]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/md/raid5.c
raid5: set bio bi_vcnt 0 for discard request
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
a9add5d9
N
57#include <trace/events/block.h>
58
43b2e5d8 59#include "md.h"
bff61975 60#include "raid5.h"
54071b38 61#include "raid0.h"
ef740c37 62#include "bitmap.h"
72626685 63
851c30c9
SL
64#define cpu_to_group(cpu) cpu_to_node(cpu)
65#define ANY_GROUP NUMA_NO_NODE
66
67static struct workqueue_struct *raid5_wq;
1da177e4
LT
68/*
69 * Stripe cache
70 */
71
72#define NR_STRIPES 256
73#define STRIPE_SIZE PAGE_SIZE
74#define STRIPE_SHIFT (PAGE_SHIFT - 9)
75#define STRIPE_SECTORS (STRIPE_SIZE>>9)
76#define IO_THRESHOLD 1
8b3e6cdc 77#define BYPASS_THRESHOLD 1
fccddba0 78#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 79#define HASH_MASK (NR_HASH - 1)
bfc90cb0 80#define MAX_STRIPE_BATCH 8
1da177e4 81
d1688a6d 82static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
83{
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
86}
1da177e4
LT
87
88/* bio's attached to a stripe+device for I/O are linked together in bi_sector
89 * order without overlap. There may be several bio's per stripe+device, and
90 * a bio could span several devices.
91 * When walking this list for a particular stripe+device, we must never proceed
92 * beyond a bio that extends past this device, as the next bio might no longer
93 * be valid.
db298e19 94 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
95 * of the current stripe+device
96 */
db298e19
N
97static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
98{
aa8b57aa 99 int sectors = bio_sectors(bio);
db298e19
N
100 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
101 return bio->bi_next;
102 else
103 return NULL;
104}
1da177e4 105
960e739d 106/*
5b99c2ff
JA
107 * We maintain a biased count of active stripes in the bottom 16 bits of
108 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 109 */
e7836bd6 110static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 111{
e7836bd6
SL
112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
114}
115
e7836bd6 116static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 117{
e7836bd6
SL
118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
120}
121
e7836bd6 122static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 123{
e7836bd6
SL
124 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
125 atomic_inc(segments);
960e739d
JA
126}
127
e7836bd6
SL
128static inline void raid5_set_bi_processed_stripes(struct bio *bio,
129 unsigned int cnt)
960e739d 130{
e7836bd6
SL
131 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
132 int old, new;
960e739d 133
e7836bd6
SL
134 do {
135 old = atomic_read(segments);
136 new = (old & 0xffff) | (cnt << 16);
137 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
138}
139
e7836bd6 140static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 141{
e7836bd6
SL
142 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
143 atomic_set(segments, cnt);
960e739d
JA
144}
145
d0dabf7e
N
146/* Find first data disk in a raid6 stripe */
147static inline int raid6_d0(struct stripe_head *sh)
148{
67cc2b81
N
149 if (sh->ddf_layout)
150 /* ddf always start from first device */
151 return 0;
152 /* md starts just after Q block */
d0dabf7e
N
153 if (sh->qd_idx == sh->disks - 1)
154 return 0;
155 else
156 return sh->qd_idx + 1;
157}
16a53ecc
N
158static inline int raid6_next_disk(int disk, int raid_disks)
159{
160 disk++;
161 return (disk < raid_disks) ? disk : 0;
162}
a4456856 163
d0dabf7e
N
164/* When walking through the disks in a raid5, starting at raid6_d0,
165 * We need to map each disk to a 'slot', where the data disks are slot
166 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
167 * is raid_disks-1. This help does that mapping.
168 */
67cc2b81
N
169static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
170 int *count, int syndrome_disks)
d0dabf7e 171{
6629542e 172 int slot = *count;
67cc2b81 173
e4424fee 174 if (sh->ddf_layout)
6629542e 175 (*count)++;
d0dabf7e 176 if (idx == sh->pd_idx)
67cc2b81 177 return syndrome_disks;
d0dabf7e 178 if (idx == sh->qd_idx)
67cc2b81 179 return syndrome_disks + 1;
e4424fee 180 if (!sh->ddf_layout)
6629542e 181 (*count)++;
d0dabf7e
N
182 return slot;
183}
184
a4456856
DW
185static void return_io(struct bio *return_bi)
186{
187 struct bio *bi = return_bi;
188 while (bi) {
a4456856
DW
189
190 return_bi = bi->bi_next;
191 bi->bi_next = NULL;
192 bi->bi_size = 0;
0a82a8d1
LT
193 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
194 bi, 0);
0e13fe23 195 bio_endio(bi, 0);
a4456856
DW
196 bi = return_bi;
197 }
198}
199
d1688a6d 200static void print_raid5_conf (struct r5conf *conf);
1da177e4 201
600aa109
DW
202static int stripe_operations_active(struct stripe_head *sh)
203{
204 return sh->check_state || sh->reconstruct_state ||
205 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
206 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
207}
208
851c30c9
SL
209static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
210{
211 struct r5conf *conf = sh->raid_conf;
212 struct r5worker_group *group;
bfc90cb0 213 int thread_cnt;
851c30c9
SL
214 int i, cpu = sh->cpu;
215
216 if (!cpu_online(cpu)) {
217 cpu = cpumask_any(cpu_online_mask);
218 sh->cpu = cpu;
219 }
220
221 if (list_empty(&sh->lru)) {
222 struct r5worker_group *group;
223 group = conf->worker_groups + cpu_to_group(cpu);
224 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
225 group->stripes_cnt++;
226 sh->group = group;
851c30c9
SL
227 }
228
229 if (conf->worker_cnt_per_group == 0) {
230 md_wakeup_thread(conf->mddev->thread);
231 return;
232 }
233
234 group = conf->worker_groups + cpu_to_group(sh->cpu);
235
bfc90cb0
SL
236 group->workers[0].working = true;
237 /* at least one worker should run to avoid race */
238 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
239
240 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
241 /* wakeup more workers */
242 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
243 if (group->workers[i].working == false) {
244 group->workers[i].working = true;
245 queue_work_on(sh->cpu, raid5_wq,
246 &group->workers[i].work);
247 thread_cnt--;
248 }
249 }
851c30c9
SL
250}
251
4eb788df 252static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4 253{
4eb788df
SL
254 BUG_ON(!list_empty(&sh->lru));
255 BUG_ON(atomic_read(&conf->active_stripes)==0);
256 if (test_bit(STRIPE_HANDLE, &sh->state)) {
257 if (test_bit(STRIPE_DELAYED, &sh->state) &&
258 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
259 list_add_tail(&sh->lru, &conf->delayed_list);
260 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
261 sh->bm_seq - conf->seq_write > 0)
262 list_add_tail(&sh->lru, &conf->bitmap_list);
263 else {
264 clear_bit(STRIPE_DELAYED, &sh->state);
265 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
266 if (conf->worker_cnt_per_group == 0) {
267 list_add_tail(&sh->lru, &conf->handle_list);
268 } else {
269 raid5_wakeup_stripe_thread(sh);
270 return;
271 }
4eb788df
SL
272 }
273 md_wakeup_thread(conf->mddev->thread);
274 } else {
275 BUG_ON(stripe_operations_active(sh));
276 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277 if (atomic_dec_return(&conf->preread_active_stripes)
278 < IO_THRESHOLD)
279 md_wakeup_thread(conf->mddev->thread);
280 atomic_dec(&conf->active_stripes);
281 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282 list_add_tail(&sh->lru, &conf->inactive_list);
283 wake_up(&conf->wait_for_stripe);
284 if (conf->retry_read_aligned)
285 md_wakeup_thread(conf->mddev->thread);
1da177e4
LT
286 }
287 }
288}
d0dabf7e 289
4eb788df
SL
290static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
291{
292 if (atomic_dec_and_test(&sh->count))
293 do_release_stripe(conf, sh);
294}
295
d265d9dc
SL
296static struct llist_node *llist_reverse_order(struct llist_node *head)
297{
298 struct llist_node *new_head = NULL;
299
300 while (head) {
301 struct llist_node *tmp = head;
302 head = head->next;
303 tmp->next = new_head;
304 new_head = tmp;
305 }
306
307 return new_head;
308}
309
773ca82f
SL
310/* should hold conf->device_lock already */
311static int release_stripe_list(struct r5conf *conf)
312{
313 struct stripe_head *sh;
314 int count = 0;
315 struct llist_node *head;
316
317 head = llist_del_all(&conf->released_stripes);
d265d9dc 318 head = llist_reverse_order(head);
773ca82f
SL
319 while (head) {
320 sh = llist_entry(head, struct stripe_head, release_list);
321 head = llist_next(head);
322 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
323 smp_mb();
324 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
325 /*
326 * Don't worry the bit is set here, because if the bit is set
327 * again, the count is always > 1. This is true for
328 * STRIPE_ON_UNPLUG_LIST bit too.
329 */
330 __release_stripe(conf, sh);
331 count++;
332 }
333
334 return count;
335}
336
1da177e4
LT
337static void release_stripe(struct stripe_head *sh)
338{
d1688a6d 339 struct r5conf *conf = sh->raid_conf;
1da177e4 340 unsigned long flags;
773ca82f 341 bool wakeup;
16a53ecc 342
773ca82f
SL
343 if (test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
344 goto slow_path;
345 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
346 if (wakeup)
347 md_wakeup_thread(conf->mddev->thread);
348 return;
349slow_path:
4eb788df 350 local_irq_save(flags);
773ca82f 351 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df
SL
352 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
353 do_release_stripe(conf, sh);
354 spin_unlock(&conf->device_lock);
355 }
356 local_irq_restore(flags);
1da177e4
LT
357}
358
fccddba0 359static inline void remove_hash(struct stripe_head *sh)
1da177e4 360{
45b4233c
DW
361 pr_debug("remove_hash(), stripe %llu\n",
362 (unsigned long long)sh->sector);
1da177e4 363
fccddba0 364 hlist_del_init(&sh->hash);
1da177e4
LT
365}
366
d1688a6d 367static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 368{
fccddba0 369 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 370
45b4233c
DW
371 pr_debug("insert_hash(), stripe %llu\n",
372 (unsigned long long)sh->sector);
1da177e4 373
fccddba0 374 hlist_add_head(&sh->hash, hp);
1da177e4
LT
375}
376
377
378/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 379static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
380{
381 struct stripe_head *sh = NULL;
382 struct list_head *first;
383
1da177e4
LT
384 if (list_empty(&conf->inactive_list))
385 goto out;
386 first = conf->inactive_list.next;
387 sh = list_entry(first, struct stripe_head, lru);
388 list_del_init(first);
389 remove_hash(sh);
390 atomic_inc(&conf->active_stripes);
391out:
392 return sh;
393}
394
e4e11e38 395static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
396{
397 struct page *p;
398 int i;
e4e11e38 399 int num = sh->raid_conf->pool_size;
1da177e4 400
e4e11e38 401 for (i = 0; i < num ; i++) {
1da177e4
LT
402 p = sh->dev[i].page;
403 if (!p)
404 continue;
405 sh->dev[i].page = NULL;
2d1f3b5d 406 put_page(p);
1da177e4
LT
407 }
408}
409
e4e11e38 410static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
411{
412 int i;
e4e11e38 413 int num = sh->raid_conf->pool_size;
1da177e4 414
e4e11e38 415 for (i = 0; i < num; i++) {
1da177e4
LT
416 struct page *page;
417
418 if (!(page = alloc_page(GFP_KERNEL))) {
419 return 1;
420 }
421 sh->dev[i].page = page;
422 }
423 return 0;
424}
425
784052ec 426static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 427static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 428 struct stripe_head *sh);
1da177e4 429
b5663ba4 430static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 431{
d1688a6d 432 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 433 int i;
1da177e4 434
78bafebd
ES
435 BUG_ON(atomic_read(&sh->count) != 0);
436 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 437 BUG_ON(stripe_operations_active(sh));
d84e0f10 438
45b4233c 439 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
440 (unsigned long long)sh->sector);
441
442 remove_hash(sh);
16a53ecc 443
86b42c71 444 sh->generation = conf->generation - previous;
b5663ba4 445 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 446 sh->sector = sector;
911d4ee8 447 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
448 sh->state = 0;
449
7ecaa1e6
N
450
451 for (i = sh->disks; i--; ) {
1da177e4
LT
452 struct r5dev *dev = &sh->dev[i];
453
d84e0f10 454 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 455 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 456 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 457 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 458 dev->read, dev->towrite, dev->written,
1da177e4 459 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 460 WARN_ON(1);
1da177e4
LT
461 }
462 dev->flags = 0;
784052ec 463 raid5_build_block(sh, i, previous);
1da177e4
LT
464 }
465 insert_hash(conf, sh);
851c30c9 466 sh->cpu = smp_processor_id();
1da177e4
LT
467}
468
d1688a6d 469static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 470 short generation)
1da177e4
LT
471{
472 struct stripe_head *sh;
473
45b4233c 474 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 475 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 476 if (sh->sector == sector && sh->generation == generation)
1da177e4 477 return sh;
45b4233c 478 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
479 return NULL;
480}
481
674806d6
N
482/*
483 * Need to check if array has failed when deciding whether to:
484 * - start an array
485 * - remove non-faulty devices
486 * - add a spare
487 * - allow a reshape
488 * This determination is simple when no reshape is happening.
489 * However if there is a reshape, we need to carefully check
490 * both the before and after sections.
491 * This is because some failed devices may only affect one
492 * of the two sections, and some non-in_sync devices may
493 * be insync in the section most affected by failed devices.
494 */
908f4fbd 495static int calc_degraded(struct r5conf *conf)
674806d6 496{
908f4fbd 497 int degraded, degraded2;
674806d6 498 int i;
674806d6
N
499
500 rcu_read_lock();
501 degraded = 0;
502 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 503 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
504 if (rdev && test_bit(Faulty, &rdev->flags))
505 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
506 if (!rdev || test_bit(Faulty, &rdev->flags))
507 degraded++;
508 else if (test_bit(In_sync, &rdev->flags))
509 ;
510 else
511 /* not in-sync or faulty.
512 * If the reshape increases the number of devices,
513 * this is being recovered by the reshape, so
514 * this 'previous' section is not in_sync.
515 * If the number of devices is being reduced however,
516 * the device can only be part of the array if
517 * we are reverting a reshape, so this section will
518 * be in-sync.
519 */
520 if (conf->raid_disks >= conf->previous_raid_disks)
521 degraded++;
522 }
523 rcu_read_unlock();
908f4fbd
N
524 if (conf->raid_disks == conf->previous_raid_disks)
525 return degraded;
674806d6 526 rcu_read_lock();
908f4fbd 527 degraded2 = 0;
674806d6 528 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 529 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
530 if (rdev && test_bit(Faulty, &rdev->flags))
531 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 532 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 533 degraded2++;
674806d6
N
534 else if (test_bit(In_sync, &rdev->flags))
535 ;
536 else
537 /* not in-sync or faulty.
538 * If reshape increases the number of devices, this
539 * section has already been recovered, else it
540 * almost certainly hasn't.
541 */
542 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 543 degraded2++;
674806d6
N
544 }
545 rcu_read_unlock();
908f4fbd
N
546 if (degraded2 > degraded)
547 return degraded2;
548 return degraded;
549}
550
551static int has_failed(struct r5conf *conf)
552{
553 int degraded;
554
555 if (conf->mddev->reshape_position == MaxSector)
556 return conf->mddev->degraded > conf->max_degraded;
557
558 degraded = calc_degraded(conf);
674806d6
N
559 if (degraded > conf->max_degraded)
560 return 1;
561 return 0;
562}
563
b5663ba4 564static struct stripe_head *
d1688a6d 565get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 566 int previous, int noblock, int noquiesce)
1da177e4
LT
567{
568 struct stripe_head *sh;
569
45b4233c 570 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
571
572 spin_lock_irq(&conf->device_lock);
573
574 do {
72626685 575 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 576 conf->quiesce == 0 || noquiesce,
eed8c02e 577 conf->device_lock);
86b42c71 578 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
579 if (!sh) {
580 if (!conf->inactive_blocked)
581 sh = get_free_stripe(conf);
582 if (noblock && sh == NULL)
583 break;
584 if (!sh) {
585 conf->inactive_blocked = 1;
586 wait_event_lock_irq(conf->wait_for_stripe,
587 !list_empty(&conf->inactive_list) &&
5036805b
N
588 (atomic_read(&conf->active_stripes)
589 < (conf->max_nr_stripes *3/4)
1da177e4 590 || !conf->inactive_blocked),
eed8c02e 591 conf->device_lock);
1da177e4
LT
592 conf->inactive_blocked = 0;
593 } else
b5663ba4 594 init_stripe(sh, sector, previous);
1da177e4
LT
595 } else {
596 if (atomic_read(&sh->count)) {
ab69ae12 597 BUG_ON(!list_empty(&sh->lru)
8811b596 598 && !test_bit(STRIPE_EXPANDING, &sh->state)
773ca82f
SL
599 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
600 && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1da177e4
LT
601 } else {
602 if (!test_bit(STRIPE_HANDLE, &sh->state))
603 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
604 if (list_empty(&sh->lru) &&
605 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
606 BUG();
607 list_del_init(&sh->lru);
bfc90cb0
SL
608 if (sh->group) {
609 sh->group->stripes_cnt--;
610 sh->group = NULL;
611 }
1da177e4
LT
612 }
613 }
614 } while (sh == NULL);
615
616 if (sh)
617 atomic_inc(&sh->count);
618
619 spin_unlock_irq(&conf->device_lock);
620 return sh;
621}
622
05616be5
N
623/* Determine if 'data_offset' or 'new_data_offset' should be used
624 * in this stripe_head.
625 */
626static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
627{
628 sector_t progress = conf->reshape_progress;
629 /* Need a memory barrier to make sure we see the value
630 * of conf->generation, or ->data_offset that was set before
631 * reshape_progress was updated.
632 */
633 smp_rmb();
634 if (progress == MaxSector)
635 return 0;
636 if (sh->generation == conf->generation - 1)
637 return 0;
638 /* We are in a reshape, and this is a new-generation stripe,
639 * so use new_data_offset.
640 */
641 return 1;
642}
643
6712ecf8
N
644static void
645raid5_end_read_request(struct bio *bi, int error);
646static void
647raid5_end_write_request(struct bio *bi, int error);
91c00924 648
c4e5ac0a 649static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 650{
d1688a6d 651 struct r5conf *conf = sh->raid_conf;
91c00924
DW
652 int i, disks = sh->disks;
653
654 might_sleep();
655
656 for (i = disks; i--; ) {
657 int rw;
9a3e1101 658 int replace_only = 0;
977df362
N
659 struct bio *bi, *rbi;
660 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
661 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
662 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
663 rw = WRITE_FUA;
664 else
665 rw = WRITE;
9e444768 666 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 667 rw |= REQ_DISCARD;
e9c7469b 668 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 669 rw = READ;
9a3e1101
N
670 else if (test_and_clear_bit(R5_WantReplace,
671 &sh->dev[i].flags)) {
672 rw = WRITE;
673 replace_only = 1;
674 } else
91c00924 675 continue;
bc0934f0
SL
676 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
677 rw |= REQ_SYNC;
91c00924
DW
678
679 bi = &sh->dev[i].req;
977df362 680 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 681
91c00924 682 rcu_read_lock();
9a3e1101 683 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
684 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
685 rdev = rcu_dereference(conf->disks[i].rdev);
686 if (!rdev) {
687 rdev = rrdev;
688 rrdev = NULL;
689 }
9a3e1101
N
690 if (rw & WRITE) {
691 if (replace_only)
692 rdev = NULL;
dd054fce
N
693 if (rdev == rrdev)
694 /* We raced and saw duplicates */
695 rrdev = NULL;
9a3e1101 696 } else {
dd054fce 697 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
698 rdev = rrdev;
699 rrdev = NULL;
700 }
977df362 701
91c00924
DW
702 if (rdev && test_bit(Faulty, &rdev->flags))
703 rdev = NULL;
704 if (rdev)
705 atomic_inc(&rdev->nr_pending);
977df362
N
706 if (rrdev && test_bit(Faulty, &rrdev->flags))
707 rrdev = NULL;
708 if (rrdev)
709 atomic_inc(&rrdev->nr_pending);
91c00924
DW
710 rcu_read_unlock();
711
73e92e51 712 /* We have already checked bad blocks for reads. Now
977df362
N
713 * need to check for writes. We never accept write errors
714 * on the replacement, so we don't to check rrdev.
73e92e51
N
715 */
716 while ((rw & WRITE) && rdev &&
717 test_bit(WriteErrorSeen, &rdev->flags)) {
718 sector_t first_bad;
719 int bad_sectors;
720 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
721 &first_bad, &bad_sectors);
722 if (!bad)
723 break;
724
725 if (bad < 0) {
726 set_bit(BlockedBadBlocks, &rdev->flags);
727 if (!conf->mddev->external &&
728 conf->mddev->flags) {
729 /* It is very unlikely, but we might
730 * still need to write out the
731 * bad block log - better give it
732 * a chance*/
733 md_check_recovery(conf->mddev);
734 }
1850753d 735 /*
736 * Because md_wait_for_blocked_rdev
737 * will dec nr_pending, we must
738 * increment it first.
739 */
740 atomic_inc(&rdev->nr_pending);
73e92e51
N
741 md_wait_for_blocked_rdev(rdev, conf->mddev);
742 } else {
743 /* Acknowledged bad block - skip the write */
744 rdev_dec_pending(rdev, conf->mddev);
745 rdev = NULL;
746 }
747 }
748
91c00924 749 if (rdev) {
9a3e1101
N
750 if (s->syncing || s->expanding || s->expanded
751 || s->replacing)
91c00924
DW
752 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
753
2b7497f0
DW
754 set_bit(STRIPE_IO_STARTED, &sh->state);
755
2f6db2a7 756 bio_reset(bi);
91c00924 757 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
758 bi->bi_rw = rw;
759 bi->bi_end_io = (rw & WRITE)
760 ? raid5_end_write_request
761 : raid5_end_read_request;
762 bi->bi_private = sh;
763
91c00924 764 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 765 __func__, (unsigned long long)sh->sector,
91c00924
DW
766 bi->bi_rw, i);
767 atomic_inc(&sh->count);
05616be5
N
768 if (use_new_offset(conf, sh))
769 bi->bi_sector = (sh->sector
770 + rdev->new_data_offset);
771 else
772 bi->bi_sector = (sh->sector
773 + rdev->data_offset);
3f9e7c14 774 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
775 bi->bi_rw |= REQ_FLUSH;
776
4997b72e 777 bi->bi_vcnt = 1;
91c00924
DW
778 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
779 bi->bi_io_vec[0].bv_offset = 0;
780 bi->bi_size = STRIPE_SIZE;
37c61ff3
SL
781 /*
782 * If this is discard request, set bi_vcnt 0. We don't
783 * want to confuse SCSI because SCSI will replace payload
784 */
785 if (rw & REQ_DISCARD)
786 bi->bi_vcnt = 0;
977df362
N
787 if (rrdev)
788 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
789
790 if (conf->mddev->gendisk)
791 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
792 bi, disk_devt(conf->mddev->gendisk),
793 sh->dev[i].sector);
91c00924 794 generic_make_request(bi);
977df362
N
795 }
796 if (rrdev) {
9a3e1101
N
797 if (s->syncing || s->expanding || s->expanded
798 || s->replacing)
977df362
N
799 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
800
801 set_bit(STRIPE_IO_STARTED, &sh->state);
802
2f6db2a7 803 bio_reset(rbi);
977df362 804 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
805 rbi->bi_rw = rw;
806 BUG_ON(!(rw & WRITE));
807 rbi->bi_end_io = raid5_end_write_request;
808 rbi->bi_private = sh;
809
977df362
N
810 pr_debug("%s: for %llu schedule op %ld on "
811 "replacement disc %d\n",
812 __func__, (unsigned long long)sh->sector,
813 rbi->bi_rw, i);
814 atomic_inc(&sh->count);
05616be5
N
815 if (use_new_offset(conf, sh))
816 rbi->bi_sector = (sh->sector
817 + rrdev->new_data_offset);
818 else
819 rbi->bi_sector = (sh->sector
820 + rrdev->data_offset);
4997b72e 821 rbi->bi_vcnt = 1;
977df362
N
822 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
823 rbi->bi_io_vec[0].bv_offset = 0;
824 rbi->bi_size = STRIPE_SIZE;
37c61ff3
SL
825 /*
826 * If this is discard request, set bi_vcnt 0. We don't
827 * want to confuse SCSI because SCSI will replace payload
828 */
829 if (rw & REQ_DISCARD)
830 rbi->bi_vcnt = 0;
e3620a3a
JB
831 if (conf->mddev->gendisk)
832 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
833 rbi, disk_devt(conf->mddev->gendisk),
834 sh->dev[i].sector);
977df362
N
835 generic_make_request(rbi);
836 }
837 if (!rdev && !rrdev) {
b062962e 838 if (rw & WRITE)
91c00924
DW
839 set_bit(STRIPE_DEGRADED, &sh->state);
840 pr_debug("skip op %ld on disc %d for sector %llu\n",
841 bi->bi_rw, i, (unsigned long long)sh->sector);
842 clear_bit(R5_LOCKED, &sh->dev[i].flags);
843 set_bit(STRIPE_HANDLE, &sh->state);
844 }
845 }
846}
847
848static struct dma_async_tx_descriptor *
849async_copy_data(int frombio, struct bio *bio, struct page *page,
850 sector_t sector, struct dma_async_tx_descriptor *tx)
851{
852 struct bio_vec *bvl;
853 struct page *bio_page;
854 int i;
855 int page_offset;
a08abd8c 856 struct async_submit_ctl submit;
0403e382 857 enum async_tx_flags flags = 0;
91c00924
DW
858
859 if (bio->bi_sector >= sector)
860 page_offset = (signed)(bio->bi_sector - sector) * 512;
861 else
862 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 863
0403e382
DW
864 if (frombio)
865 flags |= ASYNC_TX_FENCE;
866 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
867
91c00924 868 bio_for_each_segment(bvl, bio, i) {
fcde9075 869 int len = bvl->bv_len;
91c00924
DW
870 int clen;
871 int b_offset = 0;
872
873 if (page_offset < 0) {
874 b_offset = -page_offset;
875 page_offset += b_offset;
876 len -= b_offset;
877 }
878
879 if (len > 0 && page_offset + len > STRIPE_SIZE)
880 clen = STRIPE_SIZE - page_offset;
881 else
882 clen = len;
883
884 if (clen > 0) {
fcde9075
NK
885 b_offset += bvl->bv_offset;
886 bio_page = bvl->bv_page;
91c00924
DW
887 if (frombio)
888 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 889 b_offset, clen, &submit);
91c00924
DW
890 else
891 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 892 page_offset, clen, &submit);
91c00924 893 }
a08abd8c
DW
894 /* chain the operations */
895 submit.depend_tx = tx;
896
91c00924
DW
897 if (clen < len) /* hit end of page */
898 break;
899 page_offset += len;
900 }
901
902 return tx;
903}
904
905static void ops_complete_biofill(void *stripe_head_ref)
906{
907 struct stripe_head *sh = stripe_head_ref;
908 struct bio *return_bi = NULL;
e4d84909 909 int i;
91c00924 910
e46b272b 911 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
912 (unsigned long long)sh->sector);
913
914 /* clear completed biofills */
915 for (i = sh->disks; i--; ) {
916 struct r5dev *dev = &sh->dev[i];
91c00924
DW
917
918 /* acknowledge completion of a biofill operation */
e4d84909
DW
919 /* and check if we need to reply to a read request,
920 * new R5_Wantfill requests are held off until
83de75cc 921 * !STRIPE_BIOFILL_RUN
e4d84909
DW
922 */
923 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 924 struct bio *rbi, *rbi2;
91c00924 925
91c00924
DW
926 BUG_ON(!dev->read);
927 rbi = dev->read;
928 dev->read = NULL;
929 while (rbi && rbi->bi_sector <
930 dev->sector + STRIPE_SECTORS) {
931 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 932 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
933 rbi->bi_next = return_bi;
934 return_bi = rbi;
935 }
91c00924
DW
936 rbi = rbi2;
937 }
938 }
939 }
83de75cc 940 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
941
942 return_io(return_bi);
943
e4d84909 944 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
945 release_stripe(sh);
946}
947
948static void ops_run_biofill(struct stripe_head *sh)
949{
950 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 951 struct async_submit_ctl submit;
91c00924
DW
952 int i;
953
e46b272b 954 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
955 (unsigned long long)sh->sector);
956
957 for (i = sh->disks; i--; ) {
958 struct r5dev *dev = &sh->dev[i];
959 if (test_bit(R5_Wantfill, &dev->flags)) {
960 struct bio *rbi;
b17459c0 961 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
962 dev->read = rbi = dev->toread;
963 dev->toread = NULL;
b17459c0 964 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
965 while (rbi && rbi->bi_sector <
966 dev->sector + STRIPE_SECTORS) {
967 tx = async_copy_data(0, rbi, dev->page,
968 dev->sector, tx);
969 rbi = r5_next_bio(rbi, dev->sector);
970 }
971 }
972 }
973
974 atomic_inc(&sh->count);
a08abd8c
DW
975 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
976 async_trigger_callback(&submit);
91c00924
DW
977}
978
4e7d2c0a 979static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 980{
4e7d2c0a 981 struct r5dev *tgt;
91c00924 982
4e7d2c0a
DW
983 if (target < 0)
984 return;
91c00924 985
4e7d2c0a 986 tgt = &sh->dev[target];
91c00924
DW
987 set_bit(R5_UPTODATE, &tgt->flags);
988 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
989 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
990}
991
ac6b53b6 992static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
993{
994 struct stripe_head *sh = stripe_head_ref;
91c00924 995
e46b272b 996 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
997 (unsigned long long)sh->sector);
998
ac6b53b6 999 /* mark the computed target(s) as uptodate */
4e7d2c0a 1000 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1001 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1002
ecc65c9b
DW
1003 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1004 if (sh->check_state == check_state_compute_run)
1005 sh->check_state = check_state_compute_result;
91c00924
DW
1006 set_bit(STRIPE_HANDLE, &sh->state);
1007 release_stripe(sh);
1008}
1009
d6f38f31
DW
1010/* return a pointer to the address conversion region of the scribble buffer */
1011static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1012 struct raid5_percpu *percpu)
1013{
1014 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1015}
1016
1017static struct dma_async_tx_descriptor *
1018ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1019{
91c00924 1020 int disks = sh->disks;
d6f38f31 1021 struct page **xor_srcs = percpu->scribble;
91c00924
DW
1022 int target = sh->ops.target;
1023 struct r5dev *tgt = &sh->dev[target];
1024 struct page *xor_dest = tgt->page;
1025 int count = 0;
1026 struct dma_async_tx_descriptor *tx;
a08abd8c 1027 struct async_submit_ctl submit;
91c00924
DW
1028 int i;
1029
1030 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1031 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1032 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1033
1034 for (i = disks; i--; )
1035 if (i != target)
1036 xor_srcs[count++] = sh->dev[i].page;
1037
1038 atomic_inc(&sh->count);
1039
0403e382 1040 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 1041 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 1042 if (unlikely(count == 1))
a08abd8c 1043 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1044 else
a08abd8c 1045 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1046
91c00924
DW
1047 return tx;
1048}
1049
ac6b53b6
DW
1050/* set_syndrome_sources - populate source buffers for gen_syndrome
1051 * @srcs - (struct page *) array of size sh->disks
1052 * @sh - stripe_head to parse
1053 *
1054 * Populates srcs in proper layout order for the stripe and returns the
1055 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1056 * destination buffer is recorded in srcs[count] and the Q destination
1057 * is recorded in srcs[count+1]].
