]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: samsung/onenand don't specify default parsing options
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
ace4dfee 96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 97 int new_state);
1da177e4 98
8593fbc6
TG
99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 struct mtd_oob_ops *ops);
101
d470a97c 102/*
8e87d782 103 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
104 * compiled away when LED support is disabled.
105 */
106DEFINE_LED_TRIGGER(nand_led_trigger);
107
6fe5a6ac
VS
108static int check_offs_len(struct mtd_info *mtd,
109 loff_t ofs, uint64_t len)
110{
111 struct nand_chip *chip = mtd->priv;
112 int ret = 0;
113
114 /* Start address must align on block boundary */
115 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
117 ret = -EINVAL;
118 }
119
120 /* Length must align on block boundary */
121 if (len & ((1 << chip->phys_erase_shift) - 1)) {
122 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
123 __func__);
124 ret = -EINVAL;
125 }
126
127 /* Do not allow past end of device */
128 if (ofs + len > mtd->size) {
129 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
130 __func__);
131 ret = -EINVAL;
132 }
133
134 return ret;
135}
136
1da177e4
LT
137/**
138 * nand_release_device - [GENERIC] release chip
139 * @mtd: MTD device structure
61b03bd7
TG
140 *
141 * Deselect, release chip lock and wake up anyone waiting on the device
1da177e4 142 */
e0c7d767 143static void nand_release_device(struct mtd_info *mtd)
1da177e4 144{
ace4dfee 145 struct nand_chip *chip = mtd->priv;
1da177e4
LT
146
147 /* De-select the NAND device */
ace4dfee 148 chip->select_chip(mtd, -1);
0dfc6246 149
a36ed299 150 /* Release the controller and the chip */
ace4dfee
TG
151 spin_lock(&chip->controller->lock);
152 chip->controller->active = NULL;
153 chip->state = FL_READY;
154 wake_up(&chip->controller->wq);
155 spin_unlock(&chip->controller->lock);
1da177e4
LT
156}
157
158/**
159 * nand_read_byte - [DEFAULT] read one byte from the chip
160 * @mtd: MTD device structure
161 *
162 * Default read function for 8bit buswith
163 */
58dd8f2b 164static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 165{
ace4dfee
TG
166 struct nand_chip *chip = mtd->priv;
167 return readb(chip->IO_ADDR_R);
1da177e4
LT
168}
169
1da177e4
LT
170/**
171 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
172 * @mtd: MTD device structure
173 *
61b03bd7 174 * Default read function for 16bit buswith with
1da177e4
LT
175 * endianess conversion
176 */
58dd8f2b 177static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 178{
ace4dfee
TG
179 struct nand_chip *chip = mtd->priv;
180 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
181}
182
1da177e4
LT
183/**
184 * nand_read_word - [DEFAULT] read one word from the chip
185 * @mtd: MTD device structure
186 *
61b03bd7 187 * Default read function for 16bit buswith without
1da177e4
LT
188 * endianess conversion
189 */
190static u16 nand_read_word(struct mtd_info *mtd)
191{
ace4dfee
TG
192 struct nand_chip *chip = mtd->priv;
193 return readw(chip->IO_ADDR_R);
1da177e4
LT
194}
195
1da177e4
LT
196/**
197 * nand_select_chip - [DEFAULT] control CE line
198 * @mtd: MTD device structure
844d3b42 199 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
200 *
201 * Default select function for 1 chip devices.
202 */
ace4dfee 203static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 204{
ace4dfee
TG
205 struct nand_chip *chip = mtd->priv;
206
207 switch (chipnr) {
1da177e4 208 case -1:
ace4dfee 209 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
210 break;
211 case 0:
1da177e4
LT
212 break;
213
214 default:
215 BUG();
216 }
217}
218
219/**
220 * nand_write_buf - [DEFAULT] write buffer to chip
221 * @mtd: MTD device structure
222 * @buf: data buffer
223 * @len: number of bytes to write
224 *
225 * Default write function for 8bit buswith
226 */
58dd8f2b 227static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
228{
229 int i;
ace4dfee 230 struct nand_chip *chip = mtd->priv;
1da177e4 231
e0c7d767 232 for (i = 0; i < len; i++)
ace4dfee 233 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
234}
235
236/**
61b03bd7 237 * nand_read_buf - [DEFAULT] read chip data into buffer
1da177e4
LT
238 * @mtd: MTD device structure
239 * @buf: buffer to store date
240 * @len: number of bytes to read
241 *
242 * Default read function for 8bit buswith
243 */
58dd8f2b 244static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
245{
246 int i;
ace4dfee 247 struct nand_chip *chip = mtd->priv;
1da177e4 248
e0c7d767 249 for (i = 0; i < len; i++)
ace4dfee 250 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
251}
252
253/**
61b03bd7 254 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
1da177e4
LT
255 * @mtd: MTD device structure
256 * @buf: buffer containing the data to compare
257 * @len: number of bytes to compare
258 *
259 * Default verify function for 8bit buswith
260 */
58dd8f2b 261static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
262{
263 int i;
ace4dfee 264 struct nand_chip *chip = mtd->priv;
1da177e4 265
e0c7d767 266 for (i = 0; i < len; i++)
ace4dfee 267 if (buf[i] != readb(chip->IO_ADDR_R))
1da177e4 268 return -EFAULT;
1da177e4
LT
269 return 0;
270}
271
272/**
273 * nand_write_buf16 - [DEFAULT] write buffer to chip
274 * @mtd: MTD device structure
275 * @buf: data buffer
276 * @len: number of bytes to write
277 *
278 * Default write function for 16bit buswith
279 */
58dd8f2b 280static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
281{
282 int i;
ace4dfee 283 struct nand_chip *chip = mtd->priv;
1da177e4
LT
284 u16 *p = (u16 *) buf;
285 len >>= 1;
61b03bd7 286
e0c7d767 287 for (i = 0; i < len; i++)
ace4dfee 288 writew(p[i], chip->IO_ADDR_W);
61b03bd7 289
1da177e4
LT
290}
291
292/**
61b03bd7 293 * nand_read_buf16 - [DEFAULT] read chip data into buffer
1da177e4
LT
294 * @mtd: MTD device structure
295 * @buf: buffer to store date
296 * @len: number of bytes to read
297 *
298 * Default read function for 16bit buswith
299 */
58dd8f2b 300static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
301{
302 int i;
ace4dfee 303 struct nand_chip *chip = mtd->priv;
1da177e4
LT
304 u16 *p = (u16 *) buf;
305 len >>= 1;
306
e0c7d767 307 for (i = 0; i < len; i++)
ace4dfee 308 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
309}
310
311/**
61b03bd7 312 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
1da177e4
LT
313 * @mtd: MTD device structure
314 * @buf: buffer containing the data to compare
315 * @len: number of bytes to compare
316 *
317 * Default verify function for 16bit buswith
318 */
58dd8f2b 319static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
320{
321 int i;
ace4dfee 322 struct nand_chip *chip = mtd->priv;
1da177e4
LT
323 u16 *p = (u16 *) buf;
324 len >>= 1;
325
e0c7d767 326 for (i = 0; i < len; i++)
ace4dfee 327 if (p[i] != readw(chip->IO_ADDR_R))
1da177e4
LT
328 return -EFAULT;
329
330 return 0;
331}
332
333/**
334 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
335 * @mtd: MTD device structure
336 * @ofs: offset from device start
337 * @getchip: 0, if the chip is already selected
338 *
61b03bd7 339 * Check, if the block is bad.
1da177e4
LT
340 */
341static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
342{
343 int page, chipnr, res = 0;
ace4dfee 344 struct nand_chip *chip = mtd->priv;
1da177e4
LT
345 u16 bad;
346
5fb1549d 347 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
348 ofs += mtd->erasesize - mtd->writesize;
349
1a12f46a
TK
350 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351
1da177e4 352 if (getchip) {
ace4dfee 353 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 354
ace4dfee 355 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
356
357 /* Select the NAND device */
ace4dfee 358 chip->select_chip(mtd, chipnr);
1a12f46a 359 }
1da177e4 360
ace4dfee
TG
361 if (chip->options & NAND_BUSWIDTH_16) {
362 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
1a12f46a 363 page);
ace4dfee
TG
364 bad = cpu_to_le16(chip->read_word(mtd));
365 if (chip->badblockpos & 0x1)
49196f33 366 bad >>= 8;
e0b58d0a
ML
367 else
368 bad &= 0xFF;
1da177e4 369 } else {
1a12f46a 370 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
e0b58d0a 371 bad = chip->read_byte(mtd);
1da177e4 372 }
61b03bd7 373
e0b58d0a
ML
374 if (likely(chip->badblockbits == 8))
375 res = bad != 0xFF;
376 else
377 res = hweight8(bad) < chip->badblockbits;
378
ace4dfee 379 if (getchip)
1da177e4 380 nand_release_device(mtd);
61b03bd7 381
1da177e4
LT
382 return res;
383}
384
385/**
386 * nand_default_block_markbad - [DEFAULT] mark a block bad
387 * @mtd: MTD device structure
388 * @ofs: offset from device start
389 *
390 * This is the default implementation, which can be overridden by
391 * a hardware specific driver.
392*/
393static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394{
ace4dfee 395 struct nand_chip *chip = mtd->priv;
58dd8f2b 396 uint8_t buf[2] = { 0, 0 };
02ed70bb 397 int block, ret, i = 0;
61b03bd7 398
5fb1549d 399 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
400 ofs += mtd->erasesize - mtd->writesize;
401
1da177e4 402 /* Get block number */
4226b510 403 block = (int)(ofs >> chip->bbt_erase_shift);
ace4dfee
TG
404 if (chip->bbt)
405 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4
LT
406
407 /* Do we have a flash based bad block table ? */
bb9ebd4e 408 if (chip->bbt_options & NAND_BBT_USE_FLASH)
f1a28c02
TG
409 ret = nand_update_bbt(mtd, ofs);
410 else {
c0b8ba7b 411 nand_get_device(chip, mtd, FL_WRITING);
f1a28c02 412
a0dc5529
BN
413 /*
414 * Write to first two pages if necessary. If we write to more
415 * than one location, the first error encountered quits the
416 * procedure. We write two bytes per location, so we dont have
417 * to mess with 16 bit access.
02ed70bb
BN
418 */
419 do {
420 chip->ops.len = chip->ops.ooblen = 2;
421 chip->ops.datbuf = NULL;
422 chip->ops.oobbuf = buf;
423 chip->ops.ooboffs = chip->badblockpos & ~0x01;
424
425 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
426
02ed70bb
BN
427 i++;
428 ofs += mtd->writesize;
5fb1549d 429 } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) &&
02ed70bb
BN
430 i < 2);
431
c0b8ba7b 432 nand_release_device(mtd);
f1a28c02
TG
433 }
434 if (!ret)
435 mtd->ecc_stats.badblocks++;
c0b8ba7b 436
f1a28c02 437 return ret;
1da177e4
LT
438}
439
61b03bd7 440/**
1da177e4
LT
441 * nand_check_wp - [GENERIC] check if the chip is write protected
442 * @mtd: MTD device structure
61b03bd7 443 * Check, if the device is write protected
1da177e4 444 *
61b03bd7 445 * The function expects, that the device is already selected
1da177e4 446 */
e0c7d767 447static int nand_check_wp(struct mtd_info *mtd)
1da177e4 448{
ace4dfee 449 struct nand_chip *chip = mtd->priv;
93edbad6
ML
450
451 /* broken xD cards report WP despite being writable */
452 if (chip->options & NAND_BROKEN_XD)
453 return 0;
454
1da177e4 455 /* Check the WP bit */
ace4dfee
TG
456 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
457 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
458}
459
460/**
461 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
462 * @mtd: MTD device structure
463 * @ofs: offset from device start
464 * @getchip: 0, if the chip is already selected
465 * @allowbbt: 1, if its allowed to access the bbt area
466 *
467 * Check, if the block is bad. Either by reading the bad block table or
468 * calling of the scan function.
469 */
2c0a2bed
TG
470static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
471 int allowbbt)
1da177e4 472{
ace4dfee 473 struct nand_chip *chip = mtd->priv;
61b03bd7 474
ace4dfee
TG
475 if (!chip->bbt)
476 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 477
1da177e4 478 /* Return info from the table */
e0c7d767 479 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
480}
481
2af7c653
SK
482/**
483 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
484 * @mtd: MTD device structure
485 * @timeo: Timeout
486 *
487 * Helper function for nand_wait_ready used when needing to wait in interrupt
488 * context.
489 */
490static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
491{
492 struct nand_chip *chip = mtd->priv;
493 int i;
494
495 /* Wait for the device to get ready */
496 for (i = 0; i < timeo; i++) {
497 if (chip->dev_ready(mtd))
498 break;
499 touch_softlockup_watchdog();
500 mdelay(1);
501 }
502}
503
61b03bd7 504/*
3b88775c
TG
505 * Wait for the ready pin, after a command
506 * The timeout is catched later.
507 */
4b648b02 508void nand_wait_ready(struct mtd_info *mtd)
3b88775c 509{
ace4dfee 510 struct nand_chip *chip = mtd->priv;
e0c7d767 511 unsigned long timeo = jiffies + 2;
3b88775c 512
2af7c653
SK
513 /* 400ms timeout */
514 if (in_interrupt() || oops_in_progress)
515 return panic_nand_wait_ready(mtd, 400);
516
8fe833c1 517 led_trigger_event(nand_led_trigger, LED_FULL);
3b88775c
TG
518 /* wait until command is processed or timeout occures */
519 do {
ace4dfee 520 if (chip->dev_ready(mtd))
8fe833c1 521 break;
8446f1d3 522 touch_softlockup_watchdog();
61b03bd7 523 } while (time_before(jiffies, timeo));
8fe833c1 524 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 525}
4b648b02 526EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 527
1da177e4
LT
528/**
529 * nand_command - [DEFAULT] Send command to NAND device
530 * @mtd: MTD device structure
531 * @command: the command to be sent
532 * @column: the column address for this command, -1 if none
533 * @page_addr: the page address for this command, -1 if none
534 *
535 * Send command to NAND device. This function is used for small page
536 * devices (256/512 Bytes per page)
537 */
7abd3ef9
TG
538static void nand_command(struct mtd_info *mtd, unsigned int command,
539 int column, int page_addr)
1da177e4 540{
ace4dfee 541 register struct nand_chip *chip = mtd->priv;
7abd3ef9 542 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 543
1da177e4
LT
544 /*
545 * Write out the command to the device.
