]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
migration (ordinary): move bdrv_invalidate_cache_all of of coroutine context
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
777872e5 20#ifndef _WIN32
d5a8f07c
FB
21#include <sys/mman.h>
22#endif
54936004 23
055403b2 24#include "qemu-common.h"
6180a181 25#include "cpu.h"
b67d9a52 26#include "tcg.h"
b3c7724c 27#include "hw/hw.h"
4485bd26 28#if !defined(CONFIG_USER_ONLY)
47c8ca53 29#include "hw/boards.h"
4485bd26 30#endif
cc9e98cb 31#include "hw/qdev.h"
9c17d615 32#include "sysemu/kvm.h"
2ff3de68 33#include "sysemu/sysemu.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
0dc3f44a 48#include "qemu/rcu_queue.h"
4840f10e 49#include "qemu/main-loop.h"
5b6dd868 50#include "translate-all.h"
7615936e 51#include "sysemu/replay.h"
0cac1b66 52
022c62cb 53#include "exec/memory-internal.h"
220c3ebd 54#include "exec/ram_addr.h"
508127e2 55#include "exec/log.h"
67d95c15 56
b35ba30f 57#include "qemu/range.h"
794e8f30
MT
58#ifndef _WIN32
59#include "qemu/mmap-alloc.h"
60#endif
b35ba30f 61
db7b5426 62//#define DEBUG_SUBPAGE
1196be37 63
e2eef170 64#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
65/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
67 */
0d53d9fe 68RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
69
70static MemoryRegion *system_memory;
309cb471 71static MemoryRegion *system_io;
62152b8a 72
f6790af6
AK
73AddressSpace address_space_io;
74AddressSpace address_space_memory;
2673a5da 75
0844e007 76MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 77static MemoryRegion io_mem_unassigned;
0e0df1e2 78
7bd4f430
PB
79/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80#define RAM_PREALLOC (1 << 0)
81
dbcb8981
PB
82/* RAM is mmap-ed with MAP_SHARED */
83#define RAM_SHARED (1 << 1)
84
62be4e3a
MT
85/* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
87 */
88#define RAM_RESIZEABLE (1 << 2)
89
e2eef170 90#endif
9fa3e853 91
bdc44640 92struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
93/* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
f240eb6f 95__thread CPUState *current_cpu;
2e70f6ef 96/* 0 = Do not count executed instructions.
bf20dc07 97 1 = Precise instruction counting.
2e70f6ef 98 2 = Adaptive rate instruction counting. */
5708fc66 99int use_icount;
6a00d601 100
e2eef170 101#if !defined(CONFIG_USER_ONLY)
4346ae3e 102
1db8abb1
PB
103typedef struct PhysPageEntry PhysPageEntry;
104
105struct PhysPageEntry {
9736e55b 106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 107 uint32_t skip : 6;
9736e55b 108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 109 uint32_t ptr : 26;
1db8abb1
PB
110};
111
8b795765
MT
112#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113
03f49957 114/* Size of the L2 (and L3, etc) page tables. */
57271d63 115#define ADDR_SPACE_BITS 64
03f49957 116
026736ce 117#define P_L2_BITS 9
03f49957
PB
118#define P_L2_SIZE (1 << P_L2_BITS)
119
120#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121
122typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 123
53cb28cb 124typedef struct PhysPageMap {
79e2b9ae
PB
125 struct rcu_head rcu;
126
53cb28cb
MA
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133} PhysPageMap;
134
1db8abb1 135struct AddressSpaceDispatch {
79e2b9ae
PB
136 struct rcu_head rcu;
137
1db8abb1
PB
138 /* This is a multi-level map on the physical address space.
139 * The bottom level has pointers to MemoryRegionSections.
140 */
141 PhysPageEntry phys_map;
53cb28cb 142 PhysPageMap map;
acc9d80b 143 AddressSpace *as;
1db8abb1
PB
144};
145
90260c6c
JK
146#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
147typedef struct subpage_t {
148 MemoryRegion iomem;
acc9d80b 149 AddressSpace *as;
90260c6c
JK
150 hwaddr base;
151 uint16_t sub_section[TARGET_PAGE_SIZE];
152} subpage_t;
153
b41aac4f
LPF
154#define PHYS_SECTION_UNASSIGNED 0
155#define PHYS_SECTION_NOTDIRTY 1
156#define PHYS_SECTION_ROM 2
157#define PHYS_SECTION_WATCH 3
5312bd8b 158
e2eef170 159static void io_mem_init(void);
62152b8a 160static void memory_map_init(void);
09daed84 161static void tcg_commit(MemoryListener *listener);
e2eef170 162
1ec9b909 163static MemoryRegion io_mem_watch;
32857f4d
PM
164
165/**
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
171 */
172struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
177};
178
6658ffb8 179#endif
fd6ce8f6 180
6d9a1304 181#if !defined(CONFIG_USER_ONLY)
d6f2ea22 182
53cb28cb 183static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 184{
53cb28cb
MA
185 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
186 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
188 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 189 }
f7bf5461
AK
190}
191
db94604b 192static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
193{
194 unsigned i;
8b795765 195 uint32_t ret;
db94604b
PB
196 PhysPageEntry e;
197 PhysPageEntry *p;
f7bf5461 198
53cb28cb 199 ret = map->nodes_nb++;
db94604b 200 p = map->nodes[ret];
f7bf5461 201 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 202 assert(ret != map->nodes_nb_alloc);
db94604b
PB
203
204 e.skip = leaf ? 0 : 1;
205 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 206 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 207 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 208 }
f7bf5461 209 return ret;
d6f2ea22
AK
210}
211
53cb28cb
MA
212static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
213 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 214 int level)
f7bf5461
AK
215{
216 PhysPageEntry *p;
03f49957 217 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 218
9736e55b 219 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 220 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 221 }
db94604b 222 p = map->nodes[lp->ptr];
03f49957 223 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 224
03f49957 225 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 226 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 227 lp->skip = 0;
c19e8800 228 lp->ptr = leaf;
07f07b31
AK
229 *index += step;
230 *nb -= step;
2999097b 231 } else {
53cb28cb 232 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
233 }
234 ++lp;
f7bf5461
AK
235 }
236}
237
ac1970fb 238static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 239 hwaddr index, hwaddr nb,
2999097b 240 uint16_t leaf)
f7bf5461 241{
2999097b 242 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 243 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 244
53cb28cb 245 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
246}
247
b35ba30f
MT
248/* Compact a non leaf page entry. Simply detect that the entry has a single child,
249 * and update our entry so we can skip it and go directly to the destination.
250 */
251static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
252{
253 unsigned valid_ptr = P_L2_SIZE;
254 int valid = 0;
255 PhysPageEntry *p;
256 int i;
257
258 if (lp->ptr == PHYS_MAP_NODE_NIL) {
259 return;
260 }
261
262 p = nodes[lp->ptr];
263 for (i = 0; i < P_L2_SIZE; i++) {
264 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
265 continue;
266 }
267
268 valid_ptr = i;
269 valid++;
270 if (p[i].skip) {
271 phys_page_compact(&p[i], nodes, compacted);
272 }
273 }
274
275 /* We can only compress if there's only one child. */
276 if (valid != 1) {
277 return;
278 }
279
280 assert(valid_ptr < P_L2_SIZE);
281
282 /* Don't compress if it won't fit in the # of bits we have. */
283 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
284 return;
285 }
286
287 lp->ptr = p[valid_ptr].ptr;
288 if (!p[valid_ptr].skip) {
289 /* If our only child is a leaf, make this a leaf. */
290 /* By design, we should have made this node a leaf to begin with so we
291 * should never reach here.
292 * But since it's so simple to handle this, let's do it just in case we
293 * change this rule.
294 */
295 lp->skip = 0;
296 } else {
297 lp->skip += p[valid_ptr].skip;
298 }
299}
300
301static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
302{
303 DECLARE_BITMAP(compacted, nodes_nb);
304
305 if (d->phys_map.skip) {
53cb28cb 306 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
307 }
308}
309
97115a8d 310static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 311 Node *nodes, MemoryRegionSection *sections)
92e873b9 312{
31ab2b4a 313 PhysPageEntry *p;
97115a8d 314 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 315 int i;
f1f6e3b8 316
9736e55b 317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 319 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 320 }
9affd6fc 321 p = nodes[lp.ptr];
03f49957 322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 323 }
b35ba30f
MT
324
325 if (sections[lp.ptr].size.hi ||
326 range_covers_byte(sections[lp.ptr].offset_within_address_space,
327 sections[lp.ptr].size.lo, addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
331 }
f3705d53
AK
332}
333
e5548617
BS
334bool memory_region_is_unassigned(MemoryRegion *mr)
335{
2a8e7499 336 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 337 && mr != &io_mem_watch;
fd6ce8f6 338}
149f54b5 339
79e2b9ae 340/* Called from RCU critical section */
c7086b4a 341static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
342 hwaddr addr,
343 bool resolve_subpage)
9f029603 344{
90260c6c
JK
345 MemoryRegionSection *section;
346 subpage_t *subpage;
347
53cb28cb 348 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
349 if (resolve_subpage && section->mr->subpage) {
350 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 351 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
352 }
353 return section;
9f029603
JK
354}
355
79e2b9ae 356/* Called from RCU critical section */
90260c6c 357static MemoryRegionSection *
c7086b4a 358address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 359 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
360{
361 MemoryRegionSection *section;
965eb2fc 362 MemoryRegion *mr;
a87f3954 363 Int128 diff;
149f54b5 364
c7086b4a 365 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
366 /* Compute offset within MemoryRegionSection */
367 addr -= section->offset_within_address_space;
368
369 /* Compute offset within MemoryRegion */
370 *xlat = addr + section->offset_within_region;
371
965eb2fc 372 mr = section->mr;
b242e0e0
PB
373
374 /* MMIO registers can be expected to perform full-width accesses based only
375 * on their address, without considering adjacent registers that could
376 * decode to completely different MemoryRegions. When such registers
377 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
378 * regions overlap wildly. For this reason we cannot clamp the accesses
379 * here.
380 *
381 * If the length is small (as is the case for address_space_ldl/stl),
382 * everything works fine. If the incoming length is large, however,
383 * the caller really has to do the clamping through memory_access_size.
384 */
965eb2fc 385 if (memory_region_is_ram(mr)) {
e4a511f8 386 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
387 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 }
149f54b5
PB
389 return section;
390}
90260c6c 391
41063e1e 392/* Called from RCU critical section */
5c8a00ce
PB
393MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
394 hwaddr *xlat, hwaddr *plen,
395 bool is_write)
90260c6c 396{
30951157
AK
397 IOMMUTLBEntry iotlb;
398 MemoryRegionSection *section;
399 MemoryRegion *mr;
30951157
AK
400
401 for (;;) {
79e2b9ae
PB
402 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
403 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
404 mr = section->mr;
405
406 if (!mr->iommu_ops) {
407 break;
408 }
409
8d7b8cb9 410 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
411 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
412 | (addr & iotlb.addr_mask));
23820dbf 413 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
414 if (!(iotlb.perm & (1 << is_write))) {
415 mr = &io_mem_unassigned;
416 break;
417 }
418
419 as = iotlb.target_as;
420 }
421
fe680d0d 422 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 423 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 424 *plen = MIN(page, *plen);
a87f3954
PB
425 }
426
30951157
AK
427 *xlat = addr;
428 return mr;
90260c6c
JK
429}
430
79e2b9ae 431/* Called from RCU critical section */
90260c6c 432MemoryRegionSection *
d7898cda 433address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 434 hwaddr *xlat, hwaddr *plen)
90260c6c 435{
30951157 436 MemoryRegionSection *section;
d7898cda
PM
437 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
438
439 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
440
441 assert(!section->mr->iommu_ops);
442 return section;
90260c6c 443}
5b6dd868 444#endif
fd6ce8f6 445
b170fce3 446#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
447
448static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 449{
259186a7 450 CPUState *cpu = opaque;
a513fe19 451
5b6dd868
BS
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
259186a7 454 cpu->interrupt_request &= ~0x01;
c01a71c1 455 tlb_flush(cpu, 1);
5b6dd868
BS
456
457 return 0;
a513fe19 458}
7501267e 459
6c3bff0e
PD
460static int cpu_common_pre_load(void *opaque)
461{
462 CPUState *cpu = opaque;
463
adee6424 464 cpu->exception_index = -1;
6c3bff0e
PD
465
466 return 0;
467}
468
469static bool cpu_common_exception_index_needed(void *opaque)
470{
471 CPUState *cpu = opaque;
472
adee6424 473 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
474}
475
476static const VMStateDescription vmstate_cpu_common_exception_index = {
477 .name = "cpu_common/exception_index",
478 .version_id = 1,
479 .minimum_version_id = 1,
5cd8cada 480 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
481 .fields = (VMStateField[]) {
482 VMSTATE_INT32(exception_index, CPUState),
483 VMSTATE_END_OF_LIST()
484 }
485};
486
bac05aa9
AS
487static bool cpu_common_crash_occurred_needed(void *opaque)
488{
489 CPUState *cpu = opaque;
490
491 return cpu->crash_occurred;
492}
493
494static const VMStateDescription vmstate_cpu_common_crash_occurred = {
495 .name = "cpu_common/crash_occurred",
496 .version_id = 1,
497 .minimum_version_id = 1,
498 .needed = cpu_common_crash_occurred_needed,
499 .fields = (VMStateField[]) {
500 VMSTATE_BOOL(crash_occurred, CPUState),
501 VMSTATE_END_OF_LIST()
502 }
503};
504
1a1562f5 505const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
506 .name = "cpu_common",
507 .version_id = 1,
508 .minimum_version_id = 1,
6c3bff0e 509 .pre_load = cpu_common_pre_load,
5b6dd868 510 .post_load = cpu_common_post_load,
35d08458 511 .fields = (VMStateField[]) {
259186a7
AF
512 VMSTATE_UINT32(halted, CPUState),
513 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 514 VMSTATE_END_OF_LIST()
6c3bff0e 515 },
5cd8cada
JQ
516 .subsections = (const VMStateDescription*[]) {
517 &vmstate_cpu_common_exception_index,
bac05aa9 518 &vmstate_cpu_common_crash_occurred,
5cd8cada 519 NULL
5b6dd868
BS
520 }
521};
1a1562f5 522
5b6dd868 523#endif
ea041c0e 524
38d8f5c8 525CPUState *qemu_get_cpu(int index)
ea041c0e 526{
bdc44640 527 CPUState *cpu;
ea041c0e 528
bdc44640 529 CPU_FOREACH(cpu) {
55e5c285 530 if (cpu->cpu_index == index) {
bdc44640 531 return cpu;
55e5c285 532 }
ea041c0e 533 }
5b6dd868 534
bdc44640 535 return NULL;
ea041c0e
FB
536}
537
09daed84 538#if !defined(CONFIG_USER_ONLY)
56943e8c 539void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 540{
12ebc9a7
PM
541 CPUAddressSpace *newas;
542
543 /* Target code should have set num_ases before calling us */
544 assert(asidx < cpu->num_ases);
545
56943e8c
PM
546 if (asidx == 0) {
547 /* address space 0 gets the convenience alias */
548 cpu->as = as;
549 }
550
12ebc9a7
PM
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx == 0 || !kvm_enabled());
09daed84 553
12ebc9a7
PM
554 if (!cpu->cpu_ases) {
555 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 556 }
32857f4d 557
12ebc9a7
PM
558 newas = &cpu->cpu_ases[asidx];
559 newas->cpu = cpu;
560 newas->as = as;
56943e8c 561 if (tcg_enabled()) {
12ebc9a7
PM
562 newas->tcg_as_listener.commit = tcg_commit;
563 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 564 }
09daed84 565}
651a5bc0
PM
566
567AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
568{
569 /* Return the AddressSpace corresponding to the specified index */
570 return cpu->cpu_ases[asidx].as;
571}
09daed84
EI
572#endif
573
b7bca733
BR
574#ifndef CONFIG_USER_ONLY
575static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
576
577static int cpu_get_free_index(Error **errp)
578{
579 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
580
581 if (cpu >= MAX_CPUMASK_BITS) {
582 error_setg(errp, "Trying to use more CPUs than max of %d",
583 MAX_CPUMASK_BITS);
584 return -1;
585 }
586
587 bitmap_set(cpu_index_map, cpu, 1);
588 return cpu;
589}
590
591void cpu_exec_exit(CPUState *cpu)
592{
593 if (cpu->cpu_index == -1) {
594 /* cpu_index was never allocated by this @cpu or was already freed. */
595 return;
596 }
597
598 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
599 cpu->cpu_index = -1;
600}
601#else
602
603static int cpu_get_free_index(Error **errp)
604{
605 CPUState *some_cpu;
606 int cpu_index = 0;
607
608 CPU_FOREACH(some_cpu) {
609 cpu_index++;
610 }
611 return cpu_index;
612}
613
614void cpu_exec_exit(CPUState *cpu)
615{
616}
617#endif
618
4bad9e39 619void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 620{
b170fce3 621 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 622 int cpu_index;
b7bca733 623 Error *local_err = NULL;
5b6dd868 624
56943e8c 625 cpu->as = NULL;
12ebc9a7 626 cpu->num_ases = 0;
56943e8c 627
291135b5 628#ifndef CONFIG_USER_ONLY
291135b5 629 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
630
631 /* This is a softmmu CPU object, so create a property for it
632 * so users can wire up its memory. (This can't go in qom/cpu.c
633 * because that file is compiled only once for both user-mode
634 * and system builds.) The default if no link is set up is to use
635 * the system address space.
