]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
md/raid6: asynchronous raid6 operations
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
bff61975 50#include <linux/seq_file.h>
36d1c647 51#include <linux/cpu.h>
43b2e5d8 52#include "md.h"
bff61975 53#include "raid5.h"
ef740c37 54#include "bitmap.h"
72626685 55
1da177e4
LT
56/*
57 * Stripe cache
58 */
59
60#define NR_STRIPES 256
61#define STRIPE_SIZE PAGE_SIZE
62#define STRIPE_SHIFT (PAGE_SHIFT - 9)
63#define STRIPE_SECTORS (STRIPE_SIZE>>9)
64#define IO_THRESHOLD 1
8b3e6cdc 65#define BYPASS_THRESHOLD 1
fccddba0 66#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
67#define HASH_MASK (NR_HASH - 1)
68
fccddba0 69#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
70
71/* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
79 */
80#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81/*
82 * The following can be used to debug the driver
83 */
1da177e4
LT
84#define RAID5_PARANOIA 1
85#if RAID5_PARANOIA && defined(CONFIG_SMP)
86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87#else
88# define CHECK_DEVLOCK()
89#endif
90
45b4233c 91#ifdef DEBUG
1da177e4
LT
92#define inline
93#define __inline__
94#endif
95
6be9d494
BS
96#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
97
960e739d 98/*
5b99c2ff
JA
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
5b99c2ff 104 return bio->bi_phys_segments & 0xffff;
960e739d
JA
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
5b99c2ff 109 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
5b99c2ff 123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
5b99c2ff 129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
130}
131
d0dabf7e
N
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
67cc2b81
N
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
d0dabf7e
N
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
67cc2b81
N
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
d0dabf7e
N
157{
158 int slot;
67cc2b81 159
d0dabf7e 160 if (idx == sh->pd_idx)
67cc2b81 161 return syndrome_disks;
d0dabf7e 162 if (idx == sh->qd_idx)
67cc2b81 163 return syndrome_disks + 1;
d0dabf7e
N
164 slot = (*count)++;
165 return slot;
166}
167
a4456856
DW
168static void return_io(struct bio *return_bi)
169{
170 struct bio *bi = return_bi;
171 while (bi) {
a4456856
DW
172
173 return_bi = bi->bi_next;
174 bi->bi_next = NULL;
175 bi->bi_size = 0;
0e13fe23 176 bio_endio(bi, 0);
a4456856
DW
177 bi = return_bi;
178 }
179}
180
1da177e4
LT
181static void print_raid5_conf (raid5_conf_t *conf);
182
600aa109
DW
183static int stripe_operations_active(struct stripe_head *sh)
184{
185 return sh->check_state || sh->reconstruct_state ||
186 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
187 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
188}
189
858119e1 190static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
191{
192 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
193 BUG_ON(!list_empty(&sh->lru));
194 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 195 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 196 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 197 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
198 blk_plug_device(conf->mddev->queue);
199 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 200 sh->bm_seq - conf->seq_write > 0) {
72626685 201 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
202 blk_plug_device(conf->mddev->queue);
203 } else {
72626685 204 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 205 list_add_tail(&sh->lru, &conf->handle_list);
72626685 206 }
1da177e4
LT
207 md_wakeup_thread(conf->mddev->thread);
208 } else {
600aa109 209 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
210 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
211 atomic_dec(&conf->preread_active_stripes);
212 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
213 md_wakeup_thread(conf->mddev->thread);
214 }
1da177e4 215 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
216 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 218 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
219 if (conf->retry_read_aligned)
220 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 221 }
1da177e4
LT
222 }
223 }
224}
d0dabf7e 225
1da177e4
LT
226static void release_stripe(struct stripe_head *sh)
227{
228 raid5_conf_t *conf = sh->raid_conf;
229 unsigned long flags;
16a53ecc 230
1da177e4
LT
231 spin_lock_irqsave(&conf->device_lock, flags);
232 __release_stripe(conf, sh);
233 spin_unlock_irqrestore(&conf->device_lock, flags);
234}
235
fccddba0 236static inline void remove_hash(struct stripe_head *sh)
1da177e4 237{
45b4233c
DW
238 pr_debug("remove_hash(), stripe %llu\n",
239 (unsigned long long)sh->sector);
1da177e4 240
fccddba0 241 hlist_del_init(&sh->hash);
1da177e4
LT
242}
243
16a53ecc 244static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 245{
fccddba0 246 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 247
45b4233c
DW
248 pr_debug("insert_hash(), stripe %llu\n",
249 (unsigned long long)sh->sector);
1da177e4
LT
250
251 CHECK_DEVLOCK();
fccddba0 252 hlist_add_head(&sh->hash, hp);
1da177e4
LT
253}
254
255
256/* find an idle stripe, make sure it is unhashed, and return it. */
257static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
258{
259 struct stripe_head *sh = NULL;
260 struct list_head *first;
261
262 CHECK_DEVLOCK();
263 if (list_empty(&conf->inactive_list))
264 goto out;
265 first = conf->inactive_list.next;
266 sh = list_entry(first, struct stripe_head, lru);
267 list_del_init(first);
268 remove_hash(sh);
269 atomic_inc(&conf->active_stripes);
270out:
271 return sh;
272}
273
274static void shrink_buffers(struct stripe_head *sh, int num)
275{
276 struct page *p;
277 int i;
278
279 for (i=0; i<num ; i++) {
280 p = sh->dev[i].page;
281 if (!p)
282 continue;
283 sh->dev[i].page = NULL;
2d1f3b5d 284 put_page(p);
1da177e4
LT
285 }
286}
287
288static int grow_buffers(struct stripe_head *sh, int num)
289{
290 int i;
291
292 for (i=0; i<num; i++) {
293 struct page *page;
294
295 if (!(page = alloc_page(GFP_KERNEL))) {
296 return 1;
297 }
298 sh->dev[i].page = page;
299 }
300 return 0;
301}
302
784052ec 303static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
304static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
305 struct stripe_head *sh);
1da177e4 306
b5663ba4 307static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
308{
309 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 310 int i;
1da177e4 311
78bafebd
ES
312 BUG_ON(atomic_read(&sh->count) != 0);
313 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 314 BUG_ON(stripe_operations_active(sh));
d84e0f10 315
1da177e4 316 CHECK_DEVLOCK();
45b4233c 317 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
318 (unsigned long long)sh->sector);
319
320 remove_hash(sh);
16a53ecc 321
86b42c71 322 sh->generation = conf->generation - previous;
b5663ba4 323 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 324 sh->sector = sector;
911d4ee8 325 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
326 sh->state = 0;
327
7ecaa1e6
N
328
329 for (i = sh->disks; i--; ) {
1da177e4
LT
330 struct r5dev *dev = &sh->dev[i];
331
d84e0f10 332 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 333 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 334 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 335 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 336 dev->read, dev->towrite, dev->written,
1da177e4
LT
337 test_bit(R5_LOCKED, &dev->flags));
338 BUG();
339 }
340 dev->flags = 0;
784052ec 341 raid5_build_block(sh, i, previous);
1da177e4
LT
342 }
343 insert_hash(conf, sh);
344}
345
86b42c71
N
346static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
347 short generation)
1da177e4
LT
348{
349 struct stripe_head *sh;
fccddba0 350 struct hlist_node *hn;
1da177e4
LT
351
352 CHECK_DEVLOCK();
45b4233c 353 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 354 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 355 if (sh->sector == sector && sh->generation == generation)
1da177e4 356 return sh;
45b4233c 357 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
358 return NULL;
359}
360
361static void unplug_slaves(mddev_t *mddev);
165125e1 362static void raid5_unplug_device(struct request_queue *q);
1da177e4 363
b5663ba4
N
364static struct stripe_head *
365get_active_stripe(raid5_conf_t *conf, sector_t sector,
366 int previous, int noblock)
1da177e4
LT
367{
368 struct stripe_head *sh;
369
45b4233c 370 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
371
372 spin_lock_irq(&conf->device_lock);
373
374 do {
72626685
N
375 wait_event_lock_irq(conf->wait_for_stripe,
376 conf->quiesce == 0,
377 conf->device_lock, /* nothing */);
86b42c71 378 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
379 if (!sh) {
380 if (!conf->inactive_blocked)
381 sh = get_free_stripe(conf);
382 if (noblock && sh == NULL)
383 break;
384 if (!sh) {
385 conf->inactive_blocked = 1;
386 wait_event_lock_irq(conf->wait_for_stripe,
387 !list_empty(&conf->inactive_list) &&
5036805b
N
388 (atomic_read(&conf->active_stripes)
389 < (conf->max_nr_stripes *3/4)
1da177e4
LT
390 || !conf->inactive_blocked),
391 conf->device_lock,
f4370781 392 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
393 );
394 conf->inactive_blocked = 0;
395 } else
b5663ba4 396 init_stripe(sh, sector, previous);
1da177e4
LT
397 } else {
398 if (atomic_read(&sh->count)) {
ab69ae12
N
399 BUG_ON(!list_empty(&sh->lru)
400 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
401 } else {
402 if (!test_bit(STRIPE_HANDLE, &sh->state))
403 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
404 if (list_empty(&sh->lru) &&
405 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
406 BUG();
407 list_del_init(&sh->lru);
1da177e4
LT
408 }
409 }
410 } while (sh == NULL);
411
412 if (sh)
413 atomic_inc(&sh->count);
414
415 spin_unlock_irq(&conf->device_lock);
416 return sh;
417}
418
6712ecf8
N
419static void
420raid5_end_read_request(struct bio *bi, int error);
421static void
422raid5_end_write_request(struct bio *bi, int error);
91c00924 423
c4e5ac0a 424static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
425{
426 raid5_conf_t *conf = sh->raid_conf;
427 int i, disks = sh->disks;
428
429 might_sleep();
430
431 for (i = disks; i--; ) {
432 int rw;
433 struct bio *bi;
434 mdk_rdev_t *rdev;
435 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
436 rw = WRITE;
437 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
438 rw = READ;
439 else
440 continue;
441
442 bi = &sh->dev[i].req;
443
444 bi->bi_rw = rw;
445 if (rw == WRITE)
446 bi->bi_end_io = raid5_end_write_request;
447 else
448 bi->bi_end_io = raid5_end_read_request;
449
450 rcu_read_lock();
451 rdev = rcu_dereference(conf->disks[i].rdev);
452 if (rdev && test_bit(Faulty, &rdev->flags))
453 rdev = NULL;
454 if (rdev)
455 atomic_inc(&rdev->nr_pending);
456 rcu_read_unlock();
457
458 if (rdev) {
c4e5ac0a 459 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
460 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
461
2b7497f0
DW
462 set_bit(STRIPE_IO_STARTED, &sh->state);
463
91c00924
DW
464 bi->bi_bdev = rdev->bdev;
465 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 466 __func__, (unsigned long long)sh->sector,
91c00924
DW
467 bi->bi_rw, i);
468 atomic_inc(&sh->count);
469 bi->bi_sector = sh->sector + rdev->data_offset;
470 bi->bi_flags = 1 << BIO_UPTODATE;
471 bi->bi_vcnt = 1;
472 bi->bi_max_vecs = 1;
473 bi->bi_idx = 0;
474 bi->bi_io_vec = &sh->dev[i].vec;
475 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
476 bi->bi_io_vec[0].bv_offset = 0;
477 bi->bi_size = STRIPE_SIZE;
478 bi->bi_next = NULL;
479 if (rw == WRITE &&
480 test_bit(R5_ReWrite, &sh->dev[i].flags))
481 atomic_add(STRIPE_SECTORS,
482 &rdev->corrected_errors);
483 generic_make_request(bi);
484 } else {
485 if (rw == WRITE)
486 set_bit(STRIPE_DEGRADED, &sh->state);
487 pr_debug("skip op %ld on disc %d for sector %llu\n",
488 bi->bi_rw, i, (unsigned long long)sh->sector);
489 clear_bit(R5_LOCKED, &sh->dev[i].flags);
490 set_bit(STRIPE_HANDLE, &sh->state);
491 }
492 }
493}
494
495static struct dma_async_tx_descriptor *
496async_copy_data(int frombio, struct bio *bio, struct page *page,
497 sector_t sector, struct dma_async_tx_descriptor *tx)
498{
499 struct bio_vec *bvl;
500 struct page *bio_page;
501 int i;
502 int page_offset;
a08abd8c 503 struct async_submit_ctl submit;
91c00924
DW
504
505 if (bio->bi_sector >= sector)
506 page_offset = (signed)(bio->bi_sector - sector) * 512;
507 else
508 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c
DW
509
510 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
91c00924
DW
511 bio_for_each_segment(bvl, bio, i) {
512 int len = bio_iovec_idx(bio, i)->bv_len;
513 int clen;
514 int b_offset = 0;
515
516 if (page_offset < 0) {
517 b_offset = -page_offset;
518 page_offset += b_offset;
519 len -= b_offset;
520 }
521
522 if (len > 0 && page_offset + len > STRIPE_SIZE)
523 clen = STRIPE_SIZE - page_offset;
524 else
525 clen = len;
526
527 if (clen > 0) {
528 b_offset += bio_iovec_idx(bio, i)->bv_offset;
529 bio_page = bio_iovec_idx(bio, i)->bv_page;
530 if (frombio)
531 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 532 b_offset, clen, &submit);
91c00924
DW
533 else
534 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 535 page_offset, clen, &submit);
91c00924 536 }
a08abd8c
DW
537 /* chain the operations */
538 submit.depend_tx = tx;
539
91c00924
DW
540 if (clen < len) /* hit end of page */
541 break;
542 page_offset += len;
543 }
544
545 return tx;
546}
547
548static void ops_complete_biofill(void *stripe_head_ref)
549{
550 struct stripe_head *sh = stripe_head_ref;
551 struct bio *return_bi = NULL;
552 raid5_conf_t *conf = sh->raid_conf;
e4d84909 553 int i;
91c00924 554
e46b272b 555 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
556 (unsigned long long)sh->sector);
557
558 /* clear completed biofills */
83de75cc 559 spin_lock_irq(&conf->device_lock);
91c00924
DW
560 for (i = sh->disks; i--; ) {
561 struct r5dev *dev = &sh->dev[i];
91c00924
DW
562
563 /* acknowledge completion of a biofill operation */
e4d84909
DW
564 /* and check if we need to reply to a read request,
565 * new R5_Wantfill requests are held off until
83de75cc 566 * !STRIPE_BIOFILL_RUN
e4d84909
DW
567 */
568 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 569 struct bio *rbi, *rbi2;
91c00924 570
91c00924
DW
571 BUG_ON(!dev->read);
572 rbi = dev->read;
573 dev->read = NULL;
574 while (rbi && rbi->bi_sector <
575 dev->sector + STRIPE_SECTORS) {
576 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 577 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
578 rbi->bi_next = return_bi;
579 return_bi = rbi;
580 }
91c00924
DW
581 rbi = rbi2;
582 }
583 }
584 }
83de75cc
DW
585 spin_unlock_irq(&conf->device_lock);
586 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
587
588 return_io(return_bi);
589
e4d84909 590 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
591 release_stripe(sh);
592}
593
594static void ops_run_biofill(struct stripe_head *sh)
595{
596 struct dma_async_tx_descriptor *tx = NULL;
597 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 598 struct async_submit_ctl submit;
91c00924
DW
599 int i;
600
e46b272b 601 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
602 (unsigned long long)sh->sector);
603
604 for (i = sh->disks; i--; ) {
605 struct r5dev *dev = &sh->dev[i];
606 if (test_bit(R5_Wantfill, &dev->flags)) {
607 struct bio *rbi;
608 spin_lock_irq(&conf->device_lock);
609 dev->read = rbi = dev->toread;
610 dev->toread = NULL;
611 spin_unlock_irq(&conf->device_lock);
612 while (rbi && rbi->bi_sector <
613 dev->sector + STRIPE_SECTORS) {
614 tx = async_copy_data(0, rbi, dev->page,
615 dev->sector, tx);
616 rbi = r5_next_bio(rbi, dev->sector);
617 }
618 }
619 }
620
621 atomic_inc(&sh->count);
a08abd8c
DW
622 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
623 async_trigger_callback(&submit);
91c00924
DW
624}
625
4e7d2c0a
DW
626static void mark_target_uptodate(struct stripe_head *sh, int target)
627{
628 struct r5dev *tgt;
629
630 if (target < 0)
631 return;
632
633 tgt = &sh->dev[target];
634 set_bit(R5_UPTODATE, &tgt->flags);
635 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
636 clear_bit(R5_Wantcompute, &tgt->flags);
637}
638
ac6b53b6 639static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
640{
641 struct stripe_head *sh = stripe_head_ref;
91c00924 642
e46b272b 643 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
644 (unsigned long long)sh->sector);
645
ac6b53b6 646 /* mark the computed target(s) as uptodate */
4e7d2c0a 647 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 648 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 649
ecc65c9b
DW
650 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
651 if (sh->check_state == check_state_compute_run)
652 sh->check_state = check_state_compute_result;
91c00924
DW
653 set_bit(STRIPE_HANDLE, &sh->state);
654 release_stripe(sh);
655}
656
d6f38f31
DW
657/* return a pointer to the address conversion region of the scribble buffer */
658static addr_conv_t *to_addr_conv(struct stripe_head *sh,
659 struct raid5_percpu *percpu)
660{
661 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
662}
663
664static struct dma_async_tx_descriptor *
665ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 666{
91c00924 667 int disks = sh->disks;
d6f38f31 668 struct page **xor_srcs = percpu->scribble;
91c00924
DW
669 int target = sh->ops.target;
670 struct r5dev *tgt = &sh->dev[target];
671 struct page *xor_dest = tgt->page;
672 int count = 0;
673 struct dma_async_tx_descriptor *tx;
a08abd8c 674 struct async_submit_ctl submit;
91c00924
DW
675 int i;
676
677 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 678 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
679 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
680
681 for (i = disks; i--; )
682 if (i != target)
683 xor_srcs[count++] = sh->dev[i].page;
684
685 atomic_inc(&sh->count);
686
a08abd8c 687 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 688 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 689 if (unlikely(count == 1))
a08abd8c 690 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 691 else
a08abd8c 692 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 693
91c00924
DW
694 return tx;
695}
696
ac6b53b6
DW
697/* set_syndrome_sources - populate source buffers for gen_syndrome
698 * @srcs - (struct page *) array of size sh->disks
699 * @sh - stripe_head to parse
700 *
701 * Populates srcs in proper layout order for the stripe and returns the
702 * 'count' of sources to be used in a call to async_gen_syndrome. The P
703 * destination buffer is recorded in srcs[count] and the Q destination
704 * is recorded in srcs[count+1]].
