]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5.c
md/raid5: more incorrect BUG_ON in handle_stripe_fill.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
a4456856
DW
226static void return_io(struct bio *return_bi)
227{
228 struct bio *bi = return_bi;
229 while (bi) {
a4456856
DW
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
4f024f37 233 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
0e13fe23 236 bio_endio(bi, 0);
a4456856
DW
237 bi = return_bi;
238 }
239}
240
d1688a6d 241static void print_raid5_conf (struct r5conf *conf);
1da177e4 242
600aa109
DW
243static int stripe_operations_active(struct stripe_head *sh)
244{
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
851c30c9
SL
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
bfc90cb0 254 int thread_cnt;
851c30c9
SL
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
266 group->stripes_cnt++;
267 sh->group = group;
851c30c9
SL
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
bfc90cb0
SL
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
851c30c9
SL
291}
292
566c09c5
SL
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
1da177e4 295{
4eb788df
SL
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 301 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
4eb788df
SL
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
566c09c5
SL
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
325 }
326}
d0dabf7e 327
566c09c5
SL
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
4eb788df
SL
330{
331 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
332 do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345{
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
4eb788df
SL
380}
381
773ca82f 382/* should hold conf->device_lock already */
566c09c5
SL
383static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
773ca82f
SL
385{
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
d265d9dc 391 head = llist_reverse_order(head);
773ca82f 392 while (head) {
566c09c5
SL
393 int hash;
394
773ca82f
SL
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
566c09c5
SL
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
407 count++;
408 }
409
410 return count;
411}
412
1da177e4
LT
413static void release_stripe(struct stripe_head *sh)
414{
d1688a6d 415 struct r5conf *conf = sh->raid_conf;
1da177e4 416 unsigned long flags;
566c09c5
SL
417 struct list_head list;
418 int hash;
773ca82f 419 bool wakeup;
16a53ecc 420
cf170f3f
ES
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
ad4068de 426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433slow_path:
4eb788df 434 local_irq_save(flags);
773ca82f 435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
4eb788df 440 spin_unlock(&conf->device_lock);
566c09c5 441 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
442 }
443 local_irq_restore(flags);
1da177e4
LT
444}
445
fccddba0 446static inline void remove_hash(struct stripe_head *sh)
1da177e4 447{
45b4233c
DW
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
1da177e4 450
fccddba0 451 hlist_del_init(&sh->hash);
1da177e4
LT
452}
453
d1688a6d 454static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 455{
fccddba0 456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 457
45b4233c
DW
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
1da177e4 460
fccddba0 461 hlist_add_head(&sh->hash, hp);
1da177e4
LT
462}
463
1da177e4 464/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 465static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
466{
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
566c09c5 470 if (list_empty(conf->inactive_list + hash))
1da177e4 471 goto out;
566c09c5 472 first = (conf->inactive_list + hash)->next;
1da177e4
LT
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
566c09c5 477 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
480out:
481 return sh;
482}
483
e4e11e38 484static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
485{
486 struct page *p;
487 int i;
e4e11e38 488 int num = sh->raid_conf->pool_size;
1da177e4 489
e4e11e38 490 for (i = 0; i < num ; i++) {
d592a996 491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
2d1f3b5d 496 put_page(p);
1da177e4
LT
497 }
498}
499
a9683a79 500static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
501{
502 int i;
e4e11e38 503 int num = sh->raid_conf->pool_size;
1da177e4 504
e4e11e38 505 for (i = 0; i < num; i++) {
1da177e4
LT
506 struct page *page;
507
a9683a79 508 if (!(page = alloc_page(gfp))) {
1da177e4
LT
509 return 1;
510 }
511 sh->dev[i].page = page;
d592a996 512 sh->dev[i].orig_page = page;
1da177e4
LT
513 }
514 return 0;
515}
516
784052ec 517static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 518static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 519 struct stripe_head *sh);
1da177e4 520
b5663ba4 521static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 522{
d1688a6d 523 struct r5conf *conf = sh->raid_conf;
566c09c5 524 int i, seq;
1da177e4 525
78bafebd
ES
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 528 BUG_ON(stripe_operations_active(sh));
59fc630b 529 BUG_ON(sh->batch_head);
d84e0f10 530
45b4233c 531 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 532 (unsigned long long)sector);
566c09c5
SL
533retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 535 sh->generation = conf->generation - previous;
b5663ba4 536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 537 sh->sector = sector;
911d4ee8 538 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
539 sh->state = 0;
540
7ecaa1e6 541 for (i = sh->disks; i--; ) {
1da177e4
LT
542 struct r5dev *dev = &sh->dev[i];
543
d84e0f10 544 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 545 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 547 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 548 dev->read, dev->towrite, dev->written,
1da177e4 549 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 550 WARN_ON(1);
1da177e4
LT
551 }
552 dev->flags = 0;
784052ec 553 raid5_build_block(sh, i, previous);
1da177e4 554 }
566c09c5
SL
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
7a87f434 557 sh->overwrite_disks = 0;
1da177e4 558 insert_hash(conf, sh);
851c30c9 559 sh->cpu = smp_processor_id();
da41ba65 560 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
561}
562
d1688a6d 563static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 564 short generation)
1da177e4
LT
565{
566 struct stripe_head *sh;
567
45b4233c 568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 570 if (sh->sector == sector && sh->generation == generation)
1da177e4 571 return sh;
45b4233c 572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
573 return NULL;
574}
575
674806d6
N
576/*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
908f4fbd 589static int calc_degraded(struct r5conf *conf)
674806d6 590{
908f4fbd 591 int degraded, degraded2;
674806d6 592 int i;
674806d6
N
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
908f4fbd
N
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
674806d6 620 rcu_read_lock();
908f4fbd 621 degraded2 = 0;
674806d6 622 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 626 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 627 degraded2++;
674806d6
N
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 637 degraded2++;
674806d6
N
638 }
639 rcu_read_unlock();
908f4fbd
N
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643}
644
645static int has_failed(struct r5conf *conf)
646{
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
674806d6
N
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656}
657
b5663ba4 658static struct stripe_head *
d1688a6d 659get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 660 int previous, int noblock, int noquiesce)
1da177e4
LT
661{
662 struct stripe_head *sh;
566c09c5 663 int hash = stripe_hash_locks_hash(sector);
1da177e4 664
45b4233c 665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 666
566c09c5 667 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
668
669 do {
72626685 670 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 671 conf->quiesce == 0 || noquiesce,
566c09c5 672 *(conf->hash_locks + hash));
86b42c71 673 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 674 if (!sh) {
edbe83ab 675 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 676 sh = get_free_stripe(conf, hash);
edbe83ab
N
677 if (!sh && llist_empty(&conf->released_stripes) &&
678 !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 set_bit(R5_ALLOC_MORE,
680 &conf->cache_state);
681 }
1da177e4
LT
682 if (noblock && sh == NULL)
683 break;
684 if (!sh) {
5423399a
N
685 set_bit(R5_INACTIVE_BLOCKED,
686 &conf->cache_state);
566c09c5
SL
687 wait_event_lock_irq(
688 conf->wait_for_stripe,
689 !list_empty(conf->inactive_list + hash) &&
690 (atomic_read(&conf->active_stripes)
691 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
692 || !test_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state)),
566c09c5 694 *(conf->hash_locks + hash));
5423399a
N
695 clear_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state);
7da9d450 697 } else {
b5663ba4 698 init_stripe(sh, sector, previous);
7da9d450
N
699 atomic_inc(&sh->count);
700 }
e240c183 701 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 702 spin_lock(&conf->device_lock);
e240c183 703 if (!atomic_read(&sh->count)) {
1da177e4
LT
704 if (!test_bit(STRIPE_HANDLE, &sh->state))
705 atomic_inc(&conf->active_stripes);
5af9bef7
N
706 BUG_ON(list_empty(&sh->lru) &&
707 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 708 list_del_init(&sh->lru);
bfc90cb0
SL
709 if (sh->group) {
710 sh->group->stripes_cnt--;
711 sh->group = NULL;
712 }
1da177e4 713 }
7da9d450 714 atomic_inc(&sh->count);
6d183de4 715 spin_unlock(&conf->device_lock);
1da177e4
LT
716 }
717 } while (sh == NULL);
718
566c09c5 719 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
720 return sh;
721}
722
7a87f434 723static bool is_full_stripe_write(struct stripe_head *sh)
724{
725 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727}
728
59fc630b 729static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730{
731 local_irq_disable();
732 if (sh1 > sh2) {
733 spin_lock(&sh2->stripe_lock);
734 spin_lock_nested(&sh1->stripe_lock, 1);
735 } else {
736 spin_lock(&sh1->stripe_lock);
737 spin_lock_nested(&sh2->stripe_lock, 1);
738 }
739}
740
741static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742{
743 spin_unlock(&sh1->stripe_lock);
744 spin_unlock(&sh2->stripe_lock);
745 local_irq_enable();
746}
747
748/* Only freshly new full stripe normal write stripe can be added to a batch list */
749static bool stripe_can_batch(struct stripe_head *sh)
750{
751 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 is_full_stripe_write(sh);
753}
754
755/* we only do back search */
756static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757{
758 struct stripe_head *head;
759 sector_t head_sector, tmp_sec;
760 int hash;
761 int dd_idx;
762
763 if (!stripe_can_batch(sh))
764 return;
765 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766 tmp_sec = sh->sector;
767 if (!sector_div(tmp_sec, conf->chunk_sectors))
768 return;
769 head_sector = sh->sector - STRIPE_SECTORS;
770
771 hash = stripe_hash_locks_hash(head_sector);
772 spin_lock_irq(conf->hash_locks + hash);
773 head = __find_stripe(conf, head_sector, conf->generation);
774 if (head && !atomic_inc_not_zero(&head->count)) {
775 spin_lock(&conf->device_lock);
776 if (!atomic_read(&head->count)) {
777 if (!test_bit(STRIPE_HANDLE, &head->state))
778 atomic_inc(&conf->active_stripes);
779 BUG_ON(list_empty(&head->lru) &&
780 !test_bit(STRIPE_EXPANDING, &head->state));
781 list_del_init(&head->lru);
782 if (head->group) {
783 head->group->stripes_cnt--;
784 head->group = NULL;
785 }
786 }
787 atomic_inc(&head->count);
788 spin_unlock(&conf->device_lock);
789 }
790 spin_unlock_irq(conf->hash_locks + hash);
791
792 if (!head)
793 return;
794 if (!stripe_can_batch(head))
795 goto out;
796
797 lock_two_stripes(head, sh);
798 /* clear_batch_ready clear the flag */
799 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800 goto unlock_out;
801
802 if (sh->batch_head)
803 goto unlock_out;
804
805 dd_idx = 0;
806 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807 dd_idx++;
808 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809 goto unlock_out;
810
811 if (head->batch_head) {
812 spin_lock(&head->batch_head->batch_lock);
813 /* This batch list is already running */
814 if (!stripe_can_batch(head)) {
815 spin_unlock(&head->batch_head->batch_lock);
816 goto unlock_out;
817 }
818
819 /*
820 * at this point, head's BATCH_READY could be cleared, but we
821 * can still add the stripe to batch list
822 */
823 list_add(&sh->batch_list, &head->batch_list);
824 spin_unlock(&head->batch_head->batch_lock);
825
826 sh->batch_head = head->batch_head;
827 } else {
828 head->batch_head = head;
829 sh->batch_head = head->batch_head;
830 spin_lock(&head->batch_lock);
831 list_add_tail(&sh->batch_list, &head->batch_list);
832 spin_unlock(&head->batch_lock);
833 }
834
835 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836 if (atomic_dec_return(&conf->preread_active_stripes)
837 < IO_THRESHOLD)
838 md_wakeup_thread(conf->mddev->thread);
839
840 atomic_inc(&sh->count);
841unlock_out:
842 unlock_two_stripes(head, sh);
843out:
844 release_stripe(head);
845}
846
05616be5
N
847/* Determine if 'data_offset' or 'new_data_offset' should be used
848 * in this stripe_head.
849 */
850static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851{
852 sector_t progress = conf->reshape_progress;
853 /* Need a memory barrier to make sure we see the value
854 * of conf->generation, or ->data_offset that was set before
855 * reshape_progress was updated.
856 */
857 smp_rmb();
858 if (progress == MaxSector)
859 return 0;
860 if (sh->generation == conf->generation - 1)
861 return 0;
862 /* We are in a reshape, and this is a new-generation stripe,
863 * so use new_data_offset.
864 */
865 return 1;
866}
867
6712ecf8
N
868static void
869raid5_end_read_request(struct bio *bi, int error);
870static void
871raid5_end_write_request(struct bio *bi, int error);
91c00924 872
c4e5ac0a 873static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 874{
d1688a6d 875 struct r5conf *conf = sh->raid_conf;
91c00924 876 int i, disks = sh->disks;
59fc630b 877 struct stripe_head *head_sh = sh;
91c00924
DW
878
879 might_sleep();
880
881 for (i = disks; i--; ) {
882 int rw;
9a3e1101 883 int replace_only = 0;
977df362
N
884 struct bio *bi, *rbi;
885 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 886
887 sh = head_sh;
e9c7469b
TH
888 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890 rw = WRITE_FUA;
891 else
892 rw = WRITE;
9e444768 893 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 894 rw |= REQ_DISCARD;
e9c7469b 895 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 896 rw = READ;
9a3e1101
N
897 else if (test_and_clear_bit(R5_WantReplace,
898 &sh->dev[i].flags)) {
899 rw = WRITE;
900 replace_only = 1;
901 } else
91c00924 902 continue;
bc0934f0
SL
903 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904 rw |= REQ_SYNC;
91c00924 905
59fc630b 906again:
91c00924 907 bi = &sh->dev[i].req;
977df362 908 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 909
91c00924 910 rcu_read_lock();
9a3e1101 911 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
912 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913 rdev = rcu_dereference(conf->disks[i].rdev);
914 if (!rdev) {
915 rdev = rrdev;
916 rrdev = NULL;
917 }
9a3e1101
N
918 if (rw & WRITE) {
919 if (replace_only)
920 rdev = NULL;
dd054fce
N
921 if (rdev == rrdev)
922 /* We raced and saw duplicates */
923 rrdev = NULL;
9a3e1101 924 } else {
59fc630b 925 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
926 rdev = rrdev;
927 rrdev = NULL;
928 }
977df362 929
91c00924
DW
930 if (rdev && test_bit(Faulty, &rdev->flags))
931 rdev = NULL;
932 if (rdev)
933 atomic_inc(&rdev->nr_pending);
977df362
N
934 if (rrdev && test_bit(Faulty, &rrdev->flags))
935 rrdev = NULL;
936 if (rrdev)
937 atomic_inc(&rrdev->nr_pending);
91c00924
DW
938 rcu_read_unlock();
939
73e92e51 940 /* We have already checked bad blocks for reads. Now
977df362
N
941 * need to check for writes. We never accept write errors
942 * on the replacement, so we don't to check rrdev.
73e92e51
N
943 */
944 while ((rw & WRITE) && rdev &&
945 test_bit(WriteErrorSeen, &rdev->flags)) {
946 sector_t first_bad;
947 int bad_sectors;
948 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949 &first_bad, &bad_sectors);
950 if (!bad)
951 break;
952
953 if (bad < 0) {
954 set_bit(BlockedBadBlocks, &rdev->flags);
955 if (!conf->mddev->external &&
956 conf->mddev->flags) {
957 /* It is very unlikely, but we might
958 * still need to write out the
959 * bad block log - better give it
960 * a chance*/
961 md_check_recovery(conf->mddev);
962 }
1850753d 963 /*
964 * Because md_wait_for_blocked_rdev
965 * will dec nr_pending, we must
966 * increment it first.
967 */
968 atomic_inc(&rdev->nr_pending);
73e92e51
N
969 md_wait_for_blocked_rdev(rdev, conf->mddev);
970 } else {
971 /* Acknowledged bad block - skip the write */
972 rdev_dec_pending(rdev, conf->mddev);
973 rdev = NULL;
974 }
975 }
976
91c00924 977 if (rdev) {
9a3e1101
N
978 if (s->syncing || s->expanding || s->expanded
979 || s->replacing)
91c00924
DW
980 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981
2b7497f0
DW
982 set_bit(STRIPE_IO_STARTED, &sh->state);
983
2f6db2a7 984 bio_reset(bi);
91c00924 985 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
986 bi->bi_rw = rw;
987 bi->bi_end_io = (rw & WRITE)
988 ? raid5_end_write_request
989 : raid5_end_read_request;
990 bi->bi_private = sh;
991
91c00924 992 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 993 __func__, (unsigned long long)sh->sector,
91c00924
DW
994 bi->bi_rw, i);
995 atomic_inc(&sh->count);
59fc630b 996 if (sh != head_sh)
997 atomic_inc(&head_sh->count);
05616be5 998 if (use_new_offset(conf, sh))
4f024f37 999 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1000 + rdev->new_data_offset);
1001 else
4f024f37 1002 bi->bi_iter.bi_sector = (sh->sector
05616be5 1003 + rdev->data_offset);
59fc630b 1004 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1005 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1006
d592a996
SL
1007 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1010 bi->bi_vcnt = 1;
91c00924
DW
1011 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1013 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1014 /*
1015 * If this is discard request, set bi_vcnt 0. We don't
1016 * want to confuse SCSI because SCSI will replace payload
1017 */
1018 if (rw & REQ_DISCARD)
1019 bi->bi_vcnt = 0;
977df362
N
1020 if (rrdev)
1021 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1022
1023 if (conf->mddev->gendisk)
1024 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025 bi, disk_devt(conf->mddev->gendisk),
1026 sh->dev[i].sector);
91c00924 1027 generic_make_request(bi);
977df362
N
1028 }
1029 if (rrdev) {
9a3e1101
N
1030 if (s->syncing || s->expanding || s->expanded
1031 || s->replacing)
977df362
N
1032 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033
1034 set_bit(STRIPE_IO_STARTED, &sh->state);
1035
2f6db2a7 1036 bio_reset(rbi);
977df362 1037 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1038 rbi->bi_rw = rw;
1039 BUG_ON(!(rw & WRITE));
1040 rbi->bi_end_io = raid5_end_write_request;
1041 rbi->bi_private = sh;
1042
977df362
N
1043 pr_debug("%s: for %llu schedule op %ld on "
1044 "replacement disc %d\n",
1045 __func__, (unsigned long long)sh->sector,
1046 rbi->bi_rw, i);
1047 atomic_inc(&sh->count);
59fc630b 1048 if (sh != head_sh)
1049 atomic_inc(&head_sh->count);
05616be5 1050 if (use_new_offset(conf, sh))
4f024f37 1051 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1052 + rrdev->new_data_offset);
1053 else
4f024f37 1054 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1055 + rrdev->data_offset);
d592a996
SL
1056 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1059 rbi->bi_vcnt = 1;
977df362
N
1060 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1062 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1063 /*
1064 * If this is discard request, set bi_vcnt 0. We don't
1065 * want to confuse SCSI because SCSI will replace payload
1066 */
1067 if (rw & REQ_DISCARD)
1068 rbi->bi_vcnt = 0;
e3620a3a
JB
1069 if (conf->mddev->gendisk)
1070 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071 rbi, disk_devt(conf->mddev->gendisk),
1072 sh->dev[i].sector);
977df362
N
1073 generic_make_request(rbi);
1074 }
1075 if (!rdev && !rrdev) {
b062962e 1076 if (rw & WRITE)
91c00924
DW
1077 set_bit(STRIPE_DEGRADED, &sh->state);
1078 pr_debug("skip op %ld on disc %d for sector %llu\n",
1079 bi->bi_rw, i, (unsigned long long)sh->sector);
1080 clear_bit(R5_LOCKED, &sh->dev[i].flags);
72ac7330 1081 if (sh->batch_head)
1082 set_bit(STRIPE_BATCH_ERR,
1083 &sh->batch_head->state);
91c00924
DW
1084 set_bit(STRIPE_HANDLE, &sh->state);
1085 }
59fc630b 1086
1087 if (!head_sh->batch_head)
1088 continue;
1089 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1090 batch_list);
1091 if (sh != head_sh)
1092 goto again;
91c00924
DW
1093 }
1094}
1095
1096static struct dma_async_tx_descriptor *
d592a996
SL
1097async_copy_data(int frombio, struct bio *bio, struct page **page,
1098 sector_t sector, struct dma_async_tx_descriptor *tx,
1099 struct stripe_head *sh)
91c00924 1100{
7988613b
KO
1101 struct bio_vec bvl;
1102 struct bvec_iter iter;
91c00924 1103 struct page *bio_page;
91c00924 1104 int page_offset;
a08abd8c 1105 struct async_submit_ctl submit;
0403e382 1106 enum async_tx_flags flags = 0;
91c00924 1107
4f024f37
KO
1108 if (bio->bi_iter.bi_sector >= sector)
1109 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1110 else
4f024f37 1111 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1112
0403e382
DW
1113 if (frombio)
1114 flags |= ASYNC_TX_FENCE;
1115 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1116
7988613b
KO
1117 bio_for_each_segment(bvl, bio, iter) {
1118 int len = bvl.bv_len;
91c00924
DW
1119 int clen;
1120 int b_offset = 0;
1121
1122 if (page_offset < 0) {
1123 b_offset = -page_offset;
1124 page_offset += b_offset;
1125 len -= b_offset;
1126 }
1127
1128 if (len > 0 && page_offset + len > STRIPE_SIZE)
1129 clen = STRIPE_SIZE - page_offset;
1130 else
1131 clen = len;
1132
1133 if (clen > 0) {
7988613b
KO
1134 b_offset += bvl.bv_offset;
1135 bio_page = bvl.bv_page;
d592a996
SL
1136 if (frombio) {
1137 if (sh->raid_conf->skip_copy &&
1138 b_offset == 0 && page_offset == 0 &&
1139 clen == STRIPE_SIZE)
1140 *page = bio_page;
1141 else
1142 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1143 b_offset, clen, &submit);
d592a996
SL
1144 } else
1145 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1146 page_offset, clen, &submit);
91c00924 1147 }
a08abd8c
DW
1148 /* chain the operations */
1149 submit.depend_tx = tx;
1150
91c00924
DW
1151 if (clen < len) /* hit end of page */
1152 break;
1153 page_offset += len;
1154 }
1155
1156 return tx;
1157}
1158
1159static void ops_complete_biofill(void *stripe_head_ref)
1160{
1161 struct stripe_head *sh = stripe_head_ref;
1162 struct bio *return_bi = NULL;
e4d84909 1163 int i;
91c00924 1164
e46b272b 1165 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1166 (unsigned long long)sh->sector);
1167
1168 /* clear completed biofills */
1169 for (i = sh->disks; i--; ) {
1170 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1171
1172 /* acknowledge completion of a biofill operation */
e4d84909
DW
1173 /* and check if we need to reply to a read request,
1174 * new R5_Wantfill requests are held off until
83de75cc 1175 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1176 */
1177 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1178 struct bio *rbi, *rbi2;
91c00924 1179
91c00924
DW
1180 BUG_ON(!dev->read);
1181 rbi = dev->read;
1182 dev->read = NULL;
4f024f37 1183 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1184 dev->sector + STRIPE_SECTORS) {
1185 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1186 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1187 rbi->bi_next = return_bi;
1188 return_bi = rbi;
1189 }
91c00924
DW
1190 rbi = rbi2;
1191 }
1192 }
1193 }
83de75cc 1194 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1195
1196 return_io(return_bi);
1197
e4d84909 1198 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1199 release_stripe(sh);
1200}
1201
1202static void ops_run_biofill(struct stripe_head *sh)
1203{
1204 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1205 struct async_submit_ctl submit;
91c00924
DW
1206 int i;
1207
59fc630b 1208 BUG_ON(sh->batch_head);
e46b272b 1209 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1210 (unsigned long long)sh->sector);
1211
1212 for (i = sh->disks; i--; ) {
1213 struct r5dev *dev = &sh->dev[i];
1214 if (test_bit(R5_Wantfill, &dev->flags)) {
1215 struct bio *rbi;
b17459c0 1216 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1217 dev->read = rbi = dev->toread;
1218 dev->toread = NULL;
b17459c0 1219 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1220 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1221 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1222 tx = async_copy_data(0, rbi, &dev->page,
1223 dev->sector, tx, sh);
91c00924
DW
1224 rbi = r5_next_bio(rbi, dev->sector);
1225 }
1226 }
1227 }
1228
1229 atomic_inc(&sh->count);
a08abd8c
DW
1230 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231 async_trigger_callback(&submit);
91c00924
DW
1232}
1233
4e7d2c0a 1234static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1235{
4e7d2c0a 1236 struct r5dev *tgt;
91c00924 1237
4e7d2c0a
DW
1238 if (target < 0)
1239 return;
91c00924 1240
4e7d2c0a 1241 tgt = &sh->dev[target];
91c00924
DW
1242 set_bit(R5_UPTODATE, &tgt->flags);
1243 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1245}
1246
ac6b53b6 1247static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1248{
1249 struct stripe_head *sh = stripe_head_ref;
91c00924 1250
e46b272b 1251 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1252 (unsigned long long)sh->sector);
1253
ac6b53b6 1254 /* mark the computed target(s) as uptodate */
4e7d2c0a 1255 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1256 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1257
ecc65c9b
DW
1258 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259 if (sh->check_state == check_state_compute_run)
1260 sh->check_state = check_state_compute_result;
91c00924
DW
1261 set_bit(STRIPE_HANDLE, &sh->state);
1262 release_stripe(sh);
1263}
1264
d6f38f31
DW
1265/* return a pointer to the address conversion region of the scribble buffer */
1266static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1267 struct raid5_percpu *percpu, int i)
d6f38f31 1268{
46d5b785 1269 void *addr;
1270
1271 addr = flex_array_get(percpu->scribble, i);
1272 return addr + sizeof(struct page *) * (sh->disks + 2);
1273}
1274
1275/* return a pointer to the address conversion region of the scribble buffer */
1276static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277{
1278 void *addr;
1279
1280 addr = flex_array_get(percpu->scribble, i);
1281 return addr;
d6f38f31
DW
1282}
1283
1284static struct dma_async_tx_descriptor *
1285ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1286{
91c00924 1287 int disks = sh->disks;
46d5b785 1288 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1289 int target = sh->ops.target;
1290 struct r5dev *tgt = &sh->dev[target];
1291 struct page *xor_dest = tgt->page;
1292 int count = 0;
1293 struct dma_async_tx_descriptor *tx;
a08abd8c 1294 struct async_submit_ctl submit;
91c00924
DW
1295 int i;
1296
59fc630b 1297 BUG_ON(sh->batch_head);
1298
91c00924 1299 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1300 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1301 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302
1303 for (i = disks; i--; )
1304 if (i != target)
1305 xor_srcs[count++] = sh->dev[i].page;
1306
1307 atomic_inc(&sh->count);
1308
0403e382 1309 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1310 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1311 if (unlikely(count == 1))
a08abd8c 1312 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1313 else
a08abd8c 1314 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1315
91c00924
DW
1316 return tx;
1317}
1318
ac6b53b6
DW
1319/* set_syndrome_sources - populate source buffers for gen_syndrome
1320 * @srcs - (struct page *) array of size sh->disks
1321 * @sh - stripe_head to parse
1322 *
1323 * Populates srcs in proper layout order for the stripe and returns the
1324 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1325 * destination buffer is recorded in srcs[count] and the Q destination
1326 * is recorded in srcs[count+1]].
