}
8324
ecd42f8d
DL
8325/*
8326 * Return non-zero if a packet is present.
8327 *
8328 * This routine is called when rechecking for packets after the RcvAvail
8329 * interrupt has been cleared down. First, do a quick check of memory for
8330 * a packet present. If not found, use an expensive CSR read of the context
8331 * tail to determine the actual tail. The CSR read is necessary because there
8332 * is no method to push pending DMAs to memory other than an interrupt and we
8333 * are trying to determine if we need to force an interrupt.
8334 */
f4f30031
DL
8335static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8336{
ecd42f8d
DL
8337 u32 tail;
8338 int present;
8339
f4f30031 8340 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
ecd42f8d 8341 present = (rcd->seq_cnt ==
f4f30031 8342 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
ecd42f8d
DL
8343 else /* is RDMA rtail */
8344 present = (rcd->head != get_rcvhdrtail(rcd));
8345
8346 if (present)
8347 return 1;
f4f30031 8348
ecd42f8d
DL
8349 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8350 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8351 return rcd->head != tail;
f4f30031
DL
8352}
8353
8354/*
8355 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8356 * This routine will try to handle packets immediately (latency), but if
8357 * it finds too many, it will invoke the thread handler (bandwitdh). The
16733b88 8358 * chip receive interrupt is *not* cleared down until this or the thread (if
f4f30031
DL
8359 * invoked) is finished. The intent is to avoid extra interrupts while we
8360 * are processing packets anyway.
77241056
MM
8361 */
8362static irqreturn_t receive_context_interrupt(int irq, void *data)
8363{
8364 struct hfi1_ctxtdata *rcd = data;
8365 struct hfi1_devdata *dd = rcd->dd;
f4f30031
DL
8366 int disposition;
8367 int present;
77241056 8368
d295dbeb 8369 trace_hfi1_receive_interrupt(dd, rcd);
77241056 8370 this_cpu_inc(*dd->int_counter);
affa48de 8371 aspm_ctx_disable(rcd);
77241056 8372
f4f30031
DL
8373 /* receive interrupt remains blocked while processing packets */
8374 disposition = rcd->do_interrupt(rcd, 0);
77241056 8375
f4f30031
DL
8376 /*
8377 * Too many packets were seen while processing packets in this
8378 * IRQ handler. Invoke the handler thread. The receive interrupt
8379 * remains blocked.
8380 */
8381 if (disposition == RCV_PKT_LIMIT)
8382 return IRQ_WAKE_THREAD;
8383
8384 /*
8385 * The packet processor detected no more packets. Clear the receive
8386 * interrupt and recheck for a packet packet that may have arrived
8387 * after the previous check and interrupt clear. If a packet arrived,
8388 * force another interrupt.
8389 */
8390 clear_recv_intr(rcd);
8391 present = check_packet_present(rcd);
8392 if (present)
8393 force_recv_intr(rcd);
8394
8395 return IRQ_HANDLED;
8396}
8397
8398/*
8399 * Receive packet thread handler. This expects to be invoked with the
8400 * receive interrupt still blocked.
8401 */
8402static irqreturn_t receive_context_thread(int irq, void *data)
8403{
8404 struct hfi1_ctxtdata *rcd = data;
8405 int present;
8406
8407 /* receive interrupt is still blocked from the IRQ handler */
8408 (void)rcd->do_interrupt(rcd, 1);
8409
8410 /*
8411 * The packet processor will only return if it detected no more
8412 * packets. Hold IRQs here so we can safely clear the interrupt and
8413 * recheck for a packet that may have arrived after the previous
8414 * check and the interrupt clear. If a packet arrived, force another
8415 * interrupt.
8416 */
8417 local_irq_disable();
8418 clear_recv_intr(rcd);
8419 present = check_packet_present(rcd);
8420 if (present)
8421 force_recv_intr(rcd);
8422 local_irq_enable();
77241056
MM
8423
8424 return IRQ_HANDLED;
8425}
8426
8427/* ========================================================================= */
8428
8429u32 read_physical_state(struct hfi1_devdata *dd)
8430{
8431 u64 reg;
8432
8433 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8434 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8435 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8436}
8437
fb9036dd 8438u32 read_logical_state(struct hfi1_devdata *dd)
77241056
MM
8439{
8440 u64 reg;
8441
8442 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8443 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8444 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8445}
8446
8447static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8448{
8449 u64 reg;
8450
8451 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8452 /* clear current state, set new state */
8453 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8454 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8455 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8456}
8457
8458/*
8459 * Use the 8051 to read a LCB CSR.
8460 */
8461static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8462{
8463 u32 regno;
8464 int ret;
8465
8466 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8467 if (acquire_lcb_access(dd, 0) == 0) {
8468 *data = read_csr(dd, addr);
8469 release_lcb_access(dd, 0);
8470 return 0;
8471 }
8472 return -EBUSY;
8473 }
8474
8475 /* register is an index of LCB registers: (offset - base) / 8 */
8476 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8477 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8478 if (ret != HCMD_SUCCESS)
8479 return -EBUSY;
8480 return 0;
8481}
8482
8688426b
MR
8483/*
8484 * Provide a cache for some of the LCB registers in case the LCB is
8485 * unavailable.
8486 * (The LCB is unavailable in certain link states, for example.)
8487 */
8488struct lcb_datum {
8489 u32 off;
8490 u64 val;
8491};
8492
8493static struct lcb_datum lcb_cache[] = {
8494 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8495 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8496 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8497};
8498
8499static void update_lcb_cache(struct hfi1_devdata *dd)
8500{
8501 int i;
8502 int ret;
8503 u64 val;
8504
8505 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8506 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8507
8508 /* Update if we get good data */
8509 if (likely(ret != -EBUSY))
8510 lcb_cache[i].val = val;
8511 }
8512}
8513
8514static int read_lcb_cache(u32 off, u64 *val)
8515{
8516 int i;
8517
8518 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8519 if (lcb_cache[i].off == off) {
8520 *val = lcb_cache[i].val;
8521 return 0;
8522 }
8523 }
8524
8525 pr_warn("%s bad offset 0x%x\n", __func__, off);
8526 return -1;
8527}
8528
77241056
MM
8529/*
8530 * Read an LCB CSR. Access may not be in host control, so check.
8531 * Return 0 on success, -EBUSY on failure.
8532 */
8533int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8534{
8535 struct hfi1_pportdata *ppd = dd->pport;
8536
8537 /* if up, go through the 8051 for the value */
8538 if (ppd->host_link_state & HLS_UP)
8539 return read_lcb_via_8051(dd, addr, data);
8688426b
MR
8540 /* if going up or down, check the cache, otherwise, no access */
8541 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8542 if (read_lcb_cache(addr, data))
8543 return -EBUSY;
8544 return 0;
8545 }
8546
77241056
MM
8547 /* otherwise, host has access */
8548 *data = read_csr(dd, addr);
8549 return 0;
8550}
8551
8552/*
8553 * Use the 8051 to write a LCB CSR.
8554 */
8555static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8556{
3bf40d65
DL
8557 u32 regno;
8558 int ret;
77241056 8559
3bf40d65 8560 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
5e6e9424 8561 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
3bf40d65
DL
8562 if (acquire_lcb_access(dd, 0) == 0) {
8563 write_csr(dd, addr, data);
8564 release_lcb_access(dd, 0);
8565 return 0;
8566 }
8567 return -EBUSY;
77241056 8568 }
3bf40d65
DL
8569
8570 /* register is an index of LCB registers: (offset - base) / 8 */
8571 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8572 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8573 if (ret != HCMD_SUCCESS)
8574 return -EBUSY;
8575 return 0;
77241056
MM
8576}
8577
8578/*
8579 * Write an LCB CSR. Access may not be in host control, so check.
8580 * Return 0 on success, -EBUSY on failure.
8581 */
8582int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8583{
8584 struct hfi1_pportdata *ppd = dd->pport;
8585
8586 /* if up, go through the 8051 for the value */
8587 if (ppd->host_link_state & HLS_UP)
8588 return write_lcb_via_8051(dd, addr, data);
8589 /* if going up or down, no access */
8590 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8591 return -EBUSY;
8592 /* otherwise, host has access */
8593 write_csr(dd, addr, data);
8594 return 0;
8595}
8596
8597/*
8598 * Returns:
8599 * < 0 = Linux error, not able to get access
8600 * > 0 = 8051 command RETURN_CODE
8601 */
8602static int do_8051_command(
8603 struct hfi1_devdata *dd,
8604 u32 type,
8605 u64 in_data,
8606 u64 *out_data)
8607{
8608 u64 reg, completed;
8609 int return_code;
77241056
MM
8610 unsigned long timeout;
8611
8612 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8613
22546b74 8614 mutex_lock(&dd->dc8051_lock);
77241056
MM
8615
8616 /* We can't send any commands to the 8051 if it's in reset */
8617 if (dd->dc_shutdown) {
8618 return_code = -ENODEV;
8619 goto fail;
8620 }
8621
8622 /*
8623 * If an 8051 host command timed out previously, then the 8051 is
8624 * stuck.
8625 *
8626 * On first timeout, attempt to reset and restart the entire DC
8627 * block (including 8051). (Is this too big of a hammer?)
8628 *
8629 * If the 8051 times out a second time, the reset did not bring it
8630 * back to healthy life. In that case, fail any subsequent commands.
8631 */
8632 if (dd->dc8051_timed_out) {
8633 if (dd->dc8051_timed_out > 1) {
8634 dd_dev_err(dd,
8635 "Previous 8051 host command timed out, skipping command %u\n",
8636 type);
8637 return_code = -ENXIO;
8638 goto fail;
8639 }
22546b74
TS
8640 _dc_shutdown(dd);
8641 _dc_start(dd);
77241056
MM
8642 }
8643
8644 /*
8645 * If there is no timeout, then the 8051 command interface is
8646 * waiting for a command.
8647 */
8648
3bf40d65
DL
8649 /*
8650 * When writing a LCB CSR, out_data contains the full value to
8651 * to be written, while in_data contains the relative LCB
8652 * address in 7:0. Do the work here, rather than the caller,
8653 * of distrubting the write data to where it needs to go:
8654 *
8655 * Write data
8656 * 39:00 -> in_data[47:8]
8657 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8658 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8659 */
8660 if (type == HCMD_WRITE_LCB_CSR) {
8661 in_data |= ((*out_data) & 0xffffffffffull) << 8;
00801674
DL
8662 /* must preserve COMPLETED - it is tied to hardware */
8663 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8664 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8665 reg |= ((((*out_data) >> 40) & 0xff) <<
3bf40d65
DL
8666 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8667 | ((((*out_data) >> 48) & 0xffff) <<
8668 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8669 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8670 }
8671
77241056
MM
8672 /*
8673 * Do two writes: the first to stabilize the type and req_data, the
8674 * second to activate.
8675 */
8676 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8677 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8678 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8679 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8680 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8681 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8682 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8683
8684 /* wait for completion, alternate: interrupt */
8685 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8686 while (1) {
8687 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8688 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8689 if (completed)
8690 break;
8691 if (time_after(jiffies, timeout)) {
8692 dd->dc8051_timed_out++;
8693 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8694 if (out_data)
8695 *out_data = 0;
8696 return_code = -ETIMEDOUT;
8697 goto fail;
8698 }
8699 udelay(2);
8700 }
8701
8702 if (out_data) {
8703 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8704 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8705 if (type == HCMD_READ_LCB_CSR) {
8706 /* top 16 bits are in a different register */
8707 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8708 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8709 << (48
8710 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8711 }
8712 }
8713 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8714 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8715 dd->dc8051_timed_out = 0;
8716 /*
8717 * Clear command for next user.
8718 */
8719 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8720
8721fail:
22546b74 8722 mutex_unlock(&dd->dc8051_lock);
77241056
MM
8723 return return_code;
8724}
8725
8726static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8727{
8728 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8729}
8730
8ebd4cf1
EH
8731int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8732 u8 lane_id, u32 config_data)
77241056
MM
8733{
8734 u64 data;
8735 int ret;
8736
8737 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8738 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8739 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8740 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8741 if (ret != HCMD_SUCCESS) {
8742 dd_dev_err(dd,
17fb4f29
JJ
8743 "load 8051 config: field id %d, lane %d, err %d\n",
8744 (int)field_id, (int)lane_id, ret);
77241056
MM
8745 }
8746 return ret;
8747}
8748
8749/*
8750 * Read the 8051 firmware "registers". Use the RAM directly. Always
8751 * set the result, even on error.
8752 * Return 0 on success, -errno on failure
8753 */
8ebd4cf1
EH
8754int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8755 u32 *result)
77241056
MM
8756{
8757 u64 big_data;
8758 u32 addr;
8759 int ret;
8760
8761 /* address start depends on the lane_id */
8762 if (lane_id < 4)
8763 addr = (4 * NUM_GENERAL_FIELDS)
8764 + (lane_id * 4 * NUM_LANE_FIELDS);
8765 else
8766 addr = 0;
8767 addr += field_id * 4;
8768
8769 /* read is in 8-byte chunks, hardware will truncate the address down */
8770 ret = read_8051_data(dd, addr, 8, &big_data);
8771
8772 if (ret == 0) {
8773 /* extract the 4 bytes we want */
8774 if (addr & 0x4)
8775 *result = (u32)(big_data >> 32);
8776 else
8777 *result = (u32)big_data;
8778 } else {
8779 *result = 0;
8780 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
17fb4f29 8781 __func__, lane_id, field_id);
77241056
MM
8782 }
8783
8784 return ret;
8785}
8786
8787static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8788 u8 continuous)
8789{
8790 u32 frame;
8791
8792 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8793 | power_management << POWER_MANAGEMENT_SHIFT;
8794 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8795 GENERAL_CONFIG, frame);
8796}
8797
8798static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8799 u16 vl15buf, u8 crc_sizes)
8800{
8801 u32 frame;
8802
8803 frame = (u32)vau << VAU_SHIFT
8804 | (u32)z << Z_SHIFT
8805 | (u32)vcu << VCU_SHIFT
8806 | (u32)vl15buf << VL15BUF_SHIFT
8807 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8808 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8809 GENERAL_CONFIG, frame);
8810}
8811
8812static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8813 u8 *flag_bits, u16 *link_widths)
8814{
8815 u32 frame;
8816
8817 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
17fb4f29 8818 &frame);
77241056
MM
8819 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8820 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8821 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8822}
8823
8824static int write_vc_local_link_width(struct hfi1_devdata *dd,
8825 u8 misc_bits,
8826 u8 flag_bits,
8827 u16 link_widths)
8828{
8829 u32 frame;
8830
8831 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8832 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8833 | (u32)link_widths << LINK_WIDTH_SHIFT;
8834 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8835 frame);
8836}
8837
8838static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8839 u8 device_rev)
8840{
8841 u32 frame;
8842
8843 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8844 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8845 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8846}
8847
8848static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8849 u8 *device_rev)
8850{
8851 u32 frame;
8852
8853 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8854 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8855 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8856 & REMOTE_DEVICE_REV_MASK;
8857}
8858
913cc671
SS
8859int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8860{
8861 u32 frame;
8862 u32 mask;
8863
8864 mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8865 read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8866 /* Clear, then set field */
8867 frame &= ~mask;
8868 frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8869 return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8870 frame);
8871}
8872
5e6e9424
MR
8873void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8874 u8 *ver_patch)
77241056
MM
8875{
8876 u32 frame;
8877
8878 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
5e6e9424
MR
8879 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8880 STS_FM_VERSION_MAJOR_MASK;
8881 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8882 STS_FM_VERSION_MINOR_MASK;
8883
8884 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8885 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8886 STS_FM_VERSION_PATCH_MASK;
77241056
MM
8887}
8888
8889static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8890 u8 *continuous)
8891{
8892 u32 frame;
8893
8894 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8895 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8896 & POWER_MANAGEMENT_MASK;
8897 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8898 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8899}
8900
8901static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8902 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8903{
8904 u32 frame;
8905
8906 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8907 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8908 *z = (frame >> Z_SHIFT) & Z_MASK;
8909 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8910 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8911 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8912}
8913
8914static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8915 u8 *remote_tx_rate,
8916 u16 *link_widths)
8917{
8918 u32 frame;
8919
8920 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
17fb4f29 8921 &frame);
77241056
MM
8922 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8923 & REMOTE_TX_RATE_MASK;
8924 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8925}
8926
8927static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8928{
8929 u32 frame;
8930
8931 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8932 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8933}
8934
8935static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8936{
8937 u32 frame;
8938
8939 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8940 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8941}
8942
8943static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8944{
8945 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8946}
8947
8948static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8949{
8950 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8951}
8952
8953void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8954{
8955 u32 frame;
8956 int ret;
8957
8958 *link_quality = 0;
8959 if (dd->pport->host_link_state & HLS_UP) {
8960 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
17fb4f29 8961 &frame);
77241056
MM
8962 if (ret == 0)
8963 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8964 & LINK_QUALITY_MASK;
8965 }
8966}
8967
8968static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8969{
8970 u32 frame;
8971
8972 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8973 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8974}
8975
feb831dd
DL
8976static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8977{
8978 u32 frame;
8979
8980 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8981 *ldr = (frame & 0xff);
8982}
8983
77241056
MM
8984static int read_tx_settings(struct hfi1_devdata *dd,
8985 u8 *enable_lane_tx,
8986 u8 *tx_polarity_inversion,
8987 u8 *rx_polarity_inversion,
8988 u8 *max_rate)
8989{
8990 u32 frame;
8991 int ret;
8992
8993 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8994 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8995 & ENABLE_LANE_TX_MASK;
8996 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8997 & TX_POLARITY_INVERSION_MASK;
8998 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8999 & RX_POLARITY_INVERSION_MASK;
9000 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9001 return ret;
9002}
9003
9004static int write_tx_settings(struct hfi1_devdata *dd,
9005 u8 enable_lane_tx,
9006 u8 tx_polarity_inversion,
9007 u8 rx_polarity_inversion,
9008 u8 max_rate)
9009{
9010 u32 frame;
9011
9012 /* no need to mask, all variable sizes match field widths */
9013 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9014 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9015 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9016 | max_rate << MAX_RATE_SHIFT;
9017 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9018}
9019
77241056
MM
9020/*
9021 * Read an idle LCB message.
9022 *
9023 * Returns 0 on success, -EINVAL on error
9024 */
9025static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9026{
9027 int ret;
9028
17fb4f29 9029 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
77241056
MM
9030 if (ret != HCMD_SUCCESS) {
9031 dd_dev_err(dd, "read idle message: type %d, err %d\n",
17fb4f29 9032 (u32)type, ret);
77241056
MM
9033 return -EINVAL;
9034 }
9035 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9036 /* return only the payload as we already know the type */
9037 *data_out >>= IDLE_PAYLOAD_SHIFT;
9038 return 0;
9039}
9040
9041/*
9042 * Read an idle SMA message. To be done in response to a notification from
9043 * the 8051.
9044 *
9045 * Returns 0 on success, -EINVAL on error
9046 */
9047static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9048{
17fb4f29
JJ
9049 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9050 data);
77241056
MM
9051}
9052
9053/*
9054 * Send an idle LCB message.
9055 *
9056 * Returns 0 on success, -EINVAL on error
9057 */
9058static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9059{
9060 int ret;
9061
9062 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9063 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9064 if (ret != HCMD_SUCCESS) {
9065 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
17fb4f29 9066 data, ret);
77241056
MM
9067 return -EINVAL;
9068 }
9069 return 0;
9070}
9071
9072/*
9073 * Send an idle SMA message.
9074 *
9075 * Returns 0 on success, -EINVAL on error
9076 */
9077int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9078{
9079 u64 data;
9080
17fb4f29
JJ
9081 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9082 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
77241056
MM
9083 return send_idle_message(dd, data);
9084}
9085
9086/*
9087 * Initialize the LCB then do a quick link up. This may or may not be
9088 * in loopback.
9089 *
9090 * return 0 on success, -errno on error
9091 */
9092static int do_quick_linkup(struct hfi1_devdata *dd)
9093{
77241056
MM
9094 int ret;
9095
9096 lcb_shutdown(dd, 0);
9097
9098 if (loopback) {
9099 /* LCB_CFG_LOOPBACK.VAL = 2 */
9100 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9101 write_csr(dd, DC_LCB_CFG_LOOPBACK,
17fb4f29 9102 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
77241056
MM
9103 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9104 }
9105
9106 /* start the LCBs */
9107 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9108 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9109
9110 /* simulator only loopback steps */
9111 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9112 /* LCB_CFG_RUN.EN = 1 */
9113 write_csr(dd, DC_LCB_CFG_RUN,
17fb4f29 9114 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
77241056 9115
ec8a1423
DL
9116 ret = wait_link_transfer_active(dd, 10);
9117 if (ret)
9118 return ret;
77241056
MM
9119
9120 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
17fb4f29 9121 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
77241056
MM
9122 }
9123
9124 if (!loopback) {
9125 /*
9126 * When doing quick linkup and not in loopback, both
9127 * sides must be done with LCB set-up before either
9128 * starts the quick linkup. Put a delay here so that
9129 * both sides can be started and have a chance to be
9130 * done with LCB set up before resuming.
9131 */
9132 dd_dev_err(dd,
17fb4f29 9133 "Pausing for peer to be finished with LCB set up\n");
77241056 9134 msleep(5000);
17fb4f29 9135 dd_dev_err(dd, "Continuing with quick linkup\n");
77241056
MM
9136 }
9137
9138 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9139 set_8051_lcb_access(dd);
9140
9141 /*
9142 * State "quick" LinkUp request sets the physical link state to
9143 * LinkUp without a verify capability sequence.
9144 * This state is in simulator v37 and later.
9145 */
9146 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9147 if (ret != HCMD_SUCCESS) {
9148 dd_dev_err(dd,
17fb4f29
JJ
9149 "%s: set physical link state to quick LinkUp failed with return %d\n",
9150 __func__, ret);
77241056
MM
9151
9152 set_host_lcb_access(dd);
9153 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9154
9155 if (ret >= 0)
9156 ret = -EINVAL;
9157 return ret;
9158 }
9159
9160 return 0; /* success */
9161}
9162
9163/*
9164 * Set the SerDes to internal loopback mode.
9165 * Returns 0 on success, -errno on error.
9166 */
9167static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9168{
9169 int ret;
9170
9171 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9172 if (ret == HCMD_SUCCESS)
9173 return 0;
9174 dd_dev_err(dd,
17fb4f29
JJ
9175 "Set physical link state to SerDes Loopback failed with return %d\n",
9176 ret);
77241056
MM
9177 if (ret >= 0)
9178 ret = -EINVAL;
9179 return ret;
9180}
9181
9182/*
9183 * Do all special steps to set up loopback.
9184 */
9185static int init_loopback(struct hfi1_devdata *dd)
9186{
9187 dd_dev_info(dd, "Entering loopback mode\n");
9188
9189 /* all loopbacks should disable self GUID check */
9190 write_csr(dd, DC_DC8051_CFG_MODE,
17fb4f29 9191 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
77241056
MM
9192
9193 /*
9194 * The simulator has only one loopback option - LCB. Switch
9195 * to that option, which includes quick link up.
9196 *
9197 * Accept all valid loopback values.
9198 */
d0d236ea
JJ
9199 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9200 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9201 loopback == LOOPBACK_CABLE)) {
77241056
MM
9202 loopback = LOOPBACK_LCB;
9203 quick_linkup = 1;
9204 return 0;
9205 }
9206
9207 /* handle serdes loopback */
9208 if (loopback == LOOPBACK_SERDES) {
9209 /* internal serdes loopack needs quick linkup on RTL */
9210 if (dd->icode == ICODE_RTL_SILICON)
9211 quick_linkup = 1;
9212 return set_serdes_loopback_mode(dd);
9213 }
9214
9215 /* LCB loopback - handled at poll time */
9216 if (loopback == LOOPBACK_LCB) {
9217 quick_linkup = 1; /* LCB is always quick linkup */
9218
9219 /* not supported in emulation due to emulation RTL changes */
9220 if (dd->icode == ICODE_FPGA_EMULATION) {
9221 dd_dev_err(dd,
17fb4f29 9222 "LCB loopback not supported in emulation\n");
77241056
MM
9223 return -EINVAL;
9224 }
9225 return 0;
9226 }
9227
9228 /* external cable loopback requires no extra steps */
9229 if (loopback == LOOPBACK_CABLE)
9230 return 0;
9231
9232 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9233 return -EINVAL;
9234}
9235
9236/*
9237 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9238 * used in the Verify Capability link width attribute.
9239 */
9240static u16 opa_to_vc_link_widths(u16 opa_widths)
9241{
9242 int i;
9243 u16 result = 0;
9244
9245 static const struct link_bits {
9246 u16 from;
9247 u16 to;
9248 } opa_link_xlate[] = {
8638b77f
JJ
9249 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9250 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9251 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9252 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
77241056
MM
9253 };
9254
9255 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9256 if (opa_widths & opa_link_xlate[i].from)
9257 result |= opa_link_xlate[i].to;
9258 }
9259 return result;
9260}
9261
9262/*
9263 * Set link attributes before moving to polling.
9264 */
9265static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9266{
9267 struct hfi1_devdata *dd = ppd->dd;
9268 u8 enable_lane_tx;
9269 u8 tx_polarity_inversion;
9270 u8 rx_polarity_inversion;
9271 int ret;
9272
9273 /* reset our fabric serdes to clear any lingering problems */
9274 fabric_serdes_reset(dd);
9275
9276 /* set the local tx rate - need to read-modify-write */
9277 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
17fb4f29 9278 &rx_polarity_inversion, &ppd->local_tx_rate);
77241056
MM
9279 if (ret)
9280 goto set_local_link_attributes_fail;
9281
5e6e9424 9282 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
77241056
MM
9283 /* set the tx rate to the fastest enabled */
9284 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9285 ppd->local_tx_rate = 1;
9286 else
9287 ppd->local_tx_rate = 0;
9288 } else {
9289 /* set the tx rate to all enabled */
9290 ppd->local_tx_rate = 0;
9291 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9292 ppd->local_tx_rate |= 2;
9293 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9294 ppd->local_tx_rate |= 1;
9295 }
febffe2c
EH
9296
9297 enable_lane_tx = 0xF; /* enable all four lanes */
77241056 9298 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
17fb4f29 9299 rx_polarity_inversion, ppd->local_tx_rate);
77241056
MM
9300 if (ret != HCMD_SUCCESS)
9301 goto set_local_link_attributes_fail;
9302
9303 /*
9304 * DC supports continuous updates.
9305 */
17fb4f29
JJ
9306 ret = write_vc_local_phy(dd,
9307 0 /* no power management */,
9308 1 /* continuous updates */);
77241056
MM
9309 if (ret != HCMD_SUCCESS)
9310 goto set_local_link_attributes_fail;
9311
9312 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9313 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9314 ppd->port_crc_mode_enabled);
9315 if (ret != HCMD_SUCCESS)
9316 goto set_local_link_attributes_fail;
9317
9318 ret = write_vc_local_link_width(dd, 0, 0,
17fb4f29
JJ
9319 opa_to_vc_link_widths(
9320 ppd->link_width_enabled));
77241056
MM
9321 if (ret != HCMD_SUCCESS)
9322 goto set_local_link_attributes_fail;
9323
9324 /* let peer know who we are */
9325 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9326 if (ret == HCMD_SUCCESS)
9327 return 0;
9328
9329set_local_link_attributes_fail:
9330 dd_dev_err(dd,
17fb4f29
JJ
9331 "Failed to set local link attributes, return 0x%x\n",
9332 ret);
77241056
MM
9333 return ret;
9334}
9335
9336/*
623bba2d
EH
9337 * Call this to start the link.
