]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/spi/spi-atmel.c
spi: atmel: Fix scheduling while atomic
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-atmel.c
CommitLineData
754ce4f2
HS
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
754ce4f2
HS
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
1ccc404a 17#include <linux/dmaengine.h>
754ce4f2
HS
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
5a0e3ad6 21#include <linux/slab.h>
1ccc404a 22#include <linux/platform_data/dma-atmel.h>
850a5b67 23#include <linux/of.h>
754ce4f2 24
d4820b74
WY
25#include <linux/io.h>
26#include <linux/gpio.h>
96106200 27#include <linux/of_gpio.h>
5bdfd491 28#include <linux/pinctrl/consumer.h>
ce0c4caf 29#include <linux/pm_runtime.h>
bb2d1c36 30
ca632f55
GL
31/* SPI register offsets */
32#define SPI_CR 0x0000
33#define SPI_MR 0x0004
34#define SPI_RDR 0x0008
35#define SPI_TDR 0x000c
36#define SPI_SR 0x0010
37#define SPI_IER 0x0014
38#define SPI_IDR 0x0018
39#define SPI_IMR 0x001c
40#define SPI_CSR0 0x0030
41#define SPI_CSR1 0x0034
42#define SPI_CSR2 0x0038
43#define SPI_CSR3 0x003c
11f2764f
CP
44#define SPI_FMR 0x0040
45#define SPI_FLR 0x0044
d4820b74 46#define SPI_VERSION 0x00fc
ca632f55
GL
47#define SPI_RPR 0x0100
48#define SPI_RCR 0x0104
49#define SPI_TPR 0x0108
50#define SPI_TCR 0x010c
51#define SPI_RNPR 0x0110
52#define SPI_RNCR 0x0114
53#define SPI_TNPR 0x0118
54#define SPI_TNCR 0x011c
55#define SPI_PTCR 0x0120
56#define SPI_PTSR 0x0124
57
58/* Bitfields in CR */
59#define SPI_SPIEN_OFFSET 0
60#define SPI_SPIEN_SIZE 1
61#define SPI_SPIDIS_OFFSET 1
62#define SPI_SPIDIS_SIZE 1
63#define SPI_SWRST_OFFSET 7
64#define SPI_SWRST_SIZE 1
65#define SPI_LASTXFER_OFFSET 24
66#define SPI_LASTXFER_SIZE 1
11f2764f
CP
67#define SPI_TXFCLR_OFFSET 16
68#define SPI_TXFCLR_SIZE 1
69#define SPI_RXFCLR_OFFSET 17
70#define SPI_RXFCLR_SIZE 1
71#define SPI_FIFOEN_OFFSET 30
72#define SPI_FIFOEN_SIZE 1
73#define SPI_FIFODIS_OFFSET 31
74#define SPI_FIFODIS_SIZE 1
ca632f55
GL
75
76/* Bitfields in MR */
77#define SPI_MSTR_OFFSET 0
78#define SPI_MSTR_SIZE 1
79#define SPI_PS_OFFSET 1
80#define SPI_PS_SIZE 1
81#define SPI_PCSDEC_OFFSET 2
82#define SPI_PCSDEC_SIZE 1
83#define SPI_FDIV_OFFSET 3
84#define SPI_FDIV_SIZE 1
85#define SPI_MODFDIS_OFFSET 4
86#define SPI_MODFDIS_SIZE 1
d4820b74
WY
87#define SPI_WDRBT_OFFSET 5
88#define SPI_WDRBT_SIZE 1
ca632f55
GL
89#define SPI_LLB_OFFSET 7
90#define SPI_LLB_SIZE 1
91#define SPI_PCS_OFFSET 16
92#define SPI_PCS_SIZE 4
93#define SPI_DLYBCS_OFFSET 24
94#define SPI_DLYBCS_SIZE 8
95
96/* Bitfields in RDR */
97#define SPI_RD_OFFSET 0
98#define SPI_RD_SIZE 16
99
100/* Bitfields in TDR */
101#define SPI_TD_OFFSET 0
102#define SPI_TD_SIZE 16
103
104/* Bitfields in SR */
105#define SPI_RDRF_OFFSET 0
106#define SPI_RDRF_SIZE 1
107#define SPI_TDRE_OFFSET 1
108#define SPI_TDRE_SIZE 1
109#define SPI_MODF_OFFSET 2
110#define SPI_MODF_SIZE 1
111#define SPI_OVRES_OFFSET 3
112#define SPI_OVRES_SIZE 1
113#define SPI_ENDRX_OFFSET 4
114#define SPI_ENDRX_SIZE 1
115#define SPI_ENDTX_OFFSET 5
116#define SPI_ENDTX_SIZE 1
117#define SPI_RXBUFF_OFFSET 6
118#define SPI_RXBUFF_SIZE 1
119#define SPI_TXBUFE_OFFSET 7
120#define SPI_TXBUFE_SIZE 1
121#define SPI_NSSR_OFFSET 8
122#define SPI_NSSR_SIZE 1
123#define SPI_TXEMPTY_OFFSET 9
124#define SPI_TXEMPTY_SIZE 1
125#define SPI_SPIENS_OFFSET 16
126#define SPI_SPIENS_SIZE 1
11f2764f
CP
127#define SPI_TXFEF_OFFSET 24
128#define SPI_TXFEF_SIZE 1
129#define SPI_TXFFF_OFFSET 25
130#define SPI_TXFFF_SIZE 1
131#define SPI_TXFTHF_OFFSET 26
132#define SPI_TXFTHF_SIZE 1
133#define SPI_RXFEF_OFFSET 27
134#define SPI_RXFEF_SIZE 1
135#define SPI_RXFFF_OFFSET 28
136#define SPI_RXFFF_SIZE 1
137#define SPI_RXFTHF_OFFSET 29
138#define SPI_RXFTHF_SIZE 1
139#define SPI_TXFPTEF_OFFSET 30
140#define SPI_TXFPTEF_SIZE 1
141#define SPI_RXFPTEF_OFFSET 31
142#define SPI_RXFPTEF_SIZE 1
ca632f55
GL
143
144/* Bitfields in CSR0 */
145#define SPI_CPOL_OFFSET 0
146#define SPI_CPOL_SIZE 1
147#define SPI_NCPHA_OFFSET 1
148#define SPI_NCPHA_SIZE 1
149#define SPI_CSAAT_OFFSET 3
150#define SPI_CSAAT_SIZE 1
151#define SPI_BITS_OFFSET 4
152#define SPI_BITS_SIZE 4
153#define SPI_SCBR_OFFSET 8
154#define SPI_SCBR_SIZE 8
155#define SPI_DLYBS_OFFSET 16
156#define SPI_DLYBS_SIZE 8
157#define SPI_DLYBCT_OFFSET 24
158#define SPI_DLYBCT_SIZE 8
159
160/* Bitfields in RCR */
161#define SPI_RXCTR_OFFSET 0
162#define SPI_RXCTR_SIZE 16
163
164/* Bitfields in TCR */
165#define SPI_TXCTR_OFFSET 0
166#define SPI_TXCTR_SIZE 16
167
168/* Bitfields in RNCR */
169#define SPI_RXNCR_OFFSET 0
170#define SPI_RXNCR_SIZE 16
171
172/* Bitfields in TNCR */
173#define SPI_TXNCR_OFFSET 0
174#define SPI_TXNCR_SIZE 16
175
176/* Bitfields in PTCR */
177#define SPI_RXTEN_OFFSET 0
178#define SPI_RXTEN_SIZE 1
179#define SPI_RXTDIS_OFFSET 1
180#define SPI_RXTDIS_SIZE 1
181#define SPI_TXTEN_OFFSET 8
182#define SPI_TXTEN_SIZE 1
183#define SPI_TXTDIS_OFFSET 9
184#define SPI_TXTDIS_SIZE 1
185
11f2764f
CP
186/* Bitfields in FMR */
187#define SPI_TXRDYM_OFFSET 0
188#define SPI_TXRDYM_SIZE 2
189#define SPI_RXRDYM_OFFSET 4
190#define SPI_RXRDYM_SIZE 2
191#define SPI_TXFTHRES_OFFSET 16
192#define SPI_TXFTHRES_SIZE 6
193#define SPI_RXFTHRES_OFFSET 24
194#define SPI_RXFTHRES_SIZE 6
195
196/* Bitfields in FLR */
197#define SPI_TXFL_OFFSET 0
198#define SPI_TXFL_SIZE 6
199#define SPI_RXFL_OFFSET 16
200#define SPI_RXFL_SIZE 6
201
ca632f55
GL
202/* Constants for BITS */
203#define SPI_BITS_8_BPT 0
204#define SPI_BITS_9_BPT 1
205#define SPI_BITS_10_BPT 2
206#define SPI_BITS_11_BPT 3
207#define SPI_BITS_12_BPT 4
208#define SPI_BITS_13_BPT 5
209#define SPI_BITS_14_BPT 6
210#define SPI_BITS_15_BPT 7
211#define SPI_BITS_16_BPT 8
11f2764f
CP
212#define SPI_ONE_DATA 0
213#define SPI_TWO_DATA 1
214#define SPI_FOUR_DATA 2
ca632f55
GL
215
216/* Bit manipulation macros */
217#define SPI_BIT(name) \
218 (1 << SPI_##name##_OFFSET)
a536d765 219#define SPI_BF(name, value) \
ca632f55 220 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
a536d765 221#define SPI_BFEXT(name, value) \
ca632f55 222 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
a536d765
SK
223#define SPI_BFINS(name, value, old) \
224 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 | SPI_BF(name, value))
ca632f55
GL
226
227/* Register access macros */
ea467326 228#ifdef CONFIG_AVR32
a536d765 229#define spi_readl(port, reg) \
ca632f55 230 __raw_readl((port)->regs + SPI_##reg)
a536d765 231#define spi_writel(port, reg, value) \
ca632f55 232 __raw_writel((value), (port)->regs + SPI_##reg)
11f2764f
CP
233