1327 */
584acdd4
MS
1328static int set_syndrome_sources(struct page **srcs,
1329 struct stripe_head *sh,
1330 int srctype)
ac6b53b6
DW
1331{
1332 int disks = sh->disks;
1333 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334 int d0_idx = raid6_d0(sh);
1335 int count;
1336 int i;
1337
1338 for (i = 0; i < disks; i++)
5dd33c9a 1339 srcs[i] = NULL;
ac6b53b6
DW
1340
1341 count = 0;
1342 i = d0_idx;
1343 do {
1344 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1345 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1346
584acdd4
MS
1347 if (i == sh->qd_idx || i == sh->pd_idx ||
1348 (srctype == SYNDROME_SRC_ALL) ||
1349 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350 test_bit(R5_Wantdrain, &dev->flags)) ||
1351 (srctype == SYNDROME_SRC_WRITTEN &&
1352 dev->written))
1353 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1354 i = raid6_next_disk(i, disks);
1355 } while (i != d0_idx);
ac6b53b6 1356
e4424fee 1357 return syndrome_disks;
ac6b53b6
DW
1358}
1359
1360static struct dma_async_tx_descriptor *
1361ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1362{
1363 int disks = sh->disks;
46d5b785 1364 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1365 int target;
1366 int qd_idx = sh->qd_idx;
1367 struct dma_async_tx_descriptor *tx;
1368 struct async_submit_ctl submit;
1369 struct r5dev *tgt;
1370 struct page *dest;
1371 int i;
1372 int count;
1373
59fc630b 1374 BUG_ON(sh->batch_head);
ac6b53b6
DW
1375 if (sh->ops.target < 0)
1376 target = sh->ops.target2;
1377 else if (sh->ops.target2 < 0)
1378 target = sh->ops.target;
91c00924 1379 else
ac6b53b6
DW
1380 /* we should only have one valid target */
1381 BUG();
1382 BUG_ON(target < 0);
1383 pr_debug("%s: stripe %llu block: %d\n",
1384 __func__, (unsigned long long)sh->sector, target);
1385
1386 tgt = &sh->dev[target];
1387 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1388 dest = tgt->page;
1389
1390 atomic_inc(&sh->count);
1391
1392 if (target == qd_idx) {
584acdd4 1393 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1394 blocks[count] = NULL; /* regenerating p is not necessary */
1395 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1396 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1397 ops_complete_compute, sh,
46d5b785 1398 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1399 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1400 } else {
1401 /* Compute any data- or p-drive using XOR */
1402 count = 0;
1403 for (i = disks; i-- ; ) {
1404 if (i == target || i == qd_idx)
1405 continue;
1406 blocks[count++] = sh->dev[i].page;
1407 }
1408
0403e382
DW
1409 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1410 NULL, ops_complete_compute, sh,
46d5b785 1411 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1412 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1413 }
91c00924 1414
91c00924
DW
1415 return tx;
1416}
1417
ac6b53b6
DW
1418static struct dma_async_tx_descriptor *
1419ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1420{
1421 int i, count, disks = sh->disks;
1422 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1423 int d0_idx = raid6_d0(sh);
1424 int faila = -1, failb = -1;
1425 int target = sh->ops.target;
1426 int target2 = sh->ops.target2;
1427 struct r5dev *tgt = &sh->dev[target];
1428 struct r5dev *tgt2 = &sh->dev[target2];
1429 struct dma_async_tx_descriptor *tx;
46d5b785 1430 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1431 struct async_submit_ctl submit;
1432
59fc630b 1433 BUG_ON(sh->batch_head);
ac6b53b6
DW
1434 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1435 __func__, (unsigned long long)sh->sector, target, target2);
1436 BUG_ON(target < 0 || target2 < 0);
1437 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1438 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1439
6c910a78 1440 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1441 * slot number conversion for 'faila' and 'failb'
1442 */
1443 for (i = 0; i < disks ; i++)
5dd33c9a 1444 blocks[i] = NULL;
ac6b53b6
DW
1445 count = 0;
1446 i = d0_idx;
1447 do {
1448 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1449
1450 blocks[slot] = sh->dev[i].page;
1451
1452 if (i == target)
1453 faila = slot;
1454 if (i == target2)
1455 failb = slot;
1456 i = raid6_next_disk(i, disks);
1457 } while (i != d0_idx);
ac6b53b6
DW
1458
1459 BUG_ON(faila == failb);
1460 if (failb < faila)
1461 swap(faila, failb);
1462 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1463 __func__, (unsigned long long)sh->sector, faila, failb);
1464
1465 atomic_inc(&sh->count);
1466
1467 if (failb == syndrome_disks+1) {
1468 /* Q disk is one of the missing disks */
1469 if (faila == syndrome_disks) {
1470 /* Missing P+Q, just recompute */
0403e382
DW
1471 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1472 ops_complete_compute, sh,
46d5b785 1473 to_addr_conv(sh, percpu, 0));
e4424fee 1474 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1475 STRIPE_SIZE, &submit);
1476 } else {
1477 struct page *dest;
1478 int data_target;
1479 int qd_idx = sh->qd_idx;
1480
1481 /* Missing D+Q: recompute D from P, then recompute Q */
1482 if (target == qd_idx)
1483 data_target = target2;
1484 else
1485 data_target = target;
1486
1487 count = 0;
1488 for (i = disks; i-- ; ) {
1489 if (i == data_target || i == qd_idx)
1490 continue;
1491 blocks[count++] = sh->dev[i].page;
1492 }
1493 dest = sh->dev[data_target].page;
0403e382
DW
1494 init_async_submit(&submit,
1495 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1496 NULL, NULL, NULL,
46d5b785 1497 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1498 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1499 &submit);
1500
584acdd4 1501 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1502 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1503 ops_complete_compute, sh,
46d5b785 1504 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1505 return async_gen_syndrome(blocks, 0, count+2,
1506 STRIPE_SIZE, &submit);
1507 }
ac6b53b6 1508 } else {
6c910a78
DW
1509 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1510 ops_complete_compute, sh,
46d5b785 1511 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1512 if (failb == syndrome_disks) {
1513 /* We're missing D+P. */
1514 return async_raid6_datap_recov(syndrome_disks+2,
1515 STRIPE_SIZE, faila,
1516 blocks, &submit);
1517 } else {
1518 /* We're missing D+D. */
1519 return async_raid6_2data_recov(syndrome_disks+2,
1520 STRIPE_SIZE, faila, failb,
1521 blocks, &submit);
1522 }
ac6b53b6
DW
1523 }
1524}
1525
91c00924
DW
1526static void ops_complete_prexor(void *stripe_head_ref)
1527{
1528 struct stripe_head *sh = stripe_head_ref;
1529
e46b272b 1530 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1531 (unsigned long long)sh->sector);
91c00924
DW
1532}
1533
1534static struct dma_async_tx_descriptor *
584acdd4
MS
1535ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1536 struct dma_async_tx_descriptor *tx)
91c00924 1537{
91c00924 1538 int disks = sh->disks;
46d5b785 1539 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1540 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1541 struct async_submit_ctl submit;
91c00924
DW
1542
1543 /* existing parity data subtracted */
1544 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1545
59fc630b 1546 BUG_ON(sh->batch_head);
e46b272b 1547 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1548 (unsigned long long)sh->sector);
1549
1550 for (i = disks; i--; ) {
1551 struct r5dev *dev = &sh->dev[i];
1552 /* Only process blocks that are known to be uptodate */
d8ee0728 1553 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1554 xor_srcs[count++] = dev->page;
1555 }
1556
0403e382 1557 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1558 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1559 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1560
1561 return tx;
1562}
1563
584acdd4
MS
1564static struct dma_async_tx_descriptor *
1565ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1566 struct dma_async_tx_descriptor *tx)
1567{
1568 struct page **blocks = to_addr_page(percpu, 0);
1569 int count;
1570 struct async_submit_ctl submit;
1571
1572 pr_debug("%s: stripe %llu\n", __func__,
1573 (unsigned long long)sh->sector);
1574
1575 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1576
1577 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1578 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1579 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1580
1581 return tx;
1582}
1583
91c00924 1584static struct dma_async_tx_descriptor *
d8ee0728 1585ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1586{
1587 int disks = sh->disks;
d8ee0728 1588 int i;
59fc630b 1589 struct stripe_head *head_sh = sh;
91c00924 1590
e46b272b 1591 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1592 (unsigned long long)sh->sector);
1593
1594 for (i = disks; i--; ) {
59fc630b 1595 struct r5dev *dev;
91c00924 1596 struct bio *chosen;
91c00924 1597
59fc630b 1598 sh = head_sh;
1599 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1600 struct bio *wbi;
1601
59fc630b 1602again:
1603 dev = &sh->dev[i];
b17459c0 1604 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1605 chosen = dev->towrite;
1606 dev->towrite = NULL;
7a87f434 1607 sh->overwrite_disks = 0;
91c00924
DW
1608 BUG_ON(dev->written);
1609 wbi = dev->written = chosen;
b17459c0 1610 spin_unlock_irq(&sh->stripe_lock);
d592a996 1611 WARN_ON(dev->page != dev->orig_page);
91c00924 1612
4f024f37 1613 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1614 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1615 if (wbi->bi_rw & REQ_FUA)
1616 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1617 if (wbi->bi_rw & REQ_SYNC)
1618 set_bit(R5_SyncIO, &dev->flags);
9e444768 1619 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1620 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1621 else {
1622 tx = async_copy_data(1, wbi, &dev->page,
1623 dev->sector, tx, sh);
1624 if (dev->page != dev->orig_page) {
1625 set_bit(R5_SkipCopy, &dev->flags);
1626 clear_bit(R5_UPTODATE, &dev->flags);
1627 clear_bit(R5_OVERWRITE, &dev->flags);
1628 }
1629 }
91c00924
DW
1630 wbi = r5_next_bio(wbi, dev->sector);
1631 }
59fc630b 1632
1633 if (head_sh->batch_head) {
1634 sh = list_first_entry(&sh->batch_list,
1635 struct stripe_head,
1636 batch_list);
1637 if (sh == head_sh)
1638 continue;
1639 goto again;
1640 }
91c00924
DW
1641 }
1642 }
1643
1644 return tx;
1645}
1646
ac6b53b6 1647static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1648{
1649 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1650 int disks = sh->disks;
1651 int pd_idx = sh->pd_idx;
1652 int qd_idx = sh->qd_idx;
1653 int i;
9e444768 1654 bool fua = false, sync = false, discard = false;
91c00924 1655
e46b272b 1656 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1657 (unsigned long long)sh->sector);
1658
bc0934f0 1659 for (i = disks; i--; ) {
e9c7469b 1660 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1661 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1662 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1663 }
e9c7469b 1664
91c00924
DW
1665 for (i = disks; i--; ) {
1666 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1667
e9c7469b 1668 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1669 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1670 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1671 if (fua)
1672 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1673 if (sync)
1674 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1675 }
91c00924
DW
1676 }
1677
d8ee0728
DW
1678 if (sh->reconstruct_state == reconstruct_state_drain_run)
1679 sh->reconstruct_state = reconstruct_state_drain_result;
1680 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1681 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1682 else {
1683 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1684 sh->reconstruct_state = reconstruct_state_result;
1685 }
91c00924
DW
1686
1687 set_bit(STRIPE_HANDLE, &sh->state);
1688 release_stripe(sh);
1689}
1690
1691static void
ac6b53b6
DW
1692ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1693 struct dma_async_tx_descriptor *tx)
91c00924 1694{
91c00924 1695 int disks = sh->disks;
59fc630b 1696 struct page **xor_srcs;
a08abd8c 1697 struct async_submit_ctl submit;
59fc630b 1698 int count, pd_idx = sh->pd_idx, i;
91c00924 1699 struct page *xor_dest;
d8ee0728 1700 int prexor = 0;
91c00924 1701 unsigned long flags;
59fc630b 1702 int j = 0;
1703 struct stripe_head *head_sh = sh;
1704 int last_stripe;
91c00924 1705
e46b272b 1706 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1707 (unsigned long long)sh->sector);
1708
620125f2
SL
1709 for (i = 0; i < sh->disks; i++) {
1710 if (pd_idx == i)
1711 continue;
1712 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1713 break;
1714 }
1715 if (i >= sh->disks) {
1716 atomic_inc(&sh->count);
620125f2
SL
1717 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1718 ops_complete_reconstruct(sh);
1719 return;
1720 }
59fc630b 1721again:
1722 count = 0;
1723 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1724 /* check if prexor is active which means only process blocks
1725 * that are part of a read-modify-write (written)
1726 */
59fc630b 1727 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1728 prexor = 1;
91c00924
DW
1729 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1730 for (i = disks; i--; ) {
1731 struct r5dev *dev = &sh->dev[i];
59fc630b 1732 if (head_sh->dev[i].written)
91c00924
DW
1733 xor_srcs[count++] = dev->page;
1734 }
1735 } else {
1736 xor_dest = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (i != pd_idx)
1740 xor_srcs[count++] = dev->page;
1741 }
1742 }
1743
91c00924
DW
1744 /* 1/ if we prexor'd then the dest is reused as a source
1745 * 2/ if we did not prexor then we are redoing the parity
1746 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1747 * for the synchronous xor case
1748 */
59fc630b 1749 last_stripe = !head_sh->batch_head ||
1750 list_first_entry(&sh->batch_list,
1751 struct stripe_head, batch_list) == head_sh;
1752 if (last_stripe) {
1753 flags = ASYNC_TX_ACK |
1754 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1755
1756 atomic_inc(&head_sh->count);
1757 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1758 to_addr_conv(sh, percpu, j));
1759 } else {
1760 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1761 init_async_submit(&submit, flags, tx, NULL, NULL,
1762 to_addr_conv(sh, percpu, j));
1763 }
91c00924 1764
a08abd8c
DW
1765 if (unlikely(count == 1))
1766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1767 else
1768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1769 if (!last_stripe) {
1770 j++;
1771 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1772 batch_list);
1773 goto again;
1774 }
91c00924
DW
1775}
1776
ac6b53b6
DW
1777static void
1778ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1779 struct dma_async_tx_descriptor *tx)
1780{
1781 struct async_submit_ctl submit;
59fc630b 1782 struct page **blocks;
1783 int count, i, j = 0;
1784 struct stripe_head *head_sh = sh;
1785 int last_stripe;
584acdd4
MS
1786 int synflags;
1787 unsigned long txflags;
ac6b53b6
DW
1788
1789 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1790
620125f2
SL
1791 for (i = 0; i < sh->disks; i++) {
1792 if (sh->pd_idx == i || sh->qd_idx == i)
1793 continue;
1794 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1795 break;
1796 }
1797 if (i >= sh->disks) {
1798 atomic_inc(&sh->count);
620125f2
SL
1799 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1800 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1801 ops_complete_reconstruct(sh);
1802 return;
1803 }
1804
59fc630b 1805again:
1806 blocks = to_addr_page(percpu, j);
584acdd4
MS
1807
1808 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1809 synflags = SYNDROME_SRC_WRITTEN;
1810 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1811 } else {
1812 synflags = SYNDROME_SRC_ALL;
1813 txflags = ASYNC_TX_ACK;
1814 }
1815
1816 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1817 last_stripe = !head_sh->batch_head ||
1818 list_first_entry(&sh->batch_list,
1819 struct stripe_head, batch_list) == head_sh;
1820
1821 if (last_stripe) {
1822 atomic_inc(&head_sh->count);
584acdd4 1823 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1824 head_sh, to_addr_conv(sh, percpu, j));
1825 } else
1826 init_async_submit(&submit, 0, tx, NULL, NULL,
1827 to_addr_conv(sh, percpu, j));
ac6b53b6 1828 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1829 if (!last_stripe) {
1830 j++;
1831 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1832 batch_list);
1833 goto again;
1834 }
91c00924
DW
1835}
1836
1837static void ops_complete_check(void *stripe_head_ref)
1838{
1839 struct stripe_head *sh = stripe_head_ref;
91c00924 1840
e46b272b 1841 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1842 (unsigned long long)sh->sector);
1843
ecc65c9b 1844 sh->check_state = check_state_check_result;
91c00924
DW
1845 set_bit(STRIPE_HANDLE, &sh->state);
1846 release_stripe(sh);
1847}
1848
ac6b53b6 1849static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1850{
91c00924 1851 int disks = sh->disks;
ac6b53b6
DW
1852 int pd_idx = sh->pd_idx;
1853 int qd_idx = sh->qd_idx;
1854 struct page *xor_dest;
46d5b785 1855 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1856 struct dma_async_tx_descriptor *tx;
a08abd8c 1857 struct async_submit_ctl submit;
ac6b53b6
DW
1858 int count;
1859 int i;
91c00924 1860
e46b272b 1861 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1862 (unsigned long long)sh->sector);
1863
59fc630b 1864 BUG_ON(sh->batch_head);
ac6b53b6
DW
1865 count = 0;
1866 xor_dest = sh->dev[pd_idx].page;
1867 xor_srcs[count++] = xor_dest;
91c00924 1868 for (i = disks; i--; ) {
ac6b53b6
DW
1869 if (i == pd_idx || i == qd_idx)
1870 continue;
1871 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1872 }
1873
d6f38f31 1874 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1875 to_addr_conv(sh, percpu, 0));
099f53cb 1876 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1877 &sh->ops.zero_sum_result, &submit);
91c00924 1878
91c00924 1879 atomic_inc(&sh->count);
a08abd8c
DW
1880 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1881 tx = async_trigger_callback(&submit);
91c00924
DW
1882}
1883
ac6b53b6
DW
1884static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1885{
46d5b785 1886 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1887 struct async_submit_ctl submit;
1888 int count;
1889
1890 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1891 (unsigned long long)sh->sector, checkp);
1892
59fc630b 1893 BUG_ON(sh->batch_head);
584acdd4 1894 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1895 if (!checkp)
1896 srcs[count] = NULL;
91c00924 1897
91c00924 1898 atomic_inc(&sh->count);
ac6b53b6 1899 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1900 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1901 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1902 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1903}
1904
51acbcec 1905static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1906{
1907 int overlap_clear = 0, i, disks = sh->disks;
1908 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1909 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1910 int level = conf->level;
d6f38f31
DW
1911 struct raid5_percpu *percpu;
1912 unsigned long cpu;
91c00924 1913
d6f38f31
DW
1914 cpu = get_cpu();
1915 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1916 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1917 ops_run_biofill(sh);
1918 overlap_clear++;
1919 }
1920
7b3a871e 1921 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1922 if (level < 6)
1923 tx = ops_run_compute5(sh, percpu);
1924 else {
1925 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1926 tx = ops_run_compute6_1(sh, percpu);
1927 else
1928 tx = ops_run_compute6_2(sh, percpu);
1929 }
1930 /* terminate the chain if reconstruct is not set to be run */
1931 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1932 async_tx_ack(tx);
1933 }
91c00924 1934
584acdd4
MS
1935 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1936 if (level < 6)
1937 tx = ops_run_prexor5(sh, percpu, tx);
1938 else
1939 tx = ops_run_prexor6(sh, percpu, tx);
1940 }
91c00924 1941
600aa109 1942 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1943 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1944 overlap_clear++;
1945 }
1946
ac6b53b6
DW
1947 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1948 if (level < 6)
1949 ops_run_reconstruct5(sh, percpu, tx);
1950 else
1951 ops_run_reconstruct6(sh, percpu, tx);
1952 }
91c00924 1953
ac6b53b6
DW
1954 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1955 if (sh->check_state == check_state_run)
1956 ops_run_check_p(sh, percpu);
1957 else if (sh->check_state == check_state_run_q)
1958 ops_run_check_pq(sh, percpu, 0);
1959 else if (sh->check_state == check_state_run_pq)
1960 ops_run_check_pq(sh, percpu, 1);
1961 else
1962 BUG();
1963 }
91c00924 1964
59fc630b 1965 if (overlap_clear && !sh->batch_head)
91c00924
DW
1966 for (i = disks; i--; ) {
1967 struct r5dev *dev = &sh->dev[i];
1968 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1969 wake_up(&sh->raid_conf->wait_for_overlap);
1970 }
d6f38f31 1971 put_cpu();
91c00924
DW
1972}
1973
f18c1a35
N
1974static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1975{
1976 struct stripe_head *sh;
1977
1978 sh = kmem_cache_zalloc(sc, gfp);
1979 if (sh) {
1980 spin_lock_init(&sh->stripe_lock);
1981 spin_lock_init(&sh->batch_lock);
1982 INIT_LIST_HEAD(&sh->batch_list);
1983 INIT_LIST_HEAD(&sh->lru);
1984 atomic_set(&sh->count, 1);
1985 }
1986 return sh;
1987}
486f0644 1988static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
1989{
1990 struct stripe_head *sh;
f18c1a35
N
1991
1992 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
1993 if (!sh)
1994 return 0;
6ce32846 1995
3f294f4f 1996 sh->raid_conf = conf;
3f294f4f 1997
a9683a79 1998 if (grow_buffers(sh, gfp)) {
e4e11e38 1999 shrink_buffers(sh);
3f294f4f
N
2000 kmem_cache_free(conf->slab_cache, sh);
2001 return 0;
2002 }
486f0644
N
2003 sh->hash_lock_index =
2004 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2005 /* we just created an active stripe so... */
3f294f4f 2006 atomic_inc(&conf->active_stripes);
59fc630b 2007
3f294f4f 2008 release_stripe(sh);
486f0644 2009 conf->max_nr_stripes++;
3f294f4f
N
2010 return 1;
2011}
2012
d1688a6d 2013static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2014{
e18b890b 2015 struct kmem_cache *sc;
5e5e3e78 2016 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2017
f4be6b43
N
2018 if (conf->mddev->gendisk)
2019 sprintf(conf->cache_name[0],
2020 "raid%d-%s", conf->level, mdname(conf->mddev));
2021 else
2022 sprintf(conf->cache_name[0],
2023 "raid%d-%p", conf->level, conf->mddev);
2024 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2025
ad01c9e3
N
2026 conf->active_name = 0;
2027 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2028 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2029 0, 0, NULL);
1da177e4
LT
2030 if (!sc)
2031 return 1;
2032 conf->slab_cache = sc;
ad01c9e3 2033 conf->pool_size = devs;
486f0644
N
2034 while (num--)
2035 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2036 return 1;
486f0644 2037
1da177e4
LT
2038 return 0;
2039}
29269553 2040
d6f38f31
DW
2041/**
2042 * scribble_len - return the required size of the scribble region
2043 * @num - total number of disks in the array
2044 *
2045 * The size must be enough to contain:
2046 * 1/ a struct page pointer for each device in the array +2
2047 * 2/ room to convert each entry in (1) to its corresponding dma
2048 * (dma_map_page()) or page (page_address()) address.
2049 *
2050 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2051 * calculate over all devices (not just the data blocks), using zeros in place
2052 * of the P and Q blocks.
2053 */
46d5b785 2054static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2055{
46d5b785 2056 struct flex_array *ret;
d6f38f31
DW
2057 size_t len;
2058
2059 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2060 ret = flex_array_alloc(len, cnt, flags);
2061 if (!ret)
2062 return NULL;
2063 /* always prealloc all elements, so no locking is required */
2064 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2065 flex_array_free(ret);
2066 return NULL;
2067 }
2068 return ret;
d6f38f31
DW
2069}
2070
d1688a6d 2071static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2072{
2073 /* Make all the stripes able to hold 'newsize' devices.
2074 * New slots in each stripe get 'page' set to a new page.
2075 *
2076 * This happens in stages:
2077 * 1/ create a new kmem_cache and allocate the required number of
2078 * stripe_heads.
83f0d77a 2079 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2080 * to the new stripe_heads. This will have the side effect of
2081 * freezing the array as once all stripe_heads have been collected,
2082 * no IO will be possible. Old stripe heads are freed once their
2083 * pages have been transferred over, and the old kmem_cache is
2084 * freed when all stripes are done.
2085 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2086 * we simple return a failre status - no need to clean anything up.
2087 * 4/ allocate new pages for the new slots in the new stripe_heads.
2088 * If this fails, we don't bother trying the shrink the
2089 * stripe_heads down again, we just leave them as they are.
2090 * As each stripe_head is processed the new one is released into
2091 * active service.
2092 *
2093 * Once step2 is started, we cannot afford to wait for a write,
2094 * so we use GFP_NOIO allocations.
2095 */
2096 struct stripe_head *osh, *nsh;
2097 LIST_HEAD(newstripes);
2098 struct disk_info *ndisks;
d6f38f31 2099 unsigned long cpu;
b5470dc5 2100 int err;
e18b890b 2101 struct kmem_cache *sc;
ad01c9e3 2102 int i;
566c09c5 2103 int hash, cnt;
ad01c9e3
N
2104
2105 if (newsize <= conf->pool_size)
2106 return 0; /* never bother to shrink */
2107
b5470dc5
DW
2108 err = md_allow_write(conf->mddev);
2109 if (err)
2110 return err;
2a2275d6 2111
ad01c9e3
N
2112 /* Step 1 */
2113 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2114 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2115 0, 0, NULL);
ad01c9e3
N
2116 if (!sc)
2117 return -ENOMEM;
2118
2119 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2120 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2121 if (!nsh)
2122 break;
2123
ad01c9e3 2124 nsh->raid_conf = conf;
ad01c9e3
N
2125 list_add(&nsh->lru, &newstripes);
2126 }
2127 if (i) {
2128 /* didn't get enough, give up */
2129 while (!list_empty(&newstripes)) {
2130 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2131 list_del(&nsh->lru);
2132 kmem_cache_free(sc, nsh);
2133 }
2134 kmem_cache_destroy(sc);
2135 return -ENOMEM;
2136 }
2137 /* Step 2 - Must use GFP_NOIO now.
2138 * OK, we have enough stripes, start collecting inactive
2139 * stripes and copying them over
2140 */
566c09c5
SL
2141 hash = 0;
2142 cnt = 0;
ad01c9e3 2143 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
2144 lock_device_hash_lock(conf, hash);
2145 wait_event_cmd(conf->wait_for_stripe,
2146 !list_empty(conf->inactive_list + hash),
2147 unlock_device_hash_lock(conf, hash),
2148 lock_device_hash_lock(conf, hash));
2149 osh = get_free_stripe(conf, hash);
2150 unlock_device_hash_lock(conf, hash);
f18c1a35 2151
d592a996 2152 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2153 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2154 nsh->dev[i].orig_page = osh->dev[i].page;
2155 }
566c09c5 2156 nsh->hash_lock_index = hash;
ad01c9e3 2157 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2158 cnt++;
2159 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2160 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2161 hash++;
2162 cnt = 0;
2163 }
ad01c9e3
N
2164 }
2165 kmem_cache_destroy(conf->slab_cache);
2166
2167 /* Step 3.
2168 * At this point, we are holding all the stripes so the array
2169 * is completely stalled, so now is a good time to resize
d6f38f31 2170 * conf->disks and the scribble region
ad01c9e3
N
2171 */
2172 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2173 if (ndisks) {
2174 for (i=0; i<conf->raid_disks; i++)
2175 ndisks[i] = conf->disks[i];
2176 kfree(conf->disks);
2177 conf->disks = ndisks;
2178 } else
2179 err = -ENOMEM;
2180
d6f38f31 2181 get_online_cpus();
d6f38f31
DW
2182 for_each_present_cpu(cpu) {
2183 struct raid5_percpu *percpu;
46d5b785 2184 struct flex_array *scribble;
d6f38f31
DW
2185
2186 percpu = per_cpu_ptr(conf->percpu, cpu);
46d5b785 2187 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2188 STRIPE_SECTORS, GFP_NOIO);
d6f38f31
DW
2189
2190 if (scribble) {
46d5b785 2191 flex_array_free(percpu->scribble);
d6f38f31
DW
2192 percpu->scribble = scribble;
2193 } else {
2194 err = -ENOMEM;
2195 break;
2196 }
2197 }
2198 put_online_cpus();
2199
ad01c9e3
N
2200 /* Step 4, return new stripes to service */
2201 while(!list_empty(&newstripes)) {
2202 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2203 list_del_init(&nsh->lru);
d6f38f31 2204
ad01c9e3
N
2205 for (i=conf->raid_disks; i < newsize; i++)
2206 if (nsh->dev[i].page == NULL) {
2207 struct page *p = alloc_page(GFP_NOIO);
2208 nsh->dev[i].page = p;
d592a996 2209 nsh->dev[i].orig_page = p;
ad01c9e3
N
2210 if (!p)
2211 err = -ENOMEM;
2212 }
2213 release_stripe(nsh);
2214 }
2215 /* critical section pass, GFP_NOIO no longer needed */
2216
2217 conf->slab_cache = sc;
2218 conf->active_name = 1-conf->active_name;
2219 conf->pool_size = newsize;
2220 return err;
2221}
1da177e4 2222
486f0644 2223static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2224{
2225 struct stripe_head *sh;
486f0644 2226 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
1da177e4 2227
566c09c5
SL
2228 spin_lock_irq(conf->hash_locks + hash);
2229 sh = get_free_stripe(conf, hash);
2230 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2231 if (!sh)
2232 return 0;
78bafebd 2233 BUG_ON(atomic_read(&sh->count));
e4e11e38 2234 shrink_buffers(sh);
3f294f4f
N
2235 kmem_cache_free(conf->slab_cache, sh);
2236 atomic_dec(&conf->active_stripes);
486f0644 2237 conf->max_nr_stripes--;
3f294f4f
N
2238 return 1;
2239}
2240
d1688a6d 2241static void shrink_stripes(struct r5conf *conf)
3f294f4f 2242{
486f0644
N
2243 while (conf->max_nr_stripes &&
2244 drop_one_stripe(conf))
2245 ;
3f294f4f 2246
29fc7e3e
N
2247 if (conf->slab_cache)
2248 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2249 conf->slab_cache = NULL;
2250}
2251
6712ecf8 2252static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 2253{
99c0fb5f 2254 struct stripe_head *sh = bi->bi_private;
d1688a6d 2255 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2256 int disks = sh->disks, i;
1da177e4 2257 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 2258 char b[BDEVNAME_SIZE];
dd054fce 2259 struct md_rdev *rdev = NULL;
05616be5 2260 sector_t s;
1da177e4
LT
2261
2262 for (i=0 ; i<disks; i++)
2263 if (bi == &sh->dev[i].req)
2264 break;
2265
45b4233c
DW
2266 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2267 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
2268 uptodate);
2269 if (i == disks) {
2270 BUG();
6712ecf8 2271 return;
1da177e4 2272 }
14a75d3e 2273 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2274 /* If replacement finished while this request was outstanding,
2275 * 'replacement' might be NULL already.
2276 * In that case it moved down to 'rdev'.
2277 * rdev is not removed until all requests are finished.
2278 */
14a75d3e 2279 rdev = conf->disks[i].replacement;
dd054fce 2280 if (!rdev)
14a75d3e 2281 rdev = conf->disks[i].rdev;
1da177e4 2282
05616be5
N
2283 if (use_new_offset(conf, sh))
2284 s = sh->sector + rdev->new_data_offset;
2285 else
2286 s = sh->sector + rdev->data_offset;
1da177e4 2287 if (uptodate) {
1da177e4 2288 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2289 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2290 /* Note that this cannot happen on a
2291 * replacement device. We just fail those on
2292 * any error
2293 */
8bda470e
CD
2294 printk_ratelimited(
2295 KERN_INFO
2296 "md/raid:%s: read error corrected"
2297 " (%lu sectors at %llu on %s)\n",
2298 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2299 (unsigned long long)s,
8bda470e 2300 bdevname(rdev->bdev, b));
ddd5115f 2301 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2302 clear_bit(R5_ReadError, &sh->dev[i].flags);
2303 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2304 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2305 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2306
14a75d3e
N
2307 if (atomic_read(&rdev->read_errors))
2308 atomic_set(&rdev->read_errors, 0);
1da177e4 2309 } else {
14a75d3e 2310 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2311 int retry = 0;
2e8ac303 2312 int set_bad = 0;
d6950432 2313
1da177e4 2314 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2315 atomic_inc(&rdev->read_errors);
14a75d3e
N
2316 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2317 printk_ratelimited(
2318 KERN_WARNING
2319 "md/raid:%s: read error on replacement device "
2320 "(sector %llu on %s).\n",
2321 mdname(conf->mddev),
05616be5 2322 (unsigned long long)s,
14a75d3e 2323 bdn);
2e8ac303 2324 else if (conf->mddev->degraded >= conf->max_degraded) {
2325 set_bad = 1;
8bda470e
CD
2326 printk_ratelimited(
2327 KERN_WARNING
2328 "md/raid:%s: read error not correctable "
2329 "(sector %llu on %s).\n",
2330 mdname(conf->mddev),
05616be5 2331 (unsigned long long)s,
8bda470e 2332 bdn);
2e8ac303 2333 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2334 /* Oh, no!!! */
2e8ac303 2335 set_bad = 1;
8bda470e
CD
2336 printk_ratelimited(
2337 KERN_WARNING
2338 "md/raid:%s: read error NOT corrected!! "
2339 "(sector %llu on %s).\n",
2340 mdname(conf->mddev),
05616be5 2341 (unsigned long long)s,
8bda470e 2342 bdn);
2e8ac303 2343 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2344 > conf->max_nr_stripes)
14f8d26b 2345 printk(KERN_WARNING
0c55e022 2346 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2347 mdname(conf->mddev), bdn);
ba22dcbf
N
2348 else
2349 retry = 1;
edfa1f65
BY
2350 if (set_bad && test_bit(In_sync, &rdev->flags)
2351 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2352 retry = 1;
ba22dcbf 2353 if (retry)
3f9e7c14 2354 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2355 set_bit(R5_ReadError, &sh->dev[i].flags);
2356 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2357 } else
2358 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2359 else {
4e5314b5
N
2360 clear_bit(R5_ReadError, &sh->dev[i].flags);
2361 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2362 if (!(set_bad
2363 && test_bit(In_sync, &rdev->flags)
2364 && rdev_set_badblocks(
2365 rdev, sh->sector, STRIPE_SECTORS, 0)))
2366 md_error(conf->mddev, rdev);
ba22dcbf 2367 }
1da177e4 2368 }
14a75d3e 2369 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2370 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2371 set_bit(STRIPE_HANDLE, &sh->state);
2372 release_stripe(sh);
1da177e4
LT
2373}
2374
d710e138 2375static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2376{
99c0fb5f 2377 struct stripe_head *sh = bi->bi_private;
d1688a6d 2378 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2379 int disks = sh->disks, i;
977df362 2380 struct md_rdev *uninitialized_var(rdev);
1da177e4 2381 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2382 sector_t first_bad;
2383 int bad_sectors;
977df362 2384 int replacement = 0;
1da177e4 2385
977df362
N
2386 for (i = 0 ; i < disks; i++) {
2387 if (bi == &sh->dev[i].req) {
2388 rdev = conf->disks[i].rdev;
1da177e4 2389 break;
977df362
N
2390 }
2391 if (bi == &sh->dev[i].rreq) {
2392 rdev = conf->disks[i].replacement;
dd054fce
N
2393 if (rdev)
2394 replacement = 1;
2395 else
2396 /* rdev was removed and 'replacement'
2397 * replaced it. rdev is not removed
2398 * until all requests are finished.
