]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/thermal/cpu_cooling.c
thermal/drivers/cpu_cooling: Add Software Package Data Exchange (SPDX)
[mirror_ubuntu-jammy-kernel.git] / drivers / thermal / cpu_cooling.c
CommitLineData
0fac9e2f 1// SPDX-License-Identifier: GPL-2.0
02361418
ADK
2/*
3 * linux/drivers/thermal/cpu_cooling.c
4 *
5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
02361418 6 *
42cd9b04
DL
7 * Copyright (C) 2012-2018 Linaro Limited.
8 *
9 * Authors: Amit Daniel <amit.kachhap@linaro.org>
10 * Viresh Kumar <viresh.kumar@linaro.org>
73904cbc 11 *
02361418 12 */
02361418
ADK
13#include <linux/module.h>
14#include <linux/thermal.h>
02361418
ADK
15#include <linux/cpufreq.h>
16#include <linux/err.h>
ae606089 17#include <linux/idr.h>
c36cf071 18#include <linux/pm_opp.h>
02361418
ADK
19#include <linux/slab.h>
20#include <linux/cpu.h>
21#include <linux/cpu_cooling.h>
22
6828a471
JM
23#include <trace/events/thermal.h>
24
07d888d8
VK
25/*
26 * Cooling state <-> CPUFreq frequency
27 *
28 * Cooling states are translated to frequencies throughout this driver and this
29 * is the relation between them.
30 *
31 * Highest cooling state corresponds to lowest possible frequency.
32 *
33 * i.e.
34 * level 0 --> 1st Max Freq
35 * level 1 --> 2nd Max Freq
36 * ...
37 */
38
c36cf071 39/**
349d39dc 40 * struct freq_table - frequency table along with power entries
c36cf071
JM
41 * @frequency: frequency in KHz
42 * @power: power in mW
43 *
44 * This structure is built when the cooling device registers and helps
349d39dc 45 * in translating frequency to power and vice versa.
c36cf071 46 */
349d39dc 47struct freq_table {
c36cf071
JM
48 u32 frequency;
49 u32 power;
50};
51
81ee14da
VK
52/**
53 * struct time_in_idle - Idle time stats
54 * @time: previous reading of the absolute time that this cpu was idle
55 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
56 */
57struct time_in_idle {
58 u64 time;
59 u64 timestamp;
60};
61
02361418 62/**
3b3c0748 63 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
64 * @id: unique integer value corresponding to each cpufreq_cooling_device
65 * registered.
d72b4015 66 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
02361418
ADK
67 * @cpufreq_state: integer value representing the current state of cpufreq
68 * cooling devices.
59f0d218 69 * @clipped_freq: integer value representing the absolute value of the clipped
02361418 70 * frequency.
dcc6c7fd
VK
71 * @max_level: maximum cooling level. One less than total number of valid
72 * cpufreq frequencies.
d72b4015
VK
73 * @freq_table: Freq table in descending order of frequencies
74 * @cdev: thermal_cooling_device pointer to keep track of the
75 * registered cooling device.
76 * @policy: cpufreq policy.
fc4de356 77 * @node: list_head to link all cpufreq_cooling_device together.
81ee14da 78 * @idle_time: idle time stats
02361418 79 *
beca6053
VK
80 * This structure is required for keeping information of each registered
81 * cpufreq_cooling_device.