1058 */
1059static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1060{
1061 int disks = sh->disks;
1062 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1063 int d0_idx = raid6_d0(sh);
1064 int count;
1065 int i;
1066
1067 for (i = 0; i < disks; i++)
5dd33c9a 1068 srcs[i] = NULL;
ac6b53b6
DW
1069
1070 count = 0;
1071 i = d0_idx;
1072 do {
1073 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1074
1075 srcs[slot] = sh->dev[i].page;
1076 i = raid6_next_disk(i, disks);
1077 } while (i != d0_idx);
ac6b53b6 1078
e4424fee 1079 return syndrome_disks;
ac6b53b6
DW
1080}
1081
1082static struct dma_async_tx_descriptor *
1083ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1084{
1085 int disks = sh->disks;
1086 struct page **blocks = percpu->scribble;
1087 int target;
1088 int qd_idx = sh->qd_idx;
1089 struct dma_async_tx_descriptor *tx;
1090 struct async_submit_ctl submit;
1091 struct r5dev *tgt;
1092 struct page *dest;
1093 int i;
1094 int count;
1095
1096 if (sh->ops.target < 0)
1097 target = sh->ops.target2;
1098 else if (sh->ops.target2 < 0)
1099 target = sh->ops.target;
91c00924 1100 else
ac6b53b6
DW
1101 /* we should only have one valid target */
1102 BUG();
1103 BUG_ON(target < 0);
1104 pr_debug("%s: stripe %llu block: %d\n",
1105 __func__, (unsigned long long)sh->sector, target);
1106
1107 tgt = &sh->dev[target];
1108 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1109 dest = tgt->page;
1110
1111 atomic_inc(&sh->count);
1112
1113 if (target == qd_idx) {
1114 count = set_syndrome_sources(blocks, sh);
1115 blocks[count] = NULL; /* regenerating p is not necessary */
1116 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1117 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1118 ops_complete_compute, sh,
ac6b53b6
DW
1119 to_addr_conv(sh, percpu));
1120 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1121 } else {
1122 /* Compute any data- or p-drive using XOR */
1123 count = 0;
1124 for (i = disks; i-- ; ) {
1125 if (i == target || i == qd_idx)
1126 continue;
1127 blocks[count++] = sh->dev[i].page;
1128 }
1129
0403e382
DW
1130 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1131 NULL, ops_complete_compute, sh,
ac6b53b6
DW
1132 to_addr_conv(sh, percpu));
1133 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1134 }
91c00924 1135
91c00924
DW
1136 return tx;
1137}
1138
ac6b53b6
DW
1139static struct dma_async_tx_descriptor *
1140ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1141{
1142 int i, count, disks = sh->disks;
1143 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1144 int d0_idx = raid6_d0(sh);
1145 int faila = -1, failb = -1;
1146 int target = sh->ops.target;
1147 int target2 = sh->ops.target2;
1148 struct r5dev *tgt = &sh->dev[target];
1149 struct r5dev *tgt2 = &sh->dev[target2];
1150 struct dma_async_tx_descriptor *tx;
1151 struct page **blocks = percpu->scribble;
1152 struct async_submit_ctl submit;
1153
1154 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1155 __func__, (unsigned long long)sh->sector, target, target2);
1156 BUG_ON(target < 0 || target2 < 0);
1157 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1158 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1159
6c910a78 1160 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1161 * slot number conversion for 'faila' and 'failb'
1162 */
1163 for (i = 0; i < disks ; i++)
5dd33c9a 1164 blocks[i] = NULL;
ac6b53b6
DW
1165 count = 0;
1166 i = d0_idx;
1167 do {
1168 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1169
1170 blocks[slot] = sh->dev[i].page;
1171
1172 if (i == target)
1173 faila = slot;
1174 if (i == target2)
1175 failb = slot;
1176 i = raid6_next_disk(i, disks);
1177 } while (i != d0_idx);
ac6b53b6
DW
1178
1179 BUG_ON(faila == failb);
1180 if (failb < faila)
1181 swap(faila, failb);
1182 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1183 __func__, (unsigned long long)sh->sector, faila, failb);
1184
1185 atomic_inc(&sh->count);
1186
1187 if (failb == syndrome_disks+1) {
1188 /* Q disk is one of the missing disks */
1189 if (faila == syndrome_disks) {
1190 /* Missing P+Q, just recompute */
0403e382
DW
1191 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1192 ops_complete_compute, sh,
1193 to_addr_conv(sh, percpu));
e4424fee 1194 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1195 STRIPE_SIZE, &submit);
1196 } else {
1197 struct page *dest;
1198 int data_target;
1199 int qd_idx = sh->qd_idx;
1200
1201 /* Missing D+Q: recompute D from P, then recompute Q */
1202 if (target == qd_idx)
1203 data_target = target2;
1204 else
1205 data_target = target;
1206
1207 count = 0;
1208 for (i = disks; i-- ; ) {
1209 if (i == data_target || i == qd_idx)
1210 continue;
1211 blocks[count++] = sh->dev[i].page;
1212 }
1213 dest = sh->dev[data_target].page;
0403e382
DW
1214 init_async_submit(&submit,
1215 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1216 NULL, NULL, NULL,
1217 to_addr_conv(sh, percpu));
ac6b53b6
DW
1218 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1219 &submit);
1220
1221 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1222 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1223 ops_complete_compute, sh,
1224 to_addr_conv(sh, percpu));
ac6b53b6
DW
1225 return async_gen_syndrome(blocks, 0, count+2,
1226 STRIPE_SIZE, &submit);
1227 }
ac6b53b6 1228 } else {
6c910a78
DW
1229 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1230 ops_complete_compute, sh,
1231 to_addr_conv(sh, percpu));
1232 if (failb == syndrome_disks) {
1233 /* We're missing D+P. */
1234 return async_raid6_datap_recov(syndrome_disks+2,
1235 STRIPE_SIZE, faila,
1236 blocks, &submit);
1237 } else {
1238 /* We're missing D+D. */
1239 return async_raid6_2data_recov(syndrome_disks+2,
1240 STRIPE_SIZE, faila, failb,
1241 blocks, &submit);
1242 }
ac6b53b6
DW
1243 }
1244}
1245
1246
91c00924
DW
1247static void ops_complete_prexor(void *stripe_head_ref)
1248{
1249 struct stripe_head *sh = stripe_head_ref;
1250
e46b272b 1251 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1252 (unsigned long long)sh->sector);
91c00924
DW
1253}
1254
1255static struct dma_async_tx_descriptor *
d6f38f31
DW
1256ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1257 struct dma_async_tx_descriptor *tx)
91c00924 1258{
91c00924 1259 int disks = sh->disks;
d6f38f31 1260 struct page **xor_srcs = percpu->scribble;
91c00924 1261 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1262 struct async_submit_ctl submit;
91c00924
DW
1263
1264 /* existing parity data subtracted */
1265 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1266
e46b272b 1267 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1268 (unsigned long long)sh->sector);
1269
1270 for (i = disks; i--; ) {
1271 struct r5dev *dev = &sh->dev[i];
1272 /* Only process blocks that are known to be uptodate */
d8ee0728 1273 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1274 xor_srcs[count++] = dev->page;
1275 }
1276
0403e382 1277 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1278 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1279 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1280
1281 return tx;
1282}
1283
1284static struct dma_async_tx_descriptor *
d8ee0728 1285ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1286{
1287 int disks = sh->disks;
d8ee0728 1288 int i;
91c00924 1289
e46b272b 1290 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1291 (unsigned long long)sh->sector);
1292
1293 for (i = disks; i--; ) {
1294 struct r5dev *dev = &sh->dev[i];
1295 struct bio *chosen;
91c00924 1296
d8ee0728 1297 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1298 struct bio *wbi;
1299
b17459c0 1300 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1301 chosen = dev->towrite;
1302 dev->towrite = NULL;
1303 BUG_ON(dev->written);
1304 wbi = dev->written = chosen;
b17459c0 1305 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
1306
1307 while (wbi && wbi->bi_sector <
1308 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1309 if (wbi->bi_rw & REQ_FUA)
1310 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1311 if (wbi->bi_rw & REQ_SYNC)
1312 set_bit(R5_SyncIO, &dev->flags);
9e444768 1313 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1314 set_bit(R5_Discard, &dev->flags);
9e444768 1315 else
620125f2
SL
1316 tx = async_copy_data(1, wbi, dev->page,
1317 dev->sector, tx);
91c00924
DW
1318 wbi = r5_next_bio(wbi, dev->sector);
1319 }
1320 }
1321 }
1322
1323 return tx;
1324}
1325
ac6b53b6 1326static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1327{
1328 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1329 int disks = sh->disks;
1330 int pd_idx = sh->pd_idx;
1331 int qd_idx = sh->qd_idx;
1332 int i;
9e444768 1333 bool fua = false, sync = false, discard = false;
91c00924 1334
e46b272b 1335 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1336 (unsigned long long)sh->sector);
1337
bc0934f0 1338 for (i = disks; i--; ) {
e9c7469b 1339 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1340 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1341 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1342 }
e9c7469b 1343
91c00924
DW
1344 for (i = disks; i--; ) {
1345 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1346
e9c7469b 1347 if (dev->written || i == pd_idx || i == qd_idx) {
9e444768
SL
1348 if (!discard)
1349 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1350 if (fua)
1351 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1352 if (sync)
1353 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1354 }
91c00924
DW
1355 }
1356
d8ee0728
DW
1357 if (sh->reconstruct_state == reconstruct_state_drain_run)
1358 sh->reconstruct_state = reconstruct_state_drain_result;
1359 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1360 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1361 else {
1362 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1363 sh->reconstruct_state = reconstruct_state_result;
1364 }
91c00924
DW
1365
1366 set_bit(STRIPE_HANDLE, &sh->state);
1367 release_stripe(sh);
1368}
1369
1370static void
ac6b53b6
DW
1371ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1372 struct dma_async_tx_descriptor *tx)
91c00924 1373{
91c00924 1374 int disks = sh->disks;
d6f38f31 1375 struct page **xor_srcs = percpu->scribble;
a08abd8c 1376 struct async_submit_ctl submit;
91c00924
DW
1377 int count = 0, pd_idx = sh->pd_idx, i;
1378 struct page *xor_dest;
d8ee0728 1379 int prexor = 0;
91c00924 1380 unsigned long flags;
91c00924 1381
e46b272b 1382 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1383 (unsigned long long)sh->sector);
1384
620125f2
SL
1385 for (i = 0; i < sh->disks; i++) {
1386 if (pd_idx == i)
1387 continue;
1388 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1389 break;
1390 }
1391 if (i >= sh->disks) {
1392 atomic_inc(&sh->count);
620125f2
SL
1393 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1394 ops_complete_reconstruct(sh);
1395 return;
1396 }
91c00924
DW
1397 /* check if prexor is active which means only process blocks
1398 * that are part of a read-modify-write (written)
1399 */
d8ee0728
DW
1400 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1401 prexor = 1;
91c00924
DW
1402 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1403 for (i = disks; i--; ) {
1404 struct r5dev *dev = &sh->dev[i];
1405 if (dev->written)
1406 xor_srcs[count++] = dev->page;
1407 }
1408 } else {
1409 xor_dest = sh->dev[pd_idx].page;
1410 for (i = disks; i--; ) {
1411 struct r5dev *dev = &sh->dev[i];
1412 if (i != pd_idx)
1413 xor_srcs[count++] = dev->page;
1414 }
1415 }
1416
91c00924
DW
1417 /* 1/ if we prexor'd then the dest is reused as a source
1418 * 2/ if we did not prexor then we are redoing the parity
1419 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1420 * for the synchronous xor case
1421 */
88ba2aa5 1422 flags = ASYNC_TX_ACK |
91c00924
DW
1423 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1424
1425 atomic_inc(&sh->count);
1426
ac6b53b6 1427 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1428 to_addr_conv(sh, percpu));
a08abd8c
DW
1429 if (unlikely(count == 1))
1430 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1431 else
1432 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1433}
1434
ac6b53b6
DW
1435static void
1436ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1437 struct dma_async_tx_descriptor *tx)
1438{
1439 struct async_submit_ctl submit;
1440 struct page **blocks = percpu->scribble;
620125f2 1441 int count, i;
ac6b53b6
DW
1442
1443 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1444
620125f2
SL
1445 for (i = 0; i < sh->disks; i++) {
1446 if (sh->pd_idx == i || sh->qd_idx == i)
1447 continue;
1448 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1449 break;
1450 }
1451 if (i >= sh->disks) {
1452 atomic_inc(&sh->count);
620125f2
SL
1453 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1454 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1455 ops_complete_reconstruct(sh);
1456 return;
1457 }
1458
ac6b53b6
DW
1459 count = set_syndrome_sources(blocks, sh);
1460
1461 atomic_inc(&sh->count);
1462
1463 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1464 sh, to_addr_conv(sh, percpu));
1465 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1466}
1467
1468static void ops_complete_check(void *stripe_head_ref)
1469{
1470 struct stripe_head *sh = stripe_head_ref;
91c00924 1471
e46b272b 1472 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1473 (unsigned long long)sh->sector);
1474
ecc65c9b 1475 sh->check_state = check_state_check_result;
91c00924
DW
1476 set_bit(STRIPE_HANDLE, &sh->state);
1477 release_stripe(sh);
1478}
1479
ac6b53b6 1480static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1481{
91c00924 1482 int disks = sh->disks;
ac6b53b6
DW
1483 int pd_idx = sh->pd_idx;
1484 int qd_idx = sh->qd_idx;
1485 struct page *xor_dest;
d6f38f31 1486 struct page **xor_srcs = percpu->scribble;
91c00924 1487 struct dma_async_tx_descriptor *tx;
a08abd8c 1488 struct async_submit_ctl submit;
ac6b53b6
DW
1489 int count;
1490 int i;
91c00924 1491
e46b272b 1492 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1493 (unsigned long long)sh->sector);
1494
ac6b53b6
DW
1495 count = 0;
1496 xor_dest = sh->dev[pd_idx].page;
1497 xor_srcs[count++] = xor_dest;
91c00924 1498 for (i = disks; i--; ) {
ac6b53b6
DW
1499 if (i == pd_idx || i == qd_idx)
1500 continue;
1501 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1502 }
1503
d6f38f31
DW
1504 init_async_submit(&submit, 0, NULL, NULL, NULL,
1505 to_addr_conv(sh, percpu));
099f53cb 1506 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1507 &sh->ops.zero_sum_result, &submit);
91c00924 1508
91c00924 1509 atomic_inc(&sh->count);
a08abd8c
DW
1510 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1511 tx = async_trigger_callback(&submit);
91c00924
DW
1512}
1513
ac6b53b6
DW
1514static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1515{
1516 struct page **srcs = percpu->scribble;
1517 struct async_submit_ctl submit;
1518 int count;
1519
1520 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1521 (unsigned long long)sh->sector, checkp);
1522
1523 count = set_syndrome_sources(srcs, sh);
1524 if (!checkp)
1525 srcs[count] = NULL;
91c00924 1526
91c00924 1527 atomic_inc(&sh->count);
ac6b53b6
DW
1528 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1529 sh, to_addr_conv(sh, percpu));
1530 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1531 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1532}
1533
51acbcec 1534static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1535{
1536 int overlap_clear = 0, i, disks = sh->disks;
1537 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1538 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1539 int level = conf->level;
d6f38f31
DW
1540 struct raid5_percpu *percpu;
1541 unsigned long cpu;
91c00924 1542
d6f38f31
DW
1543 cpu = get_cpu();
1544 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1545 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1546 ops_run_biofill(sh);
1547 overlap_clear++;
1548 }
1549
7b3a871e 1550 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1551 if (level < 6)
1552 tx = ops_run_compute5(sh, percpu);
1553 else {
1554 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1555 tx = ops_run_compute6_1(sh, percpu);
1556 else
1557 tx = ops_run_compute6_2(sh, percpu);
1558 }
1559 /* terminate the chain if reconstruct is not set to be run */
1560 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1561 async_tx_ack(tx);
1562 }
91c00924 1563
600aa109 1564 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1565 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1566
600aa109 1567 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1568 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1569 overlap_clear++;
1570 }
1571
ac6b53b6
DW
1572 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1573 if (level < 6)
1574 ops_run_reconstruct5(sh, percpu, tx);
1575 else
1576 ops_run_reconstruct6(sh, percpu, tx);
1577 }
91c00924 1578
ac6b53b6
DW
1579 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1580 if (sh->check_state == check_state_run)
1581 ops_run_check_p(sh, percpu);
1582 else if (sh->check_state == check_state_run_q)
1583 ops_run_check_pq(sh, percpu, 0);
1584 else if (sh->check_state == check_state_run_pq)
1585 ops_run_check_pq(sh, percpu, 1);
1586 else
1587 BUG();
1588 }
91c00924 1589
91c00924
DW
1590 if (overlap_clear)
1591 for (i = disks; i--; ) {
1592 struct r5dev *dev = &sh->dev[i];
1593 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1594 wake_up(&sh->raid_conf->wait_for_overlap);
1595 }
d6f38f31 1596 put_cpu();
91c00924
DW
1597}
1598
d1688a6d 1599static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1600{
1601 struct stripe_head *sh;
6ce32846 1602 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1603 if (!sh)
1604 return 0;
6ce32846 1605
3f294f4f 1606 sh->raid_conf = conf;
3f294f4f 1607
b17459c0
SL
1608 spin_lock_init(&sh->stripe_lock);
1609
e4e11e38
N
1610 if (grow_buffers(sh)) {
1611 shrink_buffers(sh);
3f294f4f
N
1612 kmem_cache_free(conf->slab_cache, sh);
1613 return 0;
1614 }
1615 /* we just created an active stripe so... */
1616 atomic_set(&sh->count, 1);
1617 atomic_inc(&conf->active_stripes);
1618 INIT_LIST_HEAD(&sh->lru);
1619 release_stripe(sh);
1620 return 1;
1621}
1622
d1688a6d 1623static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1624{
e18b890b 1625 struct kmem_cache *sc;
5e5e3e78 1626 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1627
f4be6b43
N
1628 if (conf->mddev->gendisk)
1629 sprintf(conf->cache_name[0],
1630 "raid%d-%s", conf->level, mdname(conf->mddev));
1631 else
1632 sprintf(conf->cache_name[0],
1633 "raid%d-%p", conf->level, conf->mddev);
1634 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1635
ad01c9e3
N
1636 conf->active_name = 0;
1637 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1638 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1639 0, 0, NULL);
1da177e4
LT
1640 if (!sc)
1641 return 1;
1642 conf->slab_cache = sc;
ad01c9e3 1643 conf->pool_size = devs;
16a53ecc 1644 while (num--)
3f294f4f 1645 if (!grow_one_stripe(conf))
1da177e4 1646 return 1;
1da177e4
LT
1647 return 0;
1648}
29269553 1649
d6f38f31
DW
1650/**
1651 * scribble_len - return the required size of the scribble region
1652 * @num - total number of disks in the array
1653 *
1654 * The size must be enough to contain:
1655 * 1/ a struct page pointer for each device in the array +2
1656 * 2/ room to convert each entry in (1) to its corresponding dma
1657 * (dma_map_page()) or page (page_address()) address.
1658 *
1659 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1660 * calculate over all devices (not just the data blocks), using zeros in place
1661 * of the P and Q blocks.
1662 */
1663static size_t scribble_len(int num)
1664{
1665 size_t len;
1666
1667 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1668
1669 return len;
1670}
1671
d1688a6d 1672static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1673{
1674 /* Make all the stripes able to hold 'newsize' devices.
1675 * New slots in each stripe get 'page' set to a new page.
1676 *
1677 * This happens in stages:
1678 * 1/ create a new kmem_cache and allocate the required number of
1679 * stripe_heads.
83f0d77a 1680 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
1681 * to the new stripe_heads. This will have the side effect of
1682 * freezing the array as once all stripe_heads have been collected,
1683 * no IO will be possible. Old stripe heads are freed once their
1684 * pages have been transferred over, and the old kmem_cache is
1685 * freed when all stripes are done.
1686 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1687 * we simple return a failre status - no need to clean anything up.
1688 * 4/ allocate new pages for the new slots in the new stripe_heads.
1689 * If this fails, we don't bother trying the shrink the
1690 * stripe_heads down again, we just leave them as they are.
1691 * As each stripe_head is processed the new one is released into
1692 * active service.
1693 *
1694 * Once step2 is started, we cannot afford to wait for a write,
1695 * so we use GFP_NOIO allocations.
1696 */
1697 struct stripe_head *osh, *nsh;
1698 LIST_HEAD(newstripes);
1699 struct disk_info *ndisks;
d6f38f31 1700 unsigned long cpu;
b5470dc5 1701 int err;
e18b890b 1702 struct kmem_cache *sc;
ad01c9e3
N
1703 int i;
1704
1705 if (newsize <= conf->pool_size)
1706 return 0; /* never bother to shrink */
1707
b5470dc5
DW
1708 err = md_allow_write(conf->mddev);
1709 if (err)
1710 return err;
2a2275d6 1711
ad01c9e3
N
1712 /* Step 1 */
1713 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1714 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1715 0, 0, NULL);
ad01c9e3
N
1716 if (!sc)
1717 return -ENOMEM;
1718
1719 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1720 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1721 if (!nsh)
1722 break;
1723
ad01c9e3 1724 nsh->raid_conf = conf;
cb13ff69 1725 spin_lock_init(&nsh->stripe_lock);
ad01c9e3
N
1726
1727 list_add(&nsh->lru, &newstripes);
1728 }
1729 if (i) {
1730 /* didn't get enough, give up */
1731 while (!list_empty(&newstripes)) {
1732 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1733 list_del(&nsh->lru);
1734 kmem_cache_free(sc, nsh);
1735 }
1736 kmem_cache_destroy(sc);
1737 return -ENOMEM;
1738 }
1739 /* Step 2 - Must use GFP_NOIO now.
1740 * OK, we have enough stripes, start collecting inactive
1741 * stripes and copying them over
1742 */
1743 list_for_each_entry(nsh, &newstripes, lru) {
1744 spin_lock_irq(&conf->device_lock);
1745 wait_event_lock_irq(conf->wait_for_stripe,
1746 !list_empty(&conf->inactive_list),
eed8c02e 1747 conf->device_lock);
ad01c9e3
N
1748 osh = get_free_stripe(conf);
1749 spin_unlock_irq(&conf->device_lock);
1750 atomic_set(&nsh->count, 1);
1751 for(i=0; i<conf->pool_size; i++)
1752 nsh->dev[i].page = osh->dev[i].page;
1753 for( ; i<newsize; i++)
1754 nsh->dev[i].page = NULL;
1755 kmem_cache_free(conf->slab_cache, osh);
1756 }
1757 kmem_cache_destroy(conf->slab_cache);
1758
1759 /* Step 3.
1760 * At this point, we are holding all the stripes so the array
1761 * is completely stalled, so now is a good time to resize
d6f38f31 1762 * conf->disks and the scribble region
ad01c9e3
N
1763 */
1764 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1765 if (ndisks) {
1766 for (i=0; i<conf->raid_disks; i++)
1767 ndisks[i] = conf->disks[i];
1768 kfree(conf->disks);
1769 conf->disks = ndisks;
1770 } else
1771 err = -ENOMEM;
1772
d6f38f31
DW
1773 get_online_cpus();
1774 conf->scribble_len = scribble_len(newsize);
1775 for_each_present_cpu(cpu) {
1776 struct raid5_percpu *percpu;
1777 void *scribble;
1778
1779 percpu = per_cpu_ptr(conf->percpu, cpu);
1780 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1781
1782 if (scribble) {
1783 kfree(percpu->scribble);
1784 percpu->scribble = scribble;
1785 } else {
1786 err = -ENOMEM;
1787 break;
1788 }
1789 }
1790 put_online_cpus();
1791
ad01c9e3
N
1792 /* Step 4, return new stripes to service */
1793 while(!list_empty(&newstripes)) {
1794 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1795 list_del_init(&nsh->lru);
d6f38f31 1796
ad01c9e3
N
1797 for (i=conf->raid_disks; i < newsize; i++)
1798 if (nsh->dev[i].page == NULL) {
1799 struct page *p = alloc_page(GFP_NOIO);
1800 nsh->dev[i].page = p;
1801 if (!p)
1802 err = -ENOMEM;
1803 }
1804 release_stripe(nsh);
1805 }
1806 /* critical section pass, GFP_NOIO no longer needed */
1807
1808 conf->slab_cache = sc;
1809 conf->active_name = 1-conf->active_name;
1810 conf->pool_size = newsize;
1811 return err;
1812}
1da177e4 1813
d1688a6d 1814static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1815{
1816 struct stripe_head *sh;
1817
3f294f4f
N
1818 spin_lock_irq(&conf->device_lock);
1819 sh = get_free_stripe(conf);
1820 spin_unlock_irq(&conf->device_lock);
1821 if (!sh)
1822 return 0;
78bafebd 1823 BUG_ON(atomic_read(&sh->count));
e4e11e38 1824 shrink_buffers(sh);
3f294f4f
N
1825 kmem_cache_free(conf->slab_cache, sh);
1826 atomic_dec(&conf->active_stripes);
1827 return 1;
1828}
1829
d1688a6d 1830static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1831{
1832 while (drop_one_stripe(conf))
1833 ;
1834
29fc7e3e
N
1835 if (conf->slab_cache)
1836 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1837 conf->slab_cache = NULL;
1838}
1839
6712ecf8 1840static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1841{
99c0fb5f 1842 struct stripe_head *sh = bi->bi_private;
d1688a6d 1843 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1844 int disks = sh->disks, i;
1da177e4 1845 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1846 char b[BDEVNAME_SIZE];
dd054fce 1847 struct md_rdev *rdev = NULL;
05616be5 1848 sector_t s;
1da177e4
LT
1849
1850 for (i=0 ; i<disks; i++)
1851 if (bi == &sh->dev[i].req)
1852 break;
1853
45b4233c
DW
1854 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1855 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1856 uptodate);
1857 if (i == disks) {
1858 BUG();
6712ecf8 1859 return;
1da177e4 1860 }
14a75d3e 1861 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1862 /* If replacement finished while this request was outstanding,
1863 * 'replacement' might be NULL already.