2399 */
2400 rdev = conf->disks[i].rdev;
977df362
N
2401 break;
2402 }
2403 }
45b4233c 2404 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2405 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2406 uptodate);
2407 if (i == disks) {
2408 BUG();
6712ecf8 2409 return;
1da177e4
LT
2410 }
2411
977df362
N
2412 if (replacement) {
2413 if (!uptodate)
2414 md_error(conf->mddev, rdev);
2415 else if (is_badblock(rdev, sh->sector,
2416 STRIPE_SECTORS,
2417 &first_bad, &bad_sectors))
2418 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2419 } else {
2420 if (!uptodate) {
9f97e4b1 2421 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2422 set_bit(WriteErrorSeen, &rdev->flags);
2423 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2424 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2425 set_bit(MD_RECOVERY_NEEDED,
2426 &rdev->mddev->recovery);
977df362
N
2427 } else if (is_badblock(rdev, sh->sector,
2428 STRIPE_SECTORS,
c0b32972 2429 &first_bad, &bad_sectors)) {
977df362 2430 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2431 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2432 /* That was a successful write so make
2433 * sure it looks like we already did
2434 * a re-write.
2435 */
2436 set_bit(R5_ReWrite, &sh->dev[i].flags);
2437 }
977df362
N
2438 }
2439 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2440
72ac7330 2441 if (sh->batch_head && !uptodate)
2442 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2443
977df362
N
2444 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2445 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2446 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2447 release_stripe(sh);
59fc630b 2448
2449 if (sh->batch_head && sh != sh->batch_head)
2450 release_stripe(sh->batch_head);
1da177e4
LT
2451}
2452
784052ec 2453static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
d592a996 2454
784052ec 2455static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2456{
2457 struct r5dev *dev = &sh->dev[i];
2458
2459 bio_init(&dev->req);
2460 dev->req.bi_io_vec = &dev->vec;
d592a996 2461 dev->req.bi_max_vecs = 1;
1da177e4
LT
2462 dev->req.bi_private = sh;
2463
977df362
N
2464 bio_init(&dev->rreq);
2465 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2466 dev->rreq.bi_max_vecs = 1;
977df362 2467 dev->rreq.bi_private = sh;
977df362 2468
1da177e4 2469 dev->flags = 0;
784052ec 2470 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2471}
2472
fd01b88c 2473static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2474{
2475 char b[BDEVNAME_SIZE];
d1688a6d 2476 struct r5conf *conf = mddev->private;
908f4fbd 2477 unsigned long flags;
0c55e022 2478 pr_debug("raid456: error called\n");
1da177e4 2479
908f4fbd
N
2480 spin_lock_irqsave(&conf->device_lock, flags);
2481 clear_bit(In_sync, &rdev->flags);
2482 mddev->degraded = calc_degraded(conf);
2483 spin_unlock_irqrestore(&conf->device_lock, flags);
2484 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2485
de393cde 2486 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2487 set_bit(Faulty, &rdev->flags);
2488 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2489 printk(KERN_ALERT
2490 "md/raid:%s: Disk failure on %s, disabling device.\n"
2491 "md/raid:%s: Operation continuing on %d devices.\n",
2492 mdname(mddev),
2493 bdevname(rdev->bdev, b),
2494 mdname(mddev),
2495 conf->raid_disks - mddev->degraded);
16a53ecc 2496}
1da177e4
LT
2497
2498/*
2499 * Input: a 'big' sector number,
2500 * Output: index of the data and parity disk, and the sector # in them.
2501 */
d1688a6d 2502static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2503 int previous, int *dd_idx,
2504 struct stripe_head *sh)
1da177e4 2505{
6e3b96ed 2506 sector_t stripe, stripe2;
35f2a591 2507 sector_t chunk_number;
1da177e4 2508 unsigned int chunk_offset;
911d4ee8 2509 int pd_idx, qd_idx;
67cc2b81 2510 int ddf_layout = 0;
1da177e4 2511 sector_t new_sector;
e183eaed
N
2512 int algorithm = previous ? conf->prev_algo
2513 : conf->algorithm;
09c9e5fa
AN
2514 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2515 : conf->chunk_sectors;
112bf897
N
2516 int raid_disks = previous ? conf->previous_raid_disks
2517 : conf->raid_disks;
2518 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2519
2520 /* First compute the information on this sector */
2521
2522 /*
2523 * Compute the chunk number and the sector offset inside the chunk
2524 */
2525 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2526 chunk_number = r_sector;
1da177e4
LT
2527
2528 /*
2529 * Compute the stripe number
2530 */
35f2a591
N
2531 stripe = chunk_number;
2532 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2533 stripe2 = stripe;
1da177e4
LT
2534 /*
2535 * Select the parity disk based on the user selected algorithm.
2536 */
84789554 2537 pd_idx = qd_idx = -1;
16a53ecc
N
2538 switch(conf->level) {
2539 case 4:
911d4ee8 2540 pd_idx = data_disks;
16a53ecc
N
2541 break;
2542 case 5:
e183eaed 2543 switch (algorithm) {
1da177e4 2544 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2545 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2546 if (*dd_idx >= pd_idx)
1da177e4
LT
2547 (*dd_idx)++;
2548 break;
2549 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2550 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2551 if (*dd_idx >= pd_idx)
1da177e4
LT
2552 (*dd_idx)++;
2553 break;
2554 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2555 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2556 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2557 break;
2558 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2559 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2560 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2561 break;
99c0fb5f
N
2562 case ALGORITHM_PARITY_0:
2563 pd_idx = 0;
2564 (*dd_idx)++;
2565 break;
2566 case ALGORITHM_PARITY_N:
2567 pd_idx = data_disks;
2568 break;
1da177e4 2569 default:
99c0fb5f 2570 BUG();
16a53ecc
N
2571 }
2572 break;
2573 case 6:
2574
e183eaed 2575 switch (algorithm) {
16a53ecc 2576 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2577 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2578 qd_idx = pd_idx + 1;
2579 if (pd_idx == raid_disks-1) {
99c0fb5f 2580 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2581 qd_idx = 0;
2582 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2583 (*dd_idx) += 2; /* D D P Q D */
2584 break;
2585 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2586 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2587 qd_idx = pd_idx + 1;
2588 if (pd_idx == raid_disks-1) {
99c0fb5f 2589 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2590 qd_idx = 0;
2591 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2592 (*dd_idx) += 2; /* D D P Q D */
2593 break;
2594 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2595 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2596 qd_idx = (pd_idx + 1) % raid_disks;
2597 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2598 break;
2599 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2600 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2601 qd_idx = (pd_idx + 1) % raid_disks;
2602 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2603 break;
99c0fb5f
N
2604
2605 case ALGORITHM_PARITY_0:
2606 pd_idx = 0;
2607 qd_idx = 1;
2608 (*dd_idx) += 2;
2609 break;
2610 case ALGORITHM_PARITY_N:
2611 pd_idx = data_disks;
2612 qd_idx = data_disks + 1;
2613 break;
2614
2615 case ALGORITHM_ROTATING_ZERO_RESTART:
2616 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2617 * of blocks for computing Q is different.
2618 */
6e3b96ed 2619 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2620 qd_idx = pd_idx + 1;
2621 if (pd_idx == raid_disks-1) {
2622 (*dd_idx)++; /* Q D D D P */
2623 qd_idx = 0;
2624 } else if (*dd_idx >= pd_idx)
2625 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2626 ddf_layout = 1;
99c0fb5f
N
2627 break;
2628
2629 case ALGORITHM_ROTATING_N_RESTART:
2630 /* Same a left_asymmetric, by first stripe is
2631 * D D D P Q rather than
2632 * Q D D D P
2633 */
6e3b96ed
N
2634 stripe2 += 1;
2635 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2636 qd_idx = pd_idx + 1;
2637 if (pd_idx == raid_disks-1) {
2638 (*dd_idx)++; /* Q D D D P */
2639 qd_idx = 0;
2640 } else if (*dd_idx >= pd_idx)
2641 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2642 ddf_layout = 1;
99c0fb5f
N
2643 break;
2644
2645 case ALGORITHM_ROTATING_N_CONTINUE:
2646 /* Same as left_symmetric but Q is before P */
6e3b96ed 2647 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2648 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2649 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2650 ddf_layout = 1;
99c0fb5f
N
2651 break;
2652
2653 case ALGORITHM_LEFT_ASYMMETRIC_6:
2654 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2655 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2656 if (*dd_idx >= pd_idx)
2657 (*dd_idx)++;
2658 qd_idx = raid_disks - 1;
2659 break;
2660
2661 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2662 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2663 if (*dd_idx >= pd_idx)
2664 (*dd_idx)++;
2665 qd_idx = raid_disks - 1;
2666 break;
2667
2668 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2669 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2670 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2671 qd_idx = raid_disks - 1;
2672 break;
2673
2674 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2675 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2676 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2677 qd_idx = raid_disks - 1;
2678 break;
2679
2680 case ALGORITHM_PARITY_0_6:
2681 pd_idx = 0;
2682 (*dd_idx)++;
2683 qd_idx = raid_disks - 1;
2684 break;
2685
16a53ecc 2686 default:
99c0fb5f 2687 BUG();
16a53ecc
N
2688 }
2689 break;
1da177e4
LT
2690 }
2691
911d4ee8
N
2692 if (sh) {
2693 sh->pd_idx = pd_idx;
2694 sh->qd_idx = qd_idx;
67cc2b81 2695 sh->ddf_layout = ddf_layout;
911d4ee8 2696 }
1da177e4
LT
2697 /*
2698 * Finally, compute the new sector number
2699 */
2700 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2701 return new_sector;
2702}
2703
784052ec 2704static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2705{
d1688a6d 2706 struct r5conf *conf = sh->raid_conf;
b875e531
N
2707 int raid_disks = sh->disks;
2708 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2709 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2710 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2711 : conf->chunk_sectors;
e183eaed
N
2712 int algorithm = previous ? conf->prev_algo
2713 : conf->algorithm;
1da177e4
LT
2714 sector_t stripe;
2715 int chunk_offset;
35f2a591
N
2716 sector_t chunk_number;
2717 int dummy1, dd_idx = i;
1da177e4 2718 sector_t r_sector;
911d4ee8 2719 struct stripe_head sh2;
1da177e4
LT
2720
2721 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2722 stripe = new_sector;
1da177e4 2723
16a53ecc
N
2724 if (i == sh->pd_idx)
2725 return 0;
2726 switch(conf->level) {
2727 case 4: break;
2728 case 5:
e183eaed 2729 switch (algorithm) {
1da177e4
LT
2730 case ALGORITHM_LEFT_ASYMMETRIC:
2731 case ALGORITHM_RIGHT_ASYMMETRIC:
2732 if (i > sh->pd_idx)
2733 i--;
2734 break;
2735 case ALGORITHM_LEFT_SYMMETRIC:
2736 case ALGORITHM_RIGHT_SYMMETRIC:
2737 if (i < sh->pd_idx)
2738 i += raid_disks;
2739 i -= (sh->pd_idx + 1);
2740 break;
99c0fb5f
N
2741 case ALGORITHM_PARITY_0:
2742 i -= 1;
2743 break;
2744 case ALGORITHM_PARITY_N:
2745 break;
1da177e4 2746 default:
99c0fb5f 2747 BUG();
16a53ecc
N
2748 }
2749 break;
2750 case 6:
d0dabf7e 2751 if (i == sh->qd_idx)
16a53ecc 2752 return 0; /* It is the Q disk */
e183eaed 2753 switch (algorithm) {
16a53ecc
N
2754 case ALGORITHM_LEFT_ASYMMETRIC:
2755 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2756 case ALGORITHM_ROTATING_ZERO_RESTART:
2757 case ALGORITHM_ROTATING_N_RESTART:
2758 if (sh->pd_idx == raid_disks-1)
2759 i--; /* Q D D D P */
16a53ecc
N
2760 else if (i > sh->pd_idx)
2761 i -= 2; /* D D P Q D */
2762 break;
2763 case ALGORITHM_LEFT_SYMMETRIC:
2764 case ALGORITHM_RIGHT_SYMMETRIC:
2765 if (sh->pd_idx == raid_disks-1)
2766 i--; /* Q D D D P */
2767 else {
2768 /* D D P Q D */
2769 if (i < sh->pd_idx)
2770 i += raid_disks;
2771 i -= (sh->pd_idx + 2);
2772 }
2773 break;
99c0fb5f
N
2774 case ALGORITHM_PARITY_0:
2775 i -= 2;
2776 break;
2777 case ALGORITHM_PARITY_N:
2778 break;
2779 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2780 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2781 if (sh->pd_idx == 0)
2782 i--; /* P D D D Q */
e4424fee
N
2783 else {
2784 /* D D Q P D */
2785 if (i < sh->pd_idx)
2786 i += raid_disks;
2787 i -= (sh->pd_idx + 1);
2788 }
99c0fb5f
N
2789 break;
2790 case ALGORITHM_LEFT_ASYMMETRIC_6:
2791 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2792 if (i > sh->pd_idx)
2793 i--;
2794 break;
2795 case ALGORITHM_LEFT_SYMMETRIC_6:
2796 case ALGORITHM_RIGHT_SYMMETRIC_6:
2797 if (i < sh->pd_idx)
2798 i += data_disks + 1;
2799 i -= (sh->pd_idx + 1);
2800 break;
2801 case ALGORITHM_PARITY_0_6:
2802 i -= 1;
2803 break;
16a53ecc 2804 default:
99c0fb5f 2805 BUG();
16a53ecc
N
2806 }
2807 break;
1da177e4
LT
2808 }
2809
2810 chunk_number = stripe * data_disks + i;
35f2a591 2811 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2812
112bf897 2813 check = raid5_compute_sector(conf, r_sector,
784052ec 2814 previous, &dummy1, &sh2);
911d4ee8
N
2815 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2816 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2817 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2818 mdname(conf->mddev));
1da177e4
LT
2819 return 0;
2820 }
2821 return r_sector;
2822}
2823
600aa109 2824static void
c0f7bddb 2825schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2826 int rcw, int expand)
e33129d8 2827{
584acdd4 2828 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2829 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2830 int level = conf->level;
e33129d8
DW
2831
2832 if (rcw) {
e33129d8
DW
2833
2834 for (i = disks; i--; ) {
2835 struct r5dev *dev = &sh->dev[i];
2836
2837 if (dev->towrite) {
2838 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2839 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2840 if (!expand)
2841 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2842 s->locked++;
e33129d8
DW
2843 }
2844 }
ce7d363a
N
2845 /* if we are not expanding this is a proper write request, and
2846 * there will be bios with new data to be drained into the
2847 * stripe cache
2848 */
2849 if (!expand) {
2850 if (!s->locked)
2851 /* False alarm, nothing to do */
2852 return;
2853 sh->reconstruct_state = reconstruct_state_drain_run;
2854 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2855 } else
2856 sh->reconstruct_state = reconstruct_state_run;
2857
2858 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2859
c0f7bddb 2860 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2861 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2862 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2863 } else {
2864 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2865 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2866 BUG_ON(level == 6 &&
2867 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2868 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2869
e33129d8
DW
2870 for (i = disks; i--; ) {
2871 struct r5dev *dev = &sh->dev[i];
584acdd4 2872 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2873 continue;
2874
e33129d8
DW
2875 if (dev->towrite &&
2876 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2877 test_bit(R5_Wantcompute, &dev->flags))) {
2878 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2879 set_bit(R5_LOCKED, &dev->flags);
2880 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2881 s->locked++;
e33129d8
DW
2882 }
2883 }
ce7d363a
N
2884 if (!s->locked)
2885 /* False alarm - nothing to do */
2886 return;
2887 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2888 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2889 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2890 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2891 }
2892
c0f7bddb 2893 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2894 * are in flight
2895 */
2896 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2897 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2898 s->locked++;
e33129d8 2899
c0f7bddb
YT
2900 if (level == 6) {
2901 int qd_idx = sh->qd_idx;
2902 struct r5dev *dev = &sh->dev[qd_idx];
2903
2904 set_bit(R5_LOCKED, &dev->flags);
2905 clear_bit(R5_UPTODATE, &dev->flags);
2906 s->locked++;
2907 }
2908
600aa109 2909 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2910 __func__, (unsigned long long)sh->sector,
600aa109 2911 s->locked, s->ops_request);
e33129d8 2912}
16a53ecc 2913
1da177e4
LT
2914/*
2915 * Each stripe/dev can have one or more bion attached.
16a53ecc 2916 * toread/towrite point to the first in a chain.
1da177e4
LT
2917 * The bi_next chain must be in order.
2918 */
da41ba65 2919static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2920 int forwrite, int previous)
1da177e4
LT
2921{
2922 struct bio **bip;
d1688a6d 2923 struct r5conf *conf = sh->raid_conf;
72626685 2924 int firstwrite=0;
1da177e4 2925
cbe47ec5 2926 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2927 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2928 (unsigned long long)sh->sector);
2929
b17459c0
SL
2930 /*
2931 * If several bio share a stripe. The bio bi_phys_segments acts as a
2932 * reference count to avoid race. The reference count should already be
2933 * increased before this function is called (for example, in
2934 * make_request()), so other bio sharing this stripe will not free the
2935 * stripe. If a stripe is owned by one stripe, the stripe lock will
2936 * protect it.
2937 */
2938 spin_lock_irq(&sh->stripe_lock);
59fc630b 2939 /* Don't allow new IO added to stripes in batch list */
2940 if (sh->batch_head)
2941 goto overlap;
72626685 2942 if (forwrite) {
1da177e4 2943 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2944 if (*bip == NULL)
72626685
N
2945 firstwrite = 1;
2946 } else
1da177e4 2947 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2948 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2949 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2950 goto overlap;
2951 bip = & (*bip)->bi_next;
2952 }
4f024f37 2953 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2954 goto overlap;
2955
da41ba65 2956 if (!forwrite || previous)
2957 clear_bit(STRIPE_BATCH_READY, &sh->state);
2958
78bafebd 2959 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2960 if (*bip)
2961 bi->bi_next = *bip;
2962 *bip = bi;
e7836bd6 2963 raid5_inc_bi_active_stripes(bi);
72626685 2964
1da177e4
LT
2965 if (forwrite) {
2966 /* check if page is covered */
2967 sector_t sector = sh->dev[dd_idx].sector;
2968 for (bi=sh->dev[dd_idx].towrite;
2969 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2970 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2971 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2972 if (bio_end_sector(bi) >= sector)
2973 sector = bio_end_sector(bi);
1da177e4
LT
2974 }
2975 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 2976 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2977 sh->overwrite_disks++;
1da177e4 2978 }
cbe47ec5
N
2979
2980 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 2981 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5 2982 (unsigned long long)sh->sector, dd_idx);
b97390ae 2983 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2984
2985 if (conf->mddev->bitmap && firstwrite) {
2986 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2987 STRIPE_SECTORS, 0);
2988 sh->bm_seq = conf->seq_flush+1;
2989 set_bit(STRIPE_BIT_DELAY, &sh->state);
2990 }
59fc630b 2991
2992 if (stripe_can_batch(sh))
2993 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
2994 return 1;
2995
2996 overlap:
2997 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2998 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2999 return 0;
3000}
3001
d1688a6d 3002static void end_reshape(struct r5conf *conf);
29269553 3003
d1688a6d 3004static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3005 struct stripe_head *sh)
ccfcc3c1 3006{
784052ec 3007 int sectors_per_chunk =
09c9e5fa 3008 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3009 int dd_idx;
2d2063ce 3010 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3011 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3012
112bf897
N
3013 raid5_compute_sector(conf,
3014 stripe * (disks - conf->max_degraded)
b875e531 3015 *sectors_per_chunk + chunk_offset,
112bf897 3016 previous,
911d4ee8 3017 &dd_idx, sh);
ccfcc3c1
N
3018}
3019
a4456856 3020static void
d1688a6d 3021handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3022 struct stripe_head_state *s, int disks,
3023 struct bio **return_bi)
3024{
3025 int i;
59fc630b 3026 BUG_ON(sh->batch_head);
a4456856
DW
3027 for (i = disks; i--; ) {
3028 struct bio *bi;
3029 int bitmap_end = 0;
3030
3031 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3032 struct md_rdev *rdev;
a4456856
DW
3033 rcu_read_lock();
3034 rdev = rcu_dereference(conf->disks[i].rdev);
3035 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3036 atomic_inc(&rdev->nr_pending);
3037 else
3038 rdev = NULL;
a4456856 3039 rcu_read_unlock();
7f0da59b
N
3040 if (rdev) {
3041 if (!rdev_set_badblocks(
3042 rdev,
3043 sh->sector,
3044 STRIPE_SECTORS, 0))
3045 md_error(conf->mddev, rdev);
3046 rdev_dec_pending(rdev, conf->mddev);
3047 }
a4456856 3048 }
b17459c0 3049 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3050 /* fail all writes first */
3051 bi = sh->dev[i].towrite;
3052 sh->dev[i].towrite = NULL;
7a87f434 3053 sh->overwrite_disks = 0;
b17459c0 3054 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3055 if (bi)
a4456856 3056 bitmap_end = 1;
a4456856
DW
3057
3058 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3059 wake_up(&conf->wait_for_overlap);
3060
4f024f37 3061 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3062 sh->dev[i].sector + STRIPE_SECTORS) {
3063 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3064 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3065 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3066 md_write_end(conf->mddev);
3067 bi->bi_next = *return_bi;
3068 *return_bi = bi;
3069 }
3070 bi = nextbi;
3071 }
7eaf7e8e
SL
3072 if (bitmap_end)
3073 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3074 STRIPE_SECTORS, 0, 0);
3075 bitmap_end = 0;
a4456856
DW
3076 /* and fail all 'written' */
3077 bi = sh->dev[i].written;
3078 sh->dev[i].written = NULL;
d592a996
SL
3079 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3080 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3081 sh->dev[i].page = sh->dev[i].orig_page;
3082 }
3083
a4456856 3084 if (bi) bitmap_end = 1;
4f024f37 3085 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3086 sh->dev[i].sector + STRIPE_SECTORS) {
3087 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3088 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3089 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3090 md_write_end(conf->mddev);
3091 bi->bi_next = *return_bi;
3092 *return_bi = bi;
3093 }
3094 bi = bi2;
3095 }
3096
b5e98d65
DW
3097 /* fail any reads if this device is non-operational and
3098 * the data has not reached the cache yet.
3099 */
3100 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3101 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3102 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3103 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3104 bi = sh->dev[i].toread;
3105 sh->dev[i].toread = NULL;
143c4d05 3106 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3107 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3108 wake_up(&conf->wait_for_overlap);
4f024f37 3109 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3110 sh->dev[i].sector + STRIPE_SECTORS) {
3111 struct bio *nextbi =
3112 r5_next_bio(bi, sh->dev[i].sector);
3113 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3114 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3115 bi->bi_next = *return_bi;
3116 *return_bi = bi;
3117 }
3118 bi = nextbi;
3119 }
3120 }
a4456856
DW
3121 if (bitmap_end)
3122 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3123 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3124 /* If we were in the middle of a write the parity block might
3125 * still be locked - so just clear all R5_LOCKED flags
3126 */
3127 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
3128 }
3129
8b3e6cdc
DW
3130 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3131 if (atomic_dec_and_test(&conf->pending_full_writes))
3132 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3133}
3134
7f0da59b 3135static void
d1688a6d 3136handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3137 struct stripe_head_state *s)
3138{
3139 int abort = 0;
3140 int i;
3141
59fc630b 3142 BUG_ON(sh->batch_head);
7f0da59b 3143 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3144 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3145 wake_up(&conf->wait_for_overlap);
7f0da59b 3146 s->syncing = 0;
9a3e1101 3147 s->replacing = 0;
7f0da59b 3148 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3149 * Don't even need to abort as that is handled elsewhere
3150 * if needed, and not always wanted e.g. if there is a known
3151 * bad block here.
9a3e1101 3152 * For recover/replace we need to record a bad block on all
7f0da59b
N
3153 * non-sync devices, or abort the recovery
3154 */
18b9837e
N
3155 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3156 /* During recovery devices cannot be removed, so
3157 * locking and refcounting of rdevs is not needed
3158 */
3159 for (i = 0; i < conf->raid_disks; i++) {
3160 struct md_rdev *rdev = conf->disks[i].rdev;
3161 if (rdev
3162 && !test_bit(Faulty, &rdev->flags)
3163 && !test_bit(In_sync, &rdev->flags)
3164 && !rdev_set_badblocks(rdev, sh->sector,
3165 STRIPE_SECTORS, 0))
3166 abort = 1;
3167 rdev = conf->disks[i].replacement;
3168 if (rdev
3169 && !test_bit(Faulty, &rdev->flags)
3170 && !test_bit(In_sync, &rdev->flags)
3171 && !rdev_set_badblocks(rdev, sh->sector,
3172 STRIPE_SECTORS, 0))
3173 abort = 1;
3174 }
3175 if (abort)
3176 conf->recovery_disabled =
3177 conf->mddev->recovery_disabled;
7f0da59b 3178 }
18b9837e 3179 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3180}
3181
9a3e1101
N
3182static int want_replace(struct stripe_head *sh, int disk_idx)
3183{
3184 struct md_rdev *rdev;
3185 int rv = 0;
3186 /* Doing recovery so rcu locking not required */
3187 rdev = sh->raid_conf->disks[disk_idx].replacement;
3188 if (rdev
3189 && !test_bit(Faulty, &rdev->flags)
3190 && !test_bit(In_sync, &rdev->flags)
3191 && (rdev->recovery_offset <= sh->sector
3192 || rdev->mddev->recovery_cp <= sh->sector))
3193 rv = 1;
3194
3195 return rv;
3196}
3197
93b3dbce 3198/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3199 * to be read or computed to satisfy a request.
3200 *
3201 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3202 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3203 */
2c58f06e
N
3204
3205static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3206 int disk_idx, int disks)
a4456856 3207{
5599becc 3208 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3209 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3210 &sh->dev[s->failed_num[1]] };
ea664c82 3211 int i;
5599becc 3212
a79cfe12
N
3213
3214 if (test_bit(R5_LOCKED, &dev->flags) ||
3215 test_bit(R5_UPTODATE, &dev->flags))
3216 /* No point reading this as we already have it or have
3217 * decided to get it.
3218 */
3219 return 0;
3220
3221 if (dev->toread ||
3222 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3223 /* We need this block to directly satisfy a request */
3224 return 1;
3225
3226 if (s->syncing || s->expanding ||
3227 (s->replacing && want_replace(sh, disk_idx)))
3228 /* When syncing, or expanding we read everything.
3229 * When replacing, we need the replaced block.
3230 */
3231 return 1;
3232
3233 if ((s->failed >= 1 && fdev[0]->toread) ||
3234 (s->failed >= 2 && fdev[1]->toread))
3235 /* If we want to read from a failed device, then
3236 * we need to actually read every other device.
3237 */
3238 return 1;
3239
a9d56950
N
3240 /* Sometimes neither read-modify-write nor reconstruct-write
3241 * cycles can work. In those cases we read every block we
3242 * can. Then the parity-update is certain to have enough to
3243 * work with.
3244 * This can only be a problem when we need to write something,
3245 * and some device has failed. If either of those tests
3246 * fail we need look no further.
3247 */
3248 if (!s->failed || !s->to_write)
3249 return 0;
3250
3251 if (test_bit(R5_Insync, &dev->flags) &&
3252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3253 /* Pre-reads at not permitted until after short delay
3254 * to gather multiple requests. However if this
3255 * device is no Insync, the block could only be be computed
3256 * and there is no need to delay that.
3257 */
3258 return 0;
ea664c82
N
3259
3260 for (i = 0; i < s->failed; i++) {
3261 if (fdev[i]->towrite &&
3262 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3263 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3264 /* If we have a partial write to a failed
3265 * device, then we will need to reconstruct
3266 * the content of that device, so all other
3267 * devices must be read.
3268 */
3269 return 1;
3270 }
3271
3272 /* If we are forced to do a reconstruct-write, either because
3273 * the current RAID6 implementation only supports that, or
3274 * or because parity cannot be trusted and we are currently
3275 * recovering it, there is extra need to be careful.
3276 * If one of the devices that we would need to read, because
3277 * it is not being overwritten (and maybe not written at all)
3278 * is missing/faulty, then we need to read everything we can.
3279 */
3280 if (sh->raid_conf->level != 6 &&
3281 sh->sector < sh->raid_conf->mddev->recovery_cp)
3282 /* reconstruct-write isn't being forced */
3283 return 0;
3284 for (i = 0; i < s->failed; i++) {
3285 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3286 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3287 return 1;
3288 }
3289
2c58f06e
N
3290 return 0;
3291}
3292
3293static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3294 int disk_idx, int disks)
3295{
3296 struct r5dev *dev = &sh->dev[disk_idx];
3297
3298 /* is the data in this block needed, and can we get it? */
3299 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3300 /* we would like to get this block, possibly by computing it,
3301 * otherwise read it if the backing disk is insync
3302 */
3303 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3304 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3305 BUG_ON(sh->batch_head);
5599becc 3306 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3307 (s->failed && (disk_idx == s->failed_num[0] ||
3308 disk_idx == s->failed_num[1]))) {
5599becc
YT
3309 /* have disk failed, and we're requested to fetch it;
3310 * do compute it
a4456856 3311 */
5599becc
YT
3312 pr_debug("Computing stripe %llu block %d\n",
3313 (unsigned long long)sh->sector, disk_idx);
3314 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3315 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3316 set_bit(R5_Wantcompute, &dev->flags);
3317 sh->ops.target = disk_idx;
3318 sh->ops.target2 = -1; /* no 2nd target */
3319 s->req_compute = 1;
93b3dbce
N
3320 /* Careful: from this point on 'uptodate' is in the eye
3321 * of raid_run_ops which services 'compute' operations
3322 * before writes. R5_Wantcompute flags a block that will
3323 * be R5_UPTODATE by the time it is needed for a
3324 * subsequent operation.