705 */
706static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
707{
708 int disks = sh->disks;
709 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
710 int d0_idx = raid6_d0(sh);
711 int count;
712 int i;
713
714 for (i = 0; i < disks; i++)
715 srcs[i] = (void *)raid6_empty_zero_page;
716
717 count = 0;
718 i = d0_idx;
719 do {
720 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
721
722 srcs[slot] = sh->dev[i].page;
723 i = raid6_next_disk(i, disks);
724 } while (i != d0_idx);
725 BUG_ON(count != syndrome_disks);
726
727 return count;
728}
729
730static struct dma_async_tx_descriptor *
731ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
732{
733 int disks = sh->disks;
734 struct page **blocks = percpu->scribble;
735 int target;
736 int qd_idx = sh->qd_idx;
737 struct dma_async_tx_descriptor *tx;
738 struct async_submit_ctl submit;
739 struct r5dev *tgt;
740 struct page *dest;
741 int i;
742 int count;
743
744 if (sh->ops.target < 0)
745 target = sh->ops.target2;
746 else if (sh->ops.target2 < 0)
747 target = sh->ops.target;
748 else
749 /* we should only have one valid target */
750 BUG();
751 BUG_ON(target < 0);
752 pr_debug("%s: stripe %llu block: %d\n",
753 __func__, (unsigned long long)sh->sector, target);
754
755 tgt = &sh->dev[target];
756 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
757 dest = tgt->page;
758
759 atomic_inc(&sh->count);
760
761 if (target == qd_idx) {
762 count = set_syndrome_sources(blocks, sh);
763 blocks[count] = NULL; /* regenerating p is not necessary */
764 BUG_ON(blocks[count+1] != dest); /* q should already be set */
765 init_async_submit(&submit, 0, NULL, ops_complete_compute, sh,
766 to_addr_conv(sh, percpu));
767 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
768 } else {
769 /* Compute any data- or p-drive using XOR */
770 count = 0;
771 for (i = disks; i-- ; ) {
772 if (i == target || i == qd_idx)
773 continue;
774 blocks[count++] = sh->dev[i].page;
775 }
776
777 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
778 ops_complete_compute, sh,
779 to_addr_conv(sh, percpu));
780 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
781 }
782
783 return tx;
784}
785
786static struct dma_async_tx_descriptor *
787ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
788{
789 int i, count, disks = sh->disks;
790 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
791 int d0_idx = raid6_d0(sh);
792 int faila = -1, failb = -1;
793 int target = sh->ops.target;
794 int target2 = sh->ops.target2;
795 struct r5dev *tgt = &sh->dev[target];
796 struct r5dev *tgt2 = &sh->dev[target2];
797 struct dma_async_tx_descriptor *tx;
798 struct page **blocks = percpu->scribble;
799 struct async_submit_ctl submit;
800
801 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
802 __func__, (unsigned long long)sh->sector, target, target2);
803 BUG_ON(target < 0 || target2 < 0);
804 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
805 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
806
807 /* we need to open-code set_syndrome_sources to handle to the
808 * slot number conversion for 'faila' and 'failb'
809 */
810 for (i = 0; i < disks ; i++)
811 blocks[i] = (void *)raid6_empty_zero_page;
812 count = 0;
813 i = d0_idx;
814 do {
815 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
816
817 blocks[slot] = sh->dev[i].page;
818
819 if (i == target)
820 faila = slot;
821 if (i == target2)
822 failb = slot;
823 i = raid6_next_disk(i, disks);
824 } while (i != d0_idx);
825 BUG_ON(count != syndrome_disks);
826
827 BUG_ON(faila == failb);
828 if (failb < faila)
829 swap(faila, failb);
830 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
831 __func__, (unsigned long long)sh->sector, faila, failb);
832
833 atomic_inc(&sh->count);
834
835 if (failb == syndrome_disks+1) {
836 /* Q disk is one of the missing disks */
837 if (faila == syndrome_disks) {
838 /* Missing P+Q, just recompute */
839 init_async_submit(&submit, 0, NULL, ops_complete_compute,
840 sh, to_addr_conv(sh, percpu));
841 return async_gen_syndrome(blocks, 0, count+2,
842 STRIPE_SIZE, &submit);
843 } else {
844 struct page *dest;
845 int data_target;
846 int qd_idx = sh->qd_idx;
847
848 /* Missing D+Q: recompute D from P, then recompute Q */
849 if (target == qd_idx)
850 data_target = target2;
851 else
852 data_target = target;
853
854 count = 0;
855 for (i = disks; i-- ; ) {
856 if (i == data_target || i == qd_idx)
857 continue;
858 blocks[count++] = sh->dev[i].page;
859 }
860 dest = sh->dev[data_target].page;
861 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
862 NULL, NULL, to_addr_conv(sh, percpu));
863 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
864 &submit);
865
866 count = set_syndrome_sources(blocks, sh);
867 init_async_submit(&submit, 0, tx, ops_complete_compute,
868 sh, to_addr_conv(sh, percpu));
869 return async_gen_syndrome(blocks, 0, count+2,
870 STRIPE_SIZE, &submit);
871 }
872 }
873
874 init_async_submit(&submit, 0, NULL, ops_complete_compute, sh,
875 to_addr_conv(sh, percpu));
876 if (failb == syndrome_disks) {
877 /* We're missing D+P. */
878 return async_raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE,
879 faila, blocks, &submit);
880 } else {
881 /* We're missing D+D. */
882 return async_raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE,
883 faila, failb, blocks, &submit);
884 }
885}
886
887
91c00924
DW
888static void ops_complete_prexor(void *stripe_head_ref)
889{
890 struct stripe_head *sh = stripe_head_ref;
891
e46b272b 892 pr_debug("%s: stripe %llu\n", __func__,
91c00924 893 (unsigned long long)sh->sector);
91c00924
DW
894}
895
896static struct dma_async_tx_descriptor *
d6f38f31
DW
897ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
898 struct dma_async_tx_descriptor *tx)
91c00924 899{
91c00924 900 int disks = sh->disks;
d6f38f31 901 struct page **xor_srcs = percpu->scribble;
91c00924 902 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 903 struct async_submit_ctl submit;
91c00924
DW
904
905 /* existing parity data subtracted */
906 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
907
e46b272b 908 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
909 (unsigned long long)sh->sector);
910
911 for (i = disks; i--; ) {
912 struct r5dev *dev = &sh->dev[i];
913 /* Only process blocks that are known to be uptodate */
d8ee0728 914 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
915 xor_srcs[count++] = dev->page;
916 }
917
a08abd8c 918 init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 919 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 920 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
921
922 return tx;
923}
924
925static struct dma_async_tx_descriptor *
d8ee0728 926ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
927{
928 int disks = sh->disks;
d8ee0728 929 int i;
91c00924 930
e46b272b 931 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
932 (unsigned long long)sh->sector);
933
934 for (i = disks; i--; ) {
935 struct r5dev *dev = &sh->dev[i];
936 struct bio *chosen;
91c00924 937
d8ee0728 938 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
939 struct bio *wbi;
940
941 spin_lock(&sh->lock);
942 chosen = dev->towrite;
943 dev->towrite = NULL;
944 BUG_ON(dev->written);
945 wbi = dev->written = chosen;
946 spin_unlock(&sh->lock);
947
948 while (wbi && wbi->bi_sector <
949 dev->sector + STRIPE_SECTORS) {
950 tx = async_copy_data(1, wbi, dev->page,
951 dev->sector, tx);
952 wbi = r5_next_bio(wbi, dev->sector);
953 }
954 }
955 }
956
957 return tx;
958}
959
ac6b53b6 960static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
961{
962 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
963 int disks = sh->disks;
964 int pd_idx = sh->pd_idx;
965 int qd_idx = sh->qd_idx;
966 int i;
91c00924 967
e46b272b 968 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
969 (unsigned long long)sh->sector);
970
971 for (i = disks; i--; ) {
972 struct r5dev *dev = &sh->dev[i];
ac6b53b6
DW
973
974 if (dev->written || i == pd_idx || i == qd_idx)
91c00924
DW
975 set_bit(R5_UPTODATE, &dev->flags);
976 }
977
d8ee0728
DW
978 if (sh->reconstruct_state == reconstruct_state_drain_run)
979 sh->reconstruct_state = reconstruct_state_drain_result;
980 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
981 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
982 else {
983 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
984 sh->reconstruct_state = reconstruct_state_result;
985 }
91c00924
DW
986
987 set_bit(STRIPE_HANDLE, &sh->state);
988 release_stripe(sh);
989}
990
991static void
ac6b53b6
DW
992ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
993 struct dma_async_tx_descriptor *tx)
91c00924 994{
91c00924 995 int disks = sh->disks;
d6f38f31 996 struct page **xor_srcs = percpu->scribble;
a08abd8c 997 struct async_submit_ctl submit;
91c00924
DW
998 int count = 0, pd_idx = sh->pd_idx, i;
999 struct page *xor_dest;
d8ee0728 1000 int prexor = 0;
91c00924 1001 unsigned long flags;
91c00924 1002
e46b272b 1003 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1004 (unsigned long long)sh->sector);
1005
1006 /* check if prexor is active which means only process blocks
1007 * that are part of a read-modify-write (written)
1008 */
d8ee0728
DW
1009 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1010 prexor = 1;
91c00924
DW
1011 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1012 for (i = disks; i--; ) {
1013 struct r5dev *dev = &sh->dev[i];
1014 if (dev->written)
1015 xor_srcs[count++] = dev->page;
1016 }
1017 } else {
1018 xor_dest = sh->dev[pd_idx].page;
1019 for (i = disks; i--; ) {
1020 struct r5dev *dev = &sh->dev[i];
1021 if (i != pd_idx)
1022 xor_srcs[count++] = dev->page;
1023 }
1024 }
1025
91c00924
DW
1026 /* 1/ if we prexor'd then the dest is reused as a source
1027 * 2/ if we did not prexor then we are redoing the parity
1028 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1029 * for the synchronous xor case
1030 */
88ba2aa5 1031 flags = ASYNC_TX_ACK |
91c00924
DW
1032 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1033
1034 atomic_inc(&sh->count);
1035
ac6b53b6 1036 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1037 to_addr_conv(sh, percpu));
a08abd8c
DW
1038 if (unlikely(count == 1))
1039 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1040 else
1041 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1042}
1043
ac6b53b6
DW
1044static void
1045ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1046 struct dma_async_tx_descriptor *tx)
1047{
1048 struct async_submit_ctl submit;
1049 struct page **blocks = percpu->scribble;
1050 int count;
1051
1052 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1053
1054 count = set_syndrome_sources(blocks, sh);
1055
1056 atomic_inc(&sh->count);
1057
1058 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1059 sh, to_addr_conv(sh, percpu));
1060 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1061}
1062
91c00924
DW
1063static void ops_complete_check(void *stripe_head_ref)
1064{
1065 struct stripe_head *sh = stripe_head_ref;
91c00924 1066
e46b272b 1067 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1068 (unsigned long long)sh->sector);
1069
ecc65c9b 1070 sh->check_state = check_state_check_result;
91c00924
DW
1071 set_bit(STRIPE_HANDLE, &sh->state);
1072 release_stripe(sh);
1073}
1074
ac6b53b6 1075static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1076{
91c00924 1077 int disks = sh->disks;
ac6b53b6
DW
1078 int pd_idx = sh->pd_idx;
1079 int qd_idx = sh->qd_idx;
1080 struct page *xor_dest;
d6f38f31 1081 struct page **xor_srcs = percpu->scribble;
91c00924 1082 struct dma_async_tx_descriptor *tx;
a08abd8c 1083 struct async_submit_ctl submit;
ac6b53b6
DW
1084 int count;
1085 int i;
91c00924 1086
e46b272b 1087 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1088 (unsigned long long)sh->sector);
1089
ac6b53b6
DW
1090 count = 0;
1091 xor_dest = sh->dev[pd_idx].page;
1092 xor_srcs[count++] = xor_dest;
91c00924 1093 for (i = disks; i--; ) {
ac6b53b6
DW
1094 if (i == pd_idx || i == qd_idx)
1095 continue;
1096 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1097 }
1098
d6f38f31
DW
1099 init_async_submit(&submit, 0, NULL, NULL, NULL,
1100 to_addr_conv(sh, percpu));
099f53cb 1101 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1102 &sh->ops.zero_sum_result, &submit);
91c00924 1103
91c00924 1104 atomic_inc(&sh->count);
a08abd8c
DW
1105 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1106 tx = async_trigger_callback(&submit);
91c00924
DW
1107}
1108
ac6b53b6
DW
1109static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1110{
1111 struct page **srcs = percpu->scribble;
1112 struct async_submit_ctl submit;
1113 int count;
1114
1115 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1116 (unsigned long long)sh->sector, checkp);
1117
1118 count = set_syndrome_sources(srcs, sh);
1119 if (!checkp)
1120 srcs[count] = NULL;
1121
1122 atomic_inc(&sh->count);
1123 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1124 sh, to_addr_conv(sh, percpu));
1125 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1126 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1127}
1128
1129static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1130{
1131 int overlap_clear = 0, i, disks = sh->disks;
1132 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1133 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1134 int level = conf->level;
d6f38f31
DW
1135 struct raid5_percpu *percpu;
1136 unsigned long cpu;
91c00924 1137
d6f38f31
DW
1138 cpu = get_cpu();
1139 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1140 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1141 ops_run_biofill(sh);
1142 overlap_clear++;
1143 }
1144
7b3a871e 1145 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1146 if (level < 6)
1147 tx = ops_run_compute5(sh, percpu);
1148 else {
1149 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1150 tx = ops_run_compute6_1(sh, percpu);
1151 else
1152 tx = ops_run_compute6_2(sh, percpu);
1153 }
1154 /* terminate the chain if reconstruct is not set to be run */
1155 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1156 async_tx_ack(tx);
1157 }
91c00924 1158
600aa109 1159 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1160 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1161
600aa109 1162 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1163 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1164 overlap_clear++;
1165 }
1166
ac6b53b6
DW
1167 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1168 if (level < 6)
1169 ops_run_reconstruct5(sh, percpu, tx);
1170 else
1171 ops_run_reconstruct6(sh, percpu, tx);
1172 }
91c00924 1173
ac6b53b6
DW
1174 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1175 if (sh->check_state == check_state_run)
1176 ops_run_check_p(sh, percpu);
1177 else if (sh->check_state == check_state_run_q)
1178 ops_run_check_pq(sh, percpu, 0);
1179 else if (sh->check_state == check_state_run_pq)
1180 ops_run_check_pq(sh, percpu, 1);
1181 else
1182 BUG();
1183 }
91c00924 1184
91c00924
DW
1185 if (overlap_clear)
1186 for (i = disks; i--; ) {
1187 struct r5dev *dev = &sh->dev[i];
1188 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1189 wake_up(&sh->raid_conf->wait_for_overlap);
1190 }
d6f38f31 1191 put_cpu();
91c00924
DW
1192}
1193
3f294f4f 1194static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1195{
1196 struct stripe_head *sh;
3f294f4f
N
1197 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1198 if (!sh)
1199 return 0;
1200 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
1201 sh->raid_conf = conf;
1202 spin_lock_init(&sh->lock);
1203
1204 if (grow_buffers(sh, conf->raid_disks)) {
1205 shrink_buffers(sh, conf->raid_disks);
1206 kmem_cache_free(conf->slab_cache, sh);
1207 return 0;
1208 }
7ecaa1e6 1209 sh->disks = conf->raid_disks;
3f294f4f
N
1210 /* we just created an active stripe so... */
1211 atomic_set(&sh->count, 1);
1212 atomic_inc(&conf->active_stripes);
1213 INIT_LIST_HEAD(&sh->lru);
1214 release_stripe(sh);
1215 return 1;
1216}
1217
1218static int grow_stripes(raid5_conf_t *conf, int num)
1219{
e18b890b 1220 struct kmem_cache *sc;
1da177e4
LT
1221 int devs = conf->raid_disks;
1222
245f46c2
N
1223 sprintf(conf->cache_name[0],
1224 "raid%d-%s", conf->level, mdname(conf->mddev));
1225 sprintf(conf->cache_name[1],
1226 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
1227 conf->active_name = 0;
1228 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1229 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1230 0, 0, NULL);
1da177e4
LT
1231 if (!sc)
1232 return 1;
1233 conf->slab_cache = sc;
ad01c9e3 1234 conf->pool_size = devs;
16a53ecc 1235 while (num--)
3f294f4f 1236 if (!grow_one_stripe(conf))
1da177e4 1237 return 1;
1da177e4
LT
1238 return 0;
1239}
29269553 1240
d6f38f31
DW
1241/**
1242 * scribble_len - return the required size of the scribble region
1243 * @num - total number of disks in the array
1244 *
1245 * The size must be enough to contain:
1246 * 1/ a struct page pointer for each device in the array +2
1247 * 2/ room to convert each entry in (1) to its corresponding dma
1248 * (dma_map_page()) or page (page_address()) address.
1249 *
1250 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1251 * calculate over all devices (not just the data blocks), using zeros in place
1252 * of the P and Q blocks.
1253 */
1254static size_t scribble_len(int num)
1255{
1256 size_t len;
1257
1258 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1259
1260 return len;
1261}
1262
ad01c9e3
N
1263static int resize_stripes(raid5_conf_t *conf, int newsize)
1264{
1265 /* Make all the stripes able to hold 'newsize' devices.
1266 * New slots in each stripe get 'page' set to a new page.
1267 *
1268 * This happens in stages:
1269 * 1/ create a new kmem_cache and allocate the required number of
1270 * stripe_heads.
1271 * 2/ gather all the old stripe_heads and tranfer the pages across
1272 * to the new stripe_heads. This will have the side effect of
1273 * freezing the array as once all stripe_heads have been collected,
1274 * no IO will be possible. Old stripe heads are freed once their
1275 * pages have been transferred over, and the old kmem_cache is
1276 * freed when all stripes are done.
1277 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1278 * we simple return a failre status - no need to clean anything up.
1279 * 4/ allocate new pages for the new slots in the new stripe_heads.
1280 * If this fails, we don't bother trying the shrink the
1281 * stripe_heads down again, we just leave them as they are.
1282 * As each stripe_head is processed the new one is released into
1283 * active service.
1284 *
1285 * Once step2 is started, we cannot afford to wait for a write,
1286 * so we use GFP_NOIO allocations.
1287 */
1288 struct stripe_head *osh, *nsh;
1289 LIST_HEAD(newstripes);
1290 struct disk_info *ndisks;
d6f38f31 1291 unsigned long cpu;
b5470dc5 1292 int err;
e18b890b 1293 struct kmem_cache *sc;
ad01c9e3
N
1294 int i;
1295
1296 if (newsize <= conf->pool_size)
1297 return 0; /* never bother to shrink */
1298
b5470dc5
DW
1299 err = md_allow_write(conf->mddev);
1300 if (err)
1301 return err;
2a2275d6 1302
ad01c9e3
N
1303 /* Step 1 */
1304 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1305 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1306 0, 0, NULL);
ad01c9e3
N
1307 if (!sc)
1308 return -ENOMEM;
1309
1310 for (i = conf->max_nr_stripes; i; i--) {
1311 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1312 if (!nsh)
1313 break;
1314
1315 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1316
1317 nsh->raid_conf = conf;
1318 spin_lock_init(&nsh->lock);
1319
1320 list_add(&nsh->lru, &newstripes);
1321 }
1322 if (i) {
1323 /* didn't get enough, give up */
1324 while (!list_empty(&newstripes)) {
1325 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1326 list_del(&nsh->lru);
1327 kmem_cache_free(sc, nsh);
1328 }
1329 kmem_cache_destroy(sc);
1330 return -ENOMEM;
1331 }
1332 /* Step 2 - Must use GFP_NOIO now.
1333 * OK, we have enough stripes, start collecting inactive
1334 * stripes and copying them over
1335 */
1336 list_for_each_entry(nsh, &newstripes, lru) {
1337 spin_lock_irq(&conf->device_lock);
1338 wait_event_lock_irq(conf->wait_for_stripe,
1339 !list_empty(&conf->inactive_list),
1340 conf->device_lock,
b3b46be3 1341 unplug_slaves(conf->mddev)
ad01c9e3
N
1342 );
1343 osh = get_free_stripe(conf);
1344 spin_unlock_irq(&conf->device_lock);
1345 atomic_set(&nsh->count, 1);
1346 for(i=0; i<conf->pool_size; i++)
1347 nsh->dev[i].page = osh->dev[i].page;
1348 for( ; i<newsize; i++)
1349 nsh->dev[i].page = NULL;
1350 kmem_cache_free(conf->slab_cache, osh);
1351 }
1352 kmem_cache_destroy(conf->slab_cache);
1353
1354 /* Step 3.
1355 * At this point, we are holding all the stripes so the array
1356 * is completely stalled, so now is a good time to resize
d6f38f31 1357 * conf->disks and the scribble region
ad01c9e3
N
1358 */
1359 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1360 if (ndisks) {
1361 for (i=0; i<conf->raid_disks; i++)
1362 ndisks[i] = conf->disks[i];
1363 kfree(conf->disks);
1364 conf->disks = ndisks;
1365 } else
1366 err = -ENOMEM;
1367
d6f38f31
DW
1368 get_online_cpus();
1369 conf->scribble_len = scribble_len(newsize);
1370 for_each_present_cpu(cpu) {
1371 struct raid5_percpu *percpu;
1372 void *scribble;
1373
1374 percpu = per_cpu_ptr(conf->percpu, cpu);
1375 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1376
1377 if (scribble) {
1378 kfree(percpu->scribble);
1379 percpu->scribble = scribble;
1380 } else {
1381 err = -ENOMEM;
1382 break;
1383 }
1384 }
1385 put_online_cpus();
1386
ad01c9e3
N
1387 /* Step 4, return new stripes to service */
1388 while(!list_empty(&newstripes)) {
1389 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1390 list_del_init(&nsh->lru);
d6f38f31 1391
ad01c9e3
N
1392 for (i=conf->raid_disks; i < newsize; i++)
1393 if (nsh->dev[i].page == NULL) {
1394 struct page *p = alloc_page(GFP_NOIO);
1395 nsh->dev[i].page = p;
1396 if (!p)
1397 err = -ENOMEM;
1398 }
1399 release_stripe(nsh);
1400 }
1401 /* critical section pass, GFP_NOIO no longer needed */
1402
1403 conf->slab_cache = sc;
1404 conf->active_name = 1-conf->active_name;
1405 conf->pool_size = newsize;
1406 return err;
1407}
1da177e4 1408
3f294f4f 1409static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1410{
1411 struct stripe_head *sh;
1412
3f294f4f
N
1413 spin_lock_irq(&conf->device_lock);
1414 sh = get_free_stripe(conf);
1415 spin_unlock_irq(&conf->device_lock);
1416 if (!sh)
1417 return 0;
78bafebd 1418 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1419 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1420 kmem_cache_free(conf->slab_cache, sh);
1421 atomic_dec(&conf->active_stripes);
1422 return 1;
1423}
1424
1425static void shrink_stripes(raid5_conf_t *conf)
1426{
1427 while (drop_one_stripe(conf))
1428 ;
1429
29fc7e3e
N
1430 if (conf->slab_cache)
1431 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1432 conf->slab_cache = NULL;
1433}
1434
6712ecf8 1435static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1436{
99c0fb5f 1437 struct stripe_head *sh = bi->bi_private;
1da177e4 1438 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1439 int disks = sh->disks, i;
1da177e4 1440 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1441 char b[BDEVNAME_SIZE];
1442 mdk_rdev_t *rdev;
1da177e4 1443
1da177e4
LT
1444
1445 for (i=0 ; i<disks; i++)
1446 if (bi == &sh->dev[i].req)
1447 break;
1448
45b4233c
DW
1449 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1450 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1451 uptodate);
1452 if (i == disks) {
1453 BUG();
6712ecf8 1454 return;
1da177e4
LT
1455 }
1456
1457 if (uptodate) {
1da177e4 1458 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1459 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1460 rdev = conf->disks[i].rdev;
6be9d494
BS
1461 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1462 " (%lu sectors at %llu on %s)\n",
1463 mdname(conf->mddev), STRIPE_SECTORS,
1464 (unsigned long long)(sh->sector
1465 + rdev->data_offset),
1466 bdevname(rdev->bdev, b));
4e5314b5
N
1467 clear_bit(R5_ReadError, &sh->dev[i].flags);
1468 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1469 }
ba22dcbf
N
1470 if (atomic_read(&conf->disks[i].rdev->read_errors))
1471 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1472 } else {
d6950432 1473 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1474 int retry = 0;
d6950432
N
1475 rdev = conf->disks[i].rdev;
1476
1da177e4 1477 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1478 atomic_inc(&rdev->read_errors);
ba22dcbf 1479 if (conf->mddev->degraded)
6be9d494
BS
1480 printk_rl(KERN_WARNING
1481 "raid5:%s: read error not correctable "
1482 "(sector %llu on %s).\n",
1483 mdname(conf->mddev),
1484 (unsigned long long)(sh->sector
1485 + rdev->data_offset),
1486 bdn);
ba22dcbf 1487 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1488 /* Oh, no!!! */
6be9d494
BS
1489 printk_rl(KERN_WARNING
1490 "raid5:%s: read error NOT corrected!! "
1491 "(sector %llu on %s).\n",
1492 mdname(conf->mddev),
1493 (unsigned long long)(sh->sector
1494 + rdev->data_offset),
1495 bdn);
d6950432 1496 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1497 > conf->max_nr_stripes)
14f8d26b 1498 printk(KERN_WARNING
d6950432
N
1499 "raid5:%s: Too many read errors, failing device %s.\n",
1500 mdname(conf->mddev), bdn);
ba22dcbf
N
1501 else
1502 retry = 1;
1503 if (retry)
1504 set_bit(R5_ReadError, &sh->dev[i].flags);
1505 else {
4e5314b5
N
1506 clear_bit(R5_ReadError, &sh->dev[i].flags);
1507 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1508 md_error(conf->mddev, rdev);
ba22dcbf 1509 }
1da177e4
LT
1510 }
1511 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1512 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1513 set_bit(STRIPE_HANDLE, &sh->state);
1514 release_stripe(sh);
1da177e4
LT
1515}
1516
d710e138 1517static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1518{
99c0fb5f 1519 struct stripe_head *sh = bi->bi_private;
1da177e4 1520 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1521 int disks = sh->disks, i;
1da177e4
LT
1522 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1523
1da177e4
LT
1524 for (i=0 ; i<disks; i++)
1525 if (bi == &sh->dev[i].req)
1526 break;
1527
45b4233c 1528 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1529 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1530 uptodate);
1531 if (i == disks) {
1532 BUG();
6712ecf8 1533 return;
1da177e4
LT
1534 }
1535
1da177e4
LT
1536 if (!uptodate)
1537 md_error(conf->mddev, conf->disks[i].rdev);
1538
1539 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1540
1541 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1542 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1543 release_stripe(sh);
1da177e4
LT
1544}
1545
1546
784052ec 1547static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1548
784052ec 1549static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1550{
1551 struct r5dev *dev = &sh->dev[i];
1552
1553 bio_init(&dev->req);
1554 dev->req.bi_io_vec = &dev->vec;
1555 dev->req.bi_vcnt++;
1556 dev->req.bi_max_vecs++;
1557 dev->vec.bv_page = dev->page;
1558 dev->vec.bv_len = STRIPE_SIZE;
1559 dev->vec.bv_offset = 0;
1560
1561 dev->req.bi_sector = sh->sector;
1562 dev->req.bi_private = sh;
1563
1564 dev->flags = 0;
784052ec 1565 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1566}
1567
1568static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1569{
1570 char b[BDEVNAME_SIZE];
1571 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1572 pr_debug("raid5: error called\n");
1da177e4 1573
b2d444d7 1574 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1575 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1576 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1577 unsigned long flags;
1578 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1579 mddev->degraded++;
c04be0aa 1580 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1581 /*
1582 * if recovery was running, make sure it aborts.
1583 */
dfc70645 1584 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1585 }
b2d444d7 1586 set_bit(Faulty, &rdev->flags);
d710e138
N
1587 printk(KERN_ALERT
1588 "raid5: Disk failure on %s, disabling device.\n"
1589 "raid5: Operation continuing on %d devices.\n",
1590 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1591 }
16a53ecc 1592}
1da177e4
LT
1593
1594/*
1595 * Input: a 'big' sector number,
1596 * Output: index of the data and parity disk, and the sector # in them.
1597 */
112bf897 1598static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1599 int previous, int *dd_idx,
1600 struct stripe_head *sh)
1da177e4
LT
1601{
1602 long stripe;
1603 unsigned long chunk_number;
1604 unsigned int chunk_offset;
911d4ee8 1605 int pd_idx, qd_idx;
67cc2b81 1606 int ddf_layout = 0;
1da177e4 1607 sector_t new_sector;
e183eaed
N
1608 int algorithm = previous ? conf->prev_algo
1609 : conf->algorithm;
784052ec
N
1610 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1611 : (conf->chunk_size >> 9);
112bf897
N
1612 int raid_disks = previous ? conf->previous_raid_disks
1613 : conf->raid_disks;
1614 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1615
1616 /* First compute the information on this sector */
1617
1618 /*
1619 * Compute the chunk number and the sector offset inside the chunk
1620 */
1621 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1622 chunk_number = r_sector;
1623 BUG_ON(r_sector != chunk_number);
1624
1625 /*
1626 * Compute the stripe number
1627 */
1628 stripe = chunk_number / data_disks;
1629
1630 /*
1631 * Compute the data disk and parity disk indexes inside the stripe
1632 */
1633 *dd_idx = chunk_number % data_disks;
1634
1635 /*
1636 * Select the parity disk based on the user selected algorithm.