1864 * In that case it moved down to 'rdev'.
1865 * rdev is not removed until all requests are finished.
1866 */
14a75d3e 1867 rdev = conf->disks[i].replacement;
dd054fce 1868 if (!rdev)
14a75d3e 1869 rdev = conf->disks[i].rdev;
1da177e4 1870
05616be5
N
1871 if (use_new_offset(conf, sh))
1872 s = sh->sector + rdev->new_data_offset;
1873 else
1874 s = sh->sector + rdev->data_offset;
1da177e4 1875 if (uptodate) {
1da177e4 1876 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1877 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1878 /* Note that this cannot happen on a
1879 * replacement device. We just fail those on
1880 * any error
1881 */
8bda470e
CD
1882 printk_ratelimited(
1883 KERN_INFO
1884 "md/raid:%s: read error corrected"
1885 " (%lu sectors at %llu on %s)\n",
1886 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 1887 (unsigned long long)s,
8bda470e 1888 bdevname(rdev->bdev, b));
ddd5115f 1889 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1890 clear_bit(R5_ReadError, &sh->dev[i].flags);
1891 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 1892 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1893 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1894
14a75d3e
N
1895 if (atomic_read(&rdev->read_errors))
1896 atomic_set(&rdev->read_errors, 0);
1da177e4 1897 } else {
14a75d3e 1898 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 1899 int retry = 0;
2e8ac303 1900 int set_bad = 0;
d6950432 1901
1da177e4 1902 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1903 atomic_inc(&rdev->read_errors);
14a75d3e
N
1904 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1905 printk_ratelimited(
1906 KERN_WARNING
1907 "md/raid:%s: read error on replacement device "
1908 "(sector %llu on %s).\n",
1909 mdname(conf->mddev),
05616be5 1910 (unsigned long long)s,
14a75d3e 1911 bdn);
2e8ac303 1912 else if (conf->mddev->degraded >= conf->max_degraded) {
1913 set_bad = 1;
8bda470e
CD
1914 printk_ratelimited(
1915 KERN_WARNING
1916 "md/raid:%s: read error not correctable "
1917 "(sector %llu on %s).\n",
1918 mdname(conf->mddev),
05616be5 1919 (unsigned long long)s,
8bda470e 1920 bdn);
2e8ac303 1921 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 1922 /* Oh, no!!! */
2e8ac303 1923 set_bad = 1;
8bda470e
CD
1924 printk_ratelimited(
1925 KERN_WARNING
1926 "md/raid:%s: read error NOT corrected!! "
1927 "(sector %llu on %s).\n",
1928 mdname(conf->mddev),
05616be5 1929 (unsigned long long)s,
8bda470e 1930 bdn);
2e8ac303 1931 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 1932 > conf->max_nr_stripes)
14f8d26b 1933 printk(KERN_WARNING
0c55e022 1934 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1935 mdname(conf->mddev), bdn);
ba22dcbf
N
1936 else
1937 retry = 1;
1938 if (retry)
3f9e7c14 1939 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1940 set_bit(R5_ReadError, &sh->dev[i].flags);
1941 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1942 } else
1943 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 1944 else {
4e5314b5
N
1945 clear_bit(R5_ReadError, &sh->dev[i].flags);
1946 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 1947 if (!(set_bad
1948 && test_bit(In_sync, &rdev->flags)
1949 && rdev_set_badblocks(
1950 rdev, sh->sector, STRIPE_SECTORS, 0)))
1951 md_error(conf->mddev, rdev);
ba22dcbf 1952 }
1da177e4 1953 }
14a75d3e 1954 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
1955 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1956 set_bit(STRIPE_HANDLE, &sh->state);
1957 release_stripe(sh);
1da177e4
LT
1958}
1959
d710e138 1960static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1961{
99c0fb5f 1962 struct stripe_head *sh = bi->bi_private;
d1688a6d 1963 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1964 int disks = sh->disks, i;
977df362 1965 struct md_rdev *uninitialized_var(rdev);
1da177e4 1966 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1967 sector_t first_bad;
1968 int bad_sectors;
977df362 1969 int replacement = 0;
1da177e4 1970
977df362
N
1971 for (i = 0 ; i < disks; i++) {
1972 if (bi == &sh->dev[i].req) {
1973 rdev = conf->disks[i].rdev;
1da177e4 1974 break;
977df362
N
1975 }
1976 if (bi == &sh->dev[i].rreq) {
1977 rdev = conf->disks[i].replacement;
dd054fce
N
1978 if (rdev)
1979 replacement = 1;
1980 else
1981 /* rdev was removed and 'replacement'
1982 * replaced it. rdev is not removed
1983 * until all requests are finished.
1984 */
1985 rdev = conf->disks[i].rdev;
977df362
N
1986 break;
1987 }
1988 }
45b4233c 1989 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1990 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1991 uptodate);
1992 if (i == disks) {
1993 BUG();
6712ecf8 1994 return;
1da177e4
LT
1995 }
1996
977df362
N
1997 if (replacement) {
1998 if (!uptodate)
1999 md_error(conf->mddev, rdev);
2000 else if (is_badblock(rdev, sh->sector,
2001 STRIPE_SECTORS,
2002 &first_bad, &bad_sectors))
2003 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2004 } else {
2005 if (!uptodate) {
2006 set_bit(WriteErrorSeen, &rdev->flags);
2007 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2008 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009 set_bit(MD_RECOVERY_NEEDED,
2010 &rdev->mddev->recovery);
977df362
N
2011 } else if (is_badblock(rdev, sh->sector,
2012 STRIPE_SECTORS,
c0b32972 2013 &first_bad, &bad_sectors)) {
977df362 2014 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2015 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2016 /* That was a successful write so make
2017 * sure it looks like we already did
2018 * a re-write.
2019 */
2020 set_bit(R5_ReWrite, &sh->dev[i].flags);
2021 }
977df362
N
2022 }
2023 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2024
977df362
N
2025 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2026 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2027 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2028 release_stripe(sh);
1da177e4
LT
2029}
2030
784052ec 2031static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 2032
784052ec 2033static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2034{
2035 struct r5dev *dev = &sh->dev[i];
2036
2037 bio_init(&dev->req);
2038 dev->req.bi_io_vec = &dev->vec;
2039 dev->req.bi_vcnt++;
2040 dev->req.bi_max_vecs++;
1da177e4 2041 dev->req.bi_private = sh;
995c4275 2042 dev->vec.bv_page = dev->page;
1da177e4 2043
977df362
N
2044 bio_init(&dev->rreq);
2045 dev->rreq.bi_io_vec = &dev->rvec;
2046 dev->rreq.bi_vcnt++;
2047 dev->rreq.bi_max_vecs++;
2048 dev->rreq.bi_private = sh;
2049 dev->rvec.bv_page = dev->page;
2050
1da177e4 2051 dev->flags = 0;
784052ec 2052 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2053}
2054
fd01b88c 2055static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2056{
2057 char b[BDEVNAME_SIZE];
d1688a6d 2058 struct r5conf *conf = mddev->private;
908f4fbd 2059 unsigned long flags;
0c55e022 2060 pr_debug("raid456: error called\n");
1da177e4 2061
908f4fbd
N
2062 spin_lock_irqsave(&conf->device_lock, flags);
2063 clear_bit(In_sync, &rdev->flags);
2064 mddev->degraded = calc_degraded(conf);
2065 spin_unlock_irqrestore(&conf->device_lock, flags);
2066 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2067
de393cde 2068 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2069 set_bit(Faulty, &rdev->flags);
2070 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2071 printk(KERN_ALERT
2072 "md/raid:%s: Disk failure on %s, disabling device.\n"
2073 "md/raid:%s: Operation continuing on %d devices.\n",
2074 mdname(mddev),
2075 bdevname(rdev->bdev, b),
2076 mdname(mddev),
2077 conf->raid_disks - mddev->degraded);
16a53ecc 2078}
1da177e4
LT
2079
2080/*
2081 * Input: a 'big' sector number,
2082 * Output: index of the data and parity disk, and the sector # in them.
2083 */
d1688a6d 2084static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2085 int previous, int *dd_idx,
2086 struct stripe_head *sh)
1da177e4 2087{
6e3b96ed 2088 sector_t stripe, stripe2;
35f2a591 2089 sector_t chunk_number;
1da177e4 2090 unsigned int chunk_offset;
911d4ee8 2091 int pd_idx, qd_idx;
67cc2b81 2092 int ddf_layout = 0;
1da177e4 2093 sector_t new_sector;
e183eaed
N
2094 int algorithm = previous ? conf->prev_algo
2095 : conf->algorithm;
09c9e5fa
AN
2096 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2097 : conf->chunk_sectors;
112bf897
N
2098 int raid_disks = previous ? conf->previous_raid_disks
2099 : conf->raid_disks;
2100 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2101
2102 /* First compute the information on this sector */
2103
2104 /*
2105 * Compute the chunk number and the sector offset inside the chunk
2106 */
2107 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2108 chunk_number = r_sector;
1da177e4
LT
2109
2110 /*
2111 * Compute the stripe number
2112 */
35f2a591
N
2113 stripe = chunk_number;
2114 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2115 stripe2 = stripe;
1da177e4
LT
2116 /*
2117 * Select the parity disk based on the user selected algorithm.
2118 */
84789554 2119 pd_idx = qd_idx = -1;
16a53ecc
N
2120 switch(conf->level) {
2121 case 4:
911d4ee8 2122 pd_idx = data_disks;
16a53ecc
N
2123 break;
2124 case 5:
e183eaed 2125 switch (algorithm) {
1da177e4 2126 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2127 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2128 if (*dd_idx >= pd_idx)
1da177e4
LT
2129 (*dd_idx)++;
2130 break;
2131 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2132 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2133 if (*dd_idx >= pd_idx)
1da177e4
LT
2134 (*dd_idx)++;
2135 break;
2136 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2137 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2138 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2139 break;
2140 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2141 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2142 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2143 break;
99c0fb5f
N
2144 case ALGORITHM_PARITY_0:
2145 pd_idx = 0;
2146 (*dd_idx)++;
2147 break;
2148 case ALGORITHM_PARITY_N:
2149 pd_idx = data_disks;
2150 break;
1da177e4 2151 default:
99c0fb5f 2152 BUG();
16a53ecc
N
2153 }
2154 break;
2155 case 6:
2156
e183eaed 2157 switch (algorithm) {
16a53ecc 2158 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2159 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2160 qd_idx = pd_idx + 1;
2161 if (pd_idx == raid_disks-1) {
99c0fb5f 2162 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2163 qd_idx = 0;
2164 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2165 (*dd_idx) += 2; /* D D P Q D */
2166 break;
2167 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2168 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2169 qd_idx = pd_idx + 1;
2170 if (pd_idx == raid_disks-1) {
99c0fb5f 2171 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2172 qd_idx = 0;
2173 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2174 (*dd_idx) += 2; /* D D P Q D */
2175 break;
2176 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2177 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2178 qd_idx = (pd_idx + 1) % raid_disks;
2179 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2180 break;
2181 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2182 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2183 qd_idx = (pd_idx + 1) % raid_disks;
2184 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2185 break;
99c0fb5f
N
2186
2187 case ALGORITHM_PARITY_0:
2188 pd_idx = 0;
2189 qd_idx = 1;
2190 (*dd_idx) += 2;
2191 break;
2192 case ALGORITHM_PARITY_N:
2193 pd_idx = data_disks;
2194 qd_idx = data_disks + 1;
2195 break;
2196
2197 case ALGORITHM_ROTATING_ZERO_RESTART:
2198 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2199 * of blocks for computing Q is different.
2200 */
6e3b96ed 2201 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2202 qd_idx = pd_idx + 1;
2203 if (pd_idx == raid_disks-1) {
2204 (*dd_idx)++; /* Q D D D P */
2205 qd_idx = 0;
2206 } else if (*dd_idx >= pd_idx)
2207 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2208 ddf_layout = 1;
99c0fb5f
N
2209 break;
2210
2211 case ALGORITHM_ROTATING_N_RESTART:
2212 /* Same a left_asymmetric, by first stripe is
2213 * D D D P Q rather than
2214 * Q D D D P
2215 */
6e3b96ed
N
2216 stripe2 += 1;
2217 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2218 qd_idx = pd_idx + 1;
2219 if (pd_idx == raid_disks-1) {
2220 (*dd_idx)++; /* Q D D D P */
2221 qd_idx = 0;
2222 } else if (*dd_idx >= pd_idx)
2223 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2224 ddf_layout = 1;
99c0fb5f
N
2225 break;
2226
2227 case ALGORITHM_ROTATING_N_CONTINUE:
2228 /* Same as left_symmetric but Q is before P */
6e3b96ed 2229 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2230 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2231 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2232 ddf_layout = 1;
99c0fb5f
N
2233 break;
2234
2235 case ALGORITHM_LEFT_ASYMMETRIC_6:
2236 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2237 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2238 if (*dd_idx >= pd_idx)
2239 (*dd_idx)++;
2240 qd_idx = raid_disks - 1;
2241 break;
2242
2243 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2244 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2245 if (*dd_idx >= pd_idx)
2246 (*dd_idx)++;
2247 qd_idx = raid_disks - 1;
2248 break;
2249
2250 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2251 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2252 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2253 qd_idx = raid_disks - 1;
2254 break;
2255
2256 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2257 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2258 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2259 qd_idx = raid_disks - 1;
2260 break;
2261
2262 case ALGORITHM_PARITY_0_6:
2263 pd_idx = 0;
2264 (*dd_idx)++;
2265 qd_idx = raid_disks - 1;
2266 break;
2267
16a53ecc 2268 default:
99c0fb5f 2269 BUG();
16a53ecc
N
2270 }
2271 break;
1da177e4
LT
2272 }
2273
911d4ee8
N
2274 if (sh) {
2275 sh->pd_idx = pd_idx;
2276 sh->qd_idx = qd_idx;
67cc2b81 2277 sh->ddf_layout = ddf_layout;
911d4ee8 2278 }
1da177e4
LT
2279 /*
2280 * Finally, compute the new sector number
2281 */
2282 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2283 return new_sector;
2284}
2285
2286
784052ec 2287static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2288{
d1688a6d 2289 struct r5conf *conf = sh->raid_conf;
b875e531
N
2290 int raid_disks = sh->disks;
2291 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2292 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2293 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2294 : conf->chunk_sectors;
e183eaed
N
2295 int algorithm = previous ? conf->prev_algo
2296 : conf->algorithm;
1da177e4
LT
2297 sector_t stripe;
2298 int chunk_offset;
35f2a591
N
2299 sector_t chunk_number;
2300 int dummy1, dd_idx = i;
1da177e4 2301 sector_t r_sector;
911d4ee8 2302 struct stripe_head sh2;
1da177e4 2303
16a53ecc 2304
1da177e4
LT
2305 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2306 stripe = new_sector;
1da177e4 2307
16a53ecc
N
2308 if (i == sh->pd_idx)
2309 return 0;
2310 switch(conf->level) {
2311 case 4: break;
2312 case 5:
e183eaed 2313 switch (algorithm) {
1da177e4
LT
2314 case ALGORITHM_LEFT_ASYMMETRIC:
2315 case ALGORITHM_RIGHT_ASYMMETRIC:
2316 if (i > sh->pd_idx)
2317 i--;
2318 break;
2319 case ALGORITHM_LEFT_SYMMETRIC:
2320 case ALGORITHM_RIGHT_SYMMETRIC:
2321 if (i < sh->pd_idx)
2322 i += raid_disks;
2323 i -= (sh->pd_idx + 1);
2324 break;
99c0fb5f
N
2325 case ALGORITHM_PARITY_0:
2326 i -= 1;
2327 break;
2328 case ALGORITHM_PARITY_N:
2329 break;
1da177e4 2330 default:
99c0fb5f 2331 BUG();
16a53ecc
N
2332 }
2333 break;
2334 case 6:
d0dabf7e 2335 if (i == sh->qd_idx)
16a53ecc 2336 return 0; /* It is the Q disk */
e183eaed 2337 switch (algorithm) {
16a53ecc
N
2338 case ALGORITHM_LEFT_ASYMMETRIC:
2339 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2340 case ALGORITHM_ROTATING_ZERO_RESTART:
2341 case ALGORITHM_ROTATING_N_RESTART:
2342 if (sh->pd_idx == raid_disks-1)
2343 i--; /* Q D D D P */
16a53ecc
N
2344 else if (i > sh->pd_idx)
2345 i -= 2; /* D D P Q D */
2346 break;
2347 case ALGORITHM_LEFT_SYMMETRIC:
2348 case ALGORITHM_RIGHT_SYMMETRIC:
2349 if (sh->pd_idx == raid_disks-1)
2350 i--; /* Q D D D P */
2351 else {
2352 /* D D P Q D */
2353 if (i < sh->pd_idx)
2354 i += raid_disks;
2355 i -= (sh->pd_idx + 2);
2356 }
2357 break;
99c0fb5f
N
2358 case ALGORITHM_PARITY_0:
2359 i -= 2;
2360 break;
2361 case ALGORITHM_PARITY_N:
2362 break;
2363 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2364 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2365 if (sh->pd_idx == 0)
2366 i--; /* P D D D Q */
e4424fee
N
2367 else {
2368 /* D D Q P D */
2369 if (i < sh->pd_idx)
2370 i += raid_disks;
2371 i -= (sh->pd_idx + 1);
2372 }
99c0fb5f
N
2373 break;
2374 case ALGORITHM_LEFT_ASYMMETRIC_6:
2375 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2376 if (i > sh->pd_idx)
2377 i--;
2378 break;
2379 case ALGORITHM_LEFT_SYMMETRIC_6:
2380 case ALGORITHM_RIGHT_SYMMETRIC_6:
2381 if (i < sh->pd_idx)
2382 i += data_disks + 1;
2383 i -= (sh->pd_idx + 1);
2384 break;
2385 case ALGORITHM_PARITY_0_6:
2386 i -= 1;
2387 break;
16a53ecc 2388 default:
99c0fb5f 2389 BUG();
16a53ecc
N
2390 }
2391 break;
1da177e4
LT
2392 }
2393
2394 chunk_number = stripe * data_disks + i;
35f2a591 2395 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2396
112bf897 2397 check = raid5_compute_sector(conf, r_sector,
784052ec 2398 previous, &dummy1, &sh2);
911d4ee8
N
2399 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2400 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2401 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2402 mdname(conf->mddev));
1da177e4
LT
2403 return 0;
2404 }
2405 return r_sector;
2406}
2407
2408
600aa109 2409static void
c0f7bddb 2410schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2411 int rcw, int expand)
e33129d8
DW
2412{
2413 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2414 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2415 int level = conf->level;
e33129d8
DW
2416
2417 if (rcw) {
e33129d8
DW
2418
2419 for (i = disks; i--; ) {
2420 struct r5dev *dev = &sh->dev[i];
2421
2422 if (dev->towrite) {
2423 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2424 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2425 if (!expand)
2426 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2427 s->locked++;
e33129d8
DW
2428 }
2429 }
ce7d363a
N
2430 /* if we are not expanding this is a proper write request, and
2431 * there will be bios with new data to be drained into the
2432 * stripe cache
2433 */
2434 if (!expand) {
2435 if (!s->locked)
2436 /* False alarm, nothing to do */
2437 return;
2438 sh->reconstruct_state = reconstruct_state_drain_run;
2439 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2440 } else
2441 sh->reconstruct_state = reconstruct_state_run;
2442
2443 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2444
c0f7bddb 2445 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2446 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2447 atomic_inc(&conf->pending_full_writes);
e33129d8 2448 } else {
c0f7bddb 2449 BUG_ON(level == 6);
e33129d8
DW
2450 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2451 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2452
e33129d8
DW
2453 for (i = disks; i--; ) {
2454 struct r5dev *dev = &sh->dev[i];
2455 if (i == pd_idx)
2456 continue;
2457
e33129d8
DW
2458 if (dev->towrite &&
2459 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2460 test_bit(R5_Wantcompute, &dev->flags))) {
2461 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2462 set_bit(R5_LOCKED, &dev->flags);
2463 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2464 s->locked++;
e33129d8
DW
2465 }
2466 }
ce7d363a
N
2467 if (!s->locked)
2468 /* False alarm - nothing to do */
2469 return;
2470 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2471 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2472 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2473 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2474 }
2475
c0f7bddb 2476 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2477 * are in flight
2478 */
2479 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2480 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2481 s->locked++;
e33129d8 2482
c0f7bddb
YT
2483 if (level == 6) {
2484 int qd_idx = sh->qd_idx;
2485 struct r5dev *dev = &sh->dev[qd_idx];
2486
2487 set_bit(R5_LOCKED, &dev->flags);
2488 clear_bit(R5_UPTODATE, &dev->flags);
2489 s->locked++;
2490 }
2491
600aa109 2492 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2493 __func__, (unsigned long long)sh->sector,
600aa109 2494 s->locked, s->ops_request);
e33129d8 2495}
16a53ecc 2496
1da177e4
LT
2497/*
2498 * Each stripe/dev can have one or more bion attached.
16a53ecc 2499 * toread/towrite point to the first in a chain.
1da177e4
LT
2500 * The bi_next chain must be in order.
2501 */
2502static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2503{
2504 struct bio **bip;
d1688a6d 2505 struct r5conf *conf = sh->raid_conf;
72626685 2506 int firstwrite=0;
1da177e4 2507
cbe47ec5 2508 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2509 (unsigned long long)bi->bi_sector,
2510 (unsigned long long)sh->sector);
2511
b17459c0
SL
2512 /*
2513 * If several bio share a stripe. The bio bi_phys_segments acts as a
2514 * reference count to avoid race. The reference count should already be
2515 * increased before this function is called (for example, in
2516 * make_request()), so other bio sharing this stripe will not free the
2517 * stripe. If a stripe is owned by one stripe, the stripe lock will
2518 * protect it.
2519 */
2520 spin_lock_irq(&sh->stripe_lock);
72626685 2521 if (forwrite) {
1da177e4 2522 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2523 if (*bip == NULL)
72626685
N
2524 firstwrite = 1;
2525 } else
1da177e4
LT
2526 bip = &sh->dev[dd_idx].toread;
2527 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
f73a1c7d 2528 if (bio_end_sector(*bip) > bi->bi_sector)
1da177e4
LT
2529 goto overlap;
2530 bip = & (*bip)->bi_next;
2531 }
f73a1c7d 2532 if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
1da177e4
LT
2533 goto overlap;
2534
78bafebd 2535 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2536 if (*bip)
2537 bi->bi_next = *bip;
2538 *bip = bi;
e7836bd6 2539 raid5_inc_bi_active_stripes(bi);
72626685 2540
1da177e4
LT
2541 if (forwrite) {
2542 /* check if page is covered */
2543 sector_t sector = sh->dev[dd_idx].sector;
2544 for (bi=sh->dev[dd_idx].towrite;
2545 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2546 bi && bi->bi_sector <= sector;
2547 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2548 if (bio_end_sector(bi) >= sector)
2549 sector = bio_end_sector(bi);
1da177e4
LT
2550 }
2551 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2552 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2553 }
cbe47ec5
N
2554
2555 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2556 (unsigned long long)(*bip)->bi_sector,
2557 (unsigned long long)sh->sector, dd_idx);
b97390ae 2558 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2559
2560 if (conf->mddev->bitmap && firstwrite) {
2561 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2562 STRIPE_SECTORS, 0);
2563 sh->bm_seq = conf->seq_flush+1;
2564 set_bit(STRIPE_BIT_DELAY, &sh->state);
2565 }
1da177e4
LT
2566 return 1;
2567
2568 overlap:
2569 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2570 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2571 return 0;
2572}
2573
d1688a6d 2574static void end_reshape(struct r5conf *conf);
29269553 2575
d1688a6d 2576static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2577 struct stripe_head *sh)
ccfcc3c1 2578{
784052ec 2579 int sectors_per_chunk =
09c9e5fa 2580 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2581 int dd_idx;
2d2063ce 2582 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2583 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2584
112bf897
N
2585 raid5_compute_sector(conf,
2586 stripe * (disks - conf->max_degraded)
b875e531 2587 *sectors_per_chunk + chunk_offset,
112bf897 2588 previous,
911d4ee8 2589 &dd_idx, sh);
ccfcc3c1
N
2590}
2591
a4456856 2592static void
d1688a6d 2593handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2594 struct stripe_head_state *s, int disks,
2595 struct bio **return_bi)
2596{
2597 int i;
2598 for (i = disks; i--; ) {
2599 struct bio *bi;
2600 int bitmap_end = 0;
2601
2602 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2603 struct md_rdev *rdev;
a4456856
DW
2604 rcu_read_lock();
2605 rdev = rcu_dereference(conf->disks[i].rdev);
2606 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2607 atomic_inc(&rdev->nr_pending);
2608 else
2609 rdev = NULL;
a4456856 2610 rcu_read_unlock();
7f0da59b
N
2611 if (rdev) {
2612 if (!rdev_set_badblocks(
2613 rdev,
2614 sh->sector,
2615 STRIPE_SECTORS, 0))
2616 md_error(conf->mddev, rdev);
2617 rdev_dec_pending(rdev, conf->mddev);
2618 }
a4456856 2619 }
b17459c0 2620 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2621 /* fail all writes first */
2622 bi = sh->dev[i].towrite;
2623 sh->dev[i].towrite = NULL;
b17459c0 2624 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 2625 if (bi)
a4456856 2626 bitmap_end = 1;
a4456856
DW
2627
2628 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2629 wake_up(&conf->wait_for_overlap);
2630
2631 while (bi && bi->bi_sector <
2632 sh->dev[i].sector + STRIPE_SECTORS) {
2633 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2634 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2635 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2636 md_write_end(conf->mddev);
2637 bi->bi_next = *return_bi;
2638 *return_bi = bi;
2639 }
2640 bi = nextbi;
2641 }
7eaf7e8e
SL
2642 if (bitmap_end)
2643 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2644 STRIPE_SECTORS, 0, 0);
2645 bitmap_end = 0;
a4456856
DW
2646 /* and fail all 'written' */
2647 bi = sh->dev[i].written;
2648 sh->dev[i].written = NULL;
2649 if (bi) bitmap_end = 1;
2650 while (bi && bi->bi_sector <
2651 sh->dev[i].sector + STRIPE_SECTORS) {
2652 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2653 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2654 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2655 md_write_end(conf->mddev);
2656 bi->bi_next = *return_bi;
2657 *return_bi = bi;
2658 }
2659 bi = bi2;
2660 }
2661
b5e98d65
DW
2662 /* fail any reads if this device is non-operational and
2663 * the data has not reached the cache yet.
2664 */
2665 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2666 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2667 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 2668 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2669 bi = sh->dev[i].toread;
2670 sh->dev[i].toread = NULL;
143c4d05 2671 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
2672 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2673 wake_up(&conf->wait_for_overlap);
a4456856
DW
2674 while (bi && bi->bi_sector <
2675 sh->dev[i].sector + STRIPE_SECTORS) {
2676 struct bio *nextbi =
2677 r5_next_bio(bi, sh->dev[i].sector);
2678 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2679 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2680 bi->bi_next = *return_bi;
2681 *return_bi = bi;
2682 }
2683 bi = nextbi;
2684 }
2685 }
a4456856
DW
2686 if (bitmap_end)
2687 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2688 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2689 /* If we were in the middle of a write the parity block might
2690 * still be locked - so just clear all R5_LOCKED flags
2691 */
2692 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2693 }
2694
8b3e6cdc
DW
2695 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2696 if (atomic_dec_and_test(&conf->pending_full_writes))
2697 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2698}
2699
7f0da59b 2700static void
d1688a6d 2701handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2702 struct stripe_head_state *s)
2703{
2704 int abort = 0;
2705 int i;
2706
7f0da59b 2707 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
2708 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2709 wake_up(&conf->wait_for_overlap);
7f0da59b 2710 s->syncing = 0;
9a3e1101 2711 s->replacing = 0;
7f0da59b 2712 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2713 * Don't even need to abort as that is handled elsewhere
2714 * if needed, and not always wanted e.g. if there is a known
2715 * bad block here.
