]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvdimm/pmem.c
block: remove block_device_operations ->direct_access()
[mirror_ubuntu-bionic-kernel.git] / drivers / nvdimm / pmem.c
CommitLineData
9e853f23
RZ
1/*
2 * Persistent Memory Driver
3 *
9f53f9fa 4 * Copyright (c) 2014-2015, Intel Corporation.
9e853f23
RZ
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18#include <asm/cacheflush.h>
19#include <linux/blkdev.h>
20#include <linux/hdreg.h>
21#include <linux/init.h>
22#include <linux/platform_device.h>
23#include <linux/module.h>
24#include <linux/moduleparam.h>
b95f5f43 25#include <linux/badblocks.h>
9476df7d 26#include <linux/memremap.h>
32ab0a3f 27#include <linux/vmalloc.h>
34c0fd54 28#include <linux/pfn_t.h>
9e853f23 29#include <linux/slab.h>
61031952 30#include <linux/pmem.h>
c1d6e828 31#include <linux/dax.h>
9f53f9fa 32#include <linux/nd.h>
f295e53b 33#include "pmem.h"
32ab0a3f 34#include "pfn.h"
9f53f9fa 35#include "nd.h"
9e853f23 36
f284a4f2
DW
37static struct device *to_dev(struct pmem_device *pmem)
38{
39 /*
40 * nvdimm bus services need a 'dev' parameter, and we record the device
41 * at init in bb.dev.
42 */
43 return pmem->bb.dev;
44}
45
46static struct nd_region *to_region(struct pmem_device *pmem)
47{
48 return to_nd_region(to_dev(pmem)->parent);
49}
9e853f23 50
3115bb02 51static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
59e64739
DW
52 unsigned int len)
53{
f284a4f2 54 struct device *dev = to_dev(pmem);
59e64739
DW
55 sector_t sector;
56 long cleared;
868f036f 57 int rc = 0;
59e64739
DW
58
59 sector = (offset - pmem->data_offset) / 512;
59e64739 60
868f036f
DW
61 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
62 if (cleared < len)
63 rc = -EIO;
59e64739 64 if (cleared > 0 && cleared / 512) {
868f036f
DW
65 cleared /= 512;
66 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
67 (unsigned long long) sector, cleared,
68 cleared > 1 ? "s" : "");
0a3f27b9 69 badblocks_clear(&pmem->bb, sector, cleared);
59e64739 70 }
3115bb02 71
59e64739 72 invalidate_pmem(pmem->virt_addr + offset, len);
868f036f
DW
73
74 return rc;
59e64739
DW
75}
76
bd697a80
VV
77static void write_pmem(void *pmem_addr, struct page *page,
78 unsigned int off, unsigned int len)
79{
80 void *mem = kmap_atomic(page);
81
82 memcpy_to_pmem(pmem_addr, mem + off, len);
83 kunmap_atomic(mem);
84}
85
86static int read_pmem(struct page *page, unsigned int off,
87 void *pmem_addr, unsigned int len)
88{
89 int rc;
90 void *mem = kmap_atomic(page);
91
92 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
93 kunmap_atomic(mem);
d47d1d27
SH
94 if (rc)
95 return -EIO;
96 return 0;
bd697a80
VV
97}
98
e10624f8 99static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
c11f0c0b 100 unsigned int len, unsigned int off, bool is_write,
9e853f23
RZ
101 sector_t sector)
102{
b5ebc8ec 103 int rc = 0;
59e64739 104 bool bad_pmem = false;
32ab0a3f 105 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
7a9eb206 106 void *pmem_addr = pmem->virt_addr + pmem_off;
9e853f23 107
59e64739
DW
108 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
109 bad_pmem = true;
110
c11f0c0b 111 if (!is_write) {
59e64739 112 if (unlikely(bad_pmem))
b5ebc8ec
DW
113 rc = -EIO;
114 else {
bd697a80 115 rc = read_pmem(page, off, pmem_addr, len);
b5ebc8ec
DW
116 flush_dcache_page(page);
117 }
9e853f23 118 } else {
0a370d26
DW
119 /*
120 * Note that we write the data both before and after
121 * clearing poison. The write before clear poison
122 * handles situations where the latest written data is
123 * preserved and the clear poison operation simply marks
124 * the address range as valid without changing the data.
125 * In this case application software can assume that an
126 * interrupted write will either return the new good
127 * data or an error.
128 *
129 * However, if pmem_clear_poison() leaves the data in an
130 * indeterminate state we need to perform the write
131 * after clear poison.