636 */
637 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
638 (Object **)&cpu->memory,
639 qdev_prop_allow_set_link_before_realize,
640 OBJ_PROP_LINK_UNREF_ON_RELEASE,
641 &error_abort);
642 cpu->memory = system_memory;
643 object_ref(OBJECT(cpu->memory));
291135b5
EH
644#endif
645
5b6dd868
BS
646#if defined(CONFIG_USER_ONLY)
647 cpu_list_lock();
648#endif
b7bca733
BR
649 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
650 if (local_err) {
651 error_propagate(errp, local_err);
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_unlock();
654#endif
655 return;
5b6dd868 656 }
bdc44640 657 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
658#if defined(CONFIG_USER_ONLY)
659 cpu_list_unlock();
660#endif
e0d47944
AF
661 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
662 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
663 }
b170fce3
AF
664 if (cc->vmsd != NULL) {
665 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
666 }
ea041c0e
FB
667}
668
94df27fd 669#if defined(CONFIG_USER_ONLY)
00b941e5 670static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
671{
672 tb_invalidate_phys_page_range(pc, pc + 1, 0);
673}
674#else
00b941e5 675static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 676{
5232e4c7
PM
677 MemTxAttrs attrs;
678 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
679 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 680 if (phys != -1) {
5232e4c7 681 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 682 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 683 }
1e7855a5 684}
c27004ec 685#endif
d720b93d 686
c527ee8f 687#if defined(CONFIG_USER_ONLY)
75a34036 688void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
689
690{
691}
692
3ee887e8
PM
693int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
694 int flags)
695{
696 return -ENOSYS;
697}
698
699void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
700{
701}
702
75a34036 703int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
704 int flags, CPUWatchpoint **watchpoint)
705{
706 return -ENOSYS;
707}
708#else
6658ffb8 709/* Add a watchpoint. */
75a34036 710int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 711 int flags, CPUWatchpoint **watchpoint)
6658ffb8 712{
c0ce998e 713 CPUWatchpoint *wp;
6658ffb8 714
05068c0d 715 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 716 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
717 error_report("tried to set invalid watchpoint at %"
718 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
719 return -EINVAL;
720 }
7267c094 721 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
722
723 wp->vaddr = addr;
05068c0d 724 wp->len = len;
a1d1bb31
AL
725 wp->flags = flags;
726
2dc9f411 727 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
728 if (flags & BP_GDB) {
729 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
730 } else {
731 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
732 }
6658ffb8 733
31b030d4 734 tlb_flush_page(cpu, addr);
a1d1bb31
AL
735
736 if (watchpoint)
737 *watchpoint = wp;
738 return 0;
6658ffb8
PB
739}
740
a1d1bb31 741/* Remove a specific watchpoint. */
75a34036 742int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 743 int flags)
6658ffb8 744{
a1d1bb31 745 CPUWatchpoint *wp;
6658ffb8 746
ff4700b0 747 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 748 if (addr == wp->vaddr && len == wp->len
6e140f28 749 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 750 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
751 return 0;
752 }
753 }
a1d1bb31 754 return -ENOENT;
6658ffb8
PB
755}
756
a1d1bb31 757/* Remove a specific watchpoint by reference. */
75a34036 758void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 759{
ff4700b0 760 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 761
31b030d4 762 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 763
7267c094 764 g_free(watchpoint);
a1d1bb31
AL
765}
766
767/* Remove all matching watchpoints. */
75a34036 768void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 769{
c0ce998e 770 CPUWatchpoint *wp, *next;
a1d1bb31 771
ff4700b0 772 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
773 if (wp->flags & mask) {
774 cpu_watchpoint_remove_by_ref(cpu, wp);
775 }
c0ce998e 776 }
7d03f82f 777}
05068c0d
PM
778
779/* Return true if this watchpoint address matches the specified
780 * access (ie the address range covered by the watchpoint overlaps
781 * partially or completely with the address range covered by the
782 * access).
783 */
784static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
785 vaddr addr,
786 vaddr len)
787{
788 /* We know the lengths are non-zero, but a little caution is
789 * required to avoid errors in the case where the range ends
790 * exactly at the top of the address space and so addr + len
791 * wraps round to zero.
792 */
793 vaddr wpend = wp->vaddr + wp->len - 1;
794 vaddr addrend = addr + len - 1;
795
796 return !(addr > wpend || wp->vaddr > addrend);
797}
798
c527ee8f 799#endif
7d03f82f 800
a1d1bb31 801/* Add a breakpoint. */
b3310ab3 802int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 803 CPUBreakpoint **breakpoint)
4c3a88a2 804{
c0ce998e 805 CPUBreakpoint *bp;
3b46e624 806
7267c094 807 bp = g_malloc(sizeof(*bp));
4c3a88a2 808
a1d1bb31
AL
809 bp->pc = pc;
810 bp->flags = flags;
811
2dc9f411 812 /* keep all GDB-injected breakpoints in front */
00b941e5 813 if (flags & BP_GDB) {
f0c3c505 814 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 815 } else {
f0c3c505 816 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 817 }
3b46e624 818
f0c3c505 819 breakpoint_invalidate(cpu, pc);
a1d1bb31 820
00b941e5 821 if (breakpoint) {
a1d1bb31 822 *breakpoint = bp;
00b941e5 823 }
4c3a88a2 824 return 0;
4c3a88a2
FB
825}
826
a1d1bb31 827/* Remove a specific breakpoint. */
b3310ab3 828int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 829{
a1d1bb31
AL
830 CPUBreakpoint *bp;
831
f0c3c505 832 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 833 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 834 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
835 return 0;
836 }
7d03f82f 837 }
a1d1bb31 838 return -ENOENT;
7d03f82f
EI
839}
840
a1d1bb31 841/* Remove a specific breakpoint by reference. */
b3310ab3 842void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 843{
f0c3c505
AF
844 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
845
846 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 847
7267c094 848 g_free(breakpoint);
a1d1bb31
AL
849}
850
851/* Remove all matching breakpoints. */
b3310ab3 852void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 853{
c0ce998e 854 CPUBreakpoint *bp, *next;
a1d1bb31 855
f0c3c505 856 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
857 if (bp->flags & mask) {
858 cpu_breakpoint_remove_by_ref(cpu, bp);
859 }
c0ce998e 860 }
4c3a88a2
FB
861}
862
c33a346e
FB
863/* enable or disable single step mode. EXCP_DEBUG is returned by the
864 CPU loop after each instruction */
3825b28f 865void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 866{
ed2803da
AF
867 if (cpu->singlestep_enabled != enabled) {
868 cpu->singlestep_enabled = enabled;
869 if (kvm_enabled()) {
38e478ec 870 kvm_update_guest_debug(cpu, 0);
ed2803da 871 } else {
ccbb4d44 872 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 873 /* XXX: only flush what is necessary */
bbd77c18 874 tb_flush(cpu);
e22a25c9 875 }
c33a346e 876 }
c33a346e
FB
877}
878
a47dddd7 879void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
880{
881 va_list ap;
493ae1f0 882 va_list ap2;
7501267e
FB
883
884 va_start(ap, fmt);
493ae1f0 885 va_copy(ap2, ap);
7501267e
FB
886 fprintf(stderr, "qemu: fatal: ");
887 vfprintf(stderr, fmt, ap);
888 fprintf(stderr, "\n");
878096ee 889 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 890 if (qemu_log_separate()) {
93fcfe39
AL
891 qemu_log("qemu: fatal: ");
892 qemu_log_vprintf(fmt, ap2);
893 qemu_log("\n");
a0762859 894 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 895 qemu_log_flush();
93fcfe39 896 qemu_log_close();
924edcae 897 }
493ae1f0 898 va_end(ap2);
f9373291 899 va_end(ap);
7615936e 900 replay_finish();
fd052bf6
RV
901#if defined(CONFIG_USER_ONLY)
902 {
903 struct sigaction act;
904 sigfillset(&act.sa_mask);
905 act.sa_handler = SIG_DFL;
906 sigaction(SIGABRT, &act, NULL);
907 }
908#endif
7501267e
FB
909 abort();
910}
911
0124311e 912#if !defined(CONFIG_USER_ONLY)
0dc3f44a 913/* Called from RCU critical section */
041603fe
PB
914static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
915{
916 RAMBlock *block;
917
43771539 918 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 919 if (block && addr - block->offset < block->max_length) {
68851b98 920 return block;
041603fe 921 }
0dc3f44a 922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 923 if (addr - block->offset < block->max_length) {
041603fe
PB
924 goto found;
925 }
926 }
927
928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
929 abort();
930
931found:
43771539
PB
932 /* It is safe to write mru_block outside the iothread lock. This
933 * is what happens:
934 *
935 * mru_block = xxx
936 * rcu_read_unlock()
937 * xxx removed from list
938 * rcu_read_lock()
939 * read mru_block
940 * mru_block = NULL;
941 * call_rcu(reclaim_ramblock, xxx);
942 * rcu_read_unlock()
943 *
944 * atomic_rcu_set is not needed here. The block was already published
945 * when it was placed into the list. Here we're just making an extra
946 * copy of the pointer.