3325 */
5599becc
YT
3326 s->uptodate++;
3327 return 1;
3328 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3329 /* Computing 2-failure is *very* expensive; only
3330 * do it if failed >= 2
3331 */
3332 int other;
3333 for (other = disks; other--; ) {
3334 if (other == disk_idx)
3335 continue;
3336 if (!test_bit(R5_UPTODATE,
3337 &sh->dev[other].flags))
3338 break;
a4456856 3339 }
5599becc
YT
3340 BUG_ON(other < 0);
3341 pr_debug("Computing stripe %llu blocks %d,%d\n",
3342 (unsigned long long)sh->sector,
3343 disk_idx, other);
3344 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3345 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3346 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3347 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3348 sh->ops.target = disk_idx;
3349 sh->ops.target2 = other;
3350 s->uptodate += 2;
3351 s->req_compute = 1;
3352 return 1;
3353 } else if (test_bit(R5_Insync, &dev->flags)) {
3354 set_bit(R5_LOCKED, &dev->flags);
3355 set_bit(R5_Wantread, &dev->flags);
3356 s->locked++;
3357 pr_debug("Reading block %d (sync=%d)\n",
3358 disk_idx, s->syncing);
a4456856
DW
3359 }
3360 }
5599becc
YT
3361
3362 return 0;
3363}
3364
3365/**
93b3dbce 3366 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3367 */
93b3dbce
N
3368static void handle_stripe_fill(struct stripe_head *sh,
3369 struct stripe_head_state *s,
3370 int disks)
5599becc
YT
3371{
3372 int i;
3373
3374 /* look for blocks to read/compute, skip this if a compute
3375 * is already in flight, or if the stripe contents are in the
3376 * midst of changing due to a write
3377 */
3378 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3379 !sh->reconstruct_state)
3380 for (i = disks; i--; )
93b3dbce 3381 if (fetch_block(sh, s, i, disks))
5599becc 3382 break;
a4456856
DW
3383 set_bit(STRIPE_HANDLE, &sh->state);
3384}
3385
1fe797e6 3386/* handle_stripe_clean_event
a4456856
DW
3387 * any written block on an uptodate or failed drive can be returned.
3388 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3389 * never LOCKED, so we don't need to test 'failed' directly.
3390 */
d1688a6d 3391static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3392 struct stripe_head *sh, int disks, struct bio **return_bi)
3393{
3394 int i;
3395 struct r5dev *dev;
f8dfcffd 3396 int discard_pending = 0;
59fc630b 3397 struct stripe_head *head_sh = sh;
3398 bool do_endio = false;
3399 int wakeup_nr = 0;
a4456856
DW
3400
3401 for (i = disks; i--; )
3402 if (sh->dev[i].written) {
3403 dev = &sh->dev[i];
3404 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3405 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3406 test_bit(R5_Discard, &dev->flags) ||
3407 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3408 /* We can return any write requests */
3409 struct bio *wbi, *wbi2;
45b4233c 3410 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3411 if (test_and_clear_bit(R5_Discard, &dev->flags))
3412 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3413 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3414 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3415 }
59fc630b 3416 do_endio = true;
3417
3418returnbi:
3419 dev->page = dev->orig_page;
a4456856
DW
3420 wbi = dev->written;
3421 dev->written = NULL;
4f024f37 3422 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3423 dev->sector + STRIPE_SECTORS) {
3424 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3425 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3426 md_write_end(conf->mddev);
3427 wbi->bi_next = *return_bi;
3428 *return_bi = wbi;
3429 }
3430 wbi = wbi2;
3431 }
7eaf7e8e
SL
3432 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3433 STRIPE_SECTORS,
a4456856 3434 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3435 0);
59fc630b 3436 if (head_sh->batch_head) {
3437 sh = list_first_entry(&sh->batch_list,
3438 struct stripe_head,
3439 batch_list);
3440 if (sh != head_sh) {
3441 dev = &sh->dev[i];
3442 goto returnbi;
3443 }
3444 }
3445 sh = head_sh;
3446 dev = &sh->dev[i];
f8dfcffd
N
3447 } else if (test_bit(R5_Discard, &dev->flags))
3448 discard_pending = 1;
d592a996
SL
3449 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3450 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3451 }
3452 if (!discard_pending &&
3453 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3454 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3455 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3456 if (sh->qd_idx >= 0) {
3457 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3458 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3459 }
3460 /* now that discard is done we can proceed with any sync */
3461 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3462 /*
3463 * SCSI discard will change some bio fields and the stripe has
3464 * no updated data, so remove it from hash list and the stripe
3465 * will be reinitialized
3466 */
3467 spin_lock_irq(&conf->device_lock);
59fc630b 3468unhash:
d47648fc 3469 remove_hash(sh);
59fc630b 3470 if (head_sh->batch_head) {
3471 sh = list_first_entry(&sh->batch_list,
3472 struct stripe_head, batch_list);
3473 if (sh != head_sh)
3474 goto unhash;
3475 }
d47648fc 3476 spin_unlock_irq(&conf->device_lock);
59fc630b 3477 sh = head_sh;
3478
f8dfcffd
N
3479 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3480 set_bit(STRIPE_HANDLE, &sh->state);
3481
3482 }
8b3e6cdc
DW
3483
3484 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3485 if (atomic_dec_and_test(&conf->pending_full_writes))
3486 md_wakeup_thread(conf->mddev->thread);
59fc630b 3487
3488 if (!head_sh->batch_head || !do_endio)
3489 return;
3490 for (i = 0; i < head_sh->disks; i++) {
3491 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3492 wakeup_nr++;
3493 }
3494 while (!list_empty(&head_sh->batch_list)) {
3495 int i;
3496 sh = list_first_entry(&head_sh->batch_list,
3497 struct stripe_head, batch_list);
3498 list_del_init(&sh->batch_list);
3499
dabc4ec6 3500 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3501 head_sh->state & ~((1 << STRIPE_ACTIVE) |
3502 (1 << STRIPE_PREREAD_ACTIVE) |
3503 STRIPE_EXPAND_SYNC_FLAG));
59fc630b 3504 sh->check_state = head_sh->check_state;
3505 sh->reconstruct_state = head_sh->reconstruct_state;
3506 for (i = 0; i < sh->disks; i++) {
3507 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3508 wakeup_nr++;
3509 sh->dev[i].flags = head_sh->dev[i].flags;
3510 }
3511
3512 spin_lock_irq(&sh->stripe_lock);
3513 sh->batch_head = NULL;
3514 spin_unlock_irq(&sh->stripe_lock);
dabc4ec6 3515 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3516 set_bit(STRIPE_HANDLE, &sh->state);
59fc630b 3517 release_stripe(sh);
3518 }
3519
3520 spin_lock_irq(&head_sh->stripe_lock);
3521 head_sh->batch_head = NULL;
3522 spin_unlock_irq(&head_sh->stripe_lock);
3523 wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
dabc4ec6 3524 if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3525 set_bit(STRIPE_HANDLE, &head_sh->state);
a4456856
DW
3526}
3527
d1688a6d 3528static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3529 struct stripe_head *sh,
3530 struct stripe_head_state *s,
3531 int disks)
a4456856
DW
3532{
3533 int rmw = 0, rcw = 0, i;
a7854487
AL
3534 sector_t recovery_cp = conf->mddev->recovery_cp;
3535
584acdd4 3536 /* Check whether resync is now happening or should start.
a7854487
AL
3537 * If yes, then the array is dirty (after unclean shutdown or
3538 * initial creation), so parity in some stripes might be inconsistent.
3539 * In this case, we need to always do reconstruct-write, to ensure
3540 * that in case of drive failure or read-error correction, we
3541 * generate correct data from the parity.
3542 */
584acdd4 3543 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3544 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3545 s->failed == 0)) {
a7854487 3546 /* Calculate the real rcw later - for now make it
c8ac1803
N
3547 * look like rcw is cheaper
3548 */
3549 rcw = 1; rmw = 2;
584acdd4
MS
3550 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3551 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3552 (unsigned long long)sh->sector);
c8ac1803 3553 } else for (i = disks; i--; ) {
a4456856
DW
3554 /* would I have to read this buffer for read_modify_write */
3555 struct r5dev *dev = &sh->dev[i];
584acdd4 3556 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3557 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3558 !(test_bit(R5_UPTODATE, &dev->flags) ||
3559 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3560 if (test_bit(R5_Insync, &dev->flags))
3561 rmw++;
3562 else
3563 rmw += 2*disks; /* cannot read it */
3564 }
3565 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3566 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3567 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3568 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3569 !(test_bit(R5_UPTODATE, &dev->flags) ||
3570 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3571 if (test_bit(R5_Insync, &dev->flags))
3572 rcw++;
a4456856
DW
3573 else
3574 rcw += 2*disks;
3575 }
3576 }
45b4233c 3577 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3578 (unsigned long long)sh->sector, rmw, rcw);
3579 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3580 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3581 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3582 if (conf->mddev->queue)
3583 blk_add_trace_msg(conf->mddev->queue,
3584 "raid5 rmw %llu %d",
3585 (unsigned long long)sh->sector, rmw);
a4456856
DW
3586 for (i = disks; i--; ) {
3587 struct r5dev *dev = &sh->dev[i];
584acdd4 3588 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3589 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3590 !(test_bit(R5_UPTODATE, &dev->flags) ||
3591 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3592 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3593 if (test_bit(STRIPE_PREREAD_ACTIVE,
3594 &sh->state)) {
3595 pr_debug("Read_old block %d for r-m-w\n",
3596 i);
a4456856
DW
3597 set_bit(R5_LOCKED, &dev->flags);
3598 set_bit(R5_Wantread, &dev->flags);
3599 s->locked++;
3600 } else {
3601 set_bit(STRIPE_DELAYED, &sh->state);
3602 set_bit(STRIPE_HANDLE, &sh->state);
3603 }
3604 }
3605 }
a9add5d9 3606 }
584acdd4 3607 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3608 /* want reconstruct write, but need to get some data */
a9add5d9 3609 int qread =0;
c8ac1803 3610 rcw = 0;
a4456856
DW
3611 for (i = disks; i--; ) {
3612 struct r5dev *dev = &sh->dev[i];
3613 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3614 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3615 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3616 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3617 test_bit(R5_Wantcompute, &dev->flags))) {
3618 rcw++;
67f45548
N
3619 if (test_bit(R5_Insync, &dev->flags) &&
3620 test_bit(STRIPE_PREREAD_ACTIVE,
3621 &sh->state)) {
45b4233c 3622 pr_debug("Read_old block "
a4456856
DW
3623 "%d for Reconstruct\n", i);
3624 set_bit(R5_LOCKED, &dev->flags);
3625 set_bit(R5_Wantread, &dev->flags);
3626 s->locked++;
a9add5d9 3627 qread++;
a4456856
DW
3628 } else {
3629 set_bit(STRIPE_DELAYED, &sh->state);
3630 set_bit(STRIPE_HANDLE, &sh->state);
3631 }
3632 }
3633 }
e3620a3a 3634 if (rcw && conf->mddev->queue)
a9add5d9
N
3635 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3636 (unsigned long long)sh->sector,
3637 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3638 }
b1b02fe9
N
3639
3640 if (rcw > disks && rmw > disks &&
3641 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3642 set_bit(STRIPE_DELAYED, &sh->state);
3643
a4456856
DW
3644 /* now if nothing is locked, and if we have enough data,
3645 * we can start a write request
3646 */
f38e1219
DW
3647 /* since handle_stripe can be called at any time we need to handle the
3648 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3649 * subsequent call wants to start a write request. raid_run_ops only
3650 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3651 * simultaneously. If this is not the case then new writes need to be
3652 * held off until the compute completes.
3653 */
976ea8d4
DW
3654 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3655 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3656 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3657 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3658}
3659
d1688a6d 3660static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3661 struct stripe_head_state *s, int disks)
3662{
ecc65c9b 3663 struct r5dev *dev = NULL;
bd2ab670 3664
59fc630b 3665 BUG_ON(sh->batch_head);
a4456856 3666 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3667
ecc65c9b
DW
3668 switch (sh->check_state) {
3669 case check_state_idle:
3670 /* start a new check operation if there are no failures */
bd2ab670 3671 if (s->failed == 0) {
bd2ab670 3672 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3673 sh->check_state = check_state_run;
3674 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3675 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3676 s->uptodate--;
ecc65c9b 3677 break;
bd2ab670 3678 }
f2b3b44d 3679 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3680 /* fall through */
3681 case check_state_compute_result:
3682 sh->check_state = check_state_idle;
3683 if (!dev)
3684 dev = &sh->dev[sh->pd_idx];
3685
3686 /* check that a write has not made the stripe insync */
3687 if (test_bit(STRIPE_INSYNC, &sh->state))
3688 break;
c8894419 3689
a4456856 3690 /* either failed parity check, or recovery is happening */
a4456856
DW
3691 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3692 BUG_ON(s->uptodate != disks);
3693
3694 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3695 s->locked++;
a4456856 3696 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3697
a4456856 3698 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3699 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3700 break;
3701 case check_state_run:
3702 break; /* we will be called again upon completion */
3703 case check_state_check_result:
3704 sh->check_state = check_state_idle;
3705
3706 /* if a failure occurred during the check operation, leave
3707 * STRIPE_INSYNC not set and let the stripe be handled again
3708 */
3709 if (s->failed)
3710 break;
3711
3712 /* handle a successful check operation, if parity is correct
3713 * we are done. Otherwise update the mismatch count and repair
3714 * parity if !MD_RECOVERY_CHECK
3715 */
ad283ea4 3716 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3717 /* parity is correct (on disc,
3718 * not in buffer any more)
3719 */
3720 set_bit(STRIPE_INSYNC, &sh->state);
3721 else {
7f7583d4 3722 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3723 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3724 /* don't try to repair!! */
3725 set_bit(STRIPE_INSYNC, &sh->state);
3726 else {
3727 sh->check_state = check_state_compute_run;
976ea8d4 3728 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3729 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3730 set_bit(R5_Wantcompute,
3731 &sh->dev[sh->pd_idx].flags);
3732 sh->ops.target = sh->pd_idx;
ac6b53b6 3733 sh->ops.target2 = -1;
ecc65c9b
DW
3734 s->uptodate++;
3735 }
3736 }
3737 break;
3738 case check_state_compute_run:
3739 break;
3740 default:
3741 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3742 __func__, sh->check_state,
3743 (unsigned long long) sh->sector);
3744 BUG();
a4456856
DW
3745 }
3746}
3747
d1688a6d 3748static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3749 struct stripe_head_state *s,
f2b3b44d 3750 int disks)
a4456856 3751{
a4456856 3752 int pd_idx = sh->pd_idx;
34e04e87 3753 int qd_idx = sh->qd_idx;
d82dfee0 3754 struct r5dev *dev;
a4456856 3755
59fc630b 3756 BUG_ON(sh->batch_head);
a4456856
DW
3757 set_bit(STRIPE_HANDLE, &sh->state);
3758
3759 BUG_ON(s->failed > 2);
d82dfee0 3760
a4456856
DW
3761 /* Want to check and possibly repair P and Q.
3762 * However there could be one 'failed' device, in which
3763 * case we can only check one of them, possibly using the
3764 * other to generate missing data
3765 */
3766
d82dfee0
DW
3767 switch (sh->check_state) {
3768 case check_state_idle:
3769 /* start a new check operation if there are < 2 failures */
f2b3b44d 3770 if (s->failed == s->q_failed) {
d82dfee0 3771 /* The only possible failed device holds Q, so it
a4456856
DW
3772 * makes sense to check P (If anything else were failed,
3773 * we would have used P to recreate it).
3774 */
d82dfee0 3775 sh->check_state = check_state_run;
a4456856 3776 }
f2b3b44d 3777 if (!s->q_failed && s->failed < 2) {
d82dfee0 3778 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3779 * anything, so it makes sense to check it
3780 */
d82dfee0
DW
3781 if (sh->check_state == check_state_run)
3782 sh->check_state = check_state_run_pq;
3783 else
3784 sh->check_state = check_state_run_q;
a4456856 3785 }
a4456856 3786
d82dfee0
DW
3787 /* discard potentially stale zero_sum_result */
3788 sh->ops.zero_sum_result = 0;
a4456856 3789
d82dfee0
DW
3790 if (sh->check_state == check_state_run) {
3791 /* async_xor_zero_sum destroys the contents of P */
3792 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3793 s->uptodate--;
a4456856 3794 }
d82dfee0
DW
3795 if (sh->check_state >= check_state_run &&
3796 sh->check_state <= check_state_run_pq) {
3797 /* async_syndrome_zero_sum preserves P and Q, so
3798 * no need to mark them !uptodate here
3799 */
3800 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3801 break;
a4456856
DW
3802 }
3803
d82dfee0
DW
3804 /* we have 2-disk failure */
3805 BUG_ON(s->failed != 2);
3806 /* fall through */
3807 case check_state_compute_result:
3808 sh->check_state = check_state_idle;
a4456856 3809
d82dfee0
DW
3810 /* check that a write has not made the stripe insync */
3811 if (test_bit(STRIPE_INSYNC, &sh->state))
3812 break;
a4456856
DW
3813
3814 /* now write out any block on a failed drive,
d82dfee0 3815 * or P or Q if they were recomputed
a4456856 3816 */
d82dfee0 3817 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3818 if (s->failed == 2) {
f2b3b44d 3819 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3820 s->locked++;
3821 set_bit(R5_LOCKED, &dev->flags);
3822 set_bit(R5_Wantwrite, &dev->flags);
3823 }
3824 if (s->failed >= 1) {
f2b3b44d 3825 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3826 s->locked++;
3827 set_bit(R5_LOCKED, &dev->flags);
3828 set_bit(R5_Wantwrite, &dev->flags);
3829 }
d82dfee0 3830 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3831 dev = &sh->dev[pd_idx];
3832 s->locked++;
3833 set_bit(R5_LOCKED, &dev->flags);
3834 set_bit(R5_Wantwrite, &dev->flags);
3835 }
d82dfee0 3836 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3837 dev = &sh->dev[qd_idx];
3838 s->locked++;
3839 set_bit(R5_LOCKED, &dev->flags);
3840 set_bit(R5_Wantwrite, &dev->flags);
3841 }
3842 clear_bit(STRIPE_DEGRADED, &sh->state);
3843
3844 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3845 break;
3846 case check_state_run:
3847 case check_state_run_q:
3848 case check_state_run_pq:
3849 break; /* we will be called again upon completion */
3850 case check_state_check_result:
3851 sh->check_state = check_state_idle;
3852
3853 /* handle a successful check operation, if parity is correct
3854 * we are done. Otherwise update the mismatch count and repair
3855 * parity if !MD_RECOVERY_CHECK
3856 */
3857 if (sh->ops.zero_sum_result == 0) {
3858 /* both parities are correct */
3859 if (!s->failed)
3860 set_bit(STRIPE_INSYNC, &sh->state);
3861 else {
3862 /* in contrast to the raid5 case we can validate
3863 * parity, but still have a failure to write
3864 * back
3865 */
3866 sh->check_state = check_state_compute_result;
3867 /* Returning at this point means that we may go
3868 * off and bring p and/or q uptodate again so
3869 * we make sure to check zero_sum_result again
3870 * to verify if p or q need writeback
3871 */
3872 }
3873 } else {
7f7583d4 3874 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3875 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3876 /* don't try to repair!! */
3877 set_bit(STRIPE_INSYNC, &sh->state);
3878 else {
3879 int *target = &sh->ops.target;
3880
3881 sh->ops.target = -1;
3882 sh->ops.target2 = -1;
3883 sh->check_state = check_state_compute_run;
3884 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3885 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3886 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3887 set_bit(R5_Wantcompute,
3888 &sh->dev[pd_idx].flags);
3889 *target = pd_idx;
3890 target = &sh->ops.target2;
3891 s->uptodate++;
3892 }
3893 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3894 set_bit(R5_Wantcompute,
3895 &sh->dev[qd_idx].flags);
3896 *target = qd_idx;
3897 s->uptodate++;
3898 }
3899 }
3900 }
3901 break;
3902 case check_state_compute_run:
3903 break;
3904 default:
3905 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3906 __func__, sh->check_state,
3907 (unsigned long long) sh->sector);
3908 BUG();
a4456856
DW
3909 }
3910}
3911
d1688a6d 3912static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3913{
3914 int i;
3915
3916 /* We have read all the blocks in this stripe and now we need to
3917 * copy some of them into a target stripe for expand.
3918 */
f0a50d37 3919 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3920 BUG_ON(sh->batch_head);
a4456856
DW
3921 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3922 for (i = 0; i < sh->disks; i++)
34e04e87 3923 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3924 int dd_idx, j;
a4456856 3925 struct stripe_head *sh2;
a08abd8c 3926 struct async_submit_ctl submit;
a4456856 3927
784052ec 3928 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3929 sector_t s = raid5_compute_sector(conf, bn, 0,
3930 &dd_idx, NULL);
a8c906ca 3931 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3932 if (sh2 == NULL)
3933 /* so far only the early blocks of this stripe
3934 * have been requested. When later blocks
3935 * get requested, we will try again
3936 */
3937 continue;
3938 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3939 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3940 /* must have already done this block */
3941 release_stripe(sh2);
3942 continue;
3943 }
f0a50d37
DW
3944
3945 /* place all the copies on one channel */
a08abd8c 3946 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3947 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3948 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3949 &submit);
f0a50d37 3950
a4456856
DW
3951 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3952 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3953 for (j = 0; j < conf->raid_disks; j++)
3954 if (j != sh2->pd_idx &&
86c374ba 3955 j != sh2->qd_idx &&
a4456856
DW
3956 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3957 break;
3958 if (j == conf->raid_disks) {
3959 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3960 set_bit(STRIPE_HANDLE, &sh2->state);
3961 }
3962 release_stripe(sh2);
f0a50d37 3963
a4456856 3964 }
a2e08551 3965 /* done submitting copies, wait for them to complete */
749586b7 3966 async_tx_quiesce(&tx);
a4456856 3967}
1da177e4
LT
3968
3969/*
3970 * handle_stripe - do things to a stripe.
3971 *
9a3e1101
N
3972 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3973 * state of various bits to see what needs to be done.
1da177e4 3974 * Possible results:
9a3e1101
N
3975 * return some read requests which now have data
3976 * return some write requests which are safely on storage
1da177e4
LT
3977 * schedule a read on some buffers
3978 * schedule a write of some buffers
3979 * return confirmation of parity correctness
3980 *
1da177e4 3981 */
a4456856 3982
acfe726b 3983static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3984{
d1688a6d 3985 struct r5conf *conf = sh->raid_conf;
f416885e 3986 int disks = sh->disks;
474af965
N
3987 struct r5dev *dev;
3988 int i;
9a3e1101 3989 int do_recovery = 0;
1da177e4 3990
acfe726b
N
3991 memset(s, 0, sizeof(*s));
3992
dabc4ec6 3993 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3994 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
3995 s->failed_num[0] = -1;
3996 s->failed_num[1] = -1;
1da177e4 3997
acfe726b 3998 /* Now to look around and see what can be done */
1da177e4 3999 rcu_read_lock();
16a53ecc 4000 for (i=disks; i--; ) {
3cb03002 4001 struct md_rdev *rdev;
31c176ec
N
4002 sector_t first_bad;
4003 int bad_sectors;
4004 int is_bad = 0;
acfe726b 4005
16a53ecc 4006 dev = &sh->dev[i];
1da177e4 4007
45b4233c 4008 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4009 i, dev->flags,
4010 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4011 /* maybe we can reply to a read
4012 *
4013 * new wantfill requests are only permitted while
4014 * ops_complete_biofill is guaranteed to be inactive
4015 */
4016 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4017 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4018 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4019
16a53ecc 4020 /* now count some things */
cc94015a
N
4021 if (test_bit(R5_LOCKED, &dev->flags))
4022 s->locked++;
4023 if (test_bit(R5_UPTODATE, &dev->flags))
4024 s->uptodate++;
2d6e4ecc 4025 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4026 s->compute++;
4027 BUG_ON(s->compute > 2);
2d6e4ecc 4028 }
1da177e4 4029
acfe726b 4030 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4031 s->to_fill++;
acfe726b 4032 else if (dev->toread)
cc94015a 4033 s->to_read++;
16a53ecc 4034 if (dev->towrite) {
cc94015a 4035 s->to_write++;
16a53ecc 4036 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4037 s->non_overwrite++;
16a53ecc 4038 }
a4456856 4039 if (dev->written)
cc94015a 4040 s->written++;
14a75d3e
N
4041 /* Prefer to use the replacement for reads, but only
4042 * if it is recovered enough and has no bad blocks.
4043 */
4044 rdev = rcu_dereference(conf->disks[i].replacement);
4045 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4046 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4047 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4048 &first_bad, &bad_sectors))
4049 set_bit(R5_ReadRepl, &dev->flags);
4050 else {
9a3e1101
N
4051 if (rdev)
4052 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4053 rdev = rcu_dereference(conf->disks[i].rdev);
4054 clear_bit(R5_ReadRepl, &dev->flags);
4055 }
9283d8c5
N
4056 if (rdev && test_bit(Faulty, &rdev->flags))
4057 rdev = NULL;
31c176ec
N
4058 if (rdev) {
4059 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4060 &first_bad, &bad_sectors);
4061 if (s->blocked_rdev == NULL
4062 && (test_bit(Blocked, &rdev->flags)
4063 || is_bad < 0)) {
4064 if (is_bad < 0)
4065 set_bit(BlockedBadBlocks,
4066 &rdev->flags);
4067 s->blocked_rdev = rdev;
4068 atomic_inc(&rdev->nr_pending);
4069 }
6bfe0b49 4070 }
415e72d0
N
4071 clear_bit(R5_Insync, &dev->flags);
4072 if (!rdev)
4073 /* Not in-sync */;
31c176ec
N
4074 else if (is_bad) {
4075 /* also not in-sync */
18b9837e
N
4076 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4077 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4078 /* treat as in-sync, but with a read error
4079 * which we can now try to correct
4080 */
4081 set_bit(R5_Insync, &dev->flags);
4082 set_bit(R5_ReadError, &dev->flags);
4083 }
4084 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4085 set_bit(R5_Insync, &dev->flags);
30d7a483 4086 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4087 /* in sync if before recovery_offset */
30d7a483
N
4088 set_bit(R5_Insync, &dev->flags);
4089 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4090 test_bit(R5_Expanded, &dev->flags))
4091 /* If we've reshaped into here, we assume it is Insync.
4092 * We will shortly update recovery_offset to make
4093 * it official.
4094 */
4095 set_bit(R5_Insync, &dev->flags);
4096
1cc03eb9 4097 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4098 /* This flag does not apply to '.replacement'
4099 * only to .rdev, so make sure to check that*/
4100 struct md_rdev *rdev2 = rcu_dereference(
4101 conf->disks[i].rdev);
4102 if (rdev2 == rdev)
4103 clear_bit(R5_Insync, &dev->flags);
4104 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4105 s->handle_bad_blocks = 1;
14a75d3e 4106 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4107 } else
4108 clear_bit(R5_WriteError, &dev->flags);
4109 }
1cc03eb9 4110 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4111 /* This flag does not apply to '.replacement'
4112 * only to .rdev, so make sure to check that*/
4113 struct md_rdev *rdev2 = rcu_dereference(
4114 conf->disks[i].rdev);
4115 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4116 s->handle_bad_blocks = 1;
14a75d3e 4117 atomic_inc(&rdev2->nr_pending);
b84db560
N
4118 } else
4119 clear_bit(R5_MadeGood, &dev->flags);
4120 }
977df362
N
4121 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4122 struct md_rdev *rdev2 = rcu_dereference(
4123 conf->disks[i].replacement);
4124 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4125 s->handle_bad_blocks = 1;
4126 atomic_inc(&rdev2->nr_pending);
4127 } else
4128 clear_bit(R5_MadeGoodRepl, &dev->flags);
4129 }
415e72d0 4130 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4131 /* The ReadError flag will just be confusing now */
4132 clear_bit(R5_ReadError, &dev->flags);
4133 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4134 }
415e72d0
N
4135 if (test_bit(R5_ReadError, &dev->flags))
4136 clear_bit(R5_Insync, &dev->flags);
4137 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4138 if (s->failed < 2)
4139 s->failed_num[s->failed] = i;
4140 s->failed++;
9a3e1101
N
4141 if (rdev && !test_bit(Faulty, &rdev->flags))
4142 do_recovery = 1;
415e72d0 4143 }
1da177e4 4144 }
9a3e1101
N
4145 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4146 /* If there is a failed device being replaced,
4147 * we must be recovering.
4148 * else if we are after recovery_cp, we must be syncing
c6d2e084 4149 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4150 * else we can only be replacing
4151 * sync and recovery both need to read all devices, and so
4152 * use the same flag.
4153 */
4154 if (do_recovery ||
c6d2e084 4155 sh->sector >= conf->mddev->recovery_cp ||
4156 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4157 s->syncing = 1;
4158 else
4159 s->replacing = 1;
4160 }
1da177e4 4161 rcu_read_unlock();
cc94015a
N
4162}
4163
59fc630b 4164static int clear_batch_ready(struct stripe_head *sh)
4165{
4166 struct stripe_head *tmp;
4167 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4168 return 0;
4169 spin_lock(&sh->stripe_lock);
4170 if (!sh->batch_head) {
4171 spin_unlock(&sh->stripe_lock);
4172 return 0;
4173 }
4174
4175 /*
4176 * this stripe could be added to a batch list before we check
4177 * BATCH_READY, skips it
4178 */
4179 if (sh->batch_head != sh) {
4180 spin_unlock(&sh->stripe_lock);
4181 return 1;
4182 }
4183 spin_lock(&sh->batch_lock);
4184 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4185 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4186 spin_unlock(&sh->batch_lock);
4187 spin_unlock(&sh->stripe_lock);
4188
4189 /*
4190 * BATCH_READY is cleared, no new stripes can be added.