234#define spi_readw(port, reg) \
235 __raw_readw((port)->regs + SPI_##reg)
236#define spi_writew(port, reg, value) \
237 __raw_writew((value), (port)->regs + SPI_##reg)
238
239#define spi_readb(port, reg) \
240 __raw_readb((port)->regs + SPI_##reg)
241#define spi_writeb(port, reg, value) \
242 __raw_writeb((value), (port)->regs + SPI_##reg)
ea467326
BD
243#else
244#define spi_readl(port, reg) \
245 readl_relaxed((port)->regs + SPI_##reg)
246#define spi_writel(port, reg, value) \
247 writel_relaxed((value), (port)->regs + SPI_##reg)
11f2764f
CP
248
249#define spi_readw(port, reg) \
250 readw_relaxed((port)->regs + SPI_##reg)
251#define spi_writew(port, reg, value) \
252 writew_relaxed((value), (port)->regs + SPI_##reg)
253
254#define spi_readb(port, reg) \
255 readb_relaxed((port)->regs + SPI_##reg)
256#define spi_writeb(port, reg, value) \
257 writeb_relaxed((value), (port)->regs + SPI_##reg)
ea467326 258#endif
1ccc404a
NF
259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260 * cache operations; better heuristics consider wordsize and bitrate.
261 */
262#define DMA_MIN_BYTES 16
263
8090d6d1
WY
264#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
265
ce0c4caf
WY
266#define AUTOSUSPEND_TIMEOUT 2000
267
1ccc404a
NF
268struct atmel_spi_dma {
269 struct dma_chan *chan_rx;
270 struct dma_chan *chan_tx;
271 struct scatterlist sgrx;
272 struct scatterlist sgtx;
273 struct dma_async_tx_descriptor *data_desc_rx;
274 struct dma_async_tx_descriptor *data_desc_tx;
275
276 struct at_dma_slave dma_slave;
277};
278
d4820b74
WY
279struct atmel_spi_caps {
280 bool is_spi2;
281 bool has_wdrbt;
282 bool has_dma_support;
283};
754ce4f2
HS
284
285/*
286 * The core SPI transfer engine just talks to a register bank to set up
287 * DMA transfers; transfer queue progress is driven by IRQs. The clock
288 * framework provides the base clock, subdivided for each spi_device.
754ce4f2
HS
289 */
290struct atmel_spi {
291 spinlock_t lock;
8aad7924 292 unsigned long flags;
754ce4f2 293
dfab30ee 294 phys_addr_t phybase;
754ce4f2
HS
295 void __iomem *regs;
296 int irq;
297 struct clk *clk;
298 struct platform_device *pdev;
39fe33f9 299 unsigned long spi_clk;
754ce4f2 300
754ce4f2 301 struct spi_transfer *current_transfer;
0c3b9748 302 int current_remaining_bytes;
823cd045 303 int done_status;
754ce4f2 304
8090d6d1
WY
305 struct completion xfer_completion;
306
1ccc404a 307 /* scratch buffer */
754ce4f2
HS
308 void *buffer;
309 dma_addr_t buffer_dma;
d4820b74
WY
310
311 struct atmel_spi_caps caps;
1ccc404a
NF
312
313 bool use_dma;
314 bool use_pdc;
48203034 315 bool use_cs_gpios;
1ccc404a
NF
316 /* dmaengine data */
317 struct atmel_spi_dma dma;
8090d6d1
WY
318
319 bool keep_cs;
320 bool cs_active;
11f2764f
CP
321
322 u32 fifo_size;
754ce4f2
HS
323};
324
5ee36c98
HS
325/* Controller-specific per-slave state */
326struct atmel_spi_device {
327 unsigned int npcs_pin;
328 u32 csr;
329};
330
754ce4f2
HS
331#define BUFFER_SIZE PAGE_SIZE
332#define INVALID_DMA_ADDRESS 0xffffffff
333
5bfa26ca
HS
334/*
335 * Version 2 of the SPI controller has
336 * - CR.LASTXFER
337 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
338 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
339 * - SPI_CSRx.CSAAT
340 * - SPI_CSRx.SBCR allows faster clocking
5bfa26ca 341 */
d4820b74 342static bool atmel_spi_is_v2(struct atmel_spi *as)
5bfa26ca 343{
d4820b74 344 return as->caps.is_spi2;
5bfa26ca
HS
345}
346
754ce4f2
HS
347/*
348 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
349 * they assume that spi slave device state will not change on deselect, so
defbd3b4
DB
350 * that automagic deselection is OK. ("NPCSx rises if no data is to be
351 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
352 * controllers have CSAAT and friends.
754ce4f2 353 *
defbd3b4
DB
354 * Since the CSAAT functionality is a bit weird on newer controllers as
355 * well, we use GPIO to control nCSx pins on all controllers, updating
356 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
357 * support active-high chipselects despite the controller's belief that
358 * only active-low devices/systems exists.
359 *
360 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
361 * right when driven with GPIO. ("Mode Fault does not allow more than one
362 * Master on Chip Select 0.") No workaround exists for that ... so for
363 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
364 * and (c) will trigger that first erratum in some cases.
754ce4f2
HS
365 */
366
defbd3b4 367static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 368{
5ee36c98 369 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 370 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
371 u32 mr;
372
d4820b74 373 if (atmel_spi_is_v2(as)) {
97ed465b
WY
374 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
375 /* For the low SPI version, there is a issue that PDC transfer
376 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
5ee36c98
HS
377 */
378 spi_writel(as, CSR0, asd->csr);
d4820b74 379 if (as->caps.has_wdrbt) {
97ed465b
WY
380 spi_writel(as, MR,
381 SPI_BF(PCS, ~(0x01 << spi->chip_select))
382 | SPI_BIT(WDRBT)
383 | SPI_BIT(MODFDIS)
384 | SPI_BIT(MSTR));
d4820b74 385 } else {
97ed465b
WY
386 spi_writel(as, MR,
387 SPI_BF(PCS, ~(0x01 << spi->chip_select))
388 | SPI_BIT(MODFDIS)
389 | SPI_BIT(MSTR));
d4820b74 390 }
1ccc404a 391
5ee36c98 392 mr = spi_readl(as, MR);
48203034
CP
393 if (as->use_cs_gpios)
394 gpio_set_value(asd->npcs_pin, active);
5ee36c98
HS
395 } else {
396 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
397 int i;
398 u32 csr;
399
400 /* Make sure clock polarity is correct */
401 for (i = 0; i < spi->master->num_chipselect; i++) {
402 csr = spi_readl(as, CSR0 + 4 * i);
403 if ((csr ^ cpol) & SPI_BIT(CPOL))
404 spi_writel(as, CSR0 + 4 * i,
405 csr ^ SPI_BIT(CPOL));
406 }
407
408 mr = spi_readl(as, MR);
409 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
48203034 410 if (as->use_cs_gpios && spi->chip_select != 0)
5ee36c98
HS
411 gpio_set_value(asd->npcs_pin, active);
412 spi_writel(as, MR, mr);
413 }
defbd3b4
DB
414
415 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
5ee36c98 416 asd->npcs_pin, active ? " (high)" : "",
defbd3b4 417 mr);
754ce4f2
HS
418}
419
defbd3b4 420static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 421{
5ee36c98 422 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 423 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
424 u32 mr;
425
426 /* only deactivate *this* device; sometimes transfers to
427 * another device may be active when this routine is called.