947 */
041603fe
PB
948 ram_list.mru_block = block;
949 return block;
950}
951
a2f4d5be 952static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 953{
9a13565d 954 CPUState *cpu;
041603fe 955 ram_addr_t start1;
a2f4d5be
JQ
956 RAMBlock *block;
957 ram_addr_t end;
958
959 end = TARGET_PAGE_ALIGN(start + length);
960 start &= TARGET_PAGE_MASK;
d24981d3 961
0dc3f44a 962 rcu_read_lock();
041603fe
PB
963 block = qemu_get_ram_block(start);
964 assert(block == qemu_get_ram_block(end - 1));
1240be24 965 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
966 CPU_FOREACH(cpu) {
967 tlb_reset_dirty(cpu, start1, length);
968 }
0dc3f44a 969 rcu_read_unlock();
d24981d3
JQ
970}
971
5579c7f3 972/* Note: start and end must be within the same ram block. */
03eebc9e
SH
973bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
974 ram_addr_t length,
975 unsigned client)
1ccde1cb 976{
5b82b703 977 DirtyMemoryBlocks *blocks;
03eebc9e 978 unsigned long end, page;
5b82b703 979 bool dirty = false;
03eebc9e
SH
980
981 if (length == 0) {
982 return false;
983 }
f23db169 984
03eebc9e
SH
985 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
986 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
987
988 rcu_read_lock();
989
990 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
991
992 while (page < end) {
993 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
994 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
995 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
996
997 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
998 offset, num);
999 page += num;
1000 }
1001
1002 rcu_read_unlock();
03eebc9e
SH
1003
1004 if (dirty && tcg_enabled()) {
a2f4d5be 1005 tlb_reset_dirty_range_all(start, length);
5579c7f3 1006 }
03eebc9e
SH
1007
1008 return dirty;
1ccde1cb
FB
1009}
1010
79e2b9ae 1011/* Called from RCU critical section */
bb0e627a 1012hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1013 MemoryRegionSection *section,
1014 target_ulong vaddr,
1015 hwaddr paddr, hwaddr xlat,
1016 int prot,
1017 target_ulong *address)
e5548617 1018{
a8170e5e 1019 hwaddr iotlb;
e5548617
BS
1020 CPUWatchpoint *wp;
1021
cc5bea60 1022 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1023 /* Normal RAM. */
1024 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1025 + xlat;
e5548617 1026 if (!section->readonly) {
b41aac4f 1027 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1028 } else {
b41aac4f 1029 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1030 }
1031 } else {
0b8e2c10
PM
1032 AddressSpaceDispatch *d;
1033
1034 d = atomic_rcu_read(&section->address_space->dispatch);
1035 iotlb = section - d->map.sections;
149f54b5 1036 iotlb += xlat;
e5548617
BS
1037 }
1038
1039 /* Make accesses to pages with watchpoints go via the
1040 watchpoint trap routines. */
ff4700b0 1041 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1042 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1043 /* Avoid trapping reads of pages with a write breakpoint. */
1044 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1045 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1046 *address |= TLB_MMIO;
1047 break;
1048 }
1049 }
1050 }
1051
1052 return iotlb;
1053}
9fa3e853
FB
1054#endif /* defined(CONFIG_USER_ONLY) */
1055
e2eef170 1056#if !defined(CONFIG_USER_ONLY)
8da3ff18 1057
c227f099 1058static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1059 uint16_t section);
acc9d80b 1060static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1061
a2b257d6
IM
1062static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1063 qemu_anon_ram_alloc;
91138037
MA
1064
1065/*
1066 * Set a custom physical guest memory alloator.
1067 * Accelerators with unusual needs may need this. Hopefully, we can
1068 * get rid of it eventually.
1069 */
a2b257d6 1070void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1071{
1072 phys_mem_alloc = alloc;
1073}
1074
53cb28cb
MA
1075static uint16_t phys_section_add(PhysPageMap *map,
1076 MemoryRegionSection *section)
5312bd8b 1077{
68f3f65b
PB
1078 /* The physical section number is ORed with a page-aligned
1079 * pointer to produce the iotlb entries. Thus it should
1080 * never overflow into the page-aligned value.
1081 */
53cb28cb 1082 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1083
53cb28cb
MA
1084 if (map->sections_nb == map->sections_nb_alloc) {
1085 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1086 map->sections = g_renew(MemoryRegionSection, map->sections,
1087 map->sections_nb_alloc);
5312bd8b 1088 }
53cb28cb 1089 map->sections[map->sections_nb] = *section;
dfde4e6e 1090 memory_region_ref(section->mr);
53cb28cb 1091 return map->sections_nb++;
5312bd8b
AK
1092}
1093
058bc4b5
PB
1094static void phys_section_destroy(MemoryRegion *mr)
1095{
55b4e80b
DS
1096 bool have_sub_page = mr->subpage;
1097
dfde4e6e
PB
1098 memory_region_unref(mr);
1099
55b4e80b 1100 if (have_sub_page) {
058bc4b5 1101 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1102 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1103 g_free(subpage);
1104 }
1105}
1106
6092666e 1107static void phys_sections_free(PhysPageMap *map)
5312bd8b 1108{
9affd6fc
PB
1109 while (map->sections_nb > 0) {
1110 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1111 phys_section_destroy(section->mr);
1112 }
9affd6fc
PB
1113 g_free(map->sections);
1114 g_free(map->nodes);
5312bd8b
AK
1115}
1116
ac1970fb 1117static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1118{
1119 subpage_t *subpage;
a8170e5e 1120 hwaddr base = section->offset_within_address_space
0f0cb164 1121 & TARGET_PAGE_MASK;
97115a8d 1122 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1123 d->map.nodes, d->map.sections);
0f0cb164
AK
1124 MemoryRegionSection subsection = {
1125 .offset_within_address_space = base,
052e87b0 1126 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1127 };
a8170e5e 1128 hwaddr start, end;
0f0cb164 1129
f3705d53 1130 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1131
f3705d53 1132 if (!(existing->mr->subpage)) {
acc9d80b 1133 subpage = subpage_init(d->as, base);
3be91e86 1134 subsection.address_space = d->as;
0f0cb164 1135 subsection.mr = &subpage->iomem;
ac1970fb 1136 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1137 phys_section_add(&d->map, &subsection));
0f0cb164 1138 } else {
f3705d53 1139 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1140 }
1141 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1142 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1143 subpage_register(subpage, start, end,
1144 phys_section_add(&d->map, section));
0f0cb164
AK
1145}
1146
1147
052e87b0
PB
1148static void register_multipage(AddressSpaceDispatch *d,
1149 MemoryRegionSection *section)
33417e70 1150{
a8170e5e 1151 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1152 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1153 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1154 TARGET_PAGE_BITS));
dd81124b 1155
733d5ef5
PB
1156 assert(num_pages);
1157 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1158}
1159
ac1970fb 1160static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1161{
89ae337a 1162 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1163 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1164 MemoryRegionSection now = *section, remain = *section;
052e87b0 1165 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1166
733d5ef5
PB
1167 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1168 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1169 - now.offset_within_address_space;
1170
052e87b0 1171 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1172 register_subpage(d, &now);
733d5ef5 1173 } else {
052e87b0 1174 now.size = int128_zero();
733d5ef5 1175 }
052e87b0
PB
1176 while (int128_ne(remain.size, now.size)) {
1177 remain.size = int128_sub(remain.size, now.size);
1178 remain.offset_within_address_space += int128_get64(now.size);
1179 remain.offset_within_region += int128_get64(now.size);
69b67646 1180 now = remain;
052e87b0 1181 if (int128_lt(remain.size, page_size)) {
733d5ef5 1182 register_subpage(d, &now);
88266249 1183 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1184 now.size = page_size;
ac1970fb 1185 register_subpage(d, &now);
69b67646 1186 } else {
052e87b0 1187 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1188 register_multipage(d, &now);
69b67646 1189 }
0f0cb164
AK
1190 }
1191}
1192
62a2744c
SY
1193void qemu_flush_coalesced_mmio_buffer(void)
1194{
1195 if (kvm_enabled())
1196 kvm_flush_coalesced_mmio_buffer();
1197}
1198
b2a8658e
UD
1199void qemu_mutex_lock_ramlist(void)
1200{
1201 qemu_mutex_lock(&ram_list.mutex);
1202}
1203
1204void qemu_mutex_unlock_ramlist(void)
1205{
1206 qemu_mutex_unlock(&ram_list.mutex);
1207}
1208
e1e84ba0 1209#ifdef __linux__
c902760f
MT
1210
1211#include <sys/vfs.h>
1212
1213#define HUGETLBFS_MAGIC 0x958458f6
1214
fc7a5800 1215static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1216{
1217 struct statfs fs;
1218 int ret;
1219
1220 do {
9742bf26 1221 ret = statfs(path, &fs);
c902760f
MT
1222 } while (ret != 0 && errno == EINTR);
1223
1224 if (ret != 0) {
fc7a5800
HT
1225 error_setg_errno(errp, errno, "failed to get page size of file %s",
1226 path);
9742bf26 1227 return 0;
c902760f
MT
1228 }
1229
c902760f
MT
1230 return fs.f_bsize;
1231}
1232
04b16653
AW
1233static void *file_ram_alloc(RAMBlock *block,
1234 ram_addr_t memory,
7f56e740
PB
1235 const char *path,
1236 Error **errp)
c902760f 1237{
8d31d6b6 1238 struct stat st;
c902760f 1239 char *filename;
8ca761f6
PF
1240 char *sanitized_name;
1241 char *c;
794e8f30 1242 void *area;
c902760f 1243 int fd;
557529dd 1244 uint64_t hpagesize;
fc7a5800 1245 Error *local_err = NULL;
c902760f 1246
fc7a5800
HT
1247 hpagesize = gethugepagesize(path, &local_err);
1248 if (local_err) {
1249 error_propagate(errp, local_err);
f9a49dfa 1250 goto error;
c902760f 1251 }
a2b257d6 1252 block->mr->align = hpagesize;
c902760f
MT
1253
1254 if (memory < hpagesize) {
557529dd
HT
1255 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1256 "or larger than huge page size 0x%" PRIx64,
1257 memory, hpagesize);
1258 goto error;
c902760f
MT
1259 }
1260
1261 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1262 error_setg(errp,
1263 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1264 goto error;
c902760f
MT
1265 }
1266
8d31d6b6
PF
1267 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1268 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1269 sanitized_name = g_strdup(memory_region_name(block->mr));
1270 for (c = sanitized_name; *c != '\0'; c++) {
1271 if (*c == '/') {
1272 *c = '_';
1273 }
1274 }
8ca761f6 1275
8d31d6b6
PF
1276 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1277 sanitized_name);
1278 g_free(sanitized_name);
1279
1280 fd = mkstemp(filename);
1281 if (fd >= 0) {
1282 unlink(filename);
1283 }
1284 g_free(filename);
1285 } else {
1286 fd = open(path, O_RDWR | O_CREAT, 0644);
1287 }
c902760f 1288
c902760f 1289 if (fd < 0) {
7f56e740
PB
1290 error_setg_errno(errp, errno,
1291 "unable to create backing store for hugepages");
f9a49dfa 1292 goto error;
c902760f 1293 }
c902760f 1294
9284f319 1295 memory = ROUND_UP(memory, hpagesize);
c902760f
MT
1296
1297 /*
1298 * ftruncate is not supported by hugetlbfs in older
1299 * hosts, so don't bother bailing out on errors.
1300 * If anything goes wrong with it under other filesystems,
1301 * mmap will fail.
1302 */
7f56e740 1303 if (ftruncate(fd, memory)) {
9742bf26 1304 perror("ftruncate");
7f56e740 1305 }
c902760f 1306
794e8f30 1307 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
c902760f 1308 if (area == MAP_FAILED) {
7f56e740
PB
1309 error_setg_errno(errp, errno,
1310 "unable to map backing store for hugepages");
9742bf26 1311 close(fd);
f9a49dfa 1312 goto error;
c902760f 1313 }
ef36fa14
MT
1314
1315 if (mem_prealloc) {
38183310 1316 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1317 }
1318
04b16653 1319 block->fd = fd;
c902760f 1320 return area;
f9a49dfa
MT
1321
1322error:
f9a49dfa 1323 return NULL;
c902760f
MT
1324}
1325#endif
1326
0dc3f44a 1327/* Called with the ramlist lock held. */
d17b5288 1328static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1329{
1330 RAMBlock *block, *next_block;
3e837b2c 1331 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1332
49cd9ac6
SH
1333 assert(size != 0); /* it would hand out same offset multiple times */
1334
0dc3f44a 1335 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1336 return 0;
0d53d9fe 1337 }
04b16653 1338
0dc3f44a 1339 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1340 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1341
62be4e3a 1342 end = block->offset + block->max_length;
04b16653 1343
0dc3f44a 1344 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1345 if (next_block->offset >= end) {
1346 next = MIN(next, next_block->offset);
1347 }
1348 }
1349 if (next - end >= size && next - end < mingap) {
3e837b2c 1350 offset = end;
04b16653
AW
1351 mingap = next - end;
1352 }
1353 }
3e837b2c
AW
1354
1355 if (offset == RAM_ADDR_MAX) {
1356 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1357 (uint64_t)size);
1358 abort();
1359 }
1360
04b16653
AW
1361 return offset;
1362}
1363
652d7ec2 1364ram_addr_t last_ram_offset(void)
d17b5288
AW
1365{
1366 RAMBlock *block;
1367 ram_addr_t last = 0;
1368
0dc3f44a
MD
1369 rcu_read_lock();
1370 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1371 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1372 }
0dc3f44a 1373 rcu_read_unlock();
d17b5288
AW
1374 return last;
1375}
1376
ddb97f1d
JB
1377static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1378{
1379 int ret;
ddb97f1d
JB
1380
1381 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1382 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1383 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1384 if (ret) {
1385 perror("qemu_madvise");
1386 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1387 "but dump_guest_core=off specified\n");
1388 }
1389 }
1390}
1391
0dc3f44a
MD
1392/* Called within an RCU critical section, or while the ramlist lock
1393 * is held.
1394 */
20cfe881 1395static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1396{
20cfe881 1397 RAMBlock *block;
84b89d78 1398
0dc3f44a 1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1400 if (block->offset == addr) {
20cfe881 1401 return block;
c5705a77
AK
1402 }
1403 }
20cfe881
HT
1404
1405 return NULL;
1406}
1407
422148d3
DDAG
1408const char *qemu_ram_get_idstr(RAMBlock *rb)
1409{
1410 return rb->idstr;
1411}
1412
ae3a7047 1413/* Called with iothread lock held. */
20cfe881
HT
1414void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1415{
ae3a7047 1416 RAMBlock *new_block, *block;
20cfe881 1417
0dc3f44a 1418 rcu_read_lock();
ae3a7047 1419 new_block = find_ram_block(addr);
c5705a77
AK
1420 assert(new_block);
1421 assert(!new_block->idstr[0]);
84b89d78 1422
09e5ab63
AL
1423 if (dev) {
1424 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1425 if (id) {
1426 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1427 g_free(id);
84b89d78
CM
1428 }
1429 }
1430 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1431
0dc3f44a 1432 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1433 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1434 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1435 new_block->idstr);
1436 abort();
1437 }
1438 }
0dc3f44a 1439 rcu_read_unlock();
c5705a77
AK
1440}
1441
ae3a7047 1442/* Called with iothread lock held. */
20cfe881
HT
1443void qemu_ram_unset_idstr(ram_addr_t addr)
1444{
ae3a7047 1445 RAMBlock *block;
20cfe881 1446
ae3a7047
MD
1447 /* FIXME: arch_init.c assumes that this is not called throughout
1448 * migration. Ignore the problem since hot-unplug during migration
1449 * does not work anyway.