4191 * batch_list can be accessed without lock
4192 */
4193 return 0;
4194}
4195
72ac7330 4196static void check_break_stripe_batch_list(struct stripe_head *sh)
4197{
4198 struct stripe_head *head_sh, *next;
4199 int i;
4200
4201 if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4202 return;
4203
4204 head_sh = sh;
4205 do {
4206 sh = list_first_entry(&sh->batch_list,
4207 struct stripe_head, batch_list);
4208 BUG_ON(sh == head_sh);
4209 } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4210
4211 while (sh != head_sh) {
4212 next = list_first_entry(&sh->batch_list,
4213 struct stripe_head, batch_list);
4214 list_del_init(&sh->batch_list);
4215
dabc4ec6 4216 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4217 head_sh->state & ~((1 << STRIPE_ACTIVE) |
4218 (1 << STRIPE_PREREAD_ACTIVE) |
4219 (1 << STRIPE_DEGRADED) |
4220 STRIPE_EXPAND_SYNC_FLAG));
72ac7330 4221 sh->check_state = head_sh->check_state;
4222 sh->reconstruct_state = head_sh->reconstruct_state;
4223 for (i = 0; i < sh->disks; i++)
4224 sh->dev[i].flags = head_sh->dev[i].flags &
4225 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4226
4227 spin_lock_irq(&sh->stripe_lock);
4228 sh->batch_head = NULL;
4229 spin_unlock_irq(&sh->stripe_lock);
4230
4231 set_bit(STRIPE_HANDLE, &sh->state);
4232 release_stripe(sh);
4233
4234 sh = next;
4235 }
4236}
4237
cc94015a
N
4238static void handle_stripe(struct stripe_head *sh)
4239{
4240 struct stripe_head_state s;
d1688a6d 4241 struct r5conf *conf = sh->raid_conf;
3687c061 4242 int i;
84789554
N
4243 int prexor;
4244 int disks = sh->disks;
474af965 4245 struct r5dev *pdev, *qdev;
cc94015a
N
4246
4247 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4248 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4249 /* already being handled, ensure it gets handled
4250 * again when current action finishes */
4251 set_bit(STRIPE_HANDLE, &sh->state);
4252 return;
4253 }
4254
59fc630b 4255 if (clear_batch_ready(sh) ) {
4256 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4257 return;
4258 }
4259
72ac7330 4260 check_break_stripe_batch_list(sh);
4261
dabc4ec6 4262 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4263 spin_lock(&sh->stripe_lock);
4264 /* Cannot process 'sync' concurrently with 'discard' */
4265 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4266 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4267 set_bit(STRIPE_SYNCING, &sh->state);
4268 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4269 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4270 }
4271 spin_unlock(&sh->stripe_lock);
cc94015a
N
4272 }
4273 clear_bit(STRIPE_DELAYED, &sh->state);
4274
4275 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4276 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4277 (unsigned long long)sh->sector, sh->state,
4278 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4279 sh->check_state, sh->reconstruct_state);
3687c061 4280
acfe726b 4281 analyse_stripe(sh, &s);
c5a31000 4282
bc2607f3
N
4283 if (s.handle_bad_blocks) {
4284 set_bit(STRIPE_HANDLE, &sh->state);
4285 goto finish;
4286 }
4287
474af965
N
4288 if (unlikely(s.blocked_rdev)) {
4289 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4290 s.replacing || s.to_write || s.written) {
474af965
N
4291 set_bit(STRIPE_HANDLE, &sh->state);
4292 goto finish;
4293 }
4294 /* There is nothing for the blocked_rdev to block */
4295 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4296 s.blocked_rdev = NULL;
4297 }
4298
4299 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4300 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4301 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4302 }
4303
4304 pr_debug("locked=%d uptodate=%d to_read=%d"
4305 " to_write=%d failed=%d failed_num=%d,%d\n",
4306 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4307 s.failed_num[0], s.failed_num[1]);
4308 /* check if the array has lost more than max_degraded devices and,
4309 * if so, some requests might need to be failed.
4310 */
9a3f530f
N
4311 if (s.failed > conf->max_degraded) {
4312 sh->check_state = 0;
4313 sh->reconstruct_state = 0;
4314 if (s.to_read+s.to_write+s.written)
4315 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4316 if (s.syncing + s.replacing)
9a3f530f
N
4317 handle_failed_sync(conf, sh, &s);
4318 }
474af965 4319
84789554
N
4320 /* Now we check to see if any write operations have recently
4321 * completed
4322 */
4323 prexor = 0;
4324 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4325 prexor = 1;
4326 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4327 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4328 sh->reconstruct_state = reconstruct_state_idle;
4329
4330 /* All the 'written' buffers and the parity block are ready to
4331 * be written back to disk
4332 */
9e444768
SL
4333 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4334 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4335 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4336 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4337 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4338 for (i = disks; i--; ) {
4339 struct r5dev *dev = &sh->dev[i];
4340 if (test_bit(R5_LOCKED, &dev->flags) &&
4341 (i == sh->pd_idx || i == sh->qd_idx ||
4342 dev->written)) {
4343 pr_debug("Writing block %d\n", i);
4344 set_bit(R5_Wantwrite, &dev->flags);
4345 if (prexor)
4346 continue;
9c4bdf69
N
4347 if (s.failed > 1)
4348 continue;
84789554
N
4349 if (!test_bit(R5_Insync, &dev->flags) ||
4350 ((i == sh->pd_idx || i == sh->qd_idx) &&
4351 s.failed == 0))
4352 set_bit(STRIPE_INSYNC, &sh->state);
4353 }
4354 }
4355 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4356 s.dec_preread_active = 1;
4357 }
4358
ef5b7c69
N
4359 /*
4360 * might be able to return some write requests if the parity blocks
4361 * are safe, or on a failed drive
4362 */
4363 pdev = &sh->dev[sh->pd_idx];
4364 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4365 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4366 qdev = &sh->dev[sh->qd_idx];
4367 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4368 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4369 || conf->level < 6;
4370
4371 if (s.written &&
4372 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4373 && !test_bit(R5_LOCKED, &pdev->flags)
4374 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4375 test_bit(R5_Discard, &pdev->flags))))) &&
4376 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4377 && !test_bit(R5_LOCKED, &qdev->flags)
4378 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4379 test_bit(R5_Discard, &qdev->flags))))))
4380 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4381
4382 /* Now we might consider reading some blocks, either to check/generate
4383 * parity, or to satisfy requests
4384 * or to load a block that is being partially written.
4385 */
4386 if (s.to_read || s.non_overwrite
4387 || (conf->level == 6 && s.to_write && s.failed)
4388 || (s.syncing && (s.uptodate + s.compute < disks))
4389 || s.replacing
4390 || s.expanding)
4391 handle_stripe_fill(sh, &s, disks);
4392
84789554
N
4393 /* Now to consider new write requests and what else, if anything
4394 * should be read. We do not handle new writes when:
4395 * 1/ A 'write' operation (copy+xor) is already in flight.
4396 * 2/ A 'check' operation is in flight, as it may clobber the parity
4397 * block.
4398 */
4399 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4400 handle_stripe_dirtying(conf, sh, &s, disks);
4401
4402 /* maybe we need to check and possibly fix the parity for this stripe
4403 * Any reads will already have been scheduled, so we just see if enough
4404 * data is available. The parity check is held off while parity
4405 * dependent operations are in flight.
4406 */
4407 if (sh->check_state ||
4408 (s.syncing && s.locked == 0 &&
4409 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4410 !test_bit(STRIPE_INSYNC, &sh->state))) {
4411 if (conf->level == 6)
4412 handle_parity_checks6(conf, sh, &s, disks);
4413 else
4414 handle_parity_checks5(conf, sh, &s, disks);
4415 }
c5a31000 4416
f94c0b66
N
4417 if ((s.replacing || s.syncing) && s.locked == 0
4418 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4419 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4420 /* Write out to replacement devices where possible */
4421 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4422 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4423 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4424 set_bit(R5_WantReplace, &sh->dev[i].flags);
4425 set_bit(R5_LOCKED, &sh->dev[i].flags);
4426 s.locked++;
4427 }
f94c0b66
N
4428 if (s.replacing)
4429 set_bit(STRIPE_INSYNC, &sh->state);
4430 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4431 }
4432 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4433 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4434 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4435 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4436 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4437 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4438 wake_up(&conf->wait_for_overlap);
c5a31000
N
4439 }
4440
4441 /* If the failed drives are just a ReadError, then we might need
4442 * to progress the repair/check process
4443 */
4444 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4445 for (i = 0; i < s.failed; i++) {
4446 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4447 if (test_bit(R5_ReadError, &dev->flags)
4448 && !test_bit(R5_LOCKED, &dev->flags)
4449 && test_bit(R5_UPTODATE, &dev->flags)
4450 ) {
4451 if (!test_bit(R5_ReWrite, &dev->flags)) {
4452 set_bit(R5_Wantwrite, &dev->flags);
4453 set_bit(R5_ReWrite, &dev->flags);
4454 set_bit(R5_LOCKED, &dev->flags);
4455 s.locked++;
4456 } else {
4457 /* let's read it back */
4458 set_bit(R5_Wantread, &dev->flags);
4459 set_bit(R5_LOCKED, &dev->flags);
4460 s.locked++;
4461 }
4462 }
4463 }
4464
3687c061
N
4465 /* Finish reconstruct operations initiated by the expansion process */
4466 if (sh->reconstruct_state == reconstruct_state_result) {
4467 struct stripe_head *sh_src
4468 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4469 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4470 /* sh cannot be written until sh_src has been read.
4471 * so arrange for sh to be delayed a little
4472 */
4473 set_bit(STRIPE_DELAYED, &sh->state);
4474 set_bit(STRIPE_HANDLE, &sh->state);
4475 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4476 &sh_src->state))
4477 atomic_inc(&conf->preread_active_stripes);
4478 release_stripe(sh_src);
4479 goto finish;
4480 }
4481 if (sh_src)
4482 release_stripe(sh_src);
4483
4484 sh->reconstruct_state = reconstruct_state_idle;
4485 clear_bit(STRIPE_EXPANDING, &sh->state);
4486 for (i = conf->raid_disks; i--; ) {
4487 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4488 set_bit(R5_LOCKED, &sh->dev[i].flags);
4489 s.locked++;
4490 }
4491 }
f416885e 4492
3687c061
N
4493 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4494 !sh->reconstruct_state) {
4495 /* Need to write out all blocks after computing parity */
4496 sh->disks = conf->raid_disks;
4497 stripe_set_idx(sh->sector, conf, 0, sh);
4498 schedule_reconstruction(sh, &s, 1, 1);
4499 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4500 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4501 atomic_dec(&conf->reshape_stripes);
4502 wake_up(&conf->wait_for_overlap);
4503 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4504 }
4505
4506 if (s.expanding && s.locked == 0 &&
4507 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4508 handle_stripe_expansion(conf, sh);
16a53ecc 4509
3687c061 4510finish:
6bfe0b49 4511 /* wait for this device to become unblocked */
5f066c63
N
4512 if (unlikely(s.blocked_rdev)) {
4513 if (conf->mddev->external)
4514 md_wait_for_blocked_rdev(s.blocked_rdev,
4515 conf->mddev);
4516 else
4517 /* Internal metadata will immediately
4518 * be written by raid5d, so we don't
4519 * need to wait here.
4520 */
4521 rdev_dec_pending(s.blocked_rdev,
4522 conf->mddev);
4523 }
6bfe0b49 4524
bc2607f3
N
4525 if (s.handle_bad_blocks)
4526 for (i = disks; i--; ) {
3cb03002 4527 struct md_rdev *rdev;
bc2607f3
N
4528 struct r5dev *dev = &sh->dev[i];
4529 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4530 /* We own a safe reference to the rdev */
4531 rdev = conf->disks[i].rdev;
4532 if (!rdev_set_badblocks(rdev, sh->sector,
4533 STRIPE_SECTORS, 0))
4534 md_error(conf->mddev, rdev);
4535 rdev_dec_pending(rdev, conf->mddev);
4536 }
b84db560
N
4537 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4538 rdev = conf->disks[i].rdev;
4539 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4540 STRIPE_SECTORS, 0);
b84db560
N
4541 rdev_dec_pending(rdev, conf->mddev);
4542 }
977df362
N
4543 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4544 rdev = conf->disks[i].replacement;
dd054fce
N
4545 if (!rdev)
4546 /* rdev have been moved down */
4547 rdev = conf->disks[i].rdev;
977df362 4548 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4549 STRIPE_SECTORS, 0);
977df362
N
4550 rdev_dec_pending(rdev, conf->mddev);
4551 }
bc2607f3
N
4552 }
4553
6c0069c0
YT
4554 if (s.ops_request)
4555 raid_run_ops(sh, s.ops_request);
4556
f0e43bcd 4557 ops_run_io(sh, &s);
16a53ecc 4558
c5709ef6 4559 if (s.dec_preread_active) {
729a1866 4560 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4561 * is waiting on a flush, it won't continue until the writes
729a1866
N
4562 * have actually been submitted.
4563 */
4564 atomic_dec(&conf->preread_active_stripes);
4565 if (atomic_read(&conf->preread_active_stripes) <
4566 IO_THRESHOLD)
4567 md_wakeup_thread(conf->mddev->thread);
4568 }
4569
c5709ef6 4570 return_io(s.return_bi);
16a53ecc 4571
257a4b42 4572 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4573}
4574
d1688a6d 4575static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4576{
4577 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4578 while (!list_empty(&conf->delayed_list)) {
4579 struct list_head *l = conf->delayed_list.next;
4580 struct stripe_head *sh;
4581 sh = list_entry(l, struct stripe_head, lru);
4582 list_del_init(l);
4583 clear_bit(STRIPE_DELAYED, &sh->state);
4584 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4585 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4586 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4587 raid5_wakeup_stripe_thread(sh);
16a53ecc 4588 }
482c0834 4589 }
16a53ecc
N
4590}
4591
566c09c5
SL
4592static void activate_bit_delay(struct r5conf *conf,
4593 struct list_head *temp_inactive_list)
16a53ecc
N
4594{
4595 /* device_lock is held */
4596 struct list_head head;
4597 list_add(&head, &conf->bitmap_list);
4598 list_del_init(&conf->bitmap_list);
4599 while (!list_empty(&head)) {
4600 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4601 int hash;
16a53ecc
N
4602 list_del_init(&sh->lru);
4603 atomic_inc(&sh->count);
566c09c5
SL
4604 hash = sh->hash_lock_index;
4605 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4606 }
4607}
4608
5c675f83 4609static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4610{
d1688a6d 4611 struct r5conf *conf = mddev->private;
f022b2fd
N
4612
4613 /* No difference between reads and writes. Just check
4614 * how busy the stripe_cache is
4615 */
3fa841d7 4616
5423399a 4617 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4618 return 1;
4619 if (conf->quiesce)
4620 return 1;
4bda556a 4621 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4622 return 1;
4623
4624 return 0;
4625}
4626
23032a0e
RBJ
4627/* We want read requests to align with chunks where possible,
4628 * but write requests don't need to.
4629 */
64590f45 4630static int raid5_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
4631 struct bvec_merge_data *bvm,
4632 struct bio_vec *biovec)
23032a0e 4633{
cc371e66 4634 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4635 int max;
9d8f0363 4636 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4637 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4638
9ffc8f7c
EM
4639 /*
4640 * always allow writes to be mergeable, read as well if array
4641 * is degraded as we'll go through stripe cache anyway.
4642 */
4643 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4644 return biovec->bv_len;
23032a0e 4645
664e7c41
AN
4646 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4647 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4648 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4649 if (max < 0) max = 0;
4650 if (max <= biovec->bv_len && bio_sectors == 0)
4651 return biovec->bv_len;
4652 else
4653 return max;
4654}
4655
fd01b88c 4656static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4657{
4f024f37 4658 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4659 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4660 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4661
664e7c41
AN
4662 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4663 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4664 return chunk_sectors >=
4665 ((sector & (chunk_sectors - 1)) + bio_sectors);
4666}
4667
46031f9a
RBJ
4668/*
4669 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4670 * later sampled by raid5d.
4671 */
d1688a6d 4672static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4673{
4674 unsigned long flags;
4675
4676 spin_lock_irqsave(&conf->device_lock, flags);
4677
4678 bi->bi_next = conf->retry_read_aligned_list;
4679 conf->retry_read_aligned_list = bi;
4680
4681 spin_unlock_irqrestore(&conf->device_lock, flags);
4682 md_wakeup_thread(conf->mddev->thread);
4683}
4684
d1688a6d 4685static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4686{
4687 struct bio *bi;
4688
4689 bi = conf->retry_read_aligned;
4690 if (bi) {
4691 conf->retry_read_aligned = NULL;
4692 return bi;
4693 }
4694 bi = conf->retry_read_aligned_list;
4695 if(bi) {
387bb173 4696 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4697 bi->bi_next = NULL;
960e739d
JA
4698 /*
4699 * this sets the active strip count to 1 and the processed
4700 * strip count to zero (upper 8 bits)
4701 */
e7836bd6 4702 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4703 }
4704
4705 return bi;
4706}
4707
f679623f
RBJ
4708/*
4709 * The "raid5_align_endio" should check if the read succeeded and if it
4710 * did, call bio_endio on the original bio (having bio_put the new bio
4711 * first).
4712 * If the read failed..
4713 */
6712ecf8 4714static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4715{
4716 struct bio* raid_bi = bi->bi_private;
fd01b88c 4717 struct mddev *mddev;
d1688a6d 4718 struct r5conf *conf;
46031f9a 4719 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4720 struct md_rdev *rdev;
46031f9a 4721
f679623f 4722 bio_put(bi);
46031f9a 4723
46031f9a
RBJ
4724 rdev = (void*)raid_bi->bi_next;
4725 raid_bi->bi_next = NULL;
2b7f2228
N
4726 mddev = rdev->mddev;
4727 conf = mddev->private;
46031f9a
RBJ
4728
4729 rdev_dec_pending(rdev, conf->mddev);
4730
4731 if (!error && uptodate) {
0a82a8d1
LT
4732 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4733 raid_bi, 0);
6712ecf8 4734 bio_endio(raid_bi, 0);
46031f9a
RBJ
4735 if (atomic_dec_and_test(&conf->active_aligned_reads))
4736 wake_up(&conf->wait_for_stripe);
6712ecf8 4737 return;
46031f9a
RBJ
4738 }
4739
45b4233c 4740 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4741
4742 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4743}
4744
387bb173
NB
4745static int bio_fits_rdev(struct bio *bi)
4746{
165125e1 4747 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4748
aa8b57aa 4749 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4750 return 0;
4751 blk_recount_segments(q, bi);
8a78362c 4752 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4753 return 0;
4754
4755 if (q->merge_bvec_fn)
4756 /* it's too hard to apply the merge_bvec_fn at this stage,
4757 * just just give up
4758 */
4759 return 0;
4760
4761 return 1;
4762}
4763
fd01b88c 4764static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4765{
d1688a6d 4766 struct r5conf *conf = mddev->private;
8553fe7e 4767 int dd_idx;
f679623f 4768 struct bio* align_bi;
3cb03002 4769 struct md_rdev *rdev;
671488cc 4770 sector_t end_sector;
f679623f
RBJ
4771
4772 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4773 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4774 return 0;
4775 }
4776 /*
a167f663 4777 * use bio_clone_mddev to make a copy of the bio
f679623f 4778 */
a167f663 4779 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4780 if (!align_bi)
4781 return 0;
4782 /*
4783 * set bi_end_io to a new function, and set bi_private to the
4784 * original bio.
4785 */
4786 align_bi->bi_end_io = raid5_align_endio;
4787 align_bi->bi_private = raid_bio;
4788 /*
4789 * compute position
4790 */
4f024f37
KO
4791 align_bi->bi_iter.bi_sector =
4792 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4793 0, &dd_idx, NULL);
f679623f 4794
f73a1c7d 4795 end_sector = bio_end_sector(align_bi);
f679623f 4796 rcu_read_lock();
671488cc
N
4797 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4798 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4799 rdev->recovery_offset < end_sector) {
4800 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4801 if (rdev &&
4802 (test_bit(Faulty, &rdev->flags) ||
4803 !(test_bit(In_sync, &rdev->flags) ||
4804 rdev->recovery_offset >= end_sector)))
4805 rdev = NULL;
4806 }
4807 if (rdev) {
31c176ec
N
4808 sector_t first_bad;
4809 int bad_sectors;
4810
f679623f
RBJ
4811 atomic_inc(&rdev->nr_pending);
4812 rcu_read_unlock();
46031f9a
RBJ
4813 raid_bio->bi_next = (void*)rdev;
4814 align_bi->bi_bdev = rdev->bdev;
3fd83717 4815 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
46031f9a 4816
31c176ec 4817 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4818 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4819 bio_sectors(align_bi),
31c176ec
N
4820 &first_bad, &bad_sectors)) {
4821 /* too big in some way, or has a known bad block */
387bb173
NB
4822 bio_put(align_bi);
4823 rdev_dec_pending(rdev, mddev);
4824 return 0;
4825 }
4826
6c0544e2 4827 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4828 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4829
46031f9a
RBJ
4830 spin_lock_irq(&conf->device_lock);
4831 wait_event_lock_irq(conf->wait_for_stripe,
4832 conf->quiesce == 0,
eed8c02e 4833 conf->device_lock);
46031f9a
RBJ
4834 atomic_inc(&conf->active_aligned_reads);
4835 spin_unlock_irq(&conf->device_lock);
4836
e3620a3a
JB
4837 if (mddev->gendisk)
4838 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4839 align_bi, disk_devt(mddev->gendisk),
4f024f37 4840 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4841 generic_make_request(align_bi);
4842 return 1;
4843 } else {
4844 rcu_read_unlock();
46031f9a 4845 bio_put(align_bi);
f679623f
RBJ
4846 return 0;
4847 }
4848}
4849
8b3e6cdc
DW
4850/* __get_priority_stripe - get the next stripe to process
4851 *
4852 * Full stripe writes are allowed to pass preread active stripes up until
4853 * the bypass_threshold is exceeded. In general the bypass_count
4854 * increments when the handle_list is handled before the hold_list; however, it
4855 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4856 * stripe with in flight i/o. The bypass_count will be reset when the
4857 * head of the hold_list has changed, i.e. the head was promoted to the
4858 * handle_list.
4859 */
851c30c9 4860static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4861{
851c30c9
SL
4862 struct stripe_head *sh = NULL, *tmp;
4863 struct list_head *handle_list = NULL;
bfc90cb0 4864 struct r5worker_group *wg = NULL;
851c30c9
SL
4865
4866 if (conf->worker_cnt_per_group == 0) {
4867 handle_list = &conf->handle_list;
4868 } else if (group != ANY_GROUP) {
4869 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4870 wg = &conf->worker_groups[group];
851c30c9
SL
4871 } else {
4872 int i;
4873 for (i = 0; i < conf->group_cnt; i++) {
4874 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4875 wg = &conf->worker_groups[i];
851c30c9
SL
4876 if (!list_empty(handle_list))
4877 break;
4878 }
4879 }
8b3e6cdc
DW
4880
4881 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4882 __func__,
851c30c9 4883 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4884 list_empty(&conf->hold_list) ? "empty" : "busy",
4885 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4886
851c30c9
SL
4887 if (!list_empty(handle_list)) {
4888 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4889
4890 if (list_empty(&conf->hold_list))
4891 conf->bypass_count = 0;
4892 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4893 if (conf->hold_list.next == conf->last_hold)
4894 conf->bypass_count++;
4895 else {
4896 conf->last_hold = conf->hold_list.next;
4897 conf->bypass_count -= conf->bypass_threshold;
4898 if (conf->bypass_count < 0)
4899 conf->bypass_count = 0;
4900 }
4901 }
4902 } else if (!list_empty(&conf->hold_list) &&
4903 ((conf->bypass_threshold &&
4904 conf->bypass_count > conf->bypass_threshold) ||
4905 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4906
4907 list_for_each_entry(tmp, &conf->hold_list, lru) {
4908 if (conf->worker_cnt_per_group == 0 ||
4909 group == ANY_GROUP ||
4910 !cpu_online(tmp->cpu) ||
4911 cpu_to_group(tmp->cpu) == group) {
4912 sh = tmp;
4913 break;
4914 }
4915 }
4916
4917 if (sh) {
4918 conf->bypass_count -= conf->bypass_threshold;
4919 if (conf->bypass_count < 0)
4920 conf->bypass_count = 0;
4921 }
bfc90cb0 4922 wg = NULL;
851c30c9
SL
4923 }
4924
4925 if (!sh)
8b3e6cdc
DW
4926 return NULL;
4927
bfc90cb0
SL
4928 if (wg) {
4929 wg->stripes_cnt--;
4930 sh->group = NULL;
4931 }
8b3e6cdc 4932 list_del_init(&sh->lru);
c7a6d35e 4933 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4934 return sh;
4935}
f679623f 4936
8811b596
SL
4937struct raid5_plug_cb {
4938 struct blk_plug_cb cb;
4939 struct list_head list;
566c09c5 4940 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4941};
4942
4943static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4944{
4945 struct raid5_plug_cb *cb = container_of(
4946 blk_cb, struct raid5_plug_cb, cb);
4947 struct stripe_head *sh;
4948 struct mddev *mddev = cb->cb.data;
4949 struct r5conf *conf = mddev->private;
a9add5d9 4950 int cnt = 0;
566c09c5 4951 int hash;
8811b596
SL
4952
4953 if (cb->list.next && !list_empty(&cb->list)) {
4954 spin_lock_irq(&conf->device_lock);
4955 while (!list_empty(&cb->list)) {
4956 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4957 list_del_init(&sh->lru);
4958 /*
4959 * avoid race release_stripe_plug() sees
4960 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4961 * is still in our list
4962 */
4e857c58 4963 smp_mb__before_atomic();
8811b596 4964 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4965 /*
4966 * STRIPE_ON_RELEASE_LIST could be set here. In that
4967 * case, the count is always > 1 here
4968 */
566c09c5
SL
4969 hash = sh->hash_lock_index;
4970 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4971 cnt++;
8811b596
SL
4972 }
4973 spin_unlock_irq(&conf->device_lock);
4974 }
566c09c5
SL
4975 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4976 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
4977 if (mddev->queue)
4978 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4979 kfree(cb);
4980}
4981
4982static void release_stripe_plug(struct mddev *mddev,
4983 struct stripe_head *sh)
4984{
4985 struct blk_plug_cb *blk_cb = blk_check_plugged(
4986 raid5_unplug, mddev,
4987 sizeof(struct raid5_plug_cb));
4988 struct raid5_plug_cb *cb;
4989
4990 if (!blk_cb) {
4991 release_stripe(sh);
4992 return;
4993 }
4994
4995 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4996
566c09c5
SL
4997 if (cb->list.next == NULL) {
4998 int i;
8811b596 4999 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5000 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5001 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5002 }
8811b596
SL
5003
5004 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5005 list_add_tail(&sh->lru, &cb->list);
5006 else
5007 release_stripe(sh);
5008}
5009
620125f2
SL
5010static void make_discard_request(struct mddev *mddev, struct bio *bi)
5011{
5012 struct r5conf *conf = mddev->private;
5013 sector_t logical_sector, last_sector;
5014 struct stripe_head *sh;
5015 int remaining;
5016 int stripe_sectors;
5017
5018 if (mddev->reshape_position != MaxSector)
5019 /* Skip discard while reshape is happening */
5020 return;
5021
4f024f37
KO
5022 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5023 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5024
5025 bi->bi_next = NULL;
5026 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5027
5028 stripe_sectors = conf->chunk_sectors *
5029 (conf->raid_disks - conf->max_degraded);
5030 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5031 stripe_sectors);
5032 sector_div(last_sector, stripe_sectors);
5033
5034 logical_sector *= conf->chunk_sectors;
5035 last_sector *= conf->chunk_sectors;
5036
5037 for (; logical_sector < last_sector;
5038 logical_sector += STRIPE_SECTORS) {
5039 DEFINE_WAIT(w);
5040 int d;
5041 again:
5042 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5043 prepare_to_wait(&conf->wait_for_overlap, &w,
5044 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5045 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5046 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5047 release_stripe(sh);
5048 schedule();
5049 goto again;
5050 }
5051 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5052 spin_lock_irq(&sh->stripe_lock);
5053 for (d = 0; d < conf->raid_disks; d++) {
5054 if (d == sh->pd_idx || d == sh->qd_idx)
5055 continue;
5056 if (sh->dev[d].towrite || sh->dev[d].toread) {
5057 set_bit(R5_Overlap, &sh->dev[d].flags);
5058 spin_unlock_irq(&sh->stripe_lock);
5059 release_stripe(sh);
5060 schedule();
5061 goto again;
5062 }
5063 }
f8dfcffd 5064 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5065 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5066 sh->overwrite_disks = 0;
620125f2
SL
5067 for (d = 0; d < conf->raid_disks; d++) {
5068 if (d == sh->pd_idx || d == sh->qd_idx)
5069 continue;
5070 sh->dev[d].towrite = bi;
5071 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5072 raid5_inc_bi_active_stripes(bi);
7a87f434 5073 sh->overwrite_disks++;
620125f2
SL
5074 }
5075 spin_unlock_irq(&sh->stripe_lock);
5076 if (conf->mddev->bitmap) {
5077 for (d = 0;
5078 d < conf->raid_disks - conf->max_degraded;
5079 d++)
5080 bitmap_startwrite(mddev->bitmap,
5081 sh->sector,
5082 STRIPE_SECTORS,
5083 0);
5084 sh->bm_seq = conf->seq_flush + 1;
5085 set_bit(STRIPE_BIT_DELAY, &sh->state);
5086 }
5087
5088 set_bit(STRIPE_HANDLE, &sh->state);
5089 clear_bit(STRIPE_DELAYED, &sh->state);
5090 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5091 atomic_inc(&conf->preread_active_stripes);
5092 release_stripe_plug(mddev, sh);
5093 }
5094
5095 remaining = raid5_dec_bi_active_stripes(bi);
5096 if (remaining == 0) {
5097 md_write_end(mddev);
5098 bio_endio(bi, 0);
5099 }
5100}
5101
b4fdcb02 5102static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5103{
d1688a6d 5104 struct r5conf *conf = mddev->private;
911d4ee8 5105 int dd_idx;
1da177e4
LT
5106 sector_t new_sector;
5107 sector_t logical_sector, last_sector;
5108 struct stripe_head *sh;
a362357b 5109 const int rw = bio_data_dir(bi);
49077326 5110 int remaining;
27c0f68f
SL
5111 DEFINE_WAIT(w);
5112 bool do_prepare;
1da177e4 5113
e9c7469b
TH
5114 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5115 md_flush_request(mddev, bi);
5a7bbad2 5116 return;
e5dcdd80
N
5117 }
5118
3d310eb7 5119 md_write_start(mddev, bi);
06d91a5f 5120
9ffc8f7c
EM
5121 /*
5122 * If array is degraded, better not do chunk aligned read because
5123 * later we might have to read it again in order to reconstruct
5124 * data on failed drives.
5125 */
5126 if (rw == READ && mddev->degraded == 0 &&
52488615 5127 mddev->reshape_position == MaxSector &&
21a52c6d 5128 chunk_aligned_read(mddev,bi))
5a7bbad2 5129 return;
52488615 5130
620125f2
SL
5131 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5132 make_discard_request(mddev, bi);
5133 return;
5134 }
5135
4f024f37 5136 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5137 last_sector = bio_end_sector(bi);
1da177e4
LT
5138 bi->bi_next = NULL;
5139 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5140
27c0f68f 5141 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5142 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5143 int previous;
c46501b2 5144 int seq;
b578d55f 5145
27c0f68f 5146 do_prepare = false;
7ecaa1e6 5147 retry:
c46501b2 5148 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5149 previous = 0;
27c0f68f
SL
5150 if (do_prepare)
5151 prepare_to_wait(&conf->wait_for_overlap, &w,
5152 TASK_UNINTERRUPTIBLE);
b0f9ec04 5153 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5154 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5155 * 64bit on a 32bit platform, and so it might be
5156 * possible to see a half-updated value
aeb878b0 5157 * Of course reshape_progress could change after
df8e7f76
N
5158 * the lock is dropped, so once we get a reference
5159 * to the stripe that we think it is, we will have
5160 * to check again.
5161 */
7ecaa1e6 5162 spin_lock_irq(&conf->device_lock);
2c810cdd 5163 if (mddev->reshape_backwards
fef9c61f
N
5164 ? logical_sector < conf->reshape_progress
5165 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5166 previous = 1;
5167 } else {
2c810cdd 5168 if (mddev->reshape_backwards
fef9c61f
N
5169 ? logical_sector < conf->reshape_safe
5170 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5171 spin_unlock_irq(&conf->device_lock);
5172 schedule();
27c0f68f 5173 do_prepare = true;
b578d55f
N
5174 goto retry;
5175 }
5176 }
7ecaa1e6
N
5177 spin_unlock_irq(&conf->device_lock);
5178 }
16a53ecc 5179
112bf897
N
5180 new_sector = raid5_compute_sector(conf, logical_sector,
5181 previous,
911d4ee8 5182 &dd_idx, NULL);
0c55e022 5183 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5184 (unsigned long long)new_sector,
1da177e4
LT
5185 (unsigned long long)logical_sector);
5186
b5663ba4 5187 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 5188 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5189 if (sh) {
b0f9ec04 5190 if (unlikely(previous)) {
7ecaa1e6 5191 /* expansion might have moved on while waiting for a
df8e7f76
N
5192 * stripe, so we must do the range check again.