132 */
9e853f23 133 flush_dcache_page(page);
bd697a80 134 write_pmem(pmem_addr, page, off, len);
59e64739 135 if (unlikely(bad_pmem)) {
3115bb02 136 rc = pmem_clear_poison(pmem, pmem_off, len);
bd697a80 137 write_pmem(pmem_addr, page, off, len);
59e64739 138 }
9e853f23
RZ
139 }
140
b5ebc8ec 141 return rc;
9e853f23
RZ
142}
143
7e267a8c
DW
144/* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
145#ifndef REQ_FLUSH
146#define REQ_FLUSH REQ_PREFLUSH
147#endif
148
dece1635 149static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
9e853f23 150{
e10624f8 151 int rc = 0;
f0dc089c
DW
152 bool do_acct;
153 unsigned long start;
9e853f23 154 struct bio_vec bvec;
9e853f23 155 struct bvec_iter iter;
bd842b8c 156 struct pmem_device *pmem = q->queuedata;
7e267a8c
DW
157 struct nd_region *nd_region = to_region(pmem);
158
1eff9d32 159 if (bio->bi_opf & REQ_FLUSH)
7e267a8c 160 nvdimm_flush(nd_region);
9e853f23 161
f0dc089c 162 do_acct = nd_iostat_start(bio, &start);
e10624f8
DW
163 bio_for_each_segment(bvec, bio, iter) {
164 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
c11f0c0b 165 bvec.bv_offset, op_is_write(bio_op(bio)),
e10624f8
DW
166 iter.bi_sector);
167 if (rc) {
168 bio->bi_error = rc;
169 break;
170 }
171 }
f0dc089c
DW
172 if (do_acct)
173 nd_iostat_end(bio, start);
61031952 174
1eff9d32 175 if (bio->bi_opf & REQ_FUA)
7e267a8c 176 nvdimm_flush(nd_region);
61031952 177
4246a0b6 178 bio_endio(bio);
dece1635 179 return BLK_QC_T_NONE;
9e853f23
RZ
180}
181
182static int pmem_rw_page(struct block_device *bdev, sector_t sector,
c11f0c0b 183 struct page *page, bool is_write)
9e853f23 184{
bd842b8c 185 struct pmem_device *pmem = bdev->bd_queue->queuedata;
e10624f8 186 int rc;
9e853f23 187
c11f0c0b 188 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
9e853f23 189
e10624f8
DW
190 /*
191 * The ->rw_page interface is subtle and tricky. The core
192 * retries on any error, so we can only invoke page_endio() in
193 * the successful completion case. Otherwise, we'll see crashes
194 * caused by double completion.
195 */
196 if (rc == 0)
c11f0c0b 197 page_endio(page, is_write, 0);
e10624f8
DW
198
199 return rc;
9e853f23
RZ
200}
201
f295e53b 202/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
c1d6e828
DW
203__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
204 long nr_pages, void **kaddr, pfn_t *pfn)
9e853f23 205{
c1d6e828 206 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
589e75d1 207
c1d6e828
DW
208 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
209 PFN_PHYS(nr_pages))))
0a70bd43 210 return -EIO;
e2e05394 211 *kaddr = pmem->virt_addr + offset;
34c0fd54 212 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
9e853f23 213
0a70bd43
DW
214 /*
215 * If badblocks are present, limit known good range to the
216 * requested range.