1637 */
911d4ee8 1638 pd_idx = qd_idx = ~0;
16a53ecc
N
1639 switch(conf->level) {
1640 case 4:
911d4ee8 1641 pd_idx = data_disks;
16a53ecc
N
1642 break;
1643 case 5:
e183eaed 1644 switch (algorithm) {
1da177e4 1645 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1646 pd_idx = data_disks - stripe % raid_disks;
1647 if (*dd_idx >= pd_idx)
1da177e4
LT
1648 (*dd_idx)++;
1649 break;
1650 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1651 pd_idx = stripe % raid_disks;
1652 if (*dd_idx >= pd_idx)
1da177e4
LT
1653 (*dd_idx)++;
1654 break;
1655 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1656 pd_idx = data_disks - stripe % raid_disks;
1657 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1658 break;
1659 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1660 pd_idx = stripe % raid_disks;
1661 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1662 break;
99c0fb5f
N
1663 case ALGORITHM_PARITY_0:
1664 pd_idx = 0;
1665 (*dd_idx)++;
1666 break;
1667 case ALGORITHM_PARITY_N:
1668 pd_idx = data_disks;
1669 break;
1da177e4 1670 default:
14f8d26b 1671 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1672 algorithm);
99c0fb5f 1673 BUG();
16a53ecc
N
1674 }
1675 break;
1676 case 6:
1677
e183eaed 1678 switch (algorithm) {
16a53ecc 1679 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1680 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1681 qd_idx = pd_idx + 1;
1682 if (pd_idx == raid_disks-1) {
99c0fb5f 1683 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1684 qd_idx = 0;
1685 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1686 (*dd_idx) += 2; /* D D P Q D */
1687 break;
1688 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1689 pd_idx = stripe % raid_disks;
1690 qd_idx = pd_idx + 1;
1691 if (pd_idx == raid_disks-1) {
99c0fb5f 1692 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1693 qd_idx = 0;
1694 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1695 (*dd_idx) += 2; /* D D P Q D */
1696 break;
1697 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1698 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1699 qd_idx = (pd_idx + 1) % raid_disks;
1700 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1701 break;
1702 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1703 pd_idx = stripe % raid_disks;
1704 qd_idx = (pd_idx + 1) % raid_disks;
1705 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1706 break;
99c0fb5f
N
1707
1708 case ALGORITHM_PARITY_0:
1709 pd_idx = 0;
1710 qd_idx = 1;
1711 (*dd_idx) += 2;
1712 break;
1713 case ALGORITHM_PARITY_N:
1714 pd_idx = data_disks;
1715 qd_idx = data_disks + 1;
1716 break;
1717
1718 case ALGORITHM_ROTATING_ZERO_RESTART:
1719 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1720 * of blocks for computing Q is different.
1721 */
1722 pd_idx = stripe % raid_disks;
1723 qd_idx = pd_idx + 1;
1724 if (pd_idx == raid_disks-1) {
1725 (*dd_idx)++; /* Q D D D P */
1726 qd_idx = 0;
1727 } else if (*dd_idx >= pd_idx)
1728 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1729 ddf_layout = 1;
99c0fb5f
N
1730 break;
1731
1732 case ALGORITHM_ROTATING_N_RESTART:
1733 /* Same a left_asymmetric, by first stripe is
1734 * D D D P Q rather than
1735 * Q D D D P
1736 */
1737 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1738 qd_idx = pd_idx + 1;
1739 if (pd_idx == raid_disks-1) {
1740 (*dd_idx)++; /* Q D D D P */
1741 qd_idx = 0;
1742 } else if (*dd_idx >= pd_idx)
1743 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1744 ddf_layout = 1;
99c0fb5f
N
1745 break;
1746
1747 case ALGORITHM_ROTATING_N_CONTINUE:
1748 /* Same as left_symmetric but Q is before P */
1749 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1750 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1751 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1752 ddf_layout = 1;
99c0fb5f
N
1753 break;
1754
1755 case ALGORITHM_LEFT_ASYMMETRIC_6:
1756 /* RAID5 left_asymmetric, with Q on last device */
1757 pd_idx = data_disks - stripe % (raid_disks-1);
1758 if (*dd_idx >= pd_idx)
1759 (*dd_idx)++;
1760 qd_idx = raid_disks - 1;
1761 break;
1762
1763 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1764 pd_idx = stripe % (raid_disks-1);
1765 if (*dd_idx >= pd_idx)
1766 (*dd_idx)++;
1767 qd_idx = raid_disks - 1;
1768 break;
1769
1770 case ALGORITHM_LEFT_SYMMETRIC_6:
1771 pd_idx = data_disks - stripe % (raid_disks-1);
1772 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1773 qd_idx = raid_disks - 1;
1774 break;
1775
1776 case ALGORITHM_RIGHT_SYMMETRIC_6:
1777 pd_idx = stripe % (raid_disks-1);
1778 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1779 qd_idx = raid_disks - 1;
1780 break;
1781
1782 case ALGORITHM_PARITY_0_6:
1783 pd_idx = 0;
1784 (*dd_idx)++;
1785 qd_idx = raid_disks - 1;
1786 break;
1787
1788
16a53ecc 1789 default:
d710e138 1790 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1791 algorithm);
99c0fb5f 1792 BUG();
16a53ecc
N
1793 }
1794 break;
1da177e4
LT
1795 }
1796
911d4ee8
N
1797 if (sh) {
1798 sh->pd_idx = pd_idx;
1799 sh->qd_idx = qd_idx;
67cc2b81 1800 sh->ddf_layout = ddf_layout;
911d4ee8 1801 }
1da177e4
LT
1802 /*
1803 * Finally, compute the new sector number
1804 */
1805 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1806 return new_sector;
1807}
1808
1809
784052ec 1810static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1811{
1812 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1813 int raid_disks = sh->disks;
1814 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1815 sector_t new_sector = sh->sector, check;
784052ec
N
1816 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1817 : (conf->chunk_size >> 9);
e183eaed
N
1818 int algorithm = previous ? conf->prev_algo
1819 : conf->algorithm;
1da177e4
LT
1820 sector_t stripe;
1821 int chunk_offset;
911d4ee8 1822 int chunk_number, dummy1, dd_idx = i;
1da177e4 1823 sector_t r_sector;
911d4ee8 1824 struct stripe_head sh2;
1da177e4 1825
16a53ecc 1826
1da177e4
LT
1827 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1828 stripe = new_sector;
1829 BUG_ON(new_sector != stripe);
1830
16a53ecc
N
1831 if (i == sh->pd_idx)
1832 return 0;
1833 switch(conf->level) {
1834 case 4: break;
1835 case 5:
e183eaed 1836 switch (algorithm) {
1da177e4
LT
1837 case ALGORITHM_LEFT_ASYMMETRIC:
1838 case ALGORITHM_RIGHT_ASYMMETRIC:
1839 if (i > sh->pd_idx)
1840 i--;
1841 break;
1842 case ALGORITHM_LEFT_SYMMETRIC:
1843 case ALGORITHM_RIGHT_SYMMETRIC:
1844 if (i < sh->pd_idx)
1845 i += raid_disks;
1846 i -= (sh->pd_idx + 1);
1847 break;
99c0fb5f
N
1848 case ALGORITHM_PARITY_0:
1849 i -= 1;
1850 break;
1851 case ALGORITHM_PARITY_N:
1852 break;
1da177e4 1853 default:
14f8d26b 1854 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1855 algorithm);
99c0fb5f 1856 BUG();
16a53ecc
N
1857 }
1858 break;
1859 case 6:
d0dabf7e 1860 if (i == sh->qd_idx)
16a53ecc 1861 return 0; /* It is the Q disk */
e183eaed 1862 switch (algorithm) {
16a53ecc
N
1863 case ALGORITHM_LEFT_ASYMMETRIC:
1864 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1865 case ALGORITHM_ROTATING_ZERO_RESTART:
1866 case ALGORITHM_ROTATING_N_RESTART:
1867 if (sh->pd_idx == raid_disks-1)
1868 i--; /* Q D D D P */
16a53ecc
N
1869 else if (i > sh->pd_idx)
1870 i -= 2; /* D D P Q D */
1871 break;
1872 case ALGORITHM_LEFT_SYMMETRIC:
1873 case ALGORITHM_RIGHT_SYMMETRIC:
1874 if (sh->pd_idx == raid_disks-1)
1875 i--; /* Q D D D P */
1876 else {
1877 /* D D P Q D */
1878 if (i < sh->pd_idx)
1879 i += raid_disks;
1880 i -= (sh->pd_idx + 2);
1881 }
1882 break;
99c0fb5f
N
1883 case ALGORITHM_PARITY_0:
1884 i -= 2;
1885 break;
1886 case ALGORITHM_PARITY_N:
1887 break;
1888 case ALGORITHM_ROTATING_N_CONTINUE:
1889 if (sh->pd_idx == 0)
1890 i--; /* P D D D Q */
1891 else if (i > sh->pd_idx)
1892 i -= 2; /* D D Q P D */
1893 break;
1894 case ALGORITHM_LEFT_ASYMMETRIC_6:
1895 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1896 if (i > sh->pd_idx)
1897 i--;
1898 break;
1899 case ALGORITHM_LEFT_SYMMETRIC_6:
1900 case ALGORITHM_RIGHT_SYMMETRIC_6:
1901 if (i < sh->pd_idx)
1902 i += data_disks + 1;
1903 i -= (sh->pd_idx + 1);
1904 break;
1905 case ALGORITHM_PARITY_0_6:
1906 i -= 1;
1907 break;
16a53ecc 1908 default:
d710e138 1909 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1910 algorithm);
99c0fb5f 1911 BUG();
16a53ecc
N
1912 }
1913 break;
1da177e4
LT
1914 }
1915
1916 chunk_number = stripe * data_disks + i;
1917 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1918
112bf897 1919 check = raid5_compute_sector(conf, r_sector,
784052ec 1920 previous, &dummy1, &sh2);
911d4ee8
N
1921 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1922 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1923 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1924 return 0;
1925 }
1926 return r_sector;
1927}
1928
1929
1930
1931/*
16a53ecc
N
1932 * Copy data between a page in the stripe cache, and one or more bion
1933 * The page could align with the middle of the bio, or there could be
1934 * several bion, each with several bio_vecs, which cover part of the page
1935 * Multiple bion are linked together on bi_next. There may be extras
1936 * at the end of this list. We ignore them.
1da177e4
LT
1937 */
1938static void copy_data(int frombio, struct bio *bio,
1939 struct page *page,
1940 sector_t sector)
1941{
1942 char *pa = page_address(page);
1943 struct bio_vec *bvl;
1944 int i;
1945 int page_offset;
1946
1947 if (bio->bi_sector >= sector)
1948 page_offset = (signed)(bio->bi_sector - sector) * 512;
1949 else
1950 page_offset = (signed)(sector - bio->bi_sector) * -512;
1951 bio_for_each_segment(bvl, bio, i) {
1952 int len = bio_iovec_idx(bio,i)->bv_len;
1953 int clen;
1954 int b_offset = 0;
1955
1956 if (page_offset < 0) {
1957 b_offset = -page_offset;
1958 page_offset += b_offset;
1959 len -= b_offset;
1960 }
1961
1962 if (len > 0 && page_offset + len > STRIPE_SIZE)
1963 clen = STRIPE_SIZE - page_offset;
1964 else clen = len;
16a53ecc 1965
1da177e4
LT
1966 if (clen > 0) {
1967 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1968 if (frombio)
1969 memcpy(pa+page_offset, ba+b_offset, clen);
1970 else
1971 memcpy(ba+b_offset, pa+page_offset, clen);
1972 __bio_kunmap_atomic(ba, KM_USER0);
1973 }
1974 if (clen < len) /* hit end of page */
1975 break;
1976 page_offset += len;
1977 }
1978}
1979
9bc89cd8
DW
1980#define check_xor() do { \
1981 if (count == MAX_XOR_BLOCKS) { \
1982 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1983 count = 0; \
1984 } \
1da177e4
LT
1985 } while(0)
1986
16a53ecc
N
1987static void compute_parity6(struct stripe_head *sh, int method)
1988{
bff61975 1989 raid5_conf_t *conf = sh->raid_conf;
d0dabf7e 1990 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
67cc2b81 1991 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
16a53ecc
N
1992 struct bio *chosen;
1993 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1994 void *ptrs[syndrome_disks+2];
16a53ecc 1995
d0dabf7e
N
1996 pd_idx = sh->pd_idx;
1997 qd_idx = sh->qd_idx;
1998 d0_idx = raid6_d0(sh);
16a53ecc 1999
45b4233c 2000 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
2001 (unsigned long long)sh->sector, method);
2002
2003 switch(method) {
2004 case READ_MODIFY_WRITE:
2005 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
2006 case RECONSTRUCT_WRITE:
2007 for (i= disks; i-- ;)
2008 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
2009 chosen = sh->dev[i].towrite;
2010 sh->dev[i].towrite = NULL;
2011
2012 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2013 wake_up(&conf->wait_for_overlap);
2014
52e5f9d1 2015 BUG_ON(sh->dev[i].written);
16a53ecc
N
2016 sh->dev[i].written = chosen;
2017 }
2018 break;
2019 case CHECK_PARITY:
2020 BUG(); /* Not implemented yet */
2021 }
2022
2023 for (i = disks; i--;)
2024 if (sh->dev[i].written) {
2025 sector_t sector = sh->dev[i].sector;
2026 struct bio *wbi = sh->dev[i].written;
2027 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
2028 copy_data(1, wbi, sh->dev[i].page, sector);
2029 wbi = r5_next_bio(wbi, sector);
2030 }
2031
2032 set_bit(R5_LOCKED, &sh->dev[i].flags);
2033 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2034 }
2035
d0dabf7e 2036 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
67cc2b81
N
2037
2038 for (i = 0; i < disks; i++)
2039 ptrs[i] = (void *)raid6_empty_zero_page;
2040
d0dabf7e
N
2041 count = 0;
2042 i = d0_idx;
2043 do {
67cc2b81
N
2044 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
2045
d0dabf7e 2046 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 2047 if (slot < syndrome_disks &&
d0dabf7e
N
2048 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
2049 printk(KERN_ERR "block %d/%d not uptodate "
2050 "on parity calc\n", i, count);
2051 BUG();
2052 }
67cc2b81 2053
d0dabf7e
N
2054 i = raid6_next_disk(i, disks);
2055 } while (i != d0_idx);
67cc2b81 2056 BUG_ON(count != syndrome_disks);
16a53ecc 2057
67cc2b81 2058 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
16a53ecc
N
2059
2060 switch(method) {
2061 case RECONSTRUCT_WRITE:
2062 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2063 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
2064 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2065 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
2066 break;
2067 case UPDATE_PARITY:
2068 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2069 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
2070 break;
2071 }
2072}
2073
2074
2075/* Compute one missing block */
2076static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
2077{
f416885e 2078 int i, count, disks = sh->disks;
9bc89cd8 2079 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
d0dabf7e 2080 int qd_idx = sh->qd_idx;
16a53ecc 2081
45b4233c 2082 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
2083 (unsigned long long)sh->sector, dd_idx);
2084
2085 if ( dd_idx == qd_idx ) {
2086 /* We're actually computing the Q drive */
2087 compute_parity6(sh, UPDATE_PARITY);
2088 } else {
9bc89cd8
DW
2089 dest = page_address(sh->dev[dd_idx].page);
2090 if (!nozero) memset(dest, 0, STRIPE_SIZE);
2091 count = 0;
16a53ecc
N
2092 for (i = disks ; i--; ) {
2093 if (i == dd_idx || i == qd_idx)
2094 continue;
2095 p = page_address(sh->dev[i].page);
2096 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
2097 ptr[count++] = p;
2098 else
2099 printk("compute_block() %d, stripe %llu, %d"
2100 " not present\n", dd_idx,
2101 (unsigned long long)sh->sector, i);
2102
2103 check_xor();
2104 }
9bc89cd8
DW
2105 if (count)
2106 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
2107 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
2108 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
2109 }
2110}
2111
2112/* Compute two missing blocks */
2113static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
2114{
f416885e 2115 int i, count, disks = sh->disks;
67cc2b81 2116 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
d0dabf7e
N
2117 int d0_idx = raid6_d0(sh);
2118 int faila = -1, failb = -1;
2119 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 2120 void *ptrs[syndrome_disks+2];
16a53ecc 2121
67cc2b81
N
2122 for (i = 0; i < disks ; i++)
2123 ptrs[i] = (void *)raid6_empty_zero_page;
d0dabf7e
N
2124 count = 0;
2125 i = d0_idx;
2126 do {
67cc2b81
N
2127 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
2128
d0dabf7e 2129 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 2130
d0dabf7e
N
2131 if (i == dd_idx1)
2132 faila = slot;
2133 if (i == dd_idx2)
2134 failb = slot;
2135 i = raid6_next_disk(i, disks);
2136 } while (i != d0_idx);
67cc2b81 2137 BUG_ON(count != syndrome_disks);
16a53ecc
N
2138
2139 BUG_ON(faila == failb);
2140 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
2141
45b4233c 2142 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
d0dabf7e
N
2143 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
2144 faila, failb);
16a53ecc 2145
67cc2b81 2146 if (failb == syndrome_disks+1) {
16a53ecc 2147 /* Q disk is one of the missing disks */
67cc2b81 2148 if (faila == syndrome_disks) {
16a53ecc
N
2149 /* Missing P+Q, just recompute */
2150 compute_parity6(sh, UPDATE_PARITY);
2151 return;
2152 } else {
2153 /* We're missing D+Q; recompute D from P */
d0dabf7e
N
2154 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
2155 dd_idx2 : dd_idx1),
2156 0);
16a53ecc
N
2157 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
2158 return;
2159 }
2160 }
2161
d0dabf7e 2162 /* We're missing D+P or D+D; */
67cc2b81 2163 if (failb == syndrome_disks) {
d0dabf7e 2164 /* We're missing D+P. */
67cc2b81 2165 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
d0dabf7e
N
2166 } else {
2167 /* We're missing D+D. */
67cc2b81
N
2168 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
2169 ptrs);
16a53ecc 2170 }
d0dabf7e
N
2171
2172 /* Both the above update both missing blocks */
2173 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
2174 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
16a53ecc
N
2175}
2176
600aa109 2177static void
1fe797e6 2178schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2179 int rcw, int expand)
e33129d8
DW
2180{
2181 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
2182
2183 if (rcw) {
2184 /* if we are not expanding this is a proper write request, and
2185 * there will be bios with new data to be drained into the
2186 * stripe cache
2187 */
2188 if (!expand) {
600aa109
DW
2189 sh->reconstruct_state = reconstruct_state_drain_run;
2190 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2191 } else
2192 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2193
ac6b53b6 2194 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2195
2196 for (i = disks; i--; ) {
2197 struct r5dev *dev = &sh->dev[i];
2198
2199 if (dev->towrite) {
2200 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2201 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2202 if (!expand)
2203 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2204 s->locked++;
e33129d8
DW
2205 }
2206 }
600aa109 2207 if (s->locked + 1 == disks)
8b3e6cdc
DW
2208 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2209 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
2210 } else {
2211 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2212 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2213
d8ee0728 2214 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2215 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2216 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2217 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2218
2219 for (i = disks; i--; ) {
2220 struct r5dev *dev = &sh->dev[i];
2221 if (i == pd_idx)
2222 continue;
2223
e33129d8
DW
2224 if (dev->towrite &&
2225 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2226 test_bit(R5_Wantcompute, &dev->flags))) {
2227 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2228 set_bit(R5_LOCKED, &dev->flags);
2229 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2230 s->locked++;
e33129d8
DW
2231 }
2232 }
2233 }
2234
2235 /* keep the parity disk locked while asynchronous operations
2236 * are in flight
2237 */
2238 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2239 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2240 s->locked++;
e33129d8 2241
600aa109 2242 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2243 __func__, (unsigned long long)sh->sector,
600aa109 2244 s->locked, s->ops_request);
e33129d8 2245}
16a53ecc 2246
1da177e4
LT
2247/*
2248 * Each stripe/dev can have one or more bion attached.
16a53ecc 2249 * toread/towrite point to the first in a chain.
1da177e4
LT
2250 * The bi_next chain must be in order.
2251 */
2252static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2253{
2254 struct bio **bip;
2255 raid5_conf_t *conf = sh->raid_conf;
72626685 2256 int firstwrite=0;
1da177e4 2257
45b4233c 2258 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
2259 (unsigned long long)bi->bi_sector,
2260 (unsigned long long)sh->sector);
2261
2262
2263 spin_lock(&sh->lock);
2264 spin_lock_irq(&conf->device_lock);
72626685 2265 if (forwrite) {
1da177e4 2266 bip = &sh->dev[dd_idx].towrite;
72626685
N
2267 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2268 firstwrite = 1;
2269 } else
1da177e4
LT
2270 bip = &sh->dev[dd_idx].toread;
2271 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2272 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2273 goto overlap;
2274 bip = & (*bip)->bi_next;
2275 }
2276 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2277 goto overlap;
2278
78bafebd 2279 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2280 if (*bip)
2281 bi->bi_next = *bip;
2282 *bip = bi;
960e739d 2283 bi->bi_phys_segments++;
1da177e4
LT
2284 spin_unlock_irq(&conf->device_lock);
2285 spin_unlock(&sh->lock);
2286
45b4233c 2287 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
2288 (unsigned long long)bi->bi_sector,
2289 (unsigned long long)sh->sector, dd_idx);
2290
72626685 2291 if (conf->mddev->bitmap && firstwrite) {
72626685
N
2292 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2293 STRIPE_SECTORS, 0);
ae3c20cc 2294 sh->bm_seq = conf->seq_flush+1;
72626685
N
2295 set_bit(STRIPE_BIT_DELAY, &sh->state);
2296 }
2297
1da177e4
LT
2298 if (forwrite) {
2299 /* check if page is covered */
2300 sector_t sector = sh->dev[dd_idx].sector;
2301 for (bi=sh->dev[dd_idx].towrite;
2302 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2303 bi && bi->bi_sector <= sector;
2304 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2305 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2306 sector = bi->bi_sector + (bi->bi_size>>9);
2307 }
2308 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2309 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2310 }
2311 return 1;
2312
2313 overlap:
2314 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2315 spin_unlock_irq(&conf->device_lock);
2316 spin_unlock(&sh->lock);
2317 return 0;
2318}
2319
29269553
N
2320static void end_reshape(raid5_conf_t *conf);
2321
16a53ecc
N
2322static int page_is_zero(struct page *p)
2323{
2324 char *a = page_address(p);
2325 return ((*(u32*)a) == 0 &&
2326 memcmp(a, a+4, STRIPE_SIZE-4)==0);
2327}
2328
911d4ee8
N
2329static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2330 struct stripe_head *sh)
ccfcc3c1 2331{
784052ec
N
2332 int sectors_per_chunk =
2333 previous ? (conf->prev_chunk >> 9)
2334 : (conf->chunk_size >> 9);
911d4ee8 2335 int dd_idx;
2d2063ce 2336 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2337 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2338
112bf897
N
2339 raid5_compute_sector(conf,
2340 stripe * (disks - conf->max_degraded)
b875e531 2341 *sectors_per_chunk + chunk_offset,
112bf897 2342 previous,
911d4ee8 2343 &dd_idx, sh);
ccfcc3c1
N
2344}
2345
a4456856 2346static void
1fe797e6 2347handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2348 struct stripe_head_state *s, int disks,
2349 struct bio **return_bi)
2350{
2351 int i;
2352 for (i = disks; i--; ) {
2353 struct bio *bi;
2354 int bitmap_end = 0;
2355
2356 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2357 mdk_rdev_t *rdev;
2358 rcu_read_lock();
2359 rdev = rcu_dereference(conf->disks[i].rdev);
2360 if (rdev && test_bit(In_sync, &rdev->flags))
2361 /* multiple read failures in one stripe */
2362 md_error(conf->mddev, rdev);
2363 rcu_read_unlock();
2364 }
2365 spin_lock_irq(&conf->device_lock);
2366 /* fail all writes first */
2367 bi = sh->dev[i].towrite;
2368 sh->dev[i].towrite = NULL;
2369 if (bi) {
2370 s->to_write--;
2371 bitmap_end = 1;
2372 }
2373
2374 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2375 wake_up(&conf->wait_for_overlap);
2376
2377 while (bi && bi->bi_sector <
2378 sh->dev[i].sector + STRIPE_SECTORS) {
2379 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2380 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2381 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2382 md_write_end(conf->mddev);
2383 bi->bi_next = *return_bi;
2384 *return_bi = bi;
2385 }
2386 bi = nextbi;
2387 }
2388 /* and fail all 'written' */
2389 bi = sh->dev[i].written;
2390 sh->dev[i].written = NULL;
2391 if (bi) bitmap_end = 1;
2392 while (bi && bi->bi_sector <
2393 sh->dev[i].sector + STRIPE_SECTORS) {
2394 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2395 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2396 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2397 md_write_end(conf->mddev);
2398 bi->bi_next = *return_bi;
2399 *return_bi = bi;
2400 }
2401 bi = bi2;
2402 }
2403
b5e98d65
DW
2404 /* fail any reads if this device is non-operational and
2405 * the data has not reached the cache yet.