9a3e1101 2716 * For recover/replace we need to record a bad block on all
7f0da59b
N
2717 * non-sync devices, or abort the recovery
2718 */
18b9837e
N
2719 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2720 /* During recovery devices cannot be removed, so
2721 * locking and refcounting of rdevs is not needed
2722 */
2723 for (i = 0; i < conf->raid_disks; i++) {
2724 struct md_rdev *rdev = conf->disks[i].rdev;
2725 if (rdev
2726 && !test_bit(Faulty, &rdev->flags)
2727 && !test_bit(In_sync, &rdev->flags)
2728 && !rdev_set_badblocks(rdev, sh->sector,
2729 STRIPE_SECTORS, 0))
2730 abort = 1;
2731 rdev = conf->disks[i].replacement;
2732 if (rdev
2733 && !test_bit(Faulty, &rdev->flags)
2734 && !test_bit(In_sync, &rdev->flags)
2735 && !rdev_set_badblocks(rdev, sh->sector,
2736 STRIPE_SECTORS, 0))
2737 abort = 1;
2738 }
2739 if (abort)
2740 conf->recovery_disabled =
2741 conf->mddev->recovery_disabled;
7f0da59b 2742 }
18b9837e 2743 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2744}
2745
9a3e1101
N
2746static int want_replace(struct stripe_head *sh, int disk_idx)
2747{
2748 struct md_rdev *rdev;
2749 int rv = 0;
2750 /* Doing recovery so rcu locking not required */
2751 rdev = sh->raid_conf->disks[disk_idx].replacement;
2752 if (rdev
2753 && !test_bit(Faulty, &rdev->flags)
2754 && !test_bit(In_sync, &rdev->flags)
2755 && (rdev->recovery_offset <= sh->sector
2756 || rdev->mddev->recovery_cp <= sh->sector))
2757 rv = 1;
2758
2759 return rv;
2760}
2761
93b3dbce 2762/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2763 * to be read or computed to satisfy a request.
2764 *
2765 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2766 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2767 */
93b3dbce
N
2768static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2769 int disk_idx, int disks)
a4456856 2770{
5599becc 2771 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2772 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2773 &sh->dev[s->failed_num[1]] };
5599becc 2774
93b3dbce 2775 /* is the data in this block needed, and can we get it? */
5599becc
YT
2776 if (!test_bit(R5_LOCKED, &dev->flags) &&
2777 !test_bit(R5_UPTODATE, &dev->flags) &&
2778 (dev->toread ||
2779 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2780 s->syncing || s->expanding ||
9a3e1101 2781 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2782 (s->failed >= 1 && fdev[0]->toread) ||
2783 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2784 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2785 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2786 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2787 /* we would like to get this block, possibly by computing it,
2788 * otherwise read it if the backing disk is insync
2789 */
2790 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2791 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2792 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2793 (s->failed && (disk_idx == s->failed_num[0] ||
2794 disk_idx == s->failed_num[1]))) {
5599becc
YT
2795 /* have disk failed, and we're requested to fetch it;
2796 * do compute it
a4456856 2797 */
5599becc
YT
2798 pr_debug("Computing stripe %llu block %d\n",
2799 (unsigned long long)sh->sector, disk_idx);
2800 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2801 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2802 set_bit(R5_Wantcompute, &dev->flags);
2803 sh->ops.target = disk_idx;
2804 sh->ops.target2 = -1; /* no 2nd target */
2805 s->req_compute = 1;
93b3dbce
N
2806 /* Careful: from this point on 'uptodate' is in the eye
2807 * of raid_run_ops which services 'compute' operations
2808 * before writes. R5_Wantcompute flags a block that will
2809 * be R5_UPTODATE by the time it is needed for a
2810 * subsequent operation.
2811 */
5599becc
YT
2812 s->uptodate++;
2813 return 1;
2814 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2815 /* Computing 2-failure is *very* expensive; only
2816 * do it if failed >= 2
2817 */
2818 int other;
2819 for (other = disks; other--; ) {
2820 if (other == disk_idx)
2821 continue;
2822 if (!test_bit(R5_UPTODATE,
2823 &sh->dev[other].flags))
2824 break;
a4456856 2825 }
5599becc
YT
2826 BUG_ON(other < 0);
2827 pr_debug("Computing stripe %llu blocks %d,%d\n",
2828 (unsigned long long)sh->sector,
2829 disk_idx, other);
2830 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2831 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2832 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2833 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2834 sh->ops.target = disk_idx;
2835 sh->ops.target2 = other;
2836 s->uptodate += 2;
2837 s->req_compute = 1;
2838 return 1;
2839 } else if (test_bit(R5_Insync, &dev->flags)) {
2840 set_bit(R5_LOCKED, &dev->flags);
2841 set_bit(R5_Wantread, &dev->flags);
2842 s->locked++;
2843 pr_debug("Reading block %d (sync=%d)\n",
2844 disk_idx, s->syncing);
a4456856
DW
2845 }
2846 }
5599becc
YT
2847
2848 return 0;
2849}
2850
2851/**
93b3dbce 2852 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2853 */
93b3dbce
N
2854static void handle_stripe_fill(struct stripe_head *sh,
2855 struct stripe_head_state *s,
2856 int disks)
5599becc
YT
2857{
2858 int i;
2859
2860 /* look for blocks to read/compute, skip this if a compute
2861 * is already in flight, or if the stripe contents are in the
2862 * midst of changing due to a write
2863 */
2864 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2865 !sh->reconstruct_state)
2866 for (i = disks; i--; )
93b3dbce 2867 if (fetch_block(sh, s, i, disks))
5599becc 2868 break;
a4456856
DW
2869 set_bit(STRIPE_HANDLE, &sh->state);
2870}
2871
2872
1fe797e6 2873/* handle_stripe_clean_event
a4456856
DW
2874 * any written block on an uptodate or failed drive can be returned.
2875 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2876 * never LOCKED, so we don't need to test 'failed' directly.
2877 */
d1688a6d 2878static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2879 struct stripe_head *sh, int disks, struct bio **return_bi)
2880{
2881 int i;
2882 struct r5dev *dev;
f8dfcffd 2883 int discard_pending = 0;
a4456856
DW
2884
2885 for (i = disks; i--; )
2886 if (sh->dev[i].written) {
2887 dev = &sh->dev[i];
2888 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 2889 (test_bit(R5_UPTODATE, &dev->flags) ||
ca64cae9 2890 test_bit(R5_Discard, &dev->flags))) {
a4456856
DW
2891 /* We can return any write requests */
2892 struct bio *wbi, *wbi2;
45b4233c 2893 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
2894 if (test_and_clear_bit(R5_Discard, &dev->flags))
2895 clear_bit(R5_UPTODATE, &dev->flags);
a4456856
DW
2896 wbi = dev->written;
2897 dev->written = NULL;
2898 while (wbi && wbi->bi_sector <
2899 dev->sector + STRIPE_SECTORS) {
2900 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 2901 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
2902 md_write_end(conf->mddev);
2903 wbi->bi_next = *return_bi;
2904 *return_bi = wbi;
2905 }
2906 wbi = wbi2;
2907 }
7eaf7e8e
SL
2908 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2909 STRIPE_SECTORS,
a4456856 2910 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 2911 0);
f8dfcffd
N
2912 } else if (test_bit(R5_Discard, &dev->flags))
2913 discard_pending = 1;
2914 }
2915 if (!discard_pending &&
2916 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2917 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2918 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2919 if (sh->qd_idx >= 0) {
2920 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2921 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2922 }
2923 /* now that discard is done we can proceed with any sync */
2924 clear_bit(STRIPE_DISCARD, &sh->state);
2925 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2926 set_bit(STRIPE_HANDLE, &sh->state);
2927
2928 }
8b3e6cdc
DW
2929
2930 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2931 if (atomic_dec_and_test(&conf->pending_full_writes))
2932 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2933}
2934
d1688a6d 2935static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2936 struct stripe_head *sh,
2937 struct stripe_head_state *s,
2938 int disks)
a4456856
DW
2939{
2940 int rmw = 0, rcw = 0, i;
a7854487
AL
2941 sector_t recovery_cp = conf->mddev->recovery_cp;
2942
2943 /* RAID6 requires 'rcw' in current implementation.
2944 * Otherwise, check whether resync is now happening or should start.
2945 * If yes, then the array is dirty (after unclean shutdown or
2946 * initial creation), so parity in some stripes might be inconsistent.
2947 * In this case, we need to always do reconstruct-write, to ensure
2948 * that in case of drive failure or read-error correction, we
2949 * generate correct data from the parity.
2950 */
2951 if (conf->max_degraded == 2 ||
2952 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2953 /* Calculate the real rcw later - for now make it
c8ac1803
N
2954 * look like rcw is cheaper
2955 */
2956 rcw = 1; rmw = 2;
a7854487
AL
2957 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2958 conf->max_degraded, (unsigned long long)recovery_cp,
2959 (unsigned long long)sh->sector);
c8ac1803 2960 } else for (i = disks; i--; ) {
a4456856
DW
2961 /* would I have to read this buffer for read_modify_write */
2962 struct r5dev *dev = &sh->dev[i];
2963 if ((dev->towrite || i == sh->pd_idx) &&
2964 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2965 !(test_bit(R5_UPTODATE, &dev->flags) ||
2966 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2967 if (test_bit(R5_Insync, &dev->flags))
2968 rmw++;
2969 else
2970 rmw += 2*disks; /* cannot read it */
2971 }
2972 /* Would I have to read this buffer for reconstruct_write */
2973 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2974 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2975 !(test_bit(R5_UPTODATE, &dev->flags) ||
2976 test_bit(R5_Wantcompute, &dev->flags))) {
2977 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2978 else
2979 rcw += 2*disks;
2980 }
2981 }
45b4233c 2982 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2983 (unsigned long long)sh->sector, rmw, rcw);
2984 set_bit(STRIPE_HANDLE, &sh->state);
a9add5d9 2985 if (rmw < rcw && rmw > 0) {
a4456856 2986 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
2987 if (conf->mddev->queue)
2988 blk_add_trace_msg(conf->mddev->queue,
2989 "raid5 rmw %llu %d",
2990 (unsigned long long)sh->sector, rmw);
a4456856
DW
2991 for (i = disks; i--; ) {
2992 struct r5dev *dev = &sh->dev[i];
2993 if ((dev->towrite || i == sh->pd_idx) &&
2994 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2995 !(test_bit(R5_UPTODATE, &dev->flags) ||
2996 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2997 test_bit(R5_Insync, &dev->flags)) {
2998 if (
2999 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 3000 pr_debug("Read_old block "
a9add5d9 3001 "%d for r-m-w\n", i);
a4456856
DW
3002 set_bit(R5_LOCKED, &dev->flags);
3003 set_bit(R5_Wantread, &dev->flags);
3004 s->locked++;
3005 } else {
3006 set_bit(STRIPE_DELAYED, &sh->state);
3007 set_bit(STRIPE_HANDLE, &sh->state);
3008 }
3009 }
3010 }
a9add5d9 3011 }
c8ac1803 3012 if (rcw <= rmw && rcw > 0) {
a4456856 3013 /* want reconstruct write, but need to get some data */
a9add5d9 3014 int qread =0;
c8ac1803 3015 rcw = 0;
a4456856
DW
3016 for (i = disks; i--; ) {
3017 struct r5dev *dev = &sh->dev[i];
3018 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3019 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3020 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3021 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3022 test_bit(R5_Wantcompute, &dev->flags))) {
3023 rcw++;
3024 if (!test_bit(R5_Insync, &dev->flags))
3025 continue; /* it's a failed drive */
a4456856
DW
3026 if (
3027 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 3028 pr_debug("Read_old block "
a4456856
DW
3029 "%d for Reconstruct\n", i);
3030 set_bit(R5_LOCKED, &dev->flags);
3031 set_bit(R5_Wantread, &dev->flags);
3032 s->locked++;
a9add5d9 3033 qread++;
a4456856
DW
3034 } else {
3035 set_bit(STRIPE_DELAYED, &sh->state);
3036 set_bit(STRIPE_HANDLE, &sh->state);
3037 }
3038 }
3039 }
e3620a3a 3040 if (rcw && conf->mddev->queue)
a9add5d9
N
3041 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3042 (unsigned long long)sh->sector,
3043 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3044 }
a4456856
DW
3045 /* now if nothing is locked, and if we have enough data,
3046 * we can start a write request
3047 */
f38e1219
DW
3048 /* since handle_stripe can be called at any time we need to handle the
3049 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3050 * subsequent call wants to start a write request. raid_run_ops only
3051 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3052 * simultaneously. If this is not the case then new writes need to be
3053 * held off until the compute completes.
3054 */
976ea8d4
DW
3055 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3056 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3057 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3058 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3059}
3060
d1688a6d 3061static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3062 struct stripe_head_state *s, int disks)
3063{
ecc65c9b 3064 struct r5dev *dev = NULL;
bd2ab670 3065
a4456856 3066 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3067
ecc65c9b
DW
3068 switch (sh->check_state) {
3069 case check_state_idle:
3070 /* start a new check operation if there are no failures */
bd2ab670 3071 if (s->failed == 0) {
bd2ab670 3072 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3073 sh->check_state = check_state_run;
3074 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3075 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3076 s->uptodate--;
ecc65c9b 3077 break;
bd2ab670 3078 }
f2b3b44d 3079 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3080 /* fall through */
3081 case check_state_compute_result:
3082 sh->check_state = check_state_idle;
3083 if (!dev)
3084 dev = &sh->dev[sh->pd_idx];
3085
3086 /* check that a write has not made the stripe insync */
3087 if (test_bit(STRIPE_INSYNC, &sh->state))
3088 break;
c8894419 3089
a4456856 3090 /* either failed parity check, or recovery is happening */
a4456856
DW
3091 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3092 BUG_ON(s->uptodate != disks);
3093
3094 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3095 s->locked++;
a4456856 3096 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3097
a4456856 3098 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3099 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3100 break;
3101 case check_state_run:
3102 break; /* we will be called again upon completion */
3103 case check_state_check_result:
3104 sh->check_state = check_state_idle;
3105
3106 /* if a failure occurred during the check operation, leave
3107 * STRIPE_INSYNC not set and let the stripe be handled again
3108 */
3109 if (s->failed)
3110 break;
3111
3112 /* handle a successful check operation, if parity is correct
3113 * we are done. Otherwise update the mismatch count and repair
3114 * parity if !MD_RECOVERY_CHECK
3115 */
ad283ea4 3116 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3117 /* parity is correct (on disc,
3118 * not in buffer any more)
3119 */
3120 set_bit(STRIPE_INSYNC, &sh->state);
3121 else {
7f7583d4 3122 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3123 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3124 /* don't try to repair!! */
3125 set_bit(STRIPE_INSYNC, &sh->state);
3126 else {
3127 sh->check_state = check_state_compute_run;
976ea8d4 3128 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3129 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3130 set_bit(R5_Wantcompute,
3131 &sh->dev[sh->pd_idx].flags);
3132 sh->ops.target = sh->pd_idx;
ac6b53b6 3133 sh->ops.target2 = -1;
ecc65c9b
DW
3134 s->uptodate++;
3135 }
3136 }
3137 break;
3138 case check_state_compute_run:
3139 break;
3140 default:
3141 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3142 __func__, sh->check_state,
3143 (unsigned long long) sh->sector);
3144 BUG();
a4456856
DW
3145 }
3146}
3147
3148
d1688a6d 3149static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3150 struct stripe_head_state *s,
f2b3b44d 3151 int disks)
a4456856 3152{
a4456856 3153 int pd_idx = sh->pd_idx;
34e04e87 3154 int qd_idx = sh->qd_idx;
d82dfee0 3155 struct r5dev *dev;
a4456856
DW
3156
3157 set_bit(STRIPE_HANDLE, &sh->state);
3158
3159 BUG_ON(s->failed > 2);
d82dfee0 3160
a4456856
DW
3161 /* Want to check and possibly repair P and Q.
3162 * However there could be one 'failed' device, in which
3163 * case we can only check one of them, possibly using the
3164 * other to generate missing data
3165 */
3166
d82dfee0
DW
3167 switch (sh->check_state) {
3168 case check_state_idle:
3169 /* start a new check operation if there are < 2 failures */
f2b3b44d 3170 if (s->failed == s->q_failed) {
d82dfee0 3171 /* The only possible failed device holds Q, so it
a4456856
DW
3172 * makes sense to check P (If anything else were failed,
3173 * we would have used P to recreate it).
3174 */
d82dfee0 3175 sh->check_state = check_state_run;
a4456856 3176 }
f2b3b44d 3177 if (!s->q_failed && s->failed < 2) {
d82dfee0 3178 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3179 * anything, so it makes sense to check it
3180 */
d82dfee0
DW
3181 if (sh->check_state == check_state_run)
3182 sh->check_state = check_state_run_pq;
3183 else
3184 sh->check_state = check_state_run_q;
a4456856 3185 }
a4456856 3186
d82dfee0
DW
3187 /* discard potentially stale zero_sum_result */
3188 sh->ops.zero_sum_result = 0;
a4456856 3189
d82dfee0
DW
3190 if (sh->check_state == check_state_run) {
3191 /* async_xor_zero_sum destroys the contents of P */
3192 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3193 s->uptodate--;
a4456856 3194 }
d82dfee0
DW
3195 if (sh->check_state >= check_state_run &&
3196 sh->check_state <= check_state_run_pq) {
3197 /* async_syndrome_zero_sum preserves P and Q, so
3198 * no need to mark them !uptodate here
3199 */
3200 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3201 break;
a4456856
DW
3202 }
3203
d82dfee0
DW
3204 /* we have 2-disk failure */
3205 BUG_ON(s->failed != 2);
3206 /* fall through */
3207 case check_state_compute_result:
3208 sh->check_state = check_state_idle;
a4456856 3209
d82dfee0
DW
3210 /* check that a write has not made the stripe insync */
3211 if (test_bit(STRIPE_INSYNC, &sh->state))
3212 break;
a4456856
DW
3213
3214 /* now write out any block on a failed drive,
d82dfee0 3215 * or P or Q if they were recomputed
a4456856 3216 */
d82dfee0 3217 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3218 if (s->failed == 2) {
f2b3b44d 3219 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3220 s->locked++;
3221 set_bit(R5_LOCKED, &dev->flags);
3222 set_bit(R5_Wantwrite, &dev->flags);
3223 }
3224 if (s->failed >= 1) {
f2b3b44d 3225 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3226 s->locked++;
3227 set_bit(R5_LOCKED, &dev->flags);
3228 set_bit(R5_Wantwrite, &dev->flags);
3229 }
d82dfee0 3230 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3231 dev = &sh->dev[pd_idx];
3232 s->locked++;
3233 set_bit(R5_LOCKED, &dev->flags);
3234 set_bit(R5_Wantwrite, &dev->flags);
3235 }
d82dfee0 3236 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3237 dev = &sh->dev[qd_idx];
3238 s->locked++;
3239 set_bit(R5_LOCKED, &dev->flags);
3240 set_bit(R5_Wantwrite, &dev->flags);
3241 }
3242 clear_bit(STRIPE_DEGRADED, &sh->state);
3243
3244 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3245 break;
3246 case check_state_run:
3247 case check_state_run_q:
3248 case check_state_run_pq:
3249 break; /* we will be called again upon completion */
3250 case check_state_check_result:
3251 sh->check_state = check_state_idle;
3252
3253 /* handle a successful check operation, if parity is correct
3254 * we are done. Otherwise update the mismatch count and repair
3255 * parity if !MD_RECOVERY_CHECK
3256 */
3257 if (sh->ops.zero_sum_result == 0) {
3258 /* both parities are correct */
3259 if (!s->failed)
3260 set_bit(STRIPE_INSYNC, &sh->state);
3261 else {
3262 /* in contrast to the raid5 case we can validate
3263 * parity, but still have a failure to write
3264 * back
3265 */
3266 sh->check_state = check_state_compute_result;
3267 /* Returning at this point means that we may go
3268 * off and bring p and/or q uptodate again so
3269 * we make sure to check zero_sum_result again
3270 * to verify if p or q need writeback
3271 */
3272 }
3273 } else {
7f7583d4 3274 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3275 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3276 /* don't try to repair!! */
3277 set_bit(STRIPE_INSYNC, &sh->state);
3278 else {
3279 int *target = &sh->ops.target;
3280
3281 sh->ops.target = -1;
3282 sh->ops.target2 = -1;
3283 sh->check_state = check_state_compute_run;
3284 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3285 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3286 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3287 set_bit(R5_Wantcompute,
3288 &sh->dev[pd_idx].flags);
3289 *target = pd_idx;
3290 target = &sh->ops.target2;
3291 s->uptodate++;
3292 }
3293 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3294 set_bit(R5_Wantcompute,
3295 &sh->dev[qd_idx].flags);
3296 *target = qd_idx;
3297 s->uptodate++;
3298 }
3299 }
3300 }
3301 break;
3302 case check_state_compute_run:
3303 break;
3304 default:
3305 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3306 __func__, sh->check_state,
3307 (unsigned long long) sh->sector);
3308 BUG();
a4456856
DW
3309 }
3310}
3311
d1688a6d 3312static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3313{
3314 int i;
3315
3316 /* We have read all the blocks in this stripe and now we need to
3317 * copy some of them into a target stripe for expand.
3318 */
f0a50d37 3319 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3320 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3321 for (i = 0; i < sh->disks; i++)
34e04e87 3322 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3323 int dd_idx, j;
a4456856 3324 struct stripe_head *sh2;
a08abd8c 3325 struct async_submit_ctl submit;
a4456856 3326
784052ec 3327 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3328 sector_t s = raid5_compute_sector(conf, bn, 0,
3329 &dd_idx, NULL);
a8c906ca 3330 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3331 if (sh2 == NULL)
3332 /* so far only the early blocks of this stripe
3333 * have been requested. When later blocks
3334 * get requested, we will try again
3335 */
3336 continue;
3337 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3338 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3339 /* must have already done this block */
3340 release_stripe(sh2);
3341 continue;
3342 }
f0a50d37
DW
3343
3344 /* place all the copies on one channel */
a08abd8c 3345 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3346 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3347 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3348 &submit);
f0a50d37 3349
a4456856
DW
3350 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3351 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3352 for (j = 0; j < conf->raid_disks; j++)
3353 if (j != sh2->pd_idx &&
86c374ba 3354 j != sh2->qd_idx &&
a4456856
DW
3355 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3356 break;
3357 if (j == conf->raid_disks) {
3358 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3359 set_bit(STRIPE_HANDLE, &sh2->state);
3360 }
3361 release_stripe(sh2);
f0a50d37 3362
a4456856 3363 }
a2e08551 3364 /* done submitting copies, wait for them to complete */
749586b7 3365 async_tx_quiesce(&tx);
a4456856 3366}
1da177e4
LT
3367
3368/*
3369 * handle_stripe - do things to a stripe.
3370 *
9a3e1101
N
3371 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3372 * state of various bits to see what needs to be done.
1da177e4 3373 * Possible results:
9a3e1101
N
3374 * return some read requests which now have data
3375 * return some write requests which are safely on storage
1da177e4
LT
3376 * schedule a read on some buffers
3377 * schedule a write of some buffers
3378 * return confirmation of parity correctness
3379 *
1da177e4 3380 */
a4456856 3381
acfe726b 3382static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3383{
d1688a6d 3384 struct r5conf *conf = sh->raid_conf;
f416885e 3385 int disks = sh->disks;
474af965
N
3386 struct r5dev *dev;
3387 int i;
9a3e1101 3388 int do_recovery = 0;
1da177e4 3389
acfe726b
N
3390 memset(s, 0, sizeof(*s));
3391
acfe726b
N
3392 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3393 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3394 s->failed_num[0] = -1;
3395 s->failed_num[1] = -1;
1da177e4 3396
acfe726b 3397 /* Now to look around and see what can be done */
1da177e4 3398 rcu_read_lock();
16a53ecc 3399 for (i=disks; i--; ) {
3cb03002 3400 struct md_rdev *rdev;
31c176ec
N
3401 sector_t first_bad;
3402 int bad_sectors;
3403 int is_bad = 0;
acfe726b 3404
16a53ecc 3405 dev = &sh->dev[i];
1da177e4 3406
45b4233c 3407 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3408 i, dev->flags,
3409 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3410 /* maybe we can reply to a read
3411 *
3412 * new wantfill requests are only permitted while
3413 * ops_complete_biofill is guaranteed to be inactive
3414 */
3415 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3416 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3417 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3418
16a53ecc 3419 /* now count some things */
cc94015a
N
3420 if (test_bit(R5_LOCKED, &dev->flags))
3421 s->locked++;
3422 if (test_bit(R5_UPTODATE, &dev->flags))
3423 s->uptodate++;
2d6e4ecc 3424 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3425 s->compute++;
3426 BUG_ON(s->compute > 2);
2d6e4ecc 3427 }
1da177e4 3428
acfe726b 3429 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3430 s->to_fill++;
acfe726b 3431 else if (dev->toread)
cc94015a 3432 s->to_read++;
16a53ecc 3433 if (dev->towrite) {
cc94015a 3434 s->to_write++;
16a53ecc 3435 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3436 s->non_overwrite++;
16a53ecc 3437 }
a4456856 3438 if (dev->written)
cc94015a 3439 s->written++;
14a75d3e
N
3440 /* Prefer to use the replacement for reads, but only
3441 * if it is recovered enough and has no bad blocks.
3442 */
3443 rdev = rcu_dereference(conf->disks[i].replacement);
3444 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3445 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3446 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3447 &first_bad, &bad_sectors))
3448 set_bit(R5_ReadRepl, &dev->flags);
3449 else {
9a3e1101
N
3450 if (rdev)
3451 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3452 rdev = rcu_dereference(conf->disks[i].rdev);
3453 clear_bit(R5_ReadRepl, &dev->flags);
3454 }
9283d8c5
N
3455 if (rdev && test_bit(Faulty, &rdev->flags))
3456 rdev = NULL;
31c176ec
N
3457 if (rdev) {
3458 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3459 &first_bad, &bad_sectors);
3460 if (s->blocked_rdev == NULL
3461 && (test_bit(Blocked, &rdev->flags)
3462 || is_bad < 0)) {
3463 if (is_bad < 0)
3464 set_bit(BlockedBadBlocks,
3465 &rdev->flags);
3466 s->blocked_rdev = rdev;
3467 atomic_inc(&rdev->nr_pending);
3468 }
6bfe0b49 3469 }
415e72d0
N
3470 clear_bit(R5_Insync, &dev->flags);
3471 if (!rdev)
3472 /* Not in-sync */;
31c176ec
N
3473 else if (is_bad) {
3474 /* also not in-sync */
18b9837e
N
3475 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3476 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3477 /* treat as in-sync, but with a read error
3478 * which we can now try to correct
3479 */
3480 set_bit(R5_Insync, &dev->flags);
3481 set_bit(R5_ReadError, &dev->flags);
3482 }
3483 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3484 set_bit(R5_Insync, &dev->flags);
30d7a483 3485 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3486 /* in sync if before recovery_offset */
30d7a483
N
3487 set_bit(R5_Insync, &dev->flags);
3488 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3489 test_bit(R5_Expanded, &dev->flags))
3490 /* If we've reshaped into here, we assume it is Insync.
3491 * We will shortly update recovery_offset to make
3492 * it official.
3493 */
3494 set_bit(R5_Insync, &dev->flags);
3495
5d8c71f9 3496 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3497 /* This flag does not apply to '.replacement'
3498 * only to .rdev, so make sure to check that*/
3499 struct md_rdev *rdev2 = rcu_dereference(
3500 conf->disks[i].rdev);
3501 if (rdev2 == rdev)
3502 clear_bit(R5_Insync, &dev->flags);
3503 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3504 s->handle_bad_blocks = 1;
14a75d3e 3505 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3506 } else
3507 clear_bit(R5_WriteError, &dev->flags);
3508 }
5d8c71f9 3509 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3510 /* This flag does not apply to '.replacement'
3511 * only to .rdev, so make sure to check that*/
3512 struct md_rdev *rdev2 = rcu_dereference(
3513 conf->disks[i].rdev);
3514 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3515 s->handle_bad_blocks = 1;
14a75d3e 3516 atomic_inc(&rdev2->nr_pending);
b84db560
N
3517 } else
3518 clear_bit(R5_MadeGood, &dev->flags);
3519 }
977df362
N
3520 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3521 struct md_rdev *rdev2 = rcu_dereference(
3522 conf->disks[i].replacement);
3523 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3524 s->handle_bad_blocks = 1;
3525 atomic_inc(&rdev2->nr_pending);
3526 } else
3527 clear_bit(R5_MadeGoodRepl, &dev->flags);
3528 }
415e72d0 3529 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3530 /* The ReadError flag will just be confusing now */
3531 clear_bit(R5_ReadError, &dev->flags);
3532 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3533 }
415e72d0
N
3534 if (test_bit(R5_ReadError, &dev->flags))
3535 clear_bit(R5_Insync, &dev->flags);
3536 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3537 if (s->failed < 2)
3538 s->failed_num[s->failed] = i;
3539 s->failed++;
9a3e1101
N
3540 if (rdev && !test_bit(Faulty, &rdev->flags))
3541 do_recovery = 1;
415e72d0 3542 }
1da177e4 3543 }
9a3e1101
N
3544 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3545 /* If there is a failed device being replaced,
3546 * we must be recovering.
3547 * else if we are after recovery_cp, we must be syncing
c6d2e084 3548 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3549 * else we can only be replacing
3550 * sync and recovery both need to read all devices, and so
3551 * use the same flag.