9338 * Do not do anything if the link is disabled.
9339 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
77241056
MM
9340 */
9341int start_link(struct hfi1_pportdata *ppd)
9342{
0db9dec2
DL
9343 /*
9344 * Tune the SerDes to a ballpark setting for optimal signal and bit
9345 * error rate. Needs to be done before starting the link.
9346 */
9347 tune_serdes(ppd);
9348
77241056
MM
9349 if (!ppd->driver_link_ready) {
9350 dd_dev_info(ppd->dd,
17fb4f29
JJ
9351 "%s: stopping link start because driver is not ready\n",
9352 __func__);
77241056
MM
9353 return 0;
9354 }
9355
3ec5fa28
SS
9356 /*
9357 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9358 * pkey table can be configured properly if the HFI unit is connected
9359 * to switch port with MgmtAllowed=NO
9360 */
9361 clear_full_mgmt_pkey(ppd);
9362
623bba2d 9363 return set_link_state(ppd, HLS_DN_POLL);
77241056
MM
9364}
9365
8ebd4cf1
EH
9366static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9367{
9368 struct hfi1_devdata *dd = ppd->dd;
9369 u64 mask;
9370 unsigned long timeout;
9371
9372 /*
5fbd98dd
EH
9373 * Some QSFP cables have a quirk that asserts the IntN line as a side
9374 * effect of power up on plug-in. We ignore this false positive
9375 * interrupt until the module has finished powering up by waiting for
9376 * a minimum timeout of the module inrush initialization time of
9377 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9378 * module have stabilized.
9379 */
9380 msleep(500);
9381
9382 /*
9383 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
8ebd4cf1
EH
9384 */
9385 timeout = jiffies + msecs_to_jiffies(2000);
9386 while (1) {
9387 mask = read_csr(dd, dd->hfi1_id ?
9388 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
5fbd98dd 9389 if (!(mask & QSFP_HFI0_INT_N))
8ebd4cf1 9390 break;
8ebd4cf1
EH
9391 if (time_after(jiffies, timeout)) {
9392 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9393 __func__);
9394 break;
9395 }
9396 udelay(2);
9397 }
9398}
9399
9400static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9401{
9402 struct hfi1_devdata *dd = ppd->dd;
9403 u64 mask;
9404
9405 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
5fbd98dd
EH
9406 if (enable) {
9407 /*
9408 * Clear the status register to avoid an immediate interrupt
9409 * when we re-enable the IntN pin
9410 */
9411 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9412 QSFP_HFI0_INT_N);
8ebd4cf1 9413 mask |= (u64)QSFP_HFI0_INT_N;
5fbd98dd 9414 } else {
8ebd4cf1 9415 mask &= ~(u64)QSFP_HFI0_INT_N;
5fbd98dd 9416 }
8ebd4cf1
EH
9417 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9418}
9419
30e10527 9420int reset_qsfp(struct hfi1_pportdata *ppd)
77241056
MM
9421{
9422 struct hfi1_devdata *dd = ppd->dd;
9423 u64 mask, qsfp_mask;
9424
8ebd4cf1
EH
9425 /* Disable INT_N from triggering QSFP interrupts */
9426 set_qsfp_int_n(ppd, 0);
9427
9428 /* Reset the QSFP */
77241056 9429 mask = (u64)QSFP_HFI0_RESET_N;
77241056
MM
9430
9431 qsfp_mask = read_csr(dd,
17fb4f29 9432 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
77241056
MM
9433 qsfp_mask &= ~mask;
9434 write_csr(dd,
17fb4f29 9435 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
77241056
MM
9436
9437 udelay(10);
9438
9439 qsfp_mask |= mask;
9440 write_csr(dd,
17fb4f29 9441 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
8ebd4cf1
EH
9442
9443 wait_for_qsfp_init(ppd);
9444
9445 /*
9446 * Allow INT_N to trigger the QSFP interrupt to watch
9447 * for alarms and warnings
9448 */
9449 set_qsfp_int_n(ppd, 1);
30e10527
SS
9450
9451 /*
9452 * After the reset, AOC transmitters are enabled by default. They need
9453 * to be turned off to complete the QSFP setup before they can be
9454 * enabled again.
9455 */
9456 return set_qsfp_tx(ppd, 0);
77241056
MM
9457}
9458
9459static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9460 u8 *qsfp_interrupt_status)
9461{
9462 struct hfi1_devdata *dd = ppd->dd;
9463
9464 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
17fb4f29 9465 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
702265fc
JS
9466 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9467 __func__);
77241056
MM
9468
9469 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
17fb4f29 9470 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
702265fc
JS
9471 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9472 __func__);
77241056 9473
0c7f77af
EH
9474 /*
9475 * The remaining alarms/warnings don't matter if the link is down.
9476 */
9477 if (ppd->host_link_state & HLS_DOWN)
9478 return 0;
9479
77241056 9480 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
17fb4f29 9481 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
702265fc
JS
9482 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9483 __func__);
77241056
MM
9484
9485 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
17fb4f29 9486 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
702265fc
JS
9487 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9488 __func__);
77241056
MM
9489
9490 /* Byte 2 is vendor specific */
9491
9492 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29 9493 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
702265fc
JS
9494 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9495 __func__);
77241056
MM
9496
9497 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
17fb4f29 9498 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
702265fc
JS
9499 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9500 __func__);
77241056
MM
9501
9502 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29 9503 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
702265fc
JS
9504 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9505 __func__);
77241056
MM
9506
9507 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
17fb4f29 9508 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
702265fc
JS
9509 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9510 __func__);
77241056
MM
9511
9512 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
17fb4f29 9513 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
702265fc
JS
9514 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9515 __func__);
77241056
MM
9516
9517 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
17fb4f29 9518 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
702265fc
JS
9519 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9520 __func__);
77241056
MM
9521
9522 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
17fb4f29 9523 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
702265fc
JS
9524 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9525 __func__);
77241056
MM
9526
9527 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
17fb4f29 9528 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
702265fc
JS
9529 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9530 __func__);
77241056
MM
9531
9532 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29 9533 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
702265fc
JS
9534 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9535 __func__);
77241056
MM
9536
9537 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
17fb4f29 9538 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
702265fc
JS
9539 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9540 __func__);
77241056
MM
9541
9542 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
17fb4f29 9543 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
702265fc
JS
9544 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9545 __func__);
77241056
MM
9546
9547 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
17fb4f29 9548 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
702265fc
JS
9549 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9550 __func__);
77241056
MM
9551
9552 /* Bytes 9-10 and 11-12 are reserved */
9553 /* Bytes 13-15 are vendor specific */
9554
9555 return 0;
9556}
9557
623bba2d 9558/* This routine will only be scheduled if the QSFP module present is asserted */
8ebd4cf1 9559void qsfp_event(struct work_struct *work)
77241056
MM
9560{
9561 struct qsfp_data *qd;
9562 struct hfi1_pportdata *ppd;
9563 struct hfi1_devdata *dd;
9564
9565 qd = container_of(work, struct qsfp_data, qsfp_work);
9566 ppd = qd->ppd;
9567 dd = ppd->dd;
9568
9569 /* Sanity check */
9570 if (!qsfp_mod_present(ppd))
9571 return;
9572
96603ed8
JS
9573 if (ppd->host_link_state == HLS_DN_DISABLE) {
9574 dd_dev_info(ppd->dd,
9575 "%s: stopping link start because link is disabled\n",
9576 __func__);
9577 return;
9578 }
9579
77241056 9580 /*
0c7f77af
EH
9581 * Turn DC back on after cable has been re-inserted. Up until
9582 * now, the DC has been in reset to save power.
77241056
MM
9583 */
9584 dc_start(dd);
9585
9586 if (qd->cache_refresh_required) {
8ebd4cf1 9587 set_qsfp_int_n(ppd, 0);
77241056 9588
8ebd4cf1
EH
9589 wait_for_qsfp_init(ppd);
9590
9591 /*
9592 * Allow INT_N to trigger the QSFP interrupt to watch
9593 * for alarms and warnings
77241056 9594 */
8ebd4cf1
EH
9595 set_qsfp_int_n(ppd, 1);
9596
8ebd4cf1 9597 start_link(ppd);
77241056
MM
9598 }
9599
9600 if (qd->check_interrupt_flags) {
9601 u8 qsfp_interrupt_status[16] = {0,};
9602
765a6fac
DL
9603 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9604 &qsfp_interrupt_status[0], 16) != 16) {
77241056 9605 dd_dev_info(dd,
17fb4f29
JJ
9606 "%s: Failed to read status of QSFP module\n",
9607 __func__);
77241056
MM
9608 } else {
9609 unsigned long flags;
77241056 9610
8ebd4cf1
EH
9611 handle_qsfp_error_conditions(
9612 ppd, qsfp_interrupt_status);
77241056
MM
9613 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9614 ppd->qsfp_info.check_interrupt_flags = 0;
9615 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
17fb4f29 9616 flags);
77241056
MM
9617 }
9618 }
9619}
9620
8ebd4cf1 9621static void init_qsfp_int(struct hfi1_devdata *dd)
77241056 9622{
8ebd4cf1
EH
9623 struct hfi1_pportdata *ppd = dd->pport;
9624 u64 qsfp_mask, cce_int_mask;
9625 const int qsfp1_int_smask = QSFP1_INT % 64;
9626 const int qsfp2_int_smask = QSFP2_INT % 64;
77241056 9627
8ebd4cf1
EH
9628 /*
9629 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9630 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9631 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9632 * the index of the appropriate CSR in the CCEIntMask CSR array
9633 */
9634 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9635 (8 * (QSFP1_INT / 64)));
9636 if (dd->hfi1_id) {
9637 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9638 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9639 cce_int_mask);
9640 } else {
9641 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9642 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9643 cce_int_mask);
77241056
MM
9644 }
9645
77241056
MM
9646 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9647 /* Clear current status to avoid spurious interrupts */
8ebd4cf1
EH
9648 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9649 qsfp_mask);
9650 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9651 qsfp_mask);
9652
9653 set_qsfp_int_n(ppd, 0);
77241056
MM
9654
9655 /* Handle active low nature of INT_N and MODPRST_N pins */
9656 if (qsfp_mod_present(ppd))
9657 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9658 write_csr(dd,
9659 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9660 qsfp_mask);
77241056
MM
9661}
9662
bbdeb33d
DL
9663/*
9664 * Do a one-time initialize of the LCB block.
9665 */
9666static void init_lcb(struct hfi1_devdata *dd)
9667{
a59329d5
DL
9668 /* simulator does not correctly handle LCB cclk loopback, skip */
9669 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9670 return;
9671
bbdeb33d
DL
9672 /* the DC has been reset earlier in the driver load */
9673
9674 /* set LCB for cclk loopback on the port */
9675 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9676 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9677 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9678 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9679 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9680 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9681 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9682}
9683
673b975f
DL
9684/*
9685 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9686 * on error.
9687 */
9688static int test_qsfp_read(struct hfi1_pportdata *ppd)
9689{
9690 int ret;
9691 u8 status;
9692
fb897ad3
EH
9693 /*
9694 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9695 * not present
9696 */
9697 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
673b975f
DL
9698 return 0;
9699
9700 /* read byte 2, the status byte */
9701 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9702 if (ret < 0)
9703 return ret;
9704 if (ret != 1)
9705 return -EIO;
9706
9707 return 0; /* success */
9708}
9709
9710/*
9711 * Values for QSFP retry.
9712 *
9713 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9714 * arrived at from experience on a large cluster.
9715 */
9716#define MAX_QSFP_RETRIES 20
9717#define QSFP_RETRY_WAIT 500 /* msec */
9718
9719/*
9720 * Try a QSFP read. If it fails, schedule a retry for later.
9721 * Called on first link activation after driver load.
9722 */
9723static void try_start_link(struct hfi1_pportdata *ppd)
9724{
9725 if (test_qsfp_read(ppd)) {
9726 /* read failed */
9727 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9728 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9729 return;
9730 }
9731 dd_dev_info(ppd->dd,
9732 "QSFP not responding, waiting and retrying %d\n",
9733 (int)ppd->qsfp_retry_count);
9734 ppd->qsfp_retry_count++;
71d47008 9735 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
673b975f
DL
9736 msecs_to_jiffies(QSFP_RETRY_WAIT));
9737 return;
9738 }
9739 ppd->qsfp_retry_count = 0;
9740
673b975f
DL
9741 start_link(ppd);
9742}
9743
9744/*
9745 * Workqueue function to start the link after a delay.
9746 */
9747void handle_start_link(struct work_struct *work)
9748{
9749 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9750 start_link_work.work);
9751 try_start_link(ppd);
9752}
9753
77241056
MM
9754int bringup_serdes(struct hfi1_pportdata *ppd)
9755{
9756 struct hfi1_devdata *dd = ppd->dd;
9757 u64 guid;
9758 int ret;
9759
9760 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9761 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9762
a6cd5f08 9763 guid = ppd->guids[HFI1_PORT_GUID_INDEX];
77241056
MM
9764 if (!guid) {
9765 if (dd->base_guid)
9766 guid = dd->base_guid + ppd->port - 1;
a6cd5f08 9767 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
77241056
MM
9768 }
9769
77241056
MM
9770 /* Set linkinit_reason on power up per OPA spec */
9771 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9772
bbdeb33d
DL
9773 /* one-time init of the LCB */
9774 init_lcb(dd);
9775
77241056
MM
9776 if (loopback) {
9777 ret = init_loopback(dd);
9778 if (ret < 0)
9779 return ret;
9780 }
9781
9775a991
EH
9782 get_port_type(ppd);
9783 if (ppd->port_type == PORT_TYPE_QSFP) {
9784 set_qsfp_int_n(ppd, 0);
9785 wait_for_qsfp_init(ppd);
9786 set_qsfp_int_n(ppd, 1);
9787 }
9788
673b975f
DL
9789 try_start_link(ppd);
9790 return 0;
77241056
MM
9791}
9792
9793void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9794{
9795 struct hfi1_devdata *dd = ppd->dd;
9796
9797 /*
9798 * Shut down the link and keep it down. First turn off that the
9799 * driver wants to allow the link to be up (driver_link_ready).
9800 * Then make sure the link is not automatically restarted
9801 * (link_enabled). Cancel any pending restart. And finally
9802 * go offline.
9803 */
9804 ppd->driver_link_ready = 0;
9805 ppd->link_enabled = 0;
9806
673b975f
DL
9807 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9808 flush_delayed_work(&ppd->start_link_work);
9809 cancel_delayed_work_sync(&ppd->start_link_work);
9810
8ebd4cf1
EH
9811 ppd->offline_disabled_reason =
9812 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
77241056 9813 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
17fb4f29 9814 OPA_LINKDOWN_REASON_SMA_DISABLED);
77241056
MM
9815 set_link_state(ppd, HLS_DN_OFFLINE);
9816
9817 /* disable the port */
9818 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9819}
9820
9821static inline int init_cpu_counters(struct hfi1_devdata *dd)
9822{
9823 struct hfi1_pportdata *ppd;
9824 int i;
9825
9826 ppd = (struct hfi1_pportdata *)(dd + 1);
9827 for (i = 0; i < dd->num_pports; i++, ppd++) {
4eb06882
DD
9828 ppd->ibport_data.rvp.rc_acks = NULL;
9829 ppd->ibport_data.rvp.rc_qacks = NULL;
9830 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9831 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9832 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9833 if (!ppd->ibport_data.rvp.rc_acks ||
9834 !ppd->ibport_data.rvp.rc_delayed_comp ||
9835 !ppd->ibport_data.rvp.rc_qacks)
77241056
MM
9836 return -ENOMEM;
9837 }
9838
9839 return 0;
9840}
9841
77241056
MM
9842/*
9843 * index is the index into the receive array
9844 */
9845void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9846 u32 type, unsigned long pa, u16 order)
9847{
9848 u64 reg;
77241056
MM
9849
9850 if (!(dd->flags & HFI1_PRESENT))
9851 goto done;
9852
cb51c5d2 9853 if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
77241056 9854 pa = 0;
cb51c5d2 9855 order = 0;
77241056
MM
9856 } else if (type > PT_INVALID) {
9857 dd_dev_err(dd,
17fb4f29
JJ
9858 "unexpected receive array type %u for index %u, not handled\n",
9859 type, index);
77241056
MM
9860 goto done;
9861 }
8cb1021b 9862 trace_hfi1_put_tid(dd, index, type, pa, order);
77241056
MM
9863
9864#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9865 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9866 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9867 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9868 << RCV_ARRAY_RT_ADDR_SHIFT;
cb51c5d2
MM
9869 trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9870 writeq(reg, dd->rcvarray_wc + (index * 8));
77241056 9871
cb51c5d2 9872 if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
77241056 9873 /*
cb51c5d2
MM
9874 * Eager entries are written and flushed
9875 *
9876 * Expected entries are flushed every 4 writes
77241056
MM
9877 */
9878 flush_wc();
9879done:
9880 return;
9881}
9882
9883void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9884{
9885 struct hfi1_devdata *dd = rcd->dd;
9886 u32 i;
9887
9888 /* this could be optimized */
9889 for (i = rcd->eager_base; i < rcd->eager_base +
9890 rcd->egrbufs.alloced; i++)
9891 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9892
9893 for (i = rcd->expected_base;
9894 i < rcd->expected_base + rcd->expected_count; i++)
9895 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9896}
9897
77241056
MM
9898static const char * const ib_cfg_name_strings[] = {
9899 "HFI1_IB_CFG_LIDLMC",
9900 "HFI1_IB_CFG_LWID_DG_ENB",
9901 "HFI1_IB_CFG_LWID_ENB",
9902 "HFI1_IB_CFG_LWID",
9903 "HFI1_IB_CFG_SPD_ENB",
9904 "HFI1_IB_CFG_SPD",
9905 "HFI1_IB_CFG_RXPOL_ENB",
9906 "HFI1_IB_CFG_LREV_ENB",
9907 "HFI1_IB_CFG_LINKLATENCY",
9908 "HFI1_IB_CFG_HRTBT",
9909 "HFI1_IB_CFG_OP_VLS",
9910 "HFI1_IB_CFG_VL_HIGH_CAP",
9911 "HFI1_IB_CFG_VL_LOW_CAP",
9912 "HFI1_IB_CFG_OVERRUN_THRESH",
9913 "HFI1_IB_CFG_PHYERR_THRESH",
9914 "HFI1_IB_CFG_LINKDEFAULT",
9915 "HFI1_IB_CFG_PKEYS",
9916 "HFI1_IB_CFG_MTU",
9917 "HFI1_IB_CFG_LSTATE",
9918 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9919 "HFI1_IB_CFG_PMA_TICKS",
9920 "HFI1_IB_CFG_PORT"
9921};
9922
9923static const char *ib_cfg_name(int which)
9924{
9925 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9926 return "invalid";
9927 return ib_cfg_name_strings[which];
9928}
9929
9930int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9931{
9932 struct hfi1_devdata *dd = ppd->dd;
9933 int val = 0;
9934
9935 switch (which) {
9936 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9937 val = ppd->link_width_enabled;
9938 break;
9939 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9940 val = ppd->link_width_active;
9941 break;
9942 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9943 val = ppd->link_speed_enabled;
9944 break;
9945 case HFI1_IB_CFG_SPD: /* current Link speed */
9946 val = ppd->link_speed_active;
9947 break;
9948
9949 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9950 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9951 case HFI1_IB_CFG_LINKLATENCY:
9952 goto unimplemented;
9953
9954 case HFI1_IB_CFG_OP_VLS:
9955 val = ppd->vls_operational;
9956 break;
9957 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9958 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9959 break;
9960 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9961 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9962 break;
9963 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9964 val = ppd->overrun_threshold;
9965 break;
9966 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9967 val = ppd->phy_error_threshold;
9968 break;
9969 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9970 val = dd->link_default;
9971 break;
9972
9973 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9974 case HFI1_IB_CFG_PMA_TICKS:
9975 default:
9976unimplemented:
9977 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9978 dd_dev_info(
9979 dd,
9980 "%s: which %s: not implemented\n",
9981 __func__,
9982 ib_cfg_name(which));
9983 break;
9984 }
9985
9986 return val;
9987}
9988
9989/*
9990 * The largest MAD packet size.
9991 */
9992#define MAX_MAD_PACKET 2048
9993
9994/*
9995 * Return the maximum header bytes that can go on the _wire_
9996 * for this device. This count includes the ICRC which is
9997 * not part of the packet held in memory but it is appended
9998 * by the HW.
9999 * This is dependent on the device's receive header entry size.
10000 * HFI allows this to be set per-receive context, but the
10001 * driver presently enforces a global value.
10002 */
10003u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10004{
10005 /*
10006 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10007 * the Receive Header Entry Size minus the PBC (or RHF) size
10008 * plus one DW for the ICRC appended by HW.
10009 *
10010 * dd->rcd[0].rcvhdrqentsize is in DW.
10011 * We use rcd[0] as all context will have the same value. Also,
10012 * the first kernel context would have been allocated by now so
10013 * we are guaranteed a valid value.
10014 */
10015 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10016}
10017
10018/*
10019 * Set Send Length
10020 * @ppd - per port data
10021 *
10022 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
10023 * registers compare against LRH.PktLen, so use the max bytes included
10024 * in the LRH.
10025 *
10026 * This routine changes all VL values except VL15, which it maintains at
10027 * the same value.
10028 */
10029static void set_send_length(struct hfi1_pportdata *ppd)
10030{
10031 struct hfi1_devdata *dd = ppd->dd;
6cc6ad2e
HC
10032 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10033 u32 maxvlmtu = dd->vld[15].mtu;
77241056
MM
10034 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10035 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10036 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
b4ba6633 10037 int i, j;
44306f15 10038 u32 thres;
77241056
MM
10039
10040 for (i = 0; i < ppd->vls_supported; i++) {
10041 if (dd->vld[i].mtu > maxvlmtu)
10042 maxvlmtu = dd->vld[i].mtu;
10043 if (i <= 3)
10044 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10045 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10046 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10047 else
10048 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10049 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10050 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10051 }
10052 write_csr(dd, SEND_LEN_CHECK0, len1);
10053 write_csr(dd, SEND_LEN_CHECK1, len2);
10054 /* adjust kernel credit return thresholds based on new MTUs */
10055 /* all kernel receive contexts have the same hdrqentsize */
10056 for (i = 0; i < ppd->vls_supported; i++) {
44306f15
JX
10057 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10058 sc_mtu_to_threshold(dd->vld[i].sc,
10059 dd->vld[i].mtu,
17fb4f29 10060 dd->rcd[0]->rcvhdrqentsize));
b4ba6633
JJ
10061 for (j = 0; j < INIT_SC_PER_VL; j++)
10062 sc_set_cr_threshold(
10063 pio_select_send_context_vl(dd, j, i),
10064 thres);
44306f15
JX
10065 }
10066 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10067 sc_mtu_to_threshold(dd->vld[15].sc,
10068 dd->vld[15].mtu,
10069 dd->rcd[0]->rcvhdrqentsize));
10070 sc_set_cr_threshold(dd->vld[15].sc, thres);
77241056
MM
10071
10072 /* Adjust maximum MTU for the port in DC */
10073 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10074 (ilog2(maxvlmtu >> 8) + 1);
10075 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10076 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10077 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10078 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10079 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10080}
10081
10082static void set_lidlmc(struct hfi1_pportdata *ppd)
10083{
10084 int i;
10085 u64 sreg = 0;
10086 struct hfi1_devdata *dd = ppd->dd;
10087 u32 mask = ~((1U << ppd->lmc) - 1);
10088 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
51e658f5 10089 u32 lid;
77241056 10090
51e658f5
DC
10091 /*
10092 * Program 0 in CSR if port lid is extended. This prevents
10093 * 9B packets being sent out for large lids.
10094 */
10095 lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
77241056
MM
10096 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10097 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
51e658f5 10098 c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
8638b77f 10099 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
77241056
MM
10100 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10101 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10102 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10103
10104 /*
10105 * Iterate over all the send contexts and set their SLID check
10106 */
10107 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10108 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
51e658f5 10109 (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
77241056
MM
10110 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10111
10112 for (i = 0; i < dd->chip_send_contexts; i++) {
10113 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10114 i, (u32)sreg);
10115 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10116 }
10117
10118 /* Now we have to do the same thing for the sdma engines */
51e658f5 10119 sdma_update_lmc(dd, mask, lid);
77241056
MM
10120}
10121
6854c692
DL
10122static const char *state_completed_string(u32 completed)
10123{
10124 static const char * const state_completed[] = {
10125 "EstablishComm",
10126 "OptimizeEQ",
10127 "VerifyCap"
10128 };
10129
10130 if (completed < ARRAY_SIZE(state_completed))
10131 return state_completed[completed];
10132
10133 return "unknown";
10134}
10135
10136static const char all_lanes_dead_timeout_expired[] =
10137 "All lanes were inactive – was the interconnect media removed?";
10138static const char tx_out_of_policy[] =
10139 "Passing lanes on local port do not meet the local link width policy";
10140static const char no_state_complete[] =
10141 "State timeout occurred before link partner completed the state";
10142static const char * const state_complete_reasons[] = {
10143 [0x00] = "Reason unknown",
10144 [0x01] = "Link was halted by driver, refer to LinkDownReason",
10145 [0x02] = "Link partner reported failure",
10146 [0x10] = "Unable to achieve frame sync on any lane",
10147 [0x11] =
10148 "Unable to find a common bit rate with the link partner",
10149 [0x12] =
10150 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10151 [0x13] =
10152 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10153 [0x14] = no_state_complete,
10154 [0x15] =
10155 "State timeout occurred before link partner identified equalization presets",
10156 [0x16] =
10157 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10158 [0x17] = tx_out_of_policy,
10159 [0x20] = all_lanes_dead_timeout_expired,
10160 [0x21] =
10161 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10162 [0x22] = no_state_complete,
10163 [0x23] =
10164 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10165 [0x24] = tx_out_of_policy,
10166 [0x30] = all_lanes_dead_timeout_expired,
10167 [0x31] =
10168 "State timeout occurred waiting for host to process received frames",
10169 [0x32] = no_state_complete,
10170 [0x33] =
10171 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10172 [0x34] = tx_out_of_policy,
10173};
10174
10175static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10176 u32 code)
10177{
10178 const char *str = NULL;
10179
10180 if (code < ARRAY_SIZE(state_complete_reasons))
10181 str = state_complete_reasons[code];
10182
10183 if (str)
10184 return str;
10185 return "Reserved";
10186}
10187
10188/* describe the given last state complete frame */
10189static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10190 const char *prefix)
10191{
10192 struct hfi1_devdata *dd = ppd->dd;
10193 u32 success;
10194 u32 state;
10195 u32 reason;
10196 u32 lanes;
10197
10198 /*
10199 * Decode frame:
10200 * [ 0: 0] - success
10201 * [ 3: 1] - state
10202 * [ 7: 4] - next state timeout
10203 * [15: 8] - reason code
10204 * [31:16] - lanes
10205 */
10206 success = frame & 0x1;
10207 state = (frame >> 1) & 0x7;
10208 reason = (frame >> 8) & 0xff;
10209 lanes = (frame >> 16) & 0xffff;
10210
10211 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10212 prefix, frame);
10213 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10214 state_completed_string(state), state);
10215 dd_dev_err(dd, " state successfully completed: %s\n",
10216 success ? "yes" : "no");
10217 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10218 reason, state_complete_reason_code_string(ppd, reason));
10219 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10220}
10221
10222/*
10223 * Read the last state complete frames and explain them. This routine
10224 * expects to be called if the link went down during link negotiation
10225 * and initialization (LNI). That is, anywhere between polling and link up.
