]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
block/file-posix: add x-check-page-cache=on|off option
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
2ce16640
DDAG
102/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
105 */
106#define RAM_UF_ZEROPAGE (1 << 3)
e2eef170 107#endif
9fa3e853 108
20bccb82
PM
109#ifdef TARGET_PAGE_BITS_VARY
110int target_page_bits;
111bool target_page_bits_decided;
112#endif
113
bdc44640 114struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
f240eb6f 117__thread CPUState *current_cpu;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef 120 2 = Adaptive rate instruction counting. */
5708fc66 121int use_icount;
6a00d601 122
a0be0c58
YZ
123uintptr_t qemu_host_page_size;
124intptr_t qemu_host_page_mask;
a0be0c58 125
20bccb82
PM
126bool set_preferred_target_page_bits(int bits)
127{
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
132 */
133#ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
138 }
139 target_page_bits = bits;
140 }
141#endif
142 return true;
143}
144
e2eef170 145#if !defined(CONFIG_USER_ONLY)
4346ae3e 146
20bccb82
PM
147static void finalize_target_page_bits(void)
148{
149#ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
152 }
153 target_page_bits_decided = true;
154#endif
155}
156
1db8abb1
PB
157typedef struct PhysPageEntry PhysPageEntry;
158
159struct PhysPageEntry {
9736e55b 160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 161 uint32_t skip : 6;
9736e55b 162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 163 uint32_t ptr : 26;
1db8abb1
PB
164};
165
8b795765
MT
166#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
167
03f49957 168/* Size of the L2 (and L3, etc) page tables. */
57271d63 169#define ADDR_SPACE_BITS 64
03f49957 170
026736ce 171#define P_L2_BITS 9
03f49957
PB
172#define P_L2_SIZE (1 << P_L2_BITS)
173
174#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
175
176typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 177
53cb28cb 178typedef struct PhysPageMap {
79e2b9ae
PB
179 struct rcu_head rcu;
180
53cb28cb
MA
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187} PhysPageMap;
188
1db8abb1 189struct AddressSpaceDispatch {
729633c2 190 MemoryRegionSection *mru_section;
1db8abb1
PB
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
193 */
194 PhysPageEntry phys_map;
53cb28cb 195 PhysPageMap map;
1db8abb1
PB
196};
197
90260c6c
JK
198#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199typedef struct subpage_t {
200 MemoryRegion iomem;
16620684 201 FlatView *fv;
90260c6c 202 hwaddr base;
2615fabd 203 uint16_t sub_section[];
90260c6c
JK
204} subpage_t;
205
b41aac4f
LPF
206#define PHYS_SECTION_UNASSIGNED 0
207#define PHYS_SECTION_NOTDIRTY 1
208#define PHYS_SECTION_ROM 2
209#define PHYS_SECTION_WATCH 3
5312bd8b 210
e2eef170 211static void io_mem_init(void);
62152b8a 212static void memory_map_init(void);
09daed84 213static void tcg_commit(MemoryListener *listener);
e2eef170 214
1ec9b909 215static MemoryRegion io_mem_watch;
32857f4d
PM
216
217/**
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
223 */
224struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
229};
230
8deaf12c
GH
231struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
235};
236
6658ffb8 237#endif
fd6ce8f6 238
6d9a1304 239#if !defined(CONFIG_USER_ONLY)
d6f2ea22 240
53cb28cb 241static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 242{
101420b8 243 static unsigned alloc_hint = 16;
53cb28cb 244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 248 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 249 }
f7bf5461
AK
250}
251
db94604b 252static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
253{
254 unsigned i;
8b795765 255 uint32_t ret;
db94604b
PB
256 PhysPageEntry e;
257 PhysPageEntry *p;
f7bf5461 258
53cb28cb 259 ret = map->nodes_nb++;
db94604b 260 p = map->nodes[ret];
f7bf5461 261 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 262 assert(ret != map->nodes_nb_alloc);
db94604b
PB
263
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 266 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 267 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 268 }
f7bf5461 269 return ret;
d6f2ea22
AK
270}
271
53cb28cb
MA
272static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 274 int level)
f7bf5461
AK
275{
276 PhysPageEntry *p;
03f49957 277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 278
9736e55b 279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 280 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 281 }
db94604b 282 p = map->nodes[lp->ptr];
03f49957 283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 284
03f49957 285 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 286 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 287 lp->skip = 0;
c19e8800 288 lp->ptr = leaf;
07f07b31
AK
289 *index += step;
290 *nb -= step;
2999097b 291 } else {
53cb28cb 292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
293 }
294 ++lp;
f7bf5461
AK
295 }
296}
297
ac1970fb 298static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 299 hwaddr index, hwaddr nb,
2999097b 300 uint16_t leaf)
f7bf5461 301{
2999097b 302 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 304
53cb28cb 305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
306}
307
b35ba30f
MT
308/* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
310 */
efee678d 311static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
312{
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
317
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
320 }
321
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
326 }
327
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
efee678d 331 phys_page_compact(&p[i], nodes);
b35ba30f
MT
332 }
333 }
334
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
338 }
339
340 assert(valid_ptr < P_L2_SIZE);
341
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
345 }
346
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
354 */
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
358 }
359}
360
8629d3fc 361void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 362{
b35ba30f 363 if (d->phys_map.skip) {
efee678d 364 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
365 }
366}
367
29cb533d
FZ
368static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
370{
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
373 */
258dfaaa 374 return int128_gethi(section->size) ||
29cb533d 375 range_covers_byte(section->offset_within_address_space,
258dfaaa 376 int128_getlo(section->size), addr);
29cb533d
FZ
377}
378
003a0cf2 379static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 380{
003a0cf2
PX
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
97115a8d 384 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 385 int i;
f1f6e3b8 386
9736e55b 387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 389 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 390 }
9affd6fc 391 p = nodes[lp.ptr];
03f49957 392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 393 }
b35ba30f 394
29cb533d 395 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
399 }
f3705d53
AK
400}
401
e5548617
BS
402bool memory_region_is_unassigned(MemoryRegion *mr)
403{
2a8e7499 404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 405 && mr != &io_mem_watch;
fd6ce8f6 406}
149f54b5 407
79e2b9ae 408/* Called from RCU critical section */
c7086b4a 409static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
410 hwaddr addr,
411 bool resolve_subpage)
9f029603 412{
729633c2 413 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
414 subpage_t *subpage;
415
07c114bb
PB
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
003a0cf2 418 section = phys_page_find(d, addr);
07c114bb 419 atomic_set(&d->mru_section, section);
729633c2 420 }
90260c6c
JK
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
424 }
425 return section;
9f029603
JK
426}
427
79e2b9ae 428/* Called from RCU critical section */
90260c6c 429static MemoryRegionSection *
c7086b4a 430address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 431 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
432{
433 MemoryRegionSection *section;
965eb2fc 434 MemoryRegion *mr;
a87f3954 435 Int128 diff;
149f54b5 436
c7086b4a 437 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
440
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
443
965eb2fc 444 mr = section->mr;
b242e0e0
PB
445
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
452 *
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
456 */
965eb2fc 457 if (memory_region_is_ram(mr)) {
e4a511f8 458 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
460 }
149f54b5
PB
461 return section;
462}
90260c6c 463
d5e5fafd
PX
464/**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 *
480 * This function is called from RCU critical section
481 */
16620684
AK
482static MemoryRegionSection flatview_do_translate(FlatView *fv,
483 hwaddr addr,
484 hwaddr *xlat,
d5e5fafd
PX
485 hwaddr *plen_out,
486 hwaddr *page_mask_out,
16620684
AK
487 bool is_write,
488 bool is_mmio,
489 AddressSpace **target_as)
052c8fa9 490{
a764040c 491 IOMMUTLBEntry iotlb;
052c8fa9 492 MemoryRegionSection *section;
3df9d748 493 IOMMUMemoryRegion *iommu_mr;
1221a474 494 IOMMUMemoryRegionClass *imrc;
d5e5fafd
PX
495 hwaddr page_mask = (hwaddr)(-1);
496 hwaddr plen = (hwaddr)(-1);
497
498 if (plen_out) {
499 plen = *plen_out;
500 }
052c8fa9
JW
501
502 for (;;) {
16620684
AK
503 section = address_space_translate_internal(
504 flatview_to_dispatch(fv), addr, &addr,
d5e5fafd 505 &plen, is_mmio);
052c8fa9 506
3df9d748
AK
507 iommu_mr = memory_region_get_iommu(section->mr);
508 if (!iommu_mr) {
052c8fa9
JW
509 break;
510 }
1221a474 511 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 512
1221a474
AK
513 iotlb = imrc->translate(iommu_mr, addr, is_write ?
514 IOMMU_WO : IOMMU_RO);
a764040c
PX
515 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
516 | (addr & iotlb.addr_mask));
d5e5fafd
PX
517 page_mask &= iotlb.addr_mask;
518 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 519 if (!(iotlb.perm & (1 << is_write))) {
a764040c 520 goto translate_fail;
052c8fa9
JW
521 }
522
16620684 523 fv = address_space_to_flatview(iotlb.target_as);
e76bb18f 524 *target_as = iotlb.target_as;
052c8fa9
JW
525 }
526
a764040c
PX
527 *xlat = addr;
528
d5e5fafd
PX
529 if (page_mask == (hwaddr)(-1)) {
530 /* Not behind an IOMMU, use default page size. */
531 page_mask = ~TARGET_PAGE_MASK;
532 }
533
534 if (page_mask_out) {
535 *page_mask_out = page_mask;
536 }
537
538 if (plen_out) {
539 *plen_out = plen;
540 }
541
a764040c
PX
542 return *section;
543
544translate_fail:
545 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
546}
547
548/* Called from RCU critical section */
a764040c
PX
549IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
550 bool is_write)
90260c6c 551{
a764040c 552 MemoryRegionSection section;
076a93d7 553 hwaddr xlat, page_mask;
30951157 554
076a93d7
PX
555 /*
556 * This can never be MMIO, and we don't really care about plen,
557 * but page mask.
558 */
559 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
560 NULL, &page_mask, is_write, false, &as);
30951157 561
a764040c
PX
562 /* Illegal translation */
563 if (section.mr == &io_mem_unassigned) {
564 goto iotlb_fail;
565 }
30951157 566
a764040c
PX
567 /* Convert memory region offset into address space offset */
568 xlat += section.offset_within_address_space -
569 section.offset_within_region;
570
a764040c 571 return (IOMMUTLBEntry) {
e76bb18f 572 .target_as = as,
076a93d7
PX
573 .iova = addr & ~page_mask,
574 .translated_addr = xlat & ~page_mask,
575 .addr_mask = page_mask,
a764040c
PX
576 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
577 .perm = IOMMU_RW,
578 };
579
580iotlb_fail:
581 return (IOMMUTLBEntry) {0};
582}
583
584/* Called from RCU critical section */
16620684
AK
585MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
586 hwaddr *plen, bool is_write)
a764040c
PX
587{
588 MemoryRegion *mr;
589 MemoryRegionSection section;
16620684 590 AddressSpace *as = NULL;
a764040c
PX
591
592 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
593 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
594 is_write, true, &as);
a764040c
PX
595 mr = section.mr;
596
fe680d0d 597 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 598 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 599 *plen = MIN(page, *plen);
a87f3954
PB
600 }
601
30951157 602 return mr;
90260c6c
JK
603}
604
79e2b9ae 605/* Called from RCU critical section */
90260c6c 606MemoryRegionSection *
d7898cda 607address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 608 hwaddr *xlat, hwaddr *plen)
90260c6c 609{
30951157 610 MemoryRegionSection *section;
f35e44e7 611 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
612
613 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 614
3df9d748 615 assert(!memory_region_is_iommu(section->mr));
30951157 616 return section;
90260c6c 617}
5b6dd868 618#endif
fd6ce8f6 619
b170fce3 620#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
621
622static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 623{
259186a7 624 CPUState *cpu = opaque;
a513fe19 625
5b6dd868
BS
626 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
627 version_id is increased. */
259186a7 628 cpu->interrupt_request &= ~0x01;
d10eb08f 629 tlb_flush(cpu);
5b6dd868 630
15a356c4
PD
631 /* loadvm has just updated the content of RAM, bypassing the
632 * usual mechanisms that ensure we flush TBs for writes to
633 * memory we've translated code from. So we must flush all TBs,
634 * which will now be stale.
