]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/mtd/nand/nand_base.c
mtd: nand: omap: fix compile warning on ‘erased_sector_bitflips’
[mirror_ubuntu-zesty-kernel.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
61b03bd7 7 *
1da177e4 8 * Additional technical information is available on
8b2b403c 9 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 10 *
1da177e4 11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 13 *
ace4dfee 14 * Credits:
61b03bd7
TG
15 * David Woodhouse for adding multichip support
16 *
1da177e4
LT
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
ace4dfee 20 * TODO:
1da177e4
LT
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 23 * if we have HW ECC support.
c0b8ba7b 24 * BBT table is not serialized, has to be fixed
1da177e4 25 *
1da177e4
LT
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
20171642
EG
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
552d9205 34#include <linux/module.h>
1da177e4
LT
35#include <linux/delay.h>
36#include <linux/errno.h>
7aa65bfd 37#include <linux/err.h>
1da177e4
LT
38#include <linux/sched.h>
39#include <linux/slab.h>
40#include <linux/types.h>
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/nand_ecc.h>
193bd400 44#include <linux/mtd/nand_bch.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
8fe833c1 47#include <linux/leds.h>
7351d3a5 48#include <linux/io.h>
1da177e4 49#include <linux/mtd/partitions.h>
1da177e4
LT
50
51/* Define default oob placement schemes for large and small page devices */
5bd34c09 52static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
5bd34c09
TG
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
f8ac0414 59 .length = 2} }
1da177e4
LT
60};
61
5bd34c09 62static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
65 .oobfree = {
66 {.offset = 8,
f8ac0414 67 . length = 8} }
1da177e4
LT
68};
69
5bd34c09 70static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
71 .eccbytes = 24,
72 .eccpos = {
e0c7d767
DW
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
76 .oobfree = {
77 {.offset = 2,
f8ac0414 78 .length = 38} }
1da177e4
LT
79};
80
81ec5364
TG
81static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
f8ac0414 92 .length = 78} }
81ec5364
TG
93};
94
6a8214aa 95static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 96
8593fbc6
TG
97static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
d470a97c 100/*
8e87d782 101 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
102 * compiled away when LED support is disabled.
103 */
104DEFINE_LED_TRIGGER(nand_led_trigger);
105
6fe5a6ac
VS
106static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108{
109 struct nand_chip *chip = mtd->priv;
110 int ret = 0;
111
112 /* Start address must align on block boundary */
daae74ca 113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 114 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
daae74ca 119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 120 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
121 ret = -EINVAL;
122 }
123
6fe5a6ac
VS
124 return ret;
125}
126
1da177e4
LT
127/**
128 * nand_release_device - [GENERIC] release chip
8b6e50c9 129 * @mtd: MTD device structure
61b03bd7 130 *
b0bb6903 131 * Release chip lock and wake up anyone waiting on the device.
1da177e4 132 */
e0c7d767 133static void nand_release_device(struct mtd_info *mtd)
1da177e4 134{
ace4dfee 135 struct nand_chip *chip = mtd->priv;
1da177e4 136
a36ed299 137 /* Release the controller and the chip */
ace4dfee
TG
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
1da177e4
LT
143}
144
145/**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 147 * @mtd: MTD device structure
1da177e4 148 *
7854d3f7 149 * Default read function for 8bit buswidth
1da177e4 150 */
58dd8f2b 151static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 152{
ace4dfee
TG
153 struct nand_chip *chip = mtd->priv;
154 return readb(chip->IO_ADDR_R);
1da177e4
LT
155}
156
1da177e4 157/**
064a7694 158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
7854d3f7 159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 160 * @mtd: MTD device structure
1da177e4 161 *
7854d3f7
BN
162 * Default read function for 16bit buswidth with endianness conversion.
163 *
1da177e4 164 */
58dd8f2b 165static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 166{
ace4dfee
TG
167 struct nand_chip *chip = mtd->priv;
168 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
169}
170
1da177e4
LT
171/**
172 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 173 * @mtd: MTD device structure
1da177e4 174 *
7854d3f7 175 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
176 */
177static u16 nand_read_word(struct mtd_info *mtd)
178{
ace4dfee
TG
179 struct nand_chip *chip = mtd->priv;
180 return readw(chip->IO_ADDR_R);
1da177e4
LT
181}
182
1da177e4
LT
183/**
184 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
185 * @mtd: MTD device structure
186 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
187 *
188 * Default select function for 1 chip devices.
189 */
ace4dfee 190static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 191{
ace4dfee
TG
192 struct nand_chip *chip = mtd->priv;
193
194 switch (chipnr) {
1da177e4 195 case -1:
ace4dfee 196 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
197 break;
198 case 0:
1da177e4
LT
199 break;
200
201 default:
202 BUG();
203 }
204}
205
05f78359
UKK
206/**
207 * nand_write_byte - [DEFAULT] write single byte to chip
208 * @mtd: MTD device structure
209 * @byte: value to write
210 *
211 * Default function to write a byte to I/O[7:0]
212 */
213static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
214{
215 struct nand_chip *chip = mtd->priv;
216
217 chip->write_buf(mtd, &byte, 1);
218}
219
220/**
221 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222 * @mtd: MTD device structure
223 * @byte: value to write
224 *
225 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226 */
227static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
228{
229 struct nand_chip *chip = mtd->priv;
230 uint16_t word = byte;
231
232 /*
233 * It's not entirely clear what should happen to I/O[15:8] when writing
234 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235 *
236 * When the host supports a 16-bit bus width, only data is
237 * transferred at the 16-bit width. All address and command line
238 * transfers shall use only the lower 8-bits of the data bus. During
239 * command transfers, the host may place any value on the upper
240 * 8-bits of the data bus. During address transfers, the host shall
241 * set the upper 8-bits of the data bus to 00h.
242 *
243 * One user of the write_byte callback is nand_onfi_set_features. The
244 * four parameters are specified to be written to I/O[7:0], but this is
245 * neither an address nor a command transfer. Let's assume a 0 on the
246 * upper I/O lines is OK.
247 */
248 chip->write_buf(mtd, (uint8_t *)&word, 2);
249}
250
1da177e4
LT
251/**
252 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
253 * @mtd: MTD device structure
254 * @buf: data buffer
255 * @len: number of bytes to write
1da177e4 256 *
7854d3f7 257 * Default write function for 8bit buswidth.
1da177e4 258 */
58dd8f2b 259static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 260{
ace4dfee 261 struct nand_chip *chip = mtd->priv;
1da177e4 262
76413839 263 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
264}
265
266/**
61b03bd7 267 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
1da177e4 271 *
7854d3f7 272 * Default read function for 8bit buswidth.
1da177e4 273 */
58dd8f2b 274static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 275{
ace4dfee 276 struct nand_chip *chip = mtd->priv;
1da177e4 277
76413839 278 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
279}
280
1da177e4
LT
281/**
282 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
1da177e4 286 *
7854d3f7 287 * Default write function for 16bit buswidth.
1da177e4 288 */
58dd8f2b 289static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 290{
ace4dfee 291 struct nand_chip *chip = mtd->priv;
1da177e4 292 u16 *p = (u16 *) buf;
61b03bd7 293
76413839 294 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
295}
296
297/**
61b03bd7 298 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
299 * @mtd: MTD device structure
300 * @buf: buffer to store date
301 * @len: number of bytes to read
1da177e4 302 *
7854d3f7 303 * Default read function for 16bit buswidth.
1da177e4 304 */
58dd8f2b 305static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 306{
ace4dfee 307 struct nand_chip *chip = mtd->priv;
1da177e4 308 u16 *p = (u16 *) buf;
1da177e4 309
76413839 310 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
311}
312
1da177e4
LT
313/**
314 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
315 * @mtd: MTD device structure
316 * @ofs: offset from device start
317 * @getchip: 0, if the chip is already selected
1da177e4 318 *
61b03bd7 319 * Check, if the block is bad.
1da177e4
LT
320 */
321static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
322{
cdbec050 323 int page, chipnr, res = 0, i = 0;
ace4dfee 324 struct nand_chip *chip = mtd->priv;
1da177e4
LT
325 u16 bad;
326
5fb1549d 327 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
328 ofs += mtd->erasesize - mtd->writesize;
329
1a12f46a
TK
330 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
331
1da177e4 332 if (getchip) {
ace4dfee 333 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 334
6a8214aa 335 nand_get_device(mtd, FL_READING);
1da177e4
LT
336
337 /* Select the NAND device */
ace4dfee 338 chip->select_chip(mtd, chipnr);
1a12f46a 339 }
1da177e4 340
cdbec050
BN
341 do {
342 if (chip->options & NAND_BUSWIDTH_16) {
343 chip->cmdfunc(mtd, NAND_CMD_READOOB,
344 chip->badblockpos & 0xFE, page);
345 bad = cpu_to_le16(chip->read_word(mtd));
346 if (chip->badblockpos & 0x1)
347 bad >>= 8;
348 else
349 bad &= 0xFF;
350 } else {
351 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
352 page);
353 bad = chip->read_byte(mtd);
354 }
355
356 if (likely(chip->badblockbits == 8))
357 res = bad != 0xFF;
e0b58d0a 358 else
cdbec050
BN
359 res = hweight8(bad) < chip->badblockbits;
360 ofs += mtd->writesize;
361 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
362 i++;
363 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 364
b0bb6903
HS
365 if (getchip) {
366 chip->select_chip(mtd, -1);
1da177e4 367 nand_release_device(mtd);
b0bb6903 368 }
61b03bd7 369
1da177e4
LT
370 return res;
371}
372
373/**
5a0edb25 374 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
375 * @mtd: MTD device structure
376 * @ofs: offset from device start
1da177e4 377 *
8b6e50c9 378 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
379 * specific driver. It provides the details for writing a bad block marker to a
380 * block.
381 */
382static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
383{
384 struct nand_chip *chip = mtd->priv;
385 struct mtd_oob_ops ops;
386 uint8_t buf[2] = { 0, 0 };
387 int ret = 0, res, i = 0;
388
389 ops.datbuf = NULL;
390 ops.oobbuf = buf;
391 ops.ooboffs = chip->badblockpos;
392 if (chip->options & NAND_BUSWIDTH_16) {
393 ops.ooboffs &= ~0x01;
394 ops.len = ops.ooblen = 2;
395 } else {
396 ops.len = ops.ooblen = 1;
397 }
398 ops.mode = MTD_OPS_PLACE_OOB;
399
400 /* Write to first/last page(s) if necessary */
401 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
402 ofs += mtd->erasesize - mtd->writesize;
403 do {
404 res = nand_do_write_oob(mtd, ofs, &ops);
405 if (!ret)
406 ret = res;
407
408 i++;
409 ofs += mtd->writesize;
410 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
411
412 return ret;
413}
414
415/**
416 * nand_block_markbad_lowlevel - mark a block bad
417 * @mtd: MTD device structure
418 * @ofs: offset from device start
419 *
420 * This function performs the generic NAND bad block marking steps (i.e., bad
421 * block table(s) and/or marker(s)). We only allow the hardware driver to
422 * specify how to write bad block markers to OOB (chip->block_markbad).
423 *
b32843b7 424 * We try operations in the following order:
e2414f4c 425 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
426 * (2) write bad block marker to OOB area of affected block (unless flag
427 * NAND_BBT_NO_OOB_BBM is present)
428 * (3) update the BBT
429 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 430 * procedures, and dump the error in the end.
1da177e4 431*/
5a0edb25 432static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 433{
ace4dfee 434 struct nand_chip *chip = mtd->priv;
b32843b7 435 int res, ret = 0;
61b03bd7 436
b32843b7 437 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
438 struct erase_info einfo;
439
440 /* Attempt erase before marking OOB */
441 memset(&einfo, 0, sizeof(einfo));
442 einfo.mtd = mtd;
443 einfo.addr = ofs;
daae74ca 444 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 445 nand_erase_nand(mtd, &einfo, 0);
1da177e4 446
b32843b7 447 /* Write bad block marker to OOB */
6a8214aa 448 nand_get_device(mtd, FL_WRITING);
5a0edb25 449 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 450 nand_release_device(mtd);
f1a28c02 451 }
e2414f4c 452
b32843b7
BN
453 /* Mark block bad in BBT */
454 if (chip->bbt) {
455 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
456 if (!ret)
457 ret = res;
458 }
459
f1a28c02
TG
460 if (!ret)
461 mtd->ecc_stats.badblocks++;
c0b8ba7b 462
f1a28c02 463 return ret;
1da177e4
LT
464}
465
61b03bd7 466/**
1da177e4 467 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 468 * @mtd: MTD device structure
1da177e4 469 *
8b6e50c9
BN
470 * Check, if the device is write protected. The function expects, that the
471 * device is already selected.
1da177e4 472 */
e0c7d767 473static int nand_check_wp(struct mtd_info *mtd)
1da177e4 474{
ace4dfee 475 struct nand_chip *chip = mtd->priv;
93edbad6 476
8b6e50c9 477 /* Broken xD cards report WP despite being writable */
93edbad6
ML
478 if (chip->options & NAND_BROKEN_XD)
479 return 0;
480
1da177e4 481 /* Check the WP bit */
ace4dfee
TG
482 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
483 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
484}
485
486/**
487 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
488 * @mtd: MTD device structure
489 * @ofs: offset from device start
490 * @getchip: 0, if the chip is already selected
491 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
492 *
493 * Check, if the block is bad. Either by reading the bad block table or
494 * calling of the scan function.
495 */
2c0a2bed
TG
496static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
497 int allowbbt)
1da177e4 498{
ace4dfee 499 struct nand_chip *chip = mtd->priv;
61b03bd7 500
ace4dfee
TG
501 if (!chip->bbt)
502 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 503
1da177e4 504 /* Return info from the table */
e0c7d767 505 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
506}
507
2af7c653
SK
508/**
509 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
510 * @mtd: MTD device structure
511 * @timeo: Timeout
2af7c653
SK
512 *
513 * Helper function for nand_wait_ready used when needing to wait in interrupt
514 * context.
515 */
516static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
517{
518 struct nand_chip *chip = mtd->priv;
519 int i;
520
521 /* Wait for the device to get ready */
522 for (i = 0; i < timeo; i++) {
523 if (chip->dev_ready(mtd))
524 break;
525 touch_softlockup_watchdog();
526 mdelay(1);
527 }
528}
529
7854d3f7 530/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 531void nand_wait_ready(struct mtd_info *mtd)
3b88775c 532{
ace4dfee 533 struct nand_chip *chip = mtd->priv;
ca6a2489 534 unsigned long timeo = jiffies + msecs_to_jiffies(20);
3b88775c 535
2af7c653
SK
536 /* 400ms timeout */
537 if (in_interrupt() || oops_in_progress)
538 return panic_nand_wait_ready(mtd, 400);
539
8fe833c1 540 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 541 /* Wait until command is processed or timeout occurs */
3b88775c 542 do {
ace4dfee 543 if (chip->dev_ready(mtd))
8fe833c1 544 break;
8446f1d3 545 touch_softlockup_watchdog();
61b03bd7 546 } while (time_before(jiffies, timeo));
8fe833c1 547 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 548}
4b648b02 549EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 550
1da177e4
LT
551/**
552 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
553 * @mtd: MTD device structure
554 * @command: the command to be sent
555 * @column: the column address for this command, -1 if none
556 * @page_addr: the page address for this command, -1 if none
1da177e4 557 *
8b6e50c9 558 * Send command to NAND device. This function is used for small page devices
51148f1f 559 * (512 Bytes per page).
