]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/pci/dmar.c
intel-iommu: Fix device-to-iommu mapping for PCI-PCI bridges.
[mirror_ubuntu-zesty-kernel.git] / drivers / pci / dmar.c
CommitLineData
10e5247f
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10e5247f 21 *
e61d98d8 22 * This file implements early detection/parsing of Remapping Devices
10e5247f
KA
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
e61d98d8
SS
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
10e5247f
KA
27 */
28
29#include <linux/pci.h>
30#include <linux/dmar.h>
38717946
KA
31#include <linux/iova.h>
32#include <linux/intel-iommu.h>
fe962e90 33#include <linux/timer.h>
0ac2491f
SS
34#include <linux/irq.h>
35#include <linux/interrupt.h>
10e5247f
KA
36
37#undef PREFIX
38#define PREFIX "DMAR:"
39
40/* No locks are needed as DMA remapping hardware unit
41 * list is constructed at boot time and hotplug of
42 * these units are not supported by the architecture.
43 */
44LIST_HEAD(dmar_drhd_units);
10e5247f
KA
45
46static struct acpi_table_header * __initdata dmar_tbl;
8e1568f3 47static acpi_size dmar_tbl_size;
10e5247f
KA
48
49static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
50{
51 /*
52 * add INCLUDE_ALL at the tail, so scan the list will find it at
53 * the very end.
54 */
55 if (drhd->include_all)
56 list_add_tail(&drhd->list, &dmar_drhd_units);
57 else
58 list_add(&drhd->list, &dmar_drhd_units);
59}
60
10e5247f
KA
61static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
62 struct pci_dev **dev, u16 segment)
63{
64 struct pci_bus *bus;
65 struct pci_dev *pdev = NULL;
66 struct acpi_dmar_pci_path *path;
67 int count;
68
69 bus = pci_find_bus(segment, scope->bus);
70 path = (struct acpi_dmar_pci_path *)(scope + 1);
71 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
72 / sizeof(struct acpi_dmar_pci_path);
73
74 while (count) {
75 if (pdev)
76 pci_dev_put(pdev);
77 /*
78 * Some BIOSes list non-exist devices in DMAR table, just
79 * ignore it
80 */
81 if (!bus) {
82 printk(KERN_WARNING
83 PREFIX "Device scope bus [%d] not found\n",
84 scope->bus);
85 break;
86 }
87 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
88 if (!pdev) {
89 printk(KERN_WARNING PREFIX
90 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
91 segment, bus->number, path->dev, path->fn);
92 break;
93 }
94 path ++;
95 count --;
96 bus = pdev->subordinate;
97 }
98 if (!pdev) {
99 printk(KERN_WARNING PREFIX
100 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
101 segment, scope->bus, path->dev, path->fn);
102 *dev = NULL;
103 return 0;
104 }
105 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
106 pdev->subordinate) || (scope->entry_type == \
107 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
108 pci_dev_put(pdev);
109 printk(KERN_WARNING PREFIX
110 "Device scope type does not match for %s\n",
111 pci_name(pdev));
112 return -EINVAL;
113 }
114 *dev = pdev;
115 return 0;
116}
117
118static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
119 struct pci_dev ***devices, u16 segment)
120{
121 struct acpi_dmar_device_scope *scope;
122 void * tmp = start;
123 int index;
124 int ret;
125
126 *cnt = 0;
127 while (start < end) {
128 scope = start;
129 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
130 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
131 (*cnt)++;
132 else
133 printk(KERN_WARNING PREFIX
134 "Unsupported device scope\n");
135 start += scope->length;
136 }
137 if (*cnt == 0)
138 return 0;
139
140 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
141 if (!*devices)
142 return -ENOMEM;
143
144 start = tmp;
145 index = 0;
146 while (start < end) {
147 scope = start;
148 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
149 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
150 ret = dmar_parse_one_dev_scope(scope,
151 &(*devices)[index], segment);
152 if (ret) {
153 kfree(*devices);
154 return ret;
155 }
156 index ++;
157 }
158 start += scope->length;
159 }
160
161 return 0;
162}
163
164/**
165 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
166 * structure which uniquely represent one DMA remapping hardware unit
167 * present in the platform
168 */
169static int __init
170dmar_parse_one_drhd(struct acpi_dmar_header *header)
171{