635 */
636 tb_flush(cpu);
637
5b6dd868 638 return 0;
a513fe19 639}
7501267e 640
6c3bff0e
PD
641static int cpu_common_pre_load(void *opaque)
642{
643 CPUState *cpu = opaque;
644
adee6424 645 cpu->exception_index = -1;
6c3bff0e
PD
646
647 return 0;
648}
649
650static bool cpu_common_exception_index_needed(void *opaque)
651{
652 CPUState *cpu = opaque;
653
adee6424 654 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
655}
656
657static const VMStateDescription vmstate_cpu_common_exception_index = {
658 .name = "cpu_common/exception_index",
659 .version_id = 1,
660 .minimum_version_id = 1,
5cd8cada 661 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
662 .fields = (VMStateField[]) {
663 VMSTATE_INT32(exception_index, CPUState),
664 VMSTATE_END_OF_LIST()
665 }
666};
667
bac05aa9
AS
668static bool cpu_common_crash_occurred_needed(void *opaque)
669{
670 CPUState *cpu = opaque;
671
672 return cpu->crash_occurred;
673}
674
675static const VMStateDescription vmstate_cpu_common_crash_occurred = {
676 .name = "cpu_common/crash_occurred",
677 .version_id = 1,
678 .minimum_version_id = 1,
679 .needed = cpu_common_crash_occurred_needed,
680 .fields = (VMStateField[]) {
681 VMSTATE_BOOL(crash_occurred, CPUState),
682 VMSTATE_END_OF_LIST()
683 }
684};
685
1a1562f5 686const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
687 .name = "cpu_common",
688 .version_id = 1,
689 .minimum_version_id = 1,
6c3bff0e 690 .pre_load = cpu_common_pre_load,
5b6dd868 691 .post_load = cpu_common_post_load,
35d08458 692 .fields = (VMStateField[]) {
259186a7
AF
693 VMSTATE_UINT32(halted, CPUState),
694 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 695 VMSTATE_END_OF_LIST()
6c3bff0e 696 },
5cd8cada
JQ
697 .subsections = (const VMStateDescription*[]) {
698 &vmstate_cpu_common_exception_index,
bac05aa9 699 &vmstate_cpu_common_crash_occurred,
5cd8cada 700 NULL
5b6dd868
BS
701 }
702};
1a1562f5 703
5b6dd868 704#endif
ea041c0e 705
38d8f5c8 706CPUState *qemu_get_cpu(int index)
ea041c0e 707{
bdc44640 708 CPUState *cpu;
ea041c0e 709
bdc44640 710 CPU_FOREACH(cpu) {
55e5c285 711 if (cpu->cpu_index == index) {
bdc44640 712 return cpu;
55e5c285 713 }
ea041c0e 714 }
5b6dd868 715
bdc44640 716 return NULL;
ea041c0e
FB
717}
718
09daed84 719#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
720void cpu_address_space_init(CPUState *cpu, int asidx,
721 const char *prefix, MemoryRegion *mr)
09daed84 722{
12ebc9a7 723 CPUAddressSpace *newas;
80ceb07a 724 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 725 char *as_name;
80ceb07a
PX
726
727 assert(mr);
87a621d8
PX
728 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
729 address_space_init(as, mr, as_name);
730 g_free(as_name);
12ebc9a7
PM
731
732 /* Target code should have set num_ases before calling us */
733 assert(asidx < cpu->num_ases);
734
56943e8c
PM
735 if (asidx == 0) {
736 /* address space 0 gets the convenience alias */
737 cpu->as = as;
738 }
739
12ebc9a7
PM
740 /* KVM cannot currently support multiple address spaces. */
741 assert(asidx == 0 || !kvm_enabled());
09daed84 742
12ebc9a7
PM
743 if (!cpu->cpu_ases) {
744 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 745 }
32857f4d 746
12ebc9a7
PM
747 newas = &cpu->cpu_ases[asidx];
748 newas->cpu = cpu;
749 newas->as = as;
56943e8c 750 if (tcg_enabled()) {
12ebc9a7
PM
751 newas->tcg_as_listener.commit = tcg_commit;
752 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 753 }
09daed84 754}
651a5bc0
PM
755
756AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
757{
758 /* Return the AddressSpace corresponding to the specified index */
759 return cpu->cpu_ases[asidx].as;
760}
09daed84
EI
761#endif
762
7bbc124e 763void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 764{
9dfeca7c
BR
765 CPUClass *cc = CPU_GET_CLASS(cpu);
766
267f685b 767 cpu_list_remove(cpu);
9dfeca7c
BR
768
769 if (cc->vmsd != NULL) {
770 vmstate_unregister(NULL, cc->vmsd, cpu);
771 }
772 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
773 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
774 }
1c59eb39
BR
775}
776
c7e002c5
FZ
777Property cpu_common_props[] = {
778#ifndef CONFIG_USER_ONLY
779 /* Create a memory property for softmmu CPU object,
780 * so users can wire up its memory. (This can't go in qom/cpu.c
781 * because that file is compiled only once for both user-mode
782 * and system builds.) The default if no link is set up is to use
783 * the system address space.
784 */
785 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
786 MemoryRegion *),
787#endif
788 DEFINE_PROP_END_OF_LIST(),
789};
790
39e329e3 791void cpu_exec_initfn(CPUState *cpu)
ea041c0e 792{
56943e8c 793 cpu->as = NULL;
12ebc9a7 794 cpu->num_ases = 0;
56943e8c 795
291135b5 796#ifndef CONFIG_USER_ONLY
291135b5 797 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
798 cpu->memory = system_memory;
799 object_ref(OBJECT(cpu->memory));
291135b5 800#endif
39e329e3
LV
801}
802
ce5b1bbf 803void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 804{
55c3ceef 805 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 806 static bool tcg_target_initialized;
291135b5 807
267f685b 808 cpu_list_add(cpu);
1bc7e522 809
2dda6354
EC
810 if (tcg_enabled() && !tcg_target_initialized) {
811 tcg_target_initialized = true;
55c3ceef
RH
812 cc->tcg_initialize();
813 }
814
1bc7e522 815#ifndef CONFIG_USER_ONLY
e0d47944 816 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 817 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 818 }
b170fce3 819 if (cc->vmsd != NULL) {
741da0d3 820 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 821 }
741da0d3 822#endif
ea041c0e
FB
823}
824
2278b939
IM
825const char *parse_cpu_model(const char *cpu_model)
826{
827 ObjectClass *oc;
828 CPUClass *cc;
829 gchar **model_pieces;
830 const char *cpu_type;
831
832 model_pieces = g_strsplit(cpu_model, ",", 2);
833
834 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
835 if (oc == NULL) {
836 error_report("unable to find CPU model '%s'", model_pieces[0]);
837 g_strfreev(model_pieces);
838 exit(EXIT_FAILURE);
839 }
840
841 cpu_type = object_class_get_name(oc);
842 cc = CPU_CLASS(oc);
843 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
844 g_strfreev(model_pieces);
845 return cpu_type;
846}
847
406bc339 848#if defined(CONFIG_USER_ONLY)
00b941e5 849static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 850{
406bc339
PK
851 mmap_lock();
852 tb_lock();
853 tb_invalidate_phys_page_range(pc, pc + 1, 0);
854 tb_unlock();
855 mmap_unlock();
856}
857#else
858static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
859{
860 MemTxAttrs attrs;
861 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
862 int asidx = cpu_asidx_from_attrs(cpu, attrs);
863 if (phys != -1) {
864 /* Locks grabbed by tb_invalidate_phys_addr */
865 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
866 phys | (pc & ~TARGET_PAGE_MASK));
867 }
1e7855a5 868}
406bc339 869#endif
d720b93d 870
c527ee8f 871#if defined(CONFIG_USER_ONLY)
75a34036 872void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
873
874{
875}
876
3ee887e8
PM
877int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
878 int flags)
879{
880 return -ENOSYS;
881}
882
883void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
884{
885}
886
75a34036 887int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
888 int flags, CPUWatchpoint **watchpoint)
889{
890 return -ENOSYS;
891}
892#else
6658ffb8 893/* Add a watchpoint. */
75a34036 894int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 895 int flags, CPUWatchpoint **watchpoint)
6658ffb8 896{
c0ce998e 897 CPUWatchpoint *wp;
6658ffb8 898
05068c0d 899 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 900 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
901 error_report("tried to set invalid watchpoint at %"
902 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
903 return -EINVAL;
904 }
7267c094 905 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
906
907 wp->vaddr = addr;
05068c0d 908 wp->len = len;
a1d1bb31
AL
909 wp->flags = flags;
910
2dc9f411 911 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
912 if (flags & BP_GDB) {
913 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
914 } else {
915 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
916 }
6658ffb8 917
31b030d4 918 tlb_flush_page(cpu, addr);
a1d1bb31
AL
919
920 if (watchpoint)
921 *watchpoint = wp;
922 return 0;
6658ffb8
PB
923}
924
a1d1bb31 925/* Remove a specific watchpoint. */
75a34036 926int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 927 int flags)
6658ffb8 928{
a1d1bb31 929 CPUWatchpoint *wp;
6658ffb8 930
ff4700b0 931 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 932 if (addr == wp->vaddr && len == wp->len
6e140f28 933 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 934 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
935 return 0;
936 }
937 }
a1d1bb31 938 return -ENOENT;
6658ffb8
PB
939}
940
a1d1bb31 941/* Remove a specific watchpoint by reference. */
75a34036 942void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 943{
ff4700b0 944 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 945
31b030d4 946 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 947
7267c094 948 g_free(watchpoint);
a1d1bb31
AL
949}
950
951/* Remove all matching watchpoints. */
75a34036 952void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 953{
c0ce998e 954 CPUWatchpoint *wp, *next;
a1d1bb31 955
ff4700b0 956 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
957 if (wp->flags & mask) {
958 cpu_watchpoint_remove_by_ref(cpu, wp);
959 }
c0ce998e 960 }
7d03f82f 961}
05068c0d
PM
962
963/* Return true if this watchpoint address matches the specified
964 * access (ie the address range covered by the watchpoint overlaps
965 * partially or completely with the address range covered by the
966 * access).
967 */
968static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
969 vaddr addr,
970 vaddr len)
971{
972 /* We know the lengths are non-zero, but a little caution is
973 * required to avoid errors in the case where the range ends
974 * exactly at the top of the address space and so addr + len
975 * wraps round to zero.
976 */
977 vaddr wpend = wp->vaddr + wp->len - 1;
978 vaddr addrend = addr + len - 1;
979
980 return !(addr > wpend || wp->vaddr > addrend);
981}
982
c527ee8f 983#endif
7d03f82f 984
a1d1bb31 985/* Add a breakpoint. */
b3310ab3 986int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 987 CPUBreakpoint **breakpoint)
4c3a88a2 988{
c0ce998e 989 CPUBreakpoint *bp;
3b46e624 990
7267c094 991 bp = g_malloc(sizeof(*bp));
4c3a88a2 992
a1d1bb31
AL
993 bp->pc = pc;
994 bp->flags = flags;
995
2dc9f411 996 /* keep all GDB-injected breakpoints in front */
00b941e5 997 if (flags & BP_GDB) {
f0c3c505 998 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 999 } else {
f0c3c505 1000 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1001 }
3b46e624 1002
f0c3c505 1003 breakpoint_invalidate(cpu, pc);
a1d1bb31 1004
00b941e5 1005 if (breakpoint) {
a1d1bb31 1006 *breakpoint = bp;
00b941e5 1007 }
4c3a88a2 1008 return 0;
4c3a88a2
FB
1009}
1010
a1d1bb31 1011/* Remove a specific breakpoint. */
b3310ab3 1012int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1013{
a1d1bb31
AL
1014 CPUBreakpoint *bp;
1015
f0c3c505 1016 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1017 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1018 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1019 return 0;
1020 }
7d03f82f 1021 }
a1d1bb31 1022 return -ENOENT;
7d03f82f
EI
1023}
1024
a1d1bb31 1025/* Remove a specific breakpoint by reference. */
b3310ab3 1026void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1027{
f0c3c505
AF
1028 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1029
1030 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1031
7267c094 1032 g_free(breakpoint);
a1d1bb31
AL
1033}
1034
1035/* Remove all matching breakpoints. */
b3310ab3 1036void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1037{
c0ce998e 1038 CPUBreakpoint *bp, *next;
a1d1bb31 1039
f0c3c505 1040 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1041 if (bp->flags & mask) {
1042 cpu_breakpoint_remove_by_ref(cpu, bp);
1043 }
c0ce998e 1044 }
4c3a88a2
FB
1045}
1046
c33a346e
FB
1047/* enable or disable single step mode. EXCP_DEBUG is returned by the
1048 CPU loop after each instruction */
3825b28f 1049void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1050{
ed2803da
AF
1051 if (cpu->singlestep_enabled != enabled) {
1052 cpu->singlestep_enabled = enabled;
1053 if (kvm_enabled()) {
38e478ec 1054 kvm_update_guest_debug(cpu, 0);
ed2803da 1055 } else {
ccbb4d44 1056 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1057 /* XXX: only flush what is necessary */
bbd77c18 1058 tb_flush(cpu);
e22a25c9 1059 }
c33a346e 1060 }
c33a346e
FB
1061}
1062
a47dddd7 1063void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1064{
1065 va_list ap;
493ae1f0 1066 va_list ap2;
7501267e
FB
1067
1068 va_start(ap, fmt);
493ae1f0 1069 va_copy(ap2, ap);
7501267e
FB
1070 fprintf(stderr, "qemu: fatal: ");
1071 vfprintf(stderr, fmt, ap);
1072 fprintf(stderr, "\n");
878096ee 1073 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1074 if (qemu_log_separate()) {
1ee73216 1075 qemu_log_lock();
93fcfe39
AL
1076 qemu_log("qemu: fatal: ");
1077 qemu_log_vprintf(fmt, ap2);
1078 qemu_log("\n");
a0762859 1079 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1080 qemu_log_flush();
1ee73216 1081 qemu_log_unlock();
93fcfe39 1082 qemu_log_close();
924edcae 1083 }
493ae1f0 1084 va_end(ap2);
f9373291 1085 va_end(ap);
7615936e 1086 replay_finish();
fd052bf6
RV
1087#if defined(CONFIG_USER_ONLY)
1088 {
1089 struct sigaction act;
1090 sigfillset(&act.sa_mask);
1091 act.sa_handler = SIG_DFL;
1092 sigaction(SIGABRT, &act, NULL);
1093 }
1094#endif
7501267e
FB
1095 abort();
1096}
1097
0124311e 1098#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1099/* Called from RCU critical section */
041603fe
PB
1100static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1101{
1102 RAMBlock *block;
1103
43771539 1104 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1105 if (block && addr - block->offset < block->max_length) {
68851b98 1106 return block;
041603fe 1107 }
99e15582 1108 RAMBLOCK_FOREACH(block) {
9b8424d5 1109 if (addr - block->offset < block->max_length) {
041603fe
PB
1110 goto found;
1111 }
1112 }
1113
1114 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1115 abort();
1116
1117found:
43771539
PB
1118 /* It is safe to write mru_block outside the iothread lock. This
1119 * is what happens:
1120 *
1121 * mru_block = xxx
1122 * rcu_read_unlock()
1123 * xxx removed from list
1124 * rcu_read_lock()
1125 * read mru_block
1126 * mru_block = NULL;
1127 * call_rcu(reclaim_ramblock, xxx);
1128 * rcu_read_unlock()
1129 *
1130 * atomic_rcu_set is not needed here. The block was already published
1131 * when it was placed into the list. Here we're just making an extra
1132 * copy of the pointer.