1da177e4 560 */
7abd3ef9
TG
561static void nand_command(struct mtd_info *mtd, unsigned int command,
562 int column, int page_addr)
1da177e4 563{
ace4dfee 564 register struct nand_chip *chip = mtd->priv;
7abd3ef9 565 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 566
8b6e50c9 567 /* Write out the command to the device */
1da177e4
LT
568 if (command == NAND_CMD_SEQIN) {
569 int readcmd;
570
28318776 571 if (column >= mtd->writesize) {
1da177e4 572 /* OOB area */
28318776 573 column -= mtd->writesize;
1da177e4
LT
574 readcmd = NAND_CMD_READOOB;
575 } else if (column < 256) {
576 /* First 256 bytes --> READ0 */
577 readcmd = NAND_CMD_READ0;
578 } else {
579 column -= 256;
580 readcmd = NAND_CMD_READ1;
581 }
ace4dfee 582 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 583 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 584 }
ace4dfee 585 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 586
8b6e50c9 587 /* Address cycle, when necessary */
7abd3ef9
TG
588 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
589 /* Serially input address */
590 if (column != -1) {
591 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
592 if (chip->options & NAND_BUSWIDTH_16 &&
593 !nand_opcode_8bits(command))
7abd3ef9 594 column >>= 1;
ace4dfee 595 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
596 ctrl &= ~NAND_CTRL_CHANGE;
597 }
598 if (page_addr != -1) {
ace4dfee 599 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 600 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 601 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 602 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
603 if (chip->chipsize > (32 << 20))
604 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 605 }
ace4dfee 606 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
607
608 /*
8b6e50c9
BN
609 * Program and erase have their own busy handlers status and sequential
610 * in needs no delay
e0c7d767 611 */
1da177e4 612 switch (command) {
61b03bd7 613
1da177e4
LT
614 case NAND_CMD_PAGEPROG:
615 case NAND_CMD_ERASE1:
616 case NAND_CMD_ERASE2:
617 case NAND_CMD_SEQIN:
618 case NAND_CMD_STATUS:
619 return;
620
621 case NAND_CMD_RESET:
ace4dfee 622 if (chip->dev_ready)
1da177e4 623 break;
ace4dfee
TG
624 udelay(chip->chip_delay);
625 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 626 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
627 chip->cmd_ctrl(mtd,
628 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
629 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
630 ;
1da177e4
LT
631 return;
632
e0c7d767 633 /* This applies to read commands */
1da177e4 634 default:
61b03bd7 635 /*
1da177e4
LT
636 * If we don't have access to the busy pin, we apply the given
637 * command delay
e0c7d767 638 */
ace4dfee
TG
639 if (!chip->dev_ready) {
640 udelay(chip->chip_delay);
1da177e4 641 return;
61b03bd7 642 }
1da177e4 643 }
8b6e50c9
BN
644 /*
645 * Apply this short delay always to ensure that we do wait tWB in
646 * any case on any machine.
647 */
e0c7d767 648 ndelay(100);
3b88775c
TG
649
650 nand_wait_ready(mtd);
1da177e4
LT
651}
652
653/**
654 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
655 * @mtd: MTD device structure
656 * @command: the command to be sent
657 * @column: the column address for this command, -1 if none
658 * @page_addr: the page address for this command, -1 if none
1da177e4 659 *
7abd3ef9 660 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
661 * devices. We don't have the separate regions as we have in the small page
662 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 663 */
7abd3ef9
TG
664static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
665 int column, int page_addr)
1da177e4 666{
ace4dfee 667 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
668
669 /* Emulate NAND_CMD_READOOB */
670 if (command == NAND_CMD_READOOB) {
28318776 671 column += mtd->writesize;
1da177e4
LT
672 command = NAND_CMD_READ0;
673 }
61b03bd7 674
7abd3ef9 675 /* Command latch cycle */
fb066ada 676 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
677
678 if (column != -1 || page_addr != -1) {
7abd3ef9 679 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
680
681 /* Serially input address */
682 if (column != -1) {
683 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
684 if (chip->options & NAND_BUSWIDTH_16 &&
685 !nand_opcode_8bits(command))
1da177e4 686 column >>= 1;
ace4dfee 687 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 688 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 689 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 690 }
1da177e4 691 if (page_addr != -1) {
ace4dfee
TG
692 chip->cmd_ctrl(mtd, page_addr, ctrl);
693 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 694 NAND_NCE | NAND_ALE);
1da177e4 695 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
696 if (chip->chipsize > (128 << 20))
697 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 698 NAND_NCE | NAND_ALE);
1da177e4 699 }
1da177e4 700 }
ace4dfee 701 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
702
703 /*
8b6e50c9
BN
704 * Program and erase have their own busy handlers status, sequential
705 * in, and deplete1 need no delay.
30f464b7 706 */
1da177e4 707 switch (command) {
61b03bd7 708
1da177e4
LT
709 case NAND_CMD_CACHEDPROG:
710 case NAND_CMD_PAGEPROG:
711 case NAND_CMD_ERASE1:
712 case NAND_CMD_ERASE2:
713 case NAND_CMD_SEQIN:
7bc3312b 714 case NAND_CMD_RNDIN:
1da177e4 715 case NAND_CMD_STATUS:
30f464b7 716 return;
1da177e4
LT
717
718 case NAND_CMD_RESET:
ace4dfee 719 if (chip->dev_ready)
1da177e4 720 break;
ace4dfee 721 udelay(chip->chip_delay);
12efdde3
TG
722 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
723 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
725 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
726 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
727 ;
1da177e4
LT
728 return;
729
7bc3312b
TG
730 case NAND_CMD_RNDOUT:
731 /* No ready / busy check necessary */
732 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
733 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
734 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
735 NAND_NCE | NAND_CTRL_CHANGE);
736 return;
737
1da177e4 738 case NAND_CMD_READ0:
12efdde3
TG
739 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
740 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
741 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
742 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 743
e0c7d767 744 /* This applies to read commands */
1da177e4 745 default:
61b03bd7 746 /*
1da177e4 747 * If we don't have access to the busy pin, we apply the given
8b6e50c9 748 * command delay.
e0c7d767 749 */
ace4dfee
TG
750 if (!chip->dev_ready) {
751 udelay(chip->chip_delay);
1da177e4 752 return;
61b03bd7 753 }
1da177e4 754 }
3b88775c 755
8b6e50c9
BN
756 /*
757 * Apply this short delay always to ensure that we do wait tWB in
758 * any case on any machine.
759 */
e0c7d767 760 ndelay(100);
3b88775c
TG
761
762 nand_wait_ready(mtd);
1da177e4
LT
763}
764
2af7c653
SK
765/**
766 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
767 * @chip: the nand chip descriptor
768 * @mtd: MTD device structure
769 * @new_state: the state which is requested
2af7c653
SK
770 *
771 * Used when in panic, no locks are taken.
772 */
773static void panic_nand_get_device(struct nand_chip *chip,
774 struct mtd_info *mtd, int new_state)
775{
7854d3f7 776 /* Hardware controller shared among independent devices */
2af7c653
SK
777 chip->controller->active = chip;
778 chip->state = new_state;
779}
780
1da177e4
LT
781/**
782 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
783 * @mtd: MTD device structure
784 * @new_state: the state which is requested
1da177e4
LT
785 *
786 * Get the device and lock it for exclusive access
787 */
2c0a2bed 788static int
6a8214aa 789nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 790{
6a8214aa 791 struct nand_chip *chip = mtd->priv;
ace4dfee
TG
792 spinlock_t *lock = &chip->controller->lock;
793 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 794 DECLARE_WAITQUEUE(wait, current);
7351d3a5 795retry:
0dfc6246
TG
796 spin_lock(lock);
797
b8b3ee9a 798 /* Hardware controller shared among independent devices */
ace4dfee
TG
799 if (!chip->controller->active)
800 chip->controller->active = chip;
a36ed299 801
ace4dfee
TG
802 if (chip->controller->active == chip && chip->state == FL_READY) {
803 chip->state = new_state;
0dfc6246 804 spin_unlock(lock);
962034f4
VW
805 return 0;
806 }
807 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
808 if (chip->controller->active->state == FL_PM_SUSPENDED) {
809 chip->state = FL_PM_SUSPENDED;
810 spin_unlock(lock);
811 return 0;
6b0d9a84 812 }
0dfc6246
TG
813 }
814 set_current_state(TASK_UNINTERRUPTIBLE);
815 add_wait_queue(wq, &wait);
816 spin_unlock(lock);
817 schedule();
818 remove_wait_queue(wq, &wait);
1da177e4
LT
819 goto retry;
820}
821
2af7c653 822/**
8b6e50c9
BN
823 * panic_nand_wait - [GENERIC] wait until the command is done
824 * @mtd: MTD device structure
825 * @chip: NAND chip structure
826 * @timeo: timeout
2af7c653
SK
827 *
828 * Wait for command done. This is a helper function for nand_wait used when
829 * we are in interrupt context. May happen when in panic and trying to write
b595076a 830 * an oops through mtdoops.
2af7c653
SK
831 */
832static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
833 unsigned long timeo)
834{
835 int i;
836 for (i = 0; i < timeo; i++) {
837 if (chip->dev_ready) {
838 if (chip->dev_ready(mtd))
839 break;
840 } else {
841 if (chip->read_byte(mtd) & NAND_STATUS_READY)
842 break;
843 }
844 mdelay(1);
f8ac0414 845 }
2af7c653
SK
846}
847
1da177e4 848/**
8b6e50c9
BN
849 * nand_wait - [DEFAULT] wait until the command is done
850 * @mtd: MTD device structure
851 * @chip: NAND chip structure
1da177e4 852 *
8b6e50c9
BN
853 * Wait for command done. This applies to erase and program only. Erase can
854 * take up to 400ms and program up to 20ms according to general NAND and
855 * SmartMedia specs.
844d3b42 856 */
7bc3312b 857static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
858{
859
7bc3312b 860 int status, state = chip->state;
6d2559f8 861 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
1da177e4 862
8fe833c1
RP
863 led_trigger_event(nand_led_trigger, LED_FULL);
864
8b6e50c9
BN
865 /*
866 * Apply this short delay always to ensure that we do wait tWB in any
867 * case on any machine.
868 */
e0c7d767 869 ndelay(100);
1da177e4 870
14c65786 871 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 872
2af7c653
SK
873 if (in_interrupt() || oops_in_progress)
874 panic_nand_wait(mtd, chip, timeo);
875 else {
6d2559f8 876 timeo = jiffies + msecs_to_jiffies(timeo);
2af7c653
SK
877 while (time_before(jiffies, timeo)) {
878 if (chip->dev_ready) {
879 if (chip->dev_ready(mtd))
880 break;
881 } else {
882 if (chip->read_byte(mtd) & NAND_STATUS_READY)
883 break;
884 }
885 cond_resched();
1da177e4 886 }
1da177e4 887 }
8fe833c1
RP
888 led_trigger_event(nand_led_trigger, LED_OFF);
889
ace4dfee 890 status = (int)chip->read_byte(mtd);
f251b8df
MC
891 /* This can happen if in case of timeout or buggy dev_ready */
892 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
893 return status;
894}
895
7d70f334 896/**
b6d676db 897 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
898 * @mtd: mtd info
899 * @ofs: offset to start unlock from
900 * @len: length to unlock
8b6e50c9
BN
901 * @invert: when = 0, unlock the range of blocks within the lower and
902 * upper boundary address
903 * when = 1, unlock the range of blocks outside the boundaries
904 * of the lower and upper boundary address
7d70f334 905 *
8b6e50c9 906 * Returs unlock status.
7d70f334
VS
907 */
908static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
909 uint64_t len, int invert)
910{
911 int ret = 0;
912 int status, page;
913 struct nand_chip *chip = mtd->priv;
914
915 /* Submit address of first page to unlock */
916 page = ofs >> chip->page_shift;
917 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
918
919 /* Submit address of last page to unlock */
920 page = (ofs + len) >> chip->page_shift;
921 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
922 (page | invert) & chip->pagemask);
923
924 /* Call wait ready function */
925 status = chip->waitfunc(mtd, chip);
7d70f334 926 /* See if device thinks it succeeded */
74830966 927 if (status & NAND_STATUS_FAIL) {
289c0522 928 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
929 __func__, status);
930 ret = -EIO;
931 }
932
933 return ret;
934}
935
936/**
b6d676db 937 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
938 * @mtd: mtd info
939 * @ofs: offset to start unlock from
940 * @len: length to unlock
7d70f334 941 *
8b6e50c9 942 * Returns unlock status.
7d70f334
VS
943 */
944int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
945{
946 int ret = 0;
947 int chipnr;
948 struct nand_chip *chip = mtd->priv;
949
289c0522 950 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
951 __func__, (unsigned long long)ofs, len);
952
953 if (check_offs_len(mtd, ofs, len))
954 ret = -EINVAL;
955
956 /* Align to last block address if size addresses end of the device */
957 if (ofs + len == mtd->size)
958 len -= mtd->erasesize;
959
6a8214aa 960 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
961
962 /* Shift to get chip number */
963 chipnr = ofs >> chip->chip_shift;
964
965 chip->select_chip(mtd, chipnr);
966
967 /* Check, if it is write protected */
968 if (nand_check_wp(mtd)) {
289c0522 969 pr_debug("%s: device is write protected!\n",
7d70f334
VS
970 __func__);
971 ret = -EIO;
972 goto out;
973 }
974
975 ret = __nand_unlock(mtd, ofs, len, 0);
976
977out:
b0bb6903 978 chip->select_chip(mtd, -1);
7d70f334
VS
979 nand_release_device(mtd);
980
981 return ret;
982}
7351d3a5 983EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
984
985/**
b6d676db 986 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
987 * @mtd: mtd info
988 * @ofs: offset to start unlock from
989 * @len: length to unlock
7d70f334 990 *
8b6e50c9
BN
991 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
992 * have this feature, but it allows only to lock all blocks, not for specified
993 * range for block. Implementing 'lock' feature by making use of 'unlock', for
994 * now.
7d70f334 995 *
8b6e50c9 996 * Returns lock status.
7d70f334
VS
997 */
998int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
999{
1000 int ret = 0;
1001 int chipnr, status, page;
1002 struct nand_chip *chip = mtd->priv;
1003
289c0522 1004 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1005 __func__, (unsigned long long)ofs, len);
1006
1007 if (check_offs_len(mtd, ofs, len))
1008 ret = -EINVAL;
1009
6a8214aa 1010 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1011
1012 /* Shift to get chip number */
1013 chipnr = ofs >> chip->chip_shift;
1014
1015 chip->select_chip(mtd, chipnr);
1016
1017 /* Check, if it is write protected */
1018 if (nand_check_wp(mtd)) {
289c0522 1019 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1020 __func__);
1021 status = MTD_ERASE_FAILED;
1022 ret = -EIO;
1023 goto out;
1024 }
1025
1026 /* Submit address of first page to lock */
1027 page = ofs >> chip->page_shift;
1028 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1029
1030 /* Call wait ready function */
1031 status = chip->waitfunc(mtd, chip);
7d70f334 1032 /* See if device thinks it succeeded */
74830966 1033 if (status & NAND_STATUS_FAIL) {
289c0522 1034 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1035 __func__, status);
1036 ret = -EIO;
1037 goto out;
1038 }
1039
1040 ret = __nand_unlock(mtd, ofs, len, 0x1);
1041
1042out:
b0bb6903 1043 chip->select_chip(mtd, -1);
7d70f334
VS
1044 nand_release_device(mtd);
1045
1046 return ret;
1047}
7351d3a5 1048EXPORT_SYMBOL(nand_lock);
7d70f334 1049
8593fbc6 1050/**
7854d3f7 1051 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1052 * @mtd: mtd info structure
1053 * @chip: nand chip info structure
1054 * @buf: buffer to store read data
1fbb938d 1055 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1056 * @page: page number to read
52ff49df 1057 *
7854d3f7 1058 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1059 */
1060static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1061 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1062{
1063 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1064 if (oob_required)
1065 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1066 return 0;
1067}
1068
52ff49df 1069/**
7854d3f7 1070 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1071 * @mtd: mtd info structure
1072 * @chip: nand chip info structure
1073 * @buf: buffer to store read data
1fbb938d 1074 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1075 * @page: page number to read
52ff49df
DB
1076 *
1077 * We need a special oob layout and handling even when OOB isn't used.
