]> git.proxmox.com Git - qemu.git/blame - exec.c
Fix display breakage when resizing the screen (v2) (Avi Kivity)
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
ca10f867 37#include "qemu-common.h"
b67d9a52 38#include "tcg.h"
b3c7724c 39#include "hw/hw.h"
74576198 40#include "osdep.h"
7ba1e619 41#include "kvm.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
74#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
75#define TARGET_PHYS_ADDR_SPACE_BITS 42
76#elif defined(TARGET_I386) && !defined(USE_KQEMU)
77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
78#else
79/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80#define TARGET_PHYS_ADDR_SPACE_BITS 32
81#endif
82
bdaf78e0 83static TranslationBlock *tbs;
26a5f13b 84int code_gen_max_blocks;
9fa3e853 85TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 86static int nb_tbs;
eb51d102
FB
87/* any access to the tbs or the page table must use this lock */
88spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 89
141ac468
BS
90#if defined(__arm__) || defined(__sparc_v9__)
91/* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
93 section close to code segment. */
94#define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
107uint8_t *code_gen_ptr;
108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
00f82b8a 110ram_addr_t phys_ram_size;
9fa3e853
FB
111int phys_ram_fd;
112uint8_t *phys_ram_base;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
e9a1ab19 115static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 116#endif
9fa3e853 117
6a00d601
FB
118CPUState *first_cpu;
119/* current CPU in the current thread. It is only valid inside
120 cpu_exec() */
5fafdf24 121CPUState *cpu_single_env;
2e70f6ef 122/* 0 = Do not count executed instructions.
bf20dc07 123 1 = Precise instruction counting.
2e70f6ef
PB
124 2 = Adaptive rate instruction counting. */
125int use_icount = 0;
126/* Current instruction counter. While executing translated code this may
127 include some instructions that have not yet been executed. */
128int64_t qemu_icount;
6a00d601 129
54936004 130typedef struct PageDesc {
92e873b9 131 /* list of TBs intersecting this ram page */
fd6ce8f6 132 TranslationBlock *first_tb;
9fa3e853
FB
133 /* in order to optimize self modifying code, we count the number
134 of lookups we do to a given page to use a bitmap */
135 unsigned int code_write_count;
136 uint8_t *code_bitmap;
137#if defined(CONFIG_USER_ONLY)
138 unsigned long flags;
139#endif
54936004
FB
140} PageDesc;
141
92e873b9 142typedef struct PhysPageDesc {
0f459d16 143 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 144 ram_addr_t phys_offset;
8da3ff18 145 ram_addr_t region_offset;
92e873b9
FB
146} PhysPageDesc;
147
54936004 148#define L2_BITS 10
bedb69ea
JM
149#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
150/* XXX: this is a temporary hack for alpha target.
151 * In the future, this is to be replaced by a multi-level table
152 * to actually be able to handle the complete 64 bits address space.
153 */
154#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
155#else
03875444 156#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 157#endif
54936004
FB
158
159#define L1_SIZE (1 << L1_BITS)
160#define L2_SIZE (1 << L2_BITS)
161
83fb7adf
FB
162unsigned long qemu_real_host_page_size;
163unsigned long qemu_host_page_bits;
164unsigned long qemu_host_page_size;
165unsigned long qemu_host_page_mask;
54936004 166
92e873b9 167/* XXX: for system emulation, it could just be an array */
54936004 168static PageDesc *l1_map[L1_SIZE];
bdaf78e0 169static PhysPageDesc **l1_phys_map;
54936004 170
e2eef170
PB
171#if !defined(CONFIG_USER_ONLY)
172static void io_mem_init(void);
173
33417e70 174/* io memory support */
33417e70
FB
175CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
176CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 177void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 178static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
179static int io_mem_watch;
180#endif
33417e70 181
34865134 182/* log support */
d9b630fd 183static const char *logfilename = "/tmp/qemu.log";
34865134
FB
184FILE *logfile;
185int loglevel;
e735b91c 186static int log_append = 0;
34865134 187
e3db7226
FB
188/* statistics */
189static int tlb_flush_count;
190static int tb_flush_count;
191static int tb_phys_invalidate_count;
192
db7b5426
BS
193#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194typedef struct subpage_t {
195 target_phys_addr_t base;
3ee89922
BS
196 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
197 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
198 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 199 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
200} subpage_t;
201
7cb69cae
FB
202#ifdef _WIN32
203static void map_exec(void *addr, long size)
204{
205 DWORD old_protect;
206 VirtualProtect(addr, size,
207 PAGE_EXECUTE_READWRITE, &old_protect);
208
209}
210#else
211static void map_exec(void *addr, long size)
212{
4369415f 213 unsigned long start, end, page_size;
7cb69cae 214
4369415f 215 page_size = getpagesize();
7cb69cae 216 start = (unsigned long)addr;
4369415f 217 start &= ~(page_size - 1);
7cb69cae
FB
218
219 end = (unsigned long)addr + size;
4369415f
FB
220 end += page_size - 1;
221 end &= ~(page_size - 1);
7cb69cae
FB
222
223 mprotect((void *)start, end - start,
224 PROT_READ | PROT_WRITE | PROT_EXEC);
225}
226#endif
227
b346ff46 228static void page_init(void)
54936004 229{
83fb7adf 230 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 231 TARGET_PAGE_SIZE */
c2b48b69
AL
232#ifdef _WIN32
233 {
234 SYSTEM_INFO system_info;
235
236 GetSystemInfo(&system_info);
237 qemu_real_host_page_size = system_info.dwPageSize;
238 }
239#else
240 qemu_real_host_page_size = getpagesize();
241#endif
83fb7adf
FB
242 if (qemu_host_page_size == 0)
243 qemu_host_page_size = qemu_real_host_page_size;
244 if (qemu_host_page_size < TARGET_PAGE_SIZE)
245 qemu_host_page_size = TARGET_PAGE_SIZE;
246 qemu_host_page_bits = 0;
247 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
248 qemu_host_page_bits++;
249 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
250 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
251 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
252
253#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
254 {
255 long long startaddr, endaddr;
256 FILE *f;
257 int n;
258
c8a706fe 259 mmap_lock();
0776590d 260 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
261 f = fopen("/proc/self/maps", "r");
262 if (f) {
263 do {
264 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
265 if (n == 2) {
e0b8d65a
BS
266 startaddr = MIN(startaddr,
267 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
268 endaddr = MIN(endaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 270 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
271 TARGET_PAGE_ALIGN(endaddr),
272 PAGE_RESERVED);
273 }
274 } while (!feof(f));
275 fclose(f);
276 }
c8a706fe 277 mmap_unlock();
50a9569b
AZ
278 }
279#endif
54936004
FB
280}
281
434929bf 282static inline PageDesc **page_l1_map(target_ulong index)
54936004 283{
17e2377a
PB
284#if TARGET_LONG_BITS > 32
285 /* Host memory outside guest VM. For 32-bit targets we have already
286 excluded high addresses. */
d8173e0f 287 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
288 return NULL;
289#endif
434929bf
AL
290 return &l1_map[index >> L2_BITS];
291}
292
293static inline PageDesc *page_find_alloc(target_ulong index)
294{
295 PageDesc **lp, *p;
296 lp = page_l1_map(index);
297 if (!lp)
298 return NULL;
299
54936004
FB
300 p = *lp;
301 if (!p) {
302 /* allocate if not found */
17e2377a 303#if defined(CONFIG_USER_ONLY)
17e2377a
PB
304 size_t len = sizeof(PageDesc) * L2_SIZE;
305 /* Don't use qemu_malloc because it may recurse. */
306 p = mmap(0, len, PROT_READ | PROT_WRITE,
307 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 308 *lp = p;
fb1c2cd7
AJ
309 if (h2g_valid(p)) {
310 unsigned long addr = h2g(p);
17e2377a
PB
311 page_set_flags(addr & TARGET_PAGE_MASK,
312 TARGET_PAGE_ALIGN(addr + len),
313 PAGE_RESERVED);
314 }
315#else
316 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
317 *lp = p;
318#endif
54936004
FB
319 }
320 return p + (index & (L2_SIZE - 1));
321}
322
00f82b8a 323static inline PageDesc *page_find(target_ulong index)
54936004 324{
434929bf
AL
325 PageDesc **lp, *p;
326 lp = page_l1_map(index);
327 if (!lp)
328 return NULL;
54936004 329
434929bf 330 p = *lp;
54936004
FB
331 if (!p)
332 return 0;
fd6ce8f6
FB
333 return p + (index & (L2_SIZE - 1));
334}
335
108c49b8 336static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 337{
108c49b8 338 void **lp, **p;
e3f4e2a4 339 PhysPageDesc *pd;
92e873b9 340
108c49b8
FB
341 p = (void **)l1_phys_map;
342#if TARGET_PHYS_ADDR_SPACE_BITS > 32
343
344#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
345#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
346#endif
347 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
348 p = *lp;
349 if (!p) {
350 /* allocate if not found */
108c49b8
FB
351 if (!alloc)
352 return NULL;
353 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
354 memset(p, 0, sizeof(void *) * L1_SIZE);
355 *lp = p;
356 }
357#endif
358 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
359 pd = *lp;
360 if (!pd) {
361 int i;
108c49b8
FB
362 /* allocate if not found */
363 if (!alloc)
364 return NULL;
e3f4e2a4
PB
365 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
366 *lp = pd;
67c4d23c 367 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 368 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
369 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
370 }
92e873b9 371 }
e3f4e2a4 372 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
373}
374
108c49b8 375static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 376{
108c49b8 377 return phys_page_find_alloc(index, 0);
92e873b9
FB
378}
379
9fa3e853 380#if !defined(CONFIG_USER_ONLY)
6a00d601 381static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 382static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 383 target_ulong vaddr);
c8a706fe
PB
384#define mmap_lock() do { } while(0)
385#define mmap_unlock() do { } while(0)
9fa3e853 386#endif
fd6ce8f6 387
4369415f
FB
388#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
389
390#if defined(CONFIG_USER_ONLY)
391/* Currently it is not recommanded to allocate big chunks of data in
392 user mode. It will change when a dedicated libc will be used */
393#define USE_STATIC_CODE_GEN_BUFFER
394#endif
395
396#ifdef USE_STATIC_CODE_GEN_BUFFER
397static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
398#endif
399
8fcd3692 400static void code_gen_alloc(unsigned long tb_size)
26a5f13b 401{
4369415f
FB
402#ifdef USE_STATIC_CODE_GEN_BUFFER
403 code_gen_buffer = static_code_gen_buffer;
404 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
405 map_exec(code_gen_buffer, code_gen_buffer_size);
406#else
26a5f13b
FB
407 code_gen_buffer_size = tb_size;
408 if (code_gen_buffer_size == 0) {
4369415f
FB
409#if defined(CONFIG_USER_ONLY)
410 /* in user mode, phys_ram_size is not meaningful */
411 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
412#else
26a5f13b 413 /* XXX: needs ajustments */
174a9a1f 414 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 415#endif
26a5f13b
FB
416 }
417 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
418 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
419 /* The code gen buffer location may have constraints depending on
420 the host cpu and OS */
421#if defined(__linux__)
422 {
423 int flags;
141ac468
BS
424 void *start = NULL;
425
26a5f13b
FB
426 flags = MAP_PRIVATE | MAP_ANONYMOUS;
427#if defined(__x86_64__)
428 flags |= MAP_32BIT;
429 /* Cannot map more than that */
430 if (code_gen_buffer_size > (800 * 1024 * 1024))
431 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
432#elif defined(__sparc_v9__)
433 // Map the buffer below 2G, so we can use direct calls and branches
434 flags |= MAP_FIXED;
435 start = (void *) 0x60000000UL;
436 if (code_gen_buffer_size > (512 * 1024 * 1024))
437 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 438#elif defined(__arm__)
63d41246 439 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
440 flags |= MAP_FIXED;
441 start = (void *) 0x01000000UL;
442 if (code_gen_buffer_size > 16 * 1024 * 1024)
443 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 444#endif
141ac468
BS
445 code_gen_buffer = mmap(start, code_gen_buffer_size,
446 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
447 flags, -1, 0);
448 if (code_gen_buffer == MAP_FAILED) {
449 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
450 exit(1);
451 }
452 }
c5e97233 453#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
454 {
455 int flags;
456 void *addr = NULL;
457 flags = MAP_PRIVATE | MAP_ANONYMOUS;
458#if defined(__x86_64__)
459 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
460 * 0x40000000 is free */
461 flags |= MAP_FIXED;
462 addr = (void *)0x40000000;
463 /* Cannot map more than that */
464 if (code_gen_buffer_size > (800 * 1024 * 1024))
465 code_gen_buffer_size = (800 * 1024 * 1024);
466#endif
467 code_gen_buffer = mmap(addr, code_gen_buffer_size,
468 PROT_WRITE | PROT_READ | PROT_EXEC,
469 flags, -1, 0);
470 if (code_gen_buffer == MAP_FAILED) {
471 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
472 exit(1);
473 }
474 }
26a5f13b
FB
475#else
476 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
477 map_exec(code_gen_buffer, code_gen_buffer_size);
478#endif
4369415f 479#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
480 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
481 code_gen_buffer_max_size = code_gen_buffer_size -
482 code_gen_max_block_size();
483 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
484 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
485}
486
487/* Must be called before using the QEMU cpus. 'tb_size' is the size
488 (in bytes) allocated to the translation buffer. Zero means default
489 size. */
490void cpu_exec_init_all(unsigned long tb_size)
491{
26a5f13b
FB
492 cpu_gen_init();
493 code_gen_alloc(tb_size);
494 code_gen_ptr = code_gen_buffer;
4369415f 495 page_init();
e2eef170 496#if !defined(CONFIG_USER_ONLY)
26a5f13b 497 io_mem_init();
e2eef170 498#endif
26a5f13b
FB
499}
500
9656f324
PB
501#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
502
503#define CPU_COMMON_SAVE_VERSION 1
504
505static void cpu_common_save(QEMUFile *f, void *opaque)
506{
507 CPUState *env = opaque;
508
509 qemu_put_be32s(f, &env->halted);
510 qemu_put_be32s(f, &env->interrupt_request);
511}
512
513static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
514{
515 CPUState *env = opaque;
516
517 if (version_id != CPU_COMMON_SAVE_VERSION)
518 return -EINVAL;
519
520 qemu_get_be32s(f, &env->halted);
75f482ae 521 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
522 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
523 version_id is increased. */
524 env->interrupt_request &= ~0x01;
9656f324
PB
525 tlb_flush(env, 1);
526
527 return 0;
528}
529#endif
530
6a00d601 531void cpu_exec_init(CPUState *env)
fd6ce8f6 532{
6a00d601
FB
533 CPUState **penv;
534 int cpu_index;
535
c2764719
PB
536#if defined(CONFIG_USER_ONLY)
537 cpu_list_lock();
538#endif
6a00d601
FB
539 env->next_cpu = NULL;
540 penv = &first_cpu;
541 cpu_index = 0;
542 while (*penv != NULL) {
543 penv = (CPUState **)&(*penv)->next_cpu;
544 cpu_index++;
545 }
546 env->cpu_index = cpu_index;
c0ce998e
AL
547 TAILQ_INIT(&env->breakpoints);
548 TAILQ_INIT(&env->watchpoints);
6a00d601 549 *penv = env;
c2764719
PB
550#if defined(CONFIG_USER_ONLY)
551 cpu_list_unlock();
552#endif
b3c7724c 553#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
554 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
555 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
556 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
557 cpu_save, cpu_load, env);
558#endif
fd6ce8f6
FB
559}
560
9fa3e853
FB
561static inline void invalidate_page_bitmap(PageDesc *p)
562{
563 if (p->code_bitmap) {
59817ccb 564 qemu_free(p->code_bitmap);
9fa3e853
FB
565 p->code_bitmap = NULL;
566 }
567 p->code_write_count = 0;
568}
569
fd6ce8f6
FB
570/* set to NULL all the 'first_tb' fields in all PageDescs */
571static void page_flush_tb(void)
572{
573 int i, j;
574 PageDesc *p;
575
576 for(i = 0; i < L1_SIZE; i++) {
577 p = l1_map[i];
578 if (p) {
9fa3e853
FB
579 for(j = 0; j < L2_SIZE; j++) {
580 p->first_tb = NULL;
581 invalidate_page_bitmap(p);
582 p++;
583 }
fd6ce8f6
FB
584 }
585 }
586}
587
588/* flush all the translation blocks */
d4e8164f 589/* XXX: tb_flush is currently not thread safe */
6a00d601 590void tb_flush(CPUState *env1)
fd6ce8f6 591{
6a00d601 592 CPUState *env;
0124311e 593#if defined(DEBUG_FLUSH)
ab3d1727
BS
594 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
595 (unsigned long)(code_gen_ptr - code_gen_buffer),
596 nb_tbs, nb_tbs > 0 ?