172 struct acpi_dmar_hardware_unit *drhd;
173 struct dmar_drhd_unit *dmaru;
174 int ret = 0;
10e5247f
KA
175
176 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
177 if (!dmaru)
178 return -ENOMEM;
179
1886e8a9 180 dmaru->hdr = header;
10e5247f
KA
181 drhd = (struct acpi_dmar_hardware_unit *)header;
182 dmaru->reg_base_addr = drhd->address;
183 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
184
1886e8a9
SS
185 ret = alloc_iommu(dmaru);
186 if (ret) {
187 kfree(dmaru);
188 return ret;
189 }
190 dmar_register_drhd_unit(dmaru);
191 return 0;
192}
193
f82851a8 194static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
1886e8a9
SS
195{
196 struct acpi_dmar_hardware_unit *drhd;
f82851a8 197 int ret = 0;
1886e8a9
SS
198
199 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
200
2e824f79
YZ
201 if (dmaru->include_all)
202 return 0;
203
204 ret = dmar_parse_dev_scope((void *)(drhd + 1),
1886e8a9 205 ((void *)drhd) + drhd->header.length,
10e5247f
KA
206 &dmaru->devices_cnt, &dmaru->devices,
207 drhd->segment);
1c7d1bca 208 if (ret) {
1886e8a9 209 list_del(&dmaru->list);
10e5247f 210 kfree(dmaru);
1886e8a9 211 }
10e5247f
KA
212 return ret;
213}
214
aaa9d1dd
SS
215#ifdef CONFIG_DMAR
216LIST_HEAD(dmar_rmrr_units);
217
218static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
219{
220 list_add(&rmrr->list, &dmar_rmrr_units);
221}
222
223
10e5247f
KA
224static int __init
225dmar_parse_one_rmrr(struct acpi_dmar_header *header)
226{
227 struct acpi_dmar_reserved_memory *rmrr;
228 struct dmar_rmrr_unit *rmrru;
10e5247f
KA
229
230 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
231 if (!rmrru)
232 return -ENOMEM;
233
1886e8a9 234 rmrru->hdr = header;
10e5247f
KA
235 rmrr = (struct acpi_dmar_reserved_memory *)header;
236 rmrru->base_address = rmrr->base_address;
237 rmrru->end_address = rmrr->end_address;
1886e8a9
SS
238
239 dmar_register_rmrr_unit(rmrru);
240 return 0;
241}
242
243static int __init
244rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
245{
246 struct acpi_dmar_reserved_memory *rmrr;
247 int ret;
248
249 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
10e5247f 250 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
1886e8a9 251 ((void *)rmrr) + rmrr->header.length,
10e5247f
KA
252 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
253
1886e8a9
SS
254 if (ret || (rmrru->devices_cnt == 0)) {
255 list_del(&rmrru->list);
10e5247f 256 kfree(rmrru);
1886e8a9 257 }
10e5247f
KA
258 return ret;
259}
aaa9d1dd 260#endif
10e5247f
KA
261
262static void __init
263dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
264{
265 struct acpi_dmar_hardware_unit *drhd;
266 struct acpi_dmar_reserved_memory *rmrr;
267
268 switch (header->type) {
269 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
270 drhd = (struct acpi_dmar_hardware_unit *)header;
271 printk (KERN_INFO PREFIX
272 "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
5b6985ce 273 drhd->flags, (unsigned long long)drhd->address);
10e5247f
KA
274 break;
275 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
276 rmrr = (struct acpi_dmar_reserved_memory *)header;
277
278 printk (KERN_INFO PREFIX
279 "RMRR base: 0x%016Lx end: 0x%016Lx\n",
5b6985ce
FY
280 (unsigned long long)rmrr->base_address,
281 (unsigned long long)rmrr->end_address);
10e5247f
KA
282 break;
283 }
284}
285
f6dd5c31
YL
286/**
287 * dmar_table_detect - checks to see if the platform supports DMAR devices
288 */
289static int __init dmar_table_detect(void)
290{
291 acpi_status status = AE_OK;
292
293 /* if we could find DMAR table, then there are DMAR devices */
8e1568f3
YL
294 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
295 (struct acpi_table_header **)&dmar_tbl,
296 &dmar_tbl_size);
f6dd5c31
YL
297
298 if (ACPI_SUCCESS(status) && !dmar_tbl) {
299 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
300 status = AE_NOT_FOUND;
301 }
302
303 return (ACPI_SUCCESS(status) ? 1 : 0);
304}
aaa9d1dd 305
10e5247f
KA
306/**
307 * parse_dmar_table - parses the DMA reporting table
308 */
309static int __init
310parse_dmar_table(void)
311{
312 struct acpi_table_dmar *dmar;
313 struct acpi_dmar_header *entry_header;
314 int ret = 0;
315
f6dd5c31
YL
316 /*
317 * Do it again, earlier dmar_tbl mapping could be mapped with
318 * fixed map.