10226 */
10227static void check_lni_states(struct hfi1_pportdata *ppd)
10228{
10229 u32 last_local_state;
10230 u32 last_remote_state;
10231
10232 read_last_local_state(ppd->dd, &last_local_state);
10233 read_last_remote_state(ppd->dd, &last_remote_state);
10234
10235 /*
10236 * Don't report anything if there is nothing to report. A value of
10237 * 0 means the link was taken down while polling and there was no
10238 * training in-process.
10239 */
10240 if (last_local_state == 0 && last_remote_state == 0)
10241 return;
10242
10243 decode_state_complete(ppd, last_local_state, "transmitted");
10244 decode_state_complete(ppd, last_remote_state, "received");
10245}
10246
ec8a1423
DL
10247/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10248static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10249{
10250 u64 reg;
10251 unsigned long timeout;
10252
10253 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10254 timeout = jiffies + msecs_to_jiffies(wait_ms);
10255 while (1) {
10256 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10257 if (reg)
10258 break;
10259 if (time_after(jiffies, timeout)) {
10260 dd_dev_err(dd,
10261 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10262 return -ETIMEDOUT;
10263 }
10264 udelay(2);
10265 }
10266 return 0;
10267}
10268
10269/* called when the logical link state is not down as it should be */
10270static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10271{
10272 struct hfi1_devdata *dd = ppd->dd;
10273
10274 /*
10275 * Bring link up in LCB loopback
10276 */
10277 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10278 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10279 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10280
10281 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10282 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10283 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10284 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10285
10286 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10287 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10288 udelay(3);
10289 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10290 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10291
10292 wait_link_transfer_active(dd, 100);
10293
10294 /*
10295 * Bring the link down again.
10296 */
10297 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10298 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10299 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10300
02a222c7
BJ
10301 /* adjust ppd->statusp, if needed */
10302 update_statusp(ppd, IB_PORT_DOWN);
10303
10304 dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
ec8a1423
DL
10305}
10306
77241056
MM
10307/*
10308 * Helper for set_link_state(). Do not call except from that routine.
10309 * Expects ppd->hls_mutex to be held.
10310 *
10311 * @rem_reason value to be sent to the neighbor
10312 *
10313 * LinkDownReasons only set if transition succeeds.
10314 */
10315static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10316{
10317 struct hfi1_devdata *dd = ppd->dd;
913cc671 10318 u32 previous_state;
df5efdd9 10319 int offline_state_ret;
77241056 10320 int ret;
77241056 10321
8688426b
MR
10322 update_lcb_cache(dd);
10323
77241056
MM
10324 previous_state = ppd->host_link_state;
10325 ppd->host_link_state = HLS_GOING_OFFLINE;
77241056 10326
913cc671
SS
10327 /* start offline transition */
10328 ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
77241056 10329
913cc671
SS
10330 if (ret != HCMD_SUCCESS) {
10331 dd_dev_err(dd,
10332 "Failed to transition to Offline link state, return %d\n",
10333 ret);
10334 return -EINVAL;
77241056 10335 }
913cc671
SS
10336 if (ppd->offline_disabled_reason ==
10337 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10338 ppd->offline_disabled_reason =
10339 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
77241056 10340
df5efdd9
SS
10341 offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10342 if (offline_state_ret < 0)
10343 return offline_state_ret;
77241056 10344
df5efdd9 10345 /* Disabling AOC transmitters */
8ebd4cf1
EH
10346 if (ppd->port_type == PORT_TYPE_QSFP &&
10347 ppd->qsfp_info.limiting_active &&
10348 qsfp_mod_present(ppd)) {
765a6fac
DL
10349 int ret;
10350
10351 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10352 if (ret == 0) {
10353 set_qsfp_tx(ppd, 0);
10354 release_chip_resource(dd, qsfp_resource(dd));
10355 } else {
10356 /* not fatal, but should warn */
10357 dd_dev_err(dd,
10358 "Unable to acquire lock to turn off QSFP TX\n");
10359 }
8ebd4cf1
EH
10360 }
10361
df5efdd9
SS
10362 /*
10363 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10364 * can take a while for the link to go down.
10365 */
10366 if (offline_state_ret != PLS_OFFLINE_QUIET) {
10367 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10368 if (ret < 0)
10369 return ret;
10370 }
10371
10372 /*
10373 * Now in charge of LCB - must be after the physical state is
10374 * offline.quiet and before host_link_state is changed.
10375 */
10376 set_host_lcb_access(dd);
10377 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10378
10379 /* make sure the logical state is also down */
10380 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10381 if (ret)
10382 force_logical_link_state_down(ppd);
10383
10384 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10385
77241056
MM
10386 /*
10387 * The LNI has a mandatory wait time after the physical state
10388 * moves to Offline.Quiet. The wait time may be different
10389 * depending on how the link went down. The 8051 firmware
10390 * will observe the needed wait time and only move to ready
10391 * when that is completed. The largest of the quiet timeouts
05087f3b
DL
10392 * is 6s, so wait that long and then at least 0.5s more for
10393 * other transitions, and another 0.5s for a buffer.
77241056 10394 */
05087f3b 10395 ret = wait_fm_ready(dd, 7000);
77241056
MM
10396 if (ret) {
10397 dd_dev_err(dd,
17fb4f29 10398 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
77241056
MM
10399 /* state is really offline, so make it so */
10400 ppd->host_link_state = HLS_DN_OFFLINE;
10401 return ret;
10402 }
10403
10404 /*
10405 * The state is now offline and the 8051 is ready to accept host
10406 * requests.
10407 * - change our state
10408 * - notify others if we were previously in a linkup state
10409 */
10410 ppd->host_link_state = HLS_DN_OFFLINE;
10411 if (previous_state & HLS_UP) {
10412 /* went down while link was up */
10413 handle_linkup_change(dd, 0);
10414 } else if (previous_state
10415 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10416 /* went down while attempting link up */
6854c692 10417 check_lni_states(ppd);
30e10527
SS
10418
10419 /* The QSFP doesn't need to be reset on LNI failure */
10420 ppd->qsfp_info.reset_needed = 0;
77241056
MM
10421 }
10422
10423 /* the active link width (downgrade) is 0 on link down */
10424 ppd->link_width_active = 0;
10425 ppd->link_width_downgrade_tx_active = 0;
10426 ppd->link_width_downgrade_rx_active = 0;
10427 ppd->current_egress_rate = 0;
10428 return 0;
10429}
10430
10431/* return the link state name */
10432static const char *link_state_name(u32 state)
10433{
10434 const char *name;
10435 int n = ilog2(state);
10436 static const char * const names[] = {
10437 [__HLS_UP_INIT_BP] = "INIT",
10438 [__HLS_UP_ARMED_BP] = "ARMED",
10439 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10440 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10441 [__HLS_DN_POLL_BP] = "POLL",
10442 [__HLS_DN_DISABLE_BP] = "DISABLE",
10443 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10444 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10445 [__HLS_GOING_UP_BP] = "GOING_UP",
10446 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10447 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10448 };
10449
10450 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10451 return name ? name : "unknown";
10452}
10453
10454/* return the link state reason name */
10455static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10456{
10457 if (state == HLS_UP_INIT) {
10458 switch (ppd->linkinit_reason) {
10459 case OPA_LINKINIT_REASON_LINKUP:
10460 return "(LINKUP)";
10461 case OPA_LINKINIT_REASON_FLAPPING:
10462 return "(FLAPPING)";
10463 case OPA_LINKINIT_OUTSIDE_POLICY:
10464 return "(OUTSIDE_POLICY)";
10465 case OPA_LINKINIT_QUARANTINED:
10466 return "(QUARANTINED)";
10467 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10468 return "(INSUFIC_CAPABILITY)";
10469 default:
10470 break;
10471 }
10472 }
10473 return "";
10474}
10475
10476/*
d392a673 10477 * driver_pstate - convert the driver's notion of a port's
77241056
MM
10478 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10479 * Return -1 (converted to a u32) to indicate error.
10480 */
d392a673 10481u32 driver_pstate(struct hfi1_pportdata *ppd)
77241056
MM
10482{
10483 switch (ppd->host_link_state) {
10484 case HLS_UP_INIT:
10485 case HLS_UP_ARMED:
10486 case HLS_UP_ACTIVE:
10487 return IB_PORTPHYSSTATE_LINKUP;
10488 case HLS_DN_POLL:
10489 return IB_PORTPHYSSTATE_POLLING;
10490 case HLS_DN_DISABLE:
10491 return IB_PORTPHYSSTATE_DISABLED;
10492 case HLS_DN_OFFLINE:
10493 return OPA_PORTPHYSSTATE_OFFLINE;
10494 case HLS_VERIFY_CAP:
10495 return IB_PORTPHYSSTATE_POLLING;
10496 case HLS_GOING_UP:
10497 return IB_PORTPHYSSTATE_POLLING;
10498 case HLS_GOING_OFFLINE:
10499 return OPA_PORTPHYSSTATE_OFFLINE;
10500 case HLS_LINK_COOLDOWN:
10501 return OPA_PORTPHYSSTATE_OFFLINE;
10502 case HLS_DN_DOWNDEF:
10503 default:
10504 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10505 ppd->host_link_state);
10506 return -1;
10507 }
10508}
10509
10510/*
02a222c7 10511 * driver_lstate - convert the driver's notion of a port's
77241056
MM
10512 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10513 * (converted to a u32) to indicate error.
10514 */
02a222c7 10515u32 driver_lstate(struct hfi1_pportdata *ppd)
77241056 10516{
0c7f77af 10517 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
77241056
MM
10518 return IB_PORT_DOWN;
10519
10520 switch (ppd->host_link_state & HLS_UP) {
10521 case HLS_UP_INIT:
10522 return IB_PORT_INIT;
10523 case HLS_UP_ARMED:
10524 return IB_PORT_ARMED;
10525 case HLS_UP_ACTIVE:
10526 return IB_PORT_ACTIVE;
10527 default:
10528 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10529 ppd->host_link_state);
10530 return -1;
10531 }
10532}
10533
10534void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10535 u8 neigh_reason, u8 rem_reason)
10536{
10537 if (ppd->local_link_down_reason.latest == 0 &&
10538 ppd->neigh_link_down_reason.latest == 0) {
10539 ppd->local_link_down_reason.latest = lcl_reason;
10540 ppd->neigh_link_down_reason.latest = neigh_reason;
10541 ppd->remote_link_down_reason = rem_reason;
10542 }
10543}
10544
5e2d6764
AE
10545/*
10546 * Verify if BCT for data VLs is non-zero.
10547 */
10548static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10549{
10550 return !!ppd->actual_vls_operational;
10551}
10552
77241056
MM
10553/*
10554 * Change the physical and/or logical link state.
10555 *
10556 * Do not call this routine while inside an interrupt. It contains
10557 * calls to routines that can take multiple seconds to finish.
10558 *
10559 * Returns 0 on success, -errno on failure.
10560 */
10561int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10562{
10563 struct hfi1_devdata *dd = ppd->dd;
10564 struct ib_event event = {.device = NULL};
10565 int ret1, ret = 0;
77241056
MM
10566 int orig_new_state, poll_bounce;
10567
10568 mutex_lock(&ppd->hls_lock);
10569
10570 orig_new_state = state;
10571 if (state == HLS_DN_DOWNDEF)
10572 state = dd->link_default;
10573
10574 /* interpret poll -> poll as a link bounce */
d0d236ea
JJ
10575 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10576 state == HLS_DN_POLL;
77241056
MM
10577
10578 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
17fb4f29
JJ
10579 link_state_name(ppd->host_link_state),
10580 link_state_name(orig_new_state),
10581 poll_bounce ? "(bounce) " : "",
10582 link_state_reason_name(ppd, state));
77241056 10583
77241056
MM
10584 /*
10585 * If we're going to a (HLS_*) link state that implies the logical
10586 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10587 * reset is_sm_config_started to 0.
10588 */
10589 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10590 ppd->is_sm_config_started = 0;
10591
10592 /*
10593 * Do nothing if the states match. Let a poll to poll link bounce
10594 * go through.
10595 */
10596 if (ppd->host_link_state == state && !poll_bounce)
10597 goto done;
10598
10599 switch (state) {
10600 case HLS_UP_INIT:
d0d236ea
JJ
10601 if (ppd->host_link_state == HLS_DN_POLL &&
10602 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
77241056
MM
10603 /*
10604 * Quick link up jumps from polling to here.
10605 *
10606 * Whether in normal or loopback mode, the
10607 * simulator jumps from polling to link up.
10608 * Accept that here.
10609 */
17fb4f29 10610 /* OK */
77241056
MM
10611 } else if (ppd->host_link_state != HLS_GOING_UP) {
10612 goto unexpected;
10613 }
10614
bec7c79c
BJ
10615 /*
10616 * Wait for Link_Up physical state.
10617 * Physical and Logical states should already be
10618 * be transitioned to LinkUp and LinkInit respectively.
10619 */
10620 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10621 if (ret) {
10622 dd_dev_err(dd,
10623 "%s: physical state did not change to LINK-UP\n",
10624 __func__);
10625 break;
10626 }
10627
77241056
MM
10628 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10629 if (ret) {
77241056 10630 dd_dev_err(dd,
17fb4f29
JJ
10631 "%s: logical state did not change to INIT\n",
10632 __func__);
59ec8736
JS
10633 break;
10634 }
77241056 10635
59ec8736
JS
10636 /* clear old transient LINKINIT_REASON code */
10637 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10638 ppd->linkinit_reason =
10639 OPA_LINKINIT_REASON_LINKUP;
77241056 10640
59ec8736
JS
10641 /* enable the port */
10642 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10643
10644 handle_linkup_change(dd, 1);
10645 ppd->host_link_state = HLS_UP_INIT;
77241056
MM
10646 break;
10647 case HLS_UP_ARMED:
10648 if (ppd->host_link_state != HLS_UP_INIT)
10649 goto unexpected;
10650
5e2d6764
AE
10651 if (!data_vls_operational(ppd)) {
10652 dd_dev_err(dd,
10653 "%s: data VLs not operational\n", __func__);
10654 ret = -EINVAL;
10655 break;
10656 }
10657
77241056
MM
10658 set_logical_state(dd, LSTATE_ARMED);
10659 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10660 if (ret) {
77241056 10661 dd_dev_err(dd,
17fb4f29
JJ
10662 "%s: logical state did not change to ARMED\n",
10663 __func__);
5efd40ca 10664 break;
77241056 10665 }
5efd40ca 10666 ppd->host_link_state = HLS_UP_ARMED;
77241056
MM
10667 /*
10668 * The simulator does not currently implement SMA messages,
10669 * so neighbor_normal is not set. Set it here when we first
10670 * move to Armed.
10671 */
10672 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10673 ppd->neighbor_normal = 1;
10674 break;
10675 case HLS_UP_ACTIVE:
10676 if (ppd->host_link_state != HLS_UP_ARMED)
10677 goto unexpected;
10678
77241056
MM
10679 set_logical_state(dd, LSTATE_ACTIVE);
10680 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10681 if (ret) {
77241056 10682 dd_dev_err(dd,
17fb4f29
JJ
10683 "%s: logical state did not change to ACTIVE\n",
10684 __func__);
77241056 10685 } else {
77241056
MM
10686 /* tell all engines to go running */
10687 sdma_all_running(dd);
5efd40ca 10688 ppd->host_link_state = HLS_UP_ACTIVE;
77241056
MM
10689
10690 /* Signal the IB layer that the port has went active */
ec3f2c12 10691 event.device = &dd->verbs_dev.rdi.ibdev;
77241056
MM
10692 event.element.port_num = ppd->port;
10693 event.event = IB_EVENT_PORT_ACTIVE;
10694 }
10695 break;
10696 case HLS_DN_POLL:
10697 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10698 ppd->host_link_state == HLS_DN_OFFLINE) &&
10699 dd->dc_shutdown)
10700 dc_start(dd);
10701 /* Hand LED control to the DC */
10702 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10703
10704 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10705 u8 tmp = ppd->link_enabled;
10706
10707 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10708 if (ret) {
10709 ppd->link_enabled = tmp;
10710 break;
10711 }
10712 ppd->remote_link_down_reason = 0;
10713
10714 if (ppd->driver_link_ready)
10715 ppd->link_enabled = 1;
10716 }
10717
fb9036dd 10718 set_all_slowpath(ppd->dd);
77241056
MM
10719 ret = set_local_link_attributes(ppd);
10720 if (ret)
10721 break;
10722
10723 ppd->port_error_action = 0;
10724 ppd->host_link_state = HLS_DN_POLL;
10725
10726 if (quick_linkup) {
10727 /* quick linkup does not go into polling */
10728 ret = do_quick_linkup(dd);
10729 } else {
10730 ret1 = set_physical_link_state(dd, PLS_POLLING);
10731 if (ret1 != HCMD_SUCCESS) {
10732 dd_dev_err(dd,
17fb4f29
JJ
10733 "Failed to transition to Polling link state, return 0x%x\n",
10734 ret1);
77241056
MM
10735 ret = -EINVAL;
10736 }
10737 }
a9c05e35
BM
10738 ppd->offline_disabled_reason =
10739 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
77241056
MM
10740 /*
10741 * If an error occurred above, go back to offline. The
10742 * caller may reschedule another attempt.
10743 */
10744 if (ret)
10745 goto_offline(ppd, 0);
bec7c79c 10746 else
d392a673 10747 log_physical_state(ppd, PLS_POLLING);
77241056
MM
10748 break;
10749 case HLS_DN_DISABLE:
10750 /* link is disabled */
10751 ppd->link_enabled = 0;
10752
10753 /* allow any state to transition to disabled */
10754
10755 /* must transition to offline first */
10756 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10757 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10758 if (ret)
10759 break;
10760 ppd->remote_link_down_reason = 0;
10761 }
10762
db069ecb
MR
10763 if (!dd->dc_shutdown) {
10764 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10765 if (ret1 != HCMD_SUCCESS) {
10766 dd_dev_err(dd,
10767 "Failed to transition to Disabled link state, return 0x%x\n",
10768 ret1);
10769 ret = -EINVAL;
10770 break;
10771 }
bec7c79c
BJ
10772 ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10773 if (ret) {
10774 dd_dev_err(dd,
10775 "%s: physical state did not change to DISABLED\n",
10776 __func__);
10777 break;
10778 }
db069ecb 10779 dc_shutdown(dd);
77241056
MM
10780 }
10781 ppd->host_link_state = HLS_DN_DISABLE;
77241056
MM
10782 break;
10783 case HLS_DN_OFFLINE:
10784 if (ppd->host_link_state == HLS_DN_DISABLE)
10785 dc_start(dd);
10786
10787 /* allow any state to transition to offline */
10788 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10789 if (!ret)
10790 ppd->remote_link_down_reason = 0;
10791 break;
10792 case HLS_VERIFY_CAP:
10793 if (ppd->host_link_state != HLS_DN_POLL)
10794 goto unexpected;
10795 ppd->host_link_state = HLS_VERIFY_CAP;
d392a673 10796 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
77241056
MM
10797 break;
10798 case HLS_GOING_UP:
10799 if (ppd->host_link_state != HLS_VERIFY_CAP)
10800 goto unexpected;
10801
10802 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10803 if (ret1 != HCMD_SUCCESS) {
10804 dd_dev_err(dd,
17fb4f29
JJ
10805 "Failed to transition to link up state, return 0x%x\n",
10806 ret1);
77241056
MM
10807 ret = -EINVAL;
10808 break;
10809 }
10810 ppd->host_link_state = HLS_GOING_UP;
10811 break;
10812
10813 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10814 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10815 default:
10816 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
17fb4f29 10817 __func__, state);
77241056
MM
10818 ret = -EINVAL;
10819 break;
10820 }
10821
77241056
MM
10822 goto done;
10823
10824unexpected:
10825 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
17fb4f29
JJ
10826 __func__, link_state_name(ppd->host_link_state),
10827 link_state_name(state));
77241056
MM
10828 ret = -EINVAL;
10829
10830done:
10831 mutex_unlock(&ppd->hls_lock);
10832
10833 if (event.device)
10834 ib_dispatch_event(&event);
10835
10836 return ret;
10837}
10838
10839int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10840{
10841 u64 reg;
10842 int ret = 0;
10843
10844 switch (which) {
10845 case HFI1_IB_CFG_LIDLMC:
10846 set_lidlmc(ppd);
10847 break;
10848 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10849 /*
10850 * The VL Arbitrator high limit is sent in units of 4k
10851 * bytes, while HFI stores it in units of 64 bytes.
10852 */
8638b77f 10853 val *= 4096 / 64;
77241056
MM
10854 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10855 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10856 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10857 break;
10858 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10859 /* HFI only supports POLL as the default link down state */
10860 if (val != HLS_DN_POLL)
10861 ret = -EINVAL;
10862 break;
10863 case HFI1_IB_CFG_OP_VLS:
10864 if (ppd->vls_operational != val) {
10865 ppd->vls_operational = val;
10866 if (!ppd->port)
10867 ret = -EINVAL;
77241056
MM
10868 }
10869 break;
10870 /*
10871 * For link width, link width downgrade, and speed enable, always AND
10872 * the setting with what is actually supported. This has two benefits.
10873 * First, enabled can't have unsupported values, no matter what the
10874 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10875 * "fill in with your supported value" have all the bits in the
10876 * field set, so simply ANDing with supported has the desired result.
10877 */
10878 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10879 ppd->link_width_enabled = val & ppd->link_width_supported;
10880 break;
10881 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10882 ppd->link_width_downgrade_enabled =
10883 val & ppd->link_width_downgrade_supported;
10884 break;
10885 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10886 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10887 break;
10888 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10889 /*
10890 * HFI does not follow IB specs, save this value
10891 * so we can report it, if asked.
10892 */
10893 ppd->overrun_threshold = val;
10894 break;
10895 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10896 /*
10897 * HFI does not follow IB specs, save this value
10898 * so we can report it, if asked.
10899 */
10900 ppd->phy_error_threshold = val;
10901 break;
10902
10903 case HFI1_IB_CFG_MTU:
10904 set_send_length(ppd);
10905 break;
10906
10907 case HFI1_IB_CFG_PKEYS:
10908 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10909 set_partition_keys(ppd);
10910 break;
10911
10912 default:
10913 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10914 dd_dev_info(ppd->dd,
17fb4f29
JJ
10915 "%s: which %s, val 0x%x: not implemented\n",
10916 __func__, ib_cfg_name(which), val);
77241056
MM
10917 break;
10918 }
10919 return ret;
10920}
10921
10922/* begin functions related to vl arbitration table caching */
10923static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10924{
10925 int i;
10926
10927 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10928 VL_ARB_LOW_PRIO_TABLE_SIZE);
10929 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10930 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10931
10932 /*
10933 * Note that we always return values directly from the
10934 * 'vl_arb_cache' (and do no CSR reads) in response to a
10935 * 'Get(VLArbTable)'. This is obviously correct after a
10936 * 'Set(VLArbTable)', since the cache will then be up to
10937 * date. But it's also correct prior to any 'Set(VLArbTable)'
10938 * since then both the cache, and the relevant h/w registers
10939 * will be zeroed.
10940 */
10941
10942 for (i = 0; i < MAX_PRIO_TABLE; i++)
10943 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10944}
10945
10946/*
10947 * vl_arb_lock_cache
10948 *
10949 * All other vl_arb_* functions should be called only after locking
10950 * the cache.
10951 */
10952static inline struct vl_arb_cache *
10953vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10954{
10955 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10956 return NULL;
10957 spin_lock(&ppd->vl_arb_cache[idx].lock);
10958 return &ppd->vl_arb_cache[idx];
10959}
10960
10961static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10962{
10963 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10964}
10965
10966static void vl_arb_get_cache(struct vl_arb_cache *cache,
10967 struct ib_vl_weight_elem *vl)
10968{
10969 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10970}
10971
10972static void vl_arb_set_cache(struct vl_arb_cache *cache,
10973 struct ib_vl_weight_elem *vl)
10974{
10975 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10976}
10977
10978static int vl_arb_match_cache(struct vl_arb_cache *cache,
10979 struct ib_vl_weight_elem *vl)
10980{
10981 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10982}
f4d507cd 10983
77241056
MM
10984/* end functions related to vl arbitration table caching */
10985
10986static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10987 u32 size, struct ib_vl_weight_elem *vl)
10988{
10989 struct hfi1_devdata *dd = ppd->dd;
10990 u64 reg;
10991 unsigned int i, is_up = 0;
10992 int drain, ret = 0;
10993
10994 mutex_lock(&ppd->hls_lock);
10995
10996 if (ppd->host_link_state & HLS_UP)
10997 is_up = 1;
10998
10999 drain = !is_ax(dd) && is_up;
11000
11001 if (drain)
11002 /*
11003 * Before adjusting VL arbitration weights, empty per-VL
11004 * FIFOs, otherwise a packet whose VL weight is being
11005 * set to 0 could get stuck in a FIFO with no chance to
11006 * egress.
11007 */
11008 ret = stop_drain_data_vls(dd);
11009
11010 if (ret) {
11011 dd_dev_err(
11012 dd,
11013 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11014 __func__);
11015 goto err;
11016 }
11017
11018 for (i = 0; i < size; i++, vl++) {
11019 /*
11020 * NOTE: The low priority shift and mask are used here, but
11021 * they are the same for both the low and high registers.
11022 */
11023 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11024 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11025 | (((u64)vl->weight
11026 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11027 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11028 write_csr(dd, target + (i * 8), reg);
11029 }
11030 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11031
11032 if (drain)
11033 open_fill_data_vls(dd); /* reopen all VLs */
11034
11035err:
11036 mutex_unlock(&ppd->hls_lock);
11037
11038 return ret;
11039}
11040
11041/*
11042 * Read one credit merge VL register.
11043 */
11044static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11045 struct vl_limit *vll)
11046{
11047 u64 reg = read_csr(dd, csr);
11048
11049 vll->dedicated = cpu_to_be16(
11050 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11051 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11052 vll->shared = cpu_to_be16(
11053 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11054 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11055}
11056
11057/*
11058 * Read the current credit merge limits.