597 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 598#endif
26a5f13b 599 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
600 cpu_abort(env1, "Internal error: code buffer overflow\n");
601
fd6ce8f6 602 nb_tbs = 0;
3b46e624 603
6a00d601
FB
604 for(env = first_cpu; env != NULL; env = env->next_cpu) {
605 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
606 }
9fa3e853 607
8a8a608f 608 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 609 page_flush_tb();
9fa3e853 610
fd6ce8f6 611 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
612 /* XXX: flush processor icache at this point if cache flush is
613 expensive */
e3db7226 614 tb_flush_count++;
fd6ce8f6
FB
615}
616
617#ifdef DEBUG_TB_CHECK
618
bc98a7ef 619static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
620{
621 TranslationBlock *tb;
622 int i;
623 address &= TARGET_PAGE_MASK;
99773bd4
PB
624 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
625 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
626 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
627 address >= tb->pc + tb->size)) {
628 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 629 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
630 }
631 }
632 }
633}
634
635/* verify that all the pages have correct rights for code */
636static void tb_page_check(void)
637{
638 TranslationBlock *tb;
639 int i, flags1, flags2;
3b46e624 640
99773bd4
PB
641 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
642 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
643 flags1 = page_get_flags(tb->pc);
644 flags2 = page_get_flags(tb->pc + tb->size - 1);
645 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
646 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 647 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
648 }
649 }
650 }
651}
652
bdaf78e0 653static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
654{
655 TranslationBlock *tb1;
656 unsigned int n1;
657
658 /* suppress any remaining jumps to this TB */
659 tb1 = tb->jmp_first;
660 for(;;) {
661 n1 = (long)tb1 & 3;
662 tb1 = (TranslationBlock *)((long)tb1 & ~3);
663 if (n1 == 2)
664 break;
665 tb1 = tb1->jmp_next[n1];
666 }
667 /* check end of list */
668 if (tb1 != tb) {
669 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
670 }
671}
672
fd6ce8f6
FB
673#endif
674
675/* invalidate one TB */
676static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
677 int next_offset)
678{
679 TranslationBlock *tb1;
680 for(;;) {
681 tb1 = *ptb;
682 if (tb1 == tb) {
683 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
684 break;
685 }
686 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
687 }
688}
689
9fa3e853
FB
690static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
691{
692 TranslationBlock *tb1;
693 unsigned int n1;
694
695 for(;;) {
696 tb1 = *ptb;
697 n1 = (long)tb1 & 3;
698 tb1 = (TranslationBlock *)((long)tb1 & ~3);
699 if (tb1 == tb) {
700 *ptb = tb1->page_next[n1];
701 break;
702 }
703 ptb = &tb1->page_next[n1];
704 }
705}
706
d4e8164f
FB
707static inline void tb_jmp_remove(TranslationBlock *tb, int n)
708{
709 TranslationBlock *tb1, **ptb;
710 unsigned int n1;
711
712 ptb = &tb->jmp_next[n];
713 tb1 = *ptb;
714 if (tb1) {
715 /* find tb(n) in circular list */
716 for(;;) {
717 tb1 = *ptb;
718 n1 = (long)tb1 & 3;
719 tb1 = (TranslationBlock *)((long)tb1 & ~3);
720 if (n1 == n && tb1 == tb)
721 break;
722 if (n1 == 2) {
723 ptb = &tb1->jmp_first;
724 } else {
725 ptb = &tb1->jmp_next[n1];
726 }
727 }
728 /* now we can suppress tb(n) from the list */
729 *ptb = tb->jmp_next[n];
730
731 tb->jmp_next[n] = NULL;
732 }
733}
734
735/* reset the jump entry 'n' of a TB so that it is not chained to
736 another TB */
737static inline void tb_reset_jump(TranslationBlock *tb, int n)
738{
739 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
740}
741
2e70f6ef 742void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 743{
6a00d601 744 CPUState *env;
8a40a180 745 PageDesc *p;
d4e8164f 746 unsigned int h, n1;
00f82b8a 747 target_phys_addr_t phys_pc;
8a40a180 748 TranslationBlock *tb1, *tb2;
3b46e624 749
8a40a180
FB
750 /* remove the TB from the hash list */
751 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
752 h = tb_phys_hash_func(phys_pc);
5fafdf24 753 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
754 offsetof(TranslationBlock, phys_hash_next));
755
756 /* remove the TB from the page list */
757 if (tb->page_addr[0] != page_addr) {
758 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
759 tb_page_remove(&p->first_tb, tb);
760 invalidate_page_bitmap(p);
761 }
762 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
763 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
764 tb_page_remove(&p->first_tb, tb);
765 invalidate_page_bitmap(p);
766 }
767
36bdbe54 768 tb_invalidated_flag = 1;
59817ccb 769
fd6ce8f6 770 /* remove the TB from the hash list */
8a40a180 771 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
772 for(env = first_cpu; env != NULL; env = env->next_cpu) {
773 if (env->tb_jmp_cache[h] == tb)
774 env->tb_jmp_cache[h] = NULL;
775 }
d4e8164f
FB
776
777 /* suppress this TB from the two jump lists */
778 tb_jmp_remove(tb, 0);
779 tb_jmp_remove(tb, 1);
780
781 /* suppress any remaining jumps to this TB */
782 tb1 = tb->jmp_first;
783 for(;;) {
784 n1 = (long)tb1 & 3;
785 if (n1 == 2)
786 break;
787 tb1 = (TranslationBlock *)((long)tb1 & ~3);
788 tb2 = tb1->jmp_next[n1];
789 tb_reset_jump(tb1, n1);
790 tb1->jmp_next[n1] = NULL;
791 tb1 = tb2;
792 }
793 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 794
e3db7226 795 tb_phys_invalidate_count++;
9fa3e853
FB
796}
797
798static inline void set_bits(uint8_t *tab, int start, int len)
799{
800 int end, mask, end1;
801
802 end = start + len;
803 tab += start >> 3;
804 mask = 0xff << (start & 7);
805 if ((start & ~7) == (end & ~7)) {
806 if (start < end) {
807 mask &= ~(0xff << (end & 7));
808 *tab |= mask;
809 }
810 } else {
811 *tab++ |= mask;
812 start = (start + 8) & ~7;
813 end1 = end & ~7;
814 while (start < end1) {
815 *tab++ = 0xff;
816 start += 8;
817 }
818 if (start < end) {
819 mask = ~(0xff << (end & 7));
820 *tab |= mask;
821 }
822 }
823}
824
825static void build_page_bitmap(PageDesc *p)
826{
827 int n, tb_start, tb_end;
828 TranslationBlock *tb;
3b46e624 829
b2a7081a 830 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
831
832 tb = p->first_tb;
833 while (tb != NULL) {
834 n = (long)tb & 3;
835 tb = (TranslationBlock *)((long)tb & ~3);
836 /* NOTE: this is subtle as a TB may span two physical pages */
837 if (n == 0) {
838 /* NOTE: tb_end may be after the end of the page, but
839 it is not a problem */
840 tb_start = tb->pc & ~TARGET_PAGE_MASK;
841 tb_end = tb_start + tb->size;
842 if (tb_end > TARGET_PAGE_SIZE)
843 tb_end = TARGET_PAGE_SIZE;
844 } else {
845 tb_start = 0;
846 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
847 }
848 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
849 tb = tb->page_next[n];
850 }
851}
852
2e70f6ef
PB
853TranslationBlock *tb_gen_code(CPUState *env,
854 target_ulong pc, target_ulong cs_base,
855 int flags, int cflags)
d720b93d
FB
856{
857 TranslationBlock *tb;
858 uint8_t *tc_ptr;
859 target_ulong phys_pc, phys_page2, virt_page2;
860 int code_gen_size;
861
c27004ec
FB
862 phys_pc = get_phys_addr_code(env, pc);
863 tb = tb_alloc(pc);
d720b93d
FB
864 if (!tb) {
865 /* flush must be done */
866 tb_flush(env);
867 /* cannot fail at this point */
c27004ec 868 tb = tb_alloc(pc);
2e70f6ef
PB
869 /* Don't forget to invalidate previous TB info. */
870 tb_invalidated_flag = 1;
d720b93d
FB
871 }
872 tc_ptr = code_gen_ptr;
873 tb->tc_ptr = tc_ptr;
874 tb->cs_base = cs_base;
875 tb->flags = flags;
876 tb->cflags = cflags;
d07bde88 877 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 878 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 879
d720b93d 880 /* check next page if needed */
c27004ec 881 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 882 phys_page2 = -1;
c27004ec 883 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
884 phys_page2 = get_phys_addr_code(env, virt_page2);
885 }
886 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 887 return tb;
d720b93d 888}
3b46e624 889
9fa3e853
FB
890/* invalidate all TBs which intersect with the target physical page
891 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
892 the same physical page. 'is_cpu_write_access' should be true if called
893 from a real cpu write access: the virtual CPU will exit the current
894 TB if code is modified inside this TB. */
00f82b8a 895void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
896 int is_cpu_write_access)
897{
6b917547 898 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 899 CPUState *env = cpu_single_env;
9fa3e853 900 target_ulong tb_start, tb_end;
6b917547
AL
901 PageDesc *p;
902 int n;
903#ifdef TARGET_HAS_PRECISE_SMC
904 int current_tb_not_found = is_cpu_write_access;
905 TranslationBlock *current_tb = NULL;
906 int current_tb_modified = 0;
907 target_ulong current_pc = 0;
908 target_ulong current_cs_base = 0;
909 int current_flags = 0;
910#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
911
912 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 913 if (!p)
9fa3e853 914 return;
5fafdf24 915 if (!p->code_bitmap &&
d720b93d
FB
916 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
917 is_cpu_write_access) {
9fa3e853
FB
918 /* build code bitmap */
919 build_page_bitmap(p);
920 }
921
922 /* we remove all the TBs in the range [start, end[ */
923 /* XXX: see if in some cases it could be faster to invalidate all the code */
924 tb = p->first_tb;
925 while (tb != NULL) {
926 n = (long)tb & 3;
927 tb = (TranslationBlock *)((long)tb & ~3);
928 tb_next = tb->page_next[n];
929 /* NOTE: this is subtle as a TB may span two physical pages */
930 if (n == 0) {
931 /* NOTE: tb_end may be after the end of the page, but
932 it is not a problem */
933 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
934 tb_end = tb_start + tb->size;
935 } else {
936 tb_start = tb->page_addr[1];
937 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
938 }
939 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
940#ifdef TARGET_HAS_PRECISE_SMC
941 if (current_tb_not_found) {
942 current_tb_not_found = 0;
943 current_tb = NULL;
2e70f6ef 944 if (env->mem_io_pc) {
d720b93d 945 /* now we have a real cpu fault */
2e70f6ef 946 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
947 }
948 }
949 if (current_tb == tb &&
2e70f6ef 950 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
951 /* If we are modifying the current TB, we must stop
952 its execution. We could be more precise by checking
953 that the modification is after the current PC, but it
954 would require a specialized function to partially
955 restore the CPU state */
3b46e624 956
d720b93d 957 current_tb_modified = 1;
5fafdf24 958 cpu_restore_state(current_tb, env,
2e70f6ef 959 env->mem_io_pc, NULL);
6b917547
AL
960 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
961 &current_flags);
d720b93d
FB
962 }
963#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
964 /* we need to do that to handle the case where a signal