428 */
429 mr = spi_readl(as, MR);
430 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
431 mr = SPI_BFINS(PCS, 0xf, mr);
432 spi_writel(as, MR, mr);
433 }
754ce4f2 434
defbd3b4 435 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
5ee36c98 436 asd->npcs_pin, active ? " (low)" : "",
defbd3b4
DB
437 mr);
438
48203034
CP
439 if (!as->use_cs_gpios)
440 spi_writel(as, CR, SPI_BIT(LASTXFER));
441 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
5ee36c98 442 gpio_set_value(asd->npcs_pin, !active);
754ce4f2
HS
443}
444
6c07ef29 445static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
8aad7924
NF
446{
447 spin_lock_irqsave(&as->lock, as->flags);
448}
449
6c07ef29 450static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
8aad7924
NF
451{
452 spin_unlock_irqrestore(&as->lock, as->flags);
453}
454
1ccc404a
NF
455static inline bool atmel_spi_use_dma(struct atmel_spi *as,
456 struct spi_transfer *xfer)
457{
458 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
459}
460
1ccc404a
NF
461static int atmel_spi_dma_slave_config(struct atmel_spi *as,
462 struct dma_slave_config *slave_config,
463 u8 bits_per_word)
464{
465 int err = 0;
466
467 if (bits_per_word > 8) {
468 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
470 } else {
471 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
473 }
474
475 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
476 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
477 slave_config->src_maxburst = 1;
478 slave_config->dst_maxburst = 1;
479 slave_config->device_fc = false;
480
11f2764f
CP
481 /*
482 * This driver uses fixed peripheral select mode (PS bit set to '0' in
483 * the Mode Register).
484 * So according to the datasheet, when FIFOs are available (and
485 * enabled), the Transmit FIFO operates in Multiple Data Mode.
486 * In this mode, up to 2 data, not 4, can be written into the Transmit
487 * Data Register in a single access.
488 * However, the first data has to be written into the lowest 16 bits and
489 * the second data into the highest 16 bits of the Transmit
490 * Data Register. For 8bit data (the most frequent case), it would
491 * require to rework tx_buf so each data would actualy fit 16 bits.
492 * So we'd rather write only one data at the time. Hence the transmit
493 * path works the same whether FIFOs are available (and enabled) or not.
494 */
1ccc404a
NF
495 slave_config->direction = DMA_MEM_TO_DEV;
496 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
497 dev_err(&as->pdev->dev,
498 "failed to configure tx dma channel\n");
499 err = -EINVAL;
500 }
501
11f2764f
CP
502 /*
503 * This driver configures the spi controller for master mode (MSTR bit
504 * set to '1' in the Mode Register).
505 * So according to the datasheet, when FIFOs are available (and
506 * enabled), the Receive FIFO operates in Single Data Mode.
507 * So the receive path works the same whether FIFOs are available (and
508 * enabled) or not.
509 */
1ccc404a
NF
510 slave_config->direction = DMA_DEV_TO_MEM;
511 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
512 dev_err(&as->pdev->dev,
513 "failed to configure rx dma channel\n");
514 err = -EINVAL;
515 }
516
517 return err;
518}
519
1ccc404a
NF
520static int atmel_spi_configure_dma(struct atmel_spi *as)
521{
1ccc404a 522 struct dma_slave_config slave_config;
2f767a9f 523 struct device *dev = &as->pdev->dev;
1ccc404a
NF
524 int err;
525
2f767a9f
RG
526 dma_cap_mask_t mask;
527 dma_cap_zero(mask);
528 dma_cap_set(DMA_SLAVE, mask);
1ccc404a 529
5e9af37e
LD
530 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
531 if (IS_ERR(as->dma.chan_tx)) {
532 err = PTR_ERR(as->dma.chan_tx);
533 if (err == -EPROBE_DEFER) {
534 dev_warn(dev, "no DMA channel available at the moment\n");
535 return err;
536 }
2f767a9f
RG
537 dev_err(dev,
538 "DMA TX channel not available, SPI unable to use DMA\n");
539 err = -EBUSY;
540 goto error;
1ccc404a 541 }
2f767a9f 542
5e9af37e
LD
543 /*
544 * No reason to check EPROBE_DEFER here since we have already requested
545 * tx channel. If it fails here, it's for another reason.
546 */
7758e390 547 as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
2f767a9f
RG
548
549 if (!as->dma.chan_rx) {
550 dev_err(dev,
551 "DMA RX channel not available, SPI unable to use DMA\n");
1ccc404a
NF
552 err = -EBUSY;
553 goto error;
554 }
555
556 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
557 if (err)
558 goto error;
559
560 dev_info(&as->pdev->dev,
561 "Using %s (tx) and %s (rx) for DMA transfers\n",
562 dma_chan_name(as->dma.chan_tx),
563 dma_chan_name(as->dma.chan_rx));
564 return 0;
565error:
566 if (as->dma.chan_rx)
567 dma_release_channel(as->dma.chan_rx);
5e9af37e 568 if (!IS_ERR(as->dma.chan_tx))
1ccc404a
NF
569 dma_release_channel(as->dma.chan_tx);
570 return err;
571}
572
573static void atmel_spi_stop_dma(struct atmel_spi *as)
574{
575 if (as->dma.chan_rx)
5398ad68 576 dmaengine_terminate_all(as->dma.chan_rx);
1ccc404a 577 if (as->dma.chan_tx)
5398ad68 578 dmaengine_terminate_all(as->dma.chan_tx);
1ccc404a
NF
579}
580
581static void atmel_spi_release_dma(struct atmel_spi *as)
582{
583 if (as->dma.chan_rx)
584 dma_release_channel(as->dma.chan_rx);
585 if (as->dma.chan_tx)
586 dma_release_channel(as->dma.chan_tx);
587}
588
589/* This function is called by the DMA driver from tasklet context */
590static void dma_callback(void *data)
591{
592 struct spi_master *master = data;
593 struct atmel_spi *as = spi_master_get_devdata(master);
594
8090d6d1 595 complete(&as->xfer_completion);
1ccc404a
NF
596}
597
598/*
11f2764f 599 * Next transfer using PIO without FIFO.
1ccc404a 600 */
11f2764f
CP
601static void atmel_spi_next_xfer_single(struct spi_master *master,
602 struct spi_transfer *xfer)
1ccc404a
NF
603{
604 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 605 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1ccc404a
NF
606
607 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
608
1ccc404a
NF
609 /* Make sure data is not remaining in RDR */
610 spi_readl(as, RDR);
611 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
612 spi_readl(as, RDR);
613 cpu_relax();
614 }
615
8090d6d1 616 if (xfer->tx_buf) {
f557c98b 617 if (xfer->bits_per_word > 8)
8090d6d1 618 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
f557c98b 619 else
8090d6d1
WY
620 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
621 } else {
1ccc404a 622 spi_writel(as, TDR, 0);
8090d6d1 623 }
1ccc404a
NF
624
625 dev_dbg(master->dev.parent,
f557c98b
RG
626 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
627 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
628 xfer->bits_per_word);
1ccc404a
NF
629
630 /* Enable relevant interrupts */
631 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
632}
633
11f2764f
CP
634/*
635 * Next transfer using PIO with FIFO.
636 */
637static void atmel_spi_next_xfer_fifo(struct spi_master *master,
638 struct spi_transfer *xfer)
639{
640 struct atmel_spi *as = spi_master_get_devdata(master);
641 u32 current_remaining_data, num_data;
642 u32 offset = xfer->len - as->current_remaining_bytes;
643 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
644 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
645 u16 td0, td1;
646 u32 fifomr;
647
648 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
649
650 /* Compute the number of data to transfer in the current iteration */
651 current_remaining_data = ((xfer->bits_per_word > 8) ?
652 ((u32)as->current_remaining_bytes >> 1) :
653 (u32)as->current_remaining_bytes);
654 num_data = min(current_remaining_data, as->fifo_size);
655
656 /* Flush RX and TX FIFOs */
657 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
658 while (spi_readl(as, FLR))
659 cpu_relax();
660
661 /* Set RX FIFO Threshold to the number of data to transfer */
662 fifomr = spi_readl(as, FMR);
663 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
664
665 /* Clear FIFO flags in the Status Register, especially RXFTHF */
666 (void)spi_readl(as, SR);
667
668 /* Fill TX FIFO */
669 while (num_data >= 2) {
670 if (xfer->tx_buf) {
671 if (xfer->bits_per_word > 8) {
672 td0 = *words++;
673 td1 = *words++;
674 } else {
675 td0 = *bytes++;
676 td1 = *bytes++;
677 }
678 } else {
679 td0 = 0;
680 td1 = 0;
681 }
682
683 spi_writel(as, TDR, (td1 << 16) | td0);
684 num_data -= 2;
685 }
686
687 if (num_data) {
688 if (xfer->tx_buf) {
689 if (xfer->bits_per_word > 8)
690 td0 = *words++;
691 else
692 td0 = *bytes++;
693 } else {
694 td0 = 0;
695 }
696
697 spi_writew(as, TDR, td0);
698 num_data--;
699 }
700
701 dev_dbg(master->dev.parent,
702 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
703 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
704 xfer->bits_per_word);
705
706 /*
707 * Enable RX FIFO Threshold Flag interrupt to be notified about
708 * transfer completion.
709 */
710 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
711}
712
713/*
714 * Next transfer using PIO.
715 */
716static void atmel_spi_next_xfer_pio(struct spi_master *master,
717 struct spi_transfer *xfer)
718{
719 struct atmel_spi *as = spi_master_get_devdata(master);
720
721 if (as->fifo_size)
722 atmel_spi_next_xfer_fifo(master, xfer);
723 else
724 atmel_spi_next_xfer_single(master, xfer);
725}
726
1ccc404a
NF
727/*
728 * Submit next transfer for DMA.
1ccc404a
NF
729 */
730static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
731 struct spi_transfer *xfer,
732 u32 *plen)
733{
734 struct atmel_spi *as = spi_master_get_devdata(master);
735 struct dma_chan *rxchan = as->dma.chan_rx;
736 struct dma_chan *txchan = as->dma.chan_tx;
737 struct dma_async_tx_descriptor *rxdesc;
738 struct dma_async_tx_descriptor *txdesc;
739 struct dma_slave_config slave_config;
740 dma_cookie_t cookie;
741 u32 len = *plen;
742
743 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
744
745 /* Check that the channels are available */
746 if (!rxchan || !txchan)
747 return -ENODEV;
748
749 /* release lock for DMA operations */
750 atmel_spi_unlock(as);
751
752 /* prepare the RX dma transfer */
753 sg_init_table(&as->dma.sgrx, 1);
754 if (xfer->rx_buf) {
755 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
756 } else {
757 as->dma.sgrx.dma_address = as->buffer_dma;
758 if (len > BUFFER_SIZE)
759 len = BUFFER_SIZE;
760 }
761
762 /* prepare the TX dma transfer */
763 sg_init_table(&as->dma.sgtx, 1);
764 if (xfer->tx_buf) {
765 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
766 } else {
767 as->dma.sgtx.dma_address = as->buffer_dma;
768 if (len > BUFFER_SIZE)
769 len = BUFFER_SIZE;
770 memset(as->buffer, 0, len);
771 }
772
773 sg_dma_len(&as->dma.sgtx) = len;
774 sg_dma_len(&as->dma.sgrx) = len;
775
776 *plen = len;
777
06515f83
DMT
778 if (atmel_spi_dma_slave_config(as, &slave_config,
779 xfer->bits_per_word))
1ccc404a
NF
780 goto err_exit;
781
782 /* Send both scatterlists */
ef40eb39
GU
783 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
784 DMA_FROM_DEVICE,
785 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1ccc404a
NF
786 if (!rxdesc)
787 goto err_dma;
788
ef40eb39
GU
789 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
790 DMA_TO_DEVICE,
791 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1ccc404a
NF
792 if (!txdesc)
793 goto err_dma;
794
795 dev_dbg(master->dev.parent,
2de024b7
EG
796 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
797 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
798 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
1ccc404a
NF
799
800 /* Enable relevant interrupts */
801 spi_writel(as, IER, SPI_BIT(OVRES));
802
803 /* Put the callback on the RX transfer only, that should finish last */
804 rxdesc->callback = dma_callback;
805 rxdesc->callback_param = master;
806
807 /* Submit and fire RX and TX with TX last so we're ready to read! */
808 cookie = rxdesc->tx_submit(rxdesc);
809 if (dma_submit_error(cookie))
810 goto err_dma;
811 cookie = txdesc->tx_submit(txdesc);
812 if (dma_submit_error(cookie))
813 goto err_dma;
814 rxchan->device->device_issue_pending(rxchan);
815 txchan->device->device_issue_pending(txchan);
816
817 /* take back lock */
818 atmel_spi_lock(as);
819 return 0;
820
821err_dma:
822 spi_writel(as, IDR, SPI_BIT(OVRES));
823 atmel_spi_stop_dma(as);
824err_exit:
825 atmel_spi_lock(as);
826 return -ENOMEM;
827}
828
154443c7
SE
829static void atmel_spi_next_xfer_data(struct spi_master *master,
830 struct spi_transfer *xfer,
831 dma_addr_t *tx_dma,
832 dma_addr_t *rx_dma,
833 u32 *plen)
834{
835 struct atmel_spi *as = spi_master_get_devdata(master);
836 u32 len = *plen;
837
838 /* use scratch buffer only when rx or tx data is unspecified */
839 if (xfer->rx_buf)
6aed4ee9 840 *rx_dma = xfer->rx_dma + xfer->len - *plen;
154443c7
SE
841 else {
842 *rx_dma = as->buffer_dma;
843 if (len > BUFFER_SIZE)
844 len = BUFFER_SIZE;
845 }
1ccc404a 846
154443c7 847 if (xfer->tx_buf)
6aed4ee9 848 *tx_dma = xfer->tx_dma + xfer->len - *plen;
154443c7
SE
849 else {
850 *tx_dma = as->buffer_dma;
851 if (len > BUFFER_SIZE)
852 len = BUFFER_SIZE;
853 memset(as->buffer, 0, len);
854 dma_sync_single_for_device(&as->pdev->dev,
855 as->buffer_dma, len, DMA_TO_DEVICE);
856 }
857
858 *plen = len;
859}
860
d3b72c7e
RG
861static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
862 struct spi_device *spi,
863 struct spi_transfer *xfer)
864{
865 u32 scbr, csr;
866 unsigned long bus_hz;
867
868 /* v1 chips start out at half the peripheral bus speed. */
39fe33f9 869 bus_hz = as->spi_clk;
d3b72c7e
RG
870 if (!atmel_spi_is_v2(as))
871 bus_hz /= 2;
872
873 /*
874 * Calculate the lowest divider that satisfies the
875 * constraint, assuming div32/fdiv/mbz == 0.
876 */
e8646580 877 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
d3b72c7e
RG
878
879 /*
880 * If the resulting divider doesn't fit into the
881 * register bitfield, we can't satisfy the constraint.
882 */
883 if (scbr >= (1 << SPI_SCBR_SIZE)) {
884 dev_err(&spi->dev,
885 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
886 xfer->speed_hz, scbr, bus_hz/255);
887 return -EINVAL;
888 }
889 if (scbr == 0) {
890 dev_err(&spi->dev,
891 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
892 xfer->speed_hz, scbr, bus_hz);
893 return -EINVAL;
894 }
895 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
896 csr = SPI_BFINS(SCBR, scbr, csr);
897 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
898
899 return 0;
900}
901
754ce4f2 902/*
1ccc404a 903 * Submit next transfer for PDC.
754ce4f2
HS
904 * lock is held, spi irq is blocked
905 */
1ccc404a 906static void atmel_spi_pdc_next_xfer(struct spi_master *master,
8090d6d1
WY
907 struct spi_message *msg,
908 struct spi_transfer *xfer)
754ce4f2
HS
909{
910 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 911 u32 len;
754ce4f2
HS
912 dma_addr_t tx_dma, rx_dma;
913
8090d6d1 914 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2 915
8090d6d1
WY
916 len = as->current_remaining_bytes;
917 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
918 as->current_remaining_bytes -= len;
754ce4f2 919
8090d6d1
WY
920 spi_writel(as, RPR, rx_dma);
921 spi_writel(as, TPR, tx_dma);
754ce4f2 922
8090d6d1
WY
923 if (msg->spi->bits_per_word > 8)
924 len >>= 1;
925 spi_writel(as, RCR, len);
926 spi_writel(as, TCR, len);
754ce4f2 927
8090d6d1
WY
928 dev_dbg(&msg->spi->dev,
929 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
930 xfer, xfer->len, xfer->tx_buf,
931 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
932 (unsigned long long)xfer->rx_dma);
dc329442 933
8090d6d1
WY
934 if (as->current_remaining_bytes) {
935 len = as->current_remaining_bytes;
154443c7 936 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
8090d6d1 937 as->current_remaining_bytes -= len;
754ce4f2 938
154443c7
SE
939 spi_writel(as, RNPR, rx_dma);
940 spi_writel(as, TNPR, tx_dma);
754ce4f2 941
154443c7
SE
942 if (msg->spi->bits_per_word > 8)
943 len >>= 1;
944 spi_writel(as, RNCR, len);
945 spi_writel(as, TNCR, len);
8bacb219
HS
946
947 dev_dbg(&msg->spi->dev,
2de024b7
EG
948 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
949 xfer, xfer->len, xfer->tx_buf,
950 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
951 (unsigned long long)xfer->rx_dma);
154443c7
SE
952 }
953
76e1d14b 954 /* REVISIT: We're waiting for RXBUFF before we start the next
754ce4f2 955 * transfer because we need to handle some difficult timing
76e1d14b
TF
956 * issues otherwise. If we wait for TXBUFE in one transfer and
957 * then starts waiting for RXBUFF in the next, it's difficult
958 * to tell the difference between the RXBUFF interrupt we're
959 * actually waiting for and the RXBUFF interrupt of the
754ce4f2
HS
960 * previous transfer.
961 *
962 * It should be doable, though. Just not now...
963 */
76e1d14b 964 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
754ce4f2
HS
965 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
966}
967
8da0859a
DB
968/*
969 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
970 * - The buffer is either valid for CPU access, else NULL
b595076a 971 * - If the buffer is valid, so is its DMA address
8da0859a 972 *
b595076a 973 * This driver manages the dma address unless message->is_dma_mapped.
8da0859a
DB
974 */
975static int
754ce4f2
HS
976atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
977{
8da0859a
DB
978 struct device *dev = &as->pdev->dev;
979
754ce4f2 980 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
8da0859a 981 if (xfer->tx_buf) {
214b574a
JCPV
982 /* tx_buf is a const void* where we need a void * for the dma
983 * mapping */
984 void *nonconst_tx = (void *)xfer->tx_buf;
985
8da0859a 986 xfer->tx_dma = dma_map_single(dev,
214b574a 987 nonconst_tx, xfer->len,
754ce4f2 988 DMA_TO_DEVICE);
8d8bb39b 989 if (dma_mapping_error(dev, xfer->tx_dma))
8da0859a
DB
990 return -ENOMEM;
991 }
992 if (xfer->rx_buf) {
993 xfer->rx_dma = dma_map_single(dev,
754ce4f2
HS
994 xfer->rx_buf, xfer->len,
995 DMA_FROM_DEVICE);
8d8bb39b 996 if (dma_mapping_error(dev, xfer->rx_dma)) {
8da0859a
DB
997 if (xfer->tx_buf)
998 dma_unmap_single(dev,
999 xfer->tx_dma, xfer->len,
1000 DMA_TO_DEVICE);
1001 return -ENOMEM;
1002 }
1003 }
1004 return 0;
754ce4f2
HS
1005}
1006
1007static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1008 struct spi_transfer *xfer)
1009{
1010 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
49dce689 1011 dma_unmap_single(master->dev.parent, xfer->tx_dma,
754ce4f2
HS
1012 xfer->len, DMA_TO_DEVICE);
1013 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
49dce689 1014 dma_unmap_single(master->dev.parent, xfer->rx_dma,
754ce4f2
HS
1015 xfer->len, DMA_FROM_DEVICE);
1016}
1017
1ccc404a
NF
1018static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1019{
1020 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1021}
1022
1ccc404a 1023static void
11f2764f 1024atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1ccc404a 1025{
1ccc404a 1026 u8 *rxp;
f557c98b 1027 u16 *rxp16;
1ccc404a
NF
1028 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1029
1030 if (xfer->rx_buf) {
f557c98b
RG
1031 if (xfer->bits_per_word > 8) {
1032 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1033 *rxp16 = spi_readl(as, RDR);
1034 } else {
1035 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1036 *rxp = spi_readl(as, RDR);
1037 }
1ccc404a
NF
1038 } else {
1039 spi_readl(as, RDR);
1040 }
f557c98b 1041 if (xfer->bits_per_word > 8) {
b112f058
AB
1042 if (as->current_remaining_bytes > 2)
1043 as->current_remaining_bytes -= 2;
1044 else
f557c98b
RG
1045 as->current_remaining_bytes = 0;
1046 } else {
1047 as->current_remaining_bytes--;
1048 }
1ccc404a
NF
1049}
1050
11f2764f
CP
1051static void
1052atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1053{
1054 u32 fifolr = spi_readl(as, FLR);
1055 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1056 u32 offset = xfer->len - as->current_remaining_bytes;
1057 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1058 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1059 u16 rd; /* RD field is the lowest 16 bits of RDR */
1060
1061 /* Update the number of remaining bytes to transfer */
1062 num_bytes = ((xfer->bits_per_word > 8) ?
1063 (num_data << 1) :
1064 num_data);
1065
1066 if (as->current_remaining_bytes > num_bytes)
1067 as->current_remaining_bytes -= num_bytes;
1068 else
1069 as->current_remaining_bytes = 0;
1070
1071 /* Handle odd number of bytes when data are more than 8bit width */
1072 if (xfer->bits_per_word > 8)
1073 as->current_remaining_bytes &= ~0x1;
1074
1075 /* Read data */
1076 while (num_data) {
1077 rd = spi_readl(as, RDR);
1078 if (xfer->rx_buf) {
1079 if (xfer->bits_per_word > 8)
1080 *words++ = rd;
1081 else
1082 *bytes++ = rd;
1083 }
1084 num_data--;
1085 }
1086}
1087
1088/* Called from IRQ
1089 *
1090 * Must update "current_remaining_bytes" to keep track of data
1091 * to transfer.
1092 */
1093static void
1094atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1095{
1096 if (as->fifo_size)
1097 atmel_spi_pump_fifo_data(as, xfer);
1098 else
1099 atmel_spi_pump_single_data(as, xfer);
1100}
1101
1ccc404a
NF
1102/* Interrupt
1103 *
1104 * No need for locking in this Interrupt handler: done_status is the
8090d6d1 1105 * only information modified.
1ccc404a
NF
1106 */
1107static irqreturn_t
1108atmel_spi_pio_interrupt(int irq, void *dev_id)
1109{
1110 struct spi_master *master = dev_id;
1111 struct atmel_spi *as = spi_master_get_devdata(master);
1112 u32 status, pending, imr;
1113 struct spi_transfer *xfer;
1114 int ret = IRQ_NONE;
1115
1116 imr = spi_readl(as, IMR);
1117 status = spi_readl(as, SR);
1118 pending = status & imr;
1119
1120 if (pending & SPI_BIT(OVRES)) {
1121 ret = IRQ_HANDLED;
1122 spi_writel(as, IDR, SPI_BIT(OVRES));
1123 dev_warn(master->dev.parent, "overrun\n");
1124
1125 /*
1126 * When we get an overrun, we disregard the current
1127 * transfer. Data will not be copied back from any
1128 * bounce buffer and msg->actual_len will not be
1129 * updated with the last xfer.
1130 *
1131 * We will also not process any remaning transfers in
1132 * the message.
1ccc404a
NF
1133 */
1134 as->done_status = -EIO;
1135 smp_wmb();
1136
1137 /* Clear any overrun happening while cleaning up */
1138 spi_readl(as, SR);
1139
8090d6d1 1140 complete(&as->xfer_completion);
1ccc404a 1141
11f2764f 1142 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1ccc404a
NF
1143 atmel_spi_lock(as);
1144
1145 if (as->current_remaining_bytes) {
1146 ret = IRQ_HANDLED;
1147 xfer = as->current_transfer;
1148 atmel_spi_pump_pio_data(as, xfer);
8090d6d1 1149 if (!as->current_remaining_bytes)
1ccc404a 1150 spi_writel(as, IDR, pending);
8090d6d1
WY
1151
1152 complete(&as->xfer_completion);
1ccc404a
NF
1153 }
1154
1155 atmel_spi_unlock(as);
1156 } else {
1157 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1158 ret = IRQ_HANDLED;
1159 spi_writel(as, IDR, pending);
1160 }
1161
1162 return ret;
754ce4f2
HS
1163}
1164
1165static irqreturn_t
1ccc404a 1166atmel_spi_pdc_interrupt(int irq, void *dev_id)
754ce4f2
HS
1167{
1168 struct spi_master *master = dev_id;
1169 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2
HS
1170 u32 status, pending, imr;
1171 int ret = IRQ_NONE;
1172
754ce4f2
HS
1173 imr = spi_readl(as, IMR);
1174 status = spi_readl(as, SR);
1175 pending = status & imr;
1176
1177 if (pending & SPI_BIT(OVRES)) {
754ce4f2
HS
1178
1179 ret = IRQ_HANDLED;
1180
dc329442 1181 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
754ce4f2
HS
1182 | SPI_BIT(OVRES)));
1183
754ce4f2
HS
1184 /* Clear any overrun happening while cleaning up */
1185 spi_readl(as, SR);
1186
823cd045 1187 as->done_status = -EIO;
8090d6d1
WY
1188
1189 complete(&as->xfer_completion);
1190
dc329442 1191 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
754ce4f2
HS
1192 ret = IRQ_HANDLED;
1193
1194 spi_writel(as, IDR, pending);
1195
8090d6d1 1196 complete(&as->xfer_completion);
754ce4f2
HS
1197 }
1198
754ce4f2
HS
1199 return ret;
1200}
1201
754ce4f2
HS
1202static int atmel_spi_setup(struct spi_device *spi)
1203{
1204 struct atmel_spi *as;
5ee36c98 1205 struct atmel_spi_device *asd;
d3b72c7e 1206 u32 csr;
754ce4f2 1207 unsigned int bits = spi->bits_per_word;
754ce4f2 1208 unsigned int npcs_pin;
754ce4f2
HS
1209
1210 as = spi_master_get_devdata(spi->master);
1211
defbd3b4 1212 /* see notes above re chipselect */
d4820b74 1213 if (!atmel_spi_is_v2(as)
defbd3b4
DB
1214 && spi->chip_select == 0
1215 && (spi->mode & SPI_CS_HIGH)) {
1216 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1217 return -EINVAL;
1218 }
1219
d3b72c7e 1220 csr = SPI_BF(BITS, bits - 8);
754ce4f2
HS
1221 if (spi->mode & SPI_CPOL)
1222 csr |= SPI_BIT(CPOL);
1223 if (!(spi->mode & SPI_CPHA))
1224 csr |= SPI_BIT(NCPHA);
48203034
CP
1225 if (!as->use_cs_gpios)
1226 csr |= SPI_BIT(CSAAT);
754ce4f2 1227
1eed29df
HS
1228 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1229 *
1230 * DLYBCT would add delays between words, slowing down transfers.
1231 * It could potentially be useful to cope with DMA bottlenecks, but
1232 * in those cases it's probably best to just use a lower bitrate.
1233 */
1234 csr |= SPI_BF(DLYBS, 0);
1235 csr |= SPI_BF(DLYBCT, 0);
754ce4f2
HS
1236
1237 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
67f08d69 1238 npcs_pin = (unsigned long)spi->controller_data;
850a5b67 1239
48203034
CP
1240 if (!as->use_cs_gpios)
1241 npcs_pin = spi->chip_select;
1242 else if (gpio_is_valid(spi->cs_gpio))
850a5b67
JCPV
1243 npcs_pin = spi->cs_gpio;
1244
5ee36c98
HS
1245 asd = spi->controller_state;
1246 if (!asd) {
1247 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1248 if (!asd)
1249 return -ENOMEM;
1250
96106200 1251 if (as->use_cs_gpios)
48203034
CP
1252 gpio_direction_output(npcs_pin,
1253 !(spi->mode & SPI_CS_HIGH));
5ee36c98
HS
1254
1255 asd->npcs_pin = npcs_pin;
1256 spi->controller_state = asd;
754ce4f2
HS
1257 }
1258
5ee36c98
HS
1259 asd->csr = csr;
1260
754ce4f2 1261 dev_dbg(&spi->dev,
d3b72c7e
RG
1262 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1263 bits, spi->mode, spi->chip_select, csr);
754ce4f2 1264
d4820b74 1265 if (!atmel_spi_is_v2(as))
5ee36c98 1266 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
754ce4f2
HS
1267
1268 return 0;
1269}
1270
8090d6d1
WY
1271static int atmel_spi_one_transfer(struct spi_master *master,
1272 struct spi_message *msg,
1273 struct spi_transfer *xfer)
754ce4f2
HS
1274{
1275 struct atmel_spi *as;
8090d6d1 1276 struct spi_device *spi = msg->spi;
b9d228f9 1277 u8 bits;
8090d6d1 1278 u32 len;
b9d228f9 1279 struct atmel_spi_device *asd;
8090d6d1
WY
1280 int timeout;
1281 int ret;
1369dea6 1282 unsigned long dma_timeout;
754ce4f2 1283
8090d6d1 1284 as = spi_master_get_devdata(master);
754ce4f2 1285
8090d6d1
WY
1286 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1287 dev_dbg(&spi->dev, "missing rx or tx buf\n");
754ce4f2 1288 return -EINVAL;
8090d6d1 1289 }
754ce4f2 1290
e8646580
JN
1291 asd = spi->controller_state;
1292 bits = (asd->csr >> 4) & 0xf;
1293 if (bits != xfer->bits_per_word - 8) {
1294 dev_dbg(&spi->dev,
8090d6d1 1295 "you can't yet change bits_per_word in transfers\n");
e8646580 1296 return -ENOPROTOOPT;
8090d6d1 1297 }
754ce4f2 1298
8090d6d1
WY
1299 /*
1300 * DMA map early, for performance (empties dcache ASAP) and
1301 * better fault reporting.
1302 */
1303 if ((!msg->is_dma_mapped)
1304 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1305 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1306 return -ENOMEM;
1307 }
1308
1309 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
754ce4f2 1310
8090d6d1
WY
1311 as->done_status = 0;
1312 as->current_transfer = xfer;
1313 as->current_remaining_bytes = xfer->len;
1314 while (as->current_remaining_bytes) {
1315 reinit_completion(&as->xfer_completion);
1316
1317 if (as->use_pdc) {
1318 atmel_spi_pdc_next_xfer(master, msg, xfer);
1319 } else if (atmel_spi_use_dma(as, xfer)) {
1320 len = as->current_remaining_bytes;
1321 ret = atmel_spi_next_xfer_dma_submit(master,
1322 xfer, &len);
1323 if (ret) {
1324 dev_err(&spi->dev,
1325 "unable to use DMA, fallback to PIO\n");
1326 atmel_spi_next_xfer_pio(master, xfer);
1327 } else {
1328 as->current_remaining_bytes -= len;
0c3b9748
AL
1329 if (as->current_remaining_bytes < 0)
1330 as->current_remaining_bytes = 0;
b9d228f9 1331 }
8090d6d1
WY
1332 } else {
1333 atmel_spi_next_xfer_pio(master, xfer);
b9d228f9
MB
1334 }
1335
1676014e
AS
1336 /* interrupts are disabled, so free the lock for schedule */
1337 atmel_spi_unlock(as);
1369dea6
NMG
1338 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1339 SPI_DMA_TIMEOUT);
1676014e 1340 atmel_spi_lock(as);
1369dea6
NMG
1341 if (WARN_ON(dma_timeout == 0)) {
1342 dev_err(&spi->dev, "spi transfer timeout\n");
8090d6d1 1343 as->done_status = -EIO;
f557c98b
RG
1344 }
1345
8090d6d1
WY
1346 if (as->done_status)
1347 break;
1348 }
1349
1350 if (as->done_status) {
1351 if (as->use_pdc) {
1352 dev_warn(master->dev.parent,
1353 "overrun (%u/%u remaining)\n",
1354 spi_readl(as, TCR), spi_readl(as, RCR));
1355
1356 /*
1357 * Clean up DMA registers and make sure the data
1358 * registers are empty.
1359 */
1360 spi_writel(as, RNCR, 0);
1361 spi_writel(as, TNCR, 0);
1362 spi_writel(as, RCR, 0);
1363 spi_writel(as, TCR, 0);
1364 for (timeout = 1000; timeout; timeout--)
1365 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1366 break;
1367 if (!timeout)
1368 dev_warn(master->dev.parent,
1369 "timeout waiting for TXEMPTY");
1370 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1371 spi_readl(as, RDR);
1372
1373 /* Clear any overrun happening while cleaning up */
1374 spi_readl(as, SR);
1375
1376 } else if (atmel_spi_use_dma(as, xfer)) {
1377 atmel_spi_stop_dma(as);
1378 }
1379
1380 if (!msg->is_dma_mapped
1381 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1382 atmel_spi_dma_unmap_xfer(master, xfer);
1383
1384 return 0;
1385
1386 } else {
1387 /* only update length if no error */
1388 msg->actual_length += xfer->len;
1389 }
1390
1391 if (!msg->is_dma_mapped
1392 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1393 atmel_spi_dma_unmap_xfer(master, xfer);
1394
1395 if (xfer->delay_usecs)
1396 udelay(xfer->delay_usecs);
1397
1398 if (xfer->cs_change) {
1399 if (list_is_last(&xfer->transfer_list,
1400 &msg->transfers)) {
1401 as->keep_cs = true;
1402 } else {
1403 as->cs_active = !as->cs_active;
1404 if (as->cs_active)
1405 cs_activate(as, msg->spi);
1406 else
1407 cs_deactivate(as, msg->spi);
8da0859a 1408 }
754ce4f2
HS
1409 }
1410
8090d6d1
WY
1411 return 0;
1412}
1413
1414static int atmel_spi_transfer_one_message(struct spi_master *master,
1415 struct spi_message *msg)
1416{
1417 struct atmel_spi *as;
1418 struct spi_transfer *xfer;
1419 struct spi_device *spi = msg->spi;
1420 int ret = 0;
1421
1422 as = spi_master_get_devdata(master);
1423
1424 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1425 msg, dev_name(&spi->dev));
1426
8090d6d1
WY
1427 atmel_spi_lock(as);
1428 cs_activate(as, spi);
1429
1430 as->cs_active = true;
1431 as->keep_cs = false;
1432
1433 msg->status = 0;
1434 msg->actual_length = 0;
1435
1436 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1437 ret = atmel_spi_one_transfer(master, msg, xfer);
1438 if (ret)
1439 goto msg_done;
1440 }
1441
1442 if (as->use_pdc)
1443 atmel_spi_disable_pdc_transfer(as);
1444
754ce4f2 1445 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8090d6d1 1446 dev_dbg(&spi->dev,
54f4c51c 1447 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
754ce4f2 1448 xfer, xfer->len,
54f4c51c
RD
1449 xfer->tx_buf, &xfer->tx_dma,
1450 xfer->rx_buf, &xfer->rx_dma);
754ce4f2
HS
1451 }
1452
8090d6d1
WY
1453msg_done:
1454 if (!as->keep_cs)
1455 cs_deactivate(as, msg->spi);
754ce4f2 1456
8aad7924 1457 atmel_spi_unlock(as);
754ce4f2 1458
8090d6d1
WY
1459 msg->status = as->done_status;
1460 spi_finalize_current_message(spi->master);
1461
1462 return ret;
754ce4f2
HS
1463}
1464
bb2d1c36 1465static void atmel_spi_cleanup(struct spi_device *spi)
754ce4f2 1466{
5ee36c98 1467 struct atmel_spi_device *asd = spi->controller_state;
defbd3b4 1468
5ee36c98 1469 if (!asd)
defbd3b4
DB
1470 return;
1471
5ee36c98 1472 spi->controller_state = NULL;
5ee36c98 1473 kfree(asd);
754ce4f2
HS
1474}
1475
d4820b74
WY
1476static inline unsigned int atmel_get_version(struct atmel_spi *as)
1477{
1478 return spi_readl(as, VERSION) & 0x00000fff;
1479}
1480
1481static void atmel_get_caps(struct atmel_spi *as)
1482{
1483 unsigned int version;
1484
1485 version = atmel_get_version(as);
1486 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1487
1488 as->caps.is_spi2 = version > 0x121;
1489 as->caps.has_wdrbt = version >= 0x210;
1490 as->caps.has_dma_support = version >= 0x212;
1491}
1492
754ce4f2 1493/*-------------------------------------------------------------------------*/
96106200
NF
1494static int atmel_spi_gpio_cs(struct platform_device *pdev)
1495{
1496 struct spi_master *master = platform_get_drvdata(pdev);
1497 struct atmel_spi *as = spi_master_get_devdata(master);
1498 struct device_node *np = master->dev.of_node;
1499 int i;
1500 int ret = 0;
1501 int nb = 0;
1502
1503 if (!as->use_cs_gpios)
1504 return 0;
1505
1506 if (!np)
1507 return 0;
1508
1509 nb = of_gpio_named_count(np, "cs-gpios");
1510 for (i = 0; i < nb; i++) {
1511 int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1512 "cs-gpios", i);
1513
1514 if (cs_gpio == -EPROBE_DEFER)
1515 return cs_gpio;
1516
1517 if (gpio_is_valid(cs_gpio)) {
1518 ret = devm_gpio_request(&pdev->dev, cs_gpio,
1519 dev_name(&pdev->dev));
1520 if (ret)
1521 return ret;
1522 }
1523 }
1524
1525 return 0;
1526}
754ce4f2 1527
fd4a319b 1528static int atmel_spi_probe(struct platform_device *pdev)
754ce4f2
HS
1529{
1530 struct resource *regs;
1531 int irq;
1532 struct clk *clk;
1533 int ret;
1534 struct spi_master *master;
1535 struct atmel_spi *as;
1536
5bdfd491
WY
1537 /* Select default pin state */
1538 pinctrl_pm_select_default_state(&pdev->dev);
1539
754ce4f2
HS
1540 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1541 if (!regs)
1542 return -ENXIO;
1543
1544 irq = platform_get_irq(pdev, 0);
1545 if (irq < 0)
1546 return irq;
1547
9f87d6f2 1548 clk = devm_clk_get(&pdev->dev, "spi_clk");
754ce4f2
HS
1549 if (IS_ERR(clk))
1550 return PTR_ERR(clk);
1551
1552 /* setup spi core then atmel-specific driver state */
1553 ret = -ENOMEM;
a536d765 1554 master = spi_alloc_master(&pdev->dev, sizeof(*as));
754ce4f2
HS
1555 if (!master)
1556 goto out_free;
1557
e7db06b5
DB
1558 /* the spi->mode bits understood by this driver: */
1559 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 1560 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
850a5b67 1561 master->dev.of_node = pdev->dev.of_node;
754ce4f2 1562 master->bus_num = pdev->id;
850a5b67 1563 master->num_chipselect = master->dev.of_node ? 0 : 4;
754ce4f2 1564 master->setup = atmel_spi_setup;
8090d6d1 1565 master->transfer_one_message = atmel_spi_transfer_one_message;
754ce4f2 1566 master->cleanup = atmel_spi_cleanup;
ce0c4caf 1567 master->auto_runtime_pm = true;
754ce4f2
HS
1568 platform_set_drvdata(pdev, master);
1569
1570 as = spi_master_get_devdata(master);
1571
8da0859a
DB
1572 /*
1573 * Scratch buffer is used for throwaway rx and tx data.
1574 * It's coherent to minimize dcache pollution.