1450 */
1451
0dc3f44a 1452 rcu_read_lock();
ae3a7047 1453 block = find_ram_block(addr);
20cfe881
HT
1454 if (block) {
1455 memset(block->idstr, 0, sizeof(block->idstr));
1456 }
0dc3f44a 1457 rcu_read_unlock();
20cfe881
HT
1458}
1459
8490fc78
LC
1460static int memory_try_enable_merging(void *addr, size_t len)
1461{
75cc7f01 1462 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1463 /* disabled by the user */
1464 return 0;
1465 }
1466
1467 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1468}
1469
62be4e3a
MT
1470/* Only legal before guest might have detected the memory size: e.g. on
1471 * incoming migration, or right after reset.
1472 *
1473 * As memory core doesn't know how is memory accessed, it is up to
1474 * resize callback to update device state and/or add assertions to detect
1475 * misuse, if necessary.
1476 */
1477int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1478{
1479 RAMBlock *block = find_ram_block(base);
1480
1481 assert(block);
1482
4ed023ce 1483 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1484
62be4e3a
MT
1485 if (block->used_length == newsize) {
1486 return 0;
1487 }
1488
1489 if (!(block->flags & RAM_RESIZEABLE)) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1492 " in != 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->used_length);
1494 return -EINVAL;
1495 }
1496
1497 if (block->max_length < newsize) {
1498 error_setg_errno(errp, EINVAL,
1499 "Length too large: %s: 0x" RAM_ADDR_FMT
1500 " > 0x" RAM_ADDR_FMT, block->idstr,
1501 newsize, block->max_length);
1502 return -EINVAL;
1503 }
1504
1505 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1506 block->used_length = newsize;
58d2707e
PB
1507 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1508 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1509 memory_region_set_size(block->mr, newsize);
1510 if (block->resized) {
1511 block->resized(block->idstr, newsize, block->host);
1512 }
1513 return 0;
1514}
1515
5b82b703
SH
1516/* Called with ram_list.mutex held */
1517static void dirty_memory_extend(ram_addr_t old_ram_size,
1518 ram_addr_t new_ram_size)
1519{
1520 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1521 DIRTY_MEMORY_BLOCK_SIZE);
1522 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1523 DIRTY_MEMORY_BLOCK_SIZE);
1524 int i;
1525
1526 /* Only need to extend if block count increased */
1527 if (new_num_blocks <= old_num_blocks) {
1528 return;
1529 }
1530
1531 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1532 DirtyMemoryBlocks *old_blocks;
1533 DirtyMemoryBlocks *new_blocks;
1534 int j;
1535
1536 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1537 new_blocks = g_malloc(sizeof(*new_blocks) +
1538 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1539
1540 if (old_num_blocks) {
1541 memcpy(new_blocks->blocks, old_blocks->blocks,
1542 old_num_blocks * sizeof(old_blocks->blocks[0]));
1543 }
1544
1545 for (j = old_num_blocks; j < new_num_blocks; j++) {
1546 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1547 }
1548
1549 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1550
1551 if (old_blocks) {
1552 g_free_rcu(old_blocks, rcu);
1553 }
1554 }
1555}
1556
ef701d7b 1557static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1558{
e1c57ab8 1559 RAMBlock *block;
0d53d9fe 1560 RAMBlock *last_block = NULL;
2152f5ca 1561 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1562 Error *err = NULL;
2152f5ca
JQ
1563
1564 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1565
b2a8658e 1566 qemu_mutex_lock_ramlist();
9b8424d5 1567 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1568
1569 if (!new_block->host) {
1570 if (xen_enabled()) {
9b8424d5 1571 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1572 new_block->mr, &err);
1573 if (err) {
1574 error_propagate(errp, err);
1575 qemu_mutex_unlock_ramlist();
1576 return -1;
1577 }
e1c57ab8 1578 } else {
9b8424d5 1579 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1580 &new_block->mr->align);
39228250 1581 if (!new_block->host) {
ef701d7b
HT
1582 error_setg_errno(errp, errno,
1583 "cannot set up guest memory '%s'",
1584 memory_region_name(new_block->mr));
1585 qemu_mutex_unlock_ramlist();
1586 return -1;
39228250 1587 }
9b8424d5 1588 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1589 }
c902760f 1590 }
94a6b54f 1591
dd631697
LZ
1592 new_ram_size = MAX(old_ram_size,
1593 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1594 if (new_ram_size > old_ram_size) {
1595 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1596 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1597 }
0d53d9fe
MD
1598 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1599 * QLIST (which has an RCU-friendly variant) does not have insertion at
1600 * tail, so save the last element in last_block.
1601 */
0dc3f44a 1602 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1603 last_block = block;
9b8424d5 1604 if (block->max_length < new_block->max_length) {
abb26d63
PB
1605 break;
1606 }
1607 }
1608 if (block) {
0dc3f44a 1609 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1610 } else if (last_block) {
0dc3f44a 1611 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1612 } else { /* list is empty */
0dc3f44a 1613 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1614 }
0d6d3c87 1615 ram_list.mru_block = NULL;
94a6b54f 1616
0dc3f44a
MD
1617 /* Write list before version */
1618 smp_wmb();
f798b07f 1619 ram_list.version++;
b2a8658e 1620 qemu_mutex_unlock_ramlist();
f798b07f 1621
9b8424d5 1622 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1623 new_block->used_length,
1624 DIRTY_CLIENTS_ALL);
94a6b54f 1625
a904c911
PB
1626 if (new_block->host) {
1627 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1628 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1629 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1630 if (kvm_enabled()) {
1631 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1632 }
e1c57ab8 1633 }
6f0437e8 1634
94a6b54f
PB
1635 return new_block->offset;
1636}
e9a1ab19 1637
0b183fc8 1638#ifdef __linux__
e1c57ab8 1639ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1640 bool share, const char *mem_path,
7f56e740 1641 Error **errp)
e1c57ab8
PB
1642{
1643 RAMBlock *new_block;
ef701d7b
HT
1644 ram_addr_t addr;
1645 Error *local_err = NULL;
e1c57ab8
PB
1646
1647 if (xen_enabled()) {
7f56e740
PB
1648 error_setg(errp, "-mem-path not supported with Xen");
1649 return -1;
e1c57ab8
PB
1650 }
1651
1652 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1653 /*
1654 * file_ram_alloc() needs to allocate just like
1655 * phys_mem_alloc, but we haven't bothered to provide
1656 * a hook there.
1657 */
7f56e740
PB
1658 error_setg(errp,
1659 "-mem-path not supported with this accelerator");
1660 return -1;
e1c57ab8
PB
1661 }
1662
4ed023ce 1663 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1664 new_block = g_malloc0(sizeof(*new_block));
1665 new_block->mr = mr;
9b8424d5
MT
1666 new_block->used_length = size;
1667 new_block->max_length = size;
dbcb8981 1668 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1669 new_block->host = file_ram_alloc(new_block, size,
1670 mem_path, errp);
1671 if (!new_block->host) {
1672 g_free(new_block);
1673 return -1;
1674 }
1675
ef701d7b
HT
1676 addr = ram_block_add(new_block, &local_err);
1677 if (local_err) {
1678 g_free(new_block);
1679 error_propagate(errp, local_err);
1680 return -1;
1681 }
1682 return addr;
e1c57ab8 1683}
0b183fc8 1684#endif
e1c57ab8 1685
62be4e3a
MT
1686static
1687ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1688 void (*resized)(const char*,
1689 uint64_t length,
1690 void *host),
1691 void *host, bool resizeable,
ef701d7b 1692 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1693{
1694 RAMBlock *new_block;
ef701d7b
HT
1695 ram_addr_t addr;
1696 Error *local_err = NULL;
e1c57ab8 1697
4ed023ce
DDAG
1698 size = HOST_PAGE_ALIGN(size);
1699 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1700 new_block = g_malloc0(sizeof(*new_block));
1701 new_block->mr = mr;
62be4e3a 1702 new_block->resized = resized;
9b8424d5
MT
1703 new_block->used_length = size;
1704 new_block->max_length = max_size;
62be4e3a 1705 assert(max_size >= size);
e1c57ab8
PB
1706 new_block->fd = -1;
1707 new_block->host = host;
1708 if (host) {
7bd4f430 1709 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1710 }
62be4e3a
MT
1711 if (resizeable) {
1712 new_block->flags |= RAM_RESIZEABLE;
1713 }
ef701d7b
HT
1714 addr = ram_block_add(new_block, &local_err);
1715 if (local_err) {
1716 g_free(new_block);
1717 error_propagate(errp, local_err);
1718 return -1;
1719 }
58eaa217
GA
1720
1721 mr->ram_block = new_block;
ef701d7b 1722 return addr;
e1c57ab8
PB
1723}
1724
62be4e3a
MT
1725ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1726 MemoryRegion *mr, Error **errp)
1727{
1728 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1729}
1730
ef701d7b 1731ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1732{
62be4e3a
MT
1733 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1734}
1735
1736ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1737 void (*resized)(const char*,
1738 uint64_t length,
1739 void *host),
1740 MemoryRegion *mr, Error **errp)
1741{
1742 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1743}
1744
43771539
PB
1745static void reclaim_ramblock(RAMBlock *block)
1746{
1747 if (block->flags & RAM_PREALLOC) {
1748 ;
1749 } else if (xen_enabled()) {
1750 xen_invalidate_map_cache_entry(block->host);
1751#ifndef _WIN32
1752 } else if (block->fd >= 0) {
2f3a2bb1 1753 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1754 close(block->fd);
1755#endif
1756 } else {
1757 qemu_anon_ram_free(block->host, block->max_length);
1758 }
1759 g_free(block);
1760}
1761
c227f099 1762void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1763{
04b16653
AW
1764 RAMBlock *block;
1765
b2a8658e 1766 qemu_mutex_lock_ramlist();
0dc3f44a 1767 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1768 if (addr == block->offset) {
0dc3f44a 1769 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1770 ram_list.mru_block = NULL;
0dc3f44a
MD
1771 /* Write list before version */
1772 smp_wmb();
f798b07f 1773 ram_list.version++;
43771539 1774 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1775 break;
04b16653
AW
1776 }
1777 }
b2a8658e 1778 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1779}
1780
cd19cfa2
HY
1781#ifndef _WIN32
1782void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1783{
1784 RAMBlock *block;
1785 ram_addr_t offset;
1786 int flags;
1787 void *area, *vaddr;
1788
0dc3f44a 1789 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1790 offset = addr - block->offset;
9b8424d5 1791 if (offset < block->max_length) {
1240be24 1792 vaddr = ramblock_ptr(block, offset);
7bd4f430 1793 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1794 ;
dfeaf2ab
MA
1795 } else if (xen_enabled()) {
1796 abort();
cd19cfa2
HY
1797 } else {
1798 flags = MAP_FIXED;
3435f395 1799 if (block->fd >= 0) {
dbcb8981
PB
1800 flags |= (block->flags & RAM_SHARED ?
1801 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1802 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1803 flags, block->fd, offset);
cd19cfa2 1804 } else {
2eb9fbaa
MA
1805 /*
1806 * Remap needs to match alloc. Accelerators that
1807 * set phys_mem_alloc never remap. If they did,
1808 * we'd need a remap hook here.
1809 */
1810 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1811
cd19cfa2
HY
1812 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1813 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1814 flags, -1, 0);
cd19cfa2
HY
1815 }
1816 if (area != vaddr) {
f15fbc4b
AP
1817 fprintf(stderr, "Could not remap addr: "
1818 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1819 length, addr);
1820 exit(1);
1821 }
8490fc78 1822 memory_try_enable_merging(vaddr, length);
ddb97f1d 1823 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1824 }
cd19cfa2
HY
1825 }
1826 }
1827}
1828#endif /* !_WIN32 */
1829
a35ba7be
PB
1830int qemu_get_ram_fd(ram_addr_t addr)
1831{
ae3a7047
MD
1832 RAMBlock *block;
1833 int fd;
a35ba7be 1834
0dc3f44a 1835 rcu_read_lock();
ae3a7047
MD
1836 block = qemu_get_ram_block(addr);
1837 fd = block->fd;
0dc3f44a 1838 rcu_read_unlock();
ae3a7047 1839 return fd;
a35ba7be
PB
1840}
1841
56a571d9
TM
1842void qemu_set_ram_fd(ram_addr_t addr, int fd)
1843{
1844 RAMBlock *block;
1845
1846 rcu_read_lock();
1847 block = qemu_get_ram_block(addr);
1848 block->fd = fd;
1849 rcu_read_unlock();
1850}
1851
3fd74b84
DM
1852void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1853{
ae3a7047
MD
1854 RAMBlock *block;
1855 void *ptr;
3fd74b84 1856
0dc3f44a 1857 rcu_read_lock();
ae3a7047
MD
1858 block = qemu_get_ram_block(addr);
1859 ptr = ramblock_ptr(block, 0);
0dc3f44a 1860 rcu_read_unlock();
ae3a7047 1861 return ptr;
3fd74b84
DM
1862}
1863
1b5ec234 1864/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1865 * This should not be used for general purpose DMA. Use address_space_map
1866 * or address_space_rw instead. For local memory (e.g. video ram) that the
1867 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1868 *
49b24afc 1869 * Called within RCU critical section.
1b5ec234 1870 */
3655cb9c 1871void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1872{
3655cb9c
GA
1873 RAMBlock *block = ram_block;
1874
1875 if (block == NULL) {
1876 block = qemu_get_ram_block(addr);
1877 }
ae3a7047
MD
1878
1879 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1880 /* We need to check if the requested address is in the RAM
1881 * because we don't want to map the entire memory in QEMU.
1882 * In that case just map until the end of the page.
1883 */
1884 if (block->offset == 0) {
49b24afc 1885 return xen_map_cache(addr, 0, 0);
0d6d3c87 1886 }
ae3a7047
MD
1887
1888 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1889 }
49b24afc 1890 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1891}
1892
38bee5dc 1893/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1894 * but takes a size argument.