965 occurs while doing tb_phys_invalidate() */
966 saved_tb = NULL;
967 if (env) {
968 saved_tb = env->current_tb;
969 env->current_tb = NULL;
970 }
9fa3e853 971 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
972 if (env) {
973 env->current_tb = saved_tb;
974 if (env->interrupt_request && env->current_tb)
975 cpu_interrupt(env, env->interrupt_request);
976 }
9fa3e853
FB
977 }
978 tb = tb_next;
979 }
980#if !defined(CONFIG_USER_ONLY)
981 /* if no code remaining, no need to continue to use slow writes */
982 if (!p->first_tb) {
983 invalidate_page_bitmap(p);
d720b93d 984 if (is_cpu_write_access) {
2e70f6ef 985 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
986 }
987 }
988#endif
989#ifdef TARGET_HAS_PRECISE_SMC
990 if (current_tb_modified) {
991 /* we generate a block containing just the instruction
992 modifying the memory. It will ensure that it cannot modify
993 itself */
ea1c1802 994 env->current_tb = NULL;
2e70f6ef 995 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 996 cpu_resume_from_signal(env, NULL);
9fa3e853 997 }
fd6ce8f6 998#endif
9fa3e853 999}
fd6ce8f6 1000
9fa3e853 1001/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1002static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1003{
1004 PageDesc *p;
1005 int offset, b;
59817ccb 1006#if 0
a4193c8a 1007 if (1) {
93fcfe39
AL
1008 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1009 cpu_single_env->mem_io_vaddr, len,
1010 cpu_single_env->eip,
1011 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1012 }
1013#endif
9fa3e853 1014 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1015 if (!p)
9fa3e853
FB
1016 return;
1017 if (p->code_bitmap) {
1018 offset = start & ~TARGET_PAGE_MASK;
1019 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1020 if (b & ((1 << len) - 1))
1021 goto do_invalidate;
1022 } else {
1023 do_invalidate:
d720b93d 1024 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1025 }
1026}
1027
9fa3e853 1028#if !defined(CONFIG_SOFTMMU)
00f82b8a 1029static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1030 unsigned long pc, void *puc)
9fa3e853 1031{
6b917547 1032 TranslationBlock *tb;
9fa3e853 1033 PageDesc *p;
6b917547 1034 int n;
d720b93d 1035#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1036 TranslationBlock *current_tb = NULL;
d720b93d 1037 CPUState *env = cpu_single_env;
6b917547
AL
1038 int current_tb_modified = 0;
1039 target_ulong current_pc = 0;
1040 target_ulong current_cs_base = 0;
1041 int current_flags = 0;
d720b93d 1042#endif
9fa3e853
FB
1043
1044 addr &= TARGET_PAGE_MASK;
1045 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1046 if (!p)
9fa3e853
FB
1047 return;
1048 tb = p->first_tb;
d720b93d
FB
1049#ifdef TARGET_HAS_PRECISE_SMC
1050 if (tb && pc != 0) {
1051 current_tb = tb_find_pc(pc);
1052 }
1053#endif
9fa3e853
FB
1054 while (tb != NULL) {
1055 n = (long)tb & 3;
1056 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1057#ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb == tb &&
2e70f6ef 1059 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1060 /* If we are modifying the current TB, we must stop
1061 its execution. We could be more precise by checking
1062 that the modification is after the current PC, but it
1063 would require a specialized function to partially
1064 restore the CPU state */
3b46e624 1065
d720b93d
FB
1066 current_tb_modified = 1;
1067 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1068 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1069 &current_flags);
d720b93d
FB
1070 }
1071#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1072 tb_phys_invalidate(tb, addr);
1073 tb = tb->page_next[n];
1074 }
fd6ce8f6 1075 p->first_tb = NULL;
d720b93d
FB
1076#ifdef TARGET_HAS_PRECISE_SMC
1077 if (current_tb_modified) {
1078 /* we generate a block containing just the instruction
1079 modifying the memory. It will ensure that it cannot modify
1080 itself */
ea1c1802 1081 env->current_tb = NULL;
2e70f6ef 1082 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1083 cpu_resume_from_signal(env, puc);
1084 }
1085#endif
fd6ce8f6 1086}
9fa3e853 1087#endif
fd6ce8f6
FB
1088
1089/* add the tb in the target page and protect it if necessary */
5fafdf24 1090static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1091 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1092{
1093 PageDesc *p;
9fa3e853
FB
1094 TranslationBlock *last_first_tb;
1095
1096 tb->page_addr[n] = page_addr;
3a7d929e 1097 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1098 tb->page_next[n] = p->first_tb;
1099 last_first_tb = p->first_tb;
1100 p->first_tb = (TranslationBlock *)((long)tb | n);
1101 invalidate_page_bitmap(p);
fd6ce8f6 1102
107db443 1103#if defined(TARGET_HAS_SMC) || 1
d720b93d 1104
9fa3e853 1105#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1106 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1107 target_ulong addr;
1108 PageDesc *p2;
9fa3e853
FB
1109 int prot;
1110
fd6ce8f6
FB
1111 /* force the host page as non writable (writes will have a
1112 page fault + mprotect overhead) */
53a5960a 1113 page_addr &= qemu_host_page_mask;
fd6ce8f6 1114 prot = 0;
53a5960a
PB
1115 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1116 addr += TARGET_PAGE_SIZE) {
1117
1118 p2 = page_find (addr >> TARGET_PAGE_BITS);
1119 if (!p2)
1120 continue;
1121 prot |= p2->flags;
1122 p2->flags &= ~PAGE_WRITE;
1123 page_get_flags(addr);
1124 }
5fafdf24 1125 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1126 (prot & PAGE_BITS) & ~PAGE_WRITE);
1127#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1128 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1129 page_addr);
fd6ce8f6 1130#endif
fd6ce8f6 1131 }
9fa3e853
FB
1132#else
1133 /* if some code is already present, then the pages are already
1134 protected. So we handle the case where only the first TB is
1135 allocated in a physical page */
1136 if (!last_first_tb) {
6a00d601 1137 tlb_protect_code(page_addr);
9fa3e853
FB
1138 }
1139#endif
d720b93d
FB
1140
1141#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1142}
1143
1144/* Allocate a new translation block. Flush the translation buffer if
1145 too many translation blocks or too much generated code. */
c27004ec 1146TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1147{
1148 TranslationBlock *tb;
fd6ce8f6 1149
26a5f13b
FB
1150 if (nb_tbs >= code_gen_max_blocks ||
1151 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1152 return NULL;
fd6ce8f6
FB
1153 tb = &tbs[nb_tbs++];
1154 tb->pc = pc;
b448f2f3 1155 tb->cflags = 0;
d4e8164f
FB
1156 return tb;
1157}
1158
2e70f6ef
PB
1159void tb_free(TranslationBlock *tb)
1160{
bf20dc07 1161 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1162 Ignore the hard cases and just back up if this TB happens to
1163 be the last one generated. */
1164 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1165 code_gen_ptr = tb->tc_ptr;
1166 nb_tbs--;
1167 }
1168}
1169
9fa3e853
FB
1170/* add a new TB and link it to the physical page tables. phys_page2 is
1171 (-1) to indicate that only one page contains the TB. */
5fafdf24 1172void tb_link_phys(TranslationBlock *tb,
9fa3e853 1173 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1174{
9fa3e853
FB
1175 unsigned int h;
1176 TranslationBlock **ptb;
1177
c8a706fe
PB
1178 /* Grab the mmap lock to stop another thread invalidating this TB
1179 before we are done. */
1180 mmap_lock();
9fa3e853
FB
1181 /* add in the physical hash table */
1182 h = tb_phys_hash_func(phys_pc);
1183 ptb = &tb_phys_hash[h];
1184 tb->phys_hash_next = *ptb;
1185 *ptb = tb;
fd6ce8f6
FB
1186
1187 /* add in the page list */
9fa3e853
FB
1188 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1189 if (phys_page2 != -1)
1190 tb_alloc_page(tb, 1, phys_page2);
1191 else
1192 tb->page_addr[1] = -1;
9fa3e853 1193
d4e8164f
FB
1194 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1195 tb->jmp_next[0] = NULL;
1196 tb->jmp_next[1] = NULL;
1197
1198 /* init original jump addresses */
1199 if (tb->tb_next_offset[0] != 0xffff)
1200 tb_reset_jump(tb, 0);
1201 if (tb->tb_next_offset[1] != 0xffff)
1202 tb_reset_jump(tb, 1);
8a40a180
FB
1203
1204#ifdef DEBUG_TB_CHECK
1205 tb_page_check();
1206#endif
c8a706fe 1207 mmap_unlock();
fd6ce8f6
FB
1208}
1209
9fa3e853
FB
1210/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1211 tb[1].tc_ptr. Return NULL if not found */
1212TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1213{
9fa3e853
FB
1214 int m_min, m_max, m;
1215 unsigned long v;
1216 TranslationBlock *tb;
a513fe19
FB
1217
1218 if (nb_tbs <= 0)
1219 return NULL;
1220 if (tc_ptr < (unsigned long)code_gen_buffer ||
1221 tc_ptr >= (unsigned long)code_gen_ptr)
1222 return NULL;
1223 /* binary search (cf Knuth) */
1224 m_min = 0;
1225 m_max = nb_tbs - 1;
1226 while (m_min <= m_max) {
1227 m = (m_min + m_max) >> 1;
1228 tb = &tbs[m];
1229 v = (unsigned long)tb->tc_ptr;
1230 if (v == tc_ptr)
1231 return tb;
1232 else if (tc_ptr < v) {
1233 m_max = m - 1;
1234 } else {
1235 m_min = m + 1;
1236 }
5fafdf24 1237 }
a513fe19
FB
1238 return &tbs[m_max];
1239}
7501267e 1240
ea041c0e
FB
1241static void tb_reset_jump_recursive(TranslationBlock *tb);
1242
1243static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1244{
1245 TranslationBlock *tb1, *tb_next, **ptb;
1246 unsigned int n1;
1247
1248 tb1 = tb->jmp_next[n];
1249 if (tb1 != NULL) {
1250 /* find head of list */
1251 for(;;) {
1252 n1 = (long)tb1 & 3;
1253 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1254 if (n1 == 2)
1255 break;
1256 tb1 = tb1->jmp_next[n1];
1257 }
1258 /* we are now sure now that tb jumps to tb1 */
1259 tb_next = tb1;
1260
1261 /* remove tb from the jmp_first list */
1262 ptb = &tb_next->jmp_first;
1263 for(;;) {
1264 tb1 = *ptb;
1265 n1 = (long)tb1 & 3;
1266 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1267 if (n1 == n && tb1 == tb)
1268 break;
1269 ptb = &tb1->jmp_next[n1];
1270 }
1271 *ptb = tb->jmp_next[n];
1272 tb->jmp_next[n] = NULL;
3b46e624 1273
ea041c0e
FB
1274 /* suppress the jump to next tb in generated code */
1275 tb_reset_jump(tb, n);
1276
0124311e 1277 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1278 tb_reset_jump_recursive(tb_next);
1279 }
1280}
1281
1282static void tb_reset_jump_recursive(TranslationBlock *tb)
1283{
1284 tb_reset_jump_recursive2(tb, 0);
1285 tb_reset_jump_recursive2(tb, 1);
1286}
1287
1fddef4b 1288#if defined(TARGET_HAS_ICE)
d720b93d
FB
1289static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1290{
9b3c35e0
JM
1291 target_phys_addr_t addr;
1292 target_ulong pd;
c2f07f81
PB
1293 ram_addr_t ram_addr;
1294 PhysPageDesc *p;
d720b93d 1295
c2f07f81
PB
1296 addr = cpu_get_phys_page_debug(env, pc);
1297 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1298 if (!p) {
1299 pd = IO_MEM_UNASSIGNED;
1300 } else {
1301 pd = p->phys_offset;
1302 }
1303 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1304 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1305}
c27004ec 1306#endif
d720b93d 1307
6658ffb8 1308/* Add a watchpoint. */
a1d1bb31
AL
1309int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1310 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1311{
b4051334 1312 target_ulong len_mask = ~(len - 1);