1078 */
7351d3a5 1079static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1080 struct nand_chip *chip, uint8_t *buf,
1081 int oob_required, int page)
52ff49df
DB
1082{
1083 int eccsize = chip->ecc.size;
1084 int eccbytes = chip->ecc.bytes;
1085 uint8_t *oob = chip->oob_poi;
1086 int steps, size;
1087
1088 for (steps = chip->ecc.steps; steps > 0; steps--) {
1089 chip->read_buf(mtd, buf, eccsize);
1090 buf += eccsize;
1091
1092 if (chip->ecc.prepad) {
1093 chip->read_buf(mtd, oob, chip->ecc.prepad);
1094 oob += chip->ecc.prepad;
1095 }
1096
1097 chip->read_buf(mtd, oob, eccbytes);
1098 oob += eccbytes;
1099
1100 if (chip->ecc.postpad) {
1101 chip->read_buf(mtd, oob, chip->ecc.postpad);
1102 oob += chip->ecc.postpad;
1103 }
1104 }
1105
1106 size = mtd->oobsize - (oob - chip->oob_poi);
1107 if (size)
1108 chip->read_buf(mtd, oob, size);
1109
1110 return 0;
1111}
1112
1da177e4 1113/**
7854d3f7 1114 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1115 * @mtd: mtd info structure
1116 * @chip: nand chip info structure
1117 * @buf: buffer to store read data
1fbb938d 1118 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1119 * @page: page number to read
068e3c0a 1120 */
f5bbdacc 1121static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1122 uint8_t *buf, int oob_required, int page)
1da177e4 1123{
f5bbdacc
TG
1124 int i, eccsize = chip->ecc.size;
1125 int eccbytes = chip->ecc.bytes;
1126 int eccsteps = chip->ecc.steps;
1127 uint8_t *p = buf;
4bf63fcb
DW
1128 uint8_t *ecc_calc = chip->buffers->ecccalc;
1129 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1130 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1131 unsigned int max_bitflips = 0;
f5bbdacc 1132
1fbb938d 1133 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1134
1135 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1136 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1137
1138 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1139 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1140
1141 eccsteps = chip->ecc.steps;
1142 p = buf;
1143
1144 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1145 int stat;
1146
1147 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1148 if (stat < 0) {
f5bbdacc 1149 mtd->ecc_stats.failed++;
3f91e94f 1150 } else {
f5bbdacc 1151 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1152 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1153 }
f5bbdacc 1154 }
3f91e94f 1155 return max_bitflips;
22c60f5f 1156}
1da177e4 1157
3d459559 1158/**
837a6ba4 1159 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1160 * @mtd: mtd info structure
1161 * @chip: nand chip info structure
1162 * @data_offs: offset of requested data within the page
1163 * @readlen: data length
1164 * @bufpoi: buffer to store read data
e004debd 1165 * @page: page number to read
3d459559 1166 */
7351d3a5 1167static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1168 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1169 int page)
3d459559
AK
1170{
1171 int start_step, end_step, num_steps;
1172 uint32_t *eccpos = chip->ecc.layout->eccpos;
1173 uint8_t *p;
1174 int data_col_addr, i, gaps = 0;
1175 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1176 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
4a4163ca 1177 int index;
3f91e94f 1178 unsigned int max_bitflips = 0;
3d459559 1179
7854d3f7 1180 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1181 start_step = data_offs / chip->ecc.size;
1182 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1183 num_steps = end_step - start_step + 1;
4a4163ca 1184 index = start_step * chip->ecc.bytes;
3d459559 1185
8b6e50c9 1186 /* Data size aligned to ECC ecc.size */
3d459559
AK
1187 datafrag_len = num_steps * chip->ecc.size;
1188 eccfrag_len = num_steps * chip->ecc.bytes;
1189
1190 data_col_addr = start_step * chip->ecc.size;
1191 /* If we read not a page aligned data */
1192 if (data_col_addr != 0)
1193 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1194
1195 p = bufpoi + data_col_addr;
1196 chip->read_buf(mtd, p, datafrag_len);
1197
8b6e50c9 1198 /* Calculate ECC */
3d459559
AK
1199 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1200 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1201
8b6e50c9
BN
1202 /*
1203 * The performance is faster if we position offsets according to
7854d3f7 1204 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1205 */
3d459559
AK
1206 for (i = 0; i < eccfrag_len - 1; i++) {
1207 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1208 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1209 gaps = 1;
1210 break;
1211 }
1212 }
1213 if (gaps) {
1214 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1215 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1216 } else {
8b6e50c9 1217 /*
7854d3f7 1218 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1219 * about buswidth alignment in read_buf.
1220 */
7351d3a5 1221 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1222 aligned_len = eccfrag_len;
7351d3a5 1223 if (eccpos[index] & (busw - 1))
3d459559 1224 aligned_len++;
7351d3a5 1225 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1226 aligned_len++;
1227
7351d3a5
FF
1228 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1229 mtd->writesize + aligned_pos, -1);
3d459559
AK
1230 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1231 }
1232
1233 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1234 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1235
1236 p = bufpoi + data_col_addr;
1237 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1238 int stat;
1239
7351d3a5
FF
1240 stat = chip->ecc.correct(mtd, p,
1241 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1242 if (stat < 0) {
3d459559 1243 mtd->ecc_stats.failed++;
3f91e94f 1244 } else {
3d459559 1245 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1246 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1247 }
3d459559 1248 }
3f91e94f 1249 return max_bitflips;
3d459559
AK
1250}
1251
068e3c0a 1252/**
7854d3f7 1253 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1254 * @mtd: mtd info structure
1255 * @chip: nand chip info structure
1256 * @buf: buffer to store read data
1fbb938d 1257 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1258 * @page: page number to read
068e3c0a 1259 *
7854d3f7 1260 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1261 */
f5bbdacc 1262static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1263 uint8_t *buf, int oob_required, int page)
1da177e4 1264{
f5bbdacc
TG
1265 int i, eccsize = chip->ecc.size;
1266 int eccbytes = chip->ecc.bytes;
1267 int eccsteps = chip->ecc.steps;
1268 uint8_t *p = buf;
4bf63fcb
DW
1269 uint8_t *ecc_calc = chip->buffers->ecccalc;
1270 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1271 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1272 unsigned int max_bitflips = 0;
f5bbdacc
TG
1273
1274 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1275 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1276 chip->read_buf(mtd, p, eccsize);
1277 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1278 }
f75e5097 1279 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1280
f5bbdacc 1281 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1282 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1283
f5bbdacc
TG
1284 eccsteps = chip->ecc.steps;
1285 p = buf;
61b03bd7 1286
f5bbdacc
TG
1287 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1288 int stat;
1da177e4 1289
f5bbdacc 1290 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1291 if (stat < 0) {
f5bbdacc 1292 mtd->ecc_stats.failed++;
3f91e94f 1293 } else {
f5bbdacc 1294 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1295 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1296 }
f5bbdacc 1297 }
3f91e94f 1298 return max_bitflips;
f5bbdacc 1299}
1da177e4 1300
6e0cb135 1301/**
7854d3f7 1302 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1303 * @mtd: mtd info structure
1304 * @chip: nand chip info structure
1305 * @buf: buffer to store read data
1fbb938d 1306 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1307 * @page: page number to read
6e0cb135 1308 *
8b6e50c9
BN
1309 * Hardware ECC for large page chips, require OOB to be read first. For this
1310 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1311 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1312 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1313 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1314 */
1315static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1316 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1317{
1318 int i, eccsize = chip->ecc.size;
1319 int eccbytes = chip->ecc.bytes;
1320 int eccsteps = chip->ecc.steps;
1321 uint8_t *p = buf;
1322 uint8_t *ecc_code = chip->buffers->ecccode;
1323 uint32_t *eccpos = chip->ecc.layout->eccpos;
1324 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1325 unsigned int max_bitflips = 0;
6e0cb135
SN
1326
1327 /* Read the OOB area first */
1328 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1329 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1330 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1331
1332 for (i = 0; i < chip->ecc.total; i++)
1333 ecc_code[i] = chip->oob_poi[eccpos[i]];
1334
1335 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1336 int stat;
1337
1338 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1339 chip->read_buf(mtd, p, eccsize);
1340 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1341
1342 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1343 if (stat < 0) {
6e0cb135 1344 mtd->ecc_stats.failed++;
3f91e94f 1345 } else {
6e0cb135 1346 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1347 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1348 }
6e0cb135 1349 }
3f91e94f 1350 return max_bitflips;
6e0cb135
SN
1351}
1352
f5bbdacc 1353/**
7854d3f7 1354 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1355 * @mtd: mtd info structure
1356 * @chip: nand chip info structure
1357 * @buf: buffer to store read data
1fbb938d 1358 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1359 * @page: page number to read
f5bbdacc 1360 *
8b6e50c9
BN
1361 * The hw generator calculates the error syndrome automatically. Therefore we
1362 * need a special oob layout and handling.
f5bbdacc
TG
1363 */
1364static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1365 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1366{
1367 int i, eccsize = chip->ecc.size;
1368 int eccbytes = chip->ecc.bytes;
1369 int eccsteps = chip->ecc.steps;
1370 uint8_t *p = buf;
f75e5097 1371 uint8_t *oob = chip->oob_poi;
3f91e94f 1372 unsigned int max_bitflips = 0;
1da177e4 1373
f5bbdacc
TG
1374 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1375 int stat;
61b03bd7 1376
f5bbdacc
TG
1377 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1378 chip->read_buf(mtd, p, eccsize);
1da177e4 1379
f5bbdacc
TG
1380 if (chip->ecc.prepad) {
1381 chip->read_buf(mtd, oob, chip->ecc.prepad);
1382 oob += chip->ecc.prepad;
1383 }
1da177e4 1384
f5bbdacc
TG
1385 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1386 chip->read_buf(mtd, oob, eccbytes);
1387 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1388
3f91e94f 1389 if (stat < 0) {
f5bbdacc 1390 mtd->ecc_stats.failed++;
3f91e94f 1391 } else {
f5bbdacc 1392 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1393 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1394 }
61b03bd7 1395
f5bbdacc 1396 oob += eccbytes;
1da177e4 1397
f5bbdacc
TG
1398 if (chip->ecc.postpad) {
1399 chip->read_buf(mtd, oob, chip->ecc.postpad);
1400 oob += chip->ecc.postpad;
61b03bd7 1401 }
f5bbdacc 1402 }
1da177e4 1403
f5bbdacc 1404 /* Calculate remaining oob bytes */
7e4178f9 1405 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1406 if (i)
1407 chip->read_buf(mtd, oob, i);
61b03bd7 1408
3f91e94f 1409 return max_bitflips;
f5bbdacc 1410}
1da177e4 1411
f5bbdacc 1412/**
7854d3f7 1413 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1414 * @chip: nand chip structure
1415 * @oob: oob destination address
1416 * @ops: oob ops structure
1417 * @len: size of oob to transfer
8593fbc6
TG
1418 */
1419static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1420 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1421{
f8ac0414 1422 switch (ops->mode) {
8593fbc6 1423
0612b9dd
BN
1424 case MTD_OPS_PLACE_OOB:
1425 case MTD_OPS_RAW:
8593fbc6
TG
1426 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1427 return oob + len;
1428
0612b9dd 1429 case MTD_OPS_AUTO_OOB: {
8593fbc6 1430 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1431 uint32_t boffs = 0, roffs = ops->ooboffs;
1432 size_t bytes = 0;
8593fbc6 1433
f8ac0414 1434 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1435 /* Read request not from offset 0? */
7bc3312b
TG
1436 if (unlikely(roffs)) {
1437 if (roffs >= free->length) {
1438 roffs -= free->length;
1439 continue;
1440 }
1441 boffs = free->offset + roffs;
1442 bytes = min_t(size_t, len,
1443 (free->length - roffs));
1444 roffs = 0;
1445 } else {
1446 bytes = min_t(size_t, len, free->length);
1447 boffs = free->offset;
1448 }
1449 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1450 oob += bytes;
1451 }
1452 return oob;
1453 }
1454 default:
1455 BUG();
1456 }
1457 return NULL;
1458}
1459
ba84fb59
BN
1460/**
1461 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1462 * @mtd: MTD device structure
1463 * @retry_mode: the retry mode to use
1464 *
1465 * Some vendors supply a special command to shift the Vt threshold, to be used
1466 * when there are too many bitflips in a page (i.e., ECC error). After setting
1467 * a new threshold, the host should retry reading the page.
1468 */
1469static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1470{
1471 struct nand_chip *chip = mtd->priv;
1472
1473 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1474
1475 if (retry_mode >= chip->read_retries)
1476 return -EINVAL;
1477
1478 if (!chip->setup_read_retry)
1479 return -EOPNOTSUPP;
1480
1481 return chip->setup_read_retry(mtd, retry_mode);
1482}
1483
8593fbc6 1484/**
7854d3f7 1485 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1486 * @mtd: MTD device structure
1487 * @from: offset to read from
1488 * @ops: oob ops structure
f5bbdacc
TG
1489 *
1490 * Internal function. Called with chip held.
1491 */
8593fbc6
TG
1492static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1493 struct mtd_oob_ops *ops)
f5bbdacc 1494{
e47f3db4 1495 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc 1496 struct nand_chip *chip = mtd->priv;
f5bbdacc 1497 int ret = 0;
8593fbc6 1498 uint32_t readlen = ops->len;
7014568b 1499 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1500 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1501 mtd->oobavail : mtd->oobsize;
1502
8593fbc6 1503 uint8_t *bufpoi, *oob, *buf;
edbc4540 1504 unsigned int max_bitflips = 0;
ba84fb59 1505 int retry_mode = 0;
b72f3dfb 1506 bool ecc_fail = false;
1da177e4 1507
f5bbdacc
TG
1508 chipnr = (int)(from >> chip->chip_shift);
1509 chip->select_chip(mtd, chipnr);
61b03bd7 1510
f5bbdacc
TG
1511 realpage = (int)(from >> chip->page_shift);
1512 page = realpage & chip->pagemask;
1da177e4 1513
f5bbdacc 1514 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1515
8593fbc6
TG
1516 buf = ops->datbuf;
1517 oob = ops->oobbuf;
e47f3db4 1518 oob_required = oob ? 1 : 0;
8593fbc6 1519
f8ac0414 1520 while (1) {
b72f3dfb
BN
1521 unsigned int ecc_failures = mtd->ecc_stats.failed;
1522
f5bbdacc
TG
1523 bytes = min(mtd->writesize - col, readlen);
1524 aligned = (bytes == mtd->writesize);
61b03bd7 1525
8b6e50c9 1526 /* Is the current page in the buffer? */
8593fbc6 1527 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1528 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1529
ba84fb59 1530read_retry:
c00a0991 1531 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1532
edbc4540
MD
1533 /*
1534 * Now read the page into the buffer. Absent an error,
1535 * the read methods return max bitflips per ecc step.