02361418
ADK
82 */
83struct cpufreq_cooling_device {
84 int id;
d72b4015 85 u32 last_load;
02361418 86 unsigned int cpufreq_state;
59f0d218 87 unsigned int clipped_freq;
dcc6c7fd 88 unsigned int max_level;
349d39dc 89 struct freq_table *freq_table; /* In descending order */
d72b4015
VK
90 struct thermal_cooling_device *cdev;
91 struct cpufreq_policy *policy;
2dcd851f 92 struct list_head node;
81ee14da 93 struct time_in_idle *idle_time;
02361418 94};
02361418 95
fb8ea308 96static DEFINE_IDA(cpufreq_ida);
02373d7c 97static DEFINE_MUTEX(cooling_list_lock);
1dea432a 98static LIST_HEAD(cpufreq_cdev_list);
02361418 99
02361418
ADK
100/* Below code defines functions to be used for cpufreq as cooling device */
101
102/**
4843c4a1 103 * get_level: Find the level for a particular frequency
1dea432a 104 * @cpufreq_cdev: cpufreq_cdev for which the property is required
4843c4a1 105 * @freq: Frequency
82b9ee40 106 *
da27f69d 107 * Return: level corresponding to the frequency.
02361418 108 */
1dea432a 109static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
4843c4a1 110 unsigned int freq)
02361418 111{
da27f69d 112 struct freq_table *freq_table = cpufreq_cdev->freq_table;
4843c4a1 113 unsigned long level;
a116776f 114
da27f69d
VK
115 for (level = 1; level <= cpufreq_cdev->max_level; level++)
116 if (freq > freq_table[level].frequency)
4843c4a1 117 break;
02361418 118
da27f69d 119 return level - 1;
fc35b35c
ZR
120}
121
02361418
ADK
122/**
123 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
124 * @nb: struct notifier_block * with callback info.
125 * @event: value showing cpufreq event for which this function invoked.
126 * @data: callback-specific data
bab30554 127 *
9746b6e7 128 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
129 * Every time there is a change in policy, we will intercept and
130 * update the cpufreq policy with thermal constraints.
131 *
132 * Return: 0 (success)
02361418
ADK
133 */
134static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 135 unsigned long event, void *data)
02361418
ADK
136{
137 struct cpufreq_policy *policy = data;
abcbcc25 138 unsigned long clipped_freq;
1dea432a 139 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 140
a24af233
VK
141 if (event != CPUFREQ_ADJUST)
142 return NOTIFY_DONE;
02361418 143
a24af233 144 mutex_lock(&cooling_list_lock);
1dea432a 145 list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) {
ba76dd9d
VK
146 /*
147 * A new copy of the policy is sent to the notifier and can't
148 * compare that directly.
149 */
150 if (policy->cpu != cpufreq_cdev->policy->cpu)
a24af233 151 continue;
c36cf071 152
1afb9c53
VK
153 /*
154 * policy->max is the maximum allowed frequency defined by user
155 * and clipped_freq is the maximum that thermal constraints
156 * allow.
157 *
158 * If clipped_freq is lower than policy->max, then we need to
159 * readjust policy->max.
160 *
161 * But, if clipped_freq is greater than policy->max, we don't
162 * need to do anything.
163 */
1dea432a 164 clipped_freq = cpufreq_cdev->clipped_freq;
c36cf071 165
1afb9c53 166 if (policy->max > clipped_freq)
abcbcc25 167 cpufreq_verify_within_limits(policy, 0, clipped_freq);
c36cf071 168 break;
c36cf071 169 }
a24af233 170 mutex_unlock(&cooling_list_lock);
c36cf071
JM
171
172 return NOTIFY_OK;
173}
174
175/**
349d39dc
VK
176 * update_freq_table() - Update the freq table with power numbers
177 * @cpufreq_cdev: the cpufreq cooling device in which to update the table
c36cf071
JM
178 * @capacitance: dynamic power coefficient for these cpus
179 *
349d39dc
VK
180 * Update the freq table with power numbers. This table will be used in
181 * cpu_power_to_freq() and cpu_freq_to_power() to convert between power and
182 * frequency efficiently. Power is stored in mW, frequency in KHz. The
183 * resulting table is in descending order.
c36cf071 184 *
459ac375 185 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
349d39dc 186 * or -ENOMEM if we run out of memory.