1133 */
041603fe
PB
1134 ram_list.mru_block = block;
1135 return block;
1136}
1137
a2f4d5be 1138static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1139{
9a13565d 1140 CPUState *cpu;
041603fe 1141 ram_addr_t start1;
a2f4d5be
JQ
1142 RAMBlock *block;
1143 ram_addr_t end;
1144
1145 end = TARGET_PAGE_ALIGN(start + length);
1146 start &= TARGET_PAGE_MASK;
d24981d3 1147
0dc3f44a 1148 rcu_read_lock();
041603fe
PB
1149 block = qemu_get_ram_block(start);
1150 assert(block == qemu_get_ram_block(end - 1));
1240be24 1151 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1152 CPU_FOREACH(cpu) {
1153 tlb_reset_dirty(cpu, start1, length);
1154 }
0dc3f44a 1155 rcu_read_unlock();
d24981d3
JQ
1156}
1157
5579c7f3 1158/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1159bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1160 ram_addr_t length,
1161 unsigned client)
1ccde1cb 1162{
5b82b703 1163 DirtyMemoryBlocks *blocks;
03eebc9e 1164 unsigned long end, page;
5b82b703 1165 bool dirty = false;
03eebc9e
SH
1166
1167 if (length == 0) {
1168 return false;
1169 }
f23db169 1170
03eebc9e
SH
1171 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1172 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1173
1174 rcu_read_lock();
1175
1176 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1177
1178 while (page < end) {
1179 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1180 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1181 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1182
1183 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1184 offset, num);
1185 page += num;
1186 }
1187
1188 rcu_read_unlock();
03eebc9e
SH
1189
1190 if (dirty && tcg_enabled()) {
a2f4d5be 1191 tlb_reset_dirty_range_all(start, length);
5579c7f3 1192 }
03eebc9e
SH
1193
1194 return dirty;
1ccde1cb
FB
1195}
1196
8deaf12c
GH
1197DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1198 (ram_addr_t start, ram_addr_t length, unsigned client)
1199{
1200 DirtyMemoryBlocks *blocks;
1201 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1202 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1203 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1204 DirtyBitmapSnapshot *snap;
1205 unsigned long page, end, dest;
1206
1207 snap = g_malloc0(sizeof(*snap) +
1208 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1209 snap->start = first;
1210 snap->end = last;
1211
1212 page = first >> TARGET_PAGE_BITS;
1213 end = last >> TARGET_PAGE_BITS;
1214 dest = 0;
1215
1216 rcu_read_lock();
1217
1218 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1219
1220 while (page < end) {
1221 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1222 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1223 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1224
1225 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1226 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1227 offset >>= BITS_PER_LEVEL;
1228
1229 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1230 blocks->blocks[idx] + offset,
1231 num);
1232 page += num;
1233 dest += num >> BITS_PER_LEVEL;
1234 }
1235
1236 rcu_read_unlock();
1237
1238 if (tcg_enabled()) {
1239 tlb_reset_dirty_range_all(start, length);
1240 }
1241
1242 return snap;
1243}
1244
1245bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1246 ram_addr_t start,
1247 ram_addr_t length)
1248{
1249 unsigned long page, end;
1250
1251 assert(start >= snap->start);
1252 assert(start + length <= snap->end);
1253
1254 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1255 page = (start - snap->start) >> TARGET_PAGE_BITS;
1256
1257 while (page < end) {
1258 if (test_bit(page, snap->dirty)) {
1259 return true;
1260 }
1261 page++;
1262 }
1263 return false;
1264}
1265
79e2b9ae 1266/* Called from RCU critical section */
bb0e627a 1267hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1268 MemoryRegionSection *section,
1269 target_ulong vaddr,
1270 hwaddr paddr, hwaddr xlat,
1271 int prot,
1272 target_ulong *address)
e5548617 1273{
a8170e5e 1274 hwaddr iotlb;
e5548617
BS
1275 CPUWatchpoint *wp;
1276
cc5bea60 1277 if (memory_region_is_ram(section->mr)) {
e5548617 1278 /* Normal RAM. */
e4e69794 1279 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1280 if (!section->readonly) {
b41aac4f 1281 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1282 } else {
b41aac4f 1283 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1284 }
1285 } else {
0b8e2c10
PM
1286 AddressSpaceDispatch *d;
1287
16620684 1288 d = flatview_to_dispatch(section->fv);
0b8e2c10 1289 iotlb = section - d->map.sections;
149f54b5 1290 iotlb += xlat;
e5548617
BS
1291 }
1292
1293 /* Make accesses to pages with watchpoints go via the
1294 watchpoint trap routines. */
ff4700b0 1295 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1296 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1297 /* Avoid trapping reads of pages with a write breakpoint. */
1298 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1299 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1300 *address |= TLB_MMIO;
1301 break;
1302 }
1303 }
1304 }
1305
1306 return iotlb;
1307}
9fa3e853
FB
1308#endif /* defined(CONFIG_USER_ONLY) */
1309
e2eef170 1310#if !defined(CONFIG_USER_ONLY)
8da3ff18 1311
c227f099 1312static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1313 uint16_t section);
16620684 1314static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1315
06329cce 1316static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1317 qemu_anon_ram_alloc;
91138037
MA
1318
1319/*
1320 * Set a custom physical guest memory alloator.
1321 * Accelerators with unusual needs may need this. Hopefully, we can
1322 * get rid of it eventually.
1323 */
06329cce 1324void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1325{
1326 phys_mem_alloc = alloc;
1327}
1328
53cb28cb
MA
1329static uint16_t phys_section_add(PhysPageMap *map,
1330 MemoryRegionSection *section)
5312bd8b 1331{
68f3f65b
PB
1332 /* The physical section number is ORed with a page-aligned
1333 * pointer to produce the iotlb entries. Thus it should
1334 * never overflow into the page-aligned value.
1335 */
53cb28cb 1336 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1337
53cb28cb
MA
1338 if (map->sections_nb == map->sections_nb_alloc) {
1339 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1340 map->sections = g_renew(MemoryRegionSection, map->sections,
1341 map->sections_nb_alloc);
5312bd8b 1342 }
53cb28cb 1343 map->sections[map->sections_nb] = *section;
dfde4e6e 1344 memory_region_ref(section->mr);
53cb28cb 1345 return map->sections_nb++;
5312bd8b
AK
1346}
1347
058bc4b5
PB
1348static void phys_section_destroy(MemoryRegion *mr)
1349{
55b4e80b
DS
1350 bool have_sub_page = mr->subpage;
1351
dfde4e6e
PB
1352 memory_region_unref(mr);
1353
55b4e80b 1354 if (have_sub_page) {
058bc4b5 1355 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1356 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1357 g_free(subpage);
1358 }
1359}
1360
6092666e 1361static void phys_sections_free(PhysPageMap *map)
5312bd8b 1362{
9affd6fc
PB
1363 while (map->sections_nb > 0) {
1364 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1365 phys_section_destroy(section->mr);
1366 }
9affd6fc
PB
1367 g_free(map->sections);
1368 g_free(map->nodes);
5312bd8b
AK
1369}
1370
9950322a 1371static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1372{
9950322a 1373 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1374 subpage_t *subpage;
a8170e5e 1375 hwaddr base = section->offset_within_address_space
0f0cb164 1376 & TARGET_PAGE_MASK;
003a0cf2 1377 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1378 MemoryRegionSection subsection = {
1379 .offset_within_address_space = base,
052e87b0 1380 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1381 };
a8170e5e 1382 hwaddr start, end;
0f0cb164 1383
f3705d53 1384 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1385
f3705d53 1386 if (!(existing->mr->subpage)) {
16620684
AK
1387 subpage = subpage_init(fv, base);
1388 subsection.fv = fv;
0f0cb164 1389 subsection.mr = &subpage->iomem;
ac1970fb 1390 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1391 phys_section_add(&d->map, &subsection));
0f0cb164 1392 } else {
f3705d53 1393 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1394 }
1395 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1396 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1397 subpage_register(subpage, start, end,
1398 phys_section_add(&d->map, section));
0f0cb164
AK
1399}
1400
1401
9950322a 1402static void register_multipage(FlatView *fv,
052e87b0 1403 MemoryRegionSection *section)
33417e70 1404{
9950322a 1405 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1406 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1407 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1408 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1409 TARGET_PAGE_BITS));
dd81124b 1410
733d5ef5
PB
1411 assert(num_pages);
1412 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1413}
1414
8629d3fc 1415void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1416{
99b9cc06 1417 MemoryRegionSection now = *section, remain = *section;
052e87b0 1418 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1419
733d5ef5
PB
1420 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1421 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1422 - now.offset_within_address_space;
1423
052e87b0 1424 now.size = int128_min(int128_make64(left), now.size);
9950322a 1425 register_subpage(fv, &now);
733d5ef5 1426 } else {
052e87b0 1427 now.size = int128_zero();
733d5ef5 1428 }
052e87b0
PB
1429 while (int128_ne(remain.size, now.size)) {
1430 remain.size = int128_sub(remain.size, now.size);
1431 remain.offset_within_address_space += int128_get64(now.size);
1432 remain.offset_within_region += int128_get64(now.size);
69b67646 1433 now = remain;
052e87b0 1434 if (int128_lt(remain.size, page_size)) {
9950322a 1435 register_subpage(fv, &now);
88266249 1436 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1437 now.size = page_size;
9950322a 1438 register_subpage(fv, &now);
69b67646 1439 } else {
052e87b0 1440 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1441 register_multipage(fv, &now);
69b67646 1442 }
0f0cb164
AK
1443 }
1444}
1445
62a2744c
SY
1446void qemu_flush_coalesced_mmio_buffer(void)
1447{
1448 if (kvm_enabled())
1449 kvm_flush_coalesced_mmio_buffer();
1450}
1451
b2a8658e
UD
1452void qemu_mutex_lock_ramlist(void)
1453{
1454 qemu_mutex_lock(&ram_list.mutex);
1455}
1456
1457void qemu_mutex_unlock_ramlist(void)
1458{
1459 qemu_mutex_unlock(&ram_list.mutex);
1460}
1461
be9b23c4
PX
1462void ram_block_dump(Monitor *mon)
1463{
1464 RAMBlock *block;
1465 char *psize;
1466
1467 rcu_read_lock();
1468 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1469 "Block Name", "PSize", "Offset", "Used", "Total");
1470 RAMBLOCK_FOREACH(block) {
1471 psize = size_to_str(block->page_size);
1472 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1473 " 0x%016" PRIx64 "\n", block->idstr, psize,
1474 (uint64_t)block->offset,
1475 (uint64_t)block->used_length,
1476 (uint64_t)block->max_length);
1477 g_free(psize);
1478 }
1479 rcu_read_unlock();
1480}
1481
9c607668
AK
1482#ifdef __linux__
1483/*
1484 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1485 * may or may not name the same files / on the same filesystem now as
1486 * when we actually open and map them. Iterate over the file
1487 * descriptors instead, and use qemu_fd_getpagesize().
1488 */
1489static int find_max_supported_pagesize(Object *obj, void *opaque)
1490{
9c607668
AK
1491 long *hpsize_min = opaque;
1492
1493 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
2b108085
DG
1494 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1495
0de6e2a3
DG
1496 if (hpsize < *hpsize_min) {
1497 *hpsize_min = hpsize;
9c607668
AK
1498 }
1499 }
1500
1501 return 0;
1502}
1503
1504long qemu_getrampagesize(void)
1505{
1506 long hpsize = LONG_MAX;
1507 long mainrampagesize;
1508 Object *memdev_root;
1509
0de6e2a3 1510 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1511
1512 /* it's possible we have memory-backend objects with
1513 * hugepage-backed RAM. these may get mapped into system
1514 * address space via -numa parameters or memory hotplug
1515 * hooks. we want to take these into account, but we
1516 * also want to make sure these supported hugepage
1517 * sizes are applicable across the entire range of memory
1518 * we may boot from, so we take the min across all
1519 * backends, and assume normal pages in cases where a
1520 * backend isn't backed by hugepages.
1521 */
1522 memdev_root = object_resolve_path("/objects", NULL);
1523 if (memdev_root) {
1524 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1525 }
1526 if (hpsize == LONG_MAX) {
1527 /* No additional memory regions found ==> Report main RAM page size */
1528 return mainrampagesize;
1529 }
1530
1531 /* If NUMA is disabled or the NUMA nodes are not backed with a
1532 * memory-backend, then there is at least one node using "normal" RAM,
1533 * so if its page size is smaller we have got to report that size instead.
1534 */
1535 if (hpsize > mainrampagesize &&
1536 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1537 static bool warned;
1538 if (!warned) {
1539 error_report("Huge page support disabled (n/a for main memory).");
1540 warned = true;
1541 }
1542 return mainrampagesize;
1543 }
1544
1545 return hpsize;
1546}
1547#else
1548long qemu_getrampagesize(void)
1549{
1550 return getpagesize();
1551}
1552#endif
1553
e1e84ba0 1554#ifdef __linux__
d6af99c9
HZ
1555static int64_t get_file_size(int fd)
1556{
1557 int64_t size = lseek(fd, 0, SEEK_END);
1558 if (size < 0) {
1559 return -errno;
1560 }
1561 return size;
1562}
1563
8d37b030
MAL
1564static int file_ram_open(const char *path,
1565 const char *region_name,
1566 bool *created,
1567 Error **errp)
c902760f
MT
1568{
1569 char *filename;
8ca761f6
PF
1570 char *sanitized_name;
1571 char *c;
5c3ece79 1572 int fd = -1;
c902760f 1573
8d37b030 1574 *created = false;
fd97fd44
MA
1575 for (;;) {
1576 fd = open(path, O_RDWR);
1577 if (fd >= 0) {
1578 /* @path names an existing file, use it */
1579 break;
8d31d6b6 1580 }
fd97fd44
MA
1581 if (errno == ENOENT) {
1582 /* @path names a file that doesn't exist, create it */
1583 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1584 if (fd >= 0) {
8d37b030 1585 *created = true;
fd97fd44
MA
1586 break;
1587 }
1588 } else if (errno == EISDIR) {
1589 /* @path names a directory, create a file there */
1590 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1591 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1592 for (c = sanitized_name; *c != '\0'; c++) {
1593 if (*c == '/') {
1594 *c = '_';
1595 }
1596 }
8ca761f6 1597
fd97fd44
MA
1598 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1599 sanitized_name);
1600 g_free(sanitized_name);
8d31d6b6 1601
fd97fd44
MA
1602 fd = mkstemp(filename);
1603 if (fd >= 0) {
1604 unlink(filename);
1605 g_free(filename);
1606 break;
1607 }
1608 g_free(filename);
8d31d6b6 1609 }
fd97fd44
MA
1610 if (errno != EEXIST && errno != EINTR) {
1611 error_setg_errno(errp, errno,
1612 "can't open backing store %s for guest RAM",
1613 path);
8d37b030 1614 return -1;
fd97fd44
MA
1615 }
1616 /*
1617 * Try again on EINTR and EEXIST. The latter happens when
1618 * something else creates the file between our two open().
