]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: Use ktime_get_real_ts for root ctime
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
74493f7a 29#include "hash.h"
995946dd 30#include "tree-log.h"
fec577fb
CM
31#include "disk-io.h"
32#include "print-tree.h"
0b86a832 33#include "volumes.h"
53b381b3 34#include "raid56.h"
925baedd 35#include "locking.h"
fa9c0d79 36#include "free-space-cache.h"
1e144fb8 37#include "free-space-tree.h"
3fed40cc 38#include "math.h"
6ab0a202 39#include "sysfs.h"
fcebe456 40#include "qgroup.h"
fec577fb 41
709c0486
AJ
42#undef SCRAMBLE_DELAYED_REFS
43
9e622d6b
MX
44/*
45 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
0e4f8f88
CM
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
9e622d6b
MX
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
0e4f8f88
CM
57 */
58enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
62};
63
ce93ec54 64static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 65 struct btrfs_fs_info *fs_info, u64 bytenr,
ce93ec54 66 u64 num_bytes, int alloc);
5d4f98a2 67static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 68 struct btrfs_fs_info *fs_info,
c682f9b3 69 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
c682f9b3 72 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
73static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 77 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 82 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 85 int level, struct btrfs_key *ins);
6a63209f 86static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 87 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
4824f1f4 94static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 95 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
96static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
5d80366e
JB
98static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
957780eb
JB
100static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
6a63209f 110
817d52f8
JB
111static noinline int
112block_group_cache_done(struct btrfs_block_group_cache *cache)
113{
114 smp_mb();
36cce922
JB
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
117}
118
0f9dd46c
JB
119static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120{
121 return (cache->flags & bits) == bits;
122}
123
758f2dfc 124void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
125{
126 atomic_inc(&cache->count);
127}
128
129void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130{
f0486c68
YZ
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
34d52cb6 134 kfree(cache->free_space_ctl);
11dfe35a 135 kfree(cache);
f0486c68 136 }
11dfe35a
JB
137}
138
0f9dd46c
JB
139/*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
b2950863 143static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
144 struct btrfs_block_group_cache *block_group)
145{
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
a1897fdd
LB
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
0f9dd46c
JB
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177}
178
179/*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183static struct btrfs_block_group_cache *
184block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186{
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
a1897fdd 215 if (ret) {
11dfe35a 216 btrfs_get_block_group(ret);
a1897fdd
LB
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
0f9dd46c
JB
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223}
224
2ff7e61e 225static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 226 u64 start, u64 num_bytes)
817d52f8 227{
11833d66 228 u64 end = start + num_bytes - 1;
0b246afa 229 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 230 start, end, EXTENT_UPTODATE);
0b246afa 231 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
11833d66
YZ
233 return 0;
234}
817d52f8 235
2ff7e61e 236static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
237 struct btrfs_block_group_cache *cache)
238{
239 u64 start, end;
817d52f8 240
11833d66
YZ
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
0b246afa 244 clear_extent_bits(&fs_info->freed_extents[0],
91166212 245 start, end, EXTENT_UPTODATE);
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[1],
91166212 247 start, end, EXTENT_UPTODATE);
817d52f8
JB
248}
249
2ff7e61e 250static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 251 struct btrfs_block_group_cache *cache)
817d52f8 252{
817d52f8
JB
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
06b2331f
YZ
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
2ff7e61e 261 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 262 stripe_len);
835d974f
JB
263 if (ret)
264 return ret;
06b2331f
YZ
265 }
266
817d52f8
JB
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
0b246afa 269 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 270 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
271 if (ret)
272 return ret;
11833d66 273
817d52f8 274 while (nr--) {
51bf5f0b
JB
275 u64 start, len;
276
277 if (logical[nr] > cache->key.objectid +
278 cache->key.offset)
279 continue;
280
281 if (logical[nr] + stripe_len <= cache->key.objectid)
282 continue;
283
284 start = logical[nr];
285 if (start < cache->key.objectid) {
286 start = cache->key.objectid;
287 len = (logical[nr] + stripe_len) - start;
288 } else {
289 len = min_t(u64, stripe_len,
290 cache->key.objectid +
291 cache->key.offset - start);
292 }
293
294 cache->bytes_super += len;
2ff7e61e 295 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
296 if (ret) {
297 kfree(logical);
298 return ret;
299 }
817d52f8 300 }
11833d66 301
817d52f8
JB
302 kfree(logical);
303 }
817d52f8
JB
304 return 0;
305}
306
11833d66
YZ
307static struct btrfs_caching_control *
308get_caching_control(struct btrfs_block_group_cache *cache)
309{
310 struct btrfs_caching_control *ctl;
311
312 spin_lock(&cache->lock);
dde5abee
JB
313 if (!cache->caching_ctl) {
314 spin_unlock(&cache->lock);
11833d66
YZ
315 return NULL;
316 }
317
318 ctl = cache->caching_ctl;
1e4f4714 319 refcount_inc(&ctl->count);
11833d66
YZ
320 spin_unlock(&cache->lock);
321 return ctl;
322}
323
324static void put_caching_control(struct btrfs_caching_control *ctl)
325{
1e4f4714 326 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
327 kfree(ctl);
328}
329
d0bd4560 330#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 331static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 332{
2ff7e61e 333 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
334 u64 start = block_group->key.objectid;
335 u64 len = block_group->key.offset;
336 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 337 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
338 u64 step = chunk << 1;
339
340 while (len > chunk) {
341 btrfs_remove_free_space(block_group, start, chunk);
342 start += step;
343 if (len < step)
344 len = 0;
345 else
346 len -= step;
347 }
348}
349#endif
350
0f9dd46c
JB
351/*
352 * this is only called by cache_block_group, since we could have freed extents
353 * we need to check the pinned_extents for any extents that can't be used yet
354 * since their free space will be released as soon as the transaction commits.
355 */
a5ed9182
OS
356u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
357 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 358{
817d52f8 359 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
360 int ret;
361
362 while (start < end) {
11833d66 363 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 364 &extent_start, &extent_end,
e6138876
JB
365 EXTENT_DIRTY | EXTENT_UPTODATE,
366 NULL);
0f9dd46c
JB
367 if (ret)
368 break;
369
06b2331f 370 if (extent_start <= start) {
0f9dd46c
JB
371 start = extent_end + 1;
372 } else if (extent_start > start && extent_start < end) {
373 size = extent_start - start;
817d52f8 374 total_added += size;
ea6a478e
JB
375 ret = btrfs_add_free_space(block_group, start,
376 size);
79787eaa 377 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
378 start = extent_end + 1;
379 } else {
380 break;
381 }
382 }
383
384 if (start < end) {
385 size = end - start;
817d52f8 386 total_added += size;
ea6a478e 387 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 388 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
389 }
390
817d52f8 391 return total_added;
0f9dd46c
JB
392}
393
73fa48b6 394static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 395{
0b246afa
JM
396 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
397 struct btrfs_fs_info *fs_info = block_group->fs_info;
398 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 399 struct btrfs_path *path;
5f39d397 400 struct extent_buffer *leaf;
11833d66 401 struct btrfs_key key;
817d52f8 402 u64 total_found = 0;
11833d66
YZ
403 u64 last = 0;
404 u32 nritems;
73fa48b6 405 int ret;
d0bd4560 406 bool wakeup = true;
f510cfec 407
e37c9e69
CM
408 path = btrfs_alloc_path();
409 if (!path)
73fa48b6 410 return -ENOMEM;
7d7d6068 411
817d52f8 412 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 413
d0bd4560
JB
414#ifdef CONFIG_BTRFS_DEBUG
415 /*
416 * If we're fragmenting we don't want to make anybody think we can
417 * allocate from this block group until we've had a chance to fragment
418 * the free space.
419 */
2ff7e61e 420 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
421 wakeup = false;
422#endif
5cd57b2c 423 /*
817d52f8
JB
424 * We don't want to deadlock with somebody trying to allocate a new
425 * extent for the extent root while also trying to search the extent
426 * root to add free space. So we skip locking and search the commit
427 * root, since its read-only
5cd57b2c
CM
428 */
429 path->skip_locking = 1;
817d52f8 430 path->search_commit_root = 1;
e4058b54 431 path->reada = READA_FORWARD;
817d52f8 432
e4404d6e 433 key.objectid = last;
e37c9e69 434 key.offset = 0;
11833d66 435 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 436
52ee28d2 437next:
11833d66 438 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 439 if (ret < 0)
73fa48b6 440 goto out;
a512bbf8 441
11833d66
YZ
442 leaf = path->nodes[0];
443 nritems = btrfs_header_nritems(leaf);
444
d397712b 445 while (1) {
7841cb28 446 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 447 last = (u64)-1;
817d52f8 448 break;
f25784b3 449 }
817d52f8 450
11833d66
YZ
451 if (path->slots[0] < nritems) {
452 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
453 } else {
454 ret = find_next_key(path, 0, &key);
455 if (ret)
e37c9e69 456 break;
817d52f8 457
c9ea7b24 458 if (need_resched() ||
9e351cc8 459 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
460 if (wakeup)
461 caching_ctl->progress = last;
ff5714cc 462 btrfs_release_path(path);
9e351cc8 463 up_read(&fs_info->commit_root_sem);
589d8ade 464 mutex_unlock(&caching_ctl->mutex);
11833d66 465 cond_resched();
73fa48b6
OS
466 mutex_lock(&caching_ctl->mutex);
467 down_read(&fs_info->commit_root_sem);
468 goto next;
589d8ade 469 }
0a3896d0
JB
470
471 ret = btrfs_next_leaf(extent_root, path);
472 if (ret < 0)
73fa48b6 473 goto out;
0a3896d0
JB
474 if (ret)
475 break;
589d8ade
JB
476 leaf = path->nodes[0];
477 nritems = btrfs_header_nritems(leaf);
478 continue;
11833d66 479 }
817d52f8 480
52ee28d2
LB
481 if (key.objectid < last) {
482 key.objectid = last;
483 key.offset = 0;
484 key.type = BTRFS_EXTENT_ITEM_KEY;
485
d0bd4560
JB
486 if (wakeup)
487 caching_ctl->progress = last;
52ee28d2
LB
488 btrfs_release_path(path);
489 goto next;
490 }
491
11833d66
YZ
492 if (key.objectid < block_group->key.objectid) {
493 path->slots[0]++;
817d52f8 494 continue;
e37c9e69 495 }
0f9dd46c 496
e37c9e69 497 if (key.objectid >= block_group->key.objectid +
0f9dd46c 498 block_group->key.offset)
e37c9e69 499 break;
7d7d6068 500
3173a18f
JB
501 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
502 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
503 total_found += add_new_free_space(block_group,
504 fs_info, last,
505 key.objectid);
3173a18f
JB
506 if (key.type == BTRFS_METADATA_ITEM_KEY)
507 last = key.objectid +
da17066c 508 fs_info->nodesize;
3173a18f
JB
509 else
510 last = key.objectid + key.offset;
817d52f8 511
73fa48b6 512 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 513 total_found = 0;
d0bd4560
JB
514 if (wakeup)
515 wake_up(&caching_ctl->wait);
11833d66 516 }
817d52f8 517 }
e37c9e69
CM
518 path->slots[0]++;
519 }
817d52f8 520 ret = 0;
e37c9e69 521
817d52f8
JB
522 total_found += add_new_free_space(block_group, fs_info, last,
523 block_group->key.objectid +
524 block_group->key.offset);
11833d66 525 caching_ctl->progress = (u64)-1;
817d52f8 526
73fa48b6
OS
527out:
528 btrfs_free_path(path);
529 return ret;
530}
531
532static noinline void caching_thread(struct btrfs_work *work)
533{
534 struct btrfs_block_group_cache *block_group;
535 struct btrfs_fs_info *fs_info;
536 struct btrfs_caching_control *caching_ctl;
b4570aa9 537 struct btrfs_root *extent_root;
73fa48b6
OS
538 int ret;
539
540 caching_ctl = container_of(work, struct btrfs_caching_control, work);
541 block_group = caching_ctl->block_group;
542 fs_info = block_group->fs_info;
b4570aa9 543 extent_root = fs_info->extent_root;
73fa48b6
OS
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
2ff7e61e 576 free_excluded_extents(fs_info, block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d53ba474 644 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
646 ret = load_free_space_cache(fs_info, cache);
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
2ff7e61e 684 free_excluded_extents(fs_info, cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
4184ea7f
CM
759/*
760 * after adding space to the filesystem, we need to clear the full flags
761 * on all the space infos.
762 */
763void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
764{
765 struct list_head *head = &info->space_info;
766 struct btrfs_space_info *found;
767
768 rcu_read_lock();
769 list_for_each_entry_rcu(found, head, list)
770 found->full = 0;
771 rcu_read_unlock();
772}
773
1a4ed8fd 774/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 775int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
776{
777 int ret;
778 struct btrfs_key key;
31840ae1 779 struct btrfs_path *path;
e02119d5 780
31840ae1 781 path = btrfs_alloc_path();
d8926bb3
MF
782 if (!path)
783 return -ENOMEM;
784
e02119d5
CM
785 key.objectid = start;
786 key.offset = len;
3173a18f 787 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 788 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 789 btrfs_free_path(path);
7bb86316
CM
790 return ret;
791}
792
a22285a6 793/*
3173a18f 794 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
795 *
796 * the head node for delayed ref is used to store the sum of all the
797 * reference count modifications queued up in the rbtree. the head
798 * node may also store the extent flags to set. This way you can check
799 * to see what the reference count and extent flags would be if all of
800 * the delayed refs are not processed.
801 */
802int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 803 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 804 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
805{
806 struct btrfs_delayed_ref_head *head;
807 struct btrfs_delayed_ref_root *delayed_refs;
808 struct btrfs_path *path;
809 struct btrfs_extent_item *ei;
810 struct extent_buffer *leaf;
811 struct btrfs_key key;
812 u32 item_size;
813 u64 num_refs;
814 u64 extent_flags;
815 int ret;
816
3173a18f
JB
817 /*
818 * If we don't have skinny metadata, don't bother doing anything
819 * different
820 */
0b246afa
JM
821 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
822 offset = fs_info->nodesize;
3173a18f
JB
823 metadata = 0;
824 }
825
a22285a6
YZ
826 path = btrfs_alloc_path();
827 if (!path)
828 return -ENOMEM;
829
a22285a6
YZ
830 if (!trans) {
831 path->skip_locking = 1;
832 path->search_commit_root = 1;
833 }
639eefc8
FDBM
834
835search_again:
836 key.objectid = bytenr;
837 key.offset = offset;
838 if (metadata)
839 key.type = BTRFS_METADATA_ITEM_KEY;
840 else
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842
0b246afa 843 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
844 if (ret < 0)
845 goto out_free;
846
3173a18f 847 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
848 if (path->slots[0]) {
849 path->slots[0]--;
850 btrfs_item_key_to_cpu(path->nodes[0], &key,
851 path->slots[0]);
852 if (key.objectid == bytenr &&
853 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 854 key.offset == fs_info->nodesize)
74be9510
FDBM
855 ret = 0;
856 }
3173a18f
JB
857 }
858
a22285a6
YZ
859 if (ret == 0) {
860 leaf = path->nodes[0];
861 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
862 if (item_size >= sizeof(*ei)) {
863 ei = btrfs_item_ptr(leaf, path->slots[0],
864 struct btrfs_extent_item);
865 num_refs = btrfs_extent_refs(leaf, ei);
866 extent_flags = btrfs_extent_flags(leaf, ei);
867 } else {
868#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 struct btrfs_extent_item_v0 *ei0;
870 BUG_ON(item_size != sizeof(*ei0));
871 ei0 = btrfs_item_ptr(leaf, path->slots[0],
872 struct btrfs_extent_item_v0);
873 num_refs = btrfs_extent_refs_v0(leaf, ei0);
874 /* FIXME: this isn't correct for data */
875 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
876#else
877 BUG();
878#endif
879 }
880 BUG_ON(num_refs == 0);
881 } else {
882 num_refs = 0;
883 extent_flags = 0;
884 ret = 0;
885 }
886
887 if (!trans)
888 goto out;
889
890 delayed_refs = &trans->transaction->delayed_refs;
891 spin_lock(&delayed_refs->lock);
f72ad18e 892 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
893 if (head) {
894 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 895 refcount_inc(&head->node.refs);
a22285a6
YZ
896 spin_unlock(&delayed_refs->lock);
897
b3b4aa74 898 btrfs_release_path(path);
a22285a6 899
8cc33e5c
DS
900 /*
901 * Mutex was contended, block until it's released and try
902 * again
903 */
a22285a6
YZ
904 mutex_lock(&head->mutex);
905 mutex_unlock(&head->mutex);
906 btrfs_put_delayed_ref(&head->node);
639eefc8 907 goto search_again;
a22285a6 908 }
d7df2c79 909 spin_lock(&head->lock);
a22285a6
YZ
910 if (head->extent_op && head->extent_op->update_flags)
911 extent_flags |= head->extent_op->flags_to_set;
912 else
913 BUG_ON(num_refs == 0);
914
915 num_refs += head->node.ref_mod;
d7df2c79 916 spin_unlock(&head->lock);
a22285a6
YZ
917 mutex_unlock(&head->mutex);
918 }
919 spin_unlock(&delayed_refs->lock);
920out:
921 WARN_ON(num_refs == 0);
922 if (refs)
923 *refs = num_refs;
924 if (flags)
925 *flags = extent_flags;
926out_free:
927 btrfs_free_path(path);
928 return ret;
929}
930
d8d5f3e1
CM
931/*
932 * Back reference rules. Back refs have three main goals:
933 *
934 * 1) differentiate between all holders of references to an extent so that
935 * when a reference is dropped we can make sure it was a valid reference
936 * before freeing the extent.
937 *
938 * 2) Provide enough information to quickly find the holders of an extent
939 * if we notice a given block is corrupted or bad.
940 *
941 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
942 * maintenance. This is actually the same as #2, but with a slightly
943 * different use case.
944 *
5d4f98a2
YZ
945 * There are two kinds of back refs. The implicit back refs is optimized
946 * for pointers in non-shared tree blocks. For a given pointer in a block,
947 * back refs of this kind provide information about the block's owner tree
948 * and the pointer's key. These information allow us to find the block by
949 * b-tree searching. The full back refs is for pointers in tree blocks not
950 * referenced by their owner trees. The location of tree block is recorded
951 * in the back refs. Actually the full back refs is generic, and can be
952 * used in all cases the implicit back refs is used. The major shortcoming
953 * of the full back refs is its overhead. Every time a tree block gets
954 * COWed, we have to update back refs entry for all pointers in it.
955 *
956 * For a newly allocated tree block, we use implicit back refs for
957 * pointers in it. This means most tree related operations only involve
958 * implicit back refs. For a tree block created in old transaction, the
959 * only way to drop a reference to it is COW it. So we can detect the
960 * event that tree block loses its owner tree's reference and do the
961 * back refs conversion.
962 *
01327610 963 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
964 *
965 * The reference count of the block is one and the tree is the block's
966 * owner tree. Nothing to do in this case.
967 *
968 * The reference count of the block is one and the tree is not the
969 * block's owner tree. In this case, full back refs is used for pointers
970 * in the block. Remove these full back refs, add implicit back refs for
971 * every pointers in the new block.
972 *
973 * The reference count of the block is greater than one and the tree is
974 * the block's owner tree. In this case, implicit back refs is used for
975 * pointers in the block. Add full back refs for every pointers in the
976 * block, increase lower level extents' reference counts. The original
977 * implicit back refs are entailed to the new block.
978 *
979 * The reference count of the block is greater than one and the tree is
980 * not the block's owner tree. Add implicit back refs for every pointer in
981 * the new block, increase lower level extents' reference count.
982 *
983 * Back Reference Key composing:
984 *
985 * The key objectid corresponds to the first byte in the extent,
986 * The key type is used to differentiate between types of back refs.
987 * There are different meanings of the key offset for different types
988 * of back refs.
989 *
d8d5f3e1
CM
990 * File extents can be referenced by:
991 *
992 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 993 * - different files inside a single subvolume
d8d5f3e1
CM
994 * - different offsets inside a file (bookend extents in file.c)
995 *
5d4f98a2 996 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
997 *
998 * - Objectid of the subvolume root
d8d5f3e1 999 * - objectid of the file holding the reference
5d4f98a2
YZ
1000 * - original offset in the file
1001 * - how many bookend extents
d8d5f3e1 1002 *
5d4f98a2
YZ
1003 * The key offset for the implicit back refs is hash of the first
1004 * three fields.
d8d5f3e1 1005 *
5d4f98a2 1006 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1007 *
5d4f98a2 1008 * - number of pointers in the tree leaf
d8d5f3e1 1009 *
5d4f98a2
YZ
1010 * The key offset for the implicit back refs is the first byte of
1011 * the tree leaf
d8d5f3e1 1012 *
5d4f98a2
YZ
1013 * When a file extent is allocated, The implicit back refs is used.
1014 * the fields are filled in:
d8d5f3e1 1015 *
5d4f98a2 1016 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is removed file truncation, we find the
1019 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1020 *
5d4f98a2 1021 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1022 *
5d4f98a2 1023 * Btree extents can be referenced by:
d8d5f3e1 1024 *
5d4f98a2 1025 * - Different subvolumes
d8d5f3e1 1026 *
5d4f98a2
YZ
1027 * Both the implicit back refs and the full back refs for tree blocks
1028 * only consist of key. The key offset for the implicit back refs is
1029 * objectid of block's owner tree. The key offset for the full back refs
1030 * is the first byte of parent block.
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When implicit back refs is used, information about the lowest key and
1033 * level of the tree block are required. These information are stored in
1034 * tree block info structure.
d8d5f3e1 1035 */
31840ae1 1036
5d4f98a2
YZ
1037#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1038static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1039 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1040 struct btrfs_path *path,
1041 u64 owner, u32 extra_size)
7bb86316 1042{
87bde3cd 1043 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1044 struct btrfs_extent_item *item;
1045 struct btrfs_extent_item_v0 *ei0;
1046 struct btrfs_extent_ref_v0 *ref0;
1047 struct btrfs_tree_block_info *bi;
1048 struct extent_buffer *leaf;
7bb86316 1049 struct btrfs_key key;
5d4f98a2
YZ
1050 struct btrfs_key found_key;
1051 u32 new_size = sizeof(*item);
1052 u64 refs;
1053 int ret;
1054
1055 leaf = path->nodes[0];
1056 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1057
1058 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1059 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_extent_item_v0);
1061 refs = btrfs_extent_refs_v0(leaf, ei0);
1062
1063 if (owner == (u64)-1) {
1064 while (1) {
1065 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1066 ret = btrfs_next_leaf(root, path);
1067 if (ret < 0)
1068 return ret;
79787eaa 1069 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1070 leaf = path->nodes[0];
1071 }
1072 btrfs_item_key_to_cpu(leaf, &found_key,
1073 path->slots[0]);
1074 BUG_ON(key.objectid != found_key.objectid);
1075 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1076 path->slots[0]++;
1077 continue;
1078 }
1079 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1080 struct btrfs_extent_ref_v0);
1081 owner = btrfs_ref_objectid_v0(leaf, ref0);
1082 break;
1083 }
1084 }
b3b4aa74 1085 btrfs_release_path(path);
5d4f98a2
YZ
1086
1087 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1088 new_size += sizeof(*bi);
1089
1090 new_size -= sizeof(*ei0);
1091 ret = btrfs_search_slot(trans, root, &key, path,
1092 new_size + extra_size, 1);
1093 if (ret < 0)
1094 return ret;
79787eaa 1095 BUG_ON(ret); /* Corruption */
5d4f98a2 1096
87bde3cd 1097 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1098
1099 leaf = path->nodes[0];
1100 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101 btrfs_set_extent_refs(leaf, item, refs);
1102 /* FIXME: get real generation */
1103 btrfs_set_extent_generation(leaf, item, 0);
1104 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1105 btrfs_set_extent_flags(leaf, item,
1106 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1107 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1108 bi = (struct btrfs_tree_block_info *)(item + 1);
1109 /* FIXME: get first key of the block */
b159fa28 1110 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1111 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1112 } else {
1113 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1114 }
1115 btrfs_mark_buffer_dirty(leaf);
1116 return 0;
1117}
1118#endif
1119
1120static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1121{
1122 u32 high_crc = ~(u32)0;
1123 u32 low_crc = ~(u32)0;
1124 __le64 lenum;
1125
1126 lenum = cpu_to_le64(root_objectid);
14a958e6 1127 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1128 lenum = cpu_to_le64(owner);
14a958e6 1129 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1130 lenum = cpu_to_le64(offset);
14a958e6 1131 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1132
1133 return ((u64)high_crc << 31) ^ (u64)low_crc;
1134}
1135
1136static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1137 struct btrfs_extent_data_ref *ref)
1138{
1139 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1140 btrfs_extent_data_ref_objectid(leaf, ref),
1141 btrfs_extent_data_ref_offset(leaf, ref));
1142}
1143
1144static int match_extent_data_ref(struct extent_buffer *leaf,
1145 struct btrfs_extent_data_ref *ref,
1146 u64 root_objectid, u64 owner, u64 offset)
1147{
1148 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1149 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1150 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1151 return 0;
1152 return 1;
1153}
1154
1155static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1156 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1157 struct btrfs_path *path,
1158 u64 bytenr, u64 parent,
1159 u64 root_objectid,
1160 u64 owner, u64 offset)
1161{
87bde3cd 1162 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1163 struct btrfs_key key;
1164 struct btrfs_extent_data_ref *ref;
31840ae1 1165 struct extent_buffer *leaf;
5d4f98a2 1166 u32 nritems;
74493f7a 1167 int ret;
5d4f98a2
YZ
1168 int recow;
1169 int err = -ENOENT;
74493f7a 1170
31840ae1 1171 key.objectid = bytenr;
5d4f98a2
YZ
1172 if (parent) {
1173 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 key.offset = parent;
1175 } else {
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1178 owner, offset);
1179 }
1180again:
1181 recow = 0;
1182 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1183 if (ret < 0) {
1184 err = ret;
1185 goto fail;
1186 }
31840ae1 1187
5d4f98a2
YZ
1188 if (parent) {
1189 if (!ret)
1190 return 0;
1191#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1192 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1193 btrfs_release_path(path);
5d4f98a2
YZ
1194 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1195 if (ret < 0) {
1196 err = ret;
1197 goto fail;
1198 }
1199 if (!ret)
1200 return 0;
1201#endif
1202 goto fail;
31840ae1
ZY
1203 }
1204
1205 leaf = path->nodes[0];
5d4f98a2
YZ
1206 nritems = btrfs_header_nritems(leaf);
1207 while (1) {
1208 if (path->slots[0] >= nritems) {
1209 ret = btrfs_next_leaf(root, path);
1210 if (ret < 0)
1211 err = ret;
1212 if (ret)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 nritems = btrfs_header_nritems(leaf);
1217 recow = 1;
1218 }
1219
1220 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1221 if (key.objectid != bytenr ||
1222 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1223 goto fail;
1224
1225 ref = btrfs_item_ptr(leaf, path->slots[0],
1226 struct btrfs_extent_data_ref);
1227
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset)) {
1230 if (recow) {
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 goto again;
1233 }
1234 err = 0;
1235 break;
1236 }
1237 path->slots[0]++;
31840ae1 1238 }
5d4f98a2
YZ
1239fail:
1240 return err;
31840ae1
ZY
1241}
1242
5d4f98a2 1243static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1244 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1245 struct btrfs_path *path,
1246 u64 bytenr, u64 parent,
1247 u64 root_objectid, u64 owner,
1248 u64 offset, int refs_to_add)
31840ae1 1249{
87bde3cd 1250 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1251 struct btrfs_key key;
1252 struct extent_buffer *leaf;
5d4f98a2 1253 u32 size;
31840ae1
ZY
1254 u32 num_refs;
1255 int ret;
74493f7a 1256
74493f7a 1257 key.objectid = bytenr;
5d4f98a2
YZ
1258 if (parent) {
1259 key.type = BTRFS_SHARED_DATA_REF_KEY;
1260 key.offset = parent;
1261 size = sizeof(struct btrfs_shared_data_ref);
1262 } else {
1263 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1264 key.offset = hash_extent_data_ref(root_objectid,
1265 owner, offset);
1266 size = sizeof(struct btrfs_extent_data_ref);
1267 }
74493f7a 1268
5d4f98a2
YZ
1269 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1270 if (ret && ret != -EEXIST)
1271 goto fail;
1272
1273 leaf = path->nodes[0];
1274 if (parent) {
1275 struct btrfs_shared_data_ref *ref;
31840ae1 1276 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1277 struct btrfs_shared_data_ref);
1278 if (ret == 0) {
1279 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1280 } else {
1281 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1282 num_refs += refs_to_add;
1283 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1284 }
5d4f98a2
YZ
1285 } else {
1286 struct btrfs_extent_data_ref *ref;
1287 while (ret == -EEXIST) {
1288 ref = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_data_ref);
1290 if (match_extent_data_ref(leaf, ref, root_objectid,
1291 owner, offset))
1292 break;
b3b4aa74 1293 btrfs_release_path(path);
5d4f98a2
YZ
1294 key.offset++;
1295 ret = btrfs_insert_empty_item(trans, root, path, &key,
1296 size);
1297 if (ret && ret != -EEXIST)
1298 goto fail;
31840ae1 1299
5d4f98a2
YZ
1300 leaf = path->nodes[0];
1301 }
1302 ref = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_extent_data_ref);
1304 if (ret == 0) {
1305 btrfs_set_extent_data_ref_root(leaf, ref,
1306 root_objectid);
1307 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1308 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1309 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1310 } else {
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1312 num_refs += refs_to_add;
1313 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1314 }
31840ae1 1315 }
5d4f98a2
YZ
1316 btrfs_mark_buffer_dirty(leaf);
1317 ret = 0;
1318fail:
b3b4aa74 1319 btrfs_release_path(path);
7bb86316 1320 return ret;
74493f7a
CM
1321}
1322
5d4f98a2 1323static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1324 struct btrfs_fs_info *fs_info,
5d4f98a2 1325 struct btrfs_path *path,
fcebe456 1326 int refs_to_drop, int *last_ref)
31840ae1 1327{
5d4f98a2
YZ
1328 struct btrfs_key key;
1329 struct btrfs_extent_data_ref *ref1 = NULL;
1330 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1331 struct extent_buffer *leaf;
5d4f98a2 1332 u32 num_refs = 0;
31840ae1
ZY
1333 int ret = 0;
1334
1335 leaf = path->nodes[0];
5d4f98a2
YZ
1336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1337
1338 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1339 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1340 struct btrfs_extent_data_ref);
1341 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1342 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1343 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1344 struct btrfs_shared_data_ref);
1345 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1346#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1347 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1348 struct btrfs_extent_ref_v0 *ref0;
1349 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_ref_v0);
1351 num_refs = btrfs_ref_count_v0(leaf, ref0);
1352#endif
1353 } else {
1354 BUG();
1355 }
1356
56bec294
CM
1357 BUG_ON(num_refs < refs_to_drop);
1358 num_refs -= refs_to_drop;
5d4f98a2 1359
31840ae1 1360 if (num_refs == 0) {
87bde3cd 1361 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1362 *last_ref = 1;
31840ae1 1363 } else {
5d4f98a2
YZ
1364 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1365 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1366 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1367 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1368#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1369 else {
1370 struct btrfs_extent_ref_v0 *ref0;
1371 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1372 struct btrfs_extent_ref_v0);
1373 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1374 }
1375#endif
31840ae1
ZY
1376 btrfs_mark_buffer_dirty(leaf);
1377 }
31840ae1
ZY
1378 return ret;
1379}
1380
9ed0dea0 1381static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1382 struct btrfs_extent_inline_ref *iref)
15916de8 1383{
5d4f98a2
YZ
1384 struct btrfs_key key;
1385 struct extent_buffer *leaf;
1386 struct btrfs_extent_data_ref *ref1;
1387 struct btrfs_shared_data_ref *ref2;
1388 u32 num_refs = 0;
1389
1390 leaf = path->nodes[0];
1391 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1392 if (iref) {
1393 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1394 BTRFS_EXTENT_DATA_REF_KEY) {
1395 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1396 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1397 } else {
1398 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1399 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1400 }
1401 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1402 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_data_ref);
1404 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1405 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1406 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1407 struct btrfs_shared_data_ref);
1408 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1409#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1410 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1411 struct btrfs_extent_ref_v0 *ref0;
1412 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_ref_v0);
1414 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1415#endif
5d4f98a2
YZ
1416 } else {
1417 WARN_ON(1);
1418 }
1419 return num_refs;
1420}
15916de8 1421
5d4f98a2 1422static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1423 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1424 struct btrfs_path *path,
1425 u64 bytenr, u64 parent,
1426 u64 root_objectid)
1f3c79a2 1427{
87bde3cd 1428 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1429 struct btrfs_key key;
1f3c79a2 1430 int ret;
1f3c79a2 1431
5d4f98a2
YZ
1432 key.objectid = bytenr;
1433 if (parent) {
1434 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 key.offset = parent;
1436 } else {
1437 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 key.offset = root_objectid;
1f3c79a2
LH
1439 }
1440
5d4f98a2
YZ
1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 if (ret > 0)
1443 ret = -ENOENT;
1444#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (ret == -ENOENT && parent) {
b3b4aa74 1446 btrfs_release_path(path);
5d4f98a2
YZ
1447 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 if (ret > 0)
1450 ret = -ENOENT;
1451 }
1f3c79a2 1452#endif
5d4f98a2 1453 return ret;
1f3c79a2
LH
1454}
1455
5d4f98a2 1456static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1457 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1458 struct btrfs_path *path,
1459 u64 bytenr, u64 parent,
1460 u64 root_objectid)
31840ae1 1461{
5d4f98a2 1462 struct btrfs_key key;
31840ae1 1463 int ret;
31840ae1 1464
5d4f98a2
YZ
1465 key.objectid = bytenr;
1466 if (parent) {
1467 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 key.offset = parent;
1469 } else {
1470 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 key.offset = root_objectid;
1472 }
1473
87bde3cd
JM
1474 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1475 path, &key, 0);
b3b4aa74 1476 btrfs_release_path(path);
31840ae1
ZY
1477 return ret;
1478}
1479
5d4f98a2 1480static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1481{
5d4f98a2
YZ
1482 int type;
1483 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 if (parent > 0)
1485 type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 else
1487 type = BTRFS_TREE_BLOCK_REF_KEY;
1488 } else {
1489 if (parent > 0)
1490 type = BTRFS_SHARED_DATA_REF_KEY;
1491 else
1492 type = BTRFS_EXTENT_DATA_REF_KEY;
1493 }
1494 return type;
31840ae1 1495}
56bec294 1496
2c47e605
YZ
1497static int find_next_key(struct btrfs_path *path, int level,
1498 struct btrfs_key *key)
56bec294 1499
02217ed2 1500{
2c47e605 1501 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1502 if (!path->nodes[level])
1503 break;
5d4f98a2
YZ
1504 if (path->slots[level] + 1 >=
1505 btrfs_header_nritems(path->nodes[level]))
1506 continue;
1507 if (level == 0)
1508 btrfs_item_key_to_cpu(path->nodes[level], key,
1509 path->slots[level] + 1);
1510 else
1511 btrfs_node_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 return 0;
1514 }
1515 return 1;
1516}
037e6390 1517
5d4f98a2
YZ
1518/*
1519 * look for inline back ref. if back ref is found, *ref_ret is set
1520 * to the address of inline back ref, and 0 is returned.
1521 *
1522 * if back ref isn't found, *ref_ret is set to the address where it
1523 * should be inserted, and -ENOENT is returned.
1524 *
1525 * if insert is true and there are too many inline back refs, the path
1526 * points to the extent item, and -EAGAIN is returned.
1527 *
1528 * NOTE: inline back refs are ordered in the same way that back ref
1529 * items in the tree are ordered.
1530 */
1531static noinline_for_stack
1532int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1533 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1534 struct btrfs_path *path,
1535 struct btrfs_extent_inline_ref **ref_ret,
1536 u64 bytenr, u64 num_bytes,
1537 u64 parent, u64 root_objectid,
1538 u64 owner, u64 offset, int insert)
1539{
87bde3cd 1540 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1541 struct btrfs_key key;
1542 struct extent_buffer *leaf;
1543 struct btrfs_extent_item *ei;
1544 struct btrfs_extent_inline_ref *iref;
1545 u64 flags;
1546 u64 item_size;
1547 unsigned long ptr;
1548 unsigned long end;
1549 int extra_size;
1550 int type;
1551 int want;
1552 int ret;
1553 int err = 0;
0b246afa 1554 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
26b8003f 1555
db94535d 1556 key.objectid = bytenr;
31840ae1 1557 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1558 key.offset = num_bytes;
31840ae1 1559
5d4f98a2
YZ
1560 want = extent_ref_type(parent, owner);
1561 if (insert) {
1562 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1563 path->keep_locks = 1;
5d4f98a2
YZ
1564 } else
1565 extra_size = -1;
3173a18f
JB
1566
1567 /*
1568 * Owner is our parent level, so we can just add one to get the level
1569 * for the block we are interested in.
1570 */
1571 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 key.type = BTRFS_METADATA_ITEM_KEY;
1573 key.offset = owner;
1574 }
1575
1576again:
5d4f98a2 1577 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1578 if (ret < 0) {
5d4f98a2
YZ
1579 err = ret;
1580 goto out;
1581 }
3173a18f
JB
1582
1583 /*
1584 * We may be a newly converted file system which still has the old fat
1585 * extent entries for metadata, so try and see if we have one of those.
1586 */
1587 if (ret > 0 && skinny_metadata) {
1588 skinny_metadata = false;
1589 if (path->slots[0]) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid == bytenr &&
1594 key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 key.offset == num_bytes)
1596 ret = 0;
1597 }
1598 if (ret) {
9ce49a0b 1599 key.objectid = bytenr;
3173a18f
JB
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = num_bytes;
1602 btrfs_release_path(path);
1603 goto again;
1604 }
1605 }
1606
79787eaa
JM
1607 if (ret && !insert) {
1608 err = -ENOENT;
1609 goto out;
fae7f21c 1610 } else if (WARN_ON(ret)) {
492104c8 1611 err = -EIO;
492104c8 1612 goto out;
79787eaa 1613 }
5d4f98a2
YZ
1614
1615 leaf = path->nodes[0];
1616 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 if (item_size < sizeof(*ei)) {
1619 if (!insert) {
1620 err = -ENOENT;
1621 goto out;
1622 }
87bde3cd 1623 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1624 extra_size);
1625 if (ret < 0) {
1626 err = ret;
1627 goto out;
1628 }
1629 leaf = path->nodes[0];
1630 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631 }
1632#endif
1633 BUG_ON(item_size < sizeof(*ei));
1634
5d4f98a2
YZ
1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 flags = btrfs_extent_flags(leaf, ei);
1637
1638 ptr = (unsigned long)(ei + 1);
1639 end = (unsigned long)ei + item_size;
1640
3173a18f 1641 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1642 ptr += sizeof(struct btrfs_tree_block_info);
1643 BUG_ON(ptr > end);
5d4f98a2
YZ
1644 }
1645
1646 err = -ENOENT;
1647 while (1) {
1648 if (ptr >= end) {
1649 WARN_ON(ptr > end);
1650 break;
1651 }
1652 iref = (struct btrfs_extent_inline_ref *)ptr;
1653 type = btrfs_extent_inline_ref_type(leaf, iref);
1654 if (want < type)
1655 break;
1656 if (want > type) {
1657 ptr += btrfs_extent_inline_ref_size(type);
1658 continue;
1659 }
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 struct btrfs_extent_data_ref *dref;
1663 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 if (match_extent_data_ref(leaf, dref, root_objectid,
1665 owner, offset)) {
1666 err = 0;
1667 break;
1668 }
1669 if (hash_extent_data_ref_item(leaf, dref) <
1670 hash_extent_data_ref(root_objectid, owner, offset))
1671 break;
1672 } else {
1673 u64 ref_offset;
1674 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 if (parent > 0) {
1676 if (parent == ref_offset) {
1677 err = 0;
1678 break;
1679 }
1680 if (ref_offset < parent)
1681 break;
1682 } else {
1683 if (root_objectid == ref_offset) {
1684 err = 0;
1685 break;
1686 }
1687 if (ref_offset < root_objectid)
1688 break;
1689 }
1690 }
1691 ptr += btrfs_extent_inline_ref_size(type);
1692 }
1693 if (err == -ENOENT && insert) {
1694 if (item_size + extra_size >=
1695 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699 /*
1700 * To add new inline back ref, we have to make sure
1701 * there is no corresponding back ref item.