c0ce998e 1313 CPUWatchpoint *wp;
6658ffb8 1314
b4051334
AL
1315 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1316 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1317 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1318 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1319 return -EINVAL;
1320 }
a1d1bb31 1321 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1322
1323 wp->vaddr = addr;
b4051334 1324 wp->len_mask = len_mask;
a1d1bb31
AL
1325 wp->flags = flags;
1326
2dc9f411 1327 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1328 if (flags & BP_GDB)
1329 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1330 else
1331 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1332
6658ffb8 1333 tlb_flush_page(env, addr);
a1d1bb31
AL
1334
1335 if (watchpoint)
1336 *watchpoint = wp;
1337 return 0;
6658ffb8
PB
1338}
1339
a1d1bb31
AL
1340/* Remove a specific watchpoint. */
1341int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1342 int flags)
6658ffb8 1343{
b4051334 1344 target_ulong len_mask = ~(len - 1);
a1d1bb31 1345 CPUWatchpoint *wp;
6658ffb8 1346
c0ce998e 1347 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1348 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1349 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1350 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1351 return 0;
1352 }
1353 }
a1d1bb31 1354 return -ENOENT;
6658ffb8
PB
1355}
1356
a1d1bb31
AL
1357/* Remove a specific watchpoint by reference. */
1358void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1359{
c0ce998e 1360 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1361
a1d1bb31
AL
1362 tlb_flush_page(env, watchpoint->vaddr);
1363
1364 qemu_free(watchpoint);
1365}
1366
1367/* Remove all matching watchpoints. */
1368void cpu_watchpoint_remove_all(CPUState *env, int mask)
1369{
c0ce998e 1370 CPUWatchpoint *wp, *next;
a1d1bb31 1371
c0ce998e 1372 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1373 if (wp->flags & mask)
1374 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1375 }
7d03f82f
EI
1376}
1377
a1d1bb31
AL
1378/* Add a breakpoint. */
1379int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1380 CPUBreakpoint **breakpoint)
4c3a88a2 1381{
1fddef4b 1382#if defined(TARGET_HAS_ICE)
c0ce998e 1383 CPUBreakpoint *bp;
3b46e624 1384
a1d1bb31 1385 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1386
a1d1bb31
AL
1387 bp->pc = pc;
1388 bp->flags = flags;
1389
2dc9f411 1390 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1391 if (flags & BP_GDB)
1392 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1393 else
1394 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1395
d720b93d 1396 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1397
1398 if (breakpoint)
1399 *breakpoint = bp;
4c3a88a2
FB
1400 return 0;
1401#else
a1d1bb31 1402 return -ENOSYS;
4c3a88a2
FB
1403#endif
1404}
1405
a1d1bb31
AL
1406/* Remove a specific breakpoint. */
1407int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1408{
7d03f82f 1409#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1410 CPUBreakpoint *bp;
1411
c0ce998e 1412 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1413 if (bp->pc == pc && bp->flags == flags) {
1414 cpu_breakpoint_remove_by_ref(env, bp);
1415 return 0;
1416 }
7d03f82f 1417 }
a1d1bb31
AL
1418 return -ENOENT;
1419#else
1420 return -ENOSYS;
7d03f82f
EI
1421#endif
1422}
1423
a1d1bb31
AL
1424/* Remove a specific breakpoint by reference. */
1425void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1426{
1fddef4b 1427#if defined(TARGET_HAS_ICE)
c0ce998e 1428 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1429
a1d1bb31
AL
1430 breakpoint_invalidate(env, breakpoint->pc);
1431
1432 qemu_free(breakpoint);
1433#endif
1434}
1435
1436/* Remove all matching breakpoints. */
1437void cpu_breakpoint_remove_all(CPUState *env, int mask)
1438{
1439#if defined(TARGET_HAS_ICE)
c0ce998e 1440 CPUBreakpoint *bp, *next;
a1d1bb31 1441
c0ce998e 1442 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1443 if (bp->flags & mask)
1444 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1445 }
4c3a88a2
FB
1446#endif
1447}
1448
c33a346e
FB
1449/* enable or disable single step mode. EXCP_DEBUG is returned by the
1450 CPU loop after each instruction */
1451void cpu_single_step(CPUState *env, int enabled)
1452{
1fddef4b 1453#if defined(TARGET_HAS_ICE)
c33a346e
FB
1454 if (env->singlestep_enabled != enabled) {
1455 env->singlestep_enabled = enabled;
e22a25c9
AL
1456 if (kvm_enabled())
1457 kvm_update_guest_debug(env, 0);
1458 else {
1459 /* must flush all the translated code to avoid inconsistancies */
1460 /* XXX: only flush what is necessary */
1461 tb_flush(env);
1462 }
c33a346e
FB
1463 }
1464#endif
1465}
1466
34865134
FB
1467/* enable or disable low levels log */
1468void cpu_set_log(int log_flags)
1469{
1470 loglevel = log_flags;
1471 if (loglevel && !logfile) {
11fcfab4 1472 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1473 if (!logfile) {
1474 perror(logfilename);
1475 _exit(1);
1476 }
9fa3e853
FB
1477#if !defined(CONFIG_SOFTMMU)
1478 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1479 {
b55266b5 1480 static char logfile_buf[4096];
9fa3e853
FB
1481 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1482 }
1483#else
34865134 1484 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1485#endif
e735b91c
PB
1486 log_append = 1;
1487 }
1488 if (!loglevel && logfile) {
1489 fclose(logfile);
1490 logfile = NULL;
34865134
FB
1491 }
1492}
1493
1494void cpu_set_log_filename(const char *filename)
1495{
1496 logfilename = strdup(filename);
e735b91c
PB
1497 if (logfile) {
1498 fclose(logfile);
1499 logfile = NULL;
1500 }
1501 cpu_set_log(loglevel);
34865134 1502}
c33a346e 1503
3098dba0 1504static void cpu_unlink_tb(CPUState *env)
ea041c0e 1505{
3098dba0
AJ
1506#if defined(USE_NPTL)
1507 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1508 problem and hope the cpu will stop of its own accord. For userspace
1509 emulation this often isn't actually as bad as it sounds. Often
1510 signals are used primarily to interrupt blocking syscalls. */
1511#else
ea041c0e 1512 TranslationBlock *tb;
15a51156 1513 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1514
3098dba0
AJ
1515 tb = env->current_tb;
1516 /* if the cpu is currently executing code, we must unlink it and
1517 all the potentially executing TB */
1518 if (tb && !testandset(&interrupt_lock)) {
1519 env->current_tb = NULL;
1520 tb_reset_jump_recursive(tb);
1521 resetlock(&interrupt_lock);
be214e6c 1522 }
3098dba0
AJ
1523#endif
1524}
1525
1526/* mask must never be zero, except for A20 change call */
1527void cpu_interrupt(CPUState *env, int mask)
1528{
1529 int old_mask;
be214e6c 1530
2e70f6ef 1531 old_mask = env->interrupt_request;
68a79315 1532 env->interrupt_request |= mask;
3098dba0 1533
2e70f6ef 1534 if (use_icount) {
266910c4 1535 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1536#ifndef CONFIG_USER_ONLY
2e70f6ef 1537 if (!can_do_io(env)
be214e6c 1538 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1539 cpu_abort(env, "Raised interrupt while not in I/O function");
1540 }
1541#endif
1542 } else {
3098dba0 1543 cpu_unlink_tb(env);
ea041c0e
FB
1544 }
1545}
1546
b54ad049
FB
1547void cpu_reset_interrupt(CPUState *env, int mask)
1548{
1549 env->interrupt_request &= ~mask;
1550}
1551
3098dba0
AJ
1552void cpu_exit(CPUState *env)
1553{
1554 env->exit_request = 1;
1555 cpu_unlink_tb(env);
1556}
1557
c7cd6a37 1558const CPULogItem cpu_log_items[] = {
5fafdf24 1559 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1560 "show generated host assembly code for each compiled TB" },
1561 { CPU_LOG_TB_IN_ASM, "in_asm",
1562 "show target assembly code for each compiled TB" },
5fafdf24 1563 { CPU_LOG_TB_OP, "op",
57fec1fe 1564 "show micro ops for each compiled TB" },
f193c797 1565 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1566 "show micro ops "
1567#ifdef TARGET_I386
1568 "before eflags optimization and "
f193c797 1569#endif
e01a1157 1570 "after liveness analysis" },
f193c797
FB
1571 { CPU_LOG_INT, "int",
1572 "show interrupts/exceptions in short format" },
1573 { CPU_LOG_EXEC, "exec",
1574 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1575 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1576 "show CPU state before block translation" },
f193c797
FB
1577#ifdef TARGET_I386
1578 { CPU_LOG_PCALL, "pcall",
1579 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1580 { CPU_LOG_RESET, "cpu_reset",
1581 "show CPU state before CPU resets" },
f193c797 1582#endif
8e3a9fd2 1583#ifdef DEBUG_IOPORT
fd872598
FB
1584 { CPU_LOG_IOPORT, "ioport",
1585 "show all i/o ports accesses" },
8e3a9fd2 1586#endif
f193c797
FB
1587 { 0, NULL, NULL },
1588};
1589
1590static int cmp1(const char *s1, int n, const char *s2)
1591{
1592 if (strlen(s2) != n)
1593 return 0;
1594 return memcmp(s1, s2, n) == 0;
1595}
3b46e624 1596
f193c797
FB
1597/* takes a comma separated list of log masks. Return 0 if error. */
1598int cpu_str_to_log_mask(const char *str)
1599{
c7cd6a37 1600 const CPULogItem *item;
f193c797
FB
1601 int mask;
1602 const char *p, *p1;
1603
1604 p = str;
1605 mask = 0;
1606 for(;;) {
1607 p1 = strchr(p, ',');
1608 if (!p1)
1609 p1 = p + strlen(p);
8e3a9fd2
FB
1610 if(cmp1(p,p1-p,"all")) {
1611 for(item = cpu_log_items; item->mask != 0; item++) {
1612 mask |= item->mask;
1613 }
1614 } else {
f193c797
FB
1615 for(item = cpu_log_items; item->mask != 0; item++) {
1616 if (cmp1(p, p1 - p, item->name))
1617 goto found;
1618 }
1619 return 0;
8e3a9fd2 1620 }
f193c797
FB
1621 found:
1622 mask |= item->mask;
1623 if (*p1 != ',')
1624 break;
1625 p = p1 + 1;
1626 }
1627 return mask;
1628}
ea041c0e 1629
7501267e
FB
1630void cpu_abort(CPUState *env, const char *fmt, ...)
1631{
1632 va_list ap;
493ae1f0 1633 va_list ap2;
7501267e
FB
1634
1635 va_start(ap, fmt);
493ae1f0 1636 va_copy(ap2, ap);
7501267e
FB
1637 fprintf(stderr, "qemu: fatal: ");
1638 vfprintf(stderr, fmt, ap);
1639 fprintf(stderr, "\n");
1640#ifdef TARGET_I386
7fe48483
FB
1641 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1642#else
1643 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1644#endif
93fcfe39
AL
1645 if (qemu_log_enabled()) {
1646 qemu_log("qemu: fatal: ");
1647 qemu_log_vprintf(fmt, ap2);
1648 qemu_log("\n");
f9373291 1649#ifdef TARGET_I386
93fcfe39 1650 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1651#else
93fcfe39 1652 log_cpu_state(env, 0);
f9373291 1653#endif
31b1a7b4 1654 qemu_log_flush();
93fcfe39 1655 qemu_log_close();
924edcae 1656 }
493ae1f0 1657 va_end(ap2);
f9373291 1658 va_end(ap);
7501267e
FB
1659 abort();
1660}
1661
c5be9f08
TS
1662CPUState *cpu_copy(CPUState *env)
1663{
01ba9816 1664 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1665 CPUState *next_cpu = new_env->next_cpu;
1666 int cpu_index = new_env->cpu_index;
5a38f081
AL
1667#if defined(TARGET_HAS_ICE)
1668 CPUBreakpoint *bp;
1669 CPUWatchpoint *wp;
1670#endif
1671
c5be9f08 1672 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1673
1674 /* Preserve chaining and index. */
c5be9f08
TS
1675 new_env->next_cpu = next_cpu;
1676 new_env->cpu_index = cpu_index;
5a38f081
AL
1677
1678 /* Clone all break/watchpoints.