1619 */
8d31d6b6 1620 }
c902760f 1621
8d37b030
MAL
1622 return fd;
1623}
1624
1625static void *file_ram_alloc(RAMBlock *block,
1626 ram_addr_t memory,
1627 int fd,
1628 bool truncate,
1629 Error **errp)
1630{
1631 void *area;
1632
863e9621 1633 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1634 if (block->mr->align % block->page_size) {
1635 error_setg(errp, "alignment 0x%" PRIx64
1636 " must be multiples of page size 0x%zx",
1637 block->mr->align, block->page_size);
1638 return NULL;
1639 }
1640 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1641#if defined(__s390x__)
1642 if (kvm_enabled()) {
1643 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1644 }
1645#endif
fd97fd44 1646
863e9621 1647 if (memory < block->page_size) {
fd97fd44 1648 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1649 "or larger than page size 0x%zx",
1650 memory, block->page_size);
8d37b030 1651 return NULL;
1775f111
HZ
1652 }
1653
863e9621 1654 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1655
1656 /*
1657 * ftruncate is not supported by hugetlbfs in older
1658 * hosts, so don't bother bailing out on errors.
1659 * If anything goes wrong with it under other filesystems,
1660 * mmap will fail.
d6af99c9
HZ
1661 *
1662 * Do not truncate the non-empty backend file to avoid corrupting
1663 * the existing data in the file. Disabling shrinking is not
1664 * enough. For example, the current vNVDIMM implementation stores
1665 * the guest NVDIMM labels at the end of the backend file. If the
1666 * backend file is later extended, QEMU will not be able to find
1667 * those labels. Therefore, extending the non-empty backend file
1668 * is disabled as well.
c902760f 1669 */
8d37b030 1670 if (truncate && ftruncate(fd, memory)) {
9742bf26 1671 perror("ftruncate");
7f56e740 1672 }
c902760f 1673
d2f39add
DD
1674 area = qemu_ram_mmap(fd, memory, block->mr->align,
1675 block->flags & RAM_SHARED);
c902760f 1676 if (area == MAP_FAILED) {
7f56e740 1677 error_setg_errno(errp, errno,
fd97fd44 1678 "unable to map backing store for guest RAM");
8d37b030 1679 return NULL;
c902760f 1680 }
ef36fa14
MT
1681
1682 if (mem_prealloc) {
1e356fc1 1683 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1684 if (errp && *errp) {
8d37b030
MAL
1685 qemu_ram_munmap(area, memory);
1686 return NULL;
056b68af 1687 }
ef36fa14
MT
1688 }
1689
04b16653 1690 block->fd = fd;
c902760f
MT
1691 return area;
1692}
1693#endif
1694
154cc9ea
DDAG
1695/* Allocate space within the ram_addr_t space that governs the
1696 * dirty bitmaps.
1697 * Called with the ramlist lock held.
1698 */
d17b5288 1699static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1700{
1701 RAMBlock *block, *next_block;
3e837b2c 1702 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1703
49cd9ac6
SH
1704 assert(size != 0); /* it would hand out same offset multiple times */
1705
0dc3f44a 1706 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1707 return 0;
0d53d9fe 1708 }
04b16653 1709
99e15582 1710 RAMBLOCK_FOREACH(block) {
154cc9ea 1711 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1712
801110ab
DDAG
1713 /* Align blocks to start on a 'long' in the bitmap
1714 * which makes the bitmap sync'ing take the fast path.
1715 */
154cc9ea 1716 candidate = block->offset + block->max_length;
801110ab 1717 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1718
154cc9ea
DDAG
1719 /* Search for the closest following block
1720 * and find the gap.
1721 */
99e15582 1722 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1723 if (next_block->offset >= candidate) {
04b16653
AW
1724 next = MIN(next, next_block->offset);
1725 }
1726 }
154cc9ea
DDAG
1727
1728 /* If it fits remember our place and remember the size
1729 * of gap, but keep going so that we might find a smaller
1730 * gap to fill so avoiding fragmentation.
1731 */
1732 if (next - candidate >= size && next - candidate < mingap) {
1733 offset = candidate;
1734 mingap = next - candidate;
04b16653 1735 }
154cc9ea
DDAG
1736
1737 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1738 }
3e837b2c
AW
1739
1740 if (offset == RAM_ADDR_MAX) {
1741 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1742 (uint64_t)size);
1743 abort();
1744 }
1745
154cc9ea
DDAG
1746 trace_find_ram_offset(size, offset);
1747
04b16653
AW
1748 return offset;
1749}
1750
b8c48993 1751unsigned long last_ram_page(void)
d17b5288
AW
1752{
1753 RAMBlock *block;
1754 ram_addr_t last = 0;
1755
0dc3f44a 1756 rcu_read_lock();
99e15582 1757 RAMBLOCK_FOREACH(block) {
62be4e3a 1758 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1759 }
0dc3f44a 1760 rcu_read_unlock();
b8c48993 1761 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1762}
1763
ddb97f1d
JB
1764static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1765{
1766 int ret;
ddb97f1d
JB
1767
1768 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1769 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1770 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1771 if (ret) {
1772 perror("qemu_madvise");
1773 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1774 "but dump_guest_core=off specified\n");
1775 }
1776 }
1777}
1778
422148d3
DDAG
1779const char *qemu_ram_get_idstr(RAMBlock *rb)
1780{
1781 return rb->idstr;
1782}
1783
463a4ac2
DDAG
1784bool qemu_ram_is_shared(RAMBlock *rb)
1785{
1786 return rb->flags & RAM_SHARED;
1787}
1788
2ce16640
DDAG
1789/* Note: Only set at the start of postcopy */
1790bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1791{
1792 return rb->flags & RAM_UF_ZEROPAGE;
1793}
1794
1795void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1796{
1797 rb->flags |= RAM_UF_ZEROPAGE;
1798}
1799
ae3a7047 1800/* Called with iothread lock held. */
fa53a0e5 1801void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1802{
fa53a0e5 1803 RAMBlock *block;
20cfe881 1804
c5705a77
AK
1805 assert(new_block);
1806 assert(!new_block->idstr[0]);
84b89d78 1807
09e5ab63
AL
1808 if (dev) {
1809 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1810 if (id) {
1811 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1812 g_free(id);
84b89d78
CM
1813 }
1814 }
1815 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1816
ab0a9956 1817 rcu_read_lock();
99e15582 1818 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1819 if (block != new_block &&
1820 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1821 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1822 new_block->idstr);
1823 abort();
1824 }
1825 }
0dc3f44a 1826 rcu_read_unlock();
c5705a77
AK
1827}
1828
ae3a7047 1829/* Called with iothread lock held. */
fa53a0e5 1830void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1831{
ae3a7047
MD
1832 /* FIXME: arch_init.c assumes that this is not called throughout
1833 * migration. Ignore the problem since hot-unplug during migration
1834 * does not work anyway.
1835 */
20cfe881
HT
1836 if (block) {
1837 memset(block->idstr, 0, sizeof(block->idstr));
1838 }
1839}
1840
863e9621
DDAG
1841size_t qemu_ram_pagesize(RAMBlock *rb)
1842{
1843 return rb->page_size;
1844}
1845
67f11b5c
DDAG
1846/* Returns the largest size of page in use */
1847size_t qemu_ram_pagesize_largest(void)
1848{
1849 RAMBlock *block;
1850 size_t largest = 0;
1851
99e15582 1852 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1853 largest = MAX(largest, qemu_ram_pagesize(block));
1854 }
1855
1856 return largest;
1857}
1858
8490fc78
LC
1859static int memory_try_enable_merging(void *addr, size_t len)
1860{
75cc7f01 1861 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1862 /* disabled by the user */
1863 return 0;
1864 }
1865
1866 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1867}
1868
62be4e3a
MT
1869/* Only legal before guest might have detected the memory size: e.g. on
1870 * incoming migration, or right after reset.
1871 *
1872 * As memory core doesn't know how is memory accessed, it is up to
1873 * resize callback to update device state and/or add assertions to detect
1874 * misuse, if necessary.
1875 */
fa53a0e5 1876int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1877{
62be4e3a
MT
1878 assert(block);
1879
4ed023ce 1880 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1881
62be4e3a
MT
1882 if (block->used_length == newsize) {
1883 return 0;
1884 }
1885
1886 if (!(block->flags & RAM_RESIZEABLE)) {
1887 error_setg_errno(errp, EINVAL,
1888 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1889 " in != 0x" RAM_ADDR_FMT, block->idstr,
1890 newsize, block->used_length);
1891 return -EINVAL;
1892 }
1893
1894 if (block->max_length < newsize) {
1895 error_setg_errno(errp, EINVAL,
1896 "Length too large: %s: 0x" RAM_ADDR_FMT
1897 " > 0x" RAM_ADDR_FMT, block->idstr,
1898 newsize, block->max_length);
1899 return -EINVAL;
1900 }
1901
1902 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1903 block->used_length = newsize;
58d2707e
PB
1904 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1905 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1906 memory_region_set_size(block->mr, newsize);
1907 if (block->resized) {
1908 block->resized(block->idstr, newsize, block->host);
1909 }
1910 return 0;
1911}
1912
5b82b703
SH
1913/* Called with ram_list.mutex held */
1914static void dirty_memory_extend(ram_addr_t old_ram_size,
1915 ram_addr_t new_ram_size)
1916{
1917 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1918 DIRTY_MEMORY_BLOCK_SIZE);
1919 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1920 DIRTY_MEMORY_BLOCK_SIZE);
1921 int i;
1922
1923 /* Only need to extend if block count increased */
1924 if (new_num_blocks <= old_num_blocks) {
1925 return;
1926 }
1927
1928 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1929 DirtyMemoryBlocks *old_blocks;
1930 DirtyMemoryBlocks *new_blocks;
1931 int j;
1932
1933 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1934 new_blocks = g_malloc(sizeof(*new_blocks) +
1935 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1936
1937 if (old_num_blocks) {
1938 memcpy(new_blocks->blocks, old_blocks->blocks,
1939 old_num_blocks * sizeof(old_blocks->blocks[0]));
1940 }
1941
1942 for (j = old_num_blocks; j < new_num_blocks; j++) {
1943 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1944 }
1945
1946 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1947
1948 if (old_blocks) {
1949 g_free_rcu(old_blocks, rcu);
1950 }
1951 }
1952}
1953
06329cce 1954static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 1955{
e1c57ab8 1956 RAMBlock *block;
0d53d9fe 1957 RAMBlock *last_block = NULL;
2152f5ca 1958 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1959 Error *err = NULL;
2152f5ca 1960
b8c48993 1961 old_ram_size = last_ram_page();
c5705a77 1962
b2a8658e 1963 qemu_mutex_lock_ramlist();
9b8424d5 1964 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1965
1966 if (!new_block->host) {
1967 if (xen_enabled()) {
9b8424d5 1968 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1969 new_block->mr, &err);
1970 if (err) {
1971 error_propagate(errp, err);
1972 qemu_mutex_unlock_ramlist();
39c350ee 1973 return;
37aa7a0e 1974 }
e1c57ab8 1975 } else {
9b8424d5 1976 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 1977 &new_block->mr->align, shared);
39228250 1978 if (!new_block->host) {
ef701d7b
HT
1979 error_setg_errno(errp, errno,
1980 "cannot set up guest memory '%s'",
1981 memory_region_name(new_block->mr));
1982 qemu_mutex_unlock_ramlist();
39c350ee 1983 return;
39228250 1984 }
9b8424d5 1985 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1986 }
c902760f 1987 }
94a6b54f 1988
dd631697
LZ
1989 new_ram_size = MAX(old_ram_size,
1990 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1991 if (new_ram_size > old_ram_size) {
5b82b703 1992 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1993 }
0d53d9fe
MD
1994 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1995 * QLIST (which has an RCU-friendly variant) does not have insertion at
1996 * tail, so save the last element in last_block.
1997 */
99e15582 1998 RAMBLOCK_FOREACH(block) {
0d53d9fe 1999 last_block = block;
9b8424d5 2000 if (block->max_length < new_block->max_length) {
abb26d63
PB
2001 break;
2002 }
2003 }
2004 if (block) {
0dc3f44a 2005 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2006 } else if (last_block) {
0dc3f44a 2007 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2008 } else { /* list is empty */
0dc3f44a 2009 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2010 }
0d6d3c87 2011 ram_list.mru_block = NULL;
94a6b54f 2012
0dc3f44a
MD
2013 /* Write list before version */
2014 smp_wmb();
f798b07f 2015 ram_list.version++;
b2a8658e 2016 qemu_mutex_unlock_ramlist();
f798b07f 2017
9b8424d5 2018 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2019 new_block->used_length,
2020 DIRTY_CLIENTS_ALL);
94a6b54f 2021
a904c911
PB
2022 if (new_block->host) {
2023 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2024 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2025 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2026 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2027 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2028 }
94a6b54f 2029}
e9a1ab19 2030
0b183fc8 2031#ifdef __linux__
38b3362d
MAL
2032RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2033 bool share, int fd,
2034 Error **errp)
e1c57ab8
PB
2035{
2036 RAMBlock *new_block;
ef701d7b 2037 Error *local_err = NULL;
8d37b030 2038 int64_t file_size;
e1c57ab8
PB
2039
2040 if (xen_enabled()) {
7f56e740 2041 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2042 return NULL;
e1c57ab8
PB
2043 }
2044
e45e7ae2
MAL
2045 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2046 error_setg(errp,
2047 "host lacks kvm mmu notifiers, -mem-path unsupported");
2048 return NULL;
2049 }
2050
e1c57ab8
PB
2051 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2052 /*
2053 * file_ram_alloc() needs to allocate just like
2054 * phys_mem_alloc, but we haven't bothered to provide
2055 * a hook there.