1702 * For simplicity, we just do not add new inline back
1703 * ref if there is any kind of item for this block
1704 */
2c47e605
YZ
1705 if (find_next_key(path, 0, &key) == 0 &&
1706 key.objectid == bytenr &&
85d4198e 1707 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1708 err = -EAGAIN;
1709 goto out;
1710 }
1711 }
1712 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713out:
85d4198e 1714 if (insert) {
5d4f98a2
YZ
1715 path->keep_locks = 0;
1716 btrfs_unlock_up_safe(path, 1);
1717 }
1718 return err;
1719}
1720
1721/*
1722 * helper to add new inline back ref
1723 */
1724static noinline_for_stack
87bde3cd 1725void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref *iref,
1728 u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add,
1730 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1731{
1732 struct extent_buffer *leaf;
1733 struct btrfs_extent_item *ei;
1734 unsigned long ptr;
1735 unsigned long end;
1736 unsigned long item_offset;
1737 u64 refs;
1738 int size;
1739 int type;
5d4f98a2
YZ
1740
1741 leaf = path->nodes[0];
1742 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 item_offset = (unsigned long)iref - (unsigned long)ei;
1744
1745 type = extent_ref_type(parent, owner);
1746 size = btrfs_extent_inline_ref_size(type);
1747
87bde3cd 1748 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1749
1750 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 refs = btrfs_extent_refs(leaf, ei);
1752 refs += refs_to_add;
1753 btrfs_set_extent_refs(leaf, ei, refs);
1754 if (extent_op)
1755 __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757 ptr = (unsigned long)ei + item_offset;
1758 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 if (ptr < end - size)
1760 memmove_extent_buffer(leaf, ptr + size, ptr,
1761 end - size - ptr);
1762
1763 iref = (struct btrfs_extent_inline_ref *)ptr;
1764 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 struct btrfs_extent_data_ref *dref;
1767 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 struct btrfs_shared_data_ref *sref;
1774 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 } else {
1780 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781 }
1782 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1783}
1784
1785static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1786 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1787 struct btrfs_path *path,
1788 struct btrfs_extent_inline_ref **ref_ret,
1789 u64 bytenr, u64 num_bytes, u64 parent,
1790 u64 root_objectid, u64 owner, u64 offset)
1791{
1792 int ret;
1793
87bde3cd 1794 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1795 bytenr, num_bytes, parent,
1796 root_objectid, owner, offset, 0);
1797 if (ret != -ENOENT)
54aa1f4d 1798 return ret;
5d4f98a2 1799
b3b4aa74 1800 btrfs_release_path(path);
5d4f98a2
YZ
1801 *ref_ret = NULL;
1802
1803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1804 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1805 parent, root_objectid);
5d4f98a2 1806 } else {
87bde3cd
JM
1807 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1808 parent, root_objectid, owner,
1809 offset);
b9473439 1810 }
5d4f98a2
YZ
1811 return ret;
1812}
31840ae1 1813
5d4f98a2
YZ
1814/*
1815 * helper to update/remove inline back ref
1816 */
1817static noinline_for_stack
87bde3cd 1818void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1819 struct btrfs_path *path,
1820 struct btrfs_extent_inline_ref *iref,
1821 int refs_to_mod,
fcebe456
JB
1822 struct btrfs_delayed_extent_op *extent_op,
1823 int *last_ref)
5d4f98a2
YZ
1824{
1825 struct extent_buffer *leaf;
1826 struct btrfs_extent_item *ei;
1827 struct btrfs_extent_data_ref *dref = NULL;
1828 struct btrfs_shared_data_ref *sref = NULL;
1829 unsigned long ptr;
1830 unsigned long end;
1831 u32 item_size;
1832 int size;
1833 int type;
5d4f98a2
YZ
1834 u64 refs;
1835
1836 leaf = path->nodes[0];
1837 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1838 refs = btrfs_extent_refs(leaf, ei);
1839 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1840 refs += refs_to_mod;
1841 btrfs_set_extent_refs(leaf, ei, refs);
1842 if (extent_op)
1843 __run_delayed_extent_op(extent_op, leaf, ei);
1844
1845 type = btrfs_extent_inline_ref_type(leaf, iref);
1846
1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1849 refs = btrfs_extent_data_ref_count(leaf, dref);
1850 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1851 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1852 refs = btrfs_shared_data_ref_count(leaf, sref);
1853 } else {
1854 refs = 1;
1855 BUG_ON(refs_to_mod != -1);
56bec294 1856 }
31840ae1 1857
5d4f98a2
YZ
1858 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1859 refs += refs_to_mod;
1860
1861 if (refs > 0) {
1862 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1863 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1864 else
1865 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1866 } else {
fcebe456 1867 *last_ref = 1;
5d4f98a2
YZ
1868 size = btrfs_extent_inline_ref_size(type);
1869 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1870 ptr = (unsigned long)iref;
1871 end = (unsigned long)ei + item_size;
1872 if (ptr + size < end)
1873 memmove_extent_buffer(leaf, ptr, ptr + size,
1874 end - ptr - size);
1875 item_size -= size;
87bde3cd 1876 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1879}
1880
1881static noinline_for_stack
1882int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1883 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1884 struct btrfs_path *path,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner,
1887 u64 offset, int refs_to_add,
1888 struct btrfs_delayed_extent_op *extent_op)
1889{
1890 struct btrfs_extent_inline_ref *iref;
1891 int ret;
1892
87bde3cd 1893 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1894 bytenr, num_bytes, parent,
1895 root_objectid, owner, offset, 1);
1896 if (ret == 0) {
1897 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1898 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1899 refs_to_add, extent_op, NULL);
5d4f98a2 1900 } else if (ret == -ENOENT) {
87bde3cd 1901 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1902 root_objectid, owner, offset,
1903 refs_to_add, extent_op);
1904 ret = 0;
771ed689 1905 }
5d4f98a2
YZ
1906 return ret;
1907}
31840ae1 1908
5d4f98a2 1909static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1910 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1911 struct btrfs_path *path,
1912 u64 bytenr, u64 parent, u64 root_objectid,
1913 u64 owner, u64 offset, int refs_to_add)
1914{
1915 int ret;
1916 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1917 BUG_ON(refs_to_add != 1);
87bde3cd 1918 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1919 parent, root_objectid);
1920 } else {
87bde3cd 1921 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1922 parent, root_objectid,
1923 owner, offset, refs_to_add);
1924 }
1925 return ret;
1926}
56bec294 1927
5d4f98a2 1928static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1929 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1930 struct btrfs_path *path,
1931 struct btrfs_extent_inline_ref *iref,
fcebe456 1932 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1933{
143bede5 1934 int ret = 0;
b9473439 1935
5d4f98a2
YZ
1936 BUG_ON(!is_data && refs_to_drop != 1);
1937 if (iref) {
87bde3cd 1938 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1939 -refs_to_drop, NULL, last_ref);
5d4f98a2 1940 } else if (is_data) {
87bde3cd 1941 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 1942 last_ref);
5d4f98a2 1943 } else {
fcebe456 1944 *last_ref = 1;
87bde3cd 1945 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
1946 }
1947 return ret;
1948}
1949
86557861 1950#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1951static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1952 u64 *discarded_bytes)
5d4f98a2 1953{
86557861
JM
1954 int j, ret = 0;
1955 u64 bytes_left, end;
4d89d377 1956 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1957
4d89d377
JM
1958 if (WARN_ON(start != aligned_start)) {
1959 len -= aligned_start - start;
1960 len = round_down(len, 1 << 9);
1961 start = aligned_start;
1962 }
d04c6b88 1963
4d89d377 1964 *discarded_bytes = 0;
86557861
JM
1965
1966 if (!len)
1967 return 0;
1968
1969 end = start + len;
1970 bytes_left = len;
1971
1972 /* Skip any superblocks on this device. */
1973 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1974 u64 sb_start = btrfs_sb_offset(j);
1975 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1976 u64 size = sb_start - start;
1977
1978 if (!in_range(sb_start, start, bytes_left) &&
1979 !in_range(sb_end, start, bytes_left) &&
1980 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1981 continue;
1982
1983 /*
1984 * Superblock spans beginning of range. Adjust start and
1985 * try again.
1986 */
1987 if (sb_start <= start) {
1988 start += sb_end - start;
1989 if (start > end) {
1990 bytes_left = 0;
1991 break;
1992 }
1993 bytes_left = end - start;
1994 continue;
1995 }
1996
1997 if (size) {
1998 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1999 GFP_NOFS, 0);
2000 if (!ret)
2001 *discarded_bytes += size;
2002 else if (ret != -EOPNOTSUPP)
2003 return ret;
2004 }
2005
2006 start = sb_end;
2007 if (start > end) {
2008 bytes_left = 0;
2009 break;
2010 }
2011 bytes_left = end - start;
2012 }
2013
2014 if (bytes_left) {
2015 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2016 GFP_NOFS, 0);
2017 if (!ret)
86557861 2018 *discarded_bytes += bytes_left;
4d89d377 2019 }
d04c6b88 2020 return ret;
5d4f98a2 2021}
5d4f98a2 2022
2ff7e61e 2023int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2024 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2025{
5d4f98a2 2026 int ret;
5378e607 2027 u64 discarded_bytes = 0;
a1d3c478 2028 struct btrfs_bio *bbio = NULL;
5d4f98a2 2029
e244a0ae 2030
2999241d
FM
2031 /*
2032 * Avoid races with device replace and make sure our bbio has devices
2033 * associated to its stripes that don't go away while we are discarding.
2034 */
0b246afa 2035 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2036 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2037 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2038 &bbio, 0);
79787eaa 2039 /* Error condition is -ENOMEM */
5d4f98a2 2040 if (!ret) {
a1d3c478 2041 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2042 int i;
2043
5d4f98a2 2044
a1d3c478 2045 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2046 u64 bytes;
d5e2003c
JB
2047 if (!stripe->dev->can_discard)
2048 continue;
2049
5378e607
LD
2050 ret = btrfs_issue_discard(stripe->dev->bdev,
2051 stripe->physical,
d04c6b88
JM
2052 stripe->length,
2053 &bytes);
5378e607 2054 if (!ret)
d04c6b88 2055 discarded_bytes += bytes;
5378e607 2056 else if (ret != -EOPNOTSUPP)
79787eaa 2057 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2058
2059 /*
2060 * Just in case we get back EOPNOTSUPP for some reason,
2061 * just ignore the return value so we don't screw up
2062 * people calling discard_extent.
2063 */
2064 ret = 0;
5d4f98a2 2065 }
6e9606d2 2066 btrfs_put_bbio(bbio);
5d4f98a2 2067 }
0b246afa 2068 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2069
2070 if (actual_bytes)
2071 *actual_bytes = discarded_bytes;
2072
5d4f98a2 2073
53b381b3
DW
2074 if (ret == -EOPNOTSUPP)
2075 ret = 0;
5d4f98a2 2076 return ret;
5d4f98a2
YZ
2077}
2078
79787eaa 2079/* Can return -ENOMEM */
5d4f98a2 2080int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2081 struct btrfs_fs_info *fs_info,
5d4f98a2 2082 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2083 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2084{
2085 int ret;
66d7e7f0 2086
5d4f98a2
YZ
2087 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2088 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2089
2090 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2091 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2092 num_bytes,
5d4f98a2 2093 parent, root_objectid, (int)owner,
b06c4bf5 2094 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2095 } else {
66d7e7f0 2096 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2097 num_bytes, parent, root_objectid,
2098 owner, offset, 0,
fef394f7 2099 BTRFS_ADD_DELAYED_REF);
5d4f98a2
YZ
2100 }
2101 return ret;
2102}
2103
2104static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2105 struct btrfs_fs_info *fs_info,
c682f9b3 2106 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2107 u64 parent, u64 root_objectid,
2108 u64 owner, u64 offset, int refs_to_add,
2109 struct btrfs_delayed_extent_op *extent_op)
2110{
2111 struct btrfs_path *path;
2112 struct extent_buffer *leaf;
2113 struct btrfs_extent_item *item;
fcebe456 2114 struct btrfs_key key;
c682f9b3
QW
2115 u64 bytenr = node->bytenr;
2116 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2117 u64 refs;
2118 int ret;
5d4f98a2
YZ
2119
2120 path = btrfs_alloc_path();
2121 if (!path)
2122 return -ENOMEM;
2123
e4058b54 2124 path->reada = READA_FORWARD;
5d4f98a2
YZ
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2127 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2128 num_bytes, parent, root_objectid,
2129 owner, offset,
5d4f98a2 2130 refs_to_add, extent_op);
0ed4792a 2131 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2132 goto out;
fcebe456
JB
2133
2134 /*
2135 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 * inline extent ref, so just update the reference count and add a
2137 * normal backref.
2138 */
5d4f98a2 2139 leaf = path->nodes[0];
fcebe456 2140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2141 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 refs = btrfs_extent_refs(leaf, item);
2143 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 if (extent_op)
2145 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2146
5d4f98a2 2147 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2148 btrfs_release_path(path);
56bec294 2149
e4058b54 2150 path->reada = READA_FORWARD;
b9473439 2151 path->leave_spinning = 1;
56bec294 2152 /* now insert the actual backref */
87bde3cd
JM
2153 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2154 root_objectid, owner, offset, refs_to_add);
79787eaa 2155 if (ret)
66642832 2156 btrfs_abort_transaction(trans, ret);
5d4f98a2 2157out:
56bec294 2158 btrfs_free_path(path);
30d133fc 2159 return ret;
56bec294
CM
2160}
2161
5d4f98a2 2162static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2163 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2164 struct btrfs_delayed_ref_node *node,
2165 struct btrfs_delayed_extent_op *extent_op,
2166 int insert_reserved)
56bec294 2167{
5d4f98a2
YZ
2168 int ret = 0;
2169 struct btrfs_delayed_data_ref *ref;
2170 struct btrfs_key ins;
2171 u64 parent = 0;
2172 u64 ref_root = 0;
2173 u64 flags = 0;
2174
2175 ins.objectid = node->bytenr;
2176 ins.offset = node->num_bytes;
2177 ins.type = BTRFS_EXTENT_ITEM_KEY;
2178
2179 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2180 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2181
5d4f98a2
YZ
2182 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183 parent = ref->parent;
fcebe456 2184 ref_root = ref->root;
5d4f98a2
YZ
2185
2186 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2187 if (extent_op)
5d4f98a2 2188 flags |= extent_op->flags_to_set;
2ff7e61e 2189 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2190 parent, ref_root, flags,
2191 ref->objectid, ref->offset,
2192 &ins, node->ref_mod);
5d4f98a2 2193 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2194 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2195 ref_root, ref->objectid,
2196 ref->offset, node->ref_mod,
c682f9b3 2197 extent_op);
5d4f98a2 2198 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2199 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2200 ref_root, ref->objectid,
2201 ref->offset, node->ref_mod,
c682f9b3 2202 extent_op);
5d4f98a2
YZ
2203 } else {
2204 BUG();
2205 }
2206 return ret;
2207}
2208
2209static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2210 struct extent_buffer *leaf,
2211 struct btrfs_extent_item *ei)
2212{
2213 u64 flags = btrfs_extent_flags(leaf, ei);
2214 if (extent_op->update_flags) {
2215 flags |= extent_op->flags_to_set;
2216 btrfs_set_extent_flags(leaf, ei, flags);
2217 }
2218
2219 if (extent_op->update_key) {
2220 struct btrfs_tree_block_info *bi;
2221 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2222 bi = (struct btrfs_tree_block_info *)(ei + 1);
2223 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2224 }
2225}
2226
2227static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2228 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2229 struct btrfs_delayed_ref_node *node,
2230 struct btrfs_delayed_extent_op *extent_op)
2231{
2232 struct btrfs_key key;
2233 struct btrfs_path *path;
2234 struct btrfs_extent_item *ei;
2235 struct extent_buffer *leaf;
2236 u32 item_size;
56bec294 2237 int ret;
5d4f98a2 2238 int err = 0;
b1c79e09 2239 int metadata = !extent_op->is_data;
5d4f98a2 2240
79787eaa
JM
2241 if (trans->aborted)
2242 return 0;
2243
0b246afa 2244 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2245 metadata = 0;
2246
5d4f98a2
YZ
2247 path = btrfs_alloc_path();
2248 if (!path)
2249 return -ENOMEM;
2250
2251 key.objectid = node->bytenr;
5d4f98a2 2252
3173a18f 2253 if (metadata) {
3173a18f 2254 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2255 key.offset = extent_op->level;
3173a18f
JB
2256 } else {
2257 key.type = BTRFS_EXTENT_ITEM_KEY;
2258 key.offset = node->num_bytes;
2259 }
2260
2261again:
e4058b54 2262 path->reada = READA_FORWARD;
5d4f98a2 2263 path->leave_spinning = 1;
0b246afa 2264 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2265 if (ret < 0) {
2266 err = ret;
2267 goto out;
2268 }
2269 if (ret > 0) {
3173a18f 2270 if (metadata) {
55994887
FDBM
2271 if (path->slots[0] > 0) {
2272 path->slots[0]--;
2273 btrfs_item_key_to_cpu(path->nodes[0], &key,
2274 path->slots[0]);
2275 if (key.objectid == node->bytenr &&
2276 key.type == BTRFS_EXTENT_ITEM_KEY &&
2277 key.offset == node->num_bytes)
2278 ret = 0;
2279 }
2280 if (ret > 0) {
2281 btrfs_release_path(path);
2282 metadata = 0;
3173a18f 2283
55994887
FDBM
2284 key.objectid = node->bytenr;
2285 key.offset = node->num_bytes;
2286 key.type = BTRFS_EXTENT_ITEM_KEY;
2287 goto again;
2288 }
2289 } else {
2290 err = -EIO;
2291 goto out;
3173a18f 2292 }
5d4f98a2
YZ
2293 }
2294
2295 leaf = path->nodes[0];
2296 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2297#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2298 if (item_size < sizeof(*ei)) {
87bde3cd 2299 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2300 if (ret < 0) {
2301 err = ret;
2302 goto out;
2303 }
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2306 }
2307#endif
2308 BUG_ON(item_size < sizeof(*ei));
2309 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2310 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2311
5d4f98a2
YZ
2312 btrfs_mark_buffer_dirty(leaf);
2313out:
2314 btrfs_free_path(path);
2315 return err;
56bec294
CM
2316}
2317
5d4f98a2 2318static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2319 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2320 struct btrfs_delayed_ref_node *node,
2321 struct btrfs_delayed_extent_op *extent_op,
2322 int insert_reserved)
56bec294
CM
2323{
2324 int ret = 0;
5d4f98a2
YZ
2325 struct btrfs_delayed_tree_ref *ref;
2326 struct btrfs_key ins;
2327 u64 parent = 0;
2328 u64 ref_root = 0;
0b246afa 2329 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2330
5d4f98a2 2331 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2332 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2333
5d4f98a2
YZ
2334 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2335 parent = ref->parent;
fcebe456 2336 ref_root = ref->root;
5d4f98a2 2337
3173a18f
JB
2338 ins.objectid = node->bytenr;
2339 if (skinny_metadata) {
2340 ins.offset = ref->level;
2341 ins.type = BTRFS_METADATA_ITEM_KEY;
2342 } else {
2343 ins.offset = node->num_bytes;
2344 ins.type = BTRFS_EXTENT_ITEM_KEY;
2345 }
2346
02794222 2347 if (node->ref_mod != 1) {
2ff7e61e 2348 btrfs_err(fs_info,
02794222
LB
2349 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2350 node->bytenr, node->ref_mod, node->action, ref_root,
2351 parent);
2352 return -EIO;
2353 }
5d4f98a2 2354 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2355 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2356 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2357 parent, ref_root,
2358 extent_op->flags_to_set,
2359 &extent_op->key,
b06c4bf5 2360 ref->level, &ins);
5d4f98a2 2361 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2362 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2363 parent, ref_root,
2364 ref->level, 0, 1,
fcebe456 2365 extent_op);
5d4f98a2 2366 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2367 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2368 parent, ref_root,
2369 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2370 } else {
2371 BUG();
2372 }
56bec294
CM
2373 return ret;
2374}
2375
2376/* helper function to actually process a single delayed ref entry */
5d4f98a2 2377static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2378 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2379 struct btrfs_delayed_ref_node *node,
2380 struct btrfs_delayed_extent_op *extent_op,
2381 int insert_reserved)
56bec294 2382{
79787eaa
JM
2383 int ret = 0;
2384
857cc2fc
JB
2385 if (trans->aborted) {
2386 if (insert_reserved)
2ff7e61e 2387 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2388 node->num_bytes, 1);
79787eaa 2389 return 0;
857cc2fc 2390 }
79787eaa 2391
5d4f98a2 2392 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2393 struct btrfs_delayed_ref_head *head;
2394 /*
2395 * we've hit the end of the chain and we were supposed
2396 * to insert this extent into the tree. But, it got
2397 * deleted before we ever needed to insert it, so all
2398 * we have to do is clean up the accounting
2399 */
5d4f98a2
YZ
2400 BUG_ON(extent_op);
2401 head = btrfs_delayed_node_to_head(node);
0b246afa 2402 trace_run_delayed_ref_head(fs_info, node, head, node->action);
599c75ec 2403
56bec294 2404 if (insert_reserved) {
2ff7e61e 2405 btrfs_pin_extent(fs_info, node->bytenr,
f0486c68 2406 node->num_bytes, 1);
5d4f98a2 2407 if (head->is_data) {
0b246afa 2408 ret = btrfs_del_csums(trans, fs_info,
5d4f98a2
YZ
2409 node->bytenr,
2410 node->num_bytes);
5d4f98a2 2411 }
56bec294 2412 }
297d750b
QW
2413
2414 /* Also free its reserved qgroup space */
0b246afa 2415 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
297d750b 2416 head->qgroup_reserved);
79787eaa 2417 return ret;
56bec294
CM
2418 }
2419
5d4f98a2
YZ
2420 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2421 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2422 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2423 insert_reserved);
2424 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2425 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2426 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2427 insert_reserved);
2428 else
2429 BUG();
2430 return ret;
56bec294
CM
2431}
2432
c6fc2454 2433static inline struct btrfs_delayed_ref_node *
56bec294
CM
2434select_delayed_ref(struct btrfs_delayed_ref_head *head)
2435{
cffc3374
FM
2436 struct btrfs_delayed_ref_node *ref;
2437
c6fc2454
QW
2438 if (list_empty(&head->ref_list))
2439 return NULL;
d7df2c79 2440
cffc3374
FM
2441 /*
2442 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2443 * This is to prevent a ref count from going down to zero, which deletes
2444 * the extent item from the extent tree, when there still are references
2445 * to add, which would fail because they would not find the extent item.
2446 */
1d57ee94
WX
2447 if (!list_empty(&head->ref_add_list))
2448 return list_first_entry(&head->ref_add_list,
2449 struct btrfs_delayed_ref_node, add_list);
2450
2451 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2452 list);
2453 ASSERT(list_empty(&ref->add_list));
2454 return ref;
56bec294
CM
2455}
2456
79787eaa
JM
2457/*
2458 * Returns 0 on success or if called with an already aborted transaction.
2459 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2460 */
d7df2c79 2461static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2462 struct btrfs_fs_info *fs_info,
d7df2c79 2463 unsigned long nr)
56bec294 2464{
56bec294
CM
2465 struct btrfs_delayed_ref_root *delayed_refs;
2466 struct btrfs_delayed_ref_node *ref;
2467 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2468 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2469 ktime_t start = ktime_get();
56bec294 2470 int ret;
d7df2c79 2471 unsigned long count = 0;
0a2b2a84 2472 unsigned long actual_count = 0;
56bec294 2473 int must_insert_reserved = 0;
56bec294
CM
2474
2475 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2476 while (1) {
2477 if (!locked_ref) {
d7df2c79 2478 if (count >= nr)
56bec294 2479 break;
56bec294 2480
d7df2c79
JB
2481 spin_lock(&delayed_refs->lock);
2482 locked_ref = btrfs_select_ref_head(trans);
2483 if (!locked_ref) {
2484 spin_unlock(&delayed_refs->lock);
2485 break;
2486 }
c3e69d58
CM
2487
2488 /* grab the lock that says we are going to process
2489 * all the refs for this head */
2490 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2491 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2492 /*
2493 * we may have dropped the spin lock to get the head
2494 * mutex lock, and that might have given someone else
2495 * time to free the head. If that's true, it has been
2496 * removed from our list and we can move on.
2497 */
2498 if (ret == -EAGAIN) {
2499 locked_ref = NULL;
2500 count++;
2501 continue;
56bec294
CM
2502 }
2503 }
a28ec197 2504
2c3cf7d5
FM
2505 /*
2506 * We need to try and merge add/drops of the same ref since we
2507 * can run into issues with relocate dropping the implicit ref
2508 * and then it being added back again before the drop can
2509 * finish. If we merged anything we need to re-loop so we can
2510 * get a good ref.
2511 * Or we can get node references of the same type that weren't
2512 * merged when created due to bumps in the tree mod seq, and
2513 * we need to merge them to prevent adding an inline extent
2514 * backref before dropping it (triggering a BUG_ON at
2515 * insert_inline_extent_backref()).
2516 */
d7df2c79 2517 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2518 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2519 locked_ref);
ae1e206b 2520
d1270cd9
AJ
2521 /*
2522 * locked_ref is the head node, so we have to go one
2523 * node back for any delayed ref updates
2524 */
2525 ref = select_delayed_ref(locked_ref);
2526
2527 if (ref && ref->seq &&
097b8a7c 2528 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2529 spin_unlock(&locked_ref->lock);
d7df2c79
JB
2530 spin_lock(&delayed_refs->lock);
2531 locked_ref->processing = 0;
d1270cd9
AJ
2532 delayed_refs->num_heads_ready++;
2533 spin_unlock(&delayed_refs->lock);
d0280996 2534 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79 2535 locked_ref = NULL;
d1270cd9 2536 cond_resched();
27a377db 2537 count++;
d1270cd9
AJ
2538 continue;
2539 }
2540
56bec294
CM
2541 /*
2542 * record the must insert reserved flag before we
2543 * drop the spin lock.
2544 */
2545 must_insert_reserved = locked_ref->must_insert_reserved;
2546 locked_ref->must_insert_reserved = 0;
7bb86316 2547
5d4f98a2
YZ
2548 extent_op = locked_ref->extent_op;
2549 locked_ref->extent_op = NULL;
2550
56bec294 2551 if (!ref) {
d7df2c79
JB
2552
2553
56bec294
CM
2554 /* All delayed refs have been processed, Go ahead
2555 * and send the head node to run_one_delayed_ref,
2556 * so that any accounting fixes can happen
2557 */
2558 ref = &locked_ref->node;
5d4f98a2
YZ
2559
2560 if (extent_op && must_insert_reserved) {
78a6184a 2561 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2562 extent_op = NULL;
2563 }
2564
2565 if (extent_op) {
d7df2c79 2566 spin_unlock(&locked_ref->lock);
2ff7e61e 2567 ret = run_delayed_extent_op(trans, fs_info,
5d4f98a2 2568 ref, extent_op);
78a6184a 2569 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2570
79787eaa 2571 if (ret) {
857cc2fc
JB
2572 /*
2573 * Need to reset must_insert_reserved if
2574 * there was an error so the abort stuff
2575 * can cleanup the reserved space
2576 * properly.
2577 */
2578 if (must_insert_reserved)
2579 locked_ref->must_insert_reserved = 1;
aa7c8da3 2580 spin_lock(&delayed_refs->lock);
d7df2c79 2581 locked_ref->processing = 0;
aa7c8da3
JM
2582 delayed_refs->num_heads_ready++;
2583 spin_unlock(&delayed_refs->lock);
5d163e0e
JM
2584 btrfs_debug(fs_info,
2585 "run_delayed_extent_op returned %d",
2586 ret);
093486c4 2587 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2588 return ret;
2589 }
d7df2c79 2590 continue;
5d4f98a2 2591 }
02217ed2 2592
d7df2c79 2593 /*
01327610 2594 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2595 * delayed ref lock and then re-check to make sure
2596 * nobody got added.
2597 */
2598 spin_unlock(&locked_ref->lock);
2599 spin_lock(&delayed_refs->lock);
2600 spin_lock(&locked_ref->lock);
c6fc2454 2601 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2602 locked_ref->extent_op) {
d7df2c79
JB
2603 spin_unlock(&locked_ref->lock);
2604 spin_unlock(&delayed_refs->lock);
2605 continue;
2606 }
2607 ref->in_tree = 0;
2608 delayed_refs->num_heads--;
c46effa6
LB
2609 rb_erase(&locked_ref->href_node,
2610 &delayed_refs->href_root);
d7df2c79
JB
2611 spin_unlock(&delayed_refs->lock);
2612 } else {
0a2b2a84 2613 actual_count++;
d7df2c79 2614 ref->in_tree = 0;
c6fc2454 2615 list_del(&ref->list);
1d57ee94
WX
2616 if (!list_empty(&ref->add_list))
2617 list_del(&ref->add_list);
c46effa6 2618 }
d7df2c79
JB
2619 atomic_dec(&delayed_refs->num_entries);
2620
093486c4 2621 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2622 /*
2623 * when we play the delayed ref, also correct the
2624 * ref_mod on head
2625 */
2626 switch (ref->action) {
2627 case BTRFS_ADD_DELAYED_REF:
2628 case BTRFS_ADD_DELAYED_EXTENT:
2629 locked_ref->node.ref_mod -= ref->ref_mod;
2630 break;
2631 case BTRFS_DROP_DELAYED_REF:
2632 locked_ref->node.ref_mod += ref->ref_mod;
2633 break;
2634 default:
2635 WARN_ON(1);
2636 }
2637 }
d7df2c79 2638 spin_unlock(&locked_ref->lock);
925baedd 2639
2ff7e61e 2640 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2641 must_insert_reserved);
eb099670 2642
78a6184a 2643 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2644 if (ret) {
9d1032cc 2645 spin_lock(&delayed_refs->lock);
d7df2c79 2646 locked_ref->processing = 0;
9d1032cc
WX
2647 delayed_refs->num_heads_ready++;
2648 spin_unlock(&delayed_refs->lock);
093486c4
MX
2649 btrfs_delayed_ref_unlock(locked_ref);
2650 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2651 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652 ret);
79787eaa
JM
2653 return ret;
2654 }
2655
093486c4
MX
2656 /*
2657 * If this node is a head, that means all the refs in this head
2658 * have been dealt with, and we will pick the next head to deal
2659 * with, so we must unlock the head and drop it from the cluster
2660 * list before we release it.
2661 */
2662 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2663 if (locked_ref->is_data &&
2664 locked_ref->total_ref_mod < 0) {
2665 spin_lock(&delayed_refs->lock);
2666 delayed_refs->pending_csums -= ref->num_bytes;
2667 spin_unlock(&delayed_refs->lock);
2668 }
093486c4
MX
2669 btrfs_delayed_ref_unlock(locked_ref);
2670 locked_ref = NULL;
2671 }
2672 btrfs_put_delayed_ref(ref);
2673 count++;
c3e69d58 2674 cond_resched();
c3e69d58 2675 }
0a2b2a84
JB
2676
2677 /*
2678 * We don't want to include ref heads since we can have empty ref heads
2679 * and those will drastically skew our runtime down since we just do
2680 * accounting, no actual extent tree updates.
2681 */
2682 if (actual_count > 0) {
2683 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2684 u64 avg;
2685
2686 /*
2687 * We weigh the current average higher than our current runtime
2688 * to avoid large swings in the average.
2689 */
2690 spin_lock(&delayed_refs->lock);
2691 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2692 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2693 spin_unlock(&delayed_refs->lock);
2694 }
d7df2c79 2695 return 0;
c3e69d58
CM
2696}
2697
709c0486
AJ
2698#ifdef SCRAMBLE_DELAYED_REFS
2699/*
2700 * Normally delayed refs get processed in ascending bytenr order. This
2701 * correlates in most cases to the order added. To expose dependencies on this
2702 * order, we start to process the tree in the middle instead of the beginning
2703 */
2704static u64 find_middle(struct rb_root *root)
2705{
2706 struct rb_node *n = root->rb_node;
2707 struct btrfs_delayed_ref_node *entry;
2708 int alt = 1;
2709 u64 middle;
2710 u64 first = 0, last = 0;
2711
2712 n = rb_first(root);
2713 if (n) {
2714 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2715 first = entry->bytenr;
2716 }
2717 n = rb_last(root);
2718 if (n) {
2719 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2720 last = entry->bytenr;
2721 }
2722 n = root->rb_node;
2723
2724 while (n) {
2725 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2726 WARN_ON(!entry->in_tree);
2727
2728 middle = entry->bytenr;
2729
2730 if (alt)
2731 n = n->rb_left;
2732 else
2733 n = n->rb_right;
2734
2735 alt = 1 - alt;
2736 }
2737 return middle;
2738}
2739#endif
2740
2ff7e61e 2741static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2742{
2743 u64 num_bytes;
2744
2745 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2746 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2747 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2748 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2749
2750 /*
2751 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2752 * closer to what we're really going to want to use.
1be41b78 2753 */
0b246afa 2754 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2755}
2756
1262133b
JB
2757/*
2758 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2759 * would require to store the csums for that many bytes.
2760 */
2ff7e61e 2761u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2762{
2763 u64 csum_size;
2764 u64 num_csums_per_leaf;
2765 u64 num_csums;
2766
0b246afa 2767 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2768 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2769 (u64)btrfs_super_csum_size(fs_info->super_copy));
2770 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2771 num_csums += num_csums_per_leaf - 1;
2772 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2773 return num_csums;
2774}
2775
0a2b2a84 2776int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2777 struct btrfs_fs_info *fs_info)
1be41b78
JB
2778{
2779 struct btrfs_block_rsv *global_rsv;
2780 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2781 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2782 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2783 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2784 int ret = 0;
2785
0b246afa 2786 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2787 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2788 if (num_heads > 1)
0b246afa 2789 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2790 num_bytes <<= 1;
2ff7e61e
JM
2791 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2792 fs_info->nodesize;
0b246afa 2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2794 num_dirty_bgs);
0b246afa 2795 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2796
2797 /*
2798 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 * wiggle room since running delayed refs can create more delayed refs.
2800 */
cb723e49
JB
2801 if (global_rsv->space_info->full) {
2802 num_dirty_bgs_bytes <<= 1;
1be41b78 2803 num_bytes <<= 1;
cb723e49 2804 }
1be41b78
JB
2805
2806 spin_lock(&global_rsv->lock);
cb723e49 2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2808 ret = 1;
2809 spin_unlock(&global_rsv->lock);
2810 return ret;
2811}
2812
0a2b2a84 2813int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2814 struct btrfs_fs_info *fs_info)
0a2b2a84 2815{
0a2b2a84
JB
2816 u64 num_entries =
2817 atomic_read(&trans->transaction->delayed_refs.num_entries);
2818 u64 avg_runtime;
a79b7d4b 2819 u64 val;
0a2b2a84
JB
2820
2821 smp_mb();
2822 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2823 val = num_entries * avg_runtime;
dc1a90c6 2824 if (val >= NSEC_PER_SEC)
0a2b2a84 2825 return 1;
a79b7d4b
CM
2826 if (val >= NSEC_PER_SEC / 2)
2827 return 2;
0a2b2a84 2828
2ff7e61e 2829 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2830}
2831
a79b7d4b
CM
2832struct async_delayed_refs {
2833 struct btrfs_root *root;
31b9655f 2834 u64 transid;
a79b7d4b
CM
2835 int count;
2836 int error;
2837 int sync;
2838 struct completion wait;
2839 struct btrfs_work work;
2840};
2841
2ff7e61e
JM
2842static inline struct async_delayed_refs *
2843to_async_delayed_refs(struct btrfs_work *work)
2844{
2845 return container_of(work, struct async_delayed_refs, work);
2846}
2847
a79b7d4b
CM
2848static void delayed_ref_async_start(struct btrfs_work *work)
2849{
2ff7e61e 2850 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2851 struct btrfs_trans_handle *trans;
2ff7e61e 2852 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2853 int ret;
2854
0f873eca 2855 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2856 if (btrfs_transaction_blocked(fs_info))
31b9655f 2857 goto done;
31b9655f 2858
0f873eca
CM
2859 trans = btrfs_join_transaction(async->root);
2860 if (IS_ERR(trans)) {
2861 async->error = PTR_ERR(trans);
a79b7d4b
CM
2862 goto done;
2863 }
2864
2865 /*
01327610 2866 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2867 * wait on delayed refs
2868 */
2869 trans->sync = true;
0f873eca
CM
2870
2871 /* Don't bother flushing if we got into a different transaction */
2872 if (trans->transid > async->transid)
2873 goto end;
2874
2ff7e61e 2875 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2876 if (ret)
2877 async->error = ret;
0f873eca 2878end:
3a45bb20 2879 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2880 if (ret && !async->error)
2881 async->error = ret;
2882done:
2883 if (async->sync)
2884 complete(&async->wait);
2885 else
2886 kfree(async);
2887}
2888
2ff7e61e 2889int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2890 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2891{
2892 struct async_delayed_refs *async;
2893 int ret;
2894
2895 async = kmalloc(sizeof(*async), GFP_NOFS);
2896 if (!async)
2897 return -ENOMEM;
2898
0b246afa 2899 async->root = fs_info->tree_root;
a79b7d4b
CM
2900 async->count = count;
2901 async->error = 0;
31b9655f 2902 async->transid = transid;
a79b7d4b
CM
2903 if (wait)
2904 async->sync = 1;
2905 else
2906 async->sync = 0;
2907 init_completion(&async->wait);
2908
9e0af237
LB
2909 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2910 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2911
0b246afa 2912 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2913
2914 if (wait) {
2915 wait_for_completion(&async->wait);
2916 ret = async->error;
2917 kfree(async);
2918 return ret;
2919 }
2920 return 0;
2921}
2922
c3e69d58
CM
2923/*
2924 * this starts processing the delayed reference count updates and
2925 * extent insertions we have queued up so far. count can be
2926 * 0, which means to process everything in the tree at the start
2927 * of the run (but not newly added entries), or it can be some target
2928 * number you'd like to process.
79787eaa
JM
2929 *
2930 * Returns 0 on success or if called with an aborted transaction
2931 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2932 */
2933int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2934 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
2935{
2936 struct rb_node *node;
2937 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2938 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2939 int ret;
2940 int run_all = count == (unsigned long)-1;
d9a0540a 2941 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2942
79787eaa
JM
2943 /* We'll clean this up in btrfs_cleanup_transaction */
2944 if (trans->aborted)
2945 return 0;
2946
0b246afa 2947 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2948 return 0;
2949
c3e69d58 2950 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2951 if (count == 0)
d7df2c79 2952 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2953
c3e69d58 2954again:
709c0486
AJ
2955#ifdef SCRAMBLE_DELAYED_REFS
2956 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2957#endif
d9a0540a 2958 trans->can_flush_pending_bgs = false;
2ff7e61e 2959 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 2960 if (ret < 0) {
66642832 2961 btrfs_abort_transaction(trans, ret);
d7df2c79 2962 return ret;
eb099670 2963 }
c3e69d58 2964
56bec294 2965 if (run_all) {
d7df2c79 2966 if (!list_empty(&trans->new_bgs))
2ff7e61e 2967 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 2968
d7df2c79 2969 spin_lock(&delayed_refs->lock);
c46effa6 2970 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2971 if (!node) {
2972 spin_unlock(&delayed_refs->lock);
56bec294 2973 goto out;
d7df2c79 2974 }
e9d0b13b 2975
56bec294 2976 while (node) {
c46effa6
LB
2977 head = rb_entry(node, struct btrfs_delayed_ref_head,
2978 href_node);
2979 if (btrfs_delayed_ref_is_head(&head->node)) {
2980 struct btrfs_delayed_ref_node *ref;
5caf2a00 2981
c46effa6 2982 ref = &head->node;
6df8cdf5 2983 refcount_inc(&ref->refs);
56bec294
CM
2984
2985 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2986 /*
2987 * Mutex was contended, block until it's
2988 * released and try again
2989 */
56bec294
CM
2990 mutex_lock(&head->mutex);
2991 mutex_unlock(&head->mutex);
2992
2993 btrfs_put_delayed_ref(ref);
1887be66 2994 cond_resched();
56bec294 2995 goto again;
c46effa6
LB
2996 } else {
2997 WARN_ON(1);
56bec294
CM
2998 }
2999 node = rb_next(node);
3000 }
3001 spin_unlock(&delayed_refs->lock);
d7df2c79 3002 cond_resched();
56bec294 3003 goto again;
5f39d397 3004 }
54aa1f4d 3005out:
d9a0540a 3006 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3007 return 0;
3008}
3009
5d4f98a2 3010int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3011 struct btrfs_fs_info *fs_info,
5d4f98a2 3012 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3013 int level, int is_data)
5d4f98a2
YZ
3014{
3015 struct btrfs_delayed_extent_op *extent_op;
3016 int ret;
3017
78a6184a 3018 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3019 if (!extent_op)
3020 return -ENOMEM;
3021
3022 extent_op->flags_to_set = flags;
35b3ad50
DS
3023 extent_op->update_flags = true;
3024 extent_op->update_key = false;
3025 extent_op->is_data = is_data ? true : false;
b1c79e09 3026 extent_op->level = level;
5d4f98a2 3027
0b246afa 3028 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3029 num_bytes, extent_op);
5d4f98a2 3030 if (ret)
78a6184a 3031 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3032 return ret;
3033}
3034
e4c3b2dc 3035static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3036 struct btrfs_path *path,
3037 u64 objectid, u64 offset, u64 bytenr)
3038{
3039 struct btrfs_delayed_ref_head *head;
3040 struct btrfs_delayed_ref_node *ref;
3041 struct btrfs_delayed_data_ref *data_ref;
3042 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3043 struct btrfs_transaction *cur_trans;
5d4f98a2
YZ
3044 int ret = 0;
3045
e4c3b2dc
LB
3046 cur_trans = root->fs_info->running_transaction;
3047 if (!cur_trans)
3048 return 0;
3049
3050 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3051 spin_lock(&delayed_refs->lock);
f72ad18e 3052 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3053 if (!head) {
3054 spin_unlock(&delayed_refs->lock);
3055 return 0;
3056 }
5d4f98a2
YZ
3057
3058 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 3059 refcount_inc(&head->node.refs);
5d4f98a2
YZ
3060 spin_unlock(&delayed_refs->lock);
3061
b3b4aa74 3062 btrfs_release_path(path);
5d4f98a2 3063
8cc33e5c
DS
3064 /*
3065 * Mutex was contended, block until it's released and let
3066 * caller try again
3067 */
5d4f98a2
YZ
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3071 return -EAGAIN;
3072 }
d7df2c79 3073 spin_unlock(&delayed_refs->lock);
5d4f98a2 3074
d7df2c79 3075 spin_lock(&head->lock);
c6fc2454 3076 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 ret = 1;
3080 break;
3081 }
5d4f98a2 3082
d7df2c79 3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3084
d7df2c79
JB
3085 /*
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3088 */
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3092 ret = 1;
3093 break;
3094 }
5d4f98a2 3095 }
d7df2c79 3096 spin_unlock(&head->lock);
5d4f98a2 3097 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3098 return ret;
3099}
3100
e4c3b2dc 3101static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3102 struct btrfs_path *path,
3103 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3104{
0b246afa
JM
3105 struct btrfs_fs_info *fs_info = root->fs_info;
3106 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3107 struct extent_buffer *leaf;
5d4f98a2
YZ
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
f321e491 3111 struct btrfs_key key;
5d4f98a2 3112 u32 item_size;
be20aa9d 3113 int ret;
925baedd 3114
be20aa9d 3115 key.objectid = bytenr;
31840ae1 3116 key.offset = (u64)-1;
f321e491 3117 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3118
be20aa9d
CM
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 if (ret < 0)
3121 goto out;
79787eaa 3122 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3123
3124 ret = -ENOENT;
3125 if (path->slots[0] == 0)
31840ae1 3126 goto out;
be20aa9d 3127
31840ae1 3128 path->slots[0]--;
f321e491 3129 leaf = path->nodes[0];
5d4f98a2 3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3131
5d4f98a2 3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3133 goto out;
f321e491 3134
5d4f98a2
YZ
3135 ret = 1;
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 goto out;
3141 }
3142#endif
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3144
5d4f98a2
YZ
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 goto out;
be20aa9d 3148
5d4f98a2
YZ
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3151 goto out;
3152
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3156 goto out;
3157
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 goto out;
3166
3167 ret = 0;
3168out:
3169 return ret;
3170}
3171
e4c3b2dc
LB
3172int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3173 u64 bytenr)
5d4f98a2
YZ
3174{
3175 struct btrfs_path *path;
3176 int ret;
3177 int ret2;
3178
3179 path = btrfs_alloc_path();
3180 if (!path)
3181 return -ENOENT;
3182
3183 do {
e4c3b2dc 3184 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3185 offset, bytenr);
3186 if (ret && ret != -ENOENT)
f321e491 3187 goto out;
80ff3856 3188
e4c3b2dc 3189 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3190 offset, bytenr);
3191 } while (ret2 == -EAGAIN);
3192
3193 if (ret2 && ret2 != -ENOENT) {
3194 ret = ret2;
3195 goto out;
f321e491 3196 }
5d4f98a2
YZ
3197
3198 if (ret != -ENOENT || ret2 != -ENOENT)
3199 ret = 0;
be20aa9d 3200out:
80ff3856 3201 btrfs_free_path(path);
f0486c68
YZ
3202 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3203 WARN_ON(ret > 0);
f321e491 3204 return ret;
be20aa9d 3205}
c5739bba 3206
5d4f98a2 3207static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3208 struct btrfs_root *root,
5d4f98a2 3209 struct extent_buffer *buf,
e339a6b0 3210 int full_backref, int inc)
31840ae1 3211{
0b246afa 3212 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3213 u64 bytenr;
5d4f98a2
YZ
3214 u64 num_bytes;
3215 u64 parent;
31840ae1 3216 u64 ref_root;
31840ae1 3217 u32 nritems;
31840ae1
ZY
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
2ff7e61e
JM
3223 int (*process_func)(struct btrfs_trans_handle *,
3224 struct btrfs_fs_info *,
b06c4bf5 3225 u64, u64, u64, u64, u64, u64);
31840ae1 3226
fccb84c9 3227
0b246afa 3228 if (btrfs_is_testing(fs_info))
faa2dbf0 3229 return 0;
fccb84c9 3230
31840ae1 3231 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3232 nritems = btrfs_header_nritems(buf);
3233 level = btrfs_header_level(buf);
3234
27cdeb70 3235 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3236 return 0;
31840ae1 3237
5d4f98a2
YZ
3238 if (inc)
3239 process_func = btrfs_inc_extent_ref;
3240 else
3241 process_func = btrfs_free_extent;
31840ae1 3242
5d4f98a2
YZ
3243 if (full_backref)
3244 parent = buf->start;
3245 else
3246 parent = 0;
3247
3248 for (i = 0; i < nritems; i++) {
31840ae1 3249 if (level == 0) {
5d4f98a2 3250 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3251 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3252 continue;
5d4f98a2 3253 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3254 struct btrfs_file_extent_item);
3255 if (btrfs_file_extent_type(buf, fi) ==
3256 BTRFS_FILE_EXTENT_INLINE)
3257 continue;
3258 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3259 if (bytenr == 0)
3260 continue;
5d4f98a2
YZ
3261
3262 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3263 key.offset -= btrfs_file_extent_offset(buf, fi);
2ff7e61e 3264 ret = process_func(trans, fs_info, bytenr, num_bytes,
5d4f98a2 3265 parent, ref_root, key.objectid,
b06c4bf5 3266 key.offset);
31840ae1
ZY
3267 if (ret)
3268 goto fail;
3269 } else {
5d4f98a2 3270 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3271 num_bytes = fs_info->nodesize;
2ff7e61e 3272 ret = process_func(trans, fs_info, bytenr, num_bytes,
b06c4bf5 3273 parent, ref_root, level - 1, 0);
31840ae1
ZY
3274 if (ret)
3275 goto fail;
3276 }
3277 }
3278 return 0;
3279fail:
5d4f98a2
YZ
3280 return ret;
3281}
3282
3283int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3284 struct extent_buffer *buf, int full_backref)
5d4f98a2 3285{
e339a6b0 3286 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3287}
3288
3289int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3290 struct extent_buffer *buf, int full_backref)
5d4f98a2 3291{
e339a6b0 3292 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3293}
3294
9078a3e1 3295static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3296 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3297 struct btrfs_path *path,
3298 struct btrfs_block_group_cache *cache)
3299{
3300 int ret;
0b246afa 3301 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3302 unsigned long bi;
3303 struct extent_buffer *leaf;
9078a3e1 3304
9078a3e1 3305 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3306 if (ret) {
3307 if (ret > 0)
3308 ret = -ENOENT;
54aa1f4d 3309 goto fail;
df95e7f0 3310 }
5f39d397
CM
3311
3312 leaf = path->nodes[0];
3313 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3314 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3315 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3316fail:
24b89d08 3317 btrfs_release_path(path);
df95e7f0 3318 return ret;
9078a3e1
CM
3319
3320}
3321
4a8c9a62 3322static struct btrfs_block_group_cache *
2ff7e61e 3323next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3324 struct btrfs_block_group_cache *cache)
3325{
3326 struct rb_node *node;
292cbd51 3327
0b246afa 3328 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3329
3330 /* If our block group was removed, we need a full search. */
3331 if (RB_EMPTY_NODE(&cache->cache_node)) {
3332 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3333
0b246afa 3334 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3335 btrfs_put_block_group(cache);
0b246afa 3336 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3337 }
4a8c9a62
YZ
3338 node = rb_next(&cache->cache_node);
3339 btrfs_put_block_group(cache);
3340 if (node) {
3341 cache = rb_entry(node, struct btrfs_block_group_cache,
3342 cache_node);
11dfe35a 3343 btrfs_get_block_group(cache);
4a8c9a62
YZ
3344 } else
3345 cache = NULL;
0b246afa 3346 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3347 return cache;
3348}
3349
0af3d00b
JB
3350static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3351 struct btrfs_trans_handle *trans,
3352 struct btrfs_path *path)
3353{
0b246afa
JM
3354 struct btrfs_fs_info *fs_info = block_group->fs_info;
3355 struct btrfs_root *root = fs_info->tree_root;
0af3d00b
JB
3356 struct inode *inode = NULL;
3357 u64 alloc_hint = 0;
2b20982e 3358 int dcs = BTRFS_DC_ERROR;
f8c269d7 3359 u64 num_pages = 0;
0af3d00b
JB
3360 int retries = 0;
3361 int ret = 0;
3362
3363 /*
3364 * If this block group is smaller than 100 megs don't bother caching the
3365 * block group.