2406 */
2407 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2408 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2409 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2410 bi = sh->dev[i].toread;
2411 sh->dev[i].toread = NULL;
2412 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2413 wake_up(&conf->wait_for_overlap);
2414 if (bi) s->to_read--;
2415 while (bi && bi->bi_sector <
2416 sh->dev[i].sector + STRIPE_SECTORS) {
2417 struct bio *nextbi =
2418 r5_next_bio(bi, sh->dev[i].sector);
2419 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2420 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2421 bi->bi_next = *return_bi;
2422 *return_bi = bi;
2423 }
2424 bi = nextbi;
2425 }
2426 }
2427 spin_unlock_irq(&conf->device_lock);
2428 if (bitmap_end)
2429 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2430 STRIPE_SECTORS, 0, 0);
2431 }
2432
8b3e6cdc
DW
2433 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2434 if (atomic_dec_and_test(&conf->pending_full_writes))
2435 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2436}
2437
1fe797e6
DW
2438/* fetch_block5 - checks the given member device to see if its data needs
2439 * to be read or computed to satisfy a request.
2440 *
2441 * Returns 1 when no more member devices need to be checked, otherwise returns
2442 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2443 */
1fe797e6
DW
2444static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2445 int disk_idx, int disks)
f38e1219
DW
2446{
2447 struct r5dev *dev = &sh->dev[disk_idx];
2448 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2449
f38e1219
DW
2450 /* is the data in this block needed, and can we get it? */
2451 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2452 !test_bit(R5_UPTODATE, &dev->flags) &&
2453 (dev->toread ||
2454 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2455 s->syncing || s->expanding ||
2456 (s->failed &&
2457 (failed_dev->toread ||
2458 (failed_dev->towrite &&
2459 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2460 /* We would like to get this block, possibly by computing it,
2461 * otherwise read it if the backing disk is insync
f38e1219
DW
2462 */
2463 if ((s->uptodate == disks - 1) &&
ecc65c9b 2464 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2465 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2466 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2467 set_bit(R5_Wantcompute, &dev->flags);
2468 sh->ops.target = disk_idx;
ac6b53b6 2469 sh->ops.target2 = -1;
f38e1219 2470 s->req_compute = 1;
f38e1219 2471 /* Careful: from this point on 'uptodate' is in the eye
ac6b53b6 2472 * of raid_run_ops which services 'compute' operations
f38e1219
DW
2473 * before writes. R5_Wantcompute flags a block that will
2474 * be R5_UPTODATE by the time it is needed for a
2475 * subsequent operation.
2476 */
2477 s->uptodate++;
1fe797e6 2478 return 1; /* uptodate + compute == disks */
7a1fc53c 2479 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2480 set_bit(R5_LOCKED, &dev->flags);
2481 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2482 s->locked++;
2483 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2484 s->syncing);
2485 }
2486 }
2487
1fe797e6 2488 return 0;
f38e1219
DW
2489}
2490
1fe797e6
DW
2491/**
2492 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2493 */
2494static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2495 struct stripe_head_state *s, int disks)
2496{
2497 int i;
f38e1219 2498
f38e1219
DW
2499 /* look for blocks to read/compute, skip this if a compute
2500 * is already in flight, or if the stripe contents are in the
2501 * midst of changing due to a write
2502 */
976ea8d4 2503 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2504 !sh->reconstruct_state)
f38e1219 2505 for (i = disks; i--; )
1fe797e6 2506 if (fetch_block5(sh, s, i, disks))
f38e1219 2507 break;
a4456856
DW
2508 set_bit(STRIPE_HANDLE, &sh->state);
2509}
2510
1fe797e6 2511static void handle_stripe_fill6(struct stripe_head *sh,
a4456856
DW
2512 struct stripe_head_state *s, struct r6_state *r6s,
2513 int disks)
2514{
2515 int i;
2516 for (i = disks; i--; ) {
2517 struct r5dev *dev = &sh->dev[i];
2518 if (!test_bit(R5_LOCKED, &dev->flags) &&
2519 !test_bit(R5_UPTODATE, &dev->flags) &&
2520 (dev->toread || (dev->towrite &&
2521 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2522 s->syncing || s->expanding ||
2523 (s->failed >= 1 &&
2524 (sh->dev[r6s->failed_num[0]].toread ||
2525 s->to_write)) ||
2526 (s->failed >= 2 &&
2527 (sh->dev[r6s->failed_num[1]].toread ||
2528 s->to_write)))) {
2529 /* we would like to get this block, possibly
2530 * by computing it, but we might not be able to
2531 */
c337869d
DW
2532 if ((s->uptodate == disks - 1) &&
2533 (s->failed && (i == r6s->failed_num[0] ||
2534 i == r6s->failed_num[1]))) {
45b4233c 2535 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2536 (unsigned long long)sh->sector, i);
2537 compute_block_1(sh, i, 0);
2538 s->uptodate++;
2539 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2540 /* Computing 2-failure is *very* expensive; only
2541 * do it if failed >= 2
2542 */
2543 int other;
2544 for (other = disks; other--; ) {
2545 if (other == i)
2546 continue;
2547 if (!test_bit(R5_UPTODATE,
2548 &sh->dev[other].flags))
2549 break;
2550 }
2551 BUG_ON(other < 0);
45b4233c 2552 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2553 (unsigned long long)sh->sector,
2554 i, other);
2555 compute_block_2(sh, i, other);
2556 s->uptodate += 2;
2557 } else if (test_bit(R5_Insync, &dev->flags)) {
2558 set_bit(R5_LOCKED, &dev->flags);
2559 set_bit(R5_Wantread, &dev->flags);
2560 s->locked++;
45b4233c 2561 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2562 i, s->syncing);
2563 }
2564 }
2565 }
2566 set_bit(STRIPE_HANDLE, &sh->state);
2567}
2568
2569
1fe797e6 2570/* handle_stripe_clean_event
a4456856
DW
2571 * any written block on an uptodate or failed drive can be returned.
2572 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2573 * never LOCKED, so we don't need to test 'failed' directly.
2574 */
1fe797e6 2575static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2576 struct stripe_head *sh, int disks, struct bio **return_bi)
2577{
2578 int i;
2579 struct r5dev *dev;
2580
2581 for (i = disks; i--; )
2582 if (sh->dev[i].written) {
2583 dev = &sh->dev[i];
2584 if (!test_bit(R5_LOCKED, &dev->flags) &&
2585 test_bit(R5_UPTODATE, &dev->flags)) {
2586 /* We can return any write requests */
2587 struct bio *wbi, *wbi2;
2588 int bitmap_end = 0;
45b4233c 2589 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2590 spin_lock_irq(&conf->device_lock);
2591 wbi = dev->written;
2592 dev->written = NULL;
2593 while (wbi && wbi->bi_sector <
2594 dev->sector + STRIPE_SECTORS) {
2595 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2596 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2597 md_write_end(conf->mddev);
2598 wbi->bi_next = *return_bi;
2599 *return_bi = wbi;
2600 }
2601 wbi = wbi2;
2602 }
2603 if (dev->towrite == NULL)
2604 bitmap_end = 1;
2605 spin_unlock_irq(&conf->device_lock);
2606 if (bitmap_end)
2607 bitmap_endwrite(conf->mddev->bitmap,
2608 sh->sector,
2609 STRIPE_SECTORS,
2610 !test_bit(STRIPE_DEGRADED, &sh->state),
2611 0);
2612 }
2613 }
8b3e6cdc
DW
2614
2615 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2616 if (atomic_dec_and_test(&conf->pending_full_writes))
2617 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2618}
2619
1fe797e6 2620static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2621 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2622{
2623 int rmw = 0, rcw = 0, i;
2624 for (i = disks; i--; ) {
2625 /* would I have to read this buffer for read_modify_write */
2626 struct r5dev *dev = &sh->dev[i];
2627 if ((dev->towrite || i == sh->pd_idx) &&
2628 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2629 !(test_bit(R5_UPTODATE, &dev->flags) ||
2630 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2631 if (test_bit(R5_Insync, &dev->flags))
2632 rmw++;
2633 else
2634 rmw += 2*disks; /* cannot read it */
2635 }
2636 /* Would I have to read this buffer for reconstruct_write */
2637 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2638 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2639 !(test_bit(R5_UPTODATE, &dev->flags) ||
2640 test_bit(R5_Wantcompute, &dev->flags))) {
2641 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2642 else
2643 rcw += 2*disks;
2644 }
2645 }
45b4233c 2646 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2647 (unsigned long long)sh->sector, rmw, rcw);
2648 set_bit(STRIPE_HANDLE, &sh->state);
2649 if (rmw < rcw && rmw > 0)
2650 /* prefer read-modify-write, but need to get some data */
2651 for (i = disks; i--; ) {
2652 struct r5dev *dev = &sh->dev[i];
2653 if ((dev->towrite || i == sh->pd_idx) &&
2654 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2655 !(test_bit(R5_UPTODATE, &dev->flags) ||
2656 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2657 test_bit(R5_Insync, &dev->flags)) {
2658 if (
2659 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2660 pr_debug("Read_old block "
a4456856
DW
2661 "%d for r-m-w\n", i);
2662 set_bit(R5_LOCKED, &dev->flags);
2663 set_bit(R5_Wantread, &dev->flags);
2664 s->locked++;
2665 } else {
2666 set_bit(STRIPE_DELAYED, &sh->state);
2667 set_bit(STRIPE_HANDLE, &sh->state);
2668 }
2669 }
2670 }
2671 if (rcw <= rmw && rcw > 0)
2672 /* want reconstruct write, but need to get some data */
2673 for (i = disks; i--; ) {
2674 struct r5dev *dev = &sh->dev[i];
2675 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2676 i != sh->pd_idx &&
2677 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2678 !(test_bit(R5_UPTODATE, &dev->flags) ||
2679 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2680 test_bit(R5_Insync, &dev->flags)) {
2681 if (
2682 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2683 pr_debug("Read_old block "
a4456856
DW
2684 "%d for Reconstruct\n", i);
2685 set_bit(R5_LOCKED, &dev->flags);
2686 set_bit(R5_Wantread, &dev->flags);
2687 s->locked++;
2688 } else {
2689 set_bit(STRIPE_DELAYED, &sh->state);
2690 set_bit(STRIPE_HANDLE, &sh->state);
2691 }
2692 }
2693 }
2694 /* now if nothing is locked, and if we have enough data,
2695 * we can start a write request
2696 */
f38e1219
DW
2697 /* since handle_stripe can be called at any time we need to handle the
2698 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2699 * subsequent call wants to start a write request. raid_run_ops only
2700 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2701 * simultaneously. If this is not the case then new writes need to be
2702 * held off until the compute completes.
2703 */
976ea8d4
DW
2704 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2705 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2706 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
1fe797e6 2707 schedule_reconstruction5(sh, s, rcw == 0, 0);
a4456856
DW
2708}
2709
1fe797e6 2710static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2711 struct stripe_head *sh, struct stripe_head_state *s,
2712 struct r6_state *r6s, int disks)
2713{
2714 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
34e04e87 2715 int qd_idx = sh->qd_idx;
a4456856
DW
2716 for (i = disks; i--; ) {
2717 struct r5dev *dev = &sh->dev[i];
2718 /* Would I have to read this buffer for reconstruct_write */
2719 if (!test_bit(R5_OVERWRITE, &dev->flags)
2720 && i != pd_idx && i != qd_idx
2721 && (!test_bit(R5_LOCKED, &dev->flags)
2722 ) &&
2723 !test_bit(R5_UPTODATE, &dev->flags)) {
2724 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2725 else {
45b4233c 2726 pr_debug("raid6: must_compute: "
a4456856
DW
2727 "disk %d flags=%#lx\n", i, dev->flags);
2728 must_compute++;
2729 }
2730 }
2731 }
45b4233c 2732 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2733 (unsigned long long)sh->sector, rcw, must_compute);
2734 set_bit(STRIPE_HANDLE, &sh->state);
2735
2736 if (rcw > 0)
2737 /* want reconstruct write, but need to get some data */
2738 for (i = disks; i--; ) {
2739 struct r5dev *dev = &sh->dev[i];
2740 if (!test_bit(R5_OVERWRITE, &dev->flags)
2741 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2742 && !test_bit(R5_LOCKED, &dev->flags) &&
2743 !test_bit(R5_UPTODATE, &dev->flags) &&
2744 test_bit(R5_Insync, &dev->flags)) {
2745 if (
2746 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2747 pr_debug("Read_old stripe %llu "
a4456856
DW
2748 "block %d for Reconstruct\n",
2749 (unsigned long long)sh->sector, i);
2750 set_bit(R5_LOCKED, &dev->flags);
2751 set_bit(R5_Wantread, &dev->flags);
2752 s->locked++;
2753 } else {
45b4233c 2754 pr_debug("Request delayed stripe %llu "
a4456856
DW
2755 "block %d for Reconstruct\n",
2756 (unsigned long long)sh->sector, i);
2757 set_bit(STRIPE_DELAYED, &sh->state);
2758 set_bit(STRIPE_HANDLE, &sh->state);
2759 }
2760 }
2761 }
2762 /* now if nothing is locked, and if we have enough data, we can start a
2763 * write request
2764 */
2765 if (s->locked == 0 && rcw == 0 &&
2766 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2767 if (must_compute > 0) {
2768 /* We have failed blocks and need to compute them */
2769 switch (s->failed) {
2770 case 0:
2771 BUG();
2772 case 1:
2773 compute_block_1(sh, r6s->failed_num[0], 0);
2774 break;
2775 case 2:
2776 compute_block_2(sh, r6s->failed_num[0],
2777 r6s->failed_num[1]);
2778 break;
2779 default: /* This request should have been failed? */
2780 BUG();
2781 }
2782 }
2783
45b4233c 2784 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2785 (unsigned long long)sh->sector);
2786 compute_parity6(sh, RECONSTRUCT_WRITE);
2787 /* now every locked buffer is ready to be written */
2788 for (i = disks; i--; )
2789 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2790 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2791 (unsigned long long)sh->sector, i);
2792 s->locked++;
2793 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2794 }
8b3e6cdc
DW
2795 if (s->locked == disks)
2796 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2797 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2798 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2799 set_bit(STRIPE_INSYNC, &sh->state);
2800
2801 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2802 atomic_dec(&conf->preread_active_stripes);
2803 if (atomic_read(&conf->preread_active_stripes) <
2804 IO_THRESHOLD)
2805 md_wakeup_thread(conf->mddev->thread);
2806 }
2807 }
2808}
2809
2810static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2811 struct stripe_head_state *s, int disks)
2812{
ecc65c9b 2813 struct r5dev *dev = NULL;
bd2ab670 2814
a4456856 2815 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2816
ecc65c9b
DW
2817 switch (sh->check_state) {
2818 case check_state_idle:
2819 /* start a new check operation if there are no failures */
bd2ab670 2820 if (s->failed == 0) {
bd2ab670 2821 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2822 sh->check_state = check_state_run;
2823 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2824 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2825 s->uptodate--;
ecc65c9b 2826 break;
bd2ab670 2827 }
ecc65c9b
DW
2828 dev = &sh->dev[s->failed_num];
2829 /* fall through */
2830 case check_state_compute_result:
2831 sh->check_state = check_state_idle;
2832 if (!dev)
2833 dev = &sh->dev[sh->pd_idx];
2834
2835 /* check that a write has not made the stripe insync */
2836 if (test_bit(STRIPE_INSYNC, &sh->state))
2837 break;
c8894419 2838
a4456856 2839 /* either failed parity check, or recovery is happening */
a4456856
DW
2840 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2841 BUG_ON(s->uptodate != disks);
2842
2843 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2844 s->locked++;
a4456856 2845 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2846
a4456856 2847 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2848 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2849 break;
2850 case check_state_run:
2851 break; /* we will be called again upon completion */
2852 case check_state_check_result:
2853 sh->check_state = check_state_idle;
2854
2855 /* if a failure occurred during the check operation, leave
2856 * STRIPE_INSYNC not set and let the stripe be handled again
2857 */
2858 if (s->failed)
2859 break;
2860
2861 /* handle a successful check operation, if parity is correct
2862 * we are done. Otherwise update the mismatch count and repair
2863 * parity if !MD_RECOVERY_CHECK
2864 */
ad283ea4 2865 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2866 /* parity is correct (on disc,
2867 * not in buffer any more)
2868 */
2869 set_bit(STRIPE_INSYNC, &sh->state);
2870 else {
2871 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873 /* don't try to repair!! */
2874 set_bit(STRIPE_INSYNC, &sh->state);
2875 else {
2876 sh->check_state = check_state_compute_run;
976ea8d4 2877 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2878 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2879 set_bit(R5_Wantcompute,
2880 &sh->dev[sh->pd_idx].flags);
2881 sh->ops.target = sh->pd_idx;
ac6b53b6 2882 sh->ops.target2 = -1;
ecc65c9b
DW
2883 s->uptodate++;
2884 }
2885 }
2886 break;
2887 case check_state_compute_run:
2888 break;
2889 default:
2890 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2891 __func__, sh->check_state,
2892 (unsigned long long) sh->sector);
2893 BUG();
a4456856
DW
2894 }
2895}
2896
2897
2898static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647
DW
2899 struct stripe_head_state *s,
2900 struct r6_state *r6s, int disks)
a4456856
DW
2901{
2902 int update_p = 0, update_q = 0;
2903 struct r5dev *dev;
2904 int pd_idx = sh->pd_idx;
34e04e87 2905 int qd_idx = sh->qd_idx;
36d1c647
DW
2906 unsigned long cpu;
2907 struct page *tmp_page;
a4456856
DW
2908
2909 set_bit(STRIPE_HANDLE, &sh->state);
2910
2911 BUG_ON(s->failed > 2);
2912 BUG_ON(s->uptodate < disks);
2913 /* Want to check and possibly repair P and Q.
2914 * However there could be one 'failed' device, in which
2915 * case we can only check one of them, possibly using the
2916 * other to generate missing data
2917 */
36d1c647
DW
2918 cpu = get_cpu();
2919 tmp_page = per_cpu_ptr(conf->percpu, cpu)->spare_page;
2920 if (s->failed == r6s->q_failed) {
2921 /* The only possible failed device holds 'Q', so it
2922 * makes sense to check P (If anything else were failed,
2923 * we would have used P to recreate it).
2924 */
2925 compute_block_1(sh, pd_idx, 1);
2926 if (!page_is_zero(sh->dev[pd_idx].page)) {
2927 compute_block_1(sh, pd_idx, 0);
2928 update_p = 1;
a4456856 2929 }
36d1c647
DW
2930 }
2931 if (!r6s->q_failed && s->failed < 2) {
2932 /* q is not failed, and we didn't use it to generate
2933 * anything, so it makes sense to check it
2934 */
2935 memcpy(page_address(tmp_page),
2936 page_address(sh->dev[qd_idx].page),
2937 STRIPE_SIZE);
2938 compute_parity6(sh, UPDATE_PARITY);
2939 if (memcmp(page_address(tmp_page),
2940 page_address(sh->dev[qd_idx].page),
2941 STRIPE_SIZE) != 0) {
2942 clear_bit(STRIPE_INSYNC, &sh->state);
2943 update_q = 1;
a4456856 2944 }
36d1c647
DW
2945 }
2946 put_cpu();
a4456856 2947
36d1c647
DW
2948 if (update_p || update_q) {
2949 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2950 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2951 /* don't try to repair!! */
2952 update_p = update_q = 0;
2953 }
a4456856 2954
36d1c647
DW
2955 /* now write out any block on a failed drive,
2956 * or P or Q if they need it
2957 */
a4456856 2958
36d1c647
DW
2959 if (s->failed == 2) {
2960 dev = &sh->dev[r6s->failed_num[1]];
2961 s->locked++;
2962 set_bit(R5_LOCKED, &dev->flags);
2963 set_bit(R5_Wantwrite, &dev->flags);
2964 }
2965 if (s->failed >= 1) {
2966 dev = &sh->dev[r6s->failed_num[0]];
2967 s->locked++;
2968 set_bit(R5_LOCKED, &dev->flags);
2969 set_bit(R5_Wantwrite, &dev->flags);
2970 }
a4456856 2971
36d1c647
DW
2972 if (update_p) {
2973 dev = &sh->dev[pd_idx];
2974 s->locked++;
2975 set_bit(R5_LOCKED, &dev->flags);
2976 set_bit(R5_Wantwrite, &dev->flags);
2977 }
2978 if (update_q) {
2979 dev = &sh->dev[qd_idx];
2980 s->locked++;
2981 set_bit(R5_LOCKED, &dev->flags);
2982 set_bit(R5_Wantwrite, &dev->flags);
a4456856 2983 }
36d1c647
DW
2984 clear_bit(STRIPE_DEGRADED, &sh->state);
2985
2986 set_bit(STRIPE_INSYNC, &sh->state);
a4456856
DW
2987}
2988
2989static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2990 struct r6_state *r6s)
2991{
2992 int i;
2993
2994 /* We have read all the blocks in this stripe and now we need to
2995 * copy some of them into a target stripe for expand.
2996 */
f0a50d37 2997 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2998 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2999 for (i = 0; i < sh->disks; i++)
34e04e87 3000 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3001 int dd_idx, j;
a4456856 3002 struct stripe_head *sh2;
a08abd8c 3003 struct async_submit_ctl submit;
a4456856 3004
784052ec 3005 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3006 sector_t s = raid5_compute_sector(conf, bn, 0,
3007 &dd_idx, NULL);
b5663ba4 3008 sh2 = get_active_stripe(conf, s, 0, 1);
a4456856
DW
3009 if (sh2 == NULL)
3010 /* so far only the early blocks of this stripe
3011 * have been requested. When later blocks
3012 * get requested, we will try again
3013 */
3014 continue;
3015 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3016 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3017 /* must have already done this block */
3018 release_stripe(sh2);
3019 continue;
3020 }
f0a50d37
DW
3021
3022 /* place all the copies on one channel */
a08abd8c 3023 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3024 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3025 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3026 &submit);
f0a50d37 3027
a4456856
DW
3028 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3029 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3030 for (j = 0; j < conf->raid_disks; j++)
3031 if (j != sh2->pd_idx &&
d0dabf7e 3032 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
3033 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3034 break;
3035 if (j == conf->raid_disks) {
3036 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3037 set_bit(STRIPE_HANDLE, &sh2->state);
3038 }
3039 release_stripe(sh2);
f0a50d37 3040
a4456856 3041 }
a2e08551
N
3042 /* done submitting copies, wait for them to complete */
3043 if (tx) {
3044 async_tx_ack(tx);
3045 dma_wait_for_async_tx(tx);
3046 }
a4456856 3047}
1da177e4 3048
6bfe0b49 3049
1da177e4
LT
3050/*
3051 * handle_stripe - do things to a stripe.
3052 *
3053 * We lock the stripe and then examine the state of various bits
3054 * to see what needs to be done.