1679 Note: Once we support ptrace with hw-debug register access, make sure
1680 BP_CPU break/watchpoints are handled correctly on clone. */
1681 TAILQ_INIT(&env->breakpoints);
1682 TAILQ_INIT(&env->watchpoints);
1683#if defined(TARGET_HAS_ICE)
1684 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1685 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1686 }
1687 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1688 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1689 wp->flags, NULL);
1690 }
1691#endif
1692
c5be9f08
TS
1693 return new_env;
1694}
1695
0124311e
FB
1696#if !defined(CONFIG_USER_ONLY)
1697
5c751e99
EI
1698static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1699{
1700 unsigned int i;
1701
1702 /* Discard jump cache entries for any tb which might potentially
1703 overlap the flushed page. */
1704 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1705 memset (&env->tb_jmp_cache[i], 0,
1706 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1707
1708 i = tb_jmp_cache_hash_page(addr);
1709 memset (&env->tb_jmp_cache[i], 0,
1710 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1711}
1712
ee8b7021
FB
1713/* NOTE: if flush_global is true, also flush global entries (not
1714 implemented yet) */
1715void tlb_flush(CPUState *env, int flush_global)
33417e70 1716{
33417e70 1717 int i;
0124311e 1718
9fa3e853
FB
1719#if defined(DEBUG_TLB)
1720 printf("tlb_flush:\n");
1721#endif
0124311e
FB
1722 /* must reset current TB so that interrupts cannot modify the
1723 links while we are modifying them */
1724 env->current_tb = NULL;
1725
33417e70 1726 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1727 env->tlb_table[0][i].addr_read = -1;
1728 env->tlb_table[0][i].addr_write = -1;
1729 env->tlb_table[0][i].addr_code = -1;
1730 env->tlb_table[1][i].addr_read = -1;
1731 env->tlb_table[1][i].addr_write = -1;
1732 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1733#if (NB_MMU_MODES >= 3)
1734 env->tlb_table[2][i].addr_read = -1;
1735 env->tlb_table[2][i].addr_write = -1;
1736 env->tlb_table[2][i].addr_code = -1;
1737#if (NB_MMU_MODES == 4)
1738 env->tlb_table[3][i].addr_read = -1;
1739 env->tlb_table[3][i].addr_write = -1;
1740 env->tlb_table[3][i].addr_code = -1;
1741#endif
1742#endif
33417e70 1743 }
9fa3e853 1744
8a40a180 1745 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1746
0a962c02
FB
1747#ifdef USE_KQEMU
1748 if (env->kqemu_enabled) {
1749 kqemu_flush(env, flush_global);
1750 }
9fa3e853 1751#endif
e3db7226 1752 tlb_flush_count++;
33417e70
FB
1753}
1754
274da6b2 1755static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1756{
5fafdf24 1757 if (addr == (tlb_entry->addr_read &
84b7b8e7 1758 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1759 addr == (tlb_entry->addr_write &
84b7b8e7 1760 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1761 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1762 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1763 tlb_entry->addr_read = -1;
1764 tlb_entry->addr_write = -1;
1765 tlb_entry->addr_code = -1;
1766 }
61382a50
FB
1767}
1768
2e12669a 1769void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1770{
8a40a180 1771 int i;
0124311e 1772
9fa3e853 1773#if defined(DEBUG_TLB)
108c49b8 1774 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1775#endif
0124311e
FB
1776 /* must reset current TB so that interrupts cannot modify the
1777 links while we are modifying them */
1778 env->current_tb = NULL;
61382a50
FB
1779
1780 addr &= TARGET_PAGE_MASK;
1781 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1782 tlb_flush_entry(&env->tlb_table[0][i], addr);
1783 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1784#if (NB_MMU_MODES >= 3)
1785 tlb_flush_entry(&env->tlb_table[2][i], addr);
1786#if (NB_MMU_MODES == 4)
1787 tlb_flush_entry(&env->tlb_table[3][i], addr);
1788#endif
1789#endif
0124311e 1790
5c751e99 1791 tlb_flush_jmp_cache(env, addr);
9fa3e853 1792
0a962c02
FB
1793#ifdef USE_KQEMU
1794 if (env->kqemu_enabled) {
1795 kqemu_flush_page(env, addr);
1796 }
1797#endif
9fa3e853
FB
1798}
1799
9fa3e853
FB
1800/* update the TLBs so that writes to code in the virtual page 'addr'
1801 can be detected */
6a00d601 1802static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1803{
5fafdf24 1804 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1805 ram_addr + TARGET_PAGE_SIZE,
1806 CODE_DIRTY_FLAG);
9fa3e853
FB
1807}
1808
9fa3e853 1809/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1810 tested for self modifying code */
5fafdf24 1811static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1812 target_ulong vaddr)
9fa3e853 1813{
3a7d929e 1814 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1815}
1816
5fafdf24 1817static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1818 unsigned long start, unsigned long length)
1819{
1820 unsigned long addr;
84b7b8e7
FB
1821 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1822 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1823 if ((addr - start) < length) {
0f459d16 1824 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1825 }
1826 }
1827}
1828
3a7d929e 1829void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1830 int dirty_flags)
1ccde1cb
FB
1831{
1832 CPUState *env;
4f2ac237 1833 unsigned long length, start1;
0a962c02
FB
1834 int i, mask, len;
1835 uint8_t *p;
1ccde1cb
FB
1836
1837 start &= TARGET_PAGE_MASK;
1838 end = TARGET_PAGE_ALIGN(end);
1839
1840 length = end - start;
1841 if (length == 0)
1842 return;
0a962c02 1843 len = length >> TARGET_PAGE_BITS;
3a7d929e 1844#ifdef USE_KQEMU
6a00d601
FB
1845 /* XXX: should not depend on cpu context */
1846 env = first_cpu;
3a7d929e 1847 if (env->kqemu_enabled) {
f23db169
FB
1848 ram_addr_t addr;
1849 addr = start;
1850 for(i = 0; i < len; i++) {
1851 kqemu_set_notdirty(env, addr);
1852 addr += TARGET_PAGE_SIZE;
1853 }
3a7d929e
FB
1854 }
1855#endif
f23db169
FB
1856 mask = ~dirty_flags;
1857 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1858 for(i = 0; i < len; i++)
1859 p[i] &= mask;
1860
1ccde1cb
FB
1861 /* we modify the TLB cache so that the dirty bit will be set again
1862 when accessing the range */
59817ccb 1863 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1864 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1865 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1866 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1867 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1868 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1869#if (NB_MMU_MODES >= 3)
1870 for(i = 0; i < CPU_TLB_SIZE; i++)
1871 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1872#if (NB_MMU_MODES == 4)
1873 for(i = 0; i < CPU_TLB_SIZE; i++)
1874 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1875#endif
1876#endif
6a00d601 1877 }
1ccde1cb
FB
1878}
1879
74576198
AL
1880int cpu_physical_memory_set_dirty_tracking(int enable)
1881{
1882 in_migration = enable;
1883 return 0;
1884}
1885
1886int cpu_physical_memory_get_dirty_tracking(void)
1887{
1888 return in_migration;
1889}
1890
2bec46dc
AL
1891void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1892{
1893 if (kvm_enabled())
1894 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1895}
1896
3a7d929e
FB
1897static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1898{
1899 ram_addr_t ram_addr;
1900
84b7b8e7 1901 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1902 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1903 tlb_entry->addend - (unsigned long)phys_ram_base;
1904 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1905 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1906 }
1907 }
1908}
1909
1910/* update the TLB according to the current state of the dirty bits */
1911void cpu_tlb_update_dirty(CPUState *env)
1912{
1913 int i;
1914 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1915 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1916 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1917 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1918#if (NB_MMU_MODES >= 3)
1919 for(i = 0; i < CPU_TLB_SIZE; i++)
1920 tlb_update_dirty(&env->tlb_table[2][i]);
1921#if (NB_MMU_MODES == 4)
1922 for(i = 0; i < CPU_TLB_SIZE; i++)
1923 tlb_update_dirty(&env->tlb_table[3][i]);
1924#endif
1925#endif
3a7d929e
FB
1926}
1927
0f459d16 1928static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1929{
0f459d16
PB
1930 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1931 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1932}
1933
0f459d16
PB
1934/* update the TLB corresponding to virtual page vaddr
1935 so that it is no longer dirty */
1936static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1937{
1ccde1cb
FB
1938 int i;
1939
0f459d16 1940 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1941 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1942 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1943 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1944#if (NB_MMU_MODES >= 3)
0f459d16 1945 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1946#if (NB_MMU_MODES == 4)
0f459d16 1947 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1948#endif
1949#endif
9fa3e853
FB
1950}
1951
59817ccb
FB
1952/* add a new TLB entry. At most one entry for a given virtual address
1953 is permitted. Return 0 if OK or 2 if the page could not be mapped
1954 (can only happen in non SOFTMMU mode for I/O pages or pages
1955 conflicting with the host address space). */
5fafdf24
TS
1956int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1957 target_phys_addr_t paddr, int prot,
6ebbf390 1958 int mmu_idx, int is_softmmu)
9fa3e853 1959{
92e873b9 1960 PhysPageDesc *p;
4f2ac237 1961 unsigned long pd;
9fa3e853 1962 unsigned int index;
4f2ac237 1963 target_ulong address;
0f459d16 1964 target_ulong code_address;
108c49b8 1965 target_phys_addr_t addend;
9fa3e853 1966 int ret;
84b7b8e7 1967 CPUTLBEntry *te;
a1d1bb31 1968 CPUWatchpoint *wp;
0f459d16 1969 target_phys_addr_t iotlb;
9fa3e853 1970
92e873b9 1971 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1972 if (!p) {
1973 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1974 } else {
1975 pd = p->phys_offset;
9fa3e853
FB
1976 }
1977#if defined(DEBUG_TLB)
6ebbf390
JM
1978 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1979 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1980#endif
1981
1982 ret = 0;
0f459d16
PB
1983 address = vaddr;
1984 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1985 /* IO memory case (romd handled later) */
1986 address |= TLB_MMIO;
1987 }
1988 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1989 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1990 /* Normal RAM. */
1991 iotlb = pd & TARGET_PAGE_MASK;
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1993 iotlb |= IO_MEM_NOTDIRTY;
1994 else
1995 iotlb |= IO_MEM_ROM;
1996 } else {
1997 /* IO handlers are currently passed a phsical address.
1998 It would be nice to pass an offset from the base address
1999 of that region. This would avoid having to special case RAM,
2000 and avoid full address decoding in every device.
2001 We can't use the high bits of pd for this because
2002 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2003 iotlb = (pd & ~TARGET_PAGE_MASK);
2004 if (p) {
8da3ff18
PB
2005 iotlb += p->region_offset;
2006 } else {
2007 iotlb += paddr;
2008 }
0f459d16
PB
2009 }
2010
2011 code_address = address;
2012 /* Make accesses to pages with watchpoints go via the
2013 watchpoint trap routines. */
c0ce998e 2014 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2015 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2016 iotlb = io_mem_watch + paddr;
2017 /* TODO: The memory case can be optimized by not trapping
2018 reads of pages with a write breakpoint. */
2019 address |= TLB_MMIO;
6658ffb8 2020 }
0f459d16 2021 }
d79acba4 2022
0f459d16
PB
2023 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2024 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2025 te = &env->tlb_table[mmu_idx][index];
2026 te->addend = addend - vaddr;
2027 if (prot & PAGE_READ) {
2028 te->addr_read = address;
2029 } else {
2030 te->addr_read = -1;
2031 }
5c751e99 2032
0f459d16
PB
2033 if (prot & PAGE_EXEC) {
2034 te->addr_code = code_address;
2035 } else {
2036 te->addr_code = -1;
2037 }
2038 if (prot & PAGE_WRITE) {
2039 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2040 (pd & IO_MEM_ROMD)) {
2041 /* Write access calls the I/O callback. */
2042 te->addr_write = address | TLB_MMIO;
2043 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2044 !cpu_physical_memory_is_dirty(pd)) {
2045 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2046 } else {
0f459d16 2047 te->addr_write = address;
9fa3e853 2048 }
0f459d16
PB
2049 } else {
2050 te->addr_write = -1;
9fa3e853 2051 }
9fa3e853
FB
2052 return ret;
2053}
2054
0124311e
FB
2055#else
2056
ee8b7021 2057void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2058{
2059}
2060
2e12669a 2061void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2062{
2063}
2064
5fafdf24
TS
2065int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2066 target_phys_addr_t paddr, int prot,
6ebbf390 2067 int mmu_idx, int is_softmmu)
9fa3e853
FB
2068{
2069 return 0;
2070}
0124311e 2071
9fa3e853
FB
2072/* dump memory mappings */
2073void page_dump(FILE *f)
33417e70 2074{
9fa3e853
FB
2075 unsigned long start, end;
2076 int i, j, prot, prot1;
2077 PageDesc *p;
33417e70 2078
9fa3e853
FB
2079 fprintf(f, "%-8s %-8s %-8s %s\n",
2080 "start", "end", "size", "prot");
2081 start = -1;
2082 end = -1;
2083 prot = 0;
2084 for(i = 0; i <= L1_SIZE; i++) {
2085 if (i < L1_SIZE)
2086 p = l1_map[i];
2087 else
2088 p = NULL;
2089 for(j = 0;j < L2_SIZE; j++) {
2090 if (!p)
2091 prot1 = 0;
2092 else
2093 prot1 = p[j].flags;
2094 if (prot1 != prot) {
2095 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2096 if (start != -1) {
2097 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2098 start, end, end - start,
9fa3e853
FB
2099 prot & PAGE_READ ? 'r' : '-',
2100 prot & PAGE_WRITE ? 'w' : '-',
2101 prot & PAGE_EXEC ? 'x' : '-');
2102 }
2103 if (prot1 != 0)
2104 start = end;
2105 else
2106 start = -1;
2107 prot = prot1;
2108 }
2109 if (!p)
2110 break;
2111 }
33417e70 2112 }
33417e70
FB
2113}
2114
53a5960a 2115int page_get_flags(target_ulong address)
33417e70 2116{
9fa3e853
FB
2117 PageDesc *p;
2118
2119 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2120 if (!p)
9fa3e853
FB
2121 return 0;
2122 return p->flags;
2123}
2124
2125/* modify the flags of a page and invalidate the code if
2126 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2127 depending on PAGE_WRITE */
53a5960a 2128void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2129{
2130 PageDesc *p;
53a5960a 2131 target_ulong addr;
9fa3e853 2132
c8a706fe 2133 /* mmap_lock should already be held. */
9fa3e853
FB
2134 start = start & TARGET_PAGE_MASK;
2135 end = TARGET_PAGE_ALIGN(end);
2136 if (flags & PAGE_WRITE)
2137 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2138 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2139 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2140 /* We may be called for host regions that are outside guest
2141 address space. */
2142 if (!p)
2143 return;
9fa3e853
FB
2144 /* if the write protection is set, then we invalidate the code
2145 inside */
5fafdf24 2146 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2147 (flags & PAGE_WRITE) &&
2148 p->first_tb) {
d720b93d 2149 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2150 }
2151 p->flags = flags;
2152 }
33417e70
FB
2153}
2154
3d97b40b
TS
2155int page_check_range(target_ulong start, target_ulong len, int flags)
2156{
2157 PageDesc *p;
2158 target_ulong end;
2159 target_ulong addr;
2160
55f280c9
AZ
2161 if (start + len < start)