2056 */
7f56e740
PB
2057 error_setg(errp,
2058 "-mem-path not supported with this accelerator");
528f46af 2059 return NULL;
e1c57ab8
PB
2060 }
2061
4ed023ce 2062 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2063 file_size = get_file_size(fd);
2064 if (file_size > 0 && file_size < size) {
2065 error_setg(errp, "backing store %s size 0x%" PRIx64
2066 " does not match 'size' option 0x" RAM_ADDR_FMT,
2067 mem_path, file_size, size);
8d37b030
MAL
2068 return NULL;
2069 }
2070
e1c57ab8
PB
2071 new_block = g_malloc0(sizeof(*new_block));
2072 new_block->mr = mr;
9b8424d5
MT
2073 new_block->used_length = size;
2074 new_block->max_length = size;
dbcb8981 2075 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2076 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2077 if (!new_block->host) {
2078 g_free(new_block);
528f46af 2079 return NULL;
7f56e740
PB
2080 }
2081
06329cce 2082 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2083 if (local_err) {
2084 g_free(new_block);
2085 error_propagate(errp, local_err);
528f46af 2086 return NULL;
ef701d7b 2087 }
528f46af 2088 return new_block;
38b3362d
MAL
2089
2090}
2091
2092
2093RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2094 bool share, const char *mem_path,
2095 Error **errp)
2096{
2097 int fd;
2098 bool created;
2099 RAMBlock *block;
2100
2101 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2102 if (fd < 0) {
2103 return NULL;
2104 }
2105
2106 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2107 if (!block) {
2108 if (created) {
2109 unlink(mem_path);
2110 }
2111 close(fd);
2112 return NULL;
2113 }
2114
2115 return block;
e1c57ab8 2116}
0b183fc8 2117#endif
e1c57ab8 2118
62be4e3a 2119static
528f46af
FZ
2120RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2121 void (*resized)(const char*,
2122 uint64_t length,
2123 void *host),
06329cce 2124 void *host, bool resizeable, bool share,
528f46af 2125 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2126{
2127 RAMBlock *new_block;
ef701d7b 2128 Error *local_err = NULL;
e1c57ab8 2129
4ed023ce
DDAG
2130 size = HOST_PAGE_ALIGN(size);
2131 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2132 new_block = g_malloc0(sizeof(*new_block));
2133 new_block->mr = mr;
62be4e3a 2134 new_block->resized = resized;
9b8424d5
MT
2135 new_block->used_length = size;
2136 new_block->max_length = max_size;
62be4e3a 2137 assert(max_size >= size);
e1c57ab8 2138 new_block->fd = -1;
863e9621 2139 new_block->page_size = getpagesize();
e1c57ab8
PB
2140 new_block->host = host;
2141 if (host) {
7bd4f430 2142 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2143 }
62be4e3a
MT
2144 if (resizeable) {
2145 new_block->flags |= RAM_RESIZEABLE;
2146 }
06329cce 2147 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2148 if (local_err) {
2149 g_free(new_block);
2150 error_propagate(errp, local_err);
528f46af 2151 return NULL;
ef701d7b 2152 }
528f46af 2153 return new_block;
e1c57ab8
PB
2154}
2155
528f46af 2156RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2157 MemoryRegion *mr, Error **errp)
2158{
06329cce
MA
2159 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2160 false, mr, errp);
62be4e3a
MT
2161}
2162
06329cce
MA
2163RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2164 MemoryRegion *mr, Error **errp)
6977dfe6 2165{
06329cce
MA
2166 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2167 share, mr, errp);
62be4e3a
MT
2168}
2169
528f46af 2170RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2171 void (*resized)(const char*,
2172 uint64_t length,
2173 void *host),
2174 MemoryRegion *mr, Error **errp)
2175{
06329cce
MA
2176 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2177 false, mr, errp);
6977dfe6
YT
2178}
2179
43771539
PB
2180static void reclaim_ramblock(RAMBlock *block)
2181{
2182 if (block->flags & RAM_PREALLOC) {
2183 ;
2184 } else if (xen_enabled()) {
2185 xen_invalidate_map_cache_entry(block->host);
2186#ifndef _WIN32
2187 } else if (block->fd >= 0) {
2f3a2bb1 2188 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2189 close(block->fd);
2190#endif
2191 } else {
2192 qemu_anon_ram_free(block->host, block->max_length);
2193 }
2194 g_free(block);
2195}
2196
f1060c55 2197void qemu_ram_free(RAMBlock *block)
e9a1ab19 2198{
85bc2a15
MAL
2199 if (!block) {
2200 return;
2201 }
2202
0987d735
PB
2203 if (block->host) {
2204 ram_block_notify_remove(block->host, block->max_length);
2205 }
2206
b2a8658e 2207 qemu_mutex_lock_ramlist();
f1060c55
FZ
2208 QLIST_REMOVE_RCU(block, next);
2209 ram_list.mru_block = NULL;
2210 /* Write list before version */
2211 smp_wmb();
2212 ram_list.version++;
2213 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2214 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2215}
2216
cd19cfa2
HY
2217#ifndef _WIN32
2218void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2219{
2220 RAMBlock *block;
2221 ram_addr_t offset;
2222 int flags;
2223 void *area, *vaddr;
2224
99e15582 2225 RAMBLOCK_FOREACH(block) {
cd19cfa2 2226 offset = addr - block->offset;
9b8424d5 2227 if (offset < block->max_length) {
1240be24 2228 vaddr = ramblock_ptr(block, offset);
7bd4f430 2229 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2230 ;
dfeaf2ab
MA
2231 } else if (xen_enabled()) {
2232 abort();
cd19cfa2
HY
2233 } else {
2234 flags = MAP_FIXED;
3435f395 2235 if (block->fd >= 0) {
dbcb8981
PB
2236 flags |= (block->flags & RAM_SHARED ?
2237 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2238 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2239 flags, block->fd, offset);
cd19cfa2 2240 } else {
2eb9fbaa
MA
2241 /*
2242 * Remap needs to match alloc. Accelerators that
2243 * set phys_mem_alloc never remap. If they did,
2244 * we'd need a remap hook here.
2245 */
2246 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2247
cd19cfa2
HY
2248 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2249 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2250 flags, -1, 0);
cd19cfa2
HY
2251 }
2252 if (area != vaddr) {
493d89bf
AF
2253 error_report("Could not remap addr: "
2254 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2255 length, addr);
cd19cfa2
HY
2256 exit(1);
2257 }
8490fc78 2258 memory_try_enable_merging(vaddr, length);
ddb97f1d 2259 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2260 }
cd19cfa2
HY
2261 }
2262 }
2263}
2264#endif /* !_WIN32 */
2265
1b5ec234 2266/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2267 * This should not be used for general purpose DMA. Use address_space_map
2268 * or address_space_rw instead. For local memory (e.g. video ram) that the
2269 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2270 *
49b24afc 2271 * Called within RCU critical section.
1b5ec234 2272 */
0878d0e1 2273void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2274{
3655cb9c
GA
2275 RAMBlock *block = ram_block;
2276
2277 if (block == NULL) {
2278 block = qemu_get_ram_block(addr);
0878d0e1 2279 addr -= block->offset;
3655cb9c 2280 }
ae3a7047
MD
2281
2282 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2283 /* We need to check if the requested address is in the RAM
2284 * because we don't want to map the entire memory in QEMU.
2285 * In that case just map until the end of the page.
2286 */
2287 if (block->offset == 0) {
1ff7c598 2288 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2289 }
ae3a7047 2290
1ff7c598 2291 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2292 }
0878d0e1 2293 return ramblock_ptr(block, addr);
dc828ca1
PB
2294}
2295
0878d0e1 2296/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2297 * but takes a size argument.
0dc3f44a 2298 *
e81bcda5 2299 * Called within RCU critical section.
ae3a7047 2300 */
3655cb9c 2301static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2302 hwaddr *size, bool lock)
38bee5dc 2303{
3655cb9c 2304 RAMBlock *block = ram_block;
8ab934f9
SS
2305 if (*size == 0) {
2306 return NULL;
2307 }
e81bcda5 2308
3655cb9c
GA
2309 if (block == NULL) {
2310 block = qemu_get_ram_block(addr);
0878d0e1 2311 addr -= block->offset;
3655cb9c 2312 }
0878d0e1 2313 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2314
2315 if (xen_enabled() && block->host == NULL) {
2316 /* We need to check if the requested address is in the RAM
2317 * because we don't want to map the entire memory in QEMU.
2318 * In that case just map the requested area.
2319 */
2320 if (block->offset == 0) {
f5aa69bd 2321 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2322 }
2323
f5aa69bd 2324 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2325 }
e81bcda5 2326
0878d0e1 2327 return ramblock_ptr(block, addr);
38bee5dc
SS
2328}
2329
f90bb71b
DDAG
2330/* Return the offset of a hostpointer within a ramblock */
2331ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2332{
2333 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2334 assert((uintptr_t)host >= (uintptr_t)rb->host);
2335 assert(res < rb->max_length);
2336
2337 return res;
2338}
2339
422148d3
DDAG
2340/*
2341 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2342 * in that RAMBlock.
2343 *
2344 * ptr: Host pointer to look up
2345 * round_offset: If true round the result offset down to a page boundary
2346 * *ram_addr: set to result ram_addr
2347 * *offset: set to result offset within the RAMBlock
2348 *
2349 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2350 *
2351 * By the time this function returns, the returned pointer is not protected
2352 * by RCU anymore. If the caller is not within an RCU critical section and
2353 * does not hold the iothread lock, it must have other means of protecting the
2354 * pointer, such as a reference to the region that includes the incoming
2355 * ram_addr_t.
2356 */
422148d3 2357RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2358 ram_addr_t *offset)
5579c7f3 2359{
94a6b54f
PB
2360 RAMBlock *block;
2361 uint8_t *host = ptr;
2362
868bb33f 2363 if (xen_enabled()) {
f615f396 2364 ram_addr_t ram_addr;
0dc3f44a 2365 rcu_read_lock();
f615f396
PB
2366 ram_addr = xen_ram_addr_from_mapcache(ptr);
2367 block = qemu_get_ram_block(ram_addr);
422148d3 2368 if (block) {
d6b6aec4 2369 *offset = ram_addr - block->offset;
422148d3 2370 }
0dc3f44a 2371 rcu_read_unlock();
422148d3 2372 return block;
712c2b41
SS
2373 }
2374
0dc3f44a
MD
2375 rcu_read_lock();
2376 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2377 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2378 goto found;
2379 }
2380
99e15582 2381 RAMBLOCK_FOREACH(block) {
432d268c
JN
2382 /* This case append when the block is not mapped. */
2383 if (block->host == NULL) {
2384 continue;
2385 }
9b8424d5 2386 if (host - block->host < block->max_length) {
23887b79 2387 goto found;
f471a17e 2388 }
94a6b54f 2389 }
432d268c 2390
0dc3f44a 2391 rcu_read_unlock();
1b5ec234 2392 return NULL;
23887b79
PB
2393
2394found:
422148d3
DDAG
2395 *offset = (host - block->host);
2396 if (round_offset) {
2397 *offset &= TARGET_PAGE_MASK;
2398 }
0dc3f44a 2399 rcu_read_unlock();
422148d3
DDAG
2400 return block;
2401}
2402
e3dd7493
DDAG
2403/*
2404 * Finds the named RAMBlock
2405 *
2406 * name: The name of RAMBlock to find
2407 *
2408 * Returns: RAMBlock (or NULL if not found)
2409 */
2410RAMBlock *qemu_ram_block_by_name(const char *name)
2411{
2412 RAMBlock *block;
2413
99e15582 2414 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2415 if (!strcmp(name, block->idstr)) {
2416 return block;
2417 }
2418 }
2419
2420 return NULL;
2421}
2422
422148d3
DDAG
2423/* Some of the softmmu routines need to translate from a host pointer
2424 (typically a TLB entry) back to a ram offset. */
07bdaa41 2425ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2426{
2427 RAMBlock *block;
f615f396 2428 ram_addr_t offset;
422148d3 2429
f615f396 2430 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2431 if (!block) {
07bdaa41 2432 return RAM_ADDR_INVALID;
422148d3
DDAG
2433 }
2434
07bdaa41 2435 return block->offset + offset;
e890261f 2436}
f471a17e 2437
27266271
PM
2438/* Called within RCU critical section. */
2439void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2440 CPUState *cpu,
2441 vaddr mem_vaddr,
2442 ram_addr_t ram_addr,
2443 unsigned size)
2444{
2445 ndi->cpu = cpu;
2446 ndi->ram_addr = ram_addr;
2447 ndi->mem_vaddr = mem_vaddr;
2448 ndi->size = size;
2449 ndi->locked = false;
ba051fb5 2450
5aa1ef71 2451 assert(tcg_enabled());
52159192 2452 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
27266271 2453 ndi->locked = true;
ba051fb5 2454 tb_lock();
0e0df1e2 2455 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2456 }
27266271
PM
2457}
2458
2459/* Called within RCU critical section. */
2460void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2461{
2462 if (ndi->locked) {
2463 tb_unlock();
2464 }
2465
2466 /* Set both VGA and migration bits for simplicity and to remove
2467 * the notdirty callback faster.
