]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: root->fs_info cleanup, lock/unlock_chunks
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
ce93ec54
JB
63static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
5d4f98a2
YZ
66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
4824f1f4 93static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 94 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
95static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 u64 num_bytes, int delalloc);
5d80366e
JB
97static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 u64 num_bytes);
48a3b636
ES
99int btrfs_pin_extent(struct btrfs_root *root,
100 u64 bytenr, u64 num_bytes, int reserved);
957780eb
JB
101static int __reserve_metadata_bytes(struct btrfs_root *root,
102 struct btrfs_space_info *space_info,
103 u64 orig_bytes,
104 enum btrfs_reserve_flush_enum flush);
105static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
6a63209f 111
817d52f8
JB
112static noinline int
113block_group_cache_done(struct btrfs_block_group_cache *cache)
114{
115 smp_mb();
36cce922
JB
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
118}
119
0f9dd46c
JB
120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121{
122 return (cache->flags & bits) == bits;
123}
124
758f2dfc 125void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
126{
127 atomic_inc(&cache->count);
128}
129
130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131{
f0486c68
YZ
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
11833d66
YZ
226static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66
YZ
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
11833d66 232 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
11833d66
YZ
237static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
11833d66 247 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
11833d66
YZ
251static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
ab8d0fc4
JM
270 ret = btrfs_rmap_block(root->fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329}
330
d0bd4560
JB
331#ifdef CONFIG_BTRFS_DEBUG
332static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334{
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
da17066c 338 root->fs_info->nodesize : root->fs_info->sectorsize;
d0bd4560
JB
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
bab39bf9
JB
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
bab39bf9 399 struct btrfs_root *extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
bab39bf9
JB
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
e37c9e69
CM
413 path = btrfs_alloc_path();
414 if (!path)
73fa48b6 415 return -ENOMEM;
7d7d6068 416
817d52f8 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 418
d0bd4560
JB
419#ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427#endif
5cd57b2c 428 /*
817d52f8
JB
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
5cd57b2c
CM
433 */
434 path->skip_locking = 1;
817d52f8 435 path->search_commit_root = 1;
e4058b54 436 path->reada = READA_FORWARD;
817d52f8 437
e4404d6e 438 key.objectid = last;
e37c9e69 439 key.offset = 0;
11833d66 440 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 441
52ee28d2 442next:
11833d66 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 444 if (ret < 0)
73fa48b6 445 goto out;
a512bbf8 446
11833d66
YZ
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
d397712b 450 while (1) {
7841cb28 451 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 452 last = (u64)-1;
817d52f8 453 break;
f25784b3 454 }
817d52f8 455
11833d66
YZ
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
e37c9e69 461 break;
817d52f8 462
c9ea7b24 463 if (need_resched() ||
9e351cc8 464 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
465 if (wakeup)
466 caching_ctl->progress = last;
ff5714cc 467 btrfs_release_path(path);
9e351cc8 468 up_read(&fs_info->commit_root_sem);
589d8ade 469 mutex_unlock(&caching_ctl->mutex);
11833d66 470 cond_resched();
73fa48b6
OS
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
589d8ade 474 }
0a3896d0
JB
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
73fa48b6 478 goto out;
0a3896d0
JB
479 if (ret)
480 break;
589d8ade
JB
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
11833d66 484 }
817d52f8 485
52ee28d2
LB
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
d0bd4560
JB
491 if (wakeup)
492 caching_ctl->progress = last;
52ee28d2
LB
493 btrfs_release_path(path);
494 goto next;
495 }
496
11833d66
YZ
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
817d52f8 499 continue;
e37c9e69 500 }
0f9dd46c 501
e37c9e69 502 if (key.objectid >= block_group->key.objectid +
0f9dd46c 503 block_group->key.offset)
e37c9e69 504 break;
7d7d6068 505
3173a18f
JB
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
3173a18f
JB
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
da17066c 513 fs_info->nodesize;
3173a18f
JB
514 else
515 last = key.objectid + key.offset;
817d52f8 516
73fa48b6 517 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 518 total_found = 0;
d0bd4560
JB
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
11833d66 521 }
817d52f8 522 }
e37c9e69
CM
523 path->slots[0]++;
524 }
817d52f8 525 ret = 0;
e37c9e69 526
817d52f8
JB
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
11833d66 530 caching_ctl->progress = (u64)-1;
817d52f8 531
73fa48b6
OS
532out:
533 btrfs_free_path(path);
534 return ret;
535}
536
537static noinline void caching_thread(struct btrfs_work *work)
538{
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
b4570aa9 542 struct btrfs_root *extent_root;
73fa48b6
OS
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
b4570aa9 548 extent_root = fs_info->extent_root;
73fa48b6
OS
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
1e144fb8
OS
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
73fa48b6 557
817d52f8 558 spin_lock(&block_group->lock);
11833d66 559 block_group->caching_ctl = NULL;
73fa48b6 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 561 spin_unlock(&block_group->lock);
0f9dd46c 562
d0bd4560
JB
563#ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576#endif
577
578 caching_ctl->progress = (u64)-1;
11833d66 579
9e351cc8 580 up_read(&fs_info->commit_root_sem);
73fa48b6 581 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 582 mutex_unlock(&caching_ctl->mutex);
73fa48b6 583
11833d66
YZ
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
11dfe35a 587 btrfs_put_block_group(block_group);
817d52f8
JB
588}
589
9d66e233 590static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 591 int load_cache_only)
817d52f8 592{
291c7d2f 593 DEFINE_WAIT(wait);
11833d66
YZ
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
596 int ret = 0;
597
291c7d2f 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
599 if (!caching_ctl)
600 return -ENOMEM;
291c7d2f
JB
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
291c7d2f
JB
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
11833d66 642 return 0;
291c7d2f
JB
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
11833d66 648
d53ba474 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 650 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
291c7d2f 655 cache->caching_ctl = NULL;
9d66e233
JB
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 658 caching_ctl->progress = (u64)-1;
9d66e233 659 } else {
291c7d2f
JB
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 665 cache->has_caching_ctl = 1;
291c7d2f 666 }
9d66e233
JB
667 }
668 spin_unlock(&cache->lock);
d0bd4560
JB
669#ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684#endif
cb83b7b8
JB
685 mutex_unlock(&caching_ctl->mutex);
686
291c7d2f 687 wake_up(&caching_ctl->wait);
3c14874a 688 if (ret == 1) {
291c7d2f 689 put_caching_control(caching_ctl);
3c14874a 690 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 691 return 0;
3c14874a 692 }
291c7d2f
JB
693 } else {
694 /*
1e144fb8
OS
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 704 cache->has_caching_ctl = 1;
291c7d2f
JB
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
9d66e233
JB
708 }
709
291c7d2f
JB
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
11833d66 712 return 0;
817d52f8 713 }
817d52f8 714
9e351cc8 715 down_write(&fs_info->commit_root_sem);
291c7d2f 716 atomic_inc(&caching_ctl->count);
11833d66 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 718 up_write(&fs_info->commit_root_sem);
11833d66 719
11dfe35a 720 btrfs_get_block_group(cache);
11833d66 721
e66f0bb1 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 723
ef8bbdfe 724 return ret;
e37c9e69
CM
725}
726
0f9dd46c
JB
727/*
728 * return the block group that starts at or after bytenr
729 */
d397712b
CM
730static struct btrfs_block_group_cache *
731btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 732{
e2c89907 733 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
734}
735
0f9dd46c 736/*
9f55684c 737 * return the block group that contains the given bytenr
0f9dd46c 738 */
d397712b
CM
739struct btrfs_block_group_cache *btrfs_lookup_block_group(
740 struct btrfs_fs_info *info,
741 u64 bytenr)
be744175 742{
e2c89907 743 return block_group_cache_tree_search(info, bytenr, 1);
be744175 744}
0b86a832 745
0f9dd46c
JB
746static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
747 u64 flags)
6324fbf3 748{
0f9dd46c 749 struct list_head *head = &info->space_info;
0f9dd46c 750 struct btrfs_space_info *found;
4184ea7f 751
52ba6929 752 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 753
4184ea7f
CM
754 rcu_read_lock();
755 list_for_each_entry_rcu(found, head, list) {
67377734 756 if (found->flags & flags) {
4184ea7f 757 rcu_read_unlock();
0f9dd46c 758 return found;
4184ea7f 759 }
0f9dd46c 760 }
4184ea7f 761 rcu_read_unlock();
0f9dd46c 762 return NULL;
6324fbf3
CM
763}
764
4184ea7f
CM
765/*
766 * after adding space to the filesystem, we need to clear the full flags
767 * on all the space infos.
768 */
769void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
770{
771 struct list_head *head = &info->space_info;
772 struct btrfs_space_info *found;
773
774 rcu_read_lock();
775 list_for_each_entry_rcu(found, head, list)
776 found->full = 0;
777 rcu_read_unlock();
778}
779
1a4ed8fd
FM
780/* simple helper to search for an existing data extent at a given offset */
781int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
782{
783 int ret;
784 struct btrfs_key key;
31840ae1 785 struct btrfs_path *path;
e02119d5 786
31840ae1 787 path = btrfs_alloc_path();
d8926bb3
MF
788 if (!path)
789 return -ENOMEM;
790
e02119d5
CM
791 key.objectid = start;
792 key.offset = len;
3173a18f 793 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
794 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
795 0, 0);
31840ae1 796 btrfs_free_path(path);
7bb86316
CM
797 return ret;
798}
799
a22285a6 800/*
3173a18f 801 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
802 *
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
808 */
809int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 struct btrfs_root *root, u64 bytenr,
3173a18f 811 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
812{
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
819 u32 item_size;
820 u64 num_refs;
821 u64 extent_flags;
822 int ret;
823
3173a18f
JB
824 /*
825 * If we don't have skinny metadata, don't bother doing anything
826 * different
827 */
828 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
da17066c 829 offset = root->fs_info->nodesize;
3173a18f
JB
830 metadata = 0;
831 }
832
a22285a6
YZ
833 path = btrfs_alloc_path();
834 if (!path)
835 return -ENOMEM;
836
a22285a6
YZ
837 if (!trans) {
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
840 }
639eefc8
FDBM
841
842search_again:
843 key.objectid = bytenr;
844 key.offset = offset;
845 if (metadata)
846 key.type = BTRFS_METADATA_ITEM_KEY;
847 else
848 key.type = BTRFS_EXTENT_ITEM_KEY;
849
a22285a6
YZ
850 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
851 &key, path, 0, 0);
852 if (ret < 0)
853 goto out_free;
854
3173a18f 855 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
856 if (path->slots[0]) {
857 path->slots[0]--;
858 btrfs_item_key_to_cpu(path->nodes[0], &key,
859 path->slots[0]);
860 if (key.objectid == bytenr &&
861 key.type == BTRFS_EXTENT_ITEM_KEY &&
da17066c 862 key.offset == root->fs_info->nodesize)
74be9510
FDBM
863 ret = 0;
864 }
3173a18f
JB
865 }
866
a22285a6
YZ
867 if (ret == 0) {
868 leaf = path->nodes[0];
869 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
870 if (item_size >= sizeof(*ei)) {
871 ei = btrfs_item_ptr(leaf, path->slots[0],
872 struct btrfs_extent_item);
873 num_refs = btrfs_extent_refs(leaf, ei);
874 extent_flags = btrfs_extent_flags(leaf, ei);
875 } else {
876#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 struct btrfs_extent_item_v0 *ei0;
878 BUG_ON(item_size != sizeof(*ei0));
879 ei0 = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item_v0);
881 num_refs = btrfs_extent_refs_v0(leaf, ei0);
882 /* FIXME: this isn't correct for data */
883 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
884#else
885 BUG();
886#endif
887 }
888 BUG_ON(num_refs == 0);
889 } else {
890 num_refs = 0;
891 extent_flags = 0;
892 ret = 0;
893 }
894
895 if (!trans)
896 goto out;
897
898 delayed_refs = &trans->transaction->delayed_refs;
899 spin_lock(&delayed_refs->lock);
900 head = btrfs_find_delayed_ref_head(trans, bytenr);
901 if (head) {
902 if (!mutex_trylock(&head->mutex)) {
903 atomic_inc(&head->node.refs);
904 spin_unlock(&delayed_refs->lock);
905
b3b4aa74 906 btrfs_release_path(path);
a22285a6 907
8cc33e5c
DS
908 /*
909 * Mutex was contended, block until it's released and try
910 * again
911 */
a22285a6
YZ
912 mutex_lock(&head->mutex);
913 mutex_unlock(&head->mutex);
914 btrfs_put_delayed_ref(&head->node);
639eefc8 915 goto search_again;
a22285a6 916 }
d7df2c79 917 spin_lock(&head->lock);
a22285a6
YZ
918 if (head->extent_op && head->extent_op->update_flags)
919 extent_flags |= head->extent_op->flags_to_set;
920 else
921 BUG_ON(num_refs == 0);
922
923 num_refs += head->node.ref_mod;
d7df2c79 924 spin_unlock(&head->lock);
a22285a6
YZ
925 mutex_unlock(&head->mutex);
926 }
927 spin_unlock(&delayed_refs->lock);
928out:
929 WARN_ON(num_refs == 0);
930 if (refs)
931 *refs = num_refs;
932 if (flags)
933 *flags = extent_flags;
934out_free:
935 btrfs_free_path(path);
936 return ret;
937}
938
d8d5f3e1
CM
939/*
940 * Back reference rules. Back refs have three main goals:
941 *
942 * 1) differentiate between all holders of references to an extent so that
943 * when a reference is dropped we can make sure it was a valid reference
944 * before freeing the extent.
945 *
946 * 2) Provide enough information to quickly find the holders of an extent
947 * if we notice a given block is corrupted or bad.
948 *
949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950 * maintenance. This is actually the same as #2, but with a slightly
951 * different use case.
952 *
5d4f98a2
YZ
953 * There are two kinds of back refs. The implicit back refs is optimized
954 * for pointers in non-shared tree blocks. For a given pointer in a block,
955 * back refs of this kind provide information about the block's owner tree
956 * and the pointer's key. These information allow us to find the block by
957 * b-tree searching. The full back refs is for pointers in tree blocks not
958 * referenced by their owner trees. The location of tree block is recorded
959 * in the back refs. Actually the full back refs is generic, and can be
960 * used in all cases the implicit back refs is used. The major shortcoming
961 * of the full back refs is its overhead. Every time a tree block gets
962 * COWed, we have to update back refs entry for all pointers in it.
963 *
964 * For a newly allocated tree block, we use implicit back refs for
965 * pointers in it. This means most tree related operations only involve
966 * implicit back refs. For a tree block created in old transaction, the
967 * only way to drop a reference to it is COW it. So we can detect the
968 * event that tree block loses its owner tree's reference and do the
969 * back refs conversion.
970 *
01327610 971 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
972 *
973 * The reference count of the block is one and the tree is the block's
974 * owner tree. Nothing to do in this case.
975 *
976 * The reference count of the block is one and the tree is not the
977 * block's owner tree. In this case, full back refs is used for pointers
978 * in the block. Remove these full back refs, add implicit back refs for
979 * every pointers in the new block.
980 *
981 * The reference count of the block is greater than one and the tree is
982 * the block's owner tree. In this case, implicit back refs is used for
983 * pointers in the block. Add full back refs for every pointers in the
984 * block, increase lower level extents' reference counts. The original
985 * implicit back refs are entailed to the new block.
986 *
987 * The reference count of the block is greater than one and the tree is
988 * not the block's owner tree. Add implicit back refs for every pointer in
989 * the new block, increase lower level extents' reference count.
990 *
991 * Back Reference Key composing:
992 *
993 * The key objectid corresponds to the first byte in the extent,
994 * The key type is used to differentiate between types of back refs.
995 * There are different meanings of the key offset for different types
996 * of back refs.
997 *
d8d5f3e1
CM
998 * File extents can be referenced by:
999 *
1000 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1001 * - different files inside a single subvolume
d8d5f3e1
CM
1002 * - different offsets inside a file (bookend extents in file.c)
1003 *
5d4f98a2 1004 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1005 *
1006 * - Objectid of the subvolume root
d8d5f3e1 1007 * - objectid of the file holding the reference
5d4f98a2
YZ
1008 * - original offset in the file
1009 * - how many bookend extents
d8d5f3e1 1010 *
5d4f98a2
YZ
1011 * The key offset for the implicit back refs is hash of the first
1012 * three fields.
d8d5f3e1 1013 *
5d4f98a2 1014 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1015 *
5d4f98a2 1016 * - number of pointers in the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * The key offset for the implicit back refs is the first byte of
1019 * the tree leaf
d8d5f3e1 1020 *
5d4f98a2
YZ
1021 * When a file extent is allocated, The implicit back refs is used.
1022 * the fields are filled in:
d8d5f3e1 1023 *
5d4f98a2 1024 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1025 *
5d4f98a2
YZ
1026 * When a file extent is removed file truncation, we find the
1027 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1028 *
5d4f98a2 1029 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1030 *
5d4f98a2 1031 * Btree extents can be referenced by:
d8d5f3e1 1032 *
5d4f98a2 1033 * - Different subvolumes
d8d5f3e1 1034 *
5d4f98a2
YZ
1035 * Both the implicit back refs and the full back refs for tree blocks
1036 * only consist of key. The key offset for the implicit back refs is
1037 * objectid of block's owner tree. The key offset for the full back refs
1038 * is the first byte of parent block.
d8d5f3e1 1039 *
5d4f98a2
YZ
1040 * When implicit back refs is used, information about the lowest key and
1041 * level of the tree block are required. These information are stored in
1042 * tree block info structure.
d8d5f3e1 1043 */
31840ae1 1044
5d4f98a2
YZ
1045#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root,
1048 struct btrfs_path *path,
1049 u64 owner, u32 extra_size)
7bb86316 1050{
5d4f98a2
YZ
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
7bb86316 1056 struct btrfs_key key;
5d4f98a2
YZ
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1059 u64 refs;
1060 int ret;
1061
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070 if (owner == (u64)-1) {
1071 while (1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 return ret;
79787eaa 1076 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1077 leaf = path->nodes[0];
1078 }
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1080 path->slots[0]);
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 path->slots[0]++;
1084 continue;
1085 }
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 break;
1090 }
1091 }
b3b4aa74 1092 btrfs_release_path(path);
5d4f98a2
YZ
1093
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1096
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1100 if (ret < 0)
1101 return ret;
79787eaa 1102 BUG_ON(ret); /* Corruption */
5d4f98a2 1103
4b90c680 1104 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1105
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
b159fa28 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 } else {
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 }
1122 btrfs_mark_buffer_dirty(leaf);
1123 return 0;
1124}
1125#endif
1126
1127static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1128{
1129 u32 high_crc = ~(u32)0;
1130 u32 low_crc = ~(u32)0;
1131 __le64 lenum;
1132
1133 lenum = cpu_to_le64(root_objectid);
14a958e6 1134 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1135 lenum = cpu_to_le64(owner);
14a958e6 1136 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1137 lenum = cpu_to_le64(offset);
14a958e6 1138 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1139
1140 return ((u64)high_crc << 31) ^ (u64)low_crc;
1141}
1142
1143static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1144 struct btrfs_extent_data_ref *ref)
1145{
1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1147 btrfs_extent_data_ref_objectid(leaf, ref),
1148 btrfs_extent_data_ref_offset(leaf, ref));
1149}
1150
1151static int match_extent_data_ref(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref,
1153 u64 root_objectid, u64 owner, u64 offset)
1154{
1155 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1156 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1157 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1158 return 0;
1159 return 1;
1160}
1161
1162static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1163 struct btrfs_root *root,
1164 struct btrfs_path *path,
1165 u64 bytenr, u64 parent,
1166 u64 root_objectid,
1167 u64 owner, u64 offset)
1168{
1169 struct btrfs_key key;
1170 struct btrfs_extent_data_ref *ref;
31840ae1 1171 struct extent_buffer *leaf;
5d4f98a2 1172 u32 nritems;
74493f7a 1173 int ret;
5d4f98a2
YZ
1174 int recow;
1175 int err = -ENOENT;
74493f7a 1176
31840ae1 1177 key.objectid = bytenr;
5d4f98a2
YZ
1178 if (parent) {
1179 key.type = BTRFS_SHARED_DATA_REF_KEY;
1180 key.offset = parent;
1181 } else {
1182 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1183 key.offset = hash_extent_data_ref(root_objectid,
1184 owner, offset);
1185 }
1186again:
1187 recow = 0;
1188 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1189 if (ret < 0) {
1190 err = ret;
1191 goto fail;
1192 }
31840ae1 1193
5d4f98a2
YZ
1194 if (parent) {
1195 if (!ret)
1196 return 0;
1197#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1199 btrfs_release_path(path);
5d4f98a2
YZ
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
1205 if (!ret)
1206 return 0;
1207#endif
1208 goto fail;
31840ae1
ZY
1209 }
1210
1211 leaf = path->nodes[0];
5d4f98a2
YZ
1212 nritems = btrfs_header_nritems(leaf);
1213 while (1) {
1214 if (path->slots[0] >= nritems) {
1215 ret = btrfs_next_leaf(root, path);
1216 if (ret < 0)
1217 err = ret;
1218 if (ret)
1219 goto fail;
1220
1221 leaf = path->nodes[0];
1222 nritems = btrfs_header_nritems(leaf);
1223 recow = 1;
1224 }
1225
1226 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1227 if (key.objectid != bytenr ||
1228 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1229 goto fail;
1230
1231 ref = btrfs_item_ptr(leaf, path->slots[0],
1232 struct btrfs_extent_data_ref);
1233
1234 if (match_extent_data_ref(leaf, ref, root_objectid,
1235 owner, offset)) {
1236 if (recow) {
b3b4aa74 1237 btrfs_release_path(path);
5d4f98a2
YZ
1238 goto again;
1239 }
1240 err = 0;
1241 break;
1242 }
1243 path->slots[0]++;
31840ae1 1244 }
5d4f98a2
YZ
1245fail:
1246 return err;
31840ae1
ZY
1247}
1248
5d4f98a2
YZ
1249static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root,
1251 struct btrfs_path *path,
1252 u64 bytenr, u64 parent,
1253 u64 root_objectid, u64 owner,
1254 u64 offset, int refs_to_add)
31840ae1
ZY
1255{
1256 struct btrfs_key key;
1257 struct extent_buffer *leaf;
5d4f98a2 1258 u32 size;
31840ae1
ZY
1259 u32 num_refs;
1260 int ret;
74493f7a 1261
74493f7a 1262 key.objectid = bytenr;
5d4f98a2
YZ
1263 if (parent) {
1264 key.type = BTRFS_SHARED_DATA_REF_KEY;
1265 key.offset = parent;
1266 size = sizeof(struct btrfs_shared_data_ref);
1267 } else {
1268 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1269 key.offset = hash_extent_data_ref(root_objectid,
1270 owner, offset);
1271 size = sizeof(struct btrfs_extent_data_ref);
1272 }
74493f7a 1273
5d4f98a2
YZ
1274 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1275 if (ret && ret != -EEXIST)
1276 goto fail;
1277
1278 leaf = path->nodes[0];
1279 if (parent) {
1280 struct btrfs_shared_data_ref *ref;
31840ae1 1281 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1282 struct btrfs_shared_data_ref);
1283 if (ret == 0) {
1284 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1285 } else {
1286 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1287 num_refs += refs_to_add;
1288 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1289 }
5d4f98a2
YZ
1290 } else {
1291 struct btrfs_extent_data_ref *ref;
1292 while (ret == -EEXIST) {
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_extent_data_ref);
1295 if (match_extent_data_ref(leaf, ref, root_objectid,
1296 owner, offset))
1297 break;
b3b4aa74 1298 btrfs_release_path(path);
5d4f98a2
YZ
1299 key.offset++;
1300 ret = btrfs_insert_empty_item(trans, root, path, &key,
1301 size);
1302 if (ret && ret != -EEXIST)
1303 goto fail;
31840ae1 1304
5d4f98a2
YZ
1305 leaf = path->nodes[0];
1306 }
1307 ref = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_extent_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_extent_data_ref_root(leaf, ref,
1311 root_objectid);
1312 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1313 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1314 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1315 } else {
1316 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1317 num_refs += refs_to_add;
1318 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1319 }
31840ae1 1320 }
5d4f98a2
YZ
1321 btrfs_mark_buffer_dirty(leaf);
1322 ret = 0;
1323fail:
b3b4aa74 1324 btrfs_release_path(path);
7bb86316 1325 return ret;
74493f7a
CM
1326}
1327
5d4f98a2
YZ
1328static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1329 struct btrfs_root *root,
1330 struct btrfs_path *path,
fcebe456 1331 int refs_to_drop, int *last_ref)
31840ae1 1332{
5d4f98a2
YZ
1333 struct btrfs_key key;
1334 struct btrfs_extent_data_ref *ref1 = NULL;
1335 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1336 struct extent_buffer *leaf;
5d4f98a2 1337 u32 num_refs = 0;
31840ae1
ZY
1338 int ret = 0;
1339
1340 leaf = path->nodes[0];
5d4f98a2
YZ
1341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1342
1343 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1344 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_extent_data_ref);
1346 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1347 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1348 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_shared_data_ref);
1350 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1351#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1353 struct btrfs_extent_ref_v0 *ref0;
1354 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_extent_ref_v0);
1356 num_refs = btrfs_ref_count_v0(leaf, ref0);
1357#endif
1358 } else {
1359 BUG();
1360 }
1361
56bec294
CM
1362 BUG_ON(num_refs < refs_to_drop);
1363 num_refs -= refs_to_drop;
5d4f98a2 1364
31840ae1
ZY
1365 if (num_refs == 0) {
1366 ret = btrfs_del_item(trans, root, path);
fcebe456 1367 *last_ref = 1;
31840ae1 1368 } else {
5d4f98a2
YZ
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1370 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1371 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1372 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1373#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 else {
1375 struct btrfs_extent_ref_v0 *ref0;
1376 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 struct btrfs_extent_ref_v0);
1378 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1379 }
1380#endif
31840ae1
ZY
1381 btrfs_mark_buffer_dirty(leaf);
1382 }
31840ae1
ZY
1383 return ret;
1384}
1385
9ed0dea0 1386static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1387 struct btrfs_extent_inline_ref *iref)
15916de8 1388{
5d4f98a2
YZ
1389 struct btrfs_key key;
1390 struct extent_buffer *leaf;
1391 struct btrfs_extent_data_ref *ref1;
1392 struct btrfs_shared_data_ref *ref2;
1393 u32 num_refs = 0;
1394
1395 leaf = path->nodes[0];
1396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1397 if (iref) {
1398 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1399 BTRFS_EXTENT_DATA_REF_KEY) {
1400 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1401 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1402 } else {
1403 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1405 }
1406 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1407 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_extent_data_ref);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1411 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1412 struct btrfs_shared_data_ref);
1413 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1414#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1416 struct btrfs_extent_ref_v0 *ref0;
1417 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1418 struct btrfs_extent_ref_v0);
1419 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1420#endif
5d4f98a2
YZ
1421 } else {
1422 WARN_ON(1);
1423 }
1424 return num_refs;
1425}
15916de8 1426
5d4f98a2
YZ
1427static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path,
1430 u64 bytenr, u64 parent,
1431 u64 root_objectid)
1f3c79a2 1432{
5d4f98a2 1433 struct btrfs_key key;
1f3c79a2 1434 int ret;
1f3c79a2 1435
5d4f98a2
YZ
1436 key.objectid = bytenr;
1437 if (parent) {
1438 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1439 key.offset = parent;
1440 } else {
1441 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1442 key.offset = root_objectid;
1f3c79a2
LH
1443 }
1444
5d4f98a2
YZ
1445 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1446 if (ret > 0)
1447 ret = -ENOENT;
1448#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 if (ret == -ENOENT && parent) {
b3b4aa74 1450 btrfs_release_path(path);
5d4f98a2
YZ
1451 key.type = BTRFS_EXTENT_REF_V0_KEY;
1452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1453 if (ret > 0)
1454 ret = -ENOENT;
1455 }
1f3c79a2 1456#endif
5d4f98a2 1457 return ret;
1f3c79a2
LH
1458}
1459
5d4f98a2
YZ
1460static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root,
1462 struct btrfs_path *path,
1463 u64 bytenr, u64 parent,
1464 u64 root_objectid)
31840ae1 1465{
5d4f98a2 1466 struct btrfs_key key;
31840ae1 1467 int ret;
31840ae1 1468
5d4f98a2
YZ
1469 key.objectid = bytenr;
1470 if (parent) {
1471 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1472 key.offset = parent;
1473 } else {
1474 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1475 key.offset = root_objectid;
1476 }
1477
1478 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1479 btrfs_release_path(path);
31840ae1
ZY
1480 return ret;
1481}
1482
5d4f98a2 1483static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1484{
5d4f98a2
YZ
1485 int type;
1486 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1487 if (parent > 0)
1488 type = BTRFS_SHARED_BLOCK_REF_KEY;
1489 else
1490 type = BTRFS_TREE_BLOCK_REF_KEY;
1491 } else {
1492 if (parent > 0)
1493 type = BTRFS_SHARED_DATA_REF_KEY;
1494 else
1495 type = BTRFS_EXTENT_DATA_REF_KEY;
1496 }
1497 return type;
31840ae1 1498}
56bec294 1499
2c47e605
YZ
1500static int find_next_key(struct btrfs_path *path, int level,
1501 struct btrfs_key *key)
56bec294 1502
02217ed2 1503{
2c47e605 1504 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1505 if (!path->nodes[level])
1506 break;
5d4f98a2
YZ
1507 if (path->slots[level] + 1 >=
1508 btrfs_header_nritems(path->nodes[level]))
1509 continue;
1510 if (level == 0)
1511 btrfs_item_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 else
1514 btrfs_node_key_to_cpu(path->nodes[level], key,
1515 path->slots[level] + 1);
1516 return 0;
1517 }
1518 return 1;
1519}
037e6390 1520
5d4f98a2
YZ
1521/*
1522 * look for inline back ref. if back ref is found, *ref_ret is set
1523 * to the address of inline back ref, and 0 is returned.
1524 *
1525 * if back ref isn't found, *ref_ret is set to the address where it
1526 * should be inserted, and -ENOENT is returned.
1527 *
1528 * if insert is true and there are too many inline back refs, the path
1529 * points to the extent item, and -EAGAIN is returned.
1530 *
1531 * NOTE: inline back refs are ordered in the same way that back ref
1532 * items in the tree are ordered.
1533 */
1534static noinline_for_stack
1535int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *root,
1537 struct btrfs_path *path,
1538 struct btrfs_extent_inline_ref **ref_ret,
1539 u64 bytenr, u64 num_bytes,
1540 u64 parent, u64 root_objectid,
1541 u64 owner, u64 offset, int insert)
1542{
1543 struct btrfs_key key;
1544 struct extent_buffer *leaf;
1545 struct btrfs_extent_item *ei;
1546 struct btrfs_extent_inline_ref *iref;
1547 u64 flags;
1548 u64 item_size;
1549 unsigned long ptr;
1550 unsigned long end;
1551 int extra_size;
1552 int type;
1553 int want;
1554 int ret;
1555 int err = 0;
3173a18f
JB
1556 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1557 SKINNY_METADATA);
26b8003f 1558
db94535d 1559 key.objectid = bytenr;
31840ae1 1560 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1561 key.offset = num_bytes;
31840ae1 1562
5d4f98a2
YZ
1563 want = extent_ref_type(parent, owner);
1564 if (insert) {
1565 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1566 path->keep_locks = 1;
5d4f98a2
YZ
1567 } else
1568 extra_size = -1;
3173a18f
JB
1569
1570 /*
1571 * Owner is our parent level, so we can just add one to get the level
1572 * for the block we are interested in.
1573 */
1574 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1575 key.type = BTRFS_METADATA_ITEM_KEY;
1576 key.offset = owner;
1577 }
1578
1579again:
5d4f98a2 1580 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1581 if (ret < 0) {
5d4f98a2
YZ
1582 err = ret;
1583 goto out;
1584 }
3173a18f
JB
1585
1586 /*
1587 * We may be a newly converted file system which still has the old fat
1588 * extent entries for metadata, so try and see if we have one of those.
1589 */
1590 if (ret > 0 && skinny_metadata) {
1591 skinny_metadata = false;
1592 if (path->slots[0]) {
1593 path->slots[0]--;
1594 btrfs_item_key_to_cpu(path->nodes[0], &key,
1595 path->slots[0]);
1596 if (key.objectid == bytenr &&
1597 key.type == BTRFS_EXTENT_ITEM_KEY &&
1598 key.offset == num_bytes)
1599 ret = 0;
1600 }
1601 if (ret) {
9ce49a0b 1602 key.objectid = bytenr;
3173a18f
JB
1603 key.type = BTRFS_EXTENT_ITEM_KEY;
1604 key.offset = num_bytes;
1605 btrfs_release_path(path);
1606 goto again;
1607 }
1608 }
1609
79787eaa
JM
1610 if (ret && !insert) {
1611 err = -ENOENT;
1612 goto out;
fae7f21c 1613 } else if (WARN_ON(ret)) {
492104c8 1614 err = -EIO;
492104c8 1615 goto out;
79787eaa 1616 }
5d4f98a2
YZ
1617
1618 leaf = path->nodes[0];
1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 if (item_size < sizeof(*ei)) {
1622 if (!insert) {
1623 err = -ENOENT;
1624 goto out;
1625 }
1626 ret = convert_extent_item_v0(trans, root, path, owner,
1627 extra_size);
1628 if (ret < 0) {
1629 err = ret;
1630 goto out;
1631 }
1632 leaf = path->nodes[0];
1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 }
1635#endif
1636 BUG_ON(item_size < sizeof(*ei));
1637
5d4f98a2
YZ
1638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 flags = btrfs_extent_flags(leaf, ei);
1640
1641 ptr = (unsigned long)(ei + 1);
1642 end = (unsigned long)ei + item_size;
1643
3173a18f 1644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1645 ptr += sizeof(struct btrfs_tree_block_info);
1646 BUG_ON(ptr > end);
5d4f98a2
YZ
1647 }
1648
1649 err = -ENOENT;
1650 while (1) {
1651 if (ptr >= end) {
1652 WARN_ON(ptr > end);
1653 break;
1654 }
1655 iref = (struct btrfs_extent_inline_ref *)ptr;
1656 type = btrfs_extent_inline_ref_type(leaf, iref);
1657 if (want < type)
1658 break;
1659 if (want > type) {
1660 ptr += btrfs_extent_inline_ref_size(type);
1661 continue;
1662 }
1663
1664 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1665 struct btrfs_extent_data_ref *dref;
1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 if (match_extent_data_ref(leaf, dref, root_objectid,
1668 owner, offset)) {
1669 err = 0;
1670 break;
1671 }
1672 if (hash_extent_data_ref_item(leaf, dref) <
1673 hash_extent_data_ref(root_objectid, owner, offset))
1674 break;
1675 } else {
1676 u64 ref_offset;
1677 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1678 if (parent > 0) {
1679 if (parent == ref_offset) {
1680 err = 0;
1681 break;
1682 }
1683 if (ref_offset < parent)
1684 break;
1685 } else {
1686 if (root_objectid == ref_offset) {
1687 err = 0;
1688 break;
1689 }
1690 if (ref_offset < root_objectid)
1691 break;
1692 }
1693 }
1694 ptr += btrfs_extent_inline_ref_size(type);
1695 }
1696 if (err == -ENOENT && insert) {
1697 if (item_size + extra_size >=
1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1699 err = -EAGAIN;
1700 goto out;
1701 }
1702 /*
1703 * To add new inline back ref, we have to make sure
1704 * there is no corresponding back ref item.
1705 * For simplicity, we just do not add new inline back
1706 * ref if there is any kind of item for this block
1707 */
2c47e605
YZ
1708 if (find_next_key(path, 0, &key) == 0 &&
1709 key.objectid == bytenr &&
85d4198e 1710 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 }
1715 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1716out:
85d4198e 1717 if (insert) {
5d4f98a2
YZ
1718 path->keep_locks = 0;
1719 btrfs_unlock_up_safe(path, 1);
1720 }
1721 return err;
1722}
1723
1724/*
1725 * helper to add new inline back ref
1726 */
1727static noinline_for_stack
fd279fae 1728void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1729 struct btrfs_path *path,
1730 struct btrfs_extent_inline_ref *iref,
1731 u64 parent, u64 root_objectid,
1732 u64 owner, u64 offset, int refs_to_add,
1733 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1734{
1735 struct extent_buffer *leaf;
1736 struct btrfs_extent_item *ei;
1737 unsigned long ptr;
1738 unsigned long end;
1739 unsigned long item_offset;
1740 u64 refs;
1741 int size;
1742 int type;
5d4f98a2
YZ
1743
1744 leaf = path->nodes[0];
1745 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1746 item_offset = (unsigned long)iref - (unsigned long)ei;
1747
1748 type = extent_ref_type(parent, owner);
1749 size = btrfs_extent_inline_ref_size(type);
1750
4b90c680 1751 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1752
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 refs = btrfs_extent_refs(leaf, ei);
1755 refs += refs_to_add;
1756 btrfs_set_extent_refs(leaf, ei, refs);
1757 if (extent_op)
1758 __run_delayed_extent_op(extent_op, leaf, ei);
1759
1760 ptr = (unsigned long)ei + item_offset;
1761 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1762 if (ptr < end - size)
1763 memmove_extent_buffer(leaf, ptr + size, ptr,
1764 end - size - ptr);
1765
1766 iref = (struct btrfs_extent_inline_ref *)ptr;
1767 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1768 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1769 struct btrfs_extent_data_ref *dref;
1770 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1771 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1772 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1773 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1774 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1775 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1776 struct btrfs_shared_data_ref *sref;
1777 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1778 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1780 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1781 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1782 } else {
1783 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1784 }
1785 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1786}
1787
1788static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 struct btrfs_path *path,
1791 struct btrfs_extent_inline_ref **ref_ret,
1792 u64 bytenr, u64 num_bytes, u64 parent,
1793 u64 root_objectid, u64 owner, u64 offset)
1794{
1795 int ret;
1796
1797 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1798 bytenr, num_bytes, parent,
1799 root_objectid, owner, offset, 0);
1800 if (ret != -ENOENT)
54aa1f4d 1801 return ret;
5d4f98a2 1802
b3b4aa74 1803 btrfs_release_path(path);
5d4f98a2
YZ
1804 *ref_ret = NULL;
1805
1806 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1807 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1808 root_objectid);
1809 } else {
1810 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1811 root_objectid, owner, offset);
b9473439 1812 }
5d4f98a2
YZ
1813 return ret;
1814}
31840ae1 1815
5d4f98a2
YZ
1816/*
1817 * helper to update/remove inline back ref
1818 */
1819static noinline_for_stack
afe5fea7 1820void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1821 struct btrfs_path *path,
1822 struct btrfs_extent_inline_ref *iref,
1823 int refs_to_mod,
fcebe456
JB
1824 struct btrfs_delayed_extent_op *extent_op,
1825 int *last_ref)
5d4f98a2
YZ
1826{
1827 struct extent_buffer *leaf;
1828 struct btrfs_extent_item *ei;
1829 struct btrfs_extent_data_ref *dref = NULL;
1830 struct btrfs_shared_data_ref *sref = NULL;
1831 unsigned long ptr;
1832 unsigned long end;
1833 u32 item_size;
1834 int size;
1835 int type;
5d4f98a2
YZ
1836 u64 refs;
1837
1838 leaf = path->nodes[0];
1839 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1840 refs = btrfs_extent_refs(leaf, ei);
1841 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1842 refs += refs_to_mod;
1843 btrfs_set_extent_refs(leaf, ei, refs);
1844 if (extent_op)
1845 __run_delayed_extent_op(extent_op, leaf, ei);
1846
1847 type = btrfs_extent_inline_ref_type(leaf, iref);
1848
1849 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1850 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1851 refs = btrfs_extent_data_ref_count(leaf, dref);
1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1854 refs = btrfs_shared_data_ref_count(leaf, sref);
1855 } else {
1856 refs = 1;
1857 BUG_ON(refs_to_mod != -1);
56bec294 1858 }
31840ae1 1859
5d4f98a2
YZ
1860 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1861 refs += refs_to_mod;
1862
1863 if (refs > 0) {
1864 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1865 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1866 else
1867 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1868 } else {
fcebe456 1869 *last_ref = 1;
5d4f98a2
YZ
1870 size = btrfs_extent_inline_ref_size(type);
1871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1872 ptr = (unsigned long)iref;
1873 end = (unsigned long)ei + item_size;
1874 if (ptr + size < end)
1875 memmove_extent_buffer(leaf, ptr, ptr + size,
1876 end - ptr - size);
1877 item_size -= size;
afe5fea7 1878 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1879 }
1880 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1881}
1882
1883static noinline_for_stack
1884int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 struct btrfs_path *path,
1887 u64 bytenr, u64 num_bytes, u64 parent,
1888 u64 root_objectid, u64 owner,
1889 u64 offset, int refs_to_add,
1890 struct btrfs_delayed_extent_op *extent_op)
1891{
1892 struct btrfs_extent_inline_ref *iref;
1893 int ret;
1894
1895 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1896 bytenr, num_bytes, parent,
1897 root_objectid, owner, offset, 1);
1898 if (ret == 0) {
1899 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1900 update_inline_extent_backref(root, path, iref,
fcebe456 1901 refs_to_add, extent_op, NULL);
5d4f98a2 1902 } else if (ret == -ENOENT) {
fd279fae 1903 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1904 root_objectid, owner, offset,
1905 refs_to_add, extent_op);
1906 ret = 0;
771ed689 1907 }
5d4f98a2
YZ
1908 return ret;
1909}
31840ae1 1910
5d4f98a2
YZ
1911static int insert_extent_backref(struct btrfs_trans_handle *trans,
1912 struct btrfs_root *root,
1913 struct btrfs_path *path,
1914 u64 bytenr, u64 parent, u64 root_objectid,
1915 u64 owner, u64 offset, int refs_to_add)
1916{
1917 int ret;
1918 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1919 BUG_ON(refs_to_add != 1);
1920 ret = insert_tree_block_ref(trans, root, path, bytenr,
1921 parent, root_objectid);
1922 } else {
1923 ret = insert_extent_data_ref(trans, root, path, bytenr,
1924 parent, root_objectid,
1925 owner, offset, refs_to_add);
1926 }
1927 return ret;
1928}
56bec294 1929
5d4f98a2
YZ
1930static int remove_extent_backref(struct btrfs_trans_handle *trans,
1931 struct btrfs_root *root,
1932 struct btrfs_path *path,
1933 struct btrfs_extent_inline_ref *iref,
fcebe456 1934 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1935{
143bede5 1936 int ret = 0;
b9473439 1937
5d4f98a2
YZ
1938 BUG_ON(!is_data && refs_to_drop != 1);
1939 if (iref) {
afe5fea7 1940 update_inline_extent_backref(root, path, iref,
fcebe456 1941 -refs_to_drop, NULL, last_ref);
5d4f98a2 1942 } else if (is_data) {
fcebe456
JB
1943 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1944 last_ref);
5d4f98a2 1945 } else {
fcebe456 1946 *last_ref = 1;
5d4f98a2
YZ
1947 ret = btrfs_del_item(trans, root, path);
1948 }
1949 return ret;
1950}
1951
86557861 1952#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1953static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1954 u64 *discarded_bytes)
5d4f98a2 1955{
86557861
JM
1956 int j, ret = 0;
1957 u64 bytes_left, end;
4d89d377 1958 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1959
4d89d377
JM
1960 if (WARN_ON(start != aligned_start)) {
1961 len -= aligned_start - start;
1962 len = round_down(len, 1 << 9);
1963 start = aligned_start;
1964 }
d04c6b88 1965
4d89d377 1966 *discarded_bytes = 0;
86557861
JM
1967
1968 if (!len)
1969 return 0;
1970
1971 end = start + len;
1972 bytes_left = len;
1973
1974 /* Skip any superblocks on this device. */
1975 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1976 u64 sb_start = btrfs_sb_offset(j);
1977 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1978 u64 size = sb_start - start;
1979
1980 if (!in_range(sb_start, start, bytes_left) &&
1981 !in_range(sb_end, start, bytes_left) &&
1982 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1983 continue;
1984
1985 /*
1986 * Superblock spans beginning of range. Adjust start and
1987 * try again.