0dc3f44a 1895 *
e81bcda5 1896 * Called within RCU critical section.
ae3a7047 1897 */
3655cb9c
GA
1898static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1899 hwaddr *size)
38bee5dc 1900{
3655cb9c 1901 RAMBlock *block = ram_block;
e81bcda5 1902 ram_addr_t offset_inside_block;
8ab934f9
SS
1903 if (*size == 0) {
1904 return NULL;
1905 }
e81bcda5 1906
3655cb9c
GA
1907 if (block == NULL) {
1908 block = qemu_get_ram_block(addr);
1909 }
e81bcda5
PB
1910 offset_inside_block = addr - block->offset;
1911 *size = MIN(*size, block->max_length - offset_inside_block);
1912
1913 if (xen_enabled() && block->host == NULL) {
1914 /* We need to check if the requested address is in the RAM
1915 * because we don't want to map the entire memory in QEMU.
1916 * In that case just map the requested area.
1917 */
1918 if (block->offset == 0) {
1919 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1920 }
1921
e81bcda5 1922 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1923 }
e81bcda5
PB
1924
1925 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1926}
1927
422148d3
DDAG
1928/*
1929 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1930 * in that RAMBlock.
1931 *
1932 * ptr: Host pointer to look up
1933 * round_offset: If true round the result offset down to a page boundary
1934 * *ram_addr: set to result ram_addr
1935 * *offset: set to result offset within the RAMBlock
1936 *
1937 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1938 *
1939 * By the time this function returns, the returned pointer is not protected
1940 * by RCU anymore. If the caller is not within an RCU critical section and
1941 * does not hold the iothread lock, it must have other means of protecting the
1942 * pointer, such as a reference to the region that includes the incoming
1943 * ram_addr_t.
1944 */
422148d3
DDAG
1945RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1946 ram_addr_t *ram_addr,
1947 ram_addr_t *offset)
5579c7f3 1948{
94a6b54f
PB
1949 RAMBlock *block;
1950 uint8_t *host = ptr;
1951
868bb33f 1952 if (xen_enabled()) {
0dc3f44a 1953 rcu_read_lock();
e41d7c69 1954 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1955 block = qemu_get_ram_block(*ram_addr);
1956 if (block) {
1957 *offset = (host - block->host);
1958 }
0dc3f44a 1959 rcu_read_unlock();
422148d3 1960 return block;
712c2b41
SS
1961 }
1962
0dc3f44a
MD
1963 rcu_read_lock();
1964 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1965 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1966 goto found;
1967 }
1968
0dc3f44a 1969 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1970 /* This case append when the block is not mapped. */
1971 if (block->host == NULL) {
1972 continue;
1973 }
9b8424d5 1974 if (host - block->host < block->max_length) {
23887b79 1975 goto found;
f471a17e 1976 }
94a6b54f 1977 }
432d268c 1978
0dc3f44a 1979 rcu_read_unlock();
1b5ec234 1980 return NULL;
23887b79
PB
1981
1982found:
422148d3
DDAG
1983 *offset = (host - block->host);
1984 if (round_offset) {
1985 *offset &= TARGET_PAGE_MASK;
1986 }
1987 *ram_addr = block->offset + *offset;
0dc3f44a 1988 rcu_read_unlock();
422148d3
DDAG
1989 return block;
1990}
1991
e3dd7493
DDAG
1992/*
1993 * Finds the named RAMBlock
1994 *
1995 * name: The name of RAMBlock to find
1996 *
1997 * Returns: RAMBlock (or NULL if not found)
1998 */
1999RAMBlock *qemu_ram_block_by_name(const char *name)
2000{
2001 RAMBlock *block;
2002
2003 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2004 if (!strcmp(name, block->idstr)) {
2005 return block;
2006 }
2007 }
2008
2009 return NULL;
2010}
2011
422148d3
DDAG
2012/* Some of the softmmu routines need to translate from a host pointer
2013 (typically a TLB entry) back to a ram offset. */
2014MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2015{
2016 RAMBlock *block;
2017 ram_addr_t offset; /* Not used */
2018
2019 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2020
2021 if (!block) {
2022 return NULL;
2023 }
2024
2025 return block->mr;
e890261f 2026}
f471a17e 2027
49b24afc 2028/* Called within RCU critical section. */
a8170e5e 2029static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2030 uint64_t val, unsigned size)
9fa3e853 2031{
52159192 2032 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 2033 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2034 }
0e0df1e2
AK
2035 switch (size) {
2036 case 1:
3655cb9c 2037 stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2038 break;
2039 case 2:
3655cb9c 2040 stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2041 break;
2042 case 4:
3655cb9c 2043 stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2044 break;
2045 default:
2046 abort();
3a7d929e 2047 }
58d2707e
PB
2048 /* Set both VGA and migration bits for simplicity and to remove
2049 * the notdirty callback faster.
2050 */
2051 cpu_physical_memory_set_dirty_range(ram_addr, size,
2052 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2053 /* we remove the notdirty callback only if the code has been
2054 flushed */
a2cd8c85 2055 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2056 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2057 }
9fa3e853
FB
2058}
2059
b018ddf6
PB
2060static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2061 unsigned size, bool is_write)
2062{
2063 return is_write;
2064}
2065
0e0df1e2 2066static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2067 .write = notdirty_mem_write,
b018ddf6 2068 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2069 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2070};
2071
0f459d16 2072/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2073static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2074{
93afeade 2075 CPUState *cpu = current_cpu;
568496c0 2076 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2077 CPUArchState *env = cpu->env_ptr;
06d55cc1 2078 target_ulong pc, cs_base;
0f459d16 2079 target_ulong vaddr;
a1d1bb31 2080 CPUWatchpoint *wp;
06d55cc1 2081 int cpu_flags;
0f459d16 2082
ff4700b0 2083 if (cpu->watchpoint_hit) {
06d55cc1
AL
2084 /* We re-entered the check after replacing the TB. Now raise
2085 * the debug interrupt so that is will trigger after the
2086 * current instruction. */
93afeade 2087 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2088 return;
2089 }
93afeade 2090 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2091 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2092 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2093 && (wp->flags & flags)) {
08225676
PM
2094 if (flags == BP_MEM_READ) {
2095 wp->flags |= BP_WATCHPOINT_HIT_READ;
2096 } else {
2097 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2098 }
2099 wp->hitaddr = vaddr;
66b9b43c 2100 wp->hitattrs = attrs;
ff4700b0 2101 if (!cpu->watchpoint_hit) {
568496c0
SF
2102 if (wp->flags & BP_CPU &&
2103 !cc->debug_check_watchpoint(cpu, wp)) {
2104 wp->flags &= ~BP_WATCHPOINT_HIT;
2105 continue;
2106 }
ff4700b0 2107 cpu->watchpoint_hit = wp;
239c51a5 2108 tb_check_watchpoint(cpu);
6e140f28 2109 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2110 cpu->exception_index = EXCP_DEBUG;
5638d180 2111 cpu_loop_exit(cpu);
6e140f28
AL
2112 } else {
2113 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2114 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2115 cpu_resume_from_signal(cpu, NULL);
6e140f28 2116 }
06d55cc1 2117 }
6e140f28
AL
2118 } else {
2119 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2120 }
2121 }
2122}
2123
6658ffb8
PB
2124/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2125 so these check for a hit then pass through to the normal out-of-line
2126 phys routines. */
66b9b43c
PM
2127static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2128 unsigned size, MemTxAttrs attrs)
6658ffb8 2129{
66b9b43c
PM
2130 MemTxResult res;
2131 uint64_t data;
79ed0416
PM
2132 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2133 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2134
2135 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2136 switch (size) {
66b9b43c 2137 case 1:
79ed0416 2138 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2139 break;
2140 case 2:
79ed0416 2141 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2142 break;
2143 case 4:
79ed0416 2144 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2145 break;
1ec9b909
AK
2146 default: abort();
2147 }
66b9b43c
PM
2148 *pdata = data;
2149 return res;
6658ffb8
PB
2150}
2151
66b9b43c
PM
2152static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2153 uint64_t val, unsigned size,
2154 MemTxAttrs attrs)
6658ffb8 2155{
66b9b43c 2156 MemTxResult res;
79ed0416
PM
2157 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2158 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2159
2160 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2161 switch (size) {
67364150 2162 case 1:
79ed0416 2163 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2164 break;
2165 case 2:
79ed0416 2166 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2167 break;
2168 case 4:
79ed0416 2169 address_space_stl(as, addr, val, attrs, &res);
67364150 2170 break;
1ec9b909
AK
2171 default: abort();
2172 }
66b9b43c 2173 return res;
6658ffb8
PB
2174}
2175
1ec9b909 2176static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2177 .read_with_attrs = watch_mem_read,
2178 .write_with_attrs = watch_mem_write,
1ec9b909 2179 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2180};
6658ffb8 2181
f25a49e0
PM
2182static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2183 unsigned len, MemTxAttrs attrs)
db7b5426 2184{
acc9d80b 2185 subpage_t *subpage = opaque;
ff6cff75 2186 uint8_t buf[8];
5c9eb028 2187 MemTxResult res;
791af8c8 2188
db7b5426 2189#if defined(DEBUG_SUBPAGE)
016e9d62 2190 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2191 subpage, len, addr);
db7b5426 2192#endif
5c9eb028
PM
2193 res = address_space_read(subpage->as, addr + subpage->base,
2194 attrs, buf, len);
2195 if (res) {
2196 return res;
f25a49e0 2197 }
acc9d80b
JK
2198 switch (len) {
2199 case 1:
f25a49e0
PM
2200 *data = ldub_p(buf);
2201 return MEMTX_OK;
acc9d80b 2202 case 2:
f25a49e0
PM
2203 *data = lduw_p(buf);
2204 return MEMTX_OK;
acc9d80b 2205 case 4:
f25a49e0
PM
2206 *data = ldl_p(buf);
2207 return MEMTX_OK;
ff6cff75 2208 case 8:
f25a49e0
PM
2209 *data = ldq_p(buf);
2210 return MEMTX_OK;
acc9d80b
JK
2211 default:
2212 abort();
2213 }
db7b5426
BS
2214}
2215
f25a49e0
PM
2216static MemTxResult subpage_write(void *opaque, hwaddr addr,
2217 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2218{
acc9d80b 2219 subpage_t *subpage = opaque;
ff6cff75 2220 uint8_t buf[8];
acc9d80b 2221
db7b5426 2222#if defined(DEBUG_SUBPAGE)
016e9d62 2223 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2224 " value %"PRIx64"\n",
2225 __func__, subpage, len, addr, value);
db7b5426 2226#endif
acc9d80b
JK
2227 switch (len) {
2228 case 1:
2229 stb_p(buf, value);
2230 break;
2231 case 2:
2232 stw_p(buf, value);
2233 break;
2234 case 4:
2235 stl_p(buf, value);
2236 break;
ff6cff75
PB
2237 case 8:
2238 stq_p(buf, value);
2239 break;
acc9d80b
JK
2240 default:
2241 abort();
2242 }
5c9eb028
PM
2243 return address_space_write(subpage->as, addr + subpage->base,
2244 attrs, buf, len);
db7b5426
BS
2245}
2246
c353e4cc 2247static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2248 unsigned len, bool is_write)
c353e4cc 2249{
acc9d80b 2250 subpage_t *subpage = opaque;
c353e4cc 2251#if defined(DEBUG_SUBPAGE)
016e9d62 2252 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2253 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2254#endif
2255
acc9d80b 2256 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2257 len, is_write);
c353e4cc
PB
2258}
2259
70c68e44 2260static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2261 .read_with_attrs = subpage_read,
2262 .write_with_attrs = subpage_write,
ff6cff75
PB
2263 .impl.min_access_size = 1,
2264 .impl.max_access_size = 8,
2265 .valid.min_access_size = 1,
2266 .valid.max_access_size = 8,
c353e4cc 2267 .valid.accepts = subpage_accepts,
70c68e44 2268 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2269};
2270
c227f099 2271static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2272 uint16_t section)
db7b5426
BS
2273{
2274 int idx, eidx;
2275
2276 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2277 return -1;
2278 idx = SUBPAGE_IDX(start);
2279 eidx = SUBPAGE_IDX(end);
2280#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2281 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2282 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2283#endif
db7b5426 2284 for (; idx <= eidx; idx++) {
5312bd8b 2285 mmio->sub_section[idx] = section;
db7b5426
BS
2286 }
2287
2288 return 0;
2289}
2290
acc9d80b 2291static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2292{
c227f099 2293 subpage_t *mmio;
db7b5426 2294
7267c094 2295 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2296
acc9d80b 2297 mmio->as = as;
1eec614b 2298 mmio->base = base;
2c9b15ca 2299 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2300 NULL, TARGET_PAGE_SIZE);
b3b00c78 2301 mmio->iomem.subpage = true;
db7b5426 2302#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2303 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2304 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2305#endif
b41aac4f 2306 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2307
2308 return mmio;
2309}
2310
a656e22f
PC
2311static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2312 MemoryRegion *mr)
5312bd8b 2313{
a656e22f 2314 assert(as);
5312bd8b 2315 MemoryRegionSection section = {
a656e22f 2316 .address_space = as,
5312bd8b
AK
2317 .mr = mr,
2318 .offset_within_address_space = 0,
2319 .offset_within_region = 0,
052e87b0 2320 .size = int128_2_64(),
5312bd8b
AK
2321 };
2322
53cb28cb 2323 return phys_section_add(map, &section);
5312bd8b
AK
2324}
2325
a54c87b6 2326MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2327{
a54c87b6
PM
2328 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2329 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2330 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2331 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2332
2333 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2334}
2335
e9179ce1
AK
2336static void io_mem_init(void)
2337{
1f6245e5 2338 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2339 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2340 NULL, UINT64_MAX);
2c9b15ca 2341 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2342 NULL, UINT64_MAX);
2c9b15ca 2343 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2344 NULL, UINT64_MAX);
e9179ce1
AK
2345}
2346
ac1970fb 2347static void mem_begin(MemoryListener *listener)
00752703
PB
2348{
2349 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2350 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2351 uint16_t n;
2352
a656e22f 2353 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2354 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2355 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2356 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2357 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2358 assert(n == PHYS_SECTION_ROM);
a656e22f 2359 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2360 assert(n == PHYS_SECTION_WATCH);
00752703 2361
9736e55b 2362 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2363 d->as = as;
2364 as->next_dispatch = d;
2365}
2366
79e2b9ae
PB
2367static void address_space_dispatch_free(AddressSpaceDispatch *d)
2368{
2369 phys_sections_free(&d->map);
2370 g_free(d);
2371}
2372
00752703 2373static void mem_commit(MemoryListener *listener)
ac1970fb 2374{
89ae337a 2375 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2376 AddressSpaceDispatch *cur = as->dispatch;
2377 AddressSpaceDispatch *next = as->next_dispatch;
2378
53cb28cb 2379 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2380
79e2b9ae 2381 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2382 if (cur) {
79e2b9ae 2383 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2384 }
9affd6fc
PB
2385}
2386
1d71148e 2387static void tcg_commit(MemoryListener *listener)
50c1e149 2388{
32857f4d
PM
2389 CPUAddressSpace *cpuas;
2390 AddressSpaceDispatch *d;
117712c3
AK
2391
2392 /* since each CPU stores ram addresses in its TLB cache, we must
2393 reset the modified entries */
32857f4d
PM
2394 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2395 cpu_reloading_memory_map();
2396 /* The CPU and TLB are protected by the iothread lock.