3055 * Possible results:
3056 * return some read request which now have data
3057 * return some write requests which are safely on disc
3058 * schedule a read on some buffers
3059 * schedule a write of some buffers
3060 * return confirmation of parity correctness
3061 *
1da177e4
LT
3062 * buffers are taken off read_list or write_list, and bh_cache buffers
3063 * get BH_Lock set before the stripe lock is released.
3064 *
3065 */
a4456856 3066
df10cfbc 3067static bool handle_stripe5(struct stripe_head *sh)
1da177e4
LT
3068{
3069 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
3070 int disks = sh->disks, i;
3071 struct bio *return_bi = NULL;
3072 struct stripe_head_state s;
1da177e4 3073 struct r5dev *dev;
6bfe0b49 3074 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 3075 int prexor;
1da177e4 3076
a4456856 3077 memset(&s, 0, sizeof(s));
600aa109
DW
3078 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3079 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3080 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3081 sh->reconstruct_state);
1da177e4
LT
3082
3083 spin_lock(&sh->lock);
3084 clear_bit(STRIPE_HANDLE, &sh->state);
3085 clear_bit(STRIPE_DELAYED, &sh->state);
3086
a4456856
DW
3087 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3088 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3089 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 3090
83de75cc 3091 /* Now to look around and see what can be done */
9910f16a 3092 rcu_read_lock();
1da177e4
LT
3093 for (i=disks; i--; ) {
3094 mdk_rdev_t *rdev;
a4456856 3095 struct r5dev *dev = &sh->dev[i];
1da177e4 3096 clear_bit(R5_Insync, &dev->flags);
1da177e4 3097
b5e98d65
DW
3098 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3099 "written %p\n", i, dev->flags, dev->toread, dev->read,
3100 dev->towrite, dev->written);
3101
3102 /* maybe we can request a biofill operation
3103 *
3104 * new wantfill requests are only permitted while
83de75cc 3105 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
3106 */
3107 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 3108 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 3109 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
3110
3111 /* now count some things */
a4456856
DW
3112 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3113 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 3114 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 3115
b5e98d65
DW
3116 if (test_bit(R5_Wantfill, &dev->flags))
3117 s.to_fill++;
3118 else if (dev->toread)
a4456856 3119 s.to_read++;
1da177e4 3120 if (dev->towrite) {
a4456856 3121 s.to_write++;
1da177e4 3122 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3123 s.non_overwrite++;
1da177e4 3124 }
a4456856
DW
3125 if (dev->written)
3126 s.written++;
9910f16a 3127 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3128 if (blocked_rdev == NULL &&
3129 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3130 blocked_rdev = rdev;
3131 atomic_inc(&rdev->nr_pending);
6bfe0b49 3132 }
b2d444d7 3133 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 3134 /* The ReadError flag will just be confusing now */
4e5314b5
N
3135 clear_bit(R5_ReadError, &dev->flags);
3136 clear_bit(R5_ReWrite, &dev->flags);
3137 }
b2d444d7 3138 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 3139 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3140 s.failed++;
3141 s.failed_num = i;
1da177e4
LT
3142 } else
3143 set_bit(R5_Insync, &dev->flags);
3144 }
9910f16a 3145 rcu_read_unlock();
b5e98d65 3146
6bfe0b49 3147 if (unlikely(blocked_rdev)) {
ac4090d2
N
3148 if (s.syncing || s.expanding || s.expanded ||
3149 s.to_write || s.written) {
3150 set_bit(STRIPE_HANDLE, &sh->state);
3151 goto unlock;
3152 }
3153 /* There is nothing for the blocked_rdev to block */
3154 rdev_dec_pending(blocked_rdev, conf->mddev);
3155 blocked_rdev = NULL;
6bfe0b49
DW
3156 }
3157
83de75cc
DW
3158 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3159 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3160 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3161 }
b5e98d65 3162
45b4233c 3163 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 3164 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
3165 s.locked, s.uptodate, s.to_read, s.to_write,
3166 s.failed, s.failed_num);
1da177e4
LT
3167 /* check if the array has lost two devices and, if so, some requests might
3168 * need to be failed
3169 */
a4456856 3170 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 3171 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3172 if (s.failed > 1 && s.syncing) {
1da177e4
LT
3173 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3174 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3175 s.syncing = 0;
1da177e4
LT
3176 }
3177
3178 /* might be able to return some write requests if the parity block
3179 * is safe, or on a failed drive
3180 */
3181 dev = &sh->dev[sh->pd_idx];
a4456856
DW
3182 if ( s.written &&
3183 ((test_bit(R5_Insync, &dev->flags) &&
3184 !test_bit(R5_LOCKED, &dev->flags) &&
3185 test_bit(R5_UPTODATE, &dev->flags)) ||
3186 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 3187 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
3188
3189 /* Now we might consider reading some blocks, either to check/generate
3190 * parity, or to satisfy requests
3191 * or to load a block that is being partially written.
3192 */
a4456856 3193 if (s.to_read || s.non_overwrite ||
976ea8d4 3194 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3195 handle_stripe_fill5(sh, &s, disks);
1da177e4 3196
e33129d8
DW
3197 /* Now we check to see if any write operations have recently
3198 * completed
3199 */
e0a115e5 3200 prexor = 0;
d8ee0728 3201 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 3202 prexor = 1;
d8ee0728
DW
3203 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3204 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 3205 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
3206
3207 /* All the 'written' buffers and the parity block are ready to
3208 * be written back to disk
3209 */
3210 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3211 for (i = disks; i--; ) {
3212 dev = &sh->dev[i];
3213 if (test_bit(R5_LOCKED, &dev->flags) &&
3214 (i == sh->pd_idx || dev->written)) {
3215 pr_debug("Writing block %d\n", i);
3216 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
3217 if (prexor)
3218 continue;
e33129d8
DW
3219 if (!test_bit(R5_Insync, &dev->flags) ||
3220 (i == sh->pd_idx && s.failed == 0))
3221 set_bit(STRIPE_INSYNC, &sh->state);
3222 }
3223 }
3224 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3225 atomic_dec(&conf->preread_active_stripes);
3226 if (atomic_read(&conf->preread_active_stripes) <
3227 IO_THRESHOLD)
3228 md_wakeup_thread(conf->mddev->thread);
3229 }
3230 }
3231
3232 /* Now to consider new write requests and what else, if anything
3233 * should be read. We do not handle new writes when:
3234 * 1/ A 'write' operation (copy+xor) is already in flight.
3235 * 2/ A 'check' operation is in flight, as it may clobber the parity
3236 * block.
3237 */
600aa109 3238 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3239 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
3240
3241 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
3242 * Any reads will already have been scheduled, so we just see if enough
3243 * data is available. The parity check is held off while parity
3244 * dependent operations are in flight.
1da177e4 3245 */
ecc65c9b
DW
3246 if (sh->check_state ||
3247 (s.syncing && s.locked == 0 &&
976ea8d4 3248 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 3249 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 3250 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 3251
a4456856 3252 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
3253 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3254 clear_bit(STRIPE_SYNCING, &sh->state);
3255 }
4e5314b5
N
3256
3257 /* If the failed drive is just a ReadError, then we might need to progress
3258 * the repair/check process
3259 */
a4456856
DW
3260 if (s.failed == 1 && !conf->mddev->ro &&
3261 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3262 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3263 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 3264 ) {
a4456856 3265 dev = &sh->dev[s.failed_num];
4e5314b5
N
3266 if (!test_bit(R5_ReWrite, &dev->flags)) {
3267 set_bit(R5_Wantwrite, &dev->flags);
3268 set_bit(R5_ReWrite, &dev->flags);
3269 set_bit(R5_LOCKED, &dev->flags);
a4456856 3270 s.locked++;
4e5314b5
N
3271 } else {
3272 /* let's read it back */
3273 set_bit(R5_Wantread, &dev->flags);
3274 set_bit(R5_LOCKED, &dev->flags);
a4456856 3275 s.locked++;
4e5314b5
N
3276 }
3277 }
3278
600aa109
DW
3279 /* Finish reconstruct operations initiated by the expansion process */
3280 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12
N
3281 struct stripe_head *sh2
3282 = get_active_stripe(conf, sh->sector, 1, 1);
3283 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3284 /* sh cannot be written until sh2 has been read.
3285 * so arrange for sh to be delayed a little
3286 */
3287 set_bit(STRIPE_DELAYED, &sh->state);
3288 set_bit(STRIPE_HANDLE, &sh->state);
3289 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3290 &sh2->state))
3291 atomic_inc(&conf->preread_active_stripes);
3292 release_stripe(sh2);
3293 goto unlock;
3294 }
3295 if (sh2)
3296 release_stripe(sh2);
3297
600aa109 3298 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 3299 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 3300 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 3301 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 3302 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 3303 s.locked++;
23397883 3304 }
f0a50d37
DW
3305 }
3306
3307 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 3308 !sh->reconstruct_state) {
f0a50d37
DW
3309 /* Need to write out all blocks after computing parity */
3310 sh->disks = conf->raid_disks;
911d4ee8 3311 stripe_set_idx(sh->sector, conf, 0, sh);
1fe797e6 3312 schedule_reconstruction5(sh, &s, 1, 1);
600aa109 3313 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 3314 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 3315 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
3316 wake_up(&conf->wait_for_overlap);
3317 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3318 }
3319
0f94e87c 3320 if (s.expanding && s.locked == 0 &&
976ea8d4 3321 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3322 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 3323
6bfe0b49 3324 unlock:
1da177e4
LT
3325 spin_unlock(&sh->lock);
3326
6bfe0b49
DW
3327 /* wait for this device to become unblocked */
3328 if (unlikely(blocked_rdev))
3329 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3330
600aa109 3331 if (s.ops_request)
ac6b53b6 3332 raid_run_ops(sh, s.ops_request);
d84e0f10 3333
c4e5ac0a 3334 ops_run_io(sh, &s);
1da177e4 3335
a4456856 3336 return_io(return_bi);
df10cfbc
DW
3337
3338 return blocked_rdev == NULL;
1da177e4
LT
3339}
3340
36d1c647 3341static bool handle_stripe6(struct stripe_head *sh)
1da177e4 3342{
bff61975 3343 raid5_conf_t *conf = sh->raid_conf;
f416885e 3344 int disks = sh->disks;
a4456856 3345 struct bio *return_bi = NULL;
34e04e87 3346 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3347 struct stripe_head_state s;
3348 struct r6_state r6s;
16a53ecc 3349 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3350 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 3351
45b4233c 3352 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
3353 "pd_idx=%d, qd_idx=%d\n",
3354 (unsigned long long)sh->sector, sh->state,
34e04e87 3355 atomic_read(&sh->count), pd_idx, qd_idx);
a4456856 3356 memset(&s, 0, sizeof(s));
72626685 3357
16a53ecc
N
3358 spin_lock(&sh->lock);
3359 clear_bit(STRIPE_HANDLE, &sh->state);
3360 clear_bit(STRIPE_DELAYED, &sh->state);
3361
a4456856
DW
3362 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3363 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3364 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3365 /* Now to look around and see what can be done */
1da177e4
LT
3366
3367 rcu_read_lock();
16a53ecc
N
3368 for (i=disks; i--; ) {
3369 mdk_rdev_t *rdev;
3370 dev = &sh->dev[i];
3371 clear_bit(R5_Insync, &dev->flags);
1da177e4 3372
45b4233c 3373 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
3374 i, dev->flags, dev->toread, dev->towrite, dev->written);
3375 /* maybe we can reply to a read */
3376 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3377 struct bio *rbi, *rbi2;
45b4233c 3378 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
3379 spin_lock_irq(&conf->device_lock);
3380 rbi = dev->toread;
3381 dev->toread = NULL;
3382 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3383 wake_up(&conf->wait_for_overlap);
3384 spin_unlock_irq(&conf->device_lock);
3385 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3386 copy_data(0, rbi, dev->page, dev->sector);
3387 rbi2 = r5_next_bio(rbi, dev->sector);
3388 spin_lock_irq(&conf->device_lock);
960e739d 3389 if (!raid5_dec_bi_phys_segments(rbi)) {
16a53ecc
N
3390 rbi->bi_next = return_bi;
3391 return_bi = rbi;
3392 }
3393 spin_unlock_irq(&conf->device_lock);
3394 rbi = rbi2;
3395 }
3396 }
1da177e4 3397
16a53ecc 3398 /* now count some things */
a4456856
DW
3399 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3400 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 3401
16a53ecc 3402
a4456856
DW
3403 if (dev->toread)
3404 s.to_read++;
16a53ecc 3405 if (dev->towrite) {
a4456856 3406 s.to_write++;
16a53ecc 3407 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3408 s.non_overwrite++;
16a53ecc 3409 }
a4456856
DW
3410 if (dev->written)
3411 s.written++;
16a53ecc 3412 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3413 if (blocked_rdev == NULL &&
3414 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3415 blocked_rdev = rdev;
3416 atomic_inc(&rdev->nr_pending);
6bfe0b49 3417 }
16a53ecc
N
3418 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3419 /* The ReadError flag will just be confusing now */
3420 clear_bit(R5_ReadError, &dev->flags);
3421 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3422 }
16a53ecc
N
3423 if (!rdev || !test_bit(In_sync, &rdev->flags)
3424 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3425 if (s.failed < 2)
3426 r6s.failed_num[s.failed] = i;
3427 s.failed++;
16a53ecc
N
3428 } else
3429 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3430 }
3431 rcu_read_unlock();
6bfe0b49
DW
3432
3433 if (unlikely(blocked_rdev)) {
ac4090d2
N
3434 if (s.syncing || s.expanding || s.expanded ||
3435 s.to_write || s.written) {
3436 set_bit(STRIPE_HANDLE, &sh->state);
3437 goto unlock;
3438 }
3439 /* There is nothing for the blocked_rdev to block */
3440 rdev_dec_pending(blocked_rdev, conf->mddev);
3441 blocked_rdev = NULL;
6bfe0b49 3442 }
ac4090d2 3443
45b4233c 3444 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3445 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3446 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3447 r6s.failed_num[0], r6s.failed_num[1]);
3448 /* check if the array has lost >2 devices and, if so, some requests
3449 * might need to be failed
16a53ecc 3450 */
a4456856 3451 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3452 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3453 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3454 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3455 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3456 s.syncing = 0;
16a53ecc
N
3457 }
3458
3459 /*
3460 * might be able to return some write requests if the parity blocks
3461 * are safe, or on a failed drive
3462 */
3463 pdev = &sh->dev[pd_idx];
a4456856
DW
3464 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3465 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3466 qdev = &sh->dev[qd_idx];
3467 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3468 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3469
3470 if ( s.written &&
3471 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3472 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3473 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3474 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3475 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3476 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3477 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3478
3479 /* Now we might consider reading some blocks, either to check/generate
3480 * parity, or to satisfy requests
3481 * or to load a block that is being partially written.
3482 */
a4456856
DW
3483 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3484 (s.syncing && (s.uptodate < disks)) || s.expanding)
1fe797e6 3485 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc
N
3486
3487 /* now to consider writing and what else, if anything should be read */
a4456856 3488 if (s.to_write)
1fe797e6 3489 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3490
3491 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3492 * Any reads will already have been scheduled, so we just see if enough
3493 * data is available
16a53ecc 3494 */
a4456856 3495 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
36d1c647 3496 handle_parity_checks6(conf, sh, &s, &r6s, disks);
16a53ecc 3497
a4456856 3498 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3499 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3500 clear_bit(STRIPE_SYNCING, &sh->state);
3501 }
3502
3503 /* If the failed drives are just a ReadError, then we might need
3504 * to progress the repair/check process
3505 */
a4456856
DW
3506 if (s.failed <= 2 && !conf->mddev->ro)
3507 for (i = 0; i < s.failed; i++) {
3508 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3509 if (test_bit(R5_ReadError, &dev->flags)
3510 && !test_bit(R5_LOCKED, &dev->flags)
3511 && test_bit(R5_UPTODATE, &dev->flags)
3512 ) {
3513 if (!test_bit(R5_ReWrite, &dev->flags)) {
3514 set_bit(R5_Wantwrite, &dev->flags);
3515 set_bit(R5_ReWrite, &dev->flags);
3516 set_bit(R5_LOCKED, &dev->flags);
3517 } else {
3518 /* let's read it back */
3519 set_bit(R5_Wantread, &dev->flags);
3520 set_bit(R5_LOCKED, &dev->flags);
3521 }
3522 }
3523 }
f416885e 3524
a4456856 3525 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
ab69ae12
N
3526 struct stripe_head *sh2
3527 = get_active_stripe(conf, sh->sector, 1, 1);
3528 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3529 /* sh cannot be written until sh2 has been read.
3530 * so arrange for sh to be delayed a little
3531 */
3532 set_bit(STRIPE_DELAYED, &sh->state);
3533 set_bit(STRIPE_HANDLE, &sh->state);
3534 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3535 &sh2->state))
3536 atomic_inc(&conf->preread_active_stripes);
3537 release_stripe(sh2);
3538 goto unlock;
3539 }
3540 if (sh2)
3541 release_stripe(sh2);
3542
f416885e
N
3543 /* Need to write out all blocks after computing P&Q */
3544 sh->disks = conf->raid_disks;
911d4ee8 3545 stripe_set_idx(sh->sector, conf, 0, sh);
f416885e
N
3546 compute_parity6(sh, RECONSTRUCT_WRITE);
3547 for (i = conf->raid_disks ; i-- ; ) {
3548 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3549 s.locked++;
f416885e
N
3550 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3551 }
3552 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3553 } else if (s.expanded) {
f416885e
N
3554 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3555 atomic_dec(&conf->reshape_stripes);
3556 wake_up(&conf->wait_for_overlap);
3557 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3558 }
3559
0f94e87c 3560 if (s.expanding && s.locked == 0 &&
976ea8d4 3561 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3562 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3563
6bfe0b49 3564 unlock:
16a53ecc
N
3565 spin_unlock(&sh->lock);
3566
6bfe0b49
DW
3567 /* wait for this device to become unblocked */
3568 if (unlikely(blocked_rdev))
3569 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3570
f0e43bcd 3571 ops_run_io(sh, &s);
16a53ecc 3572
f0e43bcd 3573 return_io(return_bi);
df10cfbc
DW
3574
3575 return blocked_rdev == NULL;
16a53ecc
N
3576}
3577
df10cfbc 3578/* returns true if the stripe was handled */
36d1c647 3579static bool handle_stripe(struct stripe_head *sh)
16a53ecc
N
3580{
3581 if (sh->raid_conf->level == 6)
36d1c647 3582 return handle_stripe6(sh);
16a53ecc 3583 else
df10cfbc 3584 return handle_stripe5(sh);
16a53ecc
N
3585}
3586
16a53ecc
N
3587static void raid5_activate_delayed(raid5_conf_t *conf)
3588{
3589 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3590 while (!list_empty(&conf->delayed_list)) {
3591 struct list_head *l = conf->delayed_list.next;
3592 struct stripe_head *sh;
3593 sh = list_entry(l, struct stripe_head, lru);
3594 list_del_init(l);
3595 clear_bit(STRIPE_DELAYED, &sh->state);
3596 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3597 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3598 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3599 }
6ed3003c
N
3600 } else
3601 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3602}
3603
3604static void activate_bit_delay(raid5_conf_t *conf)
3605{
3606 /* device_lock is held */
3607 struct list_head head;
3608 list_add(&head, &conf->bitmap_list);
3609 list_del_init(&conf->bitmap_list);
3610 while (!list_empty(&head)) {
3611 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3612 list_del_init(&sh->lru);
3613 atomic_inc(&sh->count);
3614 __release_stripe(conf, sh);
3615 }
3616}
3617
3618static void unplug_slaves(mddev_t *mddev)
3619{
3620 raid5_conf_t *conf = mddev_to_conf(mddev);
3621 int i;
3622
3623 rcu_read_lock();
3624 for (i=0; i<mddev->raid_disks; i++) {
3625 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3626 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3627 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3628
3629 atomic_inc(&rdev->nr_pending);
3630 rcu_read_unlock();
3631
2ad8b1ef 3632 blk_unplug(r_queue);
16a53ecc
N
3633
3634 rdev_dec_pending(rdev, mddev);
3635 rcu_read_lock();
3636 }
3637 }
3638 rcu_read_unlock();
3639}
3640
165125e1 3641static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3642{
3643 mddev_t *mddev = q->queuedata;
3644 raid5_conf_t *conf = mddev_to_conf(mddev);
3645 unsigned long flags;
3646
3647 spin_lock_irqsave(&conf->device_lock, flags);
3648
3649 if (blk_remove_plug(q)) {
3650 conf->seq_flush++;
3651 raid5_activate_delayed(conf);
72626685 3652 }
1da177e4
LT
3653 md_wakeup_thread(mddev->thread);
3654
3655 spin_unlock_irqrestore(&conf->device_lock, flags);
3656
3657 unplug_slaves(mddev);
3658}
3659
f022b2fd
N
3660static int raid5_congested(void *data, int bits)
3661{
3662 mddev_t *mddev = data;
3663 raid5_conf_t *conf = mddev_to_conf(mddev);
3664
3665 /* No difference between reads and writes. Just check
3666 * how busy the stripe_cache is
3667 */
3668 if (conf->inactive_blocked)
3669 return 1;
3670 if (conf->quiesce)
3671 return 1;
3672 if (list_empty_careful(&conf->inactive_list))
3673 return 1;
3674
3675 return 0;
3676}
3677
23032a0e
RBJ
3678/* We want read requests to align with chunks where possible,
3679 * but write requests don't need to.
3680 */
cc371e66
AK
3681static int raid5_mergeable_bvec(struct request_queue *q,
3682 struct bvec_merge_data *bvm,
3683 struct bio_vec *biovec)
23032a0e
RBJ
3684{
3685 mddev_t *mddev = q->queuedata;
cc371e66 3686 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e
RBJ
3687 int max;
3688 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 3689 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3690
cc371e66 3691 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3692 return biovec->bv_len; /* always allow writes to be mergeable */
3693
784052ec
N
3694 if (mddev->new_chunk < mddev->chunk_size)
3695 chunk_sectors = mddev->new_chunk >> 9;
23032a0e
RBJ
3696 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3697 if (max < 0) max = 0;
3698 if (max <= biovec->bv_len && bio_sectors == 0)
3699 return biovec->bv_len;
3700 else
3701 return max;
3702}
3703
f679623f
RBJ
3704
3705static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3706{
3707 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3708 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3709 unsigned int bio_sectors = bio->bi_size >> 9;
3710
784052ec
N
3711 if (mddev->new_chunk < mddev->chunk_size)
3712 chunk_sectors = mddev->new_chunk >> 9;
f679623f
RBJ
3713 return chunk_sectors >=
3714 ((sector & (chunk_sectors - 1)) + bio_sectors);
3715}
3716
46031f9a
RBJ
3717/*
3718 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3719 * later sampled by raid5d.
3720 */
3721static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3722{
3723 unsigned long flags;
3724
3725 spin_lock_irqsave(&conf->device_lock, flags);
3726
3727 bi->bi_next = conf->retry_read_aligned_list;
3728 conf->retry_read_aligned_list = bi;
3729
3730 spin_unlock_irqrestore(&conf->device_lock, flags);
3731 md_wakeup_thread(conf->mddev->thread);
3732}
3733
3734
3735static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3736{
3737 struct bio *bi;
3738
3739 bi = conf->retry_read_aligned;
3740 if (bi) {
3741 conf->retry_read_aligned = NULL;
3742 return bi;
3743 }
3744 bi = conf->retry_read_aligned_list;
3745 if(bi) {
387bb173 3746 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3747 bi->bi_next = NULL;
960e739d
JA
3748 /*
3749 * this sets the active strip count to 1 and the processed
3750 * strip count to zero (upper 8 bits)
3751 */
46031f9a 3752 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3753 }
3754
3755 return bi;
3756}
3757
3758
f679623f
RBJ
3759/*
3760 * The "raid5_align_endio" should check if the read succeeded and if it
3761 * did, call bio_endio on the original bio (having bio_put the new bio
3762 * first).
3763 * If the read failed..