2468 */
2469 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2470 DIRTY_CLIENTS_NOCODE);
2471 /* we remove the notdirty callback only if the code has been
2472 flushed */
2473 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2474 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2475 }
2476}
2477
2478/* Called within RCU critical section. */
2479static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2480 uint64_t val, unsigned size)
2481{
2482 NotDirtyInfo ndi;
2483
2484 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2485 ram_addr, size);
2486
0e0df1e2
AK
2487 switch (size) {
2488 case 1:
0878d0e1 2489 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2490 break;
2491 case 2:
0878d0e1 2492 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2493 break;
2494 case 4:
0878d0e1 2495 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2496 break;
ad52878f
AB
2497 case 8:
2498 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2499 break;
0e0df1e2
AK
2500 default:
2501 abort();
3a7d929e 2502 }
27266271 2503 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2504}
2505
b018ddf6
PB
2506static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2507 unsigned size, bool is_write)
2508{
2509 return is_write;
2510}
2511
0e0df1e2 2512static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2513 .write = notdirty_mem_write,
b018ddf6 2514 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2515 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2516 .valid = {
2517 .min_access_size = 1,
2518 .max_access_size = 8,
2519 .unaligned = false,
2520 },
2521 .impl = {
2522 .min_access_size = 1,
2523 .max_access_size = 8,
2524 .unaligned = false,
2525 },
1ccde1cb
FB
2526};
2527
0f459d16 2528/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2529static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2530{
93afeade 2531 CPUState *cpu = current_cpu;
568496c0 2532 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2533 target_ulong vaddr;
a1d1bb31 2534 CPUWatchpoint *wp;
0f459d16 2535
5aa1ef71 2536 assert(tcg_enabled());
ff4700b0 2537 if (cpu->watchpoint_hit) {
06d55cc1
AL
2538 /* We re-entered the check after replacing the TB. Now raise
2539 * the debug interrupt so that is will trigger after the
2540 * current instruction. */
93afeade 2541 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2542 return;
2543 }
93afeade 2544 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2545 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2546 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2547 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2548 && (wp->flags & flags)) {
08225676
PM
2549 if (flags == BP_MEM_READ) {
2550 wp->flags |= BP_WATCHPOINT_HIT_READ;
2551 } else {
2552 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2553 }
2554 wp->hitaddr = vaddr;
66b9b43c 2555 wp->hitattrs = attrs;
ff4700b0 2556 if (!cpu->watchpoint_hit) {
568496c0
SF
2557 if (wp->flags & BP_CPU &&
2558 !cc->debug_check_watchpoint(cpu, wp)) {
2559 wp->flags &= ~BP_WATCHPOINT_HIT;
2560 continue;
2561 }
ff4700b0 2562 cpu->watchpoint_hit = wp;
a5e99826 2563
8d04fb55
JK
2564 /* Both tb_lock and iothread_mutex will be reset when
2565 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2566 * back into the cpu_exec main loop.
a5e99826
FK
2567 */
2568 tb_lock();
239c51a5 2569 tb_check_watchpoint(cpu);
6e140f28 2570 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2571 cpu->exception_index = EXCP_DEBUG;
5638d180 2572 cpu_loop_exit(cpu);
6e140f28 2573 } else {
9b990ee5
RH
2574 /* Force execution of one insn next time. */
2575 cpu->cflags_next_tb = 1 | curr_cflags();
6886b980 2576 cpu_loop_exit_noexc(cpu);
6e140f28 2577 }
06d55cc1 2578 }
6e140f28
AL
2579 } else {
2580 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2581 }
2582 }
2583}
2584
6658ffb8
PB
2585/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2586 so these check for a hit then pass through to the normal out-of-line
2587 phys routines. */
66b9b43c
PM
2588static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2589 unsigned size, MemTxAttrs attrs)
6658ffb8 2590{
66b9b43c
PM
2591 MemTxResult res;
2592 uint64_t data;
79ed0416
PM
2593 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2594 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2595
2596 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2597 switch (size) {
66b9b43c 2598 case 1:
79ed0416 2599 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2600 break;
2601 case 2:
79ed0416 2602 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2603 break;
2604 case 4:
79ed0416 2605 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2606 break;
306526b5
PB
2607 case 8:
2608 data = address_space_ldq(as, addr, attrs, &res);
2609 break;
1ec9b909
AK
2610 default: abort();
2611 }
66b9b43c
PM
2612 *pdata = data;
2613 return res;
6658ffb8
PB
2614}
2615
66b9b43c
PM
2616static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2617 uint64_t val, unsigned size,
2618 MemTxAttrs attrs)
6658ffb8 2619{
66b9b43c 2620 MemTxResult res;
79ed0416
PM
2621 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2622 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2623
2624 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2625 switch (size) {
67364150 2626 case 1:
79ed0416 2627 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2628 break;
2629 case 2:
79ed0416 2630 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2631 break;
2632 case 4:
79ed0416 2633 address_space_stl(as, addr, val, attrs, &res);
67364150 2634 break;
306526b5
PB
2635 case 8:
2636 address_space_stq(as, addr, val, attrs, &res);
2637 break;
1ec9b909
AK
2638 default: abort();
2639 }
66b9b43c 2640 return res;
6658ffb8
PB
2641}
2642
1ec9b909 2643static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2644 .read_with_attrs = watch_mem_read,
2645 .write_with_attrs = watch_mem_write,
1ec9b909 2646 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2647 .valid = {
2648 .min_access_size = 1,
2649 .max_access_size = 8,
2650 .unaligned = false,
2651 },
2652 .impl = {
2653 .min_access_size = 1,
2654 .max_access_size = 8,
2655 .unaligned = false,
2656 },
6658ffb8 2657};
6658ffb8 2658
b2a44fca
PB
2659static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2660 MemTxAttrs attrs, uint8_t *buf, int len);
16620684
AK
2661static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2662 const uint8_t *buf, int len);
2663static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2664 bool is_write);
2665
f25a49e0
PM
2666static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2667 unsigned len, MemTxAttrs attrs)
db7b5426 2668{
acc9d80b 2669 subpage_t *subpage = opaque;
ff6cff75 2670 uint8_t buf[8];
5c9eb028 2671 MemTxResult res;
791af8c8 2672
db7b5426 2673#if defined(DEBUG_SUBPAGE)
016e9d62 2674 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2675 subpage, len, addr);
db7b5426 2676#endif
16620684 2677 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2678 if (res) {
2679 return res;
f25a49e0 2680 }
acc9d80b
JK
2681 switch (len) {
2682 case 1:
f25a49e0
PM
2683 *data = ldub_p(buf);
2684 return MEMTX_OK;
acc9d80b 2685 case 2:
f25a49e0
PM
2686 *data = lduw_p(buf);
2687 return MEMTX_OK;
acc9d80b 2688 case 4:
f25a49e0
PM
2689 *data = ldl_p(buf);
2690 return MEMTX_OK;
ff6cff75 2691 case 8:
f25a49e0
PM
2692 *data = ldq_p(buf);
2693 return MEMTX_OK;
acc9d80b
JK
2694 default:
2695 abort();
2696 }
db7b5426
BS
2697}
2698
f25a49e0
PM
2699static MemTxResult subpage_write(void *opaque, hwaddr addr,
2700 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2701{
acc9d80b 2702 subpage_t *subpage = opaque;
ff6cff75 2703 uint8_t buf[8];
acc9d80b 2704
db7b5426 2705#if defined(DEBUG_SUBPAGE)
016e9d62 2706 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2707 " value %"PRIx64"\n",
2708 __func__, subpage, len, addr, value);
db7b5426 2709#endif
acc9d80b
JK
2710 switch (len) {
2711 case 1:
2712 stb_p(buf, value);
2713 break;
2714 case 2:
2715 stw_p(buf, value);
2716 break;
2717 case 4:
2718 stl_p(buf, value);
2719 break;
ff6cff75
PB
2720 case 8:
2721 stq_p(buf, value);
2722 break;
acc9d80b
JK
2723 default:
2724 abort();
2725 }
16620684 2726 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2727}
2728
c353e4cc 2729static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2730 unsigned len, bool is_write)
c353e4cc 2731{
acc9d80b 2732 subpage_t *subpage = opaque;
c353e4cc 2733#if defined(DEBUG_SUBPAGE)
016e9d62 2734 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2735 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2736#endif
2737
16620684
AK
2738 return flatview_access_valid(subpage->fv, addr + subpage->base,
2739 len, is_write);
c353e4cc
PB
2740}
2741
70c68e44 2742static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2743 .read_with_attrs = subpage_read,
2744 .write_with_attrs = subpage_write,
ff6cff75
PB
2745 .impl.min_access_size = 1,
2746 .impl.max_access_size = 8,
2747 .valid.min_access_size = 1,
2748 .valid.max_access_size = 8,
c353e4cc 2749 .valid.accepts = subpage_accepts,
70c68e44 2750 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2751};
2752
c227f099 2753static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2754 uint16_t section)
db7b5426
BS
2755{
2756 int idx, eidx;
2757
2758 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2759 return -1;
2760 idx = SUBPAGE_IDX(start);
2761 eidx = SUBPAGE_IDX(end);
2762#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2763 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2764 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2765#endif
db7b5426 2766 for (; idx <= eidx; idx++) {
5312bd8b 2767 mmio->sub_section[idx] = section;
db7b5426
BS
2768 }
2769
2770 return 0;
2771}
2772
16620684 2773static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2774{
c227f099 2775 subpage_t *mmio;
db7b5426 2776
2615fabd 2777 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2778 mmio->fv = fv;
1eec614b 2779 mmio->base = base;
2c9b15ca 2780 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2781 NULL, TARGET_PAGE_SIZE);
b3b00c78 2782 mmio->iomem.subpage = true;
db7b5426 2783#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2784 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2785 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2786#endif
b41aac4f 2787 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2788
2789 return mmio;
2790}
2791
16620684 2792static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2793{
16620684 2794 assert(fv);
5312bd8b 2795 MemoryRegionSection section = {
16620684 2796 .fv = fv,
5312bd8b
AK
2797 .mr = mr,
2798 .offset_within_address_space = 0,
2799 .offset_within_region = 0,
052e87b0 2800 .size = int128_2_64(),
5312bd8b
AK
2801 };
2802
53cb28cb 2803 return phys_section_add(map, &section);
5312bd8b
AK
2804}
2805
8af36743
PM
2806static void readonly_mem_write(void *opaque, hwaddr addr,
2807 uint64_t val, unsigned size)
2808{
2809 /* Ignore any write to ROM. */
2810}
2811
2812static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2813 unsigned size, bool is_write)
2814{
2815 return is_write;
2816}
2817
2818/* This will only be used for writes, because reads are special cased
2819 * to directly access the underlying host ram.
2820 */
2821static const MemoryRegionOps readonly_mem_ops = {
2822 .write = readonly_mem_write,
2823 .valid.accepts = readonly_mem_accepts,
2824 .endianness = DEVICE_NATIVE_ENDIAN,
2825 .valid = {
2826 .min_access_size = 1,
2827 .max_access_size = 8,
2828 .unaligned = false,
2829 },
2830 .impl = {
2831 .min_access_size = 1,
2832 .max_access_size = 8,
2833 .unaligned = false,
2834 },
2835};
2836
a54c87b6 2837MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2838{
a54c87b6
PM
2839 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2840 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2841 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2842 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2843
2844 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2845}
2846
e9179ce1
AK
2847static void io_mem_init(void)
2848{
8af36743
PM
2849 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2850 NULL, NULL, UINT64_MAX);
2c9b15ca 2851 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2852 NULL, UINT64_MAX);
8d04fb55
JK
2853
2854 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2855 * which can be called without the iothread mutex.
2856 */
2c9b15ca 2857 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2858 NULL, UINT64_MAX);
8d04fb55
JK
2859 memory_region_clear_global_locking(&io_mem_notdirty);
2860
2c9b15ca 2861 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2862 NULL, UINT64_MAX);
e9179ce1
AK
2863}
2864
8629d3fc 2865AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2866{
53cb28cb
MA
2867 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2868 uint16_t n;
2869
16620684 2870 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2871 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2872 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2873 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2874 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2875 assert(n == PHYS_SECTION_ROM);
16620684 2876 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2877 assert(n == PHYS_SECTION_WATCH);
00752703 2878
9736e55b 2879 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2880
2881 return d;
00752703
PB
2882}
2883
66a6df1d 2884void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2885{
2886 phys_sections_free(&d->map);
2887 g_free(d);
2888}
2889
1d71148e 2890static void tcg_commit(MemoryListener *listener)
50c1e149 2891{
32857f4d
PM
2892 CPUAddressSpace *cpuas;
2893 AddressSpaceDispatch *d;
117712c3
AK
2894
2895 /* since each CPU stores ram addresses in its TLB cache, we must
2896 reset the modified entries */
32857f4d
PM
2897 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2898 cpu_reloading_memory_map();
2899 /* The CPU and TLB are protected by the iothread lock.
2900 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2901 * may have split the RCU critical section.
2902 */
66a6df1d 2903 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2904 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2905 tlb_flush(cpuas->cpu);
50c1e149
AK
2906}
2907
62152b8a
AK
2908static void memory_map_init(void)
2909{
7267c094 2910 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2911
57271d63 2912 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2913 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2914
7267c094 2915 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2916 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2917 65536);
7dca8043 2918 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2919}
2920
2921MemoryRegion *get_system_memory(void)
2922{
2923 return system_memory;
2924}
2925
309cb471
AK
2926MemoryRegion *get_system_io(void)
2927{
2928 return system_io;
2929}
2930
e2eef170
PB
2931#endif /* !defined(CONFIG_USER_ONLY) */
2932
13eb76e0
FB
2933/* physical memory access (slow version, mainly for debug) */
2934#if defined(CONFIG_USER_ONLY)
f17ec444 2935int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2936 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2937{
2938 int l, flags;
2939 target_ulong page;
53a5960a 2940 void * p;
13eb76e0
FB
2941
2942 while (len > 0) {
2943 page = addr & TARGET_PAGE_MASK;
2944 l = (page + TARGET_PAGE_SIZE) - addr;
2945 if (l > len)
2946 l = len;
2947 flags = page_get_flags(page);
2948 if (!(flags & PAGE_VALID))
a68fe89c 2949 return -1;
13eb76e0
FB
2950 if (is_write) {
2951 if (!(flags & PAGE_WRITE))
a68fe89c 2952 return -1;
579a97f7 2953 /* XXX: this code should not depend on lock_user */
72fb7daa 2954 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2955 return -1;
72fb7daa
AJ
2956 memcpy(p, buf, l);
2957 unlock_user(p, addr, l);
13eb76e0
FB
2958 } else {
2959 if (!(flags & PAGE_READ))
a68fe89c 2960 return -1;
579a97f7 2961 /* XXX: this code should not depend on lock_user */
72fb7daa 2962 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2963 return -1;
72fb7daa 2964 memcpy(buf, p, l);
5b257578 2965 unlock_user(p, addr, 0);
13eb76e0
FB
2966 }
2967 len -= l;
2968 buf += l;
2969 addr += l;
2970 }
a68fe89c 2971 return 0;
13eb76e0 2972}
8df1cd07 2973
13eb76e0 2974#else
51d7a9eb 2975
845b6214 2976static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2977 hwaddr length)
51d7a9eb 2978{
e87f7778 2979 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2980 addr += memory_region_get_ram_addr(mr);
2981
e87f7778
PB
2982 /* No early return if dirty_log_mask is or becomes 0, because
2983 * cpu_physical_memory_set_dirty_range will still call
2984 * xen_modified_memory.