2397 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2398 * may have split the RCU critical section.
2399 */
2400 d = atomic_rcu_read(&cpuas->as->dispatch);
2401 cpuas->memory_dispatch = d;
2402 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2403}
2404
ac1970fb
AK
2405void address_space_init_dispatch(AddressSpace *as)
2406{
00752703 2407 as->dispatch = NULL;
89ae337a 2408 as->dispatch_listener = (MemoryListener) {
ac1970fb 2409 .begin = mem_begin,
00752703 2410 .commit = mem_commit,
ac1970fb
AK
2411 .region_add = mem_add,
2412 .region_nop = mem_add,
2413 .priority = 0,
2414 };
89ae337a 2415 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2416}
2417
6e48e8f9
PB
2418void address_space_unregister(AddressSpace *as)
2419{
2420 memory_listener_unregister(&as->dispatch_listener);
2421}
2422
83f3c251
AK
2423void address_space_destroy_dispatch(AddressSpace *as)
2424{
2425 AddressSpaceDispatch *d = as->dispatch;
2426
79e2b9ae
PB
2427 atomic_rcu_set(&as->dispatch, NULL);
2428 if (d) {
2429 call_rcu(d, address_space_dispatch_free, rcu);
2430 }
83f3c251
AK
2431}
2432
62152b8a
AK
2433static void memory_map_init(void)
2434{
7267c094 2435 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2436
57271d63 2437 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2438 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2439
7267c094 2440 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2441 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2442 65536);
7dca8043 2443 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2444}
2445
2446MemoryRegion *get_system_memory(void)
2447{
2448 return system_memory;
2449}
2450
309cb471
AK
2451MemoryRegion *get_system_io(void)
2452{
2453 return system_io;
2454}
2455
e2eef170
PB
2456#endif /* !defined(CONFIG_USER_ONLY) */
2457
13eb76e0
FB
2458/* physical memory access (slow version, mainly for debug) */
2459#if defined(CONFIG_USER_ONLY)
f17ec444 2460int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2461 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2462{
2463 int l, flags;
2464 target_ulong page;
53a5960a 2465 void * p;
13eb76e0
FB
2466
2467 while (len > 0) {
2468 page = addr & TARGET_PAGE_MASK;
2469 l = (page + TARGET_PAGE_SIZE) - addr;
2470 if (l > len)
2471 l = len;
2472 flags = page_get_flags(page);
2473 if (!(flags & PAGE_VALID))
a68fe89c 2474 return -1;
13eb76e0
FB
2475 if (is_write) {
2476 if (!(flags & PAGE_WRITE))
a68fe89c 2477 return -1;
579a97f7 2478 /* XXX: this code should not depend on lock_user */
72fb7daa 2479 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2480 return -1;
72fb7daa
AJ
2481 memcpy(p, buf, l);
2482 unlock_user(p, addr, l);
13eb76e0
FB
2483 } else {
2484 if (!(flags & PAGE_READ))
a68fe89c 2485 return -1;
579a97f7 2486 /* XXX: this code should not depend on lock_user */
72fb7daa 2487 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2488 return -1;
72fb7daa 2489 memcpy(buf, p, l);
5b257578 2490 unlock_user(p, addr, 0);
13eb76e0
FB
2491 }
2492 len -= l;
2493 buf += l;
2494 addr += l;
2495 }
a68fe89c 2496 return 0;
13eb76e0 2497}
8df1cd07 2498
13eb76e0 2499#else
51d7a9eb 2500
845b6214 2501static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2502 hwaddr length)
51d7a9eb 2503{
e87f7778
PB
2504 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2505 /* No early return if dirty_log_mask is or becomes 0, because
2506 * cpu_physical_memory_set_dirty_range will still call
2507 * xen_modified_memory.
2508 */
2509 if (dirty_log_mask) {
2510 dirty_log_mask =
2511 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2512 }
2513 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2514 tb_invalidate_phys_range(addr, addr + length);
2515 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2516 }
e87f7778 2517 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2518}
2519
23326164 2520static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2521{
e1622f4b 2522 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2523
2524 /* Regions are assumed to support 1-4 byte accesses unless
2525 otherwise specified. */
23326164
RH
2526 if (access_size_max == 0) {
2527 access_size_max = 4;
2528 }
2529
2530 /* Bound the maximum access by the alignment of the address. */
2531 if (!mr->ops->impl.unaligned) {
2532 unsigned align_size_max = addr & -addr;
2533 if (align_size_max != 0 && align_size_max < access_size_max) {
2534 access_size_max = align_size_max;
2535 }
82f2563f 2536 }
23326164
RH
2537
2538 /* Don't attempt accesses larger than the maximum. */
2539 if (l > access_size_max) {
2540 l = access_size_max;
82f2563f 2541 }
6554f5c0 2542 l = pow2floor(l);
23326164
RH
2543
2544 return l;
82f2563f
PB
2545}
2546
4840f10e 2547static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2548{
4840f10e
JK
2549 bool unlocked = !qemu_mutex_iothread_locked();
2550 bool release_lock = false;
2551
2552 if (unlocked && mr->global_locking) {
2553 qemu_mutex_lock_iothread();
2554 unlocked = false;
2555 release_lock = true;
2556 }
125b3806 2557 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2558 if (unlocked) {
2559 qemu_mutex_lock_iothread();
2560 }
125b3806 2561 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2562 if (unlocked) {
2563 qemu_mutex_unlock_iothread();
2564 }
125b3806 2565 }
4840f10e
JK
2566
2567 return release_lock;
125b3806
PB
2568}
2569
a203ac70
PB
2570/* Called within RCU critical section. */
2571static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2572 MemTxAttrs attrs,
2573 const uint8_t *buf,
2574 int len, hwaddr addr1,
2575 hwaddr l, MemoryRegion *mr)
13eb76e0 2576{
13eb76e0 2577 uint8_t *ptr;
791af8c8 2578 uint64_t val;
3b643495 2579 MemTxResult result = MEMTX_OK;
4840f10e 2580 bool release_lock = false;
3b46e624 2581
a203ac70 2582 for (;;) {
eb7eeb88
PB
2583 if (!memory_access_is_direct(mr, true)) {
2584 release_lock |= prepare_mmio_access(mr);
2585 l = memory_access_size(mr, l, addr1);
2586 /* XXX: could force current_cpu to NULL to avoid
2587 potential bugs */
2588 switch (l) {
2589 case 8:
2590 /* 64 bit write access */
2591 val = ldq_p(buf);
2592 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2593 attrs);
2594 break;
2595 case 4:
2596 /* 32 bit write access */
2597 val = ldl_p(buf);
2598 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2599 attrs);
2600 break;
2601 case 2:
2602 /* 16 bit write access */
2603 val = lduw_p(buf);
2604 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2605 attrs);
2606 break;
2607 case 1:
2608 /* 8 bit write access */
2609 val = ldub_p(buf);
2610 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2611 attrs);
2612 break;
2613 default:
2614 abort();
13eb76e0
FB
2615 }
2616 } else {
eb7eeb88
PB
2617 addr1 += memory_region_get_ram_addr(mr);
2618 /* RAM case */
3655cb9c 2619 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2620 memcpy(ptr, buf, l);
2621 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2622 }
4840f10e
JK
2623
2624 if (release_lock) {
2625 qemu_mutex_unlock_iothread();
2626 release_lock = false;
2627 }
2628
13eb76e0
FB
2629 len -= l;
2630 buf += l;
2631 addr += l;
a203ac70
PB
2632
2633 if (!len) {
2634 break;
2635 }
2636
2637 l = len;
2638 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2639 }
fd8aaa76 2640
3b643495 2641 return result;
13eb76e0 2642}
8df1cd07 2643
a203ac70
PB
2644MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2645 const uint8_t *buf, int len)
ac1970fb 2646{
eb7eeb88 2647 hwaddr l;
eb7eeb88
PB
2648 hwaddr addr1;
2649 MemoryRegion *mr;
2650 MemTxResult result = MEMTX_OK;
eb7eeb88 2651
a203ac70
PB
2652 if (len > 0) {
2653 rcu_read_lock();
eb7eeb88 2654 l = len;
a203ac70
PB
2655 mr = address_space_translate(as, addr, &addr1, &l, true);
2656 result = address_space_write_continue(as, addr, attrs, buf, len,
2657 addr1, l, mr);
2658 rcu_read_unlock();
2659 }
2660
2661 return result;
2662}
2663
2664/* Called within RCU critical section. */
2665MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2666 MemTxAttrs attrs, uint8_t *buf,
2667 int len, hwaddr addr1, hwaddr l,
2668 MemoryRegion *mr)
2669{
2670 uint8_t *ptr;
2671 uint64_t val;
2672 MemTxResult result = MEMTX_OK;
2673 bool release_lock = false;
eb7eeb88 2674
a203ac70 2675 for (;;) {
eb7eeb88
PB
2676 if (!memory_access_is_direct(mr, false)) {
2677 /* I/O case */
2678 release_lock |= prepare_mmio_access(mr);
2679 l = memory_access_size(mr, l, addr1);
2680 switch (l) {
2681 case 8:
2682 /* 64 bit read access */
2683 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2684 attrs);
2685 stq_p(buf, val);
2686 break;
2687 case 4:
2688 /* 32 bit read access */
2689 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2690 attrs);
2691 stl_p(buf, val);
2692 break;
2693 case 2:
2694 /* 16 bit read access */
2695 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2696 attrs);
2697 stw_p(buf, val);
2698 break;
2699 case 1:
2700 /* 8 bit read access */
2701 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2702 attrs);
2703 stb_p(buf, val);
2704 break;
2705 default:
2706 abort();
2707 }
2708 } else {
2709 /* RAM case */
3655cb9c 2710 ptr = qemu_get_ram_ptr(mr->ram_block, mr->ram_addr + addr1);
eb7eeb88
PB
2711 memcpy(buf, ptr, l);
2712 }
2713
2714 if (release_lock) {
2715 qemu_mutex_unlock_iothread();
2716 release_lock = false;
2717 }
2718
2719 len -= l;
2720 buf += l;
2721 addr += l;
a203ac70
PB
2722
2723 if (!len) {
2724 break;
2725 }
2726
2727 l = len;
2728 mr = address_space_translate(as, addr, &addr1, &l, false);
2729 }
2730
2731 return result;
2732}
2733
3cc8f884
PB
2734MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2735 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2736{
2737 hwaddr l;
2738 hwaddr addr1;
2739 MemoryRegion *mr;
2740 MemTxResult result = MEMTX_OK;
2741
2742 if (len > 0) {
2743 rcu_read_lock();
2744 l = len;
2745 mr = address_space_translate(as, addr, &addr1, &l, false);
2746 result = address_space_read_continue(as, addr, attrs, buf, len,
2747 addr1, l, mr);
2748 rcu_read_unlock();
eb7eeb88 2749 }
eb7eeb88
PB
2750
2751 return result;
ac1970fb
AK
2752}
2753
eb7eeb88
PB
2754MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2755 uint8_t *buf, int len, bool is_write)
2756{
2757 if (is_write) {
2758 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2759 } else {
2760 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2761 }
2762}
ac1970fb 2763
a8170e5e 2764void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2765 int len, int is_write)
2766{
5c9eb028
PM
2767 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2768 buf, len, is_write);
ac1970fb
AK
2769}
2770
582b55a9
AG
2771enum write_rom_type {
2772 WRITE_DATA,
2773 FLUSH_CACHE,
2774};
2775
2a221651 2776static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2777 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2778{
149f54b5 2779 hwaddr l;
d0ecd2aa 2780 uint8_t *ptr;
149f54b5 2781 hwaddr addr1;
5c8a00ce 2782 MemoryRegion *mr;
3b46e624 2783
41063e1e 2784 rcu_read_lock();
d0ecd2aa 2785 while (len > 0) {
149f54b5 2786 l = len;
2a221651 2787 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2788
5c8a00ce
PB
2789 if (!(memory_region_is_ram(mr) ||
2790 memory_region_is_romd(mr))) {
b242e0e0 2791 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2792 } else {
5c8a00ce 2793 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2794 /* ROM/RAM case */
3655cb9c 2795 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2796 switch (type) {
2797 case WRITE_DATA:
2798 memcpy(ptr, buf, l);
845b6214 2799 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2800 break;
2801 case FLUSH_CACHE:
2802 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2803 break;
2804 }
d0ecd2aa
FB
2805 }
2806 len -= l;
2807 buf += l;
2808 addr += l;
2809 }
41063e1e 2810 rcu_read_unlock();
d0ecd2aa
FB
2811}
2812
582b55a9 2813/* used for ROM loading : can write in RAM and ROM */
2a221651 2814void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2815 const uint8_t *buf, int len)
2816{
2a221651 2817 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2818}
2819
2820void cpu_flush_icache_range(hwaddr start, int len)
2821{
2822 /*
2823 * This function should do the same thing as an icache flush that was
2824 * triggered from within the guest. For TCG we are always cache coherent,
2825 * so there is no need to flush anything. For KVM / Xen we need to flush
2826 * the host's instruction cache at least.