546 */
547 if (command == NAND_CMD_SEQIN) {
548 int readcmd;
549
28318776 550 if (column >= mtd->writesize) {
1da177e4 551 /* OOB area */
28318776 552 column -= mtd->writesize;
1da177e4
LT
553 readcmd = NAND_CMD_READOOB;
554 } else if (column < 256) {
555 /* First 256 bytes --> READ0 */
556 readcmd = NAND_CMD_READ0;
557 } else {
558 column -= 256;
559 readcmd = NAND_CMD_READ1;
560 }
ace4dfee 561 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 562 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 563 }
ace4dfee 564 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 565
7abd3ef9
TG
566 /*
567 * Address cycle, when necessary
568 */
569 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
570 /* Serially input address */
571 if (column != -1) {
572 /* Adjust columns for 16 bit buswidth */
ace4dfee 573 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 574 column >>= 1;
ace4dfee 575 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
576 ctrl &= ~NAND_CTRL_CHANGE;
577 }
578 if (page_addr != -1) {
ace4dfee 579 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 580 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 581 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 582 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
583 if (chip->chipsize > (32 << 20))
584 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 585 }
ace4dfee 586 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
587
588 /*
589 * program and erase have their own busy handlers
1da177e4 590 * status and sequential in needs no delay
e0c7d767 591 */
1da177e4 592 switch (command) {
61b03bd7 593
1da177e4
LT
594 case NAND_CMD_PAGEPROG:
595 case NAND_CMD_ERASE1:
596 case NAND_CMD_ERASE2:
597 case NAND_CMD_SEQIN:
598 case NAND_CMD_STATUS:
599 return;
600
601 case NAND_CMD_RESET:
ace4dfee 602 if (chip->dev_ready)
1da177e4 603 break;
ace4dfee
TG
604 udelay(chip->chip_delay);
605 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 606 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
607 chip->cmd_ctrl(mtd,
608 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
609 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
610 ;
1da177e4
LT
611 return;
612
e0c7d767 613 /* This applies to read commands */
1da177e4 614 default:
61b03bd7 615 /*
1da177e4
LT
616 * If we don't have access to the busy pin, we apply the given
617 * command delay
e0c7d767 618 */
ace4dfee
TG
619 if (!chip->dev_ready) {
620 udelay(chip->chip_delay);
1da177e4 621 return;
61b03bd7 622 }
1da177e4 623 }
1da177e4
LT
624 /* Apply this short delay always to ensure that we do wait tWB in
625 * any case on any machine. */
e0c7d767 626 ndelay(100);
3b88775c
TG
627
628 nand_wait_ready(mtd);
1da177e4
LT
629}
630
631/**
632 * nand_command_lp - [DEFAULT] Send command to NAND large page device
633 * @mtd: MTD device structure
634 * @command: the command to be sent
635 * @column: the column address for this command, -1 if none
636 * @page_addr: the page address for this command, -1 if none
637 *
7abd3ef9
TG
638 * Send command to NAND device. This is the version for the new large page
639 * devices We dont have the separate regions as we have in the small page
640 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 641 */
7abd3ef9
TG
642static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
643 int column, int page_addr)
1da177e4 644{
ace4dfee 645 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
646
647 /* Emulate NAND_CMD_READOOB */
648 if (command == NAND_CMD_READOOB) {
28318776 649 column += mtd->writesize;
1da177e4
LT
650 command = NAND_CMD_READ0;
651 }
61b03bd7 652
7abd3ef9 653 /* Command latch cycle */
ace4dfee 654 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 655 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
656
657 if (column != -1 || page_addr != -1) {
7abd3ef9 658 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
659
660 /* Serially input address */
661 if (column != -1) {
662 /* Adjust columns for 16 bit buswidth */
ace4dfee 663 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 664 column >>= 1;
ace4dfee 665 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 666 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 667 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 668 }
1da177e4 669 if (page_addr != -1) {
ace4dfee
TG
670 chip->cmd_ctrl(mtd, page_addr, ctrl);
671 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 672 NAND_NCE | NAND_ALE);
1da177e4 673 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
674 if (chip->chipsize > (128 << 20))
675 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 676 NAND_NCE | NAND_ALE);
1da177e4 677 }
1da177e4 678 }
ace4dfee 679 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
680
681 /*
682 * program and erase have their own busy handlers
30f464b7
DM
683 * status, sequential in, and deplete1 need no delay
684 */
1da177e4 685 switch (command) {
61b03bd7 686
1da177e4
LT
687 case NAND_CMD_CACHEDPROG:
688 case NAND_CMD_PAGEPROG:
689 case NAND_CMD_ERASE1:
690 case NAND_CMD_ERASE2:
691 case NAND_CMD_SEQIN:
7bc3312b 692 case NAND_CMD_RNDIN:
1da177e4 693 case NAND_CMD_STATUS:
30f464b7 694 case NAND_CMD_DEPLETE1:
1da177e4
LT
695 return;
696
e0c7d767
DW
697 /*
698 * read error status commands require only a short delay
699 */
30f464b7
DM
700 case NAND_CMD_STATUS_ERROR:
701 case NAND_CMD_STATUS_ERROR0:
702 case NAND_CMD_STATUS_ERROR1:
703 case NAND_CMD_STATUS_ERROR2:
704 case NAND_CMD_STATUS_ERROR3:
ace4dfee 705 udelay(chip->chip_delay);
30f464b7 706 return;
1da177e4
LT
707
708 case NAND_CMD_RESET:
ace4dfee 709 if (chip->dev_ready)
1da177e4 710 break;
ace4dfee 711 udelay(chip->chip_delay);
12efdde3
TG
712 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
713 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
714 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
715 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
716 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
717 ;
1da177e4
LT
718 return;
719
7bc3312b
TG
720 case NAND_CMD_RNDOUT:
721 /* No ready / busy check necessary */
722 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
723 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
725 NAND_NCE | NAND_CTRL_CHANGE);
726 return;
727
1da177e4 728 case NAND_CMD_READ0:
12efdde3
TG
729 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
730 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
731 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
732 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 733
e0c7d767 734 /* This applies to read commands */
1da177e4 735 default:
61b03bd7 736 /*
1da177e4
LT
737 * If we don't have access to the busy pin, we apply the given
738 * command delay
e0c7d767 739 */
ace4dfee
TG
740 if (!chip->dev_ready) {
741 udelay(chip->chip_delay);
1da177e4 742 return;
61b03bd7 743 }
1da177e4 744 }
3b88775c 745
1da177e4
LT
746 /* Apply this short delay always to ensure that we do wait tWB in
747 * any case on any machine. */
e0c7d767 748 ndelay(100);
3b88775c
TG
749
750 nand_wait_ready(mtd);
1da177e4
LT
751}
752
2af7c653
SK
753/**
754 * panic_nand_get_device - [GENERIC] Get chip for selected access
755 * @chip: the nand chip descriptor
756 * @mtd: MTD device structure
757 * @new_state: the state which is requested
758 *
759 * Used when in panic, no locks are taken.
760 */
761static void panic_nand_get_device(struct nand_chip *chip,
762 struct mtd_info *mtd, int new_state)
763{
764 /* Hardware controller shared among independend devices */
765 chip->controller->active = chip;
766 chip->state = new_state;
767}
768
1da177e4
LT
769/**
770 * nand_get_device - [GENERIC] Get chip for selected access
844d3b42 771 * @chip: the nand chip descriptor
1da177e4 772 * @mtd: MTD device structure
61b03bd7 773 * @new_state: the state which is requested
1da177e4
LT
774 *
775 * Get the device and lock it for exclusive access
776 */
2c0a2bed 777static int
ace4dfee 778nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 779{
ace4dfee
TG
780 spinlock_t *lock = &chip->controller->lock;
781 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 782 DECLARE_WAITQUEUE(wait, current);
7351d3a5 783retry:
0dfc6246
TG
784 spin_lock(lock);
785
b8b3ee9a 786 /* Hardware controller shared among independent devices */
ace4dfee
TG
787 if (!chip->controller->active)
788 chip->controller->active = chip;
a36ed299 789
ace4dfee
TG
790 if (chip->controller->active == chip && chip->state == FL_READY) {
791 chip->state = new_state;
0dfc6246 792 spin_unlock(lock);
962034f4
VW
793 return 0;
794 }
795 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
796 if (chip->controller->active->state == FL_PM_SUSPENDED) {
797 chip->state = FL_PM_SUSPENDED;
798 spin_unlock(lock);
799 return 0;
6b0d9a84 800 }
0dfc6246
TG
801 }
802 set_current_state(TASK_UNINTERRUPTIBLE);
803 add_wait_queue(wq, &wait);
804 spin_unlock(lock);
805 schedule();
806 remove_wait_queue(wq, &wait);
1da177e4
LT
807 goto retry;
808}
809
2af7c653
SK
810/**
811 * panic_nand_wait - [GENERIC] wait until the command is done
812 * @mtd: MTD device structure
813 * @chip: NAND chip structure
814 * @timeo: Timeout
815 *
816 * Wait for command done. This is a helper function for nand_wait used when
817 * we are in interrupt context. May happen when in panic and trying to write
b595076a 818 * an oops through mtdoops.
2af7c653
SK
819 */
820static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
821 unsigned long timeo)
822{
823 int i;
824 for (i = 0; i < timeo; i++) {
825 if (chip->dev_ready) {
826 if (chip->dev_ready(mtd))
827 break;
828 } else {
829 if (chip->read_byte(mtd) & NAND_STATUS_READY)
830 break;
831 }
832 mdelay(1);
f8ac0414 833 }
2af7c653
SK
834}
835
1da177e4
LT
836/**
837 * nand_wait - [DEFAULT] wait until the command is done
838 * @mtd: MTD device structure
844d3b42 839 * @chip: NAND chip structure
1da177e4
LT
840 *
841 * Wait for command done. This applies to erase and program only
61b03bd7 842 * Erase can take up to 400ms and program up to 20ms according to
1da177e4 843 * general NAND and SmartMedia specs
844d3b42 844 */
7bc3312b 845static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
846{
847
e0c7d767 848 unsigned long timeo = jiffies;
7bc3312b 849 int status, state = chip->state;
61b03bd7 850
1da177e4 851 if (state == FL_ERASING)
e0c7d767 852 timeo += (HZ * 400) / 1000;
1da177e4 853 else
e0c7d767 854 timeo += (HZ * 20) / 1000;
1da177e4 855
8fe833c1
RP
856 led_trigger_event(nand_led_trigger, LED_FULL);
857
1da177e4
LT
858 /* Apply this short delay always to ensure that we do wait tWB in
859 * any case on any machine. */
e0c7d767 860 ndelay(100);
1da177e4 861
ace4dfee
TG
862 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
863 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 864 else
ace4dfee 865 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 866
2af7c653
SK
867 if (in_interrupt() || oops_in_progress)
868 panic_nand_wait(mtd, chip, timeo);
869 else {
870 while (time_before(jiffies, timeo)) {
871 if (chip->dev_ready) {
872 if (chip->dev_ready(mtd))
873 break;
874 } else {
875 if (chip->read_byte(mtd) & NAND_STATUS_READY)
876 break;
877 }
878 cond_resched();
1da177e4 879 }
1da177e4 880 }
8fe833c1
RP
881 led_trigger_event(nand_led_trigger, LED_OFF);
882
ace4dfee 883 status = (int)chip->read_byte(mtd);
1da177e4
LT
884 return status;
885}
886
7d70f334 887/**
b6d676db 888 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
7d70f334 889 *
b6d676db
RD
890 * @mtd: mtd info
891 * @ofs: offset to start unlock from
892 * @len: length to unlock
893 * @invert: when = 0, unlock the range of blocks within the lower and
7d70f334 894 * upper boundary address
b6d676db 895 * when = 1, unlock the range of blocks outside the boundaries
7d70f334
VS
896 * of the lower and upper boundary address
897 *
b6d676db 898 * return - unlock status
7d70f334
VS
899 */
900static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
901 uint64_t len, int invert)
902{
903 int ret = 0;
904 int status, page;
905 struct nand_chip *chip = mtd->priv;
906
907 /* Submit address of first page to unlock */
908 page = ofs >> chip->page_shift;
909 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
910
911 /* Submit address of last page to unlock */
912 page = (ofs + len) >> chip->page_shift;
913 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
914 (page | invert) & chip->pagemask);
915
916 /* Call wait ready function */
917 status = chip->waitfunc(mtd, chip);
7d70f334
VS
918 /* See if device thinks it succeeded */
919 if (status & 0x01) {
920 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
921 __func__, status);
922 ret = -EIO;
923 }
924
925 return ret;
926}
927
928/**
b6d676db 929 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
7d70f334 930 *
b6d676db
RD
931 * @mtd: mtd info
932 * @ofs: offset to start unlock from
933 * @len: length to unlock
7d70f334 934 *
b6d676db 935 * return - unlock status
7d70f334
VS
936 */
937int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
938{
939 int ret = 0;
940 int chipnr;
941 struct nand_chip *chip = mtd->priv;
942
943 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
944 __func__, (unsigned long long)ofs, len);
945
946 if (check_offs_len(mtd, ofs, len))
947 ret = -EINVAL;
948
949 /* Align to last block address if size addresses end of the device */
950 if (ofs + len == mtd->size)
951 len -= mtd->erasesize;
952
953 nand_get_device(chip, mtd, FL_UNLOCKING);
954
955 /* Shift to get chip number */
956 chipnr = ofs >> chip->chip_shift;
957
958 chip->select_chip(mtd, chipnr);
959
960 /* Check, if it is write protected */
961 if (nand_check_wp(mtd)) {
962 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
963 __func__);
964 ret = -EIO;
965 goto out;
966 }
967
968 ret = __nand_unlock(mtd, ofs, len, 0);
969
970out:
7d70f334
VS
971 nand_release_device(mtd);
972
973 return ret;
974}
7351d3a5 975EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
976
977/**
b6d676db 978 * nand_lock - [REPLACEABLE] locks all blocks present in the device
7d70f334 979 *
b6d676db
RD
980 * @mtd: mtd info
981 * @ofs: offset to start unlock from
982 * @len: length to unlock
7d70f334 983 *
b6d676db 984 * return - lock status
7d70f334 985 *
b6d676db
RD
986 * This feature is not supported in many NAND parts. 'Micron' NAND parts
987 * do have this feature, but it allows only to lock all blocks, not for
7d70f334
VS
988 * specified range for block.
989 *
990 * Implementing 'lock' feature by making use of 'unlock', for now.