11059 */
11060static int get_buffer_control(struct hfi1_devdata *dd,
11061 struct buffer_control *bc, u16 *overall_limit)
11062{
11063 u64 reg;
11064 int i;
11065
11066 /* not all entries are filled in */
11067 memset(bc, 0, sizeof(*bc));
11068
11069 /* OPA and HFI have a 1-1 mapping */
11070 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 11071 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
77241056
MM
11072
11073 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11074 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11075
11076 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11077 bc->overall_shared_limit = cpu_to_be16(
11078 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11079 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11080 if (overall_limit)
11081 *overall_limit = (reg
11082 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11083 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11084 return sizeof(struct buffer_control);
11085}
11086
11087static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11088{
11089 u64 reg;
11090 int i;
11091
11092 /* each register contains 16 SC->VLnt mappings, 4 bits each */
11093 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11094 for (i = 0; i < sizeof(u64); i++) {
11095 u8 byte = *(((u8 *)&reg) + i);
11096
11097 dp->vlnt[2 * i] = byte & 0xf;
11098 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11099 }
11100
11101 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11102 for (i = 0; i < sizeof(u64); i++) {
11103 u8 byte = *(((u8 *)&reg) + i);
11104
11105 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11106 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11107 }
11108 return sizeof(struct sc2vlnt);
11109}
11110
11111static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11112 struct ib_vl_weight_elem *vl)
11113{
11114 unsigned int i;
11115
11116 for (i = 0; i < nelems; i++, vl++) {
11117 vl->vl = 0xf;
11118 vl->weight = 0;
11119 }
11120}
11121
11122static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11123{
11124 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
17fb4f29
JJ
11125 DC_SC_VL_VAL(15_0,
11126 0, dp->vlnt[0] & 0xf,
11127 1, dp->vlnt[1] & 0xf,
11128 2, dp->vlnt[2] & 0xf,
11129 3, dp->vlnt[3] & 0xf,
11130 4, dp->vlnt[4] & 0xf,
11131 5, dp->vlnt[5] & 0xf,
11132 6, dp->vlnt[6] & 0xf,
11133 7, dp->vlnt[7] & 0xf,
11134 8, dp->vlnt[8] & 0xf,
11135 9, dp->vlnt[9] & 0xf,
11136 10, dp->vlnt[10] & 0xf,
11137 11, dp->vlnt[11] & 0xf,
11138 12, dp->vlnt[12] & 0xf,
11139 13, dp->vlnt[13] & 0xf,
11140 14, dp->vlnt[14] & 0xf,
11141 15, dp->vlnt[15] & 0xf));
77241056 11142 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
17fb4f29
JJ
11143 DC_SC_VL_VAL(31_16,
11144 16, dp->vlnt[16] & 0xf,
11145 17, dp->vlnt[17] & 0xf,
11146 18, dp->vlnt[18] & 0xf,
11147 19, dp->vlnt[19] & 0xf,
11148 20, dp->vlnt[20] & 0xf,
11149 21, dp->vlnt[21] & 0xf,
11150 22, dp->vlnt[22] & 0xf,
11151 23, dp->vlnt[23] & 0xf,
11152 24, dp->vlnt[24] & 0xf,
11153 25, dp->vlnt[25] & 0xf,
11154 26, dp->vlnt[26] & 0xf,
11155 27, dp->vlnt[27] & 0xf,
11156 28, dp->vlnt[28] & 0xf,
11157 29, dp->vlnt[29] & 0xf,
11158 30, dp->vlnt[30] & 0xf,
11159 31, dp->vlnt[31] & 0xf));
77241056
MM
11160}
11161
11162static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11163 u16 limit)
11164{
11165 if (limit != 0)
11166 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
17fb4f29 11167 what, (int)limit, idx);
77241056
MM
11168}
11169
11170/* change only the shared limit portion of SendCmGLobalCredit */
11171static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11172{
11173 u64 reg;
11174
11175 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11176 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11177 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11178 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11179}
11180
11181/* change only the total credit limit portion of SendCmGLobalCredit */
11182static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11183{
11184 u64 reg;
11185
11186 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11187 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11188 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11189 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11190}
11191
11192/* set the given per-VL shared limit */
11193static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11194{
11195 u64 reg;
11196 u32 addr;
11197
11198 if (vl < TXE_NUM_DATA_VL)
11199 addr = SEND_CM_CREDIT_VL + (8 * vl);
11200 else
11201 addr = SEND_CM_CREDIT_VL15;
11202
11203 reg = read_csr(dd, addr);
11204 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11205 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11206 write_csr(dd, addr, reg);
11207}
11208
11209/* set the given per-VL dedicated limit */
11210static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11211{
11212 u64 reg;
11213 u32 addr;
11214
11215 if (vl < TXE_NUM_DATA_VL)
11216 addr = SEND_CM_CREDIT_VL + (8 * vl);
11217 else
11218 addr = SEND_CM_CREDIT_VL15;
11219
11220 reg = read_csr(dd, addr);
11221 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11222 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11223 write_csr(dd, addr, reg);
11224}
11225
11226/* spin until the given per-VL status mask bits clear */
11227static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11228 const char *which)
11229{
11230 unsigned long timeout;
11231 u64 reg;
11232
11233 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11234 while (1) {
11235 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11236
11237 if (reg == 0)
11238 return; /* success */
11239 if (time_after(jiffies, timeout))
11240 break; /* timed out */
11241 udelay(1);
11242 }
11243
11244 dd_dev_err(dd,
17fb4f29
JJ
11245 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11246 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
77241056
MM
11247 /*
11248 * If this occurs, it is likely there was a credit loss on the link.
11249 * The only recovery from that is a link bounce.
11250 */
11251 dd_dev_err(dd,
17fb4f29 11252 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
77241056
MM
11253}
11254
11255/*
11256 * The number of credits on the VLs may be changed while everything
11257 * is "live", but the following algorithm must be followed due to
11258 * how the hardware is actually implemented. In particular,
11259 * Return_Credit_Status[] is the only correct status check.
11260 *
11261 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11262 * set Global_Shared_Credit_Limit = 0
11263 * use_all_vl = 1
11264 * mask0 = all VLs that are changing either dedicated or shared limits
11265 * set Shared_Limit[mask0] = 0
11266 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11267 * if (changing any dedicated limit)
11268 * mask1 = all VLs that are lowering dedicated limits
11269 * lower Dedicated_Limit[mask1]
11270 * spin until Return_Credit_Status[mask1] == 0
11271 * raise Dedicated_Limits
11272 * raise Shared_Limits
11273 * raise Global_Shared_Credit_Limit
11274 *
11275 * lower = if the new limit is lower, set the limit to the new value
11276 * raise = if the new limit is higher than the current value (may be changed
11277 * earlier in the algorithm), set the new limit to the new value
11278 */
8a4d3444
MM
11279int set_buffer_control(struct hfi1_pportdata *ppd,
11280 struct buffer_control *new_bc)
77241056 11281{
8a4d3444 11282 struct hfi1_devdata *dd = ppd->dd;
77241056
MM
11283 u64 changing_mask, ld_mask, stat_mask;
11284 int change_count;
11285 int i, use_all_mask;
11286 int this_shared_changing;
8a4d3444 11287 int vl_count = 0, ret;
77241056
MM
11288 /*
11289 * A0: add the variable any_shared_limit_changing below and in the
11290 * algorithm above. If removing A0 support, it can be removed.
11291 */
11292 int any_shared_limit_changing;
11293 struct buffer_control cur_bc;
11294 u8 changing[OPA_MAX_VLS];
11295 u8 lowering_dedicated[OPA_MAX_VLS];
11296 u16 cur_total;
11297 u32 new_total = 0;
11298 const u64 all_mask =
11299 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11300 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11301 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11302 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11303 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11304 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11305 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11306 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11307 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11308
11309#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11310#define NUM_USABLE_VLS 16 /* look at VL15 and less */
11311
77241056
MM
11312 /* find the new total credits, do sanity check on unused VLs */
11313 for (i = 0; i < OPA_MAX_VLS; i++) {
11314 if (valid_vl(i)) {
11315 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11316 continue;
11317 }
11318 nonzero_msg(dd, i, "dedicated",
17fb4f29 11319 be16_to_cpu(new_bc->vl[i].dedicated));
77241056 11320 nonzero_msg(dd, i, "shared",
17fb4f29 11321 be16_to_cpu(new_bc->vl[i].shared));
77241056
MM
11322 new_bc->vl[i].dedicated = 0;
11323 new_bc->vl[i].shared = 0;
11324 }
11325 new_total += be16_to_cpu(new_bc->overall_shared_limit);
bff14bb6 11326
77241056
MM
11327 /* fetch the current values */
11328 get_buffer_control(dd, &cur_bc, &cur_total);
11329
11330 /*
11331 * Create the masks we will use.
11332 */
11333 memset(changing, 0, sizeof(changing));
11334 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
4d114fdd
JJ
11335 /*
11336 * NOTE: Assumes that the individual VL bits are adjacent and in
11337 * increasing order
11338 */
77241056
MM
11339 stat_mask =
11340 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11341 changing_mask = 0;
11342 ld_mask = 0;
11343 change_count = 0;
11344 any_shared_limit_changing = 0;
11345 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11346 if (!valid_vl(i))
11347 continue;
11348 this_shared_changing = new_bc->vl[i].shared
11349 != cur_bc.vl[i].shared;
11350 if (this_shared_changing)
11351 any_shared_limit_changing = 1;
d0d236ea
JJ
11352 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11353 this_shared_changing) {
77241056
MM
11354 changing[i] = 1;
11355 changing_mask |= stat_mask;
11356 change_count++;
11357 }
11358 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11359 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11360 lowering_dedicated[i] = 1;
11361 ld_mask |= stat_mask;
11362 }
11363 }
11364
11365 /* bracket the credit change with a total adjustment */
11366 if (new_total > cur_total)
11367 set_global_limit(dd, new_total);
11368
11369 /*
11370 * Start the credit change algorithm.
11371 */
11372 use_all_mask = 0;
11373 if ((be16_to_cpu(new_bc->overall_shared_limit) <
995deafa
MM
11374 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11375 (is_ax(dd) && any_shared_limit_changing)) {
77241056
MM
11376 set_global_shared(dd, 0);
11377 cur_bc.overall_shared_limit = 0;
11378 use_all_mask = 1;
11379 }
11380
11381 for (i = 0; i < NUM_USABLE_VLS; i++) {
11382 if (!valid_vl(i))
11383 continue;
11384
11385 if (changing[i]) {
11386 set_vl_shared(dd, i, 0);
11387 cur_bc.vl[i].shared = 0;
11388 }
11389 }
11390
11391 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
17fb4f29 11392 "shared");
77241056
MM
11393
11394 if (change_count > 0) {
11395 for (i = 0; i < NUM_USABLE_VLS; i++) {
11396 if (!valid_vl(i))
11397 continue;
11398
11399 if (lowering_dedicated[i]) {
11400 set_vl_dedicated(dd, i,
17fb4f29
JJ
11401 be16_to_cpu(new_bc->
11402 vl[i].dedicated));
77241056
MM
11403 cur_bc.vl[i].dedicated =
11404 new_bc->vl[i].dedicated;
11405 }
11406 }
11407
11408 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11409
11410 /* now raise all dedicated that are going up */
11411 for (i = 0; i < NUM_USABLE_VLS; i++) {
11412 if (!valid_vl(i))
11413 continue;
11414
11415 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11416 be16_to_cpu(cur_bc.vl[i].dedicated))
11417 set_vl_dedicated(dd, i,
17fb4f29
JJ
11418 be16_to_cpu(new_bc->
11419 vl[i].dedicated));
77241056
MM
11420 }
11421 }
11422
11423 /* next raise all shared that are going up */
11424 for (i = 0; i < NUM_USABLE_VLS; i++) {
11425 if (!valid_vl(i))
11426 continue;
11427
11428 if (be16_to_cpu(new_bc->vl[i].shared) >
11429 be16_to_cpu(cur_bc.vl[i].shared))
11430 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11431 }
11432
11433 /* finally raise the global shared */
11434 if (be16_to_cpu(new_bc->overall_shared_limit) >
17fb4f29 11435 be16_to_cpu(cur_bc.overall_shared_limit))
77241056 11436 set_global_shared(dd,
17fb4f29 11437 be16_to_cpu(new_bc->overall_shared_limit));
77241056
MM
11438
11439 /* bracket the credit change with a total adjustment */
11440 if (new_total < cur_total)
11441 set_global_limit(dd, new_total);
8a4d3444
MM
11442
11443 /*
11444 * Determine the actual number of operational VLS using the number of
11445 * dedicated and shared credits for each VL.
11446 */
11447 if (change_count > 0) {
11448 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11449 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11450 be16_to_cpu(new_bc->vl[i].shared) > 0)
11451 vl_count++;
11452 ppd->actual_vls_operational = vl_count;
11453 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11454 ppd->actual_vls_operational :
11455 ppd->vls_operational,
11456 NULL);
11457 if (ret == 0)
11458 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11459 ppd->actual_vls_operational :
11460 ppd->vls_operational, NULL);
11461 if (ret)
11462 return ret;
11463 }
77241056
MM
11464 return 0;
11465}
11466
11467/*
11468 * Read the given fabric manager table. Return the size of the
11469 * table (in bytes) on success, and a negative error code on
11470 * failure.
11471 */
11472int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11473
11474{
11475 int size;
11476 struct vl_arb_cache *vlc;
11477
11478 switch (which) {
11479 case FM_TBL_VL_HIGH_ARB:
11480 size = 256;
11481 /*
11482 * OPA specifies 128 elements (of 2 bytes each), though
11483 * HFI supports only 16 elements in h/w.
11484 */
11485 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11486 vl_arb_get_cache(vlc, t);
11487 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11488 break;
11489 case FM_TBL_VL_LOW_ARB:
11490 size = 256;
11491 /*
11492 * OPA specifies 128 elements (of 2 bytes each), though
11493 * HFI supports only 16 elements in h/w.
11494 */
11495 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11496 vl_arb_get_cache(vlc, t);
11497 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11498 break;
11499 case FM_TBL_BUFFER_CONTROL:
11500 size = get_buffer_control(ppd->dd, t, NULL);
11501 break;
11502 case FM_TBL_SC2VLNT:
11503 size = get_sc2vlnt(ppd->dd, t);
11504 break;
11505 case FM_TBL_VL_PREEMPT_ELEMS:
11506 size = 256;
11507 /* OPA specifies 128 elements, of 2 bytes each */
11508 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11509 break;
11510 case FM_TBL_VL_PREEMPT_MATRIX:
11511 size = 256;
11512 /*
11513 * OPA specifies that this is the same size as the VL
11514 * arbitration tables (i.e., 256 bytes).
11515 */
11516 break;
11517 default:
11518 return -EINVAL;
11519 }
11520 return size;
11521}
11522
11523/*
11524 * Write the given fabric manager table.
11525 */
11526int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11527{
11528 int ret = 0;
11529 struct vl_arb_cache *vlc;
11530
11531 switch (which) {
11532 case FM_TBL_VL_HIGH_ARB:
11533 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11534 if (vl_arb_match_cache(vlc, t)) {
11535 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11536 break;
11537 }
11538 vl_arb_set_cache(vlc, t);
11539 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11540 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11541 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11542 break;
11543 case FM_TBL_VL_LOW_ARB:
11544 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11545 if (vl_arb_match_cache(vlc, t)) {
11546 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11547 break;
11548 }
11549 vl_arb_set_cache(vlc, t);
11550 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11551 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11552 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11553 break;
11554 case FM_TBL_BUFFER_CONTROL:
8a4d3444 11555 ret = set_buffer_control(ppd, t);
77241056
MM
11556 break;
11557 case FM_TBL_SC2VLNT:
11558 set_sc2vlnt(ppd->dd, t);
11559 break;
11560 default:
11561 ret = -EINVAL;
11562 }
11563 return ret;
11564}
11565
11566/*
11567 * Disable all data VLs.
11568 *
11569 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11570 */
11571static int disable_data_vls(struct hfi1_devdata *dd)
11572{
995deafa 11573 if (is_ax(dd))
77241056
MM
11574 return 1;
11575
11576 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11577
11578 return 0;
11579}
11580
11581/*
11582 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11583 * Just re-enables all data VLs (the "fill" part happens
11584 * automatically - the name was chosen for symmetry with
11585 * stop_drain_data_vls()).
11586 *
11587 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11588 */
11589int open_fill_data_vls(struct hfi1_devdata *dd)
11590{
995deafa 11591 if (is_ax(dd))
77241056
MM
11592 return 1;
11593
11594 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11595
11596 return 0;
11597}
11598
11599/*
11600 * drain_data_vls() - assumes that disable_data_vls() has been called,
11601 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11602 * engines to drop to 0.
11603 */
11604static void drain_data_vls(struct hfi1_devdata *dd)
11605{
11606 sc_wait(dd);
11607 sdma_wait(dd);
11608 pause_for_credit_return(dd);
11609}
11610
11611/*
11612 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11613 *
11614 * Use open_fill_data_vls() to resume using data VLs. This pair is
11615 * meant to be used like this:
11616 *
11617 * stop_drain_data_vls(dd);
11618 * // do things with per-VL resources
11619 * open_fill_data_vls(dd);
11620 */
11621int stop_drain_data_vls(struct hfi1_devdata *dd)
11622{
11623 int ret;
11624
11625 ret = disable_data_vls(dd);
11626 if (ret == 0)
11627 drain_data_vls(dd);
11628
11629 return ret;
11630}
11631
11632/*
11633 * Convert a nanosecond time to a cclock count. No matter how slow
11634 * the cclock, a non-zero ns will always have a non-zero result.
11635 */
11636u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11637{
11638 u32 cclocks;
11639
11640 if (dd->icode == ICODE_FPGA_EMULATION)
11641 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11642 else /* simulation pretends to be ASIC */
11643 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11644 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11645 cclocks = 1;
11646 return cclocks;
11647}
11648
11649/*
11650 * Convert a cclock count to nanoseconds. Not matter how slow
11651 * the cclock, a non-zero cclocks will always have a non-zero result.
11652 */
11653u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11654{
11655 u32 ns;
11656
11657 if (dd->icode == ICODE_FPGA_EMULATION)
11658 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11659 else /* simulation pretends to be ASIC */
11660 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11661 if (cclocks && !ns)
11662 ns = 1;
11663 return ns;
11664}
11665
11666/*
11667 * Dynamically adjust the receive interrupt timeout for a context based on
11668 * incoming packet rate.
11669 *
11670 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11671 */
11672static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11673{
11674 struct hfi1_devdata *dd = rcd->dd;
11675 u32 timeout = rcd->rcvavail_timeout;
11676
11677 /*
11678 * This algorithm doubles or halves the timeout depending on whether
11679 * the number of packets received in this interrupt were less than or
11680 * greater equal the interrupt count.
11681 *
11682 * The calculations below do not allow a steady state to be achieved.
11683 * Only at the endpoints it is possible to have an unchanging
11684 * timeout.
11685 */
11686 if (npkts < rcv_intr_count) {
11687 /*
11688 * Not enough packets arrived before the timeout, adjust
11689 * timeout downward.
11690 */
11691 if (timeout < 2) /* already at minimum? */
11692 return;
11693 timeout >>= 1;
11694 } else {
11695 /*
11696 * More than enough packets arrived before the timeout, adjust
11697 * timeout upward.
11698 */
11699 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11700 return;
11701 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11702 }
11703
11704 rcd->rcvavail_timeout = timeout;
4d114fdd
JJ
11705 /*
11706 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11707 * been verified to be in range
11708 */
77241056 11709 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
17fb4f29
JJ
11710 (u64)timeout <<
11711 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
77241056
MM
11712}
11713
11714void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11715 u32 intr_adjust, u32 npkts)
11716{
11717 struct hfi1_devdata *dd = rcd->dd;
11718 u64 reg;
11719 u32 ctxt = rcd->ctxt;
11720
11721 /*
11722 * Need to write timeout register before updating RcvHdrHead to ensure
11723 * that a new value is used when the HW decides to restart counting.
11724 */
11725 if (intr_adjust)
11726 adjust_rcv_timeout(rcd, npkts);
11727 if (updegr) {
11728 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11729 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11730 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11731 }
11732 mmiowb();
11733 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11734 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11735 << RCV_HDR_HEAD_HEAD_SHIFT);
11736 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11737 mmiowb();
11738}
11739
11740u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11741{
11742 u32 head, tail;
11743
11744 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11745 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11746
11747 if (rcd->rcvhdrtail_kvaddr)
11748 tail = get_rcvhdrtail(rcd);
11749 else
11750 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11751
11752 return head == tail;
11753}
11754
11755/*
11756 * Context Control and Receive Array encoding for buffer size:
11757 * 0x0 invalid
11758 * 0x1 4 KB
11759 * 0x2 8 KB
11760 * 0x3 16 KB
11761 * 0x4 32 KB
11762 * 0x5 64 KB
11763 * 0x6 128 KB
11764 * 0x7 256 KB
11765 * 0x8 512 KB (Receive Array only)
11766 * 0x9 1 MB (Receive Array only)
11767 * 0xa 2 MB (Receive Array only)
11768 *
11769 * 0xB-0xF - reserved (Receive Array only)
11770 *
11771 *
11772 * This routine assumes that the value has already been sanity checked.
11773 */
11774static u32 encoded_size(u32 size)
11775{
11776 switch (size) {
8638b77f
JJ
11777 case 4 * 1024: return 0x1;
11778 case 8 * 1024: return 0x2;
11779 case 16 * 1024: return 0x3;
11780 case 32 * 1024: return 0x4;
11781 case 64 * 1024: return 0x5;
11782 case 128 * 1024: return 0x6;
11783 case 256 * 1024: return 0x7;
11784 case 512 * 1024: return 0x8;
11785 case 1 * 1024 * 1024: return 0x9;
11786 case 2 * 1024 * 1024: return 0xa;
77241056
MM
11787 }
11788 return 0x1; /* if invalid, go with the minimum size */
11789}
11790
2250563e
MR
11791void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11792 struct hfi1_ctxtdata *rcd)
77241056 11793{
77241056
MM
11794 u64 rcvctrl, reg;
11795 int did_enable = 0;
2250563e 11796 u16 ctxt;
77241056 11797
77241056
MM
11798 if (!rcd)
11799 return;
11800
2250563e
MR
11801 ctxt = rcd->ctxt;
11802
77241056
MM
11803 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11804
11805 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11806 /* if the context already enabled, don't do the extra steps */
d0d236ea
JJ
11807 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11808 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
77241056
MM
11809 /* reset the tail and hdr addresses, and sequence count */
11810 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
60368186 11811 rcd->rcvhdrq_dma);
77241056
MM
11812 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11813 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
60368186 11814 rcd->rcvhdrqtailaddr_dma);
77241056
MM
11815 rcd->seq_cnt = 1;
11816
11817 /* reset the cached receive header queue head value */
11818 rcd->head = 0;
11819
11820 /*
11821 * Zero the receive header queue so we don't get false
11822 * positives when checking the sequence number. The
11823 * sequence numbers could land exactly on the same spot.
11824 * E.g. a rcd restart before the receive header wrapped.
11825 */
11826 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11827
11828 /* starting timeout */
11829 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11830
11831 /* enable the context */
11832 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11833
11834 /* clean the egr buffer size first */
11835 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11836 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11837 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11838 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11839
11840 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11841 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11842 did_enable = 1;
11843
11844 /* zero RcvEgrIndexHead */
11845 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11846
11847 /* set eager count and base index */
11848 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11849 & RCV_EGR_CTRL_EGR_CNT_MASK)
11850 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11851 (((rcd->eager_base >> RCV_SHIFT)
11852 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11853 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11854 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11855
11856 /*
11857 * Set TID (expected) count and base index.
11858 * rcd->expected_count is set to individual RcvArray entries,
11859 * not pairs, and the CSR takes a pair-count in groups of
11860 * four, so divide by 8.
11861 */
11862 reg = (((rcd->expected_count >> RCV_SHIFT)
11863 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11864 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11865 (((rcd->expected_base >> RCV_SHIFT)
11866 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11867 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11868 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
82c2611d
NV
11869 if (ctxt == HFI1_CTRL_CTXT)
11870 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
77241056
MM
11871 }
11872 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11873 write_csr(dd, RCV_VL15, 0);
46b010d3
MB
11874 /*
11875 * When receive context is being disabled turn on tail
11876 * update with a dummy tail address and then disable
11877 * receive context.
11878 */
60368186 11879 if (dd->rcvhdrtail_dummy_dma) {
46b010d3 11880 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
60368186 11881 dd->rcvhdrtail_dummy_dma);
566c157c 11882 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
46b010d3
MB
11883 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11884 }
11885
77241056
MM
11886 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11887 }
11888 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11889 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11890 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11891 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
60368186 11892 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
77241056 11893 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
566c157c
MH
11894 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11895 /* See comment on RcvCtxtCtrl.TailUpd above */
11896 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11897 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11898 }
77241056
MM
11899 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11900 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11901 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11902 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11903 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
4d114fdd
JJ
11904 /*
11905 * In one-packet-per-eager mode, the size comes from
11906 * the RcvArray entry.
11907 */
77241056
MM
11908 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11909 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11910 }
11911 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11912 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11913 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11914 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11915 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11916 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11917 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11918 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11919 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11920 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11921 rcd->rcvctrl = rcvctrl;
11922 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11923 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11924
11925 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
d0d236ea
JJ
11926 if (did_enable &&
11927 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
77241056
MM
11928 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11929 if (reg != 0) {
11930 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
17fb4f29 11931 ctxt, reg);
77241056
MM
11932 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11933 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11934 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11935 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11936 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11937 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
17fb4f29 11938 ctxt, reg, reg == 0 ? "not" : "still");
77241056
MM
11939 }
11940 }
11941
11942 if (did_enable) {
11943 /*
11944 * The interrupt timeout and count must be set after
11945 * the context is enabled to take effect.
11946 */
11947 /* set interrupt timeout */
11948 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
17fb4f29 11949 (u64)rcd->rcvavail_timeout <<
77241056
MM
11950 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11951
11952 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11953 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11954 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11955 }
11956
11957 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11958 /*
11959 * If the context has been disabled and the Tail Update has
46b010d3
MB
11960 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11961 * so it doesn't contain an address that is invalid.
77241056 11962 */
46b010d3 11963 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
60368186 11964 dd->rcvhdrtail_dummy_dma);
77241056
MM
11965}
11966
582e05c3 11967u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
77241056
MM
11968{
11969 int ret;
11970 u64 val = 0;
11971
11972 if (namep) {
11973 ret = dd->cntrnameslen;
77241056
MM
11974 *namep = dd->cntrnames;
11975 } else {
11976 const struct cntr_entry *entry;
11977 int i, j;
11978
11979 ret = (dd->ndevcntrs) * sizeof(u64);
77241056
MM
11980
11981 /* Get the start of the block of counters */
11982 *cntrp = dd->cntrs;
11983
11984 /*
11985 * Now go and fill in each counter in the block.