5193 * Expansion could still move past after this
5194 * test, but as we are holding a reference to
5195 * 'sh', we know that if that happens,
5196 * STRIPE_EXPANDING will get set and the expansion
5197 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5198 */
5199 int must_retry = 0;
5200 spin_lock_irq(&conf->device_lock);
2c810cdd 5201 if (mddev->reshape_backwards
b0f9ec04
N
5202 ? logical_sector >= conf->reshape_progress
5203 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5204 /* mismatch, need to try again */
5205 must_retry = 1;
5206 spin_unlock_irq(&conf->device_lock);
5207 if (must_retry) {
5208 release_stripe(sh);
7a3ab908 5209 schedule();
27c0f68f 5210 do_prepare = true;
7ecaa1e6
N
5211 goto retry;
5212 }
5213 }
c46501b2
N
5214 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5215 /* Might have got the wrong stripe_head
5216 * by accident
5217 */
5218 release_stripe(sh);
5219 goto retry;
5220 }
e62e58a5 5221
ffd96e35 5222 if (rw == WRITE &&
a5c308d4 5223 logical_sector >= mddev->suspend_lo &&
e464eafd
N
5224 logical_sector < mddev->suspend_hi) {
5225 release_stripe(sh);
e62e58a5
N
5226 /* As the suspend_* range is controlled by
5227 * userspace, we want an interruptible
5228 * wait.
5229 */
5230 flush_signals(current);
5231 prepare_to_wait(&conf->wait_for_overlap,
5232 &w, TASK_INTERRUPTIBLE);
5233 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5234 logical_sector < mddev->suspend_hi) {
e62e58a5 5235 schedule();
27c0f68f
SL
5236 do_prepare = true;
5237 }
e464eafd
N
5238 goto retry;
5239 }
7ecaa1e6
N
5240
5241 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5242 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5243 /* Stripe is busy expanding or
5244 * add failed due to overlap. Flush everything
1da177e4
LT
5245 * and wait a while
5246 */
482c0834 5247 md_wakeup_thread(mddev->thread);
1da177e4
LT
5248 release_stripe(sh);
5249 schedule();
27c0f68f 5250 do_prepare = true;
1da177e4
LT
5251 goto retry;
5252 }
6ed3003c
N
5253 set_bit(STRIPE_HANDLE, &sh->state);
5254 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5255 if ((!sh->batch_head || sh == sh->batch_head) &&
5256 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5257 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5258 atomic_inc(&conf->preread_active_stripes);
8811b596 5259 release_stripe_plug(mddev, sh);
1da177e4
LT
5260 } else {
5261 /* cannot get stripe for read-ahead, just give-up */
5262 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
5263 break;
5264 }
1da177e4 5265 }
27c0f68f 5266 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5267
e7836bd6 5268 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5269 if (remaining == 0) {
1da177e4 5270
16a53ecc 5271 if ( rw == WRITE )
1da177e4 5272 md_write_end(mddev);
6712ecf8 5273
0a82a8d1
LT
5274 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5275 bi, 0);
0e13fe23 5276 bio_endio(bi, 0);
1da177e4 5277 }
1da177e4
LT
5278}
5279
fd01b88c 5280static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5281
fd01b88c 5282static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5283{
52c03291
N
5284 /* reshaping is quite different to recovery/resync so it is
5285 * handled quite separately ... here.
5286 *
5287 * On each call to sync_request, we gather one chunk worth of
5288 * destination stripes and flag them as expanding.
5289 * Then we find all the source stripes and request reads.
5290 * As the reads complete, handle_stripe will copy the data
5291 * into the destination stripe and release that stripe.
5292 */
d1688a6d 5293 struct r5conf *conf = mddev->private;
1da177e4 5294 struct stripe_head *sh;
ccfcc3c1 5295 sector_t first_sector, last_sector;
f416885e
N
5296 int raid_disks = conf->previous_raid_disks;
5297 int data_disks = raid_disks - conf->max_degraded;
5298 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5299 int i;
5300 int dd_idx;
c8f517c4 5301 sector_t writepos, readpos, safepos;
ec32a2bd 5302 sector_t stripe_addr;
7a661381 5303 int reshape_sectors;
ab69ae12 5304 struct list_head stripes;
52c03291 5305
fef9c61f
N
5306 if (sector_nr == 0) {
5307 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5308 if (mddev->reshape_backwards &&
fef9c61f
N
5309 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5310 sector_nr = raid5_size(mddev, 0, 0)
5311 - conf->reshape_progress;
2c810cdd 5312 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5313 conf->reshape_progress > 0)
5314 sector_nr = conf->reshape_progress;
f416885e 5315 sector_div(sector_nr, new_data_disks);
fef9c61f 5316 if (sector_nr) {
8dee7211
N
5317 mddev->curr_resync_completed = sector_nr;
5318 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
5319 *skipped = 1;
5320 return sector_nr;
5321 }
52c03291
N
5322 }
5323
7a661381
N
5324 /* We need to process a full chunk at a time.
5325 * If old and new chunk sizes differ, we need to process the
5326 * largest of these
5327 */
664e7c41
AN
5328 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5329 reshape_sectors = mddev->new_chunk_sectors;
7a661381 5330 else
9d8f0363 5331 reshape_sectors = mddev->chunk_sectors;
7a661381 5332
b5254dd5
N
5333 /* We update the metadata at least every 10 seconds, or when
5334 * the data about to be copied would over-write the source of
5335 * the data at the front of the range. i.e. one new_stripe
5336 * along from reshape_progress new_maps to after where
5337 * reshape_safe old_maps to
52c03291 5338 */
fef9c61f 5339 writepos = conf->reshape_progress;
f416885e 5340 sector_div(writepos, new_data_disks);
c8f517c4
N
5341 readpos = conf->reshape_progress;
5342 sector_div(readpos, data_disks);
fef9c61f 5343 safepos = conf->reshape_safe;
f416885e 5344 sector_div(safepos, data_disks);
2c810cdd 5345 if (mddev->reshape_backwards) {
ed37d83e 5346 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 5347 readpos += reshape_sectors;
7a661381 5348 safepos += reshape_sectors;
fef9c61f 5349 } else {
7a661381 5350 writepos += reshape_sectors;
ed37d83e
N
5351 readpos -= min_t(sector_t, reshape_sectors, readpos);
5352 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5353 }
52c03291 5354
b5254dd5
N
5355 /* Having calculated the 'writepos' possibly use it
5356 * to set 'stripe_addr' which is where we will write to.
5357 */
5358 if (mddev->reshape_backwards) {
5359 BUG_ON(conf->reshape_progress == 0);
5360 stripe_addr = writepos;
5361 BUG_ON((mddev->dev_sectors &
5362 ~((sector_t)reshape_sectors - 1))
5363 - reshape_sectors - stripe_addr
5364 != sector_nr);
5365 } else {
5366 BUG_ON(writepos != sector_nr + reshape_sectors);
5367 stripe_addr = sector_nr;
5368 }
5369
c8f517c4
N
5370 /* 'writepos' is the most advanced device address we might write.
5371 * 'readpos' is the least advanced device address we might read.
5372 * 'safepos' is the least address recorded in the metadata as having
5373 * been reshaped.
b5254dd5
N
5374 * If there is a min_offset_diff, these are adjusted either by
5375 * increasing the safepos/readpos if diff is negative, or
5376 * increasing writepos if diff is positive.
5377 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5378 * ensure safety in the face of a crash - that must be done by userspace
5379 * making a backup of the data. So in that case there is no particular
5380 * rush to update metadata.
5381 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5382 * update the metadata to advance 'safepos' to match 'readpos' so that
5383 * we can be safe in the event of a crash.
5384 * So we insist on updating metadata if safepos is behind writepos and
5385 * readpos is beyond writepos.
5386 * In any case, update the metadata every 10 seconds.
5387 * Maybe that number should be configurable, but I'm not sure it is
5388 * worth it.... maybe it could be a multiple of safemode_delay???
5389 */
b5254dd5
N
5390 if (conf->min_offset_diff < 0) {
5391 safepos += -conf->min_offset_diff;
5392 readpos += -conf->min_offset_diff;
5393 } else
5394 writepos += conf->min_offset_diff;
5395
2c810cdd 5396 if ((mddev->reshape_backwards
c8f517c4
N
5397 ? (safepos > writepos && readpos < writepos)
5398 : (safepos < writepos && readpos > writepos)) ||
5399 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5400 /* Cannot proceed until we've updated the superblock... */
5401 wait_event(conf->wait_for_overlap,
c91abf5a
N
5402 atomic_read(&conf->reshape_stripes)==0
5403 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5404 if (atomic_read(&conf->reshape_stripes) != 0)
5405 return 0;
fef9c61f 5406 mddev->reshape_position = conf->reshape_progress;
75d3da43 5407 mddev->curr_resync_completed = sector_nr;
c8f517c4 5408 conf->reshape_checkpoint = jiffies;
850b2b42 5409 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5410 md_wakeup_thread(mddev->thread);
850b2b42 5411 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5412 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5413 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5414 return 0;
52c03291 5415 spin_lock_irq(&conf->device_lock);
fef9c61f 5416 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5417 spin_unlock_irq(&conf->device_lock);
5418 wake_up(&conf->wait_for_overlap);
acb180b0 5419 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5420 }
5421
ab69ae12 5422 INIT_LIST_HEAD(&stripes);
7a661381 5423 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5424 int j;
a9f326eb 5425 int skipped_disk = 0;
a8c906ca 5426 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5427 set_bit(STRIPE_EXPANDING, &sh->state);
5428 atomic_inc(&conf->reshape_stripes);
5429 /* If any of this stripe is beyond the end of the old
5430 * array, then we need to zero those blocks
5431 */
5432 for (j=sh->disks; j--;) {
5433 sector_t s;
5434 if (j == sh->pd_idx)
5435 continue;
f416885e 5436 if (conf->level == 6 &&
d0dabf7e 5437 j == sh->qd_idx)
f416885e 5438 continue;
784052ec 5439 s = compute_blocknr(sh, j, 0);
b522adcd 5440 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5441 skipped_disk = 1;
52c03291
N
5442 continue;
5443 }
5444 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5445 set_bit(R5_Expanded, &sh->dev[j].flags);
5446 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5447 }
a9f326eb 5448 if (!skipped_disk) {
52c03291
N
5449 set_bit(STRIPE_EXPAND_READY, &sh->state);
5450 set_bit(STRIPE_HANDLE, &sh->state);
5451 }
ab69ae12 5452 list_add(&sh->lru, &stripes);
52c03291
N
5453 }
5454 spin_lock_irq(&conf->device_lock);
2c810cdd 5455 if (mddev->reshape_backwards)
7a661381 5456 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5457 else
7a661381 5458 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5459 spin_unlock_irq(&conf->device_lock);
5460 /* Ok, those stripe are ready. We can start scheduling
5461 * reads on the source stripes.
5462 * The source stripes are determined by mapping the first and last
5463 * block on the destination stripes.
5464 */
52c03291 5465 first_sector =
ec32a2bd 5466 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5467 1, &dd_idx, NULL);
52c03291 5468 last_sector =
0e6e0271 5469 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5470 * new_data_disks - 1),
911d4ee8 5471 1, &dd_idx, NULL);
58c0fed4
AN
5472 if (last_sector >= mddev->dev_sectors)
5473 last_sector = mddev->dev_sectors - 1;
52c03291 5474 while (first_sector <= last_sector) {
a8c906ca 5475 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5476 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5477 set_bit(STRIPE_HANDLE, &sh->state);
5478 release_stripe(sh);
5479 first_sector += STRIPE_SECTORS;
5480 }
ab69ae12
N
5481 /* Now that the sources are clearly marked, we can release
5482 * the destination stripes
5483 */
5484 while (!list_empty(&stripes)) {
5485 sh = list_entry(stripes.next, struct stripe_head, lru);
5486 list_del_init(&sh->lru);
5487 release_stripe(sh);
5488 }
c6207277
N
5489 /* If this takes us to the resync_max point where we have to pause,
5490 * then we need to write out the superblock.
5491 */
7a661381 5492 sector_nr += reshape_sectors;
c03f6a19
N
5493 if ((sector_nr - mddev->curr_resync_completed) * 2
5494 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5495 /* Cannot proceed until we've updated the superblock... */
5496 wait_event(conf->wait_for_overlap,
c91abf5a
N
5497 atomic_read(&conf->reshape_stripes) == 0
5498 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5499 if (atomic_read(&conf->reshape_stripes) != 0)
5500 goto ret;
fef9c61f 5501 mddev->reshape_position = conf->reshape_progress;
75d3da43 5502 mddev->curr_resync_completed = sector_nr;
c8f517c4 5503 conf->reshape_checkpoint = jiffies;
c6207277
N
5504 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5505 md_wakeup_thread(mddev->thread);
5506 wait_event(mddev->sb_wait,
5507 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5508 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5509 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5510 goto ret;
c6207277 5511 spin_lock_irq(&conf->device_lock);
fef9c61f 5512 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5513 spin_unlock_irq(&conf->device_lock);
5514 wake_up(&conf->wait_for_overlap);
acb180b0 5515 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5516 }
c91abf5a 5517ret:
7a661381 5518 return reshape_sectors;
52c03291
N
5519}
5520
09314799 5521static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5522{
d1688a6d 5523 struct r5conf *conf = mddev->private;
52c03291 5524 struct stripe_head *sh;
58c0fed4 5525 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5526 sector_t sync_blocks;
16a53ecc
N
5527 int still_degraded = 0;
5528 int i;
1da177e4 5529
72626685 5530 if (sector_nr >= max_sector) {
1da177e4 5531 /* just being told to finish up .. nothing much to do */
cea9c228 5532
29269553
N
5533 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5534 end_reshape(conf);
5535 return 0;
5536 }
72626685
N
5537
5538 if (mddev->curr_resync < max_sector) /* aborted */
5539 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5540 &sync_blocks, 1);
16a53ecc 5541 else /* completed sync */
72626685
N
5542 conf->fullsync = 0;
5543 bitmap_close_sync(mddev->bitmap);
5544
1da177e4
LT
5545 return 0;
5546 }
ccfcc3c1 5547
64bd660b
N
5548 /* Allow raid5_quiesce to complete */
5549 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5550
52c03291
N
5551 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5552 return reshape_request(mddev, sector_nr, skipped);
f6705578 5553
c6207277
N
5554 /* No need to check resync_max as we never do more than one
5555 * stripe, and as resync_max will always be on a chunk boundary,
5556 * if the check in md_do_sync didn't fire, there is no chance
5557 * of overstepping resync_max here
5558 */
5559
16a53ecc 5560 /* if there is too many failed drives and we are trying
1da177e4
LT
5561 * to resync, then assert that we are finished, because there is
5562 * nothing we can do.
5563 */
3285edf1 5564 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5565 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5566 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5567 *skipped = 1;
1da177e4
LT
5568 return rv;
5569 }
6f608040 5570 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5571 !conf->fullsync &&
5572 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5573 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5574 /* we can skip this block, and probably more */
5575 sync_blocks /= STRIPE_SECTORS;
5576 *skipped = 1;
5577 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5578 }
1da177e4 5579
b47490c9
N
5580 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5581
a8c906ca 5582 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5583 if (sh == NULL) {
a8c906ca 5584 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5585 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5586 * is trying to get access
1da177e4 5587 */
66c006a5 5588 schedule_timeout_uninterruptible(1);
1da177e4 5589 }
16a53ecc 5590 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5591 * Note in case of > 1 drive failures it's possible we're rebuilding
5592 * one drive while leaving another faulty drive in array.
16a53ecc 5593 */
16d9cfab
EM
5594 rcu_read_lock();
5595 for (i = 0; i < conf->raid_disks; i++) {
5596 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5597
5598 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5599 still_degraded = 1;
16d9cfab
EM
5600 }
5601 rcu_read_unlock();
16a53ecc
N
5602
5603 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5604
83206d66 5605 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5606 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5607
1da177e4
LT
5608 release_stripe(sh);
5609
5610 return STRIPE_SECTORS;
5611}
5612
d1688a6d 5613static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5614{
5615 /* We may not be able to submit a whole bio at once as there
5616 * may not be enough stripe_heads available.
5617 * We cannot pre-allocate enough stripe_heads as we may need
5618 * more than exist in the cache (if we allow ever large chunks).
5619 * So we do one stripe head at a time and record in
5620 * ->bi_hw_segments how many have been done.
5621 *
5622 * We *know* that this entire raid_bio is in one chunk, so
5623 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5624 */
5625 struct stripe_head *sh;
911d4ee8 5626 int dd_idx;
46031f9a
RBJ
5627 sector_t sector, logical_sector, last_sector;
5628 int scnt = 0;
5629 int remaining;
5630 int handled = 0;
5631
4f024f37
KO
5632 logical_sector = raid_bio->bi_iter.bi_sector &
5633 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5634 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5635 0, &dd_idx, NULL);
f73a1c7d 5636 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5637
5638 for (; logical_sector < last_sector;
387bb173
NB
5639 logical_sector += STRIPE_SECTORS,
5640 sector += STRIPE_SECTORS,
5641 scnt++) {
46031f9a 5642
e7836bd6 5643 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5644 /* already done this stripe */
5645 continue;
5646
2844dc32 5647 sh = get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5648
5649 if (!sh) {
5650 /* failed to get a stripe - must wait */
e7836bd6 5651 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5652 conf->retry_read_aligned = raid_bio;
5653 return handled;
5654 }
5655
da41ba65 5656 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
387bb173 5657 release_stripe(sh);
e7836bd6 5658 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5659 conf->retry_read_aligned = raid_bio;
5660 return handled;
5661 }
5662
3f9e7c14 5663 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5664 handle_stripe(sh);
46031f9a
RBJ
5665 release_stripe(sh);
5666 handled++;
5667 }
e7836bd6 5668 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5669 if (remaining == 0) {
5670 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5671 raid_bio, 0);
0e13fe23 5672 bio_endio(raid_bio, 0);
0a82a8d1 5673 }
46031f9a
RBJ
5674 if (atomic_dec_and_test(&conf->active_aligned_reads))
5675 wake_up(&conf->wait_for_stripe);
5676 return handled;
5677}
5678
bfc90cb0 5679static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5680 struct r5worker *worker,
5681 struct list_head *temp_inactive_list)
46a06401
SL
5682{
5683 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5684 int i, batch_size = 0, hash;
5685 bool release_inactive = false;
46a06401
SL
5686
5687 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5688 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5689 batch[batch_size++] = sh;
5690
566c09c5
SL
5691 if (batch_size == 0) {
5692 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5693 if (!list_empty(temp_inactive_list + i))
5694 break;
5695 if (i == NR_STRIPE_HASH_LOCKS)
5696 return batch_size;
5697 release_inactive = true;
5698 }
46a06401
SL
5699 spin_unlock_irq(&conf->device_lock);
5700
566c09c5
SL
5701 release_inactive_stripe_list(conf, temp_inactive_list,
5702 NR_STRIPE_HASH_LOCKS);
5703
5704 if (release_inactive) {
5705 spin_lock_irq(&conf->device_lock);
5706 return 0;
5707 }
5708
46a06401
SL
5709 for (i = 0; i < batch_size; i++)
5710 handle_stripe(batch[i]);
5711
5712 cond_resched();
5713
5714 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5715 for (i = 0; i < batch_size; i++) {
5716 hash = batch[i]->hash_lock_index;
5717 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5718 }
46a06401
SL
5719 return batch_size;
5720}
46031f9a 5721
851c30c9
SL
5722static void raid5_do_work(struct work_struct *work)
5723{
5724 struct r5worker *worker = container_of(work, struct r5worker, work);
5725 struct r5worker_group *group = worker->group;
5726 struct r5conf *conf = group->conf;
5727 int group_id = group - conf->worker_groups;
5728 int handled;
5729 struct blk_plug plug;
5730
5731 pr_debug("+++ raid5worker active\n");
5732
5733 blk_start_plug(&plug);
5734 handled = 0;
5735 spin_lock_irq(&conf->device_lock);
5736 while (1) {
5737 int batch_size, released;
5738
566c09c5 5739 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5740
566c09c5
SL
5741 batch_size = handle_active_stripes(conf, group_id, worker,
5742 worker->temp_inactive_list);
bfc90cb0 5743 worker->working = false;
851c30c9
SL
5744 if (!batch_size && !released)
5745 break;
5746 handled += batch_size;
5747 }
5748 pr_debug("%d stripes handled\n", handled);
5749
5750 spin_unlock_irq(&conf->device_lock);
5751 blk_finish_plug(&plug);
5752
5753 pr_debug("--- raid5worker inactive\n");
5754}
5755
1da177e4
LT
5756/*
5757 * This is our raid5 kernel thread.
5758 *
5759 * We scan the hash table for stripes which can be handled now.
5760 * During the scan, completed stripes are saved for us by the interrupt
5761 * handler, so that they will not have to wait for our next wakeup.
5762 */
4ed8731d 5763static void raid5d(struct md_thread *thread)
1da177e4 5764{
4ed8731d 5765 struct mddev *mddev = thread->mddev;
d1688a6d 5766 struct r5conf *conf = mddev->private;
1da177e4 5767 int handled;
e1dfa0a2 5768 struct blk_plug plug;
1da177e4 5769
45b4233c 5770 pr_debug("+++ raid5d active\n");
1da177e4
LT
5771
5772 md_check_recovery(mddev);
1da177e4 5773
e1dfa0a2 5774 blk_start_plug(&plug);
1da177e4
LT
5775 handled = 0;
5776 spin_lock_irq(&conf->device_lock);
5777 while (1) {
46031f9a 5778 struct bio *bio;
773ca82f
SL
5779 int batch_size, released;
5780
566c09c5 5781 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5782 if (released)
5783 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5784
0021b7bc 5785 if (
7c13edc8
N
5786 !list_empty(&conf->bitmap_list)) {
5787 /* Now is a good time to flush some bitmap updates */
5788 conf->seq_flush++;
700e432d 5789 spin_unlock_irq(&conf->device_lock);
72626685 5790 bitmap_unplug(mddev->bitmap);
700e432d 5791 spin_lock_irq(&conf->device_lock);
7c13edc8 5792 conf->seq_write = conf->seq_flush;
566c09c5 5793 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5794 }
0021b7bc 5795 raid5_activate_delayed(conf);
72626685 5796
46031f9a
RBJ
5797 while ((bio = remove_bio_from_retry(conf))) {
5798 int ok;
5799 spin_unlock_irq(&conf->device_lock);
5800 ok = retry_aligned_read(conf, bio);
5801 spin_lock_irq(&conf->device_lock);
5802 if (!ok)
5803 break;
5804 handled++;
5805 }
5806
566c09c5
SL
5807 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5808 conf->temp_inactive_list);
773ca82f 5809 if (!batch_size && !released)
1da177e4 5810 break;
46a06401 5811 handled += batch_size;
1da177e4 5812
46a06401
SL
5813 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5814 spin_unlock_irq(&conf->device_lock);
de393cde 5815 md_check_recovery(mddev);
46a06401
SL
5816 spin_lock_irq(&conf->device_lock);
5817 }
1da177e4 5818 }
45b4233c 5819 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5820
5821 spin_unlock_irq(&conf->device_lock);
edbe83ab
N
5822 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5823 grow_one_stripe(conf, __GFP_NOWARN);
5824 /* Set flag even if allocation failed. This helps
5825 * slow down allocation requests when mem is short
5826 */
5827 set_bit(R5_DID_ALLOC, &conf->cache_state);
5828 }
1da177e4 5829
c9f21aaf 5830 async_tx_issue_pending_all();
e1dfa0a2 5831 blk_finish_plug(&plug);
1da177e4 5832
45b4233c 5833 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5834}
5835
3f294f4f 5836static ssize_t
fd01b88c 5837raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5838{
7b1485ba
N
5839 struct r5conf *conf;
5840 int ret = 0;
5841 spin_lock(&mddev->lock);
5842 conf = mddev->private;
96de1e66 5843 if (conf)
edbe83ab 5844 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5845 spin_unlock(&mddev->lock);
5846 return ret;
3f294f4f
N
5847}
5848
c41d4ac4 5849int
fd01b88c 5850raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5851{
d1688a6d 5852 struct r5conf *conf = mddev->private;
b5470dc5
DW
5853 int err;
5854
c41d4ac4 5855 if (size <= 16 || size > 32768)
3f294f4f 5856 return -EINVAL;
486f0644 5857
edbe83ab 5858 conf->min_nr_stripes = size;
486f0644
N
5859 while (size < conf->max_nr_stripes &&
5860 drop_one_stripe(conf))
5861 ;
5862
edbe83ab 5863
b5470dc5
DW
5864 err = md_allow_write(mddev);
5865 if (err)
5866 return err;
486f0644
N
5867
5868 while (size > conf->max_nr_stripes)
5869 if (!grow_one_stripe(conf, GFP_KERNEL))
5870 break;
5871
c41d4ac4
N
5872 return 0;
5873}
5874EXPORT_SYMBOL(raid5_set_cache_size);
5875
5876static ssize_t
fd01b88c 5877raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5878{
6791875e 5879 struct r5conf *conf;
c41d4ac4
N
5880 unsigned long new;
5881 int err;
5882
5883 if (len >= PAGE_SIZE)
5884 return -EINVAL;
b29bebd6 5885 if (kstrtoul(page, 10, &new))
c41d4ac4 5886 return -EINVAL;
6791875e 5887 err = mddev_lock(mddev);
c41d4ac4
N
5888 if (err)
5889 return err;
6791875e
N
5890 conf = mddev->private;
5891 if (!conf)
5892 err = -ENODEV;
5893 else
5894 err = raid5_set_cache_size(mddev, new);
5895 mddev_unlock(mddev);
5896
5897 return err ?: len;
3f294f4f 5898}
007583c9 5899
96de1e66
N
5900static struct md_sysfs_entry
5901raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5902 raid5_show_stripe_cache_size,
5903 raid5_store_stripe_cache_size);
3f294f4f 5904
d06f191f
MS
5905static ssize_t
5906raid5_show_rmw_level(struct mddev *mddev, char *page)
5907{
5908 struct r5conf *conf = mddev->private;
5909 if (conf)
5910 return sprintf(page, "%d\n", conf->rmw_level);
5911 else
5912 return 0;
5913}
5914
5915static ssize_t
5916raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5917{
5918 struct r5conf *conf = mddev->private;
5919 unsigned long new;
5920
5921 if (!conf)
5922 return -ENODEV;
5923
5924 if (len >= PAGE_SIZE)
5925 return -EINVAL;
5926
5927 if (kstrtoul(page, 10, &new))
5928 return -EINVAL;
5929
5930 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5931 return -EINVAL;
5932
5933 if (new != PARITY_DISABLE_RMW &&
5934 new != PARITY_ENABLE_RMW &&
5935 new != PARITY_PREFER_RMW)
5936 return -EINVAL;
5937
5938 conf->rmw_level = new;
5939 return len;
5940}
5941
5942static struct md_sysfs_entry
5943raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5944 raid5_show_rmw_level,
5945 raid5_store_rmw_level);
5946
5947
8b3e6cdc 5948static ssize_t
fd01b88c 5949raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5950{
7b1485ba
N
5951 struct r5conf *conf;
5952 int ret = 0;
5953 spin_lock(&mddev->lock);
5954 conf = mddev->private;
8b3e6cdc 5955 if (conf)
7b1485ba
N
5956 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5957 spin_unlock(&mddev->lock);
5958 return ret;
8b3e6cdc
DW
5959}
5960
5961static ssize_t
fd01b88c 5962raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5963{
6791875e 5964 struct r5conf *conf;
4ef197d8 5965 unsigned long new;
6791875e
N
5966 int err;
5967
8b3e6cdc
DW
5968 if (len >= PAGE_SIZE)
5969 return -EINVAL;
b29bebd6 5970 if (kstrtoul(page, 10, &new))
8b3e6cdc 5971 return -EINVAL;
6791875e
N
5972
5973 err = mddev_lock(mddev);
5974 if (err)
5975 return err;
5976 conf = mddev->private;
5977 if (!conf)
5978 err = -ENODEV;
edbe83ab 5979 else if (new > conf->min_nr_stripes)
6791875e
N
5980 err = -EINVAL;
5981 else
5982 conf->bypass_threshold = new;
5983 mddev_unlock(mddev);
5984 return err ?: len;
8b3e6cdc
DW
5985}
5986
5987static struct md_sysfs_entry
5988raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5989 S_IRUGO | S_IWUSR,
5990 raid5_show_preread_threshold,
5991 raid5_store_preread_threshold);
5992
d592a996
SL
5993static ssize_t
5994raid5_show_skip_copy(struct mddev *mddev, char *page)
5995{
7b1485ba
N
5996 struct r5conf *conf;
5997 int ret = 0;
5998 spin_lock(&mddev->lock);
5999 conf = mddev->private;
d592a996 6000 if (conf)
7b1485ba
N
6001 ret = sprintf(page, "%d\n", conf->skip_copy);
6002 spin_unlock(&mddev->lock);
6003 return ret;
d592a996
SL
6004}
6005
6006static ssize_t
6007raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6008{
6791875e 6009 struct r5conf *conf;
d592a996 6010 unsigned long new;
6791875e
N
6011 int err;
6012
d592a996
SL
6013 if (len >= PAGE_SIZE)
6014 return -EINVAL;
d592a996
SL
6015 if (kstrtoul(page, 10, &new))
6016 return -EINVAL;
6017 new = !!new;
6791875e
N
6018
6019 err = mddev_lock(mddev);
6020 if (err)
6021 return err;
6022 conf = mddev->private;
6023 if (!conf)
6024 err = -ENODEV;
6025 else if (new != conf->skip_copy) {
6026 mddev_suspend(mddev);
6027 conf->skip_copy = new;
6028 if (new)
6029 mddev->queue->backing_dev_info.capabilities |=
6030 BDI_CAP_STABLE_WRITES;
6031 else
6032 mddev->queue->backing_dev_info.capabilities &=
6033 ~BDI_CAP_STABLE_WRITES;
6034 mddev_resume(mddev);
6035 }
6036 mddev_unlock(mddev);
6037 return err ?: len;
d592a996
SL
6038}
6039
6040static struct md_sysfs_entry
6041raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6042 raid5_show_skip_copy,
6043 raid5_store_skip_copy);
6044
3f294f4f 6045static ssize_t
fd01b88c 6046stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6047{
d1688a6d 6048 struct r5conf *conf = mddev->private;
96de1e66
N
6049 if (conf)
6050 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6051 else
6052 return 0;
3f294f4f
N
6053}
6054
96de1e66
N
6055static struct md_sysfs_entry
6056raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6057
b721420e
SL
6058static ssize_t
6059raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6060{
7b1485ba
N
6061 struct r5conf *conf;
6062 int ret = 0;
6063 spin_lock(&mddev->lock);
6064 conf = mddev->private;
b721420e 6065 if (conf)
7b1485ba
N
6066 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6067 spin_unlock(&mddev->lock);
6068 return ret;
b721420e
SL
6069}
6070
60aaf933 6071static int alloc_thread_groups(struct r5conf *conf, int cnt,
6072 int *group_cnt,
6073 int *worker_cnt_per_group,
6074 struct r5worker_group **worker_groups);
b721420e
SL
6075static ssize_t
6076raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6077{
6791875e 6078 struct r5conf *conf;
b721420e
SL
6079 unsigned long new;
6080 int err;
60aaf933 6081 struct r5worker_group *new_groups, *old_groups;
6082 int group_cnt, worker_cnt_per_group;
b721420e
SL
6083
6084 if (len >= PAGE_SIZE)
6085 return -EINVAL;
b721420e
SL
6086 if (kstrtoul(page, 10, &new))
6087 return -EINVAL;
6088
6791875e
N
6089 err = mddev_lock(mddev);
6090 if (err)