1536 */
0612b9dd 1537 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1538 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1539 oob_required,
1540 page);
a5ff4f10
JW
1541 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1542 !oob)
7351d3a5 1543 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1544 col, bytes, bufpoi,
1545 page);
956e944c 1546 else
46a8cf2d 1547 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1548 oob_required, page);
6d77b9d0
BN
1549 if (ret < 0) {
1550 if (!aligned)
1551 /* Invalidate page cache */
1552 chip->pagebuf = -1;
1da177e4 1553 break;
6d77b9d0 1554 }
f5bbdacc 1555
edbc4540
MD
1556 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1557
f5bbdacc
TG
1558 /* Transfer not aligned data */
1559 if (!aligned) {
a5ff4f10 1560 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1561 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1562 (ops->mode != MTD_OPS_RAW)) {
3d459559 1563 chip->pagebuf = realpage;
edbc4540
MD
1564 chip->pagebuf_bitflips = ret;
1565 } else {
6d77b9d0
BN
1566 /* Invalidate page cache */
1567 chip->pagebuf = -1;
edbc4540 1568 }
4bf63fcb 1569 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1570 }
1571
8593fbc6 1572 if (unlikely(oob)) {
b64d39d8
ML
1573 int toread = min(oobreadlen, max_oobsize);
1574
1575 if (toread) {
1576 oob = nand_transfer_oob(chip,
1577 oob, ops, toread);
1578 oobreadlen -= toread;
1579 }
8593fbc6 1580 }
5bc7c33c
BN
1581
1582 if (chip->options & NAND_NEED_READRDY) {
1583 /* Apply delay or wait for ready/busy pin */
1584 if (!chip->dev_ready)
1585 udelay(chip->chip_delay);
1586 else
1587 nand_wait_ready(mtd);
1588 }
b72f3dfb 1589
ba84fb59 1590 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1591 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1592 retry_mode++;
1593 ret = nand_setup_read_retry(mtd,
1594 retry_mode);
1595 if (ret < 0)
1596 break;
1597
1598 /* Reset failures; retry */
1599 mtd->ecc_stats.failed = ecc_failures;
1600 goto read_retry;
1601 } else {
1602 /* No more retry modes; real failure */
1603 ecc_fail = true;
1604 }
1605 }
1606
1607 buf += bytes;
8593fbc6 1608 } else {
4bf63fcb 1609 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1610 buf += bytes;
edbc4540
MD
1611 max_bitflips = max_t(unsigned int, max_bitflips,
1612 chip->pagebuf_bitflips);
8593fbc6 1613 }
1da177e4 1614
f5bbdacc 1615 readlen -= bytes;
61b03bd7 1616
ba84fb59
BN
1617 /* Reset to retry mode 0 */
1618 if (retry_mode) {
1619 ret = nand_setup_read_retry(mtd, 0);
1620 if (ret < 0)
1621 break;
1622 retry_mode = 0;
1623 }
1624
f5bbdacc 1625 if (!readlen)
61b03bd7 1626 break;
1da177e4 1627
8b6e50c9 1628 /* For subsequent reads align to page boundary */
1da177e4
LT
1629 col = 0;
1630 /* Increment page address */
1631 realpage++;
1632
ace4dfee 1633 page = realpage & chip->pagemask;
1da177e4
LT
1634 /* Check, if we cross a chip boundary */
1635 if (!page) {
1636 chipnr++;
ace4dfee
TG
1637 chip->select_chip(mtd, -1);
1638 chip->select_chip(mtd, chipnr);
1da177e4 1639 }
1da177e4 1640 }
b0bb6903 1641 chip->select_chip(mtd, -1);
1da177e4 1642
8593fbc6 1643 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1644 if (oob)
1645 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1646
3f91e94f 1647 if (ret < 0)
f5bbdacc
TG
1648 return ret;
1649
b72f3dfb 1650 if (ecc_fail)
9a1fcdfd
TG
1651 return -EBADMSG;
1652
edbc4540 1653 return max_bitflips;
f5bbdacc
TG
1654}
1655
1656/**
25985edc 1657 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1658 * @mtd: MTD device structure
1659 * @from: offset to read from
1660 * @len: number of bytes to read
1661 * @retlen: pointer to variable to store the number of read bytes
1662 * @buf: the databuffer to put data
f5bbdacc 1663 *
8b6e50c9 1664 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1665 */
1666static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1667 size_t *retlen, uint8_t *buf)
1668{
4a89ff88 1669 struct mtd_oob_ops ops;
f5bbdacc
TG
1670 int ret;
1671
6a8214aa 1672 nand_get_device(mtd, FL_READING);
4a89ff88
BN
1673 ops.len = len;
1674 ops.datbuf = buf;
1675 ops.oobbuf = NULL;
11041ae6 1676 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1677 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1678 *retlen = ops.retlen;
f5bbdacc 1679 nand_release_device(mtd);
f5bbdacc 1680 return ret;
1da177e4
LT
1681}
1682
7bc3312b 1683/**
7854d3f7 1684 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1685 * @mtd: mtd info structure
1686 * @chip: nand chip info structure
1687 * @page: page number to read
7bc3312b
TG
1688 */
1689static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1690 int page)
7bc3312b 1691{
5c2ffb11 1692 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1693 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1694 return 0;
7bc3312b
TG
1695}
1696
1697/**
7854d3f7 1698 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1699 * with syndromes
8b6e50c9
BN
1700 * @mtd: mtd info structure
1701 * @chip: nand chip info structure
1702 * @page: page number to read
7bc3312b
TG
1703 */
1704static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1705 int page)
7bc3312b
TG
1706{
1707 uint8_t *buf = chip->oob_poi;
1708 int length = mtd->oobsize;
1709 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1710 int eccsize = chip->ecc.size;
1711 uint8_t *bufpoi = buf;
1712 int i, toread, sndrnd = 0, pos;
1713
1714 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1715 for (i = 0; i < chip->ecc.steps; i++) {
1716 if (sndrnd) {
1717 pos = eccsize + i * (eccsize + chunk);
1718 if (mtd->writesize > 512)
1719 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1720 else
1721 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1722 } else
1723 sndrnd = 1;
1724 toread = min_t(int, length, chunk);
1725 chip->read_buf(mtd, bufpoi, toread);
1726 bufpoi += toread;
1727 length -= toread;
1728 }
1729 if (length > 0)
1730 chip->read_buf(mtd, bufpoi, length);
1731
5c2ffb11 1732 return 0;
7bc3312b
TG
1733}
1734
1735/**
7854d3f7 1736 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1737 * @mtd: mtd info structure
1738 * @chip: nand chip info structure
1739 * @page: page number to write
7bc3312b
TG
1740 */
1741static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1742 int page)
1743{
1744 int status = 0;
1745 const uint8_t *buf = chip->oob_poi;
1746 int length = mtd->oobsize;
1747
1748 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1749 chip->write_buf(mtd, buf, length);
1750 /* Send command to program the OOB data */
1751 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1752
1753 status = chip->waitfunc(mtd, chip);
1754
0d420f9d 1755 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1756}
1757
1758/**
7854d3f7 1759 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1760 * with syndrome - only for large page flash
1761 * @mtd: mtd info structure
1762 * @chip: nand chip info structure
1763 * @page: page number to write
7bc3312b
TG
1764 */
1765static int nand_write_oob_syndrome(struct mtd_info *mtd,
1766 struct nand_chip *chip, int page)
1767{
1768 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1769 int eccsize = chip->ecc.size, length = mtd->oobsize;
1770 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1771 const uint8_t *bufpoi = chip->oob_poi;
1772
1773 /*
1774 * data-ecc-data-ecc ... ecc-oob
1775 * or
1776 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1777 */
1778 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1779 pos = steps * (eccsize + chunk);
1780 steps = 0;
1781 } else
8b0036ee 1782 pos = eccsize;
7bc3312b
TG
1783
1784 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1785 for (i = 0; i < steps; i++) {
1786 if (sndcmd) {
1787 if (mtd->writesize <= 512) {
1788 uint32_t fill = 0xFFFFFFFF;
1789
1790 len = eccsize;
1791 while (len > 0) {
1792 int num = min_t(int, len, 4);
1793 chip->write_buf(mtd, (uint8_t *)&fill,
1794 num);
1795 len -= num;
1796 }
1797 } else {
1798 pos = eccsize + i * (eccsize + chunk);
1799 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1800 }
1801 } else
1802 sndcmd = 1;
1803 len = min_t(int, length, chunk);
1804 chip->write_buf(mtd, bufpoi, len);
1805 bufpoi += len;
1806 length -= len;
1807 }
1808 if (length > 0)
1809 chip->write_buf(mtd, bufpoi, length);
1810
1811 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1812 status = chip->waitfunc(mtd, chip);
1813
1814 return status & NAND_STATUS_FAIL ? -EIO : 0;
1815}
1816
1da177e4 1817/**
7854d3f7 1818 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1819 * @mtd: MTD device structure
1820 * @from: offset to read from
1821 * @ops: oob operations description structure
1da177e4 1822 *
8b6e50c9 1823 * NAND read out-of-band data from the spare area.
1da177e4 1824 */
8593fbc6
TG
1825static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1826 struct mtd_oob_ops *ops)
1da177e4 1827{
c00a0991 1828 int page, realpage, chipnr;
ace4dfee 1829 struct nand_chip *chip = mtd->priv;
041e4575 1830 struct mtd_ecc_stats stats;
7014568b
VW
1831 int readlen = ops->ooblen;
1832 int len;
7bc3312b 1833 uint8_t *buf = ops->oobbuf;
1951f2f7 1834 int ret = 0;
61b03bd7 1835
289c0522 1836 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1837 __func__, (unsigned long long)from, readlen);
1da177e4 1838
041e4575
BN
1839 stats = mtd->ecc_stats;
1840
0612b9dd 1841 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1842 len = chip->ecc.layout->oobavail;
03736155
AH
1843 else
1844 len = mtd->oobsize;
1845
1846 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1847 pr_debug("%s: attempt to start read outside oob\n",
1848 __func__);
03736155
AH
1849 return -EINVAL;
1850 }
1851
1852 /* Do not allow reads past end of device */
1853 if (unlikely(from >= mtd->size ||
1854 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1855 (from >> chip->page_shift)) * len)) {
289c0522
BN
1856 pr_debug("%s: attempt to read beyond end of device\n",
1857 __func__);
03736155
AH
1858 return -EINVAL;
1859 }
7014568b 1860
7314e9e7 1861 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1862 chip->select_chip(mtd, chipnr);
1da177e4 1863
7314e9e7
TG
1864 /* Shift to get page */
1865 realpage = (int)(from >> chip->page_shift);
1866 page = realpage & chip->pagemask;
1da177e4 1867
f8ac0414 1868 while (1) {
0612b9dd 1869 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1870 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1871 else
1951f2f7
SL
1872 ret = chip->ecc.read_oob(mtd, chip, page);
1873
1874 if (ret < 0)
1875 break;
7014568b
VW
1876
1877 len = min(len, readlen);
1878 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1879
5bc7c33c
BN
1880 if (chip->options & NAND_NEED_READRDY) {
1881 /* Apply delay or wait for ready/busy pin */
1882 if (!chip->dev_ready)
1883 udelay(chip->chip_delay);
1884 else
1885 nand_wait_ready(mtd);
1886 }
1887
7014568b 1888 readlen -= len;
0d420f9d
SZ
1889 if (!readlen)
1890 break;
1891
7314e9e7
TG
1892 /* Increment page address */
1893 realpage++;
1894
1895 page = realpage & chip->pagemask;
1896 /* Check, if we cross a chip boundary */
1897 if (!page) {
1898 chipnr++;
1899 chip->select_chip(mtd, -1);
1900 chip->select_chip(mtd, chipnr);
1da177e4
LT
1901 }
1902 }
b0bb6903 1903 chip->select_chip(mtd, -1);
1da177e4 1904
1951f2f7
SL
1905 ops->oobretlen = ops->ooblen - readlen;
1906
1907 if (ret < 0)
1908 return ret;
041e4575
BN
1909
1910 if (mtd->ecc_stats.failed - stats.failed)
1911 return -EBADMSG;
1912
1913 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1914}
1915
1916/**
8593fbc6 1917 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1918 * @mtd: MTD device structure
1919 * @from: offset to read from
1920 * @ops: oob operation description structure
1da177e4 1921 *
8b6e50c9 1922 * NAND read data and/or out-of-band data.
1da177e4 1923 */
8593fbc6
TG
1924static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1925 struct mtd_oob_ops *ops)
1da177e4 1926{
8593fbc6
TG
1927 int ret = -ENOTSUPP;
1928
1929 ops->retlen = 0;
1da177e4
LT
1930
1931 /* Do not allow reads past end of device */
7014568b 1932 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1933 pr_debug("%s: attempt to read beyond end of device\n",
1934 __func__);
1da177e4
LT
1935 return -EINVAL;
1936 }
1937
6a8214aa 1938 nand_get_device(mtd, FL_READING);
1da177e4 1939
f8ac0414 1940 switch (ops->mode) {
0612b9dd
BN
1941 case MTD_OPS_PLACE_OOB:
1942 case MTD_OPS_AUTO_OOB:
1943 case MTD_OPS_RAW:
8593fbc6 1944 break;
1da177e4 1945
8593fbc6
TG
1946 default:
1947 goto out;
1948 }
1da177e4 1949
8593fbc6
TG
1950 if (!ops->datbuf)
1951 ret = nand_do_read_oob(mtd, from, ops);
1952 else
1953 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1954
7351d3a5 1955out:
8593fbc6
TG
1956 nand_release_device(mtd);
1957 return ret;
1958}
61b03bd7 1959
1da177e4 1960
8593fbc6 1961/**
7854d3f7 1962 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1963 * @mtd: mtd info structure
1964 * @chip: nand chip info structure
1965 * @buf: data buffer
1fbb938d 1966 * @oob_required: must write chip->oob_poi to OOB
52ff49df 1967 *
7854d3f7 1968 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1969 */
fdbad98d 1970static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1971 const uint8_t *buf, int oob_required)
8593fbc6
TG
1972{
1973 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1974 if (oob_required)
1975 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
1976
1977 return 0;
1da177e4
LT
1978}
1979
52ff49df 1980/**
7854d3f7 1981 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
1982 * @mtd: mtd info structure
1983 * @chip: nand chip info structure
1984 * @buf: data buffer
1fbb938d 1985 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
1986 *
1987 * We need a special oob layout and handling even when ECC isn't checked.
1988 */
fdbad98d 1989static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 1990 struct nand_chip *chip,
1fbb938d 1991 const uint8_t *buf, int oob_required)
52ff49df
DB
1992{
1993 int eccsize = chip->ecc.size;
1994 int eccbytes = chip->ecc.bytes;
1995 uint8_t *oob = chip->oob_poi;
1996 int steps, size;
1997
1998 for (steps = chip->ecc.steps; steps > 0; steps--) {
1999 chip->write_buf(mtd, buf, eccsize);
2000 buf += eccsize;
2001
2002 if (chip->ecc.prepad) {
2003 chip->write_buf(mtd, oob, chip->ecc.prepad);
2004 oob += chip->ecc.prepad;
2005 }
2006
60c3bc1f 2007 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2008 oob += eccbytes;
2009
2010 if (chip->ecc.postpad) {
2011 chip->write_buf(mtd, oob, chip->ecc.postpad);
2012 oob += chip->ecc.postpad;
2013 }
2014 }
2015
2016 size = mtd->oobsize - (oob - chip->oob_poi);
2017 if (size)
2018 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2019
2020 return 0;
52ff49df 2021}
9223a456 2022/**
7854d3f7 2023 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2024 * @mtd: mtd info structure
2025 * @chip: nand chip info structure
2026 * @buf: data buffer
1fbb938d 2027 * @oob_required: must write chip->oob_poi to OOB
9223a456 2028 */
fdbad98d 2029static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2030 const uint8_t *buf, int oob_required)
9223a456 2031{
f75e5097
TG
2032 int i, eccsize = chip->ecc.size;
2033 int eccbytes = chip->ecc.bytes;
2034 int eccsteps = chip->ecc.steps;
4bf63fcb 2035 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2036 const uint8_t *p = buf;
8b099a39 2037 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2038
7854d3f7 2039 /* Software ECC calculation */
8593fbc6
TG
2040 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2041 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2042
8593fbc6
TG
2043 for (i = 0; i < chip->ecc.total; i++)
2044 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2045
fdbad98d 2046 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 2047}
9223a456 2048
f75e5097 2049/**
7854d3f7 2050 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2051 * @mtd: mtd info structure
2052 * @chip: nand chip info structure
2053 * @buf: data buffer
1fbb938d 2054 * @oob_required: must write chip->oob_poi to OOB
f75e5097 2055 */
fdbad98d 2056static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2057 const uint8_t *buf, int oob_required)
f75e5097
TG
2058{
2059 int i, eccsize = chip->ecc.size;
2060 int eccbytes = chip->ecc.bytes;
2061 int eccsteps = chip->ecc.steps;
4bf63fcb 2062 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2063 const uint8_t *p = buf;
8b099a39 2064 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2065
f75e5097
TG
2066 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2067 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2068 chip->write_buf(mtd, p, eccsize);
f75e5097 2069 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2070 }
2071
f75e5097
TG
2072 for (i = 0; i < chip->ecc.total; i++)
2073 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2074
2075 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2076
2077 return 0;
9223a456
TG
2078}
2079
837a6ba4
GP
2080
2081/**
2082 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2083 * @mtd: mtd info structure
2084 * @chip: nand chip info structure
d6a95080 2085 * @offset: column address of subpage within the page
837a6ba4 2086 * @data_len: data length
d6a95080 2087 * @buf: data buffer
837a6ba4
GP
2088 * @oob_required: must write chip->oob_poi to OOB
2089 */
2090static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2091 struct nand_chip *chip, uint32_t offset,
d6a95080 2092 uint32_t data_len, const uint8_t *buf,
837a6ba4
GP
2093 int oob_required)
2094{
2095 uint8_t *oob_buf = chip->oob_poi;
2096 uint8_t *ecc_calc = chip->buffers->ecccalc;
2097 int ecc_size = chip->ecc.size;
2098 int ecc_bytes = chip->ecc.bytes;
2099 int ecc_steps = chip->ecc.steps;
2100 uint32_t *eccpos = chip->ecc.layout->eccpos;
2101 uint32_t start_step = offset / ecc_size;
2102 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2103 int oob_bytes = mtd->oobsize / ecc_steps;
2104 int step, i;
2105
2106 for (step = 0; step < ecc_steps; step++) {
2107 /* configure controller for WRITE access */
2108 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2109
2110 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2111 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2112
2113 /* mask ECC of un-touched subpages by padding 0xFF */
2114 if ((step < start_step) || (step > end_step))
2115 memset(ecc_calc, 0xff, ecc_bytes);
2116 else
d6a95080 2117 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2118
2119 /* mask OOB of un-touched subpages by padding 0xFF */
2120 /* if oob_required, preserve OOB metadata of written subpage */
2121 if (!oob_required || (step < start_step) || (step > end_step))
2122 memset(oob_buf, 0xff, oob_bytes);
2123
d6a95080 2124 buf += ecc_size;
837a6ba4
GP
2125 ecc_calc += ecc_bytes;
2126 oob_buf += oob_bytes;
2127 }
2128
2129 /* copy calculated ECC for whole page to chip->buffer->oob */
2130 /* this include masked-value(0xFF) for unwritten subpages */
2131 ecc_calc = chip->buffers->ecccalc;
2132 for (i = 0; i < chip->ecc.total; i++)
2133 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2134
2135 /* write OOB buffer to NAND device */
2136 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2137
2138 return 0;
2139}
2140
2141
61b03bd7 2142/**
7854d3f7 2143 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2144 * @mtd: mtd info structure
2145 * @chip: nand chip info structure
2146 * @buf: data buffer
1fbb938d 2147 * @oob_required: must write chip->oob_poi to OOB
1da177e4 2148 *
8b6e50c9
BN
2149 * The hw generator calculates the error syndrome automatically. Therefore we
2150 * need a special oob layout and handling.