991 */
992int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
993{
994 int ret = 0;
995 int chipnr, status, page;
996 struct nand_chip *chip = mtd->priv;
997
998 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
999 __func__, (unsigned long long)ofs, len);
1000
1001 if (check_offs_len(mtd, ofs, len))
1002 ret = -EINVAL;
1003
1004 nand_get_device(chip, mtd, FL_LOCKING);
1005
1006 /* Shift to get chip number */
1007 chipnr = ofs >> chip->chip_shift;
1008
1009 chip->select_chip(mtd, chipnr);
1010
1011 /* Check, if it is write protected */
1012 if (nand_check_wp(mtd)) {
1013 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1014 __func__);
1015 status = MTD_ERASE_FAILED;
1016 ret = -EIO;
1017 goto out;
1018 }
1019
1020 /* Submit address of first page to lock */
1021 page = ofs >> chip->page_shift;
1022 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1023
1024 /* Call wait ready function */
1025 status = chip->waitfunc(mtd, chip);
7d70f334
VS
1026 /* See if device thinks it succeeded */
1027 if (status & 0x01) {
1028 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1029 __func__, status);
1030 ret = -EIO;
1031 goto out;
1032 }
1033
1034 ret = __nand_unlock(mtd, ofs, len, 0x1);
1035
1036out:
7d70f334
VS
1037 nand_release_device(mtd);
1038
1039 return ret;
1040}
7351d3a5 1041EXPORT_SYMBOL(nand_lock);
7d70f334 1042
8593fbc6
TG
1043/**
1044 * nand_read_page_raw - [Intern] read raw page data without ecc
1045 * @mtd: mtd info structure
1046 * @chip: nand chip info structure
1047 * @buf: buffer to store read data
58475fb9 1048 * @page: page number to read
52ff49df
DB
1049 *
1050 * Not for syndrome calculating ecc controllers, which use a special oob layout
8593fbc6
TG
1051 */
1052static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1053 uint8_t *buf, int page)
8593fbc6
TG
1054{
1055 chip->read_buf(mtd, buf, mtd->writesize);
1056 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1057 return 0;
1058}
1059
52ff49df
DB
1060/**
1061 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1062 * @mtd: mtd info structure
1063 * @chip: nand chip info structure
1064 * @buf: buffer to store read data
58475fb9 1065 * @page: page number to read
52ff49df
DB
1066 *
1067 * We need a special oob layout and handling even when OOB isn't used.
1068 */
7351d3a5
FF
1069static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1070 struct nand_chip *chip,
1071 uint8_t *buf, int page)
52ff49df
DB
1072{
1073 int eccsize = chip->ecc.size;
1074 int eccbytes = chip->ecc.bytes;
1075 uint8_t *oob = chip->oob_poi;
1076 int steps, size;
1077
1078 for (steps = chip->ecc.steps; steps > 0; steps--) {
1079 chip->read_buf(mtd, buf, eccsize);
1080 buf += eccsize;
1081
1082 if (chip->ecc.prepad) {
1083 chip->read_buf(mtd, oob, chip->ecc.prepad);
1084 oob += chip->ecc.prepad;
1085 }
1086
1087 chip->read_buf(mtd, oob, eccbytes);
1088 oob += eccbytes;
1089
1090 if (chip->ecc.postpad) {
1091 chip->read_buf(mtd, oob, chip->ecc.postpad);
1092 oob += chip->ecc.postpad;
1093 }
1094 }
1095
1096 size = mtd->oobsize - (oob - chip->oob_poi);
1097 if (size)
1098 chip->read_buf(mtd, oob, size);
1099
1100 return 0;
1101}
1102
1da177e4 1103/**
d29ebdbe 1104 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
f5bbdacc
TG
1105 * @mtd: mtd info structure
1106 * @chip: nand chip info structure
1107 * @buf: buffer to store read data
58475fb9 1108 * @page: page number to read
068e3c0a 1109 */
f5bbdacc 1110static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1111 uint8_t *buf, int page)
1da177e4 1112{
f5bbdacc
TG
1113 int i, eccsize = chip->ecc.size;
1114 int eccbytes = chip->ecc.bytes;
1115 int eccsteps = chip->ecc.steps;
1116 uint8_t *p = buf;
4bf63fcb
DW
1117 uint8_t *ecc_calc = chip->buffers->ecccalc;
1118 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1119 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc 1120
46a8cf2d 1121 chip->ecc.read_page_raw(mtd, chip, buf, page);
f5bbdacc
TG
1122
1123 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1124 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1125
1126 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1127 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1128
1129 eccsteps = chip->ecc.steps;
1130 p = buf;
1131
1132 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1133 int stat;
1134
1135 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1136 if (stat < 0)
f5bbdacc
TG
1137 mtd->ecc_stats.failed++;
1138 else
1139 mtd->ecc_stats.corrected += stat;
1140 }
1141 return 0;
22c60f5f 1142}
1da177e4 1143
3d459559
AK
1144/**
1145 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1146 * @mtd: mtd info structure
1147 * @chip: nand chip info structure
17c1d2be
AK
1148 * @data_offs: offset of requested data within the page
1149 * @readlen: data length
1150 * @bufpoi: buffer to store read data
3d459559 1151 */
7351d3a5
FF
1152static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1153 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
3d459559
AK
1154{
1155 int start_step, end_step, num_steps;
1156 uint32_t *eccpos = chip->ecc.layout->eccpos;
1157 uint8_t *p;
1158 int data_col_addr, i, gaps = 0;
1159 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1160 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
7351d3a5 1161 int index = 0;
3d459559
AK
1162
1163 /* Column address wihin the page aligned to ECC size (256bytes). */
1164 start_step = data_offs / chip->ecc.size;
1165 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1166 num_steps = end_step - start_step + 1;
1167
1168 /* Data size aligned to ECC ecc.size*/
1169 datafrag_len = num_steps * chip->ecc.size;
1170 eccfrag_len = num_steps * chip->ecc.bytes;
1171
1172 data_col_addr = start_step * chip->ecc.size;
1173 /* If we read not a page aligned data */
1174 if (data_col_addr != 0)
1175 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1176
1177 p = bufpoi + data_col_addr;
1178 chip->read_buf(mtd, p, datafrag_len);
1179
1180 /* Calculate ECC */
1181 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1182 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1183
1184 /* The performance is faster if to position offsets
1185 according to ecc.pos. Let make sure here that
1186 there are no gaps in ecc positions */
1187 for (i = 0; i < eccfrag_len - 1; i++) {
1188 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1189 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1190 gaps = 1;
1191 break;
1192 }
1193 }
1194 if (gaps) {
1195 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1196 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1197 } else {
1198 /* send the command to read the particular ecc bytes */
1199 /* take care about buswidth alignment in read_buf */
7351d3a5
FF
1200 index = start_step * chip->ecc.bytes;
1201
1202 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1203 aligned_len = eccfrag_len;
7351d3a5 1204 if (eccpos[index] & (busw - 1))
3d459559 1205 aligned_len++;
7351d3a5 1206 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1207 aligned_len++;
1208
7351d3a5
FF
1209 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1210 mtd->writesize + aligned_pos, -1);
3d459559
AK
1211 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1212 }
1213
1214 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1215 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1216
1217 p = bufpoi + data_col_addr;
1218 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1219 int stat;
1220
7351d3a5
FF
1221 stat = chip->ecc.correct(mtd, p,
1222 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
12c8eb98 1223 if (stat < 0)
3d459559
AK
1224 mtd->ecc_stats.failed++;
1225 else
1226 mtd->ecc_stats.corrected += stat;
1227 }
1228 return 0;
1229}
1230
068e3c0a 1231/**
d29ebdbe 1232 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
f5bbdacc
TG
1233 * @mtd: mtd info structure
1234 * @chip: nand chip info structure
1235 * @buf: buffer to store read data
58475fb9 1236 * @page: page number to read
068e3c0a 1237 *
f5bbdacc 1238 * Not for syndrome calculating ecc controllers which need a special oob layout
068e3c0a 1239 */
f5bbdacc 1240static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1241 uint8_t *buf, int page)
1da177e4 1242{
f5bbdacc
TG
1243 int i, eccsize = chip->ecc.size;
1244 int eccbytes = chip->ecc.bytes;
1245 int eccsteps = chip->ecc.steps;
1246 uint8_t *p = buf;
4bf63fcb
DW
1247 uint8_t *ecc_calc = chip->buffers->ecccalc;
1248 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1249 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc
TG
1250
1251 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1252 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1253 chip->read_buf(mtd, p, eccsize);
1254 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1255 }
f75e5097 1256 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1257
f5bbdacc 1258 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1259 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1260
f5bbdacc
TG
1261 eccsteps = chip->ecc.steps;
1262 p = buf;
61b03bd7 1263
f5bbdacc
TG
1264 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1265 int stat;
1da177e4 1266
f5bbdacc 1267 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1268 if (stat < 0)
f5bbdacc
TG
1269 mtd->ecc_stats.failed++;
1270 else
1271 mtd->ecc_stats.corrected += stat;
1272 }
1273 return 0;
1274}
1da177e4 1275
6e0cb135
SN
1276/**
1277 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1278 * @mtd: mtd info structure
1279 * @chip: nand chip info structure
1280 * @buf: buffer to store read data
58475fb9 1281 * @page: page number to read
6e0cb135
SN
1282 *
1283 * Hardware ECC for large page chips, require OOB to be read first.
1284 * For this ECC mode, the write_page method is re-used from ECC_HW.
1285 * These methods read/write ECC from the OOB area, unlike the
1286 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1287 * "infix ECC" scheme and reads/writes ECC from the data area, by
1288 * overwriting the NAND manufacturer bad block markings.
1289 */
1290static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1291 struct nand_chip *chip, uint8_t *buf, int page)
1292{
1293 int i, eccsize = chip->ecc.size;
1294 int eccbytes = chip->ecc.bytes;
1295 int eccsteps = chip->ecc.steps;
1296 uint8_t *p = buf;
1297 uint8_t *ecc_code = chip->buffers->ecccode;
1298 uint32_t *eccpos = chip->ecc.layout->eccpos;
1299 uint8_t *ecc_calc = chip->buffers->ecccalc;
1300
1301 /* Read the OOB area first */
1302 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1303 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1304 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1305
1306 for (i = 0; i < chip->ecc.total; i++)
1307 ecc_code[i] = chip->oob_poi[eccpos[i]];
1308
1309 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1310 int stat;
1311
1312 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1313 chip->read_buf(mtd, p, eccsize);
1314 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1315
1316 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1317 if (stat < 0)
1318 mtd->ecc_stats.failed++;
1319 else
1320 mtd->ecc_stats.corrected += stat;
1321 }
1322 return 0;
1323}
1324
f5bbdacc 1325/**
d29ebdbe 1326 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
f5bbdacc
TG
1327 * @mtd: mtd info structure
1328 * @chip: nand chip info structure
1329 * @buf: buffer to store read data
58475fb9 1330 * @page: page number to read
f5bbdacc
TG
1331 *
1332 * The hw generator calculates the error syndrome automatically. Therefor
f75e5097 1333 * we need a special oob layout and handling.
f5bbdacc
TG
1334 */
1335static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1336 uint8_t *buf, int page)
f5bbdacc
TG
1337{
1338 int i, eccsize = chip->ecc.size;
1339 int eccbytes = chip->ecc.bytes;
1340 int eccsteps = chip->ecc.steps;
1341 uint8_t *p = buf;
f75e5097 1342 uint8_t *oob = chip->oob_poi;
1da177e4 1343
f5bbdacc
TG
1344 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1345 int stat;
61b03bd7 1346
f5bbdacc
TG
1347 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1348 chip->read_buf(mtd, p, eccsize);
1da177e4 1349
f5bbdacc
TG
1350 if (chip->ecc.prepad) {
1351 chip->read_buf(mtd, oob, chip->ecc.prepad);
1352 oob += chip->ecc.prepad;
1353 }
1da177e4 1354
f5bbdacc
TG
1355 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1356 chip->read_buf(mtd, oob, eccbytes);
1357 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1358
c32b8dcc 1359 if (stat < 0)
f5bbdacc 1360 mtd->ecc_stats.failed++;
61b03bd7 1361 else
f5bbdacc 1362 mtd->ecc_stats.corrected += stat;
61b03bd7 1363
f5bbdacc 1364 oob += eccbytes;
1da177e4 1365
f5bbdacc
TG
1366 if (chip->ecc.postpad) {
1367 chip->read_buf(mtd, oob, chip->ecc.postpad);
1368 oob += chip->ecc.postpad;
61b03bd7 1369 }
f5bbdacc 1370 }
1da177e4 1371
f5bbdacc 1372 /* Calculate remaining oob bytes */
7e4178f9 1373 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1374 if (i)
1375 chip->read_buf(mtd, oob, i);
61b03bd7 1376
f5bbdacc
TG
1377 return 0;
1378}
1da177e4 1379
f5bbdacc 1380/**
8593fbc6
TG
1381 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1382 * @chip: nand chip structure
844d3b42 1383 * @oob: oob destination address
8593fbc6 1384 * @ops: oob ops structure
7014568b 1385 * @len: size of oob to transfer
8593fbc6
TG
1386 */
1387static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1388 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1389{
f8ac0414 1390 switch (ops->mode) {
8593fbc6
TG
1391
1392 case MTD_OOB_PLACE:
1393 case MTD_OOB_RAW:
1394 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1395 return oob + len;
1396
1397 case MTD_OOB_AUTO: {
1398 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1399 uint32_t boffs = 0, roffs = ops->ooboffs;
1400 size_t bytes = 0;
8593fbc6 1401
f8ac0414 1402 for (; free->length && len; free++, len -= bytes) {
7bc3312b
TG
1403 /* Read request not from offset 0 ? */
1404 if (unlikely(roffs)) {
1405 if (roffs >= free->length) {
1406 roffs -= free->length;
1407 continue;
1408 }
1409 boffs = free->offset + roffs;
1410 bytes = min_t(size_t, len,
1411 (free->length - roffs));
1412 roffs = 0;
1413 } else {
1414 bytes = min_t(size_t, len, free->length);
1415 boffs = free->offset;
1416 }
1417 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1418 oob += bytes;
1419 }
1420 return oob;
1421 }
1422 default:
1423 BUG();
1424 }
1425 return NULL;
1426}
1427
1428/**
1429 * nand_do_read_ops - [Internal] Read data with ECC
f5bbdacc
TG
1430 *
1431 * @mtd: MTD device structure
1432 * @from: offset to read from
844d3b42 1433 * @ops: oob ops structure
f5bbdacc
TG
1434 *
1435 * Internal function. Called with chip held.