2985 */
2986 if (dirty_log_mask) {
2987 dirty_log_mask =
2988 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2989 }
2990 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2991 assert(tcg_enabled());
ba051fb5 2992 tb_lock();
e87f7778 2993 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2994 tb_unlock();
e87f7778 2995 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2996 }
e87f7778 2997 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2998}
2999
23326164 3000static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3001{
e1622f4b 3002 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3003
3004 /* Regions are assumed to support 1-4 byte accesses unless
3005 otherwise specified. */
23326164
RH
3006 if (access_size_max == 0) {
3007 access_size_max = 4;
3008 }
3009
3010 /* Bound the maximum access by the alignment of the address. */
3011 if (!mr->ops->impl.unaligned) {
3012 unsigned align_size_max = addr & -addr;
3013 if (align_size_max != 0 && align_size_max < access_size_max) {
3014 access_size_max = align_size_max;
3015 }
82f2563f 3016 }
23326164
RH
3017
3018 /* Don't attempt accesses larger than the maximum. */
3019 if (l > access_size_max) {
3020 l = access_size_max;
82f2563f 3021 }
6554f5c0 3022 l = pow2floor(l);
23326164
RH
3023
3024 return l;
82f2563f
PB
3025}
3026
4840f10e 3027static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3028{
4840f10e
JK
3029 bool unlocked = !qemu_mutex_iothread_locked();
3030 bool release_lock = false;
3031
3032 if (unlocked && mr->global_locking) {
3033 qemu_mutex_lock_iothread();
3034 unlocked = false;
3035 release_lock = true;
3036 }
125b3806 3037 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3038 if (unlocked) {
3039 qemu_mutex_lock_iothread();
3040 }
125b3806 3041 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3042 if (unlocked) {
3043 qemu_mutex_unlock_iothread();
3044 }
125b3806 3045 }
4840f10e
JK
3046
3047 return release_lock;
125b3806
PB
3048}
3049
a203ac70 3050/* Called within RCU critical section. */
16620684
AK
3051static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3052 MemTxAttrs attrs,
3053 const uint8_t *buf,
3054 int len, hwaddr addr1,
3055 hwaddr l, MemoryRegion *mr)
13eb76e0 3056{
13eb76e0 3057 uint8_t *ptr;
791af8c8 3058 uint64_t val;
3b643495 3059 MemTxResult result = MEMTX_OK;
4840f10e 3060 bool release_lock = false;
3b46e624 3061
a203ac70 3062 for (;;) {
eb7eeb88
PB
3063 if (!memory_access_is_direct(mr, true)) {
3064 release_lock |= prepare_mmio_access(mr);
3065 l = memory_access_size(mr, l, addr1);
3066 /* XXX: could force current_cpu to NULL to avoid
3067 potential bugs */
3068 switch (l) {
3069 case 8:
3070 /* 64 bit write access */
3071 val = ldq_p(buf);
3072 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3073 attrs);
3074 break;
3075 case 4:
3076 /* 32 bit write access */
6da67de6 3077 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
3078 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3079 attrs);
3080 break;
3081 case 2:
3082 /* 16 bit write access */
3083 val = lduw_p(buf);
3084 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3085 attrs);
3086 break;
3087 case 1:
3088 /* 8 bit write access */
3089 val = ldub_p(buf);
3090 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3091 attrs);
3092 break;
3093 default:
3094 abort();
13eb76e0
FB
3095 }
3096 } else {
eb7eeb88 3097 /* RAM case */
f5aa69bd 3098 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3099 memcpy(ptr, buf, l);
3100 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3101 }
4840f10e
JK
3102
3103 if (release_lock) {
3104 qemu_mutex_unlock_iothread();
3105 release_lock = false;
3106 }
3107
13eb76e0
FB
3108 len -= l;
3109 buf += l;
3110 addr += l;
a203ac70
PB
3111
3112 if (!len) {
3113 break;
3114 }
3115
3116 l = len;
16620684 3117 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 3118 }
fd8aaa76 3119
3b643495 3120 return result;
13eb76e0 3121}
8df1cd07 3122
4c6ebbb3 3123/* Called from RCU critical section. */
16620684
AK
3124static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3125 const uint8_t *buf, int len)
ac1970fb 3126{
eb7eeb88 3127 hwaddr l;
eb7eeb88
PB
3128 hwaddr addr1;
3129 MemoryRegion *mr;
3130 MemTxResult result = MEMTX_OK;
eb7eeb88 3131
4c6ebbb3
PB
3132 l = len;
3133 mr = flatview_translate(fv, addr, &addr1, &l, true);
3134 result = flatview_write_continue(fv, addr, attrs, buf, len,
3135 addr1, l, mr);
a203ac70
PB
3136
3137 return result;
3138}
3139
3140/* Called within RCU critical section. */
16620684
AK
3141MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3142 MemTxAttrs attrs, uint8_t *buf,
3143 int len, hwaddr addr1, hwaddr l,
3144 MemoryRegion *mr)
a203ac70
PB
3145{
3146 uint8_t *ptr;
3147 uint64_t val;
3148 MemTxResult result = MEMTX_OK;
3149 bool release_lock = false;
eb7eeb88 3150
a203ac70 3151 for (;;) {
eb7eeb88
PB
3152 if (!memory_access_is_direct(mr, false)) {
3153 /* I/O case */
3154 release_lock |= prepare_mmio_access(mr);
3155 l = memory_access_size(mr, l, addr1);
3156 switch (l) {
3157 case 8:
3158 /* 64 bit read access */
3159 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3160 attrs);
3161 stq_p(buf, val);
3162 break;
3163 case 4:
3164 /* 32 bit read access */
3165 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3166 attrs);
3167 stl_p(buf, val);
3168 break;
3169 case 2:
3170 /* 16 bit read access */
3171 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3172 attrs);
3173 stw_p(buf, val);
3174 break;
3175 case 1:
3176 /* 8 bit read access */
3177 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3178 attrs);
3179 stb_p(buf, val);
3180 break;
3181 default:
3182 abort();
3183 }
3184 } else {
3185 /* RAM case */
f5aa69bd 3186 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3187 memcpy(buf, ptr, l);
3188 }
3189
3190 if (release_lock) {
3191 qemu_mutex_unlock_iothread();
3192 release_lock = false;
3193 }
3194
3195 len -= l;
3196 buf += l;
3197 addr += l;
a203ac70
PB
3198
3199 if (!len) {
3200 break;
3201 }
3202
3203 l = len;
16620684 3204 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3205 }
3206
3207 return result;
3208}
3209
b2a44fca
PB
3210/* Called from RCU critical section. */
3211static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3212 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3213{
3214 hwaddr l;
3215 hwaddr addr1;
3216 MemoryRegion *mr;
eb7eeb88 3217
b2a44fca
PB
3218 l = len;
3219 mr = flatview_translate(fv, addr, &addr1, &l, false);
3220 return flatview_read_continue(fv, addr, attrs, buf, len,
3221 addr1, l, mr);
ac1970fb
AK
3222}
3223
b2a44fca
PB
3224MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3225 MemTxAttrs attrs, uint8_t *buf, int len)
3226{
3227 MemTxResult result = MEMTX_OK;
3228 FlatView *fv;
3229
3230 if (len > 0) {
3231 rcu_read_lock();
3232 fv = address_space_to_flatview(as);
3233 result = flatview_read(fv, addr, attrs, buf, len);
3234 rcu_read_unlock();
3235 }
3236
3237 return result;
3238}
3239
4c6ebbb3
PB
3240MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3241 MemTxAttrs attrs,
3242 const uint8_t *buf, int len)
3243{
3244 MemTxResult result = MEMTX_OK;
3245 FlatView *fv;
3246
3247 if (len > 0) {
3248 rcu_read_lock();
3249 fv = address_space_to_flatview(as);
3250 result = flatview_write(fv, addr, attrs, buf, len);
3251 rcu_read_unlock();
3252 }
3253
3254 return result;
3255}
3256
db84fd97
PB
3257MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3258 uint8_t *buf, int len, bool is_write)
3259{
3260 if (is_write) {
3261 return address_space_write(as, addr, attrs, buf, len);
3262 } else {
3263 return address_space_read_full(as, addr, attrs, buf, len);
3264 }
3265}
3266
a8170e5e 3267void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3268 int len, int is_write)
3269{
5c9eb028
PM
3270 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3271 buf, len, is_write);
ac1970fb
AK
3272}
3273
582b55a9
AG
3274enum write_rom_type {
3275 WRITE_DATA,
3276 FLUSH_CACHE,
3277};
3278
2a221651 3279static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3280 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3281{
149f54b5 3282 hwaddr l;
d0ecd2aa 3283 uint8_t *ptr;
149f54b5 3284 hwaddr addr1;
5c8a00ce 3285 MemoryRegion *mr;
3b46e624 3286
41063e1e 3287 rcu_read_lock();
d0ecd2aa 3288 while (len > 0) {
149f54b5 3289 l = len;
2a221651 3290 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3291
5c8a00ce
PB
3292 if (!(memory_region_is_ram(mr) ||
3293 memory_region_is_romd(mr))) {
b242e0e0 3294 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3295 } else {
d0ecd2aa 3296 /* ROM/RAM case */
0878d0e1 3297 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3298 switch (type) {
3299 case WRITE_DATA:
3300 memcpy(ptr, buf, l);
845b6214 3301 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3302 break;
3303 case FLUSH_CACHE:
3304 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3305 break;
3306 }
d0ecd2aa
FB
3307 }
3308 len -= l;
3309 buf += l;
3310 addr += l;
3311 }
41063e1e 3312 rcu_read_unlock();
d0ecd2aa
FB
3313}
3314
582b55a9 3315/* used for ROM loading : can write in RAM and ROM */
2a221651 3316void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3317 const uint8_t *buf, int len)
3318{
2a221651 3319 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3320}
3321
3322void cpu_flush_icache_range(hwaddr start, int len)
3323{
3324 /*
3325 * This function should do the same thing as an icache flush that was
3326 * triggered from within the guest. For TCG we are always cache coherent,
3327 * so there is no need to flush anything. For KVM / Xen we need to flush
3328 * the host's instruction cache at least.
3329 */
3330 if (tcg_enabled()) {
3331 return;
3332 }
3333
2a221651
EI
3334 cpu_physical_memory_write_rom_internal(&address_space_memory,
3335 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3336}
3337
6d16c2f8 3338typedef struct {
d3e71559 3339 MemoryRegion *mr;
6d16c2f8 3340 void *buffer;
a8170e5e
AK
3341 hwaddr addr;
3342 hwaddr len;
c2cba0ff 3343 bool in_use;
6d16c2f8
AL
3344} BounceBuffer;
3345
3346static BounceBuffer bounce;
3347
ba223c29 3348typedef struct MapClient {
e95205e1 3349 QEMUBH *bh;
72cf2d4f 3350 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3351} MapClient;
3352
38e047b5 3353QemuMutex map_client_list_lock;
72cf2d4f
BS
3354static QLIST_HEAD(map_client_list, MapClient) map_client_list
3355 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3356
e95205e1
FZ
3357static void cpu_unregister_map_client_do(MapClient *client)
3358{
3359 QLIST_REMOVE(client, link);
3360 g_free(client);
3361}
3362
33b6c2ed
FZ
3363static void cpu_notify_map_clients_locked(void)
3364{
3365 MapClient *client;
3366
3367 while (!QLIST_EMPTY(&map_client_list)) {
3368 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3369 qemu_bh_schedule(client->bh);
3370 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3371 }
3372}
3373
e95205e1 3374void cpu_register_map_client(QEMUBH *bh)
ba223c29 3375{
7267c094 3376 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3377
38e047b5 3378 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3379 client->bh = bh;
72cf2d4f 3380 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3381 if (!atomic_read(&bounce.in_use)) {
3382 cpu_notify_map_clients_locked();
3383 }
38e047b5 3384 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3385}
3386
38e047b5 3387void cpu_exec_init_all(void)
ba223c29 3388{
38e047b5 3389 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3390 /* The data structures we set up here depend on knowing the page size,
3391 * so no more changes can be made after this point.
3392 * In an ideal world, nothing we did before we had finished the
3393 * machine setup would care about the target page size, and we could
3394 * do this much later, rather than requiring board models to state
3395 * up front what their requirements are.
3396 */
3397 finalize_target_page_bits();
38e047b5 3398 io_mem_init();
680a4783 3399 memory_map_init();
38e047b5 3400 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3401}
3402
e95205e1 3403void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3404{
3405 MapClient *client;
3406
e95205e1
FZ
3407 qemu_mutex_lock(&map_client_list_lock);
3408 QLIST_FOREACH(client, &map_client_list, link) {
3409 if (client->bh == bh) {
3410 cpu_unregister_map_client_do(client);
3411 break;
3412 }
ba223c29 3413 }
e95205e1 3414 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3415}
3416
3417static void cpu_notify_map_clients(void)
3418{
38e047b5 3419 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3420 cpu_notify_map_clients_locked();
38e047b5 3421 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3422}
3423
16620684
AK
3424static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3425 bool is_write)
51644ab7 3426{
5c8a00ce 3427 MemoryRegion *mr;
51644ab7
PB
3428 hwaddr l, xlat;
3429
3430 while (len > 0) {
3431 l = len;
16620684 3432 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3433 if (!memory_access_is_direct(mr, is_write)) {
3434 l = memory_access_size(mr, l, addr);
3435 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
3436 return false;
3437 }
3438 }
3439
3440 len -= l;
3441 addr += l;
3442 }
3443 return true;
3444}
3445
16620684
AK
3446bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3447 int len, bool is_write)
3448{
11e732a5
PB
3449 FlatView *fv;
3450 bool result;
3451
3452 rcu_read_lock();
3453 fv = address_space_to_flatview(as);
3454 result = flatview_access_valid(fv, addr, len, is_write);
3455 rcu_read_unlock();
3456 return result;
16620684
AK
3457}
3458
715c31ec 3459static hwaddr
16620684
AK
3460flatview_extend_translation(FlatView *fv, hwaddr addr,
3461 hwaddr target_len,
715c31ec
PB
3462 MemoryRegion *mr, hwaddr base, hwaddr len,
3463 bool is_write)
3464{
3465 hwaddr done = 0;
3466 hwaddr xlat;
3467 MemoryRegion *this_mr;
3468
3469 for (;;) {
3470 target_len -= len;
3471 addr += len;
3472 done += len;
3473 if (target_len == 0) {
3474 return done;
3475 }
3476
3477 len = target_len;
16620684
AK
3478 this_mr = flatview_translate(fv, addr, &xlat,
3479 &len, is_write);
715c31ec
PB
3480 if (this_mr != mr || xlat != base + done) {
3481 return done;
3482 }
3483 }
3484}
3485
6d16c2f8
AL
3486/* Map a physical memory region into a host virtual address.
3487 * May map a subset of the requested range, given by and returned in *plen.
3488 * May return NULL if resources needed to perform the mapping are exhausted.
3489 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3490 * Use cpu_register_map_client() to know when retrying the map operation is
3491 * likely to succeed.