f75e5097 2151 */
fdbad98d 2152static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
2153 struct nand_chip *chip,
2154 const uint8_t *buf, int oob_required)
1da177e4 2155{
f75e5097
TG
2156 int i, eccsize = chip->ecc.size;
2157 int eccbytes = chip->ecc.bytes;
2158 int eccsteps = chip->ecc.steps;
2159 const uint8_t *p = buf;
2160 uint8_t *oob = chip->oob_poi;
1da177e4 2161
f75e5097 2162 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2163
f75e5097
TG
2164 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2165 chip->write_buf(mtd, p, eccsize);
61b03bd7 2166
f75e5097
TG
2167 if (chip->ecc.prepad) {
2168 chip->write_buf(mtd, oob, chip->ecc.prepad);
2169 oob += chip->ecc.prepad;
2170 }
2171
2172 chip->ecc.calculate(mtd, p, oob);
2173 chip->write_buf(mtd, oob, eccbytes);
2174 oob += eccbytes;
2175
2176 if (chip->ecc.postpad) {
2177 chip->write_buf(mtd, oob, chip->ecc.postpad);
2178 oob += chip->ecc.postpad;
1da177e4 2179 }
1da177e4 2180 }
f75e5097
TG
2181
2182 /* Calculate remaining oob bytes */
7e4178f9 2183 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2184 if (i)
2185 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2186
2187 return 0;
f75e5097
TG
2188}
2189
2190/**
956e944c 2191 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2192 * @mtd: MTD device structure
2193 * @chip: NAND chip descriptor
837a6ba4
GP
2194 * @offset: address offset within the page
2195 * @data_len: length of actual data to be written
8b6e50c9 2196 * @buf: the data to write
1fbb938d 2197 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2198 * @page: page number to write
2199 * @cached: cached programming
2200 * @raw: use _raw version of write_page
f75e5097
TG
2201 */
2202static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2203 uint32_t offset, int data_len, const uint8_t *buf,
2204 int oob_required, int page, int cached, int raw)
f75e5097 2205{
837a6ba4
GP
2206 int status, subpage;
2207
2208 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2209 chip->ecc.write_subpage)
2210 subpage = offset || (data_len < mtd->writesize);
2211 else
2212 subpage = 0;
f75e5097
TG
2213
2214 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2215
956e944c 2216 if (unlikely(raw))
837a6ba4
GP
2217 status = chip->ecc.write_page_raw(mtd, chip, buf,
2218 oob_required);
2219 else if (subpage)
2220 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2221 buf, oob_required);
956e944c 2222 else
fdbad98d
JW
2223 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2224
2225 if (status < 0)
2226 return status;
f75e5097
TG
2227
2228 /*
7854d3f7 2229 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2230 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2231 */
2232 cached = 0;
2233
3239a6cd 2234 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2235
2236 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2237 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2238 /*
2239 * See if operation failed and additional status checks are
8b6e50c9 2240 * available.
f75e5097
TG
2241 */
2242 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2243 status = chip->errstat(mtd, chip, FL_WRITING, status,
2244 page);
2245
2246 if (status & NAND_STATUS_FAIL)
2247 return -EIO;
2248 } else {
2249 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2250 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2251 }
2252
f75e5097 2253 return 0;
1da177e4
LT
2254}
2255
8593fbc6 2256/**
7854d3f7 2257 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2258 * @mtd: MTD device structure
8b6e50c9
BN
2259 * @oob: oob data buffer
2260 * @len: oob data write length
2261 * @ops: oob ops structure
8593fbc6 2262 */
f722013e
TAA
2263static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2264 struct mtd_oob_ops *ops)
8593fbc6 2265{
f722013e
TAA
2266 struct nand_chip *chip = mtd->priv;
2267
2268 /*
2269 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2270 * data from a previous OOB read.
2271 */
2272 memset(chip->oob_poi, 0xff, mtd->oobsize);
2273
f8ac0414 2274 switch (ops->mode) {
8593fbc6 2275
0612b9dd
BN
2276 case MTD_OPS_PLACE_OOB:
2277 case MTD_OPS_RAW:
8593fbc6
TG
2278 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2279 return oob + len;
2280
0612b9dd 2281 case MTD_OPS_AUTO_OOB: {
8593fbc6 2282 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2283 uint32_t boffs = 0, woffs = ops->ooboffs;
2284 size_t bytes = 0;
8593fbc6 2285
f8ac0414 2286 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2287 /* Write request not from offset 0? */
7bc3312b
TG
2288 if (unlikely(woffs)) {
2289 if (woffs >= free->length) {
2290 woffs -= free->length;
2291 continue;
2292 }
2293 boffs = free->offset + woffs;
2294 bytes = min_t(size_t, len,
2295 (free->length - woffs));
2296 woffs = 0;
2297 } else {
2298 bytes = min_t(size_t, len, free->length);
2299 boffs = free->offset;
2300 }
8b0036ee 2301 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2302 oob += bytes;
2303 }
2304 return oob;
2305 }
2306 default:
2307 BUG();
2308 }
2309 return NULL;
2310}
2311
f8ac0414 2312#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2313
2314/**
7854d3f7 2315 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2316 * @mtd: MTD device structure
2317 * @to: offset to write to
2318 * @ops: oob operations description structure
1da177e4 2319 *
8b6e50c9 2320 * NAND write with ECC.
1da177e4 2321 */
8593fbc6
TG
2322static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2323 struct mtd_oob_ops *ops)
1da177e4 2324{
29072b96 2325 int chipnr, realpage, page, blockmask, column;
ace4dfee 2326 struct nand_chip *chip = mtd->priv;
8593fbc6 2327 uint32_t writelen = ops->len;
782ce79a
ML
2328
2329 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2330 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2331 mtd->oobavail : mtd->oobsize;
2332
8593fbc6
TG
2333 uint8_t *oob = ops->oobbuf;
2334 uint8_t *buf = ops->datbuf;
837a6ba4 2335 int ret;
e47f3db4 2336 int oob_required = oob ? 1 : 0;
1da177e4 2337
8593fbc6 2338 ops->retlen = 0;
29072b96
TG
2339 if (!writelen)
2340 return 0;
1da177e4 2341
8b6e50c9 2342 /* Reject writes, which are not page aligned */
8593fbc6 2343 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2344 pr_notice("%s: attempt to write non page aligned data\n",
2345 __func__);
1da177e4
LT
2346 return -EINVAL;
2347 }
2348
29072b96 2349 column = to & (mtd->writesize - 1);
1da177e4 2350
6a930961
TG
2351 chipnr = (int)(to >> chip->chip_shift);
2352 chip->select_chip(mtd, chipnr);
2353
1da177e4 2354 /* Check, if it is write protected */
b0bb6903
HS
2355 if (nand_check_wp(mtd)) {
2356 ret = -EIO;
2357 goto err_out;
2358 }
1da177e4 2359
f75e5097
TG
2360 realpage = (int)(to >> chip->page_shift);
2361 page = realpage & chip->pagemask;
2362 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2363
2364 /* Invalidate the page cache, when we write to the cached page */
2365 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2366 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2367 chip->pagebuf = -1;
61b03bd7 2368
782ce79a 2369 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2370 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2371 ret = -EINVAL;
2372 goto err_out;
2373 }
782ce79a 2374
f8ac0414 2375 while (1) {
29072b96 2376 int bytes = mtd->writesize;
f75e5097 2377 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2378 uint8_t *wbuf = buf;
2379
8b6e50c9 2380 /* Partial page write? */
29072b96
TG
2381 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2382 cached = 0;
2383 bytes = min_t(int, bytes - column, (int) writelen);
2384 chip->pagebuf = -1;
2385 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2386 memcpy(&chip->buffers->databuf[column], buf, bytes);
2387 wbuf = chip->buffers->databuf;
2388 }
1da177e4 2389
782ce79a
ML
2390 if (unlikely(oob)) {
2391 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2392 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2393 oobwritelen -= len;
f722013e
TAA
2394 } else {
2395 /* We still need to erase leftover OOB data */
2396 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2397 }
837a6ba4
GP
2398 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2399 oob_required, page, cached,
2400 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2401 if (ret)
2402 break;
2403
2404 writelen -= bytes;
2405 if (!writelen)
2406 break;
2407
29072b96 2408 column = 0;
f75e5097
TG
2409 buf += bytes;
2410 realpage++;
2411
2412 page = realpage & chip->pagemask;
2413 /* Check, if we cross a chip boundary */
2414 if (!page) {
2415 chipnr++;
2416 chip->select_chip(mtd, -1);
2417 chip->select_chip(mtd, chipnr);
1da177e4
LT
2418 }
2419 }
8593fbc6 2420
8593fbc6 2421 ops->retlen = ops->len - writelen;
7014568b
VW
2422 if (unlikely(oob))
2423 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2424
2425err_out:
2426 chip->select_chip(mtd, -1);
1da177e4
LT
2427 return ret;
2428}
2429
2af7c653
SK
2430/**
2431 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2432 * @mtd: MTD device structure
2433 * @to: offset to write to
2434 * @len: number of bytes to write
2435 * @retlen: pointer to variable to store the number of written bytes
2436 * @buf: the data to write
2af7c653
SK
2437 *
2438 * NAND write with ECC. Used when performing writes in interrupt context, this
2439 * may for example be called by mtdoops when writing an oops while in panic.
2440 */
2441static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2442 size_t *retlen, const uint8_t *buf)
2443{
2444 struct nand_chip *chip = mtd->priv;
4a89ff88 2445 struct mtd_oob_ops ops;
2af7c653
SK
2446 int ret;
2447
8b6e50c9 2448 /* Wait for the device to get ready */
2af7c653
SK
2449 panic_nand_wait(mtd, chip, 400);
2450
8b6e50c9 2451 /* Grab the device */
2af7c653
SK
2452 panic_nand_get_device(chip, mtd, FL_WRITING);
2453
4a89ff88
BN
2454 ops.len = len;
2455 ops.datbuf = (uint8_t *)buf;
2456 ops.oobbuf = NULL;
11041ae6 2457 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2458
4a89ff88 2459 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2460
4a89ff88 2461 *retlen = ops.retlen;
2af7c653
SK
2462 return ret;
2463}
2464
f75e5097 2465/**
8593fbc6 2466 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2467 * @mtd: MTD device structure
2468 * @to: offset to write to
2469 * @len: number of bytes to write
2470 * @retlen: pointer to variable to store the number of written bytes
2471 * @buf: the data to write
f75e5097 2472 *
8b6e50c9 2473 * NAND write with ECC.
f75e5097 2474 */
8593fbc6
TG
2475static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2476 size_t *retlen, const uint8_t *buf)
f75e5097 2477{
4a89ff88 2478 struct mtd_oob_ops ops;
f75e5097
TG
2479 int ret;
2480
6a8214aa 2481 nand_get_device(mtd, FL_WRITING);
4a89ff88
BN
2482 ops.len = len;
2483 ops.datbuf = (uint8_t *)buf;
2484 ops.oobbuf = NULL;
11041ae6 2485 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2486 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2487 *retlen = ops.retlen;
f75e5097 2488 nand_release_device(mtd);
8593fbc6 2489 return ret;
f75e5097 2490}
7314e9e7 2491
1da177e4 2492/**
8593fbc6 2493 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2494 * @mtd: MTD device structure
2495 * @to: offset to write to
2496 * @ops: oob operation description structure
1da177e4 2497 *
8b6e50c9 2498 * NAND write out-of-band.
1da177e4 2499 */
8593fbc6
TG
2500static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2501 struct mtd_oob_ops *ops)
1da177e4 2502{
03736155 2503 int chipnr, page, status, len;
ace4dfee 2504 struct nand_chip *chip = mtd->priv;
1da177e4 2505
289c0522 2506 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2507 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2508
0612b9dd 2509 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2510 len = chip->ecc.layout->oobavail;
2511 else
2512 len = mtd->oobsize;
2513
1da177e4 2514 /* Do not allow write past end of page */
03736155 2515 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2516 pr_debug("%s: attempt to write past end of page\n",
2517 __func__);
1da177e4
LT
2518 return -EINVAL;
2519 }
2520
03736155 2521 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2522 pr_debug("%s: attempt to start write outside oob\n",
2523 __func__);
03736155
AH
2524 return -EINVAL;
2525 }
2526
775adc3d 2527 /* Do not allow write past end of device */
03736155
AH
2528 if (unlikely(to >= mtd->size ||
2529 ops->ooboffs + ops->ooblen >
2530 ((mtd->size >> chip->page_shift) -
2531 (to >> chip->page_shift)) * len)) {
289c0522
BN
2532 pr_debug("%s: attempt to write beyond end of device\n",
2533 __func__);
03736155
AH
2534 return -EINVAL;
2535 }
2536
7314e9e7 2537 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2538 chip->select_chip(mtd, chipnr);
1da177e4 2539
7314e9e7
TG
2540 /* Shift to get page */
2541 page = (int)(to >> chip->page_shift);
2542
2543 /*
2544 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2545 * of my DiskOnChip 2000 test units) will clear the whole data page too
2546 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2547 * it in the doc2000 driver in August 1999. dwmw2.
2548 */
ace4dfee 2549 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2550
2551 /* Check, if it is write protected */
b0bb6903
HS
2552 if (nand_check_wp(mtd)) {
2553 chip->select_chip(mtd, -1);
8593fbc6 2554 return -EROFS;
b0bb6903 2555 }
61b03bd7 2556
1da177e4 2557 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2558 if (page == chip->pagebuf)
2559 chip->pagebuf = -1;
1da177e4 2560
f722013e 2561 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2562
0612b9dd 2563 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2564 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2565 else
2566 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2567
b0bb6903
HS
2568 chip->select_chip(mtd, -1);
2569
7bc3312b
TG
2570 if (status)
2571 return status;
1da177e4 2572
7014568b 2573 ops->oobretlen = ops->ooblen;
1da177e4 2574
7bc3312b 2575 return 0;
8593fbc6
TG
2576}
2577
2578/**
2579 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2580 * @mtd: MTD device structure
2581 * @to: offset to write to
2582 * @ops: oob operation description structure
8593fbc6
TG
2583 */
2584static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2585 struct mtd_oob_ops *ops)
2586{
8593fbc6
TG
2587 int ret = -ENOTSUPP;
2588
2589 ops->retlen = 0;
2590
2591 /* Do not allow writes past end of device */
7014568b 2592 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2593 pr_debug("%s: attempt to write beyond end of device\n",
2594 __func__);
8593fbc6
TG
2595 return -EINVAL;
2596 }
2597
6a8214aa 2598 nand_get_device(mtd, FL_WRITING);
8593fbc6 2599
f8ac0414 2600 switch (ops->mode) {
0612b9dd
BN
2601 case MTD_OPS_PLACE_OOB:
2602 case MTD_OPS_AUTO_OOB:
2603 case MTD_OPS_RAW:
8593fbc6
TG
2604 break;
2605
2606 default:
2607 goto out;
2608 }
2609
2610 if (!ops->datbuf)
2611 ret = nand_do_write_oob(mtd, to, ops);
2612 else
2613 ret = nand_do_write_ops(mtd, to, ops);
2614
7351d3a5 2615out:
1da177e4 2616 nand_release_device(mtd);
1da177e4
LT
2617 return ret;
2618}
2619
1da177e4 2620/**
7854d3f7 2621 * single_erase_cmd - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2622 * @mtd: MTD device structure
2623 * @page: the page address of the block which will be erased
1da177e4 2624 *
8b6e50c9 2625 * Standard erase command for NAND chips.
1da177e4 2626 */
e0c7d767 2627static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2628{
ace4dfee 2629 struct nand_chip *chip = mtd->priv;
1da177e4 2630 /* Send commands to erase a block */
ace4dfee
TG
2631 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2632 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2633}
2634
1da177e4
LT
2635/**
2636 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2637 * @mtd: MTD device structure
2638 * @instr: erase instruction
1da177e4 2639 *
8b6e50c9 2640 * Erase one ore more blocks.