11986 */
11987 for (i = 0; i < DEV_CNTR_LAST; i++) {
11988 entry = &dev_cntrs[i];
11989 hfi1_cdbg(CNTR, "reading %s", entry->name);
11990 if (entry->flags & CNTR_DISABLED) {
11991 /* Nothing */
11992 hfi1_cdbg(CNTR, "\tDisabled\n");
11993 } else {
11994 if (entry->flags & CNTR_VL) {
11995 hfi1_cdbg(CNTR, "\tPer VL\n");
11996 for (j = 0; j < C_VL_COUNT; j++) {
11997 val = entry->rw_cntr(entry,
11998 dd, j,
11999 CNTR_MODE_R,
12000 0);
12001 hfi1_cdbg(
12002 CNTR,
12003 "\t\tRead 0x%llx for %d\n",
12004 val, j);
12005 dd->cntrs[entry->offset + j] =
12006 val;
12007 }
a699c6c2
VM
12008 } else if (entry->flags & CNTR_SDMA) {
12009 hfi1_cdbg(CNTR,
12010 "\t Per SDMA Engine\n");
12011 for (j = 0; j < dd->chip_sdma_engines;
12012 j++) {
12013 val =
12014 entry->rw_cntr(entry, dd, j,
12015 CNTR_MODE_R, 0);
12016 hfi1_cdbg(CNTR,
12017 "\t\tRead 0x%llx for %d\n",
12018 val, j);
12019 dd->cntrs[entry->offset + j] =
12020 val;
12021 }
77241056
MM
12022 } else {
12023 val = entry->rw_cntr(entry, dd,
12024 CNTR_INVALID_VL,
12025 CNTR_MODE_R, 0);
12026 dd->cntrs[entry->offset] = val;
12027 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12028 }
12029 }
12030 }
12031 }
12032 return ret;
12033}
12034
12035/*
12036 * Used by sysfs to create files for hfi stats to read
12037 */
582e05c3 12038u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
77241056
MM
12039{
12040 int ret;
12041 u64 val = 0;
12042
12043 if (namep) {
582e05c3
DL
12044 ret = ppd->dd->portcntrnameslen;
12045 *namep = ppd->dd->portcntrnames;
77241056
MM
12046 } else {
12047 const struct cntr_entry *entry;
77241056
MM
12048 int i, j;
12049
582e05c3 12050 ret = ppd->dd->nportcntrs * sizeof(u64);
77241056
MM
12051 *cntrp = ppd->cntrs;
12052
12053 for (i = 0; i < PORT_CNTR_LAST; i++) {
12054 entry = &port_cntrs[i];
12055 hfi1_cdbg(CNTR, "reading %s", entry->name);
12056 if (entry->flags & CNTR_DISABLED) {
12057 /* Nothing */
12058 hfi1_cdbg(CNTR, "\tDisabled\n");
12059 continue;
12060 }
12061
12062 if (entry->flags & CNTR_VL) {
12063 hfi1_cdbg(CNTR, "\tPer VL");
12064 for (j = 0; j < C_VL_COUNT; j++) {
12065 val = entry->rw_cntr(entry, ppd, j,
12066 CNTR_MODE_R,
12067 0);
12068 hfi1_cdbg(
12069 CNTR,
12070 "\t\tRead 0x%llx for %d",
12071 val, j);
12072 ppd->cntrs[entry->offset + j] = val;
12073 }
12074 } else {
12075 val = entry->rw_cntr(entry, ppd,
12076 CNTR_INVALID_VL,
12077 CNTR_MODE_R,
12078 0);
12079 ppd->cntrs[entry->offset] = val;
12080 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12081 }
12082 }
12083 }
12084 return ret;
12085}
12086
12087static void free_cntrs(struct hfi1_devdata *dd)
12088{
12089 struct hfi1_pportdata *ppd;
12090 int i;
12091
12092 if (dd->synth_stats_timer.data)
12093 del_timer_sync(&dd->synth_stats_timer);
12094 dd->synth_stats_timer.data = 0;
12095 ppd = (struct hfi1_pportdata *)(dd + 1);
12096 for (i = 0; i < dd->num_pports; i++, ppd++) {
12097 kfree(ppd->cntrs);
12098 kfree(ppd->scntrs);
4eb06882
DD
12099 free_percpu(ppd->ibport_data.rvp.rc_acks);
12100 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12101 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
77241056
MM
12102 ppd->cntrs = NULL;
12103 ppd->scntrs = NULL;
4eb06882
DD
12104 ppd->ibport_data.rvp.rc_acks = NULL;
12105 ppd->ibport_data.rvp.rc_qacks = NULL;
12106 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
77241056
MM
12107 }
12108 kfree(dd->portcntrnames);
12109 dd->portcntrnames = NULL;
12110 kfree(dd->cntrs);
12111 dd->cntrs = NULL;
12112 kfree(dd->scntrs);
12113 dd->scntrs = NULL;
12114 kfree(dd->cntrnames);
12115 dd->cntrnames = NULL;
22546b74
TS
12116 if (dd->update_cntr_wq) {
12117 destroy_workqueue(dd->update_cntr_wq);
12118 dd->update_cntr_wq = NULL;
12119 }
77241056
MM
12120}
12121
77241056
MM
12122static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12123 u64 *psval, void *context, int vl)
12124{
12125 u64 val;
12126 u64 sval = *psval;
12127
12128 if (entry->flags & CNTR_DISABLED) {
12129 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12130 return 0;
12131 }
12132
12133 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12134
12135 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12136
12137 /* If its a synthetic counter there is more work we need to do */
12138 if (entry->flags & CNTR_SYNTH) {
12139 if (sval == CNTR_MAX) {
12140 /* No need to read already saturated */
12141 return CNTR_MAX;
12142 }
12143
12144 if (entry->flags & CNTR_32BIT) {
12145 /* 32bit counters can wrap multiple times */
12146 u64 upper = sval >> 32;
12147 u64 lower = (sval << 32) >> 32;
12148
12149 if (lower > val) { /* hw wrapped */
12150 if (upper == CNTR_32BIT_MAX)
12151 val = CNTR_MAX;
12152 else
12153 upper++;
12154 }
12155
12156 if (val != CNTR_MAX)
12157 val = (upper << 32) | val;
12158
12159 } else {
12160 /* If we rolled we are saturated */
12161 if ((val < sval) || (val > CNTR_MAX))
12162 val = CNTR_MAX;
12163 }
12164 }
12165
12166 *psval = val;
12167
12168 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12169
12170 return val;
12171}
12172
12173static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12174 struct cntr_entry *entry,
12175 u64 *psval, void *context, int vl, u64 data)
12176{
12177 u64 val;
12178
12179 if (entry->flags & CNTR_DISABLED) {
12180 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12181 return 0;
12182 }
12183
12184 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12185
12186 if (entry->flags & CNTR_SYNTH) {
12187 *psval = data;
12188 if (entry->flags & CNTR_32BIT) {
12189 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12190 (data << 32) >> 32);
12191 val = data; /* return the full 64bit value */
12192 } else {
12193 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12194 data);
12195 }
12196 } else {
12197 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12198 }
12199
12200 *psval = val;
12201
12202 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12203
12204 return val;
12205}
12206
12207u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12208{
12209 struct cntr_entry *entry;
12210 u64 *sval;
12211
12212 entry = &dev_cntrs[index];
12213 sval = dd->scntrs + entry->offset;
12214
12215 if (vl != CNTR_INVALID_VL)
12216 sval += vl;
12217
12218 return read_dev_port_cntr(dd, entry, sval, dd, vl);
12219}
12220
12221u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12222{
12223 struct cntr_entry *entry;
12224 u64 *sval;
12225
12226 entry = &dev_cntrs[index];
12227 sval = dd->scntrs + entry->offset;
12228
12229 if (vl != CNTR_INVALID_VL)
12230 sval += vl;
12231
12232 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12233}
12234
12235u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12236{
12237 struct cntr_entry *entry;
12238 u64 *sval;
12239
12240 entry = &port_cntrs[index];
12241 sval = ppd->scntrs + entry->offset;
12242
12243 if (vl != CNTR_INVALID_VL)
12244 sval += vl;
12245
12246 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12247 (index <= C_RCV_HDR_OVF_LAST)) {
12248 /* We do not want to bother for disabled contexts */
12249 return 0;
12250 }
12251
12252 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12253}
12254
12255u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12256{
12257 struct cntr_entry *entry;
12258 u64 *sval;
12259
12260 entry = &port_cntrs[index];
12261 sval = ppd->scntrs + entry->offset;
12262
12263 if (vl != CNTR_INVALID_VL)
12264 sval += vl;
12265
12266 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12267 (index <= C_RCV_HDR_OVF_LAST)) {
12268 /* We do not want to bother for disabled contexts */
12269 return 0;
12270 }
12271
12272 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12273}
12274
22546b74 12275static void do_update_synth_timer(struct work_struct *work)
77241056
MM
12276{
12277 u64 cur_tx;
12278 u64 cur_rx;
12279 u64 total_flits;
12280 u8 update = 0;
12281 int i, j, vl;
12282 struct hfi1_pportdata *ppd;
12283 struct cntr_entry *entry;
22546b74
TS
12284 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12285 update_cntr_work);
77241056
MM
12286
12287 /*
12288 * Rather than keep beating on the CSRs pick a minimal set that we can
12289 * check to watch for potential roll over. We can do this by looking at
12290 * the number of flits sent/recv. If the total flits exceeds 32bits then
12291 * we have to iterate all the counters and update.
12292 */
12293 entry = &dev_cntrs[C_DC_RCV_FLITS];
12294 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12295
12296 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12297 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12298
12299 hfi1_cdbg(
12300 CNTR,
12301 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12302 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12303
12304 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12305 /*
12306 * May not be strictly necessary to update but it won't hurt and
12307 * simplifies the logic here.
12308 */
12309 update = 1;
12310 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12311 dd->unit);
12312 } else {
12313 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12314 hfi1_cdbg(CNTR,
12315 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12316 total_flits, (u64)CNTR_32BIT_MAX);
12317 if (total_flits >= CNTR_32BIT_MAX) {
12318 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12319 dd->unit);
12320 update = 1;
12321 }
12322 }
12323
12324 if (update) {
12325 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12326 for (i = 0; i < DEV_CNTR_LAST; i++) {
12327 entry = &dev_cntrs[i];
12328 if (entry->flags & CNTR_VL) {
12329 for (vl = 0; vl < C_VL_COUNT; vl++)
12330 read_dev_cntr(dd, i, vl);
12331 } else {
12332 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12333 }
12334 }
12335 ppd = (struct hfi1_pportdata *)(dd + 1);
12336 for (i = 0; i < dd->num_pports; i++, ppd++) {
12337 for (j = 0; j < PORT_CNTR_LAST; j++) {
12338 entry = &port_cntrs[j];
12339 if (entry->flags & CNTR_VL) {
12340 for (vl = 0; vl < C_VL_COUNT; vl++)
12341 read_port_cntr(ppd, j, vl);
12342 } else {
12343 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12344 }
12345 }
12346 }
12347
12348 /*
12349 * We want the value in the register. The goal is to keep track
12350 * of the number of "ticks" not the counter value. In other
12351 * words if the register rolls we want to notice it and go ahead
12352 * and force an update.
12353 */
12354 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12355 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12356 CNTR_MODE_R, 0);
12357
12358 entry = &dev_cntrs[C_DC_RCV_FLITS];
12359 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12360 CNTR_MODE_R, 0);
12361
12362 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12363 dd->unit, dd->last_tx, dd->last_rx);
12364
12365 } else {
12366 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12367 }
22546b74 12368}
77241056 12369
22546b74
TS
12370static void update_synth_timer(unsigned long opaque)
12371{
12372 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12373
12374 queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
48a0cc13 12375 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
77241056
MM
12376}
12377
09a7908b 12378#define C_MAX_NAME 16 /* 15 chars + one for /0 */
77241056
MM
12379static int init_cntrs(struct hfi1_devdata *dd)
12380{
c024c554 12381 int i, rcv_ctxts, j;
77241056
MM
12382 size_t sz;
12383 char *p;
12384 char name[C_MAX_NAME];
12385 struct hfi1_pportdata *ppd;
11d2b114
SS
12386 const char *bit_type_32 = ",32";
12387 const int bit_type_32_sz = strlen(bit_type_32);
77241056
MM
12388
12389 /* set up the stats timer; the add_timer is done at the end */
24523a94
MFW
12390 setup_timer(&dd->synth_stats_timer, update_synth_timer,
12391 (unsigned long)dd);
77241056
MM
12392
12393 /***********************/
12394 /* per device counters */
12395 /***********************/
12396
12397 /* size names and determine how many we have*/
12398 dd->ndevcntrs = 0;
12399 sz = 0;
77241056
MM
12400
12401 for (i = 0; i < DEV_CNTR_LAST; i++) {
77241056
MM
12402 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12403 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12404 continue;
12405 }
12406
12407 if (dev_cntrs[i].flags & CNTR_VL) {
c024c554 12408 dev_cntrs[i].offset = dd->ndevcntrs;
77241056 12409 for (j = 0; j < C_VL_COUNT; j++) {
77241056 12410 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 12411 dev_cntrs[i].name, vl_from_idx(j));
77241056 12412 sz += strlen(name);
11d2b114
SS
12413 /* Add ",32" for 32-bit counters */
12414 if (dev_cntrs[i].flags & CNTR_32BIT)
12415 sz += bit_type_32_sz;
77241056 12416 sz++;
77241056 12417 dd->ndevcntrs++;
77241056 12418 }
a699c6c2 12419 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
c024c554 12420 dev_cntrs[i].offset = dd->ndevcntrs;
a699c6c2 12421 for (j = 0; j < dd->chip_sdma_engines; j++) {
a699c6c2
VM
12422 snprintf(name, C_MAX_NAME, "%s%d",
12423 dev_cntrs[i].name, j);
77241056 12424 sz += strlen(name);
11d2b114
SS
12425 /* Add ",32" for 32-bit counters */
12426 if (dev_cntrs[i].flags & CNTR_32BIT)
12427 sz += bit_type_32_sz;
77241056 12428 sz++;
77241056 12429 dd->ndevcntrs++;
77241056
MM
12430 }
12431 } else {
11d2b114 12432 /* +1 for newline. */
77241056 12433 sz += strlen(dev_cntrs[i].name) + 1;
11d2b114
SS
12434 /* Add ",32" for 32-bit counters */
12435 if (dev_cntrs[i].flags & CNTR_32BIT)
12436 sz += bit_type_32_sz;
c024c554 12437 dev_cntrs[i].offset = dd->ndevcntrs;
77241056 12438 dd->ndevcntrs++;
77241056
MM
12439 }
12440 }
12441
12442 /* allocate space for the counter values */
c024c554 12443 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
12444 if (!dd->cntrs)
12445 goto bail;
12446
c024c554 12447 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
77241056
MM
12448 if (!dd->scntrs)
12449 goto bail;
12450
77241056
MM
12451 /* allocate space for the counter names */
12452 dd->cntrnameslen = sz;
12453 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12454 if (!dd->cntrnames)
12455 goto bail;
12456
12457 /* fill in the names */
c024c554 12458 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
77241056
MM
12459 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12460 /* Nothing */
11d2b114
SS
12461 } else if (dev_cntrs[i].flags & CNTR_VL) {
12462 for (j = 0; j < C_VL_COUNT; j++) {
11d2b114
SS
12463 snprintf(name, C_MAX_NAME, "%s%d",
12464 dev_cntrs[i].name,
12465 vl_from_idx(j));
12466 memcpy(p, name, strlen(name));
12467 p += strlen(name);
12468
12469 /* Counter is 32 bits */
12470 if (dev_cntrs[i].flags & CNTR_32BIT) {
12471 memcpy(p, bit_type_32, bit_type_32_sz);
12472 p += bit_type_32_sz;
77241056 12473 }
11d2b114
SS
12474
12475 *p++ = '\n';
12476 }
12477 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12478 for (j = 0; j < dd->chip_sdma_engines; j++) {
11d2b114
SS
12479 snprintf(name, C_MAX_NAME, "%s%d",
12480 dev_cntrs[i].name, j);
12481 memcpy(p, name, strlen(name));
12482 p += strlen(name);
12483
12484 /* Counter is 32 bits */
12485 if (dev_cntrs[i].flags & CNTR_32BIT) {
12486 memcpy(p, bit_type_32, bit_type_32_sz);
12487 p += bit_type_32_sz;
a699c6c2 12488 }
11d2b114 12489
77241056
MM
12490 *p++ = '\n';
12491 }
11d2b114
SS
12492 } else {
12493 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12494 p += strlen(dev_cntrs[i].name);
12495
12496 /* Counter is 32 bits */
12497 if (dev_cntrs[i].flags & CNTR_32BIT) {
12498 memcpy(p, bit_type_32, bit_type_32_sz);
12499 p += bit_type_32_sz;
12500 }
12501
12502 *p++ = '\n';
77241056
MM
12503 }
12504 }
12505
12506 /*********************/
12507 /* per port counters */
12508 /*********************/
12509
12510 /*
12511 * Go through the counters for the overflows and disable the ones we
12512 * don't need. This varies based on platform so we need to do it
12513 * dynamically here.
12514 */
12515 rcv_ctxts = dd->num_rcv_contexts;
12516 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12517 i <= C_RCV_HDR_OVF_LAST; i++) {
12518 port_cntrs[i].flags |= CNTR_DISABLED;
12519 }
12520
12521 /* size port counter names and determine how many we have*/
12522 sz = 0;
12523 dd->nportcntrs = 0;
12524 for (i = 0; i < PORT_CNTR_LAST; i++) {
77241056
MM
12525 if (port_cntrs[i].flags & CNTR_DISABLED) {
12526 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12527 continue;
12528 }
12529
12530 if (port_cntrs[i].flags & CNTR_VL) {
77241056
MM
12531 port_cntrs[i].offset = dd->nportcntrs;
12532 for (j = 0; j < C_VL_COUNT; j++) {
77241056 12533 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 12534 port_cntrs[i].name, vl_from_idx(j));
77241056 12535 sz += strlen(name);
11d2b114
SS
12536 /* Add ",32" for 32-bit counters */
12537 if (port_cntrs[i].flags & CNTR_32BIT)
12538 sz += bit_type_32_sz;
77241056 12539 sz++;
77241056
MM
12540 dd->nportcntrs++;
12541 }
12542 } else {
11d2b114 12543 /* +1 for newline */
77241056 12544 sz += strlen(port_cntrs[i].name) + 1;
11d2b114
SS
12545 /* Add ",32" for 32-bit counters */
12546 if (port_cntrs[i].flags & CNTR_32BIT)
12547 sz += bit_type_32_sz;
77241056
MM
12548 port_cntrs[i].offset = dd->nportcntrs;
12549 dd->nportcntrs++;
77241056
MM
12550 }
12551 }
12552
12553 /* allocate space for the counter names */
12554 dd->portcntrnameslen = sz;
12555 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12556 if (!dd->portcntrnames)
12557 goto bail;
12558
12559 /* fill in port cntr names */
12560 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12561 if (port_cntrs[i].flags & CNTR_DISABLED)
12562 continue;
12563
12564 if (port_cntrs[i].flags & CNTR_VL) {
12565 for (j = 0; j < C_VL_COUNT; j++) {
77241056 12566 snprintf(name, C_MAX_NAME, "%s%d",
17fb4f29 12567 port_cntrs[i].name, vl_from_idx(j));
77241056
MM
12568 memcpy(p, name, strlen(name));
12569 p += strlen(name);
11d2b114
SS
12570
12571 /* Counter is 32 bits */
12572 if (port_cntrs[i].flags & CNTR_32BIT) {
12573 memcpy(p, bit_type_32, bit_type_32_sz);
12574 p += bit_type_32_sz;
12575 }
12576
77241056
MM
12577 *p++ = '\n';
12578 }
12579 } else {
12580 memcpy(p, port_cntrs[i].name,
12581 strlen(port_cntrs[i].name));
12582 p += strlen(port_cntrs[i].name);
11d2b114
SS
12583
12584 /* Counter is 32 bits */
12585 if (port_cntrs[i].flags & CNTR_32BIT) {
12586 memcpy(p, bit_type_32, bit_type_32_sz);
12587 p += bit_type_32_sz;
12588 }
12589
77241056
MM
12590 *p++ = '\n';
12591 }
12592 }
12593
12594 /* allocate per port storage for counter values */
12595 ppd = (struct hfi1_pportdata *)(dd + 1);
12596 for (i = 0; i < dd->num_pports; i++, ppd++) {
12597 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12598 if (!ppd->cntrs)
12599 goto bail;
12600
12601 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12602 if (!ppd->scntrs)
12603 goto bail;
12604 }
12605
12606 /* CPU counters need to be allocated and zeroed */
12607 if (init_cpu_counters(dd))
12608 goto bail;
12609
22546b74
TS
12610 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12611 WQ_MEM_RECLAIM, dd->unit);
12612 if (!dd->update_cntr_wq)
12613 goto bail;
12614
12615 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12616
77241056
MM
12617 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12618 return 0;
12619bail:
12620 free_cntrs(dd);
12621 return -ENOMEM;
12622}
12623
77241056
MM
12624static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12625{
12626 switch (chip_lstate) {
12627 default:
12628 dd_dev_err(dd,
17fb4f29
JJ
12629 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12630 chip_lstate);
77241056
MM
12631 /* fall through */
12632 case LSTATE_DOWN:
12633 return IB_PORT_DOWN;
12634 case LSTATE_INIT:
12635 return IB_PORT_INIT;
12636 case LSTATE_ARMED:
12637 return IB_PORT_ARMED;
12638 case LSTATE_ACTIVE:
12639 return IB_PORT_ACTIVE;
12640 }
12641}
12642
12643u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12644{
12645 /* look at the HFI meta-states only */
12646 switch (chip_pstate & 0xf0) {
12647 default:
12648 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
17fb4f29 12649 chip_pstate);
77241056
MM
12650 /* fall through */
12651 case PLS_DISABLED:
12652 return IB_PORTPHYSSTATE_DISABLED;
12653 case PLS_OFFLINE:
12654 return OPA_PORTPHYSSTATE_OFFLINE;
12655 case PLS_POLLING:
12656 return IB_PORTPHYSSTATE_POLLING;
12657 case PLS_CONFIGPHY:
12658 return IB_PORTPHYSSTATE_TRAINING;
12659 case PLS_LINKUP:
12660 return IB_PORTPHYSSTATE_LINKUP;
12661 case PLS_PHYTEST:
12662 return IB_PORTPHYSSTATE_PHY_TEST;
12663 }
12664}
12665
12666/* return the OPA port logical state name */
12667const char *opa_lstate_name(u32 lstate)
12668{
12669 static const char * const port_logical_names[] = {
12670 "PORT_NOP",
12671 "PORT_DOWN",
12672 "PORT_INIT",
12673 "PORT_ARMED",
12674 "PORT_ACTIVE",
12675 "PORT_ACTIVE_DEFER",
12676 };
12677 if (lstate < ARRAY_SIZE(port_logical_names))
12678 return port_logical_names[lstate];
12679 return "unknown";
12680}
12681
12682/* return the OPA port physical state name */
12683const char *opa_pstate_name(u32 pstate)
12684{
12685 static const char * const port_physical_names[] = {
12686 "PHYS_NOP",
12687 "reserved1",
12688 "PHYS_POLL",
12689 "PHYS_DISABLED",
12690 "PHYS_TRAINING",
12691 "PHYS_LINKUP",
12692 "PHYS_LINK_ERR_RECOVER",
12693 "PHYS_PHY_TEST",
12694 "reserved8",
12695 "PHYS_OFFLINE",
12696 "PHYS_GANGED",
12697 "PHYS_TEST",
12698 };
12699 if (pstate < ARRAY_SIZE(port_physical_names))
12700 return port_physical_names[pstate];
12701 return "unknown";
12702}
12703
02a222c7 12704static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
77241056 12705{
77241056
MM
12706 /*
12707 * Set port status flags in the page mapped into userspace
12708 * memory. Do it here to ensure a reliable state - this is
12709 * the only function called by all state handling code.
12710 * Always set the flags due to the fact that the cache value
12711 * might have been changed explicitly outside of this
12712 * function.
12713 */
12714 if (ppd->statusp) {
02a222c7 12715 switch (state) {
77241056
MM
12716 case IB_PORT_DOWN:
12717 case IB_PORT_INIT:
12718 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12719 HFI1_STATUS_IB_READY);
12720 break;
12721 case IB_PORT_ARMED:
12722 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12723 break;
12724 case IB_PORT_ACTIVE:
12725 *ppd->statusp |= HFI1_STATUS_IB_READY;
12726 break;
12727 }
12728 }
77241056
MM
12729}
12730
02a222c7 12731/*
77241056
MM
12732 * wait_logical_linkstate - wait for an IB link state change to occur
12733 * @ppd: port device
12734 * @state: the state to wait for
12735 * @msecs: the number of milliseconds to wait
12736 *
12737 * Wait up to msecs milliseconds for IB link state change to occur.
12738 * For now, take the easy polling route.
12739 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12740 */
12741static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12742 int msecs)
12743{
12744 unsigned long timeout;
02a222c7 12745 u32 new_state;
77241056
MM
12746
12747 timeout = jiffies + msecs_to_jiffies(msecs);
12748 while (1) {
02a222c7
BJ
12749 new_state = chip_to_opa_lstate(ppd->dd,
12750 read_logical_state(ppd->dd));
12751 if (new_state == state)
77241056 12752 break;
02a222c7
BJ
12753 if (time_after(jiffies, timeout)) {
12754 dd_dev_err(ppd->dd,
12755 "timeout waiting for link state 0x%x\n",
12756 state);
12757 return -ETIMEDOUT;
12758 }
77241056
MM
12759 msleep(20);
12760 }
77241056 12761
02a222c7
BJ
12762 update_statusp(ppd, state);
12763 dd_dev_info(ppd->dd,
12764 "logical state changed to %s (0x%x)\n",
12765 opa_lstate_name(state),
12766 state);
12767 return 0;
77241056
MM
12768}
12769
d392a673
JB
12770static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12771{
12772 u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12773
12774 dd_dev_info(ppd->dd,
12775 "physical state changed to %s (0x%x), phy 0x%x\n",
12776 opa_pstate_name(ib_pstate), ib_pstate, state);
12777}
12778
bec7c79c 12779/*
d392a673
JB
12780 * Read the physical hardware link state and check if it matches host
12781 * drivers anticipated state.
bec7c79c 12782 */
d392a673 12783static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
77241056 12784{
d392a673 12785 u32 read_state = read_physical_state(ppd->dd);
77241056 12786
d392a673
JB
12787 if (read_state == state) {
12788 log_state_transition(ppd, state);
12789 } else {
12790 dd_dev_err(ppd->dd,
12791 "anticipated phy link state 0x%x, read 0x%x\n",
12792 state, read_state);
bec7c79c 12793 }
bec7c79c
BJ
12794}
12795
12796/*
12797 * wait_physical_linkstate - wait for an physical link state change to occur
12798 * @ppd: port device
12799 * @state: the state to wait for
12800 * @msecs: the number of milliseconds to wait
12801 *
12802 * Wait up to msecs milliseconds for physical link state change to occur.
12803 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12804 */
12805static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12806 int msecs)
12807{
d392a673 12808 u32 read_state;
bec7c79c
BJ
12809 unsigned long timeout;
12810
12811 timeout = jiffies + msecs_to_jiffies(msecs);
12812 while (1) {
d392a673
JB
12813 read_state = read_physical_state(ppd->dd);
12814 if (read_state == state)
bec7c79c
BJ
12815 break;
12816 if (time_after(jiffies, timeout)) {
12817 dd_dev_err(ppd->dd,
d392a673
JB
12818 "timeout waiting for phy link state 0x%x\n",
12819 state);
bec7c79c
BJ
12820 return -ETIMEDOUT;
12821 }
12822 usleep_range(1950, 2050); /* sleep 2ms-ish */
77241056 12823 }
bec7c79c 12824
d392a673 12825 log_state_transition(ppd, state);
bec7c79c 12826 return 0;
77241056
MM
12827}
12828
df5efdd9
SS
12829/*
12830 * wait_phys_link_offline_quiet_substates - wait for any offline substate
12831 * @ppd: port device
12832 * @msecs: the number of milliseconds to wait
12833 *
12834 * Wait up to msecs milliseconds for any offline physical link
12835 * state change to occur.
12836 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12837 */
12838static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12839 int msecs)
12840{
12841 u32 read_state;
12842 unsigned long timeout;
12843
12844 timeout = jiffies + msecs_to_jiffies(msecs);
12845 while (1) {
12846 read_state = read_physical_state(ppd->dd);
12847 if ((read_state & 0xF0) == PLS_OFFLINE)
12848 break;
12849 if (time_after(jiffies, timeout)) {
12850 dd_dev_err(ppd->dd,
12851 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12852 read_state, msecs);
12853 return -ETIMEDOUT;
12854 }
12855 usleep_range(1950, 2050); /* sleep 2ms-ish */
12856 }
12857
12858 log_state_transition(ppd, read_state);
12859 return read_state;
12860}
12861
77241056
MM
12862#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12863(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12864
12865#define SET_STATIC_RATE_CONTROL_SMASK(r) \
12866(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12867
9b60d2cb 12868void hfi1_init_ctxt(struct send_context *sc)
77241056 12869{
d125a6c6 12870 if (sc) {
77241056
MM
12871 struct hfi1_devdata *dd = sc->dd;
12872 u64 reg;
12873 u8 set = (sc->type == SC_USER ?