217 */
218 if (unlikely(pmem->bb.count))
c1d6e828
DW
219 return nr_pages;
220 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
221}
222
9e853f23
RZ
223static const struct block_device_operations pmem_fops = {
224 .owner = THIS_MODULE,
225 .rw_page = pmem_rw_page,
58138820 226 .revalidate_disk = nvdimm_revalidate_disk,
9e853f23
RZ
227};
228
c1d6e828
DW
229static long pmem_dax_direct_access(struct dax_device *dax_dev,
230 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
231{
232 struct pmem_device *pmem = dax_get_private(dax_dev);
233
234 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
235}
236
237static const struct dax_operations pmem_dax_ops = {
238 .direct_access = pmem_dax_direct_access,
239};
240
030b99e3
DW
241static void pmem_release_queue(void *q)
242{
243 blk_cleanup_queue(q);
244}
245
c1d6e828 246static void pmem_release_disk(void *__pmem)
030b99e3 247{
c1d6e828
DW
248 struct pmem_device *pmem = __pmem;
249
250 kill_dax(pmem->dax_dev);
251 put_dax(pmem->dax_dev);
252 del_gendisk(pmem->disk);
253 put_disk(pmem->disk);
030b99e3
DW
254}
255
200c79da
DW
256static int pmem_attach_disk(struct device *dev,
257 struct nd_namespace_common *ndns)
9e853f23 258{
200c79da 259 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
f284a4f2 260 struct nd_region *nd_region = to_nd_region(dev->parent);
200c79da
DW
261 struct vmem_altmap __altmap, *altmap = NULL;
262 struct resource *res = &nsio->res;
263 struct nd_pfn *nd_pfn = NULL;
c1d6e828 264 struct dax_device *dax_dev;
200c79da
DW
265 int nid = dev_to_node(dev);
266 struct nd_pfn_sb *pfn_sb;
9e853f23 267 struct pmem_device *pmem;
200c79da 268 struct resource pfn_res;
468ded03 269 struct request_queue *q;
200c79da
DW
270 struct gendisk *disk;
271 void *addr;
272
273 /* while nsio_rw_bytes is active, parse a pfn info block if present */
274 if (is_nd_pfn(dev)) {
275 nd_pfn = to_nd_pfn(dev);
276 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
277 if (IS_ERR(altmap))
278 return PTR_ERR(altmap);
279 }
280
281 /* we're attaching a block device, disable raw namespace access */
282 devm_nsio_disable(dev, nsio);
9e853f23 283
708ab62b 284 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
9e853f23 285 if (!pmem)
200c79da 286 return -ENOMEM;
9e853f23 287
200c79da 288 dev_set_drvdata(dev, pmem);
9e853f23
RZ
289 pmem->phys_addr = res->start;
290 pmem->size = resource_size(res);
f284a4f2 291 if (nvdimm_has_flush(nd_region) < 0)
61031952 292 dev_warn(dev, "unable to guarantee persistence of writes\n");
9e853f23 293
947df02d 294 if (!devm_request_mem_region(dev, res->start, resource_size(res),
450c6633 295 dev_name(&ndns->dev))) {
947df02d 296 dev_warn(dev, "could not reserve region %pR\n", res);
200c79da 297 return -EBUSY;
9e853f23
RZ
298 }
299
468ded03
DW
300 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
301 if (!q)
200c79da 302 return -ENOMEM;
468ded03 303
34c0fd54 304 pmem->pfn_flags = PFN_DEV;
200c79da
DW
305 if (is_nd_pfn(dev)) {
306 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
307 altmap);
308 pfn_sb = nd_pfn->pfn_sb;
309 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
310 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
311 pmem->pfn_flags |= PFN_MAP;
312 res = &pfn_res; /* for badblocks populate */
313 res->start += pmem->data_offset;
314 } else if (pmem_should_map_pages(dev)) {
315 addr = devm_memremap_pages(dev, &nsio->res,
5c2c2587 316 &q->q_usage_counter, NULL);
34c0fd54
DW
317 pmem->pfn_flags |= PFN_MAP;
318 } else
200c79da
DW
319 addr = devm_memremap(dev, pmem->phys_addr,
320 pmem->size, ARCH_MEMREMAP_PMEM);
b36f4761 321
030b99e3
DW
322 /*
323 * At release time the queue must be dead before
324 * devm_memremap_pages is unwound
325 */
f02716db 326 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
200c79da 327 return -ENOMEM;
8c2f7e86 328
200c79da
DW
329 if (IS_ERR(addr))
330 return PTR_ERR(addr);
7a9eb206 331 pmem->virt_addr = addr;
9e853f23 332
7e267a8c 333 blk_queue_write_cache(q, true, true);
5a92289f
DW
334 blk_queue_make_request(q, pmem_make_request);
335 blk_queue_physical_block_size(q, PAGE_SIZE);
336 blk_queue_max_hw_sectors(q, UINT_MAX);
337 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
338 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
163d4baa 339 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