3764 */
6712ecf8 3765static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3766{
3767 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3768 mddev_t *mddev;
3769 raid5_conf_t *conf;
3770 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3771 mdk_rdev_t *rdev;
3772
f679623f 3773 bio_put(bi);
46031f9a
RBJ
3774
3775 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3776 conf = mddev_to_conf(mddev);
3777 rdev = (void*)raid_bi->bi_next;
3778 raid_bi->bi_next = NULL;
3779
3780 rdev_dec_pending(rdev, conf->mddev);
3781
3782 if (!error && uptodate) {
6712ecf8 3783 bio_endio(raid_bi, 0);
46031f9a
RBJ
3784 if (atomic_dec_and_test(&conf->active_aligned_reads))
3785 wake_up(&conf->wait_for_stripe);
6712ecf8 3786 return;
46031f9a
RBJ
3787 }
3788
3789
45b4233c 3790 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3791
3792 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3793}
3794
387bb173
NB
3795static int bio_fits_rdev(struct bio *bi)
3796{
165125e1 3797 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3798
3799 if ((bi->bi_size>>9) > q->max_sectors)
3800 return 0;
3801 blk_recount_segments(q, bi);
960e739d 3802 if (bi->bi_phys_segments > q->max_phys_segments)
387bb173
NB
3803 return 0;
3804
3805 if (q->merge_bvec_fn)
3806 /* it's too hard to apply the merge_bvec_fn at this stage,
3807 * just just give up
3808 */
3809 return 0;
3810
3811 return 1;
3812}
3813
3814
165125e1 3815static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3816{
3817 mddev_t *mddev = q->queuedata;
3818 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3819 unsigned int dd_idx;
f679623f
RBJ
3820 struct bio* align_bi;
3821 mdk_rdev_t *rdev;
3822
3823 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3824 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3825 return 0;
3826 }
3827 /*
99c0fb5f 3828 * use bio_clone to make a copy of the bio
f679623f
RBJ
3829 */
3830 align_bi = bio_clone(raid_bio, GFP_NOIO);
3831 if (!align_bi)
3832 return 0;
3833 /*
3834 * set bi_end_io to a new function, and set bi_private to the
3835 * original bio.
3836 */
3837 align_bi->bi_end_io = raid5_align_endio;
3838 align_bi->bi_private = raid_bio;
3839 /*
3840 * compute position
3841 */
112bf897
N
3842 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3843 0,
911d4ee8 3844 &dd_idx, NULL);
f679623f
RBJ
3845
3846 rcu_read_lock();
3847 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3848 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3849 atomic_inc(&rdev->nr_pending);
3850 rcu_read_unlock();
46031f9a
RBJ
3851 raid_bio->bi_next = (void*)rdev;
3852 align_bi->bi_bdev = rdev->bdev;
3853 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3854 align_bi->bi_sector += rdev->data_offset;
3855
387bb173
NB
3856 if (!bio_fits_rdev(align_bi)) {
3857 /* too big in some way */
3858 bio_put(align_bi);
3859 rdev_dec_pending(rdev, mddev);
3860 return 0;
3861 }
3862
46031f9a
RBJ
3863 spin_lock_irq(&conf->device_lock);
3864 wait_event_lock_irq(conf->wait_for_stripe,
3865 conf->quiesce == 0,
3866 conf->device_lock, /* nothing */);
3867 atomic_inc(&conf->active_aligned_reads);
3868 spin_unlock_irq(&conf->device_lock);
3869
f679623f
RBJ
3870 generic_make_request(align_bi);
3871 return 1;
3872 } else {
3873 rcu_read_unlock();
46031f9a 3874 bio_put(align_bi);
f679623f
RBJ
3875 return 0;
3876 }
3877}
3878
8b3e6cdc
DW
3879/* __get_priority_stripe - get the next stripe to process
3880 *
3881 * Full stripe writes are allowed to pass preread active stripes up until
3882 * the bypass_threshold is exceeded. In general the bypass_count
3883 * increments when the handle_list is handled before the hold_list; however, it
3884 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3885 * stripe with in flight i/o. The bypass_count will be reset when the
3886 * head of the hold_list has changed, i.e. the head was promoted to the
3887 * handle_list.
3888 */
3889static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3890{
3891 struct stripe_head *sh;
3892
3893 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3894 __func__,
3895 list_empty(&conf->handle_list) ? "empty" : "busy",
3896 list_empty(&conf->hold_list) ? "empty" : "busy",
3897 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3898
3899 if (!list_empty(&conf->handle_list)) {
3900 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3901
3902 if (list_empty(&conf->hold_list))
3903 conf->bypass_count = 0;
3904 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3905 if (conf->hold_list.next == conf->last_hold)
3906 conf->bypass_count++;
3907 else {
3908 conf->last_hold = conf->hold_list.next;
3909 conf->bypass_count -= conf->bypass_threshold;
3910 if (conf->bypass_count < 0)
3911 conf->bypass_count = 0;
3912 }
3913 }
3914 } else if (!list_empty(&conf->hold_list) &&
3915 ((conf->bypass_threshold &&
3916 conf->bypass_count > conf->bypass_threshold) ||
3917 atomic_read(&conf->pending_full_writes) == 0)) {
3918 sh = list_entry(conf->hold_list.next,
3919 typeof(*sh), lru);
3920 conf->bypass_count -= conf->bypass_threshold;
3921 if (conf->bypass_count < 0)
3922 conf->bypass_count = 0;
3923 } else
3924 return NULL;
3925
3926 list_del_init(&sh->lru);
3927 atomic_inc(&sh->count);
3928 BUG_ON(atomic_read(&sh->count) != 1);
3929 return sh;
3930}
f679623f 3931
165125e1 3932static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3933{
3934 mddev_t *mddev = q->queuedata;
3935 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3936 int dd_idx;
1da177e4
LT
3937 sector_t new_sector;
3938 sector_t logical_sector, last_sector;
3939 struct stripe_head *sh;
a362357b 3940 const int rw = bio_data_dir(bi);
c9959059 3941 int cpu, remaining;
1da177e4 3942
e5dcdd80 3943 if (unlikely(bio_barrier(bi))) {
6712ecf8 3944 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3945 return 0;
3946 }
3947
3d310eb7 3948 md_write_start(mddev, bi);
06d91a5f 3949
074a7aca
TH
3950 cpu = part_stat_lock();
3951 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3952 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3953 bio_sectors(bi));
3954 part_stat_unlock();
1da177e4 3955
802ba064 3956 if (rw == READ &&
52488615
RBJ
3957 mddev->reshape_position == MaxSector &&
3958 chunk_aligned_read(q,bi))
99c0fb5f 3959 return 0;
52488615 3960
1da177e4
LT
3961 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3962 last_sector = bi->bi_sector + (bi->bi_size>>9);
3963 bi->bi_next = NULL;
3964 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3965
1da177e4
LT
3966 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3967 DEFINE_WAIT(w);
16a53ecc 3968 int disks, data_disks;
b5663ba4 3969 int previous;
b578d55f 3970
7ecaa1e6 3971 retry:
b5663ba4 3972 previous = 0;
b0f9ec04 3973 disks = conf->raid_disks;
b578d55f 3974 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3975 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3976 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3977 * 64bit on a 32bit platform, and so it might be
3978 * possible to see a half-updated value
fef9c61f 3979 * Ofcourse reshape_progress could change after
df8e7f76
N
3980 * the lock is dropped, so once we get a reference
3981 * to the stripe that we think it is, we will have
3982 * to check again.
3983 */
7ecaa1e6 3984 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3985 if (mddev->delta_disks < 0
3986 ? logical_sector < conf->reshape_progress
3987 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3988 disks = conf->previous_raid_disks;
b5663ba4
N
3989 previous = 1;
3990 } else {
fef9c61f
N
3991 if (mddev->delta_disks < 0
3992 ? logical_sector < conf->reshape_safe
3993 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3994 spin_unlock_irq(&conf->device_lock);
3995 schedule();
3996 goto retry;
3997 }
3998 }
7ecaa1e6
N
3999 spin_unlock_irq(&conf->device_lock);
4000 }
16a53ecc
N
4001 data_disks = disks - conf->max_degraded;
4002
112bf897
N
4003 new_sector = raid5_compute_sector(conf, logical_sector,
4004 previous,
911d4ee8 4005 &dd_idx, NULL);
45b4233c 4006 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
4007 (unsigned long long)new_sector,
4008 (unsigned long long)logical_sector);
4009
b5663ba4
N
4010 sh = get_active_stripe(conf, new_sector, previous,
4011 (bi->bi_rw&RWA_MASK));
1da177e4 4012 if (sh) {
b0f9ec04 4013 if (unlikely(previous)) {
7ecaa1e6 4014 /* expansion might have moved on while waiting for a
df8e7f76
N
4015 * stripe, so we must do the range check again.
4016 * Expansion could still move past after this
4017 * test, but as we are holding a reference to
4018 * 'sh', we know that if that happens,
4019 * STRIPE_EXPANDING will get set and the expansion
4020 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4021 */
4022 int must_retry = 0;
4023 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
4024 if (mddev->delta_disks < 0
4025 ? logical_sector >= conf->reshape_progress
4026 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4027 /* mismatch, need to try again */
4028 must_retry = 1;
4029 spin_unlock_irq(&conf->device_lock);
4030 if (must_retry) {
4031 release_stripe(sh);
4032 goto retry;
4033 }
4034 }
e464eafd
N
4035 /* FIXME what if we get a false positive because these
4036 * are being updated.
4037 */
4038 if (logical_sector >= mddev->suspend_lo &&
4039 logical_sector < mddev->suspend_hi) {
4040 release_stripe(sh);
4041 schedule();
4042 goto retry;
4043 }
7ecaa1e6
N
4044
4045 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4046 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4047 /* Stripe is busy expanding or
4048 * add failed due to overlap. Flush everything
1da177e4
LT
4049 * and wait a while
4050 */
4051 raid5_unplug_device(mddev->queue);
4052 release_stripe(sh);
4053 schedule();
4054 goto retry;
4055 }
4056 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4057 set_bit(STRIPE_HANDLE, &sh->state);
4058 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 4059 release_stripe(sh);
1da177e4
LT
4060 } else {
4061 /* cannot get stripe for read-ahead, just give-up */
4062 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4063 finish_wait(&conf->wait_for_overlap, &w);
4064 break;
4065 }
4066
4067 }
4068 spin_lock_irq(&conf->device_lock);
960e739d 4069 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4070 spin_unlock_irq(&conf->device_lock);
4071 if (remaining == 0) {
1da177e4 4072
16a53ecc 4073 if ( rw == WRITE )
1da177e4 4074 md_write_end(mddev);
6712ecf8 4075
0e13fe23 4076 bio_endio(bi, 0);
1da177e4 4077 }
1da177e4
LT
4078 return 0;
4079}
4080
b522adcd
DW
4081static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4082
52c03291 4083static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 4084{
52c03291
N
4085 /* reshaping is quite different to recovery/resync so it is
4086 * handled quite separately ... here.
4087 *
4088 * On each call to sync_request, we gather one chunk worth of
4089 * destination stripes and flag them as expanding.
4090 * Then we find all the source stripes and request reads.
4091 * As the reads complete, handle_stripe will copy the data
4092 * into the destination stripe and release that stripe.
4093 */
1da177e4
LT
4094 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4095 struct stripe_head *sh;
ccfcc3c1 4096 sector_t first_sector, last_sector;
f416885e
N
4097 int raid_disks = conf->previous_raid_disks;
4098 int data_disks = raid_disks - conf->max_degraded;
4099 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4100 int i;
4101 int dd_idx;
c8f517c4 4102 sector_t writepos, readpos, safepos;
ec32a2bd 4103 sector_t stripe_addr;
7a661381 4104 int reshape_sectors;
ab69ae12 4105 struct list_head stripes;
52c03291 4106
fef9c61f
N
4107 if (sector_nr == 0) {
4108 /* If restarting in the middle, skip the initial sectors */
4109 if (mddev->delta_disks < 0 &&
4110 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4111 sector_nr = raid5_size(mddev, 0, 0)
4112 - conf->reshape_progress;
4113 } else if (mddev->delta_disks > 0 &&
4114 conf->reshape_progress > 0)
4115 sector_nr = conf->reshape_progress;
f416885e 4116 sector_div(sector_nr, new_data_disks);
fef9c61f
N
4117 if (sector_nr) {
4118 *skipped = 1;
4119 return sector_nr;
4120 }
52c03291
N
4121 }
4122
7a661381
N
4123 /* We need to process a full chunk at a time.
4124 * If old and new chunk sizes differ, we need to process the
4125 * largest of these
4126 */
4127 if (mddev->new_chunk > mddev->chunk_size)
4128 reshape_sectors = mddev->new_chunk / 512;
4129 else
4130 reshape_sectors = mddev->chunk_size / 512;
4131
52c03291
N
4132 /* we update the metadata when there is more than 3Meg
4133 * in the block range (that is rather arbitrary, should
4134 * probably be time based) or when the data about to be
4135 * copied would over-write the source of the data at
4136 * the front of the range.
fef9c61f
N
4137 * i.e. one new_stripe along from reshape_progress new_maps
4138 * to after where reshape_safe old_maps to
52c03291 4139 */
fef9c61f 4140 writepos = conf->reshape_progress;
f416885e 4141 sector_div(writepos, new_data_disks);
c8f517c4
N
4142 readpos = conf->reshape_progress;
4143 sector_div(readpos, data_disks);
fef9c61f 4144 safepos = conf->reshape_safe;
f416885e 4145 sector_div(safepos, data_disks);
fef9c61f 4146 if (mddev->delta_disks < 0) {
7a661381 4147 writepos -= reshape_sectors;
c8f517c4 4148 readpos += reshape_sectors;
7a661381 4149 safepos += reshape_sectors;
fef9c61f 4150 } else {
7a661381 4151 writepos += reshape_sectors;
c8f517c4 4152 readpos -= reshape_sectors;
7a661381 4153 safepos -= reshape_sectors;
fef9c61f 4154 }
52c03291 4155
c8f517c4
N
4156 /* 'writepos' is the most advanced device address we might write.
4157 * 'readpos' is the least advanced device address we might read.
4158 * 'safepos' is the least address recorded in the metadata as having
4159 * been reshaped.
4160 * If 'readpos' is behind 'writepos', then there is no way that we can
4161 * ensure safety in the face of a crash - that must be done by userspace
4162 * making a backup of the data. So in that case there is no particular
4163 * rush to update metadata.
4164 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4165 * update the metadata to advance 'safepos' to match 'readpos' so that
4166 * we can be safe in the event of a crash.
4167 * So we insist on updating metadata if safepos is behind writepos and
4168 * readpos is beyond writepos.
4169 * In any case, update the metadata every 10 seconds.
4170 * Maybe that number should be configurable, but I'm not sure it is
4171 * worth it.... maybe it could be a multiple of safemode_delay???
4172 */
fef9c61f 4173 if ((mddev->delta_disks < 0
c8f517c4
N
4174 ? (safepos > writepos && readpos < writepos)
4175 : (safepos < writepos && readpos > writepos)) ||
4176 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4177 /* Cannot proceed until we've updated the superblock... */
4178 wait_event(conf->wait_for_overlap,
4179 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4180 mddev->reshape_position = conf->reshape_progress;
c8f517c4 4181 conf->reshape_checkpoint = jiffies;
850b2b42 4182 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4183 md_wakeup_thread(mddev->thread);
850b2b42 4184 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4185 kthread_should_stop());
4186 spin_lock_irq(&conf->device_lock);
fef9c61f 4187 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4188 spin_unlock_irq(&conf->device_lock);
4189 wake_up(&conf->wait_for_overlap);
4190 }
4191
ec32a2bd
N
4192 if (mddev->delta_disks < 0) {
4193 BUG_ON(conf->reshape_progress == 0);
4194 stripe_addr = writepos;
4195 BUG_ON((mddev->dev_sectors &
7a661381
N
4196 ~((sector_t)reshape_sectors - 1))
4197 - reshape_sectors - stripe_addr
ec32a2bd
N
4198 != sector_nr);
4199 } else {
7a661381 4200 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4201 stripe_addr = sector_nr;
4202 }
ab69ae12 4203 INIT_LIST_HEAD(&stripes);
7a661381 4204 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291
N
4205 int j;
4206 int skipped = 0;
ec32a2bd 4207 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
52c03291
N
4208 set_bit(STRIPE_EXPANDING, &sh->state);
4209 atomic_inc(&conf->reshape_stripes);
4210 /* If any of this stripe is beyond the end of the old
4211 * array, then we need to zero those blocks
4212 */
4213 for (j=sh->disks; j--;) {
4214 sector_t s;
4215 if (j == sh->pd_idx)
4216 continue;
f416885e 4217 if (conf->level == 6 &&
d0dabf7e 4218 j == sh->qd_idx)
f416885e 4219 continue;
784052ec 4220 s = compute_blocknr(sh, j, 0);
b522adcd 4221 if (s < raid5_size(mddev, 0, 0)) {
52c03291
N
4222 skipped = 1;
4223 continue;
4224 }
4225 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4226 set_bit(R5_Expanded, &sh->dev[j].flags);
4227 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4228 }
4229 if (!skipped) {
4230 set_bit(STRIPE_EXPAND_READY, &sh->state);
4231 set_bit(STRIPE_HANDLE, &sh->state);
4232 }
ab69ae12 4233 list_add(&sh->lru, &stripes);
52c03291
N
4234 }
4235 spin_lock_irq(&conf->device_lock);
fef9c61f 4236 if (mddev->delta_disks < 0)
7a661381 4237 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4238 else
7a661381 4239 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4240 spin_unlock_irq(&conf->device_lock);
4241 /* Ok, those stripe are ready. We can start scheduling
4242 * reads on the source stripes.
4243 * The source stripes are determined by mapping the first and last
4244 * block on the destination stripes.
4245 */
52c03291 4246 first_sector =
ec32a2bd 4247 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4248 1, &dd_idx, NULL);
52c03291 4249 last_sector =
ec32a2bd 4250 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
112bf897 4251 *(new_data_disks) - 1),
911d4ee8 4252 1, &dd_idx, NULL);
58c0fed4
AN
4253 if (last_sector >= mddev->dev_sectors)
4254 last_sector = mddev->dev_sectors - 1;
52c03291 4255 while (first_sector <= last_sector) {
b5663ba4 4256 sh = get_active_stripe(conf, first_sector, 1, 0);
52c03291
N
4257 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4258 set_bit(STRIPE_HANDLE, &sh->state);
4259 release_stripe(sh);
4260 first_sector += STRIPE_SECTORS;
4261 }
ab69ae12
N
4262 /* Now that the sources are clearly marked, we can release
4263 * the destination stripes
4264 */
4265 while (!list_empty(&stripes)) {
4266 sh = list_entry(stripes.next, struct stripe_head, lru);
4267 list_del_init(&sh->lru);
4268 release_stripe(sh);
4269 }
c6207277
N
4270 /* If this takes us to the resync_max point where we have to pause,
4271 * then we need to write out the superblock.
4272 */
7a661381 4273 sector_nr += reshape_sectors;
c6207277
N
4274 if (sector_nr >= mddev->resync_max) {
4275 /* Cannot proceed until we've updated the superblock... */
4276 wait_event(conf->wait_for_overlap,
4277 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4278 mddev->reshape_position = conf->reshape_progress;
c8f517c4 4279 conf->reshape_checkpoint = jiffies;
c6207277
N
4280 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4281 md_wakeup_thread(mddev->thread);
4282 wait_event(mddev->sb_wait,
4283 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4284 || kthread_should_stop());
4285 spin_lock_irq(&conf->device_lock);
fef9c61f 4286 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4287 spin_unlock_irq(&conf->device_lock);
4288 wake_up(&conf->wait_for_overlap);
4289 }
7a661381 4290 return reshape_sectors;
52c03291
N
4291}
4292
4293/* FIXME go_faster isn't used */
4294static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4295{
4296 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4297 struct stripe_head *sh;
58c0fed4 4298 sector_t max_sector = mddev->dev_sectors;
72626685 4299 int sync_blocks;
16a53ecc
N
4300 int still_degraded = 0;
4301 int i;
1da177e4 4302
72626685 4303 if (sector_nr >= max_sector) {
1da177e4
LT
4304 /* just being told to finish up .. nothing much to do */
4305 unplug_slaves(mddev);
cea9c228 4306
29269553
N
4307 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4308 end_reshape(conf);
4309 return 0;
4310 }
72626685
N
4311
4312 if (mddev->curr_resync < max_sector) /* aborted */
4313 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4314 &sync_blocks, 1);
16a53ecc 4315 else /* completed sync */
72626685
N
4316 conf->fullsync = 0;
4317 bitmap_close_sync(mddev->bitmap);
4318
1da177e4
LT
4319 return 0;
4320 }
ccfcc3c1 4321
52c03291
N
4322 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4323 return reshape_request(mddev, sector_nr, skipped);
f6705578 4324
c6207277
N
4325 /* No need to check resync_max as we never do more than one
4326 * stripe, and as resync_max will always be on a chunk boundary,
4327 * if the check in md_do_sync didn't fire, there is no chance
4328 * of overstepping resync_max here
4329 */
4330
16a53ecc 4331 /* if there is too many failed drives and we are trying
1da177e4
LT
4332 * to resync, then assert that we are finished, because there is
4333 * nothing we can do.
4334 */
3285edf1 4335 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4336 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4337 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4338 *skipped = 1;
1da177e4
LT
4339 return rv;
4340 }
72626685 4341 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4342 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4343 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4344 /* we can skip this block, and probably more */
4345 sync_blocks /= STRIPE_SECTORS;
4346 *skipped = 1;
4347 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4348 }
1da177e4 4349
b47490c9
N
4350
4351 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4352
b5663ba4 4353 sh = get_active_stripe(conf, sector_nr, 0, 1);
1da177e4 4354 if (sh == NULL) {
b5663ba4 4355 sh = get_active_stripe(conf, sector_nr, 0, 0);
1da177e4 4356 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4357 * is trying to get access
1da177e4 4358 */
66c006a5 4359 schedule_timeout_uninterruptible(1);
1da177e4 4360 }
16a53ecc
N
4361 /* Need to check if array will still be degraded after recovery/resync
4362 * We don't need to check the 'failed' flag as when that gets set,
4363 * recovery aborts.
4364 */
4365 for (i=0; i<mddev->raid_disks; i++)
4366 if (conf->disks[i].rdev == NULL)
4367 still_degraded = 1;
4368
4369 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4370
4371 spin_lock(&sh->lock);
1da177e4
LT
4372 set_bit(STRIPE_SYNCING, &sh->state);
4373 clear_bit(STRIPE_INSYNC, &sh->state);
4374 spin_unlock(&sh->lock);
4375
df10cfbc 4376 /* wait for any blocked device to be handled */
36d1c647 4377 while (unlikely(!handle_stripe(sh)))
df10cfbc 4378 ;
1da177e4
LT
4379 release_stripe(sh);
4380
4381 return STRIPE_SECTORS;
4382}
4383
46031f9a
RBJ
4384static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4385{
4386 /* We may not be able to submit a whole bio at once as there
4387 * may not be enough stripe_heads available.
4388 * We cannot pre-allocate enough stripe_heads as we may need
4389 * more than exist in the cache (if we allow ever large chunks).
4390 * So we do one stripe head at a time and record in
4391 * ->bi_hw_segments how many have been done.