1436 */
8593fbc6
TG
1437static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1438 struct mtd_oob_ops *ops)
f5bbdacc
TG
1439{
1440 int chipnr, page, realpage, col, bytes, aligned;
1441 struct nand_chip *chip = mtd->priv;
1442 struct mtd_ecc_stats stats;
1443 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1444 int sndcmd = 1;
1445 int ret = 0;
8593fbc6 1446 uint32_t readlen = ops->len;
7014568b 1447 uint32_t oobreadlen = ops->ooblen;
9aca334e
ML
1448 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1449 mtd->oobavail : mtd->oobsize;
1450
8593fbc6 1451 uint8_t *bufpoi, *oob, *buf;
1da177e4 1452
f5bbdacc 1453 stats = mtd->ecc_stats;
1da177e4 1454
f5bbdacc
TG
1455 chipnr = (int)(from >> chip->chip_shift);
1456 chip->select_chip(mtd, chipnr);
61b03bd7 1457
f5bbdacc
TG
1458 realpage = (int)(from >> chip->page_shift);
1459 page = realpage & chip->pagemask;
1da177e4 1460
f5bbdacc 1461 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1462
8593fbc6
TG
1463 buf = ops->datbuf;
1464 oob = ops->oobbuf;
1465
f8ac0414 1466 while (1) {
f5bbdacc
TG
1467 bytes = min(mtd->writesize - col, readlen);
1468 aligned = (bytes == mtd->writesize);
61b03bd7 1469
f5bbdacc 1470 /* Is the current page in the buffer ? */
8593fbc6 1471 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1472 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1473
f5bbdacc
TG
1474 if (likely(sndcmd)) {
1475 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1476 sndcmd = 0;
1da177e4 1477 }
1da177e4 1478
f5bbdacc 1479 /* Now read the page into the buffer */
956e944c 1480 if (unlikely(ops->mode == MTD_OOB_RAW))
46a8cf2d
SN
1481 ret = chip->ecc.read_page_raw(mtd, chip,
1482 bufpoi, page);
3d459559 1483 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
7351d3a5
FF
1484 ret = chip->ecc.read_subpage(mtd, chip,
1485 col, bytes, bufpoi);
956e944c 1486 else
46a8cf2d
SN
1487 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1488 page);
f5bbdacc 1489 if (ret < 0)
1da177e4 1490 break;
f5bbdacc
TG
1491
1492 /* Transfer not aligned data */
1493 if (!aligned) {
c1194c79
AB
1494 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1495 !(mtd->ecc_stats.failed - stats.failed))
3d459559 1496 chip->pagebuf = realpage;
4bf63fcb 1497 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1498 }
1499
8593fbc6
TG
1500 buf += bytes;
1501
1502 if (unlikely(oob)) {
9aca334e 1503
b64d39d8
ML
1504 int toread = min(oobreadlen, max_oobsize);
1505
1506 if (toread) {
1507 oob = nand_transfer_oob(chip,
1508 oob, ops, toread);
1509 oobreadlen -= toread;
1510 }
8593fbc6
TG
1511 }
1512
f5bbdacc
TG
1513 if (!(chip->options & NAND_NO_READRDY)) {
1514 /*
1515 * Apply delay or wait for ready/busy pin. Do
1516 * this before the AUTOINCR check, so no
1517 * problems arise if a chip which does auto
1518 * increment is marked as NOAUTOINCR by the
1519 * board driver.
1520 */
1521 if (!chip->dev_ready)
1522 udelay(chip->chip_delay);
1523 else
1524 nand_wait_ready(mtd);
1da177e4 1525 }
8593fbc6 1526 } else {
4bf63fcb 1527 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6
TG
1528 buf += bytes;
1529 }
1da177e4 1530
f5bbdacc 1531 readlen -= bytes;
61b03bd7 1532
f5bbdacc 1533 if (!readlen)
61b03bd7 1534 break;
1da177e4
LT
1535
1536 /* For subsequent reads align to page boundary. */
1537 col = 0;
1538 /* Increment page address */
1539 realpage++;
1540
ace4dfee 1541 page = realpage & chip->pagemask;
1da177e4
LT
1542 /* Check, if we cross a chip boundary */
1543 if (!page) {
1544 chipnr++;
ace4dfee
TG
1545 chip->select_chip(mtd, -1);
1546 chip->select_chip(mtd, chipnr);
1da177e4 1547 }
f5bbdacc 1548
61b03bd7
TG
1549 /* Check, if the chip supports auto page increment
1550 * or if we have hit a block boundary.
e0c7d767 1551 */
f5bbdacc 1552 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
61b03bd7 1553 sndcmd = 1;
1da177e4
LT
1554 }
1555
8593fbc6 1556 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1557 if (oob)
1558 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1559
f5bbdacc
TG
1560 if (ret)
1561 return ret;
1562
9a1fcdfd
TG
1563 if (mtd->ecc_stats.failed - stats.failed)
1564 return -EBADMSG;
1565
1566 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
f5bbdacc
TG
1567}
1568
1569/**
25985edc 1570 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
f5bbdacc
TG
1571 * @mtd: MTD device structure
1572 * @from: offset to read from
1573 * @len: number of bytes to read
1574 * @retlen: pointer to variable to store the number of read bytes
1575 * @buf: the databuffer to put data
1576 *
1577 * Get hold of the chip and call nand_do_read
1578 */
1579static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1580 size_t *retlen, uint8_t *buf)
1581{
8593fbc6 1582 struct nand_chip *chip = mtd->priv;
f5bbdacc
TG
1583 int ret;
1584
f5bbdacc
TG
1585 /* Do not allow reads past end of device */
1586 if ((from + len) > mtd->size)
1587 return -EINVAL;
1588 if (!len)
1589 return 0;
1590
8593fbc6 1591 nand_get_device(chip, mtd, FL_READING);
f5bbdacc 1592
8593fbc6
TG
1593 chip->ops.len = len;
1594 chip->ops.datbuf = buf;
1595 chip->ops.oobbuf = NULL;
1596
1597 ret = nand_do_read_ops(mtd, from, &chip->ops);
f5bbdacc 1598
7fd5aecc
RP
1599 *retlen = chip->ops.retlen;
1600
f5bbdacc
TG
1601 nand_release_device(mtd);
1602
1603 return ret;
1da177e4
LT
1604}
1605
7bc3312b
TG
1606/**
1607 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1608 * @mtd: mtd info structure
1609 * @chip: nand chip info structure
1610 * @page: page number to read
1611 * @sndcmd: flag whether to issue read command or not
1612 */
1613static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1614 int page, int sndcmd)
1615{
1616 if (sndcmd) {
1617 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1618 sndcmd = 0;
1619 }
1620 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1621 return sndcmd;
1622}
1623
1624/**
1625 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1626 * with syndromes
1627 * @mtd: mtd info structure
1628 * @chip: nand chip info structure
1629 * @page: page number to read
1630 * @sndcmd: flag whether to issue read command or not
1631 */
1632static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1633 int page, int sndcmd)
1634{
1635 uint8_t *buf = chip->oob_poi;
1636 int length = mtd->oobsize;
1637 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1638 int eccsize = chip->ecc.size;
1639 uint8_t *bufpoi = buf;
1640 int i, toread, sndrnd = 0, pos;
1641
1642 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1643 for (i = 0; i < chip->ecc.steps; i++) {
1644 if (sndrnd) {
1645 pos = eccsize + i * (eccsize + chunk);
1646 if (mtd->writesize > 512)
1647 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1648 else
1649 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1650 } else
1651 sndrnd = 1;
1652 toread = min_t(int, length, chunk);
1653 chip->read_buf(mtd, bufpoi, toread);
1654 bufpoi += toread;
1655 length -= toread;
1656 }
1657 if (length > 0)
1658 chip->read_buf(mtd, bufpoi, length);
1659
1660 return 1;
1661}
1662
1663/**
1664 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1665 * @mtd: mtd info structure
1666 * @chip: nand chip info structure
1667 * @page: page number to write
1668 */
1669static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1670 int page)
1671{
1672 int status = 0;
1673 const uint8_t *buf = chip->oob_poi;
1674 int length = mtd->oobsize;
1675
1676 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1677 chip->write_buf(mtd, buf, length);
1678 /* Send command to program the OOB data */
1679 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1680
1681 status = chip->waitfunc(mtd, chip);
1682
0d420f9d 1683 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1684}
1685
1686/**
1687 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1688 * with syndrome - only for large page flash !
1689 * @mtd: mtd info structure
1690 * @chip: nand chip info structure
1691 * @page: page number to write
1692 */
1693static int nand_write_oob_syndrome(struct mtd_info *mtd,
1694 struct nand_chip *chip, int page)
1695{
1696 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1697 int eccsize = chip->ecc.size, length = mtd->oobsize;
1698 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1699 const uint8_t *bufpoi = chip->oob_poi;
1700
1701 /*
1702 * data-ecc-data-ecc ... ecc-oob
1703 * or
1704 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1705 */
1706 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1707 pos = steps * (eccsize + chunk);
1708 steps = 0;
1709 } else
8b0036ee 1710 pos = eccsize;
7bc3312b
TG
1711
1712 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1713 for (i = 0; i < steps; i++) {
1714 if (sndcmd) {
1715 if (mtd->writesize <= 512) {
1716 uint32_t fill = 0xFFFFFFFF;
1717
1718 len = eccsize;
1719 while (len > 0) {
1720 int num = min_t(int, len, 4);
1721 chip->write_buf(mtd, (uint8_t *)&fill,
1722 num);
1723 len -= num;
1724 }
1725 } else {
1726 pos = eccsize + i * (eccsize + chunk);
1727 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1728 }
1729 } else
1730 sndcmd = 1;
1731 len = min_t(int, length, chunk);
1732 chip->write_buf(mtd, bufpoi, len);
1733 bufpoi += len;
1734 length -= len;
1735 }
1736 if (length > 0)
1737 chip->write_buf(mtd, bufpoi, length);
1738
1739 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1740 status = chip->waitfunc(mtd, chip);
1741
1742 return status & NAND_STATUS_FAIL ? -EIO : 0;
1743}
1744
1da177e4 1745/**
8593fbc6 1746 * nand_do_read_oob - [Intern] NAND read out-of-band
1da177e4
LT
1747 * @mtd: MTD device structure
1748 * @from: offset to read from
8593fbc6 1749 * @ops: oob operations description structure
1da177e4
LT
1750 *
1751 * NAND read out-of-band data from the spare area
1752 */
8593fbc6
TG
1753static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1754 struct mtd_oob_ops *ops)
1da177e4 1755{
7bc3312b 1756 int page, realpage, chipnr, sndcmd = 1;
ace4dfee 1757 struct nand_chip *chip = mtd->priv;
7314e9e7 1758 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
7014568b
VW
1759 int readlen = ops->ooblen;
1760 int len;
7bc3312b 1761 uint8_t *buf = ops->oobbuf;
61b03bd7 1762
20d8e248 1763 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1764 __func__, (unsigned long long)from, readlen);
1da177e4 1765
03736155 1766 if (ops->mode == MTD_OOB_AUTO)
7014568b 1767 len = chip->ecc.layout->oobavail;
03736155
AH
1768 else
1769 len = mtd->oobsize;
1770
1771 if (unlikely(ops->ooboffs >= len)) {
20d8e248 1772 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1773 "outside oob\n", __func__);
03736155
AH
1774 return -EINVAL;
1775 }
1776
1777 /* Do not allow reads past end of device */
1778 if (unlikely(from >= mtd->size ||
1779 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1780 (from >> chip->page_shift)) * len)) {
20d8e248 1781 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1782 "of device\n", __func__);
03736155
AH
1783 return -EINVAL;
1784 }
7014568b 1785
7314e9e7 1786 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1787 chip->select_chip(mtd, chipnr);
1da177e4 1788
7314e9e7
TG
1789 /* Shift to get page */
1790 realpage = (int)(from >> chip->page_shift);
1791 page = realpage & chip->pagemask;
1da177e4 1792
f8ac0414 1793 while (1) {
7bc3312b 1794 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
7014568b
VW
1795
1796 len = min(len, readlen);
1797 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1798
7314e9e7
TG
1799 if (!(chip->options & NAND_NO_READRDY)) {
1800 /*
1801 * Apply delay or wait for ready/busy pin. Do this
1802 * before the AUTOINCR check, so no problems arise if a
1803 * chip which does auto increment is marked as
1804 * NOAUTOINCR by the board driver.
19870da7 1805 */
ace4dfee
TG
1806 if (!chip->dev_ready)
1807 udelay(chip->chip_delay);
19870da7
TG
1808 else
1809 nand_wait_ready(mtd);
7314e9e7 1810 }
19870da7 1811
7014568b 1812 readlen -= len;
0d420f9d
SZ
1813 if (!readlen)
1814 break;
1815
7314e9e7
TG
1816 /* Increment page address */
1817 realpage++;
1818
1819 page = realpage & chip->pagemask;
1820 /* Check, if we cross a chip boundary */
1821 if (!page) {
1822 chipnr++;
1823 chip->select_chip(mtd, -1);
1824 chip->select_chip(mtd, chipnr);
1da177e4 1825 }
7314e9e7
TG
1826
1827 /* Check, if the chip supports auto page increment
1828 * or if we have hit a block boundary.
1829 */
1830 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1831 sndcmd = 1;
1da177e4
LT
1832 }
1833
7014568b 1834 ops->oobretlen = ops->ooblen;
1da177e4
LT
1835 return 0;
1836}
1837
1838/**
8593fbc6 1839 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1da177e4 1840 * @mtd: MTD device structure
1da177e4 1841 * @from: offset to read from
8593fbc6 1842 * @ops: oob operation description structure
1da177e4 1843 *
8593fbc6 1844 * NAND read data and/or out-of-band data
1da177e4 1845 */
8593fbc6
TG
1846static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1847 struct mtd_oob_ops *ops)
1da177e4 1848{
ace4dfee 1849 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1850 int ret = -ENOTSUPP;
1851
1852 ops->retlen = 0;
1da177e4
LT
1853
1854 /* Do not allow reads past end of device */
7014568b 1855 if (ops->datbuf && (from + ops->len) > mtd->size) {
20d8e248 1856 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1857 "beyond end of device\n", __func__);
1da177e4
LT
1858 return -EINVAL;
1859 }
1860
ace4dfee 1861 nand_get_device(chip, mtd, FL_READING);
1da177e4 1862
f8ac0414 1863 switch (ops->mode) {
8593fbc6
TG
1864 case MTD_OOB_PLACE:
1865 case MTD_OOB_AUTO:
8593fbc6 1866 case MTD_OOB_RAW:
8593fbc6 1867 break;
1da177e4 1868
8593fbc6
TG
1869 default:
1870 goto out;
1871 }
1da177e4 1872
8593fbc6
TG
1873 if (!ops->datbuf)
1874 ret = nand_do_read_oob(mtd, from, ops);
1875 else
1876 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1877
7351d3a5 1878out:
8593fbc6
TG
1879 nand_release_device(mtd);
1880 return ret;
1881}
61b03bd7 1882
1da177e4 1883
8593fbc6
TG
1884/**
1885 * nand_write_page_raw - [Intern] raw page write function
1886 * @mtd: mtd info structure
1887 * @chip: nand chip info structure
1888 * @buf: data buffer
52ff49df
DB
1889 *
1890 * Not for syndrome calculating ecc controllers, which use a special oob layout
8593fbc6
TG
1891 */
1892static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1893 const uint8_t *buf)
1894{
1895 chip->write_buf(mtd, buf, mtd->writesize);
1896 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4
LT
1897}
1898
52ff49df
DB
1899/**
1900 * nand_write_page_raw_syndrome - [Intern] raw page write function
1901 * @mtd: mtd info structure
1902 * @chip: nand chip info structure
1903 * @buf: data buffer
1904 *
1905 * We need a special oob layout and handling even when ECC isn't checked.