c36cf071 187 */
349d39dc
VK
188static int update_freq_table(struct cpufreq_cooling_device *cpufreq_cdev,
189 u32 capacitance)
c36cf071 190{
349d39dc 191 struct freq_table *freq_table = cpufreq_cdev->freq_table;
c36cf071
JM
192 struct dev_pm_opp *opp;
193 struct device *dev = NULL;
349d39dc 194 int num_opps = 0, cpu = cpufreq_cdev->policy->cpu, i;
c36cf071 195
02bacb21
VK
196 dev = get_cpu_device(cpu);
197 if (unlikely(!dev)) {
198 dev_warn(&cpufreq_cdev->cdev->device,
199 "No cpu device for cpu %d\n", cpu);
200 return -ENODEV;
c36cf071 201 }
02361418 202
02bacb21
VK
203 num_opps = dev_pm_opp_get_opp_count(dev);
204 if (num_opps < 0)
205 return num_opps;
206
349d39dc
VK
207 /*
208 * The cpufreq table is also built from the OPP table and so the count
209 * should match.
210 */
211 if (num_opps != cpufreq_cdev->max_level + 1) {
212 dev_warn(dev, "Number of OPPs not matching with max_levels\n");
459ac375 213 return -EINVAL;
349d39dc 214 }
02361418 215
349d39dc
VK
216 for (i = 0; i <= cpufreq_cdev->max_level; i++) {
217 unsigned long freq = freq_table[i].frequency * 1000;
218 u32 freq_mhz = freq_table[i].frequency / 1000;
c36cf071 219 u64 power;
349d39dc 220 u32 voltage_mv;
c36cf071 221
349d39dc
VK
222 /*
223 * Find ceil frequency as 'freq' may be slightly lower than OPP
224 * freq due to truncation while converting to kHz.
225 */
226 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
227 if (IS_ERR(opp)) {
228 dev_err(dev, "failed to get opp for %lu frequency\n",
229 freq);
230 return -EINVAL;
459ac375
JM
231 }
232
c36cf071 233 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
8a31d9d9 234 dev_pm_opp_put(opp);
c36cf071
JM
235
236 /*
237 * Do the multiplication with MHz and millivolt so as
238 * to not overflow.
239 */
240 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
241 do_div(power, 1000000000);
242
c36cf071 243 /* power is stored in mW */
349d39dc 244 freq_table[i].power = power;
eba4f88d 245 }
c36cf071 246
459ac375 247 return 0;
c36cf071
JM
248}
249
1dea432a 250static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
251 u32 freq)
252{
253 int i;
349d39dc 254 struct freq_table *freq_table = cpufreq_cdev->freq_table;
c36cf071 255
349d39dc
VK
256 for (i = 1; i <= cpufreq_cdev->max_level; i++)
257 if (freq > freq_table[i].frequency)
c36cf071
JM
258 break;
259
349d39dc 260 return freq_table[i - 1].power;
c36cf071
JM
261}
262
1dea432a 263static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
264 u32 power)
265{
266 int i;
349d39dc 267 struct freq_table *freq_table = cpufreq_cdev->freq_table;
c36cf071 268
349d39dc
VK
269 for (i = 1; i <= cpufreq_cdev->max_level; i++)
270 if (power > freq_table[i].power)
c36cf071
JM
271 break;
272
349d39dc 273 return freq_table[i - 1].frequency;
c36cf071
JM
274}
275
276/**
277 * get_load() - get load for a cpu since last updated
1dea432a 278 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu
c36cf071 279 * @cpu: cpu number
ba76dd9d 280 * @cpu_idx: index of the cpu in time_in_idle*
c36cf071
JM
281 *
282 * Return: The average load of cpu @cpu in percentage since this
283 * function was last called.