6091 return err;
6092 conf = mddev->private;
6093 if (!conf)
6094 err = -ENODEV;
6095 else if (new != conf->worker_cnt_per_group) {
6096 mddev_suspend(mddev);
b721420e 6097
6791875e
N
6098 old_groups = conf->worker_groups;
6099 if (old_groups)
6100 flush_workqueue(raid5_wq);
d206dcfa 6101
6791875e
N
6102 err = alloc_thread_groups(conf, new,
6103 &group_cnt, &worker_cnt_per_group,
6104 &new_groups);
6105 if (!err) {
6106 spin_lock_irq(&conf->device_lock);
6107 conf->group_cnt = group_cnt;
6108 conf->worker_cnt_per_group = worker_cnt_per_group;
6109 conf->worker_groups = new_groups;
6110 spin_unlock_irq(&conf->device_lock);
b721420e 6111
6791875e
N
6112 if (old_groups)
6113 kfree(old_groups[0].workers);
6114 kfree(old_groups);
6115 }
6116 mddev_resume(mddev);
b721420e 6117 }
6791875e 6118 mddev_unlock(mddev);
b721420e 6119
6791875e 6120 return err ?: len;
b721420e
SL
6121}
6122
6123static struct md_sysfs_entry
6124raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6125 raid5_show_group_thread_cnt,
6126 raid5_store_group_thread_cnt);
6127
007583c9 6128static struct attribute *raid5_attrs[] = {
3f294f4f
N
6129 &raid5_stripecache_size.attr,
6130 &raid5_stripecache_active.attr,
8b3e6cdc 6131 &raid5_preread_bypass_threshold.attr,
b721420e 6132 &raid5_group_thread_cnt.attr,
d592a996 6133 &raid5_skip_copy.attr,
d06f191f 6134 &raid5_rmw_level.attr,
3f294f4f
N
6135 NULL,
6136};
007583c9
N
6137static struct attribute_group raid5_attrs_group = {
6138 .name = NULL,
6139 .attrs = raid5_attrs,
3f294f4f
N
6140};
6141
60aaf933 6142static int alloc_thread_groups(struct r5conf *conf, int cnt,
6143 int *group_cnt,
6144 int *worker_cnt_per_group,
6145 struct r5worker_group **worker_groups)
851c30c9 6146{
566c09c5 6147 int i, j, k;
851c30c9
SL
6148 ssize_t size;
6149 struct r5worker *workers;
6150
60aaf933 6151 *worker_cnt_per_group = cnt;
851c30c9 6152 if (cnt == 0) {
60aaf933 6153 *group_cnt = 0;
6154 *worker_groups = NULL;
851c30c9
SL
6155 return 0;
6156 }
60aaf933 6157 *group_cnt = num_possible_nodes();
851c30c9 6158 size = sizeof(struct r5worker) * cnt;
60aaf933 6159 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6160 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6161 *group_cnt, GFP_NOIO);
6162 if (!*worker_groups || !workers) {
851c30c9 6163 kfree(workers);
60aaf933 6164 kfree(*worker_groups);
851c30c9
SL
6165 return -ENOMEM;
6166 }
6167
60aaf933 6168 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6169 struct r5worker_group *group;
6170
0c775d52 6171 group = &(*worker_groups)[i];
851c30c9
SL
6172 INIT_LIST_HEAD(&group->handle_list);
6173 group->conf = conf;
6174 group->workers = workers + i * cnt;
6175
6176 for (j = 0; j < cnt; j++) {
566c09c5
SL
6177 struct r5worker *worker = group->workers + j;
6178 worker->group = group;
6179 INIT_WORK(&worker->work, raid5_do_work);
6180
6181 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6182 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6183 }
6184 }
6185
6186 return 0;
6187}
6188
6189static void free_thread_groups(struct r5conf *conf)
6190{
6191 if (conf->worker_groups)
6192 kfree(conf->worker_groups[0].workers);
6193 kfree(conf->worker_groups);
6194 conf->worker_groups = NULL;
6195}
6196
80c3a6ce 6197static sector_t
fd01b88c 6198raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6199{
d1688a6d 6200 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6201
6202 if (!sectors)
6203 sectors = mddev->dev_sectors;
5e5e3e78 6204 if (!raid_disks)
7ec05478 6205 /* size is defined by the smallest of previous and new size */
5e5e3e78 6206 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6207
9d8f0363 6208 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 6209 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
6210 return sectors * (raid_disks - conf->max_degraded);
6211}
6212
789b5e03
ON
6213static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6214{
6215 safe_put_page(percpu->spare_page);
46d5b785 6216 if (percpu->scribble)
6217 flex_array_free(percpu->scribble);
789b5e03
ON
6218 percpu->spare_page = NULL;
6219 percpu->scribble = NULL;
6220}
6221
6222static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6223{
6224 if (conf->level == 6 && !percpu->spare_page)
6225 percpu->spare_page = alloc_page(GFP_KERNEL);
6226 if (!percpu->scribble)
46d5b785 6227 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6228 conf->previous_raid_disks), conf->chunk_sectors /
6229 STRIPE_SECTORS, GFP_KERNEL);
789b5e03
ON
6230
6231 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6232 free_scratch_buffer(conf, percpu);
6233 return -ENOMEM;
6234 }
6235
6236 return 0;
6237}
6238
d1688a6d 6239static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6240{
36d1c647
DW
6241 unsigned long cpu;
6242
6243 if (!conf->percpu)
6244 return;
6245
36d1c647
DW
6246#ifdef CONFIG_HOTPLUG_CPU
6247 unregister_cpu_notifier(&conf->cpu_notify);
6248#endif
789b5e03
ON
6249
6250 get_online_cpus();
6251 for_each_possible_cpu(cpu)
6252 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6253 put_online_cpus();
6254
6255 free_percpu(conf->percpu);
6256}
6257
d1688a6d 6258static void free_conf(struct r5conf *conf)
95fc17aa 6259{
edbe83ab
N
6260 if (conf->shrinker.seeks)
6261 unregister_shrinker(&conf->shrinker);
851c30c9 6262 free_thread_groups(conf);
95fc17aa 6263 shrink_stripes(conf);
36d1c647 6264 raid5_free_percpu(conf);
95fc17aa
DW
6265 kfree(conf->disks);
6266 kfree(conf->stripe_hashtbl);
6267 kfree(conf);
6268}
6269
36d1c647
DW
6270#ifdef CONFIG_HOTPLUG_CPU
6271static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6272 void *hcpu)
6273{
d1688a6d 6274 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6275 long cpu = (long)hcpu;
6276 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6277
6278 switch (action) {
6279 case CPU_UP_PREPARE:
6280 case CPU_UP_PREPARE_FROZEN:
789b5e03 6281 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6282 pr_err("%s: failed memory allocation for cpu%ld\n",
6283 __func__, cpu);
55af6bb5 6284 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6285 }
6286 break;
6287 case CPU_DEAD:
6288 case CPU_DEAD_FROZEN:
789b5e03 6289 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6290 break;
6291 default:
6292 break;
6293 }
6294 return NOTIFY_OK;
6295}
6296#endif
6297
d1688a6d 6298static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6299{
6300 unsigned long cpu;
789b5e03 6301 int err = 0;
36d1c647 6302
789b5e03
ON
6303 conf->percpu = alloc_percpu(struct raid5_percpu);
6304 if (!conf->percpu)
36d1c647 6305 return -ENOMEM;
789b5e03
ON
6306
6307#ifdef CONFIG_HOTPLUG_CPU
6308 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6309 conf->cpu_notify.priority = 0;
6310 err = register_cpu_notifier(&conf->cpu_notify);
6311 if (err)
6312 return err;
6313#endif
36d1c647
DW
6314
6315 get_online_cpus();
36d1c647 6316 for_each_present_cpu(cpu) {
789b5e03
ON
6317 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6318 if (err) {
6319 pr_err("%s: failed memory allocation for cpu%ld\n",
6320 __func__, cpu);
36d1c647
DW
6321 break;
6322 }
36d1c647 6323 }
36d1c647
DW
6324 put_online_cpus();
6325
6326 return err;
6327}
6328
edbe83ab
N
6329static unsigned long raid5_cache_scan(struct shrinker *shrink,
6330 struct shrink_control *sc)
6331{
6332 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6333 int ret = 0;
6334 while (ret < sc->nr_to_scan) {
6335 if (drop_one_stripe(conf) == 0)
6336 return SHRINK_STOP;
6337 ret++;
6338 }
6339 return ret;
6340}
6341
6342static unsigned long raid5_cache_count(struct shrinker *shrink,
6343 struct shrink_control *sc)
6344{
6345 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6346
6347 if (conf->max_nr_stripes < conf->min_nr_stripes)
6348 /* unlikely, but not impossible */
6349 return 0;
6350 return conf->max_nr_stripes - conf->min_nr_stripes;
6351}
6352
d1688a6d 6353static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6354{
d1688a6d 6355 struct r5conf *conf;
5e5e3e78 6356 int raid_disk, memory, max_disks;
3cb03002 6357 struct md_rdev *rdev;
1da177e4 6358 struct disk_info *disk;
0232605d 6359 char pers_name[6];
566c09c5 6360 int i;
60aaf933 6361 int group_cnt, worker_cnt_per_group;
6362 struct r5worker_group *new_group;
1da177e4 6363
91adb564
N
6364 if (mddev->new_level != 5
6365 && mddev->new_level != 4
6366 && mddev->new_level != 6) {
0c55e022 6367 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6368 mdname(mddev), mddev->new_level);
6369 return ERR_PTR(-EIO);
1da177e4 6370 }
91adb564
N
6371 if ((mddev->new_level == 5
6372 && !algorithm_valid_raid5(mddev->new_layout)) ||
6373 (mddev->new_level == 6
6374 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6375 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6376 mdname(mddev), mddev->new_layout);
6377 return ERR_PTR(-EIO);
99c0fb5f 6378 }
91adb564 6379 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6380 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6381 mdname(mddev), mddev->raid_disks);
6382 return ERR_PTR(-EINVAL);
4bbf3771
N
6383 }
6384
664e7c41
AN
6385 if (!mddev->new_chunk_sectors ||
6386 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6387 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6388 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6389 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6390 return ERR_PTR(-EINVAL);
f6705578
N
6391 }
6392
d1688a6d 6393 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6394 if (conf == NULL)
1da177e4 6395 goto abort;
851c30c9 6396 /* Don't enable multi-threading by default*/
60aaf933 6397 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6398 &new_group)) {
6399 conf->group_cnt = group_cnt;
6400 conf->worker_cnt_per_group = worker_cnt_per_group;
6401 conf->worker_groups = new_group;
6402 } else
851c30c9 6403 goto abort;
f5efd45a 6404 spin_lock_init(&conf->device_lock);
c46501b2 6405 seqcount_init(&conf->gen_lock);
f5efd45a
DW
6406 init_waitqueue_head(&conf->wait_for_stripe);
6407 init_waitqueue_head(&conf->wait_for_overlap);
6408 INIT_LIST_HEAD(&conf->handle_list);
6409 INIT_LIST_HEAD(&conf->hold_list);
6410 INIT_LIST_HEAD(&conf->delayed_list);
6411 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6412 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6413 atomic_set(&conf->active_stripes, 0);
6414 atomic_set(&conf->preread_active_stripes, 0);
6415 atomic_set(&conf->active_aligned_reads, 0);
6416 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6417 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6418
6419 conf->raid_disks = mddev->raid_disks;
6420 if (mddev->reshape_position == MaxSector)
6421 conf->previous_raid_disks = mddev->raid_disks;
6422 else
f6705578 6423 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6424 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6425
5e5e3e78 6426 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6427 GFP_KERNEL);
6428 if (!conf->disks)
6429 goto abort;
9ffae0cf 6430
1da177e4
LT
6431 conf->mddev = mddev;
6432
fccddba0 6433 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6434 goto abort;
1da177e4 6435
566c09c5
SL
6436 /* We init hash_locks[0] separately to that it can be used
6437 * as the reference lock in the spin_lock_nest_lock() call
6438 * in lock_all_device_hash_locks_irq in order to convince
6439 * lockdep that we know what we are doing.
6440 */
6441 spin_lock_init(conf->hash_locks);
6442 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6443 spin_lock_init(conf->hash_locks + i);
6444
6445 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6446 INIT_LIST_HEAD(conf->inactive_list + i);
6447
6448 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6449 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6450
36d1c647 6451 conf->level = mddev->new_level;
46d5b785 6452 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6453 if (raid5_alloc_percpu(conf) != 0)
6454 goto abort;
6455
0c55e022 6456 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6457
dafb20fa 6458 rdev_for_each(rdev, mddev) {
1da177e4 6459 raid_disk = rdev->raid_disk;
5e5e3e78 6460 if (raid_disk >= max_disks
1da177e4
LT
6461 || raid_disk < 0)
6462 continue;
6463 disk = conf->disks + raid_disk;
6464
17045f52
N
6465 if (test_bit(Replacement, &rdev->flags)) {
6466 if (disk->replacement)
6467 goto abort;
6468 disk->replacement = rdev;
6469 } else {
6470 if (disk->rdev)
6471 goto abort;
6472 disk->rdev = rdev;
6473 }
1da177e4 6474
b2d444d7 6475 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6476 char b[BDEVNAME_SIZE];
0c55e022
N
6477 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6478 " disk %d\n",
6479 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6480 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6481 /* Cannot rely on bitmap to complete recovery */
6482 conf->fullsync = 1;
1da177e4
LT
6483 }
6484
91adb564 6485 conf->level = mddev->new_level;
584acdd4 6486 if (conf->level == 6) {
16a53ecc 6487 conf->max_degraded = 2;
584acdd4
MS
6488 if (raid6_call.xor_syndrome)
6489 conf->rmw_level = PARITY_ENABLE_RMW;
6490 else
6491 conf->rmw_level = PARITY_DISABLE_RMW;
6492 } else {
16a53ecc 6493 conf->max_degraded = 1;
584acdd4
MS
6494 conf->rmw_level = PARITY_ENABLE_RMW;
6495 }
91adb564 6496 conf->algorithm = mddev->new_layout;
fef9c61f 6497 conf->reshape_progress = mddev->reshape_position;
e183eaed 6498 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6499 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
6500 conf->prev_algo = mddev->layout;
6501 }
1da177e4 6502
edbe83ab
N
6503 conf->min_nr_stripes = NR_STRIPES;
6504 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6505 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6506 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6507 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6508 printk(KERN_ERR
0c55e022
N
6509 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6510 mdname(mddev), memory);
91adb564
N
6511 goto abort;
6512 } else
0c55e022
N
6513 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6514 mdname(mddev), memory);
edbe83ab
N
6515 /*
6516 * Losing a stripe head costs more than the time to refill it,
6517 * it reduces the queue depth and so can hurt throughput.
6518 * So set it rather large, scaled by number of devices.
6519 */
6520 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6521 conf->shrinker.scan_objects = raid5_cache_scan;
6522 conf->shrinker.count_objects = raid5_cache_count;
6523 conf->shrinker.batch = 128;
6524 conf->shrinker.flags = 0;
6525 register_shrinker(&conf->shrinker);
1da177e4 6526
0232605d
N
6527 sprintf(pers_name, "raid%d", mddev->new_level);
6528 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6529 if (!conf->thread) {
6530 printk(KERN_ERR
0c55e022 6531 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6532 mdname(mddev));
16a53ecc
N
6533 goto abort;
6534 }
91adb564
N
6535
6536 return conf;
6537
6538 abort:
6539 if (conf) {
95fc17aa 6540 free_conf(conf);
91adb564
N
6541 return ERR_PTR(-EIO);
6542 } else
6543 return ERR_PTR(-ENOMEM);
6544}
6545
c148ffdc
N
6546static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6547{
6548 switch (algo) {
6549 case ALGORITHM_PARITY_0:
6550 if (raid_disk < max_degraded)
6551 return 1;
6552 break;
6553 case ALGORITHM_PARITY_N:
6554 if (raid_disk >= raid_disks - max_degraded)
6555 return 1;
6556 break;
6557 case ALGORITHM_PARITY_0_6:
f72ffdd6 6558 if (raid_disk == 0 ||
c148ffdc
N
6559 raid_disk == raid_disks - 1)
6560 return 1;
6561 break;
6562 case ALGORITHM_LEFT_ASYMMETRIC_6:
6563 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6564 case ALGORITHM_LEFT_SYMMETRIC_6:
6565 case ALGORITHM_RIGHT_SYMMETRIC_6:
6566 if (raid_disk == raid_disks - 1)
6567 return 1;
6568 }
6569 return 0;
6570}
6571
fd01b88c 6572static int run(struct mddev *mddev)
91adb564 6573{
d1688a6d 6574 struct r5conf *conf;
9f7c2220 6575 int working_disks = 0;
c148ffdc 6576 int dirty_parity_disks = 0;
3cb03002 6577 struct md_rdev *rdev;
c148ffdc 6578 sector_t reshape_offset = 0;
17045f52 6579 int i;
b5254dd5
N
6580 long long min_offset_diff = 0;
6581 int first = 1;
91adb564 6582
8c6ac868 6583 if (mddev->recovery_cp != MaxSector)
0c55e022 6584 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6585 " -- starting background reconstruction\n",
6586 mdname(mddev));
b5254dd5
N
6587
6588 rdev_for_each(rdev, mddev) {
6589 long long diff;
6590 if (rdev->raid_disk < 0)
6591 continue;
6592 diff = (rdev->new_data_offset - rdev->data_offset);
6593 if (first) {
6594 min_offset_diff = diff;
6595 first = 0;
6596 } else if (mddev->reshape_backwards &&
6597 diff < min_offset_diff)
6598 min_offset_diff = diff;
6599 else if (!mddev->reshape_backwards &&
6600 diff > min_offset_diff)
6601 min_offset_diff = diff;
6602 }
6603
91adb564
N
6604 if (mddev->reshape_position != MaxSector) {
6605 /* Check that we can continue the reshape.
b5254dd5
N
6606 * Difficulties arise if the stripe we would write to
6607 * next is at or after the stripe we would read from next.
6608 * For a reshape that changes the number of devices, this
6609 * is only possible for a very short time, and mdadm makes
6610 * sure that time appears to have past before assembling
6611 * the array. So we fail if that time hasn't passed.
6612 * For a reshape that keeps the number of devices the same
6613 * mdadm must be monitoring the reshape can keeping the
6614 * critical areas read-only and backed up. It will start
6615 * the array in read-only mode, so we check for that.
91adb564
N
6616 */
6617 sector_t here_new, here_old;
6618 int old_disks;
18b00334 6619 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 6620
88ce4930 6621 if (mddev->new_level != mddev->level) {
0c55e022 6622 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6623 "required - aborting.\n",
6624 mdname(mddev));
6625 return -EINVAL;
6626 }
91adb564
N
6627 old_disks = mddev->raid_disks - mddev->delta_disks;
6628 /* reshape_position must be on a new-stripe boundary, and one
6629 * further up in new geometry must map after here in old
6630 * geometry.
6631 */
6632 here_new = mddev->reshape_position;
664e7c41 6633 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 6634 (mddev->raid_disks - max_degraded))) {
0c55e022
N
6635 printk(KERN_ERR "md/raid:%s: reshape_position not "
6636 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6637 return -EINVAL;
6638 }
c148ffdc 6639 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
6640 /* here_new is the stripe we will write to */
6641 here_old = mddev->reshape_position;
9d8f0363 6642 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
6643 (old_disks-max_degraded));
6644 /* here_old is the first stripe that we might need to read
6645 * from */
67ac6011 6646 if (mddev->delta_disks == 0) {
b5254dd5
N
6647 if ((here_new * mddev->new_chunk_sectors !=
6648 here_old * mddev->chunk_sectors)) {
6649 printk(KERN_ERR "md/raid:%s: reshape position is"
6650 " confused - aborting\n", mdname(mddev));
6651 return -EINVAL;
6652 }
67ac6011 6653 /* We cannot be sure it is safe to start an in-place
b5254dd5 6654 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6655 * and taking constant backups.
6656 * mdadm always starts a situation like this in
6657 * readonly mode so it can take control before
6658 * allowing any writes. So just check for that.
6659 */
b5254dd5
N
6660 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6661 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6662 /* not really in-place - so OK */;
6663 else if (mddev->ro == 0) {
6664 printk(KERN_ERR "md/raid:%s: in-place reshape "
6665 "must be started in read-only mode "
6666 "- aborting\n",
0c55e022 6667 mdname(mddev));
67ac6011
N
6668 return -EINVAL;
6669 }
2c810cdd 6670 } else if (mddev->reshape_backwards
b5254dd5 6671 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
6672 here_old * mddev->chunk_sectors)
6673 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 6674 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 6675 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6676 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6677 "auto-recovery - aborting.\n",
6678 mdname(mddev));
91adb564
N
6679 return -EINVAL;
6680 }
0c55e022
N
6681 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6682 mdname(mddev));
91adb564
N
6683 /* OK, we should be able to continue; */
6684 } else {
6685 BUG_ON(mddev->level != mddev->new_level);
6686 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6687 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6688 BUG_ON(mddev->delta_disks != 0);
1da177e4 6689 }
91adb564 6690
245f46c2
N
6691 if (mddev->private == NULL)
6692 conf = setup_conf(mddev);
6693 else
6694 conf = mddev->private;
6695
91adb564
N
6696 if (IS_ERR(conf))
6697 return PTR_ERR(conf);
6698
b5254dd5 6699 conf->min_offset_diff = min_offset_diff;
91adb564
N
6700 mddev->thread = conf->thread;
6701 conf->thread = NULL;
6702 mddev->private = conf;
6703
17045f52
N
6704 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6705 i++) {
6706 rdev = conf->disks[i].rdev;
6707 if (!rdev && conf->disks[i].replacement) {
6708 /* The replacement is all we have yet */
6709 rdev = conf->disks[i].replacement;
6710 conf->disks[i].replacement = NULL;
6711 clear_bit(Replacement, &rdev->flags);
6712 conf->disks[i].rdev = rdev;
6713 }
6714 if (!rdev)
c148ffdc 6715 continue;
17045f52
N
6716 if (conf->disks[i].replacement &&
6717 conf->reshape_progress != MaxSector) {
6718 /* replacements and reshape simply do not mix. */
6719 printk(KERN_ERR "md: cannot handle concurrent "
6720 "replacement and reshape.\n");
6721 goto abort;
6722 }
2f115882 6723 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6724 working_disks++;
2f115882
N
6725 continue;
6726 }
c148ffdc
N
6727 /* This disc is not fully in-sync. However if it
6728 * just stored parity (beyond the recovery_offset),
6729 * when we don't need to be concerned about the
6730 * array being dirty.
6731 * When reshape goes 'backwards', we never have
6732 * partially completed devices, so we only need
6733 * to worry about reshape going forwards.
6734 */
6735 /* Hack because v0.91 doesn't store recovery_offset properly. */
6736 if (mddev->major_version == 0 &&
6737 mddev->minor_version > 90)
6738 rdev->recovery_offset = reshape_offset;
5026d7a9 6739
c148ffdc
N
6740 if (rdev->recovery_offset < reshape_offset) {
6741 /* We need to check old and new layout */
6742 if (!only_parity(rdev->raid_disk,
6743 conf->algorithm,
6744 conf->raid_disks,
6745 conf->max_degraded))
6746 continue;
6747 }
6748 if (!only_parity(rdev->raid_disk,
6749 conf->prev_algo,
6750 conf->previous_raid_disks,
6751 conf->max_degraded))
6752 continue;
6753 dirty_parity_disks++;
6754 }
91adb564 6755
17045f52
N
6756 /*
6757 * 0 for a fully functional array, 1 or 2 for a degraded array.
6758 */
908f4fbd 6759 mddev->degraded = calc_degraded(conf);
91adb564 6760
674806d6 6761 if (has_failed(conf)) {
0c55e022 6762 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6763 " (%d/%d failed)\n",
02c2de8c 6764 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6765 goto abort;
6766 }
6767
91adb564 6768 /* device size must be a multiple of chunk size */
9d8f0363 6769 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6770 mddev->resync_max_sectors = mddev->dev_sectors;
6771
c148ffdc 6772 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6773 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6774 if (mddev->ok_start_degraded)
6775 printk(KERN_WARNING
0c55e022
N
6776 "md/raid:%s: starting dirty degraded array"
6777 " - data corruption possible.\n",
6ff8d8ec
N
6778 mdname(mddev));
6779 else {
6780 printk(KERN_ERR
0c55e022 6781 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6782 mdname(mddev));
6783 goto abort;
6784 }
1da177e4
LT
6785 }
6786
1da177e4 6787 if (mddev->degraded == 0)
0c55e022
N
6788 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6789 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6790 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6791 mddev->new_layout);
1da177e4 6792 else
0c55e022
N
6793 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6794 " out of %d devices, algorithm %d\n",
6795 mdname(mddev), conf->level,
6796 mddev->raid_disks - mddev->degraded,
6797 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6798
6799 print_raid5_conf(conf);
6800
fef9c61f 6801 if (conf->reshape_progress != MaxSector) {
fef9c61f 6802 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6803 atomic_set(&conf->reshape_stripes, 0);
6804 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6805 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6806 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6807 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6808 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6809 "reshape");
f6705578
N
6810 }
6811
1da177e4 6812 /* Ok, everything is just fine now */
a64c876f
N
6813 if (mddev->to_remove == &raid5_attrs_group)
6814 mddev->to_remove = NULL;
00bcb4ac
N
6815 else if (mddev->kobj.sd &&
6816 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6817 printk(KERN_WARNING
4a5add49 6818 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6819 mdname(mddev));
4a5add49 6820 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6821
4a5add49 6822 if (mddev->queue) {
9f7c2220 6823 int chunk_size;
620125f2 6824 bool discard_supported = true;
4a5add49
N
6825 /* read-ahead size must cover two whole stripes, which
6826 * is 2 * (datadisks) * chunksize where 'n' is the
6827 * number of raid devices
6828 */
6829 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6830 int stripe = data_disks *
6831 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6832 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6833 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6834
9f7c2220
N
6835 chunk_size = mddev->chunk_sectors << 9;
6836 blk_queue_io_min(mddev->queue, chunk_size);
6837 blk_queue_io_opt(mddev->queue, chunk_size *
6838 (conf->raid_disks - conf->max_degraded));
c78afc62 6839 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6840 /*
6841 * We can only discard a whole stripe. It doesn't make sense to
6842 * discard data disk but write parity disk
6843 */
6844 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6845 /* Round up to power of 2, as discard handling
6846 * currently assumes that */
6847 while ((stripe-1) & stripe)
6848 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6849 mddev->queue->limits.discard_alignment = stripe;
6850 mddev->queue->limits.discard_granularity = stripe;
6851 /*
6852 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6853 * guarantee discard_zeroes_data
620125f2
SL
6854 */
6855 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6856
5026d7a9
PA
6857 blk_queue_max_write_same_sectors(mddev->queue, 0);
6858
05616be5 6859 rdev_for_each(rdev, mddev) {
9f7c2220
N
6860 disk_stack_limits(mddev->gendisk, rdev->bdev,
6861 rdev->data_offset << 9);
05616be5
N
6862 disk_stack_limits(mddev->gendisk, rdev->bdev,
6863 rdev->new_data_offset << 9);
620125f2
SL
6864 /*
6865 * discard_zeroes_data is required, otherwise data
6866 * could be lost. Consider a scenario: discard a stripe
6867 * (the stripe could be inconsistent if
6868 * discard_zeroes_data is 0); write one disk of the
6869 * stripe (the stripe could be inconsistent again
6870 * depending on which disks are used to calculate
6871 * parity); the disk is broken; The stripe data of this
6872 * disk is lost.
6873 */
6874 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6875 !bdev_get_queue(rdev->bdev)->
6876 limits.discard_zeroes_data)
6877 discard_supported = false;
8e0e99ba
N
6878 /* Unfortunately, discard_zeroes_data is not currently
6879 * a guarantee - just a hint. So we only allow DISCARD
6880 * if the sysadmin has confirmed that only safe devices
6881 * are in use by setting a module parameter.
6882 */
6883 if (!devices_handle_discard_safely) {
6884 if (discard_supported) {
6885 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6886 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6887 }
6888 discard_supported = false;
6889 }
05616be5 6890 }
620125f2
SL
6891
6892 if (discard_supported &&
6893 mddev->queue->limits.max_discard_sectors >= stripe &&
6894 mddev->queue->limits.discard_granularity >= stripe)
6895 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6896 mddev->queue);
6897 else
6898 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6899 mddev->queue);
9f7c2220 6900 }
23032a0e 6901
1da177e4
LT
6902 return 0;
6903abort:
01f96c0a 6904 md_unregister_thread(&mddev->thread);
e4f869d9
N
6905 print_raid5_conf(conf);
6906 free_conf(conf);
1da177e4 6907 mddev->private = NULL;
0c55e022 6908 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6909 return -EIO;
6910}
6911
afa0f557 6912static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6913{
afa0f557 6914 struct r5conf *conf = priv;
1da177e4 6915
95fc17aa 6916 free_conf(conf);
a64c876f 6917 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6918}
6919
fd01b88c 6920static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6921{
d1688a6d 6922 struct r5conf *conf = mddev->private;
1da177e4
LT
6923 int i;
6924
9d8f0363
AN
6925 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6926 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6927 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6928 for (i = 0; i < conf->raid_disks; i++)
6929 seq_printf (seq, "%s",
6930 conf->disks[i].rdev &&
b2d444d7 6931 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6932 seq_printf (seq, "]");
1da177e4
LT
6933}
6934
d1688a6d 6935static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6936{
6937 int i;
6938 struct disk_info *tmp;
6939
0c55e022 6940 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6941 if (!conf) {
6942 printk("(conf==NULL)\n");
6943 return;
6944 }
0c55e022
N
6945 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6946 conf->raid_disks,
6947 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6948
6949 for (i = 0; i < conf->raid_disks; i++) {
6950 char b[BDEVNAME_SIZE];
6951 tmp = conf->disks + i;
6952 if (tmp->rdev)
0c55e022
N
6953 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6954 i, !test_bit(Faulty, &tmp->rdev->flags),
6955 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6956 }
6957}
6958
fd01b88c 6959static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6960{
6961 int i;
d1688a6d 6962 struct r5conf *conf = mddev->private;
1da177e4 6963 struct disk_info *tmp;
6b965620
N
6964 int count = 0;
6965 unsigned long flags;
1da177e4
LT
6966
6967 for (i = 0; i < conf->raid_disks; i++) {
6968 tmp = conf->disks + i;
dd054fce
N
6969 if (tmp->replacement
6970 && tmp->replacement->recovery_offset == MaxSector
6971 && !test_bit(Faulty, &tmp->replacement->flags)
6972 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6973 /* Replacement has just become active. */
6974 if (!tmp->rdev
6975 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6976 count++;
6977 if (tmp->rdev) {
6978 /* Replaced device not technically faulty,
6979 * but we need to be sure it gets removed
6980 * and never re-added.