1988 */
1989 if (sb_start <= start) {
1990 start += sb_end - start;
1991 if (start > end) {
1992 bytes_left = 0;
1993 break;
1994 }
1995 bytes_left = end - start;
1996 continue;
1997 }
1998
1999 if (size) {
2000 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2001 GFP_NOFS, 0);
2002 if (!ret)
2003 *discarded_bytes += size;
2004 else if (ret != -EOPNOTSUPP)
2005 return ret;
2006 }
2007
2008 start = sb_end;
2009 if (start > end) {
2010 bytes_left = 0;
2011 break;
2012 }
2013 bytes_left = end - start;
2014 }
2015
2016 if (bytes_left) {
2017 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2018 GFP_NOFS, 0);
2019 if (!ret)
86557861 2020 *discarded_bytes += bytes_left;
4d89d377 2021 }
d04c6b88 2022 return ret;
5d4f98a2 2023}
5d4f98a2 2024
1edb647b
FM
2025int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2026 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2027{
5d4f98a2 2028 int ret;
5378e607 2029 u64 discarded_bytes = 0;
a1d3c478 2030 struct btrfs_bio *bbio = NULL;
5d4f98a2 2031
e244a0ae 2032
2999241d
FM
2033 /*
2034 * Avoid races with device replace and make sure our bbio has devices
2035 * associated to its stripes that don't go away while we are discarding.
2036 */
2037 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2038 /* Tell the block device(s) that the sectors can be discarded */
cf8cddd3 2039 ret = btrfs_map_block(root->fs_info, BTRFS_MAP_DISCARD,
a1d3c478 2040 bytenr, &num_bytes, &bbio, 0);
79787eaa 2041 /* Error condition is -ENOMEM */
5d4f98a2 2042 if (!ret) {
a1d3c478 2043 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2044 int i;
2045
5d4f98a2 2046
a1d3c478 2047 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2048 u64 bytes;
d5e2003c
JB
2049 if (!stripe->dev->can_discard)
2050 continue;
2051
5378e607
LD
2052 ret = btrfs_issue_discard(stripe->dev->bdev,
2053 stripe->physical,
d04c6b88
JM
2054 stripe->length,
2055 &bytes);
5378e607 2056 if (!ret)
d04c6b88 2057 discarded_bytes += bytes;
5378e607 2058 else if (ret != -EOPNOTSUPP)
79787eaa 2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2060
2061 /*
2062 * Just in case we get back EOPNOTSUPP for some reason,
2063 * just ignore the return value so we don't screw up
2064 * people calling discard_extent.
2065 */
2066 ret = 0;
5d4f98a2 2067 }
6e9606d2 2068 btrfs_put_bbio(bbio);
5d4f98a2 2069 }
2999241d 2070 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2071
2072 if (actual_bytes)
2073 *actual_bytes = discarded_bytes;
2074
5d4f98a2 2075
53b381b3
DW
2076 if (ret == -EOPNOTSUPP)
2077 ret = 0;
5d4f98a2 2078 return ret;
5d4f98a2
YZ
2079}
2080
79787eaa 2081/* Can return -ENOMEM */
5d4f98a2
YZ
2082int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2083 struct btrfs_root *root,
2084 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2085 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2086{
2087 int ret;
66d7e7f0
AJ
2088 struct btrfs_fs_info *fs_info = root->fs_info;
2089
5d4f98a2
YZ
2090 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2091 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2092
2093 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2094 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2095 num_bytes,
5d4f98a2 2096 parent, root_objectid, (int)owner,
b06c4bf5 2097 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2098 } else {
66d7e7f0 2099 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2100 num_bytes, parent, root_objectid,
2101 owner, offset, 0,
b06c4bf5 2102 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2103 }
2104 return ret;
2105}
2106
2107static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root,
c682f9b3 2109 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2110 u64 parent, u64 root_objectid,
2111 u64 owner, u64 offset, int refs_to_add,
2112 struct btrfs_delayed_extent_op *extent_op)
2113{
fcebe456 2114 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2115 struct btrfs_path *path;
2116 struct extent_buffer *leaf;
2117 struct btrfs_extent_item *item;
fcebe456 2118 struct btrfs_key key;
c682f9b3
QW
2119 u64 bytenr = node->bytenr;
2120 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2121 u64 refs;
2122 int ret;
5d4f98a2
YZ
2123
2124 path = btrfs_alloc_path();
2125 if (!path)
2126 return -ENOMEM;
2127
e4058b54 2128 path->reada = READA_FORWARD;
5d4f98a2
YZ
2129 path->leave_spinning = 1;
2130 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2131 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2132 bytenr, num_bytes, parent,
5d4f98a2
YZ
2133 root_objectid, owner, offset,
2134 refs_to_add, extent_op);
0ed4792a 2135 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2136 goto out;
fcebe456
JB
2137
2138 /*
2139 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 * inline extent ref, so just update the reference count and add a
2141 * normal backref.
2142 */
5d4f98a2 2143 leaf = path->nodes[0];
fcebe456 2144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2145 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2146 refs = btrfs_extent_refs(leaf, item);
2147 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2148 if (extent_op)
2149 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2150
5d4f98a2 2151 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2152 btrfs_release_path(path);
56bec294 2153
e4058b54 2154 path->reada = READA_FORWARD;
b9473439 2155 path->leave_spinning = 1;
56bec294
CM
2156 /* now insert the actual backref */
2157 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2158 path, bytenr, parent, root_objectid,
2159 owner, offset, refs_to_add);
79787eaa 2160 if (ret)
66642832 2161 btrfs_abort_transaction(trans, ret);
5d4f98a2 2162out:
56bec294 2163 btrfs_free_path(path);
30d133fc 2164 return ret;
56bec294
CM
2165}
2166
5d4f98a2
YZ
2167static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 struct btrfs_delayed_ref_node *node,
2170 struct btrfs_delayed_extent_op *extent_op,
2171 int insert_reserved)
56bec294 2172{
5d4f98a2
YZ
2173 int ret = 0;
2174 struct btrfs_delayed_data_ref *ref;
2175 struct btrfs_key ins;
2176 u64 parent = 0;
2177 u64 ref_root = 0;
2178 u64 flags = 0;
2179
2180 ins.objectid = node->bytenr;
2181 ins.offset = node->num_bytes;
2182 ins.type = BTRFS_EXTENT_ITEM_KEY;
2183
2184 ref = btrfs_delayed_node_to_data_ref(node);
bc074524 2185 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
599c75ec 2186
5d4f98a2
YZ
2187 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2188 parent = ref->parent;
fcebe456 2189 ref_root = ref->root;
5d4f98a2
YZ
2190
2191 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2192 if (extent_op)
5d4f98a2 2193 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2194 ret = alloc_reserved_file_extent(trans, root,
2195 parent, ref_root, flags,
2196 ref->objectid, ref->offset,
2197 &ins, node->ref_mod);
5d4f98a2 2198 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2199 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2200 ref_root, ref->objectid,
2201 ref->offset, node->ref_mod,
c682f9b3 2202 extent_op);
5d4f98a2 2203 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2204 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
c682f9b3 2207 extent_op);
5d4f98a2
YZ
2208 } else {
2209 BUG();
2210 }
2211 return ret;
2212}
2213
2214static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2215 struct extent_buffer *leaf,
2216 struct btrfs_extent_item *ei)
2217{
2218 u64 flags = btrfs_extent_flags(leaf, ei);
2219 if (extent_op->update_flags) {
2220 flags |= extent_op->flags_to_set;
2221 btrfs_set_extent_flags(leaf, ei, flags);
2222 }
2223
2224 if (extent_op->update_key) {
2225 struct btrfs_tree_block_info *bi;
2226 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2227 bi = (struct btrfs_tree_block_info *)(ei + 1);
2228 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2229 }
2230}
2231
2232static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2233 struct btrfs_root *root,
2234 struct btrfs_delayed_ref_node *node,
2235 struct btrfs_delayed_extent_op *extent_op)
2236{
2237 struct btrfs_key key;
2238 struct btrfs_path *path;
2239 struct btrfs_extent_item *ei;
2240 struct extent_buffer *leaf;
2241 u32 item_size;
56bec294 2242 int ret;
5d4f98a2 2243 int err = 0;
b1c79e09 2244 int metadata = !extent_op->is_data;
5d4f98a2 2245
79787eaa
JM
2246 if (trans->aborted)
2247 return 0;
2248
3173a18f
JB
2249 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2250 metadata = 0;
2251
5d4f98a2
YZ
2252 path = btrfs_alloc_path();
2253 if (!path)
2254 return -ENOMEM;
2255
2256 key.objectid = node->bytenr;
5d4f98a2 2257
3173a18f 2258 if (metadata) {
3173a18f 2259 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2260 key.offset = extent_op->level;
3173a18f
JB
2261 } else {
2262 key.type = BTRFS_EXTENT_ITEM_KEY;
2263 key.offset = node->num_bytes;
2264 }
2265
2266again:
e4058b54 2267 path->reada = READA_FORWARD;
5d4f98a2
YZ
2268 path->leave_spinning = 1;
2269 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2270 path, 0, 1);
2271 if (ret < 0) {
2272 err = ret;
2273 goto out;
2274 }
2275 if (ret > 0) {
3173a18f 2276 if (metadata) {
55994887
FDBM
2277 if (path->slots[0] > 0) {
2278 path->slots[0]--;
2279 btrfs_item_key_to_cpu(path->nodes[0], &key,
2280 path->slots[0]);
2281 if (key.objectid == node->bytenr &&
2282 key.type == BTRFS_EXTENT_ITEM_KEY &&
2283 key.offset == node->num_bytes)
2284 ret = 0;
2285 }
2286 if (ret > 0) {
2287 btrfs_release_path(path);
2288 metadata = 0;
3173a18f 2289
55994887
FDBM
2290 key.objectid = node->bytenr;
2291 key.offset = node->num_bytes;
2292 key.type = BTRFS_EXTENT_ITEM_KEY;
2293 goto again;
2294 }
2295 } else {
2296 err = -EIO;
2297 goto out;
3173a18f 2298 }
5d4f98a2
YZ
2299 }
2300
2301 leaf = path->nodes[0];
2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 if (item_size < sizeof(*ei)) {
2305 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2306 path, (u64)-1, 0);
2307 if (ret < 0) {
2308 err = ret;
2309 goto out;
2310 }
2311 leaf = path->nodes[0];
2312 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2313 }
2314#endif
2315 BUG_ON(item_size < sizeof(*ei));
2316 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2317 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2318
5d4f98a2
YZ
2319 btrfs_mark_buffer_dirty(leaf);
2320out:
2321 btrfs_free_path(path);
2322 return err;
56bec294
CM
2323}
2324
5d4f98a2
YZ
2325static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *root,
2327 struct btrfs_delayed_ref_node *node,
2328 struct btrfs_delayed_extent_op *extent_op,
2329 int insert_reserved)
56bec294
CM
2330{
2331 int ret = 0;
5d4f98a2
YZ
2332 struct btrfs_delayed_tree_ref *ref;
2333 struct btrfs_key ins;
2334 u64 parent = 0;
2335 u64 ref_root = 0;
3173a18f
JB
2336 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2337 SKINNY_METADATA);
56bec294 2338
5d4f98a2 2339 ref = btrfs_delayed_node_to_tree_ref(node);
bc074524 2340 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
599c75ec 2341
5d4f98a2
YZ
2342 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2343 parent = ref->parent;
fcebe456 2344 ref_root = ref->root;
5d4f98a2 2345
3173a18f
JB
2346 ins.objectid = node->bytenr;
2347 if (skinny_metadata) {
2348 ins.offset = ref->level;
2349 ins.type = BTRFS_METADATA_ITEM_KEY;
2350 } else {
2351 ins.offset = node->num_bytes;
2352 ins.type = BTRFS_EXTENT_ITEM_KEY;
2353 }
2354
02794222
LB
2355 if (node->ref_mod != 1) {
2356 btrfs_err(root->fs_info,
2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 node->bytenr, node->ref_mod, node->action, ref_root,
2359 parent);
2360 return -EIO;
2361 }
5d4f98a2 2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2363 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2364 ret = alloc_reserved_tree_block(trans, root,
2365 parent, ref_root,
2366 extent_op->flags_to_set,
2367 &extent_op->key,
b06c4bf5 2368 ref->level, &ins);
5d4f98a2 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2371 parent, ref_root,
2372 ref->level, 0, 1,
fcebe456 2373 extent_op);
5d4f98a2 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2375 ret = __btrfs_free_extent(trans, root, node,
2376 parent, ref_root,
2377 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2378 } else {
2379 BUG();
2380 }
56bec294
CM
2381 return ret;
2382}
2383
2384/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2385static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
56bec294 2390{
79787eaa
JM
2391 int ret = 0;
2392
857cc2fc
JB
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
79787eaa 2397 return 0;
857cc2fc 2398 }
79787eaa 2399
5d4f98a2 2400 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2401 struct btrfs_delayed_ref_head *head;
2402 /*
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2407 */
5d4f98a2
YZ
2408 BUG_ON(extent_op);
2409 head = btrfs_delayed_node_to_head(node);
bc074524
JM
2410 trace_run_delayed_ref_head(root->fs_info, node, head,
2411 node->action);
599c75ec 2412
56bec294 2413 if (insert_reserved) {
f0486c68
YZ
2414 btrfs_pin_extent(root, node->bytenr,
2415 node->num_bytes, 1);
5d4f98a2 2416 if (head->is_data) {
5b4aacef 2417 ret = btrfs_del_csums(trans, root->fs_info,
5d4f98a2
YZ
2418 node->bytenr,
2419 node->num_bytes);
5d4f98a2 2420 }
56bec294 2421 }
297d750b
QW
2422
2423 /* Also free its reserved qgroup space */
2424 btrfs_qgroup_free_delayed_ref(root->fs_info,
2425 head->qgroup_ref_root,
2426 head->qgroup_reserved);
79787eaa 2427 return ret;
56bec294
CM
2428 }
2429
5d4f98a2
YZ
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2433 insert_reserved);
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 ret = run_delayed_data_ref(trans, root, node, extent_op,
2437 insert_reserved);
2438 else
2439 BUG();
2440 return ret;
56bec294
CM
2441}
2442
c6fc2454 2443static inline struct btrfs_delayed_ref_node *
56bec294
CM
2444select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445{
cffc3374
FM
2446 struct btrfs_delayed_ref_node *ref;
2447
c6fc2454
QW
2448 if (list_empty(&head->ref_list))
2449 return NULL;
d7df2c79 2450
cffc3374
FM
2451 /*
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2456 */
1d57ee94
WX
2457 if (!list_empty(&head->ref_add_list))
2458 return list_first_entry(&head->ref_add_list,
2459 struct btrfs_delayed_ref_node, add_list);
2460
2461 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462 list);
2463 ASSERT(list_empty(&ref->add_list));
2464 return ref;
56bec294
CM
2465}
2466
79787eaa
JM
2467/*
2468 * Returns 0 on success or if called with an already aborted transaction.
2469 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 */
d7df2c79
JB
2471static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2472 struct btrfs_root *root,
2473 unsigned long nr)
56bec294 2474{
56bec294
CM
2475 struct btrfs_delayed_ref_root *delayed_refs;
2476 struct btrfs_delayed_ref_node *ref;
2477 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2478 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2479 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2480 ktime_t start = ktime_get();
56bec294 2481 int ret;
d7df2c79 2482 unsigned long count = 0;
0a2b2a84 2483 unsigned long actual_count = 0;
56bec294 2484 int must_insert_reserved = 0;
56bec294
CM
2485
2486 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2487 while (1) {
2488 if (!locked_ref) {
d7df2c79 2489 if (count >= nr)
56bec294 2490 break;
56bec294 2491
d7df2c79
JB
2492 spin_lock(&delayed_refs->lock);
2493 locked_ref = btrfs_select_ref_head(trans);
2494 if (!locked_ref) {
2495 spin_unlock(&delayed_refs->lock);
2496 break;
2497 }
c3e69d58
CM
2498
2499 /* grab the lock that says we are going to process
2500 * all the refs for this head */
2501 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2502 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2503 /*
2504 * we may have dropped the spin lock to get the head
2505 * mutex lock, and that might have given someone else
2506 * time to free the head. If that's true, it has been
2507 * removed from our list and we can move on.
2508 */
2509 if (ret == -EAGAIN) {
2510 locked_ref = NULL;
2511 count++;
2512 continue;
56bec294
CM
2513 }
2514 }
a28ec197 2515
2c3cf7d5
FM
2516 /*
2517 * We need to try and merge add/drops of the same ref since we
2518 * can run into issues with relocate dropping the implicit ref
2519 * and then it being added back again before the drop can
2520 * finish. If we merged anything we need to re-loop so we can
2521 * get a good ref.
2522 * Or we can get node references of the same type that weren't
2523 * merged when created due to bumps in the tree mod seq, and
2524 * we need to merge them to prevent adding an inline extent
2525 * backref before dropping it (triggering a BUG_ON at
2526 * insert_inline_extent_backref()).
2527 */
d7df2c79 2528 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2529 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2530 locked_ref);
ae1e206b 2531
d1270cd9
AJ
2532 /*
2533 * locked_ref is the head node, so we have to go one
2534 * node back for any delayed ref updates
2535 */
2536 ref = select_delayed_ref(locked_ref);
2537
2538 if (ref && ref->seq &&
097b8a7c 2539 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2540 spin_unlock(&locked_ref->lock);
093486c4 2541 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2542 spin_lock(&delayed_refs->lock);
2543 locked_ref->processing = 0;
d1270cd9
AJ
2544 delayed_refs->num_heads_ready++;
2545 spin_unlock(&delayed_refs->lock);
d7df2c79 2546 locked_ref = NULL;
d1270cd9 2547 cond_resched();
27a377db 2548 count++;
d1270cd9
AJ
2549 continue;
2550 }
2551
56bec294
CM
2552 /*
2553 * record the must insert reserved flag before we
2554 * drop the spin lock.
2555 */
2556 must_insert_reserved = locked_ref->must_insert_reserved;
2557 locked_ref->must_insert_reserved = 0;
7bb86316 2558
5d4f98a2
YZ
2559 extent_op = locked_ref->extent_op;
2560 locked_ref->extent_op = NULL;
2561
56bec294 2562 if (!ref) {
d7df2c79
JB
2563
2564
56bec294
CM
2565 /* All delayed refs have been processed, Go ahead
2566 * and send the head node to run_one_delayed_ref,
2567 * so that any accounting fixes can happen
2568 */
2569 ref = &locked_ref->node;
5d4f98a2
YZ
2570
2571 if (extent_op && must_insert_reserved) {
78a6184a 2572 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2573 extent_op = NULL;
2574 }
2575
2576 if (extent_op) {
d7df2c79 2577 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2578 ret = run_delayed_extent_op(trans, root,
2579 ref, extent_op);
78a6184a 2580 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2581
79787eaa 2582 if (ret) {
857cc2fc
JB
2583 /*
2584 * Need to reset must_insert_reserved if
2585 * there was an error so the abort stuff
2586 * can cleanup the reserved space
2587 * properly.
2588 */
2589 if (must_insert_reserved)
2590 locked_ref->must_insert_reserved = 1;
d7df2c79 2591 locked_ref->processing = 0;
5d163e0e
JM
2592 btrfs_debug(fs_info,
2593 "run_delayed_extent_op returned %d",
2594 ret);
093486c4 2595 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2596 return ret;
2597 }
d7df2c79 2598 continue;
5d4f98a2 2599 }
02217ed2 2600
d7df2c79 2601 /*
01327610 2602 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2603 * delayed ref lock and then re-check to make sure
2604 * nobody got added.
2605 */
2606 spin_unlock(&locked_ref->lock);
2607 spin_lock(&delayed_refs->lock);
2608 spin_lock(&locked_ref->lock);
c6fc2454 2609 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2610 locked_ref->extent_op) {
d7df2c79
JB
2611 spin_unlock(&locked_ref->lock);
2612 spin_unlock(&delayed_refs->lock);
2613 continue;
2614 }
2615 ref->in_tree = 0;
2616 delayed_refs->num_heads--;
c46effa6
LB
2617 rb_erase(&locked_ref->href_node,
2618 &delayed_refs->href_root);
d7df2c79
JB
2619 spin_unlock(&delayed_refs->lock);
2620 } else {
0a2b2a84 2621 actual_count++;
d7df2c79 2622 ref->in_tree = 0;
c6fc2454 2623 list_del(&ref->list);
1d57ee94
WX
2624 if (!list_empty(&ref->add_list))
2625 list_del(&ref->add_list);
c46effa6 2626 }
d7df2c79
JB
2627 atomic_dec(&delayed_refs->num_entries);
2628
093486c4 2629 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
d7df2c79 2646 spin_unlock(&locked_ref->lock);
925baedd 2647
5d4f98a2 2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2649 must_insert_reserved);
eb099670 2650
78a6184a 2651 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2652 if (ret) {
9d1032cc 2653 spin_lock(&delayed_refs->lock);
d7df2c79 2654 locked_ref->processing = 0;
9d1032cc
WX
2655 delayed_refs->num_heads_ready++;
2656 spin_unlock(&delayed_refs->lock);
093486c4
MX
2657 btrfs_delayed_ref_unlock(locked_ref);
2658 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2659 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2660 ret);
79787eaa
JM
2661 return ret;
2662 }
2663
093486c4
MX
2664 /*
2665 * If this node is a head, that means all the refs in this head
2666 * have been dealt with, and we will pick the next head to deal
2667 * with, so we must unlock the head and drop it from the cluster
2668 * list before we release it.
2669 */
2670 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2671 if (locked_ref->is_data &&
2672 locked_ref->total_ref_mod < 0) {
2673 spin_lock(&delayed_refs->lock);
2674 delayed_refs->pending_csums -= ref->num_bytes;
2675 spin_unlock(&delayed_refs->lock);
2676 }
093486c4
MX
2677 btrfs_delayed_ref_unlock(locked_ref);
2678 locked_ref = NULL;
2679 }
2680 btrfs_put_delayed_ref(ref);
2681 count++;
c3e69d58 2682 cond_resched();
c3e69d58 2683 }
0a2b2a84
JB
2684
2685 /*
2686 * We don't want to include ref heads since we can have empty ref heads
2687 * and those will drastically skew our runtime down since we just do
2688 * accounting, no actual extent tree updates.
2689 */
2690 if (actual_count > 0) {
2691 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2692 u64 avg;
2693
2694 /*
2695 * We weigh the current average higher than our current runtime
2696 * to avoid large swings in the average.
2697 */
2698 spin_lock(&delayed_refs->lock);
2699 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2700 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2701 spin_unlock(&delayed_refs->lock);
2702 }
d7df2c79 2703 return 0;
c3e69d58
CM
2704}
2705
709c0486
AJ
2706#ifdef SCRAMBLE_DELAYED_REFS
2707/*
2708 * Normally delayed refs get processed in ascending bytenr order. This
2709 * correlates in most cases to the order added. To expose dependencies on this
2710 * order, we start to process the tree in the middle instead of the beginning
2711 */
2712static u64 find_middle(struct rb_root *root)
2713{
2714 struct rb_node *n = root->rb_node;
2715 struct btrfs_delayed_ref_node *entry;
2716 int alt = 1;
2717 u64 middle;
2718 u64 first = 0, last = 0;
2719
2720 n = rb_first(root);
2721 if (n) {
2722 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2723 first = entry->bytenr;
2724 }
2725 n = rb_last(root);
2726 if (n) {
2727 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2728 last = entry->bytenr;
2729 }
2730 n = root->rb_node;
2731
2732 while (n) {
2733 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 WARN_ON(!entry->in_tree);
2735
2736 middle = entry->bytenr;
2737
2738 if (alt)
2739 n = n->rb_left;
2740 else
2741 n = n->rb_right;
2742
2743 alt = 1 - alt;
2744 }
2745 return middle;
2746}
2747#endif
2748
1be41b78
JB
2749static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2750{
2751 u64 num_bytes;
2752
2753 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2754 sizeof(struct btrfs_extent_inline_ref));
2755 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2756 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2757
2758 /*
2759 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2760 * closer to what we're really going to want to use.
1be41b78 2761 */
da17066c 2762 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root->fs_info));
1be41b78
JB
2763}
2764
1262133b
JB
2765/*
2766 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2767 * would require to store the csums for that many bytes.
2768 */
28f75a0e 2769u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2770{
2771 u64 csum_size;
2772 u64 num_csums_per_leaf;
2773 u64 num_csums;
2774
da17066c 2775 csum_size = BTRFS_MAX_ITEM_SIZE(root->fs_info);
1262133b
JB
2776 num_csums_per_leaf = div64_u64(csum_size,
2777 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
da17066c 2778 num_csums = div64_u64(csum_bytes, root->fs_info->sectorsize);
1262133b
JB
2779 num_csums += num_csums_per_leaf - 1;
2780 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2781 return num_csums;
2782}
2783
0a2b2a84 2784int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2785 struct btrfs_root *root)
2786{
2787 struct btrfs_block_rsv *global_rsv;
2788 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2789 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2790 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2791 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2792 int ret = 0;
2793
27965b6c 2794 num_bytes = btrfs_calc_trans_metadata_size(root->fs_info, 1);
1be41b78
JB
2795 num_heads = heads_to_leaves(root, num_heads);
2796 if (num_heads > 1)
da17066c 2797 num_bytes += (num_heads - 1) * root->fs_info->nodesize;
1be41b78 2798 num_bytes <<= 1;
da17066c 2799 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->fs_info->nodesize;
27965b6c 2800 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root->fs_info,
cb723e49 2801 num_dirty_bgs);
1be41b78
JB
2802 global_rsv = &root->fs_info->global_block_rsv;
2803
2804 /*
2805 * If we can't allocate any more chunks lets make sure we have _lots_ of
2806 * wiggle room since running delayed refs can create more delayed refs.
2807 */
cb723e49
JB
2808 if (global_rsv->space_info->full) {
2809 num_dirty_bgs_bytes <<= 1;
1be41b78 2810 num_bytes <<= 1;
cb723e49 2811 }
1be41b78
JB
2812
2813 spin_lock(&global_rsv->lock);
cb723e49 2814 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2815 ret = 1;
2816 spin_unlock(&global_rsv->lock);
2817 return ret;
2818}
2819
0a2b2a84
JB
2820int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2821 struct btrfs_root *root)
2822{
2823 struct btrfs_fs_info *fs_info = root->fs_info;
2824 u64 num_entries =
2825 atomic_read(&trans->transaction->delayed_refs.num_entries);
2826 u64 avg_runtime;
a79b7d4b 2827 u64 val;
0a2b2a84
JB
2828
2829 smp_mb();
2830 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2831 val = num_entries * avg_runtime;
dc1a90c6 2832 if (val >= NSEC_PER_SEC)
0a2b2a84 2833 return 1;
a79b7d4b
CM
2834 if (val >= NSEC_PER_SEC / 2)
2835 return 2;
0a2b2a84
JB
2836
2837 return btrfs_check_space_for_delayed_refs(trans, root);
2838}
2839
a79b7d4b
CM
2840struct async_delayed_refs {
2841 struct btrfs_root *root;
31b9655f 2842 u64 transid;
a79b7d4b
CM
2843 int count;
2844 int error;
2845 int sync;
2846 struct completion wait;
2847 struct btrfs_work work;
2848};
2849
2850static void delayed_ref_async_start(struct btrfs_work *work)
2851{
2852 struct async_delayed_refs *async;
2853 struct btrfs_trans_handle *trans;
2854 int ret;
2855
2856 async = container_of(work, struct async_delayed_refs, work);
2857
0f873eca
CM
2858 /* if the commit is already started, we don't need to wait here */
2859 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2860 goto done;
31b9655f 2861
0f873eca
CM
2862 trans = btrfs_join_transaction(async->root);
2863 if (IS_ERR(trans)) {
2864 async->error = PTR_ERR(trans);
a79b7d4b
CM
2865 goto done;
2866 }
2867
2868 /*
01327610 2869 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2870 * wait on delayed refs
2871 */
2872 trans->sync = true;
0f873eca
CM
2873
2874 /* Don't bother flushing if we got into a different transaction */
2875 if (trans->transid > async->transid)
2876 goto end;
2877
a79b7d4b
CM
2878 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2879 if (ret)
2880 async->error = ret;
0f873eca 2881end:
a79b7d4b
CM
2882 ret = btrfs_end_transaction(trans, async->root);
2883 if (ret && !async->error)
2884 async->error = ret;
2885done:
2886 if (async->sync)
2887 complete(&async->wait);
2888 else
2889 kfree(async);
2890}
2891
2892int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2893 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2894{
2895 struct async_delayed_refs *async;
2896 int ret;
2897
2898 async = kmalloc(sizeof(*async), GFP_NOFS);
2899 if (!async)
2900 return -ENOMEM;
2901
2902 async->root = root->fs_info->tree_root;
2903 async->count = count;
2904 async->error = 0;
31b9655f 2905 async->transid = transid;
a79b7d4b
CM
2906 if (wait)
2907 async->sync = 1;
2908 else
2909 async->sync = 0;
2910 init_completion(&async->wait);
2911
9e0af237
LB
2912 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2913 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2914
2915 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2916
2917 if (wait) {
2918 wait_for_completion(&async->wait);
2919 ret = async->error;
2920 kfree(async);
2921 return ret;
2922 }
2923 return 0;
2924}
2925
c3e69d58
CM
2926/*
2927 * this starts processing the delayed reference count updates and
2928 * extent insertions we have queued up so far. count can be
2929 * 0, which means to process everything in the tree at the start
2930 * of the run (but not newly added entries), or it can be some target
2931 * number you'd like to process.
79787eaa
JM
2932 *
2933 * Returns 0 on success or if called with an aborted transaction
2934 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2935 */
2936int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root, unsigned long count)
2938{
2939 struct rb_node *node;
2940 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2941 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2942 int ret;
2943 int run_all = count == (unsigned long)-1;
d9a0540a 2944 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2945
79787eaa
JM
2946 /* We'll clean this up in btrfs_cleanup_transaction */
2947 if (trans->aborted)
2948 return 0;
2949
afcdd129 2950 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
511711af
CM
2951 return 0;
2952
c3e69d58
CM
2953 if (root == root->fs_info->extent_root)
2954 root = root->fs_info->tree_root;
2955
2956 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2957 if (count == 0)
d7df2c79 2958 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2959
c3e69d58 2960again:
709c0486
AJ
2961#ifdef SCRAMBLE_DELAYED_REFS
2962 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2963#endif
d9a0540a 2964 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2965 ret = __btrfs_run_delayed_refs(trans, root, count);
2966 if (ret < 0) {
66642832 2967 btrfs_abort_transaction(trans, ret);
d7df2c79 2968 return ret;
eb099670 2969 }
c3e69d58 2970
56bec294 2971 if (run_all) {
d7df2c79 2972 if (!list_empty(&trans->new_bgs))
ea658bad 2973 btrfs_create_pending_block_groups(trans, root);
ea658bad 2974
d7df2c79 2975 spin_lock(&delayed_refs->lock);
c46effa6 2976 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2977 if (!node) {
2978 spin_unlock(&delayed_refs->lock);
56bec294 2979 goto out;
d7df2c79 2980 }
e9d0b13b 2981
56bec294 2982 while (node) {
c46effa6
LB
2983 head = rb_entry(node, struct btrfs_delayed_ref_head,
2984 href_node);
2985 if (btrfs_delayed_ref_is_head(&head->node)) {
2986 struct btrfs_delayed_ref_node *ref;
5caf2a00 2987
c46effa6 2988 ref = &head->node;
56bec294
CM
2989 atomic_inc(&ref->refs);
2990
2991 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2992 /*
2993 * Mutex was contended, block until it's
2994 * released and try again
2995 */
56bec294
CM
2996 mutex_lock(&head->mutex);
2997 mutex_unlock(&head->mutex);
2998
2999 btrfs_put_delayed_ref(ref);
1887be66 3000 cond_resched();
56bec294 3001 goto again;
c46effa6
LB
3002 } else {
3003 WARN_ON(1);
56bec294
CM
3004 }
3005 node = rb_next(node);
3006 }
3007 spin_unlock(&delayed_refs->lock);
d7df2c79 3008 cond_resched();
56bec294 3009 goto again;
5f39d397 3010 }
54aa1f4d 3011out:
edf39272 3012 assert_qgroups_uptodate(trans);
d9a0540a 3013 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3014 return 0;
3015}
3016
5d4f98a2
YZ
3017int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3018 struct btrfs_root *root,
3019 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3020 int level, int is_data)
5d4f98a2
YZ
3021{
3022 struct btrfs_delayed_extent_op *extent_op;
3023 int ret;
3024
78a6184a 3025 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3026 if (!extent_op)
3027 return -ENOMEM;
3028
3029 extent_op->flags_to_set = flags;
35b3ad50
DS
3030 extent_op->update_flags = true;
3031 extent_op->update_key = false;
3032 extent_op->is_data = is_data ? true : false;
b1c79e09 3033 extent_op->level = level;
5d4f98a2 3034
66d7e7f0
AJ
3035 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3036 num_bytes, extent_op);
5d4f98a2 3037 if (ret)
78a6184a 3038 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3039 return ret;
3040}
3041
3042static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root,
3044 struct btrfs_path *path,
3045 u64 objectid, u64 offset, u64 bytenr)
3046{
3047 struct btrfs_delayed_ref_head *head;
3048 struct btrfs_delayed_ref_node *ref;
3049 struct btrfs_delayed_data_ref *data_ref;
3050 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3051 int ret = 0;
3052
5d4f98a2
YZ
3053 delayed_refs = &trans->transaction->delayed_refs;
3054 spin_lock(&delayed_refs->lock);
3055 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3056 if (!head) {
3057 spin_unlock(&delayed_refs->lock);
3058 return 0;
3059 }
5d4f98a2
YZ
3060
3061 if (!mutex_trylock(&head->mutex)) {
3062 atomic_inc(&head->node.refs);
3063 spin_unlock(&delayed_refs->lock);
3064
b3b4aa74 3065 btrfs_release_path(path);
5d4f98a2 3066
8cc33e5c
DS
3067 /*
3068 * Mutex was contended, block until it's released and let
3069 * caller try again
3070 */
5d4f98a2
YZ
3071 mutex_lock(&head->mutex);
3072 mutex_unlock(&head->mutex);
3073 btrfs_put_delayed_ref(&head->node);
3074 return -EAGAIN;
3075 }
d7df2c79 3076 spin_unlock(&delayed_refs->lock);
5d4f98a2 3077
d7df2c79 3078 spin_lock(&head->lock);
c6fc2454 3079 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3080 /* If it's a shared ref we know a cross reference exists */
3081 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3082 ret = 1;
3083 break;
3084 }
5d4f98a2 3085
d7df2c79 3086 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3087
d7df2c79
JB
3088 /*
3089 * If our ref doesn't match the one we're currently looking at
3090 * then we have a cross reference.
3091 */
3092 if (data_ref->root != root->root_key.objectid ||
3093 data_ref->objectid != objectid ||
3094 data_ref->offset != offset) {
3095 ret = 1;
3096 break;
3097 }
5d4f98a2 3098 }
d7df2c79 3099 spin_unlock(&head->lock);
5d4f98a2 3100 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3101 return ret;
3102}
3103
3104static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3105 struct btrfs_root *root,
3106 struct btrfs_path *path,
3107 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3108{
3109 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3110 struct extent_buffer *leaf;
5d4f98a2
YZ
3111 struct btrfs_extent_data_ref *ref;
3112 struct btrfs_extent_inline_ref *iref;
3113 struct btrfs_extent_item *ei;
f321e491 3114 struct btrfs_key key;
5d4f98a2 3115 u32 item_size;
be20aa9d 3116 int ret;
925baedd 3117
be20aa9d 3118 key.objectid = bytenr;
31840ae1 3119 key.offset = (u64)-1;
f321e491 3120 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3121
be20aa9d
CM
3122 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3123 if (ret < 0)
3124 goto out;
79787eaa 3125 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3126
3127 ret = -ENOENT;
3128 if (path->slots[0] == 0)
31840ae1 3129 goto out;
be20aa9d 3130
31840ae1 3131 path->slots[0]--;
f321e491 3132 leaf = path->nodes[0];
5d4f98a2 3133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3134
5d4f98a2 3135 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3136 goto out;
f321e491 3137
5d4f98a2
YZ
3138 ret = 1;
3139 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3140#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3141 if (item_size < sizeof(*ei)) {
3142 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3143 goto out;
3144 }
3145#endif
3146 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3147
5d4f98a2
YZ
3148 if (item_size != sizeof(*ei) +
3149 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3150 goto out;
be20aa9d 3151
5d4f98a2
YZ
3152 if (btrfs_extent_generation(leaf, ei) <=
3153 btrfs_root_last_snapshot(&root->root_item))
3154 goto out;
3155
3156 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3157 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3158 BTRFS_EXTENT_DATA_REF_KEY)
3159 goto out;
3160
3161 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3162 if (btrfs_extent_refs(leaf, ei) !=
3163 btrfs_extent_data_ref_count(leaf, ref) ||
3164 btrfs_extent_data_ref_root(leaf, ref) !=
3165 root->root_key.objectid ||
3166 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3167 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3168 goto out;
3169
3170 ret = 0;
3171out:
3172 return ret;
3173}
3174
3175int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3176 struct btrfs_root *root,
3177 u64 objectid, u64 offset, u64 bytenr)
3178{
3179 struct btrfs_path *path;
3180 int ret;
3181 int ret2;
3182
3183 path = btrfs_alloc_path();
3184 if (!path)
3185 return -ENOENT;
3186
3187 do {
3188 ret = check_committed_ref(trans, root, path, objectid,
3189 offset, bytenr);
3190 if (ret && ret != -ENOENT)
f321e491 3191 goto out;
80ff3856 3192
5d4f98a2
YZ
3193 ret2 = check_delayed_ref(trans, root, path, objectid,
3194 offset, bytenr);
3195 } while (ret2 == -EAGAIN);
3196
3197 if (ret2 && ret2 != -ENOENT) {
3198 ret = ret2;
3199 goto out;
f321e491 3200 }
5d4f98a2
YZ
3201
3202 if (ret != -ENOENT || ret2 != -ENOENT)
3203 ret = 0;
be20aa9d 3204out:
80ff3856 3205 btrfs_free_path(path);
f0486c68
YZ
3206 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3207 WARN_ON(ret > 0);
f321e491 3208 return ret;
be20aa9d 3209}
c5739bba 3210
5d4f98a2 3211static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3212 struct btrfs_root *root,
5d4f98a2 3213 struct extent_buffer *buf,
e339a6b0 3214 int full_backref, int inc)
31840ae1
ZY
3215{
3216 u64 bytenr;
5d4f98a2
YZ
3217 u64 num_bytes;
3218 u64 parent;
31840ae1 3219 u64 ref_root;
31840ae1 3220 u32 nritems;
31840ae1
ZY
3221 struct btrfs_key key;
3222 struct btrfs_file_extent_item *fi;
3223 int i;
3224 int level;
3225 int ret = 0;
31840ae1 3226 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3227 u64, u64, u64, u64, u64, u64);
31840ae1 3228
fccb84c9 3229
f5ee5c9a 3230 if (btrfs_is_testing(root->fs_info))
faa2dbf0 3231 return 0;
fccb84c9 3232
31840ae1 3233 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3234 nritems = btrfs_header_nritems(buf);
3235 level = btrfs_header_level(buf);
3236
27cdeb70 3237 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3238 return 0;
31840ae1 3239
5d4f98a2
YZ
3240 if (inc)
3241 process_func = btrfs_inc_extent_ref;
3242 else
3243 process_func = btrfs_free_extent;
31840ae1 3244
5d4f98a2
YZ
3245 if (full_backref)
3246 parent = buf->start;
3247 else
3248 parent = 0;
3249
3250 for (i = 0; i < nritems; i++) {
31840ae1 3251 if (level == 0) {
5d4f98a2 3252 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3253 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3254 continue;
5d4f98a2 3255 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3256 struct btrfs_file_extent_item);
3257 if (btrfs_file_extent_type(buf, fi) ==
3258 BTRFS_FILE_EXTENT_INLINE)
3259 continue;
3260 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3261 if (bytenr == 0)
3262 continue;
5d4f98a2
YZ
3263
3264 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3265 key.offset -= btrfs_file_extent_offset(buf, fi);
3266 ret = process_func(trans, root, bytenr, num_bytes,
3267 parent, ref_root, key.objectid,
b06c4bf5 3268 key.offset);
31840ae1
ZY
3269 if (ret)
3270 goto fail;
3271 } else {
5d4f98a2 3272 bytenr = btrfs_node_blockptr(buf, i);
da17066c 3273 num_bytes = root->fs_info->nodesize;
5d4f98a2 3274 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3275 parent, ref_root, level - 1, 0);
31840ae1
ZY
3276 if (ret)
3277 goto fail;
3278 }
3279 }
3280 return 0;
3281fail:
5d4f98a2
YZ
3282 return ret;
3283}
3284
3285int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3286 struct extent_buffer *buf, int full_backref)
5d4f98a2 3287{
e339a6b0 3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3289}
3290
3291int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3292 struct extent_buffer *buf, int full_backref)
5d4f98a2 3293{
e339a6b0 3294 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3295}
3296
9078a3e1
CM
3297static int write_one_cache_group(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *root,
3299 struct btrfs_path *path,
3300 struct btrfs_block_group_cache *cache)
3301{
3302 int ret;
9078a3e1 3303 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3304 unsigned long bi;
3305 struct extent_buffer *leaf;
9078a3e1 3306
9078a3e1 3307 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3308 if (ret) {
3309 if (ret > 0)
3310 ret = -ENOENT;
54aa1f4d 3311 goto fail;
df95e7f0 3312 }
5f39d397
CM
3313
3314 leaf = path->nodes[0];
3315 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3316 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3317 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3318fail:
24b89d08 3319 btrfs_release_path(path);
df95e7f0 3320 return ret;
9078a3e1
CM
3321
3322}
3323
4a8c9a62
YZ
3324static struct btrfs_block_group_cache *
3325next_block_group(struct btrfs_root *root,
3326 struct btrfs_block_group_cache *cache)
3327{
3328 struct rb_node *node;
292cbd51 3329
4a8c9a62 3330 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3331
3332 /* If our block group was removed, we need a full search. */
3333 if (RB_EMPTY_NODE(&cache->cache_node)) {
3334 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3335
3336 spin_unlock(&root->fs_info->block_group_cache_lock);
3337 btrfs_put_block_group(cache);
3338 cache = btrfs_lookup_first_block_group(root->fs_info,
3339 next_bytenr);
3340 return cache;
3341 }
4a8c9a62
YZ
3342 node = rb_next(&cache->cache_node);
3343 btrfs_put_block_group(cache);
3344 if (node) {
3345 cache = rb_entry(node, struct btrfs_block_group_cache,
3346 cache_node);
11dfe35a 3347 btrfs_get_block_group(cache);
4a8c9a62
YZ
3348 } else
3349 cache = NULL;
3350 spin_unlock(&root->fs_info->block_group_cache_lock);
3351 return cache;
3352}
3353
0af3d00b
JB
3354static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3355 struct btrfs_trans_handle *trans,
3356 struct btrfs_path *path)
3357{
3358 struct btrfs_root *root = block_group->fs_info->tree_root;
3359 struct inode *inode = NULL;
3360 u64 alloc_hint = 0;
2b20982e 3361 int dcs = BTRFS_DC_ERROR;
f8c269d7 3362 u64 num_pages = 0;
0af3d00b
JB
3363 int retries = 0;
3364 int ret = 0;
3365
3366 /*
3367 * If this block group is smaller than 100 megs don't bother caching the
3368 * block group.