284 */
1dea432a 285static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
a53b8394 286 int cpu_idx)
c36cf071
JM
287{
288 u32 load;
289 u64 now, now_idle, delta_time, delta_idle;
81ee14da 290 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
c36cf071
JM
291
292 now_idle = get_cpu_idle_time(cpu, &now, 0);
81ee14da
VK
293 delta_idle = now_idle - idle_time->time;
294 delta_time = now - idle_time->timestamp;
c36cf071
JM
295
296 if (delta_time <= delta_idle)
297 load = 0;
298 else
299 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
300
81ee14da
VK
301 idle_time->time = now_idle;
302 idle_time->timestamp = now;
c36cf071
JM
303
304 return load;
305}
306
c36cf071
JM
307/**
308 * get_dynamic_power() - calculate the dynamic power
1dea432a 309 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
c36cf071
JM
310 * @freq: current frequency
311 *
312 * Return: the dynamic power consumed by the cpus described by
1dea432a 313 * @cpufreq_cdev.
c36cf071 314 */
1dea432a 315static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
316 unsigned long freq)
317{
318 u32 raw_cpu_power;
319
1dea432a
VK
320 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
321 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
02361418
ADK
322}
323
1b9e3526 324/* cpufreq cooling device callback functions are defined below */
02361418
ADK
325
326/**
327 * cpufreq_get_max_state - callback function to get the max cooling state.
328 * @cdev: thermal cooling device pointer.
329 * @state: fill this variable with the max cooling state.
62c00421
EV
330 *
331 * Callback for the thermal cooling device to return the cpufreq
332 * max cooling state.
333 *
334 * Return: 0 on success, an error code otherwise.
02361418
ADK
335 */
336static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
337 unsigned long *state)
338{
1dea432a 339 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
9c51b05a 340
1dea432a 341 *state = cpufreq_cdev->max_level;
dcc6c7fd 342 return 0;
02361418
ADK
343}
344
345/**
346 * cpufreq_get_cur_state - callback function to get the current cooling state.
347 * @cdev: thermal cooling device pointer.
348 * @state: fill this variable with the current cooling state.
3672552d
EV
349 *
350 * Callback for the thermal cooling device to return the cpufreq
351 * current cooling state.
352 *
353 * Return: 0 on success, an error code otherwise.
02361418
ADK
354 */
355static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
356 unsigned long *state)
357{
1dea432a 358 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
02361418 359
1dea432a 360 *state = cpufreq_cdev->cpufreq_state;
79491e53 361
160b7d80 362 return 0;
02361418
ADK
363}
364
365/**
366 * cpufreq_set_cur_state - callback function to set the current cooling state.
367 * @cdev: thermal cooling device pointer.
368 * @state: set this variable to the current cooling state.
56e05fdb
EV
369 *
370 * Callback for the thermal cooling device to change the cpufreq
371 * current cooling state.
372 *
373 * Return: 0 on success, an error code otherwise.
02361418
ADK
374 */
375static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
376 unsigned long state)
377{
1dea432a 378 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
5194fe46 379 unsigned int clip_freq;
4843c4a1
VK
380
381 /* Request state should be less than max_level */
1dea432a 382 if (WARN_ON(state > cpufreq_cdev->max_level))
4843c4a1 383 return -EINVAL;
5194fe46
VK
384
385 /* Check if the old cooling action is same as new cooling action */
1dea432a 386 if (cpufreq_cdev->cpufreq_state == state)
5194fe46 387 return 0;
02361418 388
349d39dc 389 clip_freq = cpufreq_cdev->freq_table[state].frequency;
1dea432a
VK
390 cpufreq_cdev->cpufreq_state = state;
391 cpufreq_cdev->clipped_freq = clip_freq;
5194fe46 392
ba76dd9d 393 cpufreq_update_policy(cpufreq_cdev->policy->cpu);
5194fe46
VK
394
395 return 0;
02361418
ADK
396}
397
c36cf071
JM
398/**
399 * cpufreq_get_requested_power() - get the current power
400 * @cdev: &thermal_cooling_device pointer
401 * @tz: a valid thermal zone device pointer
402 * @power: pointer in which to store the resulting power
403 *
404 * Calculate the current power consumption of the cpus in milliwatts
405 * and store it in @power. This function should actually calculate
406 * the requested power, but it's hard to get the frequency that
407 * cpufreq would have assigned if there were no thermal limits.
408 * Instead, we calculate the current power on the assumption that the
409 * immediate future will look like the immediate past.
410 *
411 * We use the current frequency and the average load since this
412 * function was last called. In reality, there could have been
413 * multiple opps since this function was last called and that affects
414 * the load calculation. While it's not perfectly accurate, this
415 * simplification is good enough and works. REVISIT this, as more
416 * complex code may be needed if experiments show that it's not
417 * accurate enough.
418 *
419 * Return: 0 on success, -E* if getting the static power failed.
420 */
421static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
422 struct thermal_zone_device *tz,
423 u32 *power)
424{
425 unsigned long freq;
84fe2cab
VK
426 int i = 0, cpu;
427 u32 total_load = 0;
1dea432a 428 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 429 struct cpufreq_policy *policy = cpufreq_cdev->policy;
6828a471 430 u32 *load_cpu = NULL;
c36cf071 431
ba76dd9d 432 freq = cpufreq_quick_get(policy->cpu);
c36cf071 433
6828a471 434 if (trace_thermal_power_cpu_get_power_enabled()) {
ba76dd9d 435 u32 ncpus = cpumask_weight(policy->related_cpus);
6828a471 436
a71544cd 437 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
438 }
439
ba76dd9d 440 for_each_cpu(cpu, policy->related_cpus) {
c36cf071
JM
441 u32 load;
442
443 if (cpu_online(cpu))
1dea432a 444 load = get_load(cpufreq_cdev, cpu, i);
c36cf071
JM
445 else
446 load = 0;
447
448 total_load += load;
6828a471
JM
449 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
450 load_cpu[i] = load;
451
452 i++;
c36cf071
JM
453 }
454
1dea432a 455 cpufreq_cdev->last_load = total_load;
c36cf071 456
84fe2cab 457 *power = get_dynamic_power(cpufreq_cdev, freq);
6828a471
JM
458
459 if (load_cpu) {
ba76dd9d 460 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
84fe2cab 461 load_cpu, i, *power);
6828a471 462
a71544cd 463 kfree(load_cpu);
6828a471 464 }
c36cf071 465
c36cf071
JM
466 return 0;
467}
468
469/**
470 * cpufreq_state2power() - convert a cpu cdev state to power consumed
471 * @cdev: &thermal_cooling_device pointer
472 * @tz: a valid thermal zone device pointer
473 * @state: cooling device state to be converted
474 * @power: pointer in which to store the resulting power
475 *
476 * Convert cooling device state @state into power consumption in
477 * milliwatts assuming 100% load. Store the calculated power in
478 * @power.
479 *
480 * Return: 0 on success, -EINVAL if the cooling device state could not
481 * be converted into a frequency or other -E* if there was an error
482 * when calculating the static power.
483 */
484static int cpufreq_state2power(struct thermal_cooling_device *cdev,
485 struct thermal_zone_device *tz,
486 unsigned long state, u32 *power)
487{
488 unsigned int freq, num_cpus;
1dea432a 489 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 490
cb1b6318
VK
491 /* Request state should be less than max_level */
492 if (WARN_ON(state > cpufreq_cdev->max_level))
493 return -EINVAL;
494
ba76dd9d 495 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
c36cf071 496
349d39dc 497 freq = cpufreq_cdev->freq_table[state].frequency;
84fe2cab 498 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
c36cf071 499
84fe2cab 500 return 0;
c36cf071
JM
501}
502
503/**
504 * cpufreq_power2state() - convert power to a cooling device state
505 * @cdev: &thermal_cooling_device pointer
506 * @tz: a valid thermal zone device pointer
507 * @power: power in milliwatts to be converted
508 * @state: pointer in which to store the resulting state
509 *
510 * Calculate a cooling device state for the cpus described by @cdev
511 * that would allow them to consume at most @power mW and store it in
512 * @state. Note that this calculation depends on external factors
513 * such as the cpu load or the current static power. Calling this
514 * function with the same power as input can yield different cooling
515 * device states depending on those external factors.