1da177e4 2641 */
e0c7d767 2642static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2643{
e0c7d767 2644 return nand_erase_nand(mtd, instr, 0);
1da177e4 2645}
61b03bd7 2646
1da177e4 2647/**
7854d3f7 2648 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2649 * @mtd: MTD device structure
2650 * @instr: erase instruction
2651 * @allowbbt: allow erasing the bbt area
1da177e4 2652 *
8b6e50c9 2653 * Erase one ore more blocks.
1da177e4 2654 */
ace4dfee
TG
2655int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2656 int allowbbt)
1da177e4 2657{
69423d99 2658 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2659 struct nand_chip *chip = mtd->priv;
69423d99 2660 loff_t len;
1da177e4 2661
289c0522
BN
2662 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2663 __func__, (unsigned long long)instr->addr,
2664 (unsigned long long)instr->len);
1da177e4 2665
6fe5a6ac 2666 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2667 return -EINVAL;
1da177e4 2668
1da177e4 2669 /* Grab the lock and see if the device is available */
6a8214aa 2670 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2671
2672 /* Shift to get first page */
ace4dfee
TG
2673 page = (int)(instr->addr >> chip->page_shift);
2674 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2675
2676 /* Calculate pages in each block */
ace4dfee 2677 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2678
2679 /* Select the NAND device */
ace4dfee 2680 chip->select_chip(mtd, chipnr);
1da177e4 2681
1da177e4
LT
2682 /* Check, if it is write protected */
2683 if (nand_check_wp(mtd)) {
289c0522
BN
2684 pr_debug("%s: device is write protected!\n",
2685 __func__);
1da177e4
LT
2686 instr->state = MTD_ERASE_FAILED;
2687 goto erase_exit;
2688 }
2689
2690 /* Loop through the pages */
2691 len = instr->len;
2692
2693 instr->state = MTD_ERASING;
2694
2695 while (len) {
12183a20 2696 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2697 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2698 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2699 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2700 __func__, page);
1da177e4
LT
2701 instr->state = MTD_ERASE_FAILED;
2702 goto erase_exit;
2703 }
61b03bd7 2704
ace4dfee
TG
2705 /*
2706 * Invalidate the page cache, if we erase the block which
8b6e50c9 2707 * contains the current cached page.
ace4dfee
TG
2708 */
2709 if (page <= chip->pagebuf && chip->pagebuf <
2710 (page + pages_per_block))
2711 chip->pagebuf = -1;
1da177e4 2712
ace4dfee 2713 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2714
7bc3312b 2715 status = chip->waitfunc(mtd, chip);
1da177e4 2716
ace4dfee
TG
2717 /*
2718 * See if operation failed and additional status checks are
2719 * available
2720 */
2721 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2722 status = chip->errstat(mtd, chip, FL_ERASING,
2723 status, page);
068e3c0a 2724
1da177e4 2725 /* See if block erase succeeded */
a4ab4c5d 2726 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2727 pr_debug("%s: failed erase, page 0x%08x\n",
2728 __func__, page);
1da177e4 2729 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2730 instr->fail_addr =
2731 ((loff_t)page << chip->page_shift);
1da177e4
LT
2732 goto erase_exit;
2733 }
30f464b7 2734
1da177e4 2735 /* Increment page address and decrement length */
daae74ca 2736 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2737 page += pages_per_block;
2738
2739 /* Check, if we cross a chip boundary */
ace4dfee 2740 if (len && !(page & chip->pagemask)) {
1da177e4 2741 chipnr++;
ace4dfee
TG
2742 chip->select_chip(mtd, -1);
2743 chip->select_chip(mtd, chipnr);
1da177e4
LT
2744 }
2745 }
2746 instr->state = MTD_ERASE_DONE;
2747
7351d3a5 2748erase_exit:
1da177e4
LT
2749
2750 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2751
2752 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2753 chip->select_chip(mtd, -1);
1da177e4
LT
2754 nand_release_device(mtd);
2755
49defc01
DW
2756 /* Do call back function */
2757 if (!ret)
2758 mtd_erase_callback(instr);
2759
1da177e4
LT
2760 /* Return more or less happy */
2761 return ret;
2762}
2763
2764/**
2765 * nand_sync - [MTD Interface] sync
8b6e50c9 2766 * @mtd: MTD device structure
1da177e4 2767 *
8b6e50c9 2768 * Sync is actually a wait for chip ready function.
1da177e4 2769 */
e0c7d767 2770static void nand_sync(struct mtd_info *mtd)
1da177e4 2771{
289c0522 2772 pr_debug("%s: called\n", __func__);
1da177e4
LT
2773
2774 /* Grab the lock and see if the device is available */
6a8214aa 2775 nand_get_device(mtd, FL_SYNCING);
1da177e4 2776 /* Release it and go back */
e0c7d767 2777 nand_release_device(mtd);
1da177e4
LT
2778}
2779
1da177e4 2780/**
ace4dfee 2781 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2782 * @mtd: MTD device structure
2783 * @offs: offset relative to mtd start
1da177e4 2784 */
ace4dfee 2785static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2786{
ace4dfee 2787 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2788}
2789
2790/**
ace4dfee 2791 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2792 * @mtd: MTD device structure
2793 * @ofs: offset relative to mtd start
1da177e4 2794 */
e0c7d767 2795static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2796{
1da177e4
LT
2797 int ret;
2798
f8ac0414
FF
2799 ret = nand_block_isbad(mtd, ofs);
2800 if (ret) {
8b6e50c9 2801 /* If it was bad already, return success and do nothing */
1da177e4
LT
2802 if (ret > 0)
2803 return 0;
e0c7d767
DW
2804 return ret;
2805 }
1da177e4 2806
5a0edb25 2807 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
2808}
2809
7db03ecc
HS
2810/**
2811 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2812 * @mtd: MTD device structure
2813 * @chip: nand chip info structure
2814 * @addr: feature address.
2815 * @subfeature_param: the subfeature parameters, a four bytes array.
2816 */
2817static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2818 int addr, uint8_t *subfeature_param)
2819{
2820 int status;
05f78359 2821 int i;
7db03ecc 2822
d914c932
DM
2823 if (!chip->onfi_version ||
2824 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2825 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2826 return -EINVAL;
2827
2828 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
2829 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2830 chip->write_byte(mtd, subfeature_param[i]);
2831
7db03ecc
HS
2832 status = chip->waitfunc(mtd, chip);
2833 if (status & NAND_STATUS_FAIL)
2834 return -EIO;
2835 return 0;
2836}
2837
2838/**
2839 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2840 * @mtd: MTD device structure
2841 * @chip: nand chip info structure
2842 * @addr: feature address.
2843 * @subfeature_param: the subfeature parameters, a four bytes array.
2844 */
2845static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2846 int addr, uint8_t *subfeature_param)
2847{
05f78359
UKK
2848 int i;
2849
d914c932
DM
2850 if (!chip->onfi_version ||
2851 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2852 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2853 return -EINVAL;
2854
2855 /* clear the sub feature parameters */
2856 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2857
2858 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
2859 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2860 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
2861 return 0;
2862}
2863
962034f4
VW
2864/**
2865 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2866 * @mtd: MTD device structure
962034f4
VW
2867 */
2868static int nand_suspend(struct mtd_info *mtd)
2869{
6a8214aa 2870 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
2871}
2872
2873/**
2874 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2875 * @mtd: MTD device structure
962034f4
VW
2876 */
2877static void nand_resume(struct mtd_info *mtd)
2878{
ace4dfee 2879 struct nand_chip *chip = mtd->priv;
962034f4 2880
ace4dfee 2881 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2882 nand_release_device(mtd);
2883 else
d0370219
BN
2884 pr_err("%s called for a chip which is not in suspended state\n",
2885 __func__);
962034f4
VW
2886}
2887
8b6e50c9 2888/* Set default functions */
ace4dfee 2889static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2890{
1da177e4 2891 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2892 if (!chip->chip_delay)
2893 chip->chip_delay = 20;
1da177e4
LT
2894
2895 /* check, if a user supplied command function given */
ace4dfee
TG
2896 if (chip->cmdfunc == NULL)
2897 chip->cmdfunc = nand_command;
1da177e4
LT
2898
2899 /* check, if a user supplied wait function given */
ace4dfee
TG
2900 if (chip->waitfunc == NULL)
2901 chip->waitfunc = nand_wait;
2902
2903 if (!chip->select_chip)
2904 chip->select_chip = nand_select_chip;
68e80780 2905
4204cccd
HS
2906 /* set for ONFI nand */
2907 if (!chip->onfi_set_features)
2908 chip->onfi_set_features = nand_onfi_set_features;
2909 if (!chip->onfi_get_features)
2910 chip->onfi_get_features = nand_onfi_get_features;
2911
68e80780
BN
2912 /* If called twice, pointers that depend on busw may need to be reset */
2913 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
2914 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2915 if (!chip->read_word)
2916 chip->read_word = nand_read_word;
2917 if (!chip->block_bad)
2918 chip->block_bad = nand_block_bad;
2919 if (!chip->block_markbad)
2920 chip->block_markbad = nand_default_block_markbad;
68e80780 2921 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 2922 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
2923 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2924 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 2925 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 2926 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2927 if (!chip->scan_bbt)
2928 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2929
2930 if (!chip->controller) {
2931 chip->controller = &chip->hwcontrol;
2932 spin_lock_init(&chip->controller->lock);
2933 init_waitqueue_head(&chip->controller->wq);
2934 }
2935
7aa65bfd
TG
2936}
2937
8b6e50c9 2938/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2939static void sanitize_string(uint8_t *s, size_t len)
2940{
2941 ssize_t i;
2942
8b6e50c9 2943 /* Null terminate */
d1e1f4e4
FF
2944 s[len - 1] = 0;
2945
8b6e50c9 2946 /* Remove non printable chars */
d1e1f4e4
FF
2947 for (i = 0; i < len - 1; i++) {
2948 if (s[i] < ' ' || s[i] > 127)
2949 s[i] = '?';
2950 }
2951
8b6e50c9 2952 /* Remove trailing spaces */
d1e1f4e4
FF
2953 strim(s);
2954}
2955
2956static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2957{
2958 int i;
2959 while (len--) {
2960 crc ^= *p++ << 8;
2961 for (i = 0; i < 8; i++)
2962 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2963 }
2964
2965 return crc;
2966}
2967
6dcbe0cd
HS
2968/* Parse the Extended Parameter Page. */
2969static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2970 struct nand_chip *chip, struct nand_onfi_params *p)
2971{
2972 struct onfi_ext_param_page *ep;
2973 struct onfi_ext_section *s;
2974 struct onfi_ext_ecc_info *ecc;
2975 uint8_t *cursor;
2976 int ret = -EINVAL;
2977 int len;
2978 int i;
2979
2980 len = le16_to_cpu(p->ext_param_page_length) * 16;
2981 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
2982 if (!ep)
2983 return -ENOMEM;
6dcbe0cd
HS
2984
2985 /* Send our own NAND_CMD_PARAM. */
2986 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2987
2988 /* Use the Change Read Column command to skip the ONFI param pages. */
2989 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2990 sizeof(*p) * p->num_of_param_pages , -1);
2991
2992 /* Read out the Extended Parameter Page. */
2993 chip->read_buf(mtd, (uint8_t *)ep, len);
2994 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2995 != le16_to_cpu(ep->crc))) {
2996 pr_debug("fail in the CRC.\n");
2997 goto ext_out;
2998 }
2999
3000 /*
3001 * Check the signature.
3002 * Do not strictly follow the ONFI spec, maybe changed in future.
3003 */
3004 if (strncmp(ep->sig, "EPPS", 4)) {
3005 pr_debug("The signature is invalid.\n");
3006 goto ext_out;
3007 }
3008
3009 /* find the ECC section. */
3010 cursor = (uint8_t *)(ep + 1);
3011 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3012 s = ep->sections + i;
3013 if (s->type == ONFI_SECTION_TYPE_2)
3014 break;
3015 cursor += s->length * 16;
3016 }
3017 if (i == ONFI_EXT_SECTION_MAX) {
3018 pr_debug("We can not find the ECC section.\n");
3019 goto ext_out;
3020 }
3021
3022 /* get the info we want. */
3023 ecc = (struct onfi_ext_ecc_info *)cursor;
3024
4ae7d228
BN
3025 if (!ecc->codeword_size) {
3026 pr_debug("Invalid codeword size\n");
3027 goto ext_out;
6dcbe0cd
HS
3028 }
3029
4ae7d228
BN
3030 chip->ecc_strength_ds = ecc->ecc_bits;
3031 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3032 ret = 0;
6dcbe0cd
HS
3033
3034ext_out:
3035 kfree(ep);
3036 return ret;
3037}
3038
8429bb39
BN
3039static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3040{
3041 struct nand_chip *chip = mtd->priv;
3042 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3043
3044 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3045 feature);
3046}
3047
3048/*
3049 * Configure chip properties from Micron vendor-specific ONFI table
3050 */
3051static void nand_onfi_detect_micron(struct nand_chip *chip,
3052 struct nand_onfi_params *p)
3053{
3054 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3055
3056 if (le16_to_cpu(p->vendor_revision) < 1)
3057 return;
3058
3059 chip->read_retries = micron->read_retry_options;
3060 chip->setup_read_retry = nand_setup_read_retry_micron;
3061}
3062
6fb277ba 3063/*
8b6e50c9 3064 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3065 */
3066static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3067 int *busw)
6fb277ba
FF
3068{
3069 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3070 int i, j;
6fb277ba
FF
3071 int val;
3072
7854d3f7 3073 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3074 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3075 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3076 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3077 return 0;
3078
6fb277ba
FF
3079 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3080 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3081 for (j = 0; j < sizeof(*p); j++)
3082 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3083 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3084 le16_to_cpu(p->crc)) {
6fb277ba
FF
3085 break;
3086 }
3087 }
3088
c7f23a70
BN
3089 if (i == 3) {
3090 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3091 return 0;
c7f23a70 3092 }
6fb277ba 3093
8b6e50c9 3094 /* Check version */
6fb277ba 3095 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3096 if (val & (1 << 5))
3097 chip->onfi_version = 23;
3098 else if (val & (1 << 4))
6fb277ba
FF
3099 chip->onfi_version = 22;
3100 else if (val & (1 << 3))
3101 chip->onfi_version = 21;
3102 else if (val & (1 << 2))
3103 chip->onfi_version = 20;
b7b1a29d 3104 else if (val & (1 << 1))
6fb277ba 3105 chip->onfi_version = 10;
b7b1a29d
BN
3106
3107 if (!chip->onfi_version) {
20171642 3108 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3109 return 0;
3110 }
6fb277ba
FF
3111
3112 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3113 sanitize_string(p->model, sizeof(p->model));
3114 if (!mtd->name)
3115 mtd->name = p->model;
4355b70c 3116
6fb277ba 3117 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3118
3119 /*
3120 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3121 * (don't ask me who thought of this...). MTD assumes that these
3122 * dimensions will be power-of-2, so just truncate the remaining area.
3123 */
3124 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3125 mtd->erasesize *= mtd->writesize;
3126
6fb277ba 3127 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3128
3129 /* See erasesize comment */
3130 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3131 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3132 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3133
3134 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3135 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3136 else
3137 *busw = 0;
6fb277ba 3138
10c86bab
HS
3139 if (p->ecc_bits != 0xff) {
3140 chip->ecc_strength_ds = p->ecc_bits;
3141 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3142 } else if (chip->onfi_version >= 21 &&
3143 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3144
3145 /*
3146 * The nand_flash_detect_ext_param_page() uses the
3147 * Change Read Column command which maybe not supported
3148 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3149 * now. We do not replace user supplied command function.