1906 */
7351d3a5
FF
1907static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1908 struct nand_chip *chip,
1909 const uint8_t *buf)
52ff49df
DB
1910{
1911 int eccsize = chip->ecc.size;
1912 int eccbytes = chip->ecc.bytes;
1913 uint8_t *oob = chip->oob_poi;
1914 int steps, size;
1915
1916 for (steps = chip->ecc.steps; steps > 0; steps--) {
1917 chip->write_buf(mtd, buf, eccsize);
1918 buf += eccsize;
1919
1920 if (chip->ecc.prepad) {
1921 chip->write_buf(mtd, oob, chip->ecc.prepad);
1922 oob += chip->ecc.prepad;
1923 }
1924
1925 chip->read_buf(mtd, oob, eccbytes);
1926 oob += eccbytes;
1927
1928 if (chip->ecc.postpad) {
1929 chip->write_buf(mtd, oob, chip->ecc.postpad);
1930 oob += chip->ecc.postpad;
1931 }
1932 }
1933
1934 size = mtd->oobsize - (oob - chip->oob_poi);
1935 if (size)
1936 chip->write_buf(mtd, oob, size);
1937}
9223a456 1938/**
d29ebdbe 1939 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
f75e5097
TG
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1942 * @buf: data buffer
9223a456 1943 */
f75e5097
TG
1944static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1945 const uint8_t *buf)
9223a456 1946{
f75e5097
TG
1947 int i, eccsize = chip->ecc.size;
1948 int eccbytes = chip->ecc.bytes;
1949 int eccsteps = chip->ecc.steps;
4bf63fcb 1950 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1951 const uint8_t *p = buf;
8b099a39 1952 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1953
8593fbc6
TG
1954 /* Software ecc calculation */
1955 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1956 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1957
8593fbc6
TG
1958 for (i = 0; i < chip->ecc.total; i++)
1959 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1960
90424de8 1961 chip->ecc.write_page_raw(mtd, chip, buf);
f75e5097 1962}
9223a456 1963
f75e5097 1964/**
d29ebdbe 1965 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
f75e5097
TG
1966 * @mtd: mtd info structure
1967 * @chip: nand chip info structure
1968 * @buf: data buffer
1969 */
1970static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1971 const uint8_t *buf)
1972{
1973 int i, eccsize = chip->ecc.size;
1974 int eccbytes = chip->ecc.bytes;
1975 int eccsteps = chip->ecc.steps;
4bf63fcb 1976 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1977 const uint8_t *p = buf;
8b099a39 1978 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1979
f75e5097
TG
1980 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1981 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1982 chip->write_buf(mtd, p, eccsize);
f75e5097 1983 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1984 }
1985
f75e5097
TG
1986 for (i = 0; i < chip->ecc.total; i++)
1987 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1988
1989 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
9223a456
TG
1990}
1991
61b03bd7 1992/**
d29ebdbe 1993 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
f75e5097
TG
1994 * @mtd: mtd info structure
1995 * @chip: nand chip info structure
1996 * @buf: data buffer
1da177e4 1997 *
f75e5097
TG
1998 * The hw generator calculates the error syndrome automatically. Therefor
1999 * we need a special oob layout and handling.
2000 */
2001static void nand_write_page_syndrome(struct mtd_info *mtd,
2002 struct nand_chip *chip, const uint8_t *buf)
1da177e4 2003{
f75e5097
TG
2004 int i, eccsize = chip->ecc.size;
2005 int eccbytes = chip->ecc.bytes;
2006 int eccsteps = chip->ecc.steps;
2007 const uint8_t *p = buf;
2008 uint8_t *oob = chip->oob_poi;
1da177e4 2009
f75e5097 2010 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2011
f75e5097
TG
2012 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2013 chip->write_buf(mtd, p, eccsize);
61b03bd7 2014
f75e5097
TG
2015 if (chip->ecc.prepad) {
2016 chip->write_buf(mtd, oob, chip->ecc.prepad);
2017 oob += chip->ecc.prepad;
2018 }
2019
2020 chip->ecc.calculate(mtd, p, oob);
2021 chip->write_buf(mtd, oob, eccbytes);
2022 oob += eccbytes;
2023
2024 if (chip->ecc.postpad) {
2025 chip->write_buf(mtd, oob, chip->ecc.postpad);
2026 oob += chip->ecc.postpad;
1da177e4 2027 }
1da177e4 2028 }
f75e5097
TG
2029
2030 /* Calculate remaining oob bytes */
7e4178f9 2031 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2032 if (i)
2033 chip->write_buf(mtd, oob, i);
2034}
2035
2036/**
956e944c 2037 * nand_write_page - [REPLACEABLE] write one page
f75e5097
TG
2038 * @mtd: MTD device structure
2039 * @chip: NAND chip descriptor
2040 * @buf: the data to write
2041 * @page: page number to write
2042 * @cached: cached programming
efbfe96c 2043 * @raw: use _raw version of write_page
f75e5097
TG
2044 */
2045static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
956e944c 2046 const uint8_t *buf, int page, int cached, int raw)
f75e5097
TG
2047{
2048 int status;
2049
2050 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2051
956e944c
DW
2052 if (unlikely(raw))
2053 chip->ecc.write_page_raw(mtd, chip, buf);
2054 else
2055 chip->ecc.write_page(mtd, chip, buf);
f75e5097
TG
2056
2057 /*
2058 * Cached progamming disabled for now, Not sure if its worth the
2059 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2060 */
2061 cached = 0;
2062
2063 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2064
2065 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2066 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2067 /*
2068 * See if operation failed and additional status checks are
2069 * available
2070 */
2071 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2072 status = chip->errstat(mtd, chip, FL_WRITING, status,
2073 page);
2074
2075 if (status & NAND_STATUS_FAIL)
2076 return -EIO;
2077 } else {
2078 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2079 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2080 }
2081
2082#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2083 /* Send command to read back the data */
2084 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2085
2086 if (chip->verify_buf(mtd, buf, mtd->writesize))
2087 return -EIO;
2088#endif
2089 return 0;
1da177e4
LT
2090}
2091
8593fbc6
TG
2092/**
2093 * nand_fill_oob - [Internal] Transfer client buffer to oob
2094 * @chip: nand chip structure
2095 * @oob: oob data buffer
b6d676db 2096 * @len: oob data write length
8593fbc6
TG
2097 * @ops: oob ops structure
2098 */
782ce79a
ML
2099static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2100 struct mtd_oob_ops *ops)
8593fbc6 2101{
f8ac0414 2102 switch (ops->mode) {
8593fbc6
TG
2103
2104 case MTD_OOB_PLACE:
2105 case MTD_OOB_RAW:
2106 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2107 return oob + len;
2108
2109 case MTD_OOB_AUTO: {
2110 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2111 uint32_t boffs = 0, woffs = ops->ooboffs;
2112 size_t bytes = 0;
8593fbc6 2113
f8ac0414 2114 for (; free->length && len; free++, len -= bytes) {
7bc3312b
TG
2115 /* Write request not from offset 0 ? */
2116 if (unlikely(woffs)) {
2117 if (woffs >= free->length) {
2118 woffs -= free->length;
2119 continue;
2120 }
2121 boffs = free->offset + woffs;
2122 bytes = min_t(size_t, len,
2123 (free->length - woffs));
2124 woffs = 0;
2125 } else {
2126 bytes = min_t(size_t, len, free->length);
2127 boffs = free->offset;
2128 }
8b0036ee 2129 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2130 oob += bytes;
2131 }
2132 return oob;
2133 }
2134 default:
2135 BUG();
2136 }
2137 return NULL;
2138}
2139
f8ac0414 2140#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2141
2142/**
8593fbc6 2143 * nand_do_write_ops - [Internal] NAND write with ECC
1da177e4
LT
2144 * @mtd: MTD device structure
2145 * @to: offset to write to
8593fbc6 2146 * @ops: oob operations description structure
1da177e4
LT
2147 *
2148 * NAND write with ECC
2149 */
8593fbc6
TG
2150static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2151 struct mtd_oob_ops *ops)
1da177e4 2152{
29072b96 2153 int chipnr, realpage, page, blockmask, column;
ace4dfee 2154 struct nand_chip *chip = mtd->priv;
8593fbc6 2155 uint32_t writelen = ops->len;
782ce79a
ML
2156
2157 uint32_t oobwritelen = ops->ooblen;
2158 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2159 mtd->oobavail : mtd->oobsize;
2160
8593fbc6
TG
2161 uint8_t *oob = ops->oobbuf;
2162 uint8_t *buf = ops->datbuf;
29072b96 2163 int ret, subpage;
1da177e4 2164
8593fbc6 2165 ops->retlen = 0;
29072b96
TG
2166 if (!writelen)
2167 return 0;
1da177e4 2168
61b03bd7 2169 /* reject writes, which are not page aligned */
8593fbc6 2170 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
20d8e248 2171 printk(KERN_NOTICE "%s: Attempt to write not "
2172 "page aligned data\n", __func__);
1da177e4
LT
2173 return -EINVAL;
2174 }
2175
29072b96
TG
2176 column = to & (mtd->writesize - 1);
2177 subpage = column || (writelen & (mtd->writesize - 1));
2178
2179 if (subpage && oob)
2180 return -EINVAL;
1da177e4 2181
6a930961
TG
2182 chipnr = (int)(to >> chip->chip_shift);
2183 chip->select_chip(mtd, chipnr);
2184
1da177e4
LT
2185 /* Check, if it is write protected */
2186 if (nand_check_wp(mtd))
8593fbc6 2187 return -EIO;
1da177e4 2188
f75e5097
TG
2189 realpage = (int)(to >> chip->page_shift);
2190 page = realpage & chip->pagemask;
2191 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2192
2193 /* Invalidate the page cache, when we write to the cached page */
2194 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2195 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2196 chip->pagebuf = -1;
61b03bd7 2197
7dcdcbef
DW
2198 /* If we're not given explicit OOB data, let it be 0xFF */
2199 if (likely(!oob))
2200 memset(chip->oob_poi, 0xff, mtd->oobsize);
61b03bd7 2201
782ce79a 2202 /* Don't allow multipage oob writes with offset */
cdcf12b2 2203 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
782ce79a
ML
2204 return -EINVAL;
2205
f8ac0414 2206 while (1) {
29072b96 2207 int bytes = mtd->writesize;
f75e5097 2208 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2209 uint8_t *wbuf = buf;
2210
2211 /* Partial page write ? */
2212 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2213 cached = 0;
2214 bytes = min_t(int, bytes - column, (int) writelen);
2215 chip->pagebuf = -1;
2216 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2217 memcpy(&chip->buffers->databuf[column], buf, bytes);
2218 wbuf = chip->buffers->databuf;
2219 }
1da177e4 2220
782ce79a
ML
2221 if (unlikely(oob)) {
2222 size_t len = min(oobwritelen, oobmaxlen);
2223 oob = nand_fill_oob(chip, oob, len, ops);
2224 oobwritelen -= len;
2225 }
8593fbc6 2226
29072b96 2227 ret = chip->write_page(mtd, chip, wbuf, page, cached,
956e944c 2228 (ops->mode == MTD_OOB_RAW));
f75e5097
TG
2229 if (ret)
2230 break;
2231
2232 writelen -= bytes;
2233 if (!writelen)
2234 break;
2235
29072b96 2236 column = 0;
f75e5097
TG
2237 buf += bytes;
2238 realpage++;
2239
2240 page = realpage & chip->pagemask;
2241 /* Check, if we cross a chip boundary */
2242 if (!page) {
2243 chipnr++;
2244 chip->select_chip(mtd, -1);
2245 chip->select_chip(mtd, chipnr);
1da177e4
LT
2246 }
2247 }
8593fbc6 2248
8593fbc6 2249 ops->retlen = ops->len - writelen;
7014568b
VW
2250 if (unlikely(oob))
2251 ops->oobretlen = ops->ooblen;
1da177e4
LT
2252 return ret;
2253}
2254
2af7c653
SK
2255/**
2256 * panic_nand_write - [MTD Interface] NAND write with ECC
2257 * @mtd: MTD device structure
2258 * @to: offset to write to
2259 * @len: number of bytes to write
2260 * @retlen: pointer to variable to store the number of written bytes
2261 * @buf: the data to write
2262 *
2263 * NAND write with ECC. Used when performing writes in interrupt context, this
2264 * may for example be called by mtdoops when writing an oops while in panic.