319 */
320 dmar_table_detect();
321
10e5247f
KA
322 dmar = (struct acpi_table_dmar *)dmar_tbl;
323 if (!dmar)
324 return -ENODEV;
325
5b6985ce 326 if (dmar->width < PAGE_SHIFT - 1) {
093f87d2 327 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
10e5247f
KA
328 return -EINVAL;
329 }
330
331 printk (KERN_INFO PREFIX "Host address width %d\n",
332 dmar->width + 1);
333
334 entry_header = (struct acpi_dmar_header *)(dmar + 1);
335 while (((unsigned long)entry_header) <
336 (((unsigned long)dmar) + dmar_tbl->length)) {
084eb960
TB
337 /* Avoid looping forever on bad ACPI tables */
338 if (entry_header->length == 0) {
339 printk(KERN_WARNING PREFIX
340 "Invalid 0-length structure\n");
341 ret = -EINVAL;
342 break;
343 }
344
10e5247f
KA
345 dmar_table_print_dmar_entry(entry_header);
346
347 switch (entry_header->type) {
348 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
349 ret = dmar_parse_one_drhd(entry_header);
350 break;
351 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
aaa9d1dd 352#ifdef CONFIG_DMAR
10e5247f 353 ret = dmar_parse_one_rmrr(entry_header);
aaa9d1dd 354#endif
10e5247f
KA
355 break;
356 default:
357 printk(KERN_WARNING PREFIX
358 "Unknown DMAR structure type\n");
359 ret = 0; /* for forward compatibility */
360 break;
361 }
362 if (ret)
363 break;
364
365 entry_header = ((void *)entry_header + entry_header->length);
366 }
367 return ret;
368}
369
e61d98d8
SS
370int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
371 struct pci_dev *dev)
372{
373 int index;
374
375 while (dev) {
376 for (index = 0; index < cnt; index++)
377 if (dev == devices[index])
378 return 1;
379
380 /* Check our parent */
381 dev = dev->bus->self;
382 }
383
384 return 0;
385}
386
387struct dmar_drhd_unit *
388dmar_find_matched_drhd_unit(struct pci_dev *dev)
389{
2e824f79
YZ
390 struct dmar_drhd_unit *dmaru = NULL;
391 struct acpi_dmar_hardware_unit *drhd;
392
393 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
394 drhd = container_of(dmaru->hdr,
395 struct acpi_dmar_hardware_unit,
396 header);
397
398 if (dmaru->include_all &&
399 drhd->segment == pci_domain_nr(dev->bus))
400 return dmaru;
e61d98d8 401
2e824f79
YZ
402 if (dmar_pci_device_match(dmaru->devices,
403 dmaru->devices_cnt, dev))
404 return dmaru;
e61d98d8
SS
405 }
406
407 return NULL;
408}
409
1886e8a9
SS
410int __init dmar_dev_scope_init(void)
411{
04e2ea67 412 struct dmar_drhd_unit *drhd, *drhd_n;
1886e8a9
SS
413 int ret = -ENODEV;
414
04e2ea67 415 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
1886e8a9
SS
416 ret = dmar_parse_dev(drhd);
417 if (ret)
418 return ret;
419 }
420
aaa9d1dd
SS
421#ifdef CONFIG_DMAR
422 {
04e2ea67
SS
423 struct dmar_rmrr_unit *rmrr, *rmrr_n;
424 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
aaa9d1dd
SS
425 ret = rmrr_parse_dev(rmrr);
426 if (ret)
427 return ret;
428 }
1886e8a9 429 }
aaa9d1dd 430#endif
1886e8a9
SS
431
432 return ret;
433}
434
10e5247f
KA
435
436int __init dmar_table_init(void)
437{
1886e8a9 438 static int dmar_table_initialized;
093f87d2
FY
439 int ret;
440
1886e8a9
SS
441 if (dmar_table_initialized)
442 return 0;
443
444 dmar_table_initialized = 1;
445
093f87d2
FY
446 ret = parse_dmar_table();
447 if (ret) {
1886e8a9
SS
448 if (ret != -ENODEV)
449 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
093f87d2
FY
450 return ret;
451 }
452
10e5247f
KA
453 if (list_empty(&dmar_drhd_units)) {
454 printk(KERN_INFO PREFIX "No DMAR devices found\n");
455 return -ENODEV;
456 }
093f87d2 457
aaa9d1dd 458#ifdef CONFIG_DMAR
2d6b5f85 459 if (list_empty(&dmar_rmrr_units))
093f87d2 460 printk(KERN_INFO PREFIX "No RMRR found\n");
aaa9d1dd 461#endif
093f87d2 462
ad3ad3f6
SS
463#ifdef CONFIG_INTR_REMAP
464 parse_ioapics_under_ir();
465#endif
10e5247f
KA
466 return 0;
467}
468
2ae21010
SS
469void __init detect_intel_iommu(void)
470{
471 int ret;
472
f6dd5c31 473 ret = dmar_table_detect();
2ae21010 474
2ae21010 475 {
cacd4213 476#ifdef CONFIG_INTR_REMAP
1cb11583
SS
477 struct acpi_table_dmar *dmar;
478 /*
479 * for now we will disable dma-remapping when interrupt
480 * remapping is enabled.
481 * When support for queued invalidation for IOTLB invalidation
482 * is added, we will not need this any more.
483 */
484 dmar = (struct acpi_table_dmar *) dmar_tbl;
cacd4213 485 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
1cb11583
SS
486 printk(KERN_INFO
487 "Queued invalidation will be enabled to support "
488 "x2apic and Intr-remapping.\n");
cacd4213 489#endif
cacd4213 490#ifdef CONFIG_DMAR
2ae21010
SS
491 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
492 !dmar_disabled)
493 iommu_detected = 1;
2ae21010 494#endif
cacd4213 495 }
8e1568f3 496 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
f6dd5c31 497 dmar_tbl = NULL;
2ae21010
SS
498}
499
500
1886e8a9 501int alloc_iommu(struct dmar_drhd_unit *drhd)
e61d98d8 502{
c42d9f32 503 struct intel_iommu *iommu;
e61d98d8
SS
504 int map_size;
505 u32 ver;
c42d9f32 506 static int iommu_allocated = 0;
43f7392b 507 int agaw = 0;
c42d9f32
SS
508
509 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
510 if (!iommu)
1886e8a9 511 return -ENOMEM;
c42d9f32
SS
512
513 iommu->seq_id = iommu_allocated++;
9d783ba0 514 sprintf (iommu->name, "dmar%d", iommu->seq_id);
e61d98d8 515
5b6985ce 516 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
e61d98d8
SS
517 if (!iommu->reg) {
518 printk(KERN_ERR "IOMMU: can't map the region\n");
519 goto error;
520 }
521 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
522 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
523
43f7392b 524#ifdef CONFIG_DMAR
1b573683
WH
525 agaw = iommu_calculate_agaw(iommu);
526 if (agaw < 0) {
527 printk(KERN_ERR
528 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
529 iommu->seq_id);
530 goto error;
531 }
43f7392b 532#endif
1b573683
WH
533 iommu->agaw = agaw;
534
e61d98d8
SS
535 /* the registers might be more than one page */
536 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
537 cap_max_fault_reg_offset(iommu->cap));
5b6985ce
FY
538 map_size = VTD_PAGE_ALIGN(map_size);
539 if (map_size > VTD_PAGE_SIZE) {
e61d98d8
SS
540 iounmap(iommu->reg);
541 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
542 if (!iommu->reg) {
543 printk(KERN_ERR "IOMMU: can't map the region\n");
544 goto error;
545 }
546 }
547
548 ver = readl(iommu->reg + DMAR_VER_REG);
549 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
5b6985ce
FY
550 (unsigned long long)drhd->reg_base_addr,
551 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
552 (unsigned long long)iommu->cap,
553 (unsigned long long)iommu->ecap);
e61d98d8
SS
554
555 spin_lock_init(&iommu->register_lock);
556
557 drhd->iommu = iommu;
1886e8a9 558 return 0;
e61d98d8
SS
559error:
560 kfree(iommu);
1886e8a9 561 return -1;
e61d98d8
SS
562}
563
564void free_iommu(struct intel_iommu *iommu)
565{
566 if (!iommu)
567 return;
568
569#ifdef CONFIG_DMAR
570 free_dmar_iommu(iommu);
571#endif
572
573 if (iommu->reg)
574 iounmap(iommu->reg);
575 kfree(iommu);
576}
fe962e90
SS
577
578/*
579 * Reclaim all the submitted descriptors which have completed its work.