3150 */
3151 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3152 chip->cmdfunc = nand_command_lp;
3153
3154 /* The Extended Parameter Page is supported since ONFI 2.1. */
3155 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3156 pr_warn("Failed to detect ONFI extended param page\n");
3157 } else {
3158 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3159 }
3160
8429bb39
BN
3161 if (p->jedec_id == NAND_MFR_MICRON)
3162 nand_onfi_detect_micron(chip, p);
3163
6fb277ba
FF
3164 return 1;
3165}
3166
91361818
HS
3167/*
3168 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3169 */
3170static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3171 int *busw)
3172{
3173 struct nand_jedec_params *p = &chip->jedec_params;
3174 struct jedec_ecc_info *ecc;
3175 int val;
3176 int i, j;
3177
3178 /* Try JEDEC for unknown chip or LP */
3179 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3180 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3181 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3182 chip->read_byte(mtd) != 'C')
3183 return 0;
3184
3185 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3186 for (i = 0; i < 3; i++) {
3187 for (j = 0; j < sizeof(*p); j++)
3188 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3189
3190 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3191 le16_to_cpu(p->crc))
3192 break;
3193 }
3194
3195 if (i == 3) {
3196 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3197 return 0;
3198 }
3199
3200 /* Check version */
3201 val = le16_to_cpu(p->revision);
3202 if (val & (1 << 2))
3203 chip->jedec_version = 10;
3204 else if (val & (1 << 1))
3205 chip->jedec_version = 1; /* vendor specific version */
3206
3207 if (!chip->jedec_version) {
3208 pr_info("unsupported JEDEC version: %d\n", val);
3209 return 0;
3210 }
3211
3212 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3213 sanitize_string(p->model, sizeof(p->model));
3214 if (!mtd->name)
3215 mtd->name = p->model;
3216
3217 mtd->writesize = le32_to_cpu(p->byte_per_page);
3218
3219 /* Please reference to the comment for nand_flash_detect_onfi. */
3220 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3221 mtd->erasesize *= mtd->writesize;
3222
3223 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3224
3225 /* Please reference to the comment for nand_flash_detect_onfi. */
3226 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3227 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3228 chip->bits_per_cell = p->bits_per_cell;
3229
3230 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3231 *busw = NAND_BUSWIDTH_16;
3232 else
3233 *busw = 0;
3234
3235 /* ECC info */
3236 ecc = &p->ecc_info[0];
3237
3238 if (ecc->codeword_size >= 9) {
3239 chip->ecc_strength_ds = ecc->ecc_bits;
3240 chip->ecc_step_ds = 1 << ecc->codeword_size;
3241 } else {
3242 pr_warn("Invalid codeword size\n");
3243 }
3244
3245 return 1;
3246}
3247
e3b88bd6
BN
3248/*
3249 * nand_id_has_period - Check if an ID string has a given wraparound period
3250 * @id_data: the ID string
3251 * @arrlen: the length of the @id_data array
3252 * @period: the period of repitition
3253 *
3254 * Check if an ID string is repeated within a given sequence of bytes at
3255 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3256 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3257 * if the repetition has a period of @period; otherwise, returns zero.
3258 */
3259static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3260{
3261 int i, j;
3262 for (i = 0; i < period; i++)
3263 for (j = i + period; j < arrlen; j += period)
3264 if (id_data[i] != id_data[j])
3265 return 0;
3266 return 1;
3267}
3268
3269/*
3270 * nand_id_len - Get the length of an ID string returned by CMD_READID
3271 * @id_data: the ID string
3272 * @arrlen: the length of the @id_data array
3273
3274 * Returns the length of the ID string, according to known wraparound/trailing
3275 * zero patterns. If no pattern exists, returns the length of the array.
3276 */
3277static int nand_id_len(u8 *id_data, int arrlen)
3278{
3279 int last_nonzero, period;
3280
3281 /* Find last non-zero byte */
3282 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3283 if (id_data[last_nonzero])
3284 break;
3285
3286 /* All zeros */
3287 if (last_nonzero < 0)
3288 return 0;
3289
3290 /* Calculate wraparound period */
3291 for (period = 1; period < arrlen; period++)
3292 if (nand_id_has_period(id_data, arrlen, period))
3293 break;
3294
3295 /* There's a repeated pattern */
3296 if (period < arrlen)
3297 return period;
3298
3299 /* There are trailing zeros */
3300 if (last_nonzero < arrlen - 1)
3301 return last_nonzero + 1;
3302
3303 /* No pattern detected */
3304 return arrlen;
3305}
3306
7db906b7
HS
3307/* Extract the bits of per cell from the 3rd byte of the extended ID */
3308static int nand_get_bits_per_cell(u8 cellinfo)
3309{
3310 int bits;
3311
3312 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3313 bits >>= NAND_CI_CELLTYPE_SHIFT;
3314 return bits + 1;
3315}
3316
fc09bbc0
BN
3317/*
3318 * Many new NAND share similar device ID codes, which represent the size of the
3319 * chip. The rest of the parameters must be decoded according to generic or
3320 * manufacturer-specific "extended ID" decoding patterns.
3321 */
3322static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3323 u8 id_data[8], int *busw)
3324{
e3b88bd6 3325 int extid, id_len;
fc09bbc0 3326 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3327 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3328 /* The 4th id byte is the important one */
3329 extid = id_data[3];
3330
e3b88bd6
BN
3331 id_len = nand_id_len(id_data, 8);
3332
fc09bbc0
BN
3333 /*
3334 * Field definitions are in the following datasheets:
3335 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3336 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3337 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3338 *
af451af4
BN
3339 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3340 * ID to decide what to do.
fc09bbc0 3341 */
af451af4 3342 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3343 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3344 /* Calc pagesize */
3345 mtd->writesize = 2048 << (extid & 0x03);
3346 extid >>= 2;
3347 /* Calc oobsize */
e2d3a35e 3348 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3349 case 1:
3350 mtd->oobsize = 128;
3351 break;
3352 case 2:
3353 mtd->oobsize = 218;
3354 break;
3355 case 3:
3356 mtd->oobsize = 400;
3357 break;
e2d3a35e 3358 case 4:
fc09bbc0
BN
3359 mtd->oobsize = 436;
3360 break;
e2d3a35e
BN
3361 case 5:
3362 mtd->oobsize = 512;
3363 break;
3364 case 6:
e2d3a35e
BN
3365 mtd->oobsize = 640;
3366 break;
94d04e82
HS
3367 case 7:
3368 default: /* Other cases are "reserved" (unknown) */
3369 mtd->oobsize = 1024;
3370 break;
fc09bbc0
BN
3371 }
3372 extid >>= 2;
3373 /* Calc blocksize */
3374 mtd->erasesize = (128 * 1024) <<
3375 (((extid >> 1) & 0x04) | (extid & 0x03));
3376 *busw = 0;
73ca392f 3377 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3378 !nand_is_slc(chip)) {
73ca392f
BN
3379 unsigned int tmp;
3380
3381 /* Calc pagesize */
3382 mtd->writesize = 2048 << (extid & 0x03);
3383 extid >>= 2;
3384 /* Calc oobsize */
3385 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3386 case 0:
3387 mtd->oobsize = 128;
3388 break;
3389 case 1:
3390 mtd->oobsize = 224;
3391 break;
3392 case 2:
3393 mtd->oobsize = 448;
3394 break;
3395 case 3:
3396 mtd->oobsize = 64;
3397 break;
3398 case 4:
3399 mtd->oobsize = 32;
3400 break;
3401 case 5:
3402 mtd->oobsize = 16;
3403 break;
3404 default:
3405 mtd->oobsize = 640;
3406 break;
3407 }
3408 extid >>= 2;
3409 /* Calc blocksize */
3410 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3411 if (tmp < 0x03)
3412 mtd->erasesize = (128 * 1024) << tmp;
3413 else if (tmp == 0x03)
3414 mtd->erasesize = 768 * 1024;
3415 else
3416 mtd->erasesize = (64 * 1024) << tmp;
3417 *busw = 0;
fc09bbc0
BN
3418 } else {
3419 /* Calc pagesize */
3420 mtd->writesize = 1024 << (extid & 0x03);
3421 extid >>= 2;
3422 /* Calc oobsize */
3423 mtd->oobsize = (8 << (extid & 0x01)) *
3424 (mtd->writesize >> 9);
3425 extid >>= 2;
3426 /* Calc blocksize. Blocksize is multiples of 64KiB */
3427 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3428 extid >>= 2;
3429 /* Get buswidth information */
3430 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3431
3432 /*
3433 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3434 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3435 * follows:
3436 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3437 * 110b -> 24nm
3438 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3439 */
3440 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3441 nand_is_slc(chip) &&
60c67382
BN
3442 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3443 !(id_data[4] & 0x80) /* !BENAND */) {
3444 mtd->oobsize = 32 * mtd->writesize >> 9;
3445 }
3446
fc09bbc0
BN
3447 }
3448}
3449
f23a481c
BN
3450/*
3451 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3452 * decodes a matching ID table entry and assigns the MTD size parameters for
3453 * the chip.
3454 */
3455static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3456 struct nand_flash_dev *type, u8 id_data[8],
3457 int *busw)
3458{
3459 int maf_id = id_data[0];
3460
3461 mtd->erasesize = type->erasesize;
3462 mtd->writesize = type->pagesize;
3463 mtd->oobsize = mtd->writesize / 32;
3464 *busw = type->options & NAND_BUSWIDTH_16;
3465
1c195e90
HS
3466 /* All legacy ID NAND are small-page, SLC */
3467 chip->bits_per_cell = 1;
3468
f23a481c
BN
3469 /*
3470 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3471 * some Spansion chips have erasesize that conflicts with size
3472 * listed in nand_ids table.
3473 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3474 */
3475 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3476 && id_data[6] == 0x00 && id_data[7] == 0x00
3477 && mtd->writesize == 512) {
3478 mtd->erasesize = 128 * 1024;
3479 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3480 }
3481}
3482
7e74c2d7
BN
3483/*
3484 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3485 * heuristic patterns using various detected parameters (e.g., manufacturer,
3486 * page size, cell-type information).
3487 */
3488static void nand_decode_bbm_options(struct mtd_info *mtd,
3489 struct nand_chip *chip, u8 id_data[8])
3490{
3491 int maf_id = id_data[0];
3492
3493 /* Set the bad block position */
3494 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3495 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3496 else
3497 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3498
3499 /*
3500 * Bad block marker is stored in the last page of each block on Samsung
3501 * and Hynix MLC devices; stored in first two pages of each block on
3502 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3503 * AMD/Spansion, and Macronix. All others scan only the first page.
3504 */
1d0ed69d 3505 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3506 (maf_id == NAND_MFR_SAMSUNG ||
3507 maf_id == NAND_MFR_HYNIX))
3508 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3509 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3510 (maf_id == NAND_MFR_SAMSUNG ||
3511 maf_id == NAND_MFR_HYNIX ||
3512 maf_id == NAND_MFR_TOSHIBA ||
3513 maf_id == NAND_MFR_AMD ||
3514 maf_id == NAND_MFR_MACRONIX)) ||
3515 (mtd->writesize == 2048 &&
3516 maf_id == NAND_MFR_MICRON))
3517 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3518}
3519
ec6e87e3
HS
3520static inline bool is_full_id_nand(struct nand_flash_dev *type)
3521{
3522 return type->id_len;
3523}
3524
3525static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3526 struct nand_flash_dev *type, u8 *id_data, int *busw)
3527{
3528 if (!strncmp(type->id, id_data, type->id_len)) {
3529 mtd->writesize = type->pagesize;
3530 mtd->erasesize = type->erasesize;
3531 mtd->oobsize = type->oobsize;
3532
7db906b7 3533 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3534 chip->chipsize = (uint64_t)type->chipsize << 20;
3535 chip->options |= type->options;
57219342
HS
3536 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3537 chip->ecc_step_ds = NAND_ECC_STEP(type);
ec6e87e3
HS
3538
3539 *busw = type->options & NAND_BUSWIDTH_16;
3540
092b6a1d
CZ
3541 if (!mtd->name)
3542 mtd->name = type->name;
3543
ec6e87e3
HS
3544 return true;
3545 }
3546 return false;
3547}
3548
7aa65bfd 3549/*
8b6e50c9 3550 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3551 */
3552static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3553 struct nand_chip *chip,
7351d3a5 3554 int *maf_id, int *dev_id,
5e81e88a 3555 struct nand_flash_dev *type)
7aa65bfd 3556{
bb77082f 3557 int busw;
d1e1f4e4 3558 int i, maf_idx;
426c457a 3559 u8 id_data[8];
1da177e4
LT
3560
3561 /* Select the device */
ace4dfee 3562 chip->select_chip(mtd, 0);
1da177e4 3563
ef89a880
KB
3564 /*
3565 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3566 * after power-up.
ef89a880
KB
3567 */
3568 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3569
1da177e4 3570 /* Send the command for reading device ID */
ace4dfee 3571 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3572
3573 /* Read manufacturer and device IDs */
ace4dfee 3574 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3575 *dev_id = chip->read_byte(mtd);
1da177e4 3576
8b6e50c9
BN
3577 /*
3578 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3579 * interface concerns can cause random data which looks like a
3580 * possibly credible NAND flash to appear. If the two results do
3581 * not match, ignore the device completely.
3582 */
3583
3584 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3585
4aef9b78
BN
3586 /* Read entire ID string */
3587 for (i = 0; i < 8; i++)
426c457a 3588 id_data[i] = chip->read_byte(mtd);
ed8165c7 3589
d1e1f4e4 3590 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3591 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3592 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3593 return ERR_PTR(-ENODEV);
3594 }
3595
7aa65bfd 3596 if (!type)
5e81e88a
DW
3597 type = nand_flash_ids;
3598
ec6e87e3
HS
3599 for (; type->name != NULL; type++) {
3600 if (is_full_id_nand(type)) {
3601 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3602 goto ident_done;
3603 } else if (*dev_id == type->dev_id) {
3604 break;
3605 }
3606 }
5e81e88a 3607
d1e1f4e4
FF
3608 chip->onfi_version = 0;
3609 if (!type->name || !type->pagesize) {
6fb277ba 3610 /* Check is chip is ONFI compliant */
47450b35 3611 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3612 goto ident_done;
91361818
HS
3613
3614 /* Check if the chip is JEDEC compliant */
3615 if (nand_flash_detect_jedec(mtd, chip, &busw))
3616 goto ident_done;
d1e1f4e4
FF
3617 }
3618
5e81e88a 3619 if (!type->name)
7aa65bfd
TG
3620 return ERR_PTR(-ENODEV);
3621
ba0251fe
TG
3622 if (!mtd->name)
3623 mtd->name = type->name;
3624
69423d99 3625 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3626
12a40a57 3627 if (!type->pagesize && chip->init_size) {
8b6e50c9 3628 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3629 busw = chip->init_size(mtd, chip, id_data);
3630 } else if (!type->pagesize) {
fc09bbc0
BN
3631 /* Decode parameters from extended ID */
3632 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3633 } else {
f23a481c 3634 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3635 }
bf7a01bf
BN
3636 /* Get chip options */
3637 chip->options |= type->options;
d1e1f4e4 3638
8b6e50c9
BN
3639 /*
3640 * Check if chip is not a Samsung device. Do not clear the
3641 * options for chips which do not have an extended id.
d1e1f4e4
FF
3642 */
3643 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3644 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3645ident_done:
3646
7aa65bfd 3647 /* Try to identify manufacturer */
9a909867 3648 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3649 if (nand_manuf_ids[maf_idx].id == *maf_id)
3650 break;
3651 }
0ea4a755 3652
64b37b2a
MC
3653 if (chip->options & NAND_BUSWIDTH_AUTO) {
3654 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3655 chip->options |= busw;
3656 nand_set_defaults(chip, busw);
3657 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3658 /*
3659 * Check, if buswidth is correct. Hardware drivers should set
3660 * chip correct!