2265 */
2266static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2267 size_t *retlen, const uint8_t *buf)
2268{
2269 struct nand_chip *chip = mtd->priv;
2270 int ret;
2271
2272 /* Do not allow reads past end of device */
2273 if ((to + len) > mtd->size)
2274 return -EINVAL;
2275 if (!len)
2276 return 0;
2277
2278 /* Wait for the device to get ready. */
2279 panic_nand_wait(mtd, chip, 400);
2280
2281 /* Grab the device. */
2282 panic_nand_get_device(chip, mtd, FL_WRITING);
2283
2284 chip->ops.len = len;
2285 chip->ops.datbuf = (uint8_t *)buf;
2286 chip->ops.oobbuf = NULL;
2287
2288 ret = nand_do_write_ops(mtd, to, &chip->ops);
2289
2290 *retlen = chip->ops.retlen;
2291 return ret;
2292}
2293
f75e5097 2294/**
8593fbc6 2295 * nand_write - [MTD Interface] NAND write with ECC
f75e5097 2296 * @mtd: MTD device structure
f75e5097
TG
2297 * @to: offset to write to
2298 * @len: number of bytes to write
8593fbc6
TG
2299 * @retlen: pointer to variable to store the number of written bytes
2300 * @buf: the data to write
f75e5097 2301 *
8593fbc6 2302 * NAND write with ECC
f75e5097 2303 */
8593fbc6
TG
2304static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2305 size_t *retlen, const uint8_t *buf)
f75e5097
TG
2306{
2307 struct nand_chip *chip = mtd->priv;
f75e5097
TG
2308 int ret;
2309
8593fbc6
TG
2310 /* Do not allow reads past end of device */
2311 if ((to + len) > mtd->size)
f75e5097 2312 return -EINVAL;
8593fbc6
TG
2313 if (!len)
2314 return 0;
f75e5097 2315
7bc3312b 2316 nand_get_device(chip, mtd, FL_WRITING);
f75e5097 2317
8593fbc6
TG
2318 chip->ops.len = len;
2319 chip->ops.datbuf = (uint8_t *)buf;
2320 chip->ops.oobbuf = NULL;
f75e5097 2321
8593fbc6 2322 ret = nand_do_write_ops(mtd, to, &chip->ops);
f75e5097 2323
7fd5aecc
RP
2324 *retlen = chip->ops.retlen;
2325
f75e5097 2326 nand_release_device(mtd);
8593fbc6 2327
8593fbc6 2328 return ret;
f75e5097 2329}
7314e9e7 2330
1da177e4 2331/**
8593fbc6 2332 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1da177e4
LT
2333 * @mtd: MTD device structure
2334 * @to: offset to write to
8593fbc6 2335 * @ops: oob operation description structure
1da177e4
LT
2336 *
2337 * NAND write out-of-band
2338 */
8593fbc6
TG
2339static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2340 struct mtd_oob_ops *ops)
1da177e4 2341{
03736155 2342 int chipnr, page, status, len;
ace4dfee 2343 struct nand_chip *chip = mtd->priv;
1da177e4 2344
20d8e248 2345 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2346 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2347
03736155
AH
2348 if (ops->mode == MTD_OOB_AUTO)
2349 len = chip->ecc.layout->oobavail;
2350 else
2351 len = mtd->oobsize;
2352
1da177e4 2353 /* Do not allow write past end of page */
03736155 2354 if ((ops->ooboffs + ops->ooblen) > len) {
20d8e248 2355 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2356 "past end of page\n", __func__);
1da177e4
LT
2357 return -EINVAL;
2358 }
2359
03736155 2360 if (unlikely(ops->ooboffs >= len)) {
20d8e248 2361 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2362 "write outside oob\n", __func__);
03736155
AH
2363 return -EINVAL;
2364 }
2365
775adc3d 2366 /* Do not allow write past end of device */
03736155
AH
2367 if (unlikely(to >= mtd->size ||
2368 ops->ooboffs + ops->ooblen >
2369 ((mtd->size >> chip->page_shift) -
2370 (to >> chip->page_shift)) * len)) {
20d8e248 2371 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2372 "end of device\n", __func__);
03736155
AH
2373 return -EINVAL;
2374 }
2375
7314e9e7 2376 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2377 chip->select_chip(mtd, chipnr);
1da177e4 2378
7314e9e7
TG
2379 /* Shift to get page */
2380 page = (int)(to >> chip->page_shift);
2381
2382 /*
2383 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2384 * of my DiskOnChip 2000 test units) will clear the whole data page too
2385 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2386 * it in the doc2000 driver in August 1999. dwmw2.
2387 */
ace4dfee 2388 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2389
2390 /* Check, if it is write protected */
2391 if (nand_check_wp(mtd))
8593fbc6 2392 return -EROFS;
61b03bd7 2393
1da177e4 2394 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2395 if (page == chip->pagebuf)
2396 chip->pagebuf = -1;
1da177e4 2397
7bc3312b 2398 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2399 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
7bc3312b
TG
2400 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2401 memset(chip->oob_poi, 0xff, mtd->oobsize);
1da177e4 2402
7bc3312b
TG
2403 if (status)
2404 return status;
1da177e4 2405
7014568b 2406 ops->oobretlen = ops->ooblen;
1da177e4 2407
7bc3312b 2408 return 0;
8593fbc6
TG
2409}
2410
2411/**
2412 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2413 * @mtd: MTD device structure
844d3b42 2414 * @to: offset to write to
8593fbc6
TG
2415 * @ops: oob operation description structure
2416 */
2417static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2418 struct mtd_oob_ops *ops)
2419{
8593fbc6
TG
2420 struct nand_chip *chip = mtd->priv;
2421 int ret = -ENOTSUPP;
2422
2423 ops->retlen = 0;
2424
2425 /* Do not allow writes past end of device */
7014568b 2426 if (ops->datbuf && (to + ops->len) > mtd->size) {
20d8e248 2427 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2428 "end of device\n", __func__);
8593fbc6
TG
2429 return -EINVAL;
2430 }
2431
7bc3312b 2432 nand_get_device(chip, mtd, FL_WRITING);
8593fbc6 2433
f8ac0414 2434 switch (ops->mode) {
8593fbc6
TG
2435 case MTD_OOB_PLACE:
2436 case MTD_OOB_AUTO:
8593fbc6 2437 case MTD_OOB_RAW:
8593fbc6
TG
2438 break;
2439
2440 default:
2441 goto out;
2442 }
2443
2444 if (!ops->datbuf)
2445 ret = nand_do_write_oob(mtd, to, ops);
2446 else
2447 ret = nand_do_write_ops(mtd, to, ops);
2448
7351d3a5 2449out:
1da177e4 2450 nand_release_device(mtd);
1da177e4
LT
2451 return ret;
2452}
2453
1da177e4
LT
2454/**
2455 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2456 * @mtd: MTD device structure
2457 * @page: the page address of the block which will be erased
2458 *
2459 * Standard erase command for NAND chips
2460 */
e0c7d767 2461static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2462{
ace4dfee 2463 struct nand_chip *chip = mtd->priv;
1da177e4 2464 /* Send commands to erase a block */
ace4dfee
TG
2465 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2466 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2467}
2468
2469/**
2470 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2471 * @mtd: MTD device structure
2472 * @page: the page address of the block which will be erased
2473 *
2474 * AND multi block erase command function
2475 * Erase 4 consecutive blocks
2476 */
e0c7d767 2477static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2478{
ace4dfee 2479 struct nand_chip *chip = mtd->priv;
1da177e4 2480 /* Send commands to erase a block */
ace4dfee
TG
2481 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2482 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2483 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2484 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2485 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2486}
2487
2488/**
2489 * nand_erase - [MTD Interface] erase block(s)
2490 * @mtd: MTD device structure
2491 * @instr: erase instruction
2492 *
2493 * Erase one ore more blocks
2494 */
e0c7d767 2495static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2496{
e0c7d767 2497 return nand_erase_nand(mtd, instr, 0);
1da177e4 2498}
61b03bd7 2499
30f464b7 2500#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2501/**
ace4dfee 2502 * nand_erase_nand - [Internal] erase block(s)
1da177e4
LT
2503 * @mtd: MTD device structure
2504 * @instr: erase instruction
2505 * @allowbbt: allow erasing the bbt area
2506 *
2507 * Erase one ore more blocks
2508 */
ace4dfee
TG
2509int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2510 int allowbbt)
1da177e4 2511{
69423d99 2512 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2513 struct nand_chip *chip = mtd->priv;
f8ac0414 2514 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
ace4dfee 2515 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2516 loff_t len;
1da177e4 2517
20d8e248 2518 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2519 __func__, (unsigned long long)instr->addr,
2520 (unsigned long long)instr->len);
1da177e4 2521
6fe5a6ac 2522 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2523 return -EINVAL;
1da177e4 2524
bb0eb217 2525 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1da177e4
LT
2526
2527 /* Grab the lock and see if the device is available */
ace4dfee 2528 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
2529
2530 /* Shift to get first page */
ace4dfee
TG
2531 page = (int)(instr->addr >> chip->page_shift);
2532 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2533
2534 /* Calculate pages in each block */
ace4dfee 2535 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2536
2537 /* Select the NAND device */
ace4dfee 2538 chip->select_chip(mtd, chipnr);
1da177e4 2539
1da177e4
LT
2540 /* Check, if it is write protected */
2541 if (nand_check_wp(mtd)) {
20d8e248 2542 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2543 __func__);
1da177e4
LT
2544 instr->state = MTD_ERASE_FAILED;
2545 goto erase_exit;
2546 }
2547
ace4dfee
TG
2548 /*
2549 * If BBT requires refresh, set the BBT page mask to see if the BBT
2550 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2551 * can not be matched. This is also done when the bbt is actually
2552 * erased to avoid recusrsive updates
2553 */
2554 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2555 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2556
1da177e4
LT
2557 /* Loop through the pages */
2558 len = instr->len;
2559
2560 instr->state = MTD_ERASING;
2561
2562 while (len) {
ace4dfee
TG
2563 /*
2564 * heck if we have a bad block, we do not erase bad blocks !
2565 */
2566 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2567 chip->page_shift, 0, allowbbt)) {
20d8e248 2568 printk(KERN_WARNING "%s: attempt to erase a bad block "
2569 "at page 0x%08x\n", __func__, page);
1da177e4
LT
2570 instr->state = MTD_ERASE_FAILED;
2571 goto erase_exit;
2572 }
61b03bd7 2573
ace4dfee
TG
2574 /*
2575 * Invalidate the page cache, if we erase the block which
2576 * contains the current cached page
2577 */
2578 if (page <= chip->pagebuf && chip->pagebuf <
2579 (page + pages_per_block))
2580 chip->pagebuf = -1;
1da177e4 2581
ace4dfee 2582 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2583
7bc3312b 2584 status = chip->waitfunc(mtd, chip);
1da177e4 2585
ace4dfee
TG
2586 /*
2587 * See if operation failed and additional status checks are
2588 * available
2589 */
2590 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2591 status = chip->errstat(mtd, chip, FL_ERASING,
2592 status, page);
068e3c0a 2593
1da177e4 2594 /* See if block erase succeeded */
a4ab4c5d 2595 if (status & NAND_STATUS_FAIL) {
20d8e248 2596 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2597 "page 0x%08x\n", __func__, page);
1da177e4 2598 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2599 instr->fail_addr =
2600 ((loff_t)page << chip->page_shift);
1da177e4
LT
2601 goto erase_exit;
2602 }
30f464b7 2603
ace4dfee
TG
2604 /*
2605 * If BBT requires refresh, set the BBT rewrite flag to the
2606 * page being erased
2607 */
2608 if (bbt_masked_page != 0xffffffff &&
2609 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2610 rewrite_bbt[chipnr] =
2611 ((loff_t)page << chip->page_shift);
61b03bd7 2612
1da177e4 2613 /* Increment page address and decrement length */
ace4dfee 2614 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2615 page += pages_per_block;
2616
2617 /* Check, if we cross a chip boundary */
ace4dfee 2618 if (len && !(page & chip->pagemask)) {
1da177e4 2619 chipnr++;
ace4dfee
TG
2620 chip->select_chip(mtd, -1);
2621 chip->select_chip(mtd, chipnr);
30f464b7 2622
ace4dfee
TG
2623 /*
2624 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2625 * page mask to see if this BBT should be rewritten
2626 */
2627 if (bbt_masked_page != 0xffffffff &&
2628 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2629 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2630 BBT_PAGE_MASK;
1da177e4
LT
2631 }
2632 }
2633 instr->state = MTD_ERASE_DONE;
2634
7351d3a5 2635erase_exit:
1da177e4
LT
2636
2637 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2638
2639 /* Deselect and wake up anyone waiting on the device */
2640 nand_release_device(mtd);
2641
49defc01
DW
2642 /* Do call back function */
2643 if (!ret)
2644 mtd_erase_callback(instr);
2645
ace4dfee
TG
2646 /*
2647 * If BBT requires refresh and erase was successful, rewrite any
2648 * selected bad block tables
2649 */
2650 if (bbt_masked_page == 0xffffffff || ret)
2651 return ret;
2652
2653 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2654 if (!rewrite_bbt[chipnr])
2655 continue;
2656 /* update the BBT for chip */
20d8e248 2657 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2658 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2659 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
ace4dfee 2660 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2661 }
2662
1da177e4
LT
2663 /* Return more or less happy */
2664 return ret;
2665}
2666
2667/**
2668 * nand_sync - [MTD Interface] sync
2669 * @mtd: MTD device structure
2670 *
2671 * Sync is actually a wait for chip ready function
2672 */
e0c7d767 2673static void nand_sync(struct mtd_info *mtd)
1da177e4 2674{
ace4dfee 2675 struct nand_chip *chip = mtd->priv;
1da177e4 2676
20d8e248 2677 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
1da177e4
LT
2678
2679 /* Grab the lock and see if the device is available */
ace4dfee 2680 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 2681 /* Release it and go back */
e0c7d767 2682 nand_release_device(mtd);
1da177e4
LT
2683}
2684
1da177e4 2685/**
ace4dfee 2686 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
1da177e4 2687 * @mtd: MTD device structure
844d3b42 2688 * @offs: offset relative to mtd start
1da177e4 2689 */
ace4dfee 2690static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4
LT
2691{
2692 /* Check for invalid offset */
ace4dfee 2693 if (offs > mtd->size)
1da177e4 2694 return -EINVAL;
61b03bd7 2695
ace4dfee 2696 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2697}
2698
2699/**
ace4dfee 2700 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
1da177e4
LT
2701 * @mtd: MTD device structure
2702 * @ofs: offset relative to mtd start
2703 */
e0c7d767 2704static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2705{
ace4dfee 2706 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2707 int ret;
2708
f8ac0414
FF
2709 ret = nand_block_isbad(mtd, ofs);
2710 if (ret) {
e0c7d767 2711 /* If it was bad already, return success and do nothing. */
1da177e4
LT
2712 if (ret > 0)
2713 return 0;
e0c7d767