3366 */
ee22184b 3367 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3368 spin_lock(&block_group->lock);
3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373
0c0ef4bc
JB
3374 if (trans->aborted)
3375 return 0;
0af3d00b 3376again:
77ab86bf 3377 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 ret = PTR_ERR(inode);
b3b4aa74 3380 btrfs_release_path(path);
0af3d00b
JB
3381 goto out;
3382 }
3383
3384 if (IS_ERR(inode)) {
3385 BUG_ON(retries);
3386 retries++;
3387
3388 if (block_group->ro)
3389 goto out_free;
3390
77ab86bf
JM
3391 ret = create_free_space_inode(fs_info, trans, block_group,
3392 path);
0af3d00b
JB
3393 if (ret)
3394 goto out_free;
3395 goto again;
3396 }
3397
5b0e95bf
JB
3398 /* We've already setup this transaction, go ahead and exit */
3399 if (block_group->cache_generation == trans->transid &&
3400 i_size_read(inode)) {
3401 dcs = BTRFS_DC_SETUP;
3402 goto out_put;
3403 }
3404
0af3d00b
JB
3405 /*
3406 * We want to set the generation to 0, that way if anything goes wrong
3407 * from here on out we know not to trust this cache when we load up next
3408 * time.
3409 */
3410 BTRFS_I(inode)->generation = 0;
3411 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3412 if (ret) {
3413 /*
3414 * So theoretically we could recover from this, simply set the
3415 * super cache generation to 0 so we know to invalidate the
3416 * cache, but then we'd have to keep track of the block groups
3417 * that fail this way so we know we _have_ to reset this cache
3418 * before the next commit or risk reading stale cache. So to
3419 * limit our exposure to horrible edge cases lets just abort the
3420 * transaction, this only happens in really bad situations
3421 * anyway.
3422 */
66642832 3423 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3424 goto out_put;
3425 }
0af3d00b
JB
3426 WARN_ON(ret);
3427
3428 if (i_size_read(inode) > 0) {
2ff7e61e 3429 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3430 &fs_info->global_block_rsv);
7b61cd92
MX
3431 if (ret)
3432 goto out_put;
3433
77ab86bf 3434 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3435 if (ret)
3436 goto out_put;
3437 }
3438
3439 spin_lock(&block_group->lock);
cf7c1ef6 3440 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3441 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3442 /*
3443 * don't bother trying to write stuff out _if_
3444 * a) we're not cached,
1a79c1f2
LB
3445 * b) we're with nospace_cache mount option,
3446 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3447 */
2b20982e 3448 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3449 spin_unlock(&block_group->lock);
3450 goto out_put;
3451 }
3452 spin_unlock(&block_group->lock);
3453
2968b1f4
JB
3454 /*
3455 * We hit an ENOSPC when setting up the cache in this transaction, just
3456 * skip doing the setup, we've already cleared the cache so we're safe.
3457 */
3458 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3459 ret = -ENOSPC;
3460 goto out_put;
3461 }
3462
6fc823b1
JB
3463 /*
3464 * Try to preallocate enough space based on how big the block group is.
3465 * Keep in mind this has to include any pinned space which could end up
3466 * taking up quite a bit since it's not folded into the other space
3467 * cache.
3468 */
ee22184b 3469 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3470 if (!num_pages)
3471 num_pages = 1;
3472
0af3d00b 3473 num_pages *= 16;
09cbfeaf 3474 num_pages *= PAGE_SIZE;
0af3d00b 3475
7cf5b976 3476 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3477 if (ret)
3478 goto out_put;
3479
3480 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3481 num_pages, num_pages,
3482 &alloc_hint);
2968b1f4
JB
3483 /*
3484 * Our cache requires contiguous chunks so that we don't modify a bunch
3485 * of metadata or split extents when writing the cache out, which means
3486 * we can enospc if we are heavily fragmented in addition to just normal
3487 * out of space conditions. So if we hit this just skip setting up any
3488 * other block groups for this transaction, maybe we'll unpin enough
3489 * space the next time around.
3490 */
2b20982e
JB
3491 if (!ret)
3492 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3493 else if (ret == -ENOSPC)
3494 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3495
0af3d00b
JB
3496out_put:
3497 iput(inode);
3498out_free:
b3b4aa74 3499 btrfs_release_path(path);
0af3d00b
JB
3500out:
3501 spin_lock(&block_group->lock);
e65cbb94 3502 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3503 block_group->cache_generation = trans->transid;
2b20982e 3504 block_group->disk_cache_state = dcs;
0af3d00b
JB
3505 spin_unlock(&block_group->lock);
3506
3507 return ret;
3508}
3509
dcdf7f6d 3510int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3511 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3512{
3513 struct btrfs_block_group_cache *cache, *tmp;
3514 struct btrfs_transaction *cur_trans = trans->transaction;
3515 struct btrfs_path *path;
3516
3517 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3518 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3519 return 0;
3520
3521 path = btrfs_alloc_path();
3522 if (!path)
3523 return -ENOMEM;
3524
3525 /* Could add new block groups, use _safe just in case */
3526 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3527 dirty_list) {
3528 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3529 cache_save_setup(cache, trans, path);
3530 }
3531
3532 btrfs_free_path(path);
3533 return 0;
3534}
3535
1bbc621e
CM
3536/*
3537 * transaction commit does final block group cache writeback during a
3538 * critical section where nothing is allowed to change the FS. This is
3539 * required in order for the cache to actually match the block group,
3540 * but can introduce a lot of latency into the commit.
3541 *
3542 * So, btrfs_start_dirty_block_groups is here to kick off block group
3543 * cache IO. There's a chance we'll have to redo some of it if the
3544 * block group changes again during the commit, but it greatly reduces
3545 * the commit latency by getting rid of the easy block groups while
3546 * we're still allowing others to join the commit.
3547 */
3548int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3549 struct btrfs_fs_info *fs_info)
9078a3e1 3550{
4a8c9a62 3551 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3552 struct btrfs_transaction *cur_trans = trans->transaction;
3553 int ret = 0;
c9dc4c65 3554 int should_put;
1bbc621e
CM
3555 struct btrfs_path *path = NULL;
3556 LIST_HEAD(dirty);
3557 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3558 int num_started = 0;
1bbc621e
CM
3559 int loops = 0;
3560
3561 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3562 if (list_empty(&cur_trans->dirty_bgs)) {
3563 spin_unlock(&cur_trans->dirty_bgs_lock);
3564 return 0;
1bbc621e 3565 }
b58d1a9e 3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3567 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3568
1bbc621e 3569again:
1bbc621e
CM
3570 /*
3571 * make sure all the block groups on our dirty list actually
3572 * exist
3573 */
2ff7e61e 3574 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3575
3576 if (!path) {
3577 path = btrfs_alloc_path();
3578 if (!path)
3579 return -ENOMEM;
3580 }
3581
b58d1a9e
FM
3582 /*
3583 * cache_write_mutex is here only to save us from balance or automatic
3584 * removal of empty block groups deleting this block group while we are
3585 * writing out the cache
3586 */
3587 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3588 while (!list_empty(&dirty)) {
3589 cache = list_first_entry(&dirty,
3590 struct btrfs_block_group_cache,
3591 dirty_list);
1bbc621e
CM
3592 /*
3593 * this can happen if something re-dirties a block
3594 * group that is already under IO. Just wait for it to
3595 * finish and then do it all again
3596 */
3597 if (!list_empty(&cache->io_list)) {
3598 list_del_init(&cache->io_list);
afdb5718 3599 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3600 btrfs_put_block_group(cache);
3601 }
3602
3603
3604 /*
3605 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606 * if it should update the cache_state. Don't delete
3607 * until after we wait.
3608 *
3609 * Since we're not running in the commit critical section
3610 * we need the dirty_bgs_lock to protect from update_block_group
3611 */
3612 spin_lock(&cur_trans->dirty_bgs_lock);
3613 list_del_init(&cache->dirty_list);
3614 spin_unlock(&cur_trans->dirty_bgs_lock);
3615
3616 should_put = 1;
3617
3618 cache_save_setup(cache, trans, path);
3619
3620 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3621 cache->io_ctl.inode = NULL;
0b246afa 3622 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3623 cache, path);
1bbc621e
CM
3624 if (ret == 0 && cache->io_ctl.inode) {
3625 num_started++;
3626 should_put = 0;
3627
3628 /*
3629 * the cache_write_mutex is protecting
3630 * the io_list
3631 */
3632 list_add_tail(&cache->io_list, io);
3633 } else {
3634 /*
3635 * if we failed to write the cache, the
3636 * generation will be bad and life goes on
3637 */
3638 ret = 0;
3639 }
3640 }
ff1f8250 3641 if (!ret) {
2ff7e61e
JM
3642 ret = write_one_cache_group(trans, fs_info,
3643 path, cache);
ff1f8250
FM
3644 /*
3645 * Our block group might still be attached to the list
3646 * of new block groups in the transaction handle of some
3647 * other task (struct btrfs_trans_handle->new_bgs). This
3648 * means its block group item isn't yet in the extent
3649 * tree. If this happens ignore the error, as we will
3650 * try again later in the critical section of the
3651 * transaction commit.
3652 */
3653 if (ret == -ENOENT) {
3654 ret = 0;
3655 spin_lock(&cur_trans->dirty_bgs_lock);
3656 if (list_empty(&cache->dirty_list)) {
3657 list_add_tail(&cache->dirty_list,
3658 &cur_trans->dirty_bgs);
3659 btrfs_get_block_group(cache);
3660 }
3661 spin_unlock(&cur_trans->dirty_bgs_lock);
3662 } else if (ret) {
66642832 3663 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3664 }
3665 }
1bbc621e
CM
3666
3667 /* if its not on the io list, we need to put the block group */
3668 if (should_put)
3669 btrfs_put_block_group(cache);
3670
3671 if (ret)
3672 break;
b58d1a9e
FM
3673
3674 /*
3675 * Avoid blocking other tasks for too long. It might even save
3676 * us from writing caches for block groups that are going to be
3677 * removed.
3678 */
3679 mutex_unlock(&trans->transaction->cache_write_mutex);
3680 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3681 }
b58d1a9e 3682 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3683
3684 /*
3685 * go through delayed refs for all the stuff we've just kicked off
3686 * and then loop back (just once)
3687 */
2ff7e61e 3688 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3689 if (!ret && loops == 0) {
3690 loops++;
3691 spin_lock(&cur_trans->dirty_bgs_lock);
3692 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3693 /*
3694 * dirty_bgs_lock protects us from concurrent block group
3695 * deletes too (not just cache_write_mutex).
3696 */
3697 if (!list_empty(&dirty)) {
3698 spin_unlock(&cur_trans->dirty_bgs_lock);
3699 goto again;
3700 }
1bbc621e 3701 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3702 } else if (ret < 0) {
2ff7e61e 3703 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3704 }
3705
3706 btrfs_free_path(path);
3707 return ret;
3708}
3709
3710int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3711 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3712{
3713 struct btrfs_block_group_cache *cache;
3714 struct btrfs_transaction *cur_trans = trans->transaction;
3715 int ret = 0;
3716 int should_put;
3717 struct btrfs_path *path;
3718 struct list_head *io = &cur_trans->io_bgs;
3719 int num_started = 0;
9078a3e1
CM
3720
3721 path = btrfs_alloc_path();
3722 if (!path)
3723 return -ENOMEM;
3724
ce93ec54 3725 /*
e44081ef
FM
3726 * Even though we are in the critical section of the transaction commit,
3727 * we can still have concurrent tasks adding elements to this
3728 * transaction's list of dirty block groups. These tasks correspond to
3729 * endio free space workers started when writeback finishes for a
3730 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3731 * allocate new block groups as a result of COWing nodes of the root
3732 * tree when updating the free space inode. The writeback for the space
3733 * caches is triggered by an earlier call to
3734 * btrfs_start_dirty_block_groups() and iterations of the following
3735 * loop.
3736 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3737 * delayed refs to make sure we have the best chance at doing this all
3738 * in one shot.
3739 */
e44081ef 3740 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3741 while (!list_empty(&cur_trans->dirty_bgs)) {
3742 cache = list_first_entry(&cur_trans->dirty_bgs,
3743 struct btrfs_block_group_cache,
3744 dirty_list);
c9dc4c65
CM
3745
3746 /*
3747 * this can happen if cache_save_setup re-dirties a block
3748 * group that is already under IO. Just wait for it to
3749 * finish and then do it all again
3750 */
3751 if (!list_empty(&cache->io_list)) {
e44081ef 3752 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3753 list_del_init(&cache->io_list);
afdb5718 3754 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3755 btrfs_put_block_group(cache);
e44081ef 3756 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3757 }
3758
1bbc621e
CM
3759 /*
3760 * don't remove from the dirty list until after we've waited
3761 * on any pending IO
3762 */
ce93ec54 3763 list_del_init(&cache->dirty_list);
e44081ef 3764 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3765 should_put = 1;
3766
1bbc621e 3767 cache_save_setup(cache, trans, path);
c9dc4c65 3768
ce93ec54 3769 if (!ret)
2ff7e61e
JM
3770 ret = btrfs_run_delayed_refs(trans, fs_info,
3771 (unsigned long) -1);
c9dc4c65
CM
3772
3773 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3774 cache->io_ctl.inode = NULL;
0b246afa 3775 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3776 cache, path);
c9dc4c65
CM
3777 if (ret == 0 && cache->io_ctl.inode) {
3778 num_started++;
3779 should_put = 0;
1bbc621e 3780 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3781 } else {
3782 /*
3783 * if we failed to write the cache, the
3784 * generation will be bad and life goes on
3785 */
3786 ret = 0;
3787 }
3788 }
ff1f8250 3789 if (!ret) {
2ff7e61e
JM
3790 ret = write_one_cache_group(trans, fs_info,
3791 path, cache);
2bc0bb5f
FM
3792 /*
3793 * One of the free space endio workers might have
3794 * created a new block group while updating a free space
3795 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3796 * and hasn't released its transaction handle yet, in
3797 * which case the new block group is still attached to
3798 * its transaction handle and its creation has not
3799 * finished yet (no block group item in the extent tree
3800 * yet, etc). If this is the case, wait for all free
3801 * space endio workers to finish and retry. This is a
3802 * a very rare case so no need for a more efficient and
3803 * complex approach.
3804 */
3805 if (ret == -ENOENT) {
3806 wait_event(cur_trans->writer_wait,
3807 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3808 ret = write_one_cache_group(trans, fs_info,
3809 path, cache);
2bc0bb5f 3810 }
ff1f8250 3811 if (ret)
66642832 3812 btrfs_abort_transaction(trans, ret);
ff1f8250 3813 }
c9dc4c65
CM
3814
3815 /* if its not on the io list, we need to put the block group */
3816 if (should_put)
3817 btrfs_put_block_group(cache);
e44081ef 3818 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3819 }
e44081ef 3820 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3821
1bbc621e
CM
3822 while (!list_empty(io)) {
3823 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3824 io_list);
3825 list_del_init(&cache->io_list);
afdb5718 3826 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3827 btrfs_put_block_group(cache);
3828 }
3829
9078a3e1 3830 btrfs_free_path(path);
ce93ec54 3831 return ret;
9078a3e1
CM
3832}
3833
2ff7e61e 3834int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3835{
3836 struct btrfs_block_group_cache *block_group;
3837 int readonly = 0;
3838
0b246afa 3839 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3840 if (!block_group || block_group->ro)
3841 readonly = 1;
3842 if (block_group)
fa9c0d79 3843 btrfs_put_block_group(block_group);
d2fb3437
YZ
3844 return readonly;
3845}
3846
f78c436c
FM
3847bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3848{
3849 struct btrfs_block_group_cache *bg;
3850 bool ret = true;
3851
3852 bg = btrfs_lookup_block_group(fs_info, bytenr);
3853 if (!bg)
3854 return false;
3855
3856 spin_lock(&bg->lock);
3857 if (bg->ro)
3858 ret = false;
3859 else
3860 atomic_inc(&bg->nocow_writers);
3861 spin_unlock(&bg->lock);
3862
3863 /* no put on block group, done by btrfs_dec_nocow_writers */
3864 if (!ret)
3865 btrfs_put_block_group(bg);
3866
3867 return ret;
3868
3869}
3870
3871void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3872{
3873 struct btrfs_block_group_cache *bg;
3874
3875 bg = btrfs_lookup_block_group(fs_info, bytenr);
3876 ASSERT(bg);
3877 if (atomic_dec_and_test(&bg->nocow_writers))
3878 wake_up_atomic_t(&bg->nocow_writers);
3879 /*
3880 * Once for our lookup and once for the lookup done by a previous call
3881 * to btrfs_inc_nocow_writers()
3882 */
3883 btrfs_put_block_group(bg);
3884 btrfs_put_block_group(bg);
3885}
3886
3887static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3888{
3889 schedule();
3890 return 0;
3891}
3892
3893void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3894{
3895 wait_on_atomic_t(&bg->nocow_writers,
3896 btrfs_wait_nocow_writers_atomic_t,
3897 TASK_UNINTERRUPTIBLE);
3898}
3899
6ab0a202
JM
3900static const char *alloc_name(u64 flags)
3901{
3902 switch (flags) {
3903 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3904 return "mixed";
3905 case BTRFS_BLOCK_GROUP_METADATA:
3906 return "metadata";
3907 case BTRFS_BLOCK_GROUP_DATA:
3908 return "data";
3909 case BTRFS_BLOCK_GROUP_SYSTEM:
3910 return "system";
3911 default:
3912 WARN_ON(1);
3913 return "invalid-combination";
3914 };
3915}
3916
593060d7
CM
3917static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3918 u64 total_bytes, u64 bytes_used,
e40edf2d 3919 u64 bytes_readonly,
593060d7
CM
3920 struct btrfs_space_info **space_info)
3921{
3922 struct btrfs_space_info *found;
b742bb82
YZ
3923 int i;
3924 int factor;
b150a4f1 3925 int ret;
b742bb82
YZ
3926
3927 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3928 BTRFS_BLOCK_GROUP_RAID10))
3929 factor = 2;
3930 else
3931 factor = 1;
593060d7
CM
3932
3933 found = __find_space_info(info, flags);
3934 if (found) {
25179201 3935 spin_lock(&found->lock);
593060d7 3936 found->total_bytes += total_bytes;
89a55897 3937 found->disk_total += total_bytes * factor;
593060d7 3938 found->bytes_used += bytes_used;
b742bb82 3939 found->disk_used += bytes_used * factor;
e40edf2d 3940 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3941 if (total_bytes > 0)
3942 found->full = 0;
957780eb
JB
3943 space_info_add_new_bytes(info, found, total_bytes -
3944 bytes_used - bytes_readonly);
25179201 3945 spin_unlock(&found->lock);
593060d7
CM
3946 *space_info = found;
3947 return 0;
3948 }
c146afad 3949 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3950 if (!found)
3951 return -ENOMEM;
3952
908c7f19 3953 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3954 if (ret) {
3955 kfree(found);
3956 return ret;
3957 }
3958
c1895442 3959 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3960 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3961 init_rwsem(&found->groups_sem);
0f9dd46c 3962 spin_lock_init(&found->lock);
52ba6929 3963 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3964 found->total_bytes = total_bytes;
89a55897 3965 found->disk_total = total_bytes * factor;
593060d7 3966 found->bytes_used = bytes_used;
b742bb82 3967 found->disk_used = bytes_used * factor;
593060d7 3968 found->bytes_pinned = 0;
e8569813 3969 found->bytes_reserved = 0;
e40edf2d 3970 found->bytes_readonly = bytes_readonly;
f0486c68 3971 found->bytes_may_use = 0;
6af3e3ad 3972 found->full = 0;
4f4db217 3973 found->max_extent_size = 0;
0e4f8f88 3974 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3975 found->chunk_alloc = 0;
fdb5effd
JB
3976 found->flush = 0;
3977 init_waitqueue_head(&found->wait);
633c0aad 3978 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3979 INIT_LIST_HEAD(&found->tickets);
3980 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3981
3982 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3983 info->space_info_kobj, "%s",
3984 alloc_name(found->flags));
3985 if (ret) {
3986 kfree(found);
3987 return ret;
3988 }
3989
593060d7 3990 *space_info = found;
4184ea7f 3991 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3992 if (flags & BTRFS_BLOCK_GROUP_DATA)
3993 info->data_sinfo = found;
6ab0a202
JM
3994
3995 return ret;
593060d7
CM
3996}
3997
8790d502
CM
3998static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3999{
899c81ea
ID
4000 u64 extra_flags = chunk_to_extended(flags) &
4001 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4002
de98ced9 4003 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4004 if (flags & BTRFS_BLOCK_GROUP_DATA)
4005 fs_info->avail_data_alloc_bits |= extra_flags;
4006 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4007 fs_info->avail_metadata_alloc_bits |= extra_flags;
4008 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4009 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4010 write_sequnlock(&fs_info->profiles_lock);
8790d502 4011}
593060d7 4012
fc67c450
ID
4013/*
4014 * returns target flags in extended format or 0 if restripe for this
4015 * chunk_type is not in progress
c6664b42
ID
4016 *
4017 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4018 */
4019static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4020{
4021 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4022 u64 target = 0;
4023
fc67c450
ID
4024 if (!bctl)
4025 return 0;
4026
4027 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4028 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4029 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4030 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4031 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4032 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4033 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4034 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4035 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4036 }
4037
4038 return target;
4039}
4040
a46d11a8
ID
4041/*
4042 * @flags: available profiles in extended format (see ctree.h)
4043 *
e4d8ec0f
ID
4044 * Returns reduced profile in chunk format. If profile changing is in
4045 * progress (either running or paused) picks the target profile (if it's
4046 * already available), otherwise falls back to plain reducing.
a46d11a8 4047 */
2ff7e61e 4048static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4049{
0b246afa 4050 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4051 u64 target;
9c170b26
ZL
4052 u64 raid_type;
4053 u64 allowed = 0;
a061fc8d 4054
fc67c450
ID
4055 /*
4056 * see if restripe for this chunk_type is in progress, if so
4057 * try to reduce to the target profile
4058 */
0b246afa
JM
4059 spin_lock(&fs_info->balance_lock);
4060 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4061 if (target) {
4062 /* pick target profile only if it's already available */
4063 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4064 spin_unlock(&fs_info->balance_lock);
fc67c450 4065 return extended_to_chunk(target);
e4d8ec0f
ID
4066 }
4067 }
0b246afa 4068 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4069
53b381b3 4070 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4071 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4072 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4073 allowed |= btrfs_raid_group[raid_type];
4074 }
4075 allowed &= flags;
4076
4077 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4078 allowed = BTRFS_BLOCK_GROUP_RAID6;
4079 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4080 allowed = BTRFS_BLOCK_GROUP_RAID5;
4081 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4082 allowed = BTRFS_BLOCK_GROUP_RAID10;
4083 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4084 allowed = BTRFS_BLOCK_GROUP_RAID1;
4085 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4086 allowed = BTRFS_BLOCK_GROUP_RAID0;
4087
4088 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4089
4090 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4091}
4092
2ff7e61e 4093static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4094{
de98ced9 4095 unsigned seq;
f8213bdc 4096 u64 flags;
de98ced9
MX
4097
4098 do {
f8213bdc 4099 flags = orig_flags;
0b246afa 4100 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4101
4102 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4103 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4104 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4105 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4106 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4107 flags |= fs_info->avail_metadata_alloc_bits;
4108 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4109
2ff7e61e 4110 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4111}
4112
6d07bcec 4113u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4114{
0b246afa 4115 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4116 u64 flags;
53b381b3 4117 u64 ret;
9ed74f2d 4118
b742bb82
YZ
4119 if (data)
4120 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4121 else if (root == fs_info->chunk_root)
b742bb82 4122 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4123 else
b742bb82 4124 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4125
2ff7e61e 4126 ret = get_alloc_profile(fs_info, flags);
53b381b3 4127 return ret;
6a63209f 4128}
9ed74f2d 4129
4136135b
LB
4130static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4131 bool may_use_included)
4132{
4133 ASSERT(s_info);
4134 return s_info->bytes_used + s_info->bytes_reserved +
4135 s_info->bytes_pinned + s_info->bytes_readonly +
4136 (may_use_included ? s_info->bytes_may_use : 0);
4137}
4138
04f4f916 4139int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4140{
6a63209f 4141 struct btrfs_space_info *data_sinfo;
04f4f916 4142 struct btrfs_root *root = inode->root;
b4d7c3c9 4143 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4144 u64 used;
94b947b2 4145 int ret = 0;
c99f1b0c
ZL
4146 int need_commit = 2;
4147 int have_pinned_space;
6a63209f 4148
6a63209f 4149 /* make sure bytes are sectorsize aligned */
0b246afa 4150 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4151
9dced186 4152 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4153 need_commit = 0;
9dced186 4154 ASSERT(current->journal_info);
0af3d00b
JB
4155 }
4156
b4d7c3c9 4157 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4158 if (!data_sinfo)
4159 goto alloc;
9ed74f2d 4160
6a63209f
JB
4161again:
4162 /* make sure we have enough space to handle the data first */
4163 spin_lock(&data_sinfo->lock);
4136135b 4164 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4165
4166 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4167 struct btrfs_trans_handle *trans;
9ed74f2d 4168
6a63209f
JB
4169 /*
4170 * if we don't have enough free bytes in this space then we need
4171 * to alloc a new chunk.
4172 */
b9fd47cd 4173 if (!data_sinfo->full) {
6a63209f 4174 u64 alloc_target;
9ed74f2d 4175
0e4f8f88 4176 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4177 spin_unlock(&data_sinfo->lock);
33b4d47f 4178alloc:
6a63209f 4179 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4180 /*
4181 * It is ugly that we don't call nolock join
4182 * transaction for the free space inode case here.
4183 * But it is safe because we only do the data space
4184 * reservation for the free space cache in the
4185 * transaction context, the common join transaction
4186 * just increase the counter of the current transaction
4187 * handler, doesn't try to acquire the trans_lock of
4188 * the fs.
4189 */
7a7eaa40 4190 trans = btrfs_join_transaction(root);
a22285a6
YZ
4191 if (IS_ERR(trans))
4192 return PTR_ERR(trans);
9ed74f2d 4193
2ff7e61e 4194 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4195 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4196 btrfs_end_transaction(trans);
d52a5b5f
MX
4197 if (ret < 0) {
4198 if (ret != -ENOSPC)
4199 return ret;
c99f1b0c
ZL
4200 else {
4201 have_pinned_space = 1;
d52a5b5f 4202 goto commit_trans;
c99f1b0c 4203 }
d52a5b5f 4204 }
9ed74f2d 4205
b4d7c3c9
LZ
4206 if (!data_sinfo)
4207 data_sinfo = fs_info->data_sinfo;
4208
6a63209f
JB
4209 goto again;
4210 }
f2bb8f5c
JB
4211
4212 /*
b150a4f1 4213 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4214 * allocation, and no removed chunk in current transaction,
4215 * don't bother committing the transaction.
f2bb8f5c 4216 */
c99f1b0c
ZL
4217 have_pinned_space = percpu_counter_compare(
4218 &data_sinfo->total_bytes_pinned,
4219 used + bytes - data_sinfo->total_bytes);
6a63209f 4220 spin_unlock(&data_sinfo->lock);
6a63209f 4221
4e06bdd6 4222 /* commit the current transaction and try again */
d52a5b5f 4223commit_trans:
c99f1b0c 4224 if (need_commit &&
0b246afa 4225 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4226 need_commit--;
b150a4f1 4227
e1746e83
ZL
4228 if (need_commit > 0) {
4229 btrfs_start_delalloc_roots(fs_info, 0, -1);
0b246afa
JM
4230 btrfs_wait_ordered_roots(fs_info, -1, 0,
4231 (u64)-1);
e1746e83 4232 }
9a4e7276 4233
7a7eaa40 4234 trans = btrfs_join_transaction(root);
a22285a6
YZ
4235 if (IS_ERR(trans))
4236 return PTR_ERR(trans);
c99f1b0c 4237 if (have_pinned_space >= 0 ||
3204d33c
JB
4238 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4239 &trans->transaction->flags) ||
c99f1b0c 4240 need_commit > 0) {
3a45bb20 4241 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4242 if (ret)
4243 return ret;
d7c15171 4244 /*
c2d6cb16
FM
4245 * The cleaner kthread might still be doing iput
4246 * operations. Wait for it to finish so that
4247 * more space is released.
d7c15171 4248 */
0b246afa
JM
4249 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4250 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4251 goto again;
4252 } else {
3a45bb20 4253 btrfs_end_transaction(trans);
94b947b2 4254 }
4e06bdd6 4255 }
9ed74f2d 4256
0b246afa 4257 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4258 "space_info:enospc",
4259 data_sinfo->flags, bytes, 1);
6a63209f
JB
4260 return -ENOSPC;
4261 }
4262 data_sinfo->bytes_may_use += bytes;
0b246afa 4263 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4264 data_sinfo->flags, bytes, 1);
6a63209f 4265 spin_unlock(&data_sinfo->lock);
6a63209f 4266
237c0e9f 4267 return ret;
9ed74f2d 4268}
6a63209f 4269
4ceff079
QW
4270/*
4271 * New check_data_free_space() with ability for precious data reservation
4272 * Will replace old btrfs_check_data_free_space(), but for patch split,
4273 * add a new function first and then replace it.
4274 */
7cf5b976 4275int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079 4276{
0b246afa 4277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4278 int ret;
4279
4280 /* align the range */
0b246afa
JM
4281 len = round_up(start + len, fs_info->sectorsize) -
4282 round_down(start, fs_info->sectorsize);
4283 start = round_down(start, fs_info->sectorsize);
4ceff079 4284
04f4f916 4285 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4286 if (ret < 0)
4287 return ret;
4288
1e5ec2e7 4289 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4290 ret = btrfs_qgroup_reserve_data(inode, start, len);
1e5ec2e7
JB
4291 if (ret)
4292 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4293 return ret;
4294}
4295
4ceff079
QW
4296/*
4297 * Called if we need to clear a data reservation for this inode
4298 * Normally in a error case.
4299 *
51773bec
QW
4300 * This one will *NOT* use accurate qgroup reserved space API, just for case
4301 * which we can't sleep and is sure it won't affect qgroup reserved space.
4302 * Like clear_bit_hook().
4ceff079 4303 */
51773bec
QW
4304void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4305 u64 len)
4ceff079 4306{
0b246afa 4307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4308 struct btrfs_space_info *data_sinfo;
4309
4310 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4311 len = round_up(start + len, fs_info->sectorsize) -
4312 round_down(start, fs_info->sectorsize);
4313 start = round_down(start, fs_info->sectorsize);
4ceff079 4314
0b246afa 4315 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4316 spin_lock(&data_sinfo->lock);
4317 if (WARN_ON(data_sinfo->bytes_may_use < len))
4318 data_sinfo->bytes_may_use = 0;
4319 else
4320 data_sinfo->bytes_may_use -= len;
0b246afa 4321 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4322 data_sinfo->flags, len, 0);
4323 spin_unlock(&data_sinfo->lock);
4324}
4325
51773bec
QW
4326/*
4327 * Called if we need to clear a data reservation for this inode
4328 * Normally in a error case.
4329 *
01327610 4330 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4331 * space framework.
4332 */
4333void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4334{
0c476a5d
JM
4335 struct btrfs_root *root = BTRFS_I(inode)->root;
4336
4337 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4338 len = round_up(start + len, root->fs_info->sectorsize) -
4339 round_down(start, root->fs_info->sectorsize);
4340 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4341
51773bec
QW
4342 btrfs_free_reserved_data_space_noquota(inode, start, len);
4343 btrfs_qgroup_free_data(inode, start, len);
4344}
4345
97e728d4 4346static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4347{
97e728d4
JB
4348 struct list_head *head = &info->space_info;
4349 struct btrfs_space_info *found;
e3ccfa98 4350
97e728d4
JB
4351 rcu_read_lock();
4352 list_for_each_entry_rcu(found, head, list) {
4353 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4354 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4355 }
97e728d4 4356 rcu_read_unlock();
e3ccfa98
JB
4357}
4358
3c76cd84
MX
4359static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4360{
4361 return (global->size << 1);
4362}
4363
2ff7e61e 4364static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4365 struct btrfs_space_info *sinfo, int force)
32c00aff 4366{
0b246afa 4367 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
424499db 4368 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4369 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4370 u64 thresh;
e3ccfa98 4371
0e4f8f88
CM
4372 if (force == CHUNK_ALLOC_FORCE)
4373 return 1;
4374
fb25e914
JB
4375 /*
4376 * We need to take into account the global rsv because for all intents
4377 * and purposes it's used space. Don't worry about locking the
4378 * global_rsv, it doesn't change except when the transaction commits.
4379 */
54338b5c 4380 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4381 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4382
0e4f8f88
CM
4383 /*
4384 * in limited mode, we want to have some free space up to
4385 * about 1% of the FS size.
4386 */
4387 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4388 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4389 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4390
4391 if (num_bytes - num_allocated < thresh)
4392 return 1;
4393 }
0e4f8f88 4394
ee22184b 4395 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4396 return 0;
424499db 4397 return 1;
32c00aff
JB
4398}
4399
2ff7e61e 4400static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4401{
4402 u64 num_dev;
4403
53b381b3
DW
4404 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4405 BTRFS_BLOCK_GROUP_RAID0 |
4406 BTRFS_BLOCK_GROUP_RAID5 |
4407 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4408 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4409 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4410 num_dev = 2;
4411 else
4412 num_dev = 1; /* DUP or single */
4413
39c2d7fa 4414 return num_dev;
15d1ff81
LB
4415}
4416
39c2d7fa
FM
4417/*
4418 * If @is_allocation is true, reserve space in the system space info necessary
4419 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4420 * removing a chunk.
4421 */
4422void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4423 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4424{
4425 struct btrfs_space_info *info;
4426 u64 left;
4427 u64 thresh;
4fbcdf66 4428 int ret = 0;
39c2d7fa 4429 u64 num_devs;
4fbcdf66
FM
4430
4431 /*
4432 * Needed because we can end up allocating a system chunk and for an
4433 * atomic and race free space reservation in the chunk block reserve.
4434 */
0b246afa 4435 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4436
0b246afa 4437 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4438 spin_lock(&info->lock);
4136135b 4439 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4440 spin_unlock(&info->lock);
4441
2ff7e61e 4442 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4443
4444 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4445 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4446 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4447
0b246afa
JM
4448 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4449 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4450 left, thresh, type);
4451 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4452 }
4453
4454 if (left < thresh) {
4455 u64 flags;
4456
0b246afa 4457 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4fbcdf66
FM
4458 /*
4459 * Ignore failure to create system chunk. We might end up not
4460 * needing it, as we might not need to COW all nodes/leafs from
4461 * the paths we visit in the chunk tree (they were already COWed
4462 * or created in the current transaction for example).
4463 */
2ff7e61e 4464 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4465 }
4466
4467 if (!ret) {
0b246afa
JM
4468 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4469 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4470 thresh, BTRFS_RESERVE_NO_FLUSH);
4471 if (!ret)
4472 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4473 }
4474}
4475
28b737f6
LB
4476/*
4477 * If force is CHUNK_ALLOC_FORCE:
4478 * - return 1 if it successfully allocates a chunk,
4479 * - return errors including -ENOSPC otherwise.
4480 * If force is NOT CHUNK_ALLOC_FORCE:
4481 * - return 0 if it doesn't need to allocate a new chunk,
4482 * - return 1 if it successfully allocates a chunk,
4483 * - return errors including -ENOSPC otherwise.
4484 */
6324fbf3 4485static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4486 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4487{
6324fbf3 4488 struct btrfs_space_info *space_info;
6d74119f 4489 int wait_for_alloc = 0;
9ed74f2d 4490 int ret = 0;
9ed74f2d 4491
c6b305a8
JB
4492 /* Don't re-enter if we're already allocating a chunk */
4493 if (trans->allocating_chunk)
4494 return -ENOSPC;
4495
0b246afa 4496 space_info = __find_space_info(fs_info, flags);
593060d7 4497 if (!space_info) {
0b246afa 4498 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
79787eaa 4499 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4500 }
79787eaa 4501 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4502
6d74119f 4503again:
25179201 4504 spin_lock(&space_info->lock);
9e622d6b 4505 if (force < space_info->force_alloc)
0e4f8f88 4506 force = space_info->force_alloc;
25179201 4507 if (space_info->full) {
2ff7e61e 4508 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4509 ret = -ENOSPC;
4510 else
4511 ret = 0;
25179201 4512 spin_unlock(&space_info->lock);
09fb99a6 4513 return ret;
9ed74f2d
JB
4514 }
4515
2ff7e61e 4516 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4517 spin_unlock(&space_info->lock);
6d74119f
JB
4518 return 0;
4519 } else if (space_info->chunk_alloc) {
4520 wait_for_alloc = 1;
4521 } else {
4522 space_info->chunk_alloc = 1;
9ed74f2d 4523 }
0e4f8f88 4524
25179201 4525 spin_unlock(&space_info->lock);
9ed74f2d 4526
6d74119f
JB
4527 mutex_lock(&fs_info->chunk_mutex);
4528
4529 /*
4530 * The chunk_mutex is held throughout the entirety of a chunk
4531 * allocation, so once we've acquired the chunk_mutex we know that the
4532 * other guy is done and we need to recheck and see if we should
4533 * allocate.
4534 */
4535 if (wait_for_alloc) {
4536 mutex_unlock(&fs_info->chunk_mutex);
4537 wait_for_alloc = 0;
4538 goto again;
4539 }
4540
c6b305a8
JB
4541 trans->allocating_chunk = true;
4542
67377734
JB
4543 /*
4544 * If we have mixed data/metadata chunks we want to make sure we keep
4545 * allocating mixed chunks instead of individual chunks.
4546 */
4547 if (btrfs_mixed_space_info(space_info))
4548 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4549
97e728d4
JB
4550 /*
4551 * if we're doing a data chunk, go ahead and make sure that
4552 * we keep a reasonable number of metadata chunks allocated in the
4553 * FS as well.
4554 */
9ed74f2d 4555 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4556 fs_info->data_chunk_allocations++;
4557 if (!(fs_info->data_chunk_allocations %
4558 fs_info->metadata_ratio))
4559 force_metadata_allocation(fs_info);
9ed74f2d
JB
4560 }
4561
15d1ff81
LB
4562 /*
4563 * Check if we have enough space in SYSTEM chunk because we may need
4564 * to update devices.
4565 */
2ff7e61e 4566 check_system_chunk(trans, fs_info, flags);
15d1ff81 4567
2ff7e61e 4568 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4569 trans->allocating_chunk = false;
92b8e897 4570
9ed74f2d 4571 spin_lock(&space_info->lock);
a81cb9a2
AO
4572 if (ret < 0 && ret != -ENOSPC)
4573 goto out;
9ed74f2d 4574 if (ret)
6324fbf3 4575 space_info->full = 1;
424499db
YZ
4576 else
4577 ret = 1;
6d74119f 4578
0e4f8f88 4579 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4580out:
6d74119f 4581 space_info->chunk_alloc = 0;
9ed74f2d 4582 spin_unlock(&space_info->lock);
a25c75d5 4583 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4584 /*
4585 * When we allocate a new chunk we reserve space in the chunk block
4586 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4587 * add new nodes/leafs to it if we end up needing to do it when
4588 * inserting the chunk item and updating device items as part of the
4589 * second phase of chunk allocation, performed by
4590 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4591 * large number of new block groups to create in our transaction
4592 * handle's new_bgs list to avoid exhausting the chunk block reserve
4593 * in extreme cases - like having a single transaction create many new
4594 * block groups when starting to write out the free space caches of all
4595 * the block groups that were made dirty during the lifetime of the
4596 * transaction.
4597 */
d9a0540a 4598 if (trans->can_flush_pending_bgs &&
ee22184b 4599 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4600 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4601 btrfs_trans_release_chunk_metadata(trans);
4602 }
0f9dd46c 4603 return ret;
6324fbf3 4604}
9ed74f2d 4605
a80c8dcf
JB
4606static int can_overcommit(struct btrfs_root *root,
4607 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4608 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4609{
0b246afa
JM
4610 struct btrfs_fs_info *fs_info = root->fs_info;
4611 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4612 u64 profile;
3c76cd84 4613 u64 space_size;
a80c8dcf
JB
4614 u64 avail;
4615 u64 used;
4616
957780eb
JB
4617 /* Don't overcommit when in mixed mode. */
4618 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4619 return 0;
4620
957780eb 4621 profile = btrfs_get_alloc_profile(root, 0);
4136135b 4622 used = btrfs_space_info_used(space_info, false);
96f1bb57 4623
96f1bb57
JB
4624 /*
4625 * We only want to allow over committing if we have lots of actual space
4626 * free, but if we don't have enough space to handle the global reserve
4627 * space then we could end up having a real enospc problem when trying
4628 * to allocate a chunk or some other such important allocation.
4629 */
3c76cd84
MX
4630 spin_lock(&global_rsv->lock);
4631 space_size = calc_global_rsv_need_space(global_rsv);
4632 spin_unlock(&global_rsv->lock);
4633 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4634 return 0;
4635
4636 used += space_info->bytes_may_use;
a80c8dcf 4637
0b246afa
JM
4638 spin_lock(&fs_info->free_chunk_lock);
4639 avail = fs_info->free_chunk_space;
4640 spin_unlock(&fs_info->free_chunk_lock);
a80c8dcf
JB
4641
4642 /*
4643 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4644 * space is actually useable. For raid56, the space info used
4645 * doesn't include the parity drive, so we don't have to
4646 * change the math
a80c8dcf
JB
4647 */
4648 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4649 BTRFS_BLOCK_GROUP_RAID1 |
4650 BTRFS_BLOCK_GROUP_RAID10))
4651 avail >>= 1;
4652
4653 /*
561c294d
MX
4654 * If we aren't flushing all things, let us overcommit up to
4655 * 1/2th of the space. If we can flush, don't let us overcommit
4656 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4657 */
08e007d2 4658 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4659 avail >>= 3;
a80c8dcf 4660 else
14575aef 4661 avail >>= 1;
a80c8dcf 4662
14575aef 4663 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4664 return 1;
4665 return 0;
4666}
4667
2ff7e61e 4668static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4669 unsigned long nr_pages, int nr_items)
da633a42 4670{
0b246afa 4671 struct super_block *sb = fs_info->sb;
da633a42 4672
925a6efb
JB
4673 if (down_read_trylock(&sb->s_umount)) {
4674 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4675 up_read(&sb->s_umount);
4676 } else {
da633a42
MX
4677 /*
4678 * We needn't worry the filesystem going from r/w to r/o though
4679 * we don't acquire ->s_umount mutex, because the filesystem
4680 * should guarantee the delalloc inodes list be empty after
4681 * the filesystem is readonly(all dirty pages are written to
4682 * the disk).
4683 */
0b246afa 4684 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4685 if (!current->journal_info)
0b246afa 4686 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4687 }
4688}
4689
2ff7e61e
JM
4690static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4691 u64 to_reclaim)
18cd8ea6
MX
4692{
4693 u64 bytes;
4694 int nr;
4695
2ff7e61e 4696 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
18cd8ea6
MX
4697 nr = (int)div64_u64(to_reclaim, bytes);
4698 if (!nr)
4699 nr = 1;
4700 return nr;
4701}
4702
ee22184b 4703#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4704
9ed74f2d 4705/*
5da9d01b 4706 * shrink metadata reservation for delalloc
9ed74f2d 4707 */
f4c738c2
JB
4708static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4709 bool wait_ordered)
5da9d01b 4710{
0b246afa 4711 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 4712 struct btrfs_block_rsv *block_rsv;
0019f10d 4713 struct btrfs_space_info *space_info;
663350ac 4714 struct btrfs_trans_handle *trans;
f4c738c2 4715 u64 delalloc_bytes;
5da9d01b 4716 u64 max_reclaim;
b1953bce 4717 long time_left;
d3ee29e3
MX
4718 unsigned long nr_pages;
4719 int loops;
b0244199 4720 int items;
08e007d2 4721 enum btrfs_reserve_flush_enum flush;
5da9d01b 4722
c61a16a7 4723 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4724 items = calc_reclaim_items_nr(fs_info, to_reclaim);
8eb0dfdb 4725 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4726
663350ac 4727 trans = (struct btrfs_trans_handle *)current->journal_info;
0b246afa 4728 block_rsv = &fs_info->delalloc_block_rsv;
0019f10d 4729 space_info = block_rsv->space_info;
bf9022e0 4730
963d678b 4731 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4732 &fs_info->delalloc_bytes);
f4c738c2 4733 if (delalloc_bytes == 0) {
fdb5effd 4734 if (trans)
f4c738c2 4735 return;
38c135af 4736 if (wait_ordered)
0b246afa 4737 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4738 return;
fdb5effd
JB
4739 }
4740
d3ee29e3 4741 loops = 0;
f4c738c2
JB
4742 while (delalloc_bytes && loops < 3) {
4743 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4744 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4745 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4746 /*
4747 * We need to wait for the async pages to actually start before
4748 * we do anything.
4749 */
0b246afa 4750 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4751 if (!max_reclaim)
4752 goto skip_async;
4753
4754 if (max_reclaim <= nr_pages)
4755 max_reclaim = 0;
4756 else
4757 max_reclaim -= nr_pages;
dea31f52 4758
0b246afa
JM
4759 wait_event(fs_info->async_submit_wait,
4760 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4761 (int)max_reclaim);
4762skip_async:
08e007d2
MX
4763 if (!trans)
4764 flush = BTRFS_RESERVE_FLUSH_ALL;
4765 else
4766 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4767 spin_lock(&space_info->lock);
08e007d2 4768 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4769 spin_unlock(&space_info->lock);
4770 break;
4771 }
957780eb
JB
4772 if (list_empty(&space_info->tickets) &&
4773 list_empty(&space_info->priority_tickets)) {
4774 spin_unlock(&space_info->lock);
4775 break;
4776 }
0019f10d 4777 spin_unlock(&space_info->lock);
5da9d01b 4778
36e39c40 4779 loops++;
f104d044 4780 if (wait_ordered && !trans) {
0b246afa 4781 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4782 } else {
f4c738c2 4783 time_left = schedule_timeout_killable(1);
f104d044
JB
4784 if (time_left)
4785 break;
4786 }
963d678b 4787 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4788 &fs_info->delalloc_bytes);
5da9d01b 4789 }
5da9d01b
YZ
4790}
4791
663350ac
JB
4792/**
4793 * maybe_commit_transaction - possibly commit the transaction if its ok to
4794 * @root - the root we're allocating for
4795 * @bytes - the number of bytes we want to reserve
4796 * @force - force the commit
8bb8ab2e 4797 *
663350ac
JB
4798 * This will check to make sure that committing the transaction will actually
4799 * get us somewhere and then commit the transaction if it does. Otherwise it
4800 * will return -ENOSPC.
8bb8ab2e 4801 */
0c9ab349 4802static int may_commit_transaction(struct btrfs_fs_info *fs_info,
663350ac
JB
4803 struct btrfs_space_info *space_info,
4804 u64 bytes, int force)
4805{
0b246afa 4806 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac
JB
4807 struct btrfs_trans_handle *trans;
4808
4809 trans = (struct btrfs_trans_handle *)current->journal_info;
4810 if (trans)
4811 return -EAGAIN;
4812
4813 if (force)
4814 goto commit;
4815
4816 /* See if there is enough pinned space to make this reservation */
b150a4f1 4817 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4818 bytes) >= 0)
663350ac 4819 goto commit;
663350ac
JB
4820
4821 /*
4822 * See if there is some space in the delayed insertion reservation for
4823 * this reservation.
4824 */
4825 if (space_info != delayed_rsv->space_info)
4826 return -ENOSPC;
4827
4828 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4829 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4830 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4831 spin_unlock(&delayed_rsv->lock);
4832 return -ENOSPC;
4833 }
4834 spin_unlock(&delayed_rsv->lock);
4835
4836commit:
0c9ab349 4837 trans = btrfs_join_transaction(fs_info->fs_root);
663350ac
JB
4838 if (IS_ERR(trans))
4839 return -ENOSPC;
4840
3a45bb20 4841 return btrfs_commit_transaction(trans);
663350ac
JB
4842}
4843
957780eb
JB
4844struct reserve_ticket {
4845 u64 bytes;
4846 int error;
4847 struct list_head list;
4848 wait_queue_head_t wait;
96c3f433
JB
4849};
4850
0c9ab349 4851static int flush_space(struct btrfs_fs_info *fs_info,
96c3f433
JB
4852 struct btrfs_space_info *space_info, u64 num_bytes,
4853 u64 orig_bytes, int state)
4854{
0c9ab349 4855 struct btrfs_root *root = fs_info->fs_root;
96c3f433
JB
4856 struct btrfs_trans_handle *trans;
4857 int nr;
f4c738c2 4858 int ret = 0;
96c3f433
JB
4859
4860 switch (state) {
96c3f433
JB
4861 case FLUSH_DELAYED_ITEMS_NR:
4862 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4863 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4864 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4865 else
96c3f433 4866 nr = -1;
18cd8ea6 4867
96c3f433
JB
4868 trans = btrfs_join_transaction(root);
4869 if (IS_ERR(trans)) {
4870 ret = PTR_ERR(trans);
4871 break;
4872 }
2ff7e61e 4873 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4874 btrfs_end_transaction(trans);
96c3f433 4875 break;
67b0fd63
JB
4876 case FLUSH_DELALLOC:
4877 case FLUSH_DELALLOC_WAIT:
24af7dd1 4878 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4879 state == FLUSH_DELALLOC_WAIT);
4880 break;
ea658bad
JB
4881 case ALLOC_CHUNK:
4882 trans = btrfs_join_transaction(root);
4883 if (IS_ERR(trans)) {
4884 ret = PTR_ERR(trans);
4885 break;
4886 }
2ff7e61e 4887 ret = do_chunk_alloc(trans, fs_info,
ea658bad
JB
4888 btrfs_get_alloc_profile(root, 0),
4889 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4890 btrfs_end_transaction(trans);
eecba891 4891 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4892 ret = 0;
4893 break;
96c3f433 4894 case COMMIT_TRANS:
0c9ab349
JM
4895 ret = may_commit_transaction(fs_info, space_info,
4896 orig_bytes, 0);
96c3f433
JB
4897 break;
4898 default:
4899 ret = -ENOSPC;
4900 break;
4901 }
4902
0b246afa 4903 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
f376df2b 4904 orig_bytes, state, ret);
96c3f433
JB
4905 return ret;
4906}
21c7e756
MX
4907
4908static inline u64
4909btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4910 struct btrfs_space_info *space_info)
4911{
957780eb 4912 struct reserve_ticket *ticket;
21c7e756
MX
4913 u64 used;
4914 u64 expected;
957780eb 4915 u64 to_reclaim = 0;
21c7e756 4916
957780eb
JB
4917 list_for_each_entry(ticket, &space_info->tickets, list)
4918 to_reclaim += ticket->bytes;
4919 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4920 to_reclaim += ticket->bytes;
4921 if (to_reclaim)
4922 return to_reclaim;
21c7e756 4923
e0af2484
WX
4924 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4925 if (can_overcommit(root, space_info, to_reclaim,
4926 BTRFS_RESERVE_FLUSH_ALL))
4927 return 0;
4928
21c7e756
MX
4929 used = space_info->bytes_used + space_info->bytes_reserved +
4930 space_info->bytes_pinned + space_info->bytes_readonly +
4931 space_info->bytes_may_use;
ee22184b 4932 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4933 expected = div_factor_fine(space_info->total_bytes, 95);
4934 else
4935 expected = div_factor_fine(space_info->total_bytes, 90);
4936
4937 if (used > expected)
4938 to_reclaim = used - expected;
4939 else
4940 to_reclaim = 0;
4941 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4942 space_info->bytes_reserved);
21c7e756
MX
4943 return to_reclaim;
4944}
4945
4946static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4947 struct btrfs_root *root, u64 used)
21c7e756 4948{
0b246afa 4949 struct btrfs_fs_info *fs_info = root->fs_info;
365c5313
JB
4950 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4951
4952 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4953 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4954 return 0;
4955
87241c2e 4956 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4957 return 0;
4958
0b246afa
JM
4959 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4960 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4961}
4962
957780eb 4963static void wake_all_tickets(struct list_head *head)
21c7e756 4964{
957780eb 4965 struct reserve_ticket *ticket;
25ce459c 4966
957780eb
JB
4967 while (!list_empty(head)) {
4968 ticket = list_first_entry(head, struct reserve_ticket, list);
4969 list_del_init(&ticket->list);
4970 ticket->error = -ENOSPC;
4971 wake_up(&ticket->wait);
21c7e756 4972 }
21c7e756
MX
4973}
4974
957780eb
JB
4975/*
4976 * This is for normal flushers, we can wait all goddamned day if we want to. We
4977 * will loop and continuously try to flush as long as we are making progress.
4978 * We count progress as clearing off tickets each time we have to loop.
4979 */
21c7e756
MX
4980static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4981{
4982 struct btrfs_fs_info *fs_info;
4983 struct btrfs_space_info *space_info;
4984 u64 to_reclaim;
4985 int flush_state;
957780eb 4986 int commit_cycles = 0;
ce129655 4987 u64 last_tickets_id;
21c7e756
MX
4988
4989 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4990 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4991
957780eb 4992 spin_lock(&space_info->lock);
21c7e756
MX
4993 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4994 space_info);
957780eb
JB
4995 if (!to_reclaim) {
4996 space_info->flush = 0;
4997 spin_unlock(&space_info->lock);
21c7e756 4998 return;
957780eb 4999 }
ce129655 5000 last_tickets_id = space_info->tickets_id;
957780eb 5001 spin_unlock(&space_info->lock);
21c7e756
MX
5002
5003 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5004 do {
5005 struct reserve_ticket *ticket;
5006 int ret;
5007
0c9ab349
JM
5008 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5009 flush_state);
957780eb
JB
5010 spin_lock(&space_info->lock);
5011 if (list_empty(&space_info->tickets)) {
5012 space_info->flush = 0;
5013 spin_unlock(&space_info->lock);
5014 return;
5015 }
5016 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5017 space_info);
5018 ticket = list_first_entry(&space_info->tickets,
5019 struct reserve_ticket, list);
ce129655 5020 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5021 flush_state++;
5022 } else {
ce129655 5023 last_tickets_id = space_info->tickets_id;
957780eb
JB
5024 flush_state = FLUSH_DELAYED_ITEMS_NR;
5025 if (commit_cycles)
5026 commit_cycles--;
5027 }
5028
5029 if (flush_state > COMMIT_TRANS) {
5030 commit_cycles++;
5031 if (commit_cycles > 2) {
5032 wake_all_tickets(&space_info->tickets);
5033 space_info->flush = 0;
5034 } else {
5035 flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 }
5037 }
5038 spin_unlock(&space_info->lock);
5039 } while (flush_state <= COMMIT_TRANS);
5040}
5041
5042void btrfs_init_async_reclaim_work(struct work_struct *work)
5043{
5044 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5045}
5046
5047static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5048 struct btrfs_space_info *space_info,
5049 struct reserve_ticket *ticket)
5050{
5051 u64 to_reclaim;
5052 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5053
5054 spin_lock(&space_info->lock);
5055 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5056 space_info);
5057 if (!to_reclaim) {
5058 spin_unlock(&space_info->lock);
5059 return;
5060 }
5061 spin_unlock(&space_info->lock);
5062
21c7e756 5063 do {
0c9ab349
JM
5064 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5065 flush_state);
21c7e756 5066 flush_state++;
957780eb
JB
5067 spin_lock(&space_info->lock);
5068 if (ticket->bytes == 0) {
5069 spin_unlock(&space_info->lock);
21c7e756 5070 return;
957780eb
JB
5071 }
5072 spin_unlock(&space_info->lock);
5073
5074 /*
5075 * Priority flushers can't wait on delalloc without
5076 * deadlocking.
5077 */
5078 if (flush_state == FLUSH_DELALLOC ||
5079 flush_state == FLUSH_DELALLOC_WAIT)
5080 flush_state = ALLOC_CHUNK;
365c5313 5081 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5082}
5083
957780eb
JB
5084static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5085 struct btrfs_space_info *space_info,
5086 struct reserve_ticket *ticket, u64 orig_bytes)
5087
21c7e756 5088{
957780eb
JB
5089 DEFINE_WAIT(wait);
5090 int ret = 0;
5091
5092 spin_lock(&space_info->lock);
5093 while (ticket->bytes > 0 && ticket->error == 0) {
5094 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5095 if (ret) {
5096 ret = -EINTR;
5097 break;
5098 }
5099 spin_unlock(&space_info->lock);
5100
5101 schedule();
5102
5103 finish_wait(&ticket->wait, &wait);
5104 spin_lock(&space_info->lock);
5105 }
5106 if (!ret)
5107 ret = ticket->error;
5108 if (!list_empty(&ticket->list))
5109 list_del_init(&ticket->list);
5110 if (ticket->bytes && ticket->bytes < orig_bytes) {
5111 u64 num_bytes = orig_bytes - ticket->bytes;
5112 space_info->bytes_may_use -= num_bytes;
5113 trace_btrfs_space_reservation(fs_info, "space_info",
5114 space_info->flags, num_bytes, 0);
5115 }
5116 spin_unlock(&space_info->lock);
5117
5118 return ret;
21c7e756
MX
5119}
5120
4a92b1b8
JB
5121/**
5122 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5123 * @root - the root we're allocating for
957780eb 5124 * @space_info - the space info we want to allocate from
4a92b1b8 5125 * @orig_bytes - the number of bytes we want
48fc7f7e 5126 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5127 *
01327610 5128 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5129 * with the block_rsv. If there is not enough space it will make an attempt to
5130 * flush out space to make room. It will do this by flushing delalloc if
5131 * possible or committing the transaction. If flush is 0 then no attempts to
5132 * regain reservations will be made and this will fail if there is not enough
5133 * space already.
8bb8ab2e 5134 */
957780eb
JB
5135static int __reserve_metadata_bytes(struct btrfs_root *root,
5136 struct btrfs_space_info *space_info,
5137 u64 orig_bytes,
5138 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5139{
0b246afa 5140 struct btrfs_fs_info *fs_info = root->fs_info;
957780eb 5141 struct reserve_ticket ticket;
2bf64758 5142 u64 used;
8bb8ab2e 5143 int ret = 0;
9ed74f2d 5144
957780eb 5145 ASSERT(orig_bytes);
8ca17f0f 5146 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5147
8bb8ab2e 5148 spin_lock(&space_info->lock);
fdb5effd 5149 ret = -ENOSPC;
4136135b 5150 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5151
8bb8ab2e 5152 /*
957780eb
JB
5153 * If we have enough space then hooray, make our reservation and carry
5154 * on. If not see if we can overcommit, and if we can, hooray carry on.
5155 * If not things get more complicated.
8bb8ab2e 5156 */
957780eb
JB
5157 if (used + orig_bytes <= space_info->total_bytes) {
5158 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5159 trace_btrfs_space_reservation(fs_info, "space_info",
5160 space_info->flags, orig_bytes, 1);
957780eb
JB
5161 ret = 0;
5162 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1 5163 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5164 trace_btrfs_space_reservation(fs_info, "space_info",
5165 space_info->flags, orig_bytes, 1);
44734ed1 5166 ret = 0;
2bf64758
JB
5167 }
5168
8bb8ab2e 5169 /*
957780eb
JB
5170 * If we couldn't make a reservation then setup our reservation ticket
5171 * and kick the async worker if it's not already running.
08e007d2 5172 *
957780eb
JB
5173 * If we are a priority flusher then we just need to add our ticket to
5174 * the list and we will do our own flushing further down.
8bb8ab2e 5175 */
72bcd99d 5176 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5177 ticket.bytes = orig_bytes;
5178 ticket.error = 0;
5179 init_waitqueue_head(&ticket.wait);
5180 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5181 list_add_tail(&ticket.list, &space_info->tickets);
5182 if (!space_info->flush) {
5183 space_info->flush = 1;
0b246afa 5184 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5185 space_info->flags,
5186 orig_bytes, flush,
5187 "enospc");
957780eb
JB
5188 queue_work(system_unbound_wq,
5189 &root->fs_info->async_reclaim_work);
5190 }
5191 } else {
5192 list_add_tail(&ticket.list,
5193 &space_info->priority_tickets);
5194 }
21c7e756
MX
5195 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5196 used += orig_bytes;
f6acfd50
JB
5197 /*
5198 * We will do the space reservation dance during log replay,
5199 * which means we won't have fs_info->fs_root set, so don't do
5200 * the async reclaim as we will panic.
5201 */
0b246afa 5202 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
87241c2e 5203 need_do_async_reclaim(space_info, root, used) &&
0b246afa
JM
5204 !work_busy(&fs_info->async_reclaim_work)) {
5205 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5206 orig_bytes, flush, "preempt");
21c7e756 5207 queue_work(system_unbound_wq,
0b246afa 5208 &fs_info->async_reclaim_work);
f376df2b 5209 }
8bb8ab2e 5210 }
f0486c68 5211 spin_unlock(&space_info->lock);
08e007d2 5212 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5213 return ret;
f0486c68 5214
957780eb 5215 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5216 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5217 orig_bytes);
08e007d2 5218
957780eb 5219 ret = 0;
0b246afa 5220 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5221 spin_lock(&space_info->lock);
5222 if (ticket.bytes) {
5223 if (ticket.bytes < orig_bytes) {
5224 u64 num_bytes = orig_bytes - ticket.bytes;
5225 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5226 trace_btrfs_space_reservation(fs_info, "space_info",
5227 space_info->flags,
5228 num_bytes, 0);
08e007d2 5229
957780eb
JB
5230 }
5231 list_del_init(&ticket.list);
5232 ret = -ENOSPC;
5233 }
5234 spin_unlock(&space_info->lock);
5235 ASSERT(list_empty(&ticket.list));
5236 return ret;
5237}
8bb8ab2e 5238
957780eb
JB
5239/**
5240 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241 * @root - the root we're allocating for
5242 * @block_rsv - the block_rsv we're allocating for
5243 * @orig_bytes - the number of bytes we want
5244 * @flush - whether or not we can flush to make our reservation
5245 *
5246 * This will reserve orgi_bytes number of bytes from the space info associated
5247 * with the block_rsv. If there is not enough space it will make an attempt to
5248 * flush out space to make room. It will do this by flushing delalloc if
5249 * possible or committing the transaction. If flush is 0 then no attempts to
5250 * regain reservations will be made and this will fail if there is not enough
5251 * space already.
5252 */
5253static int reserve_metadata_bytes(struct btrfs_root *root,
5254 struct btrfs_block_rsv *block_rsv,
5255 u64 orig_bytes,
5256 enum btrfs_reserve_flush_enum flush)
5257{
0b246afa
JM
5258 struct btrfs_fs_info *fs_info = root->fs_info;
5259 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb
JB
5260 int ret;
5261
5262 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5263 flush);
5d80366e
JB
5264 if (ret == -ENOSPC &&
5265 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5266 if (block_rsv != global_rsv &&
5267 !block_rsv_use_bytes(global_rsv, orig_bytes))
5268 ret = 0;
5269 }
cab45e22 5270 if (ret == -ENOSPC)
0b246afa 5271 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5272 block_rsv->space_info->flags,
5273 orig_bytes, 1);
f0486c68
YZ
5274 return ret;
5275}
5276
79787eaa
JM
5277static struct btrfs_block_rsv *get_block_rsv(
5278 const struct btrfs_trans_handle *trans,
5279 const struct btrfs_root *root)
f0486c68 5280{
0b246afa 5281 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5282 struct btrfs_block_rsv *block_rsv = NULL;
5283
e9cf439f 5284 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5285 (root == fs_info->csum_root && trans->adding_csums) ||
5286 (root == fs_info->uuid_root))
f7a81ea4
SB
5287 block_rsv = trans->block_rsv;
5288
4c13d758 5289 if (!block_rsv)
f0486c68
YZ
5290 block_rsv = root->block_rsv;
5291
5292 if (!block_rsv)
0b246afa 5293 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5294
5295 return block_rsv;
5296}
5297
5298static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5299 u64 num_bytes)
5300{
5301 int ret = -ENOSPC;
5302 spin_lock(&block_rsv->lock);
5303 if (block_rsv->reserved >= num_bytes) {
5304 block_rsv->reserved -= num_bytes;
5305 if (block_rsv->reserved < block_rsv->size)
5306 block_rsv->full = 0;
5307 ret = 0;
5308 }
5309 spin_unlock(&block_rsv->lock);
5310 return ret;
5311}
5312
5313static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5314 u64 num_bytes, int update_size)
5315{
5316 spin_lock(&block_rsv->lock);
5317 block_rsv->reserved += num_bytes;
5318 if (update_size)
5319 block_rsv->size += num_bytes;
5320 else if (block_rsv->reserved >= block_rsv->size)
5321 block_rsv->full = 1;
5322 spin_unlock(&block_rsv->lock);
5323}
5324
d52be818
JB
5325int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5326 struct btrfs_block_rsv *dest, u64 num_bytes,
5327 int min_factor)
5328{
5329 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5330 u64 min_bytes;
5331
5332 if (global_rsv->space_info != dest->space_info)
5333 return -ENOSPC;
5334
5335 spin_lock(&global_rsv->lock);
5336 min_bytes = div_factor(global_rsv->size, min_factor);
5337 if (global_rsv->reserved < min_bytes + num_bytes) {
5338 spin_unlock(&global_rsv->lock);
5339 return -ENOSPC;
5340 }
5341 global_rsv->reserved -= num_bytes;
5342 if (global_rsv->reserved < global_rsv->size)
5343 global_rsv->full = 0;
5344 spin_unlock(&global_rsv->lock);
5345
5346 block_rsv_add_bytes(dest, num_bytes, 1);
5347 return 0;
5348}
5349
957780eb
JB
5350/*
5351 * This is for space we already have accounted in space_info->bytes_may_use, so
5352 * basically when we're returning space from block_rsv's.
5353 */
5354static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5355 struct btrfs_space_info *space_info,
5356 u64 num_bytes)
5357{
5358 struct reserve_ticket *ticket;
5359 struct list_head *head;
5360 u64 used;
5361 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5362 bool check_overcommit = false;
5363
5364 spin_lock(&space_info->lock);
5365 head = &space_info->priority_tickets;
5366
5367 /*
5368 * If we are over our limit then we need to check and see if we can
5369 * overcommit, and if we can't then we just need to free up our space
5370 * and not satisfy any requests.
5371 */
5372 used = space_info->bytes_used + space_info->bytes_reserved +
5373 space_info->bytes_pinned + space_info->bytes_readonly +
5374 space_info->bytes_may_use;
5375 if (used - num_bytes >= space_info->total_bytes)
5376 check_overcommit = true;
5377again:
5378 while (!list_empty(head) && num_bytes) {
5379 ticket = list_first_entry(head, struct reserve_ticket,
5380 list);
5381 /*
5382 * We use 0 bytes because this space is already reserved, so
5383 * adding the ticket space would be a double count.
5384 */
5385 if (check_overcommit &&
5386 !can_overcommit(fs_info->extent_root, space_info, 0,
5387 flush))
5388 break;
5389 if (num_bytes >= ticket->bytes) {
5390 list_del_init(&ticket->list);
5391 num_bytes -= ticket->bytes;
5392 ticket->bytes = 0;
ce129655 5393 space_info->tickets_id++;
957780eb
JB
5394 wake_up(&ticket->wait);
5395 } else {
5396 ticket->bytes -= num_bytes;
5397 num_bytes = 0;
5398 }
5399 }
5400
5401 if (num_bytes && head == &space_info->priority_tickets) {
5402 head = &space_info->tickets;
5403 flush = BTRFS_RESERVE_FLUSH_ALL;
5404 goto again;
5405 }
5406 space_info->bytes_may_use -= num_bytes;
5407 trace_btrfs_space_reservation(fs_info, "space_info",
5408 space_info->flags, num_bytes, 0);
5409 spin_unlock(&space_info->lock);
5410}
5411
5412/*
5413 * This is for newly allocated space that isn't accounted in
5414 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5415 * we use this helper.
5416 */
5417static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5418 struct btrfs_space_info *space_info,
5419 u64 num_bytes)
5420{
5421 struct reserve_ticket *ticket;
5422 struct list_head *head = &space_info->priority_tickets;
5423
5424again:
5425 while (!list_empty(head) && num_bytes) {
5426 ticket = list_first_entry(head, struct reserve_ticket,
5427 list);
5428 if (num_bytes >= ticket->bytes) {
5429 trace_btrfs_space_reservation(fs_info, "space_info",
5430 space_info->flags,
5431 ticket->bytes, 1);
5432 list_del_init(&ticket->list);
5433 num_bytes -= ticket->bytes;
5434 space_info->bytes_may_use += ticket->bytes;
5435 ticket->bytes = 0;
ce129655 5436 space_info->tickets_id++;
957780eb
JB
5437 wake_up(&ticket->wait);
5438 } else {
5439 trace_btrfs_space_reservation(fs_info, "space_info",
5440 space_info->flags,
5441 num_bytes, 1);
5442 space_info->bytes_may_use += num_bytes;
5443 ticket->bytes -= num_bytes;
5444 num_bytes = 0;
5445 }
5446 }
5447
5448 if (num_bytes && head == &space_info->priority_tickets) {
5449 head = &space_info->tickets;
5450 goto again;
5451 }
5452}
5453
8c2a3ca2
JB
5454static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5455 struct btrfs_block_rsv *block_rsv,
62a45b60 5456 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5457{
5458 struct btrfs_space_info *space_info = block_rsv->space_info;
5459
5460 spin_lock(&block_rsv->lock);
5461 if (num_bytes == (u64)-1)
5462 num_bytes = block_rsv->size;
5463 block_rsv->size -= num_bytes;
5464 if (block_rsv->reserved >= block_rsv->size) {
5465 num_bytes = block_rsv->reserved - block_rsv->size;
5466 block_rsv->reserved = block_rsv->size;
5467 block_rsv->full = 1;
5468 } else {
5469 num_bytes = 0;
5470 }
5471 spin_unlock(&block_rsv->lock);
5472
5473 if (num_bytes > 0) {
5474 if (dest) {
e9e22899
JB
5475 spin_lock(&dest->lock);
5476 if (!dest->full) {
5477 u64 bytes_to_add;
5478
5479 bytes_to_add = dest->size - dest->reserved;
5480 bytes_to_add = min(num_bytes, bytes_to_add);
5481 dest->reserved += bytes_to_add;
5482 if (dest->reserved >= dest->size)
5483 dest->full = 1;
5484 num_bytes -= bytes_to_add;
5485 }
5486 spin_unlock(&dest->lock);
5487 }
957780eb
JB
5488 if (num_bytes)
5489 space_info_add_old_bytes(fs_info, space_info,
5490 num_bytes);
9ed74f2d 5491 }
f0486c68 5492}
4e06bdd6 5493
25d609f8
JB
5494int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5495 struct btrfs_block_rsv *dst, u64 num_bytes,
5496 int update_size)
f0486c68
YZ
5497{
5498 int ret;
9ed74f2d 5499
f0486c68
YZ
5500 ret = block_rsv_use_bytes(src, num_bytes);
5501 if (ret)
5502 return ret;
9ed74f2d 5503
25d609f8 5504 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5505 return 0;
5506}
5507
66d8f3dd 5508void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5509{
f0486c68
YZ
5510 memset(rsv, 0, sizeof(*rsv));
5511 spin_lock_init(&rsv->lock);
66d8f3dd 5512 rsv->type = type;
f0486c68
YZ
5513}
5514
2ff7e61e 5515struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5516 unsigned short type)
f0486c68
YZ
5517{
5518 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5519
f0486c68
YZ
5520 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5521 if (!block_rsv)
5522 return NULL;
9ed74f2d 5523
66d8f3dd 5524 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5525 block_rsv->space_info = __find_space_info(fs_info,
5526 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5527 return block_rsv;
5528}
9ed74f2d 5529
2ff7e61e 5530void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5531 struct btrfs_block_rsv *rsv)
5532{
2aaa6655
JB
5533 if (!rsv)
5534 return;
2ff7e61e 5535 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5536 kfree(rsv);
9ed74f2d
JB
5537}
5538
cdfb080e
CM
5539void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5540{
5541 kfree(rsv);
5542}
5543
08e007d2
MX
5544int btrfs_block_rsv_add(struct btrfs_root *root,
5545 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5546 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5547{
f0486c68 5548 int ret;
9ed74f2d 5549
f0486c68
YZ
5550 if (num_bytes == 0)
5551 return 0;
8bb8ab2e 5552
61b520a9 5553 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5554 if (!ret) {
5555 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5556 return 0;
5557 }
9ed74f2d 5558
f0486c68 5559 return ret;
f0486c68 5560}
9ed74f2d 5561
2ff7e61e 5562int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5563{
5564 u64 num_bytes = 0;
f0486c68 5565 int ret = -ENOSPC;
9ed74f2d 5566
f0486c68
YZ
5567 if (!block_rsv)
5568 return 0;
9ed74f2d 5569
f0486c68 5570 spin_lock(&block_rsv->lock);
36ba022a
JB
5571 num_bytes = div_factor(block_rsv->size, min_factor);
5572 if (block_rsv->reserved >= num_bytes)
5573 ret = 0;
5574 spin_unlock(&block_rsv->lock);
9ed74f2d 5575
36ba022a
JB
5576 return ret;
5577}
5578
08e007d2
MX
5579int btrfs_block_rsv_refill(struct btrfs_root *root,
5580 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5581 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5582{
5583 u64 num_bytes = 0;
5584 int ret = -ENOSPC;
5585
5586 if (!block_rsv)
5587 return 0;
5588
5589 spin_lock(&block_rsv->lock);
5590 num_bytes = min_reserved;
13553e52 5591 if (block_rsv->reserved >= num_bytes)
f0486c68 5592 ret = 0;
13553e52 5593 else
f0486c68 5594 num_bytes -= block_rsv->reserved;
f0486c68 5595 spin_unlock(&block_rsv->lock);
13553e52 5596
f0486c68
YZ
5597 if (!ret)
5598 return 0;
5599
aa38a711 5600 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5601 if (!ret) {
5602 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5603 return 0;
6a63209f 5604 }
9ed74f2d 5605
13553e52 5606 return ret;
f0486c68
YZ
5607}
5608
2ff7e61e 5609void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5610 struct btrfs_block_rsv *block_rsv,
5611 u64 num_bytes)
5612{
0b246afa
JM
5613 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5614
17504584 5615 if (global_rsv == block_rsv ||
f0486c68
YZ
5616 block_rsv->space_info != global_rsv->space_info)
5617 global_rsv = NULL;
0b246afa 5618 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5619}
5620
8929ecfa
YZ
5621static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5622{
5623 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5624 struct btrfs_space_info *sinfo = block_rsv->space_info;
5625 u64 num_bytes;
6a63209f 5626
ae2e4728
JB
5627 /*
5628 * The global block rsv is based on the size of the extent tree, the
5629 * checksum tree and the root tree. If the fs is empty we want to set
5630 * it to a minimal amount for safety.
5631 */
5632 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5633 btrfs_root_used(&fs_info->csum_root->root_item) +
5634 btrfs_root_used(&fs_info->tree_root->root_item);
5635 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5636
8929ecfa 5637 spin_lock(&sinfo->lock);
1f699d38 5638 spin_lock(&block_rsv->lock);
4e06bdd6 5639
ee22184b 5640 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5641
fb4b10e5 5642 if (block_rsv->reserved < block_rsv->size) {
4136135b 5643 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5644 if (sinfo->total_bytes > num_bytes) {
5645 num_bytes = sinfo->total_bytes - num_bytes;
5646 num_bytes = min(num_bytes,
5647 block_rsv->size - block_rsv->reserved);
5648 block_rsv->reserved += num_bytes;
5649 sinfo->bytes_may_use += num_bytes;
5650 trace_btrfs_space_reservation(fs_info, "space_info",
5651 sinfo->flags, num_bytes,
5652 1);
5653 }
5654 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5655 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5656 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5657 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5658 sinfo->flags, num_bytes, 0);
8929ecfa 5659 block_rsv->reserved = block_rsv->size;
8929ecfa 5660 }
182608c8 5661
fb4b10e5
JB
5662 if (block_rsv->reserved == block_rsv->size)
5663 block_rsv->full = 1;
5664 else
5665 block_rsv->full = 0;
5666
8929ecfa 5667 spin_unlock(&block_rsv->lock);
1f699d38 5668 spin_unlock(&sinfo->lock);
6a63209f
JB
5669}
5670
f0486c68 5671static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5672{
f0486c68 5673 struct btrfs_space_info *space_info;
6a63209f 5674
f0486c68
YZ
5675 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5676 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5677
f0486c68 5678 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5679 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5680 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5681 fs_info->trans_block_rsv.space_info = space_info;
5682 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5683 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5684
8929ecfa
YZ
5685 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5686 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5687 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5688 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5689 if (fs_info->quota_root)
5690 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5691 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5692
8929ecfa 5693 update_global_block_rsv(fs_info);
6a63209f
JB
5694}
5695
8929ecfa 5696static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5697{
8c2a3ca2
JB
5698 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5699 (u64)-1);
8929ecfa
YZ
5700 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5701 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5702 WARN_ON(fs_info->trans_block_rsv.size > 0);
5703 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5704 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5705 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5706 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5707 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5708}
5709
a22285a6 5710void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5711 struct btrfs_fs_info *fs_info)
6a63209f 5712{
0e721106
JB
5713 if (!trans->block_rsv)
5714 return;
5715
a22285a6
YZ
5716 if (!trans->bytes_reserved)
5717 return;
6a63209f 5718
0b246afa 5719 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5720 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5721 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5722 trans->bytes_reserved);
a22285a6
YZ
5723 trans->bytes_reserved = 0;
5724}
6a63209f 5725
4fbcdf66
FM
5726/*
5727 * To be called after all the new block groups attached to the transaction
5728 * handle have been created (btrfs_create_pending_block_groups()).
5729 */
5730void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5731{
64b63580 5732 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5733
5734 if (!trans->chunk_bytes_reserved)
5735 return;
5736
5737 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5738
5739 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5740 trans->chunk_bytes_reserved);
5741 trans->chunk_bytes_reserved = 0;
5742}
5743
79787eaa 5744/* Can only return 0 or -ENOSPC */
d68fc57b 5745int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5746 struct btrfs_inode *inode)
d68fc57b 5747{
8ed7a2a0
NB
5748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5749 struct btrfs_root *root = inode->root;
40acc3ee
JB
5750 /*
5751 * We always use trans->block_rsv here as we will have reserved space
5752 * for our orphan when starting the transaction, using get_block_rsv()
5753 * here will sometimes make us choose the wrong block rsv as we could be
5754 * doing a reloc inode for a non refcounted root.
5755 */
5756 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5757 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5758
5759 /*
fcb80c2a
JB
5760 * We need to hold space in order to delete our orphan item once we've
5761 * added it, so this takes the reservation so we can release it later
5762 * when we are truly done with the orphan item.
d68fc57b 5763 */
0b246afa
JM
5764 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5765
8ed7a2a0
NB
5766 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5767 num_bytes, 1);
25d609f8 5768 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5769}
5770
703b391a 5771void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5772{
703b391a
NB
5773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5774 struct btrfs_root *root = inode->root;
0b246afa
JM
5775 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5776
703b391a
NB
5777 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5778 num_bytes, 0);
2ff7e61e 5779 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5780}
97e728d4 5781
d5c12070
MX
5782/*
5783 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5784 * root: the root of the parent directory
5785 * rsv: block reservation
5786 * items: the number of items that we need do reservation
5787 * qgroup_reserved: used to return the reserved size in qgroup
5788 *
5789 * This function is used to reserve the space for snapshot/subvolume
5790 * creation and deletion. Those operations are different with the
5791 * common file/directory operations, they change two fs/file trees
5792 * and root tree, the number of items that the qgroup reserves is
5793 * different with the free space reservation. So we can not use
01327610 5794 * the space reservation mechanism in start_transaction().
d5c12070
MX
5795 */
5796int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5797 struct btrfs_block_rsv *rsv,
5798 int items,
ee3441b4
JM
5799 u64 *qgroup_reserved,
5800 bool use_global_rsv)
a22285a6 5801{
d5c12070
MX
5802 u64 num_bytes;
5803 int ret;
0b246afa
JM
5804 struct btrfs_fs_info *fs_info = root->fs_info;
5805 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5806
0b246afa 5807 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5808 /* One for parent inode, two for dir entries */
0b246afa 5809 num_bytes = 3 * fs_info->nodesize;
003d7c59 5810 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5811 if (ret)
5812 return ret;
5813 } else {
5814 num_bytes = 0;
5815 }
5816
5817 *qgroup_reserved = num_bytes;
5818
0b246afa
JM
5819 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5820 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5821 BTRFS_BLOCK_GROUP_METADATA);
5822 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5823 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5824
5825 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5826 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5827
7174109c
QW
5828 if (ret && *qgroup_reserved)
5829 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5830
5831 return ret;
5832}
5833
2ff7e61e 5834void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5835 struct btrfs_block_rsv *rsv)
d5c12070 5836{
2ff7e61e 5837 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5838}
5839
7709cde3
JB
5840/**
5841 * drop_outstanding_extent - drop an outstanding extent
5842 * @inode: the inode we're dropping the extent for
01327610 5843 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5844 *
5845 * This is called when we are freeing up an outstanding extent, either called
5846 * after an error or after an extent is written. This will return the number of
5847 * reserved extents that need to be freed. This must be called with
5848 * BTRFS_I(inode)->lock held.
5849 */
baa3ba39
NB
5850static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5851 u64 num_bytes)
9e0baf60 5852{
7fd2ae21 5853 unsigned drop_inode_space = 0;
9e0baf60 5854 unsigned dropped_extents = 0;
823bb20a 5855 unsigned num_extents;
9e0baf60 5856
823bb20a 5857 num_extents = count_max_extents(num_bytes);
dcab6a3b 5858 ASSERT(num_extents);
baa3ba39
NB
5859 ASSERT(inode->outstanding_extents >= num_extents);
5860 inode->outstanding_extents -= num_extents;
9e0baf60 5861
baa3ba39 5862 if (inode->outstanding_extents == 0 &&
72ac3c0d 5863 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
baa3ba39 5864 &inode->runtime_flags))
7fd2ae21 5865 drop_inode_space = 1;
7fd2ae21 5866
9e0baf60 5867 /*
01327610 5868 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5869 * reserved then we need to leave the reserved extents count alone.
5870 */
baa3ba39 5871 if (inode->outstanding_extents >= inode->reserved_extents)
7fd2ae21 5872 return drop_inode_space;
9e0baf60 5873
baa3ba39
NB
5874 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5875 inode->reserved_extents -= dropped_extents;
7fd2ae21 5876 return dropped_extents + drop_inode_space;
9e0baf60
JB
5877}
5878
7709cde3 5879/**
01327610
NS
5880 * calc_csum_metadata_size - return the amount of metadata space that must be
5881 * reserved/freed for the given bytes.
7709cde3
JB
5882 * @inode: the inode we're manipulating
5883 * @num_bytes: the number of bytes in question
5884 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885 *
5886 * This adjusts the number of csum_bytes in the inode and then returns the
5887 * correct amount of metadata that must either be reserved or freed. We
5888 * calculate how many checksums we can fit into one leaf and then divide the
5889 * number of bytes that will need to be checksumed by this value to figure out
5890 * how many checksums will be required. If we are adding bytes then the number
5891 * may go up and we will return the number of additional bytes that must be
5892 * reserved. If it is going down we will return the number of bytes that must
5893 * be freed.
5894 *
5895 * This must be called with BTRFS_I(inode)->lock held.
5896 */
0e6bf9b1 5897static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
7709cde3 5898 int reserve)
6324fbf3 5899{
0e6bf9b1 5900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1262133b 5901 u64 old_csums, num_csums;
7709cde3 5902
0e6bf9b1 5903 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
7709cde3
JB
5904 return 0;
5905
0e6bf9b1 5906 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3 5907 if (reserve)
0e6bf9b1 5908 inode->csum_bytes += num_bytes;
7709cde3 5909 else
0e6bf9b1
NB
5910 inode->csum_bytes -= num_bytes;
5911 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3
JB
5912
5913 /* No change, no need to reserve more */
5914 if (old_csums == num_csums)
5915 return 0;
5916
5917 if (reserve)
0b246afa 5918 return btrfs_calc_trans_metadata_size(fs_info,
7709cde3
JB
5919 num_csums - old_csums);
5920
0b246afa 5921 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
0ca1f7ce 5922}
c146afad 5923
9f3db423 5924int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5925{
9f3db423
NB
5926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5927 struct btrfs_root *root = inode->root;
0b246afa 5928 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
9e0baf60 5929 u64 to_reserve = 0;
660d3f6c 5930 u64 csum_bytes;
823bb20a 5931 unsigned nr_extents;
08e007d2 5932 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5933 int ret = 0;
c64c2bd8 5934 bool delalloc_lock = true;
88e081bf
WS
5935 u64 to_free = 0;
5936 unsigned dropped;
48c3d480 5937 bool release_extra = false;
6324fbf3 5938
c64c2bd8
JB
5939 /* If we are a free space inode we need to not flush since we will be in
5940 * the middle of a transaction commit. We also don't need the delalloc
5941 * mutex since we won't race with anybody. We need this mostly to make
5942 * lockdep shut its filthy mouth.
bac357dc
JB
5943 *
5944 * If we have a transaction open (can happen if we call truncate_block
5945 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5946 */
5947 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5948 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5949 delalloc_lock = false;
bac357dc
JB
5950 } else if (current->journal_info) {
5951 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5952 }
c09544e0 5953
08e007d2 5954 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 5955 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 5956 schedule_timeout(1);
ec44a35c 5957
c64c2bd8 5958 if (delalloc_lock)
9f3db423 5959 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 5960
0b246afa 5961 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
8bb8ab2e 5962
9f3db423 5963 spin_lock(&inode->lock);
823bb20a 5964 nr_extents = count_max_extents(num_bytes);
9f3db423 5965 inode->outstanding_extents += nr_extents;
9e0baf60 5966
48c3d480 5967 nr_extents = 0;
9f3db423
NB
5968 if (inode->outstanding_extents > inode->reserved_extents)
5969 nr_extents += inode->outstanding_extents -
5970 inode->reserved_extents;
57a45ced 5971
48c3d480 5972 /* We always want to reserve a slot for updating the inode. */
0b246afa 5973 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
7709cde3 5974 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
9f3db423
NB
5975 csum_bytes = inode->csum_bytes;
5976 spin_unlock(&inode->lock);
57a45ced 5977
0b246afa 5978 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 5979 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 5980 nr_extents * fs_info->nodesize, true);
88e081bf
WS
5981 if (ret)
5982 goto out_fail;
5983 }
c5567237 5984
48c3d480 5985 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5986 if (unlikely(ret)) {
da17066c 5987 btrfs_qgroup_free_meta(root,
0b246afa 5988 nr_extents * fs_info->nodesize);
88e081bf 5989 goto out_fail;
9e0baf60 5990 }
25179201 5991
9f3db423 5992 spin_lock(&inode->lock);
48c3d480 5993 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
9f3db423 5994 &inode->runtime_flags)) {
0b246afa 5995 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
48c3d480 5996 release_extra = true;
660d3f6c 5997 }
9f3db423
NB
5998 inode->reserved_extents += nr_extents;
5999 spin_unlock(&inode->lock);
c64c2bd8
JB
6000
6001 if (delalloc_lock)
9f3db423 6002 mutex_unlock(&inode->delalloc_mutex);
660d3f6c 6003
8c2a3ca2 6004 if (to_reserve)
0b246afa 6005 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6006 btrfs_ino(inode), to_reserve, 1);
48c3d480 6007 if (release_extra)
2ff7e61e 6008 btrfs_block_rsv_release(fs_info, block_rsv,
0b246afa 6009 btrfs_calc_trans_metadata_size(fs_info, 1));
0ca1f7ce 6010 return 0;
88e081bf
WS
6011
6012out_fail:
9f3db423 6013 spin_lock(&inode->lock);
dcab6a3b 6014 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6015 /*
6016 * If the inodes csum_bytes is the same as the original
6017 * csum_bytes then we know we haven't raced with any free()ers
6018 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6019 */
9f3db423 6020 if (inode->csum_bytes == csum_bytes) {
88e081bf 6021 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7 6022 } else {
9f3db423 6023 u64 orig_csum_bytes = inode->csum_bytes;
f4881bc7
JB
6024 u64 bytes;
6025
6026 /*
6027 * This is tricky, but first we need to figure out how much we
01327610 6028 * freed from any free-ers that occurred during this
f4881bc7
JB
6029 * reservation, so we reset ->csum_bytes to the csum_bytes
6030 * before we dropped our lock, and then call the free for the
6031 * number of bytes that were freed while we were trying our
6032 * reservation.
6033 */
9f3db423
NB
6034 bytes = csum_bytes - inode->csum_bytes;
6035 inode->csum_bytes = csum_bytes;
f4881bc7
JB
6036 to_free = calc_csum_metadata_size(inode, bytes, 0);
6037
6038
6039 /*
6040 * Now we need to see how much we would have freed had we not
6041 * been making this reservation and our ->csum_bytes were not
6042 * artificially inflated.
6043 */
9f3db423 6044 inode->csum_bytes = csum_bytes - num_bytes;
f4881bc7
JB
6045 bytes = csum_bytes - orig_csum_bytes;
6046 bytes = calc_csum_metadata_size(inode, bytes, 0);
6047
6048 /*
6049 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6050 * more than to_free then we would have freed more space had we
f4881bc7
JB
6051 * not had an artificially high ->csum_bytes, so we need to free
6052 * the remainder. If bytes is the same or less then we don't
6053 * need to do anything, the other free-ers did the correct
6054 * thing.
6055 */
9f3db423 6056 inode->csum_bytes = orig_csum_bytes - num_bytes;
f4881bc7
JB
6057 if (bytes > to_free)
6058 to_free = bytes - to_free;
6059 else
6060 to_free = 0;
6061 }
9f3db423 6062 spin_unlock(&inode->lock);
e2d1f923 6063 if (dropped)
0b246afa 6064 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
88e081bf
WS
6065
6066 if (to_free) {
2ff7e61e 6067 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
0b246afa 6068 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6069 btrfs_ino(inode), to_free, 0);
88e081bf
WS
6070 }
6071 if (delalloc_lock)
9f3db423 6072 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6073 return ret;
0ca1f7ce
YZ
6074}
6075
7709cde3
JB
6076/**
6077 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078 * @inode: the inode to release the reservation for
6079 * @num_bytes: the number of bytes we're releasing
6080 *
6081 * This will release the metadata reservation for an inode. This can be called
6082 * once we complete IO for a given set of bytes to release their metadata
6083 * reservations.
6084 */
691fa059 6085void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6086{
691fa059 6087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
9e0baf60
JB
6088 u64 to_free = 0;
6089 unsigned dropped;
0ca1f7ce 6090
0b246afa 6091 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6092 spin_lock(&inode->lock);
dcab6a3b 6093 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6094
0934856d
MX
6095 if (num_bytes)
6096 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
691fa059 6097 spin_unlock(&inode->lock);
9e0baf60 6098 if (dropped > 0)
0b246afa 6099 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
0ca1f7ce 6100
0b246afa 6101 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6102 return;
6103
691fa059
NB
6104 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6105 to_free, 0);
c5567237 6106
2ff7e61e 6107 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
0ca1f7ce
YZ
6108}
6109
1ada3a62 6110/**
7cf5b976 6111 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6112 * delalloc
6113 * @inode: inode we're writing to
6114 * @start: start range we are writing to
6115 * @len: how long the range we are writing to
6116 *
1ada3a62
QW
6117 * This will do the following things
6118 *
6119 * o reserve space in data space info for num bytes
6120 * and reserve precious corresponding qgroup space
6121 * (Done in check_data_free_space)
6122 *
6123 * o reserve space for metadata space, based on the number of outstanding
6124 * extents and how much csums will be needed
6125 * also reserve metadata space in a per root over-reserve method.
6126 * o add to the inodes->delalloc_bytes
6127 * o add it to the fs_info's delalloc inodes list.
6128 * (Above 3 all done in delalloc_reserve_metadata)
6129 *
6130 * Return 0 for success
6131 * Return <0 for error(-ENOSPC or -EQUOT)
6132 */
7cf5b976 6133int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6134{
6135 int ret;
6136
7cf5b976 6137 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6138 if (ret < 0)
6139 return ret;
9f3db423 6140 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6141 if (ret < 0)
7cf5b976 6142 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6143 return ret;
6144}
6145
7709cde3 6146/**
7cf5b976 6147 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6148 * @inode: inode we're releasing space for
6149 * @start: start position of the space already reserved
6150 * @len: the len of the space already reserved
6151 *
6152 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6153 * called in the case that we don't need the metadata AND data reservations
6154 * anymore. So if there is an error or we insert an inline extent.
6155 *
6156 * This function will release the metadata space that was not used and will
6157 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6158 * list if there are no delalloc bytes left.
6159 * Also it will handle the qgroup reserved space.
6160 */
7cf5b976 6161void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62 6162{
691fa059 6163 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
7cf5b976 6164 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6165}
6166
ce93ec54 6167static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6168 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6169 u64 num_bytes, int alloc)
9078a3e1 6170{
0af3d00b 6171 struct btrfs_block_group_cache *cache = NULL;
db94535d 6172 u64 total = num_bytes;
9078a3e1 6173 u64 old_val;
db94535d 6174 u64 byte_in_group;
0af3d00b 6175 int factor;
3e1ad54f 6176
5d4f98a2 6177 /* block accounting for super block */
eb73c1b7 6178 spin_lock(&info->delalloc_root_lock);
6c41761f 6179 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6180 if (alloc)
6181 old_val += num_bytes;
6182 else
6183 old_val -= num_bytes;
6c41761f 6184 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6185 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6186
d397712b 6187 while (total) {
db94535d 6188 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6189 if (!cache)
79787eaa 6190 return -ENOENT;
b742bb82
YZ
6191 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6192 BTRFS_BLOCK_GROUP_RAID1 |
6193 BTRFS_BLOCK_GROUP_RAID10))
6194 factor = 2;
6195 else
6196 factor = 1;
9d66e233
JB
6197 /*
6198 * If this block group has free space cache written out, we
6199 * need to make sure to load it if we are removing space. This
6200 * is because we need the unpinning stage to actually add the
6201 * space back to the block group, otherwise we will leak space.
6202 */
6203 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6204 cache_block_group(cache, 1);
0af3d00b 6205
db94535d
CM
6206 byte_in_group = bytenr - cache->key.objectid;
6207 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6208
25179201 6209 spin_lock(&cache->space_info->lock);
c286ac48 6210 spin_lock(&cache->lock);
0af3d00b 6211
6202df69 6212 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6213 cache->disk_cache_state < BTRFS_DC_CLEAR)
6214 cache->disk_cache_state = BTRFS_DC_CLEAR;
6215
9078a3e1 6216 old_val = btrfs_block_group_used(&cache->item);
db94535d 6217 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6218 if (alloc) {
db94535d 6219 old_val += num_bytes;
11833d66
YZ
6220 btrfs_set_block_group_used(&cache->item, old_val);
6221 cache->reserved -= num_bytes;
11833d66 6222 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6223 cache->space_info->bytes_used += num_bytes;
6224 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6225 spin_unlock(&cache->lock);
25179201 6226 spin_unlock(&cache->space_info->lock);
cd1bc465 6227 } else {
db94535d 6228 old_val -= num_bytes;
ae0ab003
FM
6229 btrfs_set_block_group_used(&cache->item, old_val);
6230 cache->pinned += num_bytes;
6231 cache->space_info->bytes_pinned += num_bytes;
6232 cache->space_info->bytes_used -= num_bytes;
6233 cache->space_info->disk_used -= num_bytes * factor;
6234 spin_unlock(&cache->lock);
6235 spin_unlock(&cache->space_info->lock);
47ab2a6c 6236
0b246afa 6237 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6238 cache->space_info->flags,
6239 num_bytes, 1);
ae0ab003
FM
6240 set_extent_dirty(info->pinned_extents,
6241 bytenr, bytenr + num_bytes - 1,
6242 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6243 }
1bbc621e
CM
6244
6245 spin_lock(&trans->transaction->dirty_bgs_lock);
6246 if (list_empty(&cache->dirty_list)) {
6247 list_add_tail(&cache->dirty_list,
6248 &trans->transaction->dirty_bgs);
6249 trans->transaction->num_dirty_bgs++;
6250 btrfs_get_block_group(cache);
6251 }
6252 spin_unlock(&trans->transaction->dirty_bgs_lock);
6253
036a9348
FM
6254 /*
6255 * No longer have used bytes in this block group, queue it for
6256 * deletion. We do this after adding the block group to the
6257 * dirty list to avoid races between cleaner kthread and space
6258 * cache writeout.
6259 */
6260 if (!alloc && old_val == 0) {
6261 spin_lock(&info->unused_bgs_lock);
6262 if (list_empty(&cache->bg_list)) {
6263 btrfs_get_block_group(cache);
6264 list_add_tail(&cache->bg_list,
6265 &info->unused_bgs);
6266 }
6267 spin_unlock(&info->unused_bgs_lock);
6268 }
6269
fa9c0d79 6270 btrfs_put_block_group(cache);
db94535d
CM
6271 total -= num_bytes;
6272 bytenr += num_bytes;
9078a3e1
CM
6273 }
6274 return 0;
6275}
6324fbf3 6276
2ff7e61e 6277static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6278{
0f9dd46c 6279 struct btrfs_block_group_cache *cache;
d2fb3437 6280 u64 bytenr;
0f9dd46c 6281
0b246afa
JM
6282 spin_lock(&fs_info->block_group_cache_lock);
6283 bytenr = fs_info->first_logical_byte;
6284 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6285
6286 if (bytenr < (u64)-1)
6287 return bytenr;
6288
0b246afa 6289 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6290 if (!cache)
a061fc8d 6291 return 0;
0f9dd46c 6292
d2fb3437 6293 bytenr = cache->key.objectid;
fa9c0d79 6294 btrfs_put_block_group(cache);
d2fb3437
YZ
6295
6296 return bytenr;
a061fc8d
CM
6297}
6298
2ff7e61e 6299static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6300 struct btrfs_block_group_cache *cache,
6301 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6302{
11833d66
YZ
6303 spin_lock(&cache->space_info->lock);
6304 spin_lock(&cache->lock);
6305 cache->pinned += num_bytes;
6306 cache->space_info->bytes_pinned += num_bytes;
6307 if (reserved) {
6308 cache->reserved -= num_bytes;
6309 cache->space_info->bytes_reserved -= num_bytes;
6310 }
6311 spin_unlock(&cache->lock);
6312 spin_unlock(&cache->space_info->lock);
68b38550 6313
0b246afa 6314 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6315 cache->space_info->flags, num_bytes, 1);
0b246afa 6316 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6317 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6318 return 0;
6319}
68b38550 6320
f0486c68
YZ
6321/*
6322 * this function must be called within transaction
6323 */
2ff7e61e 6324int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6325 u64 bytenr, u64 num_bytes, int reserved)
6326{
6327 struct btrfs_block_group_cache *cache;
68b38550 6328
0b246afa 6329 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6330 BUG_ON(!cache); /* Logic error */
f0486c68 6331
2ff7e61e 6332 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6333
6334 btrfs_put_block_group(cache);
11833d66
YZ
6335 return 0;
6336}
6337
f0486c68 6338/*
e688b725
CM
6339 * this function must be called within transaction
6340 */
2ff7e61e 6341int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6342 u64 bytenr, u64 num_bytes)
6343{
6344 struct btrfs_block_group_cache *cache;
b50c6e25 6345 int ret;
e688b725 6346
0b246afa 6347 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6348 if (!cache)
6349 return -EINVAL;
e688b725
CM
6350
6351 /*
6352 * pull in the free space cache (if any) so that our pin
6353 * removes the free space from the cache. We have load_only set
6354 * to one because the slow code to read in the free extents does check
6355 * the pinned extents.
6356 */
f6373bf3 6357 cache_block_group(cache, 1);
e688b725 6358
2ff7e61e 6359 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6360
6361 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6362 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6363 btrfs_put_block_group(cache);
b50c6e25 6364 return ret;
e688b725
CM
6365}
6366
2ff7e61e
JM
6367static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6368 u64 start, u64 num_bytes)
8c2a1a30
JB
6369{
6370 int ret;
6371 struct btrfs_block_group_cache *block_group;
6372 struct btrfs_caching_control *caching_ctl;
6373
0b246afa 6374 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6375 if (!block_group)
6376 return -EINVAL;
6377
6378 cache_block_group(block_group, 0);
6379 caching_ctl = get_caching_control(block_group);
6380
6381 if (!caching_ctl) {
6382 /* Logic error */
6383 BUG_ON(!block_group_cache_done(block_group));
6384 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6385 } else {
6386 mutex_lock(&caching_ctl->mutex);
6387
6388 if (start >= caching_ctl->progress) {
2ff7e61e 6389 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6390 } else if (start + num_bytes <= caching_ctl->progress) {
6391 ret = btrfs_remove_free_space(block_group,
6392 start, num_bytes);
6393 } else {
6394 num_bytes = caching_ctl->progress - start;
6395 ret = btrfs_remove_free_space(block_group,
6396 start, num_bytes);
6397 if (ret)
6398 goto out_lock;
6399
6400 num_bytes = (start + num_bytes) -
6401 caching_ctl->progress;
6402 start = caching_ctl->progress;
2ff7e61e 6403 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6404 }
6405out_lock:
6406 mutex_unlock(&caching_ctl->mutex);
6407 put_caching_control(caching_ctl);
6408 }
6409 btrfs_put_block_group(block_group);
6410 return ret;
6411}
6412
2ff7e61e 6413int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6414 struct extent_buffer *eb)
6415{
6416 struct btrfs_file_extent_item *item;
6417 struct btrfs_key key;
6418 int found_type;
6419 int i;
6420
2ff7e61e 6421 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6422 return 0;
6423
6424 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6425 btrfs_item_key_to_cpu(eb, &key, i);
6426 if (key.type != BTRFS_EXTENT_DATA_KEY)
6427 continue;
6428 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6429 found_type = btrfs_file_extent_type(eb, item);
6430 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6431 continue;
6432 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6433 continue;
6434 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6435 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6436 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6437 }
6438
6439 return 0;
6440}
6441
9cfa3e34
FM
6442static void
6443btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6444{
6445 atomic_inc(&bg->reservations);
6446}
6447
6448void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6449 const u64 start)
6450{
6451 struct btrfs_block_group_cache *bg;
6452
6453 bg = btrfs_lookup_block_group(fs_info, start);
6454 ASSERT(bg);
6455 if (atomic_dec_and_test(&bg->reservations))
6456 wake_up_atomic_t(&bg->reservations);
6457 btrfs_put_block_group(bg);
6458}
6459
6460static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6461{
6462 schedule();
6463 return 0;
6464}
6465
6466void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6467{
6468 struct btrfs_space_info *space_info = bg->space_info;
6469
6470 ASSERT(bg->ro);
6471
6472 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6473 return;
6474
6475 /*
6476 * Our block group is read only but before we set it to read only,
6477 * some task might have had allocated an extent from it already, but it
6478 * has not yet created a respective ordered extent (and added it to a
6479 * root's list of ordered extents).
6480 * Therefore wait for any task currently allocating extents, since the
6481 * block group's reservations counter is incremented while a read lock
6482 * on the groups' semaphore is held and decremented after releasing
6483 * the read access on that semaphore and creating the ordered extent.
6484 */
6485 down_write(&space_info->groups_sem);
6486 up_write(&space_info->groups_sem);
6487
6488 wait_on_atomic_t(&bg->reservations,
6489 btrfs_wait_bg_reservations_atomic_t,
6490 TASK_UNINTERRUPTIBLE);
6491}
6492
fb25e914 6493/**
4824f1f4 6494 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6495 * @cache: The cache we are manipulating
18513091
WX
6496 * @ram_bytes: The number of bytes of file content, and will be same to
6497 * @num_bytes except for the compress path.
fb25e914 6498 * @num_bytes: The number of bytes in question
e570fd27 6499 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6500 *
745699ef
XW
6501 * This is called by the allocator when it reserves space. If this is a
6502 * reservation and the block group has become read only we cannot make the
6503 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6504 */
4824f1f4 6505static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6506 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6507{
fb25e914 6508 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6509 int ret = 0;
79787eaa 6510
fb25e914
JB
6511 spin_lock(&space_info->lock);
6512 spin_lock(&cache->lock);
4824f1f4
WX
6513 if (cache->ro) {
6514 ret = -EAGAIN;
fb25e914 6515 } else {
4824f1f4
WX
6516 cache->reserved += num_bytes;
6517 space_info->bytes_reserved += num_bytes;
e570fd27 6518
18513091
WX
6519 trace_btrfs_space_reservation(cache->fs_info,
6520 "space_info", space_info->flags,
6521 ram_bytes, 0);
6522 space_info->bytes_may_use -= ram_bytes;
e570fd27 6523 if (delalloc)
4824f1f4 6524 cache->delalloc_bytes += num_bytes;
324ae4df 6525 }
fb25e914
JB
6526 spin_unlock(&cache->lock);
6527 spin_unlock(&space_info->lock);
f0486c68 6528 return ret;
324ae4df 6529}
9078a3e1 6530
4824f1f4
WX
6531/**
6532 * btrfs_free_reserved_bytes - update the block_group and space info counters
6533 * @cache: The cache we are manipulating
6534 * @num_bytes: The number of bytes in question
6535 * @delalloc: The blocks are allocated for the delalloc write
6536 *
6537 * This is called by somebody who is freeing space that was never actually used
6538 * on disk. For example if you reserve some space for a new leaf in transaction
6539 * A and before transaction A commits you free that leaf, you call this with
6540 * reserve set to 0 in order to clear the reservation.
6541 */
6542
6543static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6544 u64 num_bytes, int delalloc)
6545{
6546 struct btrfs_space_info *space_info = cache->space_info;
6547 int ret = 0;
6548
6549 spin_lock(&space_info->lock);
6550 spin_lock(&cache->lock);
6551 if (cache->ro)
6552 space_info->bytes_readonly += num_bytes;
6553 cache->reserved -= num_bytes;
6554 space_info->bytes_reserved -= num_bytes;
6555
6556 if (delalloc)
6557 cache->delalloc_bytes -= num_bytes;
6558 spin_unlock(&cache->lock);
6559 spin_unlock(&space_info->lock);
6560 return ret;
6561}
8b74c03e 6562void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6563{
11833d66
YZ
6564 struct btrfs_caching_control *next;
6565 struct btrfs_caching_control *caching_ctl;
6566 struct btrfs_block_group_cache *cache;
e8569813 6567
9e351cc8 6568 down_write(&fs_info->commit_root_sem);
25179201 6569
11833d66
YZ
6570 list_for_each_entry_safe(caching_ctl, next,
6571 &fs_info->caching_block_groups, list) {
6572 cache = caching_ctl->block_group;
6573 if (block_group_cache_done(cache)) {
6574 cache->last_byte_to_unpin = (u64)-1;
6575 list_del_init(&caching_ctl->list);
6576 put_caching_control(caching_ctl);
e8569813 6577 } else {
11833d66 6578 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6579 }
e8569813 6580 }
11833d66
YZ
6581
6582 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6583 fs_info->pinned_extents = &fs_info->freed_extents[1];
6584 else
6585 fs_info->pinned_extents = &fs_info->freed_extents[0];
6586
9e351cc8 6587 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6588
6589 update_global_block_rsv(fs_info);
e8569813
ZY
6590}
6591
c759c4e1
JB
6592/*
6593 * Returns the free cluster for the given space info and sets empty_cluster to
6594 * what it should be based on the mount options.
6595 */
6596static struct btrfs_free_cluster *
2ff7e61e
JM
6597fetch_cluster_info(struct btrfs_fs_info *fs_info,
6598 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6599{
6600 struct btrfs_free_cluster *ret = NULL;
0b246afa 6601 bool ssd = btrfs_test_opt(fs_info, SSD);
c759c4e1
JB
6602
6603 *empty_cluster = 0;
6604 if (btrfs_mixed_space_info(space_info))
6605 return ret;
6606
6607 if (ssd)
ee22184b 6608 *empty_cluster = SZ_2M;
c759c4e1 6609 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6610 ret = &fs_info->meta_alloc_cluster;
c759c4e1 6611 if (!ssd)
ee22184b 6612 *empty_cluster = SZ_64K;
c759c4e1 6613 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
0b246afa 6614 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6615 }
6616
6617 return ret;
6618}
6619
2ff7e61e
JM
6620static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6621 u64 start, u64 end,
678886bd 6622 const bool return_free_space)
ccd467d6 6623{
11833d66 6624 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6625 struct btrfs_space_info *space_info;
6626 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6627 struct btrfs_free_cluster *cluster = NULL;
11833d66 6628 u64 len;
c759c4e1
JB
6629 u64 total_unpinned = 0;
6630 u64 empty_cluster = 0;
7b398f8e 6631 bool readonly;
ccd467d6 6632
11833d66 6633 while (start <= end) {
7b398f8e 6634 readonly = false;
11833d66
YZ
6635 if (!cache ||
6636 start >= cache->key.objectid + cache->key.offset) {
6637 if (cache)
6638 btrfs_put_block_group(cache);
c759c4e1 6639 total_unpinned = 0;
11833d66 6640 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6641 BUG_ON(!cache); /* Logic error */
c759c4e1 6642
2ff7e61e 6643 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6644 cache->space_info,
6645 &empty_cluster);
6646 empty_cluster <<= 1;
11833d66
YZ
6647 }
6648
6649 len = cache->key.objectid + cache->key.offset - start;
6650 len = min(len, end + 1 - start);
6651
6652 if (start < cache->last_byte_to_unpin) {
6653 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6654 if (return_free_space)
6655 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6656 }
6657
f0486c68 6658 start += len;
c759c4e1 6659 total_unpinned += len;
7b398f8e 6660 space_info = cache->space_info;
f0486c68 6661
c759c4e1
JB
6662 /*
6663 * If this space cluster has been marked as fragmented and we've
6664 * unpinned enough in this block group to potentially allow a
6665 * cluster to be created inside of it go ahead and clear the
6666 * fragmented check.
6667 */
6668 if (cluster && cluster->fragmented &&
6669 total_unpinned > empty_cluster) {
6670 spin_lock(&cluster->lock);
6671 cluster->fragmented = 0;
6672 spin_unlock(&cluster->lock);
6673 }
6674
7b398f8e 6675 spin_lock(&space_info->lock);
11833d66
YZ
6676 spin_lock(&cache->lock);
6677 cache->pinned -= len;
7b398f8e 6678 space_info->bytes_pinned -= len;
c51e7bb1
JB
6679
6680 trace_btrfs_space_reservation(fs_info, "pinned",
6681 space_info->flags, len, 0);
4f4db217 6682 space_info->max_extent_size = 0;
d288db5d 6683 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6684 if (cache->ro) {
6685 space_info->bytes_readonly += len;
6686 readonly = true;
6687 }
11833d66 6688 spin_unlock(&cache->lock);
957780eb
JB
6689 if (!readonly && return_free_space &&
6690 global_rsv->space_info == space_info) {
6691 u64 to_add = len;
6692 WARN_ON(!return_free_space);
7b398f8e
JB
6693 spin_lock(&global_rsv->lock);
6694 if (!global_rsv->full) {
957780eb
JB
6695 to_add = min(len, global_rsv->size -
6696 global_rsv->reserved);
6697 global_rsv->reserved += to_add;
6698 space_info->bytes_may_use += to_add;
7b398f8e
JB
6699 if (global_rsv->reserved >= global_rsv->size)
6700 global_rsv->full = 1;
957780eb
JB
6701 trace_btrfs_space_reservation(fs_info,
6702 "space_info",
6703 space_info->flags,
6704 to_add, 1);
6705 len -= to_add;
7b398f8e
JB
6706 }
6707 spin_unlock(&global_rsv->lock);
957780eb
JB
6708 /* Add to any tickets we may have */
6709 if (len)
6710 space_info_add_new_bytes(fs_info, space_info,
6711 len);
7b398f8e
JB
6712 }
6713 spin_unlock(&space_info->lock);
ccd467d6 6714 }
11833d66
YZ
6715
6716 if (cache)
6717 btrfs_put_block_group(cache);
ccd467d6
CM
6718 return 0;
6719}
6720
6721int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6722 struct btrfs_fs_info *fs_info)
a28ec197 6723{
e33e17ee
JM
6724 struct btrfs_block_group_cache *block_group, *tmp;
6725 struct list_head *deleted_bgs;
11833d66 6726 struct extent_io_tree *unpin;
1a5bc167
CM
6727 u64 start;
6728 u64 end;
a28ec197 6729 int ret;
a28ec197 6730
11833d66
YZ
6731 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6732 unpin = &fs_info->freed_extents[1];
6733 else
6734 unpin = &fs_info->freed_extents[0];
6735
e33e17ee 6736 while (!trans->aborted) {
d4b450cd 6737 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6738 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6739 EXTENT_DIRTY, NULL);
d4b450cd
FM
6740 if (ret) {
6741 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6742 break;
d4b450cd 6743 }
1f3c79a2 6744
0b246afa 6745 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6746 ret = btrfs_discard_extent(fs_info, start,
5378e607 6747 end + 1 - start, NULL);
1f3c79a2 6748
af6f8f60 6749 clear_extent_dirty(unpin, start, end);
2ff7e61e 6750 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6751 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6752 cond_resched();
a28ec197 6753 }
817d52f8 6754
e33e17ee
JM
6755 /*
6756 * Transaction is finished. We don't need the lock anymore. We
6757 * do need to clean up the block groups in case of a transaction
6758 * abort.
6759 */
6760 deleted_bgs = &trans->transaction->deleted_bgs;
6761 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6762 u64 trimmed = 0;
6763
6764 ret = -EROFS;
6765 if (!trans->aborted)
2ff7e61e 6766 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6767 block_group->key.objectid,
6768 block_group->key.offset,
6769 &trimmed);
6770
6771 list_del_init(&block_group->bg_list);
6772 btrfs_put_block_group_trimming(block_group);
6773 btrfs_put_block_group(block_group);
6774
6775 if (ret) {
6776 const char *errstr = btrfs_decode_error(ret);
6777 btrfs_warn(fs_info,
6778 "Discard failed while removing blockgroup: errno=%d %s\n",
6779 ret, errstr);
6780 }
6781 }
6782
e20d96d6
CM
6783 return 0;
6784}
6785
b150a4f1
JB
6786static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6787 u64 owner, u64 root_objectid)
6788{
6789 struct btrfs_space_info *space_info;
6790 u64 flags;
6791
6792 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6793 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6794 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6795 else
6796 flags = BTRFS_BLOCK_GROUP_METADATA;
6797 } else {
6798 flags = BTRFS_BLOCK_GROUP_DATA;
6799 }
6800
6801 space_info = __find_space_info(fs_info, flags);
6802 BUG_ON(!space_info); /* Logic bug */
6803 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6804}
6805
6806
5d4f98a2 6807static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6808 struct btrfs_fs_info *info,
c682f9b3 6809 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6810 u64 root_objectid, u64 owner_objectid,
6811 u64 owner_offset, int refs_to_drop,
c682f9b3 6812 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6813{
e2fa7227 6814 struct btrfs_key key;
5d4f98a2 6815 struct btrfs_path *path;
1261ec42 6816 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6817 struct extent_buffer *leaf;
5d4f98a2
YZ
6818 struct btrfs_extent_item *ei;
6819 struct btrfs_extent_inline_ref *iref;
a28ec197 6820 int ret;
5d4f98a2 6821 int is_data;
952fccac
CM
6822 int extent_slot = 0;
6823 int found_extent = 0;
6824 int num_to_del = 1;
5d4f98a2
YZ
6825 u32 item_size;
6826 u64 refs;
c682f9b3
QW
6827 u64 bytenr = node->bytenr;
6828 u64 num_bytes = node->num_bytes;
fcebe456 6829 int last_ref = 0;
0b246afa 6830 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6831
5caf2a00 6832 path = btrfs_alloc_path();
54aa1f4d
CM
6833 if (!path)
6834 return -ENOMEM;
5f26f772 6835
e4058b54 6836 path->reada = READA_FORWARD;
b9473439 6837 path->leave_spinning = 1;
5d4f98a2
YZ
6838
6839 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6840 BUG_ON(!is_data && refs_to_drop != 1);
6841
3173a18f
JB
6842 if (is_data)
6843 skinny_metadata = 0;
6844
87bde3cd 6845 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6846 bytenr, num_bytes, parent,
6847 root_objectid, owner_objectid,
6848 owner_offset);
7bb86316 6849 if (ret == 0) {
952fccac 6850 extent_slot = path->slots[0];
5d4f98a2
YZ
6851 while (extent_slot >= 0) {
6852 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6853 extent_slot);
5d4f98a2 6854 if (key.objectid != bytenr)
952fccac 6855 break;
5d4f98a2
YZ
6856 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6857 key.offset == num_bytes) {
952fccac
CM
6858 found_extent = 1;
6859 break;
6860 }
3173a18f
JB
6861 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6862 key.offset == owner_objectid) {
6863 found_extent = 1;
6864 break;
6865 }
952fccac
CM
6866 if (path->slots[0] - extent_slot > 5)
6867 break;
5d4f98a2 6868 extent_slot--;
952fccac 6869 }
5d4f98a2
YZ
6870#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6871 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6872 if (found_extent && item_size < sizeof(*ei))
6873 found_extent = 0;
6874#endif
31840ae1 6875 if (!found_extent) {
5d4f98a2 6876 BUG_ON(iref);
87bde3cd
JM
6877 ret = remove_extent_backref(trans, info, path, NULL,
6878 refs_to_drop,
fcebe456 6879 is_data, &last_ref);
005d6427 6880 if (ret) {
66642832 6881 btrfs_abort_transaction(trans, ret);
005d6427
DS
6882 goto out;
6883 }
b3b4aa74 6884 btrfs_release_path(path);
b9473439 6885 path->leave_spinning = 1;
5d4f98a2
YZ
6886
6887 key.objectid = bytenr;
6888 key.type = BTRFS_EXTENT_ITEM_KEY;
6889 key.offset = num_bytes;
6890
3173a18f
JB
6891 if (!is_data && skinny_metadata) {
6892 key.type = BTRFS_METADATA_ITEM_KEY;
6893 key.offset = owner_objectid;
6894 }
6895
31840ae1
ZY
6896 ret = btrfs_search_slot(trans, extent_root,
6897 &key, path, -1, 1);
3173a18f
JB
6898 if (ret > 0 && skinny_metadata && path->slots[0]) {
6899 /*
6900 * Couldn't find our skinny metadata item,
6901 * see if we have ye olde extent item.
6902 */
6903 path->slots[0]--;
6904 btrfs_item_key_to_cpu(path->nodes[0], &key,
6905 path->slots[0]);
6906 if (key.objectid == bytenr &&
6907 key.type == BTRFS_EXTENT_ITEM_KEY &&
6908 key.offset == num_bytes)
6909 ret = 0;
6910 }
6911
6912 if (ret > 0 && skinny_metadata) {
6913 skinny_metadata = false;
9ce49a0b 6914 key.objectid = bytenr;
3173a18f
JB
6915 key.type = BTRFS_EXTENT_ITEM_KEY;
6916 key.offset = num_bytes;
6917 btrfs_release_path(path);
6918 ret = btrfs_search_slot(trans, extent_root,
6919 &key, path, -1, 1);
6920 }
6921
f3465ca4 6922 if (ret) {
5d163e0e
JM
6923 btrfs_err(info,
6924 "umm, got %d back from search, was looking for %llu",
6925 ret, bytenr);
b783e62d 6926 if (ret > 0)
2ff7e61e 6927 btrfs_print_leaf(info, path->nodes[0]);
f3465ca4 6928 }
005d6427 6929 if (ret < 0) {
66642832 6930 btrfs_abort_transaction(trans, ret);
005d6427
DS
6931 goto out;
6932 }
31840ae1
ZY
6933 extent_slot = path->slots[0];
6934 }
fae7f21c 6935 } else if (WARN_ON(ret == -ENOENT)) {
2ff7e61e 6936 btrfs_print_leaf(info, path->nodes[0]);
c2cf52eb
SK
6937 btrfs_err(info,
6938 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6939 bytenr, parent, root_objectid, owner_objectid,
6940 owner_offset);
66642832 6941 btrfs_abort_transaction(trans, ret);
c4a050bb 6942 goto out;
79787eaa 6943 } else {
66642832 6944 btrfs_abort_transaction(trans, ret);
005d6427 6945 goto out;
7bb86316 6946 }
5f39d397
CM
6947
6948 leaf = path->nodes[0];
5d4f98a2
YZ
6949 item_size = btrfs_item_size_nr(leaf, extent_slot);
6950#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6951 if (item_size < sizeof(*ei)) {
6952 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6953 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6954 0);
005d6427 6955 if (ret < 0) {
66642832 6956 btrfs_abort_transaction(trans, ret);
005d6427
DS
6957 goto out;
6958 }
5d4f98a2 6959
b3b4aa74 6960 btrfs_release_path(path);
5d4f98a2
YZ
6961 path->leave_spinning = 1;
6962
6963 key.objectid = bytenr;
6964 key.type = BTRFS_EXTENT_ITEM_KEY;
6965 key.offset = num_bytes;
6966
6967 ret = btrfs_search_slot(trans, extent_root, &key, path,
6968 -1, 1);
6969 if (ret) {
5d163e0e
JM
6970 btrfs_err(info,
6971 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6972 ret, bytenr);
2ff7e61e 6973 btrfs_print_leaf(info, path->nodes[0]);
5d4f98a2 6974 }
005d6427 6975 if (ret < 0) {
66642832 6976 btrfs_abort_transaction(trans, ret);
005d6427
DS
6977 goto out;
6978 }
6979
5d4f98a2
YZ
6980 extent_slot = path->slots[0];
6981 leaf = path->nodes[0];
6982 item_size = btrfs_item_size_nr(leaf, extent_slot);
6983 }
6984#endif
6985 BUG_ON(item_size < sizeof(*ei));
952fccac 6986 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6987 struct btrfs_extent_item);
3173a18f
JB
6988 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6989 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6990 struct btrfs_tree_block_info *bi;
6991 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6992 bi = (struct btrfs_tree_block_info *)(ei + 1);
6993 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6994 }
56bec294 6995
5d4f98a2 6996 refs = btrfs_extent_refs(leaf, ei);
32b02538 6997 if (refs < refs_to_drop) {
5d163e0e
JM
6998 btrfs_err(info,
6999 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7000 refs_to_drop, refs, bytenr);
32b02538 7001 ret = -EINVAL;
66642832 7002 btrfs_abort_transaction(trans, ret);
32b02538
JB
7003 goto out;
7004 }
56bec294 7005 refs -= refs_to_drop;
5f39d397 7006
5d4f98a2
YZ
7007 if (refs > 0) {
7008 if (extent_op)
7009 __run_delayed_extent_op(extent_op, leaf, ei);
7010 /*
7011 * In the case of inline back ref, reference count will
7012 * be updated by remove_extent_backref
952fccac 7013 */
5d4f98a2
YZ
7014 if (iref) {
7015 BUG_ON(!found_extent);
7016 } else {
7017 btrfs_set_extent_refs(leaf, ei, refs);
7018 btrfs_mark_buffer_dirty(leaf);
7019 }
7020 if (found_extent) {
87bde3cd 7021 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7022 iref, refs_to_drop,
fcebe456 7023 is_data, &last_ref);
005d6427 7024 if (ret) {
66642832 7025 btrfs_abort_transaction(trans, ret);
005d6427
DS
7026 goto out;
7027 }
952fccac 7028 }
0b246afa 7029 add_pinned_bytes(info, -num_bytes, owner_objectid,
b150a4f1 7030 root_objectid);
5d4f98a2 7031 } else {
5d4f98a2
YZ
7032 if (found_extent) {
7033 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7034 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7035 if (iref) {
7036 BUG_ON(path->slots[0] != extent_slot);
7037 } else {
7038 BUG_ON(path->slots[0] != extent_slot + 1);
7039 path->slots[0] = extent_slot;
7040 num_to_del = 2;
7041 }
78fae27e 7042 }
b9473439 7043
fcebe456 7044 last_ref = 1;
952fccac
CM
7045 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7046 num_to_del);
005d6427 7047 if (ret) {
66642832 7048 btrfs_abort_transaction(trans, ret);
005d6427
DS
7049 goto out;
7050 }
b3b4aa74 7051 btrfs_release_path(path);
21af804c 7052
5d4f98a2 7053 if (is_data) {
5b4aacef 7054 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7055 if (ret) {
66642832 7056 btrfs_abort_transaction(trans, ret);
005d6427
DS
7057 goto out;
7058 }
459931ec
CM
7059 }
7060
0b246afa 7061 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7062 if (ret) {
66642832 7063 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7064 goto out;
7065 }
7066
0b246afa 7067 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7068 if (ret) {
66642832 7069 btrfs_abort_transaction(trans, ret);
005d6427
DS
7070 goto out;
7071 }
a28ec197 7072 }
fcebe456
JB
7073 btrfs_release_path(path);
7074
79787eaa 7075out:
5caf2a00 7076 btrfs_free_path(path);
a28ec197
CM
7077 return ret;
7078}
7079
1887be66 7080/*
f0486c68 7081 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7082 * delayed ref for that extent as well. This searches the delayed ref tree for
7083 * a given extent, and if there are no other delayed refs to be processed, it
7084 * removes it from the tree.
7085 */
7086static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7087 u64 bytenr)
1887be66
CM
7088{
7089 struct btrfs_delayed_ref_head *head;
7090 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7091 int ret = 0;
1887be66
CM
7092
7093 delayed_refs = &trans->transaction->delayed_refs;
7094 spin_lock(&delayed_refs->lock);
f72ad18e 7095 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7096 if (!head)
cf93da7b 7097 goto out_delayed_unlock;
1887be66 7098
d7df2c79 7099 spin_lock(&head->lock);
c6fc2454 7100 if (!list_empty(&head->ref_list))
1887be66
CM
7101 goto out;
7102
5d4f98a2
YZ
7103 if (head->extent_op) {
7104 if (!head->must_insert_reserved)
7105 goto out;
78a6184a 7106 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7107 head->extent_op = NULL;
7108 }
7109
1887be66
CM
7110 /*
7111 * waiting for the lock here would deadlock. If someone else has it
7112 * locked they are already in the process of dropping it anyway
7113 */
7114 if (!mutex_trylock(&head->mutex))
7115 goto out;
7116
7117 /*
7118 * at this point we have a head with no other entries. Go
7119 * ahead and process it.
7120 */
7121 head->node.in_tree = 0;
c46effa6 7122 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7123
d7df2c79 7124 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7125
7126 /*
7127 * we don't take a ref on the node because we're removing it from the
7128 * tree, so we just steal the ref the tree was holding.
7129 */
c3e69d58 7130 delayed_refs->num_heads--;
d7df2c79 7131 if (head->processing == 0)
c3e69d58 7132 delayed_refs->num_heads_ready--;
d7df2c79
JB
7133 head->processing = 0;
7134 spin_unlock(&head->lock);
1887be66
CM
7135 spin_unlock(&delayed_refs->lock);
7136
f0486c68
YZ
7137 BUG_ON(head->extent_op);
7138 if (head->must_insert_reserved)
7139 ret = 1;
7140
7141 mutex_unlock(&head->mutex);
1887be66 7142 btrfs_put_delayed_ref(&head->node);
f0486c68 7143 return ret;
1887be66 7144out:
d7df2c79 7145 spin_unlock(&head->lock);
cf93da7b
CM
7146
7147out_delayed_unlock:
1887be66
CM
7148 spin_unlock(&delayed_refs->lock);
7149 return 0;
7150}
7151
f0486c68
YZ
7152void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7153 struct btrfs_root *root,
7154 struct extent_buffer *buf,
5581a51a 7155 u64 parent, int last_ref)
f0486c68 7156{
0b246afa 7157 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7158 int pin = 1;
f0486c68
YZ
7159 int ret;
7160
7161 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
0b246afa
JM
7162 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7163 buf->start, buf->len,
7164 parent,
7165 root->root_key.objectid,
7166 btrfs_header_level(buf),
7167 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7168 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7169 }
7170
7171 if (!last_ref)
7172 return;
7173
f0486c68 7174 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7175 struct btrfs_block_group_cache *cache;
7176
f0486c68 7177 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7178 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7179 if (!ret)
37be25bc 7180 goto out;
f0486c68
YZ
7181 }
7182
0b246afa 7183 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7184
f0486c68 7185 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7186 pin_down_extent(fs_info, cache, buf->start,
7187 buf->len, 1);
6219872d 7188 btrfs_put_block_group(cache);
37be25bc 7189 goto out;
f0486c68
YZ
7190 }
7191
7192 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7193
7194 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7195 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7196 btrfs_put_block_group(cache);
71ff6437 7197 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
b150a4f1 7198 pin = 0;
f0486c68
YZ
7199 }
7200out:
b150a4f1 7201 if (pin)
0b246afa 7202 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7203 root->root_key.objectid);
7204
a826d6dc
JB
7205 /*
7206 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7207 * anymore.
7208 */
7209 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7210}
7211
79787eaa 7212/* Can return -ENOMEM */
2ff7e61e
JM
7213int btrfs_free_extent(struct btrfs_trans_handle *trans,
7214 struct btrfs_fs_info *fs_info,
66d7e7f0 7215 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7216 u64 owner, u64 offset)
925baedd
CM
7217{
7218 int ret;
7219
f5ee5c9a 7220 if (btrfs_is_testing(fs_info))
faa2dbf0 7221 return 0;
fccb84c9 7222
0b246afa 7223 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
b150a4f1 7224
56bec294
CM
7225 /*
7226 * tree log blocks never actually go into the extent allocation
7227 * tree, just update pinning info and exit early.
56bec294 7228 */
5d4f98a2
YZ
7229 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7230 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7231 /* unlocks the pinned mutex */
2ff7e61e 7232 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
56bec294 7233 ret = 0;
5d4f98a2 7234 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7235 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7236 num_bytes,
5d4f98a2 7237 parent, root_objectid, (int)owner,
b06c4bf5 7238 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7239 } else {
66d7e7f0
AJ
7240 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7241 num_bytes,
7242 parent, root_objectid, owner,
5846a3c2 7243 offset, 0,
fef394f7 7244 BTRFS_DROP_DELAYED_REF);
56bec294 7245 }
925baedd
CM
7246 return ret;
7247}
7248
817d52f8
JB
7249/*
7250 * when we wait for progress in the block group caching, its because
7251 * our allocation attempt failed at least once. So, we must sleep
7252 * and let some progress happen before we try again.
7253 *
7254 * This function will sleep at least once waiting for new free space to
7255 * show up, and then it will check the block group free space numbers
7256 * for our min num_bytes. Another option is to have it go ahead
7257 * and look in the rbtree for a free extent of a given size, but this
7258 * is a good start.
36cce922
JB
7259 *
7260 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261 * any of the information in this block group.
817d52f8 7262 */
36cce922 7263static noinline void
817d52f8
JB
7264wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7265 u64 num_bytes)
7266{
11833d66 7267 struct btrfs_caching_control *caching_ctl;
817d52f8 7268
11833d66
YZ
7269 caching_ctl = get_caching_control(cache);
7270 if (!caching_ctl)
36cce922 7271 return;
817d52f8 7272
11833d66 7273 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7274 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7275
7276 put_caching_control(caching_ctl);
11833d66
YZ
7277}
7278
7279static noinline int
7280wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7281{
7282 struct btrfs_caching_control *caching_ctl;
36cce922 7283 int ret = 0;
11833d66
YZ
7284
7285 caching_ctl = get_caching_control(cache);
7286 if (!caching_ctl)
36cce922 7287 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7288
7289 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7290 if (cache->cached == BTRFS_CACHE_ERROR)
7291 ret = -EIO;
11833d66 7292 put_caching_control(caching_ctl);
36cce922 7293 return ret;
817d52f8
JB
7294}
7295
31e50229 7296int __get_raid_index(u64 flags)
b742bb82 7297{
7738a53a 7298 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7299 return BTRFS_RAID_RAID10;
7738a53a 7300 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7301 return BTRFS_RAID_RAID1;
7738a53a 7302 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7303 return BTRFS_RAID_DUP;
7738a53a 7304 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7305 return BTRFS_RAID_RAID0;
53b381b3 7306 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7307 return BTRFS_RAID_RAID5;
53b381b3 7308 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7309 return BTRFS_RAID_RAID6;
7738a53a 7310
e942f883 7311 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7312}
7313
6ab0a202 7314int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7315{
31e50229 7316 return __get_raid_index(cache->flags);
7738a53a
ID
7317}
7318
6ab0a202
JM
7319static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7320 [BTRFS_RAID_RAID10] = "raid10",
7321 [BTRFS_RAID_RAID1] = "raid1",
7322 [BTRFS_RAID_DUP] = "dup",
7323 [BTRFS_RAID_RAID0] = "raid0",
7324 [BTRFS_RAID_SINGLE] = "single",
7325 [BTRFS_RAID_RAID5] = "raid5",
7326 [BTRFS_RAID_RAID6] = "raid6",
7327};
7328
1b8e5df6 7329static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7330{
7331 if (type >= BTRFS_NR_RAID_TYPES)
7332 return NULL;
7333
7334 return btrfs_raid_type_names[type];
7335}
7336
817d52f8 7337enum btrfs_loop_type {
285ff5af
JB
7338 LOOP_CACHING_NOWAIT = 0,
7339 LOOP_CACHING_WAIT = 1,
7340 LOOP_ALLOC_CHUNK = 2,
7341 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7342};
7343
e570fd27
MX
7344static inline void
7345btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7346 int delalloc)
7347{
7348 if (delalloc)
7349 down_read(&cache->data_rwsem);
7350}
7351
7352static inline void
7353btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7354 int delalloc)
7355{
7356 btrfs_get_block_group(cache);
7357 if (delalloc)
7358 down_read(&cache->data_rwsem);
7359}
7360
7361static struct btrfs_block_group_cache *
7362btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7363 struct btrfs_free_cluster *cluster,
7364 int delalloc)
7365{
89771cc9 7366 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7367
e570fd27 7368 spin_lock(&cluster->refill_lock);
6719afdc
GU
7369 while (1) {
7370 used_bg = cluster->block_group;
7371 if (!used_bg)
7372 return NULL;
7373
7374 if (used_bg == block_group)
e570fd27
MX
7375 return used_bg;
7376
6719afdc 7377 btrfs_get_block_group(used_bg);
e570fd27 7378
6719afdc
GU
7379 if (!delalloc)
7380 return used_bg;
e570fd27 7381
6719afdc
GU
7382 if (down_read_trylock(&used_bg->data_rwsem))
7383 return used_bg;
e570fd27 7384
6719afdc 7385 spin_unlock(&cluster->refill_lock);
e570fd27 7386
e321f8a8
LB
7387 /* We should only have one-level nested. */
7388 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7389
6719afdc
GU
7390 spin_lock(&cluster->refill_lock);
7391 if (used_bg == cluster->block_group)
7392 return used_bg;
e570fd27 7393
6719afdc
GU
7394 up_read(&used_bg->data_rwsem);
7395 btrfs_put_block_group(used_bg);
7396 }
e570fd27
MX
7397}
7398
7399static inline void
7400btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7401 int delalloc)
7402{
7403 if (delalloc)
7404 up_read(&cache->data_rwsem);
7405 btrfs_put_block_group(cache);
7406}
7407
fec577fb
CM
7408/*
7409 * walks the btree of allocated extents and find a hole of a given size.
7410 * The key ins is changed to record the hole:
a4820398 7411 * ins->objectid == start position
62e2749e 7412 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7413 * ins->offset == the size of the hole.
fec577fb 7414 * Any available blocks before search_start are skipped.
a4820398
MX
7415 *
7416 * If there is no suitable free space, we will record the max size of
7417 * the free space extent currently.
fec577fb 7418 */
87bde3cd 7419static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7420 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7421 u64 hint_byte, struct btrfs_key *ins,
7422 u64 flags, int delalloc)
fec577fb 7423{
80eb234a 7424 int ret = 0;
0b246afa 7425 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7426 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7427 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7428 u64 search_start = 0;
a4820398 7429 u64 max_extent_size = 0;
c759c4e1 7430 u64 empty_cluster = 0;
80eb234a 7431 struct btrfs_space_info *space_info;
fa9c0d79 7432 int loop = 0;
b6919a58 7433 int index = __get_raid_index(flags);
0a24325e 7434 bool failed_cluster_refill = false;
1cdda9b8 7435 bool failed_alloc = false;
67377734 7436 bool use_cluster = true;
60d2adbb 7437 bool have_caching_bg = false;
13a0db5a 7438 bool orig_have_caching_bg = false;
a5e681d9 7439 bool full_search = false;
fec577fb 7440
0b246afa 7441 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7442 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7443 ins->objectid = 0;
7444 ins->offset = 0;
b1a4d965 7445
71ff6437 7446 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7447
0b246afa 7448 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7449 if (!space_info) {
0b246afa 7450 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7451 return -ENOSPC;
7452 }
2552d17e 7453
67377734 7454 /*
4f4db217
JB
7455 * If our free space is heavily fragmented we may not be able to make
7456 * big contiguous allocations, so instead of doing the expensive search
7457 * for free space, simply return ENOSPC with our max_extent_size so we
7458 * can go ahead and search for a more manageable chunk.
7459 *
7460 * If our max_extent_size is large enough for our allocation simply
7461 * disable clustering since we will likely not be able to find enough
7462 * space to create a cluster and induce latency trying.
67377734 7463 */
4f4db217
JB
7464 if (unlikely(space_info->max_extent_size)) {
7465 spin_lock(&space_info->lock);
7466 if (space_info->max_extent_size &&
7467 num_bytes > space_info->max_extent_size) {
7468 ins->offset = space_info->max_extent_size;
7469 spin_unlock(&space_info->lock);
7470 return -ENOSPC;
7471 } else if (space_info->max_extent_size) {
7472 use_cluster = false;
7473 }
7474 spin_unlock(&space_info->lock);
fa9c0d79 7475 }
0f9dd46c 7476
2ff7e61e 7477 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7478 if (last_ptr) {
fa9c0d79
CM
7479 spin_lock(&last_ptr->lock);
7480 if (last_ptr->block_group)
7481 hint_byte = last_ptr->window_start;
c759c4e1
JB
7482 if (last_ptr->fragmented) {
7483 /*
7484 * We still set window_start so we can keep track of the
7485 * last place we found an allocation to try and save
7486 * some time.
7487 */
7488 hint_byte = last_ptr->window_start;
7489 use_cluster = false;
7490 }
fa9c0d79 7491 spin_unlock(&last_ptr->lock);
239b14b3 7492 }
fa9c0d79 7493
2ff7e61e 7494 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7495 search_start = max(search_start, hint_byte);
2552d17e 7496 if (search_start == hint_byte) {
0b246afa 7497 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7498 /*
7499 * we don't want to use the block group if it doesn't match our
7500 * allocation bits, or if its not cached.
ccf0e725
JB
7501 *
7502 * However if we are re-searching with an ideal block group
7503 * picked out then we don't care that the block group is cached.
817d52f8 7504 */
b6919a58 7505 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7506 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7507 down_read(&space_info->groups_sem);
44fb5511
CM
7508 if (list_empty(&block_group->list) ||
7509 block_group->ro) {
7510 /*
7511 * someone is removing this block group,
7512 * we can't jump into the have_block_group
7513 * target because our list pointers are not
7514 * valid
7515 */
7516 btrfs_put_block_group(block_group);
7517 up_read(&space_info->groups_sem);
ccf0e725 7518 } else {
b742bb82 7519 index = get_block_group_index(block_group);
e570fd27 7520 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7521 goto have_block_group;
ccf0e725 7522 }
2552d17e 7523 } else if (block_group) {
fa9c0d79 7524 btrfs_put_block_group(block_group);
2552d17e 7525 }
42e70e7a 7526 }
2552d17e 7527search:
60d2adbb 7528 have_caching_bg = false;
a5e681d9
JB
7529 if (index == 0 || index == __get_raid_index(flags))
7530 full_search = true;
80eb234a 7531 down_read(&space_info->groups_sem);
b742bb82
YZ
7532 list_for_each_entry(block_group, &space_info->block_groups[index],
7533 list) {
6226cb0a 7534 u64 offset;
817d52f8 7535 int cached;
8a1413a2 7536
e570fd27 7537 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7538 search_start = block_group->key.objectid;
42e70e7a 7539
83a50de9
CM
7540 /*
7541 * this can happen if we end up cycling through all the
7542 * raid types, but we want to make sure we only allocate
7543 * for the proper type.
7544 */
b6919a58 7545 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7546 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7547 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7548 BTRFS_BLOCK_GROUP_RAID5 |
7549 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7550 BTRFS_BLOCK_GROUP_RAID10;
7551
7552 /*
7553 * if they asked for extra copies and this block group
7554 * doesn't provide them, bail. This does allow us to
7555 * fill raid0 from raid1.
7556 */
b6919a58 7557 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7558 goto loop;
7559 }
7560
2552d17e 7561have_block_group:
291c7d2f
JB
7562 cached = block_group_cache_done(block_group);
7563 if (unlikely(!cached)) {
a5e681d9 7564 have_caching_bg = true;
f6373bf3 7565 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7566 BUG_ON(ret < 0);
7567 ret = 0;
817d52f8
JB
7568 }
7569
36cce922
JB
7570 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7571 goto loop;
ea6a478e 7572 if (unlikely(block_group->ro))
2552d17e 7573 goto loop;
0f9dd46c 7574
0a24325e 7575 /*
062c05c4
AO
7576 * Ok we want to try and use the cluster allocator, so
7577 * lets look there
0a24325e 7578 */
c759c4e1 7579 if (last_ptr && use_cluster) {
215a63d1 7580 struct btrfs_block_group_cache *used_block_group;
8de972b4 7581 unsigned long aligned_cluster;
fa9c0d79
CM
7582 /*
7583 * the refill lock keeps out other
7584 * people trying to start a new cluster
7585 */
e570fd27
MX
7586 used_block_group = btrfs_lock_cluster(block_group,
7587 last_ptr,
7588 delalloc);
7589 if (!used_block_group)
44fb5511 7590 goto refill_cluster;
274bd4fb 7591
e570fd27
MX
7592 if (used_block_group != block_group &&
7593 (used_block_group->ro ||
7594 !block_group_bits(used_block_group, flags)))
7595 goto release_cluster;
44fb5511 7596
274bd4fb 7597 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7598 last_ptr,
7599 num_bytes,
7600 used_block_group->key.objectid,
7601 &max_extent_size);
fa9c0d79
CM
7602 if (offset) {
7603 /* we have a block, we're done */
7604 spin_unlock(&last_ptr->refill_lock);
71ff6437 7605 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7606 used_block_group,
7607 search_start, num_bytes);
215a63d1 7608 if (used_block_group != block_group) {
e570fd27
MX
7609 btrfs_release_block_group(block_group,
7610 delalloc);
215a63d1
MX
7611 block_group = used_block_group;
7612 }
fa9c0d79
CM
7613 goto checks;
7614 }
7615
274bd4fb 7616 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7617release_cluster:
062c05c4
AO
7618 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7619 * set up a new clusters, so lets just skip it
7620 * and let the allocator find whatever block
7621 * it can find. If we reach this point, we
7622 * will have tried the cluster allocator
7623 * plenty of times and not have found
7624 * anything, so we are likely way too
7625 * fragmented for the clustering stuff to find
a5f6f719
AO
7626 * anything.
7627 *
7628 * However, if the cluster is taken from the
7629 * current block group, release the cluster
7630 * first, so that we stand a better chance of
7631 * succeeding in the unclustered
7632 * allocation. */
7633 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7634 used_block_group != block_group) {
062c05c4 7635 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7636 btrfs_release_block_group(used_block_group,
7637 delalloc);
062c05c4
AO
7638 goto unclustered_alloc;
7639 }
7640
fa9c0d79
CM
7641 /*
7642 * this cluster didn't work out, free it and
7643 * start over
7644 */
7645 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7646
e570fd27
MX
7647 if (used_block_group != block_group)
7648 btrfs_release_block_group(used_block_group,
7649 delalloc);
7650refill_cluster:
a5f6f719
AO
7651 if (loop >= LOOP_NO_EMPTY_SIZE) {
7652 spin_unlock(&last_ptr->refill_lock);
7653 goto unclustered_alloc;
7654 }
7655
8de972b4
CM
7656 aligned_cluster = max_t(unsigned long,
7657 empty_cluster + empty_size,
7658 block_group->full_stripe_len);
7659
fa9c0d79 7660 /* allocate a cluster in this block group */
2ff7e61e 7661 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7662 last_ptr, search_start,
7663 num_bytes,
7664 aligned_cluster);
fa9c0d79
CM
7665 if (ret == 0) {
7666 /*
7667 * now pull our allocation out of this
7668 * cluster
7669 */
7670 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7671 last_ptr,
7672 num_bytes,
7673 search_start,
7674 &max_extent_size);
fa9c0d79
CM
7675 if (offset) {
7676 /* we found one, proceed */
7677 spin_unlock(&last_ptr->refill_lock);
71ff6437 7678 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7679 block_group, search_start,
7680 num_bytes);
fa9c0d79
CM
7681 goto checks;
7682 }
0a24325e
JB
7683 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7684 && !failed_cluster_refill) {
817d52f8
JB
7685 spin_unlock(&last_ptr->refill_lock);
7686
0a24325e 7687 failed_cluster_refill = true;
817d52f8
JB
7688 wait_block_group_cache_progress(block_group,
7689 num_bytes + empty_cluster + empty_size);
7690 goto have_block_group;
fa9c0d79 7691 }
817d52f8 7692
fa9c0d79
CM
7693 /*
7694 * at this point we either didn't find a cluster
7695 * or we weren't able to allocate a block from our
7696 * cluster. Free the cluster we've been trying
7697 * to use, and go to the next block group
7698 */
0a24325e 7699 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7700 spin_unlock(&last_ptr->refill_lock);
0a24325e 7701 goto loop;
fa9c0d79
CM
7702 }
7703
062c05c4 7704unclustered_alloc:
c759c4e1
JB
7705 /*
7706 * We are doing an unclustered alloc, set the fragmented flag so
7707 * we don't bother trying to setup a cluster again until we get
7708 * more space.
7709 */
7710 if (unlikely(last_ptr)) {
7711 spin_lock(&last_ptr->lock);
7712 last_ptr->fragmented = 1;
7713 spin_unlock(&last_ptr->lock);
7714 }
0c9b36e0
LB
7715 if (cached) {
7716 struct btrfs_free_space_ctl *ctl =
7717 block_group->free_space_ctl;
7718
7719 spin_lock(&ctl->tree_lock);
7720 if (ctl->free_space <
7721 num_bytes + empty_cluster + empty_size) {
7722 if (ctl->free_space > max_extent_size)
7723 max_extent_size = ctl->free_space;
7724 spin_unlock(&ctl->tree_lock);
7725 goto loop;
7726 }
7727 spin_unlock(&ctl->tree_lock);
a5f6f719 7728 }
a5f6f719 7729
6226cb0a 7730 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7731 num_bytes, empty_size,
7732 &max_extent_size);
1cdda9b8
JB
7733 /*
7734 * If we didn't find a chunk, and we haven't failed on this
7735 * block group before, and this block group is in the middle of
7736 * caching and we are ok with waiting, then go ahead and wait
7737 * for progress to be made, and set failed_alloc to true.
7738 *
7739 * If failed_alloc is true then we've already waited on this
7740 * block group once and should move on to the next block group.
7741 */
7742 if (!offset && !failed_alloc && !cached &&
7743 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7744 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7745 num_bytes + empty_size);
7746 failed_alloc = true;
817d52f8 7747 goto have_block_group;
1cdda9b8
JB
7748 } else if (!offset) {
7749 goto loop;
817d52f8 7750 }
fa9c0d79 7751checks:
0b246afa 7752 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7753
2552d17e
JB
7754 /* move on to the next group */
7755 if (search_start + num_bytes >
215a63d1
MX
7756 block_group->key.objectid + block_group->key.offset) {
7757 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7758 goto loop;
6226cb0a 7759 }
f5a31e16 7760
f0486c68 7761 if (offset < search_start)
215a63d1 7762 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7763 search_start - offset);
7764 BUG_ON(offset > search_start);
2552d17e 7765
18513091
WX
7766 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7767 num_bytes, delalloc);
f0486c68 7768 if (ret == -EAGAIN) {
215a63d1 7769 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7770 goto loop;
0f9dd46c 7771 }
9cfa3e34 7772 btrfs_inc_block_group_reservations(block_group);
0b86a832 7773
f0486c68 7774 /* we are all good, lets return */
2552d17e
JB
7775 ins->objectid = search_start;
7776 ins->offset = num_bytes;
d2fb3437 7777
71ff6437 7778 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7779 search_start, num_bytes);
e570fd27 7780 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7781 break;
7782loop:
0a24325e 7783 failed_cluster_refill = false;
1cdda9b8 7784 failed_alloc = false;
b742bb82 7785 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7786 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7787 }
7788 up_read(&space_info->groups_sem);
7789
13a0db5a 7790 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7791 && !orig_have_caching_bg)
7792 orig_have_caching_bg = true;
7793
60d2adbb
MX
7794 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7795 goto search;
7796
b742bb82
YZ
7797 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7798 goto search;
7799
285ff5af 7800 /*
ccf0e725
JB
7801 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802 * caching kthreads as we move along
817d52f8
JB
7803 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806 * again
fa9c0d79 7807 */
723bda20 7808 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7809 index = 0;
a5e681d9
JB
7810 if (loop == LOOP_CACHING_NOWAIT) {
7811 /*
7812 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7813 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7814 * full search through.
7815 */
13a0db5a 7816 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7817 loop = LOOP_CACHING_WAIT;
7818 else
7819 loop = LOOP_ALLOC_CHUNK;
7820 } else {
7821 loop++;
7822 }
7823
817d52f8 7824 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7825 struct btrfs_trans_handle *trans;
f017f15f
WS
7826 int exist = 0;
7827
7828 trans = current->journal_info;
7829 if (trans)
7830 exist = 1;
7831 else
7832 trans = btrfs_join_transaction(root);
00361589 7833
00361589
JB
7834 if (IS_ERR(trans)) {
7835 ret = PTR_ERR(trans);
7836 goto out;
7837 }
7838
2ff7e61e 7839 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7840 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7841
7842 /*
7843 * If we can't allocate a new chunk we've already looped
7844 * through at least once, move on to the NO_EMPTY_SIZE
7845 * case.
7846 */
7847 if (ret == -ENOSPC)
7848 loop = LOOP_NO_EMPTY_SIZE;
7849
ea658bad
JB
7850 /*
7851 * Do not bail out on ENOSPC since we
7852 * can do more things.
7853 */
00361589 7854 if (ret < 0 && ret != -ENOSPC)
66642832 7855 btrfs_abort_transaction(trans, ret);
00361589
JB
7856 else
7857 ret = 0;
f017f15f 7858 if (!exist)
3a45bb20 7859 btrfs_end_transaction(trans);
00361589 7860 if (ret)
ea658bad 7861 goto out;
2552d17e
JB
7862 }
7863
723bda20 7864 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7865 /*
7866 * Don't loop again if we already have no empty_size and
7867 * no empty_cluster.
7868 */
7869 if (empty_size == 0 &&
7870 empty_cluster == 0) {
7871 ret = -ENOSPC;
7872 goto out;
7873 }
723bda20
JB
7874 empty_size = 0;
7875 empty_cluster = 0;
fa9c0d79 7876 }
723bda20
JB
7877
7878 goto search;
2552d17e
JB
7879 } else if (!ins->objectid) {
7880 ret = -ENOSPC;
d82a6f1d 7881 } else if (ins->objectid) {
c759c4e1
JB
7882 if (!use_cluster && last_ptr) {
7883 spin_lock(&last_ptr->lock);
7884 last_ptr->window_start = ins->objectid;
7885 spin_unlock(&last_ptr->lock);
7886 }
80eb234a 7887 ret = 0;
be744175 7888 }
79787eaa 7889out:
4f4db217
JB
7890 if (ret == -ENOSPC) {
7891 spin_lock(&space_info->lock);
7892 space_info->max_extent_size = max_extent_size;
7893 spin_unlock(&space_info->lock);
a4820398 7894 ins->offset = max_extent_size;
4f4db217 7895 }
0f70abe2 7896 return ret;
fec577fb 7897}
ec44a35c 7898
ab8d0fc4
JM
7899static void dump_space_info(struct btrfs_fs_info *fs_info,
7900 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7901 int dump_block_groups)
0f9dd46c
JB
7902{
7903 struct btrfs_block_group_cache *cache;
b742bb82 7904 int index = 0;
0f9dd46c 7905
9ed74f2d 7906 spin_lock(&info->lock);
ab8d0fc4
JM
7907 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7908 info->flags,
4136135b
LB
7909 info->total_bytes - btrfs_space_info_used(info, true),
7910 info->full ? "" : "not ");
ab8d0fc4
JM
7911 btrfs_info(fs_info,
7912 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7913 info->total_bytes, info->bytes_used, info->bytes_pinned,
7914 info->bytes_reserved, info->bytes_may_use,
7915 info->bytes_readonly);
9ed74f2d
JB
7916 spin_unlock(&info->lock);
7917
7918 if (!dump_block_groups)
7919 return;
0f9dd46c 7920
80eb234a 7921 down_read(&info->groups_sem);
b742bb82
YZ
7922again:
7923 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7924 spin_lock(&cache->lock);
ab8d0fc4
JM
7925 btrfs_info(fs_info,
7926 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7927 cache->key.objectid, cache->key.offset,
7928 btrfs_block_group_used(&cache->item), cache->pinned,
7929 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7930 btrfs_dump_free_space(cache, bytes);
7931 spin_unlock(&cache->lock);
7932 }
b742bb82
YZ
7933 if (++index < BTRFS_NR_RAID_TYPES)
7934 goto again;
80eb234a 7935 up_read(&info->groups_sem);
0f9dd46c 7936}
e8569813 7937
18513091 7938int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7939 u64 num_bytes, u64 min_alloc_size,
7940 u64 empty_size, u64 hint_byte,
e570fd27 7941 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7942{
ab8d0fc4 7943 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7944 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7945 u64 flags;
fec577fb 7946 int ret;
925baedd 7947
b6919a58 7948 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7949again:
0b246afa 7950 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7951 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7952 hint_byte, ins, flags, delalloc);
9cfa3e34 7953 if (!ret && !is_data) {
ab8d0fc4 7954 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7955 } else if (ret == -ENOSPC) {
a4820398
MX
7956 if (!final_tried && ins->offset) {
7957 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7958 num_bytes = round_down(num_bytes,
0b246afa 7959 fs_info->sectorsize);
9e622d6b 7960 num_bytes = max(num_bytes, min_alloc_size);
18513091 7961 ram_bytes = num_bytes;
9e622d6b
MX
7962 if (num_bytes == min_alloc_size)
7963 final_tried = true;
7964 goto again;
ab8d0fc4 7965 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7966 struct btrfs_space_info *sinfo;
7967
ab8d0fc4 7968 sinfo = __find_space_info(fs_info, flags);
0b246afa 7969 btrfs_err(fs_info,
5d163e0e
JM
7970 "allocation failed flags %llu, wanted %llu",
7971 flags, num_bytes);
53804280 7972 if (sinfo)
ab8d0fc4 7973 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7974 }
925baedd 7975 }
0f9dd46c
JB
7976
7977 return ret;
e6dcd2dc
CM
7978}
7979
2ff7e61e 7980static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7981 u64 start, u64 len,
7982 int pin, int delalloc)
65b51a00 7983{
0f9dd46c 7984 struct btrfs_block_group_cache *cache;
1f3c79a2 7985 int ret = 0;
0f9dd46c 7986
0b246afa 7987 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7988 if (!cache) {
0b246afa
JM
7989 btrfs_err(fs_info, "Unable to find block group for %llu",
7990 start);
0f9dd46c
JB
7991 return -ENOSPC;
7992 }
1f3c79a2 7993
e688b725 7994 if (pin)
2ff7e61e 7995 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 7996 else {
0b246afa 7997 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 7998 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 7999 btrfs_add_free_space(cache, start, len);
4824f1f4 8000 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8001 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8002 }
31193213 8003
fa9c0d79 8004 btrfs_put_block_group(cache);
e6dcd2dc
CM
8005 return ret;
8006}
8007
2ff7e61e 8008int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8009 u64 start, u64 len, int delalloc)
e688b725 8010{
2ff7e61e 8011 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8012}
8013
2ff7e61e 8014int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8015 u64 start, u64 len)
8016{
2ff7e61e 8017 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8018}
8019
5d4f98a2 8020static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8021 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8022 u64 parent, u64 root_objectid,
8023 u64 flags, u64 owner, u64 offset,
8024 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8025{
8026 int ret;
e6dcd2dc 8027 struct btrfs_extent_item *extent_item;
5d4f98a2 8028 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8029 struct btrfs_path *path;
5d4f98a2
YZ
8030 struct extent_buffer *leaf;
8031 int type;
8032 u32 size;
26b8003f 8033
5d4f98a2
YZ
8034 if (parent > 0)
8035 type = BTRFS_SHARED_DATA_REF_KEY;
8036 else
8037 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8038
5d4f98a2 8039 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8040
8041 path = btrfs_alloc_path();
db5b493a
TI
8042 if (!path)
8043 return -ENOMEM;
47e4bb98 8044
b9473439 8045 path->leave_spinning = 1;
5d4f98a2
YZ
8046 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8047 ins, size);
79787eaa
JM
8048 if (ret) {
8049 btrfs_free_path(path);
8050 return ret;
8051 }
0f9dd46c 8052
5d4f98a2
YZ
8053 leaf = path->nodes[0];
8054 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8055 struct btrfs_extent_item);
5d4f98a2
YZ
8056 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8057 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8058 btrfs_set_extent_flags(leaf, extent_item,
8059 flags | BTRFS_EXTENT_FLAG_DATA);
8060
8061 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8062 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8063 if (parent > 0) {
8064 struct btrfs_shared_data_ref *ref;
8065 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8066 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8067 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8068 } else {
8069 struct btrfs_extent_data_ref *ref;
8070 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8071 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8072 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8073 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8074 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8075 }
47e4bb98
CM
8076
8077 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8078 btrfs_free_path(path);
f510cfec 8079
1e144fb8
OS
8080 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8081 ins->offset);
8082 if (ret)
8083 return ret;
8084
6202df69 8085 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8086 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8087 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8088 ins->objectid, ins->offset);
f5947066
CM
8089 BUG();
8090 }
71ff6437 8091 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8092 return ret;
8093}
8094
5d4f98a2 8095static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8096 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8097 u64 parent, u64 root_objectid,
8098 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8099 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8100{
8101 int ret;
5d4f98a2
YZ
8102 struct btrfs_extent_item *extent_item;
8103 struct btrfs_tree_block_info *block_info;
8104 struct btrfs_extent_inline_ref *iref;
8105 struct btrfs_path *path;
8106 struct extent_buffer *leaf;
3173a18f 8107 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8108 u64 num_bytes = ins->offset;
0b246afa 8109 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8110
8111 if (!skinny_metadata)
8112 size += sizeof(*block_info);
1c2308f8 8113
5d4f98a2 8114 path = btrfs_alloc_path();
857cc2fc 8115 if (!path) {
2ff7e61e 8116 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8117 fs_info->nodesize);
d8926bb3 8118 return -ENOMEM;
857cc2fc 8119 }
56bec294 8120
5d4f98a2
YZ
8121 path->leave_spinning = 1;
8122 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8123 ins, size);
79787eaa 8124 if (ret) {
dd825259 8125 btrfs_free_path(path);
2ff7e61e 8126 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8127 fs_info->nodesize);
79787eaa
JM
8128 return ret;
8129 }
5d4f98a2
YZ
8130
8131 leaf = path->nodes[0];
8132 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8133 struct btrfs_extent_item);
8134 btrfs_set_extent_refs(leaf, extent_item, 1);
8135 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8136 btrfs_set_extent_flags(leaf, extent_item,
8137 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8138
3173a18f
JB
8139 if (skinny_metadata) {
8140 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8141 num_bytes = fs_info->nodesize;
3173a18f
JB
8142 } else {
8143 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8144 btrfs_set_tree_block_key(leaf, block_info, key);
8145 btrfs_set_tree_block_level(leaf, block_info, level);
8146 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8147 }
5d4f98a2 8148
5d4f98a2
YZ
8149 if (parent > 0) {
8150 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8151 btrfs_set_extent_inline_ref_type(leaf, iref,
8152 BTRFS_SHARED_BLOCK_REF_KEY);
8153 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8154 } else {
8155 btrfs_set_extent_inline_ref_type(leaf, iref,
8156 BTRFS_TREE_BLOCK_REF_KEY);
8157 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8158 }
8159
8160 btrfs_mark_buffer_dirty(leaf);
8161 btrfs_free_path(path);
8162
1e144fb8
OS
8163 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8164 num_bytes);
8165 if (ret)
8166 return ret;
8167
6202df69
JM
8168 ret = update_block_group(trans, fs_info, ins->objectid,
8169 fs_info->nodesize, 1);
79787eaa 8170 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8171 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8172 ins->objectid, ins->offset);
5d4f98a2
YZ
8173 BUG();
8174 }
0be5dc67 8175
71ff6437 8176 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8177 fs_info->nodesize);
5d4f98a2
YZ
8178 return ret;
8179}
8180
8181int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2 8182 u64 root_objectid, u64 owner,
5846a3c2
QW
8183 u64 offset, u64 ram_bytes,
8184 struct btrfs_key *ins)
5d4f98a2 8185{
2ff7e61e 8186 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
8187 int ret;
8188
8189 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8190
0b246afa 8191 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
66d7e7f0
AJ
8192 ins->offset, 0,
8193 root_objectid, owner, offset,
fef394f7 8194 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
e6dcd2dc
CM
8195 return ret;
8196}
e02119d5
CM
8197
8198/*
8199 * this is used by the tree logging recovery code. It records that
8200 * an extent has been allocated and makes sure to clear the free
8201 * space cache bits as well
8202 */
5d4f98a2 8203int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8204 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8205 u64 root_objectid, u64 owner, u64 offset,
8206 struct btrfs_key *ins)
e02119d5
CM
8207{
8208 int ret;
8209 struct btrfs_block_group_cache *block_group;
ed7a6948 8210 struct btrfs_space_info *space_info;
11833d66 8211
8c2a1a30
JB
8212 /*
8213 * Mixed block groups will exclude before processing the log so we only
01327610 8214 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8215 */
0b246afa 8216 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8217 ret = __exclude_logged_extent(fs_info, ins->objectid,
8218 ins->offset);
b50c6e25 8219 if (ret)
8c2a1a30 8220 return ret;
11833d66
YZ
8221 }
8222
0b246afa 8223 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8224 if (!block_group)
8225 return -EINVAL;
8226
ed7a6948
WX
8227 space_info = block_group->space_info;
8228 spin_lock(&space_info->lock);
8229 spin_lock(&block_group->lock);
8230 space_info->bytes_reserved += ins->offset;
8231 block_group->reserved += ins->offset;
8232 spin_unlock(&block_group->lock);
8233 spin_unlock(&space_info->lock);
8234
2ff7e61e 8235 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8236 0, owner, offset, ins, 1);
b50c6e25 8237 btrfs_put_block_group(block_group);
e02119d5
CM
8238 return ret;
8239}
8240
48a3b636
ES
8241static struct extent_buffer *
8242btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8243 u64 bytenr, int level)
65b51a00 8244{
0b246afa 8245 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8246 struct extent_buffer *buf;
8247
2ff7e61e 8248 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8249 if (IS_ERR(buf))
8250 return buf;
8251
65b51a00 8252 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8253 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8254 btrfs_tree_lock(buf);
7c302b49 8255 clean_tree_block(fs_info, buf);
3083ee2e 8256 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8257
8258 btrfs_set_lock_blocking(buf);
4db8c528 8259 set_extent_buffer_uptodate(buf);
b4ce94de 8260
d0c803c4 8261 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8262 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8263 /*
8264 * we allow two log transactions at a time, use different
8265 * EXENT bit to differentiate dirty pages.
8266 */
656f30db 8267 if (buf->log_index == 0)
8cef4e16
YZ
8268 set_extent_dirty(&root->dirty_log_pages, buf->start,
8269 buf->start + buf->len - 1, GFP_NOFS);
8270 else
8271 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8272 buf->start + buf->len - 1);
d0c803c4 8273 } else {
656f30db 8274 buf->log_index = -1;
d0c803c4 8275 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8276 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8277 }
64c12921 8278 trans->dirty = true;
b4ce94de 8279 /* this returns a buffer locked for blocking */
65b51a00
CM
8280 return buf;
8281}
8282
f0486c68
YZ
8283static struct btrfs_block_rsv *
8284use_block_rsv(struct btrfs_trans_handle *trans,
8285 struct btrfs_root *root, u32 blocksize)
8286{
0b246afa 8287 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8288 struct btrfs_block_rsv *block_rsv;
0b246afa 8289 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8290 int ret;
d88033db 8291 bool global_updated = false;
f0486c68
YZ
8292
8293 block_rsv = get_block_rsv(trans, root);
8294
b586b323
MX
8295 if (unlikely(block_rsv->size == 0))
8296 goto try_reserve;
d88033db 8297again:
f0486c68
YZ
8298 ret = block_rsv_use_bytes(block_rsv, blocksize);
8299 if (!ret)
8300 return block_rsv;
8301
b586b323
MX
8302 if (block_rsv->failfast)
8303 return ERR_PTR(ret);
8304
d88033db
MX
8305 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8306 global_updated = true;
0b246afa 8307 update_global_block_rsv(fs_info);
d88033db
MX
8308 goto again;
8309 }
8310
0b246afa 8311 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8312 static DEFINE_RATELIMIT_STATE(_rs,
8313 DEFAULT_RATELIMIT_INTERVAL * 10,
8314 /*DEFAULT_RATELIMIT_BURST*/ 1);
8315 if (__ratelimit(&_rs))
8316 WARN(1, KERN_DEBUG
efe120a0 8317 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8318 }
8319try_reserve:
8320 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8321 BTRFS_RESERVE_NO_FLUSH);
8322 if (!ret)
8323 return block_rsv;
8324 /*
8325 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8326 * the global reserve if its space type is the same as the global
8327 * reservation.
b586b323 8328 */
5881cfc9
MX
8329 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8330 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8331 ret = block_rsv_use_bytes(global_rsv, blocksize);
8332 if (!ret)
8333 return global_rsv;
8334 }
8335 return ERR_PTR(ret);
f0486c68
YZ
8336}
8337
8c2a3ca2
JB
8338static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8339 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8340{
8341 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8343}
8344
fec577fb 8345/*
f0486c68 8346 * finds a free extent and does all the dirty work required for allocation
67b7859e 8347 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8348 */
4d75f8a9 8349struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8350 struct btrfs_root *root,
8351 u64 parent, u64 root_objectid,
8352 const struct btrfs_disk_key *key,
8353 int level, u64 hint,
8354 u64 empty_size)
fec577fb 8355{
0b246afa 8356 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8357 struct btrfs_key ins;
f0486c68 8358 struct btrfs_block_rsv *block_rsv;
5f39d397 8359 struct extent_buffer *buf;
67b7859e 8360 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8361 u64 flags = 0;
8362 int ret;
0b246afa
JM
8363 u32 blocksize = fs_info->nodesize;
8364 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8365
05653ef3 8366#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8367 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8368 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8369 level);
faa2dbf0
JB
8370 if (!IS_ERR(buf))
8371 root->alloc_bytenr += blocksize;
8372 return buf;
8373 }
05653ef3 8374#endif
fccb84c9 8375
f0486c68
YZ
8376 block_rsv = use_block_rsv(trans, root, blocksize);
8377 if (IS_ERR(block_rsv))
8378 return ERR_CAST(block_rsv);
8379
18513091 8380 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8381 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8382 if (ret)
8383 goto out_unuse;
55c69072 8384
fe864576 8385 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8386 if (IS_ERR(buf)) {
8387 ret = PTR_ERR(buf);
8388 goto out_free_reserved;
8389 }
f0486c68
YZ
8390
8391 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8392 if (parent == 0)
8393 parent = ins.objectid;
8394 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8395 } else
8396 BUG_ON(parent > 0);
8397
8398 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8399 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8400 if (!extent_op) {
8401 ret = -ENOMEM;
8402 goto out_free_buf;
8403 }
f0486c68
YZ
8404 if (key)
8405 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8406 else
8407 memset(&extent_op->key, 0, sizeof(extent_op->key));
8408 extent_op->flags_to_set = flags;
35b3ad50
DS
8409 extent_op->update_key = skinny_metadata ? false : true;
8410 extent_op->update_flags = true;
8411 extent_op->is_data = false;
b1c79e09 8412 extent_op->level = level;
f0486c68 8413
0b246afa 8414 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
67b7859e
OS
8415 ins.objectid, ins.offset,
8416 parent, root_objectid, level,
8417 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8418 extent_op);
67b7859e
OS
8419 if (ret)
8420 goto out_free_delayed;
f0486c68 8421 }
fec577fb 8422 return buf;
67b7859e
OS
8423
8424out_free_delayed:
8425 btrfs_free_delayed_extent_op(extent_op);
8426out_free_buf:
8427 free_extent_buffer(buf);
8428out_free_reserved:
2ff7e61e 8429 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8430out_unuse:
0b246afa 8431 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8432 return ERR_PTR(ret);
fec577fb 8433}
a28ec197 8434
2c47e605
YZ
8435struct walk_control {
8436 u64 refs[BTRFS_MAX_LEVEL];
8437 u64 flags[BTRFS_MAX_LEVEL];
8438 struct btrfs_key update_progress;
8439 int stage;
8440 int level;
8441 int shared_level;
8442 int update_ref;
8443 int keep_locks;
1c4850e2
YZ
8444 int reada_slot;
8445 int reada_count;
66d7e7f0 8446 int for_reloc;
2c47e605
YZ
8447};
8448
8449#define DROP_REFERENCE 1
8450#define UPDATE_BACKREF 2
8451
1c4850e2
YZ
8452static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8453 struct btrfs_root *root,
8454 struct walk_control *wc,
8455 struct btrfs_path *path)
6407bf6d 8456{
0b246afa 8457 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8458 u64 bytenr;
8459 u64 generation;
8460 u64 refs;
94fcca9f 8461 u64 flags;
5d4f98a2 8462 u32 nritems;
1c4850e2
YZ
8463 struct btrfs_key key;
8464 struct extent_buffer *eb;
6407bf6d 8465 int ret;
1c4850e2
YZ
8466 int slot;
8467 int nread = 0;
6407bf6d 8468
1c4850e2
YZ
8469 if (path->slots[wc->level] < wc->reada_slot) {
8470 wc->reada_count = wc->reada_count * 2 / 3;
8471 wc->reada_count = max(wc->reada_count, 2);
8472 } else {
8473 wc->reada_count = wc->reada_count * 3 / 2;
8474 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8475 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8476 }
7bb86316 8477
1c4850e2
YZ
8478 eb = path->nodes[wc->level];
8479 nritems = btrfs_header_nritems(eb);
bd56b302 8480
1c4850e2
YZ
8481 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8482 if (nread >= wc->reada_count)
8483 break;
bd56b302 8484
2dd3e67b 8485 cond_resched();
1c4850e2
YZ
8486 bytenr = btrfs_node_blockptr(eb, slot);
8487 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8488
1c4850e2
YZ
8489 if (slot == path->slots[wc->level])
8490 goto reada;
5d4f98a2 8491
1c4850e2
YZ
8492 if (wc->stage == UPDATE_BACKREF &&
8493 generation <= root->root_key.offset)
bd56b302
CM
8494 continue;
8495
94fcca9f 8496 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8497 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8498 wc->level - 1, 1, &refs,
8499 &flags);
79787eaa
JM
8500 /* We don't care about errors in readahead. */
8501 if (ret < 0)
8502 continue;
94fcca9f
YZ
8503 BUG_ON(refs == 0);
8504
1c4850e2 8505 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8506 if (refs == 1)
8507 goto reada;
bd56b302 8508
94fcca9f
YZ
8509 if (wc->level == 1 &&
8510 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8511 continue;
1c4850e2
YZ
8512 if (!wc->update_ref ||
8513 generation <= root->root_key.offset)
8514 continue;
8515 btrfs_node_key_to_cpu(eb, &key, slot);
8516 ret = btrfs_comp_cpu_keys(&key,
8517 &wc->update_progress);
8518 if (ret < 0)
8519 continue;
94fcca9f
YZ
8520 } else {
8521 if (wc->level == 1 &&
8522 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 continue;
6407bf6d 8524 }
1c4850e2 8525reada:
2ff7e61e 8526 readahead_tree_block(fs_info, bytenr);
1c4850e2 8527 nread++;
20524f02 8528 }
1c4850e2 8529 wc->reada_slot = slot;
20524f02 8530}
2c47e605 8531
f82d02d9 8532/*
2c016dc2 8533 * helper to process tree block while walking down the tree.
2c47e605 8534 *
2c47e605
YZ
8535 * when wc->stage == UPDATE_BACKREF, this function updates
8536 * back refs for pointers in the block.
8537 *
8538 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8539 */
2c47e605 8540static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8541 struct btrfs_root *root,
2c47e605 8542 struct btrfs_path *path,
94fcca9f 8543 struct walk_control *wc, int lookup_info)
f82d02d9 8544{
2ff7e61e 8545 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8546 int level = wc->level;
8547 struct extent_buffer *eb = path->nodes[level];
2c47e605 8548 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8549 int ret;
8550
2c47e605
YZ
8551 if (wc->stage == UPDATE_BACKREF &&
8552 btrfs_header_owner(eb) != root->root_key.objectid)
8553 return 1;
f82d02d9 8554
2c47e605
YZ
8555 /*
8556 * when reference count of tree block is 1, it won't increase
8557 * again. once full backref flag is set, we never clear it.
8558 */
94fcca9f
YZ
8559 if (lookup_info &&
8560 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8561 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8562 BUG_ON(!path->locks[level]);
2ff7e61e 8563 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8564 eb->start, level, 1,
2c47e605
YZ
8565 &wc->refs[level],
8566 &wc->flags[level]);
79787eaa
JM
8567 BUG_ON(ret == -ENOMEM);
8568 if (ret)
8569 return ret;
2c47e605
YZ
8570 BUG_ON(wc->refs[level] == 0);
8571 }
5d4f98a2 8572
2c47e605
YZ
8573 if (wc->stage == DROP_REFERENCE) {
8574 if (wc->refs[level] > 1)
8575 return 1;
f82d02d9 8576
2c47e605 8577 if (path->locks[level] && !wc->keep_locks) {
bd681513 8578 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8579 path->locks[level] = 0;
8580 }
8581 return 0;
8582 }
f82d02d9 8583
2c47e605
YZ
8584 /* wc->stage == UPDATE_BACKREF */
8585 if (!(wc->flags[level] & flag)) {
8586 BUG_ON(!path->locks[level]);
e339a6b0 8587 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8588 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8589 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8590 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8591 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8592 eb->len, flag,
8593 btrfs_header_level(eb), 0);
79787eaa 8594 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8595 wc->flags[level] |= flag;
8596 }
8597
8598 /*
8599 * the block is shared by multiple trees, so it's not good to
8600 * keep the tree lock
8601 */
8602 if (path->locks[level] && level > 0) {
bd681513 8603 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8604 path->locks[level] = 0;
8605 }
8606 return 0;
8607}
8608
1c4850e2 8609/*
2c016dc2 8610 * helper to process tree block pointer.
1c4850e2
YZ
8611 *
8612 * when wc->stage == DROP_REFERENCE, this function checks
8613 * reference count of the block pointed to. if the block
8614 * is shared and we need update back refs for the subtree
8615 * rooted at the block, this function changes wc->stage to
8616 * UPDATE_BACKREF. if the block is shared and there is no
8617 * need to update back, this function drops the reference
8618 * to the block.
8619 *
8620 * NOTE: return value 1 means we should stop walking down.
8621 */
8622static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8623 struct btrfs_root *root,
8624 struct btrfs_path *path,
94fcca9f 8625 struct walk_control *wc, int *lookup_info)
1c4850e2 8626{
0b246afa 8627 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8628 u64 bytenr;
8629 u64 generation;
8630 u64 parent;
8631 u32 blocksize;
8632 struct btrfs_key key;
8633 struct extent_buffer *next;
8634 int level = wc->level;
8635 int reada = 0;
8636 int ret = 0;
1152651a 8637 bool need_account = false;
1c4850e2
YZ
8638
8639 generation = btrfs_node_ptr_generation(path->nodes[level],
8640 path->slots[level]);
8641 /*
8642 * if the lower level block was created before the snapshot
8643 * was created, we know there is no need to update back refs
8644 * for the subtree
8645 */
8646 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8647 generation <= root->root_key.offset) {
8648 *lookup_info = 1;
1c4850e2 8649 return 1;
94fcca9f 8650 }
1c4850e2
YZ
8651
8652 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8653 blocksize = fs_info->nodesize;
1c4850e2 8654
0b246afa 8655 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8656 if (!next) {
2ff7e61e 8657 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8658 if (IS_ERR(next))
8659 return PTR_ERR(next);
8660
b2aaaa3b
JB
8661 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8662 level - 1);
1c4850e2
YZ
8663 reada = 1;
8664 }
8665 btrfs_tree_lock(next);
8666 btrfs_set_lock_blocking(next);
8667
2ff7e61e 8668 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8669 &wc->refs[level - 1],
8670 &wc->flags[level - 1]);
4867268c
JB
8671 if (ret < 0)
8672 goto out_unlock;
79787eaa 8673
c2cf52eb 8674 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8675 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8676 ret = -EIO;
8677 goto out_unlock;
c2cf52eb 8678 }
94fcca9f 8679 *lookup_info = 0;
1c4850e2 8680
94fcca9f 8681 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8682 if (wc->refs[level - 1] > 1) {
1152651a 8683 need_account = true;
94fcca9f
YZ
8684 if (level == 1 &&
8685 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8686 goto skip;
8687
1c4850e2
YZ
8688 if (!wc->update_ref ||
8689 generation <= root->root_key.offset)
8690 goto skip;
8691
8692 btrfs_node_key_to_cpu(path->nodes[level], &key,
8693 path->slots[level]);
8694 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8695 if (ret < 0)
8696 goto skip;
8697
8698 wc->stage = UPDATE_BACKREF;
8699 wc->shared_level = level - 1;
8700 }
94fcca9f
YZ
8701 } else {
8702 if (level == 1 &&
8703 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8704 goto skip;
1c4850e2
YZ
8705 }
8706
b9fab919 8707 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8708 btrfs_tree_unlock(next);
8709 free_extent_buffer(next);
8710 next = NULL;
94fcca9f 8711 *lookup_info = 1;
1c4850e2
YZ
8712 }
8713
8714 if (!next) {
8715 if (reada && level == 1)
8716 reada_walk_down(trans, root, wc, path);
2ff7e61e 8717 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8718 if (IS_ERR(next)) {
8719 return PTR_ERR(next);
8720 } else if (!extent_buffer_uptodate(next)) {
416bc658 8721 free_extent_buffer(next);
97d9a8a4 8722 return -EIO;
416bc658 8723 }
1c4850e2
YZ
8724 btrfs_tree_lock(next);
8725 btrfs_set_lock_blocking(next);
8726 }
8727
8728 level--;
4867268c
JB
8729 ASSERT(level == btrfs_header_level(next));
8730 if (level != btrfs_header_level(next)) {
8731 btrfs_err(root->fs_info, "mismatched level");
8732 ret = -EIO;
8733 goto out_unlock;
8734 }
1c4850e2
YZ
8735 path->nodes[level] = next;
8736 path->slots[level] = 0;
bd681513 8737 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8738 wc->level = level;
8739 if (wc->level == 1)
8740 wc->reada_slot = 0;
8741 return 0;
8742skip:
8743 wc->refs[level - 1] = 0;
8744 wc->flags[level - 1] = 0;
94fcca9f
YZ
8745 if (wc->stage == DROP_REFERENCE) {
8746 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8747 parent = path->nodes[level]->start;
8748 } else {
4867268c 8749 ASSERT(root->root_key.objectid ==
94fcca9f 8750 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8751 if (root->root_key.objectid !=
8752 btrfs_header_owner(path->nodes[level])) {
8753 btrfs_err(root->fs_info,
8754 "mismatched block owner");
8755 ret = -EIO;
8756 goto out_unlock;
8757 }
94fcca9f
YZ
8758 parent = 0;
8759 }
1c4850e2 8760
1152651a 8761 if (need_account) {
33d1f05c
QW
8762 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8763 generation, level - 1);
1152651a 8764 if (ret) {
0b246afa 8765 btrfs_err_rl(fs_info,
5d163e0e
JM
8766 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8767 ret);
1152651a
MF
8768 }
8769 }
2ff7e61e
JM
8770 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8771 parent, root->root_key.objectid,
8772 level - 1, 0);
4867268c
JB
8773 if (ret)
8774 goto out_unlock;
1c4850e2 8775 }
4867268c
JB
8776
8777 *lookup_info = 1;
8778 ret = 1;
8779
8780out_unlock:
1c4850e2
YZ
8781 btrfs_tree_unlock(next);
8782 free_extent_buffer(next);
4867268c
JB
8783
8784 return ret;
1c4850e2
YZ
8785}
8786
2c47e605 8787/*
2c016dc2 8788 * helper to process tree block while walking up the tree.
2c47e605
YZ
8789 *
8790 * when wc->stage == DROP_REFERENCE, this function drops
8791 * reference count on the block.
8792 *
8793 * when wc->stage == UPDATE_BACKREF, this function changes
8794 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795 * to UPDATE_BACKREF previously while processing the block.
8796 *
8797 * NOTE: return value 1 means we should stop walking up.
8798 */
8799static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800 struct btrfs_root *root,
8801 struct btrfs_path *path,
8802 struct walk_control *wc)
8803{
0b246afa 8804 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8805 int ret;
2c47e605
YZ
8806 int level = wc->level;
8807 struct extent_buffer *eb = path->nodes[level];
8808 u64 parent = 0;
8809
8810 if (wc->stage == UPDATE_BACKREF) {
8811 BUG_ON(wc->shared_level < level);
8812 if (level < wc->shared_level)
8813 goto out;
8814
2c47e605
YZ
8815 ret = find_next_key(path, level + 1, &wc->update_progress);
8816 if (ret > 0)
8817 wc->update_ref = 0;
8818
8819 wc->stage = DROP_REFERENCE;
8820 wc->shared_level = -1;
8821 path->slots[level] = 0;
8822
8823 /*
8824 * check reference count again if the block isn't locked.
8825 * we should start walking down the tree again if reference
8826 * count is one.
8827 */
8828 if (!path->locks[level]) {
8829 BUG_ON(level == 0);
8830 btrfs_tree_lock(eb);
8831 btrfs_set_lock_blocking(eb);
bd681513 8832 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8833
2ff7e61e 8834 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8835 eb->start, level, 1,
2c47e605
YZ
8836 &wc->refs[level],
8837 &wc->flags[level]);
79787eaa
JM
8838 if (ret < 0) {
8839 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8840 path->locks[level] = 0;
79787eaa
JM
8841 return ret;
8842 }
2c47e605
YZ
8843 BUG_ON(wc->refs[level] == 0);
8844 if (wc->refs[level] == 1) {
bd681513 8845 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8846 path->locks[level] = 0;
2c47e605
YZ
8847 return 1;
8848 }
f82d02d9 8849 }
2c47e605 8850 }
f82d02d9 8851
2c47e605
YZ
8852 /* wc->stage == DROP_REFERENCE */
8853 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8854
2c47e605
YZ
8855 if (wc->refs[level] == 1) {
8856 if (level == 0) {
8857 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8858 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8859 else
e339a6b0 8860 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8861 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8862 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8863 if (ret) {
0b246afa 8864 btrfs_err_rl(fs_info,
5d163e0e
JM
8865 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8866 ret);
1152651a 8867 }
2c47e605
YZ
8868 }
8869 /* make block locked assertion in clean_tree_block happy */
8870 if (!path->locks[level] &&
8871 btrfs_header_generation(eb) == trans->transid) {
8872 btrfs_tree_lock(eb);
8873 btrfs_set_lock_blocking(eb);
bd681513 8874 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8875 }
7c302b49 8876 clean_tree_block(fs_info, eb);
2c47e605
YZ
8877 }
8878
8879 if (eb == root->node) {
8880 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8881 parent = eb->start;
8882 else
8883 BUG_ON(root->root_key.objectid !=
8884 btrfs_header_owner(eb));
8885 } else {
8886 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8887 parent = path->nodes[level + 1]->start;
8888 else
8889 BUG_ON(root->root_key.objectid !=
8890 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8891 }
f82d02d9 8892
5581a51a 8893 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8894out:
8895 wc->refs[level] = 0;
8896 wc->flags[level] = 0;
f0486c68 8897 return 0;
2c47e605
YZ
8898}
8899
8900static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8901 struct btrfs_root *root,
8902 struct btrfs_path *path,
8903 struct walk_control *wc)
8904{
2c47e605 8905 int level = wc->level;
94fcca9f 8906 int lookup_info = 1;
2c47e605
YZ
8907 int ret;
8908
8909 while (level >= 0) {
94fcca9f 8910 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8911 if (ret > 0)
8912 break;
8913
8914 if (level == 0)
8915 break;
8916
7a7965f8
YZ
8917 if (path->slots[level] >=
8918 btrfs_header_nritems(path->nodes[level]))
8919 break;
8920
94fcca9f 8921 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8922 if (ret > 0) {
8923 path->slots[level]++;
8924 continue;
90d2c51d
MX
8925 } else if (ret < 0)
8926 return ret;
1c4850e2 8927 level = wc->level;
f82d02d9 8928 }
f82d02d9
YZ
8929 return 0;
8930}
8931
d397712b 8932static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8933 struct btrfs_root *root,
f82d02d9 8934 struct btrfs_path *path,
2c47e605 8935 struct walk_control *wc, int max_level)
20524f02 8936{
2c47e605 8937 int level = wc->level;
20524f02 8938 int ret;
9f3a7427 8939
2c47e605
YZ
8940 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8941 while (level < max_level && path->nodes[level]) {
8942 wc->level = level;
8943 if (path->slots[level] + 1 <
8944 btrfs_header_nritems(path->nodes[level])) {
8945 path->slots[level]++;
20524f02
CM
8946 return 0;
8947 } else {
2c47e605
YZ
8948 ret = walk_up_proc(trans, root, path, wc);
8949 if (ret > 0)
8950 return 0;
bd56b302 8951
2c47e605 8952 if (path->locks[level]) {
bd681513
CM
8953 btrfs_tree_unlock_rw(path->nodes[level],
8954 path->locks[level]);
2c47e605 8955 path->locks[level] = 0;
f82d02d9 8956 }
2c47e605
YZ
8957 free_extent_buffer(path->nodes[level]);
8958 path->nodes[level] = NULL;
8959 level++;
20524f02
CM
8960 }
8961 }
8962 return 1;
8963}
8964
9aca1d51 8965/*
2c47e605
YZ
8966 * drop a subvolume tree.
8967 *
8968 * this function traverses the tree freeing any blocks that only
8969 * referenced by the tree.
8970 *
8971 * when a shared tree block is found. this function decreases its
8972 * reference count by one. if update_ref is true, this function
8973 * also make sure backrefs for the shared block and all lower level
8974 * blocks are properly updated.
9d1a2a3a
DS
8975 *
8976 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8977 */
2c536799 8978int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8979 struct btrfs_block_rsv *block_rsv, int update_ref,
8980 int for_reloc)
20524f02 8981{
ab8d0fc4 8982 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8983 struct btrfs_path *path;
2c47e605 8984 struct btrfs_trans_handle *trans;
ab8d0fc4 8985 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8986 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8987 struct walk_control *wc;
8988 struct btrfs_key key;
8989 int err = 0;
8990 int ret;
8991 int level;
d29a9f62 8992 bool root_dropped = false;
20524f02 8993
ab8d0fc4 8994 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 8995
5caf2a00 8996 path = btrfs_alloc_path();
cb1b69f4
TI
8997 if (!path) {
8998 err = -ENOMEM;
8999 goto out;
9000 }
20524f02 9001
2c47e605 9002 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9003 if (!wc) {
9004 btrfs_free_path(path);
cb1b69f4
TI
9005 err = -ENOMEM;
9006 goto out;
38a1a919 9007 }
2c47e605 9008
a22285a6 9009 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9010 if (IS_ERR(trans)) {
9011 err = PTR_ERR(trans);
9012 goto out_free;
9013 }
98d5dc13 9014
3fd0a558
YZ
9015 if (block_rsv)
9016 trans->block_rsv = block_rsv;
2c47e605 9017
9f3a7427 9018 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9019 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9020 path->nodes[level] = btrfs_lock_root_node(root);
9021 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9022 path->slots[level] = 0;
bd681513 9023 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9024 memset(&wc->update_progress, 0,
9025 sizeof(wc->update_progress));
9f3a7427 9026 } else {
9f3a7427 9027 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9028 memcpy(&wc->update_progress, &key,
9029 sizeof(wc->update_progress));
9030
6702ed49 9031 level = root_item->drop_level;
2c47e605 9032 BUG_ON(level == 0);
6702ed49 9033 path->lowest_level = level;
2c47e605
YZ
9034 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035 path->lowest_level = 0;
9036 if (ret < 0) {
9037 err = ret;
79787eaa 9038 goto out_end_trans;
9f3a7427 9039 }
1c4850e2 9040 WARN_ON(ret > 0);
2c47e605 9041
7d9eb12c
CM
9042 /*
9043 * unlock our path, this is safe because only this
9044 * function is allowed to delete this snapshot
9045 */
5d4f98a2 9046 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9047
9048 level = btrfs_header_level(root->node);
9049 while (1) {
9050 btrfs_tree_lock(path->nodes[level]);
9051 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9052 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9053
2ff7e61e 9054 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9055 path->nodes[level]->start,
3173a18f 9056 level, 1, &wc->refs[level],
2c47e605 9057 &wc->flags[level]);
79787eaa
JM
9058 if (ret < 0) {
9059 err = ret;
9060 goto out_end_trans;
9061 }
2c47e605
YZ
9062 BUG_ON(wc->refs[level] == 0);
9063
9064 if (level == root_item->drop_level)
9065 break;
9066
9067 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9068 path->locks[level] = 0;
2c47e605
YZ
9069 WARN_ON(wc->refs[level] != 1);
9070 level--;
9071 }
9f3a7427 9072 }
2c47e605
YZ
9073
9074 wc->level = level;
9075 wc->shared_level = -1;
9076 wc->stage = DROP_REFERENCE;
9077 wc->update_ref = update_ref;
9078 wc->keep_locks = 0;
66d7e7f0 9079 wc->for_reloc = for_reloc;
0b246afa 9080 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9081
d397712b 9082 while (1) {
9d1a2a3a 9083
2c47e605
YZ
9084 ret = walk_down_tree(trans, root, path, wc);
9085 if (ret < 0) {
9086 err = ret;
20524f02 9087 break;
2c47e605 9088 }
9aca1d51 9089
2c47e605
YZ
9090 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091 if (ret < 0) {
9092 err = ret;
20524f02 9093 break;
2c47e605
YZ
9094 }
9095
9096 if (ret > 0) {
9097 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9098 break;
9099 }
2c47e605
YZ
9100
9101 if (wc->stage == DROP_REFERENCE) {
9102 level = wc->level;
9103 btrfs_node_key(path->nodes[level],
9104 &root_item->drop_progress,
9105 path->slots[level]);
9106 root_item->drop_level = level;
9107 }
9108
9109 BUG_ON(wc->level == 0);
3a45bb20 9110 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9111 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9112 ret = btrfs_update_root(trans, tree_root,
9113 &root->root_key,
9114 root_item);
79787eaa 9115 if (ret) {
66642832 9116 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9117 err = ret;
9118 goto out_end_trans;
9119 }
2c47e605 9120
3a45bb20 9121 btrfs_end_transaction_throttle(trans);
2ff7e61e 9122 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9123 btrfs_debug(fs_info,
9124 "drop snapshot early exit");
3c8f2422
JB
9125 err = -EAGAIN;
9126 goto out_free;
9127 }
9128
a22285a6 9129 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9130 if (IS_ERR(trans)) {
9131 err = PTR_ERR(trans);
9132 goto out_free;
9133 }
3fd0a558
YZ
9134 if (block_rsv)
9135 trans->block_rsv = block_rsv;
c3e69d58 9136 }
20524f02 9137 }
b3b4aa74 9138 btrfs_release_path(path);
79787eaa
JM
9139 if (err)
9140 goto out_end_trans;
2c47e605
YZ
9141
9142 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9143 if (ret) {
66642832 9144 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9145 goto out_end_trans;
9146 }
2c47e605 9147
76dda93c 9148 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9149 ret = btrfs_find_root(tree_root, &root->root_key, path,
9150 NULL, NULL);
79787eaa 9151 if (ret < 0) {
66642832 9152 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9153 err = ret;
9154 goto out_end_trans;
9155 } else if (ret > 0) {
84cd948c
JB
9156 /* if we fail to delete the orphan item this time
9157 * around, it'll get picked up the next time.
9158 *
9159 * The most common failure here is just -ENOENT.
9160 */
9161 btrfs_del_orphan_item(trans, tree_root,
9162 root->root_key.objectid);
76dda93c
YZ
9163 }
9164 }
9165
27cdeb70 9166 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9167 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9168 } else {
9169 free_extent_buffer(root->node);
9170 free_extent_buffer(root->commit_root);
b0feb9d9 9171 btrfs_put_fs_root(root);
76dda93c 9172 }
d29a9f62 9173 root_dropped = true;
79787eaa 9174out_end_trans:
3a45bb20 9175 btrfs_end_transaction_throttle(trans);
79787eaa 9176out_free:
2c47e605 9177 kfree(wc);
5caf2a00 9178 btrfs_free_path(path);
cb1b69f4 9179out:
d29a9f62
JB
9180 /*
9181 * So if we need to stop dropping the snapshot for whatever reason we
9182 * need to make sure to add it back to the dead root list so that we
9183 * keep trying to do the work later. This also cleans up roots if we
9184 * don't have it in the radix (like when we recover after a power fail
9185 * or unmount) so we don't leak memory.
9186 */
b37b39cd 9187 if (!for_reloc && root_dropped == false)
d29a9f62 9188 btrfs_add_dead_root(root);
90515e7f 9189 if (err && err != -EAGAIN)
ab8d0fc4 9190 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9191 return err;
20524f02 9192}
9078a3e1 9193
2c47e605
YZ
9194/*
9195 * drop subtree rooted at tree block 'node'.
9196 *
9197 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9198 * only used by relocation code
2c47e605 9199 */
f82d02d9
YZ
9200int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9201 struct btrfs_root *root,
9202 struct extent_buffer *node,
9203 struct extent_buffer *parent)
9204{
0b246afa 9205 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9206 struct btrfs_path *path;
2c47e605 9207 struct walk_control *wc;
f82d02d9
YZ
9208 int level;
9209 int parent_level;
9210 int ret = 0;
9211 int wret;
9212
2c47e605
YZ
9213 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9214
f82d02d9 9215 path = btrfs_alloc_path();
db5b493a
TI
9216 if (!path)
9217 return -ENOMEM;
f82d02d9 9218
2c47e605 9219 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9220 if (!wc) {
9221 btrfs_free_path(path);
9222 return -ENOMEM;
9223 }
2c47e605 9224
b9447ef8 9225 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9226 parent_level = btrfs_header_level(parent);
9227 extent_buffer_get(parent);
9228 path->nodes[parent_level] = parent;
9229 path->slots[parent_level] = btrfs_header_nritems(parent);
9230
b9447ef8 9231 btrfs_assert_tree_locked(node);
f82d02d9 9232 level = btrfs_header_level(node);
f82d02d9
YZ
9233 path->nodes[level] = node;
9234 path->slots[level] = 0;
bd681513 9235 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9236
9237 wc->refs[parent_level] = 1;
9238 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9239 wc->level = level;
9240 wc->shared_level = -1;
9241 wc->stage = DROP_REFERENCE;
9242 wc->update_ref = 0;
9243 wc->keep_locks = 1;
66d7e7f0 9244 wc->for_reloc = 1;
0b246afa 9245 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9246
9247 while (1) {
2c47e605
YZ
9248 wret = walk_down_tree(trans, root, path, wc);
9249 if (wret < 0) {
f82d02d9 9250 ret = wret;
f82d02d9 9251 break;
2c47e605 9252 }
f82d02d9 9253
2c47e605 9254 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9255 if (wret < 0)
9256 ret = wret;
9257 if (wret != 0)
9258 break;
9259 }
9260
2c47e605 9261 kfree(wc);
f82d02d9
YZ
9262 btrfs_free_path(path);
9263 return ret;
9264}
9265
6202df69 9266static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9267{
9268 u64 num_devices;
fc67c450 9269 u64 stripped;
e4d8ec0f 9270
fc67c450
ID
9271 /*
9272 * if restripe for this chunk_type is on pick target profile and
9273 * return, otherwise do the usual balance
9274 */
6202df69 9275 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9276 if (stripped)
9277 return extended_to_chunk(stripped);
e4d8ec0f 9278
6202df69 9279 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9280
fc67c450 9281 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9282 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9283 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9284
ec44a35c
CM
9285 if (num_devices == 1) {
9286 stripped |= BTRFS_BLOCK_GROUP_DUP;
9287 stripped = flags & ~stripped;
9288
9289 /* turn raid0 into single device chunks */
9290 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9291 return stripped;
9292
9293 /* turn mirroring into duplication */
9294 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9295 BTRFS_BLOCK_GROUP_RAID10))
9296 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9297 } else {
9298 /* they already had raid on here, just return */
ec44a35c
CM
9299 if (flags & stripped)
9300 return flags;
9301
9302 stripped |= BTRFS_BLOCK_GROUP_DUP;
9303 stripped = flags & ~stripped;
9304
9305 /* switch duplicated blocks with raid1 */
9306 if (flags & BTRFS_BLOCK_GROUP_DUP)
9307 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9308
e3176ca2 9309 /* this is drive concat, leave it alone */
ec44a35c 9310 }
e3176ca2 9311
ec44a35c
CM
9312 return flags;
9313}
9314
868f401a 9315static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9316{
f0486c68
YZ
9317 struct btrfs_space_info *sinfo = cache->space_info;
9318 u64 num_bytes;
199c36ea 9319 u64 min_allocable_bytes;
f0486c68 9320 int ret = -ENOSPC;
0ef3e66b 9321
199c36ea
MX
9322 /*
9323 * We need some metadata space and system metadata space for
9324 * allocating chunks in some corner cases until we force to set
9325 * it to be readonly.
9326 */
9327 if ((sinfo->flags &
9328 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9329 !force)
ee22184b 9330 min_allocable_bytes = SZ_1M;
199c36ea
MX
9331 else
9332 min_allocable_bytes = 0;
9333
f0486c68
YZ
9334 spin_lock(&sinfo->lock);
9335 spin_lock(&cache->lock);
61cfea9b
W
9336
9337 if (cache->ro) {
868f401a 9338 cache->ro++;
61cfea9b
W
9339 ret = 0;
9340 goto out;
9341 }
9342
f0486c68
YZ
9343 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9344 cache->bytes_super - btrfs_block_group_used(&cache->item);
9345
4136135b 9346 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9347 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9348 sinfo->bytes_readonly += num_bytes;
868f401a 9349 cache->ro++;
633c0aad 9350 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9351 ret = 0;
9352 }
61cfea9b 9353out:
f0486c68
YZ
9354 spin_unlock(&cache->lock);
9355 spin_unlock(&sinfo->lock);
9356 return ret;
9357}
7d9eb12c 9358
5e00f193 9359int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9360 struct btrfs_block_group_cache *cache)
c286ac48 9361
f0486c68
YZ
9362{
9363 struct btrfs_trans_handle *trans;
9364 u64 alloc_flags;
9365 int ret;
7d9eb12c 9366
1bbc621e 9367again:
5e00f193 9368 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9369 if (IS_ERR(trans))
9370 return PTR_ERR(trans);
5d4f98a2 9371
1bbc621e
CM
9372 /*
9373 * we're not allowed to set block groups readonly after the dirty
9374 * block groups cache has started writing. If it already started,
9375 * back off and let this transaction commit
9376 */
0b246afa 9377 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9378 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9379 u64 transid = trans->transid;
9380
0b246afa 9381 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9382 btrfs_end_transaction(trans);
1bbc621e 9383
2ff7e61e 9384 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9385 if (ret)
9386 return ret;
9387 goto again;
9388 }
9389
153c35b6
CM
9390 /*
9391 * if we are changing raid levels, try to allocate a corresponding
9392 * block group with the new raid level.
9393 */
0b246afa 9394 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9395 if (alloc_flags != cache->flags) {
2ff7e61e 9396 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9397 CHUNK_ALLOC_FORCE);
9398 /*
9399 * ENOSPC is allowed here, we may have enough space
9400 * already allocated at the new raid level to
9401 * carry on
9402 */
9403 if (ret == -ENOSPC)
9404 ret = 0;
9405 if (ret < 0)
9406 goto out;
9407 }
1bbc621e 9408
868f401a 9409 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9410 if (!ret)
9411 goto out;
2ff7e61e
JM
9412 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9413 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9414 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9415 if (ret < 0)
9416 goto out;
868f401a 9417 ret = inc_block_group_ro(cache, 0);
f0486c68 9418out:
2f081088 9419 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9420 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9421 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9422 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9423 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9424 }
0b246afa 9425 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9426
3a45bb20 9427 btrfs_end_transaction(trans);
f0486c68
YZ
9428 return ret;
9429}
5d4f98a2 9430
c87f08ca 9431int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9432 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9433{
2ff7e61e
JM
9434 u64 alloc_flags = get_alloc_profile(fs_info, type);
9435
9436 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9437}
9438
6d07bcec
MX
9439/*
9440 * helper to account the unused space of all the readonly block group in the
633c0aad 9441 * space_info. takes mirrors into account.
6d07bcec 9442 */
633c0aad 9443u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9444{
9445 struct btrfs_block_group_cache *block_group;
9446 u64 free_bytes = 0;
9447 int factor;
9448
01327610 9449 /* It's df, we don't care if it's racy */
633c0aad
JB
9450 if (list_empty(&sinfo->ro_bgs))
9451 return 0;
9452
9453 spin_lock(&sinfo->lock);
9454 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9455 spin_lock(&block_group->lock);
9456
9457 if (!block_group->ro) {
9458 spin_unlock(&block_group->lock);
9459 continue;
9460 }
9461
9462 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9463 BTRFS_BLOCK_GROUP_RAID10 |
9464 BTRFS_BLOCK_GROUP_DUP))
9465 factor = 2;
9466 else
9467 factor = 1;
9468
9469 free_bytes += (block_group->key.offset -
9470 btrfs_block_group_used(&block_group->item)) *
9471 factor;
9472
9473 spin_unlock(&block_group->lock);
9474 }
6d07bcec
MX
9475 spin_unlock(&sinfo->lock);
9476
9477 return free_bytes;
9478}
9479
2ff7e61e 9480void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9481{
f0486c68
YZ
9482 struct btrfs_space_info *sinfo = cache->space_info;
9483 u64 num_bytes;
9484
9485 BUG_ON(!cache->ro);
9486
9487 spin_lock(&sinfo->lock);
9488 spin_lock(&cache->lock);
868f401a
Z
9489 if (!--cache->ro) {
9490 num_bytes = cache->key.offset - cache->reserved -
9491 cache->pinned - cache->bytes_super -
9492 btrfs_block_group_used(&cache->item);
9493 sinfo->bytes_readonly -= num_bytes;
9494 list_del_init(&cache->ro_list);
9495 }
f0486c68
YZ
9496 spin_unlock(&cache->lock);
9497 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9498}
9499
ba1bf481
JB
9500/*
9501 * checks to see if its even possible to relocate this block group.
9502 *
9503 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9504 * ok to go ahead and try.
9505 */
6bccf3ab 9506int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9507{
6bccf3ab 9508 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9509 struct btrfs_block_group_cache *block_group;
9510 struct btrfs_space_info *space_info;
0b246afa 9511 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9512 struct btrfs_device *device;
6df9a95e 9513 struct btrfs_trans_handle *trans;
cdcb725c 9514 u64 min_free;
6719db6a
JB
9515 u64 dev_min = 1;
9516 u64 dev_nr = 0;
4a5e98f5 9517 u64 target;
0305bc27 9518 int debug;
cdcb725c 9519 int index;
ba1bf481
JB
9520 int full = 0;
9521 int ret = 0;
1a40e23b 9522
0b246afa 9523 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9524
0b246afa 9525 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9526
ba1bf481 9527 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9528 if (!block_group) {
9529 if (debug)
0b246afa 9530 btrfs_warn(fs_info,
0305bc27
QW
9531 "can't find block group for bytenr %llu",
9532 bytenr);
ba1bf481 9533 return -1;
0305bc27 9534 }
1a40e23b 9535
cdcb725c 9536 min_free = btrfs_block_group_used(&block_group->item);
9537
ba1bf481 9538 /* no bytes used, we're good */
cdcb725c 9539 if (!min_free)
1a40e23b
ZY
9540 goto out;
9541
ba1bf481
JB
9542 space_info = block_group->space_info;
9543 spin_lock(&space_info->lock);
17d217fe 9544
ba1bf481 9545 full = space_info->full;
17d217fe 9546
ba1bf481
JB
9547 /*
9548 * if this is the last block group we have in this space, we can't
7ce618db
CM
9549 * relocate it unless we're able to allocate a new chunk below.
9550 *
9551 * Otherwise, we need to make sure we have room in the space to handle
9552 * all of the extents from this block group. If we can, we're good
ba1bf481 9553 */
7ce618db 9554 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9555 (btrfs_space_info_used(space_info, false) + min_free <
9556 space_info->total_bytes)) {
ba1bf481
JB
9557 spin_unlock(&space_info->lock);
9558 goto out;
17d217fe 9559 }
ba1bf481 9560 spin_unlock(&space_info->lock);
ea8c2819 9561
ba1bf481
JB
9562 /*
9563 * ok we don't have enough space, but maybe we have free space on our
9564 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9565 * alloc devices and guess if we have enough space. if this block
9566 * group is going to be restriped, run checks against the target
9567 * profile instead of the current one.
ba1bf481
JB
9568 */
9569 ret = -1;
ea8c2819 9570
cdcb725c 9571 /*
9572 * index:
9573 * 0: raid10
9574 * 1: raid1
9575 * 2: dup
9576 * 3: raid0
9577 * 4: single
9578 */
0b246afa 9579 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9580 if (target) {
31e50229 9581 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9582 } else {
9583 /*
9584 * this is just a balance, so if we were marked as full
9585 * we know there is no space for a new chunk
9586 */
0305bc27
QW
9587 if (full) {
9588 if (debug)
0b246afa
JM
9589 btrfs_warn(fs_info,
9590 "no space to alloc new chunk for block group %llu",
9591 block_group->key.objectid);
4a5e98f5 9592 goto out;
0305bc27 9593 }
4a5e98f5
ID
9594
9595 index = get_block_group_index(block_group);
9596 }
9597
e6ec716f 9598 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9599 dev_min = 4;
6719db6a
JB
9600 /* Divide by 2 */
9601 min_free >>= 1;
e6ec716f 9602 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9603 dev_min = 2;
e6ec716f 9604 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9605 /* Multiply by 2 */
9606 min_free <<= 1;
e6ec716f 9607 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9608 dev_min = fs_devices->rw_devices;
47c5713f 9609 min_free = div64_u64(min_free, dev_min);
cdcb725c 9610 }
9611
6df9a95e
JB
9612 /* We need to do this so that we can look at pending chunks */
9613 trans = btrfs_join_transaction(root);
9614 if (IS_ERR(trans)) {
9615 ret = PTR_ERR(trans);
9616 goto out;
9617 }
9618
0b246afa 9619 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9620 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9621 u64 dev_offset;
56bec294 9622
ba1bf481
JB
9623 /*
9624 * check to make sure we can actually find a chunk with enough
9625 * space to fit our block group in.
9626 */
63a212ab
SB
9627 if (device->total_bytes > device->bytes_used + min_free &&
9628 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9629 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9630 &dev_offset, NULL);
ba1bf481 9631 if (!ret)
cdcb725c 9632 dev_nr++;
9633
9634 if (dev_nr >= dev_min)
73e48b27 9635 break;
cdcb725c 9636
ba1bf481 9637 ret = -1;
725c8463 9638 }
edbd8d4e 9639 }
0305bc27 9640 if (debug && ret == -1)
0b246afa
JM
9641 btrfs_warn(fs_info,
9642 "no space to allocate a new chunk for block group %llu",
9643 block_group->key.objectid);
9644 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9645 btrfs_end_transaction(trans);
edbd8d4e 9646out:
ba1bf481 9647 btrfs_put_block_group(block_group);
edbd8d4e
CM
9648 return ret;
9649}
9650
6bccf3ab
JM
9651static int find_first_block_group(struct btrfs_fs_info *fs_info,
9652 struct btrfs_path *path,
9653 struct btrfs_key *key)
0b86a832 9654{
6bccf3ab 9655 struct btrfs_root *root = fs_info->extent_root;
925baedd 9656 int ret = 0;
0b86a832
CM
9657 struct btrfs_key found_key;
9658 struct extent_buffer *leaf;
9659 int slot;
edbd8d4e 9660
0b86a832
CM
9661 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9662 if (ret < 0)
925baedd
CM
9663 goto out;
9664
d397712b 9665 while (1) {
0b86a832 9666 slot = path->slots[0];
edbd8d4e 9667 leaf = path->nodes[0];
0b86a832
CM
9668 if (slot >= btrfs_header_nritems(leaf)) {
9669 ret = btrfs_next_leaf(root, path);
9670 if (ret == 0)
9671 continue;
9672 if (ret < 0)
925baedd 9673 goto out;
0b86a832 9674 break;
edbd8d4e 9675 }
0b86a832 9676 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9677
0b86a832 9678 if (found_key.objectid >= key->objectid &&
925baedd 9679 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9680 struct extent_map_tree *em_tree;
9681 struct extent_map *em;
9682
9683 em_tree = &root->fs_info->mapping_tree.map_tree;
9684 read_lock(&em_tree->lock);
9685 em = lookup_extent_mapping(em_tree, found_key.objectid,
9686 found_key.offset);
9687 read_unlock(&em_tree->lock);
9688 if (!em) {
0b246afa 9689 btrfs_err(fs_info,
6fb37b75
LB
9690 "logical %llu len %llu found bg but no related chunk",
9691 found_key.objectid, found_key.offset);
9692 ret = -ENOENT;
9693 } else {
9694 ret = 0;
9695 }
187ee58c 9696 free_extent_map(em);
925baedd
CM
9697 goto out;
9698 }
0b86a832 9699 path->slots[0]++;
edbd8d4e 9700 }
925baedd 9701out:
0b86a832 9702 return ret;
edbd8d4e
CM
9703}
9704
0af3d00b
JB
9705void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9706{
9707 struct btrfs_block_group_cache *block_group;
9708 u64 last = 0;
9709
9710 while (1) {
9711 struct inode *inode;
9712
9713 block_group = btrfs_lookup_first_block_group(info, last);
9714 while (block_group) {
9715 spin_lock(&block_group->lock);
9716 if (block_group->iref)
9717 break;
9718 spin_unlock(&block_group->lock);
2ff7e61e 9719 block_group = next_block_group(info, block_group);
0af3d00b
JB
9720 }
9721 if (!block_group) {
9722 if (last == 0)
9723 break;
9724 last = 0;
9725 continue;
9726 }
9727
9728 inode = block_group->inode;
9729 block_group->iref = 0;
9730 block_group->inode = NULL;
9731 spin_unlock(&block_group->lock);
f3bca802 9732 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9733 iput(inode);
9734 last = block_group->key.objectid + block_group->key.offset;
9735 btrfs_put_block_group(block_group);
9736 }
9737}
9738
5cdd7db6
FM
9739/*
9740 * Must be called only after stopping all workers, since we could have block
9741 * group caching kthreads running, and therefore they could race with us if we
9742 * freed the block groups before stopping them.
9743 */
1a40e23b
ZY
9744int btrfs_free_block_groups(struct btrfs_fs_info *info)
9745{
9746 struct btrfs_block_group_cache *block_group;
4184ea7f 9747 struct btrfs_space_info *space_info;
11833d66 9748 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9749 struct rb_node *n;
9750
9e351cc8 9751 down_write(&info->commit_root_sem);
11833d66
YZ
9752 while (!list_empty(&info->caching_block_groups)) {
9753 caching_ctl = list_entry(info->caching_block_groups.next,
9754 struct btrfs_caching_control, list);
9755 list_del(&caching_ctl->list);
9756 put_caching_control(caching_ctl);
9757 }
9e351cc8 9758 up_write(&info->commit_root_sem);
11833d66 9759
47ab2a6c
JB
9760 spin_lock(&info->unused_bgs_lock);
9761 while (!list_empty(&info->unused_bgs)) {
9762 block_group = list_first_entry(&info->unused_bgs,
9763 struct btrfs_block_group_cache,
9764 bg_list);
9765 list_del_init(&block_group->bg_list);
9766 btrfs_put_block_group(block_group);
9767 }
9768 spin_unlock(&info->unused_bgs_lock);
9769
1a40e23b
ZY
9770 spin_lock(&info->block_group_cache_lock);
9771 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9772 block_group = rb_entry(n, struct btrfs_block_group_cache,
9773 cache_node);
1a40e23b
ZY
9774 rb_erase(&block_group->cache_node,
9775 &info->block_group_cache_tree);
01eacb27 9776 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9777 spin_unlock(&info->block_group_cache_lock);
9778
80eb234a 9779 down_write(&block_group->space_info->groups_sem);
1a40e23b 9780 list_del(&block_group->list);
80eb234a 9781 up_write(&block_group->space_info->groups_sem);
d2fb3437 9782
3c14874a
JB
9783 /*
9784 * We haven't cached this block group, which means we could
9785 * possibly have excluded extents on this block group.
9786 */
36cce922
JB
9787 if (block_group->cached == BTRFS_CACHE_NO ||
9788 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9789 free_excluded_extents(info, block_group);
3c14874a 9790
817d52f8 9791 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9792 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9793 ASSERT(list_empty(&block_group->dirty_list));
9794 ASSERT(list_empty(&block_group->io_list));
9795 ASSERT(list_empty(&block_group->bg_list));
9796 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9797 btrfs_put_block_group(block_group);
d899e052
YZ
9798
9799 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9800 }
9801 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9802
9803 /* now that all the block groups are freed, go through and
9804 * free all the space_info structs. This is only called during
9805 * the final stages of unmount, and so we know nobody is
9806 * using them. We call synchronize_rcu() once before we start,
9807 * just to be on the safe side.
9808 */
9809 synchronize_rcu();
9810
8929ecfa
YZ
9811 release_global_block_rsv(info);
9812
67871254 9813 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9814 int i;
9815
4184ea7f
CM
9816 space_info = list_entry(info->space_info.next,
9817 struct btrfs_space_info,
9818 list);
d555b6c3
JB
9819
9820 /*
9821 * Do not hide this behind enospc_debug, this is actually
9822 * important and indicates a real bug if this happens.
9823 */
9824 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9825 space_info->bytes_reserved > 0 ||
d555b6c3 9826 space_info->bytes_may_use > 0))
ab8d0fc4 9827 dump_space_info(info, space_info, 0, 0);
4184ea7f 9828 list_del(&space_info->list);
6ab0a202
JM
9829 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9830 struct kobject *kobj;
c1895442
JM
9831 kobj = space_info->block_group_kobjs[i];
9832 space_info->block_group_kobjs[i] = NULL;
9833 if (kobj) {
6ab0a202
JM
9834 kobject_del(kobj);
9835 kobject_put(kobj);
9836 }
9837 }
9838 kobject_del(&space_info->kobj);
9839 kobject_put(&space_info->kobj);
4184ea7f 9840 }
1a40e23b
ZY
9841 return 0;
9842}
9843
b742bb82
YZ
9844static void __link_block_group(struct btrfs_space_info *space_info,
9845 struct btrfs_block_group_cache *cache)
9846{
9847 int index = get_block_group_index(cache);
ed55b6ac 9848 bool first = false;
b742bb82
YZ
9849
9850 down_write(&space_info->groups_sem);
ed55b6ac
JM
9851 if (list_empty(&space_info->block_groups[index]))
9852 first = true;
9853 list_add_tail(&cache->list, &space_info->block_groups[index]);
9854 up_write(&space_info->groups_sem);
9855
9856 if (first) {
c1895442 9857 struct raid_kobject *rkobj;
6ab0a202
JM
9858 int ret;
9859
c1895442
JM
9860 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9861 if (!rkobj)
9862 goto out_err;
9863 rkobj->raid_type = index;
9864 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9865 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9866 "%s", get_raid_name(index));
6ab0a202 9867 if (ret) {
c1895442
JM
9868 kobject_put(&rkobj->kobj);
9869 goto out_err;
6ab0a202 9870 }
c1895442 9871 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9872 }
c1895442
JM
9873
9874 return;
9875out_err:
ab8d0fc4
JM
9876 btrfs_warn(cache->fs_info,
9877 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9878}
9879
920e4a58 9880static struct btrfs_block_group_cache *
2ff7e61e
JM
9881btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9882 u64 start, u64 size)
920e4a58
MX
9883{
9884 struct btrfs_block_group_cache *cache;
9885
9886 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9887 if (!cache)
9888 return NULL;
9889
9890 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9891 GFP_NOFS);
9892 if (!cache->free_space_ctl) {
9893 kfree(cache);
9894 return NULL;
9895 }
9896
9897 cache->key.objectid = start;
9898 cache->key.offset = size;
9899 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9900
0b246afa
JM
9901 cache->sectorsize = fs_info->sectorsize;
9902 cache->fs_info = fs_info;
2ff7e61e
JM
9903 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9904 &fs_info->mapping_tree,
9905 start);
1e144fb8
OS
9906 set_free_space_tree_thresholds(cache);
9907
920e4a58
MX
9908 atomic_set(&cache->count, 1);
9909 spin_lock_init(&cache->lock);
e570fd27 9910 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9911 INIT_LIST_HEAD(&cache->list);
9912 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9913 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9914 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9915 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9916 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9917 btrfs_init_free_space_ctl(cache);
04216820 9918 atomic_set(&cache->trimming, 0);
a5ed9182 9919 mutex_init(&cache->free_space_lock);
920e4a58
MX
9920
9921 return cache;
9922}
9923
5b4aacef 9924int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9925{
9926 struct btrfs_path *path;
9927 int ret;
9078a3e1 9928 struct btrfs_block_group_cache *cache;
6324fbf3 9929 struct btrfs_space_info *space_info;
9078a3e1
CM
9930 struct btrfs_key key;
9931 struct btrfs_key found_key;
5f39d397 9932 struct extent_buffer *leaf;
0af3d00b
JB
9933 int need_clear = 0;
9934 u64 cache_gen;
49303381
LB
9935 u64 feature;
9936 int mixed;
9937
9938 feature = btrfs_super_incompat_flags(info->super_copy);
9939 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9940
9078a3e1 9941 key.objectid = 0;
0b86a832 9942 key.offset = 0;
962a298f 9943 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9944 path = btrfs_alloc_path();
9945 if (!path)
9946 return -ENOMEM;
e4058b54 9947 path->reada = READA_FORWARD;
9078a3e1 9948
0b246afa
JM
9949 cache_gen = btrfs_super_cache_generation(info->super_copy);
9950 if (btrfs_test_opt(info, SPACE_CACHE) &&
9951 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9952 need_clear = 1;
0b246afa 9953 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9954 need_clear = 1;
0af3d00b 9955
d397712b 9956 while (1) {
6bccf3ab 9957 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9958 if (ret > 0)
9959 break;
0b86a832
CM
9960 if (ret != 0)
9961 goto error;
920e4a58 9962
5f39d397
CM
9963 leaf = path->nodes[0];
9964 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9965
2ff7e61e 9966 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9967 found_key.offset);
9078a3e1 9968 if (!cache) {
0b86a832 9969 ret = -ENOMEM;
f0486c68 9970 goto error;
9078a3e1 9971 }
96303081 9972
cf7c1ef6
LB
9973 if (need_clear) {
9974 /*
9975 * When we mount with old space cache, we need to
9976 * set BTRFS_DC_CLEAR and set dirty flag.
9977 *
9978 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9979 * truncate the old free space cache inode and
9980 * setup a new one.
9981 * b) Setting 'dirty flag' makes sure that we flush
9982 * the new space cache info onto disk.
9983 */
0b246afa 9984 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 9985 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9986 }
0af3d00b 9987
5f39d397
CM
9988 read_extent_buffer(leaf, &cache->item,
9989 btrfs_item_ptr_offset(leaf, path->slots[0]),
9990 sizeof(cache->item));
920e4a58 9991 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
9992 if (!mixed &&
9993 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9994 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9995 btrfs_err(info,
9996"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9997 cache->key.objectid);
9998 ret = -EINVAL;
9999 goto error;
10000 }
0b86a832 10001
9078a3e1 10002 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10003 btrfs_release_path(path);
34d52cb6 10004
3c14874a
JB
10005 /*
10006 * We need to exclude the super stripes now so that the space
10007 * info has super bytes accounted for, otherwise we'll think
10008 * we have more space than we actually do.
10009 */
2ff7e61e 10010 ret = exclude_super_stripes(info, cache);
835d974f
JB
10011 if (ret) {
10012 /*
10013 * We may have excluded something, so call this just in
10014 * case.
10015 */
2ff7e61e 10016 free_excluded_extents(info, cache);
920e4a58 10017 btrfs_put_block_group(cache);
835d974f
JB
10018 goto error;
10019 }
3c14874a 10020
817d52f8
JB
10021 /*
10022 * check for two cases, either we are full, and therefore
10023 * don't need to bother with the caching work since we won't
10024 * find any space, or we are empty, and we can just add all
10025 * the space in and be done with it. This saves us _alot_ of
10026 * time, particularly in the full case.
10027 */
10028 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10029 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10030 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10031 free_excluded_extents(info, cache);
817d52f8 10032 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10033 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10034 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10035 add_new_free_space(cache, info,
817d52f8
JB
10036 found_key.objectid,
10037 found_key.objectid +
10038 found_key.offset);
2ff7e61e 10039 free_excluded_extents(info, cache);
817d52f8 10040 }
96b5179d 10041
0b246afa 10042 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10043 if (ret) {
10044 btrfs_remove_free_space_cache(cache);
10045 btrfs_put_block_group(cache);
10046 goto error;
10047 }
10048
0b246afa 10049 trace_btrfs_add_block_group(info, cache, 0);
6324fbf3
CM
10050 ret = update_space_info(info, cache->flags, found_key.offset,
10051 btrfs_block_group_used(&cache->item),
e40edf2d 10052 cache->bytes_super, &space_info);
8c579fe7
JB
10053 if (ret) {
10054 btrfs_remove_free_space_cache(cache);
10055 spin_lock(&info->block_group_cache_lock);
10056 rb_erase(&cache->cache_node,
10057 &info->block_group_cache_tree);
01eacb27 10058 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10059 spin_unlock(&info->block_group_cache_lock);
10060 btrfs_put_block_group(cache);
10061 goto error;
10062 }
10063
6324fbf3 10064 cache->space_info = space_info;
1b2da372 10065
b742bb82 10066 __link_block_group(space_info, cache);
0f9dd46c 10067
0b246afa 10068 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10069 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10070 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10071 } else if (btrfs_block_group_used(&cache->item) == 0) {
10072 spin_lock(&info->unused_bgs_lock);
10073 /* Should always be true but just in case. */
10074 if (list_empty(&cache->bg_list)) {
10075 btrfs_get_block_group(cache);
10076 list_add_tail(&cache->bg_list,
10077 &info->unused_bgs);
10078 }
10079 spin_unlock(&info->unused_bgs_lock);
10080 }
9078a3e1 10081 }
b742bb82 10082
0b246afa 10083 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10084 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10085 (BTRFS_BLOCK_GROUP_RAID10 |
10086 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10087 BTRFS_BLOCK_GROUP_RAID5 |
10088 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10089 BTRFS_BLOCK_GROUP_DUP)))
10090 continue;
10091 /*
10092 * avoid allocating from un-mirrored block group if there are
10093 * mirrored block groups.
10094 */
1095cc0d 10095 list_for_each_entry(cache,
10096 &space_info->block_groups[BTRFS_RAID_RAID0],
10097 list)
868f401a 10098 inc_block_group_ro(cache, 1);
1095cc0d 10099 list_for_each_entry(cache,
10100 &space_info->block_groups[BTRFS_RAID_SINGLE],
10101 list)
868f401a 10102 inc_block_group_ro(cache, 1);
9078a3e1 10103 }
f0486c68
YZ
10104
10105 init_global_block_rsv(info);
0b86a832
CM
10106 ret = 0;
10107error:
9078a3e1 10108 btrfs_free_path(path);
0b86a832 10109 return ret;
9078a3e1 10110}
6324fbf3 10111
ea658bad 10112void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10113 struct btrfs_fs_info *fs_info)
ea658bad
JB
10114{
10115 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10116 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10117 struct btrfs_block_group_item item;
10118 struct btrfs_key key;
10119 int ret = 0;
d9a0540a 10120 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10121
d9a0540a 10122 trans->can_flush_pending_bgs = false;
47ab2a6c 10123 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10124 if (ret)
c92f6be3 10125 goto next;
ea658bad
JB
10126
10127 spin_lock(&block_group->lock);
10128 memcpy(&item, &block_group->item, sizeof(item));
10129 memcpy(&key, &block_group->key, sizeof(key));
10130 spin_unlock(&block_group->lock);
10131
10132 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10133 sizeof(item));
10134 if (ret)
66642832 10135 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10136 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10137 key.offset);
6df9a95e 10138 if (ret)
66642832 10139 btrfs_abort_transaction(trans, ret);
0b246afa 10140 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10141 /* already aborted the transaction if it failed. */
c92f6be3
FM
10142next:
10143 list_del_init(&block_group->bg_list);
ea658bad 10144 }
d9a0540a 10145 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10146}
10147
6324fbf3 10148int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10149 struct btrfs_fs_info *fs_info, u64 bytes_used,
e17cade2 10150 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10151 u64 size)
10152{
6324fbf3 10153 struct btrfs_block_group_cache *cache;
0b246afa 10154 int ret;
6324fbf3 10155
0b246afa 10156 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10157
2ff7e61e 10158 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10159 if (!cache)
10160 return -ENOMEM;
34d52cb6 10161
6324fbf3 10162 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10163 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10164 btrfs_set_block_group_flags(&cache->item, type);
10165
920e4a58 10166 cache->flags = type;
11833d66 10167 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10168 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10169 cache->needs_free_space = 1;
2ff7e61e 10170 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10171 if (ret) {
10172 /*
10173 * We may have excluded something, so call this just in
10174 * case.
10175 */
2ff7e61e 10176 free_excluded_extents(fs_info, cache);
920e4a58 10177 btrfs_put_block_group(cache);
835d974f
JB
10178 return ret;
10179 }
96303081 10180
0b246afa 10181 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10182
2ff7e61e 10183 free_excluded_extents(fs_info, cache);
11833d66 10184
d0bd4560 10185#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10186 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10187 u64 new_bytes_used = size - bytes_used;
10188
10189 bytes_used += new_bytes_used >> 1;
2ff7e61e 10190 fragment_free_space(cache);
d0bd4560
JB
10191 }
10192#endif
2e6e5183
FM
10193 /*
10194 * Call to ensure the corresponding space_info object is created and
10195 * assigned to our block group, but don't update its counters just yet.
10196 * We want our bg to be added to the rbtree with its ->space_info set.
10197 */
0b246afa 10198 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10199 &cache->space_info);
10200 if (ret) {
10201 btrfs_remove_free_space_cache(cache);
10202 btrfs_put_block_group(cache);
10203 return ret;
10204 }
10205
0b246afa 10206 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10207 if (ret) {
10208 btrfs_remove_free_space_cache(cache);
10209 btrfs_put_block_group(cache);
10210 return ret;
10211 }
10212
2e6e5183
FM
10213 /*
10214 * Now that our block group has its ->space_info set and is inserted in
10215 * the rbtree, update the space info's counters.
10216 */
0b246afa
JM
10217 trace_btrfs_add_block_group(fs_info, cache, 1);
10218 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10219 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10220 if (ret) {
10221 btrfs_remove_free_space_cache(cache);
0b246afa 10222 spin_lock(&fs_info->block_group_cache_lock);
8c579fe7 10223 rb_erase(&cache->cache_node,
0b246afa 10224 &fs_info->block_group_cache_tree);
01eacb27 10225 RB_CLEAR_NODE(&cache->cache_node);
0b246afa 10226 spin_unlock(&fs_info->block_group_cache_lock);
8c579fe7
JB
10227 btrfs_put_block_group(cache);
10228 return ret;
10229 }
0b246afa 10230 update_global_block_rsv(fs_info);
1b2da372 10231
b742bb82 10232 __link_block_group(cache->space_info, cache);
6324fbf3 10233
47ab2a6c 10234 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10235
0b246afa 10236 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10237 return 0;
10238}
1a40e23b 10239
10ea00f5
ID
10240static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10241{
899c81ea
ID
10242 u64 extra_flags = chunk_to_extended(flags) &
10243 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10244
de98ced9 10245 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10246 if (flags & BTRFS_BLOCK_GROUP_DATA)
10247 fs_info->avail_data_alloc_bits &= ~extra_flags;
10248 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10249 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10250 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10251 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10252 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10253}
10254
1a40e23b 10255int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10256 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10257 struct extent_map *em)
1a40e23b 10258{
6bccf3ab 10259 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10260 struct btrfs_path *path;
10261 struct btrfs_block_group_cache *block_group;
44fb5511 10262 struct btrfs_free_cluster *cluster;
0b246afa 10263 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10264 struct btrfs_key key;
0af3d00b 10265 struct inode *inode;
c1895442 10266 struct kobject *kobj = NULL;
1a40e23b 10267 int ret;
10ea00f5 10268 int index;
89a55897 10269 int factor;
4f69cb98 10270 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10271 bool remove_em;
1a40e23b 10272
6bccf3ab 10273 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10274 BUG_ON(!block_group);
c146afad 10275 BUG_ON(!block_group->ro);
1a40e23b 10276
9f7c43c9 10277 /*
10278 * Free the reserved super bytes from this block group before
10279 * remove it.
10280 */
2ff7e61e 10281 free_excluded_extents(fs_info, block_group);
9f7c43c9 10282
1a40e23b 10283 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10284 index = get_block_group_index(block_group);
89a55897
JB
10285 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10286 BTRFS_BLOCK_GROUP_RAID1 |
10287 BTRFS_BLOCK_GROUP_RAID10))
10288 factor = 2;
10289 else
10290 factor = 1;
1a40e23b 10291
44fb5511 10292 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10293 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10294 spin_lock(&cluster->refill_lock);
10295 btrfs_return_cluster_to_free_space(block_group, cluster);
10296 spin_unlock(&cluster->refill_lock);
10297
10298 /*
10299 * make sure this block group isn't part of a metadata
10300 * allocation cluster
10301 */
0b246afa 10302 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10303 spin_lock(&cluster->refill_lock);
10304 btrfs_return_cluster_to_free_space(block_group, cluster);
10305 spin_unlock(&cluster->refill_lock);
10306
1a40e23b 10307 path = btrfs_alloc_path();
d8926bb3
MF
10308 if (!path) {
10309 ret = -ENOMEM;
10310 goto out;
10311 }
1a40e23b 10312
1bbc621e
CM
10313 /*
10314 * get the inode first so any iput calls done for the io_list
10315 * aren't the final iput (no unlinks allowed now)
10316 */
77ab86bf 10317 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10318
10319 mutex_lock(&trans->transaction->cache_write_mutex);
10320 /*
10321 * make sure our free spache cache IO is done before remove the
10322 * free space inode
10323 */
10324 spin_lock(&trans->transaction->dirty_bgs_lock);
10325 if (!list_empty(&block_group->io_list)) {
10326 list_del_init(&block_group->io_list);
10327
10328 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10329
10330 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10331 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10332 btrfs_put_block_group(block_group);
10333 spin_lock(&trans->transaction->dirty_bgs_lock);
10334 }
10335
10336 if (!list_empty(&block_group->dirty_list)) {
10337 list_del_init(&block_group->dirty_list);
10338 btrfs_put_block_group(block_group);
10339 }
10340 spin_unlock(&trans->transaction->dirty_bgs_lock);
10341 mutex_unlock(&trans->transaction->cache_write_mutex);
10342
0af3d00b 10343 if (!IS_ERR(inode)) {
73f2e545 10344 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10345 if (ret) {
10346 btrfs_add_delayed_iput(inode);
10347 goto out;
10348 }
0af3d00b
JB
10349 clear_nlink(inode);
10350 /* One for the block groups ref */
10351 spin_lock(&block_group->lock);
10352 if (block_group->iref) {
10353 block_group->iref = 0;
10354 block_group->inode = NULL;
10355 spin_unlock(&block_group->lock);
10356 iput(inode);
10357 } else {
10358 spin_unlock(&block_group->lock);
10359 }
10360 /* One for our lookup ref */
455757c3 10361 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10362 }
10363
10364 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10365 key.offset = block_group->key.objectid;
10366 key.type = 0;
10367
10368 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10369 if (ret < 0)
10370 goto out;
10371 if (ret > 0)
b3b4aa74 10372 btrfs_release_path(path);
0af3d00b
JB
10373 if (ret == 0) {
10374 ret = btrfs_del_item(trans, tree_root, path);
10375 if (ret)
10376 goto out;
b3b4aa74 10377 btrfs_release_path(path);
0af3d00b
JB
10378 }
10379
0b246afa 10380 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10381 rb_erase(&block_group->cache_node,
0b246afa 10382 &fs_info->block_group_cache_tree);
292cbd51 10383 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10384
0b246afa
JM
10385 if (fs_info->first_logical_byte == block_group->key.objectid)
10386 fs_info->first_logical_byte = (u64)-1;
10387 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10388
80eb234a 10389 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10390 /*
10391 * we must use list_del_init so people can check to see if they
10392 * are still on the list after taking the semaphore
10393 */
10394 list_del_init(&block_group->list);
6ab0a202 10395 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10396 kobj = block_group->space_info->block_group_kobjs[index];
10397 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10398 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10399 }
80eb234a 10400 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10401 if (kobj) {
10402 kobject_del(kobj);
10403 kobject_put(kobj);
10404 }
1a40e23b 10405
4f69cb98
FM
10406 if (block_group->has_caching_ctl)
10407 caching_ctl = get_caching_control(block_group);
817d52f8 10408 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10409 wait_block_group_cache_done(block_group);
4f69cb98 10410 if (block_group->has_caching_ctl) {
0b246afa 10411 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10412 if (!caching_ctl) {
10413 struct btrfs_caching_control *ctl;
10414
10415 list_for_each_entry(ctl,
0b246afa 10416 &fs_info->caching_block_groups, list)
4f69cb98
FM
10417 if (ctl->block_group == block_group) {
10418 caching_ctl = ctl;
1e4f4714 10419 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10420 break;
10421 }
10422 }
10423 if (caching_ctl)
10424 list_del_init(&caching_ctl->list);
0b246afa 10425 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10426 if (caching_ctl) {
10427 /* Once for the caching bgs list and once for us. */
10428 put_caching_control(caching_ctl);
10429 put_caching_control(caching_ctl);
10430 }
10431 }
817d52f8 10432
ce93ec54
JB
10433 spin_lock(&trans->transaction->dirty_bgs_lock);
10434 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10435 WARN_ON(1);
10436 }
10437 if (!list_empty(&block_group->io_list)) {
10438 WARN_ON(1);
ce93ec54
JB
10439 }
10440 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10441 btrfs_remove_free_space_cache(block_group);
10442
c146afad 10443 spin_lock(&block_group->space_info->lock);
75c68e9f 10444 list_del_init(&block_group->ro_list);
18d018ad 10445
0b246afa 10446 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10447 WARN_ON(block_group->space_info->total_bytes
10448 < block_group->key.offset);
10449 WARN_ON(block_group->space_info->bytes_readonly
10450 < block_group->key.offset);
10451 WARN_ON(block_group->space_info->disk_total
10452 < block_group->key.offset * factor);
10453 }
c146afad
YZ
10454 block_group->space_info->total_bytes -= block_group->key.offset;
10455 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10456 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10457
c146afad 10458 spin_unlock(&block_group->space_info->lock);
283bb197 10459
0af3d00b
JB
10460 memcpy(&key, &block_group->key, sizeof(key));
10461
34441361 10462 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10463 if (!list_empty(&em->list)) {
10464 /* We're in the transaction->pending_chunks list. */
10465 free_extent_map(em);
10466 }
04216820
FM
10467 spin_lock(&block_group->lock);
10468 block_group->removed = 1;
10469 /*
10470 * At this point trimming can't start on this block group, because we
10471 * removed the block group from the tree fs_info->block_group_cache_tree
10472 * so no one can't find it anymore and even if someone already got this
10473 * block group before we removed it from the rbtree, they have already
10474 * incremented block_group->trimming - if they didn't, they won't find
10475 * any free space entries because we already removed them all when we
10476 * called btrfs_remove_free_space_cache().
10477 *
10478 * And we must not remove the extent map from the fs_info->mapping_tree
10479 * to prevent the same logical address range and physical device space
10480 * ranges from being reused for a new block group. This is because our
10481 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10482 * completely transactionless, so while it is trimming a range the
10483 * currently running transaction might finish and a new one start,
10484 * allowing for new block groups to be created that can reuse the same
10485 * physical device locations unless we take this special care.
e33e17ee
JM
10486 *
10487 * There may also be an implicit trim operation if the file system
10488 * is mounted with -odiscard. The same protections must remain
10489 * in place until the extents have been discarded completely when
10490 * the transaction commit has completed.
04216820
FM
10491 */
10492 remove_em = (atomic_read(&block_group->trimming) == 0);
10493 /*
10494 * Make sure a trimmer task always sees the em in the pinned_chunks list
10495 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10496 * before checking block_group->removed).
10497 */
10498 if (!remove_em) {
10499 /*
10500 * Our em might be in trans->transaction->pending_chunks which
10501 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10502 * and so is the fs_info->pinned_chunks list.
10503 *
10504 * So at this point we must be holding the chunk_mutex to avoid
10505 * any races with chunk allocation (more specifically at
10506 * volumes.c:contains_pending_extent()), to ensure it always
10507 * sees the em, either in the pending_chunks list or in the
10508 * pinned_chunks list.
10509 */
0b246afa 10510 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10511 }
10512 spin_unlock(&block_group->lock);
04216820
FM
10513
10514 if (remove_em) {
10515 struct extent_map_tree *em_tree;
10516
0b246afa 10517 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10518 write_lock(&em_tree->lock);
8dbcd10f
FM
10519 /*
10520 * The em might be in the pending_chunks list, so make sure the
10521 * chunk mutex is locked, since remove_extent_mapping() will
10522 * delete us from that list.
10523 */
04216820
FM
10524 remove_extent_mapping(em_tree, em);
10525 write_unlock(&em_tree->lock);
10526 /* once for the tree */
10527 free_extent_map(em);
10528 }
10529
34441361 10530 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10531
0b246afa 10532 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10533 if (ret)
10534 goto out;
10535
fa9c0d79
CM
10536 btrfs_put_block_group(block_group);
10537 btrfs_put_block_group(block_group);
1a40e23b
ZY
10538
10539 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10540 if (ret > 0)
10541 ret = -EIO;
10542 if (ret < 0)
10543 goto out;
10544
10545 ret = btrfs_del_item(trans, root, path);
10546out:
10547 btrfs_free_path(path);
10548 return ret;
10549}
acce952b 10550
8eab77ff 10551struct btrfs_trans_handle *
7fd01182
FM
10552btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10553 const u64 chunk_offset)
8eab77ff 10554{
7fd01182
FM
10555 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10556 struct extent_map *em;
10557 struct map_lookup *map;
10558 unsigned int num_items;
10559
10560 read_lock(&em_tree->lock);
10561 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10562 read_unlock(&em_tree->lock);
10563 ASSERT(em && em->start == chunk_offset);
10564
8eab77ff 10565 /*
7fd01182
FM
10566 * We need to reserve 3 + N units from the metadata space info in order
10567 * to remove a block group (done at btrfs_remove_chunk() and at
10568 * btrfs_remove_block_group()), which are used for:
10569 *
8eab77ff
FM
10570 * 1 unit for adding the free space inode's orphan (located in the tree
10571 * of tree roots).
7fd01182
FM
10572 * 1 unit for deleting the block group item (located in the extent
10573 * tree).
10574 * 1 unit for deleting the free space item (located in tree of tree
10575 * roots).
10576 * N units for deleting N device extent items corresponding to each
10577 * stripe (located in the device tree).
10578 *
10579 * In order to remove a block group we also need to reserve units in the
10580 * system space info in order to update the chunk tree (update one or
10581 * more device items and remove one chunk item), but this is done at
10582 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10583 */
95617d69 10584 map = em->map_lookup;
7fd01182
FM
10585 num_items = 3 + map->num_stripes;
10586 free_extent_map(em);
10587
8eab77ff 10588 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10589 num_items, 1);
8eab77ff
FM
10590}
10591
47ab2a6c
JB
10592/*
10593 * Process the unused_bgs list and remove any that don't have any allocated
10594 * space inside of them.
10595 */
10596void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10597{
10598 struct btrfs_block_group_cache *block_group;
10599 struct btrfs_space_info *space_info;
47ab2a6c
JB
10600 struct btrfs_trans_handle *trans;
10601 int ret = 0;
10602
afcdd129 10603 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10604 return;
10605
10606 spin_lock(&fs_info->unused_bgs_lock);
10607 while (!list_empty(&fs_info->unused_bgs)) {
10608 u64 start, end;
e33e17ee 10609 int trimming;
47ab2a6c
JB
10610
10611 block_group = list_first_entry(&fs_info->unused_bgs,
10612 struct btrfs_block_group_cache,
10613 bg_list);
47ab2a6c 10614 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10615
10616 space_info = block_group->space_info;
10617
47ab2a6c
JB
10618 if (ret || btrfs_mixed_space_info(space_info)) {
10619 btrfs_put_block_group(block_group);
10620 continue;
10621 }
10622 spin_unlock(&fs_info->unused_bgs_lock);
10623
d5f2e33b 10624 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10625
47ab2a6c
JB
10626 /* Don't want to race with allocators so take the groups_sem */
10627 down_write(&space_info->groups_sem);
10628 spin_lock(&block_group->lock);
10629 if (block_group->reserved ||
10630 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10631 block_group->ro ||
aefbe9a6 10632 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10633 /*
10634 * We want to bail if we made new allocations or have
10635 * outstanding allocations in this block group. We do
10636 * the ro check in case balance is currently acting on
10637 * this block group.
10638 */
10639 spin_unlock(&block_group->lock);
10640 up_write(&space_info->groups_sem);
10641 goto next;
10642 }
10643 spin_unlock(&block_group->lock);
10644
10645 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10646 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10647 up_write(&space_info->groups_sem);
10648 if (ret < 0) {
10649 ret = 0;
10650 goto next;
10651 }
10652
10653 /*
10654 * Want to do this before we do anything else so we can recover
10655 * properly if we fail to join the transaction.
10656 */
7fd01182
FM
10657 trans = btrfs_start_trans_remove_block_group(fs_info,
10658 block_group->key.objectid);
47ab2a6c 10659 if (IS_ERR(trans)) {
2ff7e61e 10660 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10661 ret = PTR_ERR(trans);
10662 goto next;
10663 }
10664
10665 /*
10666 * We could have pending pinned extents for this block group,
10667 * just delete them, we don't care about them anymore.
10668 */
10669 start = block_group->key.objectid;
10670 end = start + block_group->key.offset - 1;
d4b450cd
FM
10671 /*
10672 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10673 * btrfs_finish_extent_commit(). If we are at transaction N,
10674 * another task might be running finish_extent_commit() for the
10675 * previous transaction N - 1, and have seen a range belonging
10676 * to the block group in freed_extents[] before we were able to
10677 * clear the whole block group range from freed_extents[]. This
10678 * means that task can lookup for the block group after we
10679 * unpinned it from freed_extents[] and removed it, leading to
10680 * a BUG_ON() at btrfs_unpin_extent_range().
10681 */
10682 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10683 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10684 EXTENT_DIRTY);
758eb51e 10685 if (ret) {
d4b450cd 10686 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10687 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10688 goto end_trans;
10689 }
10690 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10691 EXTENT_DIRTY);
758eb51e 10692 if (ret) {
d4b450cd 10693 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10694 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10695 goto end_trans;
10696 }
d4b450cd 10697 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10698
10699 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10700 spin_lock(&space_info->lock);
10701 spin_lock(&block_group->lock);
10702
10703 space_info->bytes_pinned -= block_group->pinned;
10704 space_info->bytes_readonly += block_group->pinned;
10705 percpu_counter_add(&space_info->total_bytes_pinned,
10706 -block_group->pinned);
47ab2a6c
JB
10707 block_group->pinned = 0;
10708
c30666d4
ZL
10709 spin_unlock(&block_group->lock);
10710 spin_unlock(&space_info->lock);
10711
e33e17ee 10712 /* DISCARD can flip during remount */
0b246afa 10713 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10714
10715 /* Implicit trim during transaction commit. */
10716 if (trimming)
10717 btrfs_get_block_group_trimming(block_group);
10718
47ab2a6c
JB
10719 /*
10720 * Btrfs_remove_chunk will abort the transaction if things go
10721 * horribly wrong.
10722 */
5b4aacef 10723 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10724 block_group->key.objectid);
e33e17ee
JM
10725
10726 if (ret) {
10727 if (trimming)
10728 btrfs_put_block_group_trimming(block_group);
10729 goto end_trans;
10730 }
10731
10732 /*
10733 * If we're not mounted with -odiscard, we can just forget
10734 * about this block group. Otherwise we'll need to wait
10735 * until transaction commit to do the actual discard.
10736 */
10737 if (trimming) {
348a0013
FM
10738 spin_lock(&fs_info->unused_bgs_lock);
10739 /*
10740 * A concurrent scrub might have added us to the list
10741 * fs_info->unused_bgs, so use a list_move operation
10742 * to add the block group to the deleted_bgs list.
10743 */
e33e17ee
JM
10744 list_move(&block_group->bg_list,
10745 &trans->transaction->deleted_bgs);
348a0013 10746 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10747 btrfs_get_block_group(block_group);
10748 }
758eb51e 10749end_trans:
3a45bb20 10750 btrfs_end_transaction(trans);
47ab2a6c 10751next:
d5f2e33b 10752 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10753 btrfs_put_block_group(block_group);
10754 spin_lock(&fs_info->unused_bgs_lock);
10755 }
10756 spin_unlock(&fs_info->unused_bgs_lock);
10757}
10758
c59021f8 10759int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10760{
10761 struct btrfs_space_info *space_info;
1aba86d6 10762 struct btrfs_super_block *disk_super;
10763 u64 features;
10764 u64 flags;
10765 int mixed = 0;
c59021f8 10766 int ret;
10767
6c41761f 10768 disk_super = fs_info->super_copy;
1aba86d6 10769 if (!btrfs_super_root(disk_super))
0dc924c5 10770 return -EINVAL;
c59021f8 10771
1aba86d6 10772 features = btrfs_super_incompat_flags(disk_super);
10773 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10774 mixed = 1;
c59021f8 10775
1aba86d6 10776 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10777 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10778 if (ret)
1aba86d6 10779 goto out;
c59021f8 10780
1aba86d6 10781 if (mixed) {
10782 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10783 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10784 } else {
10785 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10786 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10787 if (ret)
10788 goto out;
10789
10790 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10791 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10792 }
10793out:
c59021f8 10794 return ret;
10795}
10796
2ff7e61e
JM
10797int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10798 u64 start, u64 end)
acce952b 10799{
2ff7e61e 10800 return unpin_extent_range(fs_info, start, end, false);
acce952b 10801}
10802
499f377f
JM
10803/*
10804 * It used to be that old block groups would be left around forever.
10805 * Iterating over them would be enough to trim unused space. Since we
10806 * now automatically remove them, we also need to iterate over unallocated
10807 * space.
10808 *
10809 * We don't want a transaction for this since the discard may take a
10810 * substantial amount of time. We don't require that a transaction be
10811 * running, but we do need to take a running transaction into account
10812 * to ensure that we're not discarding chunks that were released in
10813 * the current transaction.
10814 *
10815 * Holding the chunks lock will prevent other threads from allocating
10816 * or releasing chunks, but it won't prevent a running transaction
10817 * from committing and releasing the memory that the pending chunks
10818 * list head uses. For that, we need to take a reference to the
10819 * transaction.
10820 */
10821static int btrfs_trim_free_extents(struct btrfs_device *device,
10822 u64 minlen, u64 *trimmed)
10823{
10824 u64 start = 0, len = 0;
10825 int ret;
10826
10827 *trimmed = 0;
10828
10829 /* Not writeable = nothing to do. */
10830 if (!device->writeable)
10831 return 0;
10832
10833 /* No free space = nothing to do. */
10834 if (device->total_bytes <= device->bytes_used)
10835 return 0;
10836
10837 ret = 0;
10838
10839 while (1) {
fb456252 10840 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10841 struct btrfs_transaction *trans;
10842 u64 bytes;
10843
10844 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10845 if (ret)
10846 return ret;
10847
10848 down_read(&fs_info->commit_root_sem);
10849
10850 spin_lock(&fs_info->trans_lock);
10851 trans = fs_info->running_transaction;
10852 if (trans)
9b64f57d 10853 refcount_inc(&trans->use_count);
499f377f
JM
10854 spin_unlock(&fs_info->trans_lock);
10855
10856 ret = find_free_dev_extent_start(trans, device, minlen, start,
10857 &start, &len);
10858 if (trans)
10859 btrfs_put_transaction(trans);
10860
10861 if (ret) {
10862 up_read(&fs_info->commit_root_sem);
10863 mutex_unlock(&fs_info->chunk_mutex);
10864 if (ret == -ENOSPC)
10865 ret = 0;
10866 break;
10867 }
10868
10869 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10870 up_read(&fs_info->commit_root_sem);
10871 mutex_unlock(&fs_info->chunk_mutex);
10872
10873 if (ret)
10874 break;
10875
10876 start += len;
10877 *trimmed += bytes;
10878
10879 if (fatal_signal_pending(current)) {
10880 ret = -ERESTARTSYS;
10881 break;
10882 }
10883
10884 cond_resched();
10885 }
10886
10887 return ret;
10888}
10889
2ff7e61e 10890int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10891{
f7039b1d 10892 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10893 struct btrfs_device *device;
10894 struct list_head *devices;
f7039b1d
LD
10895 u64 group_trimmed;
10896 u64 start;
10897 u64 end;
10898 u64 trimmed = 0;
2cac13e4 10899 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10900 int ret = 0;
10901
2cac13e4
LB
10902 /*
10903 * try to trim all FS space, our block group may start from non-zero.
10904 */
10905 if (range->len == total_bytes)
10906 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10907 else
10908 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10909
10910 while (cache) {
10911 if (cache->key.objectid >= (range->start + range->len)) {
10912 btrfs_put_block_group(cache);
10913 break;
10914 }
10915
10916 start = max(range->start, cache->key.objectid);
10917 end = min(range->start + range->len,
10918 cache->key.objectid + cache->key.offset);
10919
10920 if (end - start >= range->minlen) {
10921 if (!block_group_cache_done(cache)) {
f6373bf3 10922 ret = cache_block_group(cache, 0);
1be41b78
JB
10923 if (ret) {
10924 btrfs_put_block_group(cache);
10925 break;
10926 }
10927 ret = wait_block_group_cache_done(cache);
10928 if (ret) {
10929 btrfs_put_block_group(cache);
10930 break;
10931 }
f7039b1d
LD
10932 }
10933 ret = btrfs_trim_block_group(cache,
10934 &group_trimmed,
10935 start,
10936 end,
10937 range->minlen);
10938
10939 trimmed += group_trimmed;
10940 if (ret) {
10941 btrfs_put_block_group(cache);
10942 break;
10943 }
10944 }
10945
2ff7e61e 10946 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10947 }
10948
0b246afa
JM
10949 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10950 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10951 list_for_each_entry(device, devices, dev_alloc_list) {
10952 ret = btrfs_trim_free_extents(device, range->minlen,
10953 &group_trimmed);
10954 if (ret)
10955 break;
10956
10957 trimmed += group_trimmed;
10958 }
0b246afa 10959 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10960
f7039b1d
LD
10961 range->len = trimmed;
10962 return ret;
10963}
8257b2dc
MX
10964
10965/*
9ea24bbe
FM
10966 * btrfs_{start,end}_write_no_snapshoting() are similar to
10967 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10968 * data into the page cache through nocow before the subvolume is snapshoted,
10969 * but flush the data into disk after the snapshot creation, or to prevent
10970 * operations while snapshoting is ongoing and that cause the snapshot to be
10971 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10972 */
9ea24bbe 10973void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10974{
10975 percpu_counter_dec(&root->subv_writers->counter);
10976 /*
a83342aa 10977 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10978 */
10979 smp_mb();
10980 if (waitqueue_active(&root->subv_writers->wait))
10981 wake_up(&root->subv_writers->wait);
10982}
10983
9ea24bbe 10984int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10985{
ee39b432 10986 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10987 return 0;
10988
10989 percpu_counter_inc(&root->subv_writers->counter);
10990 /*
10991 * Make sure counter is updated before we check for snapshot creation.
10992 */
10993 smp_mb();
ee39b432 10994 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10995 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10996 return 0;
10997 }
10998 return 1;
10999}
0bc19f90
ZL
11000
11001static int wait_snapshoting_atomic_t(atomic_t *a)
11002{
11003 schedule();
11004 return 0;
11005}
11006
11007void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11008{
11009 while (true) {
11010 int ret;
11011
11012 ret = btrfs_start_write_no_snapshoting(root);
11013 if (ret)
11014 break;
11015 wait_on_atomic_t(&root->will_be_snapshoted,
11016 wait_snapshoting_atomic_t,
11017 TASK_UNINTERRUPTIBLE);
11018 }
11019}