2827 */
2828 if (tcg_enabled()) {
2829 return;
2830 }
2831
2a221651
EI
2832 cpu_physical_memory_write_rom_internal(&address_space_memory,
2833 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2834}
2835
6d16c2f8 2836typedef struct {
d3e71559 2837 MemoryRegion *mr;
6d16c2f8 2838 void *buffer;
a8170e5e
AK
2839 hwaddr addr;
2840 hwaddr len;
c2cba0ff 2841 bool in_use;
6d16c2f8
AL
2842} BounceBuffer;
2843
2844static BounceBuffer bounce;
2845
ba223c29 2846typedef struct MapClient {
e95205e1 2847 QEMUBH *bh;
72cf2d4f 2848 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2849} MapClient;
2850
38e047b5 2851QemuMutex map_client_list_lock;
72cf2d4f
BS
2852static QLIST_HEAD(map_client_list, MapClient) map_client_list
2853 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2854
e95205e1
FZ
2855static void cpu_unregister_map_client_do(MapClient *client)
2856{
2857 QLIST_REMOVE(client, link);
2858 g_free(client);
2859}
2860
33b6c2ed
FZ
2861static void cpu_notify_map_clients_locked(void)
2862{
2863 MapClient *client;
2864
2865 while (!QLIST_EMPTY(&map_client_list)) {
2866 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2867 qemu_bh_schedule(client->bh);
2868 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2869 }
2870}
2871
e95205e1 2872void cpu_register_map_client(QEMUBH *bh)
ba223c29 2873{
7267c094 2874 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2875
38e047b5 2876 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2877 client->bh = bh;
72cf2d4f 2878 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2879 if (!atomic_read(&bounce.in_use)) {
2880 cpu_notify_map_clients_locked();
2881 }
38e047b5 2882 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2883}
2884
38e047b5 2885void cpu_exec_init_all(void)
ba223c29 2886{
38e047b5 2887 qemu_mutex_init(&ram_list.mutex);
38e047b5 2888 io_mem_init();
680a4783 2889 memory_map_init();
38e047b5 2890 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2891}
2892
e95205e1 2893void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2894{
2895 MapClient *client;
2896
e95205e1
FZ
2897 qemu_mutex_lock(&map_client_list_lock);
2898 QLIST_FOREACH(client, &map_client_list, link) {
2899 if (client->bh == bh) {
2900 cpu_unregister_map_client_do(client);
2901 break;
2902 }
ba223c29 2903 }
e95205e1 2904 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2905}
2906
2907static void cpu_notify_map_clients(void)
2908{
38e047b5 2909 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2910 cpu_notify_map_clients_locked();
38e047b5 2911 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2912}
2913
51644ab7
PB
2914bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2915{
5c8a00ce 2916 MemoryRegion *mr;
51644ab7
PB
2917 hwaddr l, xlat;
2918
41063e1e 2919 rcu_read_lock();
51644ab7
PB
2920 while (len > 0) {
2921 l = len;
5c8a00ce
PB
2922 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2923 if (!memory_access_is_direct(mr, is_write)) {
2924 l = memory_access_size(mr, l, addr);
2925 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2926 return false;
2927 }
2928 }
2929
2930 len -= l;
2931 addr += l;
2932 }
41063e1e 2933 rcu_read_unlock();
51644ab7
PB
2934 return true;
2935}
2936
6d16c2f8
AL
2937/* Map a physical memory region into a host virtual address.
2938 * May map a subset of the requested range, given by and returned in *plen.
2939 * May return NULL if resources needed to perform the mapping are exhausted.
2940 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2941 * Use cpu_register_map_client() to know when retrying the map operation is
2942 * likely to succeed.
6d16c2f8 2943 */
ac1970fb 2944void *address_space_map(AddressSpace *as,
a8170e5e
AK
2945 hwaddr addr,
2946 hwaddr *plen,
ac1970fb 2947 bool is_write)
6d16c2f8 2948{
a8170e5e 2949 hwaddr len = *plen;
e3127ae0
PB
2950 hwaddr done = 0;
2951 hwaddr l, xlat, base;
2952 MemoryRegion *mr, *this_mr;
2953 ram_addr_t raddr;
e81bcda5 2954 void *ptr;
6d16c2f8 2955
e3127ae0
PB
2956 if (len == 0) {
2957 return NULL;
2958 }
38bee5dc 2959
e3127ae0 2960 l = len;
41063e1e 2961 rcu_read_lock();
e3127ae0 2962 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2963
e3127ae0 2964 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2965 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2966 rcu_read_unlock();
e3127ae0 2967 return NULL;
6d16c2f8 2968 }
e85d9db5
KW
2969 /* Avoid unbounded allocations */
2970 l = MIN(l, TARGET_PAGE_SIZE);
2971 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2972 bounce.addr = addr;
2973 bounce.len = l;
d3e71559
PB
2974
2975 memory_region_ref(mr);
2976 bounce.mr = mr;
e3127ae0 2977 if (!is_write) {
5c9eb028
PM
2978 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2979 bounce.buffer, l);
8ab934f9 2980 }
6d16c2f8 2981
41063e1e 2982 rcu_read_unlock();
e3127ae0
PB
2983 *plen = l;
2984 return bounce.buffer;
2985 }
2986
2987 base = xlat;
2988 raddr = memory_region_get_ram_addr(mr);
2989
2990 for (;;) {
6d16c2f8
AL
2991 len -= l;
2992 addr += l;
e3127ae0
PB
2993 done += l;
2994 if (len == 0) {
2995 break;
2996 }
2997
2998 l = len;
2999 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
3000 if (this_mr != mr || xlat != base + done) {
3001 break;
3002 }
6d16c2f8 3003 }
e3127ae0 3004
d3e71559 3005 memory_region_ref(mr);
e3127ae0 3006 *plen = done;
3655cb9c 3007 ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
e81bcda5
PB
3008 rcu_read_unlock();
3009
3010 return ptr;
6d16c2f8
AL
3011}
3012
ac1970fb 3013/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3014 * Will also mark the memory as dirty if is_write == 1. access_len gives
3015 * the amount of memory that was actually read or written by the caller.
3016 */
a8170e5e
AK
3017void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3018 int is_write, hwaddr access_len)
6d16c2f8
AL
3019{
3020 if (buffer != bounce.buffer) {
d3e71559
PB
3021 MemoryRegion *mr;
3022 ram_addr_t addr1;
3023
3024 mr = qemu_ram_addr_from_host(buffer, &addr1);
3025 assert(mr != NULL);
6d16c2f8 3026 if (is_write) {
845b6214 3027 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3028 }
868bb33f 3029 if (xen_enabled()) {
e41d7c69 3030 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3031 }
d3e71559 3032 memory_region_unref(mr);
6d16c2f8
AL
3033 return;
3034 }
3035 if (is_write) {
5c9eb028
PM
3036 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3037 bounce.buffer, access_len);
6d16c2f8 3038 }
f8a83245 3039 qemu_vfree(bounce.buffer);
6d16c2f8 3040 bounce.buffer = NULL;
d3e71559 3041 memory_region_unref(bounce.mr);
c2cba0ff 3042 atomic_mb_set(&bounce.in_use, false);
ba223c29 3043 cpu_notify_map_clients();
6d16c2f8 3044}
d0ecd2aa 3045
a8170e5e
AK
3046void *cpu_physical_memory_map(hwaddr addr,
3047 hwaddr *plen,
ac1970fb
AK
3048 int is_write)
3049{
3050 return address_space_map(&address_space_memory, addr, plen, is_write);
3051}
3052
a8170e5e
AK
3053void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3054 int is_write, hwaddr access_len)
ac1970fb
AK
3055{
3056 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3057}
3058
8df1cd07 3059/* warning: addr must be aligned */
50013115
PM
3060static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3061 MemTxAttrs attrs,
3062 MemTxResult *result,
3063 enum device_endian endian)
8df1cd07 3064{
8df1cd07 3065 uint8_t *ptr;
791af8c8 3066 uint64_t val;
5c8a00ce 3067 MemoryRegion *mr;
149f54b5
PB
3068 hwaddr l = 4;
3069 hwaddr addr1;
50013115 3070 MemTxResult r;
4840f10e 3071 bool release_lock = false;
8df1cd07 3072
41063e1e 3073 rcu_read_lock();
fdfba1a2 3074 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3075 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3076 release_lock |= prepare_mmio_access(mr);
125b3806 3077
8df1cd07 3078 /* I/O case */
50013115 3079 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3080#if defined(TARGET_WORDS_BIGENDIAN)
3081 if (endian == DEVICE_LITTLE_ENDIAN) {
3082 val = bswap32(val);
3083 }
3084#else
3085 if (endian == DEVICE_BIG_ENDIAN) {
3086 val = bswap32(val);
3087 }
3088#endif
8df1cd07
FB
3089 } else {
3090 /* RAM case */
3655cb9c
GA
3091 ptr = qemu_get_ram_ptr(mr->ram_block,
3092 (memory_region_get_ram_addr(mr)
06ef3525 3093 & TARGET_PAGE_MASK)
149f54b5 3094 + addr1);
1e78bcc1
AG
3095 switch (endian) {
3096 case DEVICE_LITTLE_ENDIAN:
3097 val = ldl_le_p(ptr);
3098 break;
3099 case DEVICE_BIG_ENDIAN:
3100 val = ldl_be_p(ptr);
3101 break;
3102 default:
3103 val = ldl_p(ptr);
3104 break;
3105 }
50013115
PM
3106 r = MEMTX_OK;
3107 }
3108 if (result) {
3109 *result = r;
8df1cd07 3110 }
4840f10e
JK
3111 if (release_lock) {
3112 qemu_mutex_unlock_iothread();
3113 }
41063e1e 3114 rcu_read_unlock();
8df1cd07
FB
3115 return val;
3116}
3117
50013115
PM
3118uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3119 MemTxAttrs attrs, MemTxResult *result)
3120{
3121 return address_space_ldl_internal(as, addr, attrs, result,
3122 DEVICE_NATIVE_ENDIAN);
3123}
3124
3125uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3126 MemTxAttrs attrs, MemTxResult *result)
3127{
3128 return address_space_ldl_internal(as, addr, attrs, result,
3129 DEVICE_LITTLE_ENDIAN);
3130}
3131
3132uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3133 MemTxAttrs attrs, MemTxResult *result)
3134{
3135 return address_space_ldl_internal(as, addr, attrs, result,
3136 DEVICE_BIG_ENDIAN);
3137}
3138
fdfba1a2 3139uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3140{
50013115 3141 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3142}
3143
fdfba1a2 3144uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3145{
50013115 3146 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3147}
3148
fdfba1a2 3149uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3150{
50013115 3151 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3152}
3153
84b7b8e7 3154/* warning: addr must be aligned */
50013115
PM
3155static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3156 MemTxAttrs attrs,
3157 MemTxResult *result,
3158 enum device_endian endian)
84b7b8e7 3159{
84b7b8e7
FB
3160 uint8_t *ptr;
3161 uint64_t val;
5c8a00ce 3162 MemoryRegion *mr;
149f54b5
PB
3163 hwaddr l = 8;
3164 hwaddr addr1;
50013115 3165 MemTxResult r;
4840f10e 3166 bool release_lock = false;
84b7b8e7 3167
41063e1e 3168 rcu_read_lock();
2c17449b 3169 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3170 false);
3171 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3172 release_lock |= prepare_mmio_access(mr);
125b3806 3173
84b7b8e7 3174 /* I/O case */
50013115 3175 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3176#if defined(TARGET_WORDS_BIGENDIAN)
3177 if (endian == DEVICE_LITTLE_ENDIAN) {
3178 val = bswap64(val);
3179 }
3180#else
3181 if (endian == DEVICE_BIG_ENDIAN) {
3182 val = bswap64(val);
3183 }
84b7b8e7
FB
3184#endif
3185 } else {
3186 /* RAM case */
3655cb9c
GA
3187 ptr = qemu_get_ram_ptr(mr->ram_block,
3188 (memory_region_get_ram_addr(mr)
06ef3525 3189 & TARGET_PAGE_MASK)
149f54b5 3190 + addr1);
1e78bcc1
AG
3191 switch (endian) {
3192 case DEVICE_LITTLE_ENDIAN:
3193 val = ldq_le_p(ptr);
3194 break;
3195 case DEVICE_BIG_ENDIAN:
3196 val = ldq_be_p(ptr);
3197 break;
3198 default:
3199 val = ldq_p(ptr);
3200 break;
3201 }
50013115
PM
3202 r = MEMTX_OK;
3203 }
3204 if (result) {
3205 *result = r;
84b7b8e7 3206 }
4840f10e
JK
3207 if (release_lock) {
3208 qemu_mutex_unlock_iothread();
3209 }
41063e1e 3210 rcu_read_unlock();
84b7b8e7
FB
3211 return val;
3212}
3213
50013115
PM
3214uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3215 MemTxAttrs attrs, MemTxResult *result)
3216{
3217 return address_space_ldq_internal(as, addr, attrs, result,
3218 DEVICE_NATIVE_ENDIAN);
3219}
3220
3221uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3222 MemTxAttrs attrs, MemTxResult *result)
3223{
3224 return address_space_ldq_internal(as, addr, attrs, result,
3225 DEVICE_LITTLE_ENDIAN);
3226}
3227
3228uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3229 MemTxAttrs attrs, MemTxResult *result)
3230{
3231 return address_space_ldq_internal(as, addr, attrs, result,
3232 DEVICE_BIG_ENDIAN);
3233}
3234
2c17449b 3235uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3236{
50013115 3237 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3238}
3239
2c17449b 3240uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3241{
50013115 3242 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3243}
3244
2c17449b 3245uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3246{
50013115 3247 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3248}
3249
aab33094 3250/* XXX: optimize */
50013115
PM
3251uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3252 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3253{
3254 uint8_t val;
50013115
PM
3255 MemTxResult r;
3256
3257 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3258 if (result) {
3259 *result = r;
3260 }
aab33094
FB
3261 return val;
3262}
3263
50013115
PM
3264uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3265{
3266 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3267}
3268
733f0b02 3269/* warning: addr must be aligned */
50013115
PM
3270static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3271 hwaddr addr,
3272 MemTxAttrs attrs,
3273 MemTxResult *result,
3274 enum device_endian endian)
aab33094 3275{
733f0b02
MT
3276 uint8_t *ptr;
3277 uint64_t val;
5c8a00ce 3278 MemoryRegion *mr;
149f54b5
PB
3279 hwaddr l = 2;
3280 hwaddr addr1;
50013115 3281 MemTxResult r;
4840f10e 3282 bool release_lock = false;
733f0b02 3283
41063e1e 3284 rcu_read_lock();
41701aa4 3285 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3286 false);
3287 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3288 release_lock |= prepare_mmio_access(mr);
125b3806 3289
733f0b02 3290 /* I/O case */