3369 */
ee22184b 3370 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3371 spin_lock(&block_group->lock);
3372 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3373 spin_unlock(&block_group->lock);
3374 return 0;
3375 }
3376
0c0ef4bc
JB
3377 if (trans->aborted)
3378 return 0;
0af3d00b
JB
3379again:
3380 inode = lookup_free_space_inode(root, block_group, path);
3381 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3382 ret = PTR_ERR(inode);
b3b4aa74 3383 btrfs_release_path(path);
0af3d00b
JB
3384 goto out;
3385 }
3386
3387 if (IS_ERR(inode)) {
3388 BUG_ON(retries);
3389 retries++;
3390
3391 if (block_group->ro)
3392 goto out_free;
3393
3394 ret = create_free_space_inode(root, trans, block_group, path);
3395 if (ret)
3396 goto out_free;
3397 goto again;
3398 }
3399
5b0e95bf
JB
3400 /* We've already setup this transaction, go ahead and exit */
3401 if (block_group->cache_generation == trans->transid &&
3402 i_size_read(inode)) {
3403 dcs = BTRFS_DC_SETUP;
3404 goto out_put;
3405 }
3406
0af3d00b
JB
3407 /*
3408 * We want to set the generation to 0, that way if anything goes wrong
3409 * from here on out we know not to trust this cache when we load up next
3410 * time.
3411 */
3412 BTRFS_I(inode)->generation = 0;
3413 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3414 if (ret) {
3415 /*
3416 * So theoretically we could recover from this, simply set the
3417 * super cache generation to 0 so we know to invalidate the
3418 * cache, but then we'd have to keep track of the block groups
3419 * that fail this way so we know we _have_ to reset this cache
3420 * before the next commit or risk reading stale cache. So to
3421 * limit our exposure to horrible edge cases lets just abort the
3422 * transaction, this only happens in really bad situations
3423 * anyway.
3424 */
66642832 3425 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3426 goto out_put;
3427 }
0af3d00b
JB
3428 WARN_ON(ret);
3429
3430 if (i_size_read(inode) > 0) {
7b61cd92
MX
3431 ret = btrfs_check_trunc_cache_free_space(root,
3432 &root->fs_info->global_block_rsv);
3433 if (ret)
3434 goto out_put;
3435
1bbc621e 3436 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3437 if (ret)
3438 goto out_put;
3439 }
3440
3441 spin_lock(&block_group->lock);
cf7c1ef6 3442 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3cdde224 3443 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3444 /*
3445 * don't bother trying to write stuff out _if_
3446 * a) we're not cached,
3447 * b) we're with nospace_cache mount option.
3448 */
2b20982e 3449 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3450 spin_unlock(&block_group->lock);
3451 goto out_put;
3452 }
3453 spin_unlock(&block_group->lock);
3454
2968b1f4
JB
3455 /*
3456 * We hit an ENOSPC when setting up the cache in this transaction, just
3457 * skip doing the setup, we've already cleared the cache so we're safe.
3458 */
3459 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3460 ret = -ENOSPC;
3461 goto out_put;
3462 }
3463
6fc823b1
JB
3464 /*
3465 * Try to preallocate enough space based on how big the block group is.
3466 * Keep in mind this has to include any pinned space which could end up
3467 * taking up quite a bit since it's not folded into the other space
3468 * cache.
3469 */
ee22184b 3470 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3471 if (!num_pages)
3472 num_pages = 1;
3473
0af3d00b 3474 num_pages *= 16;
09cbfeaf 3475 num_pages *= PAGE_SIZE;
0af3d00b 3476
7cf5b976 3477 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3478 if (ret)
3479 goto out_put;
3480
3481 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3482 num_pages, num_pages,
3483 &alloc_hint);
2968b1f4
JB
3484 /*
3485 * Our cache requires contiguous chunks so that we don't modify a bunch
3486 * of metadata or split extents when writing the cache out, which means
3487 * we can enospc if we are heavily fragmented in addition to just normal
3488 * out of space conditions. So if we hit this just skip setting up any
3489 * other block groups for this transaction, maybe we'll unpin enough
3490 * space the next time around.
3491 */
2b20982e
JB
3492 if (!ret)
3493 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3494 else if (ret == -ENOSPC)
3495 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3496
0af3d00b
JB
3497out_put:
3498 iput(inode);
3499out_free:
b3b4aa74 3500 btrfs_release_path(path);
0af3d00b
JB
3501out:
3502 spin_lock(&block_group->lock);
e65cbb94 3503 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3504 block_group->cache_generation = trans->transid;
2b20982e 3505 block_group->disk_cache_state = dcs;
0af3d00b
JB
3506 spin_unlock(&block_group->lock);
3507
3508 return ret;
3509}
3510
dcdf7f6d
JB
3511int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root)
3513{
3514 struct btrfs_block_group_cache *cache, *tmp;
3515 struct btrfs_transaction *cur_trans = trans->transaction;
3516 struct btrfs_path *path;
3517
3518 if (list_empty(&cur_trans->dirty_bgs) ||
3cdde224 3519 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
dcdf7f6d
JB
3520 return 0;
3521
3522 path = btrfs_alloc_path();
3523 if (!path)
3524 return -ENOMEM;
3525
3526 /* Could add new block groups, use _safe just in case */
3527 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3528 dirty_list) {
3529 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3530 cache_save_setup(cache, trans, path);
3531 }
3532
3533 btrfs_free_path(path);
3534 return 0;
3535}
3536
1bbc621e
CM
3537/*
3538 * transaction commit does final block group cache writeback during a
3539 * critical section where nothing is allowed to change the FS. This is
3540 * required in order for the cache to actually match the block group,
3541 * but can introduce a lot of latency into the commit.
3542 *
3543 * So, btrfs_start_dirty_block_groups is here to kick off block group
3544 * cache IO. There's a chance we'll have to redo some of it if the
3545 * block group changes again during the commit, but it greatly reduces
3546 * the commit latency by getting rid of the easy block groups while
3547 * we're still allowing others to join the commit.
3548 */
3549int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3550 struct btrfs_root *root)
9078a3e1 3551{
4a8c9a62 3552 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3553 struct btrfs_transaction *cur_trans = trans->transaction;
3554 int ret = 0;
c9dc4c65 3555 int should_put;
1bbc621e
CM
3556 struct btrfs_path *path = NULL;
3557 LIST_HEAD(dirty);
3558 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3559 int num_started = 0;
1bbc621e
CM
3560 int loops = 0;
3561
3562 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3563 if (list_empty(&cur_trans->dirty_bgs)) {
3564 spin_unlock(&cur_trans->dirty_bgs_lock);
3565 return 0;
1bbc621e 3566 }
b58d1a9e 3567 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3568 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3569
1bbc621e 3570again:
1bbc621e
CM
3571 /*
3572 * make sure all the block groups on our dirty list actually
3573 * exist
3574 */
3575 btrfs_create_pending_block_groups(trans, root);
3576
3577 if (!path) {
3578 path = btrfs_alloc_path();
3579 if (!path)
3580 return -ENOMEM;
3581 }
3582
b58d1a9e
FM
3583 /*
3584 * cache_write_mutex is here only to save us from balance or automatic
3585 * removal of empty block groups deleting this block group while we are
3586 * writing out the cache
3587 */
3588 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3589 while (!list_empty(&dirty)) {
3590 cache = list_first_entry(&dirty,
3591 struct btrfs_block_group_cache,
3592 dirty_list);
1bbc621e
CM
3593 /*
3594 * this can happen if something re-dirties a block
3595 * group that is already under IO. Just wait for it to
3596 * finish and then do it all again
3597 */
3598 if (!list_empty(&cache->io_list)) {
3599 list_del_init(&cache->io_list);
3600 btrfs_wait_cache_io(root, trans, cache,
3601 &cache->io_ctl, path,
3602 cache->key.objectid);
3603 btrfs_put_block_group(cache);
3604 }
3605
3606
3607 /*
3608 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3609 * if it should update the cache_state. Don't delete
3610 * until after we wait.
3611 *
3612 * Since we're not running in the commit critical section
3613 * we need the dirty_bgs_lock to protect from update_block_group
3614 */
3615 spin_lock(&cur_trans->dirty_bgs_lock);
3616 list_del_init(&cache->dirty_list);
3617 spin_unlock(&cur_trans->dirty_bgs_lock);
3618
3619 should_put = 1;
3620
3621 cache_save_setup(cache, trans, path);
3622
3623 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3624 cache->io_ctl.inode = NULL;
5b4aacef
JM
3625 ret = btrfs_write_out_cache(root->fs_info, trans,
3626 cache, path);
1bbc621e
CM
3627 if (ret == 0 && cache->io_ctl.inode) {
3628 num_started++;
3629 should_put = 0;
3630
3631 /*
3632 * the cache_write_mutex is protecting
3633 * the io_list
3634 */
3635 list_add_tail(&cache->io_list, io);
3636 } else {
3637 /*
3638 * if we failed to write the cache, the
3639 * generation will be bad and life goes on
3640 */
3641 ret = 0;
3642 }
3643 }
ff1f8250 3644 if (!ret) {
1bbc621e 3645 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3646 /*
3647 * Our block group might still be attached to the list
3648 * of new block groups in the transaction handle of some
3649 * other task (struct btrfs_trans_handle->new_bgs). This
3650 * means its block group item isn't yet in the extent
3651 * tree. If this happens ignore the error, as we will
3652 * try again later in the critical section of the
3653 * transaction commit.
3654 */
3655 if (ret == -ENOENT) {
3656 ret = 0;
3657 spin_lock(&cur_trans->dirty_bgs_lock);
3658 if (list_empty(&cache->dirty_list)) {
3659 list_add_tail(&cache->dirty_list,
3660 &cur_trans->dirty_bgs);
3661 btrfs_get_block_group(cache);
3662 }
3663 spin_unlock(&cur_trans->dirty_bgs_lock);
3664 } else if (ret) {
66642832 3665 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3666 }
3667 }
1bbc621e
CM
3668
3669 /* if its not on the io list, we need to put the block group */
3670 if (should_put)
3671 btrfs_put_block_group(cache);
3672
3673 if (ret)
3674 break;
b58d1a9e
FM
3675
3676 /*
3677 * Avoid blocking other tasks for too long. It might even save
3678 * us from writing caches for block groups that are going to be
3679 * removed.
3680 */
3681 mutex_unlock(&trans->transaction->cache_write_mutex);
3682 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3683 }
b58d1a9e 3684 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3685
3686 /*
3687 * go through delayed refs for all the stuff we've just kicked off
3688 * and then loop back (just once)
3689 */
3690 ret = btrfs_run_delayed_refs(trans, root, 0);
3691 if (!ret && loops == 0) {
3692 loops++;
3693 spin_lock(&cur_trans->dirty_bgs_lock);
3694 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3695 /*
3696 * dirty_bgs_lock protects us from concurrent block group
3697 * deletes too (not just cache_write_mutex).
3698 */
3699 if (!list_empty(&dirty)) {
3700 spin_unlock(&cur_trans->dirty_bgs_lock);
3701 goto again;
3702 }
1bbc621e 3703 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751
LB
3704 } else if (ret < 0) {
3705 btrfs_cleanup_dirty_bgs(cur_trans, root);
1bbc621e
CM
3706 }
3707
3708 btrfs_free_path(path);
3709 return ret;
3710}
3711
3712int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3713 struct btrfs_root *root)
3714{
3715 struct btrfs_block_group_cache *cache;
3716 struct btrfs_transaction *cur_trans = trans->transaction;
3717 int ret = 0;
3718 int should_put;
3719 struct btrfs_path *path;
3720 struct list_head *io = &cur_trans->io_bgs;
3721 int num_started = 0;
9078a3e1
CM
3722
3723 path = btrfs_alloc_path();
3724 if (!path)
3725 return -ENOMEM;
3726
ce93ec54 3727 /*
e44081ef
FM
3728 * Even though we are in the critical section of the transaction commit,
3729 * we can still have concurrent tasks adding elements to this
3730 * transaction's list of dirty block groups. These tasks correspond to
3731 * endio free space workers started when writeback finishes for a
3732 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3733 * allocate new block groups as a result of COWing nodes of the root
3734 * tree when updating the free space inode. The writeback for the space
3735 * caches is triggered by an earlier call to
3736 * btrfs_start_dirty_block_groups() and iterations of the following
3737 * loop.
3738 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3739 * delayed refs to make sure we have the best chance at doing this all
3740 * in one shot.
3741 */
e44081ef 3742 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3743 while (!list_empty(&cur_trans->dirty_bgs)) {
3744 cache = list_first_entry(&cur_trans->dirty_bgs,
3745 struct btrfs_block_group_cache,
3746 dirty_list);
c9dc4c65
CM
3747
3748 /*
3749 * this can happen if cache_save_setup re-dirties a block
3750 * group that is already under IO. Just wait for it to
3751 * finish and then do it all again
3752 */
3753 if (!list_empty(&cache->io_list)) {
e44081ef 3754 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3755 list_del_init(&cache->io_list);
3756 btrfs_wait_cache_io(root, trans, cache,
3757 &cache->io_ctl, path,
3758 cache->key.objectid);
3759 btrfs_put_block_group(cache);
e44081ef 3760 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3761 }
3762
1bbc621e
CM
3763 /*
3764 * don't remove from the dirty list until after we've waited
3765 * on any pending IO
3766 */
ce93ec54 3767 list_del_init(&cache->dirty_list);
e44081ef 3768 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3769 should_put = 1;
3770
1bbc621e 3771 cache_save_setup(cache, trans, path);
c9dc4c65 3772
ce93ec54 3773 if (!ret)
c9dc4c65
CM
3774 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3775
3776 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3777 cache->io_ctl.inode = NULL;
5b4aacef
JM
3778 ret = btrfs_write_out_cache(root->fs_info, trans,
3779 cache, path);
c9dc4c65
CM
3780 if (ret == 0 && cache->io_ctl.inode) {
3781 num_started++;
3782 should_put = 0;
1bbc621e 3783 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3784 } else {
3785 /*
3786 * if we failed to write the cache, the
3787 * generation will be bad and life goes on
3788 */
3789 ret = 0;
3790 }
3791 }
ff1f8250 3792 if (!ret) {
ce93ec54 3793 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3794 /*
3795 * One of the free space endio workers might have
3796 * created a new block group while updating a free space
3797 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3798 * and hasn't released its transaction handle yet, in
3799 * which case the new block group is still attached to
3800 * its transaction handle and its creation has not
3801 * finished yet (no block group item in the extent tree
3802 * yet, etc). If this is the case, wait for all free
3803 * space endio workers to finish and retry. This is a
3804 * a very rare case so no need for a more efficient and
3805 * complex approach.
3806 */
3807 if (ret == -ENOENT) {
3808 wait_event(cur_trans->writer_wait,
3809 atomic_read(&cur_trans->num_writers) == 1);
3810 ret = write_one_cache_group(trans, root, path,
3811 cache);
3812 }
ff1f8250 3813 if (ret)
66642832 3814 btrfs_abort_transaction(trans, ret);
ff1f8250 3815 }
c9dc4c65
CM
3816
3817 /* if its not on the io list, we need to put the block group */
3818 if (should_put)
3819 btrfs_put_block_group(cache);
e44081ef 3820 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3821 }
e44081ef 3822 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3823
1bbc621e
CM
3824 while (!list_empty(io)) {
3825 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3826 io_list);
3827 list_del_init(&cache->io_list);
c9dc4c65
CM
3828 btrfs_wait_cache_io(root, trans, cache,
3829 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3830 btrfs_put_block_group(cache);
3831 }
3832
9078a3e1 3833 btrfs_free_path(path);
ce93ec54 3834 return ret;
9078a3e1
CM
3835}
3836
d2fb3437
YZ
3837int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3838{
3839 struct btrfs_block_group_cache *block_group;
3840 int readonly = 0;
3841
3842 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3843 if (!block_group || block_group->ro)
3844 readonly = 1;
3845 if (block_group)
fa9c0d79 3846 btrfs_put_block_group(block_group);
d2fb3437
YZ
3847 return readonly;
3848}
3849
f78c436c
FM
3850bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3851{
3852 struct btrfs_block_group_cache *bg;
3853 bool ret = true;
3854
3855 bg = btrfs_lookup_block_group(fs_info, bytenr);
3856 if (!bg)
3857 return false;
3858
3859 spin_lock(&bg->lock);
3860 if (bg->ro)
3861 ret = false;
3862 else
3863 atomic_inc(&bg->nocow_writers);
3864 spin_unlock(&bg->lock);
3865
3866 /* no put on block group, done by btrfs_dec_nocow_writers */
3867 if (!ret)
3868 btrfs_put_block_group(bg);
3869
3870 return ret;
3871
3872}
3873
3874void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3875{
3876 struct btrfs_block_group_cache *bg;
3877
3878 bg = btrfs_lookup_block_group(fs_info, bytenr);
3879 ASSERT(bg);
3880 if (atomic_dec_and_test(&bg->nocow_writers))
3881 wake_up_atomic_t(&bg->nocow_writers);
3882 /*
3883 * Once for our lookup and once for the lookup done by a previous call
3884 * to btrfs_inc_nocow_writers()
3885 */
3886 btrfs_put_block_group(bg);
3887 btrfs_put_block_group(bg);
3888}
3889
3890static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3891{
3892 schedule();
3893 return 0;
3894}
3895
3896void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3897{
3898 wait_on_atomic_t(&bg->nocow_writers,
3899 btrfs_wait_nocow_writers_atomic_t,
3900 TASK_UNINTERRUPTIBLE);
3901}
3902
6ab0a202
JM
3903static const char *alloc_name(u64 flags)
3904{
3905 switch (flags) {
3906 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3907 return "mixed";
3908 case BTRFS_BLOCK_GROUP_METADATA:
3909 return "metadata";
3910 case BTRFS_BLOCK_GROUP_DATA:
3911 return "data";
3912 case BTRFS_BLOCK_GROUP_SYSTEM:
3913 return "system";
3914 default:
3915 WARN_ON(1);
3916 return "invalid-combination";
3917 };
3918}
3919
593060d7
CM
3920static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3921 u64 total_bytes, u64 bytes_used,
e40edf2d 3922 u64 bytes_readonly,
593060d7
CM
3923 struct btrfs_space_info **space_info)
3924{
3925 struct btrfs_space_info *found;
b742bb82
YZ
3926 int i;
3927 int factor;
b150a4f1 3928 int ret;
b742bb82
YZ
3929
3930 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3931 BTRFS_BLOCK_GROUP_RAID10))
3932 factor = 2;
3933 else
3934 factor = 1;
593060d7
CM
3935
3936 found = __find_space_info(info, flags);
3937 if (found) {
25179201 3938 spin_lock(&found->lock);
593060d7 3939 found->total_bytes += total_bytes;
89a55897 3940 found->disk_total += total_bytes * factor;
593060d7 3941 found->bytes_used += bytes_used;
b742bb82 3942 found->disk_used += bytes_used * factor;
e40edf2d 3943 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3944 if (total_bytes > 0)
3945 found->full = 0;
957780eb
JB
3946 space_info_add_new_bytes(info, found, total_bytes -
3947 bytes_used - bytes_readonly);
25179201 3948 spin_unlock(&found->lock);
593060d7
CM
3949 *space_info = found;
3950 return 0;
3951 }
c146afad 3952 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3953 if (!found)
3954 return -ENOMEM;
3955
908c7f19 3956 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3957 if (ret) {
3958 kfree(found);
3959 return ret;
3960 }
3961
c1895442 3962 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3963 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3964 init_rwsem(&found->groups_sem);
0f9dd46c 3965 spin_lock_init(&found->lock);
52ba6929 3966 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3967 found->total_bytes = total_bytes;
89a55897 3968 found->disk_total = total_bytes * factor;
593060d7 3969 found->bytes_used = bytes_used;
b742bb82 3970 found->disk_used = bytes_used * factor;
593060d7 3971 found->bytes_pinned = 0;
e8569813 3972 found->bytes_reserved = 0;
e40edf2d 3973 found->bytes_readonly = bytes_readonly;
f0486c68 3974 found->bytes_may_use = 0;
6af3e3ad 3975 found->full = 0;
4f4db217 3976 found->max_extent_size = 0;
0e4f8f88 3977 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3978 found->chunk_alloc = 0;
fdb5effd
JB
3979 found->flush = 0;
3980 init_waitqueue_head(&found->wait);
633c0aad 3981 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3982 INIT_LIST_HEAD(&found->tickets);
3983 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3984
3985 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3986 info->space_info_kobj, "%s",
3987 alloc_name(found->flags));
3988 if (ret) {
3989 kfree(found);
3990 return ret;
3991 }
3992
593060d7 3993 *space_info = found;
4184ea7f 3994 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3995 if (flags & BTRFS_BLOCK_GROUP_DATA)
3996 info->data_sinfo = found;
6ab0a202
JM
3997
3998 return ret;
593060d7
CM
3999}
4000
8790d502
CM
4001static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4002{
899c81ea
ID
4003 u64 extra_flags = chunk_to_extended(flags) &
4004 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4005
de98ced9 4006 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4007 if (flags & BTRFS_BLOCK_GROUP_DATA)
4008 fs_info->avail_data_alloc_bits |= extra_flags;
4009 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4010 fs_info->avail_metadata_alloc_bits |= extra_flags;
4011 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4012 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4013 write_sequnlock(&fs_info->profiles_lock);
8790d502 4014}
593060d7 4015
fc67c450
ID
4016/*
4017 * returns target flags in extended format or 0 if restripe for this
4018 * chunk_type is not in progress
c6664b42
ID
4019 *
4020 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4021 */
4022static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4023{
4024 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4025 u64 target = 0;
4026
fc67c450
ID
4027 if (!bctl)
4028 return 0;
4029
4030 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4031 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4032 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4033 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4034 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4035 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4036 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4037 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4038 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4039 }
4040
4041 return target;
4042}
4043
a46d11a8
ID
4044/*
4045 * @flags: available profiles in extended format (see ctree.h)
4046 *
e4d8ec0f
ID
4047 * Returns reduced profile in chunk format. If profile changing is in
4048 * progress (either running or paused) picks the target profile (if it's
4049 * already available), otherwise falls back to plain reducing.
a46d11a8 4050 */
48a3b636 4051static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4052{
95669976 4053 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4054 u64 target;
9c170b26
ZL
4055 u64 raid_type;
4056 u64 allowed = 0;
a061fc8d 4057
fc67c450
ID
4058 /*
4059 * see if restripe for this chunk_type is in progress, if so
4060 * try to reduce to the target profile
4061 */
e4d8ec0f 4062 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4063 target = get_restripe_target(root->fs_info, flags);
4064 if (target) {
4065 /* pick target profile only if it's already available */
4066 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4067 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4068 return extended_to_chunk(target);
e4d8ec0f
ID
4069 }
4070 }
4071 spin_unlock(&root->fs_info->balance_lock);
4072
53b381b3 4073 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4074 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4075 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4076 allowed |= btrfs_raid_group[raid_type];
4077 }
4078 allowed &= flags;
4079
4080 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4081 allowed = BTRFS_BLOCK_GROUP_RAID6;
4082 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4083 allowed = BTRFS_BLOCK_GROUP_RAID5;
4084 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4085 allowed = BTRFS_BLOCK_GROUP_RAID10;
4086 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4087 allowed = BTRFS_BLOCK_GROUP_RAID1;
4088 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4089 allowed = BTRFS_BLOCK_GROUP_RAID0;
4090
4091 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4092
4093 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4094}
4095
f8213bdc 4096static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4097{
de98ced9 4098 unsigned seq;
f8213bdc 4099 u64 flags;
de98ced9
MX
4100
4101 do {
f8213bdc 4102 flags = orig_flags;
de98ced9
MX
4103 seq = read_seqbegin(&root->fs_info->profiles_lock);
4104
4105 if (flags & BTRFS_BLOCK_GROUP_DATA)
4106 flags |= root->fs_info->avail_data_alloc_bits;
4107 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4108 flags |= root->fs_info->avail_system_alloc_bits;
4109 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4110 flags |= root->fs_info->avail_metadata_alloc_bits;
4111 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4112
b742bb82 4113 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4114}
4115
6d07bcec 4116u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4117{
b742bb82 4118 u64 flags;
53b381b3 4119 u64 ret;
9ed74f2d 4120
b742bb82
YZ
4121 if (data)
4122 flags = BTRFS_BLOCK_GROUP_DATA;
4123 else if (root == root->fs_info->chunk_root)
4124 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4125 else
b742bb82 4126 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4127
53b381b3
DW
4128 ret = get_alloc_profile(root, flags);
4129 return ret;
6a63209f 4130}
9ed74f2d 4131
4ceff079 4132int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4133{
6a63209f 4134 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4135 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4136 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4137 u64 used;
94b947b2 4138 int ret = 0;
c99f1b0c
ZL
4139 int need_commit = 2;
4140 int have_pinned_space;
6a63209f 4141
6a63209f 4142 /* make sure bytes are sectorsize aligned */
da17066c 4143 bytes = ALIGN(bytes, root->fs_info->sectorsize);
6a63209f 4144
9dced186 4145 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4146 need_commit = 0;
9dced186 4147 ASSERT(current->journal_info);
0af3d00b
JB
4148 }
4149
b4d7c3c9 4150 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4151 if (!data_sinfo)
4152 goto alloc;
9ed74f2d 4153
6a63209f
JB
4154again:
4155 /* make sure we have enough space to handle the data first */
4156 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4157 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4158 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4159 data_sinfo->bytes_may_use;
ab6e2410
JB
4160
4161 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4162 struct btrfs_trans_handle *trans;
9ed74f2d 4163
6a63209f
JB
4164 /*
4165 * if we don't have enough free bytes in this space then we need
4166 * to alloc a new chunk.
4167 */
b9fd47cd 4168 if (!data_sinfo->full) {
6a63209f 4169 u64 alloc_target;
9ed74f2d 4170
0e4f8f88 4171 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4172 spin_unlock(&data_sinfo->lock);
33b4d47f 4173alloc:
6a63209f 4174 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4175 /*
4176 * It is ugly that we don't call nolock join
4177 * transaction for the free space inode case here.
4178 * But it is safe because we only do the data space
4179 * reservation for the free space cache in the
4180 * transaction context, the common join transaction
4181 * just increase the counter of the current transaction
4182 * handler, doesn't try to acquire the trans_lock of
4183 * the fs.
4184 */
7a7eaa40 4185 trans = btrfs_join_transaction(root);
a22285a6
YZ
4186 if (IS_ERR(trans))
4187 return PTR_ERR(trans);
9ed74f2d 4188
6a63209f 4189 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4190 alloc_target,
4191 CHUNK_ALLOC_NO_FORCE);
6a63209f 4192 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4193 if (ret < 0) {
4194 if (ret != -ENOSPC)
4195 return ret;
c99f1b0c
ZL
4196 else {
4197 have_pinned_space = 1;
d52a5b5f 4198 goto commit_trans;
c99f1b0c 4199 }
d52a5b5f 4200 }
9ed74f2d 4201
b4d7c3c9
LZ
4202 if (!data_sinfo)
4203 data_sinfo = fs_info->data_sinfo;
4204
6a63209f
JB
4205 goto again;
4206 }
f2bb8f5c
JB
4207
4208 /*
b150a4f1 4209 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4210 * allocation, and no removed chunk in current transaction,
4211 * don't bother committing the transaction.
f2bb8f5c 4212 */
c99f1b0c
ZL
4213 have_pinned_space = percpu_counter_compare(
4214 &data_sinfo->total_bytes_pinned,
4215 used + bytes - data_sinfo->total_bytes);
6a63209f 4216 spin_unlock(&data_sinfo->lock);
6a63209f 4217
4e06bdd6 4218 /* commit the current transaction and try again */
d52a5b5f 4219commit_trans:
c99f1b0c 4220 if (need_commit &&
a4abeea4 4221 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4222 need_commit--;
b150a4f1 4223
e1746e83
ZL
4224 if (need_commit > 0) {
4225 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4226 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4227 }
9a4e7276 4228
7a7eaa40 4229 trans = btrfs_join_transaction(root);
a22285a6
YZ
4230 if (IS_ERR(trans))
4231 return PTR_ERR(trans);
c99f1b0c 4232 if (have_pinned_space >= 0 ||
3204d33c
JB
4233 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4234 &trans->transaction->flags) ||
c99f1b0c 4235 need_commit > 0) {
94b947b2
ZL
4236 ret = btrfs_commit_transaction(trans, root);
4237 if (ret)
4238 return ret;
d7c15171 4239 /*
c2d6cb16
FM
4240 * The cleaner kthread might still be doing iput
4241 * operations. Wait for it to finish so that
4242 * more space is released.
d7c15171 4243 */
c2d6cb16
FM
4244 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4245 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4246 goto again;
4247 } else {
4248 btrfs_end_transaction(trans, root);
4249 }
4e06bdd6 4250 }
9ed74f2d 4251
cab45e22
JM
4252 trace_btrfs_space_reservation(root->fs_info,
4253 "space_info:enospc",
4254 data_sinfo->flags, bytes, 1);
6a63209f
JB
4255 return -ENOSPC;
4256 }
4257 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4258 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4259 data_sinfo->flags, bytes, 1);
6a63209f 4260 spin_unlock(&data_sinfo->lock);
6a63209f 4261
237c0e9f 4262 return ret;
9ed74f2d 4263}
6a63209f 4264
4ceff079
QW
4265/*
4266 * New check_data_free_space() with ability for precious data reservation
4267 * Will replace old btrfs_check_data_free_space(), but for patch split,
4268 * add a new function first and then replace it.
4269 */
7cf5b976 4270int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4271{
4272 struct btrfs_root *root = BTRFS_I(inode)->root;
4273 int ret;
4274
4275 /* align the range */
da17066c
JM
4276 len = round_up(start + len, root->fs_info->sectorsize) -
4277 round_down(start, root->fs_info->sectorsize);
4278 start = round_down(start, root->fs_info->sectorsize);
4ceff079
QW
4279
4280 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4281 if (ret < 0)
4282 return ret;
4283
1e5ec2e7 4284 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4285 ret = btrfs_qgroup_reserve_data(inode, start, len);
1e5ec2e7
JB
4286 if (ret)
4287 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4288 return ret;
4289}
4290
4ceff079
QW
4291/*
4292 * Called if we need to clear a data reservation for this inode
4293 * Normally in a error case.
4294 *
51773bec
QW
4295 * This one will *NOT* use accurate qgroup reserved space API, just for case
4296 * which we can't sleep and is sure it won't affect qgroup reserved space.
4297 * Like clear_bit_hook().
4ceff079 4298 */
51773bec
QW
4299void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4300 u64 len)
4ceff079
QW
4301{
4302 struct btrfs_root *root = BTRFS_I(inode)->root;
4303 struct btrfs_space_info *data_sinfo;
4304
4305 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4306 len = round_up(start + len, root->fs_info->sectorsize) -
4307 round_down(start, root->fs_info->sectorsize);
4308 start = round_down(start, root->fs_info->sectorsize);
4ceff079 4309
4ceff079
QW
4310 data_sinfo = root->fs_info->data_sinfo;
4311 spin_lock(&data_sinfo->lock);
4312 if (WARN_ON(data_sinfo->bytes_may_use < len))
4313 data_sinfo->bytes_may_use = 0;
4314 else
4315 data_sinfo->bytes_may_use -= len;
4316 trace_btrfs_space_reservation(root->fs_info, "space_info",
4317 data_sinfo->flags, len, 0);
4318 spin_unlock(&data_sinfo->lock);
4319}
4320
51773bec
QW
4321/*
4322 * Called if we need to clear a data reservation for this inode
4323 * Normally in a error case.
4324 *
01327610 4325 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4326 * space framework.
4327 */
4328void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4329{
0c476a5d
JM
4330 struct btrfs_root *root = BTRFS_I(inode)->root;
4331
4332 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4333 len = round_up(start + len, root->fs_info->sectorsize) -
4334 round_down(start, root->fs_info->sectorsize);
4335 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4336
51773bec
QW
4337 btrfs_free_reserved_data_space_noquota(inode, start, len);
4338 btrfs_qgroup_free_data(inode, start, len);
4339}
4340
97e728d4 4341static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4342{
97e728d4
JB
4343 struct list_head *head = &info->space_info;
4344 struct btrfs_space_info *found;
e3ccfa98 4345
97e728d4
JB
4346 rcu_read_lock();
4347 list_for_each_entry_rcu(found, head, list) {
4348 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4349 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4350 }
97e728d4 4351 rcu_read_unlock();
e3ccfa98
JB
4352}
4353
3c76cd84
MX
4354static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4355{
4356 return (global->size << 1);
4357}
4358
e5bc2458 4359static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4360 struct btrfs_space_info *sinfo, int force)
32c00aff 4361{
fb25e914 4362 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4363 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4364 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4365 u64 thresh;
e3ccfa98 4366
0e4f8f88
CM
4367 if (force == CHUNK_ALLOC_FORCE)
4368 return 1;
4369
fb25e914
JB
4370 /*
4371 * We need to take into account the global rsv because for all intents
4372 * and purposes it's used space. Don't worry about locking the
4373 * global_rsv, it doesn't change except when the transaction commits.
4374 */
54338b5c 4375 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4376 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4377
0e4f8f88
CM
4378 /*
4379 * in limited mode, we want to have some free space up to
4380 * about 1% of the FS size.
4381 */
4382 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4383 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4384 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4385
4386 if (num_bytes - num_allocated < thresh)
4387 return 1;
4388 }
0e4f8f88 4389
ee22184b 4390 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4391 return 0;
424499db 4392 return 1;
32c00aff
JB
4393}
4394
39c2d7fa 4395static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4396{
4397 u64 num_dev;
4398
53b381b3
DW
4399 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4400 BTRFS_BLOCK_GROUP_RAID0 |
4401 BTRFS_BLOCK_GROUP_RAID5 |
4402 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4403 num_dev = root->fs_info->fs_devices->rw_devices;
4404 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4405 num_dev = 2;
4406 else
4407 num_dev = 1; /* DUP or single */
4408
39c2d7fa 4409 return num_dev;
15d1ff81
LB
4410}
4411
39c2d7fa
FM
4412/*
4413 * If @is_allocation is true, reserve space in the system space info necessary
4414 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4415 * removing a chunk.
4416 */
4417void check_system_chunk(struct btrfs_trans_handle *trans,
4418 struct btrfs_root *root,
4617ea3a 4419 u64 type)
15d1ff81
LB
4420{
4421 struct btrfs_space_info *info;
4422 u64 left;
4423 u64 thresh;
4fbcdf66 4424 int ret = 0;
39c2d7fa 4425 u64 num_devs;
4fbcdf66
FM
4426
4427 /*
4428 * Needed because we can end up allocating a system chunk and for an
4429 * atomic and race free space reservation in the chunk block reserve.
4430 */
4431 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4432
4433 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4434 spin_lock(&info->lock);
4435 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4436 info->bytes_reserved - info->bytes_readonly -
4437 info->bytes_may_use;
15d1ff81
LB
4438 spin_unlock(&info->lock);
4439
39c2d7fa
FM
4440 num_devs = get_profile_num_devs(root, type);
4441
4442 /* num_devs device items to update and 1 chunk item to add or remove */
27965b6c
JM
4443 thresh = btrfs_calc_trunc_metadata_size(root->fs_info, num_devs) +
4444 btrfs_calc_trans_metadata_size(root->fs_info, 1);
39c2d7fa 4445
3cdde224 4446 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
c2cf52eb
SK
4447 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4448 left, thresh, type);
ab8d0fc4 4449 dump_space_info(root->fs_info, info, 0, 0);
15d1ff81
LB
4450 }
4451
4452 if (left < thresh) {
4453 u64 flags;
4454
4455 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4456 /*
4457 * Ignore failure to create system chunk. We might end up not
4458 * needing it, as we might not need to COW all nodes/leafs from
4459 * the paths we visit in the chunk tree (they were already COWed
4460 * or created in the current transaction for example).
4461 */
4462 ret = btrfs_alloc_chunk(trans, root, flags);
4463 }
4464
4465 if (!ret) {
4466 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4467 &root->fs_info->chunk_block_rsv,
4468 thresh, BTRFS_RESERVE_NO_FLUSH);
4469 if (!ret)
4470 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4471 }
4472}
4473
28b737f6
LB
4474/*
4475 * If force is CHUNK_ALLOC_FORCE:
4476 * - return 1 if it successfully allocates a chunk,
4477 * - return errors including -ENOSPC otherwise.
4478 * If force is NOT CHUNK_ALLOC_FORCE:
4479 * - return 0 if it doesn't need to allocate a new chunk,
4480 * - return 1 if it successfully allocates a chunk,
4481 * - return errors including -ENOSPC otherwise.
4482 */
6324fbf3 4483static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4484 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4485{
6324fbf3 4486 struct btrfs_space_info *space_info;
97e728d4 4487 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4488 int wait_for_alloc = 0;
9ed74f2d 4489 int ret = 0;
9ed74f2d 4490
c6b305a8
JB
4491 /* Don't re-enter if we're already allocating a chunk */
4492 if (trans->allocating_chunk)
4493 return -ENOSPC;
4494
6324fbf3 4495 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4496 if (!space_info) {
4497 ret = update_space_info(extent_root->fs_info, flags,
e40edf2d 4498 0, 0, 0, &space_info);
79787eaa 4499 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4500 }
79787eaa 4501 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4502
6d74119f 4503again:
25179201 4504 spin_lock(&space_info->lock);
9e622d6b 4505 if (force < space_info->force_alloc)
0e4f8f88 4506 force = space_info->force_alloc;
25179201 4507 if (space_info->full) {
09fb99a6
FDBM
4508 if (should_alloc_chunk(extent_root, space_info, force))
4509 ret = -ENOSPC;
4510 else
4511 ret = 0;
25179201 4512 spin_unlock(&space_info->lock);
09fb99a6 4513 return ret;
9ed74f2d
JB
4514 }
4515
698d0082 4516 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4517 spin_unlock(&space_info->lock);
6d74119f
JB
4518 return 0;
4519 } else if (space_info->chunk_alloc) {
4520 wait_for_alloc = 1;
4521 } else {
4522 space_info->chunk_alloc = 1;
9ed74f2d 4523 }
0e4f8f88 4524
25179201 4525 spin_unlock(&space_info->lock);
9ed74f2d 4526
6d74119f
JB
4527 mutex_lock(&fs_info->chunk_mutex);
4528
4529 /*
4530 * The chunk_mutex is held throughout the entirety of a chunk
4531 * allocation, so once we've acquired the chunk_mutex we know that the
4532 * other guy is done and we need to recheck and see if we should
4533 * allocate.
4534 */
4535 if (wait_for_alloc) {
4536 mutex_unlock(&fs_info->chunk_mutex);
4537 wait_for_alloc = 0;
4538 goto again;
4539 }
4540
c6b305a8
JB
4541 trans->allocating_chunk = true;
4542
67377734
JB
4543 /*
4544 * If we have mixed data/metadata chunks we want to make sure we keep
4545 * allocating mixed chunks instead of individual chunks.
4546 */
4547 if (btrfs_mixed_space_info(space_info))
4548 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4549
97e728d4
JB
4550 /*
4551 * if we're doing a data chunk, go ahead and make sure that
4552 * we keep a reasonable number of metadata chunks allocated in the
4553 * FS as well.
4554 */
9ed74f2d 4555 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4556 fs_info->data_chunk_allocations++;
4557 if (!(fs_info->data_chunk_allocations %
4558 fs_info->metadata_ratio))
4559 force_metadata_allocation(fs_info);
9ed74f2d
JB
4560 }
4561
15d1ff81
LB
4562 /*
4563 * Check if we have enough space in SYSTEM chunk because we may need
4564 * to update devices.
4565 */
4617ea3a 4566 check_system_chunk(trans, extent_root, flags);
15d1ff81 4567
2b82032c 4568 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4569 trans->allocating_chunk = false;
92b8e897 4570
9ed74f2d 4571 spin_lock(&space_info->lock);
a81cb9a2
AO
4572 if (ret < 0 && ret != -ENOSPC)
4573 goto out;
9ed74f2d 4574 if (ret)
6324fbf3 4575 space_info->full = 1;
424499db
YZ
4576 else
4577 ret = 1;
6d74119f 4578
0e4f8f88 4579 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4580out:
6d74119f 4581 space_info->chunk_alloc = 0;
9ed74f2d 4582 spin_unlock(&space_info->lock);
a25c75d5 4583 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4584 /*
4585 * When we allocate a new chunk we reserve space in the chunk block
4586 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4587 * add new nodes/leafs to it if we end up needing to do it when
4588 * inserting the chunk item and updating device items as part of the
4589 * second phase of chunk allocation, performed by
4590 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4591 * large number of new block groups to create in our transaction
4592 * handle's new_bgs list to avoid exhausting the chunk block reserve
4593 * in extreme cases - like having a single transaction create many new
4594 * block groups when starting to write out the free space caches of all
4595 * the block groups that were made dirty during the lifetime of the
4596 * transaction.
4597 */
d9a0540a 4598 if (trans->can_flush_pending_bgs &&
ee22184b 4599 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
64b63580 4600 btrfs_create_pending_block_groups(trans, extent_root);
00d80e34
FM
4601 btrfs_trans_release_chunk_metadata(trans);
4602 }
0f9dd46c 4603 return ret;
6324fbf3 4604}
9ed74f2d 4605
a80c8dcf
JB
4606static int can_overcommit(struct btrfs_root *root,
4607 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4608 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4609{
957780eb
JB
4610 struct btrfs_block_rsv *global_rsv;
4611 u64 profile;
3c76cd84 4612 u64 space_size;
a80c8dcf
JB
4613 u64 avail;
4614 u64 used;
4615
957780eb
JB
4616 /* Don't overcommit when in mixed mode. */
4617 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4618 return 0;
4619
4620 BUG_ON(root->fs_info == NULL);
4621 global_rsv = &root->fs_info->global_block_rsv;
4622 profile = btrfs_get_alloc_profile(root, 0);
a80c8dcf 4623 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4624 space_info->bytes_pinned + space_info->bytes_readonly;
4625
96f1bb57
JB
4626 /*
4627 * We only want to allow over committing if we have lots of actual space
4628 * free, but if we don't have enough space to handle the global reserve
4629 * space then we could end up having a real enospc problem when trying
4630 * to allocate a chunk or some other such important allocation.