5a92289f 340 q->queuedata = pmem;
9e853f23 341
538ea4aa 342 disk = alloc_disk_node(0, nid);
030b99e3
DW
343 if (!disk)
344 return -ENOMEM;
c1d6e828 345 pmem->disk = disk;
9e853f23 346
9e853f23 347 disk->fops = &pmem_fops;
5a92289f 348 disk->queue = q;
9e853f23 349 disk->flags = GENHD_FL_EXT_DEVT;
5212e11f 350 nvdimm_namespace_disk_name(ndns, disk->disk_name);
cfe30b87
DW
351 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
352 / 512);
b95f5f43
DW
353 if (devm_init_badblocks(dev, &pmem->bb))
354 return -ENOMEM;
f284a4f2 355 nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
57f7f317 356 disk->bb = &pmem->bb;
f02716db 357
c1d6e828
DW
358 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
359 if (!dax_dev) {
360 put_disk(disk);
361 return -ENOMEM;
362 }
363 pmem->dax_dev = dax_dev;
364
365 device_add_disk(dev, disk);
366 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
f02716db
DW
367 return -ENOMEM;
368
58138820 369 revalidate_disk(disk);
9e853f23 370
8c2f7e86
DW
371 return 0;
372}
9e853f23 373
9f53f9fa 374static int nd_pmem_probe(struct device *dev)
9e853f23 375{
8c2f7e86 376 struct nd_namespace_common *ndns;
9e853f23 377
8c2f7e86
DW
378 ndns = nvdimm_namespace_common_probe(dev);
379 if (IS_ERR(ndns))
380 return PTR_ERR(ndns);
bf9bccc1 381
200c79da
DW
382 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
383 return -ENXIO;
708ab62b 384
200c79da 385 if (is_nd_btt(dev))
708ab62b
CH
386 return nvdimm_namespace_attach_btt(ndns);
387
32ab0a3f 388 if (is_nd_pfn(dev))
200c79da 389 return pmem_attach_disk(dev, ndns);
32ab0a3f 390
200c79da 391 /* if we find a valid info-block we'll come back as that personality */
c5ed9268
DW
392 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
393 || nd_dax_probe(dev, ndns) == 0)
32ab0a3f 394 return -ENXIO;
32ab0a3f 395
200c79da
DW
396 /* ...otherwise we're just a raw pmem device */
397 return pmem_attach_disk(dev, ndns);
9e853f23
RZ
398}
399
9f53f9fa 400static int nd_pmem_remove(struct device *dev)
9e853f23 401{
8c2f7e86 402 if (is_nd_btt(dev))
298f2bc5 403 nvdimm_namespace_detach_btt(to_nd_btt(dev));
476f848a
DW
404 nvdimm_flush(to_nd_region(dev->parent));
405
9e853f23
RZ
406 return 0;
407}
408
476f848a
DW
409static void nd_pmem_shutdown(struct device *dev)
410{
411 nvdimm_flush(to_nd_region(dev->parent));
412}
413
71999466
DW
414static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
415{
298f2bc5 416 struct pmem_device *pmem = dev_get_drvdata(dev);
f284a4f2 417 struct nd_region *nd_region = to_region(pmem);
298f2bc5
DW
418 resource_size_t offset = 0, end_trunc = 0;
419 struct nd_namespace_common *ndns;
420 struct nd_namespace_io *nsio;
421 struct resource res;
71999466
DW
422
423 if (event != NVDIMM_REVALIDATE_POISON)
424 return;
425
298f2bc5
DW
426 if (is_nd_btt(dev)) {
427 struct nd_btt *nd_btt = to_nd_btt(dev);
428
429 ndns = nd_btt->ndns;
430 } else if (is_nd_pfn(dev)) {
a3901802
DW
431 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
432 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
433
298f2bc5
DW
434 ndns = nd_pfn->ndns;
435 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
436 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
437 } else
438 ndns = to_ndns(dev);
a3901802 439
298f2bc5
DW
440 nsio = to_nd_namespace_io(&ndns->dev);
441 res.start = nsio->res.start + offset;
442 res.end = nsio->res.end - end_trunc;
a3901802 443 nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
71999466
DW
444}
445
9f53f9fa
DW
446MODULE_ALIAS("pmem");
447MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
bf9bccc1 448MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
9f53f9fa
DW
449static struct nd_device_driver nd_pmem_driver = {
450 .probe = nd_pmem_probe,
451 .remove = nd_pmem_remove,
71999466 452 .notify = nd_pmem_notify,
476f848a 453 .shutdown = nd_pmem_shutdown,
9f53f9fa
DW
454 .drv = {
455 .name = "nd_pmem",
9e853f23 456 },
bf9bccc1 457 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
9e853f23
RZ
458};
459
460static int __init pmem_init(void)
461{
55155291 462 return nd_driver_register(&nd_pmem_driver);
9e853f23
RZ
463}
464module_init(pmem_init);
465
466static void pmem_exit(void)
467{
9f53f9fa 468 driver_unregister(&nd_pmem_driver.drv);
9e853f23
RZ
469}
470module_exit(pmem_exit);
471
472MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
473MODULE_LICENSE("GPL v2");