12874 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12875 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12876 reg = read_kctxt_csr(dd, sc->hw_context,
12877 SEND_CTXT_CHECK_ENABLE);
12878 if (set)
12879 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12880 else
12881 SET_STATIC_RATE_CONTROL_SMASK(reg);
12882 write_kctxt_csr(dd, sc->hw_context,
12883 SEND_CTXT_CHECK_ENABLE, reg);
12884 }
77241056
MM
12885}
12886
12887int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12888{
12889 int ret = 0;
12890 u64 reg;
12891
12892 if (dd->icode != ICODE_RTL_SILICON) {
12893 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12894 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12895 __func__);
12896 return -EINVAL;
12897 }
12898 reg = read_csr(dd, ASIC_STS_THERM);
12899 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12900 ASIC_STS_THERM_CURR_TEMP_MASK);
12901 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12902 ASIC_STS_THERM_LO_TEMP_MASK);
12903 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12904 ASIC_STS_THERM_HI_TEMP_MASK);
12905 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12906 ASIC_STS_THERM_CRIT_TEMP_MASK);
12907 /* triggers is a 3-bit value - 1 bit per trigger. */
12908 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12909
12910 return ret;
12911}
12912
12913/* ========================================================================= */
12914
12915/*
12916 * Enable/disable chip from delivering interrupts.
12917 */
12918void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12919{
12920 int i;
12921
12922 /*
12923 * In HFI, the mask needs to be 1 to allow interrupts.
12924 */
12925 if (enable) {
77241056
MM
12926 /* enable all interrupts */
12927 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12928 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
77241056 12929
8ebd4cf1 12930 init_qsfp_int(dd);
77241056
MM
12931 } else {
12932 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12933 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
77241056
MM
12934 }
12935}
12936
12937/*
12938 * Clear all interrupt sources on the chip.
12939 */
12940static void clear_all_interrupts(struct hfi1_devdata *dd)
12941{
12942 int i;
12943
12944 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 12945 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
77241056
MM
12946
12947 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12948 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12949 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12950 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12951 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12952 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12953 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12954 for (i = 0; i < dd->chip_send_contexts; i++)
12955 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12956 for (i = 0; i < dd->chip_sdma_engines; i++)
12957 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12958
12959 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12960 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12961 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12962}
12963
12964/* Move to pcie.c? */
12965static void disable_intx(struct pci_dev *pdev)
12966{
12967 pci_intx(pdev, 0);
12968}
12969
12970static void clean_up_interrupts(struct hfi1_devdata *dd)
12971{
12972 int i;
12973
12974 /* remove irqs - must happen before disabling/turning off */
12975 if (dd->num_msix_entries) {
12976 /* MSI-X */
12977 struct hfi1_msix_entry *me = dd->msix_entries;
12978
12979 for (i = 0; i < dd->num_msix_entries; i++, me++) {
d125a6c6 12980 if (!me->arg) /* => no irq, no affinity */
957558c9 12981 continue;
bb7dde87
MR
12982 hfi1_put_irq_affinity(dd, me);
12983 free_irq(me->irq, me->arg);
77241056 12984 }
bb7dde87
MR
12985
12986 /* clean structures */
12987 kfree(dd->msix_entries);
12988 dd->msix_entries = NULL;
12989 dd->num_msix_entries = 0;
77241056
MM
12990 } else {
12991 /* INTx */
12992 if (dd->requested_intx_irq) {
12993 free_irq(dd->pcidev->irq, dd);
12994 dd->requested_intx_irq = 0;
12995 }
77241056
MM
12996 disable_intx(dd->pcidev);
12997 }
12998
bb7dde87 12999 pci_free_irq_vectors(dd->pcidev);
77241056
MM
13000}
13001
13002/*
13003 * Remap the interrupt source from the general handler to the given MSI-X
13004 * interrupt.
13005 */
13006static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13007{
13008 u64 reg;
13009 int m, n;
13010
13011 /* clear from the handled mask of the general interrupt */
13012 m = isrc / 64;
13013 n = isrc % 64;
bc54f671
DD
13014 if (likely(m < CCE_NUM_INT_CSRS)) {
13015 dd->gi_mask[m] &= ~((u64)1 << n);
13016 } else {
13017 dd_dev_err(dd, "remap interrupt err\n");
13018 return;
13019 }
77241056
MM
13020
13021 /* direct the chip source to the given MSI-X interrupt */
13022 m = isrc / 8;
13023 n = isrc % 8;
8638b77f
JJ
13024 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13025 reg &= ~((u64)0xff << (8 * n));
13026 reg |= ((u64)msix_intr & 0xff) << (8 * n);
13027 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
77241056
MM
13028}
13029
13030static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13031 int engine, int msix_intr)
13032{
13033 /*
13034 * SDMA engine interrupt sources grouped by type, rather than
13035 * engine. Per-engine interrupts are as follows:
13036 * SDMA
13037 * SDMAProgress
13038 * SDMAIdle
13039 */
8638b77f 13040 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 13041 msix_intr);
8638b77f 13042 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 13043 msix_intr);
8638b77f 13044 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
17fb4f29 13045 msix_intr);
77241056
MM
13046}
13047
77241056
MM
13048static int request_intx_irq(struct hfi1_devdata *dd)
13049{
13050 int ret;
13051
9805071e
JJ
13052 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
13053 dd->unit);
77241056 13054 ret = request_irq(dd->pcidev->irq, general_interrupt,
17fb4f29 13055 IRQF_SHARED, dd->intx_name, dd);
77241056
MM
13056 if (ret)
13057 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
17fb4f29 13058 ret);
77241056
MM
13059 else
13060 dd->requested_intx_irq = 1;
13061 return ret;
13062}
13063
13064static int request_msix_irqs(struct hfi1_devdata *dd)
13065{
77241056
MM
13066 int first_general, last_general;
13067 int first_sdma, last_sdma;
13068 int first_rx, last_rx;
957558c9 13069 int i, ret = 0;
77241056
MM
13070
13071 /* calculate the ranges we are going to use */
13072 first_general = 0;
f3ff8189
JJ
13073 last_general = first_general + 1;
13074 first_sdma = last_general;
13075 last_sdma = first_sdma + dd->num_sdma;
13076 first_rx = last_sdma;
2280740f
VN
13077 last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13078
13079 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13080 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
77241056 13081
77241056
MM
13082 /*
13083 * Sanity check - the code expects all SDMA chip source
13084 * interrupts to be in the same CSR, starting at bit 0. Verify
13085 * that this is true by checking the bit location of the start.
13086 */
13087 BUILD_BUG_ON(IS_SDMA_START % 64);
13088
13089 for (i = 0; i < dd->num_msix_entries; i++) {
13090 struct hfi1_msix_entry *me = &dd->msix_entries[i];
13091 const char *err_info;
13092 irq_handler_t handler;
f4f30031 13093 irq_handler_t thread = NULL;
2280740f 13094 void *arg = NULL;
77241056
MM
13095 int idx;
13096 struct hfi1_ctxtdata *rcd = NULL;
13097 struct sdma_engine *sde = NULL;
13098
13099 /* obtain the arguments to request_irq */
13100 if (first_general <= i && i < last_general) {
13101 idx = i - first_general;
13102 handler = general_interrupt;
13103 arg = dd;
13104 snprintf(me->name, sizeof(me->name),
9805071e 13105 DRIVER_NAME "_%d", dd->unit);
77241056 13106 err_info = "general";
957558c9 13107 me->type = IRQ_GENERAL;
77241056
MM
13108 } else if (first_sdma <= i && i < last_sdma) {
13109 idx = i - first_sdma;
13110 sde = &dd->per_sdma[idx];
13111 handler = sdma_interrupt;
13112 arg = sde;
13113 snprintf(me->name, sizeof(me->name),
9805071e 13114 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
77241056
MM
13115 err_info = "sdma";
13116 remap_sdma_interrupts(dd, idx, i);
957558c9 13117 me->type = IRQ_SDMA;
77241056
MM
13118 } else if (first_rx <= i && i < last_rx) {
13119 idx = i - first_rx;
d295dbeb 13120 rcd = hfi1_rcd_get_by_index(dd, idx);
2280740f
VN
13121 if (rcd) {
13122 /*
13123 * Set the interrupt register and mask for this
13124 * context's interrupt.
13125 */
13126 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13127 rcd->imask = ((u64)1) <<
13128 ((IS_RCVAVAIL_START + idx) % 64);
13129 handler = receive_context_interrupt;
13130 thread = receive_context_thread;
13131 arg = rcd;
13132 snprintf(me->name, sizeof(me->name),
13133 DRIVER_NAME "_%d kctxt%d",
13134 dd->unit, idx);
13135 err_info = "receive context";
13136 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13137 me->type = IRQ_RCVCTXT;
13138 rcd->msix_intr = i;
d295dbeb 13139 hfi1_rcd_put(rcd);
2280740f 13140 }
77241056
MM
13141 } else {
13142 /* not in our expected range - complain, then
4d114fdd
JJ
13143 * ignore it
13144 */
77241056 13145 dd_dev_err(dd,
17fb4f29 13146 "Unexpected extra MSI-X interrupt %d\n", i);
77241056
MM
13147 continue;
13148 }
13149 /* no argument, no interrupt */
d125a6c6 13150 if (!arg)
77241056
MM
13151 continue;
13152 /* make sure the name is terminated */
8638b77f 13153 me->name[sizeof(me->name) - 1] = 0;
bb7dde87
MR
13154 me->irq = pci_irq_vector(dd->pcidev, i);
13155 /*
13156 * On err return me->irq. Don't need to clear this
13157 * because 'arg' has not been set, and cleanup will
13158 * do the right thing.
13159 */
13160 if (me->irq < 0)
13161 return me->irq;
77241056 13162
bb7dde87 13163 ret = request_threaded_irq(me->irq, handler, thread, 0,
17fb4f29 13164 me->name, arg);
77241056
MM
13165 if (ret) {
13166 dd_dev_err(dd,
bb7dde87
MR
13167 "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13168 err_info, me->irq, idx, ret);
77241056
MM
13169 return ret;
13170 }
13171 /*
13172 * assign arg after request_irq call, so it will be
13173 * cleaned up
13174 */
13175 me->arg = arg;
13176
957558c9
MH
13177 ret = hfi1_get_irq_affinity(dd, me);
13178 if (ret)
bb7dde87 13179 dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
77241056
MM
13180 }
13181
77241056 13182 return ret;
77241056
MM
13183}
13184
2280740f
VN
13185void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13186{
13187 int i;
13188
13189 if (!dd->num_msix_entries) {
13190 synchronize_irq(dd->pcidev->irq);
13191 return;
13192 }
13193
13194 for (i = 0; i < dd->vnic.num_ctxt; i++) {
13195 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13196 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13197
bb7dde87 13198 synchronize_irq(me->irq);
2280740f
VN
13199 }
13200}
13201
13202void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13203{
13204 struct hfi1_devdata *dd = rcd->dd;
13205 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13206
13207 if (!me->arg) /* => no irq, no affinity */
13208 return;
13209
13210 hfi1_put_irq_affinity(dd, me);
bb7dde87 13211 free_irq(me->irq, me->arg);
2280740f
VN
13212
13213 me->arg = NULL;
13214}
13215
13216void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13217{
13218 struct hfi1_devdata *dd = rcd->dd;
13219 struct hfi1_msix_entry *me;
13220 int idx = rcd->ctxt;
13221 void *arg = rcd;
13222 int ret;
13223
13224 rcd->msix_intr = dd->vnic.msix_idx++;
13225 me = &dd->msix_entries[rcd->msix_intr];
13226
13227 /*
13228 * Set the interrupt register and mask for this
13229 * context's interrupt.
13230 */
13231 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13232 rcd->imask = ((u64)1) <<
13233 ((IS_RCVAVAIL_START + idx) % 64);
13234
13235 snprintf(me->name, sizeof(me->name),
13236 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13237 me->name[sizeof(me->name) - 1] = 0;
13238 me->type = IRQ_RCVCTXT;
bb7dde87
MR
13239 me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13240 if (me->irq < 0) {
13241 dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
13242 idx, me->irq);
13243 return;
13244 }
2280740f
VN
13245 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13246
bb7dde87 13247 ret = request_threaded_irq(me->irq, receive_context_interrupt,
2280740f
VN
13248 receive_context_thread, 0, me->name, arg);
13249 if (ret) {
bb7dde87
MR
13250 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13251 me->irq, idx, ret);
2280740f
VN
13252 return;
13253 }
13254 /*
13255 * assign arg after request_irq call, so it will be
13256 * cleaned up
13257 */
13258 me->arg = arg;
13259
13260 ret = hfi1_get_irq_affinity(dd, me);
13261 if (ret) {
13262 dd_dev_err(dd,
13263 "unable to pin IRQ %d\n", ret);
bb7dde87 13264 free_irq(me->irq, me->arg);
2280740f
VN
13265 }
13266}
13267
77241056
MM
13268/*
13269 * Set the general handler to accept all interrupts, remap all
13270 * chip interrupts back to MSI-X 0.
13271 */
13272static void reset_interrupts(struct hfi1_devdata *dd)
13273{
13274 int i;
13275
13276 /* all interrupts handled by the general handler */
13277 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13278 dd->gi_mask[i] = ~(u64)0;
13279
13280 /* all chip interrupts map to MSI-X 0 */
13281 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8638b77f 13282 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
77241056
MM
13283}
13284
13285static int set_up_interrupts(struct hfi1_devdata *dd)
13286{
bb7dde87
MR
13287 u32 total;
13288 int ret, request;
77241056
MM
13289 int single_interrupt = 0; /* we expect to have all the interrupts */
13290
13291 /*
13292 * Interrupt count:
13293 * 1 general, "slow path" interrupt (includes the SDMA engines
13294 * slow source, SDMACleanupDone)
13295 * N interrupts - one per used SDMA engine
13296 * M interrupt - one per kernel receive context
13297 */
2280740f 13298 total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
77241056 13299
77241056 13300 /* ask for MSI-X interrupts */
bb7dde87
MR
13301 request = request_msix(dd, total);
13302 if (request < 0) {
13303 ret = request;
13304 goto fail;
13305 } else if (request == 0) {
77241056
MM
13306 /* using INTx */
13307 /* dd->num_msix_entries already zero */
77241056
MM
13308 single_interrupt = 1;
13309 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
bb7dde87
MR
13310 } else if (request < total) {
13311 /* using MSI-X, with reduced interrupts */
13312 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13313 total, request);
13314 ret = -EINVAL;
13315 goto fail;
77241056 13316 } else {
bb7dde87
MR
13317 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13318 GFP_KERNEL);
13319 if (!dd->msix_entries) {
13320 ret = -ENOMEM;
77241056
MM
13321 goto fail;
13322 }
bb7dde87
MR
13323 /* using MSI-X */
13324 dd->num_msix_entries = total;
77241056
MM
13325 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13326 }
13327
13328 /* mask all interrupts */
13329 set_intr_state(dd, 0);
13330 /* clear all pending interrupts */
13331 clear_all_interrupts(dd);
13332
13333 /* reset general handler mask, chip MSI-X mappings */
13334 reset_interrupts(dd);
13335
13336 if (single_interrupt)
13337 ret = request_intx_irq(dd);
13338 else
13339 ret = request_msix_irqs(dd);
13340 if (ret)
13341 goto fail;
13342
13343 return 0;
13344
13345fail:
13346 clean_up_interrupts(dd);
13347 return ret;
13348}
13349
13350/*
13351 * Set up context values in dd. Sets:
13352 *
13353 * num_rcv_contexts - number of contexts being used
13354 * n_krcv_queues - number of kernel contexts
2280740f
VN
13355 * first_dyn_alloc_ctxt - first dynamically allocated context
13356 * in array of contexts
77241056
MM
13357 * freectxts - number of free user contexts
13358 * num_send_contexts - number of PIO send contexts being used
13359 */
13360static int set_up_context_variables(struct hfi1_devdata *dd)
13361{
429b6a72 13362 unsigned long num_kernel_contexts;
77241056
MM
13363 int total_contexts;
13364 int ret;
13365 unsigned ngroups;
8f000f7f
DL
13366 int qos_rmt_count;
13367 int user_rmt_reduced;
77241056
MM
13368
13369 /*
33a9eb52 13370 * Kernel receive contexts:
82c2611d 13371 * - Context 0 - control context (VL15/multicast/error)
33a9eb52
DL
13372 * - Context 1 - first kernel context
13373 * - Context 2 - second kernel context
13374 * ...
77241056
MM
13375 */
13376 if (n_krcvqs)
82c2611d 13377 /*
33a9eb52
DL
13378 * n_krcvqs is the sum of module parameter kernel receive
13379 * contexts, krcvqs[]. It does not include the control
13380 * context, so add that.
82c2611d 13381 */
33a9eb52 13382 num_kernel_contexts = n_krcvqs + 1;
77241056 13383 else
8784ac02 13384 num_kernel_contexts = DEFAULT_KRCVQS + 1;
77241056
MM
13385 /*
13386 * Every kernel receive context needs an ACK send context.
13387 * one send context is allocated for each VL{0-7} and VL15
13388 */
13389 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13390 dd_dev_err(dd,
429b6a72 13391 "Reducing # kernel rcv contexts to: %d, from %lu\n",
77241056 13392 (int)(dd->chip_send_contexts - num_vls - 1),
429b6a72 13393 num_kernel_contexts);
77241056
MM
13394 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13395 }
13396 /*
0852d241
JJ
13397 * User contexts:
13398 * - default to 1 user context per real (non-HT) CPU core if
13399 * num_user_contexts is negative
77241056 13400 */
2ce6bf22 13401 if (num_user_contexts < 0)
0852d241 13402 num_user_contexts =
4197344b 13403 cpumask_weight(&node_affinity.real_cpu_mask);
77241056
MM
13404
13405 total_contexts = num_kernel_contexts + num_user_contexts;
13406
13407 /*
13408 * Adjust the counts given a global max.
13409 */
13410 if (total_contexts > dd->chip_rcv_contexts) {
13411 dd_dev_err(dd,
13412 "Reducing # user receive contexts to: %d, from %d\n",
13413 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13414 (int)num_user_contexts);
13415 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13416 /* recalculate */
13417 total_contexts = num_kernel_contexts + num_user_contexts;
13418 }
13419
8f000f7f
DL
13420 /* each user context requires an entry in the RMT */
13421 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13422 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13423 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13424 dd_dev_err(dd,
13425 "RMT size is reducing the number of user receive contexts from %d to %d\n",
13426 (int)num_user_contexts,
13427 user_rmt_reduced);
13428 /* recalculate */
13429 num_user_contexts = user_rmt_reduced;
13430 total_contexts = num_kernel_contexts + num_user_contexts;
13431 }
13432
2280740f
VN
13433 /* Accommodate VNIC contexts */
13434 if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13435 total_contexts += HFI1_NUM_VNIC_CTXT;
13436
13437 /* the first N are kernel contexts, the rest are user/vnic contexts */
77241056
MM
13438 dd->num_rcv_contexts = total_contexts;
13439 dd->n_krcv_queues = num_kernel_contexts;
2280740f 13440 dd->first_dyn_alloc_ctxt = num_kernel_contexts;
affa48de 13441 dd->num_user_contexts = num_user_contexts;
77241056
MM
13442 dd->freectxts = num_user_contexts;
13443 dd_dev_info(dd,
17fb4f29
JJ
13444 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13445 (int)dd->chip_rcv_contexts,
13446 (int)dd->num_rcv_contexts,
13447 (int)dd->n_krcv_queues,
13448 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
77241056
MM
13449
13450 /*
13451 * Receive array allocation:
13452 * All RcvArray entries are divided into groups of 8. This
13453 * is required by the hardware and will speed up writes to
13454 * consecutive entries by using write-combining of the entire
13455 * cacheline.
13456 *
13457 * The number of groups are evenly divided among all contexts.
13458 * any left over groups will be given to the first N user
13459 * contexts.
13460 */
13461 dd->rcv_entries.group_size = RCV_INCREMENT;
13462 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13463 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13464 dd->rcv_entries.nctxt_extra = ngroups -
13465 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13466 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13467 dd->rcv_entries.ngroups,
13468 dd->rcv_entries.nctxt_extra);
13469 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13470 MAX_EAGER_ENTRIES * 2) {
13471 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13472 dd->rcv_entries.group_size;
13473 dd_dev_info(dd,
17fb4f29
JJ
13474 "RcvArray group count too high, change to %u\n",
13475 dd->rcv_entries.ngroups);
77241056
MM
13476 dd->rcv_entries.nctxt_extra = 0;
13477 }
13478 /*
13479 * PIO send contexts
13480 */
13481 ret = init_sc_pools_and_sizes(dd);
13482 if (ret >= 0) { /* success */
13483 dd->num_send_contexts = ret;
13484 dd_dev_info(
13485 dd,
44306f15 13486 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
77241056
MM
13487 dd->chip_send_contexts,
13488 dd->num_send_contexts,
13489 dd->sc_sizes[SC_KERNEL].count,
13490 dd->sc_sizes[SC_ACK].count,
44306f15
JX
13491 dd->sc_sizes[SC_USER].count,
13492 dd->sc_sizes[SC_VL15].count);
77241056
MM
13493 ret = 0; /* success */
13494 }
13495
13496 return ret;
13497}
13498
13499/*
13500 * Set the device/port partition key table. The MAD code
13501 * will ensure that, at least, the partial management
13502 * partition key is present in the table.
13503 */
13504static void set_partition_keys(struct hfi1_pportdata *ppd)
13505{
13506 struct hfi1_devdata *dd = ppd->dd;
13507 u64 reg = 0;
13508 int i;
13509
13510 dd_dev_info(dd, "Setting partition keys\n");
13511 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13512 reg |= (ppd->pkeys[i] &
13513 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13514 ((i % 4) *
13515 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13516 /* Each register holds 4 PKey values. */
13517 if ((i % 4) == 3) {
13518 write_csr(dd, RCV_PARTITION_KEY +
13519 ((i - 3) * 2), reg);
13520 reg = 0;
13521 }
13522 }
13523
13524 /* Always enable HW pkeys check when pkeys table is set */
13525 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13526}
13527
13528/*
13529 * These CSRs and memories are uninitialized on reset and must be
13530 * written before reading to set the ECC/parity bits.
13531 *
13532 * NOTE: All user context CSRs that are not mmaped write-only
13533 * (e.g. the TID flows) must be initialized even if the driver never
13534 * reads them.
13535 */
13536static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13537{
13538 int i, j;
13539
13540 /* CceIntMap */
13541 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8638b77f 13542 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
77241056
MM
13543
13544 /* SendCtxtCreditReturnAddr */
13545 for (i = 0; i < dd->chip_send_contexts; i++)
13546 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13547
13548 /* PIO Send buffers */
13549 /* SDMA Send buffers */
4d114fdd
JJ
13550 /*
13551 * These are not normally read, and (presently) have no method
13552 * to be read, so are not pre-initialized
13553 */
77241056
MM
13554
13555 /* RcvHdrAddr */
13556 /* RcvHdrTailAddr */
13557 /* RcvTidFlowTable */
13558 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13559 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13560 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13561 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
8638b77f 13562 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
77241056
MM
13563 }
13564
13565 /* RcvArray */
13566 for (i = 0; i < dd->chip_rcv_array_count; i++)
cb51c5d2 13567 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
77241056
MM
13568
13569 /* RcvQPMapTable */
13570 for (i = 0; i < 32; i++)
13571 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13572}
13573
13574/*
13575 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13576 */
13577static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13578 u64 ctrl_bits)
13579{
13580 unsigned long timeout;
13581 u64 reg;
13582
13583 /* is the condition present? */
13584 reg = read_csr(dd, CCE_STATUS);
13585 if ((reg & status_bits) == 0)
13586 return;
13587
13588 /* clear the condition */
13589 write_csr(dd, CCE_CTRL, ctrl_bits);
13590
13591 /* wait for the condition to clear */
13592 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13593 while (1) {
13594 reg = read_csr(dd, CCE_STATUS);
13595 if ((reg & status_bits) == 0)
13596 return;
13597 if (time_after(jiffies, timeout)) {
13598 dd_dev_err(dd,
17fb4f29
JJ
13599 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13600 status_bits, reg & status_bits);
77241056
MM
13601 return;
13602 }
13603 udelay(1);
13604 }
13605}
13606
13607/* set CCE CSRs to chip reset defaults */
13608static void reset_cce_csrs(struct hfi1_devdata *dd)
13609{
13610 int i;
13611
13612 /* CCE_REVISION read-only */
13613 /* CCE_REVISION2 read-only */
13614 /* CCE_CTRL - bits clear automatically */
13615 /* CCE_STATUS read-only, use CceCtrl to clear */
13616 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13617 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13618 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13619 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13620 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13621 /* CCE_ERR_STATUS read-only */
13622 write_csr(dd, CCE_ERR_MASK, 0);
13623 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13624 /* CCE_ERR_FORCE leave alone */
13625 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13626 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13627 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13628 /* CCE_PCIE_CTRL leave alone */
13629 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13630 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13631 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
17fb4f29 13632 CCE_MSIX_TABLE_UPPER_RESETCSR);
77241056
MM
13633 }
13634 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13635 /* CCE_MSIX_PBA read-only */
13636 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13637 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13638 }
13639 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13640 write_csr(dd, CCE_INT_MAP, 0);
13641 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13642 /* CCE_INT_STATUS read-only */
13643 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13644 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13645 /* CCE_INT_FORCE leave alone */
13646 /* CCE_INT_BLOCKED read-only */
13647 }
13648 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13649 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13650}
13651
77241056
MM
13652/* set MISC CSRs to chip reset defaults */
13653static void reset_misc_csrs(struct hfi1_devdata *dd)
13654{
13655 int i;
13656
13657 for (i = 0; i < 32; i++) {
13658 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13659 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13660 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13661 }
4d114fdd
JJ
13662 /*
13663 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13664 * only be written 128-byte chunks
13665 */
77241056
MM
13666 /* init RSA engine to clear lingering errors */
13667 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13668 write_csr(dd, MISC_CFG_RSA_MU, 0);
13669 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13670 /* MISC_STS_8051_DIGEST read-only */
13671 /* MISC_STS_SBM_DIGEST read-only */
13672 /* MISC_STS_PCIE_DIGEST read-only */
13673 /* MISC_STS_FAB_DIGEST read-only */
13674 /* MISC_ERR_STATUS read-only */
13675 write_csr(dd, MISC_ERR_MASK, 0);
13676 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13677 /* MISC_ERR_FORCE leave alone */
13678}
13679
13680/* set TXE CSRs to chip reset defaults */
13681static void reset_txe_csrs(struct hfi1_devdata *dd)
13682{
13683 int i;
13684
13685 /*
13686 * TXE Kernel CSRs
13687 */
13688 write_csr(dd, SEND_CTRL, 0);
13689 __cm_reset(dd, 0); /* reset CM internal state */
13690 /* SEND_CONTEXTS read-only */
13691 /* SEND_DMA_ENGINES read-only */
13692 /* SEND_PIO_MEM_SIZE read-only */
13693 /* SEND_DMA_MEM_SIZE read-only */
13694 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13695 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13696 /* SEND_PIO_ERR_STATUS read-only */
13697 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13698 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13699 /* SEND_PIO_ERR_FORCE leave alone */
13700 /* SEND_DMA_ERR_STATUS read-only */
13701 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13702 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13703 /* SEND_DMA_ERR_FORCE leave alone */
13704 /* SEND_EGRESS_ERR_STATUS read-only */
13705 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13706 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13707 /* SEND_EGRESS_ERR_FORCE leave alone */
13708 write_csr(dd, SEND_BTH_QP, 0);
13709 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13710 write_csr(dd, SEND_SC2VLT0, 0);
13711 write_csr(dd, SEND_SC2VLT1, 0);
13712 write_csr(dd, SEND_SC2VLT2, 0);
13713 write_csr(dd, SEND_SC2VLT3, 0);
13714 write_csr(dd, SEND_LEN_CHECK0, 0);
13715 write_csr(dd, SEND_LEN_CHECK1, 0);
13716 /* SEND_ERR_STATUS read-only */
13717 write_csr(dd, SEND_ERR_MASK, 0);
13718 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13719 /* SEND_ERR_FORCE read-only */
13720 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
8638b77f 13721 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
77241056 13722 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
8638b77f
JJ
13723 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13724 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13725 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
77241056 13726 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
8638b77f 13727 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
77241056 13728 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
8638b77f 13729 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
77241056 13730 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
17fb4f29 13731 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
77241056
MM
13732 /* SEND_CM_CREDIT_USED_STATUS read-only */
13733 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13734 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13735 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13736 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13737 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13738 for (i = 0; i < TXE_NUM_DATA_VL; i++)
8638b77f 13739 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
77241056
MM
13740 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13741 /* SEND_CM_CREDIT_USED_VL read-only */
13742 /* SEND_CM_CREDIT_USED_VL15 read-only */
13743 /* SEND_EGRESS_CTXT_STATUS read-only */
13744 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13745 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13746 /* SEND_EGRESS_ERR_INFO read-only */
13747 /* SEND_EGRESS_ERR_SOURCE read-only */
13748
13749 /*
13750 * TXE Per-Context CSRs
13751 */
13752 for (i = 0; i < dd->chip_send_contexts; i++) {
13753 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13754 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13755 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13756 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13757 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13758 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13759 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13760 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13761 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13762 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13763 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13764 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13765 }
13766
13767 /*
13768 * TXE Per-SDMA CSRs
13769 */
13770 for (i = 0; i < dd->chip_sdma_engines; i++) {
13771 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13772 /* SEND_DMA_STATUS read-only */
13773 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13774 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13775 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13776 /* SEND_DMA_HEAD read-only */
13777 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13778 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13779 /* SEND_DMA_IDLE_CNT read-only */
13780 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13781 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13782 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13783 /* SEND_DMA_ENG_ERR_STATUS read-only */
13784 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13785 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13786 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13787 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13788 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13789 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13790 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13791 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13792 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13793 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13794 }
13795}
13796
13797/*
13798 * Expect on entry:
13799 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13800 */
13801static void init_rbufs(struct hfi1_devdata *dd)
13802{
13803 u64 reg;
13804 int count;
13805
13806 /*
13807 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13808 * clear.