6981 */
6982 set_bit(Faulty, &tmp->rdev->flags);
6983 sysfs_notify_dirent_safe(
6984 tmp->rdev->sysfs_state);
6985 }
6986 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6987 } else if (tmp->rdev
70fffd0b 6988 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 6989 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 6990 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 6991 count++;
43c73ca4 6992 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
6993 }
6994 }
6b965620 6995 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6996 mddev->degraded = calc_degraded(conf);
6b965620 6997 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 6998 print_raid5_conf(conf);
6b965620 6999 return count;
1da177e4
LT
7000}
7001
b8321b68 7002static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7003{
d1688a6d 7004 struct r5conf *conf = mddev->private;
1da177e4 7005 int err = 0;
b8321b68 7006 int number = rdev->raid_disk;
657e3e4d 7007 struct md_rdev **rdevp;
1da177e4
LT
7008 struct disk_info *p = conf->disks + number;
7009
7010 print_raid5_conf(conf);
657e3e4d
N
7011 if (rdev == p->rdev)
7012 rdevp = &p->rdev;
7013 else if (rdev == p->replacement)
7014 rdevp = &p->replacement;
7015 else
7016 return 0;
7017
7018 if (number >= conf->raid_disks &&
7019 conf->reshape_progress == MaxSector)
7020 clear_bit(In_sync, &rdev->flags);
7021
7022 if (test_bit(In_sync, &rdev->flags) ||
7023 atomic_read(&rdev->nr_pending)) {
7024 err = -EBUSY;
7025 goto abort;
7026 }
7027 /* Only remove non-faulty devices if recovery
7028 * isn't possible.
7029 */
7030 if (!test_bit(Faulty, &rdev->flags) &&
7031 mddev->recovery_disabled != conf->recovery_disabled &&
7032 !has_failed(conf) &&
dd054fce 7033 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7034 number < conf->raid_disks) {
7035 err = -EBUSY;
7036 goto abort;
7037 }
7038 *rdevp = NULL;
7039 synchronize_rcu();
7040 if (atomic_read(&rdev->nr_pending)) {
7041 /* lost the race, try later */
7042 err = -EBUSY;
7043 *rdevp = rdev;
dd054fce
N
7044 } else if (p->replacement) {
7045 /* We must have just cleared 'rdev' */
7046 p->rdev = p->replacement;
7047 clear_bit(Replacement, &p->replacement->flags);
7048 smp_mb(); /* Make sure other CPUs may see both as identical
7049 * but will never see neither - if they are careful
7050 */
7051 p->replacement = NULL;
7052 clear_bit(WantReplacement, &rdev->flags);
7053 } else
7054 /* We might have just removed the Replacement as faulty-
7055 * clear the bit just in case
7056 */
7057 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7058abort:
7059
7060 print_raid5_conf(conf);
7061 return err;
7062}
7063
fd01b88c 7064static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7065{
d1688a6d 7066 struct r5conf *conf = mddev->private;
199050ea 7067 int err = -EEXIST;
1da177e4
LT
7068 int disk;
7069 struct disk_info *p;
6c2fce2e
NB
7070 int first = 0;
7071 int last = conf->raid_disks - 1;
1da177e4 7072
7f0da59b
N
7073 if (mddev->recovery_disabled == conf->recovery_disabled)
7074 return -EBUSY;
7075
dc10c643 7076 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7077 /* no point adding a device */
199050ea 7078 return -EINVAL;
1da177e4 7079
6c2fce2e
NB
7080 if (rdev->raid_disk >= 0)
7081 first = last = rdev->raid_disk;
1da177e4
LT
7082
7083 /*
16a53ecc
N
7084 * find the disk ... but prefer rdev->saved_raid_disk
7085 * if possible.
1da177e4 7086 */
16a53ecc 7087 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7088 rdev->saved_raid_disk >= first &&
16a53ecc 7089 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7090 first = rdev->saved_raid_disk;
7091
7092 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7093 p = conf->disks + disk;
7094 if (p->rdev == NULL) {
b2d444d7 7095 clear_bit(In_sync, &rdev->flags);
1da177e4 7096 rdev->raid_disk = disk;
199050ea 7097 err = 0;
72626685
N
7098 if (rdev->saved_raid_disk != disk)
7099 conf->fullsync = 1;
d6065f7b 7100 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7101 goto out;
1da177e4 7102 }
5cfb22a1
N
7103 }
7104 for (disk = first; disk <= last; disk++) {
7105 p = conf->disks + disk;
7bfec5f3
N
7106 if (test_bit(WantReplacement, &p->rdev->flags) &&
7107 p->replacement == NULL) {
7108 clear_bit(In_sync, &rdev->flags);
7109 set_bit(Replacement, &rdev->flags);
7110 rdev->raid_disk = disk;
7111 err = 0;
7112 conf->fullsync = 1;
7113 rcu_assign_pointer(p->replacement, rdev);
7114 break;
7115 }
7116 }
5cfb22a1 7117out:
1da177e4 7118 print_raid5_conf(conf);
199050ea 7119 return err;
1da177e4
LT
7120}
7121
fd01b88c 7122static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7123{
7124 /* no resync is happening, and there is enough space
7125 * on all devices, so we can resize.
7126 * We need to make sure resync covers any new space.
7127 * If the array is shrinking we should possibly wait until
7128 * any io in the removed space completes, but it hardly seems
7129 * worth it.
7130 */
a4a6125a 7131 sector_t newsize;
9d8f0363 7132 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
7133 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7134 if (mddev->external_size &&
7135 mddev->array_sectors > newsize)
b522adcd 7136 return -EINVAL;
a4a6125a
N
7137 if (mddev->bitmap) {
7138 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7139 if (ret)
7140 return ret;
7141 }
7142 md_set_array_sectors(mddev, newsize);
f233ea5c 7143 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7144 revalidate_disk(mddev->gendisk);
b098636c
N
7145 if (sectors > mddev->dev_sectors &&
7146 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7147 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7148 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7149 }
58c0fed4 7150 mddev->dev_sectors = sectors;
4b5c7ae8 7151 mddev->resync_max_sectors = sectors;
1da177e4
LT
7152 return 0;
7153}
7154
fd01b88c 7155static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7156{
7157 /* Can only proceed if there are plenty of stripe_heads.
7158 * We need a minimum of one full stripe,, and for sensible progress
7159 * it is best to have about 4 times that.
7160 * If we require 4 times, then the default 256 4K stripe_heads will
7161 * allow for chunk sizes up to 256K, which is probably OK.
7162 * If the chunk size is greater, user-space should request more
7163 * stripe_heads first.
7164 */
d1688a6d 7165 struct r5conf *conf = mddev->private;
01ee22b4 7166 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7167 > conf->min_nr_stripes ||
01ee22b4 7168 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7169 > conf->min_nr_stripes) {
0c55e022
N
7170 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7171 mdname(mddev),
01ee22b4
N
7172 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7173 / STRIPE_SIZE)*4);
7174 return 0;
7175 }
7176 return 1;
7177}
7178
fd01b88c 7179static int check_reshape(struct mddev *mddev)
29269553 7180{
d1688a6d 7181 struct r5conf *conf = mddev->private;
29269553 7182
88ce4930
N
7183 if (mddev->delta_disks == 0 &&
7184 mddev->new_layout == mddev->layout &&
664e7c41 7185 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7186 return 0; /* nothing to do */
674806d6 7187 if (has_failed(conf))
ec32a2bd 7188 return -EINVAL;
fdcfbbb6 7189 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7190 /* We might be able to shrink, but the devices must
7191 * be made bigger first.
7192 * For raid6, 4 is the minimum size.
7193 * Otherwise 2 is the minimum
7194 */
7195 int min = 2;
7196 if (mddev->level == 6)
7197 min = 4;
7198 if (mddev->raid_disks + mddev->delta_disks < min)
7199 return -EINVAL;
7200 }
29269553 7201
01ee22b4 7202 if (!check_stripe_cache(mddev))
29269553 7203 return -ENOSPC;
29269553 7204
e56108d6
N
7205 return resize_stripes(conf, (conf->previous_raid_disks
7206 + mddev->delta_disks));
63c70c4f
N
7207}
7208
fd01b88c 7209static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7210{
d1688a6d 7211 struct r5conf *conf = mddev->private;
3cb03002 7212 struct md_rdev *rdev;
63c70c4f 7213 int spares = 0;
c04be0aa 7214 unsigned long flags;
63c70c4f 7215
f416885e 7216 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7217 return -EBUSY;
7218
01ee22b4
N
7219 if (!check_stripe_cache(mddev))
7220 return -ENOSPC;
7221
30b67645
N
7222 if (has_failed(conf))
7223 return -EINVAL;
7224
c6563a8c 7225 rdev_for_each(rdev, mddev) {
469518a3
N
7226 if (!test_bit(In_sync, &rdev->flags)
7227 && !test_bit(Faulty, &rdev->flags))
29269553 7228 spares++;
c6563a8c 7229 }
63c70c4f 7230
f416885e 7231 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7232 /* Not enough devices even to make a degraded array
7233 * of that size
7234 */
7235 return -EINVAL;
7236
ec32a2bd
N
7237 /* Refuse to reduce size of the array. Any reductions in
7238 * array size must be through explicit setting of array_size
7239 * attribute.
7240 */
7241 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7242 < mddev->array_sectors) {
0c55e022 7243 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7244 "before number of disks\n", mdname(mddev));
7245 return -EINVAL;
7246 }
7247
f6705578 7248 atomic_set(&conf->reshape_stripes, 0);
29269553 7249 spin_lock_irq(&conf->device_lock);
c46501b2 7250 write_seqcount_begin(&conf->gen_lock);
29269553 7251 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7252 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7253 conf->prev_chunk_sectors = conf->chunk_sectors;
7254 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7255 conf->prev_algo = conf->algorithm;
7256 conf->algorithm = mddev->new_layout;
05616be5
N
7257 conf->generation++;
7258 /* Code that selects data_offset needs to see the generation update
7259 * if reshape_progress has been set - so a memory barrier needed.
7260 */
7261 smp_mb();
2c810cdd 7262 if (mddev->reshape_backwards)
fef9c61f
N
7263 conf->reshape_progress = raid5_size(mddev, 0, 0);
7264 else
7265 conf->reshape_progress = 0;
7266 conf->reshape_safe = conf->reshape_progress;
c46501b2 7267 write_seqcount_end(&conf->gen_lock);
29269553
N
7268 spin_unlock_irq(&conf->device_lock);
7269
4d77e3ba
N
7270 /* Now make sure any requests that proceeded on the assumption
7271 * the reshape wasn't running - like Discard or Read - have
7272 * completed.
7273 */
7274 mddev_suspend(mddev);
7275 mddev_resume(mddev);
7276
29269553
N
7277 /* Add some new drives, as many as will fit.
7278 * We know there are enough to make the newly sized array work.
3424bf6a
N
7279 * Don't add devices if we are reducing the number of
7280 * devices in the array. This is because it is not possible
7281 * to correctly record the "partially reconstructed" state of
7282 * such devices during the reshape and confusion could result.
29269553 7283 */
87a8dec9 7284 if (mddev->delta_disks >= 0) {
dafb20fa 7285 rdev_for_each(rdev, mddev)
87a8dec9
N
7286 if (rdev->raid_disk < 0 &&
7287 !test_bit(Faulty, &rdev->flags)) {
7288 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7289 if (rdev->raid_disk
9d4c7d87 7290 >= conf->previous_raid_disks)
87a8dec9 7291 set_bit(In_sync, &rdev->flags);
9d4c7d87 7292 else
87a8dec9 7293 rdev->recovery_offset = 0;
36fad858
NK
7294
7295 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7296 /* Failure here is OK */;
50da0840 7297 }
87a8dec9
N
7298 } else if (rdev->raid_disk >= conf->previous_raid_disks
7299 && !test_bit(Faulty, &rdev->flags)) {
7300 /* This is a spare that was manually added */
7301 set_bit(In_sync, &rdev->flags);
87a8dec9 7302 }
29269553 7303
87a8dec9
N
7304 /* When a reshape changes the number of devices,
7305 * ->degraded is measured against the larger of the
7306 * pre and post number of devices.
7307 */
ec32a2bd 7308 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7309 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7310 spin_unlock_irqrestore(&conf->device_lock, flags);
7311 }
63c70c4f 7312 mddev->raid_disks = conf->raid_disks;
e516402c 7313 mddev->reshape_position = conf->reshape_progress;
850b2b42 7314 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7315
29269553
N
7316 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7317 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7318 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7319 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7320 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7321 "reshape");
29269553
N
7322 if (!mddev->sync_thread) {
7323 mddev->recovery = 0;
7324 spin_lock_irq(&conf->device_lock);
ba8805b9 7325 write_seqcount_begin(&conf->gen_lock);
29269553 7326 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7327 mddev->new_chunk_sectors =
7328 conf->chunk_sectors = conf->prev_chunk_sectors;
7329 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7330 rdev_for_each(rdev, mddev)
7331 rdev->new_data_offset = rdev->data_offset;
7332 smp_wmb();
ba8805b9 7333 conf->generation --;
fef9c61f 7334 conf->reshape_progress = MaxSector;
1e3fa9bd 7335 mddev->reshape_position = MaxSector;
ba8805b9 7336 write_seqcount_end(&conf->gen_lock);
29269553
N
7337 spin_unlock_irq(&conf->device_lock);
7338 return -EAGAIN;
7339 }
c8f517c4 7340 conf->reshape_checkpoint = jiffies;
29269553
N
7341 md_wakeup_thread(mddev->sync_thread);
7342 md_new_event(mddev);
7343 return 0;
7344}
29269553 7345
ec32a2bd
N
7346/* This is called from the reshape thread and should make any
7347 * changes needed in 'conf'
7348 */
d1688a6d 7349static void end_reshape(struct r5conf *conf)
29269553 7350{
29269553 7351
f6705578 7352 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7353 struct md_rdev *rdev;
f6705578 7354
f6705578 7355 spin_lock_irq(&conf->device_lock);
cea9c228 7356 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7357 rdev_for_each(rdev, conf->mddev)
7358 rdev->data_offset = rdev->new_data_offset;
7359 smp_wmb();
fef9c61f 7360 conf->reshape_progress = MaxSector;
f6705578 7361 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7362 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7363
7364 /* read-ahead size must cover two whole stripes, which is
7365 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7366 */
4a5add49 7367 if (conf->mddev->queue) {
cea9c228 7368 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7369 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7370 / PAGE_SIZE);
16a53ecc
N
7371 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7372 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7373 }
29269553 7374 }
29269553
N
7375}
7376
ec32a2bd
N
7377/* This is called from the raid5d thread with mddev_lock held.
7378 * It makes config changes to the device.
7379 */
fd01b88c 7380static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7381{
d1688a6d 7382 struct r5conf *conf = mddev->private;
cea9c228
N
7383
7384 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7385
ec32a2bd
N
7386 if (mddev->delta_disks > 0) {
7387 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7388 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7389 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7390 } else {
7391 int d;
908f4fbd
N
7392 spin_lock_irq(&conf->device_lock);
7393 mddev->degraded = calc_degraded(conf);
7394 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7395 for (d = conf->raid_disks ;
7396 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7397 d++) {
3cb03002 7398 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7399 if (rdev)
7400 clear_bit(In_sync, &rdev->flags);
7401 rdev = conf->disks[d].replacement;
7402 if (rdev)
7403 clear_bit(In_sync, &rdev->flags);
1a67dde0 7404 }
cea9c228 7405 }
88ce4930 7406 mddev->layout = conf->algorithm;
09c9e5fa 7407 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7408 mddev->reshape_position = MaxSector;
7409 mddev->delta_disks = 0;
2c810cdd 7410 mddev->reshape_backwards = 0;
cea9c228
N
7411 }
7412}
7413
fd01b88c 7414static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7415{
d1688a6d 7416 struct r5conf *conf = mddev->private;
72626685
N
7417
7418 switch(state) {
e464eafd
N
7419 case 2: /* resume for a suspend */
7420 wake_up(&conf->wait_for_overlap);
7421 break;
7422
72626685 7423 case 1: /* stop all writes */
566c09c5 7424 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7425 /* '2' tells resync/reshape to pause so that all
7426 * active stripes can drain
7427 */
7428 conf->quiesce = 2;
566c09c5 7429 wait_event_cmd(conf->wait_for_stripe,
46031f9a
RBJ
7430 atomic_read(&conf->active_stripes) == 0 &&
7431 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7432 unlock_all_device_hash_locks_irq(conf),
7433 lock_all_device_hash_locks_irq(conf));
64bd660b 7434 conf->quiesce = 1;
566c09c5 7435 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7436 /* allow reshape to continue */
7437 wake_up(&conf->wait_for_overlap);
72626685
N
7438 break;
7439
7440 case 0: /* re-enable writes */
566c09c5 7441 lock_all_device_hash_locks_irq(conf);
72626685
N
7442 conf->quiesce = 0;
7443 wake_up(&conf->wait_for_stripe);
e464eafd 7444 wake_up(&conf->wait_for_overlap);
566c09c5 7445 unlock_all_device_hash_locks_irq(conf);
72626685
N
7446 break;
7447 }
72626685 7448}
b15c2e57 7449
fd01b88c 7450static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7451{
e373ab10 7452 struct r0conf *raid0_conf = mddev->private;
d76c8420 7453 sector_t sectors;
54071b38 7454
f1b29bca 7455 /* for raid0 takeover only one zone is supported */
e373ab10 7456 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7457 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7458 mdname(mddev));
f1b29bca
DW
7459 return ERR_PTR(-EINVAL);
7460 }
7461
e373ab10
N
7462 sectors = raid0_conf->strip_zone[0].zone_end;
7463 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7464 mddev->dev_sectors = sectors;
f1b29bca 7465 mddev->new_level = level;
54071b38
TM
7466 mddev->new_layout = ALGORITHM_PARITY_N;
7467 mddev->new_chunk_sectors = mddev->chunk_sectors;
7468 mddev->raid_disks += 1;
7469 mddev->delta_disks = 1;
7470 /* make sure it will be not marked as dirty */
7471 mddev->recovery_cp = MaxSector;
7472
7473 return setup_conf(mddev);
7474}
7475
fd01b88c 7476static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7477{
7478 int chunksect;
7479
7480 if (mddev->raid_disks != 2 ||
7481 mddev->degraded > 1)
7482 return ERR_PTR(-EINVAL);
7483
7484 /* Should check if there are write-behind devices? */
7485
7486 chunksect = 64*2; /* 64K by default */
7487
7488 /* The array must be an exact multiple of chunksize */
7489 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7490 chunksect >>= 1;
7491
7492 if ((chunksect<<9) < STRIPE_SIZE)
7493 /* array size does not allow a suitable chunk size */
7494 return ERR_PTR(-EINVAL);
7495
7496 mddev->new_level = 5;
7497 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7498 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7499
7500 return setup_conf(mddev);
7501}
7502
fd01b88c 7503static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7504{
7505 int new_layout;
7506
7507 switch (mddev->layout) {
7508 case ALGORITHM_LEFT_ASYMMETRIC_6:
7509 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7510 break;
7511 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7512 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7513 break;
7514 case ALGORITHM_LEFT_SYMMETRIC_6:
7515 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7516 break;
7517 case ALGORITHM_RIGHT_SYMMETRIC_6:
7518 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7519 break;
7520 case ALGORITHM_PARITY_0_6:
7521 new_layout = ALGORITHM_PARITY_0;
7522 break;
7523 case ALGORITHM_PARITY_N:
7524 new_layout = ALGORITHM_PARITY_N;
7525 break;
7526 default:
7527 return ERR_PTR(-EINVAL);
7528 }
7529 mddev->new_level = 5;
7530 mddev->new_layout = new_layout;
7531 mddev->delta_disks = -1;
7532 mddev->raid_disks -= 1;
7533 return setup_conf(mddev);
7534}
7535
fd01b88c 7536static int raid5_check_reshape(struct mddev *mddev)
b3546035 7537{
88ce4930
N
7538 /* For a 2-drive array, the layout and chunk size can be changed
7539 * immediately as not restriping is needed.
7540 * For larger arrays we record the new value - after validation
7541 * to be used by a reshape pass.
b3546035 7542 */
d1688a6d 7543 struct r5conf *conf = mddev->private;
597a711b 7544 int new_chunk = mddev->new_chunk_sectors;
b3546035 7545
597a711b 7546 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7547 return -EINVAL;
7548 if (new_chunk > 0) {
0ba459d2 7549 if (!is_power_of_2(new_chunk))
b3546035 7550 return -EINVAL;
597a711b 7551 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7552 return -EINVAL;
597a711b 7553 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7554 /* not factor of array size */
7555 return -EINVAL;
7556 }
7557
7558 /* They look valid */
7559
88ce4930 7560 if (mddev->raid_disks == 2) {
597a711b
N
7561 /* can make the change immediately */
7562 if (mddev->new_layout >= 0) {
7563 conf->algorithm = mddev->new_layout;
7564 mddev->layout = mddev->new_layout;
88ce4930
N
7565 }
7566 if (new_chunk > 0) {
597a711b
N
7567 conf->chunk_sectors = new_chunk ;
7568 mddev->chunk_sectors = new_chunk;
88ce4930
N
7569 }
7570 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7571 md_wakeup_thread(mddev->thread);
b3546035 7572 }
50ac168a 7573 return check_reshape(mddev);
88ce4930
N
7574}
7575
fd01b88c 7576static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7577{
597a711b 7578 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7579
597a711b 7580 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7581 return -EINVAL;
b3546035 7582 if (new_chunk > 0) {
0ba459d2 7583 if (!is_power_of_2(new_chunk))
88ce4930 7584 return -EINVAL;
597a711b 7585 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7586 return -EINVAL;
597a711b 7587 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7588 /* not factor of array size */
7589 return -EINVAL;
b3546035 7590 }
88ce4930
N
7591
7592 /* They look valid */
50ac168a 7593 return check_reshape(mddev);
b3546035
N
7594}
7595
fd01b88c 7596static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7597{
7598 /* raid5 can take over:
f1b29bca 7599 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7600 * raid1 - if there are two drives. We need to know the chunk size
7601 * raid4 - trivial - just use a raid4 layout.
7602 * raid6 - Providing it is a *_6 layout
d562b0c4 7603 */
f1b29bca
DW
7604 if (mddev->level == 0)
7605 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7606 if (mddev->level == 1)
7607 return raid5_takeover_raid1(mddev);
e9d4758f
N
7608 if (mddev->level == 4) {
7609 mddev->new_layout = ALGORITHM_PARITY_N;
7610 mddev->new_level = 5;
7611 return setup_conf(mddev);
7612 }
fc9739c6
N
7613 if (mddev->level == 6)
7614 return raid5_takeover_raid6(mddev);
d562b0c4
N
7615
7616 return ERR_PTR(-EINVAL);
7617}
7618
fd01b88c 7619static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7620{
f1b29bca
DW
7621 /* raid4 can take over:
7622 * raid0 - if there is only one strip zone
7623 * raid5 - if layout is right
a78d38a1 7624 */
f1b29bca
DW
7625 if (mddev->level == 0)
7626 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7627 if (mddev->level == 5 &&
7628 mddev->layout == ALGORITHM_PARITY_N) {
7629 mddev->new_layout = 0;
7630 mddev->new_level = 4;
7631 return setup_conf(mddev);
7632 }
7633 return ERR_PTR(-EINVAL);
7634}
d562b0c4 7635
84fc4b56 7636static struct md_personality raid5_personality;
245f46c2 7637
fd01b88c 7638static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7639{
7640 /* Currently can only take over a raid5. We map the
7641 * personality to an equivalent raid6 personality
7642 * with the Q block at the end.
7643 */
7644 int new_layout;
7645
7646 if (mddev->pers != &raid5_personality)
7647 return ERR_PTR(-EINVAL);
7648 if (mddev->degraded > 1)
7649 return ERR_PTR(-EINVAL);
7650 if (mddev->raid_disks > 253)
7651 return ERR_PTR(-EINVAL);
7652 if (mddev->raid_disks < 3)
7653 return ERR_PTR(-EINVAL);
7654
7655 switch (mddev->layout) {
7656 case ALGORITHM_LEFT_ASYMMETRIC:
7657 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7658 break;
7659 case ALGORITHM_RIGHT_ASYMMETRIC:
7660 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7661 break;
7662 case ALGORITHM_LEFT_SYMMETRIC:
7663 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7664 break;
7665 case ALGORITHM_RIGHT_SYMMETRIC:
7666 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7667 break;
7668 case ALGORITHM_PARITY_0:
7669 new_layout = ALGORITHM_PARITY_0_6;
7670 break;
7671 case ALGORITHM_PARITY_N:
7672 new_layout = ALGORITHM_PARITY_N;
7673 break;
7674 default:
7675 return ERR_PTR(-EINVAL);
7676 }
7677 mddev->new_level = 6;
7678 mddev->new_layout = new_layout;
7679 mddev->delta_disks = 1;
7680 mddev->raid_disks += 1;
7681 return setup_conf(mddev);
7682}
7683
84fc4b56 7684static struct md_personality raid6_personality =
16a53ecc
N
7685{
7686 .name = "raid6",
7687 .level = 6,
7688 .owner = THIS_MODULE,
7689 .make_request = make_request,
7690 .run = run,
afa0f557 7691 .free = raid5_free,
16a53ecc
N
7692 .status = status,
7693 .error_handler = error,
7694 .hot_add_disk = raid5_add_disk,
7695 .hot_remove_disk= raid5_remove_disk,
7696 .spare_active = raid5_spare_active,
7697 .sync_request = sync_request,
7698 .resize = raid5_resize,
80c3a6ce 7699 .size = raid5_size,
50ac168a 7700 .check_reshape = raid6_check_reshape,
f416885e 7701 .start_reshape = raid5_start_reshape,
cea9c228 7702 .finish_reshape = raid5_finish_reshape,
16a53ecc 7703 .quiesce = raid5_quiesce,
245f46c2 7704 .takeover = raid6_takeover,
5c675f83 7705 .congested = raid5_congested,
64590f45 7706 .mergeable_bvec = raid5_mergeable_bvec,
16a53ecc 7707};
84fc4b56 7708static struct md_personality raid5_personality =
1da177e4
LT
7709{
7710 .name = "raid5",
2604b703 7711 .level = 5,
1da177e4
LT
7712 .owner = THIS_MODULE,
7713 .make_request = make_request,
7714 .run = run,
afa0f557 7715 .free = raid5_free,
1da177e4
LT
7716 .status = status,
7717 .error_handler = error,
7718 .hot_add_disk = raid5_add_disk,
7719 .hot_remove_disk= raid5_remove_disk,
7720 .spare_active = raid5_spare_active,
7721 .sync_request = sync_request,
7722 .resize = raid5_resize,
80c3a6ce 7723 .size = raid5_size,
63c70c4f
N
7724 .check_reshape = raid5_check_reshape,
7725 .start_reshape = raid5_start_reshape,
cea9c228 7726 .finish_reshape = raid5_finish_reshape,
72626685 7727 .quiesce = raid5_quiesce,
d562b0c4 7728 .takeover = raid5_takeover,
5c675f83 7729 .congested = raid5_congested,
64590f45 7730 .mergeable_bvec = raid5_mergeable_bvec,
1da177e4
LT
7731};
7732
84fc4b56 7733static struct md_personality raid4_personality =
1da177e4 7734{
2604b703
N
7735 .name = "raid4",
7736 .level = 4,
7737 .owner = THIS_MODULE,
7738 .make_request = make_request,
7739 .run = run,
afa0f557 7740 .free = raid5_free,
2604b703
N
7741 .status = status,
7742 .error_handler = error,
7743 .hot_add_disk = raid5_add_disk,
7744 .hot_remove_disk= raid5_remove_disk,
7745 .spare_active = raid5_spare_active,
7746 .sync_request = sync_request,
7747 .resize = raid5_resize,
80c3a6ce 7748 .size = raid5_size,
3d37890b
N
7749 .check_reshape = raid5_check_reshape,
7750 .start_reshape = raid5_start_reshape,
cea9c228 7751 .finish_reshape = raid5_finish_reshape,
2604b703 7752 .quiesce = raid5_quiesce,
a78d38a1 7753 .takeover = raid4_takeover,
5c675f83 7754 .congested = raid5_congested,
64590f45 7755 .mergeable_bvec = raid5_mergeable_bvec,
2604b703
N
7756};
7757
7758static int __init raid5_init(void)
7759{
851c30c9
SL
7760 raid5_wq = alloc_workqueue("raid5wq",
7761 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7762 if (!raid5_wq)
7763 return -ENOMEM;
16a53ecc 7764 register_md_personality(&raid6_personality);
2604b703
N
7765 register_md_personality(&raid5_personality);
7766 register_md_personality(&raid4_personality);
7767 return 0;
1da177e4
LT
7768}
7769
2604b703 7770static void raid5_exit(void)
1da177e4 7771{
16a53ecc 7772 unregister_md_personality(&raid6_personality);
2604b703
N
7773 unregister_md_personality(&raid5_personality);
7774 unregister_md_personality(&raid4_personality);
851c30c9 7775 destroy_workqueue(raid5_wq);
1da177e4
LT
7776}
7777
7778module_init(raid5_init);
7779module_exit(raid5_exit);
7780MODULE_LICENSE("GPL");
0efb9e61 7781MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7782MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7783MODULE_ALIAS("md-raid5");
7784MODULE_ALIAS("md-raid4");
2604b703
N
7785MODULE_ALIAS("md-level-5");
7786MODULE_ALIAS("md-level-4");
16a53ecc
N
7787MODULE_ALIAS("md-personality-8"); /* RAID6 */
7788MODULE_ALIAS("md-raid6");
7789MODULE_ALIAS("md-level-6");
7790
7791/* This used to be two separate modules, they were: */
7792MODULE_ALIAS("raid5");
7793MODULE_ALIAS("raid6");