3552 */
3553 if (do_recovery ||
c6d2e084 3554 sh->sector >= conf->mddev->recovery_cp ||
3555 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3556 s->syncing = 1;
3557 else
3558 s->replacing = 1;
3559 }
1da177e4 3560 rcu_read_unlock();
cc94015a
N
3561}
3562
3563static void handle_stripe(struct stripe_head *sh)
3564{
3565 struct stripe_head_state s;
d1688a6d 3566 struct r5conf *conf = sh->raid_conf;
3687c061 3567 int i;
84789554
N
3568 int prexor;
3569 int disks = sh->disks;
474af965 3570 struct r5dev *pdev, *qdev;
cc94015a
N
3571
3572 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3573 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3574 /* already being handled, ensure it gets handled
3575 * again when current action finishes */
3576 set_bit(STRIPE_HANDLE, &sh->state);
3577 return;
3578 }
3579
f8dfcffd
N
3580 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3581 spin_lock(&sh->stripe_lock);
3582 /* Cannot process 'sync' concurrently with 'discard' */
3583 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3584 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3585 set_bit(STRIPE_SYNCING, &sh->state);
3586 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 3587 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
3588 }
3589 spin_unlock(&sh->stripe_lock);
cc94015a
N
3590 }
3591 clear_bit(STRIPE_DELAYED, &sh->state);
3592
3593 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3594 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3595 (unsigned long long)sh->sector, sh->state,
3596 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3597 sh->check_state, sh->reconstruct_state);
3687c061 3598
acfe726b 3599 analyse_stripe(sh, &s);
c5a31000 3600
bc2607f3
N
3601 if (s.handle_bad_blocks) {
3602 set_bit(STRIPE_HANDLE, &sh->state);
3603 goto finish;
3604 }
3605
474af965
N
3606 if (unlikely(s.blocked_rdev)) {
3607 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3608 s.replacing || s.to_write || s.written) {
474af965
N
3609 set_bit(STRIPE_HANDLE, &sh->state);
3610 goto finish;
3611 }
3612 /* There is nothing for the blocked_rdev to block */
3613 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3614 s.blocked_rdev = NULL;
3615 }
3616
3617 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3618 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3619 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3620 }
3621
3622 pr_debug("locked=%d uptodate=%d to_read=%d"
3623 " to_write=%d failed=%d failed_num=%d,%d\n",
3624 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3625 s.failed_num[0], s.failed_num[1]);
3626 /* check if the array has lost more than max_degraded devices and,
3627 * if so, some requests might need to be failed.
3628 */
9a3f530f
N
3629 if (s.failed > conf->max_degraded) {
3630 sh->check_state = 0;
3631 sh->reconstruct_state = 0;
3632 if (s.to_read+s.to_write+s.written)
3633 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3634 if (s.syncing + s.replacing)
9a3f530f
N
3635 handle_failed_sync(conf, sh, &s);
3636 }
474af965 3637
84789554
N
3638 /* Now we check to see if any write operations have recently
3639 * completed
3640 */
3641 prexor = 0;
3642 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3643 prexor = 1;
3644 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3645 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3646 sh->reconstruct_state = reconstruct_state_idle;
3647
3648 /* All the 'written' buffers and the parity block are ready to
3649 * be written back to disk
3650 */
9e444768
SL
3651 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3652 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 3653 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
3654 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3655 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
3656 for (i = disks; i--; ) {
3657 struct r5dev *dev = &sh->dev[i];
3658 if (test_bit(R5_LOCKED, &dev->flags) &&
3659 (i == sh->pd_idx || i == sh->qd_idx ||
3660 dev->written)) {
3661 pr_debug("Writing block %d\n", i);
3662 set_bit(R5_Wantwrite, &dev->flags);
3663 if (prexor)
3664 continue;
3665 if (!test_bit(R5_Insync, &dev->flags) ||
3666 ((i == sh->pd_idx || i == sh->qd_idx) &&
3667 s.failed == 0))
3668 set_bit(STRIPE_INSYNC, &sh->state);
3669 }
3670 }
3671 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3672 s.dec_preread_active = 1;
3673 }
3674
ef5b7c69
N
3675 /*
3676 * might be able to return some write requests if the parity blocks
3677 * are safe, or on a failed drive
3678 */
3679 pdev = &sh->dev[sh->pd_idx];
3680 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3681 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3682 qdev = &sh->dev[sh->qd_idx];
3683 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3684 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3685 || conf->level < 6;
3686
3687 if (s.written &&
3688 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3689 && !test_bit(R5_LOCKED, &pdev->flags)
3690 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3691 test_bit(R5_Discard, &pdev->flags))))) &&
3692 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3693 && !test_bit(R5_LOCKED, &qdev->flags)
3694 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3695 test_bit(R5_Discard, &qdev->flags))))))
3696 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3697
3698 /* Now we might consider reading some blocks, either to check/generate
3699 * parity, or to satisfy requests
3700 * or to load a block that is being partially written.
3701 */
3702 if (s.to_read || s.non_overwrite
3703 || (conf->level == 6 && s.to_write && s.failed)
3704 || (s.syncing && (s.uptodate + s.compute < disks))
3705 || s.replacing
3706 || s.expanding)
3707 handle_stripe_fill(sh, &s, disks);
3708
84789554
N
3709 /* Now to consider new write requests and what else, if anything
3710 * should be read. We do not handle new writes when:
3711 * 1/ A 'write' operation (copy+xor) is already in flight.
3712 * 2/ A 'check' operation is in flight, as it may clobber the parity
3713 * block.
3714 */
3715 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3716 handle_stripe_dirtying(conf, sh, &s, disks);
3717
3718 /* maybe we need to check and possibly fix the parity for this stripe
3719 * Any reads will already have been scheduled, so we just see if enough
3720 * data is available. The parity check is held off while parity
3721 * dependent operations are in flight.
3722 */
3723 if (sh->check_state ||
3724 (s.syncing && s.locked == 0 &&
3725 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3726 !test_bit(STRIPE_INSYNC, &sh->state))) {
3727 if (conf->level == 6)
3728 handle_parity_checks6(conf, sh, &s, disks);
3729 else
3730 handle_parity_checks5(conf, sh, &s, disks);
3731 }
c5a31000 3732
f94c0b66
N
3733 if ((s.replacing || s.syncing) && s.locked == 0
3734 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3735 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
3736 /* Write out to replacement devices where possible */
3737 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
3738 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3739 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
3740 set_bit(R5_WantReplace, &sh->dev[i].flags);
3741 set_bit(R5_LOCKED, &sh->dev[i].flags);
3742 s.locked++;
3743 }
f94c0b66
N
3744 if (s.replacing)
3745 set_bit(STRIPE_INSYNC, &sh->state);
3746 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
3747 }
3748 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 3749 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 3750 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3751 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3752 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3753 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3754 wake_up(&conf->wait_for_overlap);
c5a31000
N
3755 }
3756
3757 /* If the failed drives are just a ReadError, then we might need
3758 * to progress the repair/check process
3759 */
3760 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3761 for (i = 0; i < s.failed; i++) {
3762 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3763 if (test_bit(R5_ReadError, &dev->flags)
3764 && !test_bit(R5_LOCKED, &dev->flags)
3765 && test_bit(R5_UPTODATE, &dev->flags)
3766 ) {
3767 if (!test_bit(R5_ReWrite, &dev->flags)) {
3768 set_bit(R5_Wantwrite, &dev->flags);
3769 set_bit(R5_ReWrite, &dev->flags);
3770 set_bit(R5_LOCKED, &dev->flags);
3771 s.locked++;
3772 } else {
3773 /* let's read it back */
3774 set_bit(R5_Wantread, &dev->flags);
3775 set_bit(R5_LOCKED, &dev->flags);
3776 s.locked++;
3777 }
3778 }
3779 }
3780
3781
3687c061
N
3782 /* Finish reconstruct operations initiated by the expansion process */
3783 if (sh->reconstruct_state == reconstruct_state_result) {
3784 struct stripe_head *sh_src
3785 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3786 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3787 /* sh cannot be written until sh_src has been read.
3788 * so arrange for sh to be delayed a little
3789 */
3790 set_bit(STRIPE_DELAYED, &sh->state);
3791 set_bit(STRIPE_HANDLE, &sh->state);
3792 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3793 &sh_src->state))
3794 atomic_inc(&conf->preread_active_stripes);
3795 release_stripe(sh_src);
3796 goto finish;
3797 }
3798 if (sh_src)
3799 release_stripe(sh_src);
3800
3801 sh->reconstruct_state = reconstruct_state_idle;
3802 clear_bit(STRIPE_EXPANDING, &sh->state);
3803 for (i = conf->raid_disks; i--; ) {
3804 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3805 set_bit(R5_LOCKED, &sh->dev[i].flags);
3806 s.locked++;
3807 }
3808 }
f416885e 3809
3687c061
N
3810 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3811 !sh->reconstruct_state) {
3812 /* Need to write out all blocks after computing parity */
3813 sh->disks = conf->raid_disks;
3814 stripe_set_idx(sh->sector, conf, 0, sh);
3815 schedule_reconstruction(sh, &s, 1, 1);
3816 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3817 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3818 atomic_dec(&conf->reshape_stripes);
3819 wake_up(&conf->wait_for_overlap);
3820 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3821 }
3822
3823 if (s.expanding && s.locked == 0 &&
3824 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3825 handle_stripe_expansion(conf, sh);
16a53ecc 3826
3687c061 3827finish:
6bfe0b49 3828 /* wait for this device to become unblocked */
5f066c63
N
3829 if (unlikely(s.blocked_rdev)) {
3830 if (conf->mddev->external)
3831 md_wait_for_blocked_rdev(s.blocked_rdev,
3832 conf->mddev);
3833 else
3834 /* Internal metadata will immediately
3835 * be written by raid5d, so we don't
3836 * need to wait here.
3837 */
3838 rdev_dec_pending(s.blocked_rdev,
3839 conf->mddev);
3840 }
6bfe0b49 3841
bc2607f3
N
3842 if (s.handle_bad_blocks)
3843 for (i = disks; i--; ) {
3cb03002 3844 struct md_rdev *rdev;
bc2607f3
N
3845 struct r5dev *dev = &sh->dev[i];
3846 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3847 /* We own a safe reference to the rdev */
3848 rdev = conf->disks[i].rdev;
3849 if (!rdev_set_badblocks(rdev, sh->sector,
3850 STRIPE_SECTORS, 0))
3851 md_error(conf->mddev, rdev);
3852 rdev_dec_pending(rdev, conf->mddev);
3853 }
b84db560
N
3854 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3855 rdev = conf->disks[i].rdev;
3856 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3857 STRIPE_SECTORS, 0);
b84db560
N
3858 rdev_dec_pending(rdev, conf->mddev);
3859 }
977df362
N
3860 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3861 rdev = conf->disks[i].replacement;
dd054fce
N
3862 if (!rdev)
3863 /* rdev have been moved down */
3864 rdev = conf->disks[i].rdev;
977df362 3865 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3866 STRIPE_SECTORS, 0);
977df362
N
3867 rdev_dec_pending(rdev, conf->mddev);
3868 }
bc2607f3
N
3869 }
3870
6c0069c0
YT
3871 if (s.ops_request)
3872 raid_run_ops(sh, s.ops_request);
3873
f0e43bcd 3874 ops_run_io(sh, &s);
16a53ecc 3875
c5709ef6 3876 if (s.dec_preread_active) {
729a1866 3877 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3878 * is waiting on a flush, it won't continue until the writes
729a1866
N
3879 * have actually been submitted.
3880 */
3881 atomic_dec(&conf->preread_active_stripes);
3882 if (atomic_read(&conf->preread_active_stripes) <
3883 IO_THRESHOLD)
3884 md_wakeup_thread(conf->mddev->thread);
3885 }
3886
c5709ef6 3887 return_io(s.return_bi);
16a53ecc 3888
257a4b42 3889 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3890}
3891
d1688a6d 3892static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3893{
3894 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3895 while (!list_empty(&conf->delayed_list)) {
3896 struct list_head *l = conf->delayed_list.next;
3897 struct stripe_head *sh;
3898 sh = list_entry(l, struct stripe_head, lru);
3899 list_del_init(l);
3900 clear_bit(STRIPE_DELAYED, &sh->state);
3901 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3902 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3903 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 3904 raid5_wakeup_stripe_thread(sh);
16a53ecc 3905 }
482c0834 3906 }
16a53ecc
N
3907}
3908
d1688a6d 3909static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3910{
3911 /* device_lock is held */
3912 struct list_head head;
3913 list_add(&head, &conf->bitmap_list);
3914 list_del_init(&conf->bitmap_list);
3915 while (!list_empty(&head)) {
3916 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3917 list_del_init(&sh->lru);
3918 atomic_inc(&sh->count);
3919 __release_stripe(conf, sh);
3920 }
3921}
3922
fd01b88c 3923int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3924{
d1688a6d 3925 struct r5conf *conf = mddev->private;
f022b2fd
N
3926
3927 /* No difference between reads and writes. Just check
3928 * how busy the stripe_cache is
3929 */
3fa841d7 3930
f022b2fd
N
3931 if (conf->inactive_blocked)
3932 return 1;
3933 if (conf->quiesce)
3934 return 1;
3935 if (list_empty_careful(&conf->inactive_list))
3936 return 1;
3937
3938 return 0;
3939}
11d8a6e3
N
3940EXPORT_SYMBOL_GPL(md_raid5_congested);
3941
3942static int raid5_congested(void *data, int bits)
3943{
fd01b88c 3944 struct mddev *mddev = data;
11d8a6e3
N
3945
3946 return mddev_congested(mddev, bits) ||
3947 md_raid5_congested(mddev, bits);
3948}
f022b2fd 3949
23032a0e
RBJ
3950/* We want read requests to align with chunks where possible,
3951 * but write requests don't need to.
3952 */
cc371e66
AK
3953static int raid5_mergeable_bvec(struct request_queue *q,
3954 struct bvec_merge_data *bvm,
3955 struct bio_vec *biovec)
23032a0e 3956{
fd01b88c 3957 struct mddev *mddev = q->queuedata;
cc371e66 3958 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3959 int max;
9d8f0363 3960 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3961 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3962
cc371e66 3963 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3964 return biovec->bv_len; /* always allow writes to be mergeable */
3965
664e7c41
AN
3966 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3967 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3968 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3969 if (max < 0) max = 0;
3970 if (max <= biovec->bv_len && bio_sectors == 0)
3971 return biovec->bv_len;
3972 else
3973 return max;
3974}
3975
f679623f 3976
fd01b88c 3977static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3978{
3979 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3980 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 3981 unsigned int bio_sectors = bio_sectors(bio);
f679623f 3982
664e7c41
AN
3983 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3984 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3985 return chunk_sectors >=
3986 ((sector & (chunk_sectors - 1)) + bio_sectors);
3987}
3988
46031f9a
RBJ
3989/*
3990 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3991 * later sampled by raid5d.
3992 */
d1688a6d 3993static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3994{
3995 unsigned long flags;
3996
3997 spin_lock_irqsave(&conf->device_lock, flags);
3998
3999 bi->bi_next = conf->retry_read_aligned_list;
4000 conf->retry_read_aligned_list = bi;
4001
4002 spin_unlock_irqrestore(&conf->device_lock, flags);
4003 md_wakeup_thread(conf->mddev->thread);
4004}
4005
4006
d1688a6d 4007static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4008{
4009 struct bio *bi;
4010
4011 bi = conf->retry_read_aligned;
4012 if (bi) {
4013 conf->retry_read_aligned = NULL;
4014 return bi;
4015 }
4016 bi = conf->retry_read_aligned_list;
4017 if(bi) {
387bb173 4018 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4019 bi->bi_next = NULL;
960e739d
JA
4020 /*
4021 * this sets the active strip count to 1 and the processed
4022 * strip count to zero (upper 8 bits)
4023 */
e7836bd6 4024 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4025 }
4026
4027 return bi;
4028}
4029
4030
f679623f
RBJ
4031/*
4032 * The "raid5_align_endio" should check if the read succeeded and if it
4033 * did, call bio_endio on the original bio (having bio_put the new bio
4034 * first).
4035 * If the read failed..
4036 */
6712ecf8 4037static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4038{
4039 struct bio* raid_bi = bi->bi_private;
fd01b88c 4040 struct mddev *mddev;
d1688a6d 4041 struct r5conf *conf;
46031f9a 4042 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4043 struct md_rdev *rdev;
46031f9a 4044
f679623f 4045 bio_put(bi);
46031f9a 4046
46031f9a
RBJ
4047 rdev = (void*)raid_bi->bi_next;
4048 raid_bi->bi_next = NULL;
2b7f2228
N
4049 mddev = rdev->mddev;
4050 conf = mddev->private;
46031f9a
RBJ
4051
4052 rdev_dec_pending(rdev, conf->mddev);
4053
4054 if (!error && uptodate) {
0a82a8d1
LT
4055 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4056 raid_bi, 0);
6712ecf8 4057 bio_endio(raid_bi, 0);
46031f9a
RBJ
4058 if (atomic_dec_and_test(&conf->active_aligned_reads))
4059 wake_up(&conf->wait_for_stripe);
6712ecf8 4060 return;
46031f9a
RBJ
4061 }
4062
4063
45b4233c 4064 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4065
4066 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4067}
4068
387bb173
NB
4069static int bio_fits_rdev(struct bio *bi)
4070{
165125e1 4071 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4072
aa8b57aa 4073 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4074 return 0;
4075 blk_recount_segments(q, bi);
8a78362c 4076 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4077 return 0;
4078
4079 if (q->merge_bvec_fn)
4080 /* it's too hard to apply the merge_bvec_fn at this stage,
4081 * just just give up
4082 */
4083 return 0;
4084
4085 return 1;
4086}
4087
4088
fd01b88c 4089static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4090{
d1688a6d 4091 struct r5conf *conf = mddev->private;
8553fe7e 4092 int dd_idx;
f679623f 4093 struct bio* align_bi;
3cb03002 4094 struct md_rdev *rdev;
671488cc 4095 sector_t end_sector;
f679623f
RBJ
4096
4097 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4098 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4099 return 0;
4100 }
4101 /*
a167f663 4102 * use bio_clone_mddev to make a copy of the bio
f679623f 4103 */
a167f663 4104 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4105 if (!align_bi)
4106 return 0;
4107 /*
4108 * set bi_end_io to a new function, and set bi_private to the
4109 * original bio.
4110 */
4111 align_bi->bi_end_io = raid5_align_endio;
4112 align_bi->bi_private = raid_bio;
4113 /*
4114 * compute position
4115 */
112bf897
N
4116 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
4117 0,
911d4ee8 4118 &dd_idx, NULL);
f679623f 4119
f73a1c7d 4120 end_sector = bio_end_sector(align_bi);
f679623f 4121 rcu_read_lock();
671488cc
N
4122 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4123 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4124 rdev->recovery_offset < end_sector) {
4125 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4126 if (rdev &&
4127 (test_bit(Faulty, &rdev->flags) ||
4128 !(test_bit(In_sync, &rdev->flags) ||
4129 rdev->recovery_offset >= end_sector)))
4130 rdev = NULL;
4131 }
4132 if (rdev) {
31c176ec
N
4133 sector_t first_bad;
4134 int bad_sectors;
4135
f679623f
RBJ
4136 atomic_inc(&rdev->nr_pending);
4137 rcu_read_unlock();
46031f9a
RBJ
4138 raid_bio->bi_next = (void*)rdev;
4139 align_bi->bi_bdev = rdev->bdev;
4140 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
46031f9a 4141
31c176ec 4142 if (!bio_fits_rdev(align_bi) ||
aa8b57aa 4143 is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
31c176ec
N
4144 &first_bad, &bad_sectors)) {
4145 /* too big in some way, or has a known bad block */
387bb173
NB
4146 bio_put(align_bi);
4147 rdev_dec_pending(rdev, mddev);
4148 return 0;
4149 }
4150
6c0544e2 4151 /* No reshape active, so we can trust rdev->data_offset */
4152 align_bi->bi_sector += rdev->data_offset;
4153
46031f9a
RBJ
4154 spin_lock_irq(&conf->device_lock);
4155 wait_event_lock_irq(conf->wait_for_stripe,
4156 conf->quiesce == 0,
eed8c02e 4157 conf->device_lock);
46031f9a
RBJ
4158 atomic_inc(&conf->active_aligned_reads);
4159 spin_unlock_irq(&conf->device_lock);
4160
e3620a3a
JB
4161 if (mddev->gendisk)
4162 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4163 align_bi, disk_devt(mddev->gendisk),
4164 raid_bio->bi_sector);
f679623f
RBJ
4165 generic_make_request(align_bi);
4166 return 1;
4167 } else {
4168 rcu_read_unlock();
46031f9a 4169 bio_put(align_bi);
f679623f
RBJ
4170 return 0;
4171 }
4172}
4173
8b3e6cdc
DW
4174/* __get_priority_stripe - get the next stripe to process
4175 *
4176 * Full stripe writes are allowed to pass preread active stripes up until
4177 * the bypass_threshold is exceeded. In general the bypass_count
4178 * increments when the handle_list is handled before the hold_list; however, it
4179 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4180 * stripe with in flight i/o. The bypass_count will be reset when the
4181 * head of the hold_list has changed, i.e. the head was promoted to the
4182 * handle_list.
4183 */
851c30c9 4184static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4185{
851c30c9
SL
4186 struct stripe_head *sh = NULL, *tmp;
4187 struct list_head *handle_list = NULL;
bfc90cb0 4188 struct r5worker_group *wg = NULL;
851c30c9
SL
4189
4190 if (conf->worker_cnt_per_group == 0) {
4191 handle_list = &conf->handle_list;
4192 } else if (group != ANY_GROUP) {
4193 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4194 wg = &conf->worker_groups[group];
851c30c9
SL
4195 } else {
4196 int i;
4197 for (i = 0; i < conf->group_cnt; i++) {
4198 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4199 wg = &conf->worker_groups[i];
851c30c9
SL
4200 if (!list_empty(handle_list))
4201 break;
4202 }
4203 }
8b3e6cdc
DW
4204
4205 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4206 __func__,
851c30c9 4207 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4208 list_empty(&conf->hold_list) ? "empty" : "busy",
4209 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4210
851c30c9
SL
4211 if (!list_empty(handle_list)) {
4212 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4213
4214 if (list_empty(&conf->hold_list))
4215 conf->bypass_count = 0;
4216 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4217 if (conf->hold_list.next == conf->last_hold)
4218 conf->bypass_count++;
4219 else {
4220 conf->last_hold = conf->hold_list.next;
4221 conf->bypass_count -= conf->bypass_threshold;
4222 if (conf->bypass_count < 0)
4223 conf->bypass_count = 0;
4224 }
4225 }
4226 } else if (!list_empty(&conf->hold_list) &&
4227 ((conf->bypass_threshold &&
4228 conf->bypass_count > conf->bypass_threshold) ||
4229 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4230
4231 list_for_each_entry(tmp, &conf->hold_list, lru) {
4232 if (conf->worker_cnt_per_group == 0 ||
4233 group == ANY_GROUP ||
4234 !cpu_online(tmp->cpu) ||
4235 cpu_to_group(tmp->cpu) == group) {
4236 sh = tmp;
4237 break;
4238 }
4239 }
4240
4241 if (sh) {
4242 conf->bypass_count -= conf->bypass_threshold;
4243 if (conf->bypass_count < 0)
4244 conf->bypass_count = 0;
4245 }
bfc90cb0 4246 wg = NULL;
851c30c9
SL
4247 }
4248
4249 if (!sh)
8b3e6cdc
DW
4250 return NULL;
4251
bfc90cb0
SL
4252 if (wg) {
4253 wg->stripes_cnt--;
4254 sh->group = NULL;
4255 }
8b3e6cdc
DW
4256 list_del_init(&sh->lru);
4257 atomic_inc(&sh->count);
4258 BUG_ON(atomic_read(&sh->count) != 1);
4259 return sh;
4260}
f679623f 4261
8811b596
SL
4262struct raid5_plug_cb {
4263 struct blk_plug_cb cb;
4264 struct list_head list;
4265};
4266
4267static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4268{
4269 struct raid5_plug_cb *cb = container_of(
4270 blk_cb, struct raid5_plug_cb, cb);
4271 struct stripe_head *sh;
4272 struct mddev *mddev = cb->cb.data;
4273 struct r5conf *conf = mddev->private;
a9add5d9 4274 int cnt = 0;
8811b596
SL
4275
4276 if (cb->list.next && !list_empty(&cb->list)) {
4277 spin_lock_irq(&conf->device_lock);
4278 while (!list_empty(&cb->list)) {
4279 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4280 list_del_init(&sh->lru);
4281 /*
4282 * avoid race release_stripe_plug() sees
4283 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4284 * is still in our list
4285 */
4286 smp_mb__before_clear_bit();
4287 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4288 /*
4289 * STRIPE_ON_RELEASE_LIST could be set here. In that
4290 * case, the count is always > 1 here
4291 */
8811b596 4292 __release_stripe(conf, sh);
a9add5d9 4293 cnt++;
8811b596
SL
4294 }
4295 spin_unlock_irq(&conf->device_lock);
4296 }
e3620a3a
JB
4297 if (mddev->queue)
4298 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4299 kfree(cb);
4300}
4301
4302static void release_stripe_plug(struct mddev *mddev,
4303 struct stripe_head *sh)
4304{
4305 struct blk_plug_cb *blk_cb = blk_check_plugged(
4306 raid5_unplug, mddev,
4307 sizeof(struct raid5_plug_cb));
4308 struct raid5_plug_cb *cb;
4309
4310 if (!blk_cb) {
4311 release_stripe(sh);
4312 return;
4313 }
4314
4315 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4316
4317 if (cb->list.next == NULL)
4318 INIT_LIST_HEAD(&cb->list);
4319
4320 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4321 list_add_tail(&sh->lru, &cb->list);
4322 else
4323 release_stripe(sh);
4324}
4325
620125f2
SL
4326static void make_discard_request(struct mddev *mddev, struct bio *bi)
4327{
4328 struct r5conf *conf = mddev->private;
4329 sector_t logical_sector, last_sector;
4330 struct stripe_head *sh;
4331 int remaining;
4332 int stripe_sectors;
4333
4334 if (mddev->reshape_position != MaxSector)
4335 /* Skip discard while reshape is happening */
4336 return;
4337
4338 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4339 last_sector = bi->bi_sector + (bi->bi_size>>9);
4340
4341 bi->bi_next = NULL;
4342 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4343
4344 stripe_sectors = conf->chunk_sectors *
4345 (conf->raid_disks - conf->max_degraded);
4346 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4347 stripe_sectors);
4348 sector_div(last_sector, stripe_sectors);
4349
4350 logical_sector *= conf->chunk_sectors;
4351 last_sector *= conf->chunk_sectors;
4352
4353 for (; logical_sector < last_sector;
4354 logical_sector += STRIPE_SECTORS) {
4355 DEFINE_WAIT(w);
4356 int d;
4357 again:
4358 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4359 prepare_to_wait(&conf->wait_for_overlap, &w,
4360 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
4361 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4362 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4363 release_stripe(sh);
4364 schedule();
4365 goto again;
4366 }
4367 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
4368 spin_lock_irq(&sh->stripe_lock);
4369 for (d = 0; d < conf->raid_disks; d++) {
4370 if (d == sh->pd_idx || d == sh->qd_idx)
4371 continue;
4372 if (sh->dev[d].towrite || sh->dev[d].toread) {
4373 set_bit(R5_Overlap, &sh->dev[d].flags);
4374 spin_unlock_irq(&sh->stripe_lock);
4375 release_stripe(sh);
4376 schedule();
4377 goto again;
4378 }
4379 }
f8dfcffd 4380 set_bit(STRIPE_DISCARD, &sh->state);
620125f2
SL
4381 finish_wait(&conf->wait_for_overlap, &w);
4382 for (d = 0; d < conf->raid_disks; d++) {
4383 if (d == sh->pd_idx || d == sh->qd_idx)
4384 continue;
4385 sh->dev[d].towrite = bi;
4386 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4387 raid5_inc_bi_active_stripes(bi);
4388 }
4389 spin_unlock_irq(&sh->stripe_lock);
4390 if (conf->mddev->bitmap) {
4391 for (d = 0;
4392 d < conf->raid_disks - conf->max_degraded;
4393 d++)
4394 bitmap_startwrite(mddev->bitmap,
4395 sh->sector,
4396 STRIPE_SECTORS,
4397 0);
4398 sh->bm_seq = conf->seq_flush + 1;
4399 set_bit(STRIPE_BIT_DELAY, &sh->state);
4400 }
4401
4402 set_bit(STRIPE_HANDLE, &sh->state);
4403 clear_bit(STRIPE_DELAYED, &sh->state);
4404 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4405 atomic_inc(&conf->preread_active_stripes);
4406 release_stripe_plug(mddev, sh);
4407 }
4408
4409 remaining = raid5_dec_bi_active_stripes(bi);
4410 if (remaining == 0) {
4411 md_write_end(mddev);
4412 bio_endio(bi, 0);
4413 }
4414}
4415
b4fdcb02 4416static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 4417{
d1688a6d 4418 struct r5conf *conf = mddev->private;
911d4ee8 4419 int dd_idx;
1da177e4
LT
4420 sector_t new_sector;
4421 sector_t logical_sector, last_sector;
4422 struct stripe_head *sh;
a362357b 4423 const int rw = bio_data_dir(bi);
49077326 4424 int remaining;
1da177e4 4425
e9c7469b
TH
4426 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4427 md_flush_request(mddev, bi);
5a7bbad2 4428 return;
e5dcdd80
N
4429 }
4430
3d310eb7 4431 md_write_start(mddev, bi);
06d91a5f 4432
802ba064 4433 if (rw == READ &&
52488615 4434 mddev->reshape_position == MaxSector &&
21a52c6d 4435 chunk_aligned_read(mddev,bi))
5a7bbad2 4436 return;
52488615 4437
620125f2
SL
4438 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4439 make_discard_request(mddev, bi);
4440 return;
4441 }
4442
1da177e4 4443 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 4444 last_sector = bio_end_sector(bi);
1da177e4
LT
4445 bi->bi_next = NULL;
4446 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4447
1da177e4
LT
4448 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4449 DEFINE_WAIT(w);
b5663ba4 4450 int previous;
c46501b2 4451 int seq;
b578d55f 4452
7ecaa1e6 4453 retry:
c46501b2 4454 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 4455 previous = 0;
b578d55f 4456 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 4457 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4458 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4459 * 64bit on a 32bit platform, and so it might be
4460 * possible to see a half-updated value
aeb878b0 4461 * Of course reshape_progress could change after
df8e7f76
N
4462 * the lock is dropped, so once we get a reference
4463 * to the stripe that we think it is, we will have
4464 * to check again.