13809 */
13810 count = 0;
13811 while (1) {
13812 reg = read_csr(dd, RCV_STATUS);
13813 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13814 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13815 break;
13816 /*
13817 * Give up after 1ms - maximum wait time.
13818 *
e8a70af2 13819 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
77241056 13820 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
e8a70af2 13821 * 136 KB / (66% * 250MB/s) = 844us
77241056
MM
13822 */
13823 if (count++ > 500) {
13824 dd_dev_err(dd,
17fb4f29
JJ
13825 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13826 __func__, reg);
77241056
MM
13827 break;
13828 }
13829 udelay(2); /* do not busy-wait the CSR */
13830 }
13831
13832 /* start the init - expect RcvCtrl to be 0 */
13833 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13834
13835 /*
13836 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13837 * period after the write before RcvStatus.RxRbufInitDone is valid.
13838 * The delay in the first run through the loop below is sufficient and
13839 * required before the first read of RcvStatus.RxRbufInintDone.
13840 */
13841 read_csr(dd, RCV_CTRL);
13842
13843 /* wait for the init to finish */
13844 count = 0;
13845 while (1) {
13846 /* delay is required first time through - see above */
13847 udelay(2); /* do not busy-wait the CSR */
13848 reg = read_csr(dd, RCV_STATUS);
13849 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13850 break;
13851
13852 /* give up after 100us - slowest possible at 33MHz is 73us */
13853 if (count++ > 50) {
13854 dd_dev_err(dd,
17fb4f29
JJ
13855 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13856 __func__);
77241056
MM
13857 break;
13858 }
13859 }
13860}
13861
13862/* set RXE CSRs to chip reset defaults */
13863static void reset_rxe_csrs(struct hfi1_devdata *dd)
13864{
13865 int i, j;
13866
13867 /*
13868 * RXE Kernel CSRs
13869 */
13870 write_csr(dd, RCV_CTRL, 0);
13871 init_rbufs(dd);
13872 /* RCV_STATUS read-only */
13873 /* RCV_CONTEXTS read-only */
13874 /* RCV_ARRAY_CNT read-only */
13875 /* RCV_BUF_SIZE read-only */
13876 write_csr(dd, RCV_BTH_QP, 0);
13877 write_csr(dd, RCV_MULTICAST, 0);
13878 write_csr(dd, RCV_BYPASS, 0);
13879 write_csr(dd, RCV_VL15, 0);
13880 /* this is a clear-down */
13881 write_csr(dd, RCV_ERR_INFO,
17fb4f29 13882 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
77241056
MM
13883 /* RCV_ERR_STATUS read-only */
13884 write_csr(dd, RCV_ERR_MASK, 0);
13885 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13886 /* RCV_ERR_FORCE leave alone */
13887 for (i = 0; i < 32; i++)
13888 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13889 for (i = 0; i < 4; i++)
13890 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13891 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13892 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13893 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13894 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
2280740f
VN
13895 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13896 clear_rsm_rule(dd, i);
77241056
MM
13897 for (i = 0; i < 32; i++)
13898 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13899
13900 /*
13901 * RXE Kernel and User Per-Context CSRs
13902 */
13903 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13904 /* kernel */
13905 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13906 /* RCV_CTXT_STATUS read-only */
13907 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13908 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13909 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13910 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13911 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13912 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13913 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13914 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13915 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13916 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13917
13918 /* user */
13919 /* RCV_HDR_TAIL read-only */
13920 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13921 /* RCV_EGR_INDEX_TAIL read-only */
13922 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13923 /* RCV_EGR_OFFSET_TAIL read-only */
13924 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
17fb4f29
JJ
13925 write_uctxt_csr(dd, i,
13926 RCV_TID_FLOW_TABLE + (8 * j), 0);
77241056
MM
13927 }
13928 }
13929}
13930
13931/*
13932 * Set sc2vl tables.
13933 *
13934 * They power on to zeros, so to avoid send context errors
13935 * they need to be set:
13936 *
13937 * SC 0-7 -> VL 0-7 (respectively)
13938 * SC 15 -> VL 15
13939 * otherwise
13940 * -> VL 0
13941 */
13942static void init_sc2vl_tables(struct hfi1_devdata *dd)
13943{
13944 int i;
13945 /* init per architecture spec, constrained by hardware capability */
13946
13947 /* HFI maps sent packets */
13948 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13949 0,
13950 0, 0, 1, 1,
13951 2, 2, 3, 3,
13952 4, 4, 5, 5,
13953 6, 6, 7, 7));
13954 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13955 1,
13956 8, 0, 9, 0,
13957 10, 0, 11, 0,
13958 12, 0, 13, 0,
13959 14, 0, 15, 15));
13960 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13961 2,
13962 16, 0, 17, 0,
13963 18, 0, 19, 0,
13964 20, 0, 21, 0,
13965 22, 0, 23, 0));
13966 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13967 3,
13968 24, 0, 25, 0,
13969 26, 0, 27, 0,
13970 28, 0, 29, 0,
13971 30, 0, 31, 0));
13972
13973 /* DC maps received packets */
13974 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13975 15_0,
13976 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13977 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13978 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13979 31_16,
13980 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13981 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13982
13983 /* initialize the cached sc2vl values consistently with h/w */
13984 for (i = 0; i < 32; i++) {
13985 if (i < 8 || i == 15)
13986 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13987 else
13988 *((u8 *)(dd->sc2vl) + i) = 0;
13989 }
13990}
13991
13992/*
13993 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13994 * depend on the chip going through a power-on reset - a driver may be loaded
13995 * and unloaded many times.
13996 *
13997 * Do not write any CSR values to the chip in this routine - there may be
13998 * a reset following the (possible) FLR in this routine.
13999 *
14000 */
c53df62c 14001static int init_chip(struct hfi1_devdata *dd)
77241056
MM
14002{
14003 int i;
c53df62c 14004 int ret = 0;
77241056
MM
14005
14006 /*
14007 * Put the HFI CSRs in a known state.
14008 * Combine this with a DC reset.
14009 *
14010 * Stop the device from doing anything while we do a
14011 * reset. We know there are no other active users of
14012 * the device since we are now in charge. Turn off
14013 * off all outbound and inbound traffic and make sure
14014 * the device does not generate any interrupts.
14015 */
14016
14017 /* disable send contexts and SDMA engines */
14018 write_csr(dd, SEND_CTRL, 0);
14019 for (i = 0; i < dd->chip_send_contexts; i++)
14020 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14021 for (i = 0; i < dd->chip_sdma_engines; i++)
14022 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14023 /* disable port (turn off RXE inbound traffic) and contexts */
14024 write_csr(dd, RCV_CTRL, 0);
14025 for (i = 0; i < dd->chip_rcv_contexts; i++)
14026 write_csr(dd, RCV_CTXT_CTRL, 0);
14027 /* mask all interrupt sources */
14028 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8638b77f 14029 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
77241056
MM
14030
14031 /*
14032 * DC Reset: do a full DC reset before the register clear.
14033 * A recommended length of time to hold is one CSR read,
14034 * so reread the CceDcCtrl. Then, hold the DC in reset
14035 * across the clear.
14036 */
14037 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
50e5dcbe 14038 (void)read_csr(dd, CCE_DC_CTRL);
77241056
MM
14039
14040 if (use_flr) {
14041 /*
14042 * A FLR will reset the SPC core and part of the PCIe.
14043 * The parts that need to be restored have already been
14044 * saved.
14045 */
14046 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14047
14048 /* do the FLR, the DC reset will remain */
21c433a7 14049 pcie_flr(dd->pcidev);
77241056
MM
14050
14051 /* restore command and BARs */
c53df62c
BD
14052 ret = restore_pci_variables(dd);
14053 if (ret) {
14054 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14055 __func__);
14056 return ret;
14057 }
77241056 14058
995deafa 14059 if (is_ax(dd)) {
77241056 14060 dd_dev_info(dd, "Resetting CSRs with FLR\n");
21c433a7 14061 pcie_flr(dd->pcidev);
c53df62c
BD
14062 ret = restore_pci_variables(dd);
14063 if (ret) {
14064 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14065 __func__);
14066 return ret;
14067 }
77241056 14068 }
77241056
MM
14069 } else {
14070 dd_dev_info(dd, "Resetting CSRs with writes\n");
14071 reset_cce_csrs(dd);
14072 reset_txe_csrs(dd);
14073 reset_rxe_csrs(dd);
77241056
MM
14074 reset_misc_csrs(dd);
14075 }
14076 /* clear the DC reset */
14077 write_csr(dd, CCE_DC_CTRL, 0);
7c03ed85 14078
77241056 14079 /* Set the LED off */
773d0451
SS
14080 setextled(dd, 0);
14081
77241056
MM
14082 /*
14083 * Clear the QSFP reset.
72a67ba2 14084 * An FLR enforces a 0 on all out pins. The driver does not touch
77241056 14085 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
72a67ba2 14086 * anything plugged constantly in reset, if it pays attention
77241056 14087 * to RESET_N.
72a67ba2 14088 * Prime examples of this are optical cables. Set all pins high.
77241056
MM
14089 * I2CCLK and I2CDAT will change per direction, and INT_N and
14090 * MODPRS_N are input only and their value is ignored.
14091 */
72a67ba2
EH
14092 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14093 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
a2ee27a4 14094 init_chip_resources(dd);
c53df62c 14095 return ret;
77241056
MM
14096}
14097
14098static void init_early_variables(struct hfi1_devdata *dd)
14099{
14100 int i;
14101
14102 /* assign link credit variables */
14103 dd->vau = CM_VAU;
14104 dd->link_credits = CM_GLOBAL_CREDITS;
995deafa 14105 if (is_ax(dd))
77241056
MM
14106 dd->link_credits--;
14107 dd->vcu = cu_to_vcu(hfi1_cu);
14108 /* enough room for 8 MAD packets plus header - 17K */
14109 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14110 if (dd->vl15_init > dd->link_credits)
14111 dd->vl15_init = dd->link_credits;
14112
14113 write_uninitialized_csrs_and_memories(dd);
14114
14115 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14116 for (i = 0; i < dd->num_pports; i++) {
14117 struct hfi1_pportdata *ppd = &dd->pport[i];
14118
14119 set_partition_keys(ppd);
14120 }
14121 init_sc2vl_tables(dd);
14122}
14123
14124static void init_kdeth_qp(struct hfi1_devdata *dd)
14125{
14126 /* user changed the KDETH_QP */
14127 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14128 /* out of range or illegal value */
14129 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14130 kdeth_qp = 0;
14131 }
14132 if (kdeth_qp == 0) /* not set, or failed range check */
14133 kdeth_qp = DEFAULT_KDETH_QP;
14134
14135 write_csr(dd, SEND_BTH_QP,
17fb4f29
JJ
14136 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14137 SEND_BTH_QP_KDETH_QP_SHIFT);
77241056
MM
14138
14139 write_csr(dd, RCV_BTH_QP,
17fb4f29
JJ
14140 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14141 RCV_BTH_QP_KDETH_QP_SHIFT);
77241056
MM
14142}
14143
14144/**
14145 * init_qpmap_table
14146 * @dd - device data
14147 * @first_ctxt - first context
14148 * @last_ctxt - first context
14149 *
14150 * This return sets the qpn mapping table that
14151 * is indexed by qpn[8:1].
14152 *
14153 * The routine will round robin the 256 settings
14154 * from first_ctxt to last_ctxt.
14155 *
14156 * The first/last looks ahead to having specialized
14157 * receive contexts for mgmt and bypass. Normal
14158 * verbs traffic will assumed to be on a range
14159 * of receive contexts.
14160 */
14161static void init_qpmap_table(struct hfi1_devdata *dd,
14162 u32 first_ctxt,
14163 u32 last_ctxt)
14164{
14165 u64 reg = 0;
14166 u64 regno = RCV_QP_MAP_TABLE;
14167 int i;
14168 u64 ctxt = first_ctxt;
14169
60d585ad 14170 for (i = 0; i < 256; i++) {
77241056 14171 reg |= ctxt << (8 * (i % 8));
77241056
MM
14172 ctxt++;
14173 if (ctxt > last_ctxt)
14174 ctxt = first_ctxt;
60d585ad 14175 if (i % 8 == 7) {
77241056
MM
14176 write_csr(dd, regno, reg);
14177 reg = 0;
14178 regno += 8;
14179 }
14180 }
77241056
MM
14181
14182 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14183 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14184}
14185
372cc85a
DL
14186struct rsm_map_table {
14187 u64 map[NUM_MAP_REGS];
14188 unsigned int used;
14189};
14190
b12349ae
DL
14191struct rsm_rule_data {
14192 u8 offset;
14193 u8 pkt_type;
14194 u32 field1_off;
14195 u32 field2_off;
14196 u32 index1_off;
14197 u32 index1_width;
14198 u32 index2_off;
14199 u32 index2_width;
14200 u32 mask1;
14201 u32 value1;
14202 u32 mask2;
14203 u32 value2;
14204};
14205
372cc85a
DL
14206/*
14207 * Return an initialized RMT map table for users to fill in. OK if it
14208 * returns NULL, indicating no table.
14209 */
14210static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14211{
14212 struct rsm_map_table *rmt;
14213 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
14214
14215 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14216 if (rmt) {
14217 memset(rmt->map, rxcontext, sizeof(rmt->map));
14218 rmt->used = 0;
14219 }
14220
14221 return rmt;
14222}
14223
14224/*
14225 * Write the final RMT map table to the chip and free the table. OK if
14226 * table is NULL.
14227 */
14228static void complete_rsm_map_table(struct hfi1_devdata *dd,
14229 struct rsm_map_table *rmt)
14230{
14231 int i;
14232
14233 if (rmt) {
14234 /* write table to chip */
14235 for (i = 0; i < NUM_MAP_REGS; i++)
14236 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14237
14238 /* enable RSM */
14239 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14240 }
14241}
14242
b12349ae
DL
14243/*
14244 * Add a receive side mapping rule.
14245 */
14246static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14247 struct rsm_rule_data *rrd)
14248{
14249 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14250 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14251 1ull << rule_index | /* enable bit */
14252 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14253 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14254 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14255 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14256 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14257 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14258 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14259 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14260 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14261 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14262 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14263 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14264 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14265}
14266
2280740f
VN
14267/*
14268 * Clear a receive side mapping rule.
14269 */
14270static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14271{
14272 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14273 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14274 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14275}
14276
4a818bed
DL
14277/* return the number of RSM map table entries that will be used for QOS */
14278static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14279 unsigned int *np)
14280{
14281 int i;
14282 unsigned int m, n;
14283 u8 max_by_vl = 0;
14284
14285 /* is QOS active at all? */
14286 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14287 num_vls == 1 ||
14288 krcvqsset <= 1)
14289 goto no_qos;
14290
14291 /* determine bits for qpn */
14292 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14293 if (krcvqs[i] > max_by_vl)
14294 max_by_vl = krcvqs[i];
14295 if (max_by_vl > 32)
14296 goto no_qos;
14297 m = ilog2(__roundup_pow_of_two(max_by_vl));
14298
14299 /* determine bits for vl */
14300 n = ilog2(__roundup_pow_of_two(num_vls));
14301
14302 /* reject if too much is used */
14303 if ((m + n) > 7)
14304 goto no_qos;
14305
14306 if (mp)
14307 *mp = m;
14308 if (np)
14309 *np = n;
14310
14311 return 1 << (m + n);
14312
14313no_qos:
14314 if (mp)
14315 *mp = 0;
14316 if (np)
14317 *np = 0;
14318 return 0;
14319}
14320
77241056
MM
14321/**
14322 * init_qos - init RX qos
14323 * @dd - device data
372cc85a 14324 * @rmt - RSM map table
77241056 14325 *
33a9eb52
DL
14326 * This routine initializes Rule 0 and the RSM map table to implement
14327 * quality of service (qos).
77241056 14328 *
33a9eb52
DL
14329 * If all of the limit tests succeed, qos is applied based on the array
14330 * interpretation of krcvqs where entry 0 is VL0.
77241056 14331 *
33a9eb52
DL
14332 * The number of vl bits (n) and the number of qpn bits (m) are computed to
14333 * feed both the RSM map table and the single rule.
77241056 14334 */
372cc85a 14335static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
77241056 14336{
b12349ae 14337 struct rsm_rule_data rrd;
77241056 14338 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
372cc85a 14339 unsigned int rmt_entries;
77241056 14340 u64 reg;
77241056 14341
4a818bed 14342 if (!rmt)
77241056 14343 goto bail;
4a818bed
DL
14344 rmt_entries = qos_rmt_entries(dd, &m, &n);
14345 if (rmt_entries == 0)
77241056 14346 goto bail;
4a818bed
DL
14347 qpns_per_vl = 1 << m;
14348
372cc85a
DL
14349 /* enough room in the map table? */
14350 rmt_entries = 1 << (m + n);
14351 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
859bcad9 14352 goto bail;
4a818bed 14353
372cc85a 14354 /* add qos entries to the the RSM map table */
33a9eb52 14355 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
77241056
MM
14356 unsigned tctxt;
14357
14358 for (qpn = 0, tctxt = ctxt;
14359 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14360 unsigned idx, regoff, regidx;
14361
372cc85a
DL
14362 /* generate the index the hardware will produce */
14363 idx = rmt->used + ((qpn << n) ^ i);
77241056
MM
14364 regoff = (idx % 8) * 8;
14365 regidx = idx / 8;
372cc85a
DL
14366 /* replace default with context number */
14367 reg = rmt->map[regidx];
77241056
MM
14368 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14369 << regoff);
14370 reg |= (u64)(tctxt++) << regoff;
372cc85a 14371 rmt->map[regidx] = reg;
77241056
MM
14372 if (tctxt == ctxt + krcvqs[i])
14373 tctxt = ctxt;
14374 }
14375 ctxt += krcvqs[i];
14376 }
b12349ae
DL
14377
14378 rrd.offset = rmt->used;
14379 rrd.pkt_type = 2;
14380 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14381 rrd.field2_off = LRH_SC_MATCH_OFFSET;
14382 rrd.index1_off = LRH_SC_SELECT_OFFSET;
14383 rrd.index1_width = n;
14384 rrd.index2_off = QPN_SELECT_OFFSET;
14385 rrd.index2_width = m + n;
14386 rrd.mask1 = LRH_BTH_MASK;
14387 rrd.value1 = LRH_BTH_VALUE;
14388 rrd.mask2 = LRH_SC_MASK;
14389 rrd.value2 = LRH_SC_VALUE;
14390
14391 /* add rule 0 */
2280740f 14392 add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
b12349ae 14393
372cc85a
DL
14394 /* mark RSM map entries as used */
14395 rmt->used += rmt_entries;
33a9eb52
DL
14396 /* map everything else to the mcast/err/vl15 context */
14397 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
77241056
MM
14398 dd->qos_shift = n + 1;
14399 return;
14400bail:
14401 dd->qos_shift = 1;
82c2611d 14402 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
77241056
MM
14403}
14404
8f000f7f
DL
14405static void init_user_fecn_handling(struct hfi1_devdata *dd,
14406 struct rsm_map_table *rmt)
14407{
14408 struct rsm_rule_data rrd;
14409 u64 reg;
14410 int i, idx, regoff, regidx;
14411 u8 offset;
14412
14413 /* there needs to be enough room in the map table */
14414 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14415 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14416 return;
14417 }
14418
14419 /*
14420 * RSM will extract the destination context as an index into the
14421 * map table. The destination contexts are a sequential block
2280740f 14422 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
8f000f7f
DL
14423 * Map entries are accessed as offset + extracted value. Adjust
14424 * the added offset so this sequence can be placed anywhere in
14425 * the table - as long as the entries themselves do not wrap.
14426 * There are only enough bits in offset for the table size, so
14427 * start with that to allow for a "negative" offset.
14428 */
14429 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
2280740f 14430 (int)dd->first_dyn_alloc_ctxt);
8f000f7f 14431
2280740f 14432 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
8f000f7f
DL
14433 i < dd->num_rcv_contexts; i++, idx++) {
14434 /* replace with identity mapping */
14435 regoff = (idx % 8) * 8;
14436 regidx = idx / 8;
14437 reg = rmt->map[regidx];
14438 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14439 reg |= (u64)i << regoff;
14440 rmt->map[regidx] = reg;
14441 }
14442
14443 /*
14444 * For RSM intercept of Expected FECN packets:
14445 * o packet type 0 - expected
14446 * o match on F (bit 95), using select/match 1, and
14447 * o match on SH (bit 133), using select/match 2.
14448 *
14449 * Use index 1 to extract the 8-bit receive context from DestQP
14450 * (start at bit 64). Use that as the RSM map table index.
14451 */
14452 rrd.offset = offset;
14453 rrd.pkt_type = 0;
14454 rrd.field1_off = 95;
14455 rrd.field2_off = 133;
14456 rrd.index1_off = 64;
14457 rrd.index1_width = 8;
14458 rrd.index2_off = 0;
14459 rrd.index2_width = 0;
14460 rrd.mask1 = 1;
14461 rrd.value1 = 1;
14462 rrd.mask2 = 1;
14463 rrd.value2 = 1;
14464
14465 /* add rule 1 */
2280740f 14466 add_rsm_rule(dd, RSM_INS_FECN, &rrd);
8f000f7f
DL
14467
14468 rmt->used += dd->num_user_contexts;
14469}
14470
2280740f
VN
14471/* Initialize RSM for VNIC */
14472void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14473{
14474 u8 i, j;
14475 u8 ctx_id = 0;
14476 u64 reg;
14477 u32 regoff;
14478 struct rsm_rule_data rrd;
14479
14480 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14481 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14482 dd->vnic.rmt_start);
14483 return;
14484 }
14485
14486 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14487 dd->vnic.rmt_start,
14488 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14489
14490 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14491 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14492 reg = read_csr(dd, regoff);
14493 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14494 /* Update map register with vnic context */
14495 j = (dd->vnic.rmt_start + i) % 8;
14496 reg &= ~(0xffllu << (j * 8));
14497 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14498 /* Wrap up vnic ctx index */
14499 ctx_id %= dd->vnic.num_ctxt;
14500 /* Write back map register */
14501 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14502 dev_dbg(&(dd)->pcidev->dev,
14503 "Vnic rsm map reg[%d] =0x%llx\n",
14504 regoff - RCV_RSM_MAP_TABLE, reg);
14505
14506 write_csr(dd, regoff, reg);
14507 regoff += 8;
14508 if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14509 reg = read_csr(dd, regoff);
14510 }
14511 }
14512
14513 /* Add rule for vnic */
14514 rrd.offset = dd->vnic.rmt_start;
14515 rrd.pkt_type = 4;
14516 /* Match 16B packets */
14517 rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14518 rrd.mask1 = L2_TYPE_MASK;
14519 rrd.value1 = L2_16B_VALUE;
14520 /* Match ETH L4 packets */
14521 rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14522 rrd.mask2 = L4_16B_TYPE_MASK;
14523 rrd.value2 = L4_16B_ETH_VALUE;
14524 /* Calc context from veswid and entropy */
14525 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14526 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14527 rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14528 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14529 add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14530
14531 /* Enable RSM if not already enabled */
14532 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14533}
14534
14535void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14536{
14537 clear_rsm_rule(dd, RSM_INS_VNIC);
14538
14539 /* Disable RSM if used only by vnic */
14540 if (dd->vnic.rmt_start == 0)
14541 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14542}
14543
77241056
MM
14544static void init_rxe(struct hfi1_devdata *dd)
14545{
372cc85a 14546 struct rsm_map_table *rmt;
72c07e2b 14547 u64 val;
372cc85a 14548
77241056
MM
14549 /* enable all receive errors */
14550 write_csr(dd, RCV_ERR_MASK, ~0ull);
372cc85a
DL
14551
14552 rmt = alloc_rsm_map_table(dd);
14553 /* set up QOS, including the QPN map table */
14554 init_qos(dd, rmt);
8f000f7f 14555 init_user_fecn_handling(dd, rmt);
372cc85a 14556 complete_rsm_map_table(dd, rmt);
2280740f
VN
14557 /* record number of used rsm map entries for vnic */
14558 dd->vnic.rmt_start = rmt->used;
372cc85a
DL
14559 kfree(rmt);
14560
77241056
MM
14561 /*
14562 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14563 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14564 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14565 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14566 * Max_PayLoad_Size set to its minimum of 128.
14567 *
14568 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14569 * (64 bytes). Max_Payload_Size is possibly modified upward in
14570 * tune_pcie_caps() which is called after this routine.
14571 */
72c07e2b
DH
14572
14573 /* Have 16 bytes (4DW) of bypass header available in header queue */
14574 val = read_csr(dd, RCV_BYPASS);
14575 val |= (4ull << 16);
14576 write_csr(dd, RCV_BYPASS, val);
77241056
MM
14577}
14578
14579static void init_other(struct hfi1_devdata *dd)
14580{
14581 /* enable all CCE errors */
14582 write_csr(dd, CCE_ERR_MASK, ~0ull);
14583 /* enable *some* Misc errors */
14584 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14585 /* enable all DC errors, except LCB */
14586 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14587 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14588}
14589
14590/*
14591 * Fill out the given AU table using the given CU. A CU is defined in terms
14592 * AUs. The table is a an encoding: given the index, how many AUs does that
14593 * represent?