4631 */
3c76cd84
MX
4632 spin_lock(&global_rsv->lock);
4633 space_size = calc_global_rsv_need_space(global_rsv);
4634 spin_unlock(&global_rsv->lock);
4635 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4636 return 0;
4637
4638 used += space_info->bytes_may_use;
a80c8dcf
JB
4639
4640 spin_lock(&root->fs_info->free_chunk_lock);
4641 avail = root->fs_info->free_chunk_space;
4642 spin_unlock(&root->fs_info->free_chunk_lock);
4643
4644 /*
4645 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4646 * space is actually useable. For raid56, the space info used
4647 * doesn't include the parity drive, so we don't have to
4648 * change the math
a80c8dcf
JB
4649 */
4650 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4651 BTRFS_BLOCK_GROUP_RAID1 |
4652 BTRFS_BLOCK_GROUP_RAID10))
4653 avail >>= 1;
4654
4655 /*
561c294d
MX
4656 * If we aren't flushing all things, let us overcommit up to
4657 * 1/2th of the space. If we can flush, don't let us overcommit
4658 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4659 */
08e007d2 4660 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4661 avail >>= 3;
a80c8dcf 4662 else
14575aef 4663 avail >>= 1;
a80c8dcf 4664
14575aef 4665 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4666 return 1;
4667 return 0;
4668}
4669
48a3b636 4670static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4671 unsigned long nr_pages, int nr_items)
da633a42
MX
4672{
4673 struct super_block *sb = root->fs_info->sb;
da633a42 4674
925a6efb
JB
4675 if (down_read_trylock(&sb->s_umount)) {
4676 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4677 up_read(&sb->s_umount);
4678 } else {
da633a42
MX
4679 /*
4680 * We needn't worry the filesystem going from r/w to r/o though
4681 * we don't acquire ->s_umount mutex, because the filesystem
4682 * should guarantee the delalloc inodes list be empty after
4683 * the filesystem is readonly(all dirty pages are written to
4684 * the disk).
4685 */
6c255e67 4686 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4687 if (!current->journal_info)
578def7c
FM
4688 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4689 0, (u64)-1);
da633a42
MX
4690 }
4691}
4692
18cd8ea6
MX
4693static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4694{
4695 u64 bytes;
4696 int nr;
4697
27965b6c 4698 bytes = btrfs_calc_trans_metadata_size(root->fs_info, 1);
18cd8ea6
MX
4699 nr = (int)div64_u64(to_reclaim, bytes);
4700 if (!nr)
4701 nr = 1;
4702 return nr;
4703}
4704
ee22184b 4705#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4706
9ed74f2d 4707/*
5da9d01b 4708 * shrink metadata reservation for delalloc
9ed74f2d 4709 */
f4c738c2
JB
4710static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4711 bool wait_ordered)
5da9d01b 4712{
0ca1f7ce 4713 struct btrfs_block_rsv *block_rsv;
0019f10d 4714 struct btrfs_space_info *space_info;
663350ac 4715 struct btrfs_trans_handle *trans;
f4c738c2 4716 u64 delalloc_bytes;
5da9d01b 4717 u64 max_reclaim;
b1953bce 4718 long time_left;
d3ee29e3
MX
4719 unsigned long nr_pages;
4720 int loops;
b0244199 4721 int items;
08e007d2 4722 enum btrfs_reserve_flush_enum flush;
5da9d01b 4723
c61a16a7 4724 /* Calc the number of the pages we need flush for space reservation */
b0244199 4725 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4726 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4727
663350ac 4728 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4729 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4730 space_info = block_rsv->space_info;
bf9022e0 4731
963d678b
MX
4732 delalloc_bytes = percpu_counter_sum_positive(
4733 &root->fs_info->delalloc_bytes);
f4c738c2 4734 if (delalloc_bytes == 0) {
fdb5effd 4735 if (trans)
f4c738c2 4736 return;
38c135af 4737 if (wait_ordered)
578def7c
FM
4738 btrfs_wait_ordered_roots(root->fs_info, items,
4739 0, (u64)-1);
f4c738c2 4740 return;
fdb5effd
JB
4741 }
4742
d3ee29e3 4743 loops = 0;
f4c738c2
JB
4744 while (delalloc_bytes && loops < 3) {
4745 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4746 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4747 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4748 /*
4749 * We need to wait for the async pages to actually start before
4750 * we do anything.
4751 */
9f3a074d
MX
4752 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4753 if (!max_reclaim)
4754 goto skip_async;
4755
4756 if (max_reclaim <= nr_pages)
4757 max_reclaim = 0;
4758 else
4759 max_reclaim -= nr_pages;
dea31f52 4760
9f3a074d
MX
4761 wait_event(root->fs_info->async_submit_wait,
4762 atomic_read(&root->fs_info->async_delalloc_pages) <=
4763 (int)max_reclaim);
4764skip_async:
08e007d2
MX
4765 if (!trans)
4766 flush = BTRFS_RESERVE_FLUSH_ALL;
4767 else
4768 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4769 spin_lock(&space_info->lock);
08e007d2 4770 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4771 spin_unlock(&space_info->lock);
4772 break;
4773 }
957780eb
JB
4774 if (list_empty(&space_info->tickets) &&
4775 list_empty(&space_info->priority_tickets)) {
4776 spin_unlock(&space_info->lock);
4777 break;
4778 }
0019f10d 4779 spin_unlock(&space_info->lock);
5da9d01b 4780
36e39c40 4781 loops++;
f104d044 4782 if (wait_ordered && !trans) {
578def7c
FM
4783 btrfs_wait_ordered_roots(root->fs_info, items,
4784 0, (u64)-1);
f104d044 4785 } else {
f4c738c2 4786 time_left = schedule_timeout_killable(1);
f104d044
JB
4787 if (time_left)
4788 break;
4789 }
963d678b
MX
4790 delalloc_bytes = percpu_counter_sum_positive(
4791 &root->fs_info->delalloc_bytes);
5da9d01b 4792 }
5da9d01b
YZ
4793}
4794
663350ac
JB
4795/**
4796 * maybe_commit_transaction - possibly commit the transaction if its ok to
4797 * @root - the root we're allocating for
4798 * @bytes - the number of bytes we want to reserve
4799 * @force - force the commit
8bb8ab2e 4800 *
663350ac
JB
4801 * This will check to make sure that committing the transaction will actually
4802 * get us somewhere and then commit the transaction if it does. Otherwise it
4803 * will return -ENOSPC.
8bb8ab2e 4804 */
663350ac
JB
4805static int may_commit_transaction(struct btrfs_root *root,
4806 struct btrfs_space_info *space_info,
4807 u64 bytes, int force)
4808{
4809 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4810 struct btrfs_trans_handle *trans;
4811
4812 trans = (struct btrfs_trans_handle *)current->journal_info;
4813 if (trans)
4814 return -EAGAIN;
4815
4816 if (force)
4817 goto commit;
4818
4819 /* See if there is enough pinned space to make this reservation */
b150a4f1 4820 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4821 bytes) >= 0)
663350ac 4822 goto commit;
663350ac
JB
4823
4824 /*
4825 * See if there is some space in the delayed insertion reservation for
4826 * this reservation.
4827 */
4828 if (space_info != delayed_rsv->space_info)
4829 return -ENOSPC;
4830
4831 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4832 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4833 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4834 spin_unlock(&delayed_rsv->lock);
4835 return -ENOSPC;
4836 }
4837 spin_unlock(&delayed_rsv->lock);
4838
4839commit:
4840 trans = btrfs_join_transaction(root);
4841 if (IS_ERR(trans))
4842 return -ENOSPC;
4843
4844 return btrfs_commit_transaction(trans, root);
4845}
4846
957780eb
JB
4847struct reserve_ticket {
4848 u64 bytes;
4849 int error;
4850 struct list_head list;
4851 wait_queue_head_t wait;
96c3f433
JB
4852};
4853
4854static int flush_space(struct btrfs_root *root,
4855 struct btrfs_space_info *space_info, u64 num_bytes,
4856 u64 orig_bytes, int state)
4857{
4858 struct btrfs_trans_handle *trans;
4859 int nr;
f4c738c2 4860 int ret = 0;
96c3f433
JB
4861
4862 switch (state) {
96c3f433
JB
4863 case FLUSH_DELAYED_ITEMS_NR:
4864 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4865 if (state == FLUSH_DELAYED_ITEMS_NR)
4866 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4867 else
96c3f433 4868 nr = -1;
18cd8ea6 4869
96c3f433
JB
4870 trans = btrfs_join_transaction(root);
4871 if (IS_ERR(trans)) {
4872 ret = PTR_ERR(trans);
4873 break;
4874 }
4875 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4876 btrfs_end_transaction(trans, root);
4877 break;
67b0fd63
JB
4878 case FLUSH_DELALLOC:
4879 case FLUSH_DELALLOC_WAIT:
24af7dd1 4880 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4881 state == FLUSH_DELALLOC_WAIT);
4882 break;
ea658bad
JB
4883 case ALLOC_CHUNK:
4884 trans = btrfs_join_transaction(root);
4885 if (IS_ERR(trans)) {
4886 ret = PTR_ERR(trans);
4887 break;
4888 }
4889 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4890 btrfs_get_alloc_profile(root, 0),
4891 CHUNK_ALLOC_NO_FORCE);
4892 btrfs_end_transaction(trans, root);
eecba891 4893 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4894 ret = 0;
4895 break;
96c3f433
JB
4896 case COMMIT_TRANS:
4897 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4898 break;
4899 default:
4900 ret = -ENOSPC;
4901 break;
4902 }
4903
f376df2b
JB
4904 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4905 orig_bytes, state, ret);
96c3f433
JB
4906 return ret;
4907}
21c7e756
MX
4908
4909static inline u64
4910btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4911 struct btrfs_space_info *space_info)
4912{
957780eb 4913 struct reserve_ticket *ticket;
21c7e756
MX
4914 u64 used;
4915 u64 expected;
957780eb 4916 u64 to_reclaim = 0;
21c7e756 4917
957780eb
JB
4918 list_for_each_entry(ticket, &space_info->tickets, list)
4919 to_reclaim += ticket->bytes;
4920 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4921 to_reclaim += ticket->bytes;
4922 if (to_reclaim)
4923 return to_reclaim;
21c7e756 4924
e0af2484
WX
4925 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4926 if (can_overcommit(root, space_info, to_reclaim,
4927 BTRFS_RESERVE_FLUSH_ALL))
4928 return 0;
4929
21c7e756
MX
4930 used = space_info->bytes_used + space_info->bytes_reserved +
4931 space_info->bytes_pinned + space_info->bytes_readonly +
4932 space_info->bytes_may_use;
ee22184b 4933 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4934 expected = div_factor_fine(space_info->total_bytes, 95);
4935 else
4936 expected = div_factor_fine(space_info->total_bytes, 90);
4937
4938 if (used > expected)
4939 to_reclaim = used - expected;
4940 else
4941 to_reclaim = 0;
4942 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4943 space_info->bytes_reserved);
21c7e756
MX
4944 return to_reclaim;
4945}
4946
4947static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4948 struct btrfs_root *root, u64 used)
21c7e756 4949{
365c5313
JB
4950 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4951
4952 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4953 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4954 return 0;
4955
87241c2e 4956 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4957 return 0;
4958
87241c2e
JB
4959 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4960 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4961 &root->fs_info->fs_state));
21c7e756
MX
4962}
4963
957780eb 4964static void wake_all_tickets(struct list_head *head)
21c7e756 4965{
957780eb 4966 struct reserve_ticket *ticket;
25ce459c 4967
957780eb
JB
4968 while (!list_empty(head)) {
4969 ticket = list_first_entry(head, struct reserve_ticket, list);
4970 list_del_init(&ticket->list);
4971 ticket->error = -ENOSPC;
4972 wake_up(&ticket->wait);
21c7e756 4973 }
21c7e756
MX
4974}
4975
957780eb
JB
4976/*
4977 * This is for normal flushers, we can wait all goddamned day if we want to. We
4978 * will loop and continuously try to flush as long as we are making progress.
4979 * We count progress as clearing off tickets each time we have to loop.
4980 */
21c7e756
MX
4981static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4982{
4983 struct btrfs_fs_info *fs_info;
4984 struct btrfs_space_info *space_info;
4985 u64 to_reclaim;
4986 int flush_state;
957780eb 4987 int commit_cycles = 0;
ce129655 4988 u64 last_tickets_id;
21c7e756
MX
4989
4990 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4991 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4992
957780eb 4993 spin_lock(&space_info->lock);
21c7e756
MX
4994 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4995 space_info);
957780eb
JB
4996 if (!to_reclaim) {
4997 space_info->flush = 0;
4998 spin_unlock(&space_info->lock);
21c7e756 4999 return;
957780eb 5000 }
ce129655 5001 last_tickets_id = space_info->tickets_id;
957780eb 5002 spin_unlock(&space_info->lock);
21c7e756
MX
5003
5004 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5005 do {
5006 struct reserve_ticket *ticket;
5007 int ret;
5008
5009 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5010 to_reclaim, flush_state);
5011 spin_lock(&space_info->lock);
5012 if (list_empty(&space_info->tickets)) {
5013 space_info->flush = 0;
5014 spin_unlock(&space_info->lock);
5015 return;
5016 }
5017 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5018 space_info);
5019 ticket = list_first_entry(&space_info->tickets,
5020 struct reserve_ticket, list);
ce129655 5021 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5022 flush_state++;
5023 } else {
ce129655 5024 last_tickets_id = space_info->tickets_id;
957780eb
JB
5025 flush_state = FLUSH_DELAYED_ITEMS_NR;
5026 if (commit_cycles)
5027 commit_cycles--;
5028 }
5029
5030 if (flush_state > COMMIT_TRANS) {
5031 commit_cycles++;
5032 if (commit_cycles > 2) {
5033 wake_all_tickets(&space_info->tickets);
5034 space_info->flush = 0;
5035 } else {
5036 flush_state = FLUSH_DELAYED_ITEMS_NR;
5037 }
5038 }
5039 spin_unlock(&space_info->lock);
5040 } while (flush_state <= COMMIT_TRANS);
5041}
5042
5043void btrfs_init_async_reclaim_work(struct work_struct *work)
5044{
5045 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5046}
5047
5048static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5049 struct btrfs_space_info *space_info,
5050 struct reserve_ticket *ticket)
5051{
5052 u64 to_reclaim;
5053 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5054
5055 spin_lock(&space_info->lock);
5056 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5057 space_info);
5058 if (!to_reclaim) {
5059 spin_unlock(&space_info->lock);
5060 return;
5061 }
5062 spin_unlock(&space_info->lock);
5063
21c7e756
MX
5064 do {
5065 flush_space(fs_info->fs_root, space_info, to_reclaim,
5066 to_reclaim, flush_state);
5067 flush_state++;
957780eb
JB
5068 spin_lock(&space_info->lock);
5069 if (ticket->bytes == 0) {
5070 spin_unlock(&space_info->lock);
21c7e756 5071 return;
957780eb
JB
5072 }
5073 spin_unlock(&space_info->lock);
5074
5075 /*
5076 * Priority flushers can't wait on delalloc without
5077 * deadlocking.
5078 */
5079 if (flush_state == FLUSH_DELALLOC ||
5080 flush_state == FLUSH_DELALLOC_WAIT)
5081 flush_state = ALLOC_CHUNK;
365c5313 5082 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5083}
5084
957780eb
JB
5085static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5086 struct btrfs_space_info *space_info,
5087 struct reserve_ticket *ticket, u64 orig_bytes)
5088
21c7e756 5089{
957780eb
JB
5090 DEFINE_WAIT(wait);
5091 int ret = 0;
5092
5093 spin_lock(&space_info->lock);
5094 while (ticket->bytes > 0 && ticket->error == 0) {
5095 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5096 if (ret) {
5097 ret = -EINTR;
5098 break;
5099 }
5100 spin_unlock(&space_info->lock);
5101
5102 schedule();
5103
5104 finish_wait(&ticket->wait, &wait);
5105 spin_lock(&space_info->lock);
5106 }
5107 if (!ret)
5108 ret = ticket->error;
5109 if (!list_empty(&ticket->list))
5110 list_del_init(&ticket->list);
5111 if (ticket->bytes && ticket->bytes < orig_bytes) {
5112 u64 num_bytes = orig_bytes - ticket->bytes;
5113 space_info->bytes_may_use -= num_bytes;
5114 trace_btrfs_space_reservation(fs_info, "space_info",
5115 space_info->flags, num_bytes, 0);
5116 }
5117 spin_unlock(&space_info->lock);
5118
5119 return ret;
21c7e756
MX
5120}
5121
4a92b1b8
JB
5122/**
5123 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5124 * @root - the root we're allocating for
957780eb 5125 * @space_info - the space info we want to allocate from
4a92b1b8 5126 * @orig_bytes - the number of bytes we want
48fc7f7e 5127 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5128 *
01327610 5129 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5130 * with the block_rsv. If there is not enough space it will make an attempt to
5131 * flush out space to make room. It will do this by flushing delalloc if
5132 * possible or committing the transaction. If flush is 0 then no attempts to
5133 * regain reservations will be made and this will fail if there is not enough
5134 * space already.
8bb8ab2e 5135 */
957780eb
JB
5136static int __reserve_metadata_bytes(struct btrfs_root *root,
5137 struct btrfs_space_info *space_info,
5138 u64 orig_bytes,
5139 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5140{
957780eb 5141 struct reserve_ticket ticket;
2bf64758 5142 u64 used;
8bb8ab2e 5143 int ret = 0;
9ed74f2d 5144
957780eb 5145 ASSERT(orig_bytes);
8ca17f0f 5146 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5147
8bb8ab2e 5148 spin_lock(&space_info->lock);
fdb5effd 5149 ret = -ENOSPC;
2bf64758
JB
5150 used = space_info->bytes_used + space_info->bytes_reserved +
5151 space_info->bytes_pinned + space_info->bytes_readonly +
5152 space_info->bytes_may_use;
9ed74f2d 5153
8bb8ab2e 5154 /*
957780eb
JB
5155 * If we have enough space then hooray, make our reservation and carry
5156 * on. If not see if we can overcommit, and if we can, hooray carry on.
5157 * If not things get more complicated.
8bb8ab2e 5158 */
957780eb
JB
5159 if (used + orig_bytes <= space_info->total_bytes) {
5160 space_info->bytes_may_use += orig_bytes;
5161 trace_btrfs_space_reservation(root->fs_info, "space_info",
5162 space_info->flags, orig_bytes,
5163 1);
5164 ret = 0;
5165 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1
JB
5166 space_info->bytes_may_use += orig_bytes;
5167 trace_btrfs_space_reservation(root->fs_info, "space_info",
5168 space_info->flags, orig_bytes,
5169 1);
5170 ret = 0;
2bf64758
JB
5171 }
5172
8bb8ab2e 5173 /*
957780eb
JB
5174 * If we couldn't make a reservation then setup our reservation ticket
5175 * and kick the async worker if it's not already running.
08e007d2 5176 *
957780eb
JB
5177 * If we are a priority flusher then we just need to add our ticket to
5178 * the list and we will do our own flushing further down.
8bb8ab2e 5179 */
72bcd99d 5180 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5181 ticket.bytes = orig_bytes;
5182 ticket.error = 0;
5183 init_waitqueue_head(&ticket.wait);
5184 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5185 list_add_tail(&ticket.list, &space_info->tickets);
5186 if (!space_info->flush) {
5187 space_info->flush = 1;
f376df2b
JB
5188 trace_btrfs_trigger_flush(root->fs_info,
5189 space_info->flags,
5190 orig_bytes, flush,
5191 "enospc");
957780eb
JB
5192 queue_work(system_unbound_wq,
5193 &root->fs_info->async_reclaim_work);
5194 }
5195 } else {
5196 list_add_tail(&ticket.list,
5197 &space_info->priority_tickets);
5198 }
21c7e756
MX
5199 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5200 used += orig_bytes;
f6acfd50
JB
5201 /*
5202 * We will do the space reservation dance during log replay,
5203 * which means we won't have fs_info->fs_root set, so don't do
5204 * the async reclaim as we will panic.
5205 */
afcdd129 5206 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) &&
87241c2e 5207 need_do_async_reclaim(space_info, root, used) &&
f376df2b
JB
5208 !work_busy(&root->fs_info->async_reclaim_work)) {
5209 trace_btrfs_trigger_flush(root->fs_info,
5210 space_info->flags,
5211 orig_bytes, flush,
5212 "preempt");
21c7e756
MX
5213 queue_work(system_unbound_wq,
5214 &root->fs_info->async_reclaim_work);
f376df2b 5215 }
8bb8ab2e 5216 }
f0486c68 5217 spin_unlock(&space_info->lock);
08e007d2 5218 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5219 return ret;
f0486c68 5220
957780eb
JB
5221 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5222 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5223 orig_bytes);
08e007d2 5224
957780eb
JB
5225 ret = 0;
5226 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5227 spin_lock(&space_info->lock);
5228 if (ticket.bytes) {
5229 if (ticket.bytes < orig_bytes) {
5230 u64 num_bytes = orig_bytes - ticket.bytes;
5231 space_info->bytes_may_use -= num_bytes;
5232 trace_btrfs_space_reservation(root->fs_info,
5233 "space_info", space_info->flags,
5234 num_bytes, 0);
08e007d2 5235
957780eb
JB
5236 }
5237 list_del_init(&ticket.list);
5238 ret = -ENOSPC;
5239 }
5240 spin_unlock(&space_info->lock);
5241 ASSERT(list_empty(&ticket.list));
5242 return ret;
5243}
8bb8ab2e 5244
957780eb
JB
5245/**
5246 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5247 * @root - the root we're allocating for
5248 * @block_rsv - the block_rsv we're allocating for
5249 * @orig_bytes - the number of bytes we want
5250 * @flush - whether or not we can flush to make our reservation
5251 *
5252 * This will reserve orgi_bytes number of bytes from the space info associated
5253 * with the block_rsv. If there is not enough space it will make an attempt to
5254 * flush out space to make room. It will do this by flushing delalloc if
5255 * possible or committing the transaction. If flush is 0 then no attempts to
5256 * regain reservations will be made and this will fail if there is not enough
5257 * space already.
5258 */
5259static int reserve_metadata_bytes(struct btrfs_root *root,
5260 struct btrfs_block_rsv *block_rsv,
5261 u64 orig_bytes,
5262 enum btrfs_reserve_flush_enum flush)
5263{
5264 int ret;
5265
5266 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5267 flush);
5d80366e
JB
5268 if (ret == -ENOSPC &&
5269 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5270 struct btrfs_block_rsv *global_rsv =
5271 &root->fs_info->global_block_rsv;
5272
5273 if (block_rsv != global_rsv &&
5274 !block_rsv_use_bytes(global_rsv, orig_bytes))
5275 ret = 0;
5276 }
cab45e22
JM
5277 if (ret == -ENOSPC)
5278 trace_btrfs_space_reservation(root->fs_info,
5279 "space_info:enospc",
957780eb
JB
5280 block_rsv->space_info->flags,
5281 orig_bytes, 1);
f0486c68
YZ
5282 return ret;
5283}
5284
79787eaa
JM
5285static struct btrfs_block_rsv *get_block_rsv(
5286 const struct btrfs_trans_handle *trans,
5287 const struct btrfs_root *root)
f0486c68 5288{
4c13d758
JB
5289 struct btrfs_block_rsv *block_rsv = NULL;
5290
e9cf439f
AM
5291 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5292 (root == root->fs_info->csum_root && trans->adding_csums) ||
5293 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5294 block_rsv = trans->block_rsv;
5295
4c13d758 5296 if (!block_rsv)
f0486c68
YZ
5297 block_rsv = root->block_rsv;
5298
5299 if (!block_rsv)
5300 block_rsv = &root->fs_info->empty_block_rsv;
5301
5302 return block_rsv;
5303}
5304
5305static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5306 u64 num_bytes)
5307{
5308 int ret = -ENOSPC;
5309 spin_lock(&block_rsv->lock);
5310 if (block_rsv->reserved >= num_bytes) {
5311 block_rsv->reserved -= num_bytes;
5312 if (block_rsv->reserved < block_rsv->size)
5313 block_rsv->full = 0;
5314 ret = 0;
5315 }
5316 spin_unlock(&block_rsv->lock);
5317 return ret;
5318}
5319
5320static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5321 u64 num_bytes, int update_size)
5322{
5323 spin_lock(&block_rsv->lock);
5324 block_rsv->reserved += num_bytes;
5325 if (update_size)
5326 block_rsv->size += num_bytes;
5327 else if (block_rsv->reserved >= block_rsv->size)
5328 block_rsv->full = 1;
5329 spin_unlock(&block_rsv->lock);
5330}
5331
d52be818
JB
5332int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5333 struct btrfs_block_rsv *dest, u64 num_bytes,
5334 int min_factor)
5335{
5336 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5337 u64 min_bytes;
5338
5339 if (global_rsv->space_info != dest->space_info)
5340 return -ENOSPC;
5341
5342 spin_lock(&global_rsv->lock);
5343 min_bytes = div_factor(global_rsv->size, min_factor);
5344 if (global_rsv->reserved < min_bytes + num_bytes) {
5345 spin_unlock(&global_rsv->lock);
5346 return -ENOSPC;
5347 }
5348 global_rsv->reserved -= num_bytes;
5349 if (global_rsv->reserved < global_rsv->size)
5350 global_rsv->full = 0;
5351 spin_unlock(&global_rsv->lock);
5352
5353 block_rsv_add_bytes(dest, num_bytes, 1);
5354 return 0;
5355}
5356
957780eb
JB
5357/*
5358 * This is for space we already have accounted in space_info->bytes_may_use, so
5359 * basically when we're returning space from block_rsv's.
5360 */
5361static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5362 struct btrfs_space_info *space_info,
5363 u64 num_bytes)
5364{
5365 struct reserve_ticket *ticket;
5366 struct list_head *head;
5367 u64 used;
5368 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5369 bool check_overcommit = false;
5370
5371 spin_lock(&space_info->lock);
5372 head = &space_info->priority_tickets;
5373
5374 /*
5375 * If we are over our limit then we need to check and see if we can
5376 * overcommit, and if we can't then we just need to free up our space
5377 * and not satisfy any requests.
5378 */
5379 used = space_info->bytes_used + space_info->bytes_reserved +
5380 space_info->bytes_pinned + space_info->bytes_readonly +
5381 space_info->bytes_may_use;
5382 if (used - num_bytes >= space_info->total_bytes)
5383 check_overcommit = true;
5384again:
5385 while (!list_empty(head) && num_bytes) {
5386 ticket = list_first_entry(head, struct reserve_ticket,
5387 list);
5388 /*
5389 * We use 0 bytes because this space is already reserved, so
5390 * adding the ticket space would be a double count.
5391 */
5392 if (check_overcommit &&
5393 !can_overcommit(fs_info->extent_root, space_info, 0,
5394 flush))
5395 break;
5396 if (num_bytes >= ticket->bytes) {
5397 list_del_init(&ticket->list);
5398 num_bytes -= ticket->bytes;
5399 ticket->bytes = 0;
ce129655 5400 space_info->tickets_id++;
957780eb
JB
5401 wake_up(&ticket->wait);
5402 } else {
5403 ticket->bytes -= num_bytes;
5404 num_bytes = 0;
5405 }
5406 }
5407
5408 if (num_bytes && head == &space_info->priority_tickets) {
5409 head = &space_info->tickets;
5410 flush = BTRFS_RESERVE_FLUSH_ALL;
5411 goto again;
5412 }
5413 space_info->bytes_may_use -= num_bytes;
5414 trace_btrfs_space_reservation(fs_info, "space_info",
5415 space_info->flags, num_bytes, 0);
5416 spin_unlock(&space_info->lock);
5417}
5418
5419/*
5420 * This is for newly allocated space that isn't accounted in
5421 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5422 * we use this helper.
5423 */
5424static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5425 struct btrfs_space_info *space_info,
5426 u64 num_bytes)
5427{
5428 struct reserve_ticket *ticket;
5429 struct list_head *head = &space_info->priority_tickets;
5430
5431again:
5432 while (!list_empty(head) && num_bytes) {
5433 ticket = list_first_entry(head, struct reserve_ticket,
5434 list);
5435 if (num_bytes >= ticket->bytes) {
5436 trace_btrfs_space_reservation(fs_info, "space_info",
5437 space_info->flags,
5438 ticket->bytes, 1);
5439 list_del_init(&ticket->list);
5440 num_bytes -= ticket->bytes;
5441 space_info->bytes_may_use += ticket->bytes;
5442 ticket->bytes = 0;
ce129655 5443 space_info->tickets_id++;
957780eb
JB
5444 wake_up(&ticket->wait);
5445 } else {
5446 trace_btrfs_space_reservation(fs_info, "space_info",
5447 space_info->flags,
5448 num_bytes, 1);
5449 space_info->bytes_may_use += num_bytes;
5450 ticket->bytes -= num_bytes;
5451 num_bytes = 0;
5452 }
5453 }
5454
5455 if (num_bytes && head == &space_info->priority_tickets) {
5456 head = &space_info->tickets;
5457 goto again;
5458 }
5459}
5460
8c2a3ca2
JB
5461static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5462 struct btrfs_block_rsv *block_rsv,
62a45b60 5463 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5464{
5465 struct btrfs_space_info *space_info = block_rsv->space_info;
5466
5467 spin_lock(&block_rsv->lock);
5468 if (num_bytes == (u64)-1)
5469 num_bytes = block_rsv->size;
5470 block_rsv->size -= num_bytes;
5471 if (block_rsv->reserved >= block_rsv->size) {
5472 num_bytes = block_rsv->reserved - block_rsv->size;
5473 block_rsv->reserved = block_rsv->size;
5474 block_rsv->full = 1;
5475 } else {
5476 num_bytes = 0;
5477 }
5478 spin_unlock(&block_rsv->lock);
5479
5480 if (num_bytes > 0) {
5481 if (dest) {
e9e22899
JB
5482 spin_lock(&dest->lock);
5483 if (!dest->full) {
5484 u64 bytes_to_add;
5485
5486 bytes_to_add = dest->size - dest->reserved;
5487 bytes_to_add = min(num_bytes, bytes_to_add);
5488 dest->reserved += bytes_to_add;
5489 if (dest->reserved >= dest->size)
5490 dest->full = 1;
5491 num_bytes -= bytes_to_add;
5492 }
5493 spin_unlock(&dest->lock);
5494 }
957780eb
JB
5495 if (num_bytes)
5496 space_info_add_old_bytes(fs_info, space_info,
5497 num_bytes);
9ed74f2d 5498 }
f0486c68 5499}
4e06bdd6 5500
25d609f8
JB
5501int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5502 struct btrfs_block_rsv *dst, u64 num_bytes,
5503 int update_size)
f0486c68
YZ
5504{
5505 int ret;
9ed74f2d 5506
f0486c68
YZ
5507 ret = block_rsv_use_bytes(src, num_bytes);
5508 if (ret)
5509 return ret;
9ed74f2d 5510
25d609f8 5511 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5512 return 0;
5513}
5514
66d8f3dd 5515void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5516{
f0486c68
YZ
5517 memset(rsv, 0, sizeof(*rsv));
5518 spin_lock_init(&rsv->lock);
66d8f3dd 5519 rsv->type = type;
f0486c68
YZ
5520}
5521
66d8f3dd
MX
5522struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5523 unsigned short type)
f0486c68
YZ
5524{
5525 struct btrfs_block_rsv *block_rsv;
5526 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5527
f0486c68
YZ
5528 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5529 if (!block_rsv)
5530 return NULL;
9ed74f2d 5531
66d8f3dd 5532 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5533 block_rsv->space_info = __find_space_info(fs_info,
5534 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5535 return block_rsv;
5536}
9ed74f2d 5537
f0486c68
YZ
5538void btrfs_free_block_rsv(struct btrfs_root *root,
5539 struct btrfs_block_rsv *rsv)
5540{
2aaa6655
JB
5541 if (!rsv)
5542 return;
dabdb640
JB
5543 btrfs_block_rsv_release(root, rsv, (u64)-1);
5544 kfree(rsv);
9ed74f2d
JB
5545}
5546
cdfb080e
CM
5547void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5548{
5549 kfree(rsv);
5550}
5551
08e007d2
MX
5552int btrfs_block_rsv_add(struct btrfs_root *root,
5553 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5554 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5555{
f0486c68 5556 int ret;
9ed74f2d 5557
f0486c68
YZ
5558 if (num_bytes == 0)
5559 return 0;
8bb8ab2e 5560
61b520a9 5561 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5562 if (!ret) {
5563 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5564 return 0;
5565 }
9ed74f2d 5566
f0486c68 5567 return ret;
f0486c68 5568}
9ed74f2d 5569
4a92b1b8 5570int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5571 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5572{
5573 u64 num_bytes = 0;
f0486c68 5574 int ret = -ENOSPC;
9ed74f2d 5575
f0486c68
YZ
5576 if (!block_rsv)
5577 return 0;
9ed74f2d 5578
f0486c68 5579 spin_lock(&block_rsv->lock);
36ba022a
JB
5580 num_bytes = div_factor(block_rsv->size, min_factor);
5581 if (block_rsv->reserved >= num_bytes)
5582 ret = 0;
5583 spin_unlock(&block_rsv->lock);
9ed74f2d 5584
36ba022a
JB
5585 return ret;
5586}
5587
08e007d2
MX
5588int btrfs_block_rsv_refill(struct btrfs_root *root,
5589 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5590 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5591{
5592 u64 num_bytes = 0;
5593 int ret = -ENOSPC;
5594
5595 if (!block_rsv)
5596 return 0;
5597
5598 spin_lock(&block_rsv->lock);
5599 num_bytes = min_reserved;
13553e52 5600 if (block_rsv->reserved >= num_bytes)
f0486c68 5601 ret = 0;
13553e52 5602 else
f0486c68 5603 num_bytes -= block_rsv->reserved;
f0486c68 5604 spin_unlock(&block_rsv->lock);
13553e52 5605
f0486c68
YZ
5606 if (!ret)
5607 return 0;
5608
aa38a711 5609 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5610 if (!ret) {
5611 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5612 return 0;
6a63209f 5613 }
9ed74f2d 5614
13553e52 5615 return ret;
f0486c68
YZ
5616}
5617
f0486c68
YZ
5618void btrfs_block_rsv_release(struct btrfs_root *root,
5619 struct btrfs_block_rsv *block_rsv,
5620 u64 num_bytes)
5621{
5622 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5623 if (global_rsv == block_rsv ||
f0486c68
YZ
5624 block_rsv->space_info != global_rsv->space_info)
5625 global_rsv = NULL;
8c2a3ca2
JB
5626 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5627 num_bytes);
6a63209f
JB
5628}
5629
8929ecfa
YZ
5630static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5631{
5632 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5633 struct btrfs_space_info *sinfo = block_rsv->space_info;
5634 u64 num_bytes;
6a63209f 5635
ae2e4728
JB
5636 /*
5637 * The global block rsv is based on the size of the extent tree, the
5638 * checksum tree and the root tree. If the fs is empty we want to set
5639 * it to a minimal amount for safety.
5640 */
5641 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5642 btrfs_root_used(&fs_info->csum_root->root_item) +
5643 btrfs_root_used(&fs_info->tree_root->root_item);
5644 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5645
8929ecfa 5646 spin_lock(&sinfo->lock);
1f699d38 5647 spin_lock(&block_rsv->lock);
4e06bdd6 5648
ee22184b 5649 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5650
fb4b10e5
JB
5651 if (block_rsv->reserved < block_rsv->size) {
5652 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5653 sinfo->bytes_reserved + sinfo->bytes_readonly +
5654 sinfo->bytes_may_use;
5655 if (sinfo->total_bytes > num_bytes) {
5656 num_bytes = sinfo->total_bytes - num_bytes;
5657 num_bytes = min(num_bytes,
5658 block_rsv->size - block_rsv->reserved);
5659 block_rsv->reserved += num_bytes;
5660 sinfo->bytes_may_use += num_bytes;
5661 trace_btrfs_space_reservation(fs_info, "space_info",
5662 sinfo->flags, num_bytes,
5663 1);
5664 }
5665 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5666 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5667 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5668 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5669 sinfo->flags, num_bytes, 0);
8929ecfa 5670 block_rsv->reserved = block_rsv->size;
8929ecfa 5671 }
182608c8 5672
fb4b10e5
JB
5673 if (block_rsv->reserved == block_rsv->size)
5674 block_rsv->full = 1;
5675 else
5676 block_rsv->full = 0;
5677
8929ecfa 5678 spin_unlock(&block_rsv->lock);
1f699d38 5679 spin_unlock(&sinfo->lock);
6a63209f
JB
5680}
5681
f0486c68 5682static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5683{
f0486c68 5684 struct btrfs_space_info *space_info;
6a63209f 5685
f0486c68
YZ
5686 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5687 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5688
f0486c68 5689 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5690 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5691 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5692 fs_info->trans_block_rsv.space_info = space_info;
5693 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5694 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5695
8929ecfa
YZ
5696 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5697 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5698 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5699 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5700 if (fs_info->quota_root)
5701 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5702 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5703
8929ecfa 5704 update_global_block_rsv(fs_info);
6a63209f
JB
5705}
5706
8929ecfa 5707static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5708{
8c2a3ca2
JB
5709 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5710 (u64)-1);
8929ecfa
YZ
5711 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5712 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5713 WARN_ON(fs_info->trans_block_rsv.size > 0);
5714 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5715 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5716 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5717 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5718 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5719}
5720
a22285a6
YZ
5721void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5722 struct btrfs_root *root)
6a63209f 5723{
0e721106
JB
5724 if (!trans->block_rsv)
5725 return;
5726
a22285a6
YZ
5727 if (!trans->bytes_reserved)
5728 return;
6a63209f 5729
e77266e4 5730 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5731 trans->transid, trans->bytes_reserved, 0);
b24e03db 5732 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5733 trans->bytes_reserved = 0;
5734}
6a63209f 5735
4fbcdf66
FM
5736/*
5737 * To be called after all the new block groups attached to the transaction
5738 * handle have been created (btrfs_create_pending_block_groups()).
5739 */
5740void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5741{
64b63580 5742 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5743
5744 if (!trans->chunk_bytes_reserved)
5745 return;
5746
5747 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5748
5749 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5750 trans->chunk_bytes_reserved);
5751 trans->chunk_bytes_reserved = 0;
5752}
5753
79787eaa 5754/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5755int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5756 struct inode *inode)
5757{
5758 struct btrfs_root *root = BTRFS_I(inode)->root;
40acc3ee
JB
5759 /*
5760 * We always use trans->block_rsv here as we will have reserved space
5761 * for our orphan when starting the transaction, using get_block_rsv()
5762 * here will sometimes make us choose the wrong block rsv as we could be
5763 * doing a reloc inode for a non refcounted root.
5764 */
5765 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5766 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5767
5768 /*
fcb80c2a
JB
5769 * We need to hold space in order to delete our orphan item once we've
5770 * added it, so this takes the reservation so we can release it later
5771 * when we are truly done with the orphan item.
d68fc57b 5772 */
27965b6c 5773 u64 num_bytes = btrfs_calc_trans_metadata_size(root->fs_info, 1);
8c2a3ca2
JB
5774 trace_btrfs_space_reservation(root->fs_info, "orphan",
5775 btrfs_ino(inode), num_bytes, 1);
25d609f8 5776 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5777}
5778
d68fc57b 5779void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5780{
d68fc57b 5781 struct btrfs_root *root = BTRFS_I(inode)->root;
27965b6c 5782 u64 num_bytes = btrfs_calc_trans_metadata_size(root->fs_info, 1);
8c2a3ca2
JB
5783 trace_btrfs_space_reservation(root->fs_info, "orphan",
5784 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5785 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5786}
97e728d4 5787
d5c12070
MX
5788/*
5789 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5790 * root: the root of the parent directory
5791 * rsv: block reservation
5792 * items: the number of items that we need do reservation
5793 * qgroup_reserved: used to return the reserved size in qgroup
5794 *
5795 * This function is used to reserve the space for snapshot/subvolume
5796 * creation and deletion. Those operations are different with the
5797 * common file/directory operations, they change two fs/file trees
5798 * and root tree, the number of items that the qgroup reserves is
5799 * different with the free space reservation. So we can not use
01327610 5800 * the space reservation mechanism in start_transaction().
d5c12070
MX
5801 */
5802int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5803 struct btrfs_block_rsv *rsv,
5804 int items,
ee3441b4
JM
5805 u64 *qgroup_reserved,
5806 bool use_global_rsv)
a22285a6 5807{
d5c12070
MX
5808 u64 num_bytes;
5809 int ret;
ee3441b4 5810 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070 5811
afcdd129 5812 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
d5c12070 5813 /* One for parent inode, two for dir entries */
da17066c 5814 num_bytes = 3 * root->fs_info->nodesize;
7174109c 5815 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5816 if (ret)
5817 return ret;
5818 } else {
5819 num_bytes = 0;
5820 }
5821
5822 *qgroup_reserved = num_bytes;
5823
27965b6c 5824 num_bytes = btrfs_calc_trans_metadata_size(root->fs_info, items);
d5c12070
MX
5825 rsv->space_info = __find_space_info(root->fs_info,
5826 BTRFS_BLOCK_GROUP_METADATA);
5827 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5828 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5829
5830 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5831 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5832
7174109c
QW
5833 if (ret && *qgroup_reserved)
5834 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5835
5836 return ret;
5837}
5838
5839void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5840 struct btrfs_block_rsv *rsv,
5841 u64 qgroup_reserved)
5842{
5843 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5844}
5845
7709cde3
JB
5846/**
5847 * drop_outstanding_extent - drop an outstanding extent
5848 * @inode: the inode we're dropping the extent for
01327610 5849 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5850 *
5851 * This is called when we are freeing up an outstanding extent, either called
5852 * after an error or after an extent is written. This will return the number of
5853 * reserved extents that need to be freed. This must be called with
5854 * BTRFS_I(inode)->lock held.
5855 */
dcab6a3b 5856static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5857{
7fd2ae21 5858 unsigned drop_inode_space = 0;
9e0baf60 5859 unsigned dropped_extents = 0;
dcab6a3b 5860 unsigned num_extents = 0;
9e0baf60 5861
dcab6a3b
JB
5862 num_extents = (unsigned)div64_u64(num_bytes +
5863 BTRFS_MAX_EXTENT_SIZE - 1,
5864 BTRFS_MAX_EXTENT_SIZE);
5865 ASSERT(num_extents);
5866 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5867 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5868
7fd2ae21 5869 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5870 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5871 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5872 drop_inode_space = 1;
7fd2ae21 5873
9e0baf60 5874 /*
01327610 5875 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5876 * reserved then we need to leave the reserved extents count alone.
5877 */
5878 if (BTRFS_I(inode)->outstanding_extents >=
5879 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5880 return drop_inode_space;
9e0baf60
JB
5881
5882 dropped_extents = BTRFS_I(inode)->reserved_extents -
5883 BTRFS_I(inode)->outstanding_extents;
5884 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5885 return dropped_extents + drop_inode_space;
9e0baf60
JB
5886}
5887
7709cde3 5888/**
01327610
NS
5889 * calc_csum_metadata_size - return the amount of metadata space that must be
5890 * reserved/freed for the given bytes.
7709cde3
JB
5891 * @inode: the inode we're manipulating
5892 * @num_bytes: the number of bytes in question
5893 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5894 *
5895 * This adjusts the number of csum_bytes in the inode and then returns the
5896 * correct amount of metadata that must either be reserved or freed. We
5897 * calculate how many checksums we can fit into one leaf and then divide the
5898 * number of bytes that will need to be checksumed by this value to figure out
5899 * how many checksums will be required. If we are adding bytes then the number
5900 * may go up and we will return the number of additional bytes that must be
5901 * reserved. If it is going down we will return the number of bytes that must
5902 * be freed.
5903 *
5904 * This must be called with BTRFS_I(inode)->lock held.