516 *
517 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
518 * the calculated frequency could not be converted to a valid state.
519 * The latter should not happen unless the frequencies available to
520 * cpufreq have changed since the initialization of the cpu cooling
521 * device.
522 */
523static int cpufreq_power2state(struct thermal_cooling_device *cdev,
524 struct thermal_zone_device *tz, u32 power,
525 unsigned long *state)
526{
e0fda737 527 unsigned int target_freq;
84fe2cab 528 u32 last_load, normalised_power;
1dea432a 529 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 530 struct cpufreq_policy *policy = cpufreq_cdev->policy;
c36cf071 531
1dea432a 532 last_load = cpufreq_cdev->last_load ?: 1;
84fe2cab 533 normalised_power = (power * 100) / last_load;
1dea432a 534 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
c36cf071 535
3e08b2df 536 *state = get_level(cpufreq_cdev, target_freq);
ba76dd9d
VK
537 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
538 power);
c36cf071
JM
539 return 0;
540}
541
02361418 542/* Bind cpufreq callbacks to thermal cooling device ops */
a305a438 543
c36cf071 544static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
545 .get_max_state = cpufreq_get_max_state,
546 .get_cur_state = cpufreq_get_cur_state,
547 .set_cur_state = cpufreq_set_cur_state,
548};
549
a305a438
BJ
550static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
551 .get_max_state = cpufreq_get_max_state,
552 .get_cur_state = cpufreq_get_cur_state,
553 .set_cur_state = cpufreq_set_cur_state,
554 .get_requested_power = cpufreq_get_requested_power,
555 .state2power = cpufreq_state2power,
556 .power2state = cpufreq_power2state,
557};
558
02361418
ADK
559/* Notifier for cpufreq policy change */
560static struct notifier_block thermal_cpufreq_notifier_block = {
561 .notifier_call = cpufreq_thermal_notifier,
562};
563
f6859014
VK
564static unsigned int find_next_max(struct cpufreq_frequency_table *table,
565 unsigned int prev_max)
566{
567 struct cpufreq_frequency_table *pos;
568 unsigned int max = 0;
569
570 cpufreq_for_each_valid_entry(pos, table) {
571 if (pos->frequency > max && pos->frequency < prev_max)
572 max = pos->frequency;
573 }
574
575 return max;
576}
577
02361418 578/**
39d99cff
EV
579 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
580 * @np: a valid struct device_node to the cooling device device tree node
4d753aa7 581 * @policy: cpufreq policy
405fb825 582 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071 583 * @capacitance: dynamic power coefficient for these cpus
12cb08ba
EV
584 *
585 * This interface function registers the cpufreq cooling device with the name
586 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
587 * cooling devices. It also gives the opportunity to link the cooling device
588 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
589 *
590 * Return: a valid struct thermal_cooling_device pointer on success,
591 * on failure, it returns a corresponding ERR_PTR().