2162 /* we've wrapped around */
2163 return -1;
2164
3d97b40b
TS
2165 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2166 start = start & TARGET_PAGE_MASK;
2167
3d97b40b
TS
2168 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2169 p = page_find(addr >> TARGET_PAGE_BITS);
2170 if( !p )
2171 return -1;
2172 if( !(p->flags & PAGE_VALID) )
2173 return -1;
2174
dae3270c 2175 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2176 return -1;
dae3270c
FB
2177 if (flags & PAGE_WRITE) {
2178 if (!(p->flags & PAGE_WRITE_ORG))
2179 return -1;
2180 /* unprotect the page if it was put read-only because it
2181 contains translated code */
2182 if (!(p->flags & PAGE_WRITE)) {
2183 if (!page_unprotect(addr, 0, NULL))
2184 return -1;
2185 }
2186 return 0;
2187 }
3d97b40b
TS
2188 }
2189 return 0;
2190}
2191
9fa3e853
FB
2192/* called from signal handler: invalidate the code and unprotect the
2193 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2194int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2195{
2196 unsigned int page_index, prot, pindex;
2197 PageDesc *p, *p1;
53a5960a 2198 target_ulong host_start, host_end, addr;
9fa3e853 2199
c8a706fe
PB
2200 /* Technically this isn't safe inside a signal handler. However we
2201 know this only ever happens in a synchronous SEGV handler, so in
2202 practice it seems to be ok. */
2203 mmap_lock();
2204
83fb7adf 2205 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2206 page_index = host_start >> TARGET_PAGE_BITS;
2207 p1 = page_find(page_index);
c8a706fe
PB
2208 if (!p1) {
2209 mmap_unlock();
9fa3e853 2210 return 0;
c8a706fe 2211 }
83fb7adf 2212 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2213 p = p1;
2214 prot = 0;
2215 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2216 prot |= p->flags;
2217 p++;
2218 }
2219 /* if the page was really writable, then we change its
2220 protection back to writable */
2221 if (prot & PAGE_WRITE_ORG) {
2222 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2223 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2224 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2225 (prot & PAGE_BITS) | PAGE_WRITE);
2226 p1[pindex].flags |= PAGE_WRITE;
2227 /* and since the content will be modified, we must invalidate
2228 the corresponding translated code. */
d720b93d 2229 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2230#ifdef DEBUG_TB_CHECK
2231 tb_invalidate_check(address);
2232#endif
c8a706fe 2233 mmap_unlock();
9fa3e853
FB
2234 return 1;
2235 }
2236 }
c8a706fe 2237 mmap_unlock();
9fa3e853
FB
2238 return 0;
2239}
2240
6a00d601
FB
2241static inline void tlb_set_dirty(CPUState *env,
2242 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2243{
2244}
9fa3e853
FB
2245#endif /* defined(CONFIG_USER_ONLY) */
2246
e2eef170 2247#if !defined(CONFIG_USER_ONLY)
8da3ff18 2248
db7b5426 2249static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2250 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2251static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2252 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2253#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2254 need_subpage) \
2255 do { \
2256 if (addr > start_addr) \
2257 start_addr2 = 0; \
2258 else { \
2259 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2260 if (start_addr2 > 0) \
2261 need_subpage = 1; \
2262 } \
2263 \
49e9fba2 2264 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2265 end_addr2 = TARGET_PAGE_SIZE - 1; \
2266 else { \
2267 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2268 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2269 need_subpage = 1; \
2270 } \
2271 } while (0)
2272
33417e70
FB
2273/* register physical memory. 'size' must be a multiple of the target
2274 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2275 io memory page. The address used when calling the IO function is
2276 the offset from the start of the region, plus region_offset. Both
2277 start_region and regon_offset are rounded down to a page boundary
2278 before calculating this offset. This should not be a problem unless
2279 the low bits of start_addr and region_offset differ. */
2280void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2281 ram_addr_t size,
2282 ram_addr_t phys_offset,
2283 ram_addr_t region_offset)
33417e70 2284{
108c49b8 2285 target_phys_addr_t addr, end_addr;
92e873b9 2286 PhysPageDesc *p;
9d42037b 2287 CPUState *env;
00f82b8a 2288 ram_addr_t orig_size = size;
db7b5426 2289 void *subpage;
33417e70 2290
da260249
FB
2291#ifdef USE_KQEMU
2292 /* XXX: should not depend on cpu context */
2293 env = first_cpu;
2294 if (env->kqemu_enabled) {
2295 kqemu_set_phys_mem(start_addr, size, phys_offset);
2296 }
2297#endif
7ba1e619
AL
2298 if (kvm_enabled())
2299 kvm_set_phys_mem(start_addr, size, phys_offset);
2300
67c4d23c
PB
2301 if (phys_offset == IO_MEM_UNASSIGNED) {
2302 region_offset = start_addr;
2303 }
8da3ff18 2304 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2305 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2306 end_addr = start_addr + (target_phys_addr_t)size;
2307 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2309 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2310 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2311 target_phys_addr_t start_addr2, end_addr2;
2312 int need_subpage = 0;
2313
2314 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2315 need_subpage);
4254fab8 2316 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2317 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2318 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2319 &p->phys_offset, orig_memory,
2320 p->region_offset);
db7b5426
BS
2321 } else {
2322 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2323 >> IO_MEM_SHIFT];
2324 }
8da3ff18
PB
2325 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2326 region_offset);
2327 p->region_offset = 0;
db7b5426
BS
2328 } else {
2329 p->phys_offset = phys_offset;
2330 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2331 (phys_offset & IO_MEM_ROMD))
2332 phys_offset += TARGET_PAGE_SIZE;
2333 }
2334 } else {
2335 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2336 p->phys_offset = phys_offset;
8da3ff18 2337 p->region_offset = region_offset;
db7b5426 2338 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2339 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2340 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2341 } else {
db7b5426
BS
2342 target_phys_addr_t start_addr2, end_addr2;
2343 int need_subpage = 0;
2344
2345 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2346 end_addr2, need_subpage);
2347
4254fab8 2348 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2349 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2350 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2351 addr & TARGET_PAGE_MASK);
db7b5426 2352 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2353 phys_offset, region_offset);
2354 p->region_offset = 0;
db7b5426
BS
2355 }
2356 }
2357 }
8da3ff18 2358 region_offset += TARGET_PAGE_SIZE;
33417e70 2359 }
3b46e624 2360
9d42037b
FB
2361 /* since each CPU stores ram addresses in its TLB cache, we must
2362 reset the modified entries */
2363 /* XXX: slow ! */
2364 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2365 tlb_flush(env, 1);
2366 }
33417e70
FB
2367}
2368
ba863458 2369/* XXX: temporary until new memory mapping API */
00f82b8a 2370ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2371{
2372 PhysPageDesc *p;
2373
2374 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2375 if (!p)
2376 return IO_MEM_UNASSIGNED;
2377 return p->phys_offset;
2378}
2379
f65ed4c1
AL
2380void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2381{
2382 if (kvm_enabled())
2383 kvm_coalesce_mmio_region(addr, size);
2384}
2385
2386void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2387{
2388 if (kvm_enabled())
2389 kvm_uncoalesce_mmio_region(addr, size);
2390}
2391
e9a1ab19 2392/* XXX: better than nothing */
00f82b8a 2393ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2394{
2395 ram_addr_t addr;
7fb4fdcf 2396 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2397 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2398 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2399 abort();
2400 }
2401 addr = phys_ram_alloc_offset;
2402 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2403 return addr;
2404}
2405
2406void qemu_ram_free(ram_addr_t addr)
2407{
2408}
2409
a4193c8a 2410static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2411{
67d3b957 2412#ifdef DEBUG_UNASSIGNED
ab3d1727 2413 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2414#endif
0a6f8a6d 2415#if defined(TARGET_SPARC)
e18231a3
BS
2416 do_unassigned_access(addr, 0, 0, 0, 1);
2417#endif
2418 return 0;
2419}
2420
2421static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2422{
2423#ifdef DEBUG_UNASSIGNED
2424 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2425#endif
0a6f8a6d 2426#if defined(TARGET_SPARC)
e18231a3
BS
2427 do_unassigned_access(addr, 0, 0, 0, 2);
2428#endif
2429 return 0;
2430}
2431
2432static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2433{
2434#ifdef DEBUG_UNASSIGNED
2435 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2436#endif
0a6f8a6d 2437#if defined(TARGET_SPARC)
e18231a3 2438 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2439#endif
33417e70
FB
2440 return 0;
2441}
2442
a4193c8a 2443static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2444{
67d3b957 2445#ifdef DEBUG_UNASSIGNED
ab3d1727 2446 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2447#endif
0a6f8a6d 2448#if defined(TARGET_SPARC)
e18231a3
BS
2449 do_unassigned_access(addr, 1, 0, 0, 1);
2450#endif
2451}
2452
2453static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2454{
2455#ifdef DEBUG_UNASSIGNED
2456 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2457#endif
0a6f8a6d 2458#if defined(TARGET_SPARC)
e18231a3
BS
2459 do_unassigned_access(addr, 1, 0, 0, 2);
2460#endif
2461}
2462
2463static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2464{
2465#ifdef DEBUG_UNASSIGNED
2466 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2467#endif
0a6f8a6d 2468#if defined(TARGET_SPARC)
e18231a3 2469 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2470#endif
33417e70
FB
2471}
2472
2473static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2474 unassigned_mem_readb,
e18231a3
BS
2475 unassigned_mem_readw,
2476 unassigned_mem_readl,
33417e70
FB
2477};
2478
2479static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2480 unassigned_mem_writeb,
e18231a3
BS
2481 unassigned_mem_writew,
2482 unassigned_mem_writel,
33417e70
FB
2483};
2484
0f459d16
PB
2485static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2486 uint32_t val)
9fa3e853 2487{
3a7d929e 2488 int dirty_flags;
3a7d929e
FB
2489 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2490 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2491#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2492 tb_invalidate_phys_page_fast(ram_addr, 1);
2493 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2494#endif
3a7d929e 2495 }
0f459d16 2496 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2497#ifdef USE_KQEMU
2498 if (cpu_single_env->kqemu_enabled &&
2499 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2500 kqemu_modify_page(cpu_single_env, ram_addr);
2501#endif
f23db169
FB
2502 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2503 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2504 /* we remove the notdirty callback only if the code has been
2505 flushed */
2506 if (dirty_flags == 0xff)
2e70f6ef 2507 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2508}
2509
0f459d16
PB
2510static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2511 uint32_t val)
9fa3e853 2512{
3a7d929e 2513 int dirty_flags;
3a7d929e
FB
2514 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2515 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2516#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2517 tb_invalidate_phys_page_fast(ram_addr, 2);
2518 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2519#endif
3a7d929e 2520 }
0f459d16 2521 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2522#ifdef USE_KQEMU
2523 if (cpu_single_env->kqemu_enabled &&
2524 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2525 kqemu_modify_page(cpu_single_env, ram_addr);
2526#endif
f23db169
FB
2527 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2528 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2529 /* we remove the notdirty callback only if the code has been
2530 flushed */
2531 if (dirty_flags == 0xff)
2e70f6ef 2532 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2533}
2534
0f459d16
PB
2535static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2536 uint32_t val)
9fa3e853 2537{
3a7d929e 2538 int dirty_flags;
3a7d929e
FB
2539 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2540 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2541#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2542 tb_invalidate_phys_page_fast(ram_addr, 4);
2543 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2544#endif
3a7d929e 2545 }
0f459d16 2546 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2547#ifdef USE_KQEMU
2548 if (cpu_single_env->kqemu_enabled &&
2549 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2550 kqemu_modify_page(cpu_single_env, ram_addr);
2551#endif
f23db169
FB
2552 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2553 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2554 /* we remove the notdirty callback only if the code has been
2555 flushed */
2556 if (dirty_flags == 0xff)
2e70f6ef 2557 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2558}
2559
3a7d929e 2560static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2561 NULL, /* never used */
2562 NULL, /* never used */
2563 NULL, /* never used */
2564};
2565
1ccde1cb
FB
2566static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2567 notdirty_mem_writeb,
2568 notdirty_mem_writew,
2569 notdirty_mem_writel,
2570};
2571
0f459d16 2572/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2573static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2574{
2575 CPUState *env = cpu_single_env;
06d55cc1
AL
2576 target_ulong pc, cs_base;
2577 TranslationBlock *tb;
0f459d16 2578 target_ulong vaddr;
a1d1bb31 2579 CPUWatchpoint *wp;
06d55cc1 2580 int cpu_flags;
0f459d16 2581
06d55cc1
AL
2582 if (env->watchpoint_hit) {
2583 /* We re-entered the check after replacing the TB. Now raise
2584 * the debug interrupt so that is will trigger after the
2585 * current instruction. */
2586 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2587 return;
2588 }
2e70f6ef 2589 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2590 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2591 if ((vaddr == (wp->vaddr & len_mask) ||
2592 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2593 wp->flags |= BP_WATCHPOINT_HIT;
2594 if (!env->watchpoint_hit) {
2595 env->watchpoint_hit = wp;
2596 tb = tb_find_pc(env->mem_io_pc);
2597 if (!tb) {
2598 cpu_abort(env, "check_watchpoint: could not find TB for "
2599 "pc=%p", (void *)env->mem_io_pc);
2600 }
2601 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2602 tb_phys_invalidate(tb, -1);
2603 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2604 env->exception_index = EXCP_DEBUG;
2605 } else {
2606 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2607 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2608 }
2609 cpu_resume_from_signal(env, NULL);
06d55cc1 2610 }
6e140f28
AL
2611 } else {
2612 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2613 }
2614 }
2615}
2616
6658ffb8
PB
2617/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2618 so these check for a hit then pass through to the normal out-of-line