5905 */
5906static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5907 int reserve)
6324fbf3 5908{
7709cde3 5909 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5910 u64 old_csums, num_csums;
7709cde3
JB
5911
5912 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5913 BTRFS_I(inode)->csum_bytes == 0)
5914 return 0;
5915
28f75a0e 5916 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5917 if (reserve)
5918 BTRFS_I(inode)->csum_bytes += num_bytes;
5919 else
5920 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5921 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5922
5923 /* No change, no need to reserve more */
5924 if (old_csums == num_csums)
5925 return 0;
5926
5927 if (reserve)
27965b6c 5928 return btrfs_calc_trans_metadata_size(root->fs_info,
7709cde3
JB
5929 num_csums - old_csums);
5930
27965b6c
JM
5931 return btrfs_calc_trans_metadata_size(root->fs_info,
5932 old_csums - num_csums);
0ca1f7ce 5933}
c146afad 5934
0ca1f7ce
YZ
5935int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5936{
5937 struct btrfs_root *root = BTRFS_I(inode)->root;
5938 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5939 u64 to_reserve = 0;
660d3f6c 5940 u64 csum_bytes;
9e0baf60 5941 unsigned nr_extents = 0;
08e007d2 5942 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5943 int ret = 0;
c64c2bd8 5944 bool delalloc_lock = true;
88e081bf
WS
5945 u64 to_free = 0;
5946 unsigned dropped;
48c3d480 5947 bool release_extra = false;
6324fbf3 5948
c64c2bd8
JB
5949 /* If we are a free space inode we need to not flush since we will be in
5950 * the middle of a transaction commit. We also don't need the delalloc
5951 * mutex since we won't race with anybody. We need this mostly to make
5952 * lockdep shut its filthy mouth.
bac357dc
JB
5953 *
5954 * If we have a transaction open (can happen if we call truncate_block
5955 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5956 */
5957 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5958 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5959 delalloc_lock = false;
bac357dc
JB
5960 } else if (current->journal_info) {
5961 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5962 }
c09544e0 5963
08e007d2
MX
5964 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5965 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5966 schedule_timeout(1);
ec44a35c 5967
c64c2bd8
JB
5968 if (delalloc_lock)
5969 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5970
da17066c 5971 num_bytes = ALIGN(num_bytes, root->fs_info->sectorsize);
8bb8ab2e 5972
9e0baf60 5973 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5974 nr_extents = (unsigned)div64_u64(num_bytes +
5975 BTRFS_MAX_EXTENT_SIZE - 1,
5976 BTRFS_MAX_EXTENT_SIZE);
5977 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5978
48c3d480 5979 nr_extents = 0;
9e0baf60 5980 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5981 BTRFS_I(inode)->reserved_extents)
48c3d480 5982 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5983 BTRFS_I(inode)->reserved_extents;
57a45ced 5984
48c3d480 5985 /* We always want to reserve a slot for updating the inode. */
27965b6c
JM
5986 to_reserve = btrfs_calc_trans_metadata_size(root->fs_info,
5987 nr_extents + 1);
7709cde3 5988 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5989 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5990 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5991
afcdd129 5992 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
7174109c 5993 ret = btrfs_qgroup_reserve_meta(root,
da17066c 5994 nr_extents * root->fs_info->nodesize);
88e081bf
WS
5995 if (ret)
5996 goto out_fail;
5997 }
c5567237 5998
48c3d480 5999 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 6000 if (unlikely(ret)) {
da17066c
JM
6001 btrfs_qgroup_free_meta(root,
6002 nr_extents * root->fs_info->nodesize);
88e081bf 6003 goto out_fail;
9e0baf60 6004 }
25179201 6005
660d3f6c 6006 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 6007 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee 6008 &BTRFS_I(inode)->runtime_flags)) {
27965b6c 6009 to_reserve -= btrfs_calc_trans_metadata_size(root->fs_info, 1);
48c3d480 6010 release_extra = true;
660d3f6c
JB
6011 }
6012 BTRFS_I(inode)->reserved_extents += nr_extents;
6013 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
6014
6015 if (delalloc_lock)
6016 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 6017
8c2a3ca2 6018 if (to_reserve)
67871254 6019 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 6020 btrfs_ino(inode), to_reserve, 1);
48c3d480
JB
6021 if (release_extra)
6022 btrfs_block_rsv_release(root, block_rsv,
27965b6c 6023 btrfs_calc_trans_metadata_size(root->fs_info, 1));
0ca1f7ce 6024 return 0;
88e081bf
WS
6025
6026out_fail:
6027 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6028 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6029 /*
6030 * If the inodes csum_bytes is the same as the original
6031 * csum_bytes then we know we haven't raced with any free()ers
6032 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6033 */
f4881bc7 6034 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6035 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6036 } else {
6037 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6038 u64 bytes;
6039
6040 /*
6041 * This is tricky, but first we need to figure out how much we
01327610 6042 * freed from any free-ers that occurred during this
f4881bc7
JB
6043 * reservation, so we reset ->csum_bytes to the csum_bytes
6044 * before we dropped our lock, and then call the free for the
6045 * number of bytes that were freed while we were trying our
6046 * reservation.
6047 */
6048 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6049 BTRFS_I(inode)->csum_bytes = csum_bytes;
6050 to_free = calc_csum_metadata_size(inode, bytes, 0);
6051
6052
6053 /*
6054 * Now we need to see how much we would have freed had we not
6055 * been making this reservation and our ->csum_bytes were not
6056 * artificially inflated.
6057 */
6058 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6059 bytes = csum_bytes - orig_csum_bytes;
6060 bytes = calc_csum_metadata_size(inode, bytes, 0);
6061
6062 /*
6063 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6064 * more than to_free then we would have freed more space had we
f4881bc7
JB
6065 * not had an artificially high ->csum_bytes, so we need to free
6066 * the remainder. If bytes is the same or less then we don't
6067 * need to do anything, the other free-ers did the correct
6068 * thing.
6069 */
6070 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6071 if (bytes > to_free)
6072 to_free = bytes - to_free;
6073 else
6074 to_free = 0;
6075 }
88e081bf 6076 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6077 if (dropped)
27965b6c
JM
6078 to_free += btrfs_calc_trans_metadata_size(root->fs_info,
6079 dropped);
88e081bf
WS
6080
6081 if (to_free) {
6082 btrfs_block_rsv_release(root, block_rsv, to_free);
6083 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6084 btrfs_ino(inode), to_free, 0);
6085 }
6086 if (delalloc_lock)
6087 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6088 return ret;
0ca1f7ce
YZ
6089}
6090
7709cde3
JB
6091/**
6092 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6093 * @inode: the inode to release the reservation for
6094 * @num_bytes: the number of bytes we're releasing
6095 *
6096 * This will release the metadata reservation for an inode. This can be called
6097 * once we complete IO for a given set of bytes to release their metadata
6098 * reservations.
6099 */
0ca1f7ce
YZ
6100void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6101{
6102 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
6103 u64 to_free = 0;
6104 unsigned dropped;
0ca1f7ce 6105
da17066c 6106 num_bytes = ALIGN(num_bytes, root->fs_info->sectorsize);
7709cde3 6107 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6108 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6109
0934856d
MX
6110 if (num_bytes)
6111 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6112 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60 6113 if (dropped > 0)
27965b6c
JM
6114 to_free += btrfs_calc_trans_metadata_size(root->fs_info,
6115 dropped);
0ca1f7ce 6116
f5ee5c9a 6117 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
6118 return;
6119
8c2a3ca2
JB
6120 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6121 btrfs_ino(inode), to_free, 0);
c5567237 6122
0ca1f7ce
YZ
6123 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6124 to_free);
6125}
6126
1ada3a62 6127/**
7cf5b976 6128 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6129 * delalloc
6130 * @inode: inode we're writing to
6131 * @start: start range we are writing to
6132 * @len: how long the range we are writing to
6133 *
1ada3a62
QW
6134 * This will do the following things
6135 *
6136 * o reserve space in data space info for num bytes
6137 * and reserve precious corresponding qgroup space
6138 * (Done in check_data_free_space)
6139 *
6140 * o reserve space for metadata space, based on the number of outstanding
6141 * extents and how much csums will be needed
6142 * also reserve metadata space in a per root over-reserve method.
6143 * o add to the inodes->delalloc_bytes
6144 * o add it to the fs_info's delalloc inodes list.
6145 * (Above 3 all done in delalloc_reserve_metadata)
6146 *
6147 * Return 0 for success
6148 * Return <0 for error(-ENOSPC or -EQUOT)
6149 */
7cf5b976 6150int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6151{
6152 int ret;
6153
7cf5b976 6154 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6155 if (ret < 0)
6156 return ret;
6157 ret = btrfs_delalloc_reserve_metadata(inode, len);
6158 if (ret < 0)
7cf5b976 6159 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6160 return ret;
6161}
6162
7709cde3 6163/**
7cf5b976 6164 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6165 * @inode: inode we're releasing space for
6166 * @start: start position of the space already reserved
6167 * @len: the len of the space already reserved
6168 *
6169 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6170 * called in the case that we don't need the metadata AND data reservations
6171 * anymore. So if there is an error or we insert an inline extent.
6172 *
6173 * This function will release the metadata space that was not used and will
6174 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6175 * list if there are no delalloc bytes left.
6176 * Also it will handle the qgroup reserved space.
6177 */
7cf5b976 6178void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6179{
6180 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6181 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6182}
6183
ce93ec54
JB
6184static int update_block_group(struct btrfs_trans_handle *trans,
6185 struct btrfs_root *root, u64 bytenr,
6186 u64 num_bytes, int alloc)
9078a3e1 6187{
0af3d00b 6188 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 6189 struct btrfs_fs_info *info = root->fs_info;
db94535d 6190 u64 total = num_bytes;
9078a3e1 6191 u64 old_val;
db94535d 6192 u64 byte_in_group;
0af3d00b 6193 int factor;
3e1ad54f 6194
5d4f98a2 6195 /* block accounting for super block */
eb73c1b7 6196 spin_lock(&info->delalloc_root_lock);
6c41761f 6197 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6198 if (alloc)
6199 old_val += num_bytes;
6200 else
6201 old_val -= num_bytes;
6c41761f 6202 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6203 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6204
d397712b 6205 while (total) {
db94535d 6206 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6207 if (!cache)
79787eaa 6208 return -ENOENT;
b742bb82
YZ
6209 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6210 BTRFS_BLOCK_GROUP_RAID1 |
6211 BTRFS_BLOCK_GROUP_RAID10))
6212 factor = 2;
6213 else
6214 factor = 1;
9d66e233
JB
6215 /*
6216 * If this block group has free space cache written out, we
6217 * need to make sure to load it if we are removing space. This
6218 * is because we need the unpinning stage to actually add the
6219 * space back to the block group, otherwise we will leak space.
6220 */
6221 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6222 cache_block_group(cache, 1);
0af3d00b 6223
db94535d
CM
6224 byte_in_group = bytenr - cache->key.objectid;
6225 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6226
25179201 6227 spin_lock(&cache->space_info->lock);
c286ac48 6228 spin_lock(&cache->lock);
0af3d00b 6229
3cdde224 6230 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
0af3d00b
JB
6231 cache->disk_cache_state < BTRFS_DC_CLEAR)
6232 cache->disk_cache_state = BTRFS_DC_CLEAR;
6233
9078a3e1 6234 old_val = btrfs_block_group_used(&cache->item);
db94535d 6235 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6236 if (alloc) {
db94535d 6237 old_val += num_bytes;
11833d66
YZ
6238 btrfs_set_block_group_used(&cache->item, old_val);
6239 cache->reserved -= num_bytes;
11833d66 6240 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6241 cache->space_info->bytes_used += num_bytes;
6242 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6243 spin_unlock(&cache->lock);
25179201 6244 spin_unlock(&cache->space_info->lock);
cd1bc465 6245 } else {
db94535d 6246 old_val -= num_bytes;
ae0ab003
FM
6247 btrfs_set_block_group_used(&cache->item, old_val);
6248 cache->pinned += num_bytes;
6249 cache->space_info->bytes_pinned += num_bytes;
6250 cache->space_info->bytes_used -= num_bytes;
6251 cache->space_info->disk_used -= num_bytes * factor;
6252 spin_unlock(&cache->lock);
6253 spin_unlock(&cache->space_info->lock);
47ab2a6c 6254
c51e7bb1
JB
6255 trace_btrfs_space_reservation(root->fs_info, "pinned",
6256 cache->space_info->flags,
6257 num_bytes, 1);
ae0ab003
FM
6258 set_extent_dirty(info->pinned_extents,
6259 bytenr, bytenr + num_bytes - 1,
6260 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6261 }
1bbc621e
CM
6262
6263 spin_lock(&trans->transaction->dirty_bgs_lock);
6264 if (list_empty(&cache->dirty_list)) {
6265 list_add_tail(&cache->dirty_list,
6266 &trans->transaction->dirty_bgs);
6267 trans->transaction->num_dirty_bgs++;
6268 btrfs_get_block_group(cache);
6269 }
6270 spin_unlock(&trans->transaction->dirty_bgs_lock);
6271
036a9348
FM
6272 /*
6273 * No longer have used bytes in this block group, queue it for
6274 * deletion. We do this after adding the block group to the
6275 * dirty list to avoid races between cleaner kthread and space
6276 * cache writeout.
6277 */
6278 if (!alloc && old_val == 0) {
6279 spin_lock(&info->unused_bgs_lock);
6280 if (list_empty(&cache->bg_list)) {
6281 btrfs_get_block_group(cache);
6282 list_add_tail(&cache->bg_list,
6283 &info->unused_bgs);
6284 }
6285 spin_unlock(&info->unused_bgs_lock);
6286 }
6287
fa9c0d79 6288 btrfs_put_block_group(cache);
db94535d
CM
6289 total -= num_bytes;
6290 bytenr += num_bytes;
9078a3e1
CM
6291 }
6292 return 0;
6293}
6324fbf3 6294
a061fc8d
CM
6295static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6296{
0f9dd46c 6297 struct btrfs_block_group_cache *cache;
d2fb3437 6298 u64 bytenr;
0f9dd46c 6299
a1897fdd
LB
6300 spin_lock(&root->fs_info->block_group_cache_lock);
6301 bytenr = root->fs_info->first_logical_byte;
6302 spin_unlock(&root->fs_info->block_group_cache_lock);
6303
6304 if (bytenr < (u64)-1)
6305 return bytenr;
6306
0f9dd46c
JB
6307 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6308 if (!cache)
a061fc8d 6309 return 0;
0f9dd46c 6310
d2fb3437 6311 bytenr = cache->key.objectid;
fa9c0d79 6312 btrfs_put_block_group(cache);
d2fb3437
YZ
6313
6314 return bytenr;
a061fc8d
CM
6315}
6316
f0486c68
YZ
6317static int pin_down_extent(struct btrfs_root *root,
6318 struct btrfs_block_group_cache *cache,
6319 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6320{
11833d66
YZ
6321 spin_lock(&cache->space_info->lock);
6322 spin_lock(&cache->lock);
6323 cache->pinned += num_bytes;
6324 cache->space_info->bytes_pinned += num_bytes;
6325 if (reserved) {
6326 cache->reserved -= num_bytes;
6327 cache->space_info->bytes_reserved -= num_bytes;
6328 }
6329 spin_unlock(&cache->lock);
6330 spin_unlock(&cache->space_info->lock);
68b38550 6331
c51e7bb1
JB
6332 trace_btrfs_space_reservation(root->fs_info, "pinned",
6333 cache->space_info->flags, num_bytes, 1);
f0486c68
YZ
6334 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6335 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6336 return 0;
6337}
68b38550 6338
f0486c68
YZ
6339/*
6340 * this function must be called within transaction
6341 */
6342int btrfs_pin_extent(struct btrfs_root *root,
6343 u64 bytenr, u64 num_bytes, int reserved)
6344{
6345 struct btrfs_block_group_cache *cache;
68b38550 6346
f0486c68 6347 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6348 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6349
6350 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6351
6352 btrfs_put_block_group(cache);
11833d66
YZ
6353 return 0;
6354}
6355
f0486c68 6356/*
e688b725
CM
6357 * this function must be called within transaction
6358 */
dcfac415 6359int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6360 u64 bytenr, u64 num_bytes)
6361{
6362 struct btrfs_block_group_cache *cache;
b50c6e25 6363 int ret;
e688b725
CM
6364
6365 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6366 if (!cache)
6367 return -EINVAL;
e688b725
CM
6368
6369 /*
6370 * pull in the free space cache (if any) so that our pin
6371 * removes the free space from the cache. We have load_only set
6372 * to one because the slow code to read in the free extents does check
6373 * the pinned extents.
6374 */
f6373bf3 6375 cache_block_group(cache, 1);
e688b725
CM
6376
6377 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6378
6379 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6380 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6381 btrfs_put_block_group(cache);
b50c6e25 6382 return ret;
e688b725
CM
6383}
6384
8c2a1a30
JB
6385static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6386{
6387 int ret;
6388 struct btrfs_block_group_cache *block_group;
6389 struct btrfs_caching_control *caching_ctl;
6390
6391 block_group = btrfs_lookup_block_group(root->fs_info, start);
6392 if (!block_group)
6393 return -EINVAL;
6394
6395 cache_block_group(block_group, 0);
6396 caching_ctl = get_caching_control(block_group);
6397
6398 if (!caching_ctl) {
6399 /* Logic error */
6400 BUG_ON(!block_group_cache_done(block_group));
6401 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6402 } else {
6403 mutex_lock(&caching_ctl->mutex);
6404
6405 if (start >= caching_ctl->progress) {
6406 ret = add_excluded_extent(root, start, num_bytes);
6407 } else if (start + num_bytes <= caching_ctl->progress) {
6408 ret = btrfs_remove_free_space(block_group,
6409 start, num_bytes);
6410 } else {
6411 num_bytes = caching_ctl->progress - start;
6412 ret = btrfs_remove_free_space(block_group,
6413 start, num_bytes);
6414 if (ret)
6415 goto out_lock;
6416
6417 num_bytes = (start + num_bytes) -
6418 caching_ctl->progress;
6419 start = caching_ctl->progress;
6420 ret = add_excluded_extent(root, start, num_bytes);
6421 }
6422out_lock:
6423 mutex_unlock(&caching_ctl->mutex);
6424 put_caching_control(caching_ctl);
6425 }
6426 btrfs_put_block_group(block_group);
6427 return ret;
6428}
6429
6430int btrfs_exclude_logged_extents(struct btrfs_root *log,
6431 struct extent_buffer *eb)
6432{
6433 struct btrfs_file_extent_item *item;
6434 struct btrfs_key key;
6435 int found_type;
6436 int i;
6437
6438 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6439 return 0;
6440
6441 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6442 btrfs_item_key_to_cpu(eb, &key, i);
6443 if (key.type != BTRFS_EXTENT_DATA_KEY)
6444 continue;
6445 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6446 found_type = btrfs_file_extent_type(eb, item);
6447 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6448 continue;
6449 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6450 continue;
6451 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6452 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6453 __exclude_logged_extent(log, key.objectid, key.offset);
6454 }
6455
6456 return 0;
6457}
6458
9cfa3e34
FM
6459static void
6460btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6461{
6462 atomic_inc(&bg->reservations);
6463}
6464
6465void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6466 const u64 start)
6467{
6468 struct btrfs_block_group_cache *bg;
6469
6470 bg = btrfs_lookup_block_group(fs_info, start);
6471 ASSERT(bg);
6472 if (atomic_dec_and_test(&bg->reservations))
6473 wake_up_atomic_t(&bg->reservations);
6474 btrfs_put_block_group(bg);
6475}
6476
6477static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6478{
6479 schedule();
6480 return 0;
6481}
6482
6483void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6484{
6485 struct btrfs_space_info *space_info = bg->space_info;
6486
6487 ASSERT(bg->ro);
6488
6489 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6490 return;
6491
6492 /*
6493 * Our block group is read only but before we set it to read only,
6494 * some task might have had allocated an extent from it already, but it
6495 * has not yet created a respective ordered extent (and added it to a
6496 * root's list of ordered extents).
6497 * Therefore wait for any task currently allocating extents, since the
6498 * block group's reservations counter is incremented while a read lock
6499 * on the groups' semaphore is held and decremented after releasing
6500 * the read access on that semaphore and creating the ordered extent.
6501 */
6502 down_write(&space_info->groups_sem);
6503 up_write(&space_info->groups_sem);
6504
6505 wait_on_atomic_t(&bg->reservations,
6506 btrfs_wait_bg_reservations_atomic_t,
6507 TASK_UNINTERRUPTIBLE);
6508}
6509
fb25e914 6510/**
4824f1f4 6511 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6512 * @cache: The cache we are manipulating
18513091
WX
6513 * @ram_bytes: The number of bytes of file content, and will be same to
6514 * @num_bytes except for the compress path.
fb25e914 6515 * @num_bytes: The number of bytes in question
e570fd27 6516 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6517 *
745699ef
XW
6518 * This is called by the allocator when it reserves space. If this is a
6519 * reservation and the block group has become read only we cannot make the
6520 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6521 */
4824f1f4 6522static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6523 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6524{
fb25e914 6525 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6526 int ret = 0;
79787eaa 6527
fb25e914
JB
6528 spin_lock(&space_info->lock);
6529 spin_lock(&cache->lock);
4824f1f4
WX
6530 if (cache->ro) {
6531 ret = -EAGAIN;
fb25e914 6532 } else {
4824f1f4
WX
6533 cache->reserved += num_bytes;
6534 space_info->bytes_reserved += num_bytes;
e570fd27 6535
18513091
WX
6536 trace_btrfs_space_reservation(cache->fs_info,
6537 "space_info", space_info->flags,
6538 ram_bytes, 0);
6539 space_info->bytes_may_use -= ram_bytes;
e570fd27 6540 if (delalloc)
4824f1f4 6541 cache->delalloc_bytes += num_bytes;
324ae4df 6542 }
fb25e914
JB
6543 spin_unlock(&cache->lock);
6544 spin_unlock(&space_info->lock);
f0486c68 6545 return ret;
324ae4df 6546}
9078a3e1 6547
4824f1f4
WX
6548/**
6549 * btrfs_free_reserved_bytes - update the block_group and space info counters
6550 * @cache: The cache we are manipulating
6551 * @num_bytes: The number of bytes in question
6552 * @delalloc: The blocks are allocated for the delalloc write
6553 *
6554 * This is called by somebody who is freeing space that was never actually used
6555 * on disk. For example if you reserve some space for a new leaf in transaction
6556 * A and before transaction A commits you free that leaf, you call this with
6557 * reserve set to 0 in order to clear the reservation.
6558 */
6559
6560static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6561 u64 num_bytes, int delalloc)
6562{
6563 struct btrfs_space_info *space_info = cache->space_info;
6564 int ret = 0;
6565
6566 spin_lock(&space_info->lock);
6567 spin_lock(&cache->lock);
6568 if (cache->ro)
6569 space_info->bytes_readonly += num_bytes;
6570 cache->reserved -= num_bytes;
6571 space_info->bytes_reserved -= num_bytes;
6572
6573 if (delalloc)
6574 cache->delalloc_bytes -= num_bytes;
6575 spin_unlock(&cache->lock);
6576 spin_unlock(&space_info->lock);
6577 return ret;
6578}
143bede5 6579void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6580 struct btrfs_root *root)
e8569813 6581{
e8569813 6582 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6583 struct btrfs_caching_control *next;
6584 struct btrfs_caching_control *caching_ctl;
6585 struct btrfs_block_group_cache *cache;
e8569813 6586
9e351cc8 6587 down_write(&fs_info->commit_root_sem);
25179201 6588
11833d66
YZ
6589 list_for_each_entry_safe(caching_ctl, next,
6590 &fs_info->caching_block_groups, list) {
6591 cache = caching_ctl->block_group;
6592 if (block_group_cache_done(cache)) {
6593 cache->last_byte_to_unpin = (u64)-1;
6594 list_del_init(&caching_ctl->list);
6595 put_caching_control(caching_ctl);
e8569813 6596 } else {
11833d66 6597 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6598 }
e8569813 6599 }
11833d66
YZ
6600
6601 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6602 fs_info->pinned_extents = &fs_info->freed_extents[1];
6603 else
6604 fs_info->pinned_extents = &fs_info->freed_extents[0];
6605
9e351cc8 6606 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6607
6608 update_global_block_rsv(fs_info);
e8569813
ZY
6609}
6610
c759c4e1
JB
6611/*
6612 * Returns the free cluster for the given space info and sets empty_cluster to
6613 * what it should be based on the mount options.
6614 */
6615static struct btrfs_free_cluster *
6616fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6617 u64 *empty_cluster)
6618{
6619 struct btrfs_free_cluster *ret = NULL;
3cdde224 6620 bool ssd = btrfs_test_opt(root->fs_info, SSD);
c759c4e1
JB
6621
6622 *empty_cluster = 0;
6623 if (btrfs_mixed_space_info(space_info))
6624 return ret;
6625
6626 if (ssd)
ee22184b 6627 *empty_cluster = SZ_2M;
c759c4e1
JB
6628 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6629 ret = &root->fs_info->meta_alloc_cluster;
6630 if (!ssd)
ee22184b 6631 *empty_cluster = SZ_64K;
c759c4e1
JB
6632 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6633 ret = &root->fs_info->data_alloc_cluster;
6634 }
6635
6636 return ret;
6637}
6638
678886bd
FM
6639static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6640 const bool return_free_space)
ccd467d6 6641{
11833d66
YZ
6642 struct btrfs_fs_info *fs_info = root->fs_info;
6643 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6644 struct btrfs_space_info *space_info;
6645 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6646 struct btrfs_free_cluster *cluster = NULL;
11833d66 6647 u64 len;
c759c4e1
JB
6648 u64 total_unpinned = 0;
6649 u64 empty_cluster = 0;
7b398f8e 6650 bool readonly;
ccd467d6 6651
11833d66 6652 while (start <= end) {
7b398f8e 6653 readonly = false;
11833d66
YZ
6654 if (!cache ||
6655 start >= cache->key.objectid + cache->key.offset) {
6656 if (cache)
6657 btrfs_put_block_group(cache);
c759c4e1 6658 total_unpinned = 0;
11833d66 6659 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6660 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6661
6662 cluster = fetch_cluster_info(root,
6663 cache->space_info,
6664 &empty_cluster);
6665 empty_cluster <<= 1;
11833d66
YZ
6666 }
6667
6668 len = cache->key.objectid + cache->key.offset - start;
6669 len = min(len, end + 1 - start);
6670
6671 if (start < cache->last_byte_to_unpin) {
6672 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6673 if (return_free_space)
6674 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6675 }
6676
f0486c68 6677 start += len;
c759c4e1 6678 total_unpinned += len;
7b398f8e 6679 space_info = cache->space_info;
f0486c68 6680
c759c4e1
JB
6681 /*
6682 * If this space cluster has been marked as fragmented and we've
6683 * unpinned enough in this block group to potentially allow a
6684 * cluster to be created inside of it go ahead and clear the
6685 * fragmented check.
6686 */
6687 if (cluster && cluster->fragmented &&
6688 total_unpinned > empty_cluster) {
6689 spin_lock(&cluster->lock);
6690 cluster->fragmented = 0;
6691 spin_unlock(&cluster->lock);
6692 }
6693
7b398f8e 6694 spin_lock(&space_info->lock);
11833d66
YZ
6695 spin_lock(&cache->lock);
6696 cache->pinned -= len;
7b398f8e 6697 space_info->bytes_pinned -= len;
c51e7bb1
JB
6698
6699 trace_btrfs_space_reservation(fs_info, "pinned",
6700 space_info->flags, len, 0);
4f4db217 6701 space_info->max_extent_size = 0;
d288db5d 6702 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6703 if (cache->ro) {
6704 space_info->bytes_readonly += len;
6705 readonly = true;
6706 }
11833d66 6707 spin_unlock(&cache->lock);
957780eb
JB
6708 if (!readonly && return_free_space &&
6709 global_rsv->space_info == space_info) {
6710 u64 to_add = len;
6711 WARN_ON(!return_free_space);
7b398f8e
JB
6712 spin_lock(&global_rsv->lock);
6713 if (!global_rsv->full) {
957780eb
JB
6714 to_add = min(len, global_rsv->size -
6715 global_rsv->reserved);
6716 global_rsv->reserved += to_add;
6717 space_info->bytes_may_use += to_add;
7b398f8e
JB
6718 if (global_rsv->reserved >= global_rsv->size)
6719 global_rsv->full = 1;
957780eb
JB
6720 trace_btrfs_space_reservation(fs_info,
6721 "space_info",
6722 space_info->flags,
6723 to_add, 1);
6724 len -= to_add;
7b398f8e
JB
6725 }
6726 spin_unlock(&global_rsv->lock);
957780eb
JB
6727 /* Add to any tickets we may have */
6728 if (len)
6729 space_info_add_new_bytes(fs_info, space_info,
6730 len);
7b398f8e
JB
6731 }
6732 spin_unlock(&space_info->lock);
ccd467d6 6733 }
11833d66
YZ
6734
6735 if (cache)
6736 btrfs_put_block_group(cache);
ccd467d6
CM
6737 return 0;
6738}
6739
6740int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6741 struct btrfs_root *root)
a28ec197 6742{
11833d66 6743 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6744 struct btrfs_block_group_cache *block_group, *tmp;
6745 struct list_head *deleted_bgs;
11833d66 6746 struct extent_io_tree *unpin;
1a5bc167
CM
6747 u64 start;
6748 u64 end;
a28ec197 6749 int ret;
a28ec197 6750
11833d66
YZ
6751 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6752 unpin = &fs_info->freed_extents[1];
6753 else
6754 unpin = &fs_info->freed_extents[0];
6755
e33e17ee 6756 while (!trans->aborted) {
d4b450cd 6757 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6758 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6759 EXTENT_DIRTY, NULL);
d4b450cd
FM
6760 if (ret) {
6761 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6762 break;
d4b450cd 6763 }
1f3c79a2 6764
3cdde224 6765 if (btrfs_test_opt(root->fs_info, DISCARD))
5378e607
LD
6766 ret = btrfs_discard_extent(root, start,
6767 end + 1 - start, NULL);
1f3c79a2 6768
af6f8f60 6769 clear_extent_dirty(unpin, start, end);
678886bd 6770 unpin_extent_range(root, start, end, true);
d4b450cd 6771 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6772 cond_resched();
a28ec197 6773 }
817d52f8 6774
e33e17ee
JM
6775 /*
6776 * Transaction is finished. We don't need the lock anymore. We
6777 * do need to clean up the block groups in case of a transaction
6778 * abort.
6779 */
6780 deleted_bgs = &trans->transaction->deleted_bgs;
6781 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6782 u64 trimmed = 0;
6783
6784 ret = -EROFS;
6785 if (!trans->aborted)
6786 ret = btrfs_discard_extent(root,
6787 block_group->key.objectid,
6788 block_group->key.offset,
6789 &trimmed);
6790
6791 list_del_init(&block_group->bg_list);
6792 btrfs_put_block_group_trimming(block_group);
6793 btrfs_put_block_group(block_group);
6794
6795 if (ret) {
6796 const char *errstr = btrfs_decode_error(ret);
6797 btrfs_warn(fs_info,
6798 "Discard failed while removing blockgroup: errno=%d %s\n",
6799 ret, errstr);
6800 }
6801 }
6802
e20d96d6
CM
6803 return 0;
6804}
6805
b150a4f1
JB
6806static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6807 u64 owner, u64 root_objectid)
6808{
6809 struct btrfs_space_info *space_info;
6810 u64 flags;
6811
6812 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6813 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6814 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6815 else
6816 flags = BTRFS_BLOCK_GROUP_METADATA;
6817 } else {
6818 flags = BTRFS_BLOCK_GROUP_DATA;
6819 }
6820
6821 space_info = __find_space_info(fs_info, flags);
6822 BUG_ON(!space_info); /* Logic bug */
6823 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6824}
6825
6826
5d4f98a2
YZ
6827static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6828 struct btrfs_root *root,
c682f9b3 6829 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6830 u64 root_objectid, u64 owner_objectid,
6831 u64 owner_offset, int refs_to_drop,
c682f9b3 6832 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6833{
e2fa7227 6834 struct btrfs_key key;
5d4f98a2 6835 struct btrfs_path *path;
1261ec42
CM
6836 struct btrfs_fs_info *info = root->fs_info;
6837 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6838 struct extent_buffer *leaf;
5d4f98a2
YZ
6839 struct btrfs_extent_item *ei;
6840 struct btrfs_extent_inline_ref *iref;
a28ec197 6841 int ret;
5d4f98a2 6842 int is_data;
952fccac
CM
6843 int extent_slot = 0;
6844 int found_extent = 0;
6845 int num_to_del = 1;
5d4f98a2
YZ
6846 u32 item_size;
6847 u64 refs;
c682f9b3
QW
6848 u64 bytenr = node->bytenr;
6849 u64 num_bytes = node->num_bytes;
fcebe456 6850 int last_ref = 0;
3173a18f
JB
6851 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6852 SKINNY_METADATA);
037e6390 6853
5caf2a00 6854 path = btrfs_alloc_path();
54aa1f4d
CM
6855 if (!path)
6856 return -ENOMEM;
5f26f772 6857
e4058b54 6858 path->reada = READA_FORWARD;
b9473439 6859 path->leave_spinning = 1;
5d4f98a2
YZ
6860
6861 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6862 BUG_ON(!is_data && refs_to_drop != 1);
6863
3173a18f
JB
6864 if (is_data)
6865 skinny_metadata = 0;
6866
5d4f98a2
YZ
6867 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6868 bytenr, num_bytes, parent,
6869 root_objectid, owner_objectid,
6870 owner_offset);
7bb86316 6871 if (ret == 0) {
952fccac 6872 extent_slot = path->slots[0];
5d4f98a2
YZ
6873 while (extent_slot >= 0) {
6874 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6875 extent_slot);
5d4f98a2 6876 if (key.objectid != bytenr)
952fccac 6877 break;
5d4f98a2
YZ
6878 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6879 key.offset == num_bytes) {
952fccac
CM
6880 found_extent = 1;
6881 break;
6882 }
3173a18f
JB
6883 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6884 key.offset == owner_objectid) {
6885 found_extent = 1;
6886 break;
6887 }
952fccac
CM
6888 if (path->slots[0] - extent_slot > 5)
6889 break;
5d4f98a2 6890 extent_slot--;
952fccac 6891 }
5d4f98a2
YZ
6892#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6893 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6894 if (found_extent && item_size < sizeof(*ei))
6895 found_extent = 0;
6896#endif
31840ae1 6897 if (!found_extent) {
5d4f98a2 6898 BUG_ON(iref);
56bec294 6899 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6900 NULL, refs_to_drop,
fcebe456 6901 is_data, &last_ref);
005d6427 6902 if (ret) {
66642832 6903 btrfs_abort_transaction(trans, ret);
005d6427
DS
6904 goto out;
6905 }
b3b4aa74 6906 btrfs_release_path(path);
b9473439 6907 path->leave_spinning = 1;
5d4f98a2
YZ
6908
6909 key.objectid = bytenr;
6910 key.type = BTRFS_EXTENT_ITEM_KEY;
6911 key.offset = num_bytes;
6912
3173a18f
JB
6913 if (!is_data && skinny_metadata) {
6914 key.type = BTRFS_METADATA_ITEM_KEY;
6915 key.offset = owner_objectid;
6916 }
6917
31840ae1
ZY
6918 ret = btrfs_search_slot(trans, extent_root,
6919 &key, path, -1, 1);
3173a18f
JB
6920 if (ret > 0 && skinny_metadata && path->slots[0]) {
6921 /*
6922 * Couldn't find our skinny metadata item,
6923 * see if we have ye olde extent item.
6924 */
6925 path->slots[0]--;
6926 btrfs_item_key_to_cpu(path->nodes[0], &key,
6927 path->slots[0]);
6928 if (key.objectid == bytenr &&
6929 key.type == BTRFS_EXTENT_ITEM_KEY &&
6930 key.offset == num_bytes)
6931 ret = 0;
6932 }
6933
6934 if (ret > 0 && skinny_metadata) {
6935 skinny_metadata = false;
9ce49a0b 6936 key.objectid = bytenr;
3173a18f
JB
6937 key.type = BTRFS_EXTENT_ITEM_KEY;
6938 key.offset = num_bytes;
6939 btrfs_release_path(path);
6940 ret = btrfs_search_slot(trans, extent_root,
6941 &key, path, -1, 1);
6942 }
6943
f3465ca4 6944 if (ret) {
5d163e0e
JM
6945 btrfs_err(info,
6946 "umm, got %d back from search, was looking for %llu",
6947 ret, bytenr);
b783e62d
JB
6948 if (ret > 0)
6949 btrfs_print_leaf(extent_root,
6950 path->nodes[0]);
f3465ca4 6951 }
005d6427 6952 if (ret < 0) {
66642832 6953 btrfs_abort_transaction(trans, ret);
005d6427
DS
6954 goto out;
6955 }
31840ae1
ZY
6956 extent_slot = path->slots[0];
6957 }
fae7f21c 6958 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6959 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6960 btrfs_err(info,
6961 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6962 bytenr, parent, root_objectid, owner_objectid,
6963 owner_offset);
66642832 6964 btrfs_abort_transaction(trans, ret);
c4a050bb 6965 goto out;
79787eaa 6966 } else {
66642832 6967 btrfs_abort_transaction(trans, ret);
005d6427 6968 goto out;
7bb86316 6969 }
5f39d397
CM
6970
6971 leaf = path->nodes[0];
5d4f98a2
YZ
6972 item_size = btrfs_item_size_nr(leaf, extent_slot);
6973#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6974 if (item_size < sizeof(*ei)) {
6975 BUG_ON(found_extent || extent_slot != path->slots[0]);
6976 ret = convert_extent_item_v0(trans, extent_root, path,
6977 owner_objectid, 0);
005d6427 6978 if (ret < 0) {
66642832 6979 btrfs_abort_transaction(trans, ret);
005d6427
DS
6980 goto out;
6981 }
5d4f98a2 6982
b3b4aa74 6983 btrfs_release_path(path);
5d4f98a2
YZ
6984 path->leave_spinning = 1;
6985
6986 key.objectid = bytenr;
6987 key.type = BTRFS_EXTENT_ITEM_KEY;
6988 key.offset = num_bytes;
6989
6990 ret = btrfs_search_slot(trans, extent_root, &key, path,
6991 -1, 1);
6992 if (ret) {
5d163e0e
JM
6993 btrfs_err(info,
6994 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6995 ret, bytenr);
5d4f98a2
YZ
6996 btrfs_print_leaf(extent_root, path->nodes[0]);
6997 }
005d6427 6998 if (ret < 0) {
66642832 6999 btrfs_abort_transaction(trans, ret);
005d6427
DS
7000 goto out;
7001 }
7002
5d4f98a2
YZ
7003 extent_slot = path->slots[0];
7004 leaf = path->nodes[0];
7005 item_size = btrfs_item_size_nr(leaf, extent_slot);
7006 }
7007#endif
7008 BUG_ON(item_size < sizeof(*ei));
952fccac 7009 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7010 struct btrfs_extent_item);
3173a18f
JB
7011 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7012 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7013 struct btrfs_tree_block_info *bi;
7014 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7015 bi = (struct btrfs_tree_block_info *)(ei + 1);
7016 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7017 }
56bec294 7018
5d4f98a2 7019 refs = btrfs_extent_refs(leaf, ei);
32b02538 7020 if (refs < refs_to_drop) {
5d163e0e
JM
7021 btrfs_err(info,
7022 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7023 refs_to_drop, refs, bytenr);
32b02538 7024 ret = -EINVAL;
66642832 7025 btrfs_abort_transaction(trans, ret);
32b02538
JB
7026 goto out;
7027 }
56bec294 7028 refs -= refs_to_drop;
5f39d397 7029
5d4f98a2
YZ
7030 if (refs > 0) {
7031 if (extent_op)
7032 __run_delayed_extent_op(extent_op, leaf, ei);
7033 /*
7034 * In the case of inline back ref, reference count will
7035 * be updated by remove_extent_backref
952fccac 7036 */
5d4f98a2
YZ
7037 if (iref) {
7038 BUG_ON(!found_extent);
7039 } else {
7040 btrfs_set_extent_refs(leaf, ei, refs);
7041 btrfs_mark_buffer_dirty(leaf);
7042 }
7043 if (found_extent) {
7044 ret = remove_extent_backref(trans, extent_root, path,
7045 iref, refs_to_drop,
fcebe456 7046 is_data, &last_ref);
005d6427 7047 if (ret) {
66642832 7048 btrfs_abort_transaction(trans, ret);
005d6427
DS
7049 goto out;
7050 }
952fccac 7051 }
b150a4f1
JB
7052 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7053 root_objectid);
5d4f98a2 7054 } else {
5d4f98a2
YZ
7055 if (found_extent) {
7056 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7057 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7058 if (iref) {
7059 BUG_ON(path->slots[0] != extent_slot);
7060 } else {
7061 BUG_ON(path->slots[0] != extent_slot + 1);
7062 path->slots[0] = extent_slot;
7063 num_to_del = 2;
7064 }
78fae27e 7065 }
b9473439 7066
fcebe456 7067 last_ref = 1;
952fccac
CM
7068 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7069 num_to_del);
005d6427 7070 if (ret) {
66642832 7071 btrfs_abort_transaction(trans, ret);
005d6427
DS
7072 goto out;
7073 }
b3b4aa74 7074 btrfs_release_path(path);
21af804c 7075
5d4f98a2 7076 if (is_data) {
5b4aacef 7077 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7078 if (ret) {
66642832 7079 btrfs_abort_transaction(trans, ret);
005d6427
DS
7080 goto out;
7081 }
459931ec
CM
7082 }
7083
1e144fb8
OS
7084 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7085 num_bytes);
7086 if (ret) {
66642832 7087 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7088 goto out;
7089 }
7090
ce93ec54 7091 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427 7092 if (ret) {
66642832 7093 btrfs_abort_transaction(trans, ret);
005d6427
DS
7094 goto out;
7095 }
a28ec197 7096 }
fcebe456
JB
7097 btrfs_release_path(path);
7098
79787eaa 7099out:
5caf2a00 7100 btrfs_free_path(path);
a28ec197
CM
7101 return ret;
7102}
7103
1887be66 7104/*
f0486c68 7105 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7106 * delayed ref for that extent as well. This searches the delayed ref tree for
7107 * a given extent, and if there are no other delayed refs to be processed, it
7108 * removes it from the tree.
7109 */
7110static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7111 struct btrfs_root *root, u64 bytenr)
7112{
7113 struct btrfs_delayed_ref_head *head;
7114 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7115 int ret = 0;
1887be66
CM
7116
7117 delayed_refs = &trans->transaction->delayed_refs;
7118 spin_lock(&delayed_refs->lock);
7119 head = btrfs_find_delayed_ref_head(trans, bytenr);
7120 if (!head)
cf93da7b 7121 goto out_delayed_unlock;
1887be66 7122
d7df2c79 7123 spin_lock(&head->lock);
c6fc2454 7124 if (!list_empty(&head->ref_list))
1887be66
CM
7125 goto out;
7126
5d4f98a2
YZ
7127 if (head->extent_op) {
7128 if (!head->must_insert_reserved)
7129 goto out;
78a6184a 7130 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7131 head->extent_op = NULL;
7132 }
7133
1887be66
CM
7134 /*
7135 * waiting for the lock here would deadlock. If someone else has it
7136 * locked they are already in the process of dropping it anyway
7137 */
7138 if (!mutex_trylock(&head->mutex))
7139 goto out;
7140
7141 /*
7142 * at this point we have a head with no other entries. Go
7143 * ahead and process it.
7144 */
7145 head->node.in_tree = 0;
c46effa6 7146 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7147
d7df2c79 7148 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7149
7150 /*
7151 * we don't take a ref on the node because we're removing it from the
7152 * tree, so we just steal the ref the tree was holding.
7153 */
c3e69d58 7154 delayed_refs->num_heads--;
d7df2c79 7155 if (head->processing == 0)
c3e69d58 7156 delayed_refs->num_heads_ready--;
d7df2c79
JB
7157 head->processing = 0;
7158 spin_unlock(&head->lock);
1887be66
CM
7159 spin_unlock(&delayed_refs->lock);
7160
f0486c68
YZ
7161 BUG_ON(head->extent_op);
7162 if (head->must_insert_reserved)
7163 ret = 1;
7164
7165 mutex_unlock(&head->mutex);
1887be66 7166 btrfs_put_delayed_ref(&head->node);
f0486c68 7167 return ret;
1887be66 7168out:
d7df2c79 7169 spin_unlock(&head->lock);
cf93da7b
CM
7170
7171out_delayed_unlock:
1887be66
CM
7172 spin_unlock(&delayed_refs->lock);
7173 return 0;
7174}
7175
f0486c68
YZ
7176void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7177 struct btrfs_root *root,
7178 struct extent_buffer *buf,
5581a51a 7179 u64 parent, int last_ref)
f0486c68 7180{
b150a4f1 7181 int pin = 1;
f0486c68
YZ
7182 int ret;
7183
7184 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
7185 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7186 buf->start, buf->len,
7187 parent, root->root_key.objectid,
7188 btrfs_header_level(buf),
b06c4bf5 7189 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7190 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7191 }
7192
7193 if (!last_ref)
7194 return;
7195
f0486c68 7196 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7197 struct btrfs_block_group_cache *cache;
7198
f0486c68
YZ
7199 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7200 ret = check_ref_cleanup(trans, root, buf->start);
7201 if (!ret)
37be25bc 7202 goto out;
f0486c68
YZ
7203 }
7204
6219872d
FM
7205 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7206
f0486c68
YZ
7207 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7208 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 7209 btrfs_put_block_group(cache);
37be25bc 7210 goto out;
f0486c68
YZ
7211 }
7212
7213 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7214
7215 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7216 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7217 btrfs_put_block_group(cache);
0be5dc67 7218 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 7219 pin = 0;
f0486c68
YZ
7220 }
7221out:
b150a4f1
JB
7222 if (pin)
7223 add_pinned_bytes(root->fs_info, buf->len,
7224 btrfs_header_level(buf),
7225 root->root_key.objectid);
7226
a826d6dc
JB
7227 /*
7228 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7229 * anymore.
7230 */
7231 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7232}
7233
79787eaa 7234/* Can return -ENOMEM */
66d7e7f0
AJ
7235int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7236 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7237 u64 owner, u64 offset)
925baedd
CM
7238{
7239 int ret;
66d7e7f0 7240 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7241
f5ee5c9a 7242 if (btrfs_is_testing(fs_info))
faa2dbf0 7243 return 0;
fccb84c9 7244
b150a4f1
JB
7245 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7246
56bec294
CM
7247 /*
7248 * tree log blocks never actually go into the extent allocation
7249 * tree, just update pinning info and exit early.
56bec294 7250 */
5d4f98a2
YZ
7251 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7252 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7253 /* unlocks the pinned mutex */
11833d66 7254 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7255 ret = 0;
5d4f98a2 7256 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7257 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7258 num_bytes,
5d4f98a2 7259 parent, root_objectid, (int)owner,
b06c4bf5 7260 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7261 } else {
66d7e7f0
AJ
7262 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7263 num_bytes,
7264 parent, root_objectid, owner,
5846a3c2
QW
7265 offset, 0,
7266 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7267 }
925baedd
CM
7268 return ret;
7269}
7270
817d52f8
JB
7271/*
7272 * when we wait for progress in the block group caching, its because
7273 * our allocation attempt failed at least once. So, we must sleep
7274 * and let some progress happen before we try again.
7275 *
7276 * This function will sleep at least once waiting for new free space to
7277 * show up, and then it will check the block group free space numbers
7278 * for our min num_bytes. Another option is to have it go ahead
7279 * and look in the rbtree for a free extent of a given size, but this
7280 * is a good start.
36cce922
JB
7281 *
7282 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7283 * any of the information in this block group.
817d52f8 7284 */
36cce922 7285static noinline void
817d52f8
JB
7286wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7287 u64 num_bytes)
7288{
11833d66 7289 struct btrfs_caching_control *caching_ctl;
817d52f8 7290
11833d66
YZ
7291 caching_ctl = get_caching_control(cache);
7292 if (!caching_ctl)
36cce922 7293 return;
817d52f8 7294
11833d66 7295 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7296 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7297
7298 put_caching_control(caching_ctl);
11833d66
YZ
7299}
7300
7301static noinline int
7302wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7303{
7304 struct btrfs_caching_control *caching_ctl;
36cce922 7305 int ret = 0;
11833d66
YZ
7306
7307 caching_ctl = get_caching_control(cache);
7308 if (!caching_ctl)
36cce922 7309 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7310
7311 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7312 if (cache->cached == BTRFS_CACHE_ERROR)
7313 ret = -EIO;
11833d66 7314 put_caching_control(caching_ctl);
36cce922 7315 return ret;
817d52f8
JB
7316}
7317
31e50229 7318int __get_raid_index(u64 flags)
b742bb82 7319{
7738a53a 7320 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7321 return BTRFS_RAID_RAID10;
7738a53a 7322 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7323 return BTRFS_RAID_RAID1;
7738a53a 7324 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7325 return BTRFS_RAID_DUP;
7738a53a 7326 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7327 return BTRFS_RAID_RAID0;
53b381b3 7328 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7329 return BTRFS_RAID_RAID5;
53b381b3 7330 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7331 return BTRFS_RAID_RAID6;
7738a53a 7332
e942f883 7333 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7334}
7335
6ab0a202 7336int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7337{
31e50229 7338 return __get_raid_index(cache->flags);
7738a53a
ID
7339}
7340
6ab0a202
JM
7341static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7342 [BTRFS_RAID_RAID10] = "raid10",
7343 [BTRFS_RAID_RAID1] = "raid1",
7344 [BTRFS_RAID_DUP] = "dup",
7345 [BTRFS_RAID_RAID0] = "raid0",
7346 [BTRFS_RAID_SINGLE] = "single",
7347 [BTRFS_RAID_RAID5] = "raid5",
7348 [BTRFS_RAID_RAID6] = "raid6",
7349};
7350
1b8e5df6 7351static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7352{
7353 if (type >= BTRFS_NR_RAID_TYPES)
7354 return NULL;
7355
7356 return btrfs_raid_type_names[type];
7357}
7358
817d52f8 7359enum btrfs_loop_type {
285ff5af
JB
7360 LOOP_CACHING_NOWAIT = 0,
7361 LOOP_CACHING_WAIT = 1,
7362 LOOP_ALLOC_CHUNK = 2,
7363 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7364};
7365
e570fd27
MX
7366static inline void
7367btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7368 int delalloc)
7369{
7370 if (delalloc)
7371 down_read(&cache->data_rwsem);
7372}
7373
7374static inline void
7375btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7376 int delalloc)
7377{
7378 btrfs_get_block_group(cache);
7379 if (delalloc)
7380 down_read(&cache->data_rwsem);
7381}
7382
7383static struct btrfs_block_group_cache *
7384btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7385 struct btrfs_free_cluster *cluster,
7386 int delalloc)
7387{
89771cc9 7388 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7389
e570fd27 7390 spin_lock(&cluster->refill_lock);
6719afdc
GU
7391 while (1) {
7392 used_bg = cluster->block_group;
7393 if (!used_bg)
7394 return NULL;
7395
7396 if (used_bg == block_group)
e570fd27
MX
7397 return used_bg;
7398
6719afdc 7399 btrfs_get_block_group(used_bg);
e570fd27 7400
6719afdc
GU
7401 if (!delalloc)
7402 return used_bg;
e570fd27 7403
6719afdc
GU
7404 if (down_read_trylock(&used_bg->data_rwsem))
7405 return used_bg;
e570fd27 7406
6719afdc 7407 spin_unlock(&cluster->refill_lock);
e570fd27 7408
6719afdc 7409 down_read(&used_bg->data_rwsem);
e570fd27 7410
6719afdc
GU
7411 spin_lock(&cluster->refill_lock);
7412 if (used_bg == cluster->block_group)
7413 return used_bg;
e570fd27 7414
6719afdc
GU
7415 up_read(&used_bg->data_rwsem);
7416 btrfs_put_block_group(used_bg);
7417 }
e570fd27
MX
7418}
7419
7420static inline void
7421btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7422 int delalloc)
7423{
7424 if (delalloc)
7425 up_read(&cache->data_rwsem);
7426 btrfs_put_block_group(cache);
7427}
7428
fec577fb
CM
7429/*
7430 * walks the btree of allocated extents and find a hole of a given size.
7431 * The key ins is changed to record the hole:
a4820398 7432 * ins->objectid == start position
62e2749e 7433 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7434 * ins->offset == the size of the hole.
fec577fb 7435 * Any available blocks before search_start are skipped.
a4820398
MX
7436 *
7437 * If there is no suitable free space, we will record the max size of
7438 * the free space extent currently.
fec577fb 7439 */
00361589 7440static noinline int find_free_extent(struct btrfs_root *orig_root,
18513091
WX
7441 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7442 u64 hint_byte, struct btrfs_key *ins,
7443 u64 flags, int delalloc)
fec577fb 7444{
80eb234a 7445 int ret = 0;
d397712b 7446 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7447 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7448 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7449 u64 search_start = 0;
a4820398 7450 u64 max_extent_size = 0;
c759c4e1 7451 u64 empty_cluster = 0;
80eb234a 7452 struct btrfs_space_info *space_info;
fa9c0d79 7453 int loop = 0;
b6919a58 7454 int index = __get_raid_index(flags);
0a24325e 7455 bool failed_cluster_refill = false;
1cdda9b8 7456 bool failed_alloc = false;
67377734 7457 bool use_cluster = true;
60d2adbb 7458 bool have_caching_bg = false;
13a0db5a 7459 bool orig_have_caching_bg = false;
a5e681d9 7460 bool full_search = false;
fec577fb 7461
da17066c 7462 WARN_ON(num_bytes < root->fs_info->sectorsize);
962a298f 7463 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7464 ins->objectid = 0;
7465 ins->offset = 0;
b1a4d965 7466
b6919a58 7467 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7468
b6919a58 7469 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7470 if (!space_info) {
b6919a58 7471 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7472 return -ENOSPC;
7473 }
2552d17e 7474
67377734 7475 /*
4f4db217
JB
7476 * If our free space is heavily fragmented we may not be able to make
7477 * big contiguous allocations, so instead of doing the expensive search
7478 * for free space, simply return ENOSPC with our max_extent_size so we
7479 * can go ahead and search for a more manageable chunk.
7480 *
7481 * If our max_extent_size is large enough for our allocation simply
7482 * disable clustering since we will likely not be able to find enough
7483 * space to create a cluster and induce latency trying.
67377734 7484 */
4f4db217
JB
7485 if (unlikely(space_info->max_extent_size)) {
7486 spin_lock(&space_info->lock);
7487 if (space_info->max_extent_size &&
7488 num_bytes > space_info->max_extent_size) {
7489 ins->offset = space_info->max_extent_size;
7490 spin_unlock(&space_info->lock);
7491 return -ENOSPC;
7492 } else if (space_info->max_extent_size) {
7493 use_cluster = false;
7494 }
7495 spin_unlock(&space_info->lock);
fa9c0d79 7496 }
0f9dd46c 7497
c759c4e1 7498 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7499 if (last_ptr) {
fa9c0d79
CM
7500 spin_lock(&last_ptr->lock);
7501 if (last_ptr->block_group)
7502 hint_byte = last_ptr->window_start;
c759c4e1
JB
7503 if (last_ptr->fragmented) {
7504 /*
7505 * We still set window_start so we can keep track of the
7506 * last place we found an allocation to try and save
7507 * some time.
7508 */
7509 hint_byte = last_ptr->window_start;
7510 use_cluster = false;
7511 }
fa9c0d79 7512 spin_unlock(&last_ptr->lock);
239b14b3 7513 }
fa9c0d79 7514
a061fc8d 7515 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7516 search_start = max(search_start, hint_byte);
2552d17e 7517 if (search_start == hint_byte) {
2552d17e
JB
7518 block_group = btrfs_lookup_block_group(root->fs_info,
7519 search_start);
817d52f8
JB
7520 /*
7521 * we don't want to use the block group if it doesn't match our
7522 * allocation bits, or if its not cached.
ccf0e725
JB
7523 *
7524 * However if we are re-searching with an ideal block group
7525 * picked out then we don't care that the block group is cached.
817d52f8 7526 */
b6919a58 7527 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7528 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7529 down_read(&space_info->groups_sem);
44fb5511
CM
7530 if (list_empty(&block_group->list) ||
7531 block_group->ro) {
7532 /*
7533 * someone is removing this block group,
7534 * we can't jump into the have_block_group
7535 * target because our list pointers are not
7536 * valid
7537 */
7538 btrfs_put_block_group(block_group);
7539 up_read(&space_info->groups_sem);
ccf0e725 7540 } else {
b742bb82 7541 index = get_block_group_index(block_group);
e570fd27 7542 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7543 goto have_block_group;
ccf0e725 7544 }
2552d17e 7545 } else if (block_group) {
fa9c0d79 7546 btrfs_put_block_group(block_group);
2552d17e 7547 }
42e70e7a 7548 }
2552d17e 7549search:
60d2adbb 7550 have_caching_bg = false;
a5e681d9
JB
7551 if (index == 0 || index == __get_raid_index(flags))
7552 full_search = true;
80eb234a 7553 down_read(&space_info->groups_sem);
b742bb82
YZ
7554 list_for_each_entry(block_group, &space_info->block_groups[index],
7555 list) {
6226cb0a 7556 u64 offset;
817d52f8 7557 int cached;
8a1413a2 7558
e570fd27 7559 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7560 search_start = block_group->key.objectid;
42e70e7a 7561
83a50de9
CM
7562 /*
7563 * this can happen if we end up cycling through all the
7564 * raid types, but we want to make sure we only allocate
7565 * for the proper type.
7566 */
b6919a58 7567 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7568 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7569 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7570 BTRFS_BLOCK_GROUP_RAID5 |
7571 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7572 BTRFS_BLOCK_GROUP_RAID10;
7573
7574 /*
7575 * if they asked for extra copies and this block group
7576 * doesn't provide them, bail. This does allow us to
7577 * fill raid0 from raid1.
7578 */
b6919a58 7579 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7580 goto loop;
7581 }
7582
2552d17e 7583have_block_group:
291c7d2f
JB
7584 cached = block_group_cache_done(block_group);
7585 if (unlikely(!cached)) {
a5e681d9 7586 have_caching_bg = true;
f6373bf3 7587 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7588 BUG_ON(ret < 0);
7589 ret = 0;
817d52f8
JB
7590 }
7591
36cce922
JB
7592 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7593 goto loop;
ea6a478e 7594 if (unlikely(block_group->ro))
2552d17e 7595 goto loop;
0f9dd46c 7596
0a24325e 7597 /*
062c05c4
AO
7598 * Ok we want to try and use the cluster allocator, so
7599 * lets look there
0a24325e 7600 */
c759c4e1 7601 if (last_ptr && use_cluster) {
215a63d1 7602 struct btrfs_block_group_cache *used_block_group;
8de972b4 7603 unsigned long aligned_cluster;
fa9c0d79
CM
7604 /*
7605 * the refill lock keeps out other
7606 * people trying to start a new cluster
7607 */
e570fd27
MX
7608 used_block_group = btrfs_lock_cluster(block_group,
7609 last_ptr,
7610 delalloc);
7611 if (!used_block_group)
44fb5511 7612 goto refill_cluster;
274bd4fb 7613
e570fd27
MX
7614 if (used_block_group != block_group &&
7615 (used_block_group->ro ||
7616 !block_group_bits(used_block_group, flags)))
7617 goto release_cluster;
44fb5511 7618
274bd4fb 7619 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7620 last_ptr,
7621 num_bytes,
7622 used_block_group->key.objectid,
7623 &max_extent_size);
fa9c0d79
CM
7624 if (offset) {
7625 /* we have a block, we're done */
7626 spin_unlock(&last_ptr->refill_lock);
3f7de037 7627 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7628 used_block_group,
7629 search_start, num_bytes);
215a63d1 7630 if (used_block_group != block_group) {
e570fd27
MX
7631 btrfs_release_block_group(block_group,
7632 delalloc);
215a63d1
MX
7633 block_group = used_block_group;
7634 }
fa9c0d79
CM
7635 goto checks;
7636 }
7637
274bd4fb 7638 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7639release_cluster:
062c05c4
AO
7640 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7641 * set up a new clusters, so lets just skip it
7642 * and let the allocator find whatever block
7643 * it can find. If we reach this point, we
7644 * will have tried the cluster allocator
7645 * plenty of times and not have found
7646 * anything, so we are likely way too
7647 * fragmented for the clustering stuff to find
a5f6f719
AO
7648 * anything.
7649 *
7650 * However, if the cluster is taken from the
7651 * current block group, release the cluster
7652 * first, so that we stand a better chance of
7653 * succeeding in the unclustered
7654 * allocation. */
7655 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7656 used_block_group != block_group) {
062c05c4 7657 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7658 btrfs_release_block_group(used_block_group,
7659 delalloc);
062c05c4
AO
7660 goto unclustered_alloc;
7661 }
7662
fa9c0d79
CM
7663 /*
7664 * this cluster didn't work out, free it and
7665 * start over
7666 */
7667 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7668
e570fd27
MX
7669 if (used_block_group != block_group)
7670 btrfs_release_block_group(used_block_group,
7671 delalloc);
7672refill_cluster:
a5f6f719
AO
7673 if (loop >= LOOP_NO_EMPTY_SIZE) {
7674 spin_unlock(&last_ptr->refill_lock);
7675 goto unclustered_alloc;
7676 }
7677
8de972b4
CM
7678 aligned_cluster = max_t(unsigned long,
7679 empty_cluster + empty_size,
7680 block_group->full_stripe_len);
7681
fa9c0d79 7682 /* allocate a cluster in this block group */
00361589
JB
7683 ret = btrfs_find_space_cluster(root, block_group,
7684 last_ptr, search_start,
7685 num_bytes,
7686 aligned_cluster);
fa9c0d79
CM
7687 if (ret == 0) {
7688 /*
7689 * now pull our allocation out of this
7690 * cluster
7691 */
7692 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7693 last_ptr,
7694 num_bytes,
7695 search_start,
7696 &max_extent_size);
fa9c0d79
CM
7697 if (offset) {
7698 /* we found one, proceed */
7699 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7700 trace_btrfs_reserve_extent_cluster(root,
7701 block_group, search_start,
7702 num_bytes);
fa9c0d79
CM
7703 goto checks;
7704 }
0a24325e
JB
7705 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7706 && !failed_cluster_refill) {
817d52f8
JB
7707 spin_unlock(&last_ptr->refill_lock);
7708
0a24325e 7709 failed_cluster_refill = true;
817d52f8
JB
7710 wait_block_group_cache_progress(block_group,
7711 num_bytes + empty_cluster + empty_size);
7712 goto have_block_group;
fa9c0d79 7713 }
817d52f8 7714
fa9c0d79
CM
7715 /*
7716 * at this point we either didn't find a cluster
7717 * or we weren't able to allocate a block from our
7718 * cluster. Free the cluster we've been trying
7719 * to use, and go to the next block group
7720 */
0a24325e 7721 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7722 spin_unlock(&last_ptr->refill_lock);
0a24325e 7723 goto loop;
fa9c0d79
CM
7724 }
7725
062c05c4 7726unclustered_alloc:
c759c4e1
JB
7727 /*
7728 * We are doing an unclustered alloc, set the fragmented flag so
7729 * we don't bother trying to setup a cluster again until we get
7730 * more space.
7731 */
7732 if (unlikely(last_ptr)) {
7733 spin_lock(&last_ptr->lock);
7734 last_ptr->fragmented = 1;
7735 spin_unlock(&last_ptr->lock);
7736 }
a5f6f719
AO
7737 spin_lock(&block_group->free_space_ctl->tree_lock);
7738 if (cached &&
7739 block_group->free_space_ctl->free_space <
7740 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7741 if (block_group->free_space_ctl->free_space >
7742 max_extent_size)
7743 max_extent_size =
7744 block_group->free_space_ctl->free_space;
a5f6f719
AO
7745 spin_unlock(&block_group->free_space_ctl->tree_lock);
7746 goto loop;
7747 }
7748 spin_unlock(&block_group->free_space_ctl->tree_lock);
7749
6226cb0a 7750 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7751 num_bytes, empty_size,
7752 &max_extent_size);
1cdda9b8
JB
7753 /*
7754 * If we didn't find a chunk, and we haven't failed on this
7755 * block group before, and this block group is in the middle of
7756 * caching and we are ok with waiting, then go ahead and wait
7757 * for progress to be made, and set failed_alloc to true.
7758 *
7759 * If failed_alloc is true then we've already waited on this
7760 * block group once and should move on to the next block group.
7761 */
7762 if (!offset && !failed_alloc && !cached &&
7763 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7764 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7765 num_bytes + empty_size);
7766 failed_alloc = true;
817d52f8 7767 goto have_block_group;
1cdda9b8
JB
7768 } else if (!offset) {
7769 goto loop;
817d52f8 7770 }
fa9c0d79 7771checks:
da17066c 7772 search_start = ALIGN(offset, root->fs_info->stripesize);
25179201 7773
2552d17e
JB
7774 /* move on to the next group */
7775 if (search_start + num_bytes >
215a63d1
MX
7776 block_group->key.objectid + block_group->key.offset) {
7777 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7778 goto loop;
6226cb0a 7779 }
f5a31e16 7780
f0486c68 7781 if (offset < search_start)
215a63d1 7782 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7783 search_start - offset);
7784 BUG_ON(offset > search_start);
2552d17e 7785
18513091
WX
7786 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7787 num_bytes, delalloc);
f0486c68 7788 if (ret == -EAGAIN) {
215a63d1 7789 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7790 goto loop;
0f9dd46c 7791 }
9cfa3e34 7792 btrfs_inc_block_group_reservations(block_group);
0b86a832 7793
f0486c68 7794 /* we are all good, lets return */
2552d17e
JB
7795 ins->objectid = search_start;
7796 ins->offset = num_bytes;
d2fb3437 7797
3f7de037
JB
7798 trace_btrfs_reserve_extent(orig_root, block_group,
7799 search_start, num_bytes);
e570fd27 7800 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7801 break;
7802loop:
0a24325e 7803 failed_cluster_refill = false;
1cdda9b8 7804 failed_alloc = false;
b742bb82 7805 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7806 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7807 }
7808 up_read(&space_info->groups_sem);
7809
13a0db5a 7810 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7811 && !orig_have_caching_bg)
7812 orig_have_caching_bg = true;
7813
60d2adbb
MX
7814 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7815 goto search;
7816
b742bb82
YZ
7817 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7818 goto search;
7819
285ff5af 7820 /*
ccf0e725
JB
7821 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7822 * caching kthreads as we move along
817d52f8
JB
7823 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7824 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7825 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7826 * again
fa9c0d79 7827 */
723bda20 7828 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7829 index = 0;
a5e681d9
JB
7830 if (loop == LOOP_CACHING_NOWAIT) {
7831 /*
7832 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7833 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7834 * full search through.
7835 */
13a0db5a 7836 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7837 loop = LOOP_CACHING_WAIT;
7838 else
7839 loop = LOOP_ALLOC_CHUNK;
7840 } else {
7841 loop++;
7842 }
7843
817d52f8 7844 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7845 struct btrfs_trans_handle *trans;
f017f15f
WS
7846 int exist = 0;
7847
7848 trans = current->journal_info;
7849 if (trans)
7850 exist = 1;
7851 else
7852 trans = btrfs_join_transaction(root);
00361589 7853
00361589
JB
7854 if (IS_ERR(trans)) {
7855 ret = PTR_ERR(trans);
7856 goto out;
7857 }
7858
b6919a58 7859 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7860 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7861
7862 /*
7863 * If we can't allocate a new chunk we've already looped
7864 * through at least once, move on to the NO_EMPTY_SIZE
7865 * case.
7866 */
7867 if (ret == -ENOSPC)
7868 loop = LOOP_NO_EMPTY_SIZE;
7869
ea658bad
JB
7870 /*
7871 * Do not bail out on ENOSPC since we
7872 * can do more things.
7873 */
00361589 7874 if (ret < 0 && ret != -ENOSPC)
66642832 7875 btrfs_abort_transaction(trans, ret);
00361589
JB
7876 else
7877 ret = 0;
f017f15f
WS
7878 if (!exist)
7879 btrfs_end_transaction(trans, root);
00361589 7880 if (ret)
ea658bad 7881 goto out;
2552d17e
JB
7882 }
7883
723bda20 7884 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7885 /*
7886 * Don't loop again if we already have no empty_size and
7887 * no empty_cluster.
7888 */
7889 if (empty_size == 0 &&
7890 empty_cluster == 0) {
7891 ret = -ENOSPC;
7892 goto out;
7893 }
723bda20
JB
7894 empty_size = 0;
7895 empty_cluster = 0;
fa9c0d79 7896 }
723bda20
JB
7897
7898 goto search;
2552d17e
JB
7899 } else if (!ins->objectid) {
7900 ret = -ENOSPC;
d82a6f1d 7901 } else if (ins->objectid) {
c759c4e1
JB
7902 if (!use_cluster && last_ptr) {
7903 spin_lock(&last_ptr->lock);
7904 last_ptr->window_start = ins->objectid;
7905 spin_unlock(&last_ptr->lock);
7906 }
80eb234a 7907 ret = 0;
be744175 7908 }
79787eaa 7909out:
4f4db217
JB
7910 if (ret == -ENOSPC) {
7911 spin_lock(&space_info->lock);
7912 space_info->max_extent_size = max_extent_size;
7913 spin_unlock(&space_info->lock);
a4820398 7914 ins->offset = max_extent_size;
4f4db217 7915 }
0f70abe2 7916 return ret;
fec577fb 7917}
ec44a35c 7918
ab8d0fc4
JM
7919static void dump_space_info(struct btrfs_fs_info *fs_info,
7920 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7921 int dump_block_groups)
0f9dd46c
JB
7922{
7923 struct btrfs_block_group_cache *cache;
b742bb82 7924 int index = 0;
0f9dd46c 7925
9ed74f2d 7926 spin_lock(&info->lock);
ab8d0fc4
JM
7927 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7928 info->flags,
7929 info->total_bytes - info->bytes_used - info->bytes_pinned -
7930 info->bytes_reserved - info->bytes_readonly -
7931 info->bytes_may_use, (info->full) ? "" : "not ");
7932 btrfs_info(fs_info,
7933 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7934 info->total_bytes, info->bytes_used, info->bytes_pinned,
7935 info->bytes_reserved, info->bytes_may_use,
7936 info->bytes_readonly);
9ed74f2d
JB
7937 spin_unlock(&info->lock);
7938
7939 if (!dump_block_groups)
7940 return;
0f9dd46c 7941
80eb234a 7942 down_read(&info->groups_sem);
b742bb82
YZ
7943again:
7944 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7945 spin_lock(&cache->lock);
ab8d0fc4
JM
7946 btrfs_info(fs_info,
7947 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7948 cache->key.objectid, cache->key.offset,
7949 btrfs_block_group_used(&cache->item), cache->pinned,
7950 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7951 btrfs_dump_free_space(cache, bytes);
7952 spin_unlock(&cache->lock);
7953 }
b742bb82
YZ
7954 if (++index < BTRFS_NR_RAID_TYPES)
7955 goto again;
80eb234a 7956 up_read(&info->groups_sem);
0f9dd46c 7957}
e8569813 7958
18513091 7959int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7960 u64 num_bytes, u64 min_alloc_size,
7961 u64 empty_size, u64 hint_byte,
e570fd27 7962 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7963{
ab8d0fc4 7964 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7965 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7966 u64 flags;
fec577fb 7967 int ret;
925baedd 7968
b6919a58 7969 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7970again:
da17066c 7971 WARN_ON(num_bytes < root->fs_info->sectorsize);
18513091
WX
7972 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7973 hint_byte, ins, flags, delalloc);
9cfa3e34 7974 if (!ret && !is_data) {
ab8d0fc4 7975 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7976 } else if (ret == -ENOSPC) {
a4820398
MX
7977 if (!final_tried && ins->offset) {
7978 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c
JM
7979 num_bytes = round_down(num_bytes,
7980 root->fs_info->sectorsize);
9e622d6b 7981 num_bytes = max(num_bytes, min_alloc_size);
18513091 7982 ram_bytes = num_bytes;
9e622d6b
MX
7983 if (num_bytes == min_alloc_size)
7984 final_tried = true;
7985 goto again;
ab8d0fc4 7986 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7987 struct btrfs_space_info *sinfo;
7988
ab8d0fc4 7989 sinfo = __find_space_info(fs_info, flags);
5d163e0e
JM
7990 btrfs_err(root->fs_info,
7991 "allocation failed flags %llu, wanted %llu",
7992 flags, num_bytes);
53804280 7993 if (sinfo)
ab8d0fc4 7994 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7995 }
925baedd 7996 }
0f9dd46c
JB
7997
7998 return ret;
e6dcd2dc
CM
7999}
8000
e688b725 8001static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
8002 u64 start, u64 len,
8003 int pin, int delalloc)
65b51a00 8004{
0f9dd46c 8005 struct btrfs_block_group_cache *cache;
1f3c79a2 8006 int ret = 0;
0f9dd46c 8007
0f9dd46c
JB
8008 cache = btrfs_lookup_block_group(root->fs_info, start);
8009 if (!cache) {
c2cf52eb 8010 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 8011 start);
0f9dd46c
JB
8012 return -ENOSPC;
8013 }
1f3c79a2 8014
e688b725
CM
8015 if (pin)
8016 pin_down_extent(root, cache, start, len, 1);
8017 else {
3cdde224 8018 if (btrfs_test_opt(root->fs_info, DISCARD))
dcc82f47 8019 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 8020 btrfs_add_free_space(cache, start, len);
4824f1f4 8021 btrfs_free_reserved_bytes(cache, len, delalloc);
31bada7c 8022 trace_btrfs_reserved_extent_free(root, start, len);
e688b725 8023 }
31193213 8024
fa9c0d79 8025 btrfs_put_block_group(cache);
e6dcd2dc
CM
8026 return ret;
8027}
8028
e688b725 8029int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 8030 u64 start, u64 len, int delalloc)
e688b725 8031{
e570fd27 8032 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
8033}
8034
8035int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8036 u64 start, u64 len)
8037{
e570fd27 8038 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
8039}
8040
5d4f98a2
YZ
8041static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8042 struct btrfs_root *root,
8043 u64 parent, u64 root_objectid,
8044 u64 flags, u64 owner, u64 offset,
8045 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8046{
8047 int ret;
5d4f98a2 8048 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 8049 struct btrfs_extent_item *extent_item;
5d4f98a2 8050 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8051 struct btrfs_path *path;
5d4f98a2
YZ
8052 struct extent_buffer *leaf;
8053 int type;
8054 u32 size;
26b8003f 8055
5d4f98a2
YZ
8056 if (parent > 0)
8057 type = BTRFS_SHARED_DATA_REF_KEY;
8058 else
8059 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8060
5d4f98a2 8061 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8062
8063 path = btrfs_alloc_path();
db5b493a
TI
8064 if (!path)
8065 return -ENOMEM;
47e4bb98 8066
b9473439 8067 path->leave_spinning = 1;
5d4f98a2
YZ
8068 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8069 ins, size);
79787eaa
JM
8070 if (ret) {
8071 btrfs_free_path(path);
8072 return ret;
8073 }
0f9dd46c 8074
5d4f98a2
YZ
8075 leaf = path->nodes[0];
8076 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8077 struct btrfs_extent_item);
5d4f98a2
YZ
8078 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8079 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8080 btrfs_set_extent_flags(leaf, extent_item,
8081 flags | BTRFS_EXTENT_FLAG_DATA);
8082
8083 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8084 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8085 if (parent > 0) {
8086 struct btrfs_shared_data_ref *ref;
8087 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8088 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8089 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8090 } else {
8091 struct btrfs_extent_data_ref *ref;
8092 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8093 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8094 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8095 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8096 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8097 }
47e4bb98
CM
8098
8099 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8100 btrfs_free_path(path);
f510cfec 8101
1e144fb8
OS
8102 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8103 ins->offset);
8104 if (ret)
8105 return ret;
8106
ce93ec54 8107 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 8108 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8109 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8110 ins->objectid, ins->offset);
f5947066
CM
8111 BUG();
8112 }
2b2e27eb
JM
8113 trace_btrfs_reserved_extent_alloc(fs_info->extent_root,
8114 ins->objectid, ins->offset);
e6dcd2dc
CM
8115 return ret;
8116}
8117
5d4f98a2
YZ
8118static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8119 struct btrfs_root *root,
8120 u64 parent, u64 root_objectid,
8121 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8122 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8123{
8124 int ret;
5d4f98a2
YZ
8125 struct btrfs_fs_info *fs_info = root->fs_info;
8126 struct btrfs_extent_item *extent_item;
8127 struct btrfs_tree_block_info *block_info;
8128 struct btrfs_extent_inline_ref *iref;
8129 struct btrfs_path *path;
8130 struct extent_buffer *leaf;
3173a18f 8131 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8132 u64 num_bytes = ins->offset;
3173a18f
JB
8133 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8134 SKINNY_METADATA);
8135
8136 if (!skinny_metadata)
8137 size += sizeof(*block_info);
1c2308f8 8138
5d4f98a2 8139 path = btrfs_alloc_path();
857cc2fc
JB
8140 if (!path) {
8141 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
da17066c 8142 root->fs_info->nodesize);
d8926bb3 8143 return -ENOMEM;
857cc2fc 8144 }
56bec294 8145
5d4f98a2
YZ
8146 path->leave_spinning = 1;
8147 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8148 ins, size);
79787eaa 8149 if (ret) {
dd825259 8150 btrfs_free_path(path);
857cc2fc 8151 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
da17066c 8152 root->fs_info->nodesize);
79787eaa
JM
8153 return ret;
8154 }
5d4f98a2
YZ
8155
8156 leaf = path->nodes[0];
8157 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8158 struct btrfs_extent_item);
8159 btrfs_set_extent_refs(leaf, extent_item, 1);
8160 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8161 btrfs_set_extent_flags(leaf, extent_item,
8162 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8163
3173a18f
JB
8164 if (skinny_metadata) {
8165 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
da17066c 8166 num_bytes = root->fs_info->nodesize;
3173a18f
JB
8167 } else {
8168 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8169 btrfs_set_tree_block_key(leaf, block_info, key);
8170 btrfs_set_tree_block_level(leaf, block_info, level);
8171 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8172 }
5d4f98a2 8173
5d4f98a2
YZ
8174 if (parent > 0) {
8175 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8176 btrfs_set_extent_inline_ref_type(leaf, iref,
8177 BTRFS_SHARED_BLOCK_REF_KEY);
8178 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8179 } else {
8180 btrfs_set_extent_inline_ref_type(leaf, iref,
8181 BTRFS_TREE_BLOCK_REF_KEY);
8182 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8183 }
8184
8185 btrfs_mark_buffer_dirty(leaf);
8186 btrfs_free_path(path);
8187
1e144fb8
OS
8188 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8189 num_bytes);
8190 if (ret)
8191 return ret;
8192
da17066c
JM
8193 ret = update_block_group(trans, root, ins->objectid,
8194 root->fs_info->nodesize,
ce93ec54 8195 1);
79787eaa 8196 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8197 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8198 ins->objectid, ins->offset);
5d4f98a2
YZ
8199 BUG();
8200 }
0be5dc67 8201
da17066c
JM
8202 trace_btrfs_reserved_extent_alloc(root, ins->objectid,
8203 root->fs_info->nodesize);
5d4f98a2
YZ
8204 return ret;
8205}
8206
8207int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8208 struct btrfs_root *root,
8209 u64 root_objectid, u64 owner,
5846a3c2
QW
8210 u64 offset, u64 ram_bytes,
8211 struct btrfs_key *ins)
5d4f98a2
YZ
8212{
8213 int ret;
8214
8215 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8216
66d7e7f0
AJ
8217 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8218 ins->offset, 0,
8219 root_objectid, owner, offset,
5846a3c2
QW
8220 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8221 NULL);
e6dcd2dc
CM
8222 return ret;
8223}
e02119d5
CM
8224
8225/*
8226 * this is used by the tree logging recovery code. It records that
8227 * an extent has been allocated and makes sure to clear the free
8228 * space cache bits as well
8229 */
5d4f98a2
YZ
8230int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8231 struct btrfs_root *root,
8232 u64 root_objectid, u64 owner, u64 offset,
8233 struct btrfs_key *ins)
e02119d5
CM
8234{
8235 int ret;
8236 struct btrfs_block_group_cache *block_group;
ed7a6948 8237 struct btrfs_space_info *space_info;
11833d66 8238
8c2a1a30
JB
8239 /*
8240 * Mixed block groups will exclude before processing the log so we only
01327610 8241 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8242 */
8243 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8244 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8245 if (ret)
8c2a1a30 8246 return ret;
11833d66
YZ
8247 }
8248
8c2a1a30
JB
8249 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8250 if (!block_group)
8251 return -EINVAL;
8252
ed7a6948
WX
8253 space_info = block_group->space_info;
8254 spin_lock(&space_info->lock);
8255 spin_lock(&block_group->lock);
8256 space_info->bytes_reserved += ins->offset;
8257 block_group->reserved += ins->offset;
8258 spin_unlock(&block_group->lock);
8259 spin_unlock(&space_info->lock);
8260
5d4f98a2
YZ
8261 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8262 0, owner, offset, ins, 1);
b50c6e25 8263 btrfs_put_block_group(block_group);
e02119d5
CM
8264 return ret;
8265}
8266
48a3b636
ES
8267static struct extent_buffer *
8268btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8269 u64 bytenr, int level)
65b51a00
CM
8270{
8271 struct extent_buffer *buf;
8272
a83fffb7 8273 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8274 if (IS_ERR(buf))
8275 return buf;
8276
65b51a00 8277 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8278 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8279 btrfs_tree_lock(buf);
01d58472 8280 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8281 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8282
8283 btrfs_set_lock_blocking(buf);
4db8c528 8284 set_extent_buffer_uptodate(buf);
b4ce94de 8285
d0c803c4 8286 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8287 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8288 /*
8289 * we allow two log transactions at a time, use different
8290 * EXENT bit to differentiate dirty pages.
8291 */
656f30db 8292 if (buf->log_index == 0)
8cef4e16
YZ
8293 set_extent_dirty(&root->dirty_log_pages, buf->start,
8294 buf->start + buf->len - 1, GFP_NOFS);
8295 else
8296 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8297 buf->start + buf->len - 1);
d0c803c4 8298 } else {
656f30db 8299 buf->log_index = -1;
d0c803c4 8300 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8301 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8302 }
64c12921 8303 trans->dirty = true;
b4ce94de 8304 /* this returns a buffer locked for blocking */
65b51a00
CM
8305 return buf;
8306}
8307
f0486c68
YZ
8308static struct btrfs_block_rsv *
8309use_block_rsv(struct btrfs_trans_handle *trans,
8310 struct btrfs_root *root, u32 blocksize)
8311{
8312 struct btrfs_block_rsv *block_rsv;
68a82277 8313 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8314 int ret;
d88033db 8315 bool global_updated = false;
f0486c68
YZ
8316
8317 block_rsv = get_block_rsv(trans, root);
8318
b586b323
MX
8319 if (unlikely(block_rsv->size == 0))
8320 goto try_reserve;
d88033db 8321again:
f0486c68
YZ
8322 ret = block_rsv_use_bytes(block_rsv, blocksize);
8323 if (!ret)
8324 return block_rsv;
8325
b586b323
MX
8326 if (block_rsv->failfast)
8327 return ERR_PTR(ret);
8328
d88033db
MX
8329 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8330 global_updated = true;
8331 update_global_block_rsv(root->fs_info);
8332 goto again;
8333 }
8334
3cdde224 8335 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8336 static DEFINE_RATELIMIT_STATE(_rs,
8337 DEFAULT_RATELIMIT_INTERVAL * 10,
8338 /*DEFAULT_RATELIMIT_BURST*/ 1);
8339 if (__ratelimit(&_rs))
8340 WARN(1, KERN_DEBUG
efe120a0 8341 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8342 }
8343try_reserve:
8344 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8345 BTRFS_RESERVE_NO_FLUSH);
8346 if (!ret)
8347 return block_rsv;
8348 /*
8349 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8350 * the global reserve if its space type is the same as the global
8351 * reservation.
b586b323 8352 */
5881cfc9
MX
8353 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8354 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8355 ret = block_rsv_use_bytes(global_rsv, blocksize);
8356 if (!ret)
8357 return global_rsv;
8358 }
8359 return ERR_PTR(ret);
f0486c68
YZ
8360}
8361
8c2a3ca2
JB
8362static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8363 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8364{
8365 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8366 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8367}
8368
fec577fb 8369/*
f0486c68 8370 * finds a free extent and does all the dirty work required for allocation
67b7859e 8371 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8372 */
4d75f8a9
DS
8373struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8374 struct btrfs_root *root,
5d4f98a2
YZ
8375 u64 parent, u64 root_objectid,
8376 struct btrfs_disk_key *key, int level,
5581a51a 8377 u64 hint, u64 empty_size)
fec577fb 8378{
e2fa7227 8379 struct btrfs_key ins;
f0486c68 8380 struct btrfs_block_rsv *block_rsv;
5f39d397 8381 struct extent_buffer *buf;
67b7859e 8382 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8383 u64 flags = 0;
8384 int ret;
da17066c 8385 u32 blocksize = root->fs_info->nodesize;
3173a18f
JB
8386 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8387 SKINNY_METADATA);
fec577fb 8388
05653ef3 8389#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
f5ee5c9a 8390 if (btrfs_is_testing(root->fs_info)) {
faa2dbf0 8391 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8392 level);
faa2dbf0
JB
8393 if (!IS_ERR(buf))
8394 root->alloc_bytenr += blocksize;
8395 return buf;
8396 }
05653ef3 8397#endif
fccb84c9 8398
f0486c68
YZ
8399 block_rsv = use_block_rsv(trans, root, blocksize);
8400 if (IS_ERR(block_rsv))
8401 return ERR_CAST(block_rsv);
8402
18513091 8403 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8404 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8405 if (ret)
8406 goto out_unuse;
55c69072 8407
fe864576 8408 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8409 if (IS_ERR(buf)) {
8410 ret = PTR_ERR(buf);
8411 goto out_free_reserved;
8412 }
f0486c68
YZ
8413
8414 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8415 if (parent == 0)
8416 parent = ins.objectid;
8417 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8418 } else
8419 BUG_ON(parent > 0);
8420
8421 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8422 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8423 if (!extent_op) {
8424 ret = -ENOMEM;
8425 goto out_free_buf;
8426 }
f0486c68
YZ
8427 if (key)
8428 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8429 else
8430 memset(&extent_op->key, 0, sizeof(extent_op->key));
8431 extent_op->flags_to_set = flags;
35b3ad50
DS
8432 extent_op->update_key = skinny_metadata ? false : true;
8433 extent_op->update_flags = true;
8434 extent_op->is_data = false;
b1c79e09 8435 extent_op->level = level;
f0486c68 8436
66d7e7f0 8437 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8438 ins.objectid, ins.offset,
8439 parent, root_objectid, level,
8440 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8441 extent_op);
67b7859e
OS
8442 if (ret)
8443 goto out_free_delayed;
f0486c68 8444 }
fec577fb 8445 return buf;
67b7859e
OS
8446
8447out_free_delayed:
8448 btrfs_free_delayed_extent_op(extent_op);
8449out_free_buf:
8450 free_extent_buffer(buf);
8451out_free_reserved:
8452 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8453out_unuse:
8454 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8455 return ERR_PTR(ret);
fec577fb 8456}
a28ec197 8457
2c47e605
YZ
8458struct walk_control {
8459 u64 refs[BTRFS_MAX_LEVEL];
8460 u64 flags[BTRFS_MAX_LEVEL];
8461 struct btrfs_key update_progress;
8462 int stage;
8463 int level;
8464 int shared_level;
8465 int update_ref;
8466 int keep_locks;
1c4850e2
YZ
8467 int reada_slot;
8468 int reada_count;
66d7e7f0 8469 int for_reloc;
2c47e605
YZ
8470};
8471
8472#define DROP_REFERENCE 1
8473#define UPDATE_BACKREF 2
8474
1c4850e2
YZ
8475static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8476 struct btrfs_root *root,
8477 struct walk_control *wc,
8478 struct btrfs_path *path)
6407bf6d 8479{
1c4850e2
YZ
8480 u64 bytenr;
8481 u64 generation;
8482 u64 refs;
94fcca9f 8483 u64 flags;
5d4f98a2 8484 u32 nritems;
1c4850e2
YZ
8485 struct btrfs_key key;
8486 struct extent_buffer *eb;
6407bf6d 8487 int ret;
1c4850e2
YZ
8488 int slot;
8489 int nread = 0;
6407bf6d 8490
1c4850e2
YZ
8491 if (path->slots[wc->level] < wc->reada_slot) {
8492 wc->reada_count = wc->reada_count * 2 / 3;
8493 wc->reada_count = max(wc->reada_count, 2);
8494 } else {
8495 wc->reada_count = wc->reada_count * 3 / 2;
8496 wc->reada_count = min_t(int, wc->reada_count,
da17066c 8497 BTRFS_NODEPTRS_PER_BLOCK(root->fs_info));
1c4850e2 8498 }
7bb86316 8499
1c4850e2
YZ
8500 eb = path->nodes[wc->level];
8501 nritems = btrfs_header_nritems(eb);
bd56b302 8502
1c4850e2
YZ
8503 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8504 if (nread >= wc->reada_count)
8505 break;
bd56b302 8506
2dd3e67b 8507 cond_resched();
1c4850e2
YZ
8508 bytenr = btrfs_node_blockptr(eb, slot);
8509 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8510
1c4850e2
YZ
8511 if (slot == path->slots[wc->level])
8512 goto reada;
5d4f98a2 8513
1c4850e2
YZ
8514 if (wc->stage == UPDATE_BACKREF &&
8515 generation <= root->root_key.offset)
bd56b302
CM
8516 continue;
8517
94fcca9f 8518 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8519 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8520 wc->level - 1, 1, &refs,
8521 &flags);
79787eaa
JM
8522 /* We don't care about errors in readahead. */
8523 if (ret < 0)
8524 continue;
94fcca9f
YZ
8525 BUG_ON(refs == 0);
8526
1c4850e2 8527 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8528 if (refs == 1)
8529 goto reada;
bd56b302 8530
94fcca9f
YZ
8531 if (wc->level == 1 &&
8532 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8533 continue;
1c4850e2
YZ
8534 if (!wc->update_ref ||
8535 generation <= root->root_key.offset)
8536 continue;
8537 btrfs_node_key_to_cpu(eb, &key, slot);
8538 ret = btrfs_comp_cpu_keys(&key,
8539 &wc->update_progress);
8540 if (ret < 0)
8541 continue;
94fcca9f
YZ
8542 } else {
8543 if (wc->level == 1 &&
8544 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8545 continue;
6407bf6d 8546 }
1c4850e2 8547reada:
d3e46fea 8548 readahead_tree_block(root, bytenr);
1c4850e2 8549 nread++;
20524f02 8550 }
1c4850e2 8551 wc->reada_slot = slot;
20524f02 8552}
2c47e605 8553
f82d02d9 8554/*
2c016dc2 8555 * helper to process tree block while walking down the tree.
2c47e605 8556 *
2c47e605
YZ
8557 * when wc->stage == UPDATE_BACKREF, this function updates
8558 * back refs for pointers in the block.
8559 *
8560 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8561 */
2c47e605 8562static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8563 struct btrfs_root *root,
2c47e605 8564 struct btrfs_path *path,
94fcca9f 8565 struct walk_control *wc, int lookup_info)
f82d02d9 8566{
2c47e605
YZ
8567 int level = wc->level;
8568 struct extent_buffer *eb = path->nodes[level];
2c47e605 8569 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8570 int ret;
8571
2c47e605
YZ
8572 if (wc->stage == UPDATE_BACKREF &&
8573 btrfs_header_owner(eb) != root->root_key.objectid)
8574 return 1;
f82d02d9 8575
2c47e605
YZ
8576 /*
8577 * when reference count of tree block is 1, it won't increase
8578 * again. once full backref flag is set, we never clear it.
8579 */
94fcca9f
YZ
8580 if (lookup_info &&
8581 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8582 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8583 BUG_ON(!path->locks[level]);
8584 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8585 eb->start, level, 1,
2c47e605
YZ
8586 &wc->refs[level],
8587 &wc->flags[level]);
79787eaa
JM
8588 BUG_ON(ret == -ENOMEM);
8589 if (ret)
8590 return ret;
2c47e605
YZ
8591 BUG_ON(wc->refs[level] == 0);
8592 }
5d4f98a2 8593
2c47e605
YZ
8594 if (wc->stage == DROP_REFERENCE) {
8595 if (wc->refs[level] > 1)
8596 return 1;
f82d02d9 8597
2c47e605 8598 if (path->locks[level] && !wc->keep_locks) {
bd681513 8599 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8600 path->locks[level] = 0;
8601 }
8602 return 0;
8603 }
f82d02d9 8604
2c47e605
YZ
8605 /* wc->stage == UPDATE_BACKREF */
8606 if (!(wc->flags[level] & flag)) {
8607 BUG_ON(!path->locks[level]);
e339a6b0 8608 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8609 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8610 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8611 BUG_ON(ret); /* -ENOMEM */
2c47e605 8612 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8613 eb->len, flag,
8614 btrfs_header_level(eb), 0);
79787eaa 8615 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8616 wc->flags[level] |= flag;
8617 }
8618
8619 /*
8620 * the block is shared by multiple trees, so it's not good to
8621 * keep the tree lock
8622 */
8623 if (path->locks[level] && level > 0) {
bd681513 8624 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8625 path->locks[level] = 0;
8626 }
8627 return 0;
8628}
8629
1c4850e2 8630/*
2c016dc2 8631 * helper to process tree block pointer.
1c4850e2
YZ
8632 *
8633 * when wc->stage == DROP_REFERENCE, this function checks
8634 * reference count of the block pointed to. if the block
8635 * is shared and we need update back refs for the subtree
8636 * rooted at the block, this function changes wc->stage to
8637 * UPDATE_BACKREF. if the block is shared and there is no
8638 * need to update back, this function drops the reference
8639 * to the block.
8640 *
8641 * NOTE: return value 1 means we should stop walking down.
8642 */
8643static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8644 struct btrfs_root *root,
8645 struct btrfs_path *path,
94fcca9f 8646 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8647{
8648 u64 bytenr;
8649 u64 generation;
8650 u64 parent;
8651 u32 blocksize;
8652 struct btrfs_key key;
8653 struct extent_buffer *next;
8654 int level = wc->level;
8655 int reada = 0;
8656 int ret = 0;
1152651a 8657 bool need_account = false;
1c4850e2
YZ
8658
8659 generation = btrfs_node_ptr_generation(path->nodes[level],
8660 path->slots[level]);
8661 /*
8662 * if the lower level block was created before the snapshot
8663 * was created, we know there is no need to update back refs
8664 * for the subtree
8665 */
8666 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8667 generation <= root->root_key.offset) {
8668 *lookup_info = 1;
1c4850e2 8669 return 1;
94fcca9f 8670 }
1c4850e2
YZ
8671
8672 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
da17066c 8673 blocksize = root->fs_info->nodesize;
1c4850e2 8674
62d1f9fe 8675 next = find_extent_buffer(root->fs_info, bytenr);
1c4850e2 8676 if (!next) {
a83fffb7 8677 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8678 if (IS_ERR(next))
8679 return PTR_ERR(next);
8680
b2aaaa3b
JB
8681 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8682 level - 1);
1c4850e2
YZ
8683 reada = 1;
8684 }
8685 btrfs_tree_lock(next);
8686 btrfs_set_lock_blocking(next);
8687
3173a18f 8688 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8689 &wc->refs[level - 1],
8690 &wc->flags[level - 1]);
4867268c
JB
8691 if (ret < 0)
8692 goto out_unlock;
79787eaa 8693
c2cf52eb
SK
8694 if (unlikely(wc->refs[level - 1] == 0)) {
8695 btrfs_err(root->fs_info, "Missing references.");
4867268c
JB
8696 ret = -EIO;
8697 goto out_unlock;
c2cf52eb 8698 }
94fcca9f 8699 *lookup_info = 0;
1c4850e2 8700
94fcca9f 8701 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8702 if (wc->refs[level - 1] > 1) {
1152651a 8703 need_account = true;
94fcca9f
YZ
8704 if (level == 1 &&
8705 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8706 goto skip;
8707
1c4850e2
YZ
8708 if (!wc->update_ref ||
8709 generation <= root->root_key.offset)
8710 goto skip;
8711
8712 btrfs_node_key_to_cpu(path->nodes[level], &key,
8713 path->slots[level]);
8714 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8715 if (ret < 0)
8716 goto skip;
8717
8718 wc->stage = UPDATE_BACKREF;
8719 wc->shared_level = level - 1;
8720 }
94fcca9f
YZ
8721 } else {
8722 if (level == 1 &&
8723 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8724 goto skip;
1c4850e2
YZ
8725 }
8726
b9fab919 8727 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8728 btrfs_tree_unlock(next);
8729 free_extent_buffer(next);
8730 next = NULL;
94fcca9f 8731 *lookup_info = 1;
1c4850e2
YZ
8732 }
8733
8734 if (!next) {
8735 if (reada && level == 1)
8736 reada_walk_down(trans, root, wc, path);
ce86cd59 8737 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8738 if (IS_ERR(next)) {
8739 return PTR_ERR(next);
8740 } else if (!extent_buffer_uptodate(next)) {
416bc658 8741 free_extent_buffer(next);
97d9a8a4 8742 return -EIO;
416bc658 8743 }
1c4850e2
YZ
8744 btrfs_tree_lock(next);
8745 btrfs_set_lock_blocking(next);
8746 }
8747
8748 level--;
4867268c
JB
8749 ASSERT(level == btrfs_header_level(next));
8750 if (level != btrfs_header_level(next)) {
8751 btrfs_err(root->fs_info, "mismatched level");
8752 ret = -EIO;
8753 goto out_unlock;
8754 }
1c4850e2
YZ
8755 path->nodes[level] = next;
8756 path->slots[level] = 0;
bd681513 8757 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8758 wc->level = level;
8759 if (wc->level == 1)
8760 wc->reada_slot = 0;
8761 return 0;
8762skip:
8763 wc->refs[level - 1] = 0;
8764 wc->flags[level - 1] = 0;
94fcca9f
YZ
8765 if (wc->stage == DROP_REFERENCE) {
8766 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8767 parent = path->nodes[level]->start;
8768 } else {
4867268c 8769 ASSERT(root->root_key.objectid ==
94fcca9f 8770 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8771 if (root->root_key.objectid !=
8772 btrfs_header_owner(path->nodes[level])) {
8773 btrfs_err(root->fs_info,
8774 "mismatched block owner");
8775 ret = -EIO;
8776 goto out_unlock;
8777 }
94fcca9f
YZ
8778 parent = 0;
8779 }
1c4850e2 8780
1152651a 8781 if (need_account) {
33d1f05c
QW
8782 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8783 generation, level - 1);
1152651a 8784 if (ret) {
94647322 8785 btrfs_err_rl(root->fs_info,
5d163e0e
JM
8786 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8787 ret);
1152651a
MF
8788 }
8789 }
94fcca9f 8790 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8791 root->root_key.objectid, level - 1, 0);
4867268c
JB
8792 if (ret)
8793 goto out_unlock;
1c4850e2 8794 }
4867268c
JB
8795
8796 *lookup_info = 1;
8797 ret = 1;
8798
8799out_unlock:
1c4850e2
YZ
8800 btrfs_tree_unlock(next);
8801 free_extent_buffer(next);
4867268c
JB
8802
8803 return ret;
1c4850e2
YZ
8804}
8805
2c47e605 8806/*
2c016dc2 8807 * helper to process tree block while walking up the tree.
2c47e605
YZ
8808 *
8809 * when wc->stage == DROP_REFERENCE, this function drops
8810 * reference count on the block.
8811 *
8812 * when wc->stage == UPDATE_BACKREF, this function changes
8813 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8814 * to UPDATE_BACKREF previously while processing the block.
8815 *
8816 * NOTE: return value 1 means we should stop walking up.
8817 */
8818static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8819 struct btrfs_root *root,
8820 struct btrfs_path *path,
8821 struct walk_control *wc)
8822{
f0486c68 8823 int ret;
2c47e605
YZ
8824 int level = wc->level;
8825 struct extent_buffer *eb = path->nodes[level];
8826 u64 parent = 0;
8827
8828 if (wc->stage == UPDATE_BACKREF) {
8829 BUG_ON(wc->shared_level < level);
8830 if (level < wc->shared_level)
8831 goto out;
8832
2c47e605
YZ
8833 ret = find_next_key(path, level + 1, &wc->update_progress);
8834 if (ret > 0)
8835 wc->update_ref = 0;
8836
8837 wc->stage = DROP_REFERENCE;
8838 wc->shared_level = -1;
8839 path->slots[level] = 0;
8840
8841 /*
8842 * check reference count again if the block isn't locked.
8843 * we should start walking down the tree again if reference
8844 * count is one.
8845 */
8846 if (!path->locks[level]) {
8847 BUG_ON(level == 0);
8848 btrfs_tree_lock(eb);
8849 btrfs_set_lock_blocking(eb);
bd681513 8850 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8851
8852 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8853 eb->start, level, 1,
2c47e605
YZ
8854 &wc->refs[level],
8855 &wc->flags[level]);
79787eaa
JM
8856 if (ret < 0) {
8857 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8858 path->locks[level] = 0;
79787eaa
JM
8859 return ret;
8860 }
2c47e605
YZ
8861 BUG_ON(wc->refs[level] == 0);
8862 if (wc->refs[level] == 1) {
bd681513 8863 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8864 path->locks[level] = 0;
2c47e605
YZ
8865 return 1;
8866 }
f82d02d9 8867 }
2c47e605 8868 }
f82d02d9 8869
2c47e605
YZ
8870 /* wc->stage == DROP_REFERENCE */
8871 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8872
2c47e605
YZ
8873 if (wc->refs[level] == 1) {
8874 if (level == 0) {
8875 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8876 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8877 else
e339a6b0 8878 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8879 BUG_ON(ret); /* -ENOMEM */
33d1f05c 8880 ret = btrfs_qgroup_trace_leaf_items(trans, root, eb);
1152651a 8881 if (ret) {
94647322 8882 btrfs_err_rl(root->fs_info,
5d163e0e
JM
8883 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8884 ret);
1152651a 8885 }
2c47e605
YZ
8886 }
8887 /* make block locked assertion in clean_tree_block happy */
8888 if (!path->locks[level] &&
8889 btrfs_header_generation(eb) == trans->transid) {
8890 btrfs_tree_lock(eb);
8891 btrfs_set_lock_blocking(eb);
bd681513 8892 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8893 }
01d58472 8894 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8895 }
8896
8897 if (eb == root->node) {
8898 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8899 parent = eb->start;
8900 else
8901 BUG_ON(root->root_key.objectid !=
8902 btrfs_header_owner(eb));
8903 } else {
8904 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8905 parent = path->nodes[level + 1]->start;
8906 else
8907 BUG_ON(root->root_key.objectid !=
8908 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8909 }
f82d02d9 8910
5581a51a 8911 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8912out:
8913 wc->refs[level] = 0;
8914 wc->flags[level] = 0;
f0486c68 8915 return 0;
2c47e605
YZ
8916}
8917
8918static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8919 struct btrfs_root *root,
8920 struct btrfs_path *path,
8921 struct walk_control *wc)
8922{
2c47e605 8923 int level = wc->level;
94fcca9f 8924 int lookup_info = 1;
2c47e605
YZ
8925 int ret;
8926
8927 while (level >= 0) {
94fcca9f 8928 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8929 if (ret > 0)
8930 break;
8931
8932 if (level == 0)
8933 break;
8934
7a7965f8
YZ
8935 if (path->slots[level] >=
8936 btrfs_header_nritems(path->nodes[level]))
8937 break;
8938
94fcca9f 8939 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8940 if (ret > 0) {
8941 path->slots[level]++;
8942 continue;
90d2c51d
MX
8943 } else if (ret < 0)
8944 return ret;
1c4850e2 8945 level = wc->level;
f82d02d9 8946 }
f82d02d9
YZ
8947 return 0;
8948}
8949
d397712b 8950static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8951 struct btrfs_root *root,
f82d02d9 8952 struct btrfs_path *path,
2c47e605 8953 struct walk_control *wc, int max_level)
20524f02 8954{
2c47e605 8955 int level = wc->level;
20524f02 8956 int ret;
9f3a7427 8957
2c47e605
YZ
8958 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8959 while (level < max_level && path->nodes[level]) {
8960 wc->level = level;
8961 if (path->slots[level] + 1 <
8962 btrfs_header_nritems(path->nodes[level])) {
8963 path->slots[level]++;
20524f02
CM
8964 return 0;
8965 } else {
2c47e605
YZ
8966 ret = walk_up_proc(trans, root, path, wc);
8967 if (ret > 0)
8968 return 0;
bd56b302 8969
2c47e605 8970 if (path->locks[level]) {
bd681513
CM
8971 btrfs_tree_unlock_rw(path->nodes[level],
8972 path->locks[level]);
2c47e605 8973 path->locks[level] = 0;
f82d02d9 8974 }
2c47e605
YZ
8975 free_extent_buffer(path->nodes[level]);
8976 path->nodes[level] = NULL;
8977 level++;
20524f02
CM
8978 }
8979 }
8980 return 1;
8981}
8982
9aca1d51 8983/*
2c47e605
YZ
8984 * drop a subvolume tree.
8985 *
8986 * this function traverses the tree freeing any blocks that only
8987 * referenced by the tree.
8988 *
8989 * when a shared tree block is found. this function decreases its
8990 * reference count by one. if update_ref is true, this function
8991 * also make sure backrefs for the shared block and all lower level
8992 * blocks are properly updated.
9d1a2a3a
DS
8993 *
8994 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8995 */
2c536799 8996int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8997 struct btrfs_block_rsv *block_rsv, int update_ref,
8998 int for_reloc)
20524f02 8999{
ab8d0fc4 9000 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9001 struct btrfs_path *path;
2c47e605 9002 struct btrfs_trans_handle *trans;
ab8d0fc4 9003 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9004 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9005 struct walk_control *wc;
9006 struct btrfs_key key;
9007 int err = 0;
9008 int ret;
9009 int level;
d29a9f62 9010 bool root_dropped = false;
20524f02 9011
ab8d0fc4 9012 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9013
5caf2a00 9014 path = btrfs_alloc_path();
cb1b69f4
TI
9015 if (!path) {
9016 err = -ENOMEM;
9017 goto out;
9018 }
20524f02 9019
2c47e605 9020 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9021 if (!wc) {
9022 btrfs_free_path(path);
cb1b69f4
TI
9023 err = -ENOMEM;
9024 goto out;
38a1a919 9025 }
2c47e605 9026
a22285a6 9027 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9028 if (IS_ERR(trans)) {
9029 err = PTR_ERR(trans);
9030 goto out_free;
9031 }
98d5dc13 9032
3fd0a558
YZ
9033 if (block_rsv)
9034 trans->block_rsv = block_rsv;
2c47e605 9035
9f3a7427 9036 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9037 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9038 path->nodes[level] = btrfs_lock_root_node(root);
9039 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9040 path->slots[level] = 0;
bd681513 9041 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9042 memset(&wc->update_progress, 0,
9043 sizeof(wc->update_progress));
9f3a7427 9044 } else {
9f3a7427 9045 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9046 memcpy(&wc->update_progress, &key,
9047 sizeof(wc->update_progress));
9048
6702ed49 9049 level = root_item->drop_level;
2c47e605 9050 BUG_ON(level == 0);
6702ed49 9051 path->lowest_level = level;
2c47e605
YZ
9052 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9053 path->lowest_level = 0;
9054 if (ret < 0) {
9055 err = ret;
79787eaa 9056 goto out_end_trans;
9f3a7427 9057 }
1c4850e2 9058 WARN_ON(ret > 0);
2c47e605 9059
7d9eb12c
CM
9060 /*
9061 * unlock our path, this is safe because only this
9062 * function is allowed to delete this snapshot
9063 */
5d4f98a2 9064 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9065
9066 level = btrfs_header_level(root->node);
9067 while (1) {
9068 btrfs_tree_lock(path->nodes[level]);
9069 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9070 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9071
9072 ret = btrfs_lookup_extent_info(trans, root,
9073 path->nodes[level]->start,
3173a18f 9074 level, 1, &wc->refs[level],
2c47e605 9075 &wc->flags[level]);
79787eaa
JM
9076 if (ret < 0) {
9077 err = ret;
9078 goto out_end_trans;
9079 }
2c47e605
YZ
9080 BUG_ON(wc->refs[level] == 0);
9081
9082 if (level == root_item->drop_level)
9083 break;
9084
9085 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9086 path->locks[level] = 0;
2c47e605
YZ
9087 WARN_ON(wc->refs[level] != 1);
9088 level--;
9089 }
9f3a7427 9090 }
2c47e605
YZ
9091
9092 wc->level = level;
9093 wc->shared_level = -1;
9094 wc->stage = DROP_REFERENCE;
9095 wc->update_ref = update_ref;
9096 wc->keep_locks = 0;
66d7e7f0 9097 wc->for_reloc = for_reloc;
da17066c 9098 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root->fs_info);
2c47e605 9099
d397712b 9100 while (1) {
9d1a2a3a 9101
2c47e605
YZ
9102 ret = walk_down_tree(trans, root, path, wc);
9103 if (ret < 0) {
9104 err = ret;
20524f02 9105 break;
2c47e605 9106 }
9aca1d51 9107
2c47e605
YZ
9108 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9109 if (ret < 0) {
9110 err = ret;
20524f02 9111 break;
2c47e605
YZ
9112 }
9113
9114 if (ret > 0) {
9115 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9116 break;
9117 }
2c47e605
YZ
9118
9119 if (wc->stage == DROP_REFERENCE) {
9120 level = wc->level;
9121 btrfs_node_key(path->nodes[level],
9122 &root_item->drop_progress,
9123 path->slots[level]);
9124 root_item->drop_level = level;
9125 }
9126
9127 BUG_ON(wc->level == 0);
3c8f2422
JB
9128 if (btrfs_should_end_transaction(trans, tree_root) ||
9129 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9130 ret = btrfs_update_root(trans, tree_root,
9131 &root->root_key,
9132 root_item);
79787eaa 9133 if (ret) {
66642832 9134 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9135 err = ret;
9136 goto out_end_trans;
9137 }
2c47e605 9138
3fd0a558 9139 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9140 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
ab8d0fc4
JM
9141 btrfs_debug(fs_info,
9142 "drop snapshot early exit");
3c8f2422
JB
9143 err = -EAGAIN;
9144 goto out_free;
9145 }
9146
a22285a6 9147 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9148 if (IS_ERR(trans)) {
9149 err = PTR_ERR(trans);
9150 goto out_free;
9151 }
3fd0a558
YZ
9152 if (block_rsv)
9153 trans->block_rsv = block_rsv;
c3e69d58 9154 }
20524f02 9155 }
b3b4aa74 9156 btrfs_release_path(path);
79787eaa
JM
9157 if (err)
9158 goto out_end_trans;
2c47e605
YZ
9159
9160 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9161 if (ret) {
66642832 9162 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9163 goto out_end_trans;
9164 }
2c47e605 9165
76dda93c 9166 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9167 ret = btrfs_find_root(tree_root, &root->root_key, path,
9168 NULL, NULL);
79787eaa 9169 if (ret < 0) {
66642832 9170 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9171 err = ret;
9172 goto out_end_trans;
9173 } else if (ret > 0) {
84cd948c
JB
9174 /* if we fail to delete the orphan item this time
9175 * around, it'll get picked up the next time.
9176 *
9177 * The most common failure here is just -ENOENT.
9178 */
9179 btrfs_del_orphan_item(trans, tree_root,
9180 root->root_key.objectid);
76dda93c
YZ
9181 }
9182 }
9183
27cdeb70 9184 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9185 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9186 } else {
9187 free_extent_buffer(root->node);
9188 free_extent_buffer(root->commit_root);
b0feb9d9 9189 btrfs_put_fs_root(root);
76dda93c 9190 }
d29a9f62 9191 root_dropped = true;
79787eaa 9192out_end_trans:
3fd0a558 9193 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9194out_free:
2c47e605 9195 kfree(wc);
5caf2a00 9196 btrfs_free_path(path);
cb1b69f4 9197out:
d29a9f62
JB
9198 /*
9199 * So if we need to stop dropping the snapshot for whatever reason we
9200 * need to make sure to add it back to the dead root list so that we
9201 * keep trying to do the work later. This also cleans up roots if we
9202 * don't have it in the radix (like when we recover after a power fail
9203 * or unmount) so we don't leak memory.
9204 */
b37b39cd 9205 if (!for_reloc && root_dropped == false)
d29a9f62 9206 btrfs_add_dead_root(root);
90515e7f 9207 if (err && err != -EAGAIN)
ab8d0fc4 9208 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9209 return err;
20524f02 9210}
9078a3e1 9211
2c47e605
YZ
9212/*
9213 * drop subtree rooted at tree block 'node'.
9214 *
9215 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9216 * only used by relocation code
2c47e605 9217 */
f82d02d9
YZ
9218int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9219 struct btrfs_root *root,
9220 struct extent_buffer *node,
9221 struct extent_buffer *parent)
9222{
9223 struct btrfs_path *path;
2c47e605 9224 struct walk_control *wc;
f82d02d9
YZ
9225 int level;
9226 int parent_level;
9227 int ret = 0;
9228 int wret;
9229
2c47e605
YZ
9230 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9231
f82d02d9 9232 path = btrfs_alloc_path();
db5b493a
TI
9233 if (!path)
9234 return -ENOMEM;
f82d02d9 9235
2c47e605 9236 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9237 if (!wc) {
9238 btrfs_free_path(path);
9239 return -ENOMEM;
9240 }
2c47e605 9241
b9447ef8 9242 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9243 parent_level = btrfs_header_level(parent);
9244 extent_buffer_get(parent);
9245 path->nodes[parent_level] = parent;
9246 path->slots[parent_level] = btrfs_header_nritems(parent);
9247
b9447ef8 9248 btrfs_assert_tree_locked(node);
f82d02d9 9249 level = btrfs_header_level(node);
f82d02d9
YZ
9250 path->nodes[level] = node;
9251 path->slots[level] = 0;
bd681513 9252 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9253
9254 wc->refs[parent_level] = 1;
9255 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9256 wc->level = level;
9257 wc->shared_level = -1;
9258 wc->stage = DROP_REFERENCE;
9259 wc->update_ref = 0;
9260 wc->keep_locks = 1;
66d7e7f0 9261 wc->for_reloc = 1;
da17066c 9262 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root->fs_info);
f82d02d9
YZ
9263
9264 while (1) {
2c47e605
YZ
9265 wret = walk_down_tree(trans, root, path, wc);
9266 if (wret < 0) {
f82d02d9 9267 ret = wret;
f82d02d9 9268 break;
2c47e605 9269 }
f82d02d9 9270
2c47e605 9271 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9272 if (wret < 0)
9273 ret = wret;
9274 if (wret != 0)
9275 break;
9276 }
9277
2c47e605 9278 kfree(wc);
f82d02d9
YZ
9279 btrfs_free_path(path);
9280 return ret;
9281}
9282
ec44a35c
CM
9283static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9284{
9285 u64 num_devices;
fc67c450 9286 u64 stripped;
e4d8ec0f 9287
fc67c450
ID
9288 /*
9289 * if restripe for this chunk_type is on pick target profile and
9290 * return, otherwise do the usual balance
9291 */
9292 stripped = get_restripe_target(root->fs_info, flags);
9293 if (stripped)
9294 return extended_to_chunk(stripped);
e4d8ec0f 9295
95669976 9296 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9297
fc67c450 9298 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9299 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9300 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9301
ec44a35c
CM
9302 if (num_devices == 1) {
9303 stripped |= BTRFS_BLOCK_GROUP_DUP;
9304 stripped = flags & ~stripped;
9305
9306 /* turn raid0 into single device chunks */
9307 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9308 return stripped;
9309
9310 /* turn mirroring into duplication */
9311 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9312 BTRFS_BLOCK_GROUP_RAID10))
9313 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9314 } else {
9315 /* they already had raid on here, just return */
ec44a35c
CM
9316 if (flags & stripped)
9317 return flags;
9318
9319 stripped |= BTRFS_BLOCK_GROUP_DUP;
9320 stripped = flags & ~stripped;
9321
9322 /* switch duplicated blocks with raid1 */
9323 if (flags & BTRFS_BLOCK_GROUP_DUP)
9324 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9325
e3176ca2 9326 /* this is drive concat, leave it alone */
ec44a35c 9327 }
e3176ca2 9328
ec44a35c
CM
9329 return flags;
9330}
9331
868f401a 9332static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9333{
f0486c68
YZ
9334 struct btrfs_space_info *sinfo = cache->space_info;
9335 u64 num_bytes;
199c36ea 9336 u64 min_allocable_bytes;
f0486c68 9337 int ret = -ENOSPC;
0ef3e66b 9338
199c36ea
MX
9339 /*
9340 * We need some metadata space and system metadata space for
9341 * allocating chunks in some corner cases until we force to set
9342 * it to be readonly.
9343 */
9344 if ((sinfo->flags &
9345 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9346 !force)
ee22184b 9347 min_allocable_bytes = SZ_1M;
199c36ea
MX
9348 else
9349 min_allocable_bytes = 0;
9350
f0486c68
YZ
9351 spin_lock(&sinfo->lock);
9352 spin_lock(&cache->lock);
61cfea9b
W
9353
9354 if (cache->ro) {
868f401a 9355 cache->ro++;
61cfea9b
W
9356 ret = 0;
9357 goto out;
9358 }
9359
f0486c68
YZ
9360 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9361 cache->bytes_super - btrfs_block_group_used(&cache->item);
9362
9363 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9364 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9365 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9366 sinfo->bytes_readonly += num_bytes;
868f401a 9367 cache->ro++;
633c0aad 9368 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9369 ret = 0;
9370 }
61cfea9b 9371out:
f0486c68
YZ
9372 spin_unlock(&cache->lock);
9373 spin_unlock(&sinfo->lock);
9374 return ret;
9375}
7d9eb12c 9376
868f401a 9377int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9378 struct btrfs_block_group_cache *cache)
c286ac48 9379
f0486c68
YZ
9380{
9381 struct btrfs_trans_handle *trans;
9382 u64 alloc_flags;
9383 int ret;
7d9eb12c 9384
1bbc621e 9385again:
ff5714cc 9386 trans = btrfs_join_transaction(root);
79787eaa
JM
9387 if (IS_ERR(trans))
9388 return PTR_ERR(trans);
5d4f98a2 9389
1bbc621e
CM
9390 /*
9391 * we're not allowed to set block groups readonly after the dirty
9392 * block groups cache has started writing. If it already started,
9393 * back off and let this transaction commit
9394 */
9395 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9396 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9397 u64 transid = trans->transid;
9398
9399 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9400 btrfs_end_transaction(trans, root);
9401
9402 ret = btrfs_wait_for_commit(root, transid);
9403 if (ret)
9404 return ret;
9405 goto again;
9406 }
9407
153c35b6
CM
9408 /*
9409 * if we are changing raid levels, try to allocate a corresponding
9410 * block group with the new raid level.
9411 */
9412 alloc_flags = update_block_group_flags(root, cache->flags);
9413 if (alloc_flags != cache->flags) {
9414 ret = do_chunk_alloc(trans, root, alloc_flags,
9415 CHUNK_ALLOC_FORCE);
9416 /*
9417 * ENOSPC is allowed here, we may have enough space
9418 * already allocated at the new raid level to
9419 * carry on
9420 */
9421 if (ret == -ENOSPC)
9422 ret = 0;
9423 if (ret < 0)
9424 goto out;
9425 }
1bbc621e 9426
868f401a 9427 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9428 if (!ret)
9429 goto out;
9430 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9431 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9432 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9433 if (ret < 0)
9434 goto out;
868f401a 9435 ret = inc_block_group_ro(cache, 0);
f0486c68 9436out:
2f081088
SL
9437 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9438 alloc_flags = update_block_group_flags(root, cache->flags);
3796d335 9439 lock_chunks(root->fs_info);
4617ea3a 9440 check_system_chunk(trans, root, alloc_flags);
3796d335 9441 unlock_chunks(root->fs_info);
2f081088 9442 }
1bbc621e 9443 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9444
f0486c68
YZ
9445 btrfs_end_transaction(trans, root);
9446 return ret;
9447}
5d4f98a2 9448
c87f08ca
CM
9449int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9450 struct btrfs_root *root, u64 type)
9451{
9452 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9453 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9454 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9455}
9456
6d07bcec
MX
9457/*
9458 * helper to account the unused space of all the readonly block group in the
633c0aad 9459 * space_info. takes mirrors into account.
6d07bcec 9460 */
633c0aad 9461u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9462{
9463 struct btrfs_block_group_cache *block_group;
9464 u64 free_bytes = 0;
9465 int factor;
9466
01327610 9467 /* It's df, we don't care if it's racy */
633c0aad
JB
9468 if (list_empty(&sinfo->ro_bgs))
9469 return 0;
9470
9471 spin_lock(&sinfo->lock);
9472 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9473 spin_lock(&block_group->lock);
9474
9475 if (!block_group->ro) {
9476 spin_unlock(&block_group->lock);
9477 continue;
9478 }
9479
9480 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9481 BTRFS_BLOCK_GROUP_RAID10 |
9482 BTRFS_BLOCK_GROUP_DUP))
9483 factor = 2;
9484 else
9485 factor = 1;
9486
9487 free_bytes += (block_group->key.offset -
9488 btrfs_block_group_used(&block_group->item)) *
9489 factor;
9490
9491 spin_unlock(&block_group->lock);
9492 }
6d07bcec
MX
9493 spin_unlock(&sinfo->lock);
9494
9495 return free_bytes;
9496}
9497
868f401a 9498void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9499 struct btrfs_block_group_cache *cache)
5d4f98a2 9500{
f0486c68
YZ
9501 struct btrfs_space_info *sinfo = cache->space_info;
9502 u64 num_bytes;
9503
9504 BUG_ON(!cache->ro);
9505
9506 spin_lock(&sinfo->lock);
9507 spin_lock(&cache->lock);
868f401a
Z
9508 if (!--cache->ro) {
9509 num_bytes = cache->key.offset - cache->reserved -
9510 cache->pinned - cache->bytes_super -
9511 btrfs_block_group_used(&cache->item);
9512 sinfo->bytes_readonly -= num_bytes;
9513 list_del_init(&cache->ro_list);
9514 }
f0486c68
YZ
9515 spin_unlock(&cache->lock);
9516 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9517}
9518
ba1bf481
JB
9519/*
9520 * checks to see if its even possible to relocate this block group.
9521 *
9522 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9523 * ok to go ahead and try.
9524 */
6bccf3ab 9525int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9526{
6bccf3ab 9527 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9528 struct btrfs_block_group_cache *block_group;
9529 struct btrfs_space_info *space_info;
9530 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9531 struct btrfs_device *device;
6df9a95e 9532 struct btrfs_trans_handle *trans;
cdcb725c 9533 u64 min_free;
6719db6a
JB
9534 u64 dev_min = 1;
9535 u64 dev_nr = 0;
4a5e98f5 9536 u64 target;
0305bc27 9537 int debug;
cdcb725c 9538 int index;
ba1bf481
JB
9539 int full = 0;
9540 int ret = 0;
1a40e23b 9541
3cdde224 9542 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
0305bc27 9543
ba1bf481 9544 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9545
ba1bf481 9546 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9547 if (!block_group) {
9548 if (debug)
9549 btrfs_warn(root->fs_info,
9550 "can't find block group for bytenr %llu",
9551 bytenr);
ba1bf481 9552 return -1;
0305bc27 9553 }
1a40e23b 9554
cdcb725c 9555 min_free = btrfs_block_group_used(&block_group->item);
9556
ba1bf481 9557 /* no bytes used, we're good */
cdcb725c 9558 if (!min_free)
1a40e23b
ZY
9559 goto out;
9560
ba1bf481
JB
9561 space_info = block_group->space_info;
9562 spin_lock(&space_info->lock);
17d217fe 9563
ba1bf481 9564 full = space_info->full;
17d217fe 9565
ba1bf481
JB
9566 /*
9567 * if this is the last block group we have in this space, we can't
7ce618db
CM
9568 * relocate it unless we're able to allocate a new chunk below.
9569 *
9570 * Otherwise, we need to make sure we have room in the space to handle
9571 * all of the extents from this block group. If we can, we're good
ba1bf481 9572 */
7ce618db 9573 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9574 (space_info->bytes_used + space_info->bytes_reserved +
9575 space_info->bytes_pinned + space_info->bytes_readonly +
9576 min_free < space_info->total_bytes)) {
ba1bf481
JB
9577 spin_unlock(&space_info->lock);
9578 goto out;
17d217fe 9579 }
ba1bf481 9580 spin_unlock(&space_info->lock);
ea8c2819 9581
ba1bf481
JB
9582 /*
9583 * ok we don't have enough space, but maybe we have free space on our
9584 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9585 * alloc devices and guess if we have enough space. if this block
9586 * group is going to be restriped, run checks against the target
9587 * profile instead of the current one.
ba1bf481
JB
9588 */
9589 ret = -1;
ea8c2819 9590
cdcb725c 9591 /*
9592 * index:
9593 * 0: raid10
9594 * 1: raid1
9595 * 2: dup
9596 * 3: raid0
9597 * 4: single
9598 */
4a5e98f5
ID
9599 target = get_restripe_target(root->fs_info, block_group->flags);
9600 if (target) {
31e50229 9601 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9602 } else {
9603 /*
9604 * this is just a balance, so if we were marked as full
9605 * we know there is no space for a new chunk
9606 */
0305bc27
QW
9607 if (full) {
9608 if (debug)
9609 btrfs_warn(root->fs_info,
9610 "no space to alloc new chunk for block group %llu",
9611 block_group->key.objectid);
4a5e98f5 9612 goto out;
0305bc27 9613 }
4a5e98f5
ID
9614
9615 index = get_block_group_index(block_group);
9616 }
9617
e6ec716f 9618 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9619 dev_min = 4;
6719db6a
JB
9620 /* Divide by 2 */
9621 min_free >>= 1;
e6ec716f 9622 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9623 dev_min = 2;
e6ec716f 9624 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9625 /* Multiply by 2 */
9626 min_free <<= 1;
e6ec716f 9627 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9628 dev_min = fs_devices->rw_devices;
47c5713f 9629 min_free = div64_u64(min_free, dev_min);
cdcb725c 9630 }
9631
6df9a95e
JB
9632 /* We need to do this so that we can look at pending chunks */
9633 trans = btrfs_join_transaction(root);
9634 if (IS_ERR(trans)) {
9635 ret = PTR_ERR(trans);
9636 goto out;
9637 }
9638
ba1bf481
JB
9639 mutex_lock(&root->fs_info->chunk_mutex);
9640 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9641 u64 dev_offset;
56bec294 9642
ba1bf481
JB
9643 /*
9644 * check to make sure we can actually find a chunk with enough
9645 * space to fit our block group in.
9646 */
63a212ab
SB
9647 if (device->total_bytes > device->bytes_used + min_free &&
9648 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9649 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9650 &dev_offset, NULL);
ba1bf481 9651 if (!ret)
cdcb725c 9652 dev_nr++;
9653
9654 if (dev_nr >= dev_min)
73e48b27 9655 break;
cdcb725c 9656
ba1bf481 9657 ret = -1;
725c8463 9658 }
edbd8d4e 9659 }
0305bc27
QW
9660 if (debug && ret == -1)
9661 btrfs_warn(root->fs_info,
9662 "no space to allocate a new chunk for block group %llu",
9663 block_group->key.objectid);
ba1bf481 9664 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9665 btrfs_end_transaction(trans, root);
edbd8d4e 9666out:
ba1bf481 9667 btrfs_put_block_group(block_group);
edbd8d4e
CM
9668 return ret;
9669}
9670
6bccf3ab
JM
9671static int find_first_block_group(struct btrfs_fs_info *fs_info,
9672 struct btrfs_path *path,
9673 struct btrfs_key *key)
0b86a832 9674{
6bccf3ab 9675 struct btrfs_root *root = fs_info->extent_root;
925baedd 9676 int ret = 0;
0b86a832
CM
9677 struct btrfs_key found_key;
9678 struct extent_buffer *leaf;
9679 int slot;
edbd8d4e 9680
0b86a832
CM
9681 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9682 if (ret < 0)
925baedd
CM
9683 goto out;
9684
d397712b 9685 while (1) {
0b86a832 9686 slot = path->slots[0];
edbd8d4e 9687 leaf = path->nodes[0];
0b86a832
CM
9688 if (slot >= btrfs_header_nritems(leaf)) {
9689 ret = btrfs_next_leaf(root, path);
9690 if (ret == 0)
9691 continue;
9692 if (ret < 0)
925baedd 9693 goto out;
0b86a832 9694 break;
edbd8d4e 9695 }
0b86a832 9696 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9697
0b86a832 9698 if (found_key.objectid >= key->objectid &&
925baedd 9699 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9700 struct extent_map_tree *em_tree;
9701 struct extent_map *em;
9702
9703 em_tree = &root->fs_info->mapping_tree.map_tree;
9704 read_lock(&em_tree->lock);
9705 em = lookup_extent_mapping(em_tree, found_key.objectid,
9706 found_key.offset);
9707 read_unlock(&em_tree->lock);
9708 if (!em) {
9709 btrfs_err(root->fs_info,
9710 "logical %llu len %llu found bg but no related chunk",
9711 found_key.objectid, found_key.offset);
9712 ret = -ENOENT;
9713 } else {
9714 ret = 0;
9715 }
187ee58c 9716 free_extent_map(em);
925baedd
CM
9717 goto out;
9718 }
0b86a832 9719 path->slots[0]++;
edbd8d4e 9720 }
925baedd 9721out:
0b86a832 9722 return ret;
edbd8d4e
CM
9723}
9724
0af3d00b
JB
9725void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9726{
9727 struct btrfs_block_group_cache *block_group;
9728 u64 last = 0;
9729
9730 while (1) {
9731 struct inode *inode;
9732
9733 block_group = btrfs_lookup_first_block_group(info, last);
9734 while (block_group) {
9735 spin_lock(&block_group->lock);
9736 if (block_group->iref)
9737 break;
9738 spin_unlock(&block_group->lock);
9739 block_group = next_block_group(info->tree_root,
9740 block_group);
9741 }
9742 if (!block_group) {
9743 if (last == 0)
9744 break;
9745 last = 0;
9746 continue;
9747 }
9748
9749 inode = block_group->inode;
9750 block_group->iref = 0;
9751 block_group->inode = NULL;
9752 spin_unlock(&block_group->lock);
f3bca802 9753 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9754 iput(inode);
9755 last = block_group->key.objectid + block_group->key.offset;
9756 btrfs_put_block_group(block_group);
9757 }
9758}
9759
1a40e23b
ZY
9760int btrfs_free_block_groups(struct btrfs_fs_info *info)
9761{
9762 struct btrfs_block_group_cache *block_group;
4184ea7f 9763 struct btrfs_space_info *space_info;
11833d66 9764 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9765 struct rb_node *n;
9766
9e351cc8 9767 down_write(&info->commit_root_sem);
11833d66
YZ
9768 while (!list_empty(&info->caching_block_groups)) {
9769 caching_ctl = list_entry(info->caching_block_groups.next,
9770 struct btrfs_caching_control, list);
9771 list_del(&caching_ctl->list);
9772 put_caching_control(caching_ctl);
9773 }
9e351cc8 9774 up_write(&info->commit_root_sem);
11833d66 9775
47ab2a6c
JB
9776 spin_lock(&info->unused_bgs_lock);
9777 while (!list_empty(&info->unused_bgs)) {
9778 block_group = list_first_entry(&info->unused_bgs,
9779 struct btrfs_block_group_cache,
9780 bg_list);
9781 list_del_init(&block_group->bg_list);
9782 btrfs_put_block_group(block_group);
9783 }
9784 spin_unlock(&info->unused_bgs_lock);
9785
1a40e23b
ZY
9786 spin_lock(&info->block_group_cache_lock);
9787 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9788 block_group = rb_entry(n, struct btrfs_block_group_cache,
9789 cache_node);
1a40e23b
ZY
9790 rb_erase(&block_group->cache_node,
9791 &info->block_group_cache_tree);
01eacb27 9792 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9793 spin_unlock(&info->block_group_cache_lock);
9794
80eb234a 9795 down_write(&block_group->space_info->groups_sem);
1a40e23b 9796 list_del(&block_group->list);
80eb234a 9797 up_write(&block_group->space_info->groups_sem);
d2fb3437 9798
817d52f8 9799 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9800 wait_block_group_cache_done(block_group);
817d52f8 9801
3c14874a
JB
9802 /*
9803 * We haven't cached this block group, which means we could
9804 * possibly have excluded extents on this block group.
9805 */
36cce922
JB
9806 if (block_group->cached == BTRFS_CACHE_NO ||
9807 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9808 free_excluded_extents(info->extent_root, block_group);
9809
817d52f8 9810 btrfs_remove_free_space_cache(block_group);
f3bca802
LB
9811 ASSERT(list_empty(&block_group->dirty_list));
9812 ASSERT(list_empty(&block_group->io_list));
9813 ASSERT(list_empty(&block_group->bg_list));
9814 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9815 btrfs_put_block_group(block_group);
d899e052
YZ
9816
9817 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9818 }
9819 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9820
9821 /* now that all the block groups are freed, go through and
9822 * free all the space_info structs. This is only called during
9823 * the final stages of unmount, and so we know nobody is
9824 * using them. We call synchronize_rcu() once before we start,
9825 * just to be on the safe side.
9826 */
9827 synchronize_rcu();
9828
8929ecfa
YZ
9829 release_global_block_rsv(info);
9830
67871254 9831 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9832 int i;
9833
4184ea7f
CM
9834 space_info = list_entry(info->space_info.next,
9835 struct btrfs_space_info,
9836 list);
d555b6c3
JB
9837
9838 /*
9839 * Do not hide this behind enospc_debug, this is actually
9840 * important and indicates a real bug if this happens.
9841 */
9842 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9843 space_info->bytes_reserved > 0 ||
d555b6c3 9844 space_info->bytes_may_use > 0))
ab8d0fc4 9845 dump_space_info(info, space_info, 0, 0);
4184ea7f 9846 list_del(&space_info->list);
6ab0a202
JM
9847 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9848 struct kobject *kobj;
c1895442
JM
9849 kobj = space_info->block_group_kobjs[i];
9850 space_info->block_group_kobjs[i] = NULL;
9851 if (kobj) {
6ab0a202
JM
9852 kobject_del(kobj);
9853 kobject_put(kobj);
9854 }
9855 }
9856 kobject_del(&space_info->kobj);
9857 kobject_put(&space_info->kobj);
4184ea7f 9858 }
1a40e23b
ZY
9859 return 0;
9860}
9861
b742bb82
YZ
9862static void __link_block_group(struct btrfs_space_info *space_info,
9863 struct btrfs_block_group_cache *cache)
9864{
9865 int index = get_block_group_index(cache);
ed55b6ac 9866 bool first = false;
b742bb82
YZ
9867
9868 down_write(&space_info->groups_sem);
ed55b6ac
JM
9869 if (list_empty(&space_info->block_groups[index]))
9870 first = true;
9871 list_add_tail(&cache->list, &space_info->block_groups[index]);
9872 up_write(&space_info->groups_sem);
9873
9874 if (first) {
c1895442 9875 struct raid_kobject *rkobj;
6ab0a202
JM
9876 int ret;
9877
c1895442
JM
9878 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9879 if (!rkobj)
9880 goto out_err;
9881 rkobj->raid_type = index;
9882 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9883 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9884 "%s", get_raid_name(index));
6ab0a202 9885 if (ret) {
c1895442
JM
9886 kobject_put(&rkobj->kobj);
9887 goto out_err;
6ab0a202 9888 }
c1895442 9889 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9890 }
c1895442
JM
9891
9892 return;
9893out_err:
ab8d0fc4
JM
9894 btrfs_warn(cache->fs_info,
9895 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9896}
9897
920e4a58
MX
9898static struct btrfs_block_group_cache *
9899btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9900{
9901 struct btrfs_block_group_cache *cache;
9902
9903 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9904 if (!cache)
9905 return NULL;
9906
9907 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9908 GFP_NOFS);
9909 if (!cache->free_space_ctl) {
9910 kfree(cache);
9911 return NULL;
9912 }
9913
9914 cache->key.objectid = start;
9915 cache->key.offset = size;
9916 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9917
da17066c 9918 cache->sectorsize = root->fs_info->sectorsize;
920e4a58
MX
9919 cache->fs_info = root->fs_info;
9920 cache->full_stripe_len = btrfs_full_stripe_len(root,
9921 &root->fs_info->mapping_tree,
9922 start);
1e144fb8
OS
9923 set_free_space_tree_thresholds(cache);
9924
920e4a58
MX
9925 atomic_set(&cache->count, 1);
9926 spin_lock_init(&cache->lock);
e570fd27 9927 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9928 INIT_LIST_HEAD(&cache->list);
9929 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9930 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9931 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9932 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9933 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9934 btrfs_init_free_space_ctl(cache);
04216820 9935 atomic_set(&cache->trimming, 0);
a5ed9182 9936 mutex_init(&cache->free_space_lock);
920e4a58
MX
9937
9938 return cache;
9939}
9940
5b4aacef 9941int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1 9942{
5b4aacef 9943 struct btrfs_root *root = info->extent_root;
9078a3e1
CM
9944 struct btrfs_path *path;
9945 int ret;
9078a3e1 9946 struct btrfs_block_group_cache *cache;
6324fbf3 9947 struct btrfs_space_info *space_info;
9078a3e1
CM
9948 struct btrfs_key key;
9949 struct btrfs_key found_key;
5f39d397 9950 struct extent_buffer *leaf;
0af3d00b
JB
9951 int need_clear = 0;
9952 u64 cache_gen;
49303381
LB
9953 u64 feature;
9954 int mixed;
9955
9956 feature = btrfs_super_incompat_flags(info->super_copy);
9957 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9958
9078a3e1 9959 key.objectid = 0;
0b86a832 9960 key.offset = 0;
962a298f 9961 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9962 path = btrfs_alloc_path();
9963 if (!path)
9964 return -ENOMEM;
e4058b54 9965 path->reada = READA_FORWARD;
9078a3e1 9966
6c41761f 9967 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
3cdde224 9968 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6c41761f 9969 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9970 need_clear = 1;
3cdde224 9971 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
88c2ba3b 9972 need_clear = 1;
0af3d00b 9973
d397712b 9974 while (1) {
6bccf3ab 9975 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9976 if (ret > 0)
9977 break;
0b86a832
CM
9978 if (ret != 0)
9979 goto error;
920e4a58 9980
5f39d397
CM
9981 leaf = path->nodes[0];
9982 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9983
9984 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9985 found_key.offset);
9078a3e1 9986 if (!cache) {
0b86a832 9987 ret = -ENOMEM;
f0486c68 9988 goto error;
9078a3e1 9989 }
96303081 9990
cf7c1ef6
LB
9991 if (need_clear) {
9992 /*
9993 * When we mount with old space cache, we need to
9994 * set BTRFS_DC_CLEAR and set dirty flag.
9995 *
9996 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9997 * truncate the old free space cache inode and
9998 * setup a new one.
9999 * b) Setting 'dirty flag' makes sure that we flush
10000 * the new space cache info onto disk.
10001 */
3cdde224 10002 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
ce93ec54 10003 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10004 }
0af3d00b 10005
5f39d397
CM
10006 read_extent_buffer(leaf, &cache->item,
10007 btrfs_item_ptr_offset(leaf, path->slots[0]),
10008 sizeof(cache->item));
920e4a58 10009 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10010 if (!mixed &&
10011 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10012 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10013 btrfs_err(info,
10014"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10015 cache->key.objectid);
10016 ret = -EINVAL;
10017 goto error;
10018 }
0b86a832 10019
9078a3e1 10020 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10021 btrfs_release_path(path);
34d52cb6 10022
3c14874a
JB
10023 /*
10024 * We need to exclude the super stripes now so that the space
10025 * info has super bytes accounted for, otherwise we'll think
10026 * we have more space than we actually do.
10027 */
835d974f
JB
10028 ret = exclude_super_stripes(root, cache);
10029 if (ret) {
10030 /*
10031 * We may have excluded something, so call this just in
10032 * case.
10033 */
10034 free_excluded_extents(root, cache);
920e4a58 10035 btrfs_put_block_group(cache);
835d974f
JB
10036 goto error;
10037 }
3c14874a 10038
817d52f8
JB
10039 /*
10040 * check for two cases, either we are full, and therefore
10041 * don't need to bother with the caching work since we won't
10042 * find any space, or we are empty, and we can just add all
10043 * the space in and be done with it. This saves us _alot_ of
10044 * time, particularly in the full case.
10045 */
10046 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10047 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10048 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 10049 free_excluded_extents(root, cache);
817d52f8 10050 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10051 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
10052 cache->cached = BTRFS_CACHE_FINISHED;
10053 add_new_free_space(cache, root->fs_info,
10054 found_key.objectid,
10055 found_key.objectid +
10056 found_key.offset);
11833d66 10057 free_excluded_extents(root, cache);
817d52f8 10058 }
96b5179d 10059
8c579fe7
JB
10060 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10061 if (ret) {
10062 btrfs_remove_free_space_cache(cache);
10063 btrfs_put_block_group(cache);
10064 goto error;
10065 }
10066
c83f8eff 10067 trace_btrfs_add_block_group(root->fs_info, cache, 0);
6324fbf3
CM
10068 ret = update_space_info(info, cache->flags, found_key.offset,
10069 btrfs_block_group_used(&cache->item),
e40edf2d 10070 cache->bytes_super, &space_info);
8c579fe7
JB
10071 if (ret) {
10072 btrfs_remove_free_space_cache(cache);
10073 spin_lock(&info->block_group_cache_lock);
10074 rb_erase(&cache->cache_node,
10075 &info->block_group_cache_tree);
01eacb27 10076 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10077 spin_unlock(&info->block_group_cache_lock);
10078 btrfs_put_block_group(cache);
10079 goto error;
10080 }
10081
6324fbf3 10082 cache->space_info = space_info;
1b2da372 10083
b742bb82 10084 __link_block_group(space_info, cache);
0f9dd46c 10085
75ccf47d 10086 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10087 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10088 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10089 } else if (btrfs_block_group_used(&cache->item) == 0) {
10090 spin_lock(&info->unused_bgs_lock);
10091 /* Should always be true but just in case. */
10092 if (list_empty(&cache->bg_list)) {
10093 btrfs_get_block_group(cache);
10094 list_add_tail(&cache->bg_list,
10095 &info->unused_bgs);
10096 }
10097 spin_unlock(&info->unused_bgs_lock);
10098 }
9078a3e1 10099 }
b742bb82
YZ
10100
10101 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10102 if (!(get_alloc_profile(root, space_info->flags) &
10103 (BTRFS_BLOCK_GROUP_RAID10 |
10104 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10105 BTRFS_BLOCK_GROUP_RAID5 |
10106 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10107 BTRFS_BLOCK_GROUP_DUP)))
10108 continue;
10109 /*
10110 * avoid allocating from un-mirrored block group if there are
10111 * mirrored block groups.
10112 */
1095cc0d 10113 list_for_each_entry(cache,
10114 &space_info->block_groups[BTRFS_RAID_RAID0],
10115 list)
868f401a 10116 inc_block_group_ro(cache, 1);
1095cc0d 10117 list_for_each_entry(cache,
10118 &space_info->block_groups[BTRFS_RAID_SINGLE],
10119 list)
868f401a 10120 inc_block_group_ro(cache, 1);
9078a3e1 10121 }
f0486c68
YZ
10122
10123 init_global_block_rsv(info);
0b86a832
CM
10124 ret = 0;
10125error:
9078a3e1 10126 btrfs_free_path(path);
0b86a832 10127 return ret;
9078a3e1 10128}
6324fbf3 10129
ea658bad
JB
10130void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10131 struct btrfs_root *root)
10132{
10133 struct btrfs_block_group_cache *block_group, *tmp;
10134 struct btrfs_root *extent_root = root->fs_info->extent_root;
10135 struct btrfs_block_group_item item;
10136 struct btrfs_key key;
10137 int ret = 0;
d9a0540a 10138 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10139
d9a0540a 10140 trans->can_flush_pending_bgs = false;
47ab2a6c 10141 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10142 if (ret)
c92f6be3 10143 goto next;
ea658bad
JB
10144
10145 spin_lock(&block_group->lock);
10146 memcpy(&item, &block_group->item, sizeof(item));
10147 memcpy(&key, &block_group->key, sizeof(key));
10148 spin_unlock(&block_group->lock);
10149
10150 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10151 sizeof(item));
10152 if (ret)
66642832 10153 btrfs_abort_transaction(trans, ret);
6bccf3ab 10154 ret = btrfs_finish_chunk_alloc(trans, extent_root->fs_info,
6df9a95e
JB
10155 key.objectid, key.offset);
10156 if (ret)
66642832 10157 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
10158 add_block_group_free_space(trans, root->fs_info, block_group);
10159 /* already aborted the transaction if it failed. */
c92f6be3
FM
10160next:
10161 list_del_init(&block_group->bg_list);
ea658bad 10162 }
d9a0540a 10163 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10164}
10165
6324fbf3
CM
10166int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10167 struct btrfs_root *root, u64 bytes_used,
e17cade2 10168 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10169 u64 size)
10170{
10171 int ret;
6324fbf3
CM
10172 struct btrfs_root *extent_root;
10173 struct btrfs_block_group_cache *cache;
6324fbf3 10174 extent_root = root->fs_info->extent_root;
6324fbf3 10175
995946dd 10176 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10177
920e4a58 10178 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10179 if (!cache)
10180 return -ENOMEM;
34d52cb6 10181
6324fbf3 10182 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10183 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10184 btrfs_set_block_group_flags(&cache->item, type);
10185
920e4a58 10186 cache->flags = type;
11833d66 10187 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10188 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10189 cache->needs_free_space = 1;
835d974f
JB
10190 ret = exclude_super_stripes(root, cache);
10191 if (ret) {
10192 /*
10193 * We may have excluded something, so call this just in
10194 * case.
10195 */
10196 free_excluded_extents(root, cache);
920e4a58 10197 btrfs_put_block_group(cache);
835d974f
JB
10198 return ret;
10199 }
96303081 10200
817d52f8
JB
10201 add_new_free_space(cache, root->fs_info, chunk_offset,
10202 chunk_offset + size);
10203
11833d66
YZ
10204 free_excluded_extents(root, cache);
10205
d0bd4560
JB
10206#ifdef CONFIG_BTRFS_DEBUG
10207 if (btrfs_should_fragment_free_space(root, cache)) {
10208 u64 new_bytes_used = size - bytes_used;
10209
10210 bytes_used += new_bytes_used >> 1;
10211 fragment_free_space(root, cache);
10212 }
10213#endif
2e6e5183
FM
10214 /*
10215 * Call to ensure the corresponding space_info object is created and
10216 * assigned to our block group, but don't update its counters just yet.
10217 * We want our bg to be added to the rbtree with its ->space_info set.
10218 */
e40edf2d 10219 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10220 &cache->space_info);
10221 if (ret) {
10222 btrfs_remove_free_space_cache(cache);
10223 btrfs_put_block_group(cache);
10224 return ret;
10225 }
10226
8c579fe7
JB
10227 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10228 if (ret) {
10229 btrfs_remove_free_space_cache(cache);
10230 btrfs_put_block_group(cache);
10231 return ret;
10232 }
10233
2e6e5183
FM
10234 /*
10235 * Now that our block group has its ->space_info set and is inserted in
10236 * the rbtree, update the space info's counters.
10237 */
c83f8eff 10238 trace_btrfs_add_block_group(root->fs_info, cache, 1);
6324fbf3 10239 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
e40edf2d 10240 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10241 if (ret) {
10242 btrfs_remove_free_space_cache(cache);
10243 spin_lock(&root->fs_info->block_group_cache_lock);
10244 rb_erase(&cache->cache_node,
10245 &root->fs_info->block_group_cache_tree);
01eacb27 10246 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10247 spin_unlock(&root->fs_info->block_group_cache_lock);
10248 btrfs_put_block_group(cache);
10249 return ret;
10250 }
c7c144db 10251 update_global_block_rsv(root->fs_info);
1b2da372 10252
b742bb82 10253 __link_block_group(cache->space_info, cache);
6324fbf3 10254
47ab2a6c 10255 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10256
d18a2c44 10257 set_avail_alloc_bits(extent_root->fs_info, type);
6324fbf3
CM
10258 return 0;
10259}
1a40e23b 10260
10ea00f5
ID
10261static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10262{
899c81ea
ID
10263 u64 extra_flags = chunk_to_extended(flags) &
10264 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10265
de98ced9 10266 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10267 if (flags & BTRFS_BLOCK_GROUP_DATA)
10268 fs_info->avail_data_alloc_bits &= ~extra_flags;
10269 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10270 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10271 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10272 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10273 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10274}
10275
1a40e23b 10276int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10277 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10278 struct extent_map *em)
1a40e23b 10279{
6bccf3ab 10280 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10281 struct btrfs_path *path;
10282 struct btrfs_block_group_cache *block_group;
44fb5511 10283 struct btrfs_free_cluster *cluster;
0af3d00b 10284 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10285 struct btrfs_key key;
0af3d00b 10286 struct inode *inode;
c1895442 10287 struct kobject *kobj = NULL;
1a40e23b 10288 int ret;
10ea00f5 10289 int index;
89a55897 10290 int factor;
4f69cb98 10291 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10292 bool remove_em;
1a40e23b 10293
6bccf3ab 10294 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10295 BUG_ON(!block_group);
c146afad 10296 BUG_ON(!block_group->ro);
1a40e23b 10297
9f7c43c9 10298 /*
10299 * Free the reserved super bytes from this block group before
10300 * remove it.
10301 */
10302 free_excluded_extents(root, block_group);
10303
1a40e23b 10304 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10305 index = get_block_group_index(block_group);
89a55897
JB
10306 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10307 BTRFS_BLOCK_GROUP_RAID1 |
10308 BTRFS_BLOCK_GROUP_RAID10))
10309 factor = 2;
10310 else
10311 factor = 1;
1a40e23b 10312
44fb5511
CM
10313 /* make sure this block group isn't part of an allocation cluster */
10314 cluster = &root->fs_info->data_alloc_cluster;
10315 spin_lock(&cluster->refill_lock);
10316 btrfs_return_cluster_to_free_space(block_group, cluster);
10317 spin_unlock(&cluster->refill_lock);
10318
10319 /*
10320 * make sure this block group isn't part of a metadata
10321 * allocation cluster
10322 */
10323 cluster = &root->fs_info->meta_alloc_cluster;
10324 spin_lock(&cluster->refill_lock);
10325 btrfs_return_cluster_to_free_space(block_group, cluster);
10326 spin_unlock(&cluster->refill_lock);
10327
1a40e23b 10328 path = btrfs_alloc_path();
d8926bb3
MF
10329 if (!path) {
10330 ret = -ENOMEM;
10331 goto out;
10332 }
1a40e23b 10333
1bbc621e
CM
10334 /*
10335 * get the inode first so any iput calls done for the io_list
10336 * aren't the final iput (no unlinks allowed now)
10337 */
10b2f34d 10338 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10339
10340 mutex_lock(&trans->transaction->cache_write_mutex);
10341 /*
10342 * make sure our free spache cache IO is done before remove the
10343 * free space inode
10344 */
10345 spin_lock(&trans->transaction->dirty_bgs_lock);
10346 if (!list_empty(&block_group->io_list)) {
10347 list_del_init(&block_group->io_list);
10348
10349 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10350
10351 spin_unlock(&trans->transaction->dirty_bgs_lock);
10352 btrfs_wait_cache_io(root, trans, block_group,
10353 &block_group->io_ctl, path,
10354 block_group->key.objectid);
10355 btrfs_put_block_group(block_group);
10356 spin_lock(&trans->transaction->dirty_bgs_lock);
10357 }
10358
10359 if (!list_empty(&block_group->dirty_list)) {
10360 list_del_init(&block_group->dirty_list);
10361 btrfs_put_block_group(block_group);
10362 }
10363 spin_unlock(&trans->transaction->dirty_bgs_lock);
10364 mutex_unlock(&trans->transaction->cache_write_mutex);
10365
0af3d00b 10366 if (!IS_ERR(inode)) {
b532402e 10367 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10368 if (ret) {
10369 btrfs_add_delayed_iput(inode);
10370 goto out;
10371 }
0af3d00b
JB
10372 clear_nlink(inode);
10373 /* One for the block groups ref */
10374 spin_lock(&block_group->lock);
10375 if (block_group->iref) {
10376 block_group->iref = 0;
10377 block_group->inode = NULL;
10378 spin_unlock(&block_group->lock);
10379 iput(inode);
10380 } else {
10381 spin_unlock(&block_group->lock);
10382 }
10383 /* One for our lookup ref */
455757c3 10384 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10385 }
10386
10387 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10388 key.offset = block_group->key.objectid;
10389 key.type = 0;
10390
10391 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10392 if (ret < 0)
10393 goto out;
10394 if (ret > 0)
b3b4aa74 10395 btrfs_release_path(path);
0af3d00b
JB
10396 if (ret == 0) {
10397 ret = btrfs_del_item(trans, tree_root, path);
10398 if (ret)
10399 goto out;
b3b4aa74 10400 btrfs_release_path(path);
0af3d00b
JB
10401 }
10402
3dfdb934 10403 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10404 rb_erase(&block_group->cache_node,
10405 &root->fs_info->block_group_cache_tree);
292cbd51 10406 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10407
10408 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10409 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10410 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10411
80eb234a 10412 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10413 /*
10414 * we must use list_del_init so people can check to see if they
10415 * are still on the list after taking the semaphore
10416 */
10417 list_del_init(&block_group->list);
6ab0a202 10418 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10419 kobj = block_group->space_info->block_group_kobjs[index];
10420 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10421 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10422 }
80eb234a 10423 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10424 if (kobj) {
10425 kobject_del(kobj);
10426 kobject_put(kobj);
10427 }
1a40e23b 10428
4f69cb98
FM
10429 if (block_group->has_caching_ctl)
10430 caching_ctl = get_caching_control(block_group);
817d52f8 10431 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10432 wait_block_group_cache_done(block_group);
4f69cb98
FM
10433 if (block_group->has_caching_ctl) {
10434 down_write(&root->fs_info->commit_root_sem);
10435 if (!caching_ctl) {
10436 struct btrfs_caching_control *ctl;
10437
10438 list_for_each_entry(ctl,
10439 &root->fs_info->caching_block_groups, list)
10440 if (ctl->block_group == block_group) {
10441 caching_ctl = ctl;
10442 atomic_inc(&caching_ctl->count);
10443 break;
10444 }
10445 }
10446 if (caching_ctl)
10447 list_del_init(&caching_ctl->list);
10448 up_write(&root->fs_info->commit_root_sem);
10449 if (caching_ctl) {
10450 /* Once for the caching bgs list and once for us. */
10451 put_caching_control(caching_ctl);
10452 put_caching_control(caching_ctl);
10453 }
10454 }
817d52f8 10455
ce93ec54
JB
10456 spin_lock(&trans->transaction->dirty_bgs_lock);
10457 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10458 WARN_ON(1);
10459 }
10460 if (!list_empty(&block_group->io_list)) {
10461 WARN_ON(1);
ce93ec54
JB
10462 }
10463 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10464 btrfs_remove_free_space_cache(block_group);
10465
c146afad 10466 spin_lock(&block_group->space_info->lock);
75c68e9f 10467 list_del_init(&block_group->ro_list);
18d018ad 10468
3cdde224 10469 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10470 WARN_ON(block_group->space_info->total_bytes
10471 < block_group->key.offset);
10472 WARN_ON(block_group->space_info->bytes_readonly
10473 < block_group->key.offset);
10474 WARN_ON(block_group->space_info->disk_total
10475 < block_group->key.offset * factor);
10476 }
c146afad
YZ
10477 block_group->space_info->total_bytes -= block_group->key.offset;
10478 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10479 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10480
c146afad 10481 spin_unlock(&block_group->space_info->lock);
283bb197 10482
0af3d00b
JB
10483 memcpy(&key, &block_group->key, sizeof(key));
10484
3796d335 10485 lock_chunks(root->fs_info);
495e64f4
FM
10486 if (!list_empty(&em->list)) {
10487 /* We're in the transaction->pending_chunks list. */
10488 free_extent_map(em);
10489 }
04216820
FM
10490 spin_lock(&block_group->lock);
10491 block_group->removed = 1;
10492 /*
10493 * At this point trimming can't start on this block group, because we
10494 * removed the block group from the tree fs_info->block_group_cache_tree
10495 * so no one can't find it anymore and even if someone already got this
10496 * block group before we removed it from the rbtree, they have already
10497 * incremented block_group->trimming - if they didn't, they won't find
10498 * any free space entries because we already removed them all when we
10499 * called btrfs_remove_free_space_cache().
10500 *
10501 * And we must not remove the extent map from the fs_info->mapping_tree
10502 * to prevent the same logical address range and physical device space
10503 * ranges from being reused for a new block group. This is because our
10504 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10505 * completely transactionless, so while it is trimming a range the
10506 * currently running transaction might finish and a new one start,
10507 * allowing for new block groups to be created that can reuse the same
10508 * physical device locations unless we take this special care.
e33e17ee
JM
10509 *
10510 * There may also be an implicit trim operation if the file system
10511 * is mounted with -odiscard. The same protections must remain
10512 * in place until the extents have been discarded completely when
10513 * the transaction commit has completed.
04216820
FM
10514 */
10515 remove_em = (atomic_read(&block_group->trimming) == 0);
10516 /*
10517 * Make sure a trimmer task always sees the em in the pinned_chunks list
10518 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10519 * before checking block_group->removed).
10520 */
10521 if (!remove_em) {
10522 /*
10523 * Our em might be in trans->transaction->pending_chunks which
10524 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10525 * and so is the fs_info->pinned_chunks list.
10526 *
10527 * So at this point we must be holding the chunk_mutex to avoid
10528 * any races with chunk allocation (more specifically at
10529 * volumes.c:contains_pending_extent()), to ensure it always
10530 * sees the em, either in the pending_chunks list or in the
10531 * pinned_chunks list.
10532 */
10533 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10534 }
10535 spin_unlock(&block_group->lock);
04216820
FM
10536
10537 if (remove_em) {
10538 struct extent_map_tree *em_tree;
10539
10540 em_tree = &root->fs_info->mapping_tree.map_tree;
10541 write_lock(&em_tree->lock);
8dbcd10f
FM
10542 /*
10543 * The em might be in the pending_chunks list, so make sure the
10544 * chunk mutex is locked, since remove_extent_mapping() will
10545 * delete us from that list.
10546 */
04216820
FM
10547 remove_extent_mapping(em_tree, em);
10548 write_unlock(&em_tree->lock);
10549 /* once for the tree */
10550 free_extent_map(em);
10551 }
10552
3796d335 10553 unlock_chunks(root->fs_info);
8dbcd10f 10554
1e144fb8
OS
10555 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10556 if (ret)
10557 goto out;
10558
fa9c0d79
CM
10559 btrfs_put_block_group(block_group);
10560 btrfs_put_block_group(block_group);
1a40e23b
ZY
10561
10562 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10563 if (ret > 0)
10564 ret = -EIO;
10565 if (ret < 0)
10566 goto out;
10567
10568 ret = btrfs_del_item(trans, root, path);
10569out:
10570 btrfs_free_path(path);
10571 return ret;
10572}
acce952b 10573
8eab77ff 10574struct btrfs_trans_handle *
7fd01182
FM
10575btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10576 const u64 chunk_offset)
8eab77ff 10577{
7fd01182
FM
10578 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10579 struct extent_map *em;
10580 struct map_lookup *map;
10581 unsigned int num_items;
10582
10583 read_lock(&em_tree->lock);
10584 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10585 read_unlock(&em_tree->lock);
10586 ASSERT(em && em->start == chunk_offset);
10587
8eab77ff 10588 /*
7fd01182
FM
10589 * We need to reserve 3 + N units from the metadata space info in order
10590 * to remove a block group (done at btrfs_remove_chunk() and at
10591 * btrfs_remove_block_group()), which are used for:
10592 *
8eab77ff
FM
10593 * 1 unit for adding the free space inode's orphan (located in the tree
10594 * of tree roots).
7fd01182
FM
10595 * 1 unit for deleting the block group item (located in the extent
10596 * tree).
10597 * 1 unit for deleting the free space item (located in tree of tree
10598 * roots).
10599 * N units for deleting N device extent items corresponding to each
10600 * stripe (located in the device tree).
10601 *
10602 * In order to remove a block group we also need to reserve units in the
10603 * system space info in order to update the chunk tree (update one or
10604 * more device items and remove one chunk item), but this is done at
10605 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10606 */
95617d69 10607 map = em->map_lookup;
7fd01182
FM
10608 num_items = 3 + map->num_stripes;
10609 free_extent_map(em);
10610
8eab77ff 10611 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10612 num_items, 1);
8eab77ff
FM
10613}
10614
47ab2a6c
JB
10615/*
10616 * Process the unused_bgs list and remove any that don't have any allocated
10617 * space inside of them.
10618 */
10619void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10620{
10621 struct btrfs_block_group_cache *block_group;
10622 struct btrfs_space_info *space_info;
10623 struct btrfs_root *root = fs_info->extent_root;
10624 struct btrfs_trans_handle *trans;
10625 int ret = 0;
10626
afcdd129 10627 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10628 return;
10629
10630 spin_lock(&fs_info->unused_bgs_lock);
10631 while (!list_empty(&fs_info->unused_bgs)) {
10632 u64 start, end;
e33e17ee 10633 int trimming;
47ab2a6c
JB
10634
10635 block_group = list_first_entry(&fs_info->unused_bgs,
10636 struct btrfs_block_group_cache,
10637 bg_list);
47ab2a6c 10638 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10639
10640 space_info = block_group->space_info;
10641
47ab2a6c
JB
10642 if (ret || btrfs_mixed_space_info(space_info)) {
10643 btrfs_put_block_group(block_group);
10644 continue;
10645 }
10646 spin_unlock(&fs_info->unused_bgs_lock);
10647
d5f2e33b 10648 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10649
47ab2a6c
JB
10650 /* Don't want to race with allocators so take the groups_sem */
10651 down_write(&space_info->groups_sem);
10652 spin_lock(&block_group->lock);
10653 if (block_group->reserved ||
10654 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10655 block_group->ro ||
aefbe9a6 10656 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10657 /*
10658 * We want to bail if we made new allocations or have
10659 * outstanding allocations in this block group. We do
10660 * the ro check in case balance is currently acting on
10661 * this block group.
10662 */
10663 spin_unlock(&block_group->lock);
10664 up_write(&space_info->groups_sem);
10665 goto next;
10666 }
10667 spin_unlock(&block_group->lock);
10668
10669 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10670 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10671 up_write(&space_info->groups_sem);
10672 if (ret < 0) {
10673 ret = 0;
10674 goto next;
10675 }
10676
10677 /*
10678 * Want to do this before we do anything else so we can recover
10679 * properly if we fail to join the transaction.
10680 */
7fd01182
FM
10681 trans = btrfs_start_trans_remove_block_group(fs_info,
10682 block_group->key.objectid);
47ab2a6c 10683 if (IS_ERR(trans)) {
868f401a 10684 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10685 ret = PTR_ERR(trans);
10686 goto next;
10687 }
10688
10689 /*
10690 * We could have pending pinned extents for this block group,
10691 * just delete them, we don't care about them anymore.
10692 */
10693 start = block_group->key.objectid;
10694 end = start + block_group->key.offset - 1;
d4b450cd
FM
10695 /*
10696 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10697 * btrfs_finish_extent_commit(). If we are at transaction N,
10698 * another task might be running finish_extent_commit() for the
10699 * previous transaction N - 1, and have seen a range belonging
10700 * to the block group in freed_extents[] before we were able to
10701 * clear the whole block group range from freed_extents[]. This
10702 * means that task can lookup for the block group after we
10703 * unpinned it from freed_extents[] and removed it, leading to
10704 * a BUG_ON() at btrfs_unpin_extent_range().
10705 */
10706 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10707 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10708 EXTENT_DIRTY);
758eb51e 10709 if (ret) {
d4b450cd 10710 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10711 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10712 goto end_trans;
10713 }
10714 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10715 EXTENT_DIRTY);
758eb51e 10716 if (ret) {
d4b450cd 10717 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10718 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10719 goto end_trans;
10720 }
d4b450cd 10721 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10722
10723 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10724 spin_lock(&space_info->lock);
10725 spin_lock(&block_group->lock);
10726
10727 space_info->bytes_pinned -= block_group->pinned;
10728 space_info->bytes_readonly += block_group->pinned;
10729 percpu_counter_add(&space_info->total_bytes_pinned,
10730 -block_group->pinned);
47ab2a6c
JB
10731 block_group->pinned = 0;
10732
c30666d4
ZL
10733 spin_unlock(&block_group->lock);
10734 spin_unlock(&space_info->lock);
10735
e33e17ee 10736 /* DISCARD can flip during remount */
3cdde224 10737 trimming = btrfs_test_opt(root->fs_info, DISCARD);
e33e17ee
JM
10738
10739 /* Implicit trim during transaction commit. */
10740 if (trimming)
10741 btrfs_get_block_group_trimming(block_group);
10742
47ab2a6c
JB
10743 /*
10744 * Btrfs_remove_chunk will abort the transaction if things go
10745 * horribly wrong.
10746 */
5b4aacef 10747 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10748 block_group->key.objectid);
e33e17ee
JM
10749
10750 if (ret) {
10751 if (trimming)
10752 btrfs_put_block_group_trimming(block_group);
10753 goto end_trans;
10754 }
10755
10756 /*
10757 * If we're not mounted with -odiscard, we can just forget
10758 * about this block group. Otherwise we'll need to wait
10759 * until transaction commit to do the actual discard.
10760 */
10761 if (trimming) {
348a0013
FM
10762 spin_lock(&fs_info->unused_bgs_lock);
10763 /*
10764 * A concurrent scrub might have added us to the list
10765 * fs_info->unused_bgs, so use a list_move operation
10766 * to add the block group to the deleted_bgs list.
10767 */
e33e17ee
JM
10768 list_move(&block_group->bg_list,
10769 &trans->transaction->deleted_bgs);
348a0013 10770 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10771 btrfs_get_block_group(block_group);
10772 }
758eb51e 10773end_trans:
47ab2a6c
JB
10774 btrfs_end_transaction(trans, root);
10775next:
d5f2e33b 10776 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10777 btrfs_put_block_group(block_group);
10778 spin_lock(&fs_info->unused_bgs_lock);
10779 }
10780 spin_unlock(&fs_info->unused_bgs_lock);
10781}
10782
c59021f8 10783int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10784{
10785 struct btrfs_space_info *space_info;
1aba86d6 10786 struct btrfs_super_block *disk_super;
10787 u64 features;
10788 u64 flags;
10789 int mixed = 0;
c59021f8 10790 int ret;
10791
6c41761f 10792 disk_super = fs_info->super_copy;
1aba86d6 10793 if (!btrfs_super_root(disk_super))
0dc924c5 10794 return -EINVAL;
c59021f8 10795
1aba86d6 10796 features = btrfs_super_incompat_flags(disk_super);
10797 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10798 mixed = 1;
c59021f8 10799
1aba86d6 10800 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10801 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10802 if (ret)
1aba86d6 10803 goto out;
c59021f8 10804
1aba86d6 10805 if (mixed) {
10806 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10807 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10808 } else {
10809 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10810 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10811 if (ret)
10812 goto out;
10813
10814 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10815 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10816 }
10817out:
c59021f8 10818 return ret;
10819}
10820
acce952b 10821int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10822{
678886bd 10823 return unpin_extent_range(root, start, end, false);
acce952b 10824}
10825
499f377f
JM
10826/*
10827 * It used to be that old block groups would be left around forever.
10828 * Iterating over them would be enough to trim unused space. Since we
10829 * now automatically remove them, we also need to iterate over unallocated
10830 * space.
10831 *
10832 * We don't want a transaction for this since the discard may take a
10833 * substantial amount of time. We don't require that a transaction be
10834 * running, but we do need to take a running transaction into account
10835 * to ensure that we're not discarding chunks that were released in
10836 * the current transaction.
10837 *
10838 * Holding the chunks lock will prevent other threads from allocating
10839 * or releasing chunks, but it won't prevent a running transaction
10840 * from committing and releasing the memory that the pending chunks
10841 * list head uses. For that, we need to take a reference to the
10842 * transaction.
10843 */
10844static int btrfs_trim_free_extents(struct btrfs_device *device,
10845 u64 minlen, u64 *trimmed)
10846{
10847 u64 start = 0, len = 0;
10848 int ret;
10849
10850 *trimmed = 0;
10851
10852 /* Not writeable = nothing to do. */
10853 if (!device->writeable)
10854 return 0;
10855
10856 /* No free space = nothing to do. */
10857 if (device->total_bytes <= device->bytes_used)
10858 return 0;
10859
10860 ret = 0;
10861
10862 while (1) {
fb456252 10863 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10864 struct btrfs_transaction *trans;
10865 u64 bytes;
10866
10867 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10868 if (ret)
10869 return ret;
10870
10871 down_read(&fs_info->commit_root_sem);
10872
10873 spin_lock(&fs_info->trans_lock);
10874 trans = fs_info->running_transaction;
10875 if (trans)
10876 atomic_inc(&trans->use_count);
10877 spin_unlock(&fs_info->trans_lock);
10878
10879 ret = find_free_dev_extent_start(trans, device, minlen, start,
10880 &start, &len);
10881 if (trans)
10882 btrfs_put_transaction(trans);
10883
10884 if (ret) {
10885 up_read(&fs_info->commit_root_sem);
10886 mutex_unlock(&fs_info->chunk_mutex);
10887 if (ret == -ENOSPC)
10888 ret = 0;
10889 break;
10890 }
10891
10892 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10893 up_read(&fs_info->commit_root_sem);
10894 mutex_unlock(&fs_info->chunk_mutex);
10895
10896 if (ret)
10897 break;
10898
10899 start += len;
10900 *trimmed += bytes;
10901
10902 if (fatal_signal_pending(current)) {
10903 ret = -ERESTARTSYS;
10904 break;
10905 }
10906
10907 cond_resched();
10908 }
10909
10910 return ret;
10911}
10912
f7039b1d
LD
10913int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10914{
10915 struct btrfs_fs_info *fs_info = root->fs_info;
10916 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10917 struct btrfs_device *device;
10918 struct list_head *devices;
f7039b1d
LD
10919 u64 group_trimmed;
10920 u64 start;
10921 u64 end;
10922 u64 trimmed = 0;
2cac13e4 10923 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10924 int ret = 0;
10925
2cac13e4
LB
10926 /*
10927 * try to trim all FS space, our block group may start from non-zero.
10928 */
10929 if (range->len == total_bytes)
10930 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10931 else
10932 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10933
10934 while (cache) {
10935 if (cache->key.objectid >= (range->start + range->len)) {
10936 btrfs_put_block_group(cache);
10937 break;
10938 }
10939
10940 start = max(range->start, cache->key.objectid);
10941 end = min(range->start + range->len,
10942 cache->key.objectid + cache->key.offset);
10943
10944 if (end - start >= range->minlen) {
10945 if (!block_group_cache_done(cache)) {
f6373bf3 10946 ret = cache_block_group(cache, 0);
1be41b78
JB
10947 if (ret) {
10948 btrfs_put_block_group(cache);
10949 break;
10950 }
10951 ret = wait_block_group_cache_done(cache);
10952 if (ret) {
10953 btrfs_put_block_group(cache);
10954 break;
10955 }
f7039b1d
LD
10956 }
10957 ret = btrfs_trim_block_group(cache,
10958 &group_trimmed,
10959 start,
10960 end,
10961 range->minlen);
10962
10963 trimmed += group_trimmed;
10964 if (ret) {
10965 btrfs_put_block_group(cache);
10966 break;
10967 }
10968 }
10969
10970 cache = next_block_group(fs_info->tree_root, cache);
10971 }
10972
499f377f
JM
10973 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10974 devices = &root->fs_info->fs_devices->alloc_list;
10975 list_for_each_entry(device, devices, dev_alloc_list) {
10976 ret = btrfs_trim_free_extents(device, range->minlen,
10977 &group_trimmed);
10978 if (ret)
10979 break;
10980
10981 trimmed += group_trimmed;
10982 }
10983 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10984
f7039b1d
LD
10985 range->len = trimmed;
10986 return ret;
10987}
8257b2dc
MX
10988
10989/*
9ea24bbe
FM
10990 * btrfs_{start,end}_write_no_snapshoting() are similar to
10991 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10992 * data into the page cache through nocow before the subvolume is snapshoted,
10993 * but flush the data into disk after the snapshot creation, or to prevent
10994 * operations while snapshoting is ongoing and that cause the snapshot to be
10995 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10996 */
9ea24bbe 10997void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10998{
10999 percpu_counter_dec(&root->subv_writers->counter);
11000 /*
a83342aa 11001 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11002 */
11003 smp_mb();
11004 if (waitqueue_active(&root->subv_writers->wait))
11005 wake_up(&root->subv_writers->wait);
11006}
11007
9ea24bbe 11008int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 11009{
ee39b432 11010 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11011 return 0;
11012
11013 percpu_counter_inc(&root->subv_writers->counter);
11014 /*
11015 * Make sure counter is updated before we check for snapshot creation.
11016 */
11017 smp_mb();
ee39b432 11018 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11019 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11020 return 0;
11021 }
11022 return 1;
11023}
0bc19f90
ZL
11024
11025static int wait_snapshoting_atomic_t(atomic_t *a)
11026{
11027 schedule();
11028 return 0;
11029}
11030
11031void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11032{
11033 while (true) {
11034 int ret;
11035
11036 ret = btrfs_start_write_no_snapshoting(root);
11037 if (ret)
11038 break;
11039 wait_on_atomic_t(&root->will_be_snapshoted,
11040 wait_snapshoting_atomic_t,
11041 TASK_UNINTERRUPTIBLE);
11042 }
11043}