580 */
581static inline void reclaim_free_desc(struct q_inval *qi)
582{
583 while (qi->desc_status[qi->free_tail] == QI_DONE) {
584 qi->desc_status[qi->free_tail] = QI_FREE;
585 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
586 qi->free_cnt++;
587 }
588}
589
704126ad
YZ
590static int qi_check_fault(struct intel_iommu *iommu, int index)
591{
592 u32 fault;
593 int head;
594 struct q_inval *qi = iommu->qi;
595 int wait_index = (index + 1) % QI_LENGTH;
596
597 fault = readl(iommu->reg + DMAR_FSTS_REG);
598
599 /*
600 * If IQE happens, the head points to the descriptor associated
601 * with the error. No new descriptors are fetched until the IQE
602 * is cleared.
603 */
604 if (fault & DMA_FSTS_IQE) {
605 head = readl(iommu->reg + DMAR_IQH_REG);
606 if ((head >> 4) == index) {
607 memcpy(&qi->desc[index], &qi->desc[wait_index],
608 sizeof(struct qi_desc));
609 __iommu_flush_cache(iommu, &qi->desc[index],
610 sizeof(struct qi_desc));
611 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
612 return -EINVAL;
613 }
614 }
615
616 return 0;
617}
618
fe962e90
SS
619/*
620 * Submit the queued invalidation descriptor to the remapping
621 * hardware unit and wait for its completion.
622 */
704126ad 623int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
fe962e90 624{
704126ad 625 int rc = 0;
fe962e90
SS
626 struct q_inval *qi = iommu->qi;
627 struct qi_desc *hw, wait_desc;
628 int wait_index, index;
629 unsigned long flags;
630
631 if (!qi)
704126ad 632 return 0;
fe962e90
SS
633
634 hw = qi->desc;
635
f05810c9 636 spin_lock_irqsave(&qi->q_lock, flags);
fe962e90 637 while (qi->free_cnt < 3) {
f05810c9 638 spin_unlock_irqrestore(&qi->q_lock, flags);
fe962e90 639 cpu_relax();
f05810c9 640 spin_lock_irqsave(&qi->q_lock, flags);
fe962e90
SS
641 }
642
643 index = qi->free_head;
644 wait_index = (index + 1) % QI_LENGTH;
645
646 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
647
648 hw[index] = *desc;
649
704126ad
YZ
650 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
651 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
fe962e90
SS
652 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
653
654 hw[wait_index] = wait_desc;
655
656 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
657 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
658
659 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
660 qi->free_cnt -= 2;
661
fe962e90
SS
662 /*
663 * update the HW tail register indicating the presence of
664 * new descriptors.
665 */
666 writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
fe962e90
SS
667
668 while (qi->desc_status[wait_index] != QI_DONE) {
f05810c9
SS
669 /*
670 * We will leave the interrupts disabled, to prevent interrupt
671 * context to queue another cmd while a cmd is already submitted
672 * and waiting for completion on this cpu. This is to avoid
673 * a deadlock where the interrupt context can wait indefinitely
674 * for free slots in the queue.
675 */
704126ad
YZ
676 rc = qi_check_fault(iommu, index);
677 if (rc)
678 goto out;
679
fe962e90
SS
680 spin_unlock(&qi->q_lock);
681 cpu_relax();
682 spin_lock(&qi->q_lock);
683 }
704126ad
YZ
684out:
685 qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
fe962e90
SS
686
687 reclaim_free_desc(qi);
f05810c9 688 spin_unlock_irqrestore(&qi->q_lock, flags);
704126ad
YZ
689
690 return rc;
fe962e90
SS
691}
692
693/*
694 * Flush the global interrupt entry cache.
695 */
696void qi_global_iec(struct intel_iommu *iommu)
697{
698 struct qi_desc desc;
699
700 desc.low = QI_IEC_TYPE;
701 desc.high = 0;
702
704126ad 703 /* should never fail */
fe962e90
SS
704 qi_submit_sync(&desc, iommu);
705}
706
3481f210
YS
707int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
708 u64 type, int non_present_entry_flush)
709{
3481f210
YS
710 struct qi_desc desc;
711
712 if (non_present_entry_flush) {
713 if (!cap_caching_mode(iommu->cap))
714 return 1;
715 else
716 did = 0;
717 }
718
719 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
720 | QI_CC_GRAN(type) | QI_CC_TYPE;
721 desc.high = 0;
722
704126ad 723 return qi_submit_sync(&desc, iommu);
3481f210
YS
724}
725
726int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
727 unsigned int size_order, u64 type,
728 int non_present_entry_flush)
729{
730 u8 dw = 0, dr = 0;
731
732 struct qi_desc desc;
733 int ih = 0;
734
735 if (non_present_entry_flush) {
736 if (!cap_caching_mode(iommu->cap))
737 return 1;
738 else
739 did = 0;
740 }
741
742 if (cap_write_drain(iommu->cap))
743 dw = 1;
744
745 if (cap_read_drain(iommu->cap))
746 dr = 1;
747
748 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
749 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
750 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
751 | QI_IOTLB_AM(size_order);
752
704126ad 753 return qi_submit_sync(&desc, iommu);
3481f210
YS
754}
755
eba67e5d
SS
756/*
757 * Disable Queued Invalidation interface.
758 */
759void dmar_disable_qi(struct intel_iommu *iommu)
760{
761 unsigned long flags;
762 u32 sts;
763 cycles_t start_time = get_cycles();
764
765 if (!ecap_qis(iommu->ecap))
766 return;
767
768 spin_lock_irqsave(&iommu->register_lock, flags);
769
770 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
771 if (!(sts & DMA_GSTS_QIES))
772 goto end;
773
774 /*
775 * Give a chance to HW to complete the pending invalidation requests.
776 */
777 while ((readl(iommu->reg + DMAR_IQT_REG) !=
778 readl(iommu->reg + DMAR_IQH_REG)) &&
779 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
780 cpu_relax();
781
782 iommu->gcmd &= ~DMA_GCMD_QIE;
783
784 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
785
786 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
787 !(sts & DMA_GSTS_QIES), sts);
788end:
789 spin_unlock_irqrestore(&iommu->register_lock, flags);
790}
791
eb4a52bc
FY
792/*
793 * Enable queued invalidation.
794 */
795static void __dmar_enable_qi(struct intel_iommu *iommu)
796{
797 u32 cmd, sts;
798 unsigned long flags;
799 struct q_inval *qi = iommu->qi;
800
801 qi->free_head = qi->free_tail = 0;
802 qi->free_cnt = QI_LENGTH;
803
804 spin_lock_irqsave(&iommu->register_lock, flags);
805
806 /* write zero to the tail reg */
807 writel(0, iommu->reg + DMAR_IQT_REG);
808
809 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
810
811 cmd = iommu->gcmd | DMA_GCMD_QIE;
812 iommu->gcmd |= DMA_GCMD_QIE;
813 writel(cmd, iommu->reg + DMAR_GCMD_REG);
814
815 /* Make sure hardware complete it */
816 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
817
818 spin_unlock_irqrestore(&iommu->register_lock, flags);
819}
820
fe962e90
SS
821/*
822 * Enable Queued Invalidation interface. This is a must to support
823 * interrupt-remapping. Also used by DMA-remapping, which replaces
824 * register based IOTLB invalidation.
825 */
826int dmar_enable_qi(struct intel_iommu *iommu)
827{
fe962e90
SS
828 struct q_inval *qi;
829
830 if (!ecap_qis(iommu->ecap))
831 return -ENOENT;
832
833 /*
834 * queued invalidation is already setup and enabled.
835 */
836 if (iommu->qi)
837 return 0;
838
fa4b57cc 839 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
fe962e90
SS
840 if (!iommu->qi)
841 return -ENOMEM;
842
843 qi = iommu->qi;
844
fa4b57cc 845 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
fe962e90
SS
846 if (!qi->desc) {
847 kfree(qi);
848 iommu->qi = 0;
849 return -ENOMEM;
850 }
851
fa4b57cc 852 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
fe962e90
SS
853 if (!qi->desc_status) {
854 free_page((unsigned long) qi->desc);
855 kfree(qi);
856 iommu->qi = 0;
857 return -ENOMEM;
858 }
859
860 qi->free_head = qi->free_tail = 0;
861 qi->free_cnt = QI_LENGTH;
862
863 spin_lock_init(&qi->q_lock);
864
eb4a52bc 865 __dmar_enable_qi(iommu);
fe962e90
SS
866
867 return 0;
868}
0ac2491f
SS
869
870/* iommu interrupt handling. Most stuff are MSI-like. */
871
9d783ba0
SS
872enum faulttype {
873 DMA_REMAP,
874 INTR_REMAP,
875 UNKNOWN,
876};
877
878static const char *dma_remap_fault_reasons[] =
0ac2491f
SS
879{
880 "Software",
881 "Present bit in root entry is clear",
882 "Present bit in context entry is clear",
883 "Invalid context entry",
884 "Access beyond MGAW",
885 "PTE Write access is not set",
886 "PTE Read access is not set",
887 "Next page table ptr is invalid",
888 "Root table address invalid",
889 "Context table ptr is invalid",
890 "non-zero reserved fields in RTP",
891 "non-zero reserved fields in CTP",
892 "non-zero reserved fields in PTE",
893};
9d783ba0
SS
894
895static const char *intr_remap_fault_reasons[] =
896{
897 "Detected reserved fields in the decoded interrupt-remapped request",
898 "Interrupt index exceeded the interrupt-remapping table size",
899 "Present field in the IRTE entry is clear",
900 "Error accessing interrupt-remapping table pointed by IRTA_REG",
901 "Detected reserved fields in the IRTE entry",
902 "Blocked a compatibility format interrupt request",
903 "Blocked an interrupt request due to source-id verification failure",
904};
905
0ac2491f
SS
906#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
907
9d783ba0 908const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
0ac2491f 909{
9d783ba0
SS
910 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
911 ARRAY_SIZE(intr_remap_fault_reasons))) {
912 *fault_type = INTR_REMAP;
913 return intr_remap_fault_reasons[fault_reason - 0x20];
914 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
915 *fault_type = DMA_REMAP;
916 return dma_remap_fault_reasons[fault_reason];
917 } else {
918 *fault_type = UNKNOWN;
0ac2491f 919 return "Unknown";
9d783ba0 920 }
0ac2491f
SS
921}
922
923void dmar_msi_unmask(unsigned int irq)
924{
925 struct intel_iommu *iommu = get_irq_data(irq);
926 unsigned long flag;
927
928 /* unmask it */
929 spin_lock_irqsave(&iommu->register_lock, flag);
930 writel(0, iommu->reg + DMAR_FECTL_REG);
931 /* Read a reg to force flush the post write */
932 readl(iommu->reg + DMAR_FECTL_REG);
933 spin_unlock_irqrestore(&iommu->register_lock, flag);
934}
935
936void dmar_msi_mask(unsigned int irq)
937{
938 unsigned long flag;
939 struct intel_iommu *iommu = get_irq_data(irq);
940
941 /* mask it */
942 spin_lock_irqsave(&iommu->register_lock, flag);
943 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
944 /* Read a reg to force flush the post write */
945 readl(iommu->reg + DMAR_FECTL_REG);
946 spin_unlock_irqrestore(&iommu->register_lock, flag);
947}
948
949void dmar_msi_write(int irq, struct msi_msg *msg)
950{
951 struct intel_iommu *iommu = get_irq_data(irq);
952 unsigned long flag;
953
954 spin_lock_irqsave(&iommu->register_lock, flag);
955 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
956 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
957 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
958 spin_unlock_irqrestore(&iommu->register_lock, flag);
959}
960
961void dmar_msi_read(int irq, struct msi_msg *msg)
962{
963 struct intel_iommu *iommu = get_irq_data(irq);
964 unsigned long flag;
965
966 spin_lock_irqsave(&iommu->register_lock, flag);
967 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
968 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
969 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
970 spin_unlock_irqrestore(&iommu->register_lock, flag);
971}
972
973static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
974 u8 fault_reason, u16 source_id, unsigned long long addr)
975{
976 const char *reason;
9d783ba0 977 int fault_type;
0ac2491f 978
9d783ba0 979 reason = dmar_get_fault_reason(fault_reason, &fault_type);
0ac2491f 980
9d783ba0
SS
981 if (fault_type == INTR_REMAP)
982 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
983 "fault index %llx\n"
984 "INTR-REMAP:[fault reason %02d] %s\n",
985 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
986 PCI_FUNC(source_id & 0xFF), addr >> 48,
987 fault_reason, reason);
988 else
989 printk(KERN_ERR
990 "DMAR:[%s] Request device [%02x:%02x.%d] "
991 "fault addr %llx \n"
992 "DMAR:[fault reason %02d] %s\n",
993 (type ? "DMA Read" : "DMA Write"),
994 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
995 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
0ac2491f
SS
996 return 0;
997}
998
999#define PRIMARY_FAULT_REG_LEN (16)
1531a6a6 1000irqreturn_t dmar_fault(int irq, void *dev_id)
0ac2491f
SS
1001{
1002 struct intel_iommu *iommu = dev_id;
1003 int reg, fault_index;
1004 u32 fault_status;
1005 unsigned long flag;
1006
1007 spin_lock_irqsave(&iommu->register_lock, flag);
1008 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
9d783ba0
SS
1009 if (fault_status)
1010 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1011 fault_status);
0ac2491f
SS
1012
1013 /* TBD: ignore advanced fault log currently */
1014 if (!(fault_status & DMA_FSTS_PPF))
9d783ba0 1015 goto clear_rest;
0ac2491f
SS
1016
1017 fault_index = dma_fsts_fault_record_index(fault_status);
1018 reg = cap_fault_reg_offset(iommu->cap);
1019 while (1) {
1020 u8 fault_reason;
1021 u16 source_id;
1022 u64 guest_addr;
1023 int type;
1024 u32 data;
1025
1026 /* highest 32 bits */
1027 data = readl(iommu->reg + reg +
1028 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1029 if (!(data & DMA_FRCD_F))
1030 break;
1031
1032 fault_reason = dma_frcd_fault_reason(data);
1033 type = dma_frcd_type(data);
1034
1035 data = readl(iommu->reg + reg +
1036 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1037 source_id = dma_frcd_source_id(data);
1038
1039 guest_addr = dmar_readq(iommu->reg + reg +
1040 fault_index * PRIMARY_FAULT_REG_LEN);
1041 guest_addr = dma_frcd_page_addr(guest_addr);
1042 /* clear the fault */
1043 writel(DMA_FRCD_F, iommu->reg + reg +
1044 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1045
1046 spin_unlock_irqrestore(&iommu->register_lock, flag);
1047
1048 dmar_fault_do_one(iommu, type, fault_reason,
1049 source_id, guest_addr);
1050
1051 fault_index++;
1052 if (fault_index > cap_num_fault_regs(iommu->cap))
1053 fault_index = 0;
1054 spin_lock_irqsave(&iommu->register_lock, flag);
1055 }
9d783ba0
SS
1056clear_rest:
1057 /* clear all the other faults */
0ac2491f 1058 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
9d783ba0 1059 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
0ac2491f
SS
1060
1061 spin_unlock_irqrestore(&iommu->register_lock, flag);
1062 return IRQ_HANDLED;
1063}
1064
1065int dmar_set_interrupt(struct intel_iommu *iommu)
1066{
1067 int irq, ret;
1068
9d783ba0
SS
1069 /*
1070 * Check if the fault interrupt is already initialized.
1071 */
1072 if (iommu->irq)
1073 return 0;
1074
0ac2491f
SS
1075 irq = create_irq();
1076 if (!irq) {
1077 printk(KERN_ERR "IOMMU: no free vectors\n");
1078 return -EINVAL;
1079 }
1080
1081 set_irq_data(irq, iommu);
1082 iommu->irq = irq;
1083
1084 ret = arch_setup_dmar_msi(irq);
1085 if (ret) {
1086 set_irq_data(irq, NULL);
1087 iommu->irq = 0;
1088 destroy_irq(irq);
1089 return 0;
1090 }
1091
0ac2491f
SS
1092 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1093 if (ret)
1094 printk(KERN_ERR "IOMMU: can't request irq\n");
1095 return ret;
1096}
9d783ba0
SS
1097
1098int __init enable_drhd_fault_handling(void)
1099{
1100 struct dmar_drhd_unit *drhd;
1101
1102 /*
1103 * Enable fault control interrupt.
1104 */
1105 for_each_drhd_unit(drhd) {
1106 int ret;
1107 struct intel_iommu *iommu = drhd->iommu;
1108 ret = dmar_set_interrupt(iommu);
1109
1110 if (ret) {
1111 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1112 " interrupt, ret %d\n",
1113 (unsigned long long)drhd->reg_base_addr, ret);
1114 return -1;
1115 }
1116 }
1117
1118 return 0;
1119}
eb4a52bc
FY
1120
1121/*
1122 * Re-enable Queued Invalidation interface.
1123 */
1124int dmar_reenable_qi(struct intel_iommu *iommu)
1125{
1126 if (!ecap_qis(iommu->ecap))
1127 return -ENOENT;
1128
1129 if (!iommu->qi)
1130 return -ENOENT;
1131
1132 /*
1133 * First disable queued invalidation.
1134 */
1135 dmar_disable_qi(iommu);
1136 /*
1137 * Then enable queued invalidation again. Since there is no pending
1138 * invalidation requests now, it's safe to re-enable queued
1139 * invalidation.
1140 */
1141 __dmar_enable_qi(iommu);
1142
1143 return 0;
1144}