2619 phys routines. */
2620static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2621{
b4051334 2622 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2623 return ldub_phys(addr);
2624}
2625
2626static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2627{
b4051334 2628 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2629 return lduw_phys(addr);
2630}
2631
2632static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2633{
b4051334 2634 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2635 return ldl_phys(addr);
2636}
2637
6658ffb8
PB
2638static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2639 uint32_t val)
2640{
b4051334 2641 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2642 stb_phys(addr, val);
2643}
2644
2645static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2646 uint32_t val)
2647{
b4051334 2648 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2649 stw_phys(addr, val);
2650}
2651
2652static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2653 uint32_t val)
2654{
b4051334 2655 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2656 stl_phys(addr, val);
2657}
2658
2659static CPUReadMemoryFunc *watch_mem_read[3] = {
2660 watch_mem_readb,
2661 watch_mem_readw,
2662 watch_mem_readl,
2663};
2664
2665static CPUWriteMemoryFunc *watch_mem_write[3] = {
2666 watch_mem_writeb,
2667 watch_mem_writew,
2668 watch_mem_writel,
2669};
6658ffb8 2670
db7b5426
BS
2671static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2672 unsigned int len)
2673{
db7b5426
BS
2674 uint32_t ret;
2675 unsigned int idx;
2676
8da3ff18 2677 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2678#if defined(DEBUG_SUBPAGE)
2679 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2680 mmio, len, addr, idx);
2681#endif
8da3ff18
PB
2682 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2683 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2684
2685 return ret;
2686}
2687
2688static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2689 uint32_t value, unsigned int len)
2690{
db7b5426
BS
2691 unsigned int idx;
2692
8da3ff18 2693 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2694#if defined(DEBUG_SUBPAGE)
2695 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2696 mmio, len, addr, idx, value);
2697#endif
8da3ff18
PB
2698 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2699 addr + mmio->region_offset[idx][1][len],
2700 value);
db7b5426
BS
2701}
2702
2703static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2704{
2705#if defined(DEBUG_SUBPAGE)
2706 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2707#endif
2708
2709 return subpage_readlen(opaque, addr, 0);
2710}
2711
2712static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2713 uint32_t value)
2714{
2715#if defined(DEBUG_SUBPAGE)
2716 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2717#endif
2718 subpage_writelen(opaque, addr, value, 0);
2719}
2720
2721static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2722{
2723#if defined(DEBUG_SUBPAGE)
2724 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2725#endif
2726
2727 return subpage_readlen(opaque, addr, 1);
2728}
2729
2730static void subpage_writew (void *opaque, target_phys_addr_t addr,
2731 uint32_t value)
2732{
2733#if defined(DEBUG_SUBPAGE)
2734 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2735#endif
2736 subpage_writelen(opaque, addr, value, 1);
2737}
2738
2739static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2740{
2741#if defined(DEBUG_SUBPAGE)
2742 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2743#endif
2744
2745 return subpage_readlen(opaque, addr, 2);
2746}
2747
2748static void subpage_writel (void *opaque,
2749 target_phys_addr_t addr, uint32_t value)
2750{
2751#if defined(DEBUG_SUBPAGE)
2752 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2753#endif
2754 subpage_writelen(opaque, addr, value, 2);
2755}
2756
2757static CPUReadMemoryFunc *subpage_read[] = {
2758 &subpage_readb,
2759 &subpage_readw,
2760 &subpage_readl,
2761};
2762
2763static CPUWriteMemoryFunc *subpage_write[] = {
2764 &subpage_writeb,
2765 &subpage_writew,
2766 &subpage_writel,
2767};
2768
2769static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2770 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2771{
2772 int idx, eidx;
4254fab8 2773 unsigned int i;
db7b5426
BS
2774
2775 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2776 return -1;
2777 idx = SUBPAGE_IDX(start);
2778 eidx = SUBPAGE_IDX(end);
2779#if defined(DEBUG_SUBPAGE)
2780 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2781 mmio, start, end, idx, eidx, memory);
2782#endif
2783 memory >>= IO_MEM_SHIFT;
2784 for (; idx <= eidx; idx++) {
4254fab8 2785 for (i = 0; i < 4; i++) {
3ee89922
BS
2786 if (io_mem_read[memory][i]) {
2787 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2788 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2789 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2790 }
2791 if (io_mem_write[memory][i]) {
2792 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2793 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2794 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2795 }
4254fab8 2796 }
db7b5426
BS
2797 }
2798
2799 return 0;
2800}
2801
00f82b8a 2802static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2803 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2804{
2805 subpage_t *mmio;
2806 int subpage_memory;
2807
2808 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2809
2810 mmio->base = base;
2811 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
db7b5426 2812#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2813 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2814 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2815#endif
1eec614b
AL
2816 *phys = subpage_memory | IO_MEM_SUBPAGE;
2817 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2818 region_offset);
db7b5426
BS
2819
2820 return mmio;
2821}
2822
88715657
AL
2823static int get_free_io_mem_idx(void)
2824{
2825 int i;
2826
2827 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2828 if (!io_mem_used[i]) {
2829 io_mem_used[i] = 1;
2830 return i;
2831 }
2832
2833 return -1;
2834}
2835
33417e70
FB
2836static void io_mem_init(void)
2837{
88715657
AL
2838 int i;
2839
3a7d929e 2840 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2841 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2842 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
88715657
AL
2843 for (i=0; i<5; i++)
2844 io_mem_used[i] = 1;
1ccde1cb 2845
0f459d16 2846 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2847 watch_mem_write, NULL);
1ccde1cb 2848 /* alloc dirty bits array */
0a962c02 2849 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2850 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2851}
2852
2853/* mem_read and mem_write are arrays of functions containing the
2854 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2855 2). Functions can be omitted with a NULL function pointer. The
2856 registered functions may be modified dynamically later.
2857 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2858 modified. If it is zero, a new io zone is allocated. The return
2859 value can be used with cpu_register_physical_memory(). (-1) is
2860 returned if error. */
33417e70
FB
2861int cpu_register_io_memory(int io_index,
2862 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2863 CPUWriteMemoryFunc **mem_write,
2864 void *opaque)
33417e70 2865{
4254fab8 2866 int i, subwidth = 0;
33417e70
FB
2867
2868 if (io_index <= 0) {
88715657
AL
2869 io_index = get_free_io_mem_idx();
2870 if (io_index == -1)
2871 return io_index;
33417e70
FB
2872 } else {
2873 if (io_index >= IO_MEM_NB_ENTRIES)
2874 return -1;
2875 }
b5ff1b31 2876
33417e70 2877 for(i = 0;i < 3; i++) {
4254fab8
BS
2878 if (!mem_read[i] || !mem_write[i])
2879 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2880 io_mem_read[io_index][i] = mem_read[i];
2881 io_mem_write[io_index][i] = mem_write[i];
2882 }
a4193c8a 2883 io_mem_opaque[io_index] = opaque;
4254fab8 2884 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2885}
61382a50 2886
88715657
AL
2887void cpu_unregister_io_memory(int io_table_address)
2888{
2889 int i;
2890 int io_index = io_table_address >> IO_MEM_SHIFT;
2891
2892 for (i=0;i < 3; i++) {
2893 io_mem_read[io_index][i] = unassigned_mem_read[i];
2894 io_mem_write[io_index][i] = unassigned_mem_write[i];
2895 }
2896 io_mem_opaque[io_index] = NULL;
2897 io_mem_used[io_index] = 0;
2898}
2899
8926b517
FB
2900CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2901{
2902 return io_mem_write[io_index >> IO_MEM_SHIFT];
2903}
2904
2905CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2906{
2907 return io_mem_read[io_index >> IO_MEM_SHIFT];
2908}
2909
e2eef170
PB
2910#endif /* !defined(CONFIG_USER_ONLY) */
2911
13eb76e0
FB
2912/* physical memory access (slow version, mainly for debug) */
2913#if defined(CONFIG_USER_ONLY)
5fafdf24 2914void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2915 int len, int is_write)
2916{
2917 int l, flags;
2918 target_ulong page;
53a5960a 2919 void * p;
13eb76e0
FB
2920
2921 while (len > 0) {
2922 page = addr & TARGET_PAGE_MASK;
2923 l = (page + TARGET_PAGE_SIZE) - addr;
2924 if (l > len)
2925 l = len;
2926 flags = page_get_flags(page);
2927 if (!(flags & PAGE_VALID))
2928 return;
2929 if (is_write) {
2930 if (!(flags & PAGE_WRITE))
2931 return;
579a97f7 2932 /* XXX: this code should not depend on lock_user */
72fb7daa 2933 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2934 /* FIXME - should this return an error rather than just fail? */
2935 return;
72fb7daa
AJ
2936 memcpy(p, buf, l);
2937 unlock_user(p, addr, l);
13eb76e0
FB
2938 } else {
2939 if (!(flags & PAGE_READ))
2940 return;
579a97f7 2941 /* XXX: this code should not depend on lock_user */
72fb7daa 2942 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2943 /* FIXME - should this return an error rather than just fail? */
2944 return;
72fb7daa 2945 memcpy(buf, p, l);
5b257578 2946 unlock_user(p, addr, 0);
13eb76e0
FB
2947 }
2948 len -= l;
2949 buf += l;
2950 addr += l;
2951 }
2952}
8df1cd07 2953
13eb76e0 2954#else
5fafdf24 2955void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2956 int len, int is_write)
2957{
2958 int l, io_index;
2959 uint8_t *ptr;
2960 uint32_t val;
2e12669a
FB
2961 target_phys_addr_t page;
2962 unsigned long pd;
92e873b9 2963 PhysPageDesc *p;
3b46e624 2964
13eb76e0
FB
2965 while (len > 0) {
2966 page = addr & TARGET_PAGE_MASK;
2967 l = (page + TARGET_PAGE_SIZE) - addr;
2968 if (l > len)
2969 l = len;
92e873b9 2970 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2971 if (!p) {
2972 pd = IO_MEM_UNASSIGNED;
2973 } else {
2974 pd = p->phys_offset;
2975 }
3b46e624 2976
13eb76e0 2977 if (is_write) {
3a7d929e 2978 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 2979 target_phys_addr_t addr1 = addr;
13eb76e0 2980 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 2981 if (p)
6c2934db 2982 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
2983 /* XXX: could force cpu_single_env to NULL to avoid
2984 potential bugs */
6c2934db 2985 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 2986 /* 32 bit write access */
c27004ec 2987 val = ldl_p(buf);
6c2934db 2988 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 2989 l = 4;
6c2934db 2990 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 2991 /* 16 bit write access */
c27004ec 2992 val = lduw_p(buf);
6c2934db 2993 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
2994 l = 2;
2995 } else {
1c213d19 2996 /* 8 bit write access */
c27004ec 2997 val = ldub_p(buf);
6c2934db 2998 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
2999 l = 1;
3000 }
3001 } else {
b448f2f3
FB
3002 unsigned long addr1;
3003 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3004 /* RAM case */
b448f2f3 3005 ptr = phys_ram_base + addr1;
13eb76e0 3006 memcpy(ptr, buf, l);
3a7d929e
FB
3007 if (!cpu_physical_memory_is_dirty(addr1)) {
3008 /* invalidate code */
3009 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3010 /* set dirty bit */
5fafdf24 3011 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3012 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3013 }
13eb76e0
FB
3014 }
3015 } else {
5fafdf24 3016 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3017 !(pd & IO_MEM_ROMD)) {
6c2934db 3018 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3019 /* I/O case */
3020 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3021 if (p)
6c2934db
AJ
3022 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3023 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3024 /* 32 bit read access */
6c2934db 3025 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3026 stl_p(buf, val);
13eb76e0 3027 l = 4;
6c2934db 3028 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3029 /* 16 bit read access */
6c2934db 3030 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3031 stw_p(buf, val);
13eb76e0
FB
3032 l = 2;
3033 } else {
1c213d19 3034 /* 8 bit read access */
6c2934db 3035 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3036 stb_p(buf, val);
13eb76e0
FB
3037 l = 1;
3038 }
3039 } else {
3040 /* RAM case */
5fafdf24 3041 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3042 (addr & ~TARGET_PAGE_MASK);
3043 memcpy(buf, ptr, l);
3044 }
3045 }
3046 len -= l;
3047 buf += l;
3048 addr += l;
3049 }
3050}
8df1cd07 3051
d0ecd2aa 3052/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3053void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3054 const uint8_t *buf, int len)
3055{
3056 int l;
3057 uint8_t *ptr;
3058 target_phys_addr_t page;
3059 unsigned long pd;
3060 PhysPageDesc *p;
3b46e624 3061
d0ecd2aa
FB
3062 while (len > 0) {
3063 page = addr & TARGET_PAGE_MASK;
3064 l = (page + TARGET_PAGE_SIZE) - addr;
3065 if (l > len)
3066 l = len;
3067 p = phys_page_find(page >> TARGET_PAGE_BITS);
3068 if (!p) {
3069 pd = IO_MEM_UNASSIGNED;
3070 } else {
3071 pd = p->phys_offset;
3072 }
3b46e624 3073
d0ecd2aa 3074 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3075 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3076 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3077 /* do nothing */
3078 } else {
3079 unsigned long addr1;
3080 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3081 /* ROM/RAM case */
3082 ptr = phys_ram_base + addr1;
3083 memcpy(ptr, buf, l);
3084 }
3085 len -= l;
3086 buf += l;
3087 addr += l;
3088 }
3089}
3090
6d16c2f8
AL
3091typedef struct {
3092 void *buffer;
3093 target_phys_addr_t addr;
3094 target_phys_addr_t len;
3095} BounceBuffer;
3096
3097static BounceBuffer bounce;
3098
ba223c29
AL
3099typedef struct MapClient {
3100 void *opaque;
3101 void (*callback)(void *opaque);
3102 LIST_ENTRY(MapClient) link;
3103} MapClient;
3104
3105static LIST_HEAD(map_client_list, MapClient) map_client_list
3106 = LIST_HEAD_INITIALIZER(map_client_list);
3107
3108void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3109{
3110 MapClient *client = qemu_malloc(sizeof(*client));
3111
3112 client->opaque = opaque;
3113 client->callback = callback;
3114 LIST_INSERT_HEAD(&map_client_list, client, link);
3115 return client;
3116}
3117
3118void cpu_unregister_map_client(void *_client)
3119{
3120 MapClient *client = (MapClient *)_client;
3121
3122 LIST_REMOVE(client, link);
3123}
3124
3125static void cpu_notify_map_clients(void)
3126{
3127 MapClient *client;
3128
3129 while (!LIST_EMPTY(&map_client_list)) {
3130 client = LIST_FIRST(&map_client_list);
3131 client->callback(client->opaque);
3132 LIST_REMOVE(client, link);
3133 }
3134}
3135
6d16c2f8
AL
3136/* Map a physical memory region into a host virtual address.
3137 * May map a subset of the requested range, given by and returned in *plen.