50013115 3291 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3292#if defined(TARGET_WORDS_BIGENDIAN)
3293 if (endian == DEVICE_LITTLE_ENDIAN) {
3294 val = bswap16(val);
3295 }
3296#else
3297 if (endian == DEVICE_BIG_ENDIAN) {
3298 val = bswap16(val);
3299 }
3300#endif
733f0b02
MT
3301 } else {
3302 /* RAM case */
3655cb9c
GA
3303 ptr = qemu_get_ram_ptr(mr->ram_block,
3304 (memory_region_get_ram_addr(mr)
06ef3525 3305 & TARGET_PAGE_MASK)
149f54b5 3306 + addr1);
1e78bcc1
AG
3307 switch (endian) {
3308 case DEVICE_LITTLE_ENDIAN:
3309 val = lduw_le_p(ptr);
3310 break;
3311 case DEVICE_BIG_ENDIAN:
3312 val = lduw_be_p(ptr);
3313 break;
3314 default:
3315 val = lduw_p(ptr);
3316 break;
3317 }
50013115
PM
3318 r = MEMTX_OK;
3319 }
3320 if (result) {
3321 *result = r;
733f0b02 3322 }
4840f10e
JK
3323 if (release_lock) {
3324 qemu_mutex_unlock_iothread();
3325 }
41063e1e 3326 rcu_read_unlock();
733f0b02 3327 return val;
aab33094
FB
3328}
3329
50013115
PM
3330uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3331 MemTxAttrs attrs, MemTxResult *result)
3332{
3333 return address_space_lduw_internal(as, addr, attrs, result,
3334 DEVICE_NATIVE_ENDIAN);
3335}
3336
3337uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3338 MemTxAttrs attrs, MemTxResult *result)
3339{
3340 return address_space_lduw_internal(as, addr, attrs, result,
3341 DEVICE_LITTLE_ENDIAN);
3342}
3343
3344uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3345 MemTxAttrs attrs, MemTxResult *result)
3346{
3347 return address_space_lduw_internal(as, addr, attrs, result,
3348 DEVICE_BIG_ENDIAN);
3349}
3350
41701aa4 3351uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3352{
50013115 3353 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3354}
3355
41701aa4 3356uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3357{
50013115 3358 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3359}
3360
41701aa4 3361uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3362{
50013115 3363 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3364}
3365
8df1cd07
FB
3366/* warning: addr must be aligned. The ram page is not masked as dirty
3367 and the code inside is not invalidated. It is useful if the dirty
3368 bits are used to track modified PTEs */
50013115
PM
3369void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3370 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3371{
8df1cd07 3372 uint8_t *ptr;
5c8a00ce 3373 MemoryRegion *mr;
149f54b5
PB
3374 hwaddr l = 4;
3375 hwaddr addr1;
50013115 3376 MemTxResult r;
845b6214 3377 uint8_t dirty_log_mask;
4840f10e 3378 bool release_lock = false;
8df1cd07 3379
41063e1e 3380 rcu_read_lock();
2198a121 3381 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3382 true);
3383 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3384 release_lock |= prepare_mmio_access(mr);
125b3806 3385
50013115 3386 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3387 } else {
5c8a00ce 3388 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3389 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
8df1cd07 3390 stl_p(ptr, val);
74576198 3391
845b6214
PB
3392 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3393 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3394 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3395 r = MEMTX_OK;
3396 }
3397 if (result) {
3398 *result = r;
8df1cd07 3399 }
4840f10e
JK
3400 if (release_lock) {
3401 qemu_mutex_unlock_iothread();
3402 }
41063e1e 3403 rcu_read_unlock();
8df1cd07
FB
3404}
3405
50013115
PM
3406void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3407{
3408 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3409}
3410
8df1cd07 3411/* warning: addr must be aligned */
50013115
PM
3412static inline void address_space_stl_internal(AddressSpace *as,
3413 hwaddr addr, uint32_t val,
3414 MemTxAttrs attrs,
3415 MemTxResult *result,
3416 enum device_endian endian)
8df1cd07 3417{
8df1cd07 3418 uint8_t *ptr;
5c8a00ce 3419 MemoryRegion *mr;
149f54b5
PB
3420 hwaddr l = 4;
3421 hwaddr addr1;
50013115 3422 MemTxResult r;
4840f10e 3423 bool release_lock = false;
8df1cd07 3424
41063e1e 3425 rcu_read_lock();
ab1da857 3426 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3427 true);
3428 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3429 release_lock |= prepare_mmio_access(mr);
125b3806 3430
1e78bcc1
AG
3431#if defined(TARGET_WORDS_BIGENDIAN)
3432 if (endian == DEVICE_LITTLE_ENDIAN) {
3433 val = bswap32(val);
3434 }
3435#else
3436 if (endian == DEVICE_BIG_ENDIAN) {
3437 val = bswap32(val);
3438 }
3439#endif
50013115 3440 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3441 } else {
8df1cd07 3442 /* RAM case */
5c8a00ce 3443 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3444 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3445 switch (endian) {
3446 case DEVICE_LITTLE_ENDIAN:
3447 stl_le_p(ptr, val);
3448 break;
3449 case DEVICE_BIG_ENDIAN:
3450 stl_be_p(ptr, val);
3451 break;
3452 default:
3453 stl_p(ptr, val);
3454 break;
3455 }
845b6214 3456 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3457 r = MEMTX_OK;
3458 }
3459 if (result) {
3460 *result = r;
8df1cd07 3461 }
4840f10e
JK
3462 if (release_lock) {
3463 qemu_mutex_unlock_iothread();
3464 }
41063e1e 3465 rcu_read_unlock();
8df1cd07
FB
3466}
3467
50013115
PM
3468void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3469 MemTxAttrs attrs, MemTxResult *result)
3470{
3471 address_space_stl_internal(as, addr, val, attrs, result,
3472 DEVICE_NATIVE_ENDIAN);
3473}
3474
3475void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3476 MemTxAttrs attrs, MemTxResult *result)
3477{
3478 address_space_stl_internal(as, addr, val, attrs, result,
3479 DEVICE_LITTLE_ENDIAN);
3480}
3481
3482void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3483 MemTxAttrs attrs, MemTxResult *result)
3484{
3485 address_space_stl_internal(as, addr, val, attrs, result,
3486 DEVICE_BIG_ENDIAN);
3487}
3488
ab1da857 3489void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3490{
50013115 3491 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3492}
3493
ab1da857 3494void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3495{
50013115 3496 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3497}
3498
ab1da857 3499void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3500{
50013115 3501 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3502}
3503
aab33094 3504/* XXX: optimize */
50013115
PM
3505void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3506 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3507{
3508 uint8_t v = val;
50013115
PM
3509 MemTxResult r;
3510
3511 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3512 if (result) {
3513 *result = r;
3514 }
3515}
3516
3517void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3518{
3519 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3520}
3521
733f0b02 3522/* warning: addr must be aligned */
50013115
PM
3523static inline void address_space_stw_internal(AddressSpace *as,
3524 hwaddr addr, uint32_t val,
3525 MemTxAttrs attrs,
3526 MemTxResult *result,
3527 enum device_endian endian)
aab33094 3528{
733f0b02 3529 uint8_t *ptr;
5c8a00ce 3530 MemoryRegion *mr;
149f54b5
PB
3531 hwaddr l = 2;
3532 hwaddr addr1;
50013115 3533 MemTxResult r;
4840f10e 3534 bool release_lock = false;
733f0b02 3535
41063e1e 3536 rcu_read_lock();
5ce5944d 3537 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3538 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3539 release_lock |= prepare_mmio_access(mr);
125b3806 3540
1e78bcc1
AG
3541#if defined(TARGET_WORDS_BIGENDIAN)
3542 if (endian == DEVICE_LITTLE_ENDIAN) {
3543 val = bswap16(val);
3544 }
3545#else
3546 if (endian == DEVICE_BIG_ENDIAN) {
3547 val = bswap16(val);
3548 }
3549#endif
50013115 3550 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3551 } else {
733f0b02 3552 /* RAM case */
5c8a00ce 3553 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3554 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3555 switch (endian) {
3556 case DEVICE_LITTLE_ENDIAN:
3557 stw_le_p(ptr, val);
3558 break;
3559 case DEVICE_BIG_ENDIAN:
3560 stw_be_p(ptr, val);
3561 break;
3562 default:
3563 stw_p(ptr, val);
3564 break;
3565 }
845b6214 3566 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3567 r = MEMTX_OK;
3568 }
3569 if (result) {
3570 *result = r;
733f0b02 3571 }
4840f10e
JK
3572 if (release_lock) {
3573 qemu_mutex_unlock_iothread();
3574 }
41063e1e 3575 rcu_read_unlock();
aab33094
FB
3576}
3577
50013115
PM
3578void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3579 MemTxAttrs attrs, MemTxResult *result)
3580{
3581 address_space_stw_internal(as, addr, val, attrs, result,
3582 DEVICE_NATIVE_ENDIAN);
3583}
3584
3585void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3586 MemTxAttrs attrs, MemTxResult *result)
3587{
3588 address_space_stw_internal(as, addr, val, attrs, result,
3589 DEVICE_LITTLE_ENDIAN);
3590}
3591
3592void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3593 MemTxAttrs attrs, MemTxResult *result)
3594{
3595 address_space_stw_internal(as, addr, val, attrs, result,
3596 DEVICE_BIG_ENDIAN);
3597}
3598
5ce5944d 3599void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3600{
50013115 3601 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3602}
3603
5ce5944d 3604void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3605{
50013115 3606 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3607}
3608
5ce5944d 3609void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3610{
50013115 3611 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3612}
3613
aab33094 3614/* XXX: optimize */
50013115
PM
3615void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3616 MemTxAttrs attrs, MemTxResult *result)
aab33094 3617{
50013115 3618 MemTxResult r;
aab33094 3619 val = tswap64(val);
50013115
PM
3620 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3621 if (result) {
3622 *result = r;
3623 }
aab33094
FB
3624}
3625
50013115
PM
3626void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3627 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3628{
50013115 3629 MemTxResult r;
1e78bcc1 3630 val = cpu_to_le64(val);
50013115
PM
3631 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3632 if (result) {
3633 *result = r;
3634 }
3635}
3636void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3637 MemTxAttrs attrs, MemTxResult *result)
3638{
3639 MemTxResult r;
3640 val = cpu_to_be64(val);
3641 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3642 if (result) {
3643 *result = r;
3644 }
3645}
3646
3647void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3648{
3649 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3650}
3651
3652void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3653{
3654 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3655}
3656
f606604f 3657void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3658{
50013115 3659 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3660}
3661
5e2972fd 3662/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3663int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3664 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3665{
3666 int l;
a8170e5e 3667 hwaddr phys_addr;
9b3c35e0 3668 target_ulong page;
13eb76e0
FB
3669
3670 while (len > 0) {
5232e4c7
PM
3671 int asidx;
3672 MemTxAttrs attrs;
3673
13eb76e0 3674 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3675 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3676 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3677 /* if no physical page mapped, return an error */
3678 if (phys_addr == -1)
3679 return -1;
3680 l = (page + TARGET_PAGE_SIZE) - addr;
3681 if (l > len)
3682 l = len;
5e2972fd 3683 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3684 if (is_write) {
5232e4c7
PM
3685 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3686 phys_addr, buf, l);
2e38847b 3687 } else {
5232e4c7
PM
3688 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3689 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3690 buf, l, 0);
2e38847b 3691 }
13eb76e0
FB
3692 len -= l;
3693 buf += l;
3694 addr += l;
3695 }
3696 return 0;
3697}
038629a6
DDAG
3698
3699/*
3700 * Allows code that needs to deal with migration bitmaps etc to still be built
3701 * target independent.
3702 */
3703size_t qemu_target_page_bits(void)
3704{
3705 return TARGET_PAGE_BITS;
3706}
3707
a68fe89c 3708#endif
13eb76e0 3709
8e4a424b
BS
3710/*
3711 * A helper function for the _utterly broken_ virtio device model to find out if
3712 * it's running on a big endian machine. Don't do this at home kids!
3713 */
98ed8ecf
GK
3714bool target_words_bigendian(void);
3715bool target_words_bigendian(void)
8e4a424b
BS
3716{
3717#if defined(TARGET_WORDS_BIGENDIAN)
3718 return true;
3719#else
3720 return false;
3721#endif
3722}
3723
76f35538 3724#ifndef CONFIG_USER_ONLY
a8170e5e 3725bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3726{
5c8a00ce 3727 MemoryRegion*mr;
149f54b5 3728 hwaddr l = 1;
41063e1e 3729 bool res;
76f35538 3730
41063e1e 3731 rcu_read_lock();
5c8a00ce
PB
3732 mr = address_space_translate(&address_space_memory,
3733 phys_addr, &phys_addr, &l, false);
76f35538 3734
41063e1e
PB
3735 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3736 rcu_read_unlock();
3737 return res;
76f35538 3738}
bd2fa51f 3739
e3807054 3740int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3741{
3742 RAMBlock *block;
e3807054 3743 int ret = 0;
bd2fa51f 3744
0dc3f44a
MD
3745 rcu_read_lock();
3746 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3747 ret = func(block->idstr, block->host, block->offset,
3748 block->used_length, opaque);
3749 if (ret) {
3750 break;
3751 }
bd2fa51f 3752 }
0dc3f44a 3753 rcu_read_unlock();
e3807054 3754 return ret;
bd2fa51f 3755}
ec3f8c99 3756#endif