02361418 592 */
39d99cff
EV
593static struct thermal_cooling_device *
594__cpufreq_cooling_register(struct device_node *np,
84fe2cab 595 struct cpufreq_policy *policy, u32 capacitance)
02361418 596{
04bdbdf9 597 struct thermal_cooling_device *cdev;
1dea432a 598 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 599 char dev_name[THERMAL_NAME_LENGTH];
c36cf071 600 unsigned int freq, i, num_cpus;
405fb825 601 int ret;
a305a438 602 struct thermal_cooling_device_ops *cooling_ops;
088db931 603 bool first;
02361418 604
4d753aa7 605 if (IS_ERR_OR_NULL(policy)) {
b2fd708f 606 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
4d753aa7 607 return ERR_PTR(-EINVAL);
f8bfc116
VK
608 }
609
55d85293
VK
610 i = cpufreq_table_count_valid_entries(policy);
611 if (!i) {
612 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
613 __func__);
4d753aa7 614 return ERR_PTR(-ENODEV);
02361418 615 }
0f1be51c 616
1dea432a 617 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
4d753aa7
VK
618 if (!cpufreq_cdev)
619 return ERR_PTR(-ENOMEM);
02361418 620
b12b6519 621 cpufreq_cdev->policy = policy;
4d753aa7 622 num_cpus = cpumask_weight(policy->related_cpus);
81ee14da
VK
623 cpufreq_cdev->idle_time = kcalloc(num_cpus,
624 sizeof(*cpufreq_cdev->idle_time),
625 GFP_KERNEL);
626 if (!cpufreq_cdev->idle_time) {
04bdbdf9 627 cdev = ERR_PTR(-ENOMEM);
c36cf071
JM
628 goto free_cdev;
629 }
630
55d85293
VK
631 /* max_level is an index, not a counter */
632 cpufreq_cdev->max_level = i - 1;
dcc6c7fd 633
f19b1a17
VK
634 cpufreq_cdev->freq_table = kmalloc_array(i,
635 sizeof(*cpufreq_cdev->freq_table),
636 GFP_KERNEL);
1dea432a 637 if (!cpufreq_cdev->freq_table) {
04bdbdf9 638 cdev = ERR_PTR(-ENOMEM);
81ee14da 639 goto free_idle_time;
f6859014
VK
640 }
641
ae606089
MW
642 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
643 if (ret < 0) {
04bdbdf9 644 cdev = ERR_PTR(ret);
349d39dc 645 goto free_table;
02361418 646 }
1dea432a 647 cpufreq_cdev->id = ret;
02361418 648
349d39dc
VK
649 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
650 cpufreq_cdev->id);
651
f6859014 652 /* Fill freq-table in descending order of frequencies */
1dea432a 653 for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
55d85293 654 freq = find_next_max(policy->freq_table, freq);
349d39dc 655 cpufreq_cdev->freq_table[i].frequency = freq;
f6859014
VK
656
657 /* Warn for duplicate entries */
658 if (!freq)
659 pr_warn("%s: table has duplicate entries\n", __func__);
660 else
661 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 662 }
f6859014 663
349d39dc 664 if (capacitance) {
349d39dc
VK
665 ret = update_freq_table(cpufreq_cdev, capacitance);
666 if (ret) {
667 cdev = ERR_PTR(ret);
668 goto remove_ida;
669 }
670
671 cooling_ops = &cpufreq_power_cooling_ops;
672 } else {
673 cooling_ops = &cpufreq_cooling_ops;
674 }
f840ab18 675
04bdbdf9
VK
676 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
677 cooling_ops);
678 if (IS_ERR(cdev))
ae606089 679 goto remove_ida;
f840ab18 680
349d39dc 681 cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0].frequency;
04bdbdf9 682 cpufreq_cdev->cdev = cdev;
92e615ec 683
02373d7c 684 mutex_lock(&cooling_list_lock);
088db931 685 /* Register the notifier for first cpufreq cooling device */
1dea432a
VK
686 first = list_empty(&cpufreq_cdev_list);
687 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
088db931 688 mutex_unlock(&cooling_list_lock);
02373d7c 689
088db931 690 if (first)
02361418 691 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 692 CPUFREQ_POLICY_NOTIFIER);
79491e53 693
4d753aa7 694 return cdev;
730abe06 695
ae606089 696remove_ida:
1dea432a 697 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
f6859014 698free_table:
1dea432a 699 kfree(cpufreq_cdev->freq_table);
81ee14da
VK
700free_idle_time:
701 kfree(cpufreq_cdev->idle_time);
730abe06 702free_cdev:
1dea432a 703 kfree(cpufreq_cdev);
04bdbdf9 704 return cdev;
02361418 705}
39d99cff
EV
706
707/**
708 * cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 709 * @policy: cpufreq policy
39d99cff
EV
710 *
711 * This interface function registers the cpufreq cooling device with the name
712 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
713 * cooling devices.