4465 */
7ecaa1e6 4466 spin_lock_irq(&conf->device_lock);
2c810cdd 4467 if (mddev->reshape_backwards
fef9c61f
N
4468 ? logical_sector < conf->reshape_progress
4469 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4470 previous = 1;
4471 } else {
2c810cdd 4472 if (mddev->reshape_backwards
fef9c61f
N
4473 ? logical_sector < conf->reshape_safe
4474 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4475 spin_unlock_irq(&conf->device_lock);
4476 schedule();
4477 goto retry;
4478 }
4479 }
7ecaa1e6
N
4480 spin_unlock_irq(&conf->device_lock);
4481 }
16a53ecc 4482
112bf897
N
4483 new_sector = raid5_compute_sector(conf, logical_sector,
4484 previous,
911d4ee8 4485 &dd_idx, NULL);
0c55e022 4486 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 4487 (unsigned long long)new_sector,
1da177e4
LT
4488 (unsigned long long)logical_sector);
4489
b5663ba4 4490 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4491 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4492 if (sh) {
b0f9ec04 4493 if (unlikely(previous)) {
7ecaa1e6 4494 /* expansion might have moved on while waiting for a
df8e7f76
N
4495 * stripe, so we must do the range check again.
4496 * Expansion could still move past after this
4497 * test, but as we are holding a reference to
4498 * 'sh', we know that if that happens,
4499 * STRIPE_EXPANDING will get set and the expansion
4500 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4501 */
4502 int must_retry = 0;
4503 spin_lock_irq(&conf->device_lock);
2c810cdd 4504 if (mddev->reshape_backwards
b0f9ec04
N
4505 ? logical_sector >= conf->reshape_progress
4506 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4507 /* mismatch, need to try again */
4508 must_retry = 1;
4509 spin_unlock_irq(&conf->device_lock);
4510 if (must_retry) {
4511 release_stripe(sh);
7a3ab908 4512 schedule();
7ecaa1e6
N
4513 goto retry;
4514 }
4515 }
c46501b2
N
4516 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4517 /* Might have got the wrong stripe_head
4518 * by accident
4519 */
4520 release_stripe(sh);
4521 goto retry;
4522 }
e62e58a5 4523
ffd96e35 4524 if (rw == WRITE &&
a5c308d4 4525 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4526 logical_sector < mddev->suspend_hi) {
4527 release_stripe(sh);
e62e58a5
N
4528 /* As the suspend_* range is controlled by
4529 * userspace, we want an interruptible
4530 * wait.
4531 */
4532 flush_signals(current);
4533 prepare_to_wait(&conf->wait_for_overlap,
4534 &w, TASK_INTERRUPTIBLE);
4535 if (logical_sector >= mddev->suspend_lo &&
4536 logical_sector < mddev->suspend_hi)
4537 schedule();
e464eafd
N
4538 goto retry;
4539 }
7ecaa1e6
N
4540
4541 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4542 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4543 /* Stripe is busy expanding or
4544 * add failed due to overlap. Flush everything
1da177e4
LT
4545 * and wait a while
4546 */
482c0834 4547 md_wakeup_thread(mddev->thread);
1da177e4
LT
4548 release_stripe(sh);
4549 schedule();
4550 goto retry;
4551 }
4552 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4553 set_bit(STRIPE_HANDLE, &sh->state);
4554 clear_bit(STRIPE_DELAYED, &sh->state);
a852d7b8 4555 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4556 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4557 atomic_inc(&conf->preread_active_stripes);
8811b596 4558 release_stripe_plug(mddev, sh);
1da177e4
LT
4559 } else {
4560 /* cannot get stripe for read-ahead, just give-up */
4561 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4562 finish_wait(&conf->wait_for_overlap, &w);
4563 break;
4564 }
1da177e4 4565 }
7c13edc8 4566
e7836bd6 4567 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 4568 if (remaining == 0) {
1da177e4 4569
16a53ecc 4570 if ( rw == WRITE )
1da177e4 4571 md_write_end(mddev);
6712ecf8 4572
0a82a8d1
LT
4573 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4574 bi, 0);
0e13fe23 4575 bio_endio(bi, 0);
1da177e4 4576 }
1da177e4
LT
4577}
4578
fd01b88c 4579static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4580
fd01b88c 4581static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4582{
52c03291
N
4583 /* reshaping is quite different to recovery/resync so it is
4584 * handled quite separately ... here.
4585 *
4586 * On each call to sync_request, we gather one chunk worth of
4587 * destination stripes and flag them as expanding.
4588 * Then we find all the source stripes and request reads.
4589 * As the reads complete, handle_stripe will copy the data
4590 * into the destination stripe and release that stripe.
4591 */
d1688a6d 4592 struct r5conf *conf = mddev->private;
1da177e4 4593 struct stripe_head *sh;
ccfcc3c1 4594 sector_t first_sector, last_sector;
f416885e
N
4595 int raid_disks = conf->previous_raid_disks;
4596 int data_disks = raid_disks - conf->max_degraded;
4597 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4598 int i;
4599 int dd_idx;
c8f517c4 4600 sector_t writepos, readpos, safepos;
ec32a2bd 4601 sector_t stripe_addr;
7a661381 4602 int reshape_sectors;
ab69ae12 4603 struct list_head stripes;
52c03291 4604
fef9c61f
N
4605 if (sector_nr == 0) {
4606 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4607 if (mddev->reshape_backwards &&
fef9c61f
N
4608 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4609 sector_nr = raid5_size(mddev, 0, 0)
4610 - conf->reshape_progress;
2c810cdd 4611 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4612 conf->reshape_progress > 0)
4613 sector_nr = conf->reshape_progress;
f416885e 4614 sector_div(sector_nr, new_data_disks);
fef9c61f 4615 if (sector_nr) {
8dee7211
N
4616 mddev->curr_resync_completed = sector_nr;
4617 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4618 *skipped = 1;
4619 return sector_nr;
4620 }
52c03291
N
4621 }
4622
7a661381
N
4623 /* We need to process a full chunk at a time.
4624 * If old and new chunk sizes differ, we need to process the
4625 * largest of these
4626 */
664e7c41
AN
4627 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4628 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4629 else
9d8f0363 4630 reshape_sectors = mddev->chunk_sectors;
7a661381 4631
b5254dd5
N
4632 /* We update the metadata at least every 10 seconds, or when
4633 * the data about to be copied would over-write the source of
4634 * the data at the front of the range. i.e. one new_stripe
4635 * along from reshape_progress new_maps to after where
4636 * reshape_safe old_maps to
52c03291 4637 */
fef9c61f 4638 writepos = conf->reshape_progress;
f416885e 4639 sector_div(writepos, new_data_disks);
c8f517c4
N
4640 readpos = conf->reshape_progress;
4641 sector_div(readpos, data_disks);
fef9c61f 4642 safepos = conf->reshape_safe;
f416885e 4643 sector_div(safepos, data_disks);
2c810cdd 4644 if (mddev->reshape_backwards) {
ed37d83e 4645 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4646 readpos += reshape_sectors;
7a661381 4647 safepos += reshape_sectors;
fef9c61f 4648 } else {
7a661381 4649 writepos += reshape_sectors;
ed37d83e
N
4650 readpos -= min_t(sector_t, reshape_sectors, readpos);
4651 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4652 }
52c03291 4653
b5254dd5
N
4654 /* Having calculated the 'writepos' possibly use it
4655 * to set 'stripe_addr' which is where we will write to.
4656 */
4657 if (mddev->reshape_backwards) {
4658 BUG_ON(conf->reshape_progress == 0);
4659 stripe_addr = writepos;
4660 BUG_ON((mddev->dev_sectors &
4661 ~((sector_t)reshape_sectors - 1))
4662 - reshape_sectors - stripe_addr
4663 != sector_nr);
4664 } else {
4665 BUG_ON(writepos != sector_nr + reshape_sectors);
4666 stripe_addr = sector_nr;
4667 }
4668
c8f517c4
N
4669 /* 'writepos' is the most advanced device address we might write.
4670 * 'readpos' is the least advanced device address we might read.
4671 * 'safepos' is the least address recorded in the metadata as having
4672 * been reshaped.
b5254dd5
N
4673 * If there is a min_offset_diff, these are adjusted either by
4674 * increasing the safepos/readpos if diff is negative, or
4675 * increasing writepos if diff is positive.
4676 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4677 * ensure safety in the face of a crash - that must be done by userspace
4678 * making a backup of the data. So in that case there is no particular
4679 * rush to update metadata.
4680 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4681 * update the metadata to advance 'safepos' to match 'readpos' so that
4682 * we can be safe in the event of a crash.
4683 * So we insist on updating metadata if safepos is behind writepos and
4684 * readpos is beyond writepos.
4685 * In any case, update the metadata every 10 seconds.
4686 * Maybe that number should be configurable, but I'm not sure it is
4687 * worth it.... maybe it could be a multiple of safemode_delay???
4688 */
b5254dd5
N
4689 if (conf->min_offset_diff < 0) {
4690 safepos += -conf->min_offset_diff;
4691 readpos += -conf->min_offset_diff;
4692 } else
4693 writepos += conf->min_offset_diff;
4694
2c810cdd 4695 if ((mddev->reshape_backwards
c8f517c4
N
4696 ? (safepos > writepos && readpos < writepos)
4697 : (safepos < writepos && readpos > writepos)) ||
4698 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4699 /* Cannot proceed until we've updated the superblock... */
4700 wait_event(conf->wait_for_overlap,
4701 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4702 mddev->reshape_position = conf->reshape_progress;
75d3da43 4703 mddev->curr_resync_completed = sector_nr;
c8f517c4 4704 conf->reshape_checkpoint = jiffies;
850b2b42 4705 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4706 md_wakeup_thread(mddev->thread);
850b2b42 4707 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4708 kthread_should_stop());
4709 spin_lock_irq(&conf->device_lock);
fef9c61f 4710 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4711 spin_unlock_irq(&conf->device_lock);
4712 wake_up(&conf->wait_for_overlap);
acb180b0 4713 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4714 }
4715
ab69ae12 4716 INIT_LIST_HEAD(&stripes);
7a661381 4717 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4718 int j;
a9f326eb 4719 int skipped_disk = 0;
a8c906ca 4720 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4721 set_bit(STRIPE_EXPANDING, &sh->state);
4722 atomic_inc(&conf->reshape_stripes);
4723 /* If any of this stripe is beyond the end of the old
4724 * array, then we need to zero those blocks
4725 */
4726 for (j=sh->disks; j--;) {
4727 sector_t s;
4728 if (j == sh->pd_idx)
4729 continue;
f416885e 4730 if (conf->level == 6 &&
d0dabf7e 4731 j == sh->qd_idx)
f416885e 4732 continue;
784052ec 4733 s = compute_blocknr(sh, j, 0);
b522adcd 4734 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4735 skipped_disk = 1;
52c03291
N
4736 continue;
4737 }
4738 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4739 set_bit(R5_Expanded, &sh->dev[j].flags);
4740 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4741 }
a9f326eb 4742 if (!skipped_disk) {
52c03291
N
4743 set_bit(STRIPE_EXPAND_READY, &sh->state);
4744 set_bit(STRIPE_HANDLE, &sh->state);
4745 }
ab69ae12 4746 list_add(&sh->lru, &stripes);
52c03291
N
4747 }
4748 spin_lock_irq(&conf->device_lock);
2c810cdd 4749 if (mddev->reshape_backwards)
7a661381 4750 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4751 else
7a661381 4752 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4753 spin_unlock_irq(&conf->device_lock);
4754 /* Ok, those stripe are ready. We can start scheduling
4755 * reads on the source stripes.
4756 * The source stripes are determined by mapping the first and last
4757 * block on the destination stripes.
4758 */
52c03291 4759 first_sector =
ec32a2bd 4760 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4761 1, &dd_idx, NULL);
52c03291 4762 last_sector =
0e6e0271 4763 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4764 * new_data_disks - 1),
911d4ee8 4765 1, &dd_idx, NULL);
58c0fed4
AN
4766 if (last_sector >= mddev->dev_sectors)
4767 last_sector = mddev->dev_sectors - 1;
52c03291 4768 while (first_sector <= last_sector) {
a8c906ca 4769 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4770 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4771 set_bit(STRIPE_HANDLE, &sh->state);
4772 release_stripe(sh);
4773 first_sector += STRIPE_SECTORS;
4774 }
ab69ae12
N
4775 /* Now that the sources are clearly marked, we can release
4776 * the destination stripes
4777 */
4778 while (!list_empty(&stripes)) {
4779 sh = list_entry(stripes.next, struct stripe_head, lru);
4780 list_del_init(&sh->lru);
4781 release_stripe(sh);
4782 }
c6207277
N
4783 /* If this takes us to the resync_max point where we have to pause,
4784 * then we need to write out the superblock.
4785 */
7a661381 4786 sector_nr += reshape_sectors;
c03f6a19
N
4787 if ((sector_nr - mddev->curr_resync_completed) * 2
4788 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4789 /* Cannot proceed until we've updated the superblock... */
4790 wait_event(conf->wait_for_overlap,
4791 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4792 mddev->reshape_position = conf->reshape_progress;
75d3da43 4793 mddev->curr_resync_completed = sector_nr;
c8f517c4 4794 conf->reshape_checkpoint = jiffies;
c6207277
N
4795 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4796 md_wakeup_thread(mddev->thread);
4797 wait_event(mddev->sb_wait,
4798 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4799 || kthread_should_stop());
4800 spin_lock_irq(&conf->device_lock);
fef9c61f 4801 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4802 spin_unlock_irq(&conf->device_lock);
4803 wake_up(&conf->wait_for_overlap);
acb180b0 4804 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4805 }
7a661381 4806 return reshape_sectors;
52c03291
N
4807}
4808
4809/* FIXME go_faster isn't used */
fd01b88c 4810static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4811{
d1688a6d 4812 struct r5conf *conf = mddev->private;
52c03291 4813 struct stripe_head *sh;
58c0fed4 4814 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4815 sector_t sync_blocks;
16a53ecc
N
4816 int still_degraded = 0;
4817 int i;
1da177e4 4818
72626685 4819 if (sector_nr >= max_sector) {
1da177e4 4820 /* just being told to finish up .. nothing much to do */
cea9c228 4821
29269553
N
4822 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4823 end_reshape(conf);
4824 return 0;
4825 }
72626685
N
4826
4827 if (mddev->curr_resync < max_sector) /* aborted */
4828 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4829 &sync_blocks, 1);
16a53ecc 4830 else /* completed sync */
72626685
N
4831 conf->fullsync = 0;
4832 bitmap_close_sync(mddev->bitmap);
4833
1da177e4
LT
4834 return 0;
4835 }
ccfcc3c1 4836
64bd660b
N
4837 /* Allow raid5_quiesce to complete */
4838 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4839
52c03291
N
4840 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4841 return reshape_request(mddev, sector_nr, skipped);
f6705578 4842
c6207277
N
4843 /* No need to check resync_max as we never do more than one
4844 * stripe, and as resync_max will always be on a chunk boundary,
4845 * if the check in md_do_sync didn't fire, there is no chance
4846 * of overstepping resync_max here
4847 */
4848
16a53ecc 4849 /* if there is too many failed drives and we are trying
1da177e4
LT
4850 * to resync, then assert that we are finished, because there is
4851 * nothing we can do.
4852 */
3285edf1 4853 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4854 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4855 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4856 *skipped = 1;
1da177e4
LT
4857 return rv;
4858 }
6f608040 4859 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4860 !conf->fullsync &&
4861 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4862 sync_blocks >= STRIPE_SECTORS) {
72626685
N
4863 /* we can skip this block, and probably more */
4864 sync_blocks /= STRIPE_SECTORS;
4865 *skipped = 1;
4866 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4867 }
1da177e4 4868
b47490c9
N
4869 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4870
a8c906ca 4871 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4872 if (sh == NULL) {
a8c906ca 4873 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4874 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4875 * is trying to get access
1da177e4 4876 */
66c006a5 4877 schedule_timeout_uninterruptible(1);
1da177e4 4878 }
16a53ecc
N
4879 /* Need to check if array will still be degraded after recovery/resync
4880 * We don't need to check the 'failed' flag as when that gets set,
4881 * recovery aborts.
4882 */
f001a70c 4883 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4884 if (conf->disks[i].rdev == NULL)
4885 still_degraded = 1;
4886
4887 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4888
83206d66 4889 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4890
1442577b 4891 handle_stripe(sh);
1da177e4
LT
4892 release_stripe(sh);
4893
4894 return STRIPE_SECTORS;
4895}
4896
d1688a6d 4897static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4898{
4899 /* We may not be able to submit a whole bio at once as there
4900 * may not be enough stripe_heads available.
4901 * We cannot pre-allocate enough stripe_heads as we may need
4902 * more than exist in the cache (if we allow ever large chunks).
4903 * So we do one stripe head at a time and record in
4904 * ->bi_hw_segments how many have been done.
4905 *
4906 * We *know* that this entire raid_bio is in one chunk, so
4907 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4908 */
4909 struct stripe_head *sh;
911d4ee8 4910 int dd_idx;
46031f9a
RBJ
4911 sector_t sector, logical_sector, last_sector;
4912 int scnt = 0;
4913 int remaining;
4914 int handled = 0;
4915
4916 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4917 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4918 0, &dd_idx, NULL);
f73a1c7d 4919 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
4920
4921 for (; logical_sector < last_sector;
387bb173
NB
4922 logical_sector += STRIPE_SECTORS,
4923 sector += STRIPE_SECTORS,
4924 scnt++) {
46031f9a 4925
e7836bd6 4926 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
4927 /* already done this stripe */
4928 continue;
4929
a8c906ca 4930 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4931
4932 if (!sh) {
4933 /* failed to get a stripe - must wait */
e7836bd6 4934 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
4935 conf->retry_read_aligned = raid_bio;
4936 return handled;
4937 }
4938
387bb173
NB
4939 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4940 release_stripe(sh);
e7836bd6 4941 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
4942 conf->retry_read_aligned = raid_bio;
4943 return handled;
4944 }
4945
3f9e7c14 4946 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 4947 handle_stripe(sh);
46031f9a
RBJ
4948 release_stripe(sh);
4949 handled++;
4950 }
e7836bd6 4951 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
4952 if (remaining == 0) {
4953 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4954 raid_bio, 0);
0e13fe23 4955 bio_endio(raid_bio, 0);
0a82a8d1 4956 }
46031f9a
RBJ
4957 if (atomic_dec_and_test(&conf->active_aligned_reads))
4958 wake_up(&conf->wait_for_stripe);
4959 return handled;
4960}
4961
bfc90cb0
SL
4962static int handle_active_stripes(struct r5conf *conf, int group,
4963 struct r5worker *worker)
46a06401
SL
4964{
4965 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4966 int i, batch_size = 0;
4967
4968 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 4969 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
4970 batch[batch_size++] = sh;
4971
4972 if (batch_size == 0)
4973 return batch_size;
4974 spin_unlock_irq(&conf->device_lock);
4975
4976 for (i = 0; i < batch_size; i++)
4977 handle_stripe(batch[i]);
4978
4979 cond_resched();
4980
4981 spin_lock_irq(&conf->device_lock);
4982 for (i = 0; i < batch_size; i++)
4983 __release_stripe(conf, batch[i]);
4984 return batch_size;
4985}
46031f9a 4986
851c30c9
SL
4987static void raid5_do_work(struct work_struct *work)
4988{
4989 struct r5worker *worker = container_of(work, struct r5worker, work);
4990 struct r5worker_group *group = worker->group;
4991 struct r5conf *conf = group->conf;
4992 int group_id = group - conf->worker_groups;
4993 int handled;
4994 struct blk_plug plug;
4995
4996 pr_debug("+++ raid5worker active\n");
4997
4998 blk_start_plug(&plug);
4999 handled = 0;
5000 spin_lock_irq(&conf->device_lock);
5001 while (1) {
5002 int batch_size, released;
5003
5004 released = release_stripe_list(conf);
5005
bfc90cb0
SL
5006 batch_size = handle_active_stripes(conf, group_id, worker);
5007 worker->working = false;
851c30c9
SL
5008 if (!batch_size && !released)
5009 break;
5010 handled += batch_size;
5011 }
5012 pr_debug("%d stripes handled\n", handled);
5013
5014 spin_unlock_irq(&conf->device_lock);
5015 blk_finish_plug(&plug);
5016
5017 pr_debug("--- raid5worker inactive\n");
5018}
5019
1da177e4
LT
5020/*
5021 * This is our raid5 kernel thread.
5022 *
5023 * We scan the hash table for stripes which can be handled now.
5024 * During the scan, completed stripes are saved for us by the interrupt
5025 * handler, so that they will not have to wait for our next wakeup.
