]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/spi/spi-sun6i.c
spi: sunxi: expose maximum transfer size limit
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi-sun6i.c
CommitLineData
3558fe90
MR
1/*
2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
4 *
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/device.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/module.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/reset.h>
3558fe90
MR
23
24#include <linux/spi/spi.h>
25
26#define SUN6I_FIFO_DEPTH 128
27
28#define SUN6I_GBL_CTL_REG 0x04
29#define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
30#define SUN6I_GBL_CTL_MASTER BIT(1)
31#define SUN6I_GBL_CTL_TP BIT(7)
32#define SUN6I_GBL_CTL_RST BIT(31)
33
34#define SUN6I_TFR_CTL_REG 0x08
35#define SUN6I_TFR_CTL_CPHA BIT(0)
36#define SUN6I_TFR_CTL_CPOL BIT(1)
37#define SUN6I_TFR_CTL_SPOL BIT(2)
d31ad46f
AL
38#define SUN6I_TFR_CTL_CS_MASK 0x30
39#define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
3558fe90
MR
40#define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
41#define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
42#define SUN6I_TFR_CTL_DHB BIT(8)
43#define SUN6I_TFR_CTL_FBS BIT(12)
44#define SUN6I_TFR_CTL_XCH BIT(31)
45
46#define SUN6I_INT_CTL_REG 0x10
47#define SUN6I_INT_CTL_RF_OVF BIT(8)
48#define SUN6I_INT_CTL_TC BIT(12)
49
50#define SUN6I_INT_STA_REG 0x14
51
52#define SUN6I_FIFO_CTL_REG 0x18
53#define SUN6I_FIFO_CTL_RF_RST BIT(15)
54#define SUN6I_FIFO_CTL_TF_RST BIT(31)
55
56#define SUN6I_FIFO_STA_REG 0x1c
57#define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
58#define SUN6I_FIFO_STA_RF_CNT_BITS 0
59#define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
60#define SUN6I_FIFO_STA_TF_CNT_BITS 16
61
62#define SUN6I_CLK_CTL_REG 0x24
63#define SUN6I_CLK_CTL_CDR2_MASK 0xff
64#define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65#define SUN6I_CLK_CTL_CDR1_MASK 0xf
66#define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67#define SUN6I_CLK_CTL_DRS BIT(12)
68
69#define SUN6I_BURST_CNT_REG 0x30
70#define SUN6I_BURST_CNT(cnt) ((cnt) & 0xffffff)
71
72#define SUN6I_XMIT_CNT_REG 0x34
73#define SUN6I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
74
75#define SUN6I_BURST_CTL_CNT_REG 0x38
76#define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & 0xffffff)
77
78#define SUN6I_TXDATA_REG 0x200
79#define SUN6I_RXDATA_REG 0x300
80
81struct sun6i_spi {
82 struct spi_master *master;
83 void __iomem *base_addr;
84 struct clk *hclk;
85 struct clk *mclk;
86 struct reset_control *rstc;
87
88 struct completion done;
89
90 const u8 *tx_buf;
91 u8 *rx_buf;
92 int len;
93};
94
95static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
96{
97 return readl(sspi->base_addr + reg);
98}
99
100static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101{
102 writel(value, sspi->base_addr + reg);
103}
104
105static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106{
107 u32 reg, cnt;
108 u8 byte;
109
110 /* See how much data is available */
111 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113 cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114
115 if (len > cnt)
116 len = cnt;
117
118 while (len--) {
119 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120 if (sspi->rx_buf)
121 *sspi->rx_buf++ = byte;
122 }
123}
124
125static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126{
127 u8 byte;
128
129 if (len > sspi->len)
130 len = sspi->len;
131
132 while (len--) {
133 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135 sspi->len--;
136 }
137}
138
139static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140{
141 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142 u32 reg;
143
144 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145 reg &= ~SUN6I_TFR_CTL_CS_MASK;
146 reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147
148 if (enable)
149 reg |= SUN6I_TFR_CTL_CS_LEVEL;
150 else
151 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152
153 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154}
155
794912cf
MS
156static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
157{
158 return SUN6I_FIFO_DEPTH - 1;
159}
3558fe90
MR
160
161static int sun6i_spi_transfer_one(struct spi_master *master,
162 struct spi_device *spi,
163 struct spi_transfer *tfr)
164{
165 struct sun6i_spi *sspi = spi_master_get_devdata(master);
166 unsigned int mclk_rate, div, timeout;
167 unsigned int tx_len = 0;
168 int ret = 0;
169 u32 reg;
170
171 /* We don't support transfer larger than the FIFO */
172 if (tfr->len > SUN6I_FIFO_DEPTH)
173 return -EINVAL;
174
175 reinit_completion(&sspi->done);
176 sspi->tx_buf = tfr->tx_buf;
177 sspi->rx_buf = tfr->rx_buf;
178 sspi->len = tfr->len;
179
180 /* Clear pending interrupts */
181 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
182
183 /* Reset FIFO */
184 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
185 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
186
187 /*
188 * Setup the transfer control register: Chip Select,
189 * polarities, etc.
190 */
191 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
192
193 if (spi->mode & SPI_CPOL)
194 reg |= SUN6I_TFR_CTL_CPOL;
195 else
196 reg &= ~SUN6I_TFR_CTL_CPOL;
197
198 if (spi->mode & SPI_CPHA)
199 reg |= SUN6I_TFR_CTL_CPHA;
200 else
201 reg &= ~SUN6I_TFR_CTL_CPHA;
202
203 if (spi->mode & SPI_LSB_FIRST)
204 reg |= SUN6I_TFR_CTL_FBS;
205 else
206 reg &= ~SUN6I_TFR_CTL_FBS;
207
208 /*
209 * If it's a TX only transfer, we don't want to fill the RX
210 * FIFO with bogus data
211 */
212 if (sspi->rx_buf)
213 reg &= ~SUN6I_TFR_CTL_DHB;
214 else
215 reg |= SUN6I_TFR_CTL_DHB;
216
217 /* We want to control the chip select manually */
218 reg |= SUN6I_TFR_CTL_CS_MANUAL;
219
220 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
221
222 /* Ensure that we have a parent clock fast enough */
223 mclk_rate = clk_get_rate(sspi->mclk);
47284e3e
MW
224 if (mclk_rate < (2 * tfr->speed_hz)) {
225 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
3558fe90
MR
226 mclk_rate = clk_get_rate(sspi->mclk);
227 }
228
229 /*
230 * Setup clock divider.
231 *
232 * We have two choices there. Either we can use the clock
233 * divide rate 1, which is calculated thanks to this formula:
234 * SPI_CLK = MOD_CLK / (2 ^ cdr)
235 * Or we can use CDR2, which is calculated with the formula:
236 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
237 * Wether we use the former or the latter is set through the
238 * DRS bit.
239 *
240 * First try CDR2, and if we can't reach the expected
241 * frequency, fall back to CDR1.
242 */
47284e3e 243 div = mclk_rate / (2 * tfr->speed_hz);
3558fe90
MR
244 if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
245 if (div > 0)
246 div--;
247
248 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
249 } else {
47284e3e 250 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
3558fe90
MR
251 reg = SUN6I_CLK_CTL_CDR1(div);
252 }
253
254 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
255
256 /* Setup the transfer now... */
257 if (sspi->tx_buf)
258 tx_len = tfr->len;
259
260 /* Setup the counters */
261 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
262 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
263 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
264 SUN6I_BURST_CTL_CNT_STC(tx_len));
265
266 /* Fill the TX FIFO */
267 sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
268
269 /* Enable the interrupts */
270 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
271
272 /* Start the transfer */
273 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
274 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
275
276 timeout = wait_for_completion_timeout(&sspi->done,
277 msecs_to_jiffies(1000));
278 if (!timeout) {
279 ret = -ETIMEDOUT;
280 goto out;
281 }
282
283 sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
284
285out:
286 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
287
288 return ret;
289}
290
291static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
292{
293 struct sun6i_spi *sspi = dev_id;
294 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
295
296 /* Transfer complete */
297 if (status & SUN6I_INT_CTL_TC) {
298 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
299 complete(&sspi->done);
300 return IRQ_HANDLED;
301 }
302
303 return IRQ_NONE;
304}
305
306static int sun6i_spi_runtime_resume(struct device *dev)
307{
308 struct spi_master *master = dev_get_drvdata(dev);
309 struct sun6i_spi *sspi = spi_master_get_devdata(master);
310 int ret;
311
312 ret = clk_prepare_enable(sspi->hclk);
313 if (ret) {
314 dev_err(dev, "Couldn't enable AHB clock\n");
315 goto out;
316 }
317
318 ret = clk_prepare_enable(sspi->mclk);
319 if (ret) {
320 dev_err(dev, "Couldn't enable module clock\n");
321 goto err;
322 }
323
324 ret = reset_control_deassert(sspi->rstc);
325 if (ret) {
326 dev_err(dev, "Couldn't deassert the device from reset\n");
327 goto err2;
328 }
329
330 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
331 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
332
333 return 0;
334
335err2:
336 clk_disable_unprepare(sspi->mclk);
337err:
338 clk_disable_unprepare(sspi->hclk);
339out:
340 return ret;
341}
342
343static int sun6i_spi_runtime_suspend(struct device *dev)
344{
345 struct spi_master *master = dev_get_drvdata(dev);
346 struct sun6i_spi *sspi = spi_master_get_devdata(master);
347
348 reset_control_assert(sspi->rstc);
349 clk_disable_unprepare(sspi->mclk);
350 clk_disable_unprepare(sspi->hclk);
351
352 return 0;
353}
354
355static int sun6i_spi_probe(struct platform_device *pdev)
356{
357 struct spi_master *master;
358 struct sun6i_spi *sspi;
359 struct resource *res;
360 int ret = 0, irq;
361
362 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
363 if (!master) {
364 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
365 return -ENOMEM;
366 }
367
368 platform_set_drvdata(pdev, master);
369 sspi = spi_master_get_devdata(master);
370
371 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
372 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
373 if (IS_ERR(sspi->base_addr)) {
374 ret = PTR_ERR(sspi->base_addr);
375 goto err_free_master;
376 }
377
378 irq = platform_get_irq(pdev, 0);
379 if (irq < 0) {
380 dev_err(&pdev->dev, "No spi IRQ specified\n");
381 ret = -ENXIO;
382 goto err_free_master;
383 }
384
385 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
386 0, "sun6i-spi", sspi);
387 if (ret) {
388 dev_err(&pdev->dev, "Cannot request IRQ\n");
389 goto err_free_master;
390 }
391
392 sspi->master = master;
393 master->set_cs = sun6i_spi_set_cs;
394 master->transfer_one = sun6i_spi_transfer_one;
395 master->num_chipselect = 4;
396 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
743a46b8 397 master->bits_per_word_mask = SPI_BPW_MASK(8);
3558fe90
MR
398 master->dev.of_node = pdev->dev.of_node;
399 master->auto_runtime_pm = true;
794912cf 400 master->max_transfer_size = sun6i_spi_max_transfer_size;
3558fe90
MR
401
402 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
403 if (IS_ERR(sspi->hclk)) {
404 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
405 ret = PTR_ERR(sspi->hclk);
406 goto err_free_master;
407 }
408
409 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
410 if (IS_ERR(sspi->mclk)) {
411 dev_err(&pdev->dev, "Unable to acquire module clock\n");
412 ret = PTR_ERR(sspi->mclk);
413 goto err_free_master;
414 }
415
416 init_completion(&sspi->done);
417
418 sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
419 if (IS_ERR(sspi->rstc)) {
420 dev_err(&pdev->dev, "Couldn't get reset controller\n");
421 ret = PTR_ERR(sspi->rstc);
422 goto err_free_master;
423 }
424
425 /*
426 * This wake-up/shutdown pattern is to be able to have the
427 * device woken up, even if runtime_pm is disabled
428 */
429 ret = sun6i_spi_runtime_resume(&pdev->dev);
430 if (ret) {
431 dev_err(&pdev->dev, "Couldn't resume the device\n");
432 goto err_free_master;
433 }
434
435 pm_runtime_set_active(&pdev->dev);
436 pm_runtime_enable(&pdev->dev);
437 pm_runtime_idle(&pdev->dev);
438
439 ret = devm_spi_register_master(&pdev->dev, master);
440 if (ret) {
441 dev_err(&pdev->dev, "cannot register SPI master\n");
442 goto err_pm_disable;
443 }
444
445 return 0;
446
447err_pm_disable:
448 pm_runtime_disable(&pdev->dev);
449 sun6i_spi_runtime_suspend(&pdev->dev);
450err_free_master:
451 spi_master_put(master);
452 return ret;
453}
454
455static int sun6i_spi_remove(struct platform_device *pdev)
456{
457 pm_runtime_disable(&pdev->dev);
458
459 return 0;
460}
461
462static const struct of_device_id sun6i_spi_match[] = {
463 { .compatible = "allwinner,sun6i-a31-spi", },
464 {}
465};
466MODULE_DEVICE_TABLE(of, sun6i_spi_match);
467
468static const struct dev_pm_ops sun6i_spi_pm_ops = {
469 .runtime_resume = sun6i_spi_runtime_resume,
470 .runtime_suspend = sun6i_spi_runtime_suspend,
471};
472
473static struct platform_driver sun6i_spi_driver = {
474 .probe = sun6i_spi_probe,
475 .remove = sun6i_spi_remove,
476 .driver = {
477 .name = "sun6i-spi",
3558fe90
MR
478 .of_match_table = sun6i_spi_match,
479 .pm = &sun6i_spi_pm_ops,
480 },
481};
482module_platform_driver(sun6i_spi_driver);
483
484MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
485MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
486MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
487MODULE_LICENSE("GPL");