714 *
715 * Return: a valid struct thermal_cooling_device pointer on success,
716 * on failure, it returns a corresponding ERR_PTR().
717 */
718struct thermal_cooling_device *
4d753aa7 719cpufreq_cooling_register(struct cpufreq_policy *policy)
39d99cff 720{
84fe2cab 721 return __cpufreq_cooling_register(NULL, policy, 0);
39d99cff 722}
243dbd9c 723EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 724
39d99cff
EV
725/**
726 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 727 * @policy: cpufreq policy
39d99cff
EV
728 *
729 * This interface function registers the cpufreq cooling device with the name
730 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
731 * cooling devices. Using this API, the cpufreq cooling device will be
732 * linked to the device tree node provided.
733 *
c36cf071
JM
734 * Using this function, the cooling device will implement the power
735 * extensions by using a simple cpu power model. The cpus must have
736 * registered their OPPs using the OPP library.
737 *
f5f263fe
VK
738 * It also takes into account, if property present in policy CPU node, the
739 * static power consumed by the cpu.
c36cf071
JM
740 *
741 * Return: a valid struct thermal_cooling_device pointer on success,
f5f263fe 742 * and NULL on failure.
c36cf071
JM
743 */
744struct thermal_cooling_device *
3ebb62ff 745of_cpufreq_cooling_register(struct cpufreq_policy *policy)
c36cf071 746{
f5f263fe
VK
747 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
748 struct thermal_cooling_device *cdev = NULL;
749 u32 capacitance = 0;
750
751 if (!np) {
752 pr_err("cpu_cooling: OF node not available for cpu%d\n",
753 policy->cpu);
754 return NULL;
755 }
c36cf071 756
f5f263fe
VK
757 if (of_find_property(np, "#cooling-cells", NULL)) {
758 of_property_read_u32(np, "dynamic-power-coefficient",
759 &capacitance);
760
84fe2cab 761 cdev = __cpufreq_cooling_register(np, policy, capacitance);
f5f263fe 762 if (IS_ERR(cdev)) {
bf78f133 763 pr_err("cpu_cooling: cpu%d failed to register as cooling device: %ld\n",
f5f263fe
VK
764 policy->cpu, PTR_ERR(cdev));
765 cdev = NULL;
766 }
767 }
768
769 of_node_put(np);
770 return cdev;
c36cf071 771}
3ebb62ff 772EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
c36cf071 773
02361418
ADK
774/**
775 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
776 * @cdev: thermal cooling device pointer.
135266b4
EV
777 *
778 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
779 */
780void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
781{
1dea432a 782 struct cpufreq_cooling_device *cpufreq_cdev;
088db931 783 bool last;
02361418 784
50e66c7e
EV
785 if (!cdev)
786 return;
787
1dea432a 788 cpufreq_cdev = cdev->devdata;
02361418 789
ae606089 790 mutex_lock(&cooling_list_lock);
1dea432a 791 list_del(&cpufreq_cdev->node);
02361418 792 /* Unregister the notifier for the last cpufreq cooling device */
1dea432a 793 last = list_empty(&cpufreq_cdev_list);
088db931
MW
794 mutex_unlock(&cooling_list_lock);
795
796 if (last)
02361418 797 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 798 CPUFREQ_POLICY_NOTIFIER);
02373d7c 799
04bdbdf9 800 thermal_cooling_device_unregister(cpufreq_cdev->cdev);
1dea432a 801 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
81ee14da 802 kfree(cpufreq_cdev->idle_time);
1dea432a
VK
803 kfree(cpufreq_cdev->freq_table);
804 kfree(cpufreq_cdev);
02361418 805}
243dbd9c 806EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);