5026 */
4ed8731d 5027static void raid5d(struct md_thread *thread)
1da177e4 5028{
4ed8731d 5029 struct mddev *mddev = thread->mddev;
d1688a6d 5030 struct r5conf *conf = mddev->private;
1da177e4 5031 int handled;
e1dfa0a2 5032 struct blk_plug plug;
1da177e4 5033
45b4233c 5034 pr_debug("+++ raid5d active\n");
1da177e4
LT
5035
5036 md_check_recovery(mddev);
1da177e4 5037
e1dfa0a2 5038 blk_start_plug(&plug);
1da177e4
LT
5039 handled = 0;
5040 spin_lock_irq(&conf->device_lock);
5041 while (1) {
46031f9a 5042 struct bio *bio;
773ca82f
SL
5043 int batch_size, released;
5044
5045 released = release_stripe_list(conf);
1da177e4 5046
0021b7bc 5047 if (
7c13edc8
N
5048 !list_empty(&conf->bitmap_list)) {
5049 /* Now is a good time to flush some bitmap updates */
5050 conf->seq_flush++;
700e432d 5051 spin_unlock_irq(&conf->device_lock);
72626685 5052 bitmap_unplug(mddev->bitmap);
700e432d 5053 spin_lock_irq(&conf->device_lock);
7c13edc8 5054 conf->seq_write = conf->seq_flush;
72626685
N
5055 activate_bit_delay(conf);
5056 }
0021b7bc 5057 raid5_activate_delayed(conf);
72626685 5058
46031f9a
RBJ
5059 while ((bio = remove_bio_from_retry(conf))) {
5060 int ok;
5061 spin_unlock_irq(&conf->device_lock);
5062 ok = retry_aligned_read(conf, bio);
5063 spin_lock_irq(&conf->device_lock);
5064 if (!ok)
5065 break;
5066 handled++;
5067 }
5068
bfc90cb0 5069 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL);
773ca82f 5070 if (!batch_size && !released)
1da177e4 5071 break;
46a06401 5072 handled += batch_size;
1da177e4 5073
46a06401
SL
5074 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5075 spin_unlock_irq(&conf->device_lock);
de393cde 5076 md_check_recovery(mddev);
46a06401
SL
5077 spin_lock_irq(&conf->device_lock);
5078 }
1da177e4 5079 }
45b4233c 5080 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5081
5082 spin_unlock_irq(&conf->device_lock);
5083
c9f21aaf 5084 async_tx_issue_pending_all();
e1dfa0a2 5085 blk_finish_plug(&plug);
1da177e4 5086
45b4233c 5087 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5088}
5089
3f294f4f 5090static ssize_t
fd01b88c 5091raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5092{
d1688a6d 5093 struct r5conf *conf = mddev->private;
96de1e66
N
5094 if (conf)
5095 return sprintf(page, "%d\n", conf->max_nr_stripes);
5096 else
5097 return 0;
3f294f4f
N
5098}
5099
c41d4ac4 5100int
fd01b88c 5101raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5102{
d1688a6d 5103 struct r5conf *conf = mddev->private;
b5470dc5
DW
5104 int err;
5105
c41d4ac4 5106 if (size <= 16 || size > 32768)
3f294f4f 5107 return -EINVAL;
c41d4ac4 5108 while (size < conf->max_nr_stripes) {
3f294f4f
N
5109 if (drop_one_stripe(conf))
5110 conf->max_nr_stripes--;
5111 else
5112 break;
5113 }
b5470dc5
DW
5114 err = md_allow_write(mddev);
5115 if (err)
5116 return err;
c41d4ac4 5117 while (size > conf->max_nr_stripes) {
3f294f4f
N
5118 if (grow_one_stripe(conf))
5119 conf->max_nr_stripes++;
5120 else break;
5121 }
c41d4ac4
N
5122 return 0;
5123}
5124EXPORT_SYMBOL(raid5_set_cache_size);
5125
5126static ssize_t
fd01b88c 5127raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5128{
d1688a6d 5129 struct r5conf *conf = mddev->private;
c41d4ac4
N
5130 unsigned long new;
5131 int err;
5132
5133 if (len >= PAGE_SIZE)
5134 return -EINVAL;
5135 if (!conf)
5136 return -ENODEV;
5137
b29bebd6 5138 if (kstrtoul(page, 10, &new))
c41d4ac4
N
5139 return -EINVAL;
5140 err = raid5_set_cache_size(mddev, new);
5141 if (err)
5142 return err;
3f294f4f
N
5143 return len;
5144}
007583c9 5145
96de1e66
N
5146static struct md_sysfs_entry
5147raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5148 raid5_show_stripe_cache_size,
5149 raid5_store_stripe_cache_size);
3f294f4f 5150
8b3e6cdc 5151static ssize_t
fd01b88c 5152raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5153{
d1688a6d 5154 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
5155 if (conf)
5156 return sprintf(page, "%d\n", conf->bypass_threshold);
5157 else
5158 return 0;
5159}
5160
5161static ssize_t
fd01b88c 5162raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5163{
d1688a6d 5164 struct r5conf *conf = mddev->private;
4ef197d8 5165 unsigned long new;
8b3e6cdc
DW
5166 if (len >= PAGE_SIZE)
5167 return -EINVAL;
5168 if (!conf)
5169 return -ENODEV;
5170
b29bebd6 5171 if (kstrtoul(page, 10, &new))
8b3e6cdc 5172 return -EINVAL;
4ef197d8 5173 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
5174 return -EINVAL;
5175 conf->bypass_threshold = new;
5176 return len;
5177}
5178
5179static struct md_sysfs_entry
5180raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5181 S_IRUGO | S_IWUSR,
5182 raid5_show_preread_threshold,
5183 raid5_store_preread_threshold);
5184
3f294f4f 5185static ssize_t
fd01b88c 5186stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 5187{
d1688a6d 5188 struct r5conf *conf = mddev->private;
96de1e66
N
5189 if (conf)
5190 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5191 else
5192 return 0;
3f294f4f
N
5193}
5194
96de1e66
N
5195static struct md_sysfs_entry
5196raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 5197
b721420e
SL
5198static ssize_t
5199raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5200{
5201 struct r5conf *conf = mddev->private;
5202 if (conf)
5203 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5204 else
5205 return 0;
5206}
5207
5208static int alloc_thread_groups(struct r5conf *conf, int cnt);
5209static ssize_t
5210raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5211{
5212 struct r5conf *conf = mddev->private;
5213 unsigned long new;
5214 int err;
5215 struct r5worker_group *old_groups;
5216 int old_group_cnt;
5217
5218 if (len >= PAGE_SIZE)
5219 return -EINVAL;
5220 if (!conf)
5221 return -ENODEV;
5222
5223 if (kstrtoul(page, 10, &new))
5224 return -EINVAL;
5225
5226 if (new == conf->worker_cnt_per_group)
5227 return len;
5228
5229 mddev_suspend(mddev);
5230
5231 old_groups = conf->worker_groups;
5232 old_group_cnt = conf->worker_cnt_per_group;
5233
5234 conf->worker_groups = NULL;
5235 err = alloc_thread_groups(conf, new);
5236 if (err) {
5237 conf->worker_groups = old_groups;
5238 conf->worker_cnt_per_group = old_group_cnt;
5239 } else {
5240 if (old_groups)
5241 kfree(old_groups[0].workers);
5242 kfree(old_groups);
5243 }
5244
5245 mddev_resume(mddev);
5246
5247 if (err)
5248 return err;
5249 return len;
5250}
5251
5252static struct md_sysfs_entry
5253raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5254 raid5_show_group_thread_cnt,
5255 raid5_store_group_thread_cnt);
5256
007583c9 5257static struct attribute *raid5_attrs[] = {
3f294f4f
N
5258 &raid5_stripecache_size.attr,
5259 &raid5_stripecache_active.attr,
8b3e6cdc 5260 &raid5_preread_bypass_threshold.attr,
b721420e 5261 &raid5_group_thread_cnt.attr,
3f294f4f
N
5262 NULL,
5263};
007583c9
N
5264static struct attribute_group raid5_attrs_group = {
5265 .name = NULL,
5266 .attrs = raid5_attrs,
3f294f4f
N
5267};
5268
851c30c9
SL
5269static int alloc_thread_groups(struct r5conf *conf, int cnt)
5270{
5271 int i, j;
5272 ssize_t size;
5273 struct r5worker *workers;
5274
5275 conf->worker_cnt_per_group = cnt;
5276 if (cnt == 0) {
5277 conf->worker_groups = NULL;
5278 return 0;
5279 }
5280 conf->group_cnt = num_possible_nodes();
5281 size = sizeof(struct r5worker) * cnt;
5282 workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5283 conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5284 conf->group_cnt, GFP_NOIO);
5285 if (!conf->worker_groups || !workers) {
5286 kfree(workers);
5287 kfree(conf->worker_groups);
5288 conf->worker_groups = NULL;
5289 return -ENOMEM;
5290 }
5291
5292 for (i = 0; i < conf->group_cnt; i++) {
5293 struct r5worker_group *group;
5294
5295 group = &conf->worker_groups[i];
5296 INIT_LIST_HEAD(&group->handle_list);
5297 group->conf = conf;
5298 group->workers = workers + i * cnt;
5299
5300 for (j = 0; j < cnt; j++) {
5301 group->workers[j].group = group;
5302 INIT_WORK(&group->workers[j].work, raid5_do_work);
5303 }
5304 }
5305
5306 return 0;
5307}
5308
5309static void free_thread_groups(struct r5conf *conf)
5310{
5311 if (conf->worker_groups)
5312 kfree(conf->worker_groups[0].workers);
5313 kfree(conf->worker_groups);
5314 conf->worker_groups = NULL;
5315}
5316
80c3a6ce 5317static sector_t
fd01b88c 5318raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 5319{
d1688a6d 5320 struct r5conf *conf = mddev->private;
80c3a6ce
DW
5321
5322 if (!sectors)
5323 sectors = mddev->dev_sectors;
5e5e3e78 5324 if (!raid_disks)
7ec05478 5325 /* size is defined by the smallest of previous and new size */
5e5e3e78 5326 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 5327
9d8f0363 5328 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 5329 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
5330 return sectors * (raid_disks - conf->max_degraded);
5331}
5332
d1688a6d 5333static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
5334{
5335 struct raid5_percpu *percpu;
5336 unsigned long cpu;
5337
5338 if (!conf->percpu)
5339 return;
5340
5341 get_online_cpus();
5342 for_each_possible_cpu(cpu) {
5343 percpu = per_cpu_ptr(conf->percpu, cpu);
5344 safe_put_page(percpu->spare_page);
d6f38f31 5345 kfree(percpu->scribble);
36d1c647
DW
5346 }
5347#ifdef CONFIG_HOTPLUG_CPU
5348 unregister_cpu_notifier(&conf->cpu_notify);
5349#endif
5350 put_online_cpus();
5351
5352 free_percpu(conf->percpu);
5353}
5354
d1688a6d 5355static void free_conf(struct r5conf *conf)
95fc17aa 5356{
851c30c9 5357 free_thread_groups(conf);
95fc17aa 5358 shrink_stripes(conf);
36d1c647 5359 raid5_free_percpu(conf);
95fc17aa
DW
5360 kfree(conf->disks);
5361 kfree(conf->stripe_hashtbl);
5362 kfree(conf);
5363}
5364
36d1c647
DW
5365#ifdef CONFIG_HOTPLUG_CPU
5366static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5367 void *hcpu)
5368{
d1688a6d 5369 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
5370 long cpu = (long)hcpu;
5371 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5372
5373 switch (action) {
5374 case CPU_UP_PREPARE:
5375 case CPU_UP_PREPARE_FROZEN:
d6f38f31 5376 if (conf->level == 6 && !percpu->spare_page)
36d1c647 5377 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
5378 if (!percpu->scribble)
5379 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5380
5381 if (!percpu->scribble ||
5382 (conf->level == 6 && !percpu->spare_page)) {
5383 safe_put_page(percpu->spare_page);
5384 kfree(percpu->scribble);
36d1c647
DW
5385 pr_err("%s: failed memory allocation for cpu%ld\n",
5386 __func__, cpu);
55af6bb5 5387 return notifier_from_errno(-ENOMEM);
36d1c647
DW
5388 }
5389 break;
5390 case CPU_DEAD:
5391 case CPU_DEAD_FROZEN:
5392 safe_put_page(percpu->spare_page);
d6f38f31 5393 kfree(percpu->scribble);
36d1c647 5394 percpu->spare_page = NULL;
d6f38f31 5395 percpu->scribble = NULL;
36d1c647
DW
5396 break;
5397 default:
5398 break;
5399 }
5400 return NOTIFY_OK;
5401}
5402#endif
5403
d1688a6d 5404static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
5405{
5406 unsigned long cpu;
5407 struct page *spare_page;
a29d8b8e 5408 struct raid5_percpu __percpu *allcpus;
d6f38f31 5409 void *scribble;
36d1c647
DW
5410 int err;
5411
36d1c647
DW
5412 allcpus = alloc_percpu(struct raid5_percpu);
5413 if (!allcpus)
5414 return -ENOMEM;
5415 conf->percpu = allcpus;
5416
5417 get_online_cpus();
5418 err = 0;
5419 for_each_present_cpu(cpu) {
d6f38f31
DW
5420 if (conf->level == 6) {
5421 spare_page = alloc_page(GFP_KERNEL);
5422 if (!spare_page) {
5423 err = -ENOMEM;
5424 break;
5425 }
5426 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5427 }
5e5e3e78 5428 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 5429 if (!scribble) {
36d1c647
DW
5430 err = -ENOMEM;
5431 break;
5432 }
d6f38f31 5433 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
5434 }
5435#ifdef CONFIG_HOTPLUG_CPU
5436 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5437 conf->cpu_notify.priority = 0;
5438 if (err == 0)
5439 err = register_cpu_notifier(&conf->cpu_notify);
5440#endif
5441 put_online_cpus();
5442
5443 return err;
5444}
5445
d1688a6d 5446static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 5447{
d1688a6d 5448 struct r5conf *conf;
5e5e3e78 5449 int raid_disk, memory, max_disks;
3cb03002 5450 struct md_rdev *rdev;
1da177e4 5451 struct disk_info *disk;
0232605d 5452 char pers_name[6];
1da177e4 5453
91adb564
N
5454 if (mddev->new_level != 5
5455 && mddev->new_level != 4
5456 && mddev->new_level != 6) {
0c55e022 5457 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
5458 mdname(mddev), mddev->new_level);
5459 return ERR_PTR(-EIO);
1da177e4 5460 }
91adb564
N
5461 if ((mddev->new_level == 5
5462 && !algorithm_valid_raid5(mddev->new_layout)) ||
5463 (mddev->new_level == 6
5464 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 5465 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
5466 mdname(mddev), mddev->new_layout);
5467 return ERR_PTR(-EIO);
99c0fb5f 5468 }
91adb564 5469 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 5470 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
5471 mdname(mddev), mddev->raid_disks);
5472 return ERR_PTR(-EINVAL);
4bbf3771
N
5473 }
5474
664e7c41
AN
5475 if (!mddev->new_chunk_sectors ||
5476 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5477 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
5478 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5479 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 5480 return ERR_PTR(-EINVAL);
f6705578
N
5481 }
5482
d1688a6d 5483 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 5484 if (conf == NULL)
1da177e4 5485 goto abort;
851c30c9
SL
5486 /* Don't enable multi-threading by default*/
5487 if (alloc_thread_groups(conf, 0))
5488 goto abort;
f5efd45a 5489 spin_lock_init(&conf->device_lock);
c46501b2 5490 seqcount_init(&conf->gen_lock);
f5efd45a
DW
5491 init_waitqueue_head(&conf->wait_for_stripe);
5492 init_waitqueue_head(&conf->wait_for_overlap);
5493 INIT_LIST_HEAD(&conf->handle_list);
5494 INIT_LIST_HEAD(&conf->hold_list);
5495 INIT_LIST_HEAD(&conf->delayed_list);
5496 INIT_LIST_HEAD(&conf->bitmap_list);
5497 INIT_LIST_HEAD(&conf->inactive_list);
773ca82f 5498 init_llist_head(&conf->released_stripes);
f5efd45a
DW
5499 atomic_set(&conf->active_stripes, 0);
5500 atomic_set(&conf->preread_active_stripes, 0);
5501 atomic_set(&conf->active_aligned_reads, 0);
5502 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 5503 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
5504
5505 conf->raid_disks = mddev->raid_disks;
5506 if (mddev->reshape_position == MaxSector)
5507 conf->previous_raid_disks = mddev->raid_disks;
5508 else
f6705578 5509 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
5510 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5511 conf->scribble_len = scribble_len(max_disks);
f6705578 5512
5e5e3e78 5513 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
5514 GFP_KERNEL);
5515 if (!conf->disks)
5516 goto abort;
9ffae0cf 5517
1da177e4
LT
5518 conf->mddev = mddev;
5519
fccddba0 5520 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 5521 goto abort;
1da177e4 5522
36d1c647
DW
5523 conf->level = mddev->new_level;
5524 if (raid5_alloc_percpu(conf) != 0)
5525 goto abort;
5526
0c55e022 5527 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 5528
dafb20fa 5529 rdev_for_each(rdev, mddev) {
1da177e4 5530 raid_disk = rdev->raid_disk;
5e5e3e78 5531 if (raid_disk >= max_disks
1da177e4
LT
5532 || raid_disk < 0)
5533 continue;
5534 disk = conf->disks + raid_disk;
5535
17045f52
N
5536 if (test_bit(Replacement, &rdev->flags)) {
5537 if (disk->replacement)
5538 goto abort;
5539 disk->replacement = rdev;
5540 } else {
5541 if (disk->rdev)
5542 goto abort;
5543 disk->rdev = rdev;
5544 }
1da177e4 5545
b2d444d7 5546 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 5547 char b[BDEVNAME_SIZE];
0c55e022
N
5548 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5549 " disk %d\n",
5550 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 5551 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
5552 /* Cannot rely on bitmap to complete recovery */
5553 conf->fullsync = 1;
1da177e4
LT
5554 }
5555
09c9e5fa 5556 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 5557 conf->level = mddev->new_level;
16a53ecc
N
5558 if (conf->level == 6)
5559 conf->max_degraded = 2;
5560 else
5561 conf->max_degraded = 1;
91adb564 5562 conf->algorithm = mddev->new_layout;
1da177e4 5563 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 5564 conf->reshape_progress = mddev->reshape_position;
e183eaed 5565 if (conf->reshape_progress != MaxSector) {
09c9e5fa 5566 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
5567 conf->prev_algo = mddev->layout;
5568 }
1da177e4 5569
91adb564 5570 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 5571 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
5572 if (grow_stripes(conf, conf->max_nr_stripes)) {
5573 printk(KERN_ERR
0c55e022
N
5574 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5575 mdname(mddev), memory);
91adb564
N
5576 goto abort;
5577 } else
0c55e022
N
5578 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5579 mdname(mddev), memory);
1da177e4 5580
0232605d
N
5581 sprintf(pers_name, "raid%d", mddev->new_level);
5582 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
5583 if (!conf->thread) {
5584 printk(KERN_ERR
0c55e022 5585 "md/raid:%s: couldn't allocate thread.\n",
91adb564 5586 mdname(mddev));
16a53ecc
N
5587 goto abort;
5588 }
91adb564
N
5589
5590 return conf;
5591
5592 abort:
5593 if (conf) {
95fc17aa 5594 free_conf(conf);
91adb564
N
5595 return ERR_PTR(-EIO);
5596 } else
5597 return ERR_PTR(-ENOMEM);
5598}
5599
c148ffdc
N
5600
5601static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5602{
5603 switch (algo) {
5604 case ALGORITHM_PARITY_0:
5605 if (raid_disk < max_degraded)
5606 return 1;
5607 break;
5608 case ALGORITHM_PARITY_N:
5609 if (raid_disk >= raid_disks - max_degraded)
5610 return 1;
5611 break;
5612 case ALGORITHM_PARITY_0_6:
5613 if (raid_disk == 0 ||
5614 raid_disk == raid_disks - 1)
5615 return 1;
5616 break;
5617 case ALGORITHM_LEFT_ASYMMETRIC_6:
5618 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5619 case ALGORITHM_LEFT_SYMMETRIC_6:
5620 case ALGORITHM_RIGHT_SYMMETRIC_6:
5621 if (raid_disk == raid_disks - 1)
5622 return 1;
5623 }
5624 return 0;
5625}
5626
fd01b88c 5627static int run(struct mddev *mddev)
91adb564 5628{
d1688a6d 5629 struct r5conf *conf;
9f7c2220 5630 int working_disks = 0;
c148ffdc 5631 int dirty_parity_disks = 0;
3cb03002 5632 struct md_rdev *rdev;
c148ffdc 5633 sector_t reshape_offset = 0;
17045f52 5634 int i;
b5254dd5
N
5635 long long min_offset_diff = 0;
5636 int first = 1;
91adb564 5637
8c6ac868 5638 if (mddev->recovery_cp != MaxSector)
0c55e022 5639 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5640 " -- starting background reconstruction\n",
5641 mdname(mddev));
b5254dd5
N
5642
5643 rdev_for_each(rdev, mddev) {
5644 long long diff;
5645 if (rdev->raid_disk < 0)
5646 continue;
5647 diff = (rdev->new_data_offset - rdev->data_offset);
5648 if (first) {
5649 min_offset_diff = diff;
5650 first = 0;
5651 } else if (mddev->reshape_backwards &&
5652 diff < min_offset_diff)
5653 min_offset_diff = diff;
5654 else if (!mddev->reshape_backwards &&
5655 diff > min_offset_diff)
5656 min_offset_diff = diff;
5657 }
5658
91adb564
N
5659 if (mddev->reshape_position != MaxSector) {
5660 /* Check that we can continue the reshape.
b5254dd5
N
5661 * Difficulties arise if the stripe we would write to
5662 * next is at or after the stripe we would read from next.
5663 * For a reshape that changes the number of devices, this
5664 * is only possible for a very short time, and mdadm makes
5665 * sure that time appears to have past before assembling
5666 * the array. So we fail if that time hasn't passed.
5667 * For a reshape that keeps the number of devices the same
5668 * mdadm must be monitoring the reshape can keeping the
5669 * critical areas read-only and backed up. It will start
5670 * the array in read-only mode, so we check for that.
91adb564
N
5671 */
5672 sector_t here_new, here_old;
5673 int old_disks;
18b00334 5674 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5675
88ce4930 5676 if (mddev->new_level != mddev->level) {
0c55e022 5677 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5678 "required - aborting.\n",
5679 mdname(mddev));
5680 return -EINVAL;
5681 }
91adb564
N
5682 old_disks = mddev->raid_disks - mddev->delta_disks;
5683 /* reshape_position must be on a new-stripe boundary, and one
5684 * further up in new geometry must map after here in old
5685 * geometry.
5686 */
5687 here_new = mddev->reshape_position;
664e7c41 5688 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5689 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5690 printk(KERN_ERR "md/raid:%s: reshape_position not "
5691 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5692 return -EINVAL;
5693 }
c148ffdc 5694 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5695 /* here_new is the stripe we will write to */
5696 here_old = mddev->reshape_position;
9d8f0363 5697 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5698 (old_disks-max_degraded));
5699 /* here_old is the first stripe that we might need to read
5700 * from */
67ac6011 5701 if (mddev->delta_disks == 0) {
b5254dd5
N
5702 if ((here_new * mddev->new_chunk_sectors !=
5703 here_old * mddev->chunk_sectors)) {
5704 printk(KERN_ERR "md/raid:%s: reshape position is"
5705 " confused - aborting\n", mdname(mddev));
5706 return -EINVAL;
5707 }
67ac6011 5708 /* We cannot be sure it is safe to start an in-place
b5254dd5 5709 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5710 * and taking constant backups.
5711 * mdadm always starts a situation like this in
5712 * readonly mode so it can take control before
5713 * allowing any writes. So just check for that.
5714 */
b5254dd5
N
5715 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5716 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5717 /* not really in-place - so OK */;
5718 else if (mddev->ro == 0) {
5719 printk(KERN_ERR "md/raid:%s: in-place reshape "
5720 "must be started in read-only mode "
5721 "- aborting\n",
0c55e022 5722 mdname(mddev));
67ac6011
N
5723 return -EINVAL;
5724 }
2c810cdd 5725 } else if (mddev->reshape_backwards
b5254dd5 5726 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5727 here_old * mddev->chunk_sectors)
5728 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5729 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5730 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5731 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5732 "auto-recovery - aborting.\n",
5733 mdname(mddev));
91adb564
N
5734 return -EINVAL;
5735 }
0c55e022
N
5736 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5737 mdname(mddev));
91adb564
N
5738 /* OK, we should be able to continue; */
5739 } else {
5740 BUG_ON(mddev->level != mddev->new_level);
5741 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5742 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5743 BUG_ON(mddev->delta_disks != 0);
1da177e4 5744 }
91adb564 5745
245f46c2
N
5746 if (mddev->private == NULL)
5747 conf = setup_conf(mddev);
5748 else
5749 conf = mddev->private;
5750
91adb564
N
5751 if (IS_ERR(conf))
5752 return PTR_ERR(conf);
5753
b5254dd5 5754 conf->min_offset_diff = min_offset_diff;
91adb564
N
5755 mddev->thread = conf->thread;
5756 conf->thread = NULL;
5757 mddev->private = conf;
5758
17045f52
N
5759 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5760 i++) {
5761 rdev = conf->disks[i].rdev;
5762 if (!rdev && conf->disks[i].replacement) {
5763 /* The replacement is all we have yet */
5764 rdev = conf->disks[i].replacement;
5765 conf->disks[i].replacement = NULL;
5766 clear_bit(Replacement, &rdev->flags);
5767 conf->disks[i].rdev = rdev;
5768 }
5769 if (!rdev)
c148ffdc 5770 continue;
17045f52
N
5771 if (conf->disks[i].replacement &&
5772 conf->reshape_progress != MaxSector) {
5773 /* replacements and reshape simply do not mix. */
5774 printk(KERN_ERR "md: cannot handle concurrent "
5775 "replacement and reshape.\n");
5776 goto abort;
5777 }
2f115882 5778 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5779 working_disks++;
2f115882
N
5780 continue;
5781 }
c148ffdc
N
5782 /* This disc is not fully in-sync. However if it
5783 * just stored parity (beyond the recovery_offset),
5784 * when we don't need to be concerned about the
5785 * array being dirty.
5786 * When reshape goes 'backwards', we never have
5787 * partially completed devices, so we only need
5788 * to worry about reshape going forwards.
5789 */
5790 /* Hack because v0.91 doesn't store recovery_offset properly. */
5791 if (mddev->major_version == 0 &&
5792 mddev->minor_version > 90)
5793 rdev->recovery_offset = reshape_offset;
5026d7a9 5794
c148ffdc
N
5795 if (rdev->recovery_offset < reshape_offset) {
5796 /* We need to check old and new layout */
5797 if (!only_parity(rdev->raid_disk,
5798 conf->algorithm,
5799 conf->raid_disks,
5800 conf->max_degraded))
5801 continue;
5802 }
5803 if (!only_parity(rdev->raid_disk,
5804 conf->prev_algo,
5805 conf->previous_raid_disks,
5806 conf->max_degraded))
5807 continue;
5808 dirty_parity_disks++;
5809 }
91adb564 5810
17045f52
N
5811 /*
5812 * 0 for a fully functional array, 1 or 2 for a degraded array.
5813 */
908f4fbd 5814 mddev->degraded = calc_degraded(conf);
91adb564 5815
674806d6 5816 if (has_failed(conf)) {
0c55e022 5817 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5818 " (%d/%d failed)\n",
02c2de8c 5819 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5820 goto abort;
5821 }
5822
91adb564 5823 /* device size must be a multiple of chunk size */
9d8f0363 5824 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5825 mddev->resync_max_sectors = mddev->dev_sectors;
5826
c148ffdc 5827 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5828 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5829 if (mddev->ok_start_degraded)
5830 printk(KERN_WARNING
0c55e022
N
5831 "md/raid:%s: starting dirty degraded array"
5832 " - data corruption possible.\n",
6ff8d8ec
N
5833 mdname(mddev));
5834 else {
5835 printk(KERN_ERR
0c55e022 5836 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5837 mdname(mddev));
5838 goto abort;
5839 }
1da177e4
LT
5840 }
5841
1da177e4 5842 if (mddev->degraded == 0)
0c55e022
N
5843 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5844 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5845 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5846 mddev->new_layout);
1da177e4 5847 else
0c55e022
N
5848 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5849 " out of %d devices, algorithm %d\n",
5850 mdname(mddev), conf->level,
5851 mddev->raid_disks - mddev->degraded,
5852 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5853
5854 print_raid5_conf(conf);
5855
fef9c61f 5856 if (conf->reshape_progress != MaxSector) {
fef9c61f 5857 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5858 atomic_set(&conf->reshape_stripes, 0);
5859 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5860 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5861 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5862 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5863 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5864 "reshape");
f6705578
N
5865 }
5866
1da177e4
LT
5867
5868 /* Ok, everything is just fine now */
a64c876f
N
5869 if (mddev->to_remove == &raid5_attrs_group)
5870 mddev->to_remove = NULL;
00bcb4ac
N
5871 else if (mddev->kobj.sd &&
5872 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5873 printk(KERN_WARNING
4a5add49 5874 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5875 mdname(mddev));
4a5add49 5876 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5877
4a5add49 5878 if (mddev->queue) {
9f7c2220 5879 int chunk_size;
620125f2 5880 bool discard_supported = true;
4a5add49
N
5881 /* read-ahead size must cover two whole stripes, which
5882 * is 2 * (datadisks) * chunksize where 'n' is the
5883 * number of raid devices
5884 */
5885 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5886 int stripe = data_disks *
5887 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5888 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5889 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5890
4a5add49 5891 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5892
11d8a6e3
N
5893 mddev->queue->backing_dev_info.congested_data = mddev;
5894 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5895
9f7c2220
N
5896 chunk_size = mddev->chunk_sectors << 9;
5897 blk_queue_io_min(mddev->queue, chunk_size);
5898 blk_queue_io_opt(mddev->queue, chunk_size *
5899 (conf->raid_disks - conf->max_degraded));
620125f2
SL
5900 /*
5901 * We can only discard a whole stripe. It doesn't make sense to
5902 * discard data disk but write parity disk
5903 */
5904 stripe = stripe * PAGE_SIZE;
4ac6875e
N
5905 /* Round up to power of 2, as discard handling
5906 * currently assumes that */
5907 while ((stripe-1) & stripe)
5908 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
5909 mddev->queue->limits.discard_alignment = stripe;
5910 mddev->queue->limits.discard_granularity = stripe;
5911 /*
5912 * unaligned part of discard request will be ignored, so can't
5913 * guarantee discard_zerors_data
5914 */
5915 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 5916
5026d7a9
PA
5917 blk_queue_max_write_same_sectors(mddev->queue, 0);
5918
05616be5 5919 rdev_for_each(rdev, mddev) {
9f7c2220
N
5920 disk_stack_limits(mddev->gendisk, rdev->bdev,
5921 rdev->data_offset << 9);
05616be5
N
5922 disk_stack_limits(mddev->gendisk, rdev->bdev,
5923 rdev->new_data_offset << 9);
620125f2
SL
5924 /*
5925 * discard_zeroes_data is required, otherwise data
5926 * could be lost. Consider a scenario: discard a stripe
5927 * (the stripe could be inconsistent if
5928 * discard_zeroes_data is 0); write one disk of the
5929 * stripe (the stripe could be inconsistent again
5930 * depending on which disks are used to calculate
5931 * parity); the disk is broken; The stripe data of this
5932 * disk is lost.
5933 */
5934 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5935 !bdev_get_queue(rdev->bdev)->
5936 limits.discard_zeroes_data)
5937 discard_supported = false;
05616be5 5938 }
620125f2
SL
5939
5940 if (discard_supported &&
5941 mddev->queue->limits.max_discard_sectors >= stripe &&
5942 mddev->queue->limits.discard_granularity >= stripe)
5943 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5944 mddev->queue);
5945 else
5946 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5947 mddev->queue);
9f7c2220 5948 }
23032a0e 5949
1da177e4
LT
5950 return 0;
5951abort:
01f96c0a 5952 md_unregister_thread(&mddev->thread);
e4f869d9
N
5953 print_raid5_conf(conf);
5954 free_conf(conf);
1da177e4 5955 mddev->private = NULL;
0c55e022 5956 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5957 return -EIO;
5958}
5959
fd01b88c 5960static int stop(struct mddev *mddev)
1da177e4 5961{
d1688a6d 5962 struct r5conf *conf = mddev->private;
1da177e4 5963
01f96c0a 5964 md_unregister_thread(&mddev->thread);
11d8a6e3
N
5965 if (mddev->queue)
5966 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5967 free_conf(conf);
a64c876f
N
5968 mddev->private = NULL;
5969 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5970 return 0;
5971}
5972
fd01b88c 5973static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 5974{
d1688a6d 5975 struct r5conf *conf = mddev->private;
1da177e4
LT
5976 int i;
5977
9d8f0363
AN
5978 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5979 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5980 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5981 for (i = 0; i < conf->raid_disks; i++)
5982 seq_printf (seq, "%s",
5983 conf->disks[i].rdev &&
b2d444d7 5984 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5985 seq_printf (seq, "]");
1da177e4
LT
5986}
5987
d1688a6d 5988static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
5989{
5990 int i;
5991 struct disk_info *tmp;
5992
0c55e022 5993 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5994 if (!conf) {
5995 printk("(conf==NULL)\n");
5996 return;
5997 }
0c55e022
N
5998 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5999 conf->raid_disks,
6000 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6001
6002 for (i = 0; i < conf->raid_disks; i++) {
6003 char b[BDEVNAME_SIZE];
6004 tmp = conf->disks + i;
6005 if (tmp->rdev)
0c55e022
N
6006 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6007 i, !test_bit(Faulty, &tmp->rdev->flags),
6008 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6009 }
6010}
6011
fd01b88c 6012static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6013{
6014 int i;
d1688a6d 6015 struct r5conf *conf = mddev->private;
1da177e4 6016 struct disk_info *tmp;
6b965620
N
6017 int count = 0;
6018 unsigned long flags;
1da177e4
LT
6019
6020 for (i = 0; i < conf->raid_disks; i++) {
6021 tmp = conf->disks + i;
dd054fce
N
6022 if (tmp->replacement
6023 && tmp->replacement->recovery_offset == MaxSector
6024 && !test_bit(Faulty, &tmp->replacement->flags)
6025 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6026 /* Replacement has just become active. */
6027 if (!tmp->rdev
6028 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6029 count++;
6030 if (tmp->rdev) {
6031 /* Replaced device not technically faulty,
6032 * but we need to be sure it gets removed
6033 * and never re-added.