DW
2714 return ret;
2715 }
1da177e4 2716
ace4dfee 2717 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2718}
2719
962034f4
VW
2720/**
2721 * nand_suspend - [MTD Interface] Suspend the NAND flash
2722 * @mtd: MTD device structure
2723 */
2724static int nand_suspend(struct mtd_info *mtd)
2725{
ace4dfee 2726 struct nand_chip *chip = mtd->priv;
962034f4 2727
ace4dfee 2728 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
2729}
2730
2731/**
2732 * nand_resume - [MTD Interface] Resume the NAND flash
2733 * @mtd: MTD device structure
2734 */
2735static void nand_resume(struct mtd_info *mtd)
2736{
ace4dfee 2737 struct nand_chip *chip = mtd->priv;
962034f4 2738
ace4dfee 2739 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2740 nand_release_device(mtd);
2741 else
20d8e248 2742 printk(KERN_ERR "%s called for a chip which is not "
2743 "in suspended state\n", __func__);
962034f4
VW
2744}
2745
7aa65bfd
TG
2746/*
2747 * Set default functions
2748 */
ace4dfee 2749static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2750{
1da177e4 2751 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2752 if (!chip->chip_delay)
2753 chip->chip_delay = 20;
1da177e4
LT
2754
2755 /* check, if a user supplied command function given */
ace4dfee
TG
2756 if (chip->cmdfunc == NULL)
2757 chip->cmdfunc = nand_command;
1da177e4
LT
2758
2759 /* check, if a user supplied wait function given */
ace4dfee
TG
2760 if (chip->waitfunc == NULL)
2761 chip->waitfunc = nand_wait;
2762
2763 if (!chip->select_chip)
2764 chip->select_chip = nand_select_chip;
2765 if (!chip->read_byte)
2766 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2767 if (!chip->read_word)
2768 chip->read_word = nand_read_word;
2769 if (!chip->block_bad)
2770 chip->block_bad = nand_block_bad;
2771 if (!chip->block_markbad)
2772 chip->block_markbad = nand_default_block_markbad;
2773 if (!chip->write_buf)
2774 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2775 if (!chip->read_buf)
2776 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2777 if (!chip->verify_buf)
2778 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2779 if (!chip->scan_bbt)
2780 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2781
2782 if (!chip->controller) {
2783 chip->controller = &chip->hwcontrol;
2784 spin_lock_init(&chip->controller->lock);
2785 init_waitqueue_head(&chip->controller->wq);
2786 }
2787
7aa65bfd
TG
2788}
2789
d1e1f4e4
FF
2790/*
2791 * sanitize ONFI strings so we can safely print them
2792 */
2793static void sanitize_string(uint8_t *s, size_t len)
2794{
2795 ssize_t i;
2796
2797 /* null terminate */
2798 s[len - 1] = 0;
2799
2800 /* remove non printable chars */
2801 for (i = 0; i < len - 1; i++) {
2802 if (s[i] < ' ' || s[i] > 127)
2803 s[i] = '?';
2804 }
2805
2806 /* remove trailing spaces */
2807 strim(s);
2808}
2809
2810static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2811{
2812 int i;
2813 while (len--) {
2814 crc ^= *p++ << 8;
2815 for (i = 0; i < 8; i++)
2816 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2817 }
2818
2819 return crc;
2820}
2821
6fb277ba
FF
2822/*
2823 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2824 */
2825static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2826 int busw)
2827{
2828 struct nand_onfi_params *p = &chip->onfi_params;
2829 int i;
2830 int val;
2831
2832 /* try ONFI for unknow chip or LP */
2833 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2834 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2835 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2836 return 0;
2837
2838 printk(KERN_INFO "ONFI flash detected\n");
2839 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2840 for (i = 0; i < 3; i++) {
2841 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2842 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2843 le16_to_cpu(p->crc)) {
2844 printk(KERN_INFO "ONFI param page %d valid\n", i);
2845 break;
2846 }
2847 }
2848
2849 if (i == 3)
2850 return 0;
2851
2852 /* check version */
2853 val = le16_to_cpu(p->revision);
b7b1a29d
BN
2854 if (val & (1 << 5))
2855 chip->onfi_version = 23;
2856 else if (val & (1 << 4))
6fb277ba
FF
2857 chip->onfi_version = 22;
2858 else if (val & (1 << 3))
2859 chip->onfi_version = 21;
2860 else if (val & (1 << 2))
2861 chip->onfi_version = 20;
b7b1a29d 2862 else if (val & (1 << 1))
6fb277ba 2863 chip->onfi_version = 10;
b7b1a29d
BN
2864 else
2865 chip->onfi_version = 0;
2866
2867 if (!chip->onfi_version) {
2868 printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2869 __func__, val);
2870 return 0;
2871 }
6fb277ba
FF
2872
2873 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2874 sanitize_string(p->model, sizeof(p->model));
2875 if (!mtd->name)
2876 mtd->name = p->model;
2877 mtd->writesize = le32_to_cpu(p->byte_per_page);
2878 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2879 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4ccb3b44 2880 chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
6fb277ba
FF
2881 busw = 0;
2882 if (le16_to_cpu(p->features) & 1)
2883 busw = NAND_BUSWIDTH_16;
2884
2885 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2886 chip->options |= (NAND_NO_READRDY |
2887 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2888
2889 return 1;
2890}
2891
7aa65bfd 2892/*
ace4dfee 2893 * Get the flash and manufacturer id and lookup if the type is supported
7aa65bfd
TG
2894 */
2895static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 2896 struct nand_chip *chip,
7351d3a5
FF
2897 int busw,
2898 int *maf_id, int *dev_id,
5e81e88a 2899 struct nand_flash_dev *type)
7aa65bfd 2900{
d1e1f4e4 2901 int i, maf_idx;
426c457a 2902 u8 id_data[8];
6fb277ba 2903 int ret;
1da177e4
LT
2904
2905 /* Select the device */
ace4dfee 2906 chip->select_chip(mtd, 0);
1da177e4 2907
ef89a880
KB
2908 /*
2909 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2910 * after power-up
2911 */
2912 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2913
1da177e4 2914 /* Send the command for reading device ID */
ace4dfee 2915 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2916
2917 /* Read manufacturer and device IDs */
ace4dfee 2918 *maf_id = chip->read_byte(mtd);
d1e1f4e4 2919 *dev_id = chip->read_byte(mtd);
1da177e4 2920
ed8165c7
BD
2921 /* Try again to make sure, as some systems the bus-hold or other
2922 * interface concerns can cause random data which looks like a
2923 * possibly credible NAND flash to appear. If the two results do
2924 * not match, ignore the device completely.
2925 */
2926
2927 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2928
d1e1f4e4 2929 for (i = 0; i < 2; i++)
426c457a 2930 id_data[i] = chip->read_byte(mtd);
ed8165c7 2931
d1e1f4e4 2932 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
ed8165c7
BD
2933 printk(KERN_INFO "%s: second ID read did not match "
2934 "%02x,%02x against %02x,%02x\n", __func__,
d1e1f4e4 2935 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
2936 return ERR_PTR(-ENODEV);
2937 }
2938
7aa65bfd 2939 if (!type)
5e81e88a
DW
2940 type = nand_flash_ids;
2941
2942 for (; type->name != NULL; type++)
d1e1f4e4 2943 if (*dev_id == type->id)
f8ac0414 2944 break;
5e81e88a 2945
d1e1f4e4
FF
2946 chip->onfi_version = 0;
2947 if (!type->name || !type->pagesize) {
6fb277ba
FF
2948 /* Check is chip is ONFI compliant */
2949 ret = nand_flash_detect_onfi(mtd, chip, busw);
2950 if (ret)
2951 goto ident_done;
d1e1f4e4
FF
2952 }
2953
2954 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2955
2956 /* Read entire ID string */
2957
2958 for (i = 0; i < 8; i++)
2959 id_data[i] = chip->read_byte(mtd);
2960
5e81e88a 2961 if (!type->name)
7aa65bfd
TG
2962 return ERR_PTR(-ENODEV);
2963
ba0251fe
TG
2964 if (!mtd->name)
2965 mtd->name = type->name;
2966
69423d99 2967 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 2968
12a40a57
HS
2969 if (!type->pagesize && chip->init_size) {
2970 /* set the pagesize, oobsize, erasesize by the driver*/
2971 busw = chip->init_size(mtd, chip, id_data);
2972 } else if (!type->pagesize) {
7aa65bfd 2973 int extid;
29072b96 2974 /* The 3rd id byte holds MLC / multichip data */
426c457a 2975 chip->cellinfo = id_data[2];
7aa65bfd 2976 /* The 4th id byte is the important one */
426c457a 2977 extid = id_data[3];
61b03bd7 2978
426c457a
KC
2979 /*
2980 * Field definitions are in the following datasheets:
2981 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
34c5bf6c 2982 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
426c457a
KC
2983 *
2984 * Check for wraparound + Samsung ID + nonzero 6th byte
2985 * to decide what to do.
2986 */
2987 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2988 id_data[0] == NAND_MFR_SAMSUNG &&
cfe3fdad 2989 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
426c457a
KC
2990 id_data[5] != 0x00) {
2991 /* Calc pagesize */
2992 mtd->writesize = 2048 << (extid & 0x03);
2993 extid >>= 2;
2994 /* Calc oobsize */
34c5bf6c
BN
2995 switch (extid & 0x03) {
2996 case 1:
2997 mtd->oobsize = 128;
2998 break;
2999 case 2:
3000 mtd->oobsize = 218;
3001 break;
3002 case 3:
3003 mtd->oobsize = 400;
3004 break;
3005 default:
3006 mtd->oobsize = 436;
3007 break;
3008 }
426c457a
KC
3009 extid >>= 2;
3010 /* Calc blocksize */
3011 mtd->erasesize = (128 * 1024) <<
3012 (((extid >> 1) & 0x04) | (extid & 0x03));
3013 busw = 0;
3014 } else {
3015 /* Calc pagesize */
3016 mtd->writesize = 1024 << (extid & 0x03);
3017 extid >>= 2;
3018 /* Calc oobsize */
3019 mtd->oobsize = (8 << (extid & 0x01)) *
3020 (mtd->writesize >> 9);
3021 extid >>= 2;
3022 /* Calc blocksize. Blocksize is multiples of 64KiB */
3023 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3024 extid >>= 2;
3025 /* Get buswidth information */
3026 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3027 }
7aa65bfd
TG
3028 } else {
3029 /*
ace4dfee 3030 * Old devices have chip data hardcoded in the device id table
7aa65bfd 3031 */
ba0251fe
TG
3032 mtd->erasesize = type->erasesize;
3033 mtd->writesize = type->pagesize;
4cbb9b80 3034 mtd->oobsize = mtd->writesize / 32;
ba0251fe 3035 busw = type->options & NAND_BUSWIDTH_16;
2173bae8
BN
3036
3037 /*
3038 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3039 * some Spansion chips have erasesize that conflicts with size
3040 * listed in nand_ids table
3041 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3042 */
3043 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3044 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3045 id_data[7] == 0x00 && mtd->writesize == 512) {
3046 mtd->erasesize = 128 * 1024;
3047 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3048 }
7aa65bfd 3049 }
d1e1f4e4
FF
3050 /* Get chip options, preserve non chip based options */
3051 chip->options &= ~NAND_CHIPOPTIONS_MSK;
3052 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3053
3054 /* Check if chip is a not a samsung device. Do not clear the
3055 * options for chips which are not having an extended id.
3056 */
3057 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3058 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3059ident_done:
3060
3061 /*
3062 * Set chip as a default. Board drivers can override it, if necessary
3063 */
3064 chip->options |= NAND_NO_AUTOINCR;
1da177e4 3065
7aa65bfd 3066 /* Try to identify manufacturer */
9a909867 3067 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3068 if (nand_manuf_ids[maf_idx].id == *maf_id)
3069 break;
3070 }
0ea4a755 3071
7aa65bfd
TG
3072 /*
3073 * Check, if buswidth is correct. Hardware drivers should set
ace4dfee 3074 * chip correct !
7aa65bfd 3075 */
ace4dfee 3076 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
7aa65bfd
TG
3077 printk(KERN_INFO "NAND device: Manufacturer ID:"
3078 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
d1e1f4e4 3079 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
7aa65bfd 3080 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
ace4dfee 3081 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
7aa65bfd
TG
3082 busw ? 16 : 8);
3083 return ERR_PTR(-EINVAL);
3084 }
61b03bd7 3085
7aa65bfd 3086 /* Calculate the address shift from the page size */
ace4dfee 3087 chip->page_shift = ffs(mtd->writesize) - 1;
7aa65bfd 3088 /* Convert chipsize to number of pages per chip -1. */
ace4dfee 3089 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3090
ace4dfee 3091 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3092 ffs(mtd->erasesize) - 1;
69423d99
AH
3093 if (chip->chipsize & 0xffffffff)
3094 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3095 else {
3096 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3097 chip->chip_shift += 32 - 1;
3098 }
1da177e4 3099
26d9be11
AB
3100 chip->badblockbits = 8;
3101
7aa65bfd 3102 /* Set the bad block position */
065a1ed8 3103 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
c7b28e25 3104 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
065a1ed8
BN
3105 else
3106 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
61b03bd7 3107
b60b08b0
KC
3108 /*
3109 * Bad block marker is stored in the last page of each block
c7b28e25
BN
3110 * on Samsung and Hynix MLC devices; stored in first two pages
3111 * of each block on Micron devices with 2KiB pages and on
13ed7aed
BN
3112 * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3113 * only the first page.
b60b08b0
KC
3114 */
3115 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3116 (*maf_id == NAND_MFR_SAMSUNG ||
3117 *maf_id == NAND_MFR_HYNIX))
5fb1549d 3118 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
c7b28e25
BN
3119 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3120 (*maf_id == NAND_MFR_SAMSUNG ||
3121 *maf_id == NAND_MFR_HYNIX ||
13ed7aed 3122 *maf_id == NAND_MFR_TOSHIBA ||
c7b28e25
BN
3123 *maf_id == NAND_MFR_AMD)) ||
3124 (mtd->writesize == 2048 &&
3125 *maf_id == NAND_MFR_MICRON))
5fb1549d 3126 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
c7b28e25 3127
7aa65bfd 3128 /* Check for AND chips with 4 page planes */
ace4dfee
TG
3129 if (chip->options & NAND_4PAGE_ARRAY)
3130 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 3131 else
ace4dfee 3132 chip->erase_cmd = single_erase_cmd;
7aa65bfd
TG
3133
3134 /* Do not replace user supplied command function ! */
ace4dfee
TG
3135 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3136 chip->cmdfunc = nand_command_lp;
7aa65bfd
TG
3137
3138 printk(KERN_INFO "NAND device: Manufacturer ID:"
d1e1f4e4
FF
3139 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3140 nand_manuf_ids[maf_idx].name,
0b524fb9 3141 chip->onfi_version ? chip->onfi_params.model : type->name);
7aa65bfd
TG
3142
3143 return type;
3144}
3145
7aa65bfd 3146/**
3b85c321
DW
3147 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3148 * @mtd: MTD device structure
3149 * @maxchips: Number of chips to scan for
5e81e88a 3150 * @table: Alternative NAND ID table
7aa65bfd 3151 *
3b85c321
DW
3152 * This is the first phase of the normal nand_scan() function. It
3153 * reads the flash ID and sets up MTD fields accordingly.