4392 *
4393 * We *know* that this entire raid_bio is in one chunk, so
4394 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4395 */
4396 struct stripe_head *sh;
911d4ee8 4397 int dd_idx;
46031f9a
RBJ
4398 sector_t sector, logical_sector, last_sector;
4399 int scnt = 0;
4400 int remaining;
4401 int handled = 0;
4402
4403 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4404 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4405 0, &dd_idx, NULL);
46031f9a
RBJ
4406 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4407
4408 for (; logical_sector < last_sector;
387bb173
NB
4409 logical_sector += STRIPE_SECTORS,
4410 sector += STRIPE_SECTORS,
4411 scnt++) {
46031f9a 4412
960e739d 4413 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4414 /* already done this stripe */
4415 continue;
4416
b5663ba4 4417 sh = get_active_stripe(conf, sector, 0, 1);
46031f9a
RBJ
4418
4419 if (!sh) {
4420 /* failed to get a stripe - must wait */
960e739d 4421 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4422 conf->retry_read_aligned = raid_bio;
4423 return handled;
4424 }
4425
4426 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4427 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4428 release_stripe(sh);
960e739d 4429 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4430 conf->retry_read_aligned = raid_bio;
4431 return handled;
4432 }
4433
36d1c647 4434 handle_stripe(sh);
46031f9a
RBJ
4435 release_stripe(sh);
4436 handled++;
4437 }
4438 spin_lock_irq(&conf->device_lock);
960e739d 4439 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4440 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4441 if (remaining == 0)
4442 bio_endio(raid_bio, 0);
46031f9a
RBJ
4443 if (atomic_dec_and_test(&conf->active_aligned_reads))
4444 wake_up(&conf->wait_for_stripe);
4445 return handled;
4446}
4447
4448
4449
1da177e4
LT
4450/*
4451 * This is our raid5 kernel thread.
4452 *
4453 * We scan the hash table for stripes which can be handled now.
4454 * During the scan, completed stripes are saved for us by the interrupt
4455 * handler, so that they will not have to wait for our next wakeup.
4456 */
6ed3003c 4457static void raid5d(mddev_t *mddev)
1da177e4
LT
4458{
4459 struct stripe_head *sh;
4460 raid5_conf_t *conf = mddev_to_conf(mddev);
4461 int handled;
4462
45b4233c 4463 pr_debug("+++ raid5d active\n");
1da177e4
LT
4464
4465 md_check_recovery(mddev);
1da177e4
LT
4466
4467 handled = 0;
4468 spin_lock_irq(&conf->device_lock);
4469 while (1) {
46031f9a 4470 struct bio *bio;
1da177e4 4471
ae3c20cc 4472 if (conf->seq_flush != conf->seq_write) {
72626685 4473 int seq = conf->seq_flush;
700e432d 4474 spin_unlock_irq(&conf->device_lock);
72626685 4475 bitmap_unplug(mddev->bitmap);
700e432d 4476 spin_lock_irq(&conf->device_lock);
72626685
N
4477 conf->seq_write = seq;
4478 activate_bit_delay(conf);
4479 }
4480
46031f9a
RBJ
4481 while ((bio = remove_bio_from_retry(conf))) {
4482 int ok;
4483 spin_unlock_irq(&conf->device_lock);
4484 ok = retry_aligned_read(conf, bio);
4485 spin_lock_irq(&conf->device_lock);
4486 if (!ok)
4487 break;
4488 handled++;
4489 }
4490
8b3e6cdc
DW
4491 sh = __get_priority_stripe(conf);
4492
c9f21aaf 4493 if (!sh)
1da177e4 4494 break;
1da177e4
LT
4495 spin_unlock_irq(&conf->device_lock);
4496
4497 handled++;
36d1c647 4498 handle_stripe(sh);
1da177e4
LT
4499 release_stripe(sh);
4500
4501 spin_lock_irq(&conf->device_lock);
4502 }
45b4233c 4503 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4504
4505 spin_unlock_irq(&conf->device_lock);
4506
c9f21aaf 4507 async_tx_issue_pending_all();
1da177e4
LT
4508 unplug_slaves(mddev);
4509
45b4233c 4510 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4511}
4512
3f294f4f 4513static ssize_t
007583c9 4514raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4515{
007583c9 4516 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4517 if (conf)
4518 return sprintf(page, "%d\n", conf->max_nr_stripes);
4519 else
4520 return 0;
3f294f4f
N
4521}
4522
4523static ssize_t
007583c9 4524raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4525{
007583c9 4526 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4527 unsigned long new;
b5470dc5
DW
4528 int err;
4529
3f294f4f
N
4530 if (len >= PAGE_SIZE)
4531 return -EINVAL;
96de1e66
N
4532 if (!conf)
4533 return -ENODEV;
3f294f4f 4534
4ef197d8 4535 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4536 return -EINVAL;
4537 if (new <= 16 || new > 32768)
4538 return -EINVAL;
4539 while (new < conf->max_nr_stripes) {
4540 if (drop_one_stripe(conf))
4541 conf->max_nr_stripes--;
4542 else
4543 break;
4544 }
b5470dc5
DW
4545 err = md_allow_write(mddev);
4546 if (err)
4547 return err;
3f294f4f
N
4548 while (new > conf->max_nr_stripes) {
4549 if (grow_one_stripe(conf))
4550 conf->max_nr_stripes++;
4551 else break;
4552 }
4553 return len;
4554}
007583c9 4555
96de1e66
N
4556static struct md_sysfs_entry
4557raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4558 raid5_show_stripe_cache_size,
4559 raid5_store_stripe_cache_size);
3f294f4f 4560
8b3e6cdc
DW
4561static ssize_t
4562raid5_show_preread_threshold(mddev_t *mddev, char *page)
4563{
4564 raid5_conf_t *conf = mddev_to_conf(mddev);
4565 if (conf)
4566 return sprintf(page, "%d\n", conf->bypass_threshold);
4567 else
4568 return 0;
4569}
4570
4571static ssize_t
4572raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4573{
4574 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4575 unsigned long new;
8b3e6cdc
DW
4576 if (len >= PAGE_SIZE)
4577 return -EINVAL;
4578 if (!conf)
4579 return -ENODEV;
4580
4ef197d8 4581 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4582 return -EINVAL;
4ef197d8 4583 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4584 return -EINVAL;
4585 conf->bypass_threshold = new;
4586 return len;
4587}
4588
4589static struct md_sysfs_entry
4590raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4591 S_IRUGO | S_IWUSR,
4592 raid5_show_preread_threshold,
4593 raid5_store_preread_threshold);
4594
3f294f4f 4595static ssize_t
96de1e66 4596stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4597{
007583c9 4598 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4599 if (conf)
4600 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4601 else
4602 return 0;
3f294f4f
N
4603}
4604
96de1e66
N
4605static struct md_sysfs_entry
4606raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4607
007583c9 4608static struct attribute *raid5_attrs[] = {
3f294f4f
N
4609 &raid5_stripecache_size.attr,
4610 &raid5_stripecache_active.attr,
8b3e6cdc 4611 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4612 NULL,
4613};
007583c9
N
4614static struct attribute_group raid5_attrs_group = {
4615 .name = NULL,
4616 .attrs = raid5_attrs,
3f294f4f
N
4617};
4618
80c3a6ce
DW
4619static sector_t
4620raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4621{
4622 raid5_conf_t *conf = mddev_to_conf(mddev);
4623
4624 if (!sectors)
4625 sectors = mddev->dev_sectors;
7ec05478
N
4626 if (!raid_disks) {
4627 /* size is defined by the smallest of previous and new size */
4628 if (conf->raid_disks < conf->previous_raid_disks)
4629 raid_disks = conf->raid_disks;
4630 else
4631 raid_disks = conf->previous_raid_disks;
4632 }
80c3a6ce
DW
4633
4634 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
784052ec 4635 sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
80c3a6ce
DW
4636 return sectors * (raid_disks - conf->max_degraded);
4637}
4638
36d1c647
DW
4639static void raid5_free_percpu(raid5_conf_t *conf)
4640{
4641 struct raid5_percpu *percpu;
4642 unsigned long cpu;
4643
4644 if (!conf->percpu)
4645 return;
4646
4647 get_online_cpus();
4648 for_each_possible_cpu(cpu) {
4649 percpu = per_cpu_ptr(conf->percpu, cpu);
4650 safe_put_page(percpu->spare_page);
d6f38f31 4651 kfree(percpu->scribble);
36d1c647
DW
4652 }
4653#ifdef CONFIG_HOTPLUG_CPU
4654 unregister_cpu_notifier(&conf->cpu_notify);
4655#endif
4656 put_online_cpus();
4657
4658 free_percpu(conf->percpu);
4659}
4660
a11034b4
DW
4661static void free_conf(raid5_conf_t *conf)
4662{
4663 shrink_stripes(conf);
36d1c647 4664 raid5_free_percpu(conf);
a11034b4
DW
4665 kfree(conf->disks);
4666 kfree(conf->stripe_hashtbl);
4667 kfree(conf);
4668}
4669
36d1c647
DW
4670#ifdef CONFIG_HOTPLUG_CPU
4671static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4672 void *hcpu)
4673{
4674 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4675 long cpu = (long)hcpu;
4676 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4677
4678 switch (action) {
4679 case CPU_UP_PREPARE:
4680 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4681 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4682 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4683 if (!percpu->scribble)
4684 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4685
4686 if (!percpu->scribble ||
4687 (conf->level == 6 && !percpu->spare_page)) {
4688 safe_put_page(percpu->spare_page);
4689 kfree(percpu->scribble);
36d1c647
DW
4690 pr_err("%s: failed memory allocation for cpu%ld\n",
4691 __func__, cpu);
4692 return NOTIFY_BAD;
4693 }
4694 break;
4695 case CPU_DEAD:
4696 case CPU_DEAD_FROZEN:
4697 safe_put_page(percpu->spare_page);
d6f38f31 4698 kfree(percpu->scribble);
36d1c647 4699 percpu->spare_page = NULL;
d6f38f31 4700 percpu->scribble = NULL;
36d1c647
DW
4701 break;
4702 default:
4703 break;
4704 }
4705 return NOTIFY_OK;
4706}
4707#endif
4708
4709static int raid5_alloc_percpu(raid5_conf_t *conf)
4710{
4711 unsigned long cpu;
4712 struct page *spare_page;
4713 struct raid5_percpu *allcpus;
d6f38f31 4714 void *scribble;
36d1c647
DW
4715 int err;
4716
36d1c647
DW
4717 allcpus = alloc_percpu(struct raid5_percpu);
4718 if (!allcpus)
4719 return -ENOMEM;
4720 conf->percpu = allcpus;
4721
4722 get_online_cpus();
4723 err = 0;
4724 for_each_present_cpu(cpu) {
d6f38f31
DW
4725 if (conf->level == 6) {
4726 spare_page = alloc_page(GFP_KERNEL);
4727 if (!spare_page) {
4728 err = -ENOMEM;
4729 break;
4730 }
4731 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4732 }
4733 scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4734 if (!scribble) {
36d1c647
DW
4735 err = -ENOMEM;
4736 break;
4737 }
d6f38f31 4738 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4739 }
4740#ifdef CONFIG_HOTPLUG_CPU
4741 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4742 conf->cpu_notify.priority = 0;
4743 if (err == 0)
4744 err = register_cpu_notifier(&conf->cpu_notify);
4745#endif
4746 put_online_cpus();
4747
4748 return err;
4749}
4750
91adb564 4751static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4752{
4753 raid5_conf_t *conf;
4754 int raid_disk, memory;
4755 mdk_rdev_t *rdev;
4756 struct disk_info *disk;
1da177e4 4757
91adb564
N
4758 if (mddev->new_level != 5
4759 && mddev->new_level != 4
4760 && mddev->new_level != 6) {
16a53ecc 4761 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4762 mdname(mddev), mddev->new_level);
4763 return ERR_PTR(-EIO);
1da177e4 4764 }
91adb564
N
4765 if ((mddev->new_level == 5
4766 && !algorithm_valid_raid5(mddev->new_layout)) ||
4767 (mddev->new_level == 6
4768 && !algorithm_valid_raid6(mddev->new_layout))) {
99c0fb5f 4769 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
91adb564
N
4770 mdname(mddev), mddev->new_layout);
4771 return ERR_PTR(-EIO);
99c0fb5f 4772 }
91adb564
N
4773 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4774 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4775 mdname(mddev), mddev->raid_disks);
4776 return ERR_PTR(-EINVAL);
4bbf3771
N
4777 }
4778
91adb564
N
4779 if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4780 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4781 mddev->new_chunk, mdname(mddev));
4782 return ERR_PTR(-EINVAL);
f6705578
N
4783 }
4784
91adb564
N
4785 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4786 if (conf == NULL)
1da177e4 4787 goto abort;
91adb564
N
4788
4789 conf->raid_disks = mddev->raid_disks;
d6f38f31 4790 conf->scribble_len = scribble_len(conf->raid_disks);
91adb564
N
4791 if (mddev->reshape_position == MaxSector)
4792 conf->previous_raid_disks = mddev->raid_disks;
4793 else
f6705578 4794 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
f6705578
N
4795
4796 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4797 GFP_KERNEL);
4798 if (!conf->disks)
4799 goto abort;
9ffae0cf 4800
1da177e4
LT
4801 conf->mddev = mddev;
4802
fccddba0 4803 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4804 goto abort;
1da177e4 4805
36d1c647
DW
4806 conf->level = mddev->new_level;
4807 if (raid5_alloc_percpu(conf) != 0)
4808 goto abort;
4809
1da177e4
LT
4810 spin_lock_init(&conf->device_lock);
4811 init_waitqueue_head(&conf->wait_for_stripe);
4812 init_waitqueue_head(&conf->wait_for_overlap);
4813 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4814 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4815 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4816 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4817 INIT_LIST_HEAD(&conf->inactive_list);
4818 atomic_set(&conf->active_stripes, 0);
4819 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4820 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4821 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4822
45b4233c 4823 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4824
159ec1fc 4825 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4826 raid_disk = rdev->raid_disk;
f6705578 4827 if (raid_disk >= conf->raid_disks
1da177e4
LT
4828 || raid_disk < 0)
4829 continue;
4830 disk = conf->disks + raid_disk;
4831
4832 disk->rdev = rdev;
4833
b2d444d7 4834 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4835 char b[BDEVNAME_SIZE];
4836 printk(KERN_INFO "raid5: device %s operational as raid"
4837 " disk %d\n", bdevname(rdev->bdev,b),
4838 raid_disk);
8c2e870a
NB
4839 } else
4840 /* Cannot rely on bitmap to complete recovery */
4841 conf->fullsync = 1;
1da177e4
LT
4842 }
4843
91adb564 4844 conf->chunk_size = mddev->new_chunk;
16a53ecc
N
4845 if (conf->level == 6)
4846 conf->max_degraded = 2;
4847 else
4848 conf->max_degraded = 1;
91adb564 4849 conf->algorithm = mddev->new_layout;
1da177e4 4850 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4851 conf->reshape_progress = mddev->reshape_position;
e183eaed 4852 if (conf->reshape_progress != MaxSector) {
784052ec 4853 conf->prev_chunk = mddev->chunk_size;
e183eaed
N
4854 conf->prev_algo = mddev->layout;
4855 }
1da177e4 4856
91adb564
N
4857 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4858 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4859 if (grow_stripes(conf, conf->max_nr_stripes)) {
4860 printk(KERN_ERR
4861 "raid5: couldn't allocate %dkB for buffers\n", memory);
4862 goto abort;
4863 } else
4864 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4865 memory, mdname(mddev));
1da177e4 4866
91adb564
N
4867 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4868 if (!conf->thread) {
4869 printk(KERN_ERR
4870 "raid5: couldn't allocate thread for %s\n",
4871 mdname(mddev));
16a53ecc
N
4872 goto abort;
4873 }
91adb564
N
4874
4875 return conf;
4876
4877 abort:
4878 if (conf) {
a11034b4 4879 free_conf(conf);
91adb564
N
4880 return ERR_PTR(-EIO);
4881 } else
4882 return ERR_PTR(-ENOMEM);
4883}
4884
4885static int run(mddev_t *mddev)
4886{
4887 raid5_conf_t *conf;
4888 int working_disks = 0;
4889 mdk_rdev_t *rdev;
4890
4891 if (mddev->reshape_position != MaxSector) {
4892 /* Check that we can continue the reshape.
4893 * Currently only disks can change, it must
4894 * increase, and we must be past the point where
4895 * a stripe over-writes itself
4896 */
4897 sector_t here_new, here_old;
4898 int old_disks;
18b00334 4899 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4900
88ce4930 4901 if (mddev->new_level != mddev->level) {
91adb564
N
4902 printk(KERN_ERR "raid5: %s: unsupported reshape "
4903 "required - aborting.\n",
4904 mdname(mddev));
4905 return -EINVAL;
4906 }
91adb564
N
4907 old_disks = mddev->raid_disks - mddev->delta_disks;
4908 /* reshape_position must be on a new-stripe boundary, and one
4909 * further up in new geometry must map after here in old
4910 * geometry.
4911 */
4912 here_new = mddev->reshape_position;
784052ec 4913 if (sector_div(here_new, (mddev->new_chunk>>9)*
91adb564
N
4914 (mddev->raid_disks - max_degraded))) {
4915 printk(KERN_ERR "raid5: reshape_position not "
4916 "on a stripe boundary\n");
4917 return -EINVAL;
4918 }
4919 /* here_new is the stripe we will write to */
4920 here_old = mddev->reshape_position;
4921 sector_div(here_old, (mddev->chunk_size>>9)*
4922 (old_disks-max_degraded));
4923 /* here_old is the first stripe that we might need to read
4924 * from */
4925 if (here_new >= here_old) {
4926 /* Reading from the same stripe as writing to - bad */
4927 printk(KERN_ERR "raid5: reshape_position too early for "
4928 "auto-recovery - aborting.\n");
4929 return -EINVAL;
4930 }
4931 printk(KERN_INFO "raid5: reshape will continue\n");
4932 /* OK, we should be able to continue; */
4933 } else {
4934 BUG_ON(mddev->level != mddev->new_level);
4935 BUG_ON(mddev->layout != mddev->new_layout);
4936 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4937 BUG_ON(mddev->delta_disks != 0);
1da177e4 4938 }
91adb564 4939
245f46c2
N
4940 if (mddev->private == NULL)
4941 conf = setup_conf(mddev);
4942 else
4943 conf = mddev->private;
4944
91adb564
N
4945 if (IS_ERR(conf))
4946 return PTR_ERR(conf);
4947
4948 mddev->thread = conf->thread;
4949 conf->thread = NULL;
4950 mddev->private = conf;
4951
4952 /*
4953 * 0 for a fully functional array, 1 or 2 for a degraded array.
4954 */
4955 list_for_each_entry(rdev, &mddev->disks, same_set)
4956 if (rdev->raid_disk >= 0 &&
4957 test_bit(In_sync, &rdev->flags))
4958 working_disks++;
4959
4960 mddev->degraded = conf->raid_disks - working_disks;
4961
16a53ecc 4962 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4963 printk(KERN_ERR "raid5: not enough operational devices for %s"
4964 " (%d/%d failed)\n",
02c2de8c 4965 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4966 goto abort;
4967 }
4968
91adb564
N
4969 /* device size must be a multiple of chunk size */
4970 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4971 mddev->resync_max_sectors = mddev->dev_sectors;
4972
16a53ecc 4973 if (mddev->degraded > 0 &&
1da177e4 4974 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4975 if (mddev->ok_start_degraded)
4976 printk(KERN_WARNING
4977 "raid5: starting dirty degraded array: %s"
4978 "- data corruption possible.\n",
4979 mdname(mddev));
4980 else {
4981 printk(KERN_ERR
4982 "raid5: cannot start dirty degraded array for %s\n",
4983 mdname(mddev));
4984 goto abort;
4985 }
1da177e4
LT
4986 }
4987
1da177e4
LT
4988 if (mddev->degraded == 0)
4989 printk("raid5: raid level %d set %s active with %d out of %d"
e183eaed
N
4990 " devices, algorithm %d\n", conf->level, mdname(mddev),
4991 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4992 mddev->new_layout);
1da177e4
LT
4993 else
4994 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4995 " out of %d devices, algorithm %d\n", conf->level,
4996 mdname(mddev), mddev->raid_disks - mddev->degraded,
e183eaed 4997 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4998
4999 print_raid5_conf(conf);
5000
fef9c61f 5001 if (conf->reshape_progress != MaxSector) {
f6705578 5002 printk("...ok start reshape thread\n");
fef9c61f 5003 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5004 atomic_set(&conf->reshape_stripes, 0);
5005 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5006 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5007 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5008 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5009 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5010 "%s_reshape");
f6705578
N
5011 }
5012
1da177e4 5013 /* read-ahead size must cover two whole stripes, which is
16a53ecc 5014 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
5015 */
5016 {
16a53ecc
N
5017 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5018 int stripe = data_disks *
8932c2e0 5019 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
5020 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5021 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5022 }
5023
5024 /* Ok, everything is just fine now */
5e55e2f5
N
5025 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5026 printk(KERN_WARNING
5027 "raid5: failed to create sysfs attributes for %s\n",
5028 mdname(mddev));
7a5febe9 5029
91adb564
N
5030 mddev->queue->queue_lock = &conf->device_lock;
5031
7a5febe9 5032 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 5033 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 5034 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 5035
1f403624 5036 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5037
23032a0e
RBJ
5038 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5039
1da177e4
LT
5040 return 0;
5041abort:
e0cf8f04 5042 md_unregister_thread(mddev->thread);
91adb564 5043 mddev->thread = NULL;
1da177e4
LT
5044 if (conf) {
5045 print_raid5_conf(conf);
a11034b4 5046 free_conf(conf);
1da177e4
LT
5047 }
5048 mddev->private = NULL;
5049 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5050 return -EIO;
5051}
5052
5053
5054
3f294f4f 5055static int stop(mddev_t *mddev)
1da177e4
LT
5056{
5057 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5058
5059 md_unregister_thread(mddev->thread);
5060 mddev->thread = NULL;
041ae52e 5061 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 5062 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 5063 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
a11034b4 5064 free_conf(conf);
1da177e4
LT
5065 mddev->private = NULL;
5066 return 0;
5067}
5068
45b4233c 5069#ifdef DEBUG
d710e138 5070static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
5071{
5072 int i;
5073
16a53ecc
N
5074 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5075 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5076 seq_printf(seq, "sh %llu, count %d.\n",
5077 (unsigned long long)sh->sector, atomic_read(&sh->count));
5078 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 5079 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
5080 seq_printf(seq, "(cache%d: %p %ld) ",
5081 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 5082 }
16a53ecc 5083 seq_printf(seq, "\n");
1da177e4
LT
5084}
5085
d710e138 5086static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
5087{
5088 struct stripe_head *sh;
fccddba0 5089 struct hlist_node *hn;
1da177e4
LT
5090 int i;
5091
5092 spin_lock_irq(&conf->device_lock);
5093 for (i = 0; i < NR_HASH; i++) {
fccddba0 5094 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
5095 if (sh->raid_conf != conf)
5096 continue;
16a53ecc 5097 print_sh(seq, sh);
1da177e4
LT
5098 }
5099 }
5100 spin_unlock_irq(&conf->device_lock);
5101}
5102#endif
5103
d710e138 5104static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
5105{
5106 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5107 int i;
5108
5109 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 5110 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5111 for (i = 0; i < conf->raid_disks; i++)
5112 seq_printf (seq, "%s",
5113 conf->disks[i].rdev &&
b2d444d7 5114 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5115 seq_printf (seq, "]");
45b4233c 5116#ifdef DEBUG
16a53ecc
N
5117 seq_printf (seq, "\n");
5118 printall(seq, conf);
1da177e4
LT
5119#endif
5120}
5121
5122static void print_raid5_conf (raid5_conf_t *conf)
5123{
5124 int i;
5125 struct disk_info *tmp;
5126
5127 printk("RAID5 conf printout:\n");
5128 if (!conf) {
5129 printk("(conf==NULL)\n");
5130 return;
5131 }
02c2de8c
N
5132 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5133 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5134
5135 for (i = 0; i < conf->raid_disks; i++) {
5136 char b[BDEVNAME_SIZE];
5137 tmp = conf->disks + i;
5138 if (tmp->rdev)
5139 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 5140 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
5141 bdevname(tmp->rdev->bdev,b));
5142 }
5143}
5144
5145static int raid5_spare_active(mddev_t *mddev)
5146{
5147 int i;
5148 raid5_conf_t *conf = mddev->private;
5149 struct disk_info *tmp;
5150
5151 for (i = 0; i < conf->raid_disks; i++) {
5152 tmp = conf->disks + i;
5153 if (tmp->rdev
b2d444d7 5154 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
5155 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5156 unsigned long flags;
5157 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 5158 mddev->degraded--;
c04be0aa 5159 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
5160 }
5161 }
5162 print_raid5_conf(conf);
5163 return 0;
5164}
5165
5166static int raid5_remove_disk(mddev_t *mddev, int number)
5167{
5168 raid5_conf_t *conf = mddev->private;
5169 int err = 0;
5170 mdk_rdev_t *rdev;
5171 struct disk_info *p = conf->disks + number;
5172
5173 print_raid5_conf(conf);
5174 rdev = p->rdev;
5175 if (rdev) {
ec32a2bd
N
5176 if (number >= conf->raid_disks &&
5177 conf->reshape_progress == MaxSector)
5178 clear_bit(In_sync, &rdev->flags);
5179
b2d444d7 5180 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5181 atomic_read(&rdev->nr_pending)) {
5182 err = -EBUSY;
5183 goto abort;
5184 }
dfc70645
N
5185 /* Only remove non-faulty devices if recovery
5186 * isn't possible.