3138 * May return NULL if resources needed to perform the mapping are exhausted.
3139 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3140 * Use cpu_register_map_client() to know when retrying the map operation is
3141 * likely to succeed.
6d16c2f8
AL
3142 */
3143void *cpu_physical_memory_map(target_phys_addr_t addr,
3144 target_phys_addr_t *plen,
3145 int is_write)
3146{
3147 target_phys_addr_t len = *plen;
3148 target_phys_addr_t done = 0;
3149 int l;
3150 uint8_t *ret = NULL;
3151 uint8_t *ptr;
3152 target_phys_addr_t page;
3153 unsigned long pd;
3154 PhysPageDesc *p;
3155 unsigned long addr1;
3156
3157 while (len > 0) {
3158 page = addr & TARGET_PAGE_MASK;
3159 l = (page + TARGET_PAGE_SIZE) - addr;
3160 if (l > len)
3161 l = len;
3162 p = phys_page_find(page >> TARGET_PAGE_BITS);
3163 if (!p) {
3164 pd = IO_MEM_UNASSIGNED;
3165 } else {
3166 pd = p->phys_offset;
3167 }
3168
3169 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3170 if (done || bounce.buffer) {
3171 break;
3172 }
3173 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3174 bounce.addr = addr;
3175 bounce.len = l;
3176 if (!is_write) {
3177 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3178 }
3179 ptr = bounce.buffer;
3180 } else {
3181 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3182 ptr = phys_ram_base + addr1;
3183 }
3184 if (!done) {
3185 ret = ptr;
3186 } else if (ret + done != ptr) {
3187 break;
3188 }
3189
3190 len -= l;
3191 addr += l;
3192 done += l;
3193 }
3194 *plen = done;
3195 return ret;
3196}
3197
3198/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3199 * Will also mark the memory as dirty if is_write == 1. access_len gives
3200 * the amount of memory that was actually read or written by the caller.
3201 */
3202void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3203 int is_write, target_phys_addr_t access_len)
3204{
3205 if (buffer != bounce.buffer) {
3206 if (is_write) {
3207 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3208 while (access_len) {
3209 unsigned l;
3210 l = TARGET_PAGE_SIZE;
3211 if (l > access_len)
3212 l = access_len;
3213 if (!cpu_physical_memory_is_dirty(addr1)) {
3214 /* invalidate code */
3215 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3216 /* set dirty bit */
3217 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3218 (0xff & ~CODE_DIRTY_FLAG);
3219 }
3220 addr1 += l;
3221 access_len -= l;
3222 }
3223 }
3224 return;
3225 }
3226 if (is_write) {
3227 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3228 }
3229 qemu_free(bounce.buffer);
3230 bounce.buffer = NULL;
ba223c29 3231 cpu_notify_map_clients();
6d16c2f8 3232}
d0ecd2aa 3233
8df1cd07
FB
3234/* warning: addr must be aligned */
3235uint32_t ldl_phys(target_phys_addr_t addr)
3236{
3237 int io_index;
3238 uint8_t *ptr;
3239 uint32_t val;
3240 unsigned long pd;
3241 PhysPageDesc *p;
3242
3243 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3244 if (!p) {
3245 pd = IO_MEM_UNASSIGNED;
3246 } else {
3247 pd = p->phys_offset;
3248 }
3b46e624 3249
5fafdf24 3250 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3251 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3252 /* I/O case */
3253 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3254 if (p)
3255 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3256 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3257 } else {
3258 /* RAM case */
5fafdf24 3259 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3260 (addr & ~TARGET_PAGE_MASK);
3261 val = ldl_p(ptr);
3262 }
3263 return val;
3264}
3265
84b7b8e7
FB
3266/* warning: addr must be aligned */
3267uint64_t ldq_phys(target_phys_addr_t addr)
3268{
3269 int io_index;
3270 uint8_t *ptr;
3271 uint64_t val;
3272 unsigned long pd;
3273 PhysPageDesc *p;
3274
3275 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3276 if (!p) {
3277 pd = IO_MEM_UNASSIGNED;
3278 } else {
3279 pd = p->phys_offset;
3280 }
3b46e624 3281
2a4188a3
FB
3282 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3283 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3284 /* I/O case */
3285 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3286 if (p)
3287 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3288#ifdef TARGET_WORDS_BIGENDIAN
3289 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3290 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3291#else
3292 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3293 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3294#endif
3295 } else {
3296 /* RAM case */
5fafdf24 3297 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3298 (addr & ~TARGET_PAGE_MASK);
3299 val = ldq_p(ptr);
3300 }
3301 return val;
3302}
3303
aab33094
FB
3304/* XXX: optimize */
3305uint32_t ldub_phys(target_phys_addr_t addr)
3306{
3307 uint8_t val;
3308 cpu_physical_memory_read(addr, &val, 1);
3309 return val;
3310}
3311
3312/* XXX: optimize */
3313uint32_t lduw_phys(target_phys_addr_t addr)
3314{
3315 uint16_t val;
3316 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3317 return tswap16(val);
3318}
3319
8df1cd07
FB
3320/* warning: addr must be aligned. The ram page is not masked as dirty
3321 and the code inside is not invalidated. It is useful if the dirty
3322 bits are used to track modified PTEs */
3323void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3324{
3325 int io_index;
3326 uint8_t *ptr;
3327 unsigned long pd;
3328 PhysPageDesc *p;
3329
3330 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3331 if (!p) {
3332 pd = IO_MEM_UNASSIGNED;
3333 } else {
3334 pd = p->phys_offset;
3335 }
3b46e624 3336
3a7d929e 3337 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3338 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3339 if (p)
3340 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3341 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3342 } else {
74576198
AL
3343 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3344 ptr = phys_ram_base + addr1;
8df1cd07 3345 stl_p(ptr, val);
74576198
AL
3346
3347 if (unlikely(in_migration)) {
3348 if (!cpu_physical_memory_is_dirty(addr1)) {
3349 /* invalidate code */
3350 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3351 /* set dirty bit */
3352 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3353 (0xff & ~CODE_DIRTY_FLAG);
3354 }
3355 }
8df1cd07
FB
3356 }
3357}
3358
bc98a7ef
JM
3359void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3360{
3361 int io_index;
3362 uint8_t *ptr;
3363 unsigned long pd;
3364 PhysPageDesc *p;
3365
3366 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3367 if (!p) {
3368 pd = IO_MEM_UNASSIGNED;
3369 } else {
3370 pd = p->phys_offset;
3371 }
3b46e624 3372
bc98a7ef
JM
3373 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3374 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3375 if (p)
3376 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3377#ifdef TARGET_WORDS_BIGENDIAN
3378 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3379 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3380#else
3381 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3382 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3383#endif
3384 } else {
5fafdf24 3385 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3386 (addr & ~TARGET_PAGE_MASK);
3387 stq_p(ptr, val);
3388 }
3389}
3390
8df1cd07 3391/* warning: addr must be aligned */
8df1cd07
FB
3392void stl_phys(target_phys_addr_t addr, uint32_t val)
3393{
3394 int io_index;
3395 uint8_t *ptr;
3396 unsigned long pd;
3397 PhysPageDesc *p;
3398
3399 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3400 if (!p) {
3401 pd = IO_MEM_UNASSIGNED;
3402 } else {
3403 pd = p->phys_offset;
3404 }
3b46e624 3405
3a7d929e 3406 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3407 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3408 if (p)
3409 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3410 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3411 } else {
3412 unsigned long addr1;
3413 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3414 /* RAM case */
3415 ptr = phys_ram_base + addr1;
3416 stl_p(ptr, val);
3a7d929e
FB
3417 if (!cpu_physical_memory_is_dirty(addr1)) {
3418 /* invalidate code */
3419 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3420 /* set dirty bit */
f23db169
FB
3421 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3422 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3423 }
8df1cd07
FB
3424 }
3425}
3426
aab33094
FB
3427/* XXX: optimize */
3428void stb_phys(target_phys_addr_t addr, uint32_t val)
3429{
3430 uint8_t v = val;
3431 cpu_physical_memory_write(addr, &v, 1);
3432}
3433
3434/* XXX: optimize */
3435void stw_phys(target_phys_addr_t addr, uint32_t val)
3436{
3437 uint16_t v = tswap16(val);
3438 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3439}
3440
3441/* XXX: optimize */
3442void stq_phys(target_phys_addr_t addr, uint64_t val)
3443{
3444 val = tswap64(val);
3445 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3446}
3447
13eb76e0
FB
3448#endif
3449
5e2972fd 3450/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3451int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3452 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3453{
3454 int l;
9b3c35e0
JM
3455 target_phys_addr_t phys_addr;
3456 target_ulong page;
13eb76e0
FB
3457
3458 while (len > 0) {
3459 page = addr & TARGET_PAGE_MASK;
3460 phys_addr = cpu_get_phys_page_debug(env, page);
3461 /* if no physical page mapped, return an error */
3462 if (phys_addr == -1)
3463 return -1;
3464 l = (page + TARGET_PAGE_SIZE) - addr;
3465 if (l > len)
3466 l = len;
5e2972fd
AL
3467 phys_addr += (addr & ~TARGET_PAGE_MASK);
3468#if !defined(CONFIG_USER_ONLY)
3469 if (is_write)
3470 cpu_physical_memory_write_rom(phys_addr, buf, l);
3471 else
3472#endif
3473 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3474 len -= l;
3475 buf += l;
3476 addr += l;
3477 }
3478 return 0;
3479}
3480
2e70f6ef
PB
3481/* in deterministic execution mode, instructions doing device I/Os
3482 must be at the end of the TB */
3483void cpu_io_recompile(CPUState *env, void *retaddr)
3484{
3485 TranslationBlock *tb;
3486 uint32_t n, cflags;
3487 target_ulong pc, cs_base;
3488 uint64_t flags;
3489
3490 tb = tb_find_pc((unsigned long)retaddr);
3491 if (!tb) {
3492 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3493 retaddr);
3494 }
3495 n = env->icount_decr.u16.low + tb->icount;
3496 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3497 /* Calculate how many instructions had been executed before the fault
bf20dc07 3498 occurred. */
2e70f6ef
PB
3499 n = n - env->icount_decr.u16.low;
3500 /* Generate a new TB ending on the I/O insn. */
3501 n++;
3502 /* On MIPS and SH, delay slot instructions can only be restarted if
3503 they were already the first instruction in the TB. If this is not
bf20dc07 3504 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3505 branch. */
3506#if defined(TARGET_MIPS)
3507 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3508 env->active_tc.PC -= 4;
3509 env->icount_decr.u16.low++;
3510 env->hflags &= ~MIPS_HFLAG_BMASK;
3511 }
3512#elif defined(TARGET_SH4)
3513 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3514 && n > 1) {
3515 env->pc -= 2;
3516 env->icount_decr.u16.low++;
3517 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3518 }
3519#endif
3520 /* This should never happen. */
3521 if (n > CF_COUNT_MASK)
3522 cpu_abort(env, "TB too big during recompile");
3523
3524 cflags = n | CF_LAST_IO;
3525 pc = tb->pc;
3526 cs_base = tb->cs_base;
3527 flags = tb->flags;
3528 tb_phys_invalidate(tb, -1);
3529 /* FIXME: In theory this could raise an exception. In practice
3530 we have already translated the block once so it's probably ok. */
3531 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3532 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3533 the first in the TB) then we end up generating a whole new TB and
3534 repeating the fault, which is horribly inefficient.
3535 Better would be to execute just this insn uncached, or generate a
3536 second new TB. */
3537 cpu_resume_from_signal(env, NULL);
3538}
3539
e3db7226
FB
3540void dump_exec_info(FILE *f,
3541 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3542{
3543 int i, target_code_size, max_target_code_size;
3544 int direct_jmp_count, direct_jmp2_count, cross_page;
3545 TranslationBlock *tb;
3b46e624 3546
e3db7226
FB
3547 target_code_size = 0;
3548 max_target_code_size = 0;
3549 cross_page = 0;
3550 direct_jmp_count = 0;
3551 direct_jmp2_count = 0;
3552 for(i = 0; i < nb_tbs; i++) {
3553 tb = &tbs[i];
3554 target_code_size += tb->size;
3555 if (tb->size > max_target_code_size)
3556 max_target_code_size = tb->size;
3557 if (tb->page_addr[1] != -1)
3558 cross_page++;
3559 if (tb->tb_next_offset[0] != 0xffff) {
3560 direct_jmp_count++;
3561 if (tb->tb_next_offset[1] != 0xffff) {
3562 direct_jmp2_count++;
3563 }
3564 }
3565 }
3566 /* XXX: avoid using doubles ? */
57fec1fe 3567 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3568 cpu_fprintf(f, "gen code size %ld/%ld\n",
3569 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3570 cpu_fprintf(f, "TB count %d/%d\n",
3571 nb_tbs, code_gen_max_blocks);
5fafdf24 3572 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3573 nb_tbs ? target_code_size / nb_tbs : 0,
3574 max_target_code_size);
5fafdf24 3575 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3576 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3577 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3578 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3579 cross_page,
e3db7226
FB
3580 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3581 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3582 direct_jmp_count,
e3db7226
FB
3583 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3584 direct_jmp2_count,
3585 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3586 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3587 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3588 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3589 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3590 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3591}
3592
5fafdf24 3593#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3594
3595#define MMUSUFFIX _cmmu
3596#define GETPC() NULL
3597#define env cpu_single_env
b769d8fe 3598#define SOFTMMU_CODE_ACCESS
61382a50
FB
3599
3600#define SHIFT 0
3601#include "softmmu_template.h"
3602
3603#define SHIFT 1
3604#include "softmmu_template.h"
3605
3606#define SHIFT 2
3607#include "softmmu_template.h"
3608
3609#define SHIFT 3
3610#include "softmmu_template.h"
3611
3612#undef env
3613
3614#endif