6034 */
6035 set_bit(Faulty, &tmp->rdev->flags);
6036 sysfs_notify_dirent_safe(
6037 tmp->rdev->sysfs_state);
6038 }
6039 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6040 } else if (tmp->rdev
70fffd0b 6041 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 6042 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 6043 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 6044 count++;
43c73ca4 6045 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
6046 }
6047 }
6b965620 6048 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6049 mddev->degraded = calc_degraded(conf);
6b965620 6050 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 6051 print_raid5_conf(conf);
6b965620 6052 return count;
1da177e4
LT
6053}
6054
b8321b68 6055static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6056{
d1688a6d 6057 struct r5conf *conf = mddev->private;
1da177e4 6058 int err = 0;
b8321b68 6059 int number = rdev->raid_disk;
657e3e4d 6060 struct md_rdev **rdevp;
1da177e4
LT
6061 struct disk_info *p = conf->disks + number;
6062
6063 print_raid5_conf(conf);
657e3e4d
N
6064 if (rdev == p->rdev)
6065 rdevp = &p->rdev;
6066 else if (rdev == p->replacement)
6067 rdevp = &p->replacement;
6068 else
6069 return 0;
6070
6071 if (number >= conf->raid_disks &&
6072 conf->reshape_progress == MaxSector)
6073 clear_bit(In_sync, &rdev->flags);
6074
6075 if (test_bit(In_sync, &rdev->flags) ||
6076 atomic_read(&rdev->nr_pending)) {
6077 err = -EBUSY;
6078 goto abort;
6079 }
6080 /* Only remove non-faulty devices if recovery
6081 * isn't possible.
6082 */
6083 if (!test_bit(Faulty, &rdev->flags) &&
6084 mddev->recovery_disabled != conf->recovery_disabled &&
6085 !has_failed(conf) &&
dd054fce 6086 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
6087 number < conf->raid_disks) {
6088 err = -EBUSY;
6089 goto abort;
6090 }
6091 *rdevp = NULL;
6092 synchronize_rcu();
6093 if (atomic_read(&rdev->nr_pending)) {
6094 /* lost the race, try later */
6095 err = -EBUSY;
6096 *rdevp = rdev;
dd054fce
N
6097 } else if (p->replacement) {
6098 /* We must have just cleared 'rdev' */
6099 p->rdev = p->replacement;
6100 clear_bit(Replacement, &p->replacement->flags);
6101 smp_mb(); /* Make sure other CPUs may see both as identical
6102 * but will never see neither - if they are careful
6103 */
6104 p->replacement = NULL;
6105 clear_bit(WantReplacement, &rdev->flags);
6106 } else
6107 /* We might have just removed the Replacement as faulty-
6108 * clear the bit just in case
6109 */
6110 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
6111abort:
6112
6113 print_raid5_conf(conf);
6114 return err;
6115}
6116
fd01b88c 6117static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6118{
d1688a6d 6119 struct r5conf *conf = mddev->private;
199050ea 6120 int err = -EEXIST;
1da177e4
LT
6121 int disk;
6122 struct disk_info *p;
6c2fce2e
NB
6123 int first = 0;
6124 int last = conf->raid_disks - 1;
1da177e4 6125
7f0da59b
N
6126 if (mddev->recovery_disabled == conf->recovery_disabled)
6127 return -EBUSY;
6128
dc10c643 6129 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 6130 /* no point adding a device */
199050ea 6131 return -EINVAL;
1da177e4 6132
6c2fce2e
NB
6133 if (rdev->raid_disk >= 0)
6134 first = last = rdev->raid_disk;
1da177e4
LT
6135
6136 /*
16a53ecc
N
6137 * find the disk ... but prefer rdev->saved_raid_disk
6138 * if possible.
1da177e4 6139 */
16a53ecc 6140 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 6141 rdev->saved_raid_disk >= first &&
16a53ecc 6142 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
6143 first = rdev->saved_raid_disk;
6144
6145 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
6146 p = conf->disks + disk;
6147 if (p->rdev == NULL) {
b2d444d7 6148 clear_bit(In_sync, &rdev->flags);
1da177e4 6149 rdev->raid_disk = disk;
199050ea 6150 err = 0;
72626685
N
6151 if (rdev->saved_raid_disk != disk)
6152 conf->fullsync = 1;
d6065f7b 6153 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 6154 goto out;
1da177e4 6155 }
5cfb22a1
N
6156 }
6157 for (disk = first; disk <= last; disk++) {
6158 p = conf->disks + disk;
7bfec5f3
N
6159 if (test_bit(WantReplacement, &p->rdev->flags) &&
6160 p->replacement == NULL) {
6161 clear_bit(In_sync, &rdev->flags);
6162 set_bit(Replacement, &rdev->flags);
6163 rdev->raid_disk = disk;
6164 err = 0;
6165 conf->fullsync = 1;
6166 rcu_assign_pointer(p->replacement, rdev);
6167 break;
6168 }
6169 }
5cfb22a1 6170out:
1da177e4 6171 print_raid5_conf(conf);
199050ea 6172 return err;
1da177e4
LT
6173}
6174
fd01b88c 6175static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
6176{
6177 /* no resync is happening, and there is enough space
6178 * on all devices, so we can resize.
6179 * We need to make sure resync covers any new space.
6180 * If the array is shrinking we should possibly wait until
6181 * any io in the removed space completes, but it hardly seems
6182 * worth it.
6183 */
a4a6125a 6184 sector_t newsize;
9d8f0363 6185 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
6186 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6187 if (mddev->external_size &&
6188 mddev->array_sectors > newsize)
b522adcd 6189 return -EINVAL;
a4a6125a
N
6190 if (mddev->bitmap) {
6191 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6192 if (ret)
6193 return ret;
6194 }
6195 md_set_array_sectors(mddev, newsize);
f233ea5c 6196 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6197 revalidate_disk(mddev->gendisk);
b098636c
N
6198 if (sectors > mddev->dev_sectors &&
6199 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 6200 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
6201 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6202 }
58c0fed4 6203 mddev->dev_sectors = sectors;
4b5c7ae8 6204 mddev->resync_max_sectors = sectors;
1da177e4
LT
6205 return 0;
6206}
6207
fd01b88c 6208static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
6209{
6210 /* Can only proceed if there are plenty of stripe_heads.
6211 * We need a minimum of one full stripe,, and for sensible progress
6212 * it is best to have about 4 times that.
6213 * If we require 4 times, then the default 256 4K stripe_heads will
6214 * allow for chunk sizes up to 256K, which is probably OK.
6215 * If the chunk size is greater, user-space should request more
6216 * stripe_heads first.
6217 */
d1688a6d 6218 struct r5conf *conf = mddev->private;
01ee22b4
N
6219 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6220 > conf->max_nr_stripes ||
6221 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6222 > conf->max_nr_stripes) {
0c55e022
N
6223 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6224 mdname(mddev),
01ee22b4
N
6225 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6226 / STRIPE_SIZE)*4);
6227 return 0;
6228 }
6229 return 1;
6230}
6231
fd01b88c 6232static int check_reshape(struct mddev *mddev)
29269553 6233{
d1688a6d 6234 struct r5conf *conf = mddev->private;
29269553 6235
88ce4930
N
6236 if (mddev->delta_disks == 0 &&
6237 mddev->new_layout == mddev->layout &&
664e7c41 6238 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 6239 return 0; /* nothing to do */
674806d6 6240 if (has_failed(conf))
ec32a2bd 6241 return -EINVAL;
fdcfbbb6 6242 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
6243 /* We might be able to shrink, but the devices must
6244 * be made bigger first.
6245 * For raid6, 4 is the minimum size.
6246 * Otherwise 2 is the minimum
6247 */
6248 int min = 2;
6249 if (mddev->level == 6)
6250 min = 4;
6251 if (mddev->raid_disks + mddev->delta_disks < min)
6252 return -EINVAL;
6253 }
29269553 6254
01ee22b4 6255 if (!check_stripe_cache(mddev))
29269553 6256 return -ENOSPC;
29269553 6257
e56108d6
N
6258 return resize_stripes(conf, (conf->previous_raid_disks
6259 + mddev->delta_disks));
63c70c4f
N
6260}
6261
fd01b88c 6262static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 6263{
d1688a6d 6264 struct r5conf *conf = mddev->private;
3cb03002 6265 struct md_rdev *rdev;
63c70c4f 6266 int spares = 0;
c04be0aa 6267 unsigned long flags;
63c70c4f 6268
f416885e 6269 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
6270 return -EBUSY;
6271
01ee22b4
N
6272 if (!check_stripe_cache(mddev))
6273 return -ENOSPC;
6274
30b67645
N
6275 if (has_failed(conf))
6276 return -EINVAL;
6277
c6563a8c 6278 rdev_for_each(rdev, mddev) {
469518a3
N
6279 if (!test_bit(In_sync, &rdev->flags)
6280 && !test_bit(Faulty, &rdev->flags))
29269553 6281 spares++;
c6563a8c 6282 }
63c70c4f 6283
f416885e 6284 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
6285 /* Not enough devices even to make a degraded array
6286 * of that size
6287 */
6288 return -EINVAL;
6289
ec32a2bd
N
6290 /* Refuse to reduce size of the array. Any reductions in
6291 * array size must be through explicit setting of array_size
6292 * attribute.
6293 */
6294 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6295 < mddev->array_sectors) {
0c55e022 6296 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
6297 "before number of disks\n", mdname(mddev));
6298 return -EINVAL;
6299 }
6300
f6705578 6301 atomic_set(&conf->reshape_stripes, 0);
29269553 6302 spin_lock_irq(&conf->device_lock);
c46501b2 6303 write_seqcount_begin(&conf->gen_lock);
29269553 6304 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 6305 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
6306 conf->prev_chunk_sectors = conf->chunk_sectors;
6307 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
6308 conf->prev_algo = conf->algorithm;
6309 conf->algorithm = mddev->new_layout;
05616be5
N
6310 conf->generation++;
6311 /* Code that selects data_offset needs to see the generation update
6312 * if reshape_progress has been set - so a memory barrier needed.
6313 */
6314 smp_mb();
2c810cdd 6315 if (mddev->reshape_backwards)
fef9c61f
N
6316 conf->reshape_progress = raid5_size(mddev, 0, 0);
6317 else
6318 conf->reshape_progress = 0;
6319 conf->reshape_safe = conf->reshape_progress;
c46501b2 6320 write_seqcount_end(&conf->gen_lock);
29269553
N
6321 spin_unlock_irq(&conf->device_lock);
6322
4d77e3ba
N
6323 /* Now make sure any requests that proceeded on the assumption
6324 * the reshape wasn't running - like Discard or Read - have
6325 * completed.
6326 */
6327 mddev_suspend(mddev);
6328 mddev_resume(mddev);
6329
29269553
N
6330 /* Add some new drives, as many as will fit.
6331 * We know there are enough to make the newly sized array work.
3424bf6a
N
6332 * Don't add devices if we are reducing the number of
6333 * devices in the array. This is because it is not possible
6334 * to correctly record the "partially reconstructed" state of
6335 * such devices during the reshape and confusion could result.
29269553 6336 */
87a8dec9 6337 if (mddev->delta_disks >= 0) {
dafb20fa 6338 rdev_for_each(rdev, mddev)
87a8dec9
N
6339 if (rdev->raid_disk < 0 &&
6340 !test_bit(Faulty, &rdev->flags)) {
6341 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 6342 if (rdev->raid_disk
9d4c7d87 6343 >= conf->previous_raid_disks)
87a8dec9 6344 set_bit(In_sync, &rdev->flags);
9d4c7d87 6345 else
87a8dec9 6346 rdev->recovery_offset = 0;
36fad858
NK
6347
6348 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 6349 /* Failure here is OK */;
50da0840 6350 }
87a8dec9
N
6351 } else if (rdev->raid_disk >= conf->previous_raid_disks
6352 && !test_bit(Faulty, &rdev->flags)) {
6353 /* This is a spare that was manually added */
6354 set_bit(In_sync, &rdev->flags);
87a8dec9 6355 }
29269553 6356
87a8dec9
N
6357 /* When a reshape changes the number of devices,
6358 * ->degraded is measured against the larger of the
6359 * pre and post number of devices.
6360 */
ec32a2bd 6361 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6362 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
6363 spin_unlock_irqrestore(&conf->device_lock, flags);
6364 }
63c70c4f 6365 mddev->raid_disks = conf->raid_disks;
e516402c 6366 mddev->reshape_position = conf->reshape_progress;
850b2b42 6367 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 6368
29269553
N
6369 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6370 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6371 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6372 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6373 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6374 "reshape");
29269553
N
6375 if (!mddev->sync_thread) {
6376 mddev->recovery = 0;
6377 spin_lock_irq(&conf->device_lock);
6378 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
05616be5
N
6379 rdev_for_each(rdev, mddev)
6380 rdev->new_data_offset = rdev->data_offset;
6381 smp_wmb();
fef9c61f 6382 conf->reshape_progress = MaxSector;
1e3fa9bd 6383 mddev->reshape_position = MaxSector;
29269553
N
6384 spin_unlock_irq(&conf->device_lock);
6385 return -EAGAIN;
6386 }
c8f517c4 6387 conf->reshape_checkpoint = jiffies;
29269553
N
6388 md_wakeup_thread(mddev->sync_thread);
6389 md_new_event(mddev);
6390 return 0;
6391}
29269553 6392
ec32a2bd
N
6393/* This is called from the reshape thread and should make any
6394 * changes needed in 'conf'
6395 */
d1688a6d 6396static void end_reshape(struct r5conf *conf)
29269553 6397{
29269553 6398
f6705578 6399 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 6400 struct md_rdev *rdev;
f6705578 6401
f6705578 6402 spin_lock_irq(&conf->device_lock);
cea9c228 6403 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
6404 rdev_for_each(rdev, conf->mddev)
6405 rdev->data_offset = rdev->new_data_offset;
6406 smp_wmb();
fef9c61f 6407 conf->reshape_progress = MaxSector;
f6705578 6408 spin_unlock_irq(&conf->device_lock);
b0f9ec04 6409 wake_up(&conf->wait_for_overlap);
16a53ecc
N
6410
6411 /* read-ahead size must cover two whole stripes, which is
6412 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6413 */
4a5add49 6414 if (conf->mddev->queue) {
cea9c228 6415 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 6416 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 6417 / PAGE_SIZE);
16a53ecc
N
6418 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6419 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6420 }
29269553 6421 }
29269553
N
6422}
6423
ec32a2bd
N
6424/* This is called from the raid5d thread with mddev_lock held.
6425 * It makes config changes to the device.
6426 */
fd01b88c 6427static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 6428{
d1688a6d 6429 struct r5conf *conf = mddev->private;
cea9c228
N
6430
6431 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6432
ec32a2bd
N
6433 if (mddev->delta_disks > 0) {
6434 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6435 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6436 revalidate_disk(mddev->gendisk);
ec32a2bd
N
6437 } else {
6438 int d;
908f4fbd
N
6439 spin_lock_irq(&conf->device_lock);
6440 mddev->degraded = calc_degraded(conf);
6441 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
6442 for (d = conf->raid_disks ;
6443 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 6444 d++) {
3cb03002 6445 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
6446 if (rdev)
6447 clear_bit(In_sync, &rdev->flags);
6448 rdev = conf->disks[d].replacement;
6449 if (rdev)
6450 clear_bit(In_sync, &rdev->flags);
1a67dde0 6451 }
cea9c228 6452 }
88ce4930 6453 mddev->layout = conf->algorithm;
09c9e5fa 6454 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
6455 mddev->reshape_position = MaxSector;
6456 mddev->delta_disks = 0;
2c810cdd 6457 mddev->reshape_backwards = 0;
cea9c228
N
6458 }
6459}
6460
fd01b88c 6461static void raid5_quiesce(struct mddev *mddev, int state)
72626685 6462{
d1688a6d 6463 struct r5conf *conf = mddev->private;
72626685
N
6464
6465 switch(state) {
e464eafd
N
6466 case 2: /* resume for a suspend */
6467 wake_up(&conf->wait_for_overlap);
6468 break;
6469
72626685
N
6470 case 1: /* stop all writes */
6471 spin_lock_irq(&conf->device_lock);
64bd660b
N
6472 /* '2' tells resync/reshape to pause so that all
6473 * active stripes can drain
6474 */
6475 conf->quiesce = 2;
72626685 6476 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
6477 atomic_read(&conf->active_stripes) == 0 &&
6478 atomic_read(&conf->active_aligned_reads) == 0,
eed8c02e 6479 conf->device_lock);
64bd660b 6480 conf->quiesce = 1;
72626685 6481 spin_unlock_irq(&conf->device_lock);
64bd660b
N
6482 /* allow reshape to continue */
6483 wake_up(&conf->wait_for_overlap);
72626685
N
6484 break;
6485
6486 case 0: /* re-enable writes */
6487 spin_lock_irq(&conf->device_lock);
6488 conf->quiesce = 0;
6489 wake_up(&conf->wait_for_stripe);
e464eafd 6490 wake_up(&conf->wait_for_overlap);
72626685
N
6491 spin_unlock_irq(&conf->device_lock);
6492 break;
6493 }
72626685 6494}
b15c2e57 6495
d562b0c4 6496
fd01b88c 6497static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 6498{
e373ab10 6499 struct r0conf *raid0_conf = mddev->private;
d76c8420 6500 sector_t sectors;
54071b38 6501
f1b29bca 6502 /* for raid0 takeover only one zone is supported */
e373ab10 6503 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
6504 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6505 mdname(mddev));
f1b29bca
DW
6506 return ERR_PTR(-EINVAL);
6507 }
6508
e373ab10
N
6509 sectors = raid0_conf->strip_zone[0].zone_end;
6510 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 6511 mddev->dev_sectors = sectors;
f1b29bca 6512 mddev->new_level = level;
54071b38
TM
6513 mddev->new_layout = ALGORITHM_PARITY_N;
6514 mddev->new_chunk_sectors = mddev->chunk_sectors;
6515 mddev->raid_disks += 1;
6516 mddev->delta_disks = 1;
6517 /* make sure it will be not marked as dirty */
6518 mddev->recovery_cp = MaxSector;
6519
6520 return setup_conf(mddev);
6521}
6522
6523
fd01b88c 6524static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
6525{
6526 int chunksect;
6527
6528 if (mddev->raid_disks != 2 ||
6529 mddev->degraded > 1)
6530 return ERR_PTR(-EINVAL);
6531
6532 /* Should check if there are write-behind devices? */
6533
6534 chunksect = 64*2; /* 64K by default */
6535
6536 /* The array must be an exact multiple of chunksize */
6537 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6538 chunksect >>= 1;
6539
6540 if ((chunksect<<9) < STRIPE_SIZE)
6541 /* array size does not allow a suitable chunk size */
6542 return ERR_PTR(-EINVAL);
6543
6544 mddev->new_level = 5;
6545 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 6546 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
6547
6548 return setup_conf(mddev);
6549}
6550
fd01b88c 6551static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
6552{
6553 int new_layout;
6554
6555 switch (mddev->layout) {
6556 case ALGORITHM_LEFT_ASYMMETRIC_6:
6557 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6558 break;
6559 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6560 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6561 break;
6562 case ALGORITHM_LEFT_SYMMETRIC_6:
6563 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6564 break;
6565 case ALGORITHM_RIGHT_SYMMETRIC_6:
6566 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6567 break;
6568 case ALGORITHM_PARITY_0_6:
6569 new_layout = ALGORITHM_PARITY_0;
6570 break;
6571 case ALGORITHM_PARITY_N:
6572 new_layout = ALGORITHM_PARITY_N;
6573 break;
6574 default:
6575 return ERR_PTR(-EINVAL);
6576 }
6577 mddev->new_level = 5;
6578 mddev->new_layout = new_layout;
6579 mddev->delta_disks = -1;
6580 mddev->raid_disks -= 1;
6581 return setup_conf(mddev);
6582}
6583
d562b0c4 6584
fd01b88c 6585static int raid5_check_reshape(struct mddev *mddev)
b3546035 6586{
88ce4930
N
6587 /* For a 2-drive array, the layout and chunk size can be changed
6588 * immediately as not restriping is needed.
6589 * For larger arrays we record the new value - after validation
6590 * to be used by a reshape pass.
b3546035 6591 */
d1688a6d 6592 struct r5conf *conf = mddev->private;
597a711b 6593 int new_chunk = mddev->new_chunk_sectors;
b3546035 6594
597a711b 6595 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
6596 return -EINVAL;
6597 if (new_chunk > 0) {
0ba459d2 6598 if (!is_power_of_2(new_chunk))
b3546035 6599 return -EINVAL;
597a711b 6600 if (new_chunk < (PAGE_SIZE>>9))
b3546035 6601 return -EINVAL;
597a711b 6602 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
6603 /* not factor of array size */
6604 return -EINVAL;
6605 }
6606
6607 /* They look valid */
6608
88ce4930 6609 if (mddev->raid_disks == 2) {
597a711b
N
6610 /* can make the change immediately */
6611 if (mddev->new_layout >= 0) {
6612 conf->algorithm = mddev->new_layout;
6613 mddev->layout = mddev->new_layout;
88ce4930
N
6614 }
6615 if (new_chunk > 0) {
597a711b
N
6616 conf->chunk_sectors = new_chunk ;
6617 mddev->chunk_sectors = new_chunk;
88ce4930
N
6618 }
6619 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6620 md_wakeup_thread(mddev->thread);
b3546035 6621 }
50ac168a 6622 return check_reshape(mddev);
88ce4930
N
6623}
6624
fd01b88c 6625static int raid6_check_reshape(struct mddev *mddev)
88ce4930 6626{
597a711b 6627 int new_chunk = mddev->new_chunk_sectors;
50ac168a 6628
597a711b 6629 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 6630 return -EINVAL;
b3546035 6631 if (new_chunk > 0) {
0ba459d2 6632 if (!is_power_of_2(new_chunk))
88ce4930 6633 return -EINVAL;
597a711b 6634 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 6635 return -EINVAL;
597a711b 6636 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
6637 /* not factor of array size */
6638 return -EINVAL;
b3546035 6639 }
88ce4930
N
6640
6641 /* They look valid */
50ac168a 6642 return check_reshape(mddev);
b3546035
N
6643}
6644
fd01b88c 6645static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
6646{
6647 /* raid5 can take over:
f1b29bca 6648 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
6649 * raid1 - if there are two drives. We need to know the chunk size
6650 * raid4 - trivial - just use a raid4 layout.
6651 * raid6 - Providing it is a *_6 layout
d562b0c4 6652 */
f1b29bca
DW
6653 if (mddev->level == 0)
6654 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
6655 if (mddev->level == 1)
6656 return raid5_takeover_raid1(mddev);
e9d4758f
N
6657 if (mddev->level == 4) {
6658 mddev->new_layout = ALGORITHM_PARITY_N;
6659 mddev->new_level = 5;
6660 return setup_conf(mddev);
6661 }
fc9739c6
N
6662 if (mddev->level == 6)
6663 return raid5_takeover_raid6(mddev);
d562b0c4
N
6664
6665 return ERR_PTR(-EINVAL);
6666}
6667
fd01b88c 6668static void *raid4_takeover(struct mddev *mddev)
a78d38a1 6669{
f1b29bca
DW
6670 /* raid4 can take over:
6671 * raid0 - if there is only one strip zone
6672 * raid5 - if layout is right
a78d38a1 6673 */
f1b29bca
DW
6674 if (mddev->level == 0)
6675 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
6676 if (mddev->level == 5 &&
6677 mddev->layout == ALGORITHM_PARITY_N) {
6678 mddev->new_layout = 0;
6679 mddev->new_level = 4;
6680 return setup_conf(mddev);
6681 }
6682 return ERR_PTR(-EINVAL);
6683}
d562b0c4 6684
84fc4b56 6685static struct md_personality raid5_personality;
245f46c2 6686
fd01b88c 6687static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6688{
6689 /* Currently can only take over a raid5. We map the
6690 * personality to an equivalent raid6 personality
6691 * with the Q block at the end.
6692 */
6693 int new_layout;
6694
6695 if (mddev->pers != &raid5_personality)
6696 return ERR_PTR(-EINVAL);
6697 if (mddev->degraded > 1)
6698 return ERR_PTR(-EINVAL);
6699 if (mddev->raid_disks > 253)
6700 return ERR_PTR(-EINVAL);
6701 if (mddev->raid_disks < 3)
6702 return ERR_PTR(-EINVAL);
6703
6704 switch (mddev->layout) {
6705 case ALGORITHM_LEFT_ASYMMETRIC:
6706 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6707 break;
6708 case ALGORITHM_RIGHT_ASYMMETRIC:
6709 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6710 break;
6711 case ALGORITHM_LEFT_SYMMETRIC:
6712 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6713 break;
6714 case ALGORITHM_RIGHT_SYMMETRIC:
6715 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6716 break;
6717 case ALGORITHM_PARITY_0:
6718 new_layout = ALGORITHM_PARITY_0_6;
6719 break;
6720 case ALGORITHM_PARITY_N:
6721 new_layout = ALGORITHM_PARITY_N;
6722 break;
6723 default:
6724 return ERR_PTR(-EINVAL);
6725 }
6726 mddev->new_level = 6;
6727 mddev->new_layout = new_layout;
6728 mddev->delta_disks = 1;
6729 mddev->raid_disks += 1;
6730 return setup_conf(mddev);
6731}
6732
6733
84fc4b56 6734static struct md_personality raid6_personality =
16a53ecc
N
6735{
6736 .name = "raid6",
6737 .level = 6,
6738 .owner = THIS_MODULE,
6739 .make_request = make_request,
6740 .run = run,
6741 .stop = stop,
6742 .status = status,
6743 .error_handler = error,
6744 .hot_add_disk = raid5_add_disk,
6745 .hot_remove_disk= raid5_remove_disk,
6746 .spare_active = raid5_spare_active,
6747 .sync_request = sync_request,
6748 .resize = raid5_resize,
80c3a6ce 6749 .size = raid5_size,
50ac168a 6750 .check_reshape = raid6_check_reshape,
f416885e 6751 .start_reshape = raid5_start_reshape,
cea9c228 6752 .finish_reshape = raid5_finish_reshape,
16a53ecc 6753 .quiesce = raid5_quiesce,
245f46c2 6754 .takeover = raid6_takeover,
16a53ecc 6755};
84fc4b56 6756static struct md_personality raid5_personality =
1da177e4
LT
6757{
6758 .name = "raid5",
2604b703 6759 .level = 5,
1da177e4
LT
6760 .owner = THIS_MODULE,
6761 .make_request = make_request,
6762 .run = run,
6763 .stop = stop,
6764 .status = status,
6765 .error_handler = error,
6766 .hot_add_disk = raid5_add_disk,
6767 .hot_remove_disk= raid5_remove_disk,
6768 .spare_active = raid5_spare_active,
6769 .sync_request = sync_request,
6770 .resize = raid5_resize,
80c3a6ce 6771 .size = raid5_size,
63c70c4f
N
6772 .check_reshape = raid5_check_reshape,
6773 .start_reshape = raid5_start_reshape,
cea9c228 6774 .finish_reshape = raid5_finish_reshape,
72626685 6775 .quiesce = raid5_quiesce,
d562b0c4 6776 .takeover = raid5_takeover,
1da177e4
LT
6777};
6778
84fc4b56 6779static struct md_personality raid4_personality =
1da177e4 6780{
2604b703
N
6781 .name = "raid4",
6782 .level = 4,
6783 .owner = THIS_MODULE,
6784 .make_request = make_request,
6785 .run = run,
6786 .stop = stop,
6787 .status = status,
6788 .error_handler = error,
6789 .hot_add_disk = raid5_add_disk,
6790 .hot_remove_disk= raid5_remove_disk,
6791 .spare_active = raid5_spare_active,
6792 .sync_request = sync_request,
6793 .resize = raid5_resize,
80c3a6ce 6794 .size = raid5_size,
3d37890b
N
6795 .check_reshape = raid5_check_reshape,
6796 .start_reshape = raid5_start_reshape,
cea9c228 6797 .finish_reshape = raid5_finish_reshape,
2604b703 6798 .quiesce = raid5_quiesce,
a78d38a1 6799 .takeover = raid4_takeover,
2604b703
N
6800};
6801
6802static int __init raid5_init(void)
6803{
851c30c9
SL
6804 raid5_wq = alloc_workqueue("raid5wq",
6805 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
6806 if (!raid5_wq)
6807 return -ENOMEM;
16a53ecc 6808 register_md_personality(&raid6_personality);
2604b703
N
6809 register_md_personality(&raid5_personality);
6810 register_md_personality(&raid4_personality);
6811 return 0;
1da177e4
LT
6812}
6813
2604b703 6814static void raid5_exit(void)
1da177e4 6815{
16a53ecc 6816 unregister_md_personality(&raid6_personality);
2604b703
N
6817 unregister_md_personality(&raid5_personality);
6818 unregister_md_personality(&raid4_personality);
851c30c9 6819 destroy_workqueue(raid5_wq);
1da177e4
LT
6820}
6821
6822module_init(raid5_init);
6823module_exit(raid5_exit);
6824MODULE_LICENSE("GPL");
0efb9e61 6825MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6826MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6827MODULE_ALIAS("md-raid5");
6828MODULE_ALIAS("md-raid4");
2604b703
N
6829MODULE_ALIAS("md-level-5");
6830MODULE_ALIAS("md-level-4");
16a53ecc
N
6831MODULE_ALIAS("md-personality-8"); /* RAID6 */
6832MODULE_ALIAS("md-raid6");
6833MODULE_ALIAS("md-level-6");
6834
6835/* This used to be two separate modules, they were: */
6836MODULE_ALIAS("raid5");
6837MODULE_ALIAS("raid6");