5187 */
5188 if (!test_bit(Faulty, &rdev->flags) &&
ec32a2bd
N
5189 mddev->degraded <= conf->max_degraded &&
5190 number < conf->raid_disks) {
dfc70645
N
5191 err = -EBUSY;
5192 goto abort;
5193 }
1da177e4 5194 p->rdev = NULL;
fbd568a3 5195 synchronize_rcu();
1da177e4
LT
5196 if (atomic_read(&rdev->nr_pending)) {
5197 /* lost the race, try later */
5198 err = -EBUSY;
5199 p->rdev = rdev;
5200 }
5201 }
5202abort:
5203
5204 print_raid5_conf(conf);
5205 return err;
5206}
5207
5208static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5209{
5210 raid5_conf_t *conf = mddev->private;
199050ea 5211 int err = -EEXIST;
1da177e4
LT
5212 int disk;
5213 struct disk_info *p;
6c2fce2e
NB
5214 int first = 0;
5215 int last = conf->raid_disks - 1;
1da177e4 5216
16a53ecc 5217 if (mddev->degraded > conf->max_degraded)
1da177e4 5218 /* no point adding a device */
199050ea 5219 return -EINVAL;
1da177e4 5220
6c2fce2e
NB
5221 if (rdev->raid_disk >= 0)
5222 first = last = rdev->raid_disk;
1da177e4
LT
5223
5224 /*
16a53ecc
N
5225 * find the disk ... but prefer rdev->saved_raid_disk
5226 * if possible.
1da177e4 5227 */
16a53ecc 5228 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5229 rdev->saved_raid_disk >= first &&
16a53ecc
N
5230 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5231 disk = rdev->saved_raid_disk;
5232 else
6c2fce2e
NB
5233 disk = first;
5234 for ( ; disk <= last ; disk++)
1da177e4 5235 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5236 clear_bit(In_sync, &rdev->flags);
1da177e4 5237 rdev->raid_disk = disk;
199050ea 5238 err = 0;
72626685
N
5239 if (rdev->saved_raid_disk != disk)
5240 conf->fullsync = 1;
d6065f7b 5241 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5242 break;
5243 }
5244 print_raid5_conf(conf);
199050ea 5245 return err;
1da177e4
LT
5246}
5247
5248static int raid5_resize(mddev_t *mddev, sector_t sectors)
5249{
5250 /* no resync is happening, and there is enough space
5251 * on all devices, so we can resize.
5252 * We need to make sure resync covers any new space.
5253 * If the array is shrinking we should possibly wait until
5254 * any io in the removed space completes, but it hardly seems
5255 * worth it.
5256 */
5257 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
1f403624
DW
5258 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5259 mddev->raid_disks));
b522adcd
DW
5260 if (mddev->array_sectors >
5261 raid5_size(mddev, sectors, mddev->raid_disks))
5262 return -EINVAL;
f233ea5c 5263 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 5264 mddev->changed = 1;
58c0fed4
AN
5265 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5266 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5267 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5268 }
58c0fed4 5269 mddev->dev_sectors = sectors;
4b5c7ae8 5270 mddev->resync_max_sectors = sectors;
1da177e4
LT
5271 return 0;
5272}
5273
63c70c4f 5274static int raid5_check_reshape(mddev_t *mddev)
29269553
N
5275{
5276 raid5_conf_t *conf = mddev_to_conf(mddev);
29269553 5277
88ce4930
N
5278 if (mddev->delta_disks == 0 &&
5279 mddev->new_layout == mddev->layout &&
5280 mddev->new_chunk == mddev->chunk_size)
5281 return -EINVAL; /* nothing to do */
dba034ee
N
5282 if (mddev->bitmap)
5283 /* Cannot grow a bitmap yet */
5284 return -EBUSY;
ec32a2bd
N
5285 if (mddev->degraded > conf->max_degraded)
5286 return -EINVAL;
5287 if (mddev->delta_disks < 0) {
5288 /* We might be able to shrink, but the devices must
5289 * be made bigger first.
5290 * For raid6, 4 is the minimum size.
5291 * Otherwise 2 is the minimum
5292 */
5293 int min = 2;
5294 if (mddev->level == 6)
5295 min = 4;
5296 if (mddev->raid_disks + mddev->delta_disks < min)
5297 return -EINVAL;
5298 }
29269553
N
5299
5300 /* Can only proceed if there are plenty of stripe_heads.
5301 * We need a minimum of one full stripe,, and for sensible progress
5302 * it is best to have about 4 times that.
5303 * If we require 4 times, then the default 256 4K stripe_heads will
5304 * allow for chunk sizes up to 256K, which is probably OK.
5305 * If the chunk size is greater, user-space should request more
5306 * stripe_heads first.
5307 */
63c70c4f
N
5308 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
5309 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553 5310 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
784052ec
N
5311 (max(mddev->chunk_size, mddev->new_chunk)
5312 / STRIPE_SIZE)*4);
29269553
N
5313 return -ENOSPC;
5314 }
5315
ec32a2bd 5316 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5317}
5318
5319static int raid5_start_reshape(mddev_t *mddev)
5320{
5321 raid5_conf_t *conf = mddev_to_conf(mddev);
5322 mdk_rdev_t *rdev;
63c70c4f
N
5323 int spares = 0;
5324 int added_devices = 0;
c04be0aa 5325 unsigned long flags;
63c70c4f 5326
f416885e 5327 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5328 return -EBUSY;
5329
159ec1fc 5330 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5331 if (rdev->raid_disk < 0 &&
5332 !test_bit(Faulty, &rdev->flags))
5333 spares++;
63c70c4f 5334
f416885e 5335 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5336 /* Not enough devices even to make a degraded array
5337 * of that size
5338 */
5339 return -EINVAL;
5340
ec32a2bd
N
5341 /* Refuse to reduce size of the array. Any reductions in
5342 * array size must be through explicit setting of array_size
5343 * attribute.
5344 */
5345 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5346 < mddev->array_sectors) {
5347 printk(KERN_ERR "md: %s: array size must be reduced "
5348 "before number of disks\n", mdname(mddev));
5349 return -EINVAL;
5350 }
5351
f6705578 5352 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5353 spin_lock_irq(&conf->device_lock);
5354 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5355 conf->raid_disks += mddev->delta_disks;
88ce4930
N
5356 conf->prev_chunk = conf->chunk_size;
5357 conf->chunk_size = mddev->new_chunk;
5358 conf->prev_algo = conf->algorithm;
5359 conf->algorithm = mddev->new_layout;
fef9c61f
N
5360 if (mddev->delta_disks < 0)
5361 conf->reshape_progress = raid5_size(mddev, 0, 0);
5362 else
5363 conf->reshape_progress = 0;
5364 conf->reshape_safe = conf->reshape_progress;
86b42c71 5365 conf->generation++;
29269553
N
5366 spin_unlock_irq(&conf->device_lock);
5367
5368 /* Add some new drives, as many as will fit.
5369 * We know there are enough to make the newly sized array work.
5370 */
159ec1fc 5371 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5372 if (rdev->raid_disk < 0 &&
5373 !test_bit(Faulty, &rdev->flags)) {
199050ea 5374 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
5375 char nm[20];
5376 set_bit(In_sync, &rdev->flags);
29269553 5377 added_devices++;
5fd6c1dc 5378 rdev->recovery_offset = 0;
29269553 5379 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
5380 if (sysfs_create_link(&mddev->kobj,
5381 &rdev->kobj, nm))
5382 printk(KERN_WARNING
5383 "raid5: failed to create "
5384 " link %s for %s\n",
5385 nm, mdname(mddev));
29269553
N
5386 } else
5387 break;
5388 }
5389
ec32a2bd
N
5390 if (mddev->delta_disks > 0) {
5391 spin_lock_irqsave(&conf->device_lock, flags);
5392 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5393 - added_devices;
5394 spin_unlock_irqrestore(&conf->device_lock, flags);
5395 }
63c70c4f 5396 mddev->raid_disks = conf->raid_disks;
f6705578 5397 mddev->reshape_position = 0;
850b2b42 5398 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5399
29269553
N
5400 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5401 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5402 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5403 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5404 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5405 "%s_reshape");
5406 if (!mddev->sync_thread) {
5407 mddev->recovery = 0;
5408 spin_lock_irq(&conf->device_lock);
5409 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5410 conf->reshape_progress = MaxSector;
29269553
N
5411 spin_unlock_irq(&conf->device_lock);
5412 return -EAGAIN;
5413 }
c8f517c4 5414 conf->reshape_checkpoint = jiffies;
29269553
N
5415 md_wakeup_thread(mddev->sync_thread);
5416 md_new_event(mddev);
5417 return 0;
5418}
29269553 5419
ec32a2bd
N
5420/* This is called from the reshape thread and should make any
5421 * changes needed in 'conf'
5422 */
29269553
N
5423static void end_reshape(raid5_conf_t *conf)
5424{
29269553 5425
f6705578 5426 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5427
f6705578 5428 spin_lock_irq(&conf->device_lock);
cea9c228 5429 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5430 conf->reshape_progress = MaxSector;
f6705578 5431 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5432 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5433
5434 /* read-ahead size must cover two whole stripes, which is
5435 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5436 */
5437 {
cea9c228
N
5438 int data_disks = conf->raid_disks - conf->max_degraded;
5439 int stripe = data_disks * (conf->chunk_size
5440 / PAGE_SIZE);
16a53ecc
N
5441 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5442 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5443 }
29269553 5444 }
29269553
N
5445}
5446
ec32a2bd
N
5447/* This is called from the raid5d thread with mddev_lock held.
5448 * It makes config changes to the device.
5449 */
cea9c228
N
5450static void raid5_finish_reshape(mddev_t *mddev)
5451{
5452 struct block_device *bdev;
88ce4930 5453 raid5_conf_t *conf = mddev_to_conf(mddev);
cea9c228
N
5454
5455 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5456
ec32a2bd
N
5457 if (mddev->delta_disks > 0) {
5458 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5459 set_capacity(mddev->gendisk, mddev->array_sectors);
5460 mddev->changed = 1;
5461
5462 bdev = bdget_disk(mddev->gendisk, 0);
5463 if (bdev) {
5464 mutex_lock(&bdev->bd_inode->i_mutex);
5465 i_size_write(bdev->bd_inode,
5466 (loff_t)mddev->array_sectors << 9);
5467 mutex_unlock(&bdev->bd_inode->i_mutex);
5468 bdput(bdev);
5469 }
5470 } else {
5471 int d;
ec32a2bd
N
5472 mddev->degraded = conf->raid_disks;
5473 for (d = 0; d < conf->raid_disks ; d++)
5474 if (conf->disks[d].rdev &&
5475 test_bit(In_sync,
5476 &conf->disks[d].rdev->flags))
5477 mddev->degraded--;
5478 for (d = conf->raid_disks ;
5479 d < conf->raid_disks - mddev->delta_disks;
5480 d++)
5481 raid5_remove_disk(mddev, d);
cea9c228 5482 }
88ce4930
N
5483 mddev->layout = conf->algorithm;
5484 mddev->chunk_size = conf->chunk_size;
ec32a2bd
N
5485 mddev->reshape_position = MaxSector;
5486 mddev->delta_disks = 0;
cea9c228
N
5487 }
5488}
5489
72626685
N
5490static void raid5_quiesce(mddev_t *mddev, int state)
5491{
5492 raid5_conf_t *conf = mddev_to_conf(mddev);
5493
5494 switch(state) {
e464eafd
N
5495 case 2: /* resume for a suspend */
5496 wake_up(&conf->wait_for_overlap);
5497 break;
5498
72626685
N
5499 case 1: /* stop all writes */
5500 spin_lock_irq(&conf->device_lock);
5501 conf->quiesce = 1;
5502 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5503 atomic_read(&conf->active_stripes) == 0 &&
5504 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
5505 conf->device_lock, /* nothing */);
5506 spin_unlock_irq(&conf->device_lock);
5507 break;
5508
5509 case 0: /* re-enable writes */
5510 spin_lock_irq(&conf->device_lock);
5511 conf->quiesce = 0;
5512 wake_up(&conf->wait_for_stripe);
e464eafd 5513 wake_up(&conf->wait_for_overlap);
72626685
N
5514 spin_unlock_irq(&conf->device_lock);
5515 break;
5516 }
72626685 5517}
b15c2e57 5518
d562b0c4
N
5519
5520static void *raid5_takeover_raid1(mddev_t *mddev)
5521{
5522 int chunksect;
5523
5524 if (mddev->raid_disks != 2 ||
5525 mddev->degraded > 1)
5526 return ERR_PTR(-EINVAL);
5527
5528 /* Should check if there are write-behind devices? */
5529
5530 chunksect = 64*2; /* 64K by default */
5531
5532 /* The array must be an exact multiple of chunksize */
5533 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5534 chunksect >>= 1;
5535
5536 if ((chunksect<<9) < STRIPE_SIZE)
5537 /* array size does not allow a suitable chunk size */
5538 return ERR_PTR(-EINVAL);
5539
5540 mddev->new_level = 5;
5541 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5542 mddev->new_chunk = chunksect << 9;
5543
5544 return setup_conf(mddev);
5545}
5546
fc9739c6
N
5547static void *raid5_takeover_raid6(mddev_t *mddev)
5548{
5549 int new_layout;
5550
5551 switch (mddev->layout) {
5552 case ALGORITHM_LEFT_ASYMMETRIC_6:
5553 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5554 break;
5555 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5556 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5557 break;
5558 case ALGORITHM_LEFT_SYMMETRIC_6:
5559 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5560 break;
5561 case ALGORITHM_RIGHT_SYMMETRIC_6:
5562 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5563 break;
5564 case ALGORITHM_PARITY_0_6:
5565 new_layout = ALGORITHM_PARITY_0;
5566 break;
5567 case ALGORITHM_PARITY_N:
5568 new_layout = ALGORITHM_PARITY_N;
5569 break;
5570 default:
5571 return ERR_PTR(-EINVAL);
5572 }
5573 mddev->new_level = 5;
5574 mddev->new_layout = new_layout;
5575 mddev->delta_disks = -1;
5576 mddev->raid_disks -= 1;
5577 return setup_conf(mddev);
5578}
5579
d562b0c4 5580
b3546035
N
5581static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5582{
88ce4930
N
5583 /* For a 2-drive array, the layout and chunk size can be changed
5584 * immediately as not restriping is needed.
5585 * For larger arrays we record the new value - after validation
5586 * to be used by a reshape pass.
b3546035
N
5587 */
5588 raid5_conf_t *conf = mddev_to_conf(mddev);
5589
5590 if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5591 return -EINVAL;
5592 if (new_chunk > 0) {
5593 if (new_chunk & (new_chunk-1))
5594 /* not a power of 2 */
5595 return -EINVAL;
5596 if (new_chunk < PAGE_SIZE)
5597 return -EINVAL;
5598 if (mddev->array_sectors & ((new_chunk>>9)-1))
5599 /* not factor of array size */
5600 return -EINVAL;
5601 }
5602
5603 /* They look valid */
5604
88ce4930 5605 if (mddev->raid_disks == 2) {
b3546035 5606
88ce4930
N
5607 if (new_layout >= 0) {
5608 conf->algorithm = new_layout;
5609 mddev->layout = mddev->new_layout = new_layout;
5610 }
5611 if (new_chunk > 0) {
5612 conf->chunk_size = new_chunk;
5613 mddev->chunk_size = mddev->new_chunk = new_chunk;
5614 }
5615 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5616 md_wakeup_thread(mddev->thread);
5617 } else {
5618 if (new_layout >= 0)
5619 mddev->new_layout = new_layout;
5620 if (new_chunk > 0)
5621 mddev->new_chunk = new_chunk;
b3546035 5622 }
88ce4930
N
5623 return 0;
5624}
5625
5626static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5627{
5628 if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5629 return -EINVAL;
b3546035 5630 if (new_chunk > 0) {
88ce4930
N
5631 if (new_chunk & (new_chunk-1))
5632 /* not a power of 2 */
5633 return -EINVAL;
5634 if (new_chunk < PAGE_SIZE)
5635 return -EINVAL;
5636 if (mddev->array_sectors & ((new_chunk>>9)-1))
5637 /* not factor of array size */
5638 return -EINVAL;
b3546035 5639 }
88ce4930
N
5640
5641 /* They look valid */
5642
5643 if (new_layout >= 0)
5644 mddev->new_layout = new_layout;
5645 if (new_chunk > 0)
5646 mddev->new_chunk = new_chunk;
5647
b3546035
N
5648 return 0;
5649}
5650
d562b0c4
N
5651static void *raid5_takeover(mddev_t *mddev)
5652{
5653 /* raid5 can take over:
5654 * raid0 - if all devices are the same - make it a raid4 layout
5655 * raid1 - if there are two drives. We need to know the chunk size
5656 * raid4 - trivial - just use a raid4 layout.
5657 * raid6 - Providing it is a *_6 layout
5658 *
5659 * For now, just do raid1
5660 */
5661
5662 if (mddev->level == 1)
5663 return raid5_takeover_raid1(mddev);
e9d4758f
N
5664 if (mddev->level == 4) {
5665 mddev->new_layout = ALGORITHM_PARITY_N;
5666 mddev->new_level = 5;
5667 return setup_conf(mddev);
5668 }
fc9739c6
N
5669 if (mddev->level == 6)
5670 return raid5_takeover_raid6(mddev);
d562b0c4
N
5671
5672 return ERR_PTR(-EINVAL);
5673}
5674
5675
245f46c2
N
5676static struct mdk_personality raid5_personality;
5677
5678static void *raid6_takeover(mddev_t *mddev)
5679{
5680 /* Currently can only take over a raid5. We map the
5681 * personality to an equivalent raid6 personality
5682 * with the Q block at the end.
5683 */
5684 int new_layout;
5685
5686 if (mddev->pers != &raid5_personality)
5687 return ERR_PTR(-EINVAL);
5688 if (mddev->degraded > 1)
5689 return ERR_PTR(-EINVAL);
5690 if (mddev->raid_disks > 253)
5691 return ERR_PTR(-EINVAL);
5692 if (mddev->raid_disks < 3)
5693 return ERR_PTR(-EINVAL);
5694
5695 switch (mddev->layout) {
5696 case ALGORITHM_LEFT_ASYMMETRIC:
5697 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5698 break;
5699 case ALGORITHM_RIGHT_ASYMMETRIC:
5700 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5701 break;
5702 case ALGORITHM_LEFT_SYMMETRIC:
5703 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5704 break;
5705 case ALGORITHM_RIGHT_SYMMETRIC:
5706 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5707 break;
5708 case ALGORITHM_PARITY_0:
5709 new_layout = ALGORITHM_PARITY_0_6;
5710 break;
5711 case ALGORITHM_PARITY_N:
5712 new_layout = ALGORITHM_PARITY_N;
5713 break;
5714 default:
5715 return ERR_PTR(-EINVAL);
5716 }
5717 mddev->new_level = 6;
5718 mddev->new_layout = new_layout;
5719 mddev->delta_disks = 1;
5720 mddev->raid_disks += 1;
5721 return setup_conf(mddev);
5722}
5723
5724
16a53ecc
N
5725static struct mdk_personality raid6_personality =
5726{
5727 .name = "raid6",
5728 .level = 6,
5729 .owner = THIS_MODULE,
5730 .make_request = make_request,
5731 .run = run,
5732 .stop = stop,
5733 .status = status,
5734 .error_handler = error,
5735 .hot_add_disk = raid5_add_disk,
5736 .hot_remove_disk= raid5_remove_disk,
5737 .spare_active = raid5_spare_active,
5738 .sync_request = sync_request,
5739 .resize = raid5_resize,
80c3a6ce 5740 .size = raid5_size,
f416885e
N
5741 .check_reshape = raid5_check_reshape,
5742 .start_reshape = raid5_start_reshape,
cea9c228 5743 .finish_reshape = raid5_finish_reshape,
16a53ecc 5744 .quiesce = raid5_quiesce,
245f46c2 5745 .takeover = raid6_takeover,
88ce4930 5746 .reconfig = raid6_reconfig,
16a53ecc 5747};
2604b703 5748static struct mdk_personality raid5_personality =
1da177e4
LT
5749{
5750 .name = "raid5",
2604b703 5751 .level = 5,
1da177e4
LT
5752 .owner = THIS_MODULE,
5753 .make_request = make_request,
5754 .run = run,
5755 .stop = stop,
5756 .status = status,
5757 .error_handler = error,
5758 .hot_add_disk = raid5_add_disk,
5759 .hot_remove_disk= raid5_remove_disk,
5760 .spare_active = raid5_spare_active,
5761 .sync_request = sync_request,
5762 .resize = raid5_resize,
80c3a6ce 5763 .size = raid5_size,
63c70c4f
N
5764 .check_reshape = raid5_check_reshape,
5765 .start_reshape = raid5_start_reshape,
cea9c228 5766 .finish_reshape = raid5_finish_reshape,
72626685 5767 .quiesce = raid5_quiesce,
d562b0c4 5768 .takeover = raid5_takeover,
b3546035 5769 .reconfig = raid5_reconfig,
1da177e4
LT
5770};
5771
2604b703 5772static struct mdk_personality raid4_personality =
1da177e4 5773{
2604b703
N
5774 .name = "raid4",
5775 .level = 4,
5776 .owner = THIS_MODULE,
5777 .make_request = make_request,
5778 .run = run,
5779 .stop = stop,
5780 .status = status,
5781 .error_handler = error,
5782 .hot_add_disk = raid5_add_disk,
5783 .hot_remove_disk= raid5_remove_disk,
5784 .spare_active = raid5_spare_active,
5785 .sync_request = sync_request,
5786 .resize = raid5_resize,
80c3a6ce 5787 .size = raid5_size,
3d37890b
N
5788 .check_reshape = raid5_check_reshape,
5789 .start_reshape = raid5_start_reshape,
cea9c228 5790 .finish_reshape = raid5_finish_reshape,
2604b703
N
5791 .quiesce = raid5_quiesce,
5792};
5793
5794static int __init raid5_init(void)
5795{
16a53ecc 5796 register_md_personality(&raid6_personality);
2604b703
N
5797 register_md_personality(&raid5_personality);
5798 register_md_personality(&raid4_personality);
5799 return 0;
1da177e4
LT
5800}
5801
2604b703 5802static void raid5_exit(void)
1da177e4 5803{
16a53ecc 5804 unregister_md_personality(&raid6_personality);
2604b703
N
5805 unregister_md_personality(&raid5_personality);
5806 unregister_md_personality(&raid4_personality);
1da177e4
LT
5807}
5808
5809module_init(raid5_init);
5810module_exit(raid5_exit);
5811MODULE_LICENSE("GPL");
5812MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5813MODULE_ALIAS("md-raid5");
5814MODULE_ALIAS("md-raid4");
2604b703
N
5815MODULE_ALIAS("md-level-5");
5816MODULE_ALIAS("md-level-4");
16a53ecc
N
5817MODULE_ALIAS("md-personality-8"); /* RAID6 */
5818MODULE_ALIAS("md-raid6");
5819MODULE_ALIAS("md-level-6");
5820
5821/* This used to be two separate modules, they were: */
5822MODULE_ALIAS("raid5");
5823MODULE_ALIAS("raid6");