7aa65bfd 3154 *
3b85c321 3155 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3156 */
5e81e88a
DW
3157int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3158 struct nand_flash_dev *table)
7aa65bfd 3159{
d1e1f4e4 3160 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3161 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3162 struct nand_flash_dev *type;
3163
7aa65bfd 3164 /* Get buswidth to select the correct functions */
ace4dfee 3165 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3166 /* Set the default functions */
ace4dfee 3167 nand_set_defaults(chip, busw);
7aa65bfd
TG
3168
3169 /* Read the flash type */
7351d3a5
FF
3170 type = nand_get_flash_type(mtd, chip, busw,
3171 &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3172
3173 if (IS_ERR(type)) {
b1c6e6db
BD
3174 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3175 printk(KERN_WARNING "No NAND device found.\n");
ace4dfee 3176 chip->select_chip(mtd, -1);
7aa65bfd 3177 return PTR_ERR(type);
1da177e4
LT
3178 }
3179
7aa65bfd 3180 /* Check for a chip array */
e0c7d767 3181 for (i = 1; i < maxchips; i++) {
ace4dfee 3182 chip->select_chip(mtd, i);
ef89a880
KB
3183 /* See comment in nand_get_flash_type for reset */
3184 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3185 /* Send the command for reading device ID */
ace4dfee 3186 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3187 /* Read manufacturer and device IDs */
ace4dfee 3188 if (nand_maf_id != chip->read_byte(mtd) ||
d1e1f4e4 3189 nand_dev_id != chip->read_byte(mtd))
1da177e4
LT
3190 break;
3191 }
3192 if (i > 1)
3193 printk(KERN_INFO "%d NAND chips detected\n", i);
61b03bd7 3194
1da177e4 3195 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3196 chip->numchips = i;
3197 mtd->size = i * chip->chipsize;
7aa65bfd 3198
3b85c321
DW
3199 return 0;
3200}
7351d3a5 3201EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3202
3203
3204/**
3205 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3206 * @mtd: MTD device structure
3b85c321
DW
3207 *
3208 * This is the second phase of the normal nand_scan() function. It
3209 * fills out all the uninitialized function pointers with the defaults
3210 * and scans for a bad block table if appropriate.
3211 */
3212int nand_scan_tail(struct mtd_info *mtd)
3213{
3214 int i;
3215 struct nand_chip *chip = mtd->priv;
3216
4bf63fcb
DW
3217 if (!(chip->options & NAND_OWN_BUFFERS))
3218 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3219 if (!chip->buffers)
3220 return -ENOMEM;
3221
7dcdcbef 3222 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3223 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3224
7aa65bfd
TG
3225 /*
3226 * If no default placement scheme is given, select an appropriate one
3227 */
193bd400 3228 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3229 switch (mtd->oobsize) {
1da177e4 3230 case 8:
5bd34c09 3231 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3232 break;
3233 case 16:
5bd34c09 3234 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3235 break;
3236 case 64:
5bd34c09 3237 chip->ecc.layout = &nand_oob_64;
1da177e4 3238 break;
81ec5364
TG
3239 case 128:
3240 chip->ecc.layout = &nand_oob_128;
3241 break;
1da177e4 3242 default:
7aa65bfd
TG
3243 printk(KERN_WARNING "No oob scheme defined for "
3244 "oobsize %d\n", mtd->oobsize);
1da177e4
LT
3245 BUG();
3246 }
3247 }
61b03bd7 3248
956e944c
DW
3249 if (!chip->write_page)
3250 chip->write_page = nand_write_page;
3251
61b03bd7 3252 /*
7aa65bfd
TG
3253 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3254 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3255 */
956e944c 3256
ace4dfee 3257 switch (chip->ecc.mode) {
6e0cb135
SN
3258 case NAND_ECC_HW_OOB_FIRST:
3259 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3260 if (!chip->ecc.calculate || !chip->ecc.correct ||
3261 !chip->ecc.hwctl) {
3262 printk(KERN_WARNING "No ECC functions supplied; "
3263 "Hardware ECC not possible\n");
3264 BUG();
3265 }
3266 if (!chip->ecc.read_page)
3267 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3268
6dfc6d25 3269 case NAND_ECC_HW:
f5bbdacc
TG
3270 /* Use standard hwecc read page function ? */
3271 if (!chip->ecc.read_page)
3272 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3273 if (!chip->ecc.write_page)
3274 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3275 if (!chip->ecc.read_page_raw)
3276 chip->ecc.read_page_raw = nand_read_page_raw;
3277 if (!chip->ecc.write_page_raw)
3278 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3279 if (!chip->ecc.read_oob)
3280 chip->ecc.read_oob = nand_read_oob_std;
3281 if (!chip->ecc.write_oob)
3282 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3283
6dfc6d25 3284 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3285 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3286 !chip->ecc.hwctl) &&
3287 (!chip->ecc.read_page ||
1c45f604 3288 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3289 !chip->ecc.write_page ||
1c45f604 3290 chip->ecc.write_page == nand_write_page_hwecc)) {
6e0cb135 3291 printk(KERN_WARNING "No ECC functions supplied; "
6dfc6d25
TG
3292 "Hardware ECC not possible\n");
3293 BUG();
3294 }
f75e5097 3295 /* Use standard syndrome read/write page function ? */
f5bbdacc
TG
3296 if (!chip->ecc.read_page)
3297 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3298 if (!chip->ecc.write_page)
3299 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3300 if (!chip->ecc.read_page_raw)
3301 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3302 if (!chip->ecc.write_page_raw)
3303 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3304 if (!chip->ecc.read_oob)
3305 chip->ecc.read_oob = nand_read_oob_syndrome;
3306 if (!chip->ecc.write_oob)
3307 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3308
ace4dfee 3309 if (mtd->writesize >= chip->ecc.size)
6dfc6d25
TG
3310 break;
3311 printk(KERN_WARNING "%d byte HW ECC not possible on "
3312 "%d byte page size, fallback to SW ECC\n",
ace4dfee
TG
3313 chip->ecc.size, mtd->writesize);
3314 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3315
6dfc6d25 3316 case NAND_ECC_SOFT:
ace4dfee
TG
3317 chip->ecc.calculate = nand_calculate_ecc;
3318 chip->ecc.correct = nand_correct_data;
f5bbdacc 3319 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3320 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3321 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3322 chip->ecc.read_page_raw = nand_read_page_raw;
3323 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3324 chip->ecc.read_oob = nand_read_oob_std;
3325 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3326 if (!chip->ecc.size)
3327 chip->ecc.size = 256;
ace4dfee 3328 chip->ecc.bytes = 3;
1da177e4 3329 break;
61b03bd7 3330
193bd400
ID
3331 case NAND_ECC_SOFT_BCH:
3332 if (!mtd_nand_has_bch()) {
3333 printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n");
3334 BUG();
3335 }
3336 chip->ecc.calculate = nand_bch_calculate_ecc;
3337 chip->ecc.correct = nand_bch_correct_data;
3338 chip->ecc.read_page = nand_read_page_swecc;
3339 chip->ecc.read_subpage = nand_read_subpage;
3340 chip->ecc.write_page = nand_write_page_swecc;
3341 chip->ecc.read_page_raw = nand_read_page_raw;
3342 chip->ecc.write_page_raw = nand_write_page_raw;
3343 chip->ecc.read_oob = nand_read_oob_std;
3344 chip->ecc.write_oob = nand_write_oob_std;
3345 /*
3346 * Board driver should supply ecc.size and ecc.bytes values to
3347 * select how many bits are correctable; see nand_bch_init()
3348 * for details.
3349 * Otherwise, default to 4 bits for large page devices
3350 */
3351 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3352 chip->ecc.size = 512;
3353 chip->ecc.bytes = 7;
3354 }
3355 chip->ecc.priv = nand_bch_init(mtd,
3356 chip->ecc.size,
3357 chip->ecc.bytes,
3358 &chip->ecc.layout);
3359 if (!chip->ecc.priv) {
3360 printk(KERN_WARNING "BCH ECC initialization failed!\n");
3361 BUG();
3362 }
3363 break;
3364
61b03bd7 3365 case NAND_ECC_NONE:
7aa65bfd
TG
3366 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3367 "This is not recommended !!\n");
8593fbc6
TG
3368 chip->ecc.read_page = nand_read_page_raw;
3369 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3370 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3371 chip->ecc.read_page_raw = nand_read_page_raw;
3372 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3373 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3374 chip->ecc.size = mtd->writesize;
3375 chip->ecc.bytes = 0;
1da177e4 3376 break;
956e944c 3377
1da177e4 3378 default:
7aa65bfd 3379 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
ace4dfee 3380 chip->ecc.mode);
61b03bd7 3381 BUG();
1da177e4 3382 }
61b03bd7 3383
5bd34c09
TG
3384 /*
3385 * The number of bytes available for a client to place data into
3386 * the out of band area
3387 */
3388 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3389 for (i = 0; chip->ecc.layout->oobfree[i].length
3390 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3391 chip->ecc.layout->oobavail +=
3392 chip->ecc.layout->oobfree[i].length;
1f92267c 3393 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3394
7aa65bfd
TG
3395 /*
3396 * Set the number of read / write steps for one page depending on ECC
3397 * mode
3398 */
ace4dfee 3399 chip->ecc.steps = mtd->writesize / chip->ecc.size;
f8ac0414 3400 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
6dfc6d25
TG
3401 printk(KERN_WARNING "Invalid ecc parameters\n");
3402 BUG();
1da177e4 3403 }
f5bbdacc 3404 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3405
29072b96
TG
3406 /*
3407 * Allow subpage writes up to ecc.steps. Not possible for MLC
3408 * FLASH.
3409 */
3410 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3411 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
f8ac0414 3412 switch (chip->ecc.steps) {
29072b96
TG
3413 case 2:
3414 mtd->subpage_sft = 1;
3415 break;
3416 case 4:
3417 case 8:
81ec5364 3418 case 16:
29072b96
TG
3419 mtd->subpage_sft = 2;
3420 break;
3421 }
3422 }
3423 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3424
04bbd0ea 3425 /* Initialize state */
ace4dfee 3426 chip->state = FL_READY;
1da177e4
LT
3427
3428 /* De-select the device */
ace4dfee 3429 chip->select_chip(mtd, -1);
1da177e4
LT
3430
3431 /* Invalidate the pagebuffer reference */
ace4dfee 3432 chip->pagebuf = -1;
1da177e4
LT
3433
3434 /* Fill in remaining MTD driver data */
3435 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3436 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3437 MTD_CAP_NANDFLASH;
1da177e4
LT
3438 mtd->erase = nand_erase;
3439 mtd->point = NULL;
3440 mtd->unpoint = NULL;
3441 mtd->read = nand_read;
3442 mtd->write = nand_write;
2af7c653 3443 mtd->panic_write = panic_nand_write;
1da177e4
LT
3444 mtd->read_oob = nand_read_oob;
3445 mtd->write_oob = nand_write_oob;
1da177e4
LT
3446 mtd->sync = nand_sync;
3447 mtd->lock = NULL;
3448 mtd->unlock = NULL;
962034f4
VW
3449 mtd->suspend = nand_suspend;
3450 mtd->resume = nand_resume;
1da177e4
LT
3451 mtd->block_isbad = nand_block_isbad;
3452 mtd->block_markbad = nand_block_markbad;
cbcab65a 3453 mtd->writebufsize = mtd->writesize;
1da177e4 3454
5bd34c09
TG
3455 /* propagate ecc.layout to mtd_info */
3456 mtd->ecclayout = chip->ecc.layout;
1da177e4 3457
0040bf38 3458 /* Check, if we should skip the bad block table scan */
ace4dfee 3459 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3460 return 0;
1da177e4
LT
3461
3462 /* Build bad block table */
ace4dfee 3463 return chip->scan_bbt(mtd);
1da177e4 3464}
7351d3a5 3465EXPORT_SYMBOL(nand_scan_tail);
1da177e4 3466
a6e6abd5 3467/* is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5
FF
3468 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3469 * to call us from in-kernel code if the core NAND support is modular. */
3b85c321
DW
3470#ifdef MODULE
3471#define caller_is_module() (1)
3472#else
3473#define caller_is_module() \
a6e6abd5 3474 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3475#endif
3476
3477/**
3478 * nand_scan - [NAND Interface] Scan for the NAND device
3479 * @mtd: MTD device structure
3480 * @maxchips: Number of chips to scan for
3481 *
3482 * This fills out all the uninitialized function pointers
3483 * with the defaults.
3484 * The flash ID is read and the mtd/chip structures are
3485 * filled with the appropriate values.
3486 * The mtd->owner field must be set to the module of the caller
3487 *
3488 */
3489int nand_scan(struct mtd_info *mtd, int maxchips)
3490{
3491 int ret;
3492
3493 /* Many callers got this wrong, so check for it for a while... */
3494 if (!mtd->owner && caller_is_module()) {
20d8e248 3495 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3496 __func__);
3b85c321
DW
3497 BUG();
3498 }
3499
5e81e88a 3500 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3501 if (!ret)
3502 ret = nand_scan_tail(mtd);
3503 return ret;
3504}
7351d3a5 3505EXPORT_SYMBOL(nand_scan);
3b85c321 3506
1da177e4 3507/**
61b03bd7 3508 * nand_release - [NAND Interface] Free resources held by the NAND device
1da177e4
LT
3509 * @mtd: MTD device structure
3510*/
e0c7d767 3511void nand_release(struct mtd_info *mtd)
1da177e4 3512{
ace4dfee 3513 struct nand_chip *chip = mtd->priv;
1da177e4 3514
193bd400
ID
3515 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3516 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3517
5ffcaf3d 3518 mtd_device_unregister(mtd);
1da177e4 3519
fa671646 3520 /* Free bad block table memory */
ace4dfee 3521 kfree(chip->bbt);
4bf63fcb
DW
3522 if (!(chip->options & NAND_OWN_BUFFERS))
3523 kfree(chip->buffers);
58373ff0
BN
3524
3525 /* Free bad block descriptor memory */
3526 if (chip->badblock_pattern && chip->badblock_pattern->options
3527 & NAND_BBT_DYNAMICSTRUCT)
3528 kfree(chip->badblock_pattern);
1da177e4 3529}
e0c7d767 3530EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3531
3532static int __init nand_base_init(void)
3533{
3534 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3535 return 0;
3536}
3537
3538static void __exit nand_base_exit(void)
3539{
3540 led_trigger_unregister_simple(nand_led_trigger);
3541}
3542
3543module_init(nand_base_init);
3544module_exit(nand_base_exit);
3545
e0c7d767 3546MODULE_LICENSE("GPL");
7351d3a5
FF
3547MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3548MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 3549MODULE_DESCRIPTION("Generic NAND flash driver code");