14594 *
14595 * NOTE: Assumes that the register layout is the same for the
14596 * local and remote tables.
14597 */
14598static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14599 u32 csr0to3, u32 csr4to7)
14600{
14601 write_csr(dd, csr0to3,
17fb4f29
JJ
14602 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14603 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14604 2ull * cu <<
14605 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14606 4ull * cu <<
14607 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
77241056 14608 write_csr(dd, csr4to7,
17fb4f29
JJ
14609 8ull * cu <<
14610 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14611 16ull * cu <<
14612 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14613 32ull * cu <<
14614 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14615 64ull * cu <<
14616 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
77241056
MM
14617}
14618
14619static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14620{
14621 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
17fb4f29 14622 SEND_CM_LOCAL_AU_TABLE4_TO7);
77241056
MM
14623}
14624
14625void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14626{
14627 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
17fb4f29 14628 SEND_CM_REMOTE_AU_TABLE4_TO7);
77241056
MM
14629}
14630
14631static void init_txe(struct hfi1_devdata *dd)
14632{
14633 int i;
14634
14635 /* enable all PIO, SDMA, general, and Egress errors */
14636 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14637 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14638 write_csr(dd, SEND_ERR_MASK, ~0ull);
14639 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14640
14641 /* enable all per-context and per-SDMA engine errors */
14642 for (i = 0; i < dd->chip_send_contexts; i++)
14643 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14644 for (i = 0; i < dd->chip_sdma_engines; i++)
14645 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14646
14647 /* set the local CU to AU mapping */
14648 assign_local_cm_au_table(dd, dd->vcu);
14649
14650 /*
14651 * Set reasonable default for Credit Return Timer
14652 * Don't set on Simulator - causes it to choke.
14653 */
14654 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14655 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14656}
14657
17573972
MR
14658int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14659 u16 jkey)
77241056 14660{
17573972 14661 u8 hw_ctxt;
77241056
MM
14662 u64 reg;
14663
17573972
MR
14664 if (!rcd || !rcd->sc)
14665 return -EINVAL;
14666
14667 hw_ctxt = rcd->sc->hw_context;
77241056
MM
14668 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14669 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14670 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14671 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14672 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14673 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
17573972 14674 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
77241056
MM
14675 /*
14676 * Enable send-side J_KEY integrity check, unless this is A0 h/w
77241056 14677 */
995deafa 14678 if (!is_ax(dd)) {
17573972 14679 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
77241056 14680 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
17573972 14681 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
77241056
MM
14682 }
14683
14684 /* Enable J_KEY check on receive context. */
14685 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14686 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14687 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
17573972
MR
14688 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14689
14690 return 0;
77241056
MM
14691}
14692
17573972 14693int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
77241056 14694{
17573972 14695 u8 hw_ctxt;
77241056
MM
14696 u64 reg;
14697
17573972
MR
14698 if (!rcd || !rcd->sc)
14699 return -EINVAL;
14700
14701 hw_ctxt = rcd->sc->hw_context;
14702 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
77241056
MM
14703 /*
14704 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14705 * This check would not have been enabled for A0 h/w, see
14706 * set_ctxt_jkey().
14707 */
995deafa 14708 if (!is_ax(dd)) {
17573972 14709 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
77241056 14710 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
17573972 14711 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
77241056
MM
14712 }
14713 /* Turn off the J_KEY on the receive side */
17573972
MR
14714 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14715
14716 return 0;
77241056
MM
14717}
14718
17573972
MR
14719int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14720 u16 pkey)
77241056 14721{
17573972 14722 u8 hw_ctxt;
77241056
MM
14723 u64 reg;
14724
17573972
MR
14725 if (!rcd || !rcd->sc)
14726 return -EINVAL;
14727
14728 hw_ctxt = rcd->sc->hw_context;
77241056
MM
14729 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14730 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
17573972
MR
14731 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14732 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
77241056 14733 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
e38d1e4f 14734 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
17573972
MR
14735 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14736
14737 return 0;
77241056
MM
14738}
14739
637a9a7f 14740int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
77241056 14741{
637a9a7f 14742 u8 hw_ctxt;
77241056
MM
14743 u64 reg;
14744
637a9a7f
MR
14745 if (!ctxt || !ctxt->sc)
14746 return -EINVAL;
14747
637a9a7f
MR
14748 hw_ctxt = ctxt->sc->hw_context;
14749 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
77241056 14750 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
637a9a7f
MR
14751 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14752 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14753
14754 return 0;
77241056
MM
14755}
14756
14757/*
14758 * Start doing the clean up the the chip. Our clean up happens in multiple
14759 * stages and this is just the first.
14760 */
14761void hfi1_start_cleanup(struct hfi1_devdata *dd)
14762{
affa48de 14763 aspm_exit(dd);
77241056
MM
14764 free_cntrs(dd);
14765 free_rcverr(dd);
14766 clean_up_interrupts(dd);
a2ee27a4 14767 finish_chip_resources(dd);
77241056
MM
14768}
14769
14770#define HFI_BASE_GUID(dev) \
14771 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14772
14773/*
78eb129d
DL
14774 * Information can be shared between the two HFIs on the same ASIC
14775 * in the same OS. This function finds the peer device and sets
14776 * up a shared structure.
77241056 14777 */
78eb129d 14778static int init_asic_data(struct hfi1_devdata *dd)
77241056
MM
14779{
14780 unsigned long flags;
14781 struct hfi1_devdata *tmp, *peer = NULL;
98f179a5 14782 struct hfi1_asic_data *asic_data;
78eb129d 14783 int ret = 0;
77241056 14784
98f179a5
TS
14785 /* pre-allocate the asic structure in case we are the first device */
14786 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14787 if (!asic_data)
14788 return -ENOMEM;
14789
77241056
MM
14790 spin_lock_irqsave(&hfi1_devs_lock, flags);
14791 /* Find our peer device */
14792 list_for_each_entry(tmp, &hfi1_dev_list, list) {
14793 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14794 dd->unit != tmp->unit) {
14795 peer = tmp;
14796 break;
14797 }
14798 }
14799
78eb129d 14800 if (peer) {
98f179a5 14801 /* use already allocated structure */
78eb129d 14802 dd->asic_data = peer->asic_data;
98f179a5 14803 kfree(asic_data);
78eb129d 14804 } else {
98f179a5 14805 dd->asic_data = asic_data;
78eb129d
DL
14806 mutex_init(&dd->asic_data->asic_resource_mutex);
14807 }
14808 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
77241056 14809 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
dba715f0
DL
14810
14811 /* first one through - set up i2c devices */
14812 if (!peer)
14813 ret = set_up_i2c(dd, dd->asic_data);
14814
78eb129d 14815 return ret;
77241056
MM
14816}
14817
5d9157aa
DL
14818/*
14819 * Set dd->boardname. Use a generic name if a name is not returned from
14820 * EFI variable space.
14821 *
14822 * Return 0 on success, -ENOMEM if space could not be allocated.
14823 */
14824static int obtain_boardname(struct hfi1_devdata *dd)
14825{
14826 /* generic board description */
14827 const char generic[] =
14828 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14829 unsigned long size;
14830 int ret;
14831
14832 ret = read_hfi1_efi_var(dd, "description", &size,
14833 (void **)&dd->boardname);
14834 if (ret) {
845f876d 14835 dd_dev_info(dd, "Board description not found\n");
5d9157aa
DL
14836 /* use generic description */
14837 dd->boardname = kstrdup(generic, GFP_KERNEL);
14838 if (!dd->boardname)
14839 return -ENOMEM;
14840 }
14841 return 0;
14842}
14843
24487dd3
KW
14844/*
14845 * Check the interrupt registers to make sure that they are mapped correctly.
14846 * It is intended to help user identify any mismapping by VMM when the driver
14847 * is running in a VM. This function should only be called before interrupt
14848 * is set up properly.
14849 *
14850 * Return 0 on success, -EINVAL on failure.
14851 */
14852static int check_int_registers(struct hfi1_devdata *dd)
14853{
14854 u64 reg;
14855 u64 all_bits = ~(u64)0;
14856 u64 mask;
14857
14858 /* Clear CceIntMask[0] to avoid raising any interrupts */
14859 mask = read_csr(dd, CCE_INT_MASK);
14860 write_csr(dd, CCE_INT_MASK, 0ull);
14861 reg = read_csr(dd, CCE_INT_MASK);
14862 if (reg)
14863 goto err_exit;
14864
14865 /* Clear all interrupt status bits */
14866 write_csr(dd, CCE_INT_CLEAR, all_bits);
14867 reg = read_csr(dd, CCE_INT_STATUS);
14868 if (reg)
14869 goto err_exit;
14870
14871 /* Set all interrupt status bits */
14872 write_csr(dd, CCE_INT_FORCE, all_bits);
14873 reg = read_csr(dd, CCE_INT_STATUS);
14874 if (reg != all_bits)
14875 goto err_exit;
14876
14877 /* Restore the interrupt mask */
14878 write_csr(dd, CCE_INT_CLEAR, all_bits);
14879 write_csr(dd, CCE_INT_MASK, mask);
14880
14881 return 0;
14882err_exit:
14883 write_csr(dd, CCE_INT_MASK, mask);
14884 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14885 return -EINVAL;
14886}
14887
77241056 14888/**
7c03ed85 14889 * Allocate and initialize the device structure for the hfi.
77241056
MM
14890 * @dev: the pci_dev for hfi1_ib device
14891 * @ent: pci_device_id struct for this dev
14892 *
14893 * Also allocates, initializes, and returns the devdata struct for this
14894 * device instance
14895 *
14896 * This is global, and is called directly at init to set up the
14897 * chip-specific function pointers for later use.
14898 */
14899struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14900 const struct pci_device_id *ent)
14901{
14902 struct hfi1_devdata *dd;
14903 struct hfi1_pportdata *ppd;
14904 u64 reg;
14905 int i, ret;
14906 static const char * const inames[] = { /* implementation names */
14907 "RTL silicon",
14908 "RTL VCS simulation",
14909 "RTL FPGA emulation",
14910 "Functional simulator"
14911 };
24487dd3 14912 struct pci_dev *parent = pdev->bus->self;
77241056 14913
17fb4f29
JJ
14914 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14915 sizeof(struct hfi1_pportdata));
77241056
MM
14916 if (IS_ERR(dd))
14917 goto bail;
14918 ppd = dd->pport;
14919 for (i = 0; i < dd->num_pports; i++, ppd++) {
14920 int vl;
14921 /* init common fields */
14922 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14923 /* DC supports 4 link widths */
14924 ppd->link_width_supported =
14925 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14926 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14927 ppd->link_width_downgrade_supported =
14928 ppd->link_width_supported;
14929 /* start out enabling only 4X */
14930 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14931 ppd->link_width_downgrade_enabled =
14932 ppd->link_width_downgrade_supported;
14933 /* link width active is 0 when link is down */
14934 /* link width downgrade active is 0 when link is down */
14935
d0d236ea
JJ
14936 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14937 num_vls > HFI1_MAX_VLS_SUPPORTED) {
77241056
MM
14938 hfi1_early_err(&pdev->dev,
14939 "Invalid num_vls %u, using %u VLs\n",
14940 num_vls, HFI1_MAX_VLS_SUPPORTED);
14941 num_vls = HFI1_MAX_VLS_SUPPORTED;
14942 }
14943 ppd->vls_supported = num_vls;
14944 ppd->vls_operational = ppd->vls_supported;
14945 /* Set the default MTU. */
14946 for (vl = 0; vl < num_vls; vl++)
14947 dd->vld[vl].mtu = hfi1_max_mtu;
14948 dd->vld[15].mtu = MAX_MAD_PACKET;
14949 /*
14950 * Set the initial values to reasonable default, will be set
14951 * for real when link is up.
14952 */
77241056
MM
14953 ppd->overrun_threshold = 0x4;
14954 ppd->phy_error_threshold = 0xf;
14955 ppd->port_crc_mode_enabled = link_crc_mask;
14956 /* initialize supported LTP CRC mode */
14957 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14958 /* initialize enabled LTP CRC mode */
14959 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14960 /* start in offline */
14961 ppd->host_link_state = HLS_DN_OFFLINE;
14962 init_vl_arb_caches(ppd);
14963 }
14964
14965 dd->link_default = HLS_DN_POLL;
14966
14967 /*
14968 * Do remaining PCIe setup and save PCIe values in dd.
14969 * Any error printing is already done by the init code.
14970 * On return, we have the chip mapped.
14971 */
26ea2544 14972 ret = hfi1_pcie_ddinit(dd, pdev);
77241056
MM
14973 if (ret < 0)
14974 goto bail_free;
14975
a618b7e4
BD
14976 /* Save PCI space registers to rewrite after device reset */
14977 ret = save_pci_variables(dd);
14978 if (ret < 0)
14979 goto bail_cleanup;
14980
77241056
MM
14981 /* verify that reads actually work, save revision for reset check */
14982 dd->revision = read_csr(dd, CCE_REVISION);
14983 if (dd->revision == ~(u64)0) {
14984 dd_dev_err(dd, "cannot read chip CSRs\n");
14985 ret = -EINVAL;
14986 goto bail_cleanup;
14987 }
14988 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14989 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14990 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14991 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14992
24487dd3
KW
14993 /*
14994 * Check interrupt registers mapping if the driver has no access to
14995 * the upstream component. In this case, it is likely that the driver
14996 * is running in a VM.
14997 */
14998 if (!parent) {
14999 ret = check_int_registers(dd);
15000 if (ret)
15001 goto bail_cleanup;
15002 }
15003
4d114fdd
JJ
15004 /*
15005 * obtain the hardware ID - NOT related to unit, which is a
15006 * software enumeration
15007 */
77241056
MM
15008 reg = read_csr(dd, CCE_REVISION2);
15009 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15010 & CCE_REVISION2_HFI_ID_MASK;
15011 /* the variable size will remove unwanted bits */
15012 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15013 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15014 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
17fb4f29
JJ
15015 dd->icode < ARRAY_SIZE(inames) ?
15016 inames[dd->icode] : "unknown", (int)dd->irev);
77241056
MM
15017
15018 /* speeds the hardware can support */
15019 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15020 /* speeds allowed to run at */
15021 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15022 /* give a reasonable active value, will be set on link up */
15023 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15024
15025 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15026 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15027 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15028 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15029 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15030 /* fix up link widths for emulation _p */
15031 ppd = dd->pport;
15032 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15033 ppd->link_width_supported =
15034 ppd->link_width_enabled =
15035 ppd->link_width_downgrade_supported =
15036 ppd->link_width_downgrade_enabled =
15037 OPA_LINK_WIDTH_1X;
15038 }
15039 /* insure num_vls isn't larger than number of sdma engines */
15040 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15041 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
11a5909b
DL
15042 num_vls, dd->chip_sdma_engines);
15043 num_vls = dd->chip_sdma_engines;
15044 ppd->vls_supported = dd->chip_sdma_engines;
8a4d3444 15045 ppd->vls_operational = ppd->vls_supported;
77241056
MM
15046 }
15047
15048 /*
15049 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15050 * Limit the max if larger than the field holds. If timeout is
15051 * non-zero, then the calculated field will be at least 1.
15052 *
15053 * Must be after icode is set up - the cclock rate depends
15054 * on knowing the hardware being used.
15055 */
15056 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15057 if (dd->rcv_intr_timeout_csr >
15058 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15059 dd->rcv_intr_timeout_csr =
15060 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15061 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15062 dd->rcv_intr_timeout_csr = 1;
15063
7c03ed85
EH
15064 /* needs to be done before we look for the peer device */
15065 read_guid(dd);
15066
78eb129d
DL
15067 /* set up shared ASIC data with peer device */
15068 ret = init_asic_data(dd);
15069 if (ret)
15070 goto bail_cleanup;
7c03ed85 15071
77241056 15072 /* obtain chip sizes, reset chip CSRs */
c53df62c
BD
15073 ret = init_chip(dd);
15074 if (ret)
15075 goto bail_cleanup;
77241056
MM
15076
15077 /* read in the PCIe link speed information */
15078 ret = pcie_speeds(dd);
15079 if (ret)
15080 goto bail_cleanup;
15081
e83eba21
DL
15082 /* call before get_platform_config(), after init_chip_resources() */
15083 ret = eprom_init(dd);
15084 if (ret)
15085 goto bail_free_rcverr;
15086
c3838b39
EH
15087 /* Needs to be called before hfi1_firmware_init */
15088 get_platform_config(dd);
15089
77241056
MM
15090 /* read in firmware */
15091 ret = hfi1_firmware_init(dd);
15092 if (ret)
15093 goto bail_cleanup;
15094
15095 /*
15096 * In general, the PCIe Gen3 transition must occur after the
15097 * chip has been idled (so it won't initiate any PCIe transactions
15098 * e.g. an interrupt) and before the driver changes any registers
15099 * (the transition will reset the registers).
15100 *
15101 * In particular, place this call after:
15102 * - init_chip() - the chip will not initiate any PCIe transactions
15103 * - pcie_speeds() - reads the current link speed
15104 * - hfi1_firmware_init() - the needed firmware is ready to be
15105 * downloaded
15106 */
15107 ret = do_pcie_gen3_transition(dd);
15108 if (ret)
15109 goto bail_cleanup;
15110
15111 /* start setting dd values and adjusting CSRs */
15112 init_early_variables(dd);
15113
15114 parse_platform_config(dd);
15115
5d9157aa
DL
15116 ret = obtain_boardname(dd);
15117 if (ret)
77241056 15118 goto bail_cleanup;
77241056
MM
15119
15120 snprintf(dd->boardversion, BOARD_VERS_MAX,
5d9157aa 15121 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
77241056 15122 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
77241056
MM
15123 (u32)dd->majrev,
15124 (u32)dd->minrev,
15125 (dd->revision >> CCE_REVISION_SW_SHIFT)
15126 & CCE_REVISION_SW_MASK);
15127
15128 ret = set_up_context_variables(dd);
15129 if (ret)
15130 goto bail_cleanup;
15131
15132 /* set initial RXE CSRs */
15133 init_rxe(dd);
15134 /* set initial TXE CSRs */
15135 init_txe(dd);
15136 /* set initial non-RXE, non-TXE CSRs */
15137 init_other(dd);
15138 /* set up KDETH QP prefix in both RX and TX CSRs */
15139 init_kdeth_qp(dd);
15140
4197344b
DD
15141 ret = hfi1_dev_affinity_init(dd);
15142 if (ret)
15143 goto bail_cleanup;
957558c9 15144
77241056
MM
15145 /* send contexts must be set up before receive contexts */
15146 ret = init_send_contexts(dd);
15147 if (ret)
15148 goto bail_cleanup;
15149
f2a3bc00 15150 ret = hfi1_create_kctxts(dd);
77241056
MM
15151 if (ret)
15152 goto bail_cleanup;
15153
f2a3bc00
MR
15154 /*
15155 * Initialize aspm, to be done after gen3 transition and setting up
15156 * contexts and before enabling interrupts
15157 */
15158 aspm_init(dd);
15159
77241056
MM
15160 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15161 /*
15162 * rcd[0] is guaranteed to be valid by this point. Also, all
15163 * context are using the same value, as per the module parameter.
15164 */
15165 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15166
15167 ret = init_pervl_scs(dd);
15168 if (ret)
15169 goto bail_cleanup;
15170
15171 /* sdma init */
15172 for (i = 0; i < dd->num_pports; ++i) {
15173 ret = sdma_init(dd, i);
15174 if (ret)
15175 goto bail_cleanup;
15176 }
15177
f2a3bc00 15178 /* use contexts created by hfi1_create_kctxts */
77241056
MM
15179 ret = set_up_interrupts(dd);
15180 if (ret)
15181 goto bail_cleanup;
15182
15183 /* set up LCB access - must be after set_up_interrupts() */
15184 init_lcb_access(dd);
15185
fc0b76c0
IW
15186 /*
15187 * Serial number is created from the base guid:
15188 * [27:24] = base guid [38:35]
15189 * [23: 0] = base guid [23: 0]
15190 */
77241056 15191 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
fc0b76c0
IW
15192 (dd->base_guid & 0xFFFFFF) |
15193 ((dd->base_guid >> 11) & 0xF000000));
77241056
MM
15194
15195 dd->oui1 = dd->base_guid >> 56 & 0xFF;
15196 dd->oui2 = dd->base_guid >> 48 & 0xFF;
15197 dd->oui3 = dd->base_guid >> 40 & 0xFF;
15198
15199 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15200 if (ret)
15201 goto bail_clear_intr;
77241056
MM
15202
15203 thermal_init(dd);
15204
15205 ret = init_cntrs(dd);
15206 if (ret)
15207 goto bail_clear_intr;
15208
15209 ret = init_rcverr(dd);
15210 if (ret)
15211 goto bail_free_cntrs;
15212
acd7c8fe
TS
15213 init_completion(&dd->user_comp);
15214
15215 /* The user refcount starts with one to inidicate an active device */
15216 atomic_set(&dd->user_refcount, 1);
15217
77241056
MM
15218 goto bail;
15219
15220bail_free_rcverr:
15221 free_rcverr(dd);
15222bail_free_cntrs:
15223 free_cntrs(dd);
15224bail_clear_intr:
15225 clean_up_interrupts(dd);
15226bail_cleanup:
15227 hfi1_pcie_ddcleanup(dd);
15228bail_free:
15229 hfi1_free_devdata(dd);
15230 dd = ERR_PTR(ret);
15231bail:
15232 return dd;
15233}
15234
15235static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15236 u32 dw_len)
15237{
15238 u32 delta_cycles;
15239 u32 current_egress_rate = ppd->current_egress_rate;
15240 /* rates here are in units of 10^6 bits/sec */
15241
15242 if (desired_egress_rate == -1)
15243 return 0; /* shouldn't happen */
15244
15245 if (desired_egress_rate >= current_egress_rate)
15246 return 0; /* we can't help go faster, only slower */
15247
15248 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15249 egress_cycles(dw_len * 4, current_egress_rate);
15250
15251 return (u16)delta_cycles;
15252}
15253
77241056
MM
15254/**
15255 * create_pbc - build a pbc for transmission
15256 * @flags: special case flags or-ed in built pbc
15257 * @srate: static rate
15258 * @vl: vl
15259 * @dwlen: dword length (header words + data words + pbc words)
15260 *
15261 * Create a PBC with the given flags, rate, VL, and length.
15262 *
15263 * NOTE: The PBC created will not insert any HCRC - all callers but one are
15264 * for verbs, which does not use this PSM feature. The lone other caller
15265 * is for the diagnostic interface which calls this if the user does not
15266 * supply their own PBC.
15267 */
15268u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15269 u32 dw_len)
15270{
15271 u64 pbc, delay = 0;
15272
15273 if (unlikely(srate_mbs))
15274 delay = delay_cycles(ppd, srate_mbs, dw_len);
15275
15276 pbc = flags
15277 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15278 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15279 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15280 | (dw_len & PBC_LENGTH_DWS_MASK)
15281 << PBC_LENGTH_DWS_SHIFT;
15282
15283 return pbc;
15284}
15285
15286#define SBUS_THERMAL 0x4f
15287#define SBUS_THERM_MONITOR_MODE 0x1
15288
15289#define THERM_FAILURE(dev, ret, reason) \
15290 dd_dev_err((dd), \
15291 "Thermal sensor initialization failed: %s (%d)\n", \
15292 (reason), (ret))
15293
15294/*
cde10afa 15295 * Initialize the thermal sensor.
77241056
MM
15296 *
15297 * After initialization, enable polling of thermal sensor through
15298 * SBus interface. In order for this to work, the SBus Master
15299 * firmware has to be loaded due to the fact that the HW polling
15300 * logic uses SBus interrupts, which are not supported with
15301 * default firmware. Otherwise, no data will be returned through
15302 * the ASIC_STS_THERM CSR.
15303 */
15304static int thermal_init(struct hfi1_devdata *dd)
15305{
15306 int ret = 0;
15307
15308 if (dd->icode != ICODE_RTL_SILICON ||
a453698b 15309 check_chip_resource(dd, CR_THERM_INIT, NULL))
77241056
MM
15310 return ret;
15311
576531fd
DL
15312 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15313 if (ret) {
15314 THERM_FAILURE(dd, ret, "Acquire SBus");
15315 return ret;
15316 }
15317
77241056 15318 dd_dev_info(dd, "Initializing thermal sensor\n");
4ef98989
JAQ
15319 /* Disable polling of thermal readings */
15320 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15321 msleep(100);
77241056
MM
15322 /* Thermal Sensor Initialization */
15323 /* Step 1: Reset the Thermal SBus Receiver */
15324 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15325 RESET_SBUS_RECEIVER, 0);
15326 if (ret) {
15327 THERM_FAILURE(dd, ret, "Bus Reset");
15328 goto done;
15329 }
15330 /* Step 2: Set Reset bit in Thermal block */
15331 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15332 WRITE_SBUS_RECEIVER, 0x1);
15333 if (ret) {
15334 THERM_FAILURE(dd, ret, "Therm Block Reset");
15335 goto done;
15336 }
15337 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
15338 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15339 WRITE_SBUS_RECEIVER, 0x32);
15340 if (ret) {
15341 THERM_FAILURE(dd, ret, "Write Clock Div");
15342 goto done;
15343 }
15344 /* Step 4: Select temperature mode */
15345 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15346 WRITE_SBUS_RECEIVER,
15347 SBUS_THERM_MONITOR_MODE);
15348 if (ret) {
15349 THERM_FAILURE(dd, ret, "Write Mode Sel");
15350 goto done;
15351 }
15352 /* Step 5: De-assert block reset and start conversion */
15353 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15354 WRITE_SBUS_RECEIVER, 0x2);
15355 if (ret) {
15356 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15357 goto done;
15358 }
15359 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
15360 msleep(22);
15361
15362 /* Enable polling of thermal readings */
15363 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
a453698b
DL
15364
15365 /* Set initialized flag */
15366 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15367 if (ret)
15368 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15369
77241056 15370done:
576531fd 15371 release_chip_resource(dd, CR_SBUS);
77241056
MM
15372 return ret;
15373}
15374
15375static void handle_temp_err(struct hfi1_devdata *dd)
15376{
15377 struct hfi1_pportdata *ppd = &dd->pport[0];
15378 /*
15379 * Thermal Critical Interrupt
15380 * Put the device into forced freeze mode, take link down to
15381 * offline, and put DC into reset.
15382 */
15383 dd_dev_emerg(dd,
15384 "Critical temperature reached! Forcing device into freeze mode!\n");
15385 dd->flags |= HFI1_FORCED_FREEZE;
8638b77f 15386 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
77241056
MM
15387 /*
15388 * Shut DC down as much and as quickly as possible.
15389 *
15390 * Step 1: Take the link down to OFFLINE. This will cause the
15391 * 8051 to put the Serdes in reset. However, we don't want to
15392 * go through the entire link state machine since we want to
15393 * shutdown ASAP. Furthermore, this is not a graceful shutdown
15394 * but rather an attempt to save the chip.
15395 * Code below is almost the same as quiet_serdes() but avoids
15396 * all the extra work and the sleeps.
15397 */
15398 ppd->driver_link_ready = 0;
15399 ppd->link_enabled = 0;
bf640096
HC
15400 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15401 PLS_OFFLINE);
77241056
MM
15402 /*
15403 * Step 2: Shutdown LCB and 8051
15404 * After shutdown, do not restore DC_CFG_RESET value.
15405 */
15406 dc_shutdown(dd);
15407}