3661 */
20171642
EG
3662 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3663 *maf_id, *dev_id);
3664 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3665 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3666 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3667 busw ? 16 : 8);
7aa65bfd
TG
3668 return ERR_PTR(-EINVAL);
3669 }
61b03bd7 3670
7e74c2d7
BN
3671 nand_decode_bbm_options(mtd, chip, id_data);
3672
7aa65bfd 3673 /* Calculate the address shift from the page size */
ace4dfee 3674 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3675 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3676 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3677
ace4dfee 3678 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3679 ffs(mtd->erasesize) - 1;
69423d99
AH
3680 if (chip->chipsize & 0xffffffff)
3681 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3682 else {
3683 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3684 chip->chip_shift += 32 - 1;
3685 }
1da177e4 3686
26d9be11 3687 chip->badblockbits = 8;
14c65786 3688 chip->erase_cmd = single_erase_cmd;
7aa65bfd 3689
8b6e50c9 3690 /* Do not replace user supplied command function! */
ace4dfee
TG
3691 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3692 chip->cmdfunc = nand_command_lp;
7aa65bfd 3693
20171642
EG
3694 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3695 *maf_id, *dev_id);
ffdac6cd
HS
3696
3697 if (chip->onfi_version)
3698 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3699 chip->onfi_params.model);
3700 else if (chip->jedec_version)
3701 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3702 chip->jedec_params.model);
3703 else
3704 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3705 type->name);
3706
20171642 3707 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3723e93c
HS
3708 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3709 mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3710 return type;
3711}
3712
7aa65bfd 3713/**
3b85c321 3714 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3715 * @mtd: MTD device structure
3716 * @maxchips: number of chips to scan for
3717 * @table: alternative NAND ID table
7aa65bfd 3718 *
8b6e50c9
BN
3719 * This is the first phase of the normal nand_scan() function. It reads the
3720 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3721 *
3b85c321 3722 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3723 */
5e81e88a
DW
3724int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3725 struct nand_flash_dev *table)
7aa65bfd 3726{
bb77082f 3727 int i, nand_maf_id, nand_dev_id;
ace4dfee 3728 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3729 struct nand_flash_dev *type;
3730
7aa65bfd 3731 /* Set the default functions */
bb77082f 3732 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
3733
3734 /* Read the flash type */
bb77082f
CZ
3735 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3736 &nand_dev_id, table);
7aa65bfd
TG
3737
3738 if (IS_ERR(type)) {
b1c6e6db 3739 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3740 pr_warn("No NAND device found\n");
ace4dfee 3741 chip->select_chip(mtd, -1);
7aa65bfd 3742 return PTR_ERR(type);
1da177e4
LT
3743 }
3744
07300164
HS
3745 chip->select_chip(mtd, -1);
3746
7aa65bfd 3747 /* Check for a chip array */
e0c7d767 3748 for (i = 1; i < maxchips; i++) {
ace4dfee 3749 chip->select_chip(mtd, i);
ef89a880
KB
3750 /* See comment in nand_get_flash_type for reset */
3751 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3752 /* Send the command for reading device ID */
ace4dfee 3753 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3754 /* Read manufacturer and device IDs */
ace4dfee 3755 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
3756 nand_dev_id != chip->read_byte(mtd)) {
3757 chip->select_chip(mtd, -1);
1da177e4 3758 break;
07300164
HS
3759 }
3760 chip->select_chip(mtd, -1);
1da177e4
LT
3761 }
3762 if (i > 1)
20171642 3763 pr_info("%d chips detected\n", i);
61b03bd7 3764
1da177e4 3765 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3766 chip->numchips = i;
3767 mtd->size = i * chip->chipsize;
7aa65bfd 3768
3b85c321
DW
3769 return 0;
3770}
7351d3a5 3771EXPORT_SYMBOL(nand_scan_ident);
3b85c321
DW
3772
3773
3774/**
3775 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3776 * @mtd: MTD device structure
3b85c321 3777 *
8b6e50c9
BN
3778 * This is the second phase of the normal nand_scan() function. It fills out
3779 * all the uninitialized function pointers with the defaults and scans for a
3780 * bad block table if appropriate.
3b85c321
DW
3781 */
3782int nand_scan_tail(struct mtd_info *mtd)
3783{
3784 int i;
3785 struct nand_chip *chip = mtd->priv;
97de79e0 3786 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 3787 struct nand_buffers *nbuf;
3b85c321 3788
e2414f4c
BN
3789 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3790 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3791 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3792
f02ea4e6
HS
3793 if (!(chip->options & NAND_OWN_BUFFERS)) {
3794 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3795 + mtd->oobsize * 3, GFP_KERNEL);
3796 if (!nbuf)
3797 return -ENOMEM;
3798 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3799 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3800 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3801
3802 chip->buffers = nbuf;
3803 } else {
3804 if (!chip->buffers)
3805 return -ENOMEM;
3806 }
4bf63fcb 3807
7dcdcbef 3808 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3809 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3810
7aa65bfd 3811 /*
8b6e50c9 3812 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3813 */
97de79e0 3814 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3815 switch (mtd->oobsize) {
1da177e4 3816 case 8:
97de79e0 3817 ecc->layout = &nand_oob_8;
1da177e4
LT
3818 break;
3819 case 16:
97de79e0 3820 ecc->layout = &nand_oob_16;
1da177e4
LT
3821 break;
3822 case 64:
97de79e0 3823 ecc->layout = &nand_oob_64;
1da177e4 3824 break;
81ec5364 3825 case 128:
97de79e0 3826 ecc->layout = &nand_oob_128;
81ec5364 3827 break;
1da177e4 3828 default:
d0370219
BN
3829 pr_warn("No oob scheme defined for oobsize %d\n",
3830 mtd->oobsize);
1da177e4
LT
3831 BUG();
3832 }
3833 }
61b03bd7 3834
956e944c
DW
3835 if (!chip->write_page)
3836 chip->write_page = nand_write_page;
3837
61b03bd7 3838 /*
8b6e50c9 3839 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3840 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3841 */
956e944c 3842
97de79e0 3843 switch (ecc->mode) {
6e0cb135
SN
3844 case NAND_ECC_HW_OOB_FIRST:
3845 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 3846 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
9a4d4d69 3847 pr_warn("No ECC functions supplied; "
d0370219 3848 "hardware ECC not possible\n");
6e0cb135
SN
3849 BUG();
3850 }
97de79e0
HS
3851 if (!ecc->read_page)
3852 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 3853
6dfc6d25 3854 case NAND_ECC_HW:
8b6e50c9 3855 /* Use standard hwecc read page function? */
97de79e0
HS
3856 if (!ecc->read_page)
3857 ecc->read_page = nand_read_page_hwecc;
3858 if (!ecc->write_page)
3859 ecc->write_page = nand_write_page_hwecc;
3860 if (!ecc->read_page_raw)
3861 ecc->read_page_raw = nand_read_page_raw;
3862 if (!ecc->write_page_raw)
3863 ecc->write_page_raw = nand_write_page_raw;
3864 if (!ecc->read_oob)
3865 ecc->read_oob = nand_read_oob_std;
3866 if (!ecc->write_oob)
3867 ecc->write_oob = nand_write_oob_std;
3868 if (!ecc->read_subpage)
3869 ecc->read_subpage = nand_read_subpage;
3870 if (!ecc->write_subpage)
3871 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 3872
6dfc6d25 3873 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
3874 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3875 (!ecc->read_page ||
3876 ecc->read_page == nand_read_page_hwecc ||
3877 !ecc->write_page ||
3878 ecc->write_page == nand_write_page_hwecc)) {
9a4d4d69 3879 pr_warn("No ECC functions supplied; "
d0370219 3880 "hardware ECC not possible\n");
6dfc6d25
TG
3881 BUG();
3882 }
8b6e50c9 3883 /* Use standard syndrome read/write page function? */
97de79e0
HS
3884 if (!ecc->read_page)
3885 ecc->read_page = nand_read_page_syndrome;
3886 if (!ecc->write_page)
3887 ecc->write_page = nand_write_page_syndrome;
3888 if (!ecc->read_page_raw)
3889 ecc->read_page_raw = nand_read_page_raw_syndrome;
3890 if (!ecc->write_page_raw)
3891 ecc->write_page_raw = nand_write_page_raw_syndrome;
3892 if (!ecc->read_oob)
3893 ecc->read_oob = nand_read_oob_syndrome;
3894 if (!ecc->write_oob)
3895 ecc->write_oob = nand_write_oob_syndrome;
3896
3897 if (mtd->writesize >= ecc->size) {
3898 if (!ecc->strength) {
e2788c98
MD
3899 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3900 BUG();
3901 }
6dfc6d25 3902 break;
e2788c98 3903 }
9a4d4d69 3904 pr_warn("%d byte HW ECC not possible on "
d0370219 3905 "%d byte page size, fallback to SW ECC\n",
97de79e0
HS
3906 ecc->size, mtd->writesize);
3907 ecc->mode = NAND_ECC_SOFT;
61b03bd7 3908
6dfc6d25 3909 case NAND_ECC_SOFT:
97de79e0
HS
3910 ecc->calculate = nand_calculate_ecc;
3911 ecc->correct = nand_correct_data;
3912 ecc->read_page = nand_read_page_swecc;
3913 ecc->read_subpage = nand_read_subpage;
3914 ecc->write_page = nand_write_page_swecc;
3915 ecc->read_page_raw = nand_read_page_raw;
3916 ecc->write_page_raw = nand_write_page_raw;
3917 ecc->read_oob = nand_read_oob_std;
3918 ecc->write_oob = nand_write_oob_std;
3919 if (!ecc->size)
3920 ecc->size = 256;
3921 ecc->bytes = 3;
3922 ecc->strength = 1;
1da177e4 3923 break;
61b03bd7 3924
193bd400
ID
3925 case NAND_ECC_SOFT_BCH:
3926 if (!mtd_nand_has_bch()) {
148256fa 3927 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
193bd400
ID
3928 BUG();
3929 }
97de79e0
HS
3930 ecc->calculate = nand_bch_calculate_ecc;
3931 ecc->correct = nand_bch_correct_data;
3932 ecc->read_page = nand_read_page_swecc;
3933 ecc->read_subpage = nand_read_subpage;
3934 ecc->write_page = nand_write_page_swecc;
3935 ecc->read_page_raw = nand_read_page_raw;
3936 ecc->write_page_raw = nand_write_page_raw;
3937 ecc->read_oob = nand_read_oob_std;
3938 ecc->write_oob = nand_write_oob_std;
193bd400
ID
3939 /*
3940 * Board driver should supply ecc.size and ecc.bytes values to
3941 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
3942 * for details. Otherwise, default to 4 bits for large page
3943 * devices.
193bd400 3944 */
97de79e0
HS
3945 if (!ecc->size && (mtd->oobsize >= 64)) {
3946 ecc->size = 512;
3947 ecc->bytes = 7;
193bd400 3948 }
97de79e0
HS
3949 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
3950 &ecc->layout);
3951 if (!ecc->priv) {
9a4d4d69 3952 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
3953 BUG();
3954 }
97de79e0 3955 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
193bd400
ID
3956 break;
3957
61b03bd7 3958 case NAND_ECC_NONE:
9a4d4d69 3959 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 3960 "This is not recommended!\n");
97de79e0
HS
3961 ecc->read_page = nand_read_page_raw;
3962 ecc->write_page = nand_write_page_raw;
3963 ecc->read_oob = nand_read_oob_std;
3964 ecc->read_page_raw = nand_read_page_raw;
3965 ecc->write_page_raw = nand_write_page_raw;
3966 ecc->write_oob = nand_write_oob_std;
3967 ecc->size = mtd->writesize;
3968 ecc->bytes = 0;
3969 ecc->strength = 0;
1da177e4 3970 break;
956e944c 3971
1da177e4 3972 default:
97de79e0 3973 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 3974 BUG();
1da177e4 3975 }
61b03bd7 3976
9ce244b3 3977 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
3978 if (!ecc->read_oob_raw)
3979 ecc->read_oob_raw = ecc->read_oob;
3980 if (!ecc->write_oob_raw)
3981 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 3982
5bd34c09
TG
3983 /*
3984 * The number of bytes available for a client to place data into
8b6e50c9 3985 * the out of band area.
5bd34c09 3986 */
97de79e0
HS
3987 ecc->layout->oobavail = 0;
3988 for (i = 0; ecc->layout->oobfree[i].length
3989 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
3990 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
3991 mtd->oobavail = ecc->layout->oobavail;
5bd34c09 3992
7aa65bfd
TG
3993 /*
3994 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 3995 * mode.
7aa65bfd 3996 */
97de79e0
HS
3997 ecc->steps = mtd->writesize / ecc->size;
3998 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 3999 pr_warn("Invalid ECC parameters\n");
6dfc6d25 4000 BUG();
1da177e4 4001 }
97de79e0 4002 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4003
8b6e50c9 4004 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4005 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4006 switch (ecc->steps) {
29072b96
TG
4007 case 2:
4008 mtd->subpage_sft = 1;
4009 break;
4010 case 4:
4011 case 8:
81ec5364 4012 case 16:
29072b96
TG
4013 mtd->subpage_sft = 2;
4014 break;
4015 }
4016 }
4017 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4018
04bbd0ea 4019 /* Initialize state */
ace4dfee 4020 chip->state = FL_READY;
1da177e4 4021
1da177e4 4022 /* Invalidate the pagebuffer reference */
ace4dfee 4023 chip->pagebuf = -1;
1da177e4 4024
a5ff4f10 4025 /* Large page NAND with SOFT_ECC should support subpage reads */
97de79e0 4026 if ((ecc->mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
a5ff4f10
JW
4027 chip->options |= NAND_SUBPAGE_READ;
4028
1da177e4 4029 /* Fill in remaining MTD driver data */
963d1c28 4030 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4031 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4032 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4033 mtd->_erase = nand_erase;
4034 mtd->_point = NULL;
4035 mtd->_unpoint = NULL;
4036 mtd->_read = nand_read;
4037 mtd->_write = nand_write;
4038 mtd->_panic_write = panic_nand_write;
4039 mtd->_read_oob = nand_read_oob;
4040 mtd->_write_oob = nand_write_oob;
4041 mtd->_sync = nand_sync;
4042 mtd->_lock = NULL;
4043 mtd->_unlock = NULL;
4044 mtd->_suspend = nand_suspend;
4045 mtd->_resume = nand_resume;
4046 mtd->_block_isbad = nand_block_isbad;
4047 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4048 mtd->writebufsize = mtd->writesize;
1da177e4 4049
6a918bad 4050 /* propagate ecc info to mtd_info */
97de79e0
HS
4051 mtd->ecclayout = ecc->layout;
4052 mtd->ecc_strength = ecc->strength;
4053 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4054 /*
4055 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4056 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4057 * properly set.
4058 */
4059 if (!mtd->bitflip_threshold)
4060 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 4061
0040bf38 4062 /* Check, if we should skip the bad block table scan */
ace4dfee 4063 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4064 return 0;
1da177e4
LT
4065
4066 /* Build bad block table */
ace4dfee 4067 return chip->scan_bbt(mtd);
1da177e4 4068}
7351d3a5 4069EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4070
8b6e50c9
BN
4071/*
4072 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4073 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4074 * to call us from in-kernel code if the core NAND support is modular.
4075 */
3b85c321
DW
4076#ifdef MODULE
4077#define caller_is_module() (1)
4078#else
4079#define caller_is_module() \
a6e6abd5 4080 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4081#endif
4082
4083/**
4084 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4085 * @mtd: MTD device structure
4086 * @maxchips: number of chips to scan for
3b85c321 4087 *
8b6e50c9
BN
4088 * This fills out all the uninitialized function pointers with the defaults.
4089 * The flash ID is read and the mtd/chip structures are filled with the
4090 * appropriate values. The mtd->owner field must be set to the module of the
4091 * caller.
3b85c321
DW
4092 */
4093int nand_scan(struct mtd_info *mtd, int maxchips)
4094{
4095 int ret;
4096
4097 /* Many callers got this wrong, so check for it for a while... */
4098 if (!mtd->owner && caller_is_module()) {
d0370219 4099 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4100 BUG();
4101 }
4102
5e81e88a 4103 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4104 if (!ret)
4105 ret = nand_scan_tail(mtd);
4106 return ret;
4107}
7351d3a5 4108EXPORT_SYMBOL(nand_scan);
3b85c321 4109
1da177e4 4110/**
61b03bd7 4111 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4112 * @mtd: MTD device structure
4113 */
e0c7d767 4114void nand_release(struct mtd_info *mtd)
1da177e4 4115{
ace4dfee 4116 struct nand_chip *chip = mtd->priv;
1da177e4 4117
193bd400
ID
4118 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4119 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4120
5ffcaf3d 4121 mtd_device_unregister(mtd);
1da177e4 4122
fa671646 4123 /* Free bad block table memory */
ace4dfee 4124 kfree(chip->bbt);
4bf63fcb
DW
4125 if (!(chip->options & NAND_OWN_BUFFERS))
4126 kfree(chip->buffers);
58373ff0
BN
4127
4128 /* Free bad block descriptor memory */
4129 if (chip->badblock_pattern && chip->badblock_pattern->options
4130 & NAND_BBT_DYNAMICSTRUCT)
4131 kfree(chip->badblock_pattern);
1da177e4 4132}
e0c7d767 4133EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
4134
4135static int __init nand_base_init(void)
4136{
4137 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4138 return 0;
4139}
4140
4141static void __exit nand_base_exit(void)
4142{
4143 led_trigger_unregister_simple(nand_led_trigger);
4144}
4145
4146module_init(nand_base_init);
4147module_exit(nand_base_exit);
4148
e0c7d767 4149MODULE_LICENSE("GPL");
7351d3a5
FF
4150MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4151MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4152MODULE_DESCRIPTION("Generic NAND flash driver code");