1575 */
754ce4f2
HS
1576 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1577 &as->buffer_dma, GFP_KERNEL);
1578 if (!as->buffer)
1579 goto out_free;
1580
1581 spin_lock_init(&as->lock);
1ccc404a 1582
754ce4f2 1583 as->pdev = pdev;
31407478 1584 as->regs = devm_ioremap_resource(&pdev->dev, regs);
543c954d
WY
1585 if (IS_ERR(as->regs)) {
1586 ret = PTR_ERR(as->regs);
754ce4f2 1587 goto out_free_buffer;
543c954d 1588 }
dfab30ee 1589 as->phybase = regs->start;
754ce4f2
HS
1590 as->irq = irq;
1591 as->clk = clk;
754ce4f2 1592
8090d6d1
WY
1593 init_completion(&as->xfer_completion);
1594
d4820b74
WY
1595 atmel_get_caps(as);
1596
48203034
CP
1597 as->use_cs_gpios = true;
1598 if (atmel_spi_is_v2(as) &&
70f340df 1599 pdev->dev.of_node &&
48203034
CP
1600 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1601 as->use_cs_gpios = false;
1602 master->num_chipselect = 4;
1603 }
1604
96106200
NF
1605 ret = atmel_spi_gpio_cs(pdev);
1606 if (ret)
1607 goto out_unmap_regs;
1608
1ccc404a
NF
1609 as->use_dma = false;
1610 as->use_pdc = false;
1611 if (as->caps.has_dma_support) {
5e9af37e
LD
1612 ret = atmel_spi_configure_dma(as);
1613 if (ret == 0)
1ccc404a 1614 as->use_dma = true;
5e9af37e
LD
1615 else if (ret == -EPROBE_DEFER)
1616 return ret;
1ccc404a
NF
1617 } else {
1618 as->use_pdc = true;
1619 }
1620
1621 if (as->caps.has_dma_support && !as->use_dma)
1622 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1623
1624 if (as->use_pdc) {
9f87d6f2
JH
1625 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1626 0, dev_name(&pdev->dev), master);
1ccc404a 1627 } else {
9f87d6f2
JH
1628 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1629 0, dev_name(&pdev->dev), master);
1ccc404a 1630 }
754ce4f2
HS
1631 if (ret)
1632 goto out_unmap_regs;
1633
1634 /* Initialize the hardware */
dfec4a6e
BB
1635 ret = clk_prepare_enable(clk);
1636 if (ret)
de8cc234 1637 goto out_free_irq;
39fe33f9
BW
1638
1639 as->spi_clk = clk_get_rate(clk);
1640
754ce4f2 1641 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1642 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
d4820b74
WY
1643 if (as->caps.has_wdrbt) {
1644 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1645 | SPI_BIT(MSTR));
1646 } else {
1647 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1648 }
1ccc404a
NF
1649
1650 if (as->use_pdc)
1651 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2
HS
1652 spi_writel(as, CR, SPI_BIT(SPIEN));
1653
11f2764f
CP
1654 as->fifo_size = 0;
1655 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1656 &as->fifo_size)) {
1657 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1658 spi_writel(as, CR, SPI_BIT(FIFOEN));
1659 }
1660
754ce4f2
HS
1661 /* go! */
1662 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1663 (unsigned long)regs->start, irq);
1664
ce0c4caf
WY
1665 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1666 pm_runtime_use_autosuspend(&pdev->dev);
1667 pm_runtime_set_active(&pdev->dev);
1668 pm_runtime_enable(&pdev->dev);
1669
9f87d6f2 1670 ret = devm_spi_register_master(&pdev->dev, master);
754ce4f2 1671 if (ret)
1ccc404a 1672 goto out_free_dma;
754ce4f2
HS
1673
1674 return 0;
1675
1ccc404a 1676out_free_dma:
ce0c4caf
WY
1677 pm_runtime_disable(&pdev->dev);
1678 pm_runtime_set_suspended(&pdev->dev);
1679
1ccc404a
NF
1680 if (as->use_dma)
1681 atmel_spi_release_dma(as);
1682
754ce4f2 1683 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1684 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
dfec4a6e 1685 clk_disable_unprepare(clk);
de8cc234 1686out_free_irq:
754ce4f2 1687out_unmap_regs:
754ce4f2
HS
1688out_free_buffer:
1689 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1690 as->buffer_dma);
1691out_free:
754ce4f2
HS
1692 spi_master_put(master);
1693 return ret;
1694}
1695
fd4a319b 1696static int atmel_spi_remove(struct platform_device *pdev)
754ce4f2
HS
1697{
1698 struct spi_master *master = platform_get_drvdata(pdev);
1699 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2 1700
ce0c4caf
WY
1701 pm_runtime_get_sync(&pdev->dev);
1702
754ce4f2
HS
1703 /* reset the hardware and block queue progress */
1704 spin_lock_irq(&as->lock);
1ccc404a
NF
1705 if (as->use_dma) {
1706 atmel_spi_stop_dma(as);
1707 atmel_spi_release_dma(as);
1708 }
1709
754ce4f2 1710 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1711 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
754ce4f2
HS
1712 spi_readl(as, SR);
1713 spin_unlock_irq(&as->lock);
1714
754ce4f2
HS
1715 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1716 as->buffer_dma);
1717
dfec4a6e 1718 clk_disable_unprepare(as->clk);
754ce4f2 1719
ce0c4caf
WY
1720 pm_runtime_put_noidle(&pdev->dev);
1721 pm_runtime_disable(&pdev->dev);
1722
754ce4f2
HS
1723 return 0;
1724}
1725
ce0c4caf 1726#ifdef CONFIG_PM
c1ee8f3f
WY
1727static int atmel_spi_runtime_suspend(struct device *dev)
1728{
1729 struct spi_master *master = dev_get_drvdata(dev);
1730 struct atmel_spi *as = spi_master_get_devdata(master);
1731
1732 clk_disable_unprepare(as->clk);
1733 pinctrl_pm_select_sleep_state(dev);
1734
1735 return 0;
1736}
1737
1738static int atmel_spi_runtime_resume(struct device *dev)
1739{
1740 struct spi_master *master = dev_get_drvdata(dev);
1741 struct atmel_spi *as = spi_master_get_devdata(master);
1742
1743 pinctrl_pm_select_default_state(dev);
1744
1745 return clk_prepare_enable(as->clk);
1746}
1747
d630526d 1748#ifdef CONFIG_PM_SLEEP
ec60dd37 1749static int atmel_spi_suspend(struct device *dev)
754ce4f2 1750{
c1ee8f3f 1751 struct spi_master *master = dev_get_drvdata(dev);
ba938f3a
WY
1752 int ret;
1753
1754 /* Stop the queue running */
1755 ret = spi_master_suspend(master);
1756 if (ret) {
1757 dev_warn(dev, "cannot suspend master\n");
1758 return ret;
1759 }
754ce4f2 1760
c1ee8f3f
WY
1761 if (!pm_runtime_suspended(dev))
1762 atmel_spi_runtime_suspend(dev);
5bdfd491 1763
754ce4f2
HS
1764 return 0;
1765}
1766
ec60dd37 1767static int atmel_spi_resume(struct device *dev)
754ce4f2 1768{
c1ee8f3f 1769 struct spi_master *master = dev_get_drvdata(dev);
ba938f3a 1770 int ret;
754ce4f2 1771
ce0c4caf 1772 if (!pm_runtime_suspended(dev)) {
c1ee8f3f 1773 ret = atmel_spi_runtime_resume(dev);
ce0c4caf
WY
1774 if (ret)
1775 return ret;
1776 }
ba938f3a
WY
1777
1778 /* Start the queue running */
1779 ret = spi_master_resume(master);
1780 if (ret)
1781 dev_err(dev, "problem starting queue (%d)\n", ret);
1782
1783 return ret;
754ce4f2 1784}
d630526d 1785#endif
ce0c4caf
WY
1786
1787static const struct dev_pm_ops atmel_spi_pm_ops = {
1788 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1789 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1790 atmel_spi_runtime_resume, NULL)
1791};
ec60dd37 1792#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
754ce4f2 1793#else
ec60dd37 1794#define ATMEL_SPI_PM_OPS NULL
754ce4f2
HS
1795#endif
1796
850a5b67
JCPV
1797#if defined(CONFIG_OF)
1798static const struct of_device_id atmel_spi_dt_ids[] = {
1799 { .compatible = "atmel,at91rm9200-spi" },
1800 { /* sentinel */ }
1801};
1802
1803MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1804#endif
754ce4f2
HS
1805
1806static struct platform_driver atmel_spi_driver = {
1807 .driver = {
1808 .name = "atmel_spi",
ec60dd37 1809 .pm = ATMEL_SPI_PM_OPS,
850a5b67 1810 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
754ce4f2 1811 },
1cb201af 1812 .probe = atmel_spi_probe,
2deff8d6 1813 .remove = atmel_spi_remove,
754ce4f2 1814};
940ab889 1815module_platform_driver(atmel_spi_driver);
754ce4f2
HS
1816
1817MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
e05503ef 1818MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
754ce4f2 1819MODULE_LICENSE("GPL");
7e38c3c4 1820MODULE_ALIAS("platform:atmel_spi");