6d16c2f8 3492 */
ac1970fb 3493void *address_space_map(AddressSpace *as,
a8170e5e
AK
3494 hwaddr addr,
3495 hwaddr *plen,
ac1970fb 3496 bool is_write)
6d16c2f8 3497{
a8170e5e 3498 hwaddr len = *plen;
715c31ec
PB
3499 hwaddr l, xlat;
3500 MemoryRegion *mr;
e81bcda5 3501 void *ptr;
ad0c60fa 3502 FlatView *fv;
6d16c2f8 3503
e3127ae0
PB
3504 if (len == 0) {
3505 return NULL;
3506 }
38bee5dc 3507
e3127ae0 3508 l = len;
41063e1e 3509 rcu_read_lock();
ad0c60fa 3510 fv = address_space_to_flatview(as);
16620684 3511 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3512
e3127ae0 3513 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3514 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3515 rcu_read_unlock();
e3127ae0 3516 return NULL;
6d16c2f8 3517 }
e85d9db5
KW
3518 /* Avoid unbounded allocations */
3519 l = MIN(l, TARGET_PAGE_SIZE);
3520 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3521 bounce.addr = addr;
3522 bounce.len = l;
d3e71559
PB
3523
3524 memory_region_ref(mr);
3525 bounce.mr = mr;
e3127ae0 3526 if (!is_write) {
16620684 3527 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3528 bounce.buffer, l);
8ab934f9 3529 }
6d16c2f8 3530
41063e1e 3531 rcu_read_unlock();
e3127ae0
PB
3532 *plen = l;
3533 return bounce.buffer;
3534 }
3535
e3127ae0 3536
d3e71559 3537 memory_region_ref(mr);
16620684
AK
3538 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3539 l, is_write);
f5aa69bd 3540 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3541 rcu_read_unlock();
3542
3543 return ptr;
6d16c2f8
AL
3544}
3545
ac1970fb 3546/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3547 * Will also mark the memory as dirty if is_write == 1. access_len gives
3548 * the amount of memory that was actually read or written by the caller.
3549 */
a8170e5e
AK
3550void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3551 int is_write, hwaddr access_len)
6d16c2f8
AL
3552{
3553 if (buffer != bounce.buffer) {
d3e71559
PB
3554 MemoryRegion *mr;
3555 ram_addr_t addr1;
3556
07bdaa41 3557 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3558 assert(mr != NULL);
6d16c2f8 3559 if (is_write) {
845b6214 3560 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3561 }
868bb33f 3562 if (xen_enabled()) {
e41d7c69 3563 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3564 }
d3e71559 3565 memory_region_unref(mr);
6d16c2f8
AL
3566 return;
3567 }
3568 if (is_write) {
5c9eb028
PM
3569 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3570 bounce.buffer, access_len);
6d16c2f8 3571 }
f8a83245 3572 qemu_vfree(bounce.buffer);
6d16c2f8 3573 bounce.buffer = NULL;
d3e71559 3574 memory_region_unref(bounce.mr);
c2cba0ff 3575 atomic_mb_set(&bounce.in_use, false);
ba223c29 3576 cpu_notify_map_clients();
6d16c2f8 3577}
d0ecd2aa 3578
a8170e5e
AK
3579void *cpu_physical_memory_map(hwaddr addr,
3580 hwaddr *plen,
ac1970fb
AK
3581 int is_write)
3582{
3583 return address_space_map(&address_space_memory, addr, plen, is_write);
3584}
3585
a8170e5e
AK
3586void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3587 int is_write, hwaddr access_len)
ac1970fb
AK
3588{
3589 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3590}
3591
0ce265ff
PB
3592#define ARG1_DECL AddressSpace *as
3593#define ARG1 as
3594#define SUFFIX
3595#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3596#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3597#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3598#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3599#define RCU_READ_LOCK(...) rcu_read_lock()
3600#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3601#include "memory_ldst.inc.c"
1e78bcc1 3602
1f4e496e
PB
3603int64_t address_space_cache_init(MemoryRegionCache *cache,
3604 AddressSpace *as,
3605 hwaddr addr,
3606 hwaddr len,
3607 bool is_write)
3608{
90c4fe5f
PB
3609 cache->len = len;
3610 cache->as = as;
3611 cache->xlat = addr;
3612 return len;
1f4e496e
PB
3613}
3614
3615void address_space_cache_invalidate(MemoryRegionCache *cache,
3616 hwaddr addr,
3617 hwaddr access_len)
3618{
1f4e496e
PB
3619}
3620
3621void address_space_cache_destroy(MemoryRegionCache *cache)
3622{
90c4fe5f 3623 cache->as = NULL;
1f4e496e
PB
3624}
3625
3626#define ARG1_DECL MemoryRegionCache *cache
3627#define ARG1 cache
3628#define SUFFIX _cached
90c4fe5f
PB
3629#define TRANSLATE(addr, ...) \
3630 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3631#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3632#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3633#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3634#define RCU_READ_LOCK() rcu_read_lock()
3635#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3636#include "memory_ldst.inc.c"
3637
5e2972fd 3638/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3639int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3640 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3641{
3642 int l;
a8170e5e 3643 hwaddr phys_addr;
9b3c35e0 3644 target_ulong page;
13eb76e0 3645
79ca7a1b 3646 cpu_synchronize_state(cpu);
13eb76e0 3647 while (len > 0) {
5232e4c7
PM
3648 int asidx;
3649 MemTxAttrs attrs;
3650
13eb76e0 3651 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3652 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3653 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3654 /* if no physical page mapped, return an error */
3655 if (phys_addr == -1)
3656 return -1;
3657 l = (page + TARGET_PAGE_SIZE) - addr;
3658 if (l > len)
3659 l = len;
5e2972fd 3660 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3661 if (is_write) {
5232e4c7
PM
3662 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3663 phys_addr, buf, l);
2e38847b 3664 } else {
5232e4c7
PM
3665 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3666 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3667 buf, l, 0);
2e38847b 3668 }
13eb76e0
FB
3669 len -= l;
3670 buf += l;
3671 addr += l;
3672 }
3673 return 0;
3674}
038629a6
DDAG
3675
3676/*
3677 * Allows code that needs to deal with migration bitmaps etc to still be built
3678 * target independent.
3679 */
20afaed9 3680size_t qemu_target_page_size(void)
038629a6 3681{
20afaed9 3682 return TARGET_PAGE_SIZE;
038629a6
DDAG
3683}
3684
46d702b1
JQ
3685int qemu_target_page_bits(void)
3686{
3687 return TARGET_PAGE_BITS;
3688}
3689
3690int qemu_target_page_bits_min(void)
3691{
3692 return TARGET_PAGE_BITS_MIN;
3693}
a68fe89c 3694#endif
13eb76e0 3695
8e4a424b
BS
3696/*
3697 * A helper function for the _utterly broken_ virtio device model to find out if
3698 * it's running on a big endian machine. Don't do this at home kids!
3699 */
98ed8ecf
GK
3700bool target_words_bigendian(void);
3701bool target_words_bigendian(void)
8e4a424b
BS
3702{
3703#if defined(TARGET_WORDS_BIGENDIAN)
3704 return true;
3705#else
3706 return false;
3707#endif
3708}
3709
76f35538 3710#ifndef CONFIG_USER_ONLY
a8170e5e 3711bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3712{
5c8a00ce 3713 MemoryRegion*mr;
149f54b5 3714 hwaddr l = 1;
41063e1e 3715 bool res;
76f35538 3716
41063e1e 3717 rcu_read_lock();
5c8a00ce
PB
3718 mr = address_space_translate(&address_space_memory,
3719 phys_addr, &phys_addr, &l, false);
76f35538 3720
41063e1e
PB
3721 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3722 rcu_read_unlock();
3723 return res;
76f35538 3724}
bd2fa51f 3725
e3807054 3726int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3727{
3728 RAMBlock *block;
e3807054 3729 int ret = 0;
bd2fa51f 3730
0dc3f44a 3731 rcu_read_lock();
99e15582 3732 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3733 ret = func(block->idstr, block->host, block->offset,
3734 block->used_length, opaque);
3735 if (ret) {
3736 break;
3737 }
bd2fa51f 3738 }
0dc3f44a 3739 rcu_read_unlock();
e3807054 3740 return ret;
bd2fa51f 3741}
d3a5038c
DDAG
3742
3743/*
3744 * Unmap pages of memory from start to start+length such that
3745 * they a) read as 0, b) Trigger whatever fault mechanism
3746 * the OS provides for postcopy.
3747 * The pages must be unmapped by the end of the function.
3748 * Returns: 0 on success, none-0 on failure
3749 *
3750 */
3751int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3752{
3753 int ret = -1;
3754
3755 uint8_t *host_startaddr = rb->host + start;
3756
3757 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3758 error_report("ram_block_discard_range: Unaligned start address: %p",
3759 host_startaddr);
3760 goto err;
3761 }
3762
3763 if ((start + length) <= rb->used_length) {
db144f70 3764 bool need_madvise, need_fallocate;
d3a5038c
DDAG
3765 uint8_t *host_endaddr = host_startaddr + length;
3766 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3767 error_report("ram_block_discard_range: Unaligned end address: %p",
3768 host_endaddr);
3769 goto err;
3770 }
3771
3772 errno = ENOTSUP; /* If we are missing MADVISE etc */
3773
db144f70
DDAG
3774 /* The logic here is messy;
3775 * madvise DONTNEED fails for hugepages
3776 * fallocate works on hugepages and shmem
3777 */
3778 need_madvise = (rb->page_size == qemu_host_page_size);
3779 need_fallocate = rb->fd != -1;
3780 if (need_fallocate) {
3781 /* For a file, this causes the area of the file to be zero'd
3782 * if read, and for hugetlbfs also causes it to be unmapped
3783 * so a userfault will trigger.
e2fa71f5
DDAG
3784 */
3785#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3786 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3787 start, length);
db144f70
DDAG
3788 if (ret) {
3789 ret = -errno;
3790 error_report("ram_block_discard_range: Failed to fallocate "
3791 "%s:%" PRIx64 " +%zx (%d)",
3792 rb->idstr, start, length, ret);
3793 goto err;
3794 }
3795#else
3796 ret = -ENOSYS;
3797 error_report("ram_block_discard_range: fallocate not available/file"
3798 "%s:%" PRIx64 " +%zx (%d)",
3799 rb->idstr, start, length, ret);
3800 goto err;
e2fa71f5
DDAG
3801#endif
3802 }
db144f70
DDAG
3803 if (need_madvise) {
3804 /* For normal RAM this causes it to be unmapped,
3805 * for shared memory it causes the local mapping to disappear
3806 * and to fall back on the file contents (which we just
3807 * fallocate'd away).
3808 */
3809#if defined(CONFIG_MADVISE)
3810 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3811 if (ret) {
3812 ret = -errno;
3813 error_report("ram_block_discard_range: Failed to discard range "
3814 "%s:%" PRIx64 " +%zx (%d)",
3815 rb->idstr, start, length, ret);
3816 goto err;
3817 }
3818#else
3819 ret = -ENOSYS;
3820 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3821 "%s:%" PRIx64 " +%zx (%d)",
3822 rb->idstr, start, length, ret);
db144f70
DDAG
3823 goto err;
3824#endif
d3a5038c 3825 }
db144f70
DDAG
3826 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3827 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3828 } else {
3829 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3830 "/%zx/" RAM_ADDR_FMT")",
3831 rb->idstr, start, length, rb->used_length);
3832 }
3833
3834err:
3835 return ret;
3836}
3837
ec3f8c99 3838#endif
a0be0c58
YZ
3839
3840void page_size_init(void)
3841{
3842 /* NOTE: we can always suppose that qemu_host_page_size >=
3843 TARGET_PAGE_SIZE */
a0be0c58
YZ
3844 if (qemu_host_page_size == 0) {
3845 qemu_host_page_size = qemu_real_host_page_size;
3846 }
3847 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3848 qemu_host_page_size = TARGET_PAGE_SIZE;
3849 }
3850 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3851}
5e8fd947
AK
3852
3853#if !defined(CONFIG_USER_ONLY)
3854
3855static void mtree_print_phys_entries(fprintf_function mon, void *f,
3856 int start, int end, int skip, int ptr)
3857{
3858 if (start == end - 1) {
3859 mon(f, "\t%3d ", start);
3860 } else {
3861 mon(f, "\t%3d..%-3d ", start, end - 1);
3862 }
3863 mon(f, " skip=%d ", skip);
3864 if (ptr == PHYS_MAP_NODE_NIL) {
3865 mon(f, " ptr=NIL");
3866 } else if (!skip) {
3867 mon(f, " ptr=#%d", ptr);
3868 } else {
3869 mon(f, " ptr=[%d]", ptr);
3870 }
3871 mon(f, "\n");
3872}
3873
3874#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3875 int128_sub((size), int128_one())) : 0)
3876
3877void mtree_print_dispatch(fprintf_function mon, void *f,
3878 AddressSpaceDispatch *d, MemoryRegion *root)
3879{
3880 int i;
3881
3882 mon(f, " Dispatch\n");
3883 mon(f, " Physical sections\n");
3884
3885 for (i = 0; i < d->map.sections_nb; ++i) {
3886 MemoryRegionSection *s = d->map.sections + i;
3887 const char *names[] = { " [unassigned]", " [not dirty]",
3888 " [ROM]", " [watch]" };
3889
3890 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3891 i,
3892 s->offset_within_address_space,
3893 s->offset_within_address_space + MR_SIZE(s->mr->size),
3894 s->mr->name ? s->mr->name : "(noname)",
3895 i < ARRAY_SIZE(names) ? names[i] : "",
3896 s->mr == root ? " [ROOT]" : "",
3897 s == d->mru_section ? " [MRU]" : "",
3898 s->mr->is_iommu ? " [iommu]" : "");
3899
3900 if (s->mr->alias) {
3901 mon(f, " alias=%s", s->mr->alias->name ?
3902 s->mr->alias->name : "noname");
3903 }
3904 mon(f, "\n");
3905 }
3906
3907 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3908 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3909 for (i = 0; i < d->map.nodes_nb; ++i) {
3910 int j, jprev;
3911 PhysPageEntry prev;
3912 Node *n = d->map.nodes + i;
3913
3914 mon(f, " [%d]\n", i);
3915
3916 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3917 PhysPageEntry *pe = *n + j;
3918
3919 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3920 continue;
3921 }
3922
3923 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3924
3925 jprev = j;
3926 prev = *pe;
3927 }
3928
3929 if (jprev != ARRAY_SIZE(*n)) {
3930 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3931 }
3932 }
3933}
3934
3935#endif