]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
Btrfs: fix typo in log message when starting a balance
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
758f2dfc 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
a5ed9182
OS
361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
73fa48b6 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
bab39bf9 403 struct btrfs_root *extent_root;
e37c9e69 404 struct btrfs_path *path;
5f39d397 405 struct extent_buffer *leaf;
11833d66 406 struct btrfs_key key;
817d52f8 407 u64 total_found = 0;
11833d66
YZ
408 u64 last = 0;
409 u32 nritems;
73fa48b6 410 int ret;
d0bd4560 411 bool wakeup = true;
f510cfec 412
bab39bf9
JB
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
e37c9e69
CM
417 path = btrfs_alloc_path();
418 if (!path)
73fa48b6 419 return -ENOMEM;
7d7d6068 420
817d52f8 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 422
d0bd4560
JB
423#ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431#endif
5cd57b2c 432 /*
817d52f8
JB
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
5cd57b2c
CM
437 */
438 path->skip_locking = 1;
817d52f8 439 path->search_commit_root = 1;
e4058b54 440 path->reada = READA_FORWARD;
817d52f8 441
e4404d6e 442 key.objectid = last;
e37c9e69 443 key.offset = 0;
11833d66 444 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 445
52ee28d2 446next:
11833d66 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 448 if (ret < 0)
73fa48b6 449 goto out;
a512bbf8 450
11833d66
YZ
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
d397712b 454 while (1) {
7841cb28 455 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 456 last = (u64)-1;
817d52f8 457 break;
f25784b3 458 }
817d52f8 459
11833d66
YZ
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
e37c9e69 465 break;
817d52f8 466
c9ea7b24 467 if (need_resched() ||
9e351cc8 468 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
469 if (wakeup)
470 caching_ctl->progress = last;
ff5714cc 471 btrfs_release_path(path);
9e351cc8 472 up_read(&fs_info->commit_root_sem);
589d8ade 473 mutex_unlock(&caching_ctl->mutex);
11833d66 474 cond_resched();
73fa48b6
OS
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
589d8ade 478 }
0a3896d0
JB
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
73fa48b6 482 goto out;
0a3896d0
JB
483 if (ret)
484 break;
589d8ade
JB
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
11833d66 488 }
817d52f8 489
52ee28d2
LB
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
d0bd4560
JB
495 if (wakeup)
496 caching_ctl->progress = last;
52ee28d2
LB
497 btrfs_release_path(path);
498 goto next;
499 }
500
11833d66
YZ
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
817d52f8 503 continue;
e37c9e69 504 }
0f9dd46c 505
e37c9e69 506 if (key.objectid >= block_group->key.objectid +
0f9dd46c 507 block_group->key.offset)
e37c9e69 508 break;
7d7d6068 509
3173a18f
JB
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
3173a18f
JB
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
707e8a07 517 fs_info->tree_root->nodesize;
3173a18f
JB
518 else
519 last = key.objectid + key.offset;
817d52f8 520
73fa48b6 521 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 522 total_found = 0;
d0bd4560
JB
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
11833d66 525 }
817d52f8 526 }
e37c9e69
CM
527 path->slots[0]++;
528 }
817d52f8 529 ret = 0;
e37c9e69 530
817d52f8
JB
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
11833d66 534 caching_ctl->progress = (u64)-1;
817d52f8 535
73fa48b6
OS
536out:
537 btrfs_free_path(path);
538 return ret;
539}
540
541static noinline void caching_thread(struct btrfs_work *work)
542{
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
b4570aa9 546 struct btrfs_root *extent_root;
73fa48b6
OS
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
b4570aa9 552 extent_root = fs_info->extent_root;
73fa48b6
OS
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
1e144fb8
OS
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
73fa48b6 561
817d52f8 562 spin_lock(&block_group->lock);
11833d66 563 block_group->caching_ctl = NULL;
73fa48b6 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 565 spin_unlock(&block_group->lock);
0f9dd46c 566
d0bd4560
JB
567#ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580#endif
581
582 caching_ctl->progress = (u64)-1;
11833d66 583
9e351cc8 584 up_read(&fs_info->commit_root_sem);
73fa48b6 585 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 586 mutex_unlock(&caching_ctl->mutex);
73fa48b6 587
11833d66
YZ
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
11dfe35a 591 btrfs_put_block_group(block_group);
817d52f8
JB
592}
593
9d66e233 594static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 595 int load_cache_only)
817d52f8 596{
291c7d2f 597 DEFINE_WAIT(wait);
11833d66
YZ
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
600 int ret = 0;
601
291c7d2f 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
603 if (!caching_ctl)
604 return -ENOMEM;
291c7d2f
JB
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
291c7d2f
JB
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
11833d66 646 return 0;
291c7d2f
JB
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
11833d66 652
d53ba474 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 654 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
291c7d2f 659 cache->caching_ctl = NULL;
9d66e233
JB
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 662 caching_ctl->progress = (u64)-1;
9d66e233 663 } else {
291c7d2f
JB
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 669 cache->has_caching_ctl = 1;
291c7d2f 670 }
9d66e233
JB
671 }
672 spin_unlock(&cache->lock);
d0bd4560
JB
673#ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688#endif
cb83b7b8
JB
689 mutex_unlock(&caching_ctl->mutex);
690
291c7d2f 691 wake_up(&caching_ctl->wait);
3c14874a 692 if (ret == 1) {
291c7d2f 693 put_caching_control(caching_ctl);
3c14874a 694 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 695 return 0;
3c14874a 696 }
291c7d2f
JB
697 } else {
698 /*
1e144fb8
OS
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 708 cache->has_caching_ctl = 1;
291c7d2f
JB
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
9d66e233
JB
712 }
713
291c7d2f
JB
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
11833d66 716 return 0;
817d52f8 717 }
817d52f8 718
9e351cc8 719 down_write(&fs_info->commit_root_sem);
291c7d2f 720 atomic_inc(&caching_ctl->count);
11833d66 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 722 up_write(&fs_info->commit_root_sem);
11833d66 723
11dfe35a 724 btrfs_get_block_group(cache);
11833d66 725
e66f0bb1 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 727
ef8bbdfe 728 return ret;
e37c9e69
CM
729}
730
0f9dd46c
JB
731/*
732 * return the block group that starts at or after bytenr
733 */
d397712b
CM
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 736{
0f9dd46c 737 struct btrfs_block_group_cache *cache;
0ef3e66b 738
0f9dd46c 739 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 740
0f9dd46c 741 return cache;
0ef3e66b
CM
742}
743
0f9dd46c 744/*
9f55684c 745 * return the block group that contains the given bytenr
0f9dd46c 746 */
d397712b
CM
747struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
be744175 750{
0f9dd46c 751 struct btrfs_block_group_cache *cache;
be744175 752
0f9dd46c 753 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 754
0f9dd46c 755 return cache;
be744175 756}
0b86a832 757
0f9dd46c
JB
758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
6324fbf3 760{
0f9dd46c 761 struct list_head *head = &info->space_info;
0f9dd46c 762 struct btrfs_space_info *found;
4184ea7f 763
52ba6929 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 765
4184ea7f
CM
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
67377734 768 if (found->flags & flags) {
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return found;
4184ea7f 771 }
0f9dd46c 772 }
4184ea7f 773 rcu_read_unlock();
0f9dd46c 774 return NULL;
6324fbf3
CM
775}
776
4184ea7f
CM
777/*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782{
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790}
791
1a4ed8fd
FM
792/* simple helper to search for an existing data extent at a given offset */
793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
794{
795 int ret;
796 struct btrfs_key key;
31840ae1 797 struct btrfs_path *path;
e02119d5 798
31840ae1 799 path = btrfs_alloc_path();
d8926bb3
MF
800 if (!path)
801 return -ENOMEM;
802
e02119d5
CM
803 key.objectid = start;
804 key.offset = len;
3173a18f 805 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
31840ae1 808 btrfs_free_path(path);
7bb86316
CM
809 return ret;
810}
811
a22285a6 812/*
3173a18f 813 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
3173a18f 823 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
3173a18f
JB
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 841 offset = root->nodesize;
3173a18f
JB
842 metadata = 0;
843 }
844
a22285a6
YZ
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
a22285a6
YZ
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
639eefc8
FDBM
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
a22285a6
YZ
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
3173a18f 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 874 key.offset == root->nodesize)
74be9510
FDBM
875 ret = 0;
876 }
3173a18f
JB
877 }
878
a22285a6
YZ
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896#else
897 BUG();
898#endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
b3b4aa74 918 btrfs_release_path(path);
a22285a6 919
8cc33e5c
DS
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
a22285a6
YZ
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
639eefc8 927 goto search_again;
a22285a6 928 }
d7df2c79 929 spin_lock(&head->lock);
a22285a6
YZ
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
d7df2c79 936 spin_unlock(&head->lock);
a22285a6
YZ
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
d8d5f3e1
CM
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
5d4f98a2
YZ
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
983 * When a tree block is COW'd through a tree, there are four cases:
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
d8d5f3e1
CM
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1013 * - different files inside a single subvolume
d8d5f3e1
CM
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
5d4f98a2 1016 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1017 *
1018 * - Objectid of the subvolume root
d8d5f3e1 1019 * - objectid of the file holding the reference
5d4f98a2
YZ
1020 * - original offset in the file
1021 * - how many bookend extents
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
d8d5f3e1 1025 *
5d4f98a2 1026 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1027 *
5d4f98a2 1028 * - number of pointers in the tree leaf
d8d5f3e1 1029 *
5d4f98a2
YZ
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
d8d5f3e1 1035 *
5d4f98a2 1036 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1037 *
5d4f98a2
YZ
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1040 *
5d4f98a2 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1042 *
5d4f98a2 1043 * Btree extents can be referenced by:
d8d5f3e1 1044 *
5d4f98a2 1045 * - Different subvolumes
d8d5f3e1 1046 *
5d4f98a2
YZ
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
d8d5f3e1 1051 *
5d4f98a2
YZ
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
d8d5f3e1 1055 */
31840ae1 1056
5d4f98a2
YZ
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
7bb86316 1062{
5d4f98a2
YZ
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
7bb86316 1068 struct btrfs_key key;
5d4f98a2
YZ
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
79787eaa 1088 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
b3b4aa74 1104 btrfs_release_path(path);
5d4f98a2
YZ
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
79787eaa 1114 BUG_ON(ret); /* Corruption */
5d4f98a2 1115
4b90c680 1116 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
14a958e6 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1147 lenum = cpu_to_le64(owner);
14a958e6 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1149 lenum = cpu_to_le64(offset);
14a958e6 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157{
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166{
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180{
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
31840ae1 1183 struct extent_buffer *leaf;
5d4f98a2 1184 u32 nritems;
74493f7a 1185 int ret;
5d4f98a2
YZ
1186 int recow;
1187 int err = -ENOENT;
74493f7a 1188
31840ae1 1189 key.objectid = bytenr;
5d4f98a2
YZ
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
31840ae1 1205
5d4f98a2
YZ
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1211 btrfs_release_path(path);
5d4f98a2
YZ
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219#endif
1220 goto fail;
31840ae1
ZY
1221 }
1222
1223 leaf = path->nodes[0];
5d4f98a2
YZ
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
b3b4aa74 1249 btrfs_release_path(path);
5d4f98a2
YZ
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
31840ae1 1256 }
5d4f98a2
YZ
1257fail:
1258 return err;
31840ae1
ZY
1259}
1260
5d4f98a2
YZ
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
31840ae1
ZY
1267{
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 size;
31840ae1
ZY
1271 u32 num_refs;
1272 int ret;
74493f7a 1273
74493f7a 1274 key.objectid = bytenr;
5d4f98a2
YZ
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
74493f7a 1285
5d4f98a2
YZ
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
31840ae1 1293 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1301 }
5d4f98a2
YZ
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
31840ae1 1316
5d4f98a2
YZ
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1331 }
31840ae1 1332 }
5d4f98a2
YZ
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335fail:
b3b4aa74 1336 btrfs_release_path(path);
7bb86316 1337 return ret;
74493f7a
CM
1338}
1339
5d4f98a2
YZ
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
fcebe456 1343 int refs_to_drop, int *last_ref)
31840ae1 1344{
5d4f98a2
YZ
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1348 struct extent_buffer *leaf;
5d4f98a2 1349 u32 num_refs = 0;
31840ae1
ZY
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
5d4f98a2
YZ
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370 } else {
1371 BUG();
1372 }
1373
56bec294
CM
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
5d4f98a2 1376
31840ae1
ZY
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
fcebe456 1379 *last_ref = 1;
31840ae1 1380 } else {
5d4f98a2
YZ
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392#endif
31840ae1
ZY
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
31840ae1
ZY
1395 return ret;
1396}
1397
9ed0dea0 1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1399 struct btrfs_extent_inline_ref *iref)
15916de8 1400{
5d4f98a2
YZ
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1432#endif
5d4f98a2
YZ
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437}
15916de8 1438
5d4f98a2
YZ
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1f3c79a2 1444{
5d4f98a2 1445 struct btrfs_key key;
1f3c79a2 1446 int ret;
1f3c79a2 1447
5d4f98a2
YZ
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1f3c79a2
LH
1455 }
1456
5d4f98a2
YZ
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
b3b4aa74 1462 btrfs_release_path(path);
5d4f98a2
YZ
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1f3c79a2 1468#endif
5d4f98a2 1469 return ret;
1f3c79a2
LH
1470}
1471
5d4f98a2
YZ
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
31840ae1 1477{
5d4f98a2 1478 struct btrfs_key key;
31840ae1 1479 int ret;
31840ae1 1480
5d4f98a2
YZ
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1491 btrfs_release_path(path);
31840ae1
ZY
1492 return ret;
1493}
1494
5d4f98a2 1495static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1496{
5d4f98a2
YZ
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
31840ae1 1510}
56bec294 1511
2c47e605
YZ
1512static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
56bec294 1514
02217ed2 1515{
2c47e605 1516 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1517 if (!path->nodes[level])
1518 break;
5d4f98a2
YZ
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531}
037e6390 1532
5d4f98a2
YZ
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554{
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
3173a18f
JB
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
26b8003f 1570
db94535d 1571 key.objectid = bytenr;
31840ae1 1572 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1573 key.offset = num_bytes;
31840ae1 1574
5d4f98a2
YZ
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1578 path->keep_locks = 1;
5d4f98a2
YZ
1579 } else
1580 extra_size = -1;
3173a18f
JB
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591again:
5d4f98a2 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1593 if (ret < 0) {
5d4f98a2
YZ
1594 err = ret;
1595 goto out;
1596 }
3173a18f
JB
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
9ce49a0b 1614 key.objectid = bytenr;
3173a18f
JB
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
79787eaa
JM
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
fae7f21c 1625 } else if (WARN_ON(ret)) {
492104c8 1626 err = -EIO;
492104c8 1627 goto out;
79787eaa 1628 }
5d4f98a2
YZ
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647#endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
5d4f98a2
YZ
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
3173a18f 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
5d4f98a2
YZ
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
2c47e605
YZ
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
85d4198e 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
85d4198e 1729 if (insert) {
5d4f98a2
YZ
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
fd279fae 1740void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1746{
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
5d4f98a2
YZ
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
4b90c680 1763 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806{
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
54aa1f4d 1813 return ret;
5d4f98a2 1814
b3b4aa74 1815 btrfs_release_path(path);
5d4f98a2
YZ
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
b9473439 1824 }
5d4f98a2
YZ
1825 return ret;
1826}
31840ae1 1827
5d4f98a2
YZ
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
afe5fea7 1832void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
fcebe456
JB
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
5d4f98a2
YZ
1838{
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
5d4f98a2
YZ
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
56bec294 1870 }
31840ae1 1871
5d4f98a2
YZ
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
afe5fea7 1890 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903{
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1912 update_inline_extent_backref(root, path, iref,
fcebe456 1913 refs_to_add, extent_op, NULL);
5d4f98a2 1914 } else if (ret == -ENOENT) {
fd279fae 1915 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
771ed689 1919 }
5d4f98a2
YZ
1920 return ret;
1921}
31840ae1 1922
5d4f98a2
YZ
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928{
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940}
56bec294 1941
5d4f98a2
YZ
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
fcebe456 1946 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1947{
143bede5 1948 int ret = 0;
b9473439 1949
5d4f98a2
YZ
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
afe5fea7 1952 update_inline_extent_backref(root, path, iref,
fcebe456 1953 -refs_to_drop, NULL, last_ref);
5d4f98a2 1954 } else if (is_data) {
fcebe456
JB
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
5d4f98a2 1957 } else {
fcebe456 1958 *last_ref = 1;
5d4f98a2
YZ
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962}
1963
86557861 1964#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
5d4f98a2 1967{
86557861
JM
1968 int j, ret = 0;
1969 u64 bytes_left, end;
4d89d377 1970 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1971
4d89d377
JM
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
d04c6b88 1977
4d89d377 1978 *discarded_bytes = 0;
86557861
JM
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2030 GFP_NOFS, 0);
2031 if (!ret)
86557861 2032 *discarded_bytes += bytes_left;
4d89d377 2033 }
d04c6b88 2034 return ret;
5d4f98a2 2035}
5d4f98a2 2036
1edb647b
FM
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2039{
5d4f98a2 2040 int ret;
5378e607 2041 u64 discarded_bytes = 0;
a1d3c478 2042 struct btrfs_bio *bbio = NULL;
5d4f98a2 2043
e244a0ae 2044
5d4f98a2 2045 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2046 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2047 bytenr, &num_bytes, &bbio, 0);
79787eaa 2048 /* Error condition is -ENOMEM */
5d4f98a2 2049 if (!ret) {
a1d3c478 2050 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2051 int i;
2052
5d4f98a2 2053
a1d3c478 2054 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2055 u64 bytes;
d5e2003c
JB
2056 if (!stripe->dev->can_discard)
2057 continue;
2058
5378e607
LD
2059 ret = btrfs_issue_discard(stripe->dev->bdev,
2060 stripe->physical,
d04c6b88
JM
2061 stripe->length,
2062 &bytes);
5378e607 2063 if (!ret)
d04c6b88 2064 discarded_bytes += bytes;
5378e607 2065 else if (ret != -EOPNOTSUPP)
79787eaa 2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2067
2068 /*
2069 * Just in case we get back EOPNOTSUPP for some reason,
2070 * just ignore the return value so we don't screw up
2071 * people calling discard_extent.
2072 */
2073 ret = 0;
5d4f98a2 2074 }
6e9606d2 2075 btrfs_put_bbio(bbio);
5d4f98a2 2076 }
5378e607
LD
2077
2078 if (actual_bytes)
2079 *actual_bytes = discarded_bytes;
2080
5d4f98a2 2081
53b381b3
DW
2082 if (ret == -EOPNOTSUPP)
2083 ret = 0;
5d4f98a2 2084 return ret;
5d4f98a2
YZ
2085}
2086
79787eaa 2087/* Can return -ENOMEM */
5d4f98a2
YZ
2088int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2089 struct btrfs_root *root,
2090 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2091 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2092{
2093 int ret;
66d7e7f0
AJ
2094 struct btrfs_fs_info *fs_info = root->fs_info;
2095
5d4f98a2
YZ
2096 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2097 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2098
2099 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2100 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2101 num_bytes,
5d4f98a2 2102 parent, root_objectid, (int)owner,
b06c4bf5 2103 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2104 } else {
66d7e7f0 2105 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2106 num_bytes, parent, root_objectid,
2107 owner, offset, 0,
b06c4bf5 2108 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2109 }
2110 return ret;
2111}
2112
2113static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2114 struct btrfs_root *root,
c682f9b3 2115 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2116 u64 parent, u64 root_objectid,
2117 u64 owner, u64 offset, int refs_to_add,
2118 struct btrfs_delayed_extent_op *extent_op)
2119{
fcebe456 2120 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
fcebe456 2124 struct btrfs_key key;
c682f9b3
QW
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2127 u64 refs;
2128 int ret;
5d4f98a2
YZ
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
e4058b54 2134 path->reada = READA_FORWARD;
5d4f98a2
YZ
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2137 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2138 bytenr, num_bytes, parent,
5d4f98a2
YZ
2139 root_objectid, owner, offset,
2140 refs_to_add, extent_op);
0ed4792a 2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2142 goto out;
fcebe456
JB
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
5d4f98a2 2149 leaf = path->nodes[0];
fcebe456 2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2156
5d4f98a2 2157 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2158 btrfs_release_path(path);
56bec294 2159
e4058b54 2160 path->reada = READA_FORWARD;
b9473439 2161 path->leave_spinning = 1;
56bec294
CM
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2164 path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
79787eaa
JM
2166 if (ret)
2167 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2168out:
56bec294 2169 btrfs_free_path(path);
30d133fc 2170 return ret;
56bec294
CM
2171}
2172
5d4f98a2
YZ
2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct btrfs_delayed_ref_node *node,
2176 struct btrfs_delayed_extent_op *extent_op,
2177 int insert_reserved)
56bec294 2178{
5d4f98a2
YZ
2179 int ret = 0;
2180 struct btrfs_delayed_data_ref *ref;
2181 struct btrfs_key ins;
2182 u64 parent = 0;
2183 u64 ref_root = 0;
2184 u64 flags = 0;
2185
2186 ins.objectid = node->bytenr;
2187 ins.offset = node->num_bytes;
2188 ins.type = BTRFS_EXTENT_ITEM_KEY;
2189
2190 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2191 trace_run_delayed_data_ref(node, ref, node->action);
2192
5d4f98a2
YZ
2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194 parent = ref->parent;
fcebe456 2195 ref_root = ref->root;
5d4f98a2
YZ
2196
2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2198 if (extent_op)
5d4f98a2 2199 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2200 ret = alloc_reserved_file_extent(trans, root,
2201 parent, ref_root, flags,
2202 ref->objectid, ref->offset,
2203 &ins, node->ref_mod);
5d4f98a2 2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2205 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2206 ref_root, ref->objectid,
2207 ref->offset, node->ref_mod,
c682f9b3 2208 extent_op);
5d4f98a2 2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2210 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2211 ref_root, ref->objectid,
2212 ref->offset, node->ref_mod,
c682f9b3 2213 extent_op);
5d4f98a2
YZ
2214 } else {
2215 BUG();
2216 }
2217 return ret;
2218}
2219
2220static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221 struct extent_buffer *leaf,
2222 struct btrfs_extent_item *ei)
2223{
2224 u64 flags = btrfs_extent_flags(leaf, ei);
2225 if (extent_op->update_flags) {
2226 flags |= extent_op->flags_to_set;
2227 btrfs_set_extent_flags(leaf, ei, flags);
2228 }
2229
2230 if (extent_op->update_key) {
2231 struct btrfs_tree_block_info *bi;
2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233 bi = (struct btrfs_tree_block_info *)(ei + 1);
2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235 }
2236}
2237
2238static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239 struct btrfs_root *root,
2240 struct btrfs_delayed_ref_node *node,
2241 struct btrfs_delayed_extent_op *extent_op)
2242{
2243 struct btrfs_key key;
2244 struct btrfs_path *path;
2245 struct btrfs_extent_item *ei;
2246 struct extent_buffer *leaf;
2247 u32 item_size;
56bec294 2248 int ret;
5d4f98a2 2249 int err = 0;
b1c79e09 2250 int metadata = !extent_op->is_data;
5d4f98a2 2251
79787eaa
JM
2252 if (trans->aborted)
2253 return 0;
2254
3173a18f
JB
2255 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2256 metadata = 0;
2257
5d4f98a2
YZ
2258 path = btrfs_alloc_path();
2259 if (!path)
2260 return -ENOMEM;
2261
2262 key.objectid = node->bytenr;
5d4f98a2 2263
3173a18f 2264 if (metadata) {
3173a18f 2265 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2266 key.offset = extent_op->level;
3173a18f
JB
2267 } else {
2268 key.type = BTRFS_EXTENT_ITEM_KEY;
2269 key.offset = node->num_bytes;
2270 }
2271
2272again:
e4058b54 2273 path->reada = READA_FORWARD;
5d4f98a2
YZ
2274 path->leave_spinning = 1;
2275 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2276 path, 0, 1);
2277 if (ret < 0) {
2278 err = ret;
2279 goto out;
2280 }
2281 if (ret > 0) {
3173a18f 2282 if (metadata) {
55994887
FDBM
2283 if (path->slots[0] > 0) {
2284 path->slots[0]--;
2285 btrfs_item_key_to_cpu(path->nodes[0], &key,
2286 path->slots[0]);
2287 if (key.objectid == node->bytenr &&
2288 key.type == BTRFS_EXTENT_ITEM_KEY &&
2289 key.offset == node->num_bytes)
2290 ret = 0;
2291 }
2292 if (ret > 0) {
2293 btrfs_release_path(path);
2294 metadata = 0;
3173a18f 2295
55994887
FDBM
2296 key.objectid = node->bytenr;
2297 key.offset = node->num_bytes;
2298 key.type = BTRFS_EXTENT_ITEM_KEY;
2299 goto again;
2300 }
2301 } else {
2302 err = -EIO;
2303 goto out;
3173a18f 2304 }
5d4f98a2
YZ
2305 }
2306
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310 if (item_size < sizeof(*ei)) {
2311 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2312 path, (u64)-1, 0);
2313 if (ret < 0) {
2314 err = ret;
2315 goto out;
2316 }
2317 leaf = path->nodes[0];
2318 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2319 }
2320#endif
2321 BUG_ON(item_size < sizeof(*ei));
2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2324
5d4f98a2
YZ
2325 btrfs_mark_buffer_dirty(leaf);
2326out:
2327 btrfs_free_path(path);
2328 return err;
56bec294
CM
2329}
2330
5d4f98a2
YZ
2331static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root,
2333 struct btrfs_delayed_ref_node *node,
2334 struct btrfs_delayed_extent_op *extent_op,
2335 int insert_reserved)
56bec294
CM
2336{
2337 int ret = 0;
5d4f98a2
YZ
2338 struct btrfs_delayed_tree_ref *ref;
2339 struct btrfs_key ins;
2340 u64 parent = 0;
2341 u64 ref_root = 0;
3173a18f
JB
2342 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2343 SKINNY_METADATA);
56bec294 2344
5d4f98a2 2345 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2346 trace_run_delayed_tree_ref(node, ref, node->action);
2347
5d4f98a2
YZ
2348 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2349 parent = ref->parent;
fcebe456 2350 ref_root = ref->root;
5d4f98a2 2351
3173a18f
JB
2352 ins.objectid = node->bytenr;
2353 if (skinny_metadata) {
2354 ins.offset = ref->level;
2355 ins.type = BTRFS_METADATA_ITEM_KEY;
2356 } else {
2357 ins.offset = node->num_bytes;
2358 ins.type = BTRFS_EXTENT_ITEM_KEY;
2359 }
2360
5d4f98a2
YZ
2361 BUG_ON(node->ref_mod != 1);
2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2363 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2364 ret = alloc_reserved_tree_block(trans, root,
2365 parent, ref_root,
2366 extent_op->flags_to_set,
2367 &extent_op->key,
b06c4bf5 2368 ref->level, &ins);
5d4f98a2 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2371 parent, ref_root,
2372 ref->level, 0, 1,
fcebe456 2373 extent_op);
5d4f98a2 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2375 ret = __btrfs_free_extent(trans, root, node,
2376 parent, ref_root,
2377 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2378 } else {
2379 BUG();
2380 }
56bec294
CM
2381 return ret;
2382}
2383
2384/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2385static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
56bec294 2390{
79787eaa
JM
2391 int ret = 0;
2392
857cc2fc
JB
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
79787eaa 2397 return 0;
857cc2fc 2398 }
79787eaa 2399
5d4f98a2 2400 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2401 struct btrfs_delayed_ref_head *head;
2402 /*
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2407 */
5d4f98a2
YZ
2408 BUG_ON(extent_op);
2409 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2410 trace_run_delayed_ref_head(node, head, node->action);
2411
56bec294 2412 if (insert_reserved) {
f0486c68
YZ
2413 btrfs_pin_extent(root, node->bytenr,
2414 node->num_bytes, 1);
5d4f98a2
YZ
2415 if (head->is_data) {
2416 ret = btrfs_del_csums(trans, root,
2417 node->bytenr,
2418 node->num_bytes);
5d4f98a2 2419 }
56bec294 2420 }
297d750b
QW
2421
2422 /* Also free its reserved qgroup space */
2423 btrfs_qgroup_free_delayed_ref(root->fs_info,
2424 head->qgroup_ref_root,
2425 head->qgroup_reserved);
79787eaa 2426 return ret;
56bec294
CM
2427 }
2428
5d4f98a2
YZ
2429 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2430 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2431 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2432 insert_reserved);
2433 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2434 node->type == BTRFS_SHARED_DATA_REF_KEY)
2435 ret = run_delayed_data_ref(trans, root, node, extent_op,
2436 insert_reserved);
2437 else
2438 BUG();
2439 return ret;
56bec294
CM
2440}
2441
c6fc2454 2442static inline struct btrfs_delayed_ref_node *
56bec294
CM
2443select_delayed_ref(struct btrfs_delayed_ref_head *head)
2444{
cffc3374
FM
2445 struct btrfs_delayed_ref_node *ref;
2446
c6fc2454
QW
2447 if (list_empty(&head->ref_list))
2448 return NULL;
d7df2c79 2449
cffc3374
FM
2450 /*
2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452 * This is to prevent a ref count from going down to zero, which deletes
2453 * the extent item from the extent tree, when there still are references
2454 * to add, which would fail because they would not find the extent item.
2455 */
2456 list_for_each_entry(ref, &head->ref_list, list) {
2457 if (ref->action == BTRFS_ADD_DELAYED_REF)
2458 return ref;
2459 }
2460
c6fc2454
QW
2461 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2462 list);
56bec294
CM
2463}
2464
79787eaa
JM
2465/*
2466 * Returns 0 on success or if called with an already aborted transaction.
2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2468 */
d7df2c79
JB
2469static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 unsigned long nr)
56bec294 2472{
56bec294
CM
2473 struct btrfs_delayed_ref_root *delayed_refs;
2474 struct btrfs_delayed_ref_node *ref;
2475 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2476 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2477 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2478 ktime_t start = ktime_get();
56bec294 2479 int ret;
d7df2c79 2480 unsigned long count = 0;
0a2b2a84 2481 unsigned long actual_count = 0;
56bec294 2482 int must_insert_reserved = 0;
56bec294
CM
2483
2484 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2485 while (1) {
2486 if (!locked_ref) {
d7df2c79 2487 if (count >= nr)
56bec294 2488 break;
56bec294 2489
d7df2c79
JB
2490 spin_lock(&delayed_refs->lock);
2491 locked_ref = btrfs_select_ref_head(trans);
2492 if (!locked_ref) {
2493 spin_unlock(&delayed_refs->lock);
2494 break;
2495 }
c3e69d58
CM
2496
2497 /* grab the lock that says we are going to process
2498 * all the refs for this head */
2499 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2500 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2501 /*
2502 * we may have dropped the spin lock to get the head
2503 * mutex lock, and that might have given someone else
2504 * time to free the head. If that's true, it has been
2505 * removed from our list and we can move on.
2506 */
2507 if (ret == -EAGAIN) {
2508 locked_ref = NULL;
2509 count++;
2510 continue;
56bec294
CM
2511 }
2512 }
a28ec197 2513
2c3cf7d5
FM
2514 /*
2515 * We need to try and merge add/drops of the same ref since we
2516 * can run into issues with relocate dropping the implicit ref
2517 * and then it being added back again before the drop can
2518 * finish. If we merged anything we need to re-loop so we can
2519 * get a good ref.
2520 * Or we can get node references of the same type that weren't
2521 * merged when created due to bumps in the tree mod seq, and
2522 * we need to merge them to prevent adding an inline extent
2523 * backref before dropping it (triggering a BUG_ON at
2524 * insert_inline_extent_backref()).
2525 */
d7df2c79 2526 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2527 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2528 locked_ref);
ae1e206b 2529
d1270cd9
AJ
2530 /*
2531 * locked_ref is the head node, so we have to go one
2532 * node back for any delayed ref updates
2533 */
2534 ref = select_delayed_ref(locked_ref);
2535
2536 if (ref && ref->seq &&
097b8a7c 2537 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2538 spin_unlock(&locked_ref->lock);
093486c4 2539 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
d1270cd9
AJ
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
d7df2c79 2544 locked_ref = NULL;
d1270cd9 2545 cond_resched();
27a377db 2546 count++;
d1270cd9
AJ
2547 continue;
2548 }
2549
56bec294
CM
2550 /*
2551 * record the must insert reserved flag before we
2552 * drop the spin lock.
2553 */
2554 must_insert_reserved = locked_ref->must_insert_reserved;
2555 locked_ref->must_insert_reserved = 0;
7bb86316 2556
5d4f98a2
YZ
2557 extent_op = locked_ref->extent_op;
2558 locked_ref->extent_op = NULL;
2559
56bec294 2560 if (!ref) {
d7df2c79
JB
2561
2562
56bec294
CM
2563 /* All delayed refs have been processed, Go ahead
2564 * and send the head node to run_one_delayed_ref,
2565 * so that any accounting fixes can happen
2566 */
2567 ref = &locked_ref->node;
5d4f98a2
YZ
2568
2569 if (extent_op && must_insert_reserved) {
78a6184a 2570 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2571 extent_op = NULL;
2572 }
2573
2574 if (extent_op) {
d7df2c79 2575 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2576 ret = run_delayed_extent_op(trans, root,
2577 ref, extent_op);
78a6184a 2578 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2579
79787eaa 2580 if (ret) {
857cc2fc
JB
2581 /*
2582 * Need to reset must_insert_reserved if
2583 * there was an error so the abort stuff
2584 * can cleanup the reserved space
2585 * properly.
2586 */
2587 if (must_insert_reserved)
2588 locked_ref->must_insert_reserved = 1;
d7df2c79 2589 locked_ref->processing = 0;
c2cf52eb 2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2591 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2592 return ret;
2593 }
d7df2c79 2594 continue;
5d4f98a2 2595 }
02217ed2 2596
d7df2c79
JB
2597 /*
2598 * Need to drop our head ref lock and re-aqcuire the
2599 * delayed ref lock and then re-check to make sure
2600 * nobody got added.
2601 */
2602 spin_unlock(&locked_ref->lock);
2603 spin_lock(&delayed_refs->lock);
2604 spin_lock(&locked_ref->lock);
c6fc2454 2605 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2606 locked_ref->extent_op) {
d7df2c79
JB
2607 spin_unlock(&locked_ref->lock);
2608 spin_unlock(&delayed_refs->lock);
2609 continue;
2610 }
2611 ref->in_tree = 0;
2612 delayed_refs->num_heads--;
c46effa6
LB
2613 rb_erase(&locked_ref->href_node,
2614 &delayed_refs->href_root);
d7df2c79
JB
2615 spin_unlock(&delayed_refs->lock);
2616 } else {
0a2b2a84 2617 actual_count++;
d7df2c79 2618 ref->in_tree = 0;
c6fc2454 2619 list_del(&ref->list);
c46effa6 2620 }
d7df2c79
JB
2621 atomic_dec(&delayed_refs->num_entries);
2622
093486c4 2623 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2624 /*
2625 * when we play the delayed ref, also correct the
2626 * ref_mod on head
2627 */
2628 switch (ref->action) {
2629 case BTRFS_ADD_DELAYED_REF:
2630 case BTRFS_ADD_DELAYED_EXTENT:
2631 locked_ref->node.ref_mod -= ref->ref_mod;
2632 break;
2633 case BTRFS_DROP_DELAYED_REF:
2634 locked_ref->node.ref_mod += ref->ref_mod;
2635 break;
2636 default:
2637 WARN_ON(1);
2638 }
2639 }
d7df2c79 2640 spin_unlock(&locked_ref->lock);
925baedd 2641
5d4f98a2 2642 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2643 must_insert_reserved);
eb099670 2644
78a6184a 2645 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2646 if (ret) {
d7df2c79 2647 locked_ref->processing = 0;
093486c4
MX
2648 btrfs_delayed_ref_unlock(locked_ref);
2649 btrfs_put_delayed_ref(ref);
c2cf52eb 2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2651 return ret;
2652 }
2653
093486c4
MX
2654 /*
2655 * If this node is a head, that means all the refs in this head
2656 * have been dealt with, and we will pick the next head to deal
2657 * with, so we must unlock the head and drop it from the cluster
2658 * list before we release it.
2659 */
2660 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2661 if (locked_ref->is_data &&
2662 locked_ref->total_ref_mod < 0) {
2663 spin_lock(&delayed_refs->lock);
2664 delayed_refs->pending_csums -= ref->num_bytes;
2665 spin_unlock(&delayed_refs->lock);
2666 }
093486c4
MX
2667 btrfs_delayed_ref_unlock(locked_ref);
2668 locked_ref = NULL;
2669 }
2670 btrfs_put_delayed_ref(ref);
2671 count++;
c3e69d58 2672 cond_resched();
c3e69d58 2673 }
0a2b2a84
JB
2674
2675 /*
2676 * We don't want to include ref heads since we can have empty ref heads
2677 * and those will drastically skew our runtime down since we just do
2678 * accounting, no actual extent tree updates.
2679 */
2680 if (actual_count > 0) {
2681 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2682 u64 avg;
2683
2684 /*
2685 * We weigh the current average higher than our current runtime
2686 * to avoid large swings in the average.
2687 */
2688 spin_lock(&delayed_refs->lock);
2689 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2690 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2691 spin_unlock(&delayed_refs->lock);
2692 }
d7df2c79 2693 return 0;
c3e69d58
CM
2694}
2695
709c0486
AJ
2696#ifdef SCRAMBLE_DELAYED_REFS
2697/*
2698 * Normally delayed refs get processed in ascending bytenr order. This
2699 * correlates in most cases to the order added. To expose dependencies on this
2700 * order, we start to process the tree in the middle instead of the beginning
2701 */
2702static u64 find_middle(struct rb_root *root)
2703{
2704 struct rb_node *n = root->rb_node;
2705 struct btrfs_delayed_ref_node *entry;
2706 int alt = 1;
2707 u64 middle;
2708 u64 first = 0, last = 0;
2709
2710 n = rb_first(root);
2711 if (n) {
2712 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2713 first = entry->bytenr;
2714 }
2715 n = rb_last(root);
2716 if (n) {
2717 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2718 last = entry->bytenr;
2719 }
2720 n = root->rb_node;
2721
2722 while (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 WARN_ON(!entry->in_tree);
2725
2726 middle = entry->bytenr;
2727
2728 if (alt)
2729 n = n->rb_left;
2730 else
2731 n = n->rb_right;
2732
2733 alt = 1 - alt;
2734 }
2735 return middle;
2736}
2737#endif
2738
1be41b78
JB
2739static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2740{
2741 u64 num_bytes;
2742
2743 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2744 sizeof(struct btrfs_extent_inline_ref));
2745 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2746 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2747
2748 /*
2749 * We don't ever fill up leaves all the way so multiply by 2 just to be
2750 * closer to what we're really going to want to ouse.
2751 */
f8c269d7 2752 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2753}
2754
1262133b
JB
2755/*
2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757 * would require to store the csums for that many bytes.
2758 */
28f75a0e 2759u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2760{
2761 u64 csum_size;
2762 u64 num_csums_per_leaf;
2763 u64 num_csums;
2764
2765 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2766 num_csums_per_leaf = div64_u64(csum_size,
2767 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2768 num_csums = div64_u64(csum_bytes, root->sectorsize);
2769 num_csums += num_csums_per_leaf - 1;
2770 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2771 return num_csums;
2772}
2773
0a2b2a84 2774int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2775 struct btrfs_root *root)
2776{
2777 struct btrfs_block_rsv *global_rsv;
2778 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2779 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2780 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2781 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2782 int ret = 0;
2783
2784 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2785 num_heads = heads_to_leaves(root, num_heads);
2786 if (num_heads > 1)
707e8a07 2787 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2788 num_bytes <<= 1;
28f75a0e 2789 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2790 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2791 num_dirty_bgs);
1be41b78
JB
2792 global_rsv = &root->fs_info->global_block_rsv;
2793
2794 /*
2795 * If we can't allocate any more chunks lets make sure we have _lots_ of
2796 * wiggle room since running delayed refs can create more delayed refs.
2797 */
cb723e49
JB
2798 if (global_rsv->space_info->full) {
2799 num_dirty_bgs_bytes <<= 1;
1be41b78 2800 num_bytes <<= 1;
cb723e49 2801 }
1be41b78
JB
2802
2803 spin_lock(&global_rsv->lock);
cb723e49 2804 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2805 ret = 1;
2806 spin_unlock(&global_rsv->lock);
2807 return ret;
2808}
2809
0a2b2a84
JB
2810int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2811 struct btrfs_root *root)
2812{
2813 struct btrfs_fs_info *fs_info = root->fs_info;
2814 u64 num_entries =
2815 atomic_read(&trans->transaction->delayed_refs.num_entries);
2816 u64 avg_runtime;
a79b7d4b 2817 u64 val;
0a2b2a84
JB
2818
2819 smp_mb();
2820 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2821 val = num_entries * avg_runtime;
0a2b2a84
JB
2822 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2823 return 1;
a79b7d4b
CM
2824 if (val >= NSEC_PER_SEC / 2)
2825 return 2;
0a2b2a84
JB
2826
2827 return btrfs_check_space_for_delayed_refs(trans, root);
2828}
2829
a79b7d4b
CM
2830struct async_delayed_refs {
2831 struct btrfs_root *root;
2832 int count;
2833 int error;
2834 int sync;
2835 struct completion wait;
2836 struct btrfs_work work;
2837};
2838
2839static void delayed_ref_async_start(struct btrfs_work *work)
2840{
2841 struct async_delayed_refs *async;
2842 struct btrfs_trans_handle *trans;
2843 int ret;
2844
2845 async = container_of(work, struct async_delayed_refs, work);
2846
2847 trans = btrfs_join_transaction(async->root);
2848 if (IS_ERR(trans)) {
2849 async->error = PTR_ERR(trans);
2850 goto done;
2851 }
2852
2853 /*
2854 * trans->sync means that when we call end_transaciton, we won't
2855 * wait on delayed refs
2856 */
2857 trans->sync = true;
2858 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2859 if (ret)
2860 async->error = ret;
2861
2862 ret = btrfs_end_transaction(trans, async->root);
2863 if (ret && !async->error)
2864 async->error = ret;
2865done:
2866 if (async->sync)
2867 complete(&async->wait);
2868 else
2869 kfree(async);
2870}
2871
2872int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2873 unsigned long count, int wait)
2874{
2875 struct async_delayed_refs *async;
2876 int ret;
2877
2878 async = kmalloc(sizeof(*async), GFP_NOFS);
2879 if (!async)
2880 return -ENOMEM;
2881
2882 async->root = root->fs_info->tree_root;
2883 async->count = count;
2884 async->error = 0;
2885 if (wait)
2886 async->sync = 1;
2887 else
2888 async->sync = 0;
2889 init_completion(&async->wait);
2890
9e0af237
LB
2891 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2892 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2893
2894 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2895
2896 if (wait) {
2897 wait_for_completion(&async->wait);
2898 ret = async->error;
2899 kfree(async);
2900 return ret;
2901 }
2902 return 0;
2903}
2904
c3e69d58
CM
2905/*
2906 * this starts processing the delayed reference count updates and
2907 * extent insertions we have queued up so far. count can be
2908 * 0, which means to process everything in the tree at the start
2909 * of the run (but not newly added entries), or it can be some target
2910 * number you'd like to process.
79787eaa
JM
2911 *
2912 * Returns 0 on success or if called with an aborted transaction
2913 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2914 */
2915int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *root, unsigned long count)
2917{
2918 struct rb_node *node;
2919 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2920 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2921 int ret;
2922 int run_all = count == (unsigned long)-1;
d9a0540a 2923 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2924
79787eaa
JM
2925 /* We'll clean this up in btrfs_cleanup_transaction */
2926 if (trans->aborted)
2927 return 0;
2928
511711af
CM
2929 if (root->fs_info->creating_free_space_tree)
2930 return 0;
2931
c3e69d58
CM
2932 if (root == root->fs_info->extent_root)
2933 root = root->fs_info->tree_root;
2934
2935 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2936 if (count == 0)
d7df2c79 2937 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2938
c3e69d58 2939again:
709c0486
AJ
2940#ifdef SCRAMBLE_DELAYED_REFS
2941 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2942#endif
d9a0540a 2943 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2944 ret = __btrfs_run_delayed_refs(trans, root, count);
2945 if (ret < 0) {
2946 btrfs_abort_transaction(trans, root, ret);
2947 return ret;
eb099670 2948 }
c3e69d58 2949
56bec294 2950 if (run_all) {
d7df2c79 2951 if (!list_empty(&trans->new_bgs))
ea658bad 2952 btrfs_create_pending_block_groups(trans, root);
ea658bad 2953
d7df2c79 2954 spin_lock(&delayed_refs->lock);
c46effa6 2955 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2956 if (!node) {
2957 spin_unlock(&delayed_refs->lock);
56bec294 2958 goto out;
d7df2c79 2959 }
c3e69d58 2960 count = (unsigned long)-1;
e9d0b13b 2961
56bec294 2962 while (node) {
c46effa6
LB
2963 head = rb_entry(node, struct btrfs_delayed_ref_head,
2964 href_node);
2965 if (btrfs_delayed_ref_is_head(&head->node)) {
2966 struct btrfs_delayed_ref_node *ref;
5caf2a00 2967
c46effa6 2968 ref = &head->node;
56bec294
CM
2969 atomic_inc(&ref->refs);
2970
2971 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2972 /*
2973 * Mutex was contended, block until it's
2974 * released and try again
2975 */
56bec294
CM
2976 mutex_lock(&head->mutex);
2977 mutex_unlock(&head->mutex);
2978
2979 btrfs_put_delayed_ref(ref);
1887be66 2980 cond_resched();
56bec294 2981 goto again;
c46effa6
LB
2982 } else {
2983 WARN_ON(1);
56bec294
CM
2984 }
2985 node = rb_next(node);
2986 }
2987 spin_unlock(&delayed_refs->lock);
d7df2c79 2988 cond_resched();
56bec294 2989 goto again;
5f39d397 2990 }
54aa1f4d 2991out:
edf39272 2992 assert_qgroups_uptodate(trans);
d9a0540a 2993 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2994 return 0;
2995}
2996
5d4f98a2
YZ
2997int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root,
2999 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3000 int level, int is_data)
5d4f98a2
YZ
3001{
3002 struct btrfs_delayed_extent_op *extent_op;
3003 int ret;
3004
78a6184a 3005 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3006 if (!extent_op)
3007 return -ENOMEM;
3008
3009 extent_op->flags_to_set = flags;
35b3ad50
DS
3010 extent_op->update_flags = true;
3011 extent_op->update_key = false;
3012 extent_op->is_data = is_data ? true : false;
b1c79e09 3013 extent_op->level = level;
5d4f98a2 3014
66d7e7f0
AJ
3015 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3016 num_bytes, extent_op);
5d4f98a2 3017 if (ret)
78a6184a 3018 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3019 return ret;
3020}
3021
3022static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct btrfs_path *path,
3025 u64 objectid, u64 offset, u64 bytenr)
3026{
3027 struct btrfs_delayed_ref_head *head;
3028 struct btrfs_delayed_ref_node *ref;
3029 struct btrfs_delayed_data_ref *data_ref;
3030 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3031 int ret = 0;
3032
5d4f98a2
YZ
3033 delayed_refs = &trans->transaction->delayed_refs;
3034 spin_lock(&delayed_refs->lock);
3035 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3036 if (!head) {
3037 spin_unlock(&delayed_refs->lock);
3038 return 0;
3039 }
5d4f98a2
YZ
3040
3041 if (!mutex_trylock(&head->mutex)) {
3042 atomic_inc(&head->node.refs);
3043 spin_unlock(&delayed_refs->lock);
3044
b3b4aa74 3045 btrfs_release_path(path);
5d4f98a2 3046
8cc33e5c
DS
3047 /*
3048 * Mutex was contended, block until it's released and let
3049 * caller try again
3050 */
5d4f98a2
YZ
3051 mutex_lock(&head->mutex);
3052 mutex_unlock(&head->mutex);
3053 btrfs_put_delayed_ref(&head->node);
3054 return -EAGAIN;
3055 }
d7df2c79 3056 spin_unlock(&delayed_refs->lock);
5d4f98a2 3057
d7df2c79 3058 spin_lock(&head->lock);
c6fc2454 3059 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3060 /* If it's a shared ref we know a cross reference exists */
3061 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3062 ret = 1;
3063 break;
3064 }
5d4f98a2 3065
d7df2c79 3066 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3067
d7df2c79
JB
3068 /*
3069 * If our ref doesn't match the one we're currently looking at
3070 * then we have a cross reference.
3071 */
3072 if (data_ref->root != root->root_key.objectid ||
3073 data_ref->objectid != objectid ||
3074 data_ref->offset != offset) {
3075 ret = 1;
3076 break;
3077 }
5d4f98a2 3078 }
d7df2c79 3079 spin_unlock(&head->lock);
5d4f98a2 3080 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3081 return ret;
3082}
3083
3084static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 struct btrfs_path *path,
3087 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3088{
3089 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3090 struct extent_buffer *leaf;
5d4f98a2
YZ
3091 struct btrfs_extent_data_ref *ref;
3092 struct btrfs_extent_inline_ref *iref;
3093 struct btrfs_extent_item *ei;
f321e491 3094 struct btrfs_key key;
5d4f98a2 3095 u32 item_size;
be20aa9d 3096 int ret;
925baedd 3097
be20aa9d 3098 key.objectid = bytenr;
31840ae1 3099 key.offset = (u64)-1;
f321e491 3100 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3101
be20aa9d
CM
3102 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3103 if (ret < 0)
3104 goto out;
79787eaa 3105 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3106
3107 ret = -ENOENT;
3108 if (path->slots[0] == 0)
31840ae1 3109 goto out;
be20aa9d 3110
31840ae1 3111 path->slots[0]--;
f321e491 3112 leaf = path->nodes[0];
5d4f98a2 3113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3114
5d4f98a2 3115 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3116 goto out;
f321e491 3117
5d4f98a2
YZ
3118 ret = 1;
3119 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3120#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 if (item_size < sizeof(*ei)) {
3122 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3123 goto out;
3124 }
3125#endif
3126 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3127
5d4f98a2
YZ
3128 if (item_size != sizeof(*ei) +
3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3130 goto out;
be20aa9d 3131
5d4f98a2
YZ
3132 if (btrfs_extent_generation(leaf, ei) <=
3133 btrfs_root_last_snapshot(&root->root_item))
3134 goto out;
3135
3136 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3137 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3138 BTRFS_EXTENT_DATA_REF_KEY)
3139 goto out;
3140
3141 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3142 if (btrfs_extent_refs(leaf, ei) !=
3143 btrfs_extent_data_ref_count(leaf, ref) ||
3144 btrfs_extent_data_ref_root(leaf, ref) !=
3145 root->root_key.objectid ||
3146 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3147 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3148 goto out;
3149
3150 ret = 0;
3151out:
3152 return ret;
3153}
3154
3155int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3156 struct btrfs_root *root,
3157 u64 objectid, u64 offset, u64 bytenr)
3158{
3159 struct btrfs_path *path;
3160 int ret;
3161 int ret2;
3162
3163 path = btrfs_alloc_path();
3164 if (!path)
3165 return -ENOENT;
3166
3167 do {
3168 ret = check_committed_ref(trans, root, path, objectid,
3169 offset, bytenr);
3170 if (ret && ret != -ENOENT)
f321e491 3171 goto out;
80ff3856 3172
5d4f98a2
YZ
3173 ret2 = check_delayed_ref(trans, root, path, objectid,
3174 offset, bytenr);
3175 } while (ret2 == -EAGAIN);
3176
3177 if (ret2 && ret2 != -ENOENT) {
3178 ret = ret2;
3179 goto out;
f321e491 3180 }
5d4f98a2
YZ
3181
3182 if (ret != -ENOENT || ret2 != -ENOENT)
3183 ret = 0;
be20aa9d 3184out:
80ff3856 3185 btrfs_free_path(path);
f0486c68
YZ
3186 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3187 WARN_ON(ret > 0);
f321e491 3188 return ret;
be20aa9d 3189}
c5739bba 3190
5d4f98a2 3191static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3192 struct btrfs_root *root,
5d4f98a2 3193 struct extent_buffer *buf,
e339a6b0 3194 int full_backref, int inc)
31840ae1
ZY
3195{
3196 u64 bytenr;
5d4f98a2
YZ
3197 u64 num_bytes;
3198 u64 parent;
31840ae1 3199 u64 ref_root;
31840ae1 3200 u32 nritems;
31840ae1
ZY
3201 struct btrfs_key key;
3202 struct btrfs_file_extent_item *fi;
3203 int i;
3204 int level;
3205 int ret = 0;
31840ae1 3206 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3207 u64, u64, u64, u64, u64, u64);
31840ae1 3208
fccb84c9
DS
3209
3210 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3211 return 0;
fccb84c9 3212
31840ae1 3213 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3214 nritems = btrfs_header_nritems(buf);
3215 level = btrfs_header_level(buf);
3216
27cdeb70 3217 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3218 return 0;
31840ae1 3219
5d4f98a2
YZ
3220 if (inc)
3221 process_func = btrfs_inc_extent_ref;
3222 else
3223 process_func = btrfs_free_extent;
31840ae1 3224
5d4f98a2
YZ
3225 if (full_backref)
3226 parent = buf->start;
3227 else
3228 parent = 0;
3229
3230 for (i = 0; i < nritems; i++) {
31840ae1 3231 if (level == 0) {
5d4f98a2 3232 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3233 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3234 continue;
5d4f98a2 3235 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3236 struct btrfs_file_extent_item);
3237 if (btrfs_file_extent_type(buf, fi) ==
3238 BTRFS_FILE_EXTENT_INLINE)
3239 continue;
3240 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3241 if (bytenr == 0)
3242 continue;
5d4f98a2
YZ
3243
3244 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3245 key.offset -= btrfs_file_extent_offset(buf, fi);
3246 ret = process_func(trans, root, bytenr, num_bytes,
3247 parent, ref_root, key.objectid,
b06c4bf5 3248 key.offset);
31840ae1
ZY
3249 if (ret)
3250 goto fail;
3251 } else {
5d4f98a2 3252 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3253 num_bytes = root->nodesize;
5d4f98a2 3254 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3255 parent, ref_root, level - 1, 0);
31840ae1
ZY
3256 if (ret)
3257 goto fail;
3258 }
3259 }
3260 return 0;
3261fail:
5d4f98a2
YZ
3262 return ret;
3263}
3264
3265int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3266 struct extent_buffer *buf, int full_backref)
5d4f98a2 3267{
e339a6b0 3268 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3269}
3270
3271int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3272 struct extent_buffer *buf, int full_backref)
5d4f98a2 3273{
e339a6b0 3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3275}
3276
9078a3e1
CM
3277static int write_one_cache_group(struct btrfs_trans_handle *trans,
3278 struct btrfs_root *root,
3279 struct btrfs_path *path,
3280 struct btrfs_block_group_cache *cache)
3281{
3282 int ret;
9078a3e1 3283 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3284 unsigned long bi;
3285 struct extent_buffer *leaf;
9078a3e1 3286
9078a3e1 3287 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3288 if (ret) {
3289 if (ret > 0)
3290 ret = -ENOENT;
54aa1f4d 3291 goto fail;
df95e7f0 3292 }
5f39d397
CM
3293
3294 leaf = path->nodes[0];
3295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3296 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3297 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3298fail:
24b89d08 3299 btrfs_release_path(path);
df95e7f0 3300 return ret;
9078a3e1
CM
3301
3302}
3303
4a8c9a62
YZ
3304static struct btrfs_block_group_cache *
3305next_block_group(struct btrfs_root *root,
3306 struct btrfs_block_group_cache *cache)
3307{
3308 struct rb_node *node;
292cbd51 3309
4a8c9a62 3310 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3311
3312 /* If our block group was removed, we need a full search. */
3313 if (RB_EMPTY_NODE(&cache->cache_node)) {
3314 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3315
3316 spin_unlock(&root->fs_info->block_group_cache_lock);
3317 btrfs_put_block_group(cache);
3318 cache = btrfs_lookup_first_block_group(root->fs_info,
3319 next_bytenr);
3320 return cache;
3321 }
4a8c9a62
YZ
3322 node = rb_next(&cache->cache_node);
3323 btrfs_put_block_group(cache);
3324 if (node) {
3325 cache = rb_entry(node, struct btrfs_block_group_cache,
3326 cache_node);
11dfe35a 3327 btrfs_get_block_group(cache);
4a8c9a62
YZ
3328 } else
3329 cache = NULL;
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 return cache;
3332}
3333
0af3d00b
JB
3334static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3335 struct btrfs_trans_handle *trans,
3336 struct btrfs_path *path)
3337{
3338 struct btrfs_root *root = block_group->fs_info->tree_root;
3339 struct inode *inode = NULL;
3340 u64 alloc_hint = 0;
2b20982e 3341 int dcs = BTRFS_DC_ERROR;
f8c269d7 3342 u64 num_pages = 0;
0af3d00b
JB
3343 int retries = 0;
3344 int ret = 0;
3345
3346 /*
3347 * If this block group is smaller than 100 megs don't bother caching the
3348 * block group.
3349 */
ee22184b 3350 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3351 spin_lock(&block_group->lock);
3352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3353 spin_unlock(&block_group->lock);
3354 return 0;
3355 }
3356
0c0ef4bc
JB
3357 if (trans->aborted)
3358 return 0;
0af3d00b
JB
3359again:
3360 inode = lookup_free_space_inode(root, block_group, path);
3361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3362 ret = PTR_ERR(inode);
b3b4aa74 3363 btrfs_release_path(path);
0af3d00b
JB
3364 goto out;
3365 }
3366
3367 if (IS_ERR(inode)) {
3368 BUG_ON(retries);
3369 retries++;
3370
3371 if (block_group->ro)
3372 goto out_free;
3373
3374 ret = create_free_space_inode(root, trans, block_group, path);
3375 if (ret)
3376 goto out_free;
3377 goto again;
3378 }
3379
5b0e95bf
JB
3380 /* We've already setup this transaction, go ahead and exit */
3381 if (block_group->cache_generation == trans->transid &&
3382 i_size_read(inode)) {
3383 dcs = BTRFS_DC_SETUP;
3384 goto out_put;
3385 }
3386
0af3d00b
JB
3387 /*
3388 * We want to set the generation to 0, that way if anything goes wrong
3389 * from here on out we know not to trust this cache when we load up next
3390 * time.
3391 */
3392 BTRFS_I(inode)->generation = 0;
3393 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3394 if (ret) {
3395 /*
3396 * So theoretically we could recover from this, simply set the
3397 * super cache generation to 0 so we know to invalidate the
3398 * cache, but then we'd have to keep track of the block groups
3399 * that fail this way so we know we _have_ to reset this cache
3400 * before the next commit or risk reading stale cache. So to
3401 * limit our exposure to horrible edge cases lets just abort the
3402 * transaction, this only happens in really bad situations
3403 * anyway.
3404 */
3405 btrfs_abort_transaction(trans, root, ret);
3406 goto out_put;
3407 }
0af3d00b
JB
3408 WARN_ON(ret);
3409
3410 if (i_size_read(inode) > 0) {
7b61cd92
MX
3411 ret = btrfs_check_trunc_cache_free_space(root,
3412 &root->fs_info->global_block_rsv);
3413 if (ret)
3414 goto out_put;
3415
1bbc621e 3416 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3417 if (ret)
3418 goto out_put;
3419 }
3420
3421 spin_lock(&block_group->lock);
cf7c1ef6 3422 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3423 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3424 /*
3425 * don't bother trying to write stuff out _if_
3426 * a) we're not cached,
3427 * b) we're with nospace_cache mount option.
3428 */
2b20982e 3429 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3430 spin_unlock(&block_group->lock);
3431 goto out_put;
3432 }
3433 spin_unlock(&block_group->lock);
3434
2968b1f4
JB
3435 /*
3436 * We hit an ENOSPC when setting up the cache in this transaction, just
3437 * skip doing the setup, we've already cleared the cache so we're safe.
3438 */
3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3440 ret = -ENOSPC;
3441 goto out_put;
3442 }
3443
6fc823b1
JB
3444 /*
3445 * Try to preallocate enough space based on how big the block group is.
3446 * Keep in mind this has to include any pinned space which could end up
3447 * taking up quite a bit since it's not folded into the other space
3448 * cache.
3449 */
ee22184b 3450 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3451 if (!num_pages)
3452 num_pages = 1;
3453
0af3d00b
JB
3454 num_pages *= 16;
3455 num_pages *= PAGE_CACHE_SIZE;
3456
7cf5b976 3457 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3458 if (ret)
3459 goto out_put;
3460
3461 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3462 num_pages, num_pages,
3463 &alloc_hint);
2968b1f4
JB
3464 /*
3465 * Our cache requires contiguous chunks so that we don't modify a bunch
3466 * of metadata or split extents when writing the cache out, which means
3467 * we can enospc if we are heavily fragmented in addition to just normal
3468 * out of space conditions. So if we hit this just skip setting up any
3469 * other block groups for this transaction, maybe we'll unpin enough
3470 * space the next time around.
3471 */
2b20982e
JB
3472 if (!ret)
3473 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3474 else if (ret == -ENOSPC)
3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3476 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3477
0af3d00b
JB
3478out_put:
3479 iput(inode);
3480out_free:
b3b4aa74 3481 btrfs_release_path(path);
0af3d00b
JB
3482out:
3483 spin_lock(&block_group->lock);
e65cbb94 3484 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3485 block_group->cache_generation = trans->transid;
2b20982e 3486 block_group->disk_cache_state = dcs;
0af3d00b
JB
3487 spin_unlock(&block_group->lock);
3488
3489 return ret;
3490}
3491
dcdf7f6d
JB
3492int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *root)
3494{
3495 struct btrfs_block_group_cache *cache, *tmp;
3496 struct btrfs_transaction *cur_trans = trans->transaction;
3497 struct btrfs_path *path;
3498
3499 if (list_empty(&cur_trans->dirty_bgs) ||
3500 !btrfs_test_opt(root, SPACE_CACHE))
3501 return 0;
3502
3503 path = btrfs_alloc_path();
3504 if (!path)
3505 return -ENOMEM;
3506
3507 /* Could add new block groups, use _safe just in case */
3508 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3509 dirty_list) {
3510 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3511 cache_save_setup(cache, trans, path);
3512 }
3513
3514 btrfs_free_path(path);
3515 return 0;
3516}
3517
1bbc621e
CM
3518/*
3519 * transaction commit does final block group cache writeback during a
3520 * critical section where nothing is allowed to change the FS. This is
3521 * required in order for the cache to actually match the block group,
3522 * but can introduce a lot of latency into the commit.
3523 *
3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
3525 * cache IO. There's a chance we'll have to redo some of it if the
3526 * block group changes again during the commit, but it greatly reduces
3527 * the commit latency by getting rid of the easy block groups while
3528 * we're still allowing others to join the commit.
3529 */
3530int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3531 struct btrfs_root *root)
9078a3e1 3532{
4a8c9a62 3533 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3534 struct btrfs_transaction *cur_trans = trans->transaction;
3535 int ret = 0;
c9dc4c65 3536 int should_put;
1bbc621e
CM
3537 struct btrfs_path *path = NULL;
3538 LIST_HEAD(dirty);
3539 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3540 int num_started = 0;
1bbc621e
CM
3541 int loops = 0;
3542
3543 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3544 if (list_empty(&cur_trans->dirty_bgs)) {
3545 spin_unlock(&cur_trans->dirty_bgs_lock);
3546 return 0;
1bbc621e 3547 }
b58d1a9e 3548 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3549 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3550
1bbc621e 3551again:
1bbc621e
CM
3552 /*
3553 * make sure all the block groups on our dirty list actually
3554 * exist
3555 */
3556 btrfs_create_pending_block_groups(trans, root);
3557
3558 if (!path) {
3559 path = btrfs_alloc_path();
3560 if (!path)
3561 return -ENOMEM;
3562 }
3563
b58d1a9e
FM
3564 /*
3565 * cache_write_mutex is here only to save us from balance or automatic
3566 * removal of empty block groups deleting this block group while we are
3567 * writing out the cache
3568 */
3569 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3570 while (!list_empty(&dirty)) {
3571 cache = list_first_entry(&dirty,
3572 struct btrfs_block_group_cache,
3573 dirty_list);
1bbc621e
CM
3574 /*
3575 * this can happen if something re-dirties a block
3576 * group that is already under IO. Just wait for it to
3577 * finish and then do it all again
3578 */
3579 if (!list_empty(&cache->io_list)) {
3580 list_del_init(&cache->io_list);
3581 btrfs_wait_cache_io(root, trans, cache,
3582 &cache->io_ctl, path,
3583 cache->key.objectid);
3584 btrfs_put_block_group(cache);
3585 }
3586
3587
3588 /*
3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590 * if it should update the cache_state. Don't delete
3591 * until after we wait.
3592 *
3593 * Since we're not running in the commit critical section
3594 * we need the dirty_bgs_lock to protect from update_block_group
3595 */
3596 spin_lock(&cur_trans->dirty_bgs_lock);
3597 list_del_init(&cache->dirty_list);
3598 spin_unlock(&cur_trans->dirty_bgs_lock);
3599
3600 should_put = 1;
3601
3602 cache_save_setup(cache, trans, path);
3603
3604 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3605 cache->io_ctl.inode = NULL;
3606 ret = btrfs_write_out_cache(root, trans, cache, path);
3607 if (ret == 0 && cache->io_ctl.inode) {
3608 num_started++;
3609 should_put = 0;
3610
3611 /*
3612 * the cache_write_mutex is protecting
3613 * the io_list
3614 */
3615 list_add_tail(&cache->io_list, io);
3616 } else {
3617 /*
3618 * if we failed to write the cache, the
3619 * generation will be bad and life goes on
3620 */
3621 ret = 0;
3622 }
3623 }
ff1f8250 3624 if (!ret) {
1bbc621e 3625 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3626 /*
3627 * Our block group might still be attached to the list
3628 * of new block groups in the transaction handle of some
3629 * other task (struct btrfs_trans_handle->new_bgs). This
3630 * means its block group item isn't yet in the extent
3631 * tree. If this happens ignore the error, as we will
3632 * try again later in the critical section of the
3633 * transaction commit.
3634 */
3635 if (ret == -ENOENT) {
3636 ret = 0;
3637 spin_lock(&cur_trans->dirty_bgs_lock);
3638 if (list_empty(&cache->dirty_list)) {
3639 list_add_tail(&cache->dirty_list,
3640 &cur_trans->dirty_bgs);
3641 btrfs_get_block_group(cache);
3642 }
3643 spin_unlock(&cur_trans->dirty_bgs_lock);
3644 } else if (ret) {
3645 btrfs_abort_transaction(trans, root, ret);
3646 }
3647 }
1bbc621e
CM
3648
3649 /* if its not on the io list, we need to put the block group */
3650 if (should_put)
3651 btrfs_put_block_group(cache);
3652
3653 if (ret)
3654 break;
b58d1a9e
FM
3655
3656 /*
3657 * Avoid blocking other tasks for too long. It might even save
3658 * us from writing caches for block groups that are going to be
3659 * removed.
3660 */
3661 mutex_unlock(&trans->transaction->cache_write_mutex);
3662 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3663 }
b58d1a9e 3664 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3665
3666 /*
3667 * go through delayed refs for all the stuff we've just kicked off
3668 * and then loop back (just once)
3669 */
3670 ret = btrfs_run_delayed_refs(trans, root, 0);
3671 if (!ret && loops == 0) {
3672 loops++;
3673 spin_lock(&cur_trans->dirty_bgs_lock);
3674 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3675 /*
3676 * dirty_bgs_lock protects us from concurrent block group
3677 * deletes too (not just cache_write_mutex).
3678 */
3679 if (!list_empty(&dirty)) {
3680 spin_unlock(&cur_trans->dirty_bgs_lock);
3681 goto again;
3682 }
1bbc621e 3683 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3684 }
3685
3686 btrfs_free_path(path);
3687 return ret;
3688}
3689
3690int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root)
3692{
3693 struct btrfs_block_group_cache *cache;
3694 struct btrfs_transaction *cur_trans = trans->transaction;
3695 int ret = 0;
3696 int should_put;
3697 struct btrfs_path *path;
3698 struct list_head *io = &cur_trans->io_bgs;
3699 int num_started = 0;
9078a3e1
CM
3700
3701 path = btrfs_alloc_path();
3702 if (!path)
3703 return -ENOMEM;
3704
ce93ec54 3705 /*
e44081ef
FM
3706 * Even though we are in the critical section of the transaction commit,
3707 * we can still have concurrent tasks adding elements to this
3708 * transaction's list of dirty block groups. These tasks correspond to
3709 * endio free space workers started when writeback finishes for a
3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711 * allocate new block groups as a result of COWing nodes of the root
3712 * tree when updating the free space inode. The writeback for the space
3713 * caches is triggered by an earlier call to
3714 * btrfs_start_dirty_block_groups() and iterations of the following
3715 * loop.
3716 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3717 * delayed refs to make sure we have the best chance at doing this all
3718 * in one shot.
3719 */
e44081ef 3720 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3721 while (!list_empty(&cur_trans->dirty_bgs)) {
3722 cache = list_first_entry(&cur_trans->dirty_bgs,
3723 struct btrfs_block_group_cache,
3724 dirty_list);
c9dc4c65
CM
3725
3726 /*
3727 * this can happen if cache_save_setup re-dirties a block
3728 * group that is already under IO. Just wait for it to
3729 * finish and then do it all again
3730 */
3731 if (!list_empty(&cache->io_list)) {
e44081ef 3732 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3733 list_del_init(&cache->io_list);
3734 btrfs_wait_cache_io(root, trans, cache,
3735 &cache->io_ctl, path,
3736 cache->key.objectid);
3737 btrfs_put_block_group(cache);
e44081ef 3738 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3739 }
3740
1bbc621e
CM
3741 /*
3742 * don't remove from the dirty list until after we've waited
3743 * on any pending IO
3744 */
ce93ec54 3745 list_del_init(&cache->dirty_list);
e44081ef 3746 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3747 should_put = 1;
3748
1bbc621e 3749 cache_save_setup(cache, trans, path);
c9dc4c65 3750
ce93ec54 3751 if (!ret)
c9dc4c65
CM
3752 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3753
3754 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3755 cache->io_ctl.inode = NULL;
3756 ret = btrfs_write_out_cache(root, trans, cache, path);
3757 if (ret == 0 && cache->io_ctl.inode) {
3758 num_started++;
3759 should_put = 0;
1bbc621e 3760 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3761 } else {
3762 /*
3763 * if we failed to write the cache, the
3764 * generation will be bad and life goes on
3765 */
3766 ret = 0;
3767 }
3768 }
ff1f8250 3769 if (!ret) {
ce93ec54 3770 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3771 /*
3772 * One of the free space endio workers might have
3773 * created a new block group while updating a free space
3774 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3775 * and hasn't released its transaction handle yet, in
3776 * which case the new block group is still attached to
3777 * its transaction handle and its creation has not
3778 * finished yet (no block group item in the extent tree
3779 * yet, etc). If this is the case, wait for all free
3780 * space endio workers to finish and retry. This is a
3781 * a very rare case so no need for a more efficient and
3782 * complex approach.
3783 */
3784 if (ret == -ENOENT) {
3785 wait_event(cur_trans->writer_wait,
3786 atomic_read(&cur_trans->num_writers) == 1);
3787 ret = write_one_cache_group(trans, root, path,
3788 cache);
3789 }
ff1f8250
FM
3790 if (ret)
3791 btrfs_abort_transaction(trans, root, ret);
3792 }
c9dc4c65
CM
3793
3794 /* if its not on the io list, we need to put the block group */
3795 if (should_put)
3796 btrfs_put_block_group(cache);
e44081ef 3797 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3798 }
e44081ef 3799 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3800
1bbc621e
CM
3801 while (!list_empty(io)) {
3802 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3803 io_list);
3804 list_del_init(&cache->io_list);
c9dc4c65
CM
3805 btrfs_wait_cache_io(root, trans, cache,
3806 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3807 btrfs_put_block_group(cache);
3808 }
3809
9078a3e1 3810 btrfs_free_path(path);
ce93ec54 3811 return ret;
9078a3e1
CM
3812}
3813
d2fb3437
YZ
3814int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3815{
3816 struct btrfs_block_group_cache *block_group;
3817 int readonly = 0;
3818
3819 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3820 if (!block_group || block_group->ro)
3821 readonly = 1;
3822 if (block_group)
fa9c0d79 3823 btrfs_put_block_group(block_group);
d2fb3437
YZ
3824 return readonly;
3825}
3826
6ab0a202
JM
3827static const char *alloc_name(u64 flags)
3828{
3829 switch (flags) {
3830 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3831 return "mixed";
3832 case BTRFS_BLOCK_GROUP_METADATA:
3833 return "metadata";
3834 case BTRFS_BLOCK_GROUP_DATA:
3835 return "data";
3836 case BTRFS_BLOCK_GROUP_SYSTEM:
3837 return "system";
3838 default:
3839 WARN_ON(1);
3840 return "invalid-combination";
3841 };
3842}
3843
593060d7
CM
3844static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3845 u64 total_bytes, u64 bytes_used,
3846 struct btrfs_space_info **space_info)
3847{
3848 struct btrfs_space_info *found;
b742bb82
YZ
3849 int i;
3850 int factor;
b150a4f1 3851 int ret;
b742bb82
YZ
3852
3853 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3854 BTRFS_BLOCK_GROUP_RAID10))
3855 factor = 2;
3856 else
3857 factor = 1;
593060d7
CM
3858
3859 found = __find_space_info(info, flags);
3860 if (found) {
25179201 3861 spin_lock(&found->lock);
593060d7 3862 found->total_bytes += total_bytes;
89a55897 3863 found->disk_total += total_bytes * factor;
593060d7 3864 found->bytes_used += bytes_used;
b742bb82 3865 found->disk_used += bytes_used * factor;
2e6e5183
FM
3866 if (total_bytes > 0)
3867 found->full = 0;
25179201 3868 spin_unlock(&found->lock);
593060d7
CM
3869 *space_info = found;
3870 return 0;
3871 }
c146afad 3872 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3873 if (!found)
3874 return -ENOMEM;
3875
908c7f19 3876 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3877 if (ret) {
3878 kfree(found);
3879 return ret;
3880 }
3881
c1895442 3882 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3883 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3884 init_rwsem(&found->groups_sem);
0f9dd46c 3885 spin_lock_init(&found->lock);
52ba6929 3886 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3887 found->total_bytes = total_bytes;
89a55897 3888 found->disk_total = total_bytes * factor;
593060d7 3889 found->bytes_used = bytes_used;
b742bb82 3890 found->disk_used = bytes_used * factor;
593060d7 3891 found->bytes_pinned = 0;
e8569813 3892 found->bytes_reserved = 0;
c146afad 3893 found->bytes_readonly = 0;
f0486c68 3894 found->bytes_may_use = 0;
6af3e3ad 3895 found->full = 0;
4f4db217 3896 found->max_extent_size = 0;
0e4f8f88 3897 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3898 found->chunk_alloc = 0;
fdb5effd
JB
3899 found->flush = 0;
3900 init_waitqueue_head(&found->wait);
633c0aad 3901 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3902
3903 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3904 info->space_info_kobj, "%s",
3905 alloc_name(found->flags));
3906 if (ret) {
3907 kfree(found);
3908 return ret;
3909 }
3910
593060d7 3911 *space_info = found;
4184ea7f 3912 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3913 if (flags & BTRFS_BLOCK_GROUP_DATA)
3914 info->data_sinfo = found;
6ab0a202
JM
3915
3916 return ret;
593060d7
CM
3917}
3918
8790d502
CM
3919static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3920{
899c81ea
ID
3921 u64 extra_flags = chunk_to_extended(flags) &
3922 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3923
de98ced9 3924 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3925 if (flags & BTRFS_BLOCK_GROUP_DATA)
3926 fs_info->avail_data_alloc_bits |= extra_flags;
3927 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3928 fs_info->avail_metadata_alloc_bits |= extra_flags;
3929 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3930 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3931 write_sequnlock(&fs_info->profiles_lock);
8790d502 3932}
593060d7 3933
fc67c450
ID
3934/*
3935 * returns target flags in extended format or 0 if restripe for this
3936 * chunk_type is not in progress
c6664b42
ID
3937 *
3938 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3939 */
3940static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3941{
3942 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3943 u64 target = 0;
3944
fc67c450
ID
3945 if (!bctl)
3946 return 0;
3947
3948 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3949 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3950 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3951 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3952 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3953 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3954 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3955 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3956 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3957 }
3958
3959 return target;
3960}
3961
a46d11a8
ID
3962/*
3963 * @flags: available profiles in extended format (see ctree.h)
3964 *
e4d8ec0f
ID
3965 * Returns reduced profile in chunk format. If profile changing is in
3966 * progress (either running or paused) picks the target profile (if it's
3967 * already available), otherwise falls back to plain reducing.
a46d11a8 3968 */
48a3b636 3969static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3970{
95669976 3971 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3972 u64 target;
9c170b26
ZL
3973 u64 raid_type;
3974 u64 allowed = 0;
a061fc8d 3975
fc67c450
ID
3976 /*
3977 * see if restripe for this chunk_type is in progress, if so
3978 * try to reduce to the target profile
3979 */
e4d8ec0f 3980 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3981 target = get_restripe_target(root->fs_info, flags);
3982 if (target) {
3983 /* pick target profile only if it's already available */
3984 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3985 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3986 return extended_to_chunk(target);
e4d8ec0f
ID
3987 }
3988 }
3989 spin_unlock(&root->fs_info->balance_lock);
3990
53b381b3 3991 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3992 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3993 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3994 allowed |= btrfs_raid_group[raid_type];
3995 }
3996 allowed &= flags;
3997
3998 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3999 allowed = BTRFS_BLOCK_GROUP_RAID6;
4000 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4001 allowed = BTRFS_BLOCK_GROUP_RAID5;
4002 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4003 allowed = BTRFS_BLOCK_GROUP_RAID10;
4004 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4005 allowed = BTRFS_BLOCK_GROUP_RAID1;
4006 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4007 allowed = BTRFS_BLOCK_GROUP_RAID0;
4008
4009 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4010
4011 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4012}
4013
f8213bdc 4014static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4015{
de98ced9 4016 unsigned seq;
f8213bdc 4017 u64 flags;
de98ced9
MX
4018
4019 do {
f8213bdc 4020 flags = orig_flags;
de98ced9
MX
4021 seq = read_seqbegin(&root->fs_info->profiles_lock);
4022
4023 if (flags & BTRFS_BLOCK_GROUP_DATA)
4024 flags |= root->fs_info->avail_data_alloc_bits;
4025 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4026 flags |= root->fs_info->avail_system_alloc_bits;
4027 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4028 flags |= root->fs_info->avail_metadata_alloc_bits;
4029 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4030
b742bb82 4031 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4032}
4033
6d07bcec 4034u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4035{
b742bb82 4036 u64 flags;
53b381b3 4037 u64 ret;
9ed74f2d 4038
b742bb82
YZ
4039 if (data)
4040 flags = BTRFS_BLOCK_GROUP_DATA;
4041 else if (root == root->fs_info->chunk_root)
4042 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4043 else
b742bb82 4044 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4045
53b381b3
DW
4046 ret = get_alloc_profile(root, flags);
4047 return ret;
6a63209f 4048}
9ed74f2d 4049
4ceff079 4050int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4051{
6a63209f 4052 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4053 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4054 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4055 u64 used;
94b947b2 4056 int ret = 0;
c99f1b0c
ZL
4057 int need_commit = 2;
4058 int have_pinned_space;
6a63209f 4059
6a63209f 4060 /* make sure bytes are sectorsize aligned */
fda2832f 4061 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4062
9dced186 4063 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4064 need_commit = 0;
9dced186 4065 ASSERT(current->journal_info);
0af3d00b
JB
4066 }
4067
b4d7c3c9 4068 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4069 if (!data_sinfo)
4070 goto alloc;
9ed74f2d 4071
6a63209f
JB
4072again:
4073 /* make sure we have enough space to handle the data first */
4074 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4075 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4076 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4077 data_sinfo->bytes_may_use;
ab6e2410
JB
4078
4079 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4080 struct btrfs_trans_handle *trans;
9ed74f2d 4081
6a63209f
JB
4082 /*
4083 * if we don't have enough free bytes in this space then we need
4084 * to alloc a new chunk.
4085 */
b9fd47cd 4086 if (!data_sinfo->full) {
6a63209f 4087 u64 alloc_target;
9ed74f2d 4088
0e4f8f88 4089 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4090 spin_unlock(&data_sinfo->lock);
33b4d47f 4091alloc:
6a63209f 4092 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4093 /*
4094 * It is ugly that we don't call nolock join
4095 * transaction for the free space inode case here.
4096 * But it is safe because we only do the data space
4097 * reservation for the free space cache in the
4098 * transaction context, the common join transaction
4099 * just increase the counter of the current transaction
4100 * handler, doesn't try to acquire the trans_lock of
4101 * the fs.
4102 */
7a7eaa40 4103 trans = btrfs_join_transaction(root);
a22285a6
YZ
4104 if (IS_ERR(trans))
4105 return PTR_ERR(trans);
9ed74f2d 4106
6a63209f 4107 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4108 alloc_target,
4109 CHUNK_ALLOC_NO_FORCE);
6a63209f 4110 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4111 if (ret < 0) {
4112 if (ret != -ENOSPC)
4113 return ret;
c99f1b0c
ZL
4114 else {
4115 have_pinned_space = 1;
d52a5b5f 4116 goto commit_trans;
c99f1b0c 4117 }
d52a5b5f 4118 }
9ed74f2d 4119
b4d7c3c9
LZ
4120 if (!data_sinfo)
4121 data_sinfo = fs_info->data_sinfo;
4122
6a63209f
JB
4123 goto again;
4124 }
f2bb8f5c
JB
4125
4126 /*
b150a4f1 4127 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4128 * allocation, and no removed chunk in current transaction,
4129 * don't bother committing the transaction.
f2bb8f5c 4130 */
c99f1b0c
ZL
4131 have_pinned_space = percpu_counter_compare(
4132 &data_sinfo->total_bytes_pinned,
4133 used + bytes - data_sinfo->total_bytes);
6a63209f 4134 spin_unlock(&data_sinfo->lock);
6a63209f 4135
4e06bdd6 4136 /* commit the current transaction and try again */
d52a5b5f 4137commit_trans:
c99f1b0c 4138 if (need_commit &&
a4abeea4 4139 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4140 need_commit--;
b150a4f1 4141
9a4e7276
ZL
4142 if (need_commit > 0)
4143 btrfs_wait_ordered_roots(fs_info, -1);
4144
7a7eaa40 4145 trans = btrfs_join_transaction(root);
a22285a6
YZ
4146 if (IS_ERR(trans))
4147 return PTR_ERR(trans);
c99f1b0c 4148 if (have_pinned_space >= 0 ||
3204d33c
JB
4149 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4150 &trans->transaction->flags) ||
c99f1b0c 4151 need_commit > 0) {
94b947b2
ZL
4152 ret = btrfs_commit_transaction(trans, root);
4153 if (ret)
4154 return ret;
d7c15171
ZL
4155 /*
4156 * make sure that all running delayed iput are
4157 * done
4158 */
4159 down_write(&root->fs_info->delayed_iput_sem);
4160 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4161 goto again;
4162 } else {
4163 btrfs_end_transaction(trans, root);
4164 }
4e06bdd6 4165 }
9ed74f2d 4166
cab45e22
JM
4167 trace_btrfs_space_reservation(root->fs_info,
4168 "space_info:enospc",
4169 data_sinfo->flags, bytes, 1);
6a63209f
JB
4170 return -ENOSPC;
4171 }
4172 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4173 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4174 data_sinfo->flags, bytes, 1);
6a63209f 4175 spin_unlock(&data_sinfo->lock);
6a63209f 4176
237c0e9f 4177 return ret;
9ed74f2d 4178}
6a63209f 4179
4ceff079
QW
4180/*
4181 * New check_data_free_space() with ability for precious data reservation
4182 * Will replace old btrfs_check_data_free_space(), but for patch split,
4183 * add a new function first and then replace it.
4184 */
7cf5b976 4185int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4186{
4187 struct btrfs_root *root = BTRFS_I(inode)->root;
4188 int ret;
4189
4190 /* align the range */
4191 len = round_up(start + len, root->sectorsize) -
4192 round_down(start, root->sectorsize);
4193 start = round_down(start, root->sectorsize);
4194
4195 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4196 if (ret < 0)
4197 return ret;
4198
94ed938a
QW
4199 /*
4200 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4201 *
4202 * TODO: Find a good method to avoid reserve data space for NOCOW
4203 * range, but don't impact performance on quota disable case.
4204 */
4ceff079
QW
4205 ret = btrfs_qgroup_reserve_data(inode, start, len);
4206 return ret;
4207}
4208
4ceff079
QW
4209/*
4210 * Called if we need to clear a data reservation for this inode
4211 * Normally in a error case.
4212 *
51773bec
QW
4213 * This one will *NOT* use accurate qgroup reserved space API, just for case
4214 * which we can't sleep and is sure it won't affect qgroup reserved space.
4215 * Like clear_bit_hook().
4ceff079 4216 */
51773bec
QW
4217void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4218 u64 len)
4ceff079
QW
4219{
4220 struct btrfs_root *root = BTRFS_I(inode)->root;
4221 struct btrfs_space_info *data_sinfo;
4222
4223 /* Make sure the range is aligned to sectorsize */
4224 len = round_up(start + len, root->sectorsize) -
4225 round_down(start, root->sectorsize);
4226 start = round_down(start, root->sectorsize);
4227
4ceff079
QW
4228 data_sinfo = root->fs_info->data_sinfo;
4229 spin_lock(&data_sinfo->lock);
4230 if (WARN_ON(data_sinfo->bytes_may_use < len))
4231 data_sinfo->bytes_may_use = 0;
4232 else
4233 data_sinfo->bytes_may_use -= len;
4234 trace_btrfs_space_reservation(root->fs_info, "space_info",
4235 data_sinfo->flags, len, 0);
4236 spin_unlock(&data_sinfo->lock);
4237}
4238
51773bec
QW
4239/*
4240 * Called if we need to clear a data reservation for this inode
4241 * Normally in a error case.
4242 *
4243 * This one will handle the per-indoe data rsv map for accurate reserved
4244 * space framework.
4245 */
4246void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4247{
4248 btrfs_free_reserved_data_space_noquota(inode, start, len);
4249 btrfs_qgroup_free_data(inode, start, len);
4250}
4251
97e728d4 4252static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4253{
97e728d4
JB
4254 struct list_head *head = &info->space_info;
4255 struct btrfs_space_info *found;
e3ccfa98 4256
97e728d4
JB
4257 rcu_read_lock();
4258 list_for_each_entry_rcu(found, head, list) {
4259 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4260 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4261 }
97e728d4 4262 rcu_read_unlock();
e3ccfa98
JB
4263}
4264
3c76cd84
MX
4265static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4266{
4267 return (global->size << 1);
4268}
4269
e5bc2458 4270static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4271 struct btrfs_space_info *sinfo, int force)
32c00aff 4272{
fb25e914 4273 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4274 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4275 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4276 u64 thresh;
e3ccfa98 4277
0e4f8f88
CM
4278 if (force == CHUNK_ALLOC_FORCE)
4279 return 1;
4280
fb25e914
JB
4281 /*
4282 * We need to take into account the global rsv because for all intents
4283 * and purposes it's used space. Don't worry about locking the
4284 * global_rsv, it doesn't change except when the transaction commits.
4285 */
54338b5c 4286 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4287 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4288
0e4f8f88
CM
4289 /*
4290 * in limited mode, we want to have some free space up to
4291 * about 1% of the FS size.
4292 */
4293 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4294 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4295 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4296
4297 if (num_bytes - num_allocated < thresh)
4298 return 1;
4299 }
0e4f8f88 4300
ee22184b 4301 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4302 return 0;
424499db 4303 return 1;
32c00aff
JB
4304}
4305
39c2d7fa 4306static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4307{
4308 u64 num_dev;
4309
53b381b3
DW
4310 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4311 BTRFS_BLOCK_GROUP_RAID0 |
4312 BTRFS_BLOCK_GROUP_RAID5 |
4313 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4314 num_dev = root->fs_info->fs_devices->rw_devices;
4315 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4316 num_dev = 2;
4317 else
4318 num_dev = 1; /* DUP or single */
4319
39c2d7fa 4320 return num_dev;
15d1ff81
LB
4321}
4322
39c2d7fa
FM
4323/*
4324 * If @is_allocation is true, reserve space in the system space info necessary
4325 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4326 * removing a chunk.
4327 */
4328void check_system_chunk(struct btrfs_trans_handle *trans,
4329 struct btrfs_root *root,
4617ea3a 4330 u64 type)
15d1ff81
LB
4331{
4332 struct btrfs_space_info *info;
4333 u64 left;
4334 u64 thresh;
4fbcdf66 4335 int ret = 0;
39c2d7fa 4336 u64 num_devs;
4fbcdf66
FM
4337
4338 /*
4339 * Needed because we can end up allocating a system chunk and for an
4340 * atomic and race free space reservation in the chunk block reserve.
4341 */
4342 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4343
4344 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4345 spin_lock(&info->lock);
4346 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4347 info->bytes_reserved - info->bytes_readonly -
4348 info->bytes_may_use;
15d1ff81
LB
4349 spin_unlock(&info->lock);
4350
39c2d7fa
FM
4351 num_devs = get_profile_num_devs(root, type);
4352
4353 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4354 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4355 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4356
15d1ff81 4357 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4358 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4359 left, thresh, type);
15d1ff81
LB
4360 dump_space_info(info, 0, 0);
4361 }
4362
4363 if (left < thresh) {
4364 u64 flags;
4365
4366 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4367 /*
4368 * Ignore failure to create system chunk. We might end up not
4369 * needing it, as we might not need to COW all nodes/leafs from
4370 * the paths we visit in the chunk tree (they were already COWed
4371 * or created in the current transaction for example).
4372 */
4373 ret = btrfs_alloc_chunk(trans, root, flags);
4374 }
4375
4376 if (!ret) {
4377 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4378 &root->fs_info->chunk_block_rsv,
4379 thresh, BTRFS_RESERVE_NO_FLUSH);
4380 if (!ret)
4381 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4382 }
4383}
4384
6324fbf3 4385static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4386 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4387{
6324fbf3 4388 struct btrfs_space_info *space_info;
97e728d4 4389 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4390 int wait_for_alloc = 0;
9ed74f2d 4391 int ret = 0;
9ed74f2d 4392
c6b305a8
JB
4393 /* Don't re-enter if we're already allocating a chunk */
4394 if (trans->allocating_chunk)
4395 return -ENOSPC;
4396
6324fbf3 4397 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4398 if (!space_info) {
4399 ret = update_space_info(extent_root->fs_info, flags,
4400 0, 0, &space_info);
79787eaa 4401 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4402 }
79787eaa 4403 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4404
6d74119f 4405again:
25179201 4406 spin_lock(&space_info->lock);
9e622d6b 4407 if (force < space_info->force_alloc)
0e4f8f88 4408 force = space_info->force_alloc;
25179201 4409 if (space_info->full) {
09fb99a6
FDBM
4410 if (should_alloc_chunk(extent_root, space_info, force))
4411 ret = -ENOSPC;
4412 else
4413 ret = 0;
25179201 4414 spin_unlock(&space_info->lock);
09fb99a6 4415 return ret;
9ed74f2d
JB
4416 }
4417
698d0082 4418 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4419 spin_unlock(&space_info->lock);
6d74119f
JB
4420 return 0;
4421 } else if (space_info->chunk_alloc) {
4422 wait_for_alloc = 1;
4423 } else {
4424 space_info->chunk_alloc = 1;
9ed74f2d 4425 }
0e4f8f88 4426
25179201 4427 spin_unlock(&space_info->lock);
9ed74f2d 4428
6d74119f
JB
4429 mutex_lock(&fs_info->chunk_mutex);
4430
4431 /*
4432 * The chunk_mutex is held throughout the entirety of a chunk
4433 * allocation, so once we've acquired the chunk_mutex we know that the
4434 * other guy is done and we need to recheck and see if we should
4435 * allocate.
4436 */
4437 if (wait_for_alloc) {
4438 mutex_unlock(&fs_info->chunk_mutex);
4439 wait_for_alloc = 0;
4440 goto again;
4441 }
4442
c6b305a8
JB
4443 trans->allocating_chunk = true;
4444
67377734
JB
4445 /*
4446 * If we have mixed data/metadata chunks we want to make sure we keep
4447 * allocating mixed chunks instead of individual chunks.
4448 */
4449 if (btrfs_mixed_space_info(space_info))
4450 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4451
97e728d4
JB
4452 /*
4453 * if we're doing a data chunk, go ahead and make sure that
4454 * we keep a reasonable number of metadata chunks allocated in the
4455 * FS as well.
4456 */
9ed74f2d 4457 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4458 fs_info->data_chunk_allocations++;
4459 if (!(fs_info->data_chunk_allocations %
4460 fs_info->metadata_ratio))
4461 force_metadata_allocation(fs_info);
9ed74f2d
JB
4462 }
4463
15d1ff81
LB
4464 /*
4465 * Check if we have enough space in SYSTEM chunk because we may need
4466 * to update devices.
4467 */
4617ea3a 4468 check_system_chunk(trans, extent_root, flags);
15d1ff81 4469
2b82032c 4470 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4471 trans->allocating_chunk = false;
92b8e897 4472
9ed74f2d 4473 spin_lock(&space_info->lock);
a81cb9a2
AO
4474 if (ret < 0 && ret != -ENOSPC)
4475 goto out;
9ed74f2d 4476 if (ret)
6324fbf3 4477 space_info->full = 1;
424499db
YZ
4478 else
4479 ret = 1;
6d74119f 4480
0e4f8f88 4481 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4482out:
6d74119f 4483 space_info->chunk_alloc = 0;
9ed74f2d 4484 spin_unlock(&space_info->lock);
a25c75d5 4485 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4486 /*
4487 * When we allocate a new chunk we reserve space in the chunk block
4488 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4489 * add new nodes/leafs to it if we end up needing to do it when
4490 * inserting the chunk item and updating device items as part of the
4491 * second phase of chunk allocation, performed by
4492 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4493 * large number of new block groups to create in our transaction
4494 * handle's new_bgs list to avoid exhausting the chunk block reserve
4495 * in extreme cases - like having a single transaction create many new
4496 * block groups when starting to write out the free space caches of all
4497 * the block groups that were made dirty during the lifetime of the
4498 * transaction.
4499 */
d9a0540a 4500 if (trans->can_flush_pending_bgs &&
ee22184b 4501 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4502 btrfs_create_pending_block_groups(trans, trans->root);
4503 btrfs_trans_release_chunk_metadata(trans);
4504 }
0f9dd46c 4505 return ret;
6324fbf3 4506}
9ed74f2d 4507
a80c8dcf
JB
4508static int can_overcommit(struct btrfs_root *root,
4509 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4510 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4511{
96f1bb57 4512 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4513 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4514 u64 space_size;
a80c8dcf
JB
4515 u64 avail;
4516 u64 used;
4517
4518 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4519 space_info->bytes_pinned + space_info->bytes_readonly;
4520
96f1bb57
JB
4521 /*
4522 * We only want to allow over committing if we have lots of actual space
4523 * free, but if we don't have enough space to handle the global reserve
4524 * space then we could end up having a real enospc problem when trying
4525 * to allocate a chunk or some other such important allocation.
4526 */
3c76cd84
MX
4527 spin_lock(&global_rsv->lock);
4528 space_size = calc_global_rsv_need_space(global_rsv);
4529 spin_unlock(&global_rsv->lock);
4530 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4531 return 0;
4532
4533 used += space_info->bytes_may_use;
a80c8dcf
JB
4534
4535 spin_lock(&root->fs_info->free_chunk_lock);
4536 avail = root->fs_info->free_chunk_space;
4537 spin_unlock(&root->fs_info->free_chunk_lock);
4538
4539 /*
4540 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4541 * space is actually useable. For raid56, the space info used
4542 * doesn't include the parity drive, so we don't have to
4543 * change the math
a80c8dcf
JB
4544 */
4545 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4546 BTRFS_BLOCK_GROUP_RAID1 |
4547 BTRFS_BLOCK_GROUP_RAID10))
4548 avail >>= 1;
4549
4550 /*
561c294d
MX
4551 * If we aren't flushing all things, let us overcommit up to
4552 * 1/2th of the space. If we can flush, don't let us overcommit
4553 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4554 */
08e007d2 4555 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4556 avail >>= 3;
a80c8dcf 4557 else
14575aef 4558 avail >>= 1;
a80c8dcf 4559
14575aef 4560 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4561 return 1;
4562 return 0;
4563}
4564
48a3b636 4565static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4566 unsigned long nr_pages, int nr_items)
da633a42
MX
4567{
4568 struct super_block *sb = root->fs_info->sb;
da633a42 4569
925a6efb
JB
4570 if (down_read_trylock(&sb->s_umount)) {
4571 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4572 up_read(&sb->s_umount);
4573 } else {
da633a42
MX
4574 /*
4575 * We needn't worry the filesystem going from r/w to r/o though
4576 * we don't acquire ->s_umount mutex, because the filesystem
4577 * should guarantee the delalloc inodes list be empty after
4578 * the filesystem is readonly(all dirty pages are written to
4579 * the disk).
4580 */
6c255e67 4581 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4582 if (!current->journal_info)
6c255e67 4583 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4584 }
4585}
4586
18cd8ea6
MX
4587static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4588{
4589 u64 bytes;
4590 int nr;
4591
4592 bytes = btrfs_calc_trans_metadata_size(root, 1);
4593 nr = (int)div64_u64(to_reclaim, bytes);
4594 if (!nr)
4595 nr = 1;
4596 return nr;
4597}
4598
ee22184b 4599#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4600
9ed74f2d 4601/*
5da9d01b 4602 * shrink metadata reservation for delalloc
9ed74f2d 4603 */
f4c738c2
JB
4604static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4605 bool wait_ordered)
5da9d01b 4606{
0ca1f7ce 4607 struct btrfs_block_rsv *block_rsv;
0019f10d 4608 struct btrfs_space_info *space_info;
663350ac 4609 struct btrfs_trans_handle *trans;
f4c738c2 4610 u64 delalloc_bytes;
5da9d01b 4611 u64 max_reclaim;
b1953bce 4612 long time_left;
d3ee29e3
MX
4613 unsigned long nr_pages;
4614 int loops;
b0244199 4615 int items;
08e007d2 4616 enum btrfs_reserve_flush_enum flush;
5da9d01b 4617
c61a16a7 4618 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4619 items = calc_reclaim_items_nr(root, to_reclaim);
4620 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4621
663350ac 4622 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4623 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4624 space_info = block_rsv->space_info;
bf9022e0 4625
963d678b
MX
4626 delalloc_bytes = percpu_counter_sum_positive(
4627 &root->fs_info->delalloc_bytes);
f4c738c2 4628 if (delalloc_bytes == 0) {
fdb5effd 4629 if (trans)
f4c738c2 4630 return;
38c135af 4631 if (wait_ordered)
b0244199 4632 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4633 return;
fdb5effd
JB
4634 }
4635
d3ee29e3 4636 loops = 0;
f4c738c2
JB
4637 while (delalloc_bytes && loops < 3) {
4638 max_reclaim = min(delalloc_bytes, to_reclaim);
4639 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4640 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4641 /*
4642 * We need to wait for the async pages to actually start before
4643 * we do anything.
4644 */
9f3a074d
MX
4645 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4646 if (!max_reclaim)
4647 goto skip_async;
4648
4649 if (max_reclaim <= nr_pages)
4650 max_reclaim = 0;
4651 else
4652 max_reclaim -= nr_pages;
dea31f52 4653
9f3a074d
MX
4654 wait_event(root->fs_info->async_submit_wait,
4655 atomic_read(&root->fs_info->async_delalloc_pages) <=
4656 (int)max_reclaim);
4657skip_async:
08e007d2
MX
4658 if (!trans)
4659 flush = BTRFS_RESERVE_FLUSH_ALL;
4660 else
4661 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4662 spin_lock(&space_info->lock);
08e007d2 4663 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4664 spin_unlock(&space_info->lock);
4665 break;
4666 }
0019f10d 4667 spin_unlock(&space_info->lock);
5da9d01b 4668
36e39c40 4669 loops++;
f104d044 4670 if (wait_ordered && !trans) {
b0244199 4671 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4672 } else {
f4c738c2 4673 time_left = schedule_timeout_killable(1);
f104d044
JB
4674 if (time_left)
4675 break;
4676 }
963d678b
MX
4677 delalloc_bytes = percpu_counter_sum_positive(
4678 &root->fs_info->delalloc_bytes);
5da9d01b 4679 }
5da9d01b
YZ
4680}
4681
663350ac
JB
4682/**
4683 * maybe_commit_transaction - possibly commit the transaction if its ok to
4684 * @root - the root we're allocating for
4685 * @bytes - the number of bytes we want to reserve
4686 * @force - force the commit
8bb8ab2e 4687 *
663350ac
JB
4688 * This will check to make sure that committing the transaction will actually
4689 * get us somewhere and then commit the transaction if it does. Otherwise it
4690 * will return -ENOSPC.
8bb8ab2e 4691 */
663350ac
JB
4692static int may_commit_transaction(struct btrfs_root *root,
4693 struct btrfs_space_info *space_info,
4694 u64 bytes, int force)
4695{
4696 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4697 struct btrfs_trans_handle *trans;
4698
4699 trans = (struct btrfs_trans_handle *)current->journal_info;
4700 if (trans)
4701 return -EAGAIN;
4702
4703 if (force)
4704 goto commit;
4705
4706 /* See if there is enough pinned space to make this reservation */
b150a4f1 4707 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4708 bytes) >= 0)
663350ac 4709 goto commit;
663350ac
JB
4710
4711 /*
4712 * See if there is some space in the delayed insertion reservation for
4713 * this reservation.
4714 */
4715 if (space_info != delayed_rsv->space_info)
4716 return -ENOSPC;
4717
4718 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4719 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4720 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4721 spin_unlock(&delayed_rsv->lock);
4722 return -ENOSPC;
4723 }
4724 spin_unlock(&delayed_rsv->lock);
4725
4726commit:
4727 trans = btrfs_join_transaction(root);
4728 if (IS_ERR(trans))
4729 return -ENOSPC;
4730
4731 return btrfs_commit_transaction(trans, root);
4732}
4733
96c3f433 4734enum flush_state {
67b0fd63
JB
4735 FLUSH_DELAYED_ITEMS_NR = 1,
4736 FLUSH_DELAYED_ITEMS = 2,
4737 FLUSH_DELALLOC = 3,
4738 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4739 ALLOC_CHUNK = 5,
4740 COMMIT_TRANS = 6,
96c3f433
JB
4741};
4742
4743static int flush_space(struct btrfs_root *root,
4744 struct btrfs_space_info *space_info, u64 num_bytes,
4745 u64 orig_bytes, int state)
4746{
4747 struct btrfs_trans_handle *trans;
4748 int nr;
f4c738c2 4749 int ret = 0;
96c3f433
JB
4750
4751 switch (state) {
96c3f433
JB
4752 case FLUSH_DELAYED_ITEMS_NR:
4753 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4754 if (state == FLUSH_DELAYED_ITEMS_NR)
4755 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4756 else
96c3f433 4757 nr = -1;
18cd8ea6 4758
96c3f433
JB
4759 trans = btrfs_join_transaction(root);
4760 if (IS_ERR(trans)) {
4761 ret = PTR_ERR(trans);
4762 break;
4763 }
4764 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4765 btrfs_end_transaction(trans, root);
4766 break;
67b0fd63
JB
4767 case FLUSH_DELALLOC:
4768 case FLUSH_DELALLOC_WAIT:
24af7dd1 4769 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4770 state == FLUSH_DELALLOC_WAIT);
4771 break;
ea658bad
JB
4772 case ALLOC_CHUNK:
4773 trans = btrfs_join_transaction(root);
4774 if (IS_ERR(trans)) {
4775 ret = PTR_ERR(trans);
4776 break;
4777 }
4778 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4779 btrfs_get_alloc_profile(root, 0),
4780 CHUNK_ALLOC_NO_FORCE);
4781 btrfs_end_transaction(trans, root);
4782 if (ret == -ENOSPC)
4783 ret = 0;
4784 break;
96c3f433
JB
4785 case COMMIT_TRANS:
4786 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4787 break;
4788 default:
4789 ret = -ENOSPC;
4790 break;
4791 }
4792
4793 return ret;
4794}
21c7e756
MX
4795
4796static inline u64
4797btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4798 struct btrfs_space_info *space_info)
4799{
4800 u64 used;
4801 u64 expected;
4802 u64 to_reclaim;
4803
ee22184b 4804 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756
MX
4805 spin_lock(&space_info->lock);
4806 if (can_overcommit(root, space_info, to_reclaim,
4807 BTRFS_RESERVE_FLUSH_ALL)) {
4808 to_reclaim = 0;
4809 goto out;
4810 }
4811
4812 used = space_info->bytes_used + space_info->bytes_reserved +
4813 space_info->bytes_pinned + space_info->bytes_readonly +
4814 space_info->bytes_may_use;
ee22184b 4815 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4816 expected = div_factor_fine(space_info->total_bytes, 95);
4817 else
4818 expected = div_factor_fine(space_info->total_bytes, 90);
4819
4820 if (used > expected)
4821 to_reclaim = used - expected;
4822 else
4823 to_reclaim = 0;
4824 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4825 space_info->bytes_reserved);
4826out:
4827 spin_unlock(&space_info->lock);
4828
4829 return to_reclaim;
4830}
4831
4832static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4833 struct btrfs_fs_info *fs_info, u64 used)
4834{
365c5313
JB
4835 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4836
4837 /* If we're just plain full then async reclaim just slows us down. */
4838 if (space_info->bytes_used >= thresh)
4839 return 0;
4840
4841 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4842 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4843}
4844
4845static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4846 struct btrfs_fs_info *fs_info,
4847 int flush_state)
21c7e756
MX
4848{
4849 u64 used;
4850
4851 spin_lock(&space_info->lock);
25ce459c
LB
4852 /*
4853 * We run out of space and have not got any free space via flush_space,
4854 * so don't bother doing async reclaim.
4855 */
4856 if (flush_state > COMMIT_TRANS && space_info->full) {
4857 spin_unlock(&space_info->lock);
4858 return 0;
4859 }
4860
21c7e756
MX
4861 used = space_info->bytes_used + space_info->bytes_reserved +
4862 space_info->bytes_pinned + space_info->bytes_readonly +
4863 space_info->bytes_may_use;
4864 if (need_do_async_reclaim(space_info, fs_info, used)) {
4865 spin_unlock(&space_info->lock);
4866 return 1;
4867 }
4868 spin_unlock(&space_info->lock);
4869
4870 return 0;
4871}
4872
4873static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4874{
4875 struct btrfs_fs_info *fs_info;
4876 struct btrfs_space_info *space_info;
4877 u64 to_reclaim;
4878 int flush_state;
4879
4880 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4881 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4882
4883 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4884 space_info);
4885 if (!to_reclaim)
4886 return;
4887
4888 flush_state = FLUSH_DELAYED_ITEMS_NR;
4889 do {
4890 flush_space(fs_info->fs_root, space_info, to_reclaim,
4891 to_reclaim, flush_state);
4892 flush_state++;
25ce459c
LB
4893 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4894 flush_state))
21c7e756 4895 return;
365c5313 4896 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4897}
4898
4899void btrfs_init_async_reclaim_work(struct work_struct *work)
4900{
4901 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4902}
4903
4a92b1b8
JB
4904/**
4905 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4906 * @root - the root we're allocating for
4907 * @block_rsv - the block_rsv we're allocating for
4908 * @orig_bytes - the number of bytes we want
48fc7f7e 4909 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4910 *
4a92b1b8
JB
4911 * This will reserve orgi_bytes number of bytes from the space info associated
4912 * with the block_rsv. If there is not enough space it will make an attempt to
4913 * flush out space to make room. It will do this by flushing delalloc if
4914 * possible or committing the transaction. If flush is 0 then no attempts to
4915 * regain reservations will be made and this will fail if there is not enough
4916 * space already.
8bb8ab2e 4917 */
4a92b1b8 4918static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4919 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4920 u64 orig_bytes,
4921 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4922{
f0486c68 4923 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4924 u64 used;
8bb8ab2e 4925 u64 num_bytes = orig_bytes;
67b0fd63 4926 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4927 int ret = 0;
fdb5effd 4928 bool flushing = false;
9ed74f2d 4929
8bb8ab2e 4930again:
fdb5effd 4931 ret = 0;
8bb8ab2e 4932 spin_lock(&space_info->lock);
fdb5effd 4933 /*
08e007d2
MX
4934 * We only want to wait if somebody other than us is flushing and we
4935 * are actually allowed to flush all things.
fdb5effd 4936 */
08e007d2
MX
4937 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4938 space_info->flush) {
fdb5effd
JB
4939 spin_unlock(&space_info->lock);
4940 /*
4941 * If we have a trans handle we can't wait because the flusher
4942 * may have to commit the transaction, which would mean we would
4943 * deadlock since we are waiting for the flusher to finish, but
4944 * hold the current transaction open.
4945 */
663350ac 4946 if (current->journal_info)
fdb5effd 4947 return -EAGAIN;
b9688bb8
AJ
4948 ret = wait_event_killable(space_info->wait, !space_info->flush);
4949 /* Must have been killed, return */
4950 if (ret)
fdb5effd
JB
4951 return -EINTR;
4952
4953 spin_lock(&space_info->lock);
4954 }
4955
4956 ret = -ENOSPC;
2bf64758
JB
4957 used = space_info->bytes_used + space_info->bytes_reserved +
4958 space_info->bytes_pinned + space_info->bytes_readonly +
4959 space_info->bytes_may_use;
9ed74f2d 4960
8bb8ab2e
JB
4961 /*
4962 * The idea here is that we've not already over-reserved the block group
4963 * then we can go ahead and save our reservation first and then start
4964 * flushing if we need to. Otherwise if we've already overcommitted
4965 * lets start flushing stuff first and then come back and try to make
4966 * our reservation.
4967 */
2bf64758
JB
4968 if (used <= space_info->total_bytes) {
4969 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4970 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4971 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4972 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4973 ret = 0;
4974 } else {
4975 /*
4976 * Ok set num_bytes to orig_bytes since we aren't
4977 * overocmmitted, this way we only try and reclaim what
4978 * we need.
4979 */
4980 num_bytes = orig_bytes;
4981 }
4982 } else {
4983 /*
4984 * Ok we're over committed, set num_bytes to the overcommitted
4985 * amount plus the amount of bytes that we need for this
4986 * reservation.
4987 */
2bf64758 4988 num_bytes = used - space_info->total_bytes +
96c3f433 4989 (orig_bytes * 2);
8bb8ab2e 4990 }
9ed74f2d 4991
44734ed1
JB
4992 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4993 space_info->bytes_may_use += orig_bytes;
4994 trace_btrfs_space_reservation(root->fs_info, "space_info",
4995 space_info->flags, orig_bytes,
4996 1);
4997 ret = 0;
2bf64758
JB
4998 }
4999
8bb8ab2e
JB
5000 /*
5001 * Couldn't make our reservation, save our place so while we're trying
5002 * to reclaim space we can actually use it instead of somebody else
5003 * stealing it from us.
08e007d2
MX
5004 *
5005 * We make the other tasks wait for the flush only when we can flush
5006 * all things.
8bb8ab2e 5007 */
72bcd99d 5008 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
5009 flushing = true;
5010 space_info->flush = 1;
21c7e756
MX
5011 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5012 used += orig_bytes;
f6acfd50
JB
5013 /*
5014 * We will do the space reservation dance during log replay,
5015 * which means we won't have fs_info->fs_root set, so don't do
5016 * the async reclaim as we will panic.
5017 */
5018 if (!root->fs_info->log_root_recovering &&
5019 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
5020 !work_busy(&root->fs_info->async_reclaim_work))
5021 queue_work(system_unbound_wq,
5022 &root->fs_info->async_reclaim_work);
8bb8ab2e 5023 }
f0486c68 5024 spin_unlock(&space_info->lock);
9ed74f2d 5025
08e007d2 5026 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 5027 goto out;
f0486c68 5028
96c3f433
JB
5029 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5030 flush_state);
5031 flush_state++;
08e007d2
MX
5032
5033 /*
5034 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5035 * would happen. So skip delalloc flush.
5036 */
5037 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5038 (flush_state == FLUSH_DELALLOC ||
5039 flush_state == FLUSH_DELALLOC_WAIT))
5040 flush_state = ALLOC_CHUNK;
5041
96c3f433 5042 if (!ret)
8bb8ab2e 5043 goto again;
08e007d2
MX
5044 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5045 flush_state < COMMIT_TRANS)
5046 goto again;
5047 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5048 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
5049 goto again;
5050
5051out:
5d80366e
JB
5052 if (ret == -ENOSPC &&
5053 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5054 struct btrfs_block_rsv *global_rsv =
5055 &root->fs_info->global_block_rsv;
5056
5057 if (block_rsv != global_rsv &&
5058 !block_rsv_use_bytes(global_rsv, orig_bytes))
5059 ret = 0;
5060 }
cab45e22
JM
5061 if (ret == -ENOSPC)
5062 trace_btrfs_space_reservation(root->fs_info,
5063 "space_info:enospc",
5064 space_info->flags, orig_bytes, 1);
fdb5effd 5065 if (flushing) {
8bb8ab2e 5066 spin_lock(&space_info->lock);
fdb5effd
JB
5067 space_info->flush = 0;
5068 wake_up_all(&space_info->wait);
8bb8ab2e 5069 spin_unlock(&space_info->lock);
f0486c68 5070 }
f0486c68
YZ
5071 return ret;
5072}
5073
79787eaa
JM
5074static struct btrfs_block_rsv *get_block_rsv(
5075 const struct btrfs_trans_handle *trans,
5076 const struct btrfs_root *root)
f0486c68 5077{
4c13d758
JB
5078 struct btrfs_block_rsv *block_rsv = NULL;
5079
e9cf439f
AM
5080 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5081 (root == root->fs_info->csum_root && trans->adding_csums) ||
5082 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5083 block_rsv = trans->block_rsv;
5084
4c13d758 5085 if (!block_rsv)
f0486c68
YZ
5086 block_rsv = root->block_rsv;
5087
5088 if (!block_rsv)
5089 block_rsv = &root->fs_info->empty_block_rsv;
5090
5091 return block_rsv;
5092}
5093
5094static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5095 u64 num_bytes)
5096{
5097 int ret = -ENOSPC;
5098 spin_lock(&block_rsv->lock);
5099 if (block_rsv->reserved >= num_bytes) {
5100 block_rsv->reserved -= num_bytes;
5101 if (block_rsv->reserved < block_rsv->size)
5102 block_rsv->full = 0;
5103 ret = 0;
5104 }
5105 spin_unlock(&block_rsv->lock);
5106 return ret;
5107}
5108
5109static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5110 u64 num_bytes, int update_size)
5111{
5112 spin_lock(&block_rsv->lock);
5113 block_rsv->reserved += num_bytes;
5114 if (update_size)
5115 block_rsv->size += num_bytes;
5116 else if (block_rsv->reserved >= block_rsv->size)
5117 block_rsv->full = 1;
5118 spin_unlock(&block_rsv->lock);
5119}
5120
d52be818
JB
5121int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5122 struct btrfs_block_rsv *dest, u64 num_bytes,
5123 int min_factor)
5124{
5125 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5126 u64 min_bytes;
5127
5128 if (global_rsv->space_info != dest->space_info)
5129 return -ENOSPC;
5130
5131 spin_lock(&global_rsv->lock);
5132 min_bytes = div_factor(global_rsv->size, min_factor);
5133 if (global_rsv->reserved < min_bytes + num_bytes) {
5134 spin_unlock(&global_rsv->lock);
5135 return -ENOSPC;
5136 }
5137 global_rsv->reserved -= num_bytes;
5138 if (global_rsv->reserved < global_rsv->size)
5139 global_rsv->full = 0;
5140 spin_unlock(&global_rsv->lock);
5141
5142 block_rsv_add_bytes(dest, num_bytes, 1);
5143 return 0;
5144}
5145
8c2a3ca2
JB
5146static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5147 struct btrfs_block_rsv *block_rsv,
62a45b60 5148 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5149{
5150 struct btrfs_space_info *space_info = block_rsv->space_info;
5151
5152 spin_lock(&block_rsv->lock);
5153 if (num_bytes == (u64)-1)
5154 num_bytes = block_rsv->size;
5155 block_rsv->size -= num_bytes;
5156 if (block_rsv->reserved >= block_rsv->size) {
5157 num_bytes = block_rsv->reserved - block_rsv->size;
5158 block_rsv->reserved = block_rsv->size;
5159 block_rsv->full = 1;
5160 } else {
5161 num_bytes = 0;
5162 }
5163 spin_unlock(&block_rsv->lock);
5164
5165 if (num_bytes > 0) {
5166 if (dest) {
e9e22899
JB
5167 spin_lock(&dest->lock);
5168 if (!dest->full) {
5169 u64 bytes_to_add;
5170
5171 bytes_to_add = dest->size - dest->reserved;
5172 bytes_to_add = min(num_bytes, bytes_to_add);
5173 dest->reserved += bytes_to_add;
5174 if (dest->reserved >= dest->size)
5175 dest->full = 1;
5176 num_bytes -= bytes_to_add;
5177 }
5178 spin_unlock(&dest->lock);
5179 }
5180 if (num_bytes) {
f0486c68 5181 spin_lock(&space_info->lock);
fb25e914 5182 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5183 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5184 space_info->flags, num_bytes, 0);
f0486c68 5185 spin_unlock(&space_info->lock);
4e06bdd6 5186 }
9ed74f2d 5187 }
f0486c68 5188}
4e06bdd6 5189
f0486c68
YZ
5190static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5191 struct btrfs_block_rsv *dst, u64 num_bytes)
5192{
5193 int ret;
9ed74f2d 5194
f0486c68
YZ
5195 ret = block_rsv_use_bytes(src, num_bytes);
5196 if (ret)
5197 return ret;
9ed74f2d 5198
f0486c68 5199 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5200 return 0;
5201}
5202
66d8f3dd 5203void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5204{
f0486c68
YZ
5205 memset(rsv, 0, sizeof(*rsv));
5206 spin_lock_init(&rsv->lock);
66d8f3dd 5207 rsv->type = type;
f0486c68
YZ
5208}
5209
66d8f3dd
MX
5210struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5211 unsigned short type)
f0486c68
YZ
5212{
5213 struct btrfs_block_rsv *block_rsv;
5214 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5215
f0486c68
YZ
5216 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5217 if (!block_rsv)
5218 return NULL;
9ed74f2d 5219
66d8f3dd 5220 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5221 block_rsv->space_info = __find_space_info(fs_info,
5222 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5223 return block_rsv;
5224}
9ed74f2d 5225
f0486c68
YZ
5226void btrfs_free_block_rsv(struct btrfs_root *root,
5227 struct btrfs_block_rsv *rsv)
5228{
2aaa6655
JB
5229 if (!rsv)
5230 return;
dabdb640
JB
5231 btrfs_block_rsv_release(root, rsv, (u64)-1);
5232 kfree(rsv);
9ed74f2d
JB
5233}
5234
cdfb080e
CM
5235void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5236{
5237 kfree(rsv);
5238}
5239
08e007d2
MX
5240int btrfs_block_rsv_add(struct btrfs_root *root,
5241 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5242 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5243{
f0486c68 5244 int ret;
9ed74f2d 5245
f0486c68
YZ
5246 if (num_bytes == 0)
5247 return 0;
8bb8ab2e 5248
61b520a9 5249 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5250 if (!ret) {
5251 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5252 return 0;
5253 }
9ed74f2d 5254
f0486c68 5255 return ret;
f0486c68 5256}
9ed74f2d 5257
4a92b1b8 5258int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5259 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5260{
5261 u64 num_bytes = 0;
f0486c68 5262 int ret = -ENOSPC;
9ed74f2d 5263
f0486c68
YZ
5264 if (!block_rsv)
5265 return 0;
9ed74f2d 5266
f0486c68 5267 spin_lock(&block_rsv->lock);
36ba022a
JB
5268 num_bytes = div_factor(block_rsv->size, min_factor);
5269 if (block_rsv->reserved >= num_bytes)
5270 ret = 0;
5271 spin_unlock(&block_rsv->lock);
9ed74f2d 5272
36ba022a
JB
5273 return ret;
5274}
5275
08e007d2
MX
5276int btrfs_block_rsv_refill(struct btrfs_root *root,
5277 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5278 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5279{
5280 u64 num_bytes = 0;
5281 int ret = -ENOSPC;
5282
5283 if (!block_rsv)
5284 return 0;
5285
5286 spin_lock(&block_rsv->lock);
5287 num_bytes = min_reserved;
13553e52 5288 if (block_rsv->reserved >= num_bytes)
f0486c68 5289 ret = 0;
13553e52 5290 else
f0486c68 5291 num_bytes -= block_rsv->reserved;
f0486c68 5292 spin_unlock(&block_rsv->lock);
13553e52 5293
f0486c68
YZ
5294 if (!ret)
5295 return 0;
5296
aa38a711 5297 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5298 if (!ret) {
5299 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5300 return 0;
6a63209f 5301 }
9ed74f2d 5302
13553e52 5303 return ret;
f0486c68
YZ
5304}
5305
5306int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5307 struct btrfs_block_rsv *dst_rsv,
5308 u64 num_bytes)
5309{
5310 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5311}
5312
5313void btrfs_block_rsv_release(struct btrfs_root *root,
5314 struct btrfs_block_rsv *block_rsv,
5315 u64 num_bytes)
5316{
5317 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5318 if (global_rsv == block_rsv ||
f0486c68
YZ
5319 block_rsv->space_info != global_rsv->space_info)
5320 global_rsv = NULL;
8c2a3ca2
JB
5321 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5322 num_bytes);
6a63209f
JB
5323}
5324
5325/*
8929ecfa
YZ
5326 * helper to calculate size of global block reservation.
5327 * the desired value is sum of space used by extent tree,
5328 * checksum tree and root tree
6a63209f 5329 */
8929ecfa 5330static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5331{
8929ecfa
YZ
5332 struct btrfs_space_info *sinfo;
5333 u64 num_bytes;
5334 u64 meta_used;
5335 u64 data_used;
6c41761f 5336 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5337
8929ecfa
YZ
5338 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5339 spin_lock(&sinfo->lock);
5340 data_used = sinfo->bytes_used;
5341 spin_unlock(&sinfo->lock);
33b4d47f 5342
8929ecfa
YZ
5343 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5344 spin_lock(&sinfo->lock);
6d48755d
JB
5345 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5346 data_used = 0;
8929ecfa
YZ
5347 meta_used = sinfo->bytes_used;
5348 spin_unlock(&sinfo->lock);
ab6e2410 5349
8929ecfa
YZ
5350 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5351 csum_size * 2;
f8c269d7 5352 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5353
8929ecfa 5354 if (num_bytes * 3 > meta_used)
f8c269d7 5355 num_bytes = div_u64(meta_used, 3);
ab6e2410 5356
707e8a07 5357 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5358}
6a63209f 5359
8929ecfa
YZ
5360static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5361{
5362 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5363 struct btrfs_space_info *sinfo = block_rsv->space_info;
5364 u64 num_bytes;
6a63209f 5365
8929ecfa 5366 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5367
8929ecfa 5368 spin_lock(&sinfo->lock);
1f699d38 5369 spin_lock(&block_rsv->lock);
4e06bdd6 5370
ee22184b 5371 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5372
8929ecfa 5373 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5374 sinfo->bytes_reserved + sinfo->bytes_readonly +
5375 sinfo->bytes_may_use;
8929ecfa
YZ
5376
5377 if (sinfo->total_bytes > num_bytes) {
5378 num_bytes = sinfo->total_bytes - num_bytes;
5379 block_rsv->reserved += num_bytes;
fb25e914 5380 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5381 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5382 sinfo->flags, num_bytes, 1);
6a63209f 5383 }
6a63209f 5384
8929ecfa
YZ
5385 if (block_rsv->reserved >= block_rsv->size) {
5386 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5387 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5388 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5389 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5390 block_rsv->reserved = block_rsv->size;
5391 block_rsv->full = 1;
5392 }
182608c8 5393
8929ecfa 5394 spin_unlock(&block_rsv->lock);
1f699d38 5395 spin_unlock(&sinfo->lock);
6a63209f
JB
5396}
5397
f0486c68 5398static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5399{
f0486c68 5400 struct btrfs_space_info *space_info;
6a63209f 5401
f0486c68
YZ
5402 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5403 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5404
f0486c68 5405 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5406 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5407 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5408 fs_info->trans_block_rsv.space_info = space_info;
5409 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5410 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5411
8929ecfa
YZ
5412 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5413 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5414 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5415 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5416 if (fs_info->quota_root)
5417 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5418 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5419
8929ecfa 5420 update_global_block_rsv(fs_info);
6a63209f
JB
5421}
5422
8929ecfa 5423static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5424{
8c2a3ca2
JB
5425 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5426 (u64)-1);
8929ecfa
YZ
5427 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5428 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5429 WARN_ON(fs_info->trans_block_rsv.size > 0);
5430 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5431 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5432 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5433 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5434 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5435}
5436
a22285a6
YZ
5437void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5438 struct btrfs_root *root)
6a63209f 5439{
0e721106
JB
5440 if (!trans->block_rsv)
5441 return;
5442
a22285a6
YZ
5443 if (!trans->bytes_reserved)
5444 return;
6a63209f 5445
e77266e4 5446 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5447 trans->transid, trans->bytes_reserved, 0);
b24e03db 5448 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5449 trans->bytes_reserved = 0;
5450}
6a63209f 5451
4fbcdf66
FM
5452/*
5453 * To be called after all the new block groups attached to the transaction
5454 * handle have been created (btrfs_create_pending_block_groups()).
5455 */
5456void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5457{
5458 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5459
5460 if (!trans->chunk_bytes_reserved)
5461 return;
5462
5463 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5464
5465 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5466 trans->chunk_bytes_reserved);
5467 trans->chunk_bytes_reserved = 0;
5468}
5469
79787eaa 5470/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5471int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5472 struct inode *inode)
5473{
5474 struct btrfs_root *root = BTRFS_I(inode)->root;
5475 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5476 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5477
5478 /*
fcb80c2a
JB
5479 * We need to hold space in order to delete our orphan item once we've
5480 * added it, so this takes the reservation so we can release it later
5481 * when we are truly done with the orphan item.
d68fc57b 5482 */
ff5714cc 5483 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5484 trace_btrfs_space_reservation(root->fs_info, "orphan",
5485 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5486 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5487}
5488
d68fc57b 5489void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5490{
d68fc57b 5491 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5492 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5493 trace_btrfs_space_reservation(root->fs_info, "orphan",
5494 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5495 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5496}
97e728d4 5497
d5c12070
MX
5498/*
5499 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5500 * root: the root of the parent directory
5501 * rsv: block reservation
5502 * items: the number of items that we need do reservation
5503 * qgroup_reserved: used to return the reserved size in qgroup
5504 *
5505 * This function is used to reserve the space for snapshot/subvolume
5506 * creation and deletion. Those operations are different with the
5507 * common file/directory operations, they change two fs/file trees
5508 * and root tree, the number of items that the qgroup reserves is
5509 * different with the free space reservation. So we can not use
5510 * the space reseravtion mechanism in start_transaction().
5511 */
5512int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5513 struct btrfs_block_rsv *rsv,
5514 int items,
ee3441b4
JM
5515 u64 *qgroup_reserved,
5516 bool use_global_rsv)
a22285a6 5517{
d5c12070
MX
5518 u64 num_bytes;
5519 int ret;
ee3441b4 5520 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5521
5522 if (root->fs_info->quota_enabled) {
5523 /* One for parent inode, two for dir entries */
707e8a07 5524 num_bytes = 3 * root->nodesize;
7174109c 5525 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5526 if (ret)
5527 return ret;
5528 } else {
5529 num_bytes = 0;
5530 }
5531
5532 *qgroup_reserved = num_bytes;
5533
5534 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5535 rsv->space_info = __find_space_info(root->fs_info,
5536 BTRFS_BLOCK_GROUP_METADATA);
5537 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5538 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5539
5540 if (ret == -ENOSPC && use_global_rsv)
5541 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5542
7174109c
QW
5543 if (ret && *qgroup_reserved)
5544 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5545
5546 return ret;
5547}
5548
5549void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5550 struct btrfs_block_rsv *rsv,
5551 u64 qgroup_reserved)
5552{
5553 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5554}
5555
7709cde3
JB
5556/**
5557 * drop_outstanding_extent - drop an outstanding extent
5558 * @inode: the inode we're dropping the extent for
dcab6a3b 5559 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5560 *
5561 * This is called when we are freeing up an outstanding extent, either called
5562 * after an error or after an extent is written. This will return the number of
5563 * reserved extents that need to be freed. This must be called with
5564 * BTRFS_I(inode)->lock held.
5565 */
dcab6a3b 5566static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5567{
7fd2ae21 5568 unsigned drop_inode_space = 0;
9e0baf60 5569 unsigned dropped_extents = 0;
dcab6a3b 5570 unsigned num_extents = 0;
9e0baf60 5571
dcab6a3b
JB
5572 num_extents = (unsigned)div64_u64(num_bytes +
5573 BTRFS_MAX_EXTENT_SIZE - 1,
5574 BTRFS_MAX_EXTENT_SIZE);
5575 ASSERT(num_extents);
5576 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5577 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5578
7fd2ae21 5579 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5580 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5581 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5582 drop_inode_space = 1;
7fd2ae21 5583
9e0baf60
JB
5584 /*
5585 * If we have more or the same amount of outsanding extents than we have
5586 * reserved then we need to leave the reserved extents count alone.
5587 */
5588 if (BTRFS_I(inode)->outstanding_extents >=
5589 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5590 return drop_inode_space;
9e0baf60
JB
5591
5592 dropped_extents = BTRFS_I(inode)->reserved_extents -
5593 BTRFS_I(inode)->outstanding_extents;
5594 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5595 return dropped_extents + drop_inode_space;
9e0baf60
JB
5596}
5597
7709cde3
JB
5598/**
5599 * calc_csum_metadata_size - return the amount of metada space that must be
5600 * reserved/free'd for the given bytes.
5601 * @inode: the inode we're manipulating
5602 * @num_bytes: the number of bytes in question
5603 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5604 *
5605 * This adjusts the number of csum_bytes in the inode and then returns the
5606 * correct amount of metadata that must either be reserved or freed. We
5607 * calculate how many checksums we can fit into one leaf and then divide the
5608 * number of bytes that will need to be checksumed by this value to figure out
5609 * how many checksums will be required. If we are adding bytes then the number
5610 * may go up and we will return the number of additional bytes that must be
5611 * reserved. If it is going down we will return the number of bytes that must
5612 * be freed.
5613 *
5614 * This must be called with BTRFS_I(inode)->lock held.
5615 */
5616static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5617 int reserve)
6324fbf3 5618{
7709cde3 5619 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5620 u64 old_csums, num_csums;
7709cde3
JB
5621
5622 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5623 BTRFS_I(inode)->csum_bytes == 0)
5624 return 0;
5625
28f75a0e 5626 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5627 if (reserve)
5628 BTRFS_I(inode)->csum_bytes += num_bytes;
5629 else
5630 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5631 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5632
5633 /* No change, no need to reserve more */
5634 if (old_csums == num_csums)
5635 return 0;
5636
5637 if (reserve)
5638 return btrfs_calc_trans_metadata_size(root,
5639 num_csums - old_csums);
5640
5641 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5642}
c146afad 5643
0ca1f7ce
YZ
5644int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5645{
5646 struct btrfs_root *root = BTRFS_I(inode)->root;
5647 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5648 u64 to_reserve = 0;
660d3f6c 5649 u64 csum_bytes;
9e0baf60 5650 unsigned nr_extents = 0;
660d3f6c 5651 int extra_reserve = 0;
08e007d2 5652 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5653 int ret = 0;
c64c2bd8 5654 bool delalloc_lock = true;
88e081bf
WS
5655 u64 to_free = 0;
5656 unsigned dropped;
6324fbf3 5657
c64c2bd8
JB
5658 /* If we are a free space inode we need to not flush since we will be in
5659 * the middle of a transaction commit. We also don't need the delalloc
5660 * mutex since we won't race with anybody. We need this mostly to make
5661 * lockdep shut its filthy mouth.
5662 */
5663 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5664 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5665 delalloc_lock = false;
5666 }
c09544e0 5667
08e007d2
MX
5668 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5669 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5670 schedule_timeout(1);
ec44a35c 5671
c64c2bd8
JB
5672 if (delalloc_lock)
5673 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5674
0ca1f7ce 5675 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5676
9e0baf60 5677 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5678 nr_extents = (unsigned)div64_u64(num_bytes +
5679 BTRFS_MAX_EXTENT_SIZE - 1,
5680 BTRFS_MAX_EXTENT_SIZE);
5681 BTRFS_I(inode)->outstanding_extents += nr_extents;
5682 nr_extents = 0;
9e0baf60
JB
5683
5684 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5685 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5686 nr_extents = BTRFS_I(inode)->outstanding_extents -
5687 BTRFS_I(inode)->reserved_extents;
57a45ced 5688
7fd2ae21
JB
5689 /*
5690 * Add an item to reserve for updating the inode when we complete the
5691 * delalloc io.
5692 */
72ac3c0d
JB
5693 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5694 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5695 nr_extents++;
660d3f6c 5696 extra_reserve = 1;
593060d7 5697 }
7fd2ae21
JB
5698
5699 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5700 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5701 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5702 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5703
88e081bf 5704 if (root->fs_info->quota_enabled) {
7174109c
QW
5705 ret = btrfs_qgroup_reserve_meta(root,
5706 nr_extents * root->nodesize);
88e081bf
WS
5707 if (ret)
5708 goto out_fail;
5709 }
c5567237 5710
88e081bf
WS
5711 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5712 if (unlikely(ret)) {
7174109c 5713 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5714 goto out_fail;
9e0baf60 5715 }
25179201 5716
660d3f6c
JB
5717 spin_lock(&BTRFS_I(inode)->lock);
5718 if (extra_reserve) {
72ac3c0d
JB
5719 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5720 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5721 nr_extents--;
5722 }
5723 BTRFS_I(inode)->reserved_extents += nr_extents;
5724 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5725
5726 if (delalloc_lock)
5727 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5728
8c2a3ca2 5729 if (to_reserve)
67871254 5730 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5731 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5732 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5733
0ca1f7ce 5734 return 0;
88e081bf
WS
5735
5736out_fail:
5737 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5738 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5739 /*
5740 * If the inodes csum_bytes is the same as the original
5741 * csum_bytes then we know we haven't raced with any free()ers
5742 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5743 */
f4881bc7 5744 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5745 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5746 } else {
5747 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5748 u64 bytes;
5749
5750 /*
5751 * This is tricky, but first we need to figure out how much we
5752 * free'd from any free-ers that occured during this
5753 * reservation, so we reset ->csum_bytes to the csum_bytes
5754 * before we dropped our lock, and then call the free for the
5755 * number of bytes that were freed while we were trying our
5756 * reservation.
5757 */
5758 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5759 BTRFS_I(inode)->csum_bytes = csum_bytes;
5760 to_free = calc_csum_metadata_size(inode, bytes, 0);
5761
5762
5763 /*
5764 * Now we need to see how much we would have freed had we not
5765 * been making this reservation and our ->csum_bytes were not
5766 * artificially inflated.
5767 */
5768 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5769 bytes = csum_bytes - orig_csum_bytes;
5770 bytes = calc_csum_metadata_size(inode, bytes, 0);
5771
5772 /*
5773 * Now reset ->csum_bytes to what it should be. If bytes is
5774 * more than to_free then we would have free'd more space had we
5775 * not had an artificially high ->csum_bytes, so we need to free
5776 * the remainder. If bytes is the same or less then we don't
5777 * need to do anything, the other free-ers did the correct
5778 * thing.
5779 */
5780 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5781 if (bytes > to_free)
5782 to_free = bytes - to_free;
5783 else
5784 to_free = 0;
5785 }
88e081bf 5786 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5787 if (dropped)
88e081bf
WS
5788 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5789
5790 if (to_free) {
5791 btrfs_block_rsv_release(root, block_rsv, to_free);
5792 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5793 btrfs_ino(inode), to_free, 0);
5794 }
5795 if (delalloc_lock)
5796 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5797 return ret;
0ca1f7ce
YZ
5798}
5799
7709cde3
JB
5800/**
5801 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5802 * @inode: the inode to release the reservation for
5803 * @num_bytes: the number of bytes we're releasing
5804 *
5805 * This will release the metadata reservation for an inode. This can be called
5806 * once we complete IO for a given set of bytes to release their metadata
5807 * reservations.
5808 */
0ca1f7ce
YZ
5809void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5810{
5811 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5812 u64 to_free = 0;
5813 unsigned dropped;
0ca1f7ce
YZ
5814
5815 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5816 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5817 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5818
0934856d
MX
5819 if (num_bytes)
5820 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5821 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5822 if (dropped > 0)
5823 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5824
6a3891c5
JB
5825 if (btrfs_test_is_dummy_root(root))
5826 return;
5827
8c2a3ca2
JB
5828 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5829 btrfs_ino(inode), to_free, 0);
c5567237 5830
0ca1f7ce
YZ
5831 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5832 to_free);
5833}
5834
1ada3a62 5835/**
7cf5b976 5836 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5837 * delalloc
5838 * @inode: inode we're writing to
5839 * @start: start range we are writing to
5840 * @len: how long the range we are writing to
5841 *
5842 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5843 *
5844 * This will do the following things
5845 *
5846 * o reserve space in data space info for num bytes
5847 * and reserve precious corresponding qgroup space
5848 * (Done in check_data_free_space)
5849 *
5850 * o reserve space for metadata space, based on the number of outstanding
5851 * extents and how much csums will be needed
5852 * also reserve metadata space in a per root over-reserve method.
5853 * o add to the inodes->delalloc_bytes
5854 * o add it to the fs_info's delalloc inodes list.
5855 * (Above 3 all done in delalloc_reserve_metadata)
5856 *
5857 * Return 0 for success
5858 * Return <0 for error(-ENOSPC or -EQUOT)
5859 */
7cf5b976 5860int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5861{
5862 int ret;
5863
7cf5b976 5864 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5865 if (ret < 0)
5866 return ret;
5867 ret = btrfs_delalloc_reserve_metadata(inode, len);
5868 if (ret < 0)
7cf5b976 5869 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5870 return ret;
5871}
5872
7709cde3 5873/**
7cf5b976 5874 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5875 * @inode: inode we're releasing space for
5876 * @start: start position of the space already reserved
5877 * @len: the len of the space already reserved
5878 *
5879 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5880 * called in the case that we don't need the metadata AND data reservations
5881 * anymore. So if there is an error or we insert an inline extent.
5882 *
5883 * This function will release the metadata space that was not used and will
5884 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5885 * list if there are no delalloc bytes left.
5886 * Also it will handle the qgroup reserved space.
5887 */
7cf5b976 5888void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5889{
5890 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5891 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5892}
5893
ce93ec54
JB
5894static int update_block_group(struct btrfs_trans_handle *trans,
5895 struct btrfs_root *root, u64 bytenr,
5896 u64 num_bytes, int alloc)
9078a3e1 5897{
0af3d00b 5898 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5899 struct btrfs_fs_info *info = root->fs_info;
db94535d 5900 u64 total = num_bytes;
9078a3e1 5901 u64 old_val;
db94535d 5902 u64 byte_in_group;
0af3d00b 5903 int factor;
3e1ad54f 5904
5d4f98a2 5905 /* block accounting for super block */
eb73c1b7 5906 spin_lock(&info->delalloc_root_lock);
6c41761f 5907 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5908 if (alloc)
5909 old_val += num_bytes;
5910 else
5911 old_val -= num_bytes;
6c41761f 5912 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5913 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5914
d397712b 5915 while (total) {
db94535d 5916 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5917 if (!cache)
79787eaa 5918 return -ENOENT;
b742bb82
YZ
5919 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5920 BTRFS_BLOCK_GROUP_RAID1 |
5921 BTRFS_BLOCK_GROUP_RAID10))
5922 factor = 2;
5923 else
5924 factor = 1;
9d66e233
JB
5925 /*
5926 * If this block group has free space cache written out, we
5927 * need to make sure to load it if we are removing space. This
5928 * is because we need the unpinning stage to actually add the
5929 * space back to the block group, otherwise we will leak space.
5930 */
5931 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5932 cache_block_group(cache, 1);
0af3d00b 5933
db94535d
CM
5934 byte_in_group = bytenr - cache->key.objectid;
5935 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5936
25179201 5937 spin_lock(&cache->space_info->lock);
c286ac48 5938 spin_lock(&cache->lock);
0af3d00b 5939
73bc1876 5940 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5941 cache->disk_cache_state < BTRFS_DC_CLEAR)
5942 cache->disk_cache_state = BTRFS_DC_CLEAR;
5943
9078a3e1 5944 old_val = btrfs_block_group_used(&cache->item);
db94535d 5945 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5946 if (alloc) {
db94535d 5947 old_val += num_bytes;
11833d66
YZ
5948 btrfs_set_block_group_used(&cache->item, old_val);
5949 cache->reserved -= num_bytes;
11833d66 5950 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5951 cache->space_info->bytes_used += num_bytes;
5952 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5953 spin_unlock(&cache->lock);
25179201 5954 spin_unlock(&cache->space_info->lock);
cd1bc465 5955 } else {
db94535d 5956 old_val -= num_bytes;
ae0ab003
FM
5957 btrfs_set_block_group_used(&cache->item, old_val);
5958 cache->pinned += num_bytes;
5959 cache->space_info->bytes_pinned += num_bytes;
5960 cache->space_info->bytes_used -= num_bytes;
5961 cache->space_info->disk_used -= num_bytes * factor;
5962 spin_unlock(&cache->lock);
5963 spin_unlock(&cache->space_info->lock);
47ab2a6c 5964
ae0ab003
FM
5965 set_extent_dirty(info->pinned_extents,
5966 bytenr, bytenr + num_bytes - 1,
5967 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 5968 }
1bbc621e
CM
5969
5970 spin_lock(&trans->transaction->dirty_bgs_lock);
5971 if (list_empty(&cache->dirty_list)) {
5972 list_add_tail(&cache->dirty_list,
5973 &trans->transaction->dirty_bgs);
5974 trans->transaction->num_dirty_bgs++;
5975 btrfs_get_block_group(cache);
5976 }
5977 spin_unlock(&trans->transaction->dirty_bgs_lock);
5978
036a9348
FM
5979 /*
5980 * No longer have used bytes in this block group, queue it for
5981 * deletion. We do this after adding the block group to the
5982 * dirty list to avoid races between cleaner kthread and space
5983 * cache writeout.
5984 */
5985 if (!alloc && old_val == 0) {
5986 spin_lock(&info->unused_bgs_lock);
5987 if (list_empty(&cache->bg_list)) {
5988 btrfs_get_block_group(cache);
5989 list_add_tail(&cache->bg_list,
5990 &info->unused_bgs);
5991 }
5992 spin_unlock(&info->unused_bgs_lock);
5993 }
5994
fa9c0d79 5995 btrfs_put_block_group(cache);
db94535d
CM
5996 total -= num_bytes;
5997 bytenr += num_bytes;
9078a3e1
CM
5998 }
5999 return 0;
6000}
6324fbf3 6001
a061fc8d
CM
6002static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6003{
0f9dd46c 6004 struct btrfs_block_group_cache *cache;
d2fb3437 6005 u64 bytenr;
0f9dd46c 6006
a1897fdd
LB
6007 spin_lock(&root->fs_info->block_group_cache_lock);
6008 bytenr = root->fs_info->first_logical_byte;
6009 spin_unlock(&root->fs_info->block_group_cache_lock);
6010
6011 if (bytenr < (u64)-1)
6012 return bytenr;
6013
0f9dd46c
JB
6014 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6015 if (!cache)
a061fc8d 6016 return 0;
0f9dd46c 6017
d2fb3437 6018 bytenr = cache->key.objectid;
fa9c0d79 6019 btrfs_put_block_group(cache);
d2fb3437
YZ
6020
6021 return bytenr;
a061fc8d
CM
6022}
6023
f0486c68
YZ
6024static int pin_down_extent(struct btrfs_root *root,
6025 struct btrfs_block_group_cache *cache,
6026 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6027{
11833d66
YZ
6028 spin_lock(&cache->space_info->lock);
6029 spin_lock(&cache->lock);
6030 cache->pinned += num_bytes;
6031 cache->space_info->bytes_pinned += num_bytes;
6032 if (reserved) {
6033 cache->reserved -= num_bytes;
6034 cache->space_info->bytes_reserved -= num_bytes;
6035 }
6036 spin_unlock(&cache->lock);
6037 spin_unlock(&cache->space_info->lock);
68b38550 6038
f0486c68
YZ
6039 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6040 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 6041 if (reserved)
0be5dc67 6042 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
6043 return 0;
6044}
68b38550 6045
f0486c68
YZ
6046/*
6047 * this function must be called within transaction
6048 */
6049int btrfs_pin_extent(struct btrfs_root *root,
6050 u64 bytenr, u64 num_bytes, int reserved)
6051{
6052 struct btrfs_block_group_cache *cache;
68b38550 6053
f0486c68 6054 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6055 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6056
6057 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6058
6059 btrfs_put_block_group(cache);
11833d66
YZ
6060 return 0;
6061}
6062
f0486c68 6063/*
e688b725
CM
6064 * this function must be called within transaction
6065 */
dcfac415 6066int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6067 u64 bytenr, u64 num_bytes)
6068{
6069 struct btrfs_block_group_cache *cache;
b50c6e25 6070 int ret;
e688b725
CM
6071
6072 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6073 if (!cache)
6074 return -EINVAL;
e688b725
CM
6075
6076 /*
6077 * pull in the free space cache (if any) so that our pin
6078 * removes the free space from the cache. We have load_only set
6079 * to one because the slow code to read in the free extents does check
6080 * the pinned extents.
6081 */
f6373bf3 6082 cache_block_group(cache, 1);
e688b725
CM
6083
6084 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6085
6086 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6087 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6088 btrfs_put_block_group(cache);
b50c6e25 6089 return ret;
e688b725
CM
6090}
6091
8c2a1a30
JB
6092static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6093{
6094 int ret;
6095 struct btrfs_block_group_cache *block_group;
6096 struct btrfs_caching_control *caching_ctl;
6097
6098 block_group = btrfs_lookup_block_group(root->fs_info, start);
6099 if (!block_group)
6100 return -EINVAL;
6101
6102 cache_block_group(block_group, 0);
6103 caching_ctl = get_caching_control(block_group);
6104
6105 if (!caching_ctl) {
6106 /* Logic error */
6107 BUG_ON(!block_group_cache_done(block_group));
6108 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6109 } else {
6110 mutex_lock(&caching_ctl->mutex);
6111
6112 if (start >= caching_ctl->progress) {
6113 ret = add_excluded_extent(root, start, num_bytes);
6114 } else if (start + num_bytes <= caching_ctl->progress) {
6115 ret = btrfs_remove_free_space(block_group,
6116 start, num_bytes);
6117 } else {
6118 num_bytes = caching_ctl->progress - start;
6119 ret = btrfs_remove_free_space(block_group,
6120 start, num_bytes);
6121 if (ret)
6122 goto out_lock;
6123
6124 num_bytes = (start + num_bytes) -
6125 caching_ctl->progress;
6126 start = caching_ctl->progress;
6127 ret = add_excluded_extent(root, start, num_bytes);
6128 }
6129out_lock:
6130 mutex_unlock(&caching_ctl->mutex);
6131 put_caching_control(caching_ctl);
6132 }
6133 btrfs_put_block_group(block_group);
6134 return ret;
6135}
6136
6137int btrfs_exclude_logged_extents(struct btrfs_root *log,
6138 struct extent_buffer *eb)
6139{
6140 struct btrfs_file_extent_item *item;
6141 struct btrfs_key key;
6142 int found_type;
6143 int i;
6144
6145 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6146 return 0;
6147
6148 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6149 btrfs_item_key_to_cpu(eb, &key, i);
6150 if (key.type != BTRFS_EXTENT_DATA_KEY)
6151 continue;
6152 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6153 found_type = btrfs_file_extent_type(eb, item);
6154 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6155 continue;
6156 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6157 continue;
6158 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6159 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6160 __exclude_logged_extent(log, key.objectid, key.offset);
6161 }
6162
6163 return 0;
6164}
6165
fb25e914
JB
6166/**
6167 * btrfs_update_reserved_bytes - update the block_group and space info counters
6168 * @cache: The cache we are manipulating
6169 * @num_bytes: The number of bytes in question
6170 * @reserve: One of the reservation enums
e570fd27 6171 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6172 *
6173 * This is called by the allocator when it reserves space, or by somebody who is
6174 * freeing space that was never actually used on disk. For example if you
6175 * reserve some space for a new leaf in transaction A and before transaction A
6176 * commits you free that leaf, you call this with reserve set to 0 in order to
6177 * clear the reservation.
6178 *
6179 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6180 * ENOSPC accounting. For data we handle the reservation through clearing the
6181 * delalloc bits in the io_tree. We have to do this since we could end up
6182 * allocating less disk space for the amount of data we have reserved in the
6183 * case of compression.
6184 *
6185 * If this is a reservation and the block group has become read only we cannot
6186 * make the reservation and return -EAGAIN, otherwise this function always
6187 * succeeds.
f0486c68 6188 */
fb25e914 6189static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6190 u64 num_bytes, int reserve, int delalloc)
11833d66 6191{
fb25e914 6192 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6193 int ret = 0;
79787eaa 6194
fb25e914
JB
6195 spin_lock(&space_info->lock);
6196 spin_lock(&cache->lock);
6197 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6198 if (cache->ro) {
6199 ret = -EAGAIN;
6200 } else {
fb25e914
JB
6201 cache->reserved += num_bytes;
6202 space_info->bytes_reserved += num_bytes;
6203 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6204 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6205 "space_info", space_info->flags,
6206 num_bytes, 0);
fb25e914
JB
6207 space_info->bytes_may_use -= num_bytes;
6208 }
e570fd27
MX
6209
6210 if (delalloc)
6211 cache->delalloc_bytes += num_bytes;
f0486c68 6212 }
fb25e914
JB
6213 } else {
6214 if (cache->ro)
6215 space_info->bytes_readonly += num_bytes;
6216 cache->reserved -= num_bytes;
6217 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6218
6219 if (delalloc)
6220 cache->delalloc_bytes -= num_bytes;
324ae4df 6221 }
fb25e914
JB
6222 spin_unlock(&cache->lock);
6223 spin_unlock(&space_info->lock);
f0486c68 6224 return ret;
324ae4df 6225}
9078a3e1 6226
143bede5 6227void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6228 struct btrfs_root *root)
e8569813 6229{
e8569813 6230 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6231 struct btrfs_caching_control *next;
6232 struct btrfs_caching_control *caching_ctl;
6233 struct btrfs_block_group_cache *cache;
e8569813 6234
9e351cc8 6235 down_write(&fs_info->commit_root_sem);
25179201 6236
11833d66
YZ
6237 list_for_each_entry_safe(caching_ctl, next,
6238 &fs_info->caching_block_groups, list) {
6239 cache = caching_ctl->block_group;
6240 if (block_group_cache_done(cache)) {
6241 cache->last_byte_to_unpin = (u64)-1;
6242 list_del_init(&caching_ctl->list);
6243 put_caching_control(caching_ctl);
e8569813 6244 } else {
11833d66 6245 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6246 }
e8569813 6247 }
11833d66
YZ
6248
6249 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6250 fs_info->pinned_extents = &fs_info->freed_extents[1];
6251 else
6252 fs_info->pinned_extents = &fs_info->freed_extents[0];
6253
9e351cc8 6254 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6255
6256 update_global_block_rsv(fs_info);
e8569813
ZY
6257}
6258
c759c4e1
JB
6259/*
6260 * Returns the free cluster for the given space info and sets empty_cluster to
6261 * what it should be based on the mount options.
6262 */
6263static struct btrfs_free_cluster *
6264fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6265 u64 *empty_cluster)
6266{
6267 struct btrfs_free_cluster *ret = NULL;
6268 bool ssd = btrfs_test_opt(root, SSD);
6269
6270 *empty_cluster = 0;
6271 if (btrfs_mixed_space_info(space_info))
6272 return ret;
6273
6274 if (ssd)
ee22184b 6275 *empty_cluster = SZ_2M;
c759c4e1
JB
6276 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6277 ret = &root->fs_info->meta_alloc_cluster;
6278 if (!ssd)
ee22184b 6279 *empty_cluster = SZ_64K;
c759c4e1
JB
6280 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6281 ret = &root->fs_info->data_alloc_cluster;
6282 }
6283
6284 return ret;
6285}
6286
678886bd
FM
6287static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6288 const bool return_free_space)
ccd467d6 6289{
11833d66
YZ
6290 struct btrfs_fs_info *fs_info = root->fs_info;
6291 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6292 struct btrfs_space_info *space_info;
6293 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6294 struct btrfs_free_cluster *cluster = NULL;
11833d66 6295 u64 len;
c759c4e1
JB
6296 u64 total_unpinned = 0;
6297 u64 empty_cluster = 0;
7b398f8e 6298 bool readonly;
ccd467d6 6299
11833d66 6300 while (start <= end) {
7b398f8e 6301 readonly = false;
11833d66
YZ
6302 if (!cache ||
6303 start >= cache->key.objectid + cache->key.offset) {
6304 if (cache)
6305 btrfs_put_block_group(cache);
c759c4e1 6306 total_unpinned = 0;
11833d66 6307 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6308 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6309
6310 cluster = fetch_cluster_info(root,
6311 cache->space_info,
6312 &empty_cluster);
6313 empty_cluster <<= 1;
11833d66
YZ
6314 }
6315
6316 len = cache->key.objectid + cache->key.offset - start;
6317 len = min(len, end + 1 - start);
6318
6319 if (start < cache->last_byte_to_unpin) {
6320 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6321 if (return_free_space)
6322 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6323 }
6324
f0486c68 6325 start += len;
c759c4e1 6326 total_unpinned += len;
7b398f8e 6327 space_info = cache->space_info;
f0486c68 6328
c759c4e1
JB
6329 /*
6330 * If this space cluster has been marked as fragmented and we've
6331 * unpinned enough in this block group to potentially allow a
6332 * cluster to be created inside of it go ahead and clear the
6333 * fragmented check.
6334 */
6335 if (cluster && cluster->fragmented &&
6336 total_unpinned > empty_cluster) {
6337 spin_lock(&cluster->lock);
6338 cluster->fragmented = 0;
6339 spin_unlock(&cluster->lock);
6340 }
6341
7b398f8e 6342 spin_lock(&space_info->lock);
11833d66
YZ
6343 spin_lock(&cache->lock);
6344 cache->pinned -= len;
7b398f8e 6345 space_info->bytes_pinned -= len;
4f4db217 6346 space_info->max_extent_size = 0;
d288db5d 6347 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6348 if (cache->ro) {
6349 space_info->bytes_readonly += len;
6350 readonly = true;
6351 }
11833d66 6352 spin_unlock(&cache->lock);
7b398f8e
JB
6353 if (!readonly && global_rsv->space_info == space_info) {
6354 spin_lock(&global_rsv->lock);
6355 if (!global_rsv->full) {
6356 len = min(len, global_rsv->size -
6357 global_rsv->reserved);
6358 global_rsv->reserved += len;
6359 space_info->bytes_may_use += len;
6360 if (global_rsv->reserved >= global_rsv->size)
6361 global_rsv->full = 1;
6362 }
6363 spin_unlock(&global_rsv->lock);
6364 }
6365 spin_unlock(&space_info->lock);
ccd467d6 6366 }
11833d66
YZ
6367
6368 if (cache)
6369 btrfs_put_block_group(cache);
ccd467d6
CM
6370 return 0;
6371}
6372
6373int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6374 struct btrfs_root *root)
a28ec197 6375{
11833d66 6376 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6377 struct btrfs_block_group_cache *block_group, *tmp;
6378 struct list_head *deleted_bgs;
11833d66 6379 struct extent_io_tree *unpin;
1a5bc167
CM
6380 u64 start;
6381 u64 end;
a28ec197 6382 int ret;
a28ec197 6383
11833d66
YZ
6384 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6385 unpin = &fs_info->freed_extents[1];
6386 else
6387 unpin = &fs_info->freed_extents[0];
6388
e33e17ee 6389 while (!trans->aborted) {
d4b450cd 6390 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6391 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6392 EXTENT_DIRTY, NULL);
d4b450cd
FM
6393 if (ret) {
6394 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6395 break;
d4b450cd 6396 }
1f3c79a2 6397
5378e607
LD
6398 if (btrfs_test_opt(root, DISCARD))
6399 ret = btrfs_discard_extent(root, start,
6400 end + 1 - start, NULL);
1f3c79a2 6401
1a5bc167 6402 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6403 unpin_extent_range(root, start, end, true);
d4b450cd 6404 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6405 cond_resched();
a28ec197 6406 }
817d52f8 6407
e33e17ee
JM
6408 /*
6409 * Transaction is finished. We don't need the lock anymore. We
6410 * do need to clean up the block groups in case of a transaction
6411 * abort.
6412 */
6413 deleted_bgs = &trans->transaction->deleted_bgs;
6414 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6415 u64 trimmed = 0;
6416
6417 ret = -EROFS;
6418 if (!trans->aborted)
6419 ret = btrfs_discard_extent(root,
6420 block_group->key.objectid,
6421 block_group->key.offset,
6422 &trimmed);
6423
6424 list_del_init(&block_group->bg_list);
6425 btrfs_put_block_group_trimming(block_group);
6426 btrfs_put_block_group(block_group);
6427
6428 if (ret) {
6429 const char *errstr = btrfs_decode_error(ret);
6430 btrfs_warn(fs_info,
6431 "Discard failed while removing blockgroup: errno=%d %s\n",
6432 ret, errstr);
6433 }
6434 }
6435
e20d96d6
CM
6436 return 0;
6437}
6438
b150a4f1
JB
6439static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6440 u64 owner, u64 root_objectid)
6441{
6442 struct btrfs_space_info *space_info;
6443 u64 flags;
6444
6445 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6446 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6447 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6448 else
6449 flags = BTRFS_BLOCK_GROUP_METADATA;
6450 } else {
6451 flags = BTRFS_BLOCK_GROUP_DATA;
6452 }
6453
6454 space_info = __find_space_info(fs_info, flags);
6455 BUG_ON(!space_info); /* Logic bug */
6456 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6457}
6458
6459
5d4f98a2
YZ
6460static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6461 struct btrfs_root *root,
c682f9b3 6462 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6463 u64 root_objectid, u64 owner_objectid,
6464 u64 owner_offset, int refs_to_drop,
c682f9b3 6465 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6466{
e2fa7227 6467 struct btrfs_key key;
5d4f98a2 6468 struct btrfs_path *path;
1261ec42
CM
6469 struct btrfs_fs_info *info = root->fs_info;
6470 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6471 struct extent_buffer *leaf;
5d4f98a2
YZ
6472 struct btrfs_extent_item *ei;
6473 struct btrfs_extent_inline_ref *iref;
a28ec197 6474 int ret;
5d4f98a2 6475 int is_data;
952fccac
CM
6476 int extent_slot = 0;
6477 int found_extent = 0;
6478 int num_to_del = 1;
5d4f98a2
YZ
6479 u32 item_size;
6480 u64 refs;
c682f9b3
QW
6481 u64 bytenr = node->bytenr;
6482 u64 num_bytes = node->num_bytes;
fcebe456 6483 int last_ref = 0;
3173a18f
JB
6484 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6485 SKINNY_METADATA);
037e6390 6486
5caf2a00 6487 path = btrfs_alloc_path();
54aa1f4d
CM
6488 if (!path)
6489 return -ENOMEM;
5f26f772 6490
e4058b54 6491 path->reada = READA_FORWARD;
b9473439 6492 path->leave_spinning = 1;
5d4f98a2
YZ
6493
6494 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6495 BUG_ON(!is_data && refs_to_drop != 1);
6496
3173a18f
JB
6497 if (is_data)
6498 skinny_metadata = 0;
6499
5d4f98a2
YZ
6500 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6501 bytenr, num_bytes, parent,
6502 root_objectid, owner_objectid,
6503 owner_offset);
7bb86316 6504 if (ret == 0) {
952fccac 6505 extent_slot = path->slots[0];
5d4f98a2
YZ
6506 while (extent_slot >= 0) {
6507 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6508 extent_slot);
5d4f98a2 6509 if (key.objectid != bytenr)
952fccac 6510 break;
5d4f98a2
YZ
6511 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6512 key.offset == num_bytes) {
952fccac
CM
6513 found_extent = 1;
6514 break;
6515 }
3173a18f
JB
6516 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6517 key.offset == owner_objectid) {
6518 found_extent = 1;
6519 break;
6520 }
952fccac
CM
6521 if (path->slots[0] - extent_slot > 5)
6522 break;
5d4f98a2 6523 extent_slot--;
952fccac 6524 }
5d4f98a2
YZ
6525#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6526 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6527 if (found_extent && item_size < sizeof(*ei))
6528 found_extent = 0;
6529#endif
31840ae1 6530 if (!found_extent) {
5d4f98a2 6531 BUG_ON(iref);
56bec294 6532 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6533 NULL, refs_to_drop,
fcebe456 6534 is_data, &last_ref);
005d6427
DS
6535 if (ret) {
6536 btrfs_abort_transaction(trans, extent_root, ret);
6537 goto out;
6538 }
b3b4aa74 6539 btrfs_release_path(path);
b9473439 6540 path->leave_spinning = 1;
5d4f98a2
YZ
6541
6542 key.objectid = bytenr;
6543 key.type = BTRFS_EXTENT_ITEM_KEY;
6544 key.offset = num_bytes;
6545
3173a18f
JB
6546 if (!is_data && skinny_metadata) {
6547 key.type = BTRFS_METADATA_ITEM_KEY;
6548 key.offset = owner_objectid;
6549 }
6550
31840ae1
ZY
6551 ret = btrfs_search_slot(trans, extent_root,
6552 &key, path, -1, 1);
3173a18f
JB
6553 if (ret > 0 && skinny_metadata && path->slots[0]) {
6554 /*
6555 * Couldn't find our skinny metadata item,
6556 * see if we have ye olde extent item.
6557 */
6558 path->slots[0]--;
6559 btrfs_item_key_to_cpu(path->nodes[0], &key,
6560 path->slots[0]);
6561 if (key.objectid == bytenr &&
6562 key.type == BTRFS_EXTENT_ITEM_KEY &&
6563 key.offset == num_bytes)
6564 ret = 0;
6565 }
6566
6567 if (ret > 0 && skinny_metadata) {
6568 skinny_metadata = false;
9ce49a0b 6569 key.objectid = bytenr;
3173a18f
JB
6570 key.type = BTRFS_EXTENT_ITEM_KEY;
6571 key.offset = num_bytes;
6572 btrfs_release_path(path);
6573 ret = btrfs_search_slot(trans, extent_root,
6574 &key, path, -1, 1);
6575 }
6576
f3465ca4 6577 if (ret) {
c2cf52eb 6578 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6579 ret, bytenr);
b783e62d
JB
6580 if (ret > 0)
6581 btrfs_print_leaf(extent_root,
6582 path->nodes[0]);
f3465ca4 6583 }
005d6427
DS
6584 if (ret < 0) {
6585 btrfs_abort_transaction(trans, extent_root, ret);
6586 goto out;
6587 }
31840ae1
ZY
6588 extent_slot = path->slots[0];
6589 }
fae7f21c 6590 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6591 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6592 btrfs_err(info,
6593 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6594 bytenr, parent, root_objectid, owner_objectid,
6595 owner_offset);
c4a050bb
JB
6596 btrfs_abort_transaction(trans, extent_root, ret);
6597 goto out;
79787eaa 6598 } else {
005d6427
DS
6599 btrfs_abort_transaction(trans, extent_root, ret);
6600 goto out;
7bb86316 6601 }
5f39d397
CM
6602
6603 leaf = path->nodes[0];
5d4f98a2
YZ
6604 item_size = btrfs_item_size_nr(leaf, extent_slot);
6605#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6606 if (item_size < sizeof(*ei)) {
6607 BUG_ON(found_extent || extent_slot != path->slots[0]);
6608 ret = convert_extent_item_v0(trans, extent_root, path,
6609 owner_objectid, 0);
005d6427
DS
6610 if (ret < 0) {
6611 btrfs_abort_transaction(trans, extent_root, ret);
6612 goto out;
6613 }
5d4f98a2 6614
b3b4aa74 6615 btrfs_release_path(path);
5d4f98a2
YZ
6616 path->leave_spinning = 1;
6617
6618 key.objectid = bytenr;
6619 key.type = BTRFS_EXTENT_ITEM_KEY;
6620 key.offset = num_bytes;
6621
6622 ret = btrfs_search_slot(trans, extent_root, &key, path,
6623 -1, 1);
6624 if (ret) {
c2cf52eb 6625 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6626 ret, bytenr);
5d4f98a2
YZ
6627 btrfs_print_leaf(extent_root, path->nodes[0]);
6628 }
005d6427
DS
6629 if (ret < 0) {
6630 btrfs_abort_transaction(trans, extent_root, ret);
6631 goto out;
6632 }
6633
5d4f98a2
YZ
6634 extent_slot = path->slots[0];
6635 leaf = path->nodes[0];
6636 item_size = btrfs_item_size_nr(leaf, extent_slot);
6637 }
6638#endif
6639 BUG_ON(item_size < sizeof(*ei));
952fccac 6640 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6641 struct btrfs_extent_item);
3173a18f
JB
6642 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6643 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6644 struct btrfs_tree_block_info *bi;
6645 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6646 bi = (struct btrfs_tree_block_info *)(ei + 1);
6647 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6648 }
56bec294 6649
5d4f98a2 6650 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6651 if (refs < refs_to_drop) {
6652 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6653 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6654 ret = -EINVAL;
6655 btrfs_abort_transaction(trans, extent_root, ret);
6656 goto out;
6657 }
56bec294 6658 refs -= refs_to_drop;
5f39d397 6659
5d4f98a2
YZ
6660 if (refs > 0) {
6661 if (extent_op)
6662 __run_delayed_extent_op(extent_op, leaf, ei);
6663 /*
6664 * In the case of inline back ref, reference count will
6665 * be updated by remove_extent_backref
952fccac 6666 */
5d4f98a2
YZ
6667 if (iref) {
6668 BUG_ON(!found_extent);
6669 } else {
6670 btrfs_set_extent_refs(leaf, ei, refs);
6671 btrfs_mark_buffer_dirty(leaf);
6672 }
6673 if (found_extent) {
6674 ret = remove_extent_backref(trans, extent_root, path,
6675 iref, refs_to_drop,
fcebe456 6676 is_data, &last_ref);
005d6427
DS
6677 if (ret) {
6678 btrfs_abort_transaction(trans, extent_root, ret);
6679 goto out;
6680 }
952fccac 6681 }
b150a4f1
JB
6682 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6683 root_objectid);
5d4f98a2 6684 } else {
5d4f98a2
YZ
6685 if (found_extent) {
6686 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6687 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6688 if (iref) {
6689 BUG_ON(path->slots[0] != extent_slot);
6690 } else {
6691 BUG_ON(path->slots[0] != extent_slot + 1);
6692 path->slots[0] = extent_slot;
6693 num_to_del = 2;
6694 }
78fae27e 6695 }
b9473439 6696
fcebe456 6697 last_ref = 1;
952fccac
CM
6698 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6699 num_to_del);
005d6427
DS
6700 if (ret) {
6701 btrfs_abort_transaction(trans, extent_root, ret);
6702 goto out;
6703 }
b3b4aa74 6704 btrfs_release_path(path);
21af804c 6705
5d4f98a2 6706 if (is_data) {
459931ec 6707 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6708 if (ret) {
6709 btrfs_abort_transaction(trans, extent_root, ret);
6710 goto out;
6711 }
459931ec
CM
6712 }
6713
1e144fb8
OS
6714 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6715 num_bytes);
6716 if (ret) {
6717 btrfs_abort_transaction(trans, extent_root, ret);
6718 goto out;
6719 }
6720
ce93ec54 6721 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6722 if (ret) {
6723 btrfs_abort_transaction(trans, extent_root, ret);
6724 goto out;
6725 }
a28ec197 6726 }
fcebe456
JB
6727 btrfs_release_path(path);
6728
79787eaa 6729out:
5caf2a00 6730 btrfs_free_path(path);
a28ec197
CM
6731 return ret;
6732}
6733
1887be66 6734/*
f0486c68 6735 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6736 * delayed ref for that extent as well. This searches the delayed ref tree for
6737 * a given extent, and if there are no other delayed refs to be processed, it
6738 * removes it from the tree.
6739 */
6740static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6741 struct btrfs_root *root, u64 bytenr)
6742{
6743 struct btrfs_delayed_ref_head *head;
6744 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6745 int ret = 0;
1887be66
CM
6746
6747 delayed_refs = &trans->transaction->delayed_refs;
6748 spin_lock(&delayed_refs->lock);
6749 head = btrfs_find_delayed_ref_head(trans, bytenr);
6750 if (!head)
cf93da7b 6751 goto out_delayed_unlock;
1887be66 6752
d7df2c79 6753 spin_lock(&head->lock);
c6fc2454 6754 if (!list_empty(&head->ref_list))
1887be66
CM
6755 goto out;
6756
5d4f98a2
YZ
6757 if (head->extent_op) {
6758 if (!head->must_insert_reserved)
6759 goto out;
78a6184a 6760 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6761 head->extent_op = NULL;
6762 }
6763
1887be66
CM
6764 /*
6765 * waiting for the lock here would deadlock. If someone else has it
6766 * locked they are already in the process of dropping it anyway
6767 */
6768 if (!mutex_trylock(&head->mutex))
6769 goto out;
6770
6771 /*
6772 * at this point we have a head with no other entries. Go
6773 * ahead and process it.
6774 */
6775 head->node.in_tree = 0;
c46effa6 6776 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6777
d7df2c79 6778 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6779
6780 /*
6781 * we don't take a ref on the node because we're removing it from the
6782 * tree, so we just steal the ref the tree was holding.
6783 */
c3e69d58 6784 delayed_refs->num_heads--;
d7df2c79 6785 if (head->processing == 0)
c3e69d58 6786 delayed_refs->num_heads_ready--;
d7df2c79
JB
6787 head->processing = 0;
6788 spin_unlock(&head->lock);
1887be66
CM
6789 spin_unlock(&delayed_refs->lock);
6790
f0486c68
YZ
6791 BUG_ON(head->extent_op);
6792 if (head->must_insert_reserved)
6793 ret = 1;
6794
6795 mutex_unlock(&head->mutex);
1887be66 6796 btrfs_put_delayed_ref(&head->node);
f0486c68 6797 return ret;
1887be66 6798out:
d7df2c79 6799 spin_unlock(&head->lock);
cf93da7b
CM
6800
6801out_delayed_unlock:
1887be66
CM
6802 spin_unlock(&delayed_refs->lock);
6803 return 0;
6804}
6805
f0486c68
YZ
6806void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6807 struct btrfs_root *root,
6808 struct extent_buffer *buf,
5581a51a 6809 u64 parent, int last_ref)
f0486c68 6810{
b150a4f1 6811 int pin = 1;
f0486c68
YZ
6812 int ret;
6813
6814 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6815 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6816 buf->start, buf->len,
6817 parent, root->root_key.objectid,
6818 btrfs_header_level(buf),
b06c4bf5 6819 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 6820 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6821 }
6822
6823 if (!last_ref)
6824 return;
6825
f0486c68 6826 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6827 struct btrfs_block_group_cache *cache;
6828
f0486c68
YZ
6829 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6830 ret = check_ref_cleanup(trans, root, buf->start);
6831 if (!ret)
37be25bc 6832 goto out;
f0486c68
YZ
6833 }
6834
6219872d
FM
6835 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6836
f0486c68
YZ
6837 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6838 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6839 btrfs_put_block_group(cache);
37be25bc 6840 goto out;
f0486c68
YZ
6841 }
6842
6843 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6844
6845 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6846 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6847 btrfs_put_block_group(cache);
0be5dc67 6848 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6849 pin = 0;
f0486c68
YZ
6850 }
6851out:
b150a4f1
JB
6852 if (pin)
6853 add_pinned_bytes(root->fs_info, buf->len,
6854 btrfs_header_level(buf),
6855 root->root_key.objectid);
6856
a826d6dc
JB
6857 /*
6858 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6859 * anymore.
6860 */
6861 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6862}
6863
79787eaa 6864/* Can return -ENOMEM */
66d7e7f0
AJ
6865int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6866 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 6867 u64 owner, u64 offset)
925baedd
CM
6868{
6869 int ret;
66d7e7f0 6870 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6871
fccb84c9 6872 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6873 return 0;
fccb84c9 6874
b150a4f1
JB
6875 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6876
56bec294
CM
6877 /*
6878 * tree log blocks never actually go into the extent allocation
6879 * tree, just update pinning info and exit early.
56bec294 6880 */
5d4f98a2
YZ
6881 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6882 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6883 /* unlocks the pinned mutex */
11833d66 6884 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6885 ret = 0;
5d4f98a2 6886 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6888 num_bytes,
5d4f98a2 6889 parent, root_objectid, (int)owner,
b06c4bf5 6890 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 6891 } else {
66d7e7f0
AJ
6892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6893 num_bytes,
6894 parent, root_objectid, owner,
5846a3c2
QW
6895 offset, 0,
6896 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 6897 }
925baedd
CM
6898 return ret;
6899}
6900
817d52f8
JB
6901/*
6902 * when we wait for progress in the block group caching, its because
6903 * our allocation attempt failed at least once. So, we must sleep
6904 * and let some progress happen before we try again.
6905 *
6906 * This function will sleep at least once waiting for new free space to
6907 * show up, and then it will check the block group free space numbers
6908 * for our min num_bytes. Another option is to have it go ahead
6909 * and look in the rbtree for a free extent of a given size, but this
6910 * is a good start.
36cce922
JB
6911 *
6912 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6913 * any of the information in this block group.
817d52f8 6914 */
36cce922 6915static noinline void
817d52f8
JB
6916wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6917 u64 num_bytes)
6918{
11833d66 6919 struct btrfs_caching_control *caching_ctl;
817d52f8 6920
11833d66
YZ
6921 caching_ctl = get_caching_control(cache);
6922 if (!caching_ctl)
36cce922 6923 return;
817d52f8 6924
11833d66 6925 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6926 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6927
6928 put_caching_control(caching_ctl);
11833d66
YZ
6929}
6930
6931static noinline int
6932wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6933{
6934 struct btrfs_caching_control *caching_ctl;
36cce922 6935 int ret = 0;
11833d66
YZ
6936
6937 caching_ctl = get_caching_control(cache);
6938 if (!caching_ctl)
36cce922 6939 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6940
6941 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6942 if (cache->cached == BTRFS_CACHE_ERROR)
6943 ret = -EIO;
11833d66 6944 put_caching_control(caching_ctl);
36cce922 6945 return ret;
817d52f8
JB
6946}
6947
31e50229 6948int __get_raid_index(u64 flags)
b742bb82 6949{
7738a53a 6950 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6951 return BTRFS_RAID_RAID10;
7738a53a 6952 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6953 return BTRFS_RAID_RAID1;
7738a53a 6954 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6955 return BTRFS_RAID_DUP;
7738a53a 6956 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6957 return BTRFS_RAID_RAID0;
53b381b3 6958 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6959 return BTRFS_RAID_RAID5;
53b381b3 6960 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6961 return BTRFS_RAID_RAID6;
7738a53a 6962
e942f883 6963 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6964}
6965
6ab0a202 6966int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6967{
31e50229 6968 return __get_raid_index(cache->flags);
7738a53a
ID
6969}
6970
6ab0a202
JM
6971static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6972 [BTRFS_RAID_RAID10] = "raid10",
6973 [BTRFS_RAID_RAID1] = "raid1",
6974 [BTRFS_RAID_DUP] = "dup",
6975 [BTRFS_RAID_RAID0] = "raid0",
6976 [BTRFS_RAID_SINGLE] = "single",
6977 [BTRFS_RAID_RAID5] = "raid5",
6978 [BTRFS_RAID_RAID6] = "raid6",
6979};
6980
1b8e5df6 6981static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6982{
6983 if (type >= BTRFS_NR_RAID_TYPES)
6984 return NULL;
6985
6986 return btrfs_raid_type_names[type];
6987}
6988
817d52f8 6989enum btrfs_loop_type {
285ff5af
JB
6990 LOOP_CACHING_NOWAIT = 0,
6991 LOOP_CACHING_WAIT = 1,
6992 LOOP_ALLOC_CHUNK = 2,
6993 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6994};
6995
e570fd27
MX
6996static inline void
6997btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6998 int delalloc)
6999{
7000 if (delalloc)
7001 down_read(&cache->data_rwsem);
7002}
7003
7004static inline void
7005btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7006 int delalloc)
7007{
7008 btrfs_get_block_group(cache);
7009 if (delalloc)
7010 down_read(&cache->data_rwsem);
7011}
7012
7013static struct btrfs_block_group_cache *
7014btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7015 struct btrfs_free_cluster *cluster,
7016 int delalloc)
7017{
7018 struct btrfs_block_group_cache *used_bg;
7019 bool locked = false;
7020again:
7021 spin_lock(&cluster->refill_lock);
7022 if (locked) {
7023 if (used_bg == cluster->block_group)
7024 return used_bg;
7025
7026 up_read(&used_bg->data_rwsem);
7027 btrfs_put_block_group(used_bg);
7028 }
7029
7030 used_bg = cluster->block_group;
7031 if (!used_bg)
7032 return NULL;
7033
7034 if (used_bg == block_group)
7035 return used_bg;
7036
7037 btrfs_get_block_group(used_bg);
7038
7039 if (!delalloc)
7040 return used_bg;
7041
7042 if (down_read_trylock(&used_bg->data_rwsem))
7043 return used_bg;
7044
7045 spin_unlock(&cluster->refill_lock);
7046 down_read(&used_bg->data_rwsem);
7047 locked = true;
7048 goto again;
7049}
7050
7051static inline void
7052btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7053 int delalloc)
7054{
7055 if (delalloc)
7056 up_read(&cache->data_rwsem);
7057 btrfs_put_block_group(cache);
7058}
7059
fec577fb
CM
7060/*
7061 * walks the btree of allocated extents and find a hole of a given size.
7062 * The key ins is changed to record the hole:
a4820398 7063 * ins->objectid == start position
62e2749e 7064 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7065 * ins->offset == the size of the hole.
fec577fb 7066 * Any available blocks before search_start are skipped.
a4820398
MX
7067 *
7068 * If there is no suitable free space, we will record the max size of
7069 * the free space extent currently.
fec577fb 7070 */
00361589 7071static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7072 u64 num_bytes, u64 empty_size,
98ed5174 7073 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7074 u64 flags, int delalloc)
fec577fb 7075{
80eb234a 7076 int ret = 0;
d397712b 7077 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7078 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7079 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7080 u64 search_start = 0;
a4820398 7081 u64 max_extent_size = 0;
c759c4e1 7082 u64 empty_cluster = 0;
80eb234a 7083 struct btrfs_space_info *space_info;
fa9c0d79 7084 int loop = 0;
b6919a58
DS
7085 int index = __get_raid_index(flags);
7086 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7087 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7088 bool failed_cluster_refill = false;
1cdda9b8 7089 bool failed_alloc = false;
67377734 7090 bool use_cluster = true;
60d2adbb 7091 bool have_caching_bg = false;
13a0db5a 7092 bool orig_have_caching_bg = false;
a5e681d9 7093 bool full_search = false;
fec577fb 7094
db94535d 7095 WARN_ON(num_bytes < root->sectorsize);
962a298f 7096 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7097 ins->objectid = 0;
7098 ins->offset = 0;
b1a4d965 7099
b6919a58 7100 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7101
b6919a58 7102 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7103 if (!space_info) {
b6919a58 7104 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7105 return -ENOSPC;
7106 }
2552d17e 7107
67377734 7108 /*
4f4db217
JB
7109 * If our free space is heavily fragmented we may not be able to make
7110 * big contiguous allocations, so instead of doing the expensive search
7111 * for free space, simply return ENOSPC with our max_extent_size so we
7112 * can go ahead and search for a more manageable chunk.
7113 *
7114 * If our max_extent_size is large enough for our allocation simply
7115 * disable clustering since we will likely not be able to find enough
7116 * space to create a cluster and induce latency trying.
67377734 7117 */
4f4db217
JB
7118 if (unlikely(space_info->max_extent_size)) {
7119 spin_lock(&space_info->lock);
7120 if (space_info->max_extent_size &&
7121 num_bytes > space_info->max_extent_size) {
7122 ins->offset = space_info->max_extent_size;
7123 spin_unlock(&space_info->lock);
7124 return -ENOSPC;
7125 } else if (space_info->max_extent_size) {
7126 use_cluster = false;
7127 }
7128 spin_unlock(&space_info->lock);
fa9c0d79 7129 }
0f9dd46c 7130
c759c4e1 7131 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7132 if (last_ptr) {
fa9c0d79
CM
7133 spin_lock(&last_ptr->lock);
7134 if (last_ptr->block_group)
7135 hint_byte = last_ptr->window_start;
c759c4e1
JB
7136 if (last_ptr->fragmented) {
7137 /*
7138 * We still set window_start so we can keep track of the
7139 * last place we found an allocation to try and save
7140 * some time.
7141 */
7142 hint_byte = last_ptr->window_start;
7143 use_cluster = false;
7144 }
fa9c0d79 7145 spin_unlock(&last_ptr->lock);
239b14b3 7146 }
fa9c0d79 7147
a061fc8d 7148 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7149 search_start = max(search_start, hint_byte);
2552d17e 7150 if (search_start == hint_byte) {
2552d17e
JB
7151 block_group = btrfs_lookup_block_group(root->fs_info,
7152 search_start);
817d52f8
JB
7153 /*
7154 * we don't want to use the block group if it doesn't match our
7155 * allocation bits, or if its not cached.
ccf0e725
JB
7156 *
7157 * However if we are re-searching with an ideal block group
7158 * picked out then we don't care that the block group is cached.
817d52f8 7159 */
b6919a58 7160 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7161 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7162 down_read(&space_info->groups_sem);
44fb5511
CM
7163 if (list_empty(&block_group->list) ||
7164 block_group->ro) {
7165 /*
7166 * someone is removing this block group,
7167 * we can't jump into the have_block_group
7168 * target because our list pointers are not
7169 * valid
7170 */
7171 btrfs_put_block_group(block_group);
7172 up_read(&space_info->groups_sem);
ccf0e725 7173 } else {
b742bb82 7174 index = get_block_group_index(block_group);
e570fd27 7175 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7176 goto have_block_group;
ccf0e725 7177 }
2552d17e 7178 } else if (block_group) {
fa9c0d79 7179 btrfs_put_block_group(block_group);
2552d17e 7180 }
42e70e7a 7181 }
2552d17e 7182search:
60d2adbb 7183 have_caching_bg = false;
a5e681d9
JB
7184 if (index == 0 || index == __get_raid_index(flags))
7185 full_search = true;
80eb234a 7186 down_read(&space_info->groups_sem);
b742bb82
YZ
7187 list_for_each_entry(block_group, &space_info->block_groups[index],
7188 list) {
6226cb0a 7189 u64 offset;
817d52f8 7190 int cached;
8a1413a2 7191
e570fd27 7192 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7193 search_start = block_group->key.objectid;
42e70e7a 7194
83a50de9
CM
7195 /*
7196 * this can happen if we end up cycling through all the
7197 * raid types, but we want to make sure we only allocate
7198 * for the proper type.
7199 */
b6919a58 7200 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7201 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7202 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7203 BTRFS_BLOCK_GROUP_RAID5 |
7204 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7205 BTRFS_BLOCK_GROUP_RAID10;
7206
7207 /*
7208 * if they asked for extra copies and this block group
7209 * doesn't provide them, bail. This does allow us to
7210 * fill raid0 from raid1.
7211 */
b6919a58 7212 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7213 goto loop;
7214 }
7215
2552d17e 7216have_block_group:
291c7d2f
JB
7217 cached = block_group_cache_done(block_group);
7218 if (unlikely(!cached)) {
a5e681d9 7219 have_caching_bg = true;
f6373bf3 7220 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7221 BUG_ON(ret < 0);
7222 ret = 0;
817d52f8
JB
7223 }
7224
36cce922
JB
7225 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7226 goto loop;
ea6a478e 7227 if (unlikely(block_group->ro))
2552d17e 7228 goto loop;
0f9dd46c 7229
0a24325e 7230 /*
062c05c4
AO
7231 * Ok we want to try and use the cluster allocator, so
7232 * lets look there
0a24325e 7233 */
c759c4e1 7234 if (last_ptr && use_cluster) {
215a63d1 7235 struct btrfs_block_group_cache *used_block_group;
8de972b4 7236 unsigned long aligned_cluster;
fa9c0d79
CM
7237 /*
7238 * the refill lock keeps out other
7239 * people trying to start a new cluster
7240 */
e570fd27
MX
7241 used_block_group = btrfs_lock_cluster(block_group,
7242 last_ptr,
7243 delalloc);
7244 if (!used_block_group)
44fb5511 7245 goto refill_cluster;
274bd4fb 7246
e570fd27
MX
7247 if (used_block_group != block_group &&
7248 (used_block_group->ro ||
7249 !block_group_bits(used_block_group, flags)))
7250 goto release_cluster;
44fb5511 7251
274bd4fb 7252 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7253 last_ptr,
7254 num_bytes,
7255 used_block_group->key.objectid,
7256 &max_extent_size);
fa9c0d79
CM
7257 if (offset) {
7258 /* we have a block, we're done */
7259 spin_unlock(&last_ptr->refill_lock);
3f7de037 7260 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7261 used_block_group,
7262 search_start, num_bytes);
215a63d1 7263 if (used_block_group != block_group) {
e570fd27
MX
7264 btrfs_release_block_group(block_group,
7265 delalloc);
215a63d1
MX
7266 block_group = used_block_group;
7267 }
fa9c0d79
CM
7268 goto checks;
7269 }
7270
274bd4fb 7271 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7272release_cluster:
062c05c4
AO
7273 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7274 * set up a new clusters, so lets just skip it
7275 * and let the allocator find whatever block
7276 * it can find. If we reach this point, we
7277 * will have tried the cluster allocator
7278 * plenty of times and not have found
7279 * anything, so we are likely way too
7280 * fragmented for the clustering stuff to find
a5f6f719
AO
7281 * anything.
7282 *
7283 * However, if the cluster is taken from the
7284 * current block group, release the cluster
7285 * first, so that we stand a better chance of
7286 * succeeding in the unclustered
7287 * allocation. */
7288 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7289 used_block_group != block_group) {
062c05c4 7290 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7291 btrfs_release_block_group(used_block_group,
7292 delalloc);
062c05c4
AO
7293 goto unclustered_alloc;
7294 }
7295
fa9c0d79
CM
7296 /*
7297 * this cluster didn't work out, free it and
7298 * start over
7299 */
7300 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7301
e570fd27
MX
7302 if (used_block_group != block_group)
7303 btrfs_release_block_group(used_block_group,
7304 delalloc);
7305refill_cluster:
a5f6f719
AO
7306 if (loop >= LOOP_NO_EMPTY_SIZE) {
7307 spin_unlock(&last_ptr->refill_lock);
7308 goto unclustered_alloc;
7309 }
7310
8de972b4
CM
7311 aligned_cluster = max_t(unsigned long,
7312 empty_cluster + empty_size,
7313 block_group->full_stripe_len);
7314
fa9c0d79 7315 /* allocate a cluster in this block group */
00361589
JB
7316 ret = btrfs_find_space_cluster(root, block_group,
7317 last_ptr, search_start,
7318 num_bytes,
7319 aligned_cluster);
fa9c0d79
CM
7320 if (ret == 0) {
7321 /*
7322 * now pull our allocation out of this
7323 * cluster
7324 */
7325 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7326 last_ptr,
7327 num_bytes,
7328 search_start,
7329 &max_extent_size);
fa9c0d79
CM
7330 if (offset) {
7331 /* we found one, proceed */
7332 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7333 trace_btrfs_reserve_extent_cluster(root,
7334 block_group, search_start,
7335 num_bytes);
fa9c0d79
CM
7336 goto checks;
7337 }
0a24325e
JB
7338 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7339 && !failed_cluster_refill) {
817d52f8
JB
7340 spin_unlock(&last_ptr->refill_lock);
7341
0a24325e 7342 failed_cluster_refill = true;
817d52f8
JB
7343 wait_block_group_cache_progress(block_group,
7344 num_bytes + empty_cluster + empty_size);
7345 goto have_block_group;
fa9c0d79 7346 }
817d52f8 7347
fa9c0d79
CM
7348 /*
7349 * at this point we either didn't find a cluster
7350 * or we weren't able to allocate a block from our
7351 * cluster. Free the cluster we've been trying
7352 * to use, and go to the next block group
7353 */
0a24325e 7354 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7355 spin_unlock(&last_ptr->refill_lock);
0a24325e 7356 goto loop;
fa9c0d79
CM
7357 }
7358
062c05c4 7359unclustered_alloc:
c759c4e1
JB
7360 /*
7361 * We are doing an unclustered alloc, set the fragmented flag so
7362 * we don't bother trying to setup a cluster again until we get
7363 * more space.
7364 */
7365 if (unlikely(last_ptr)) {
7366 spin_lock(&last_ptr->lock);
7367 last_ptr->fragmented = 1;
7368 spin_unlock(&last_ptr->lock);
7369 }
a5f6f719
AO
7370 spin_lock(&block_group->free_space_ctl->tree_lock);
7371 if (cached &&
7372 block_group->free_space_ctl->free_space <
7373 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7374 if (block_group->free_space_ctl->free_space >
7375 max_extent_size)
7376 max_extent_size =
7377 block_group->free_space_ctl->free_space;
a5f6f719
AO
7378 spin_unlock(&block_group->free_space_ctl->tree_lock);
7379 goto loop;
7380 }
7381 spin_unlock(&block_group->free_space_ctl->tree_lock);
7382
6226cb0a 7383 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7384 num_bytes, empty_size,
7385 &max_extent_size);
1cdda9b8
JB
7386 /*
7387 * If we didn't find a chunk, and we haven't failed on this
7388 * block group before, and this block group is in the middle of
7389 * caching and we are ok with waiting, then go ahead and wait
7390 * for progress to be made, and set failed_alloc to true.
7391 *
7392 * If failed_alloc is true then we've already waited on this
7393 * block group once and should move on to the next block group.
7394 */
7395 if (!offset && !failed_alloc && !cached &&
7396 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7397 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7398 num_bytes + empty_size);
7399 failed_alloc = true;
817d52f8 7400 goto have_block_group;
1cdda9b8
JB
7401 } else if (!offset) {
7402 goto loop;
817d52f8 7403 }
fa9c0d79 7404checks:
4e54b17a 7405 search_start = ALIGN(offset, root->stripesize);
25179201 7406
2552d17e
JB
7407 /* move on to the next group */
7408 if (search_start + num_bytes >
215a63d1
MX
7409 block_group->key.objectid + block_group->key.offset) {
7410 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7411 goto loop;
6226cb0a 7412 }
f5a31e16 7413
f0486c68 7414 if (offset < search_start)
215a63d1 7415 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7416 search_start - offset);
7417 BUG_ON(offset > search_start);
2552d17e 7418
215a63d1 7419 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7420 alloc_type, delalloc);
f0486c68 7421 if (ret == -EAGAIN) {
215a63d1 7422 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7423 goto loop;
0f9dd46c 7424 }
0b86a832 7425
f0486c68 7426 /* we are all good, lets return */
2552d17e
JB
7427 ins->objectid = search_start;
7428 ins->offset = num_bytes;
d2fb3437 7429
3f7de037
JB
7430 trace_btrfs_reserve_extent(orig_root, block_group,
7431 search_start, num_bytes);
e570fd27 7432 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7433 break;
7434loop:
0a24325e 7435 failed_cluster_refill = false;
1cdda9b8 7436 failed_alloc = false;
b742bb82 7437 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7438 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7439 }
7440 up_read(&space_info->groups_sem);
7441
13a0db5a 7442 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7443 && !orig_have_caching_bg)
7444 orig_have_caching_bg = true;
7445
60d2adbb
MX
7446 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7447 goto search;
7448
b742bb82
YZ
7449 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7450 goto search;
7451
285ff5af 7452 /*
ccf0e725
JB
7453 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7454 * caching kthreads as we move along
817d52f8
JB
7455 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7456 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7457 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7458 * again
fa9c0d79 7459 */
723bda20 7460 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7461 index = 0;
a5e681d9
JB
7462 if (loop == LOOP_CACHING_NOWAIT) {
7463 /*
7464 * We want to skip the LOOP_CACHING_WAIT step if we
7465 * don't have any unached bgs and we've alrelady done a
7466 * full search through.
7467 */
13a0db5a 7468 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7469 loop = LOOP_CACHING_WAIT;
7470 else
7471 loop = LOOP_ALLOC_CHUNK;
7472 } else {
7473 loop++;
7474 }
7475
817d52f8 7476 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7477 struct btrfs_trans_handle *trans;
f017f15f
WS
7478 int exist = 0;
7479
7480 trans = current->journal_info;
7481 if (trans)
7482 exist = 1;
7483 else
7484 trans = btrfs_join_transaction(root);
00361589 7485
00361589
JB
7486 if (IS_ERR(trans)) {
7487 ret = PTR_ERR(trans);
7488 goto out;
7489 }
7490
b6919a58 7491 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7492 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7493
7494 /*
7495 * If we can't allocate a new chunk we've already looped
7496 * through at least once, move on to the NO_EMPTY_SIZE
7497 * case.
7498 */
7499 if (ret == -ENOSPC)
7500 loop = LOOP_NO_EMPTY_SIZE;
7501
ea658bad
JB
7502 /*
7503 * Do not bail out on ENOSPC since we
7504 * can do more things.
7505 */
00361589 7506 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7507 btrfs_abort_transaction(trans,
7508 root, ret);
00361589
JB
7509 else
7510 ret = 0;
f017f15f
WS
7511 if (!exist)
7512 btrfs_end_transaction(trans, root);
00361589 7513 if (ret)
ea658bad 7514 goto out;
2552d17e
JB
7515 }
7516
723bda20 7517 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7518 /*
7519 * Don't loop again if we already have no empty_size and
7520 * no empty_cluster.
7521 */
7522 if (empty_size == 0 &&
7523 empty_cluster == 0) {
7524 ret = -ENOSPC;
7525 goto out;
7526 }
723bda20
JB
7527 empty_size = 0;
7528 empty_cluster = 0;
fa9c0d79 7529 }
723bda20
JB
7530
7531 goto search;
2552d17e
JB
7532 } else if (!ins->objectid) {
7533 ret = -ENOSPC;
d82a6f1d 7534 } else if (ins->objectid) {
c759c4e1
JB
7535 if (!use_cluster && last_ptr) {
7536 spin_lock(&last_ptr->lock);
7537 last_ptr->window_start = ins->objectid;
7538 spin_unlock(&last_ptr->lock);
7539 }
80eb234a 7540 ret = 0;
be744175 7541 }
79787eaa 7542out:
4f4db217
JB
7543 if (ret == -ENOSPC) {
7544 spin_lock(&space_info->lock);
7545 space_info->max_extent_size = max_extent_size;
7546 spin_unlock(&space_info->lock);
a4820398 7547 ins->offset = max_extent_size;
4f4db217 7548 }
0f70abe2 7549 return ret;
fec577fb 7550}
ec44a35c 7551
9ed74f2d
JB
7552static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7553 int dump_block_groups)
0f9dd46c
JB
7554{
7555 struct btrfs_block_group_cache *cache;
b742bb82 7556 int index = 0;
0f9dd46c 7557
9ed74f2d 7558 spin_lock(&info->lock);
efe120a0 7559 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7560 info->flags,
7561 info->total_bytes - info->bytes_used - info->bytes_pinned -
7562 info->bytes_reserved - info->bytes_readonly,
d397712b 7563 (info->full) ? "" : "not ");
efe120a0 7564 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7565 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7566 info->total_bytes, info->bytes_used, info->bytes_pinned,
7567 info->bytes_reserved, info->bytes_may_use,
7568 info->bytes_readonly);
9ed74f2d
JB
7569 spin_unlock(&info->lock);
7570
7571 if (!dump_block_groups)
7572 return;
0f9dd46c 7573
80eb234a 7574 down_read(&info->groups_sem);
b742bb82
YZ
7575again:
7576 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7577 spin_lock(&cache->lock);
efe120a0
FH
7578 printk(KERN_INFO "BTRFS: "
7579 "block group %llu has %llu bytes, "
7580 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7581 cache->key.objectid, cache->key.offset,
7582 btrfs_block_group_used(&cache->item), cache->pinned,
7583 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7584 btrfs_dump_free_space(cache, bytes);
7585 spin_unlock(&cache->lock);
7586 }
b742bb82
YZ
7587 if (++index < BTRFS_NR_RAID_TYPES)
7588 goto again;
80eb234a 7589 up_read(&info->groups_sem);
0f9dd46c 7590}
e8569813 7591
00361589 7592int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7593 u64 num_bytes, u64 min_alloc_size,
7594 u64 empty_size, u64 hint_byte,
e570fd27 7595 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7596{
36af4e07 7597 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7598 u64 flags;
fec577fb 7599 int ret;
925baedd 7600
b6919a58 7601 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7602again:
db94535d 7603 WARN_ON(num_bytes < root->sectorsize);
00361589 7604 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7605 flags, delalloc);
3b951516 7606
9e622d6b 7607 if (ret == -ENOSPC) {
a4820398
MX
7608 if (!final_tried && ins->offset) {
7609 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7610 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7611 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7612 if (num_bytes == min_alloc_size)
7613 final_tried = true;
7614 goto again;
7615 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7616 struct btrfs_space_info *sinfo;
7617
b6919a58 7618 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7619 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7620 flags, num_bytes);
53804280
JM
7621 if (sinfo)
7622 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7623 }
925baedd 7624 }
0f9dd46c
JB
7625
7626 return ret;
e6dcd2dc
CM
7627}
7628
e688b725 7629static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7630 u64 start, u64 len,
7631 int pin, int delalloc)
65b51a00 7632{
0f9dd46c 7633 struct btrfs_block_group_cache *cache;
1f3c79a2 7634 int ret = 0;
0f9dd46c 7635
0f9dd46c
JB
7636 cache = btrfs_lookup_block_group(root->fs_info, start);
7637 if (!cache) {
c2cf52eb 7638 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7639 start);
0f9dd46c
JB
7640 return -ENOSPC;
7641 }
1f3c79a2 7642
e688b725
CM
7643 if (pin)
7644 pin_down_extent(root, cache, start, len, 1);
7645 else {
dcc82f47
FM
7646 if (btrfs_test_opt(root, DISCARD))
7647 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7648 btrfs_add_free_space(cache, start, len);
e570fd27 7649 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7650 }
31193213 7651
fa9c0d79 7652 btrfs_put_block_group(cache);
817d52f8 7653
1abe9b8a 7654 trace_btrfs_reserved_extent_free(root, start, len);
7655
e6dcd2dc
CM
7656 return ret;
7657}
7658
e688b725 7659int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7660 u64 start, u64 len, int delalloc)
e688b725 7661{
e570fd27 7662 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7663}
7664
7665int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7666 u64 start, u64 len)
7667{
e570fd27 7668 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7669}
7670
5d4f98a2
YZ
7671static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7672 struct btrfs_root *root,
7673 u64 parent, u64 root_objectid,
7674 u64 flags, u64 owner, u64 offset,
7675 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7676{
7677 int ret;
5d4f98a2 7678 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7679 struct btrfs_extent_item *extent_item;
5d4f98a2 7680 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7681 struct btrfs_path *path;
5d4f98a2
YZ
7682 struct extent_buffer *leaf;
7683 int type;
7684 u32 size;
26b8003f 7685
5d4f98a2
YZ
7686 if (parent > 0)
7687 type = BTRFS_SHARED_DATA_REF_KEY;
7688 else
7689 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7690
5d4f98a2 7691 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7692
7693 path = btrfs_alloc_path();
db5b493a
TI
7694 if (!path)
7695 return -ENOMEM;
47e4bb98 7696
b9473439 7697 path->leave_spinning = 1;
5d4f98a2
YZ
7698 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7699 ins, size);
79787eaa
JM
7700 if (ret) {
7701 btrfs_free_path(path);
7702 return ret;
7703 }
0f9dd46c 7704
5d4f98a2
YZ
7705 leaf = path->nodes[0];
7706 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7707 struct btrfs_extent_item);
5d4f98a2
YZ
7708 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7709 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7710 btrfs_set_extent_flags(leaf, extent_item,
7711 flags | BTRFS_EXTENT_FLAG_DATA);
7712
7713 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7714 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7715 if (parent > 0) {
7716 struct btrfs_shared_data_ref *ref;
7717 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7718 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7719 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7720 } else {
7721 struct btrfs_extent_data_ref *ref;
7722 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7723 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7724 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7725 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7726 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7727 }
47e4bb98
CM
7728
7729 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7730 btrfs_free_path(path);
f510cfec 7731
1e144fb8
OS
7732 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7733 ins->offset);
7734 if (ret)
7735 return ret;
7736
ce93ec54 7737 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7738 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7739 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7740 ins->objectid, ins->offset);
f5947066
CM
7741 BUG();
7742 }
0be5dc67 7743 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7744 return ret;
7745}
7746
5d4f98a2
YZ
7747static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7748 struct btrfs_root *root,
7749 u64 parent, u64 root_objectid,
7750 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 7751 int level, struct btrfs_key *ins)
e6dcd2dc
CM
7752{
7753 int ret;
5d4f98a2
YZ
7754 struct btrfs_fs_info *fs_info = root->fs_info;
7755 struct btrfs_extent_item *extent_item;
7756 struct btrfs_tree_block_info *block_info;
7757 struct btrfs_extent_inline_ref *iref;
7758 struct btrfs_path *path;
7759 struct extent_buffer *leaf;
3173a18f 7760 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7761 u64 num_bytes = ins->offset;
3173a18f
JB
7762 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7763 SKINNY_METADATA);
7764
7765 if (!skinny_metadata)
7766 size += sizeof(*block_info);
1c2308f8 7767
5d4f98a2 7768 path = btrfs_alloc_path();
857cc2fc
JB
7769 if (!path) {
7770 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7771 root->nodesize);
d8926bb3 7772 return -ENOMEM;
857cc2fc 7773 }
56bec294 7774
5d4f98a2
YZ
7775 path->leave_spinning = 1;
7776 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7777 ins, size);
79787eaa 7778 if (ret) {
dd825259 7779 btrfs_free_path(path);
857cc2fc 7780 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7781 root->nodesize);
79787eaa
JM
7782 return ret;
7783 }
5d4f98a2
YZ
7784
7785 leaf = path->nodes[0];
7786 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7787 struct btrfs_extent_item);
7788 btrfs_set_extent_refs(leaf, extent_item, 1);
7789 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7790 btrfs_set_extent_flags(leaf, extent_item,
7791 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7792
3173a18f
JB
7793 if (skinny_metadata) {
7794 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7795 num_bytes = root->nodesize;
3173a18f
JB
7796 } else {
7797 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7798 btrfs_set_tree_block_key(leaf, block_info, key);
7799 btrfs_set_tree_block_level(leaf, block_info, level);
7800 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7801 }
5d4f98a2 7802
5d4f98a2
YZ
7803 if (parent > 0) {
7804 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7805 btrfs_set_extent_inline_ref_type(leaf, iref,
7806 BTRFS_SHARED_BLOCK_REF_KEY);
7807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7808 } else {
7809 btrfs_set_extent_inline_ref_type(leaf, iref,
7810 BTRFS_TREE_BLOCK_REF_KEY);
7811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7812 }
7813
7814 btrfs_mark_buffer_dirty(leaf);
7815 btrfs_free_path(path);
7816
1e144fb8
OS
7817 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7818 num_bytes);
7819 if (ret)
7820 return ret;
7821
ce93ec54
JB
7822 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7823 1);
79787eaa 7824 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7825 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7826 ins->objectid, ins->offset);
5d4f98a2
YZ
7827 BUG();
7828 }
0be5dc67 7829
707e8a07 7830 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7831 return ret;
7832}
7833
7834int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7835 struct btrfs_root *root,
7836 u64 root_objectid, u64 owner,
5846a3c2
QW
7837 u64 offset, u64 ram_bytes,
7838 struct btrfs_key *ins)
5d4f98a2
YZ
7839{
7840 int ret;
7841
7842 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7843
66d7e7f0
AJ
7844 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7845 ins->offset, 0,
7846 root_objectid, owner, offset,
5846a3c2
QW
7847 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7848 NULL);
e6dcd2dc
CM
7849 return ret;
7850}
e02119d5
CM
7851
7852/*
7853 * this is used by the tree logging recovery code. It records that
7854 * an extent has been allocated and makes sure to clear the free
7855 * space cache bits as well
7856 */
5d4f98a2
YZ
7857int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7858 struct btrfs_root *root,
7859 u64 root_objectid, u64 owner, u64 offset,
7860 struct btrfs_key *ins)
e02119d5
CM
7861{
7862 int ret;
7863 struct btrfs_block_group_cache *block_group;
11833d66 7864
8c2a1a30
JB
7865 /*
7866 * Mixed block groups will exclude before processing the log so we only
7867 * need to do the exlude dance if this fs isn't mixed.
7868 */
7869 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7870 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7871 if (ret)
8c2a1a30 7872 return ret;
11833d66
YZ
7873 }
7874
8c2a1a30
JB
7875 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7876 if (!block_group)
7877 return -EINVAL;
7878
fb25e914 7879 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7880 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7881 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7882 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7883 0, owner, offset, ins, 1);
b50c6e25 7884 btrfs_put_block_group(block_group);
e02119d5
CM
7885 return ret;
7886}
7887
48a3b636
ES
7888static struct extent_buffer *
7889btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7890 u64 bytenr, int level)
65b51a00
CM
7891{
7892 struct extent_buffer *buf;
7893
a83fffb7 7894 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7895 if (!buf)
7896 return ERR_PTR(-ENOMEM);
7897 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7898 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7899 btrfs_tree_lock(buf);
01d58472 7900 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7901 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7902
7903 btrfs_set_lock_blocking(buf);
4db8c528 7904 set_extent_buffer_uptodate(buf);
b4ce94de 7905
d0c803c4 7906 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7907 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7908 /*
7909 * we allow two log transactions at a time, use different
7910 * EXENT bit to differentiate dirty pages.
7911 */
656f30db 7912 if (buf->log_index == 0)
8cef4e16
YZ
7913 set_extent_dirty(&root->dirty_log_pages, buf->start,
7914 buf->start + buf->len - 1, GFP_NOFS);
7915 else
7916 set_extent_new(&root->dirty_log_pages, buf->start,
7917 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7918 } else {
656f30db 7919 buf->log_index = -1;
d0c803c4 7920 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7921 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7922 }
65b51a00 7923 trans->blocks_used++;
b4ce94de 7924 /* this returns a buffer locked for blocking */
65b51a00
CM
7925 return buf;
7926}
7927
f0486c68
YZ
7928static struct btrfs_block_rsv *
7929use_block_rsv(struct btrfs_trans_handle *trans,
7930 struct btrfs_root *root, u32 blocksize)
7931{
7932 struct btrfs_block_rsv *block_rsv;
68a82277 7933 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7934 int ret;
d88033db 7935 bool global_updated = false;
f0486c68
YZ
7936
7937 block_rsv = get_block_rsv(trans, root);
7938
b586b323
MX
7939 if (unlikely(block_rsv->size == 0))
7940 goto try_reserve;
d88033db 7941again:
f0486c68
YZ
7942 ret = block_rsv_use_bytes(block_rsv, blocksize);
7943 if (!ret)
7944 return block_rsv;
7945
b586b323
MX
7946 if (block_rsv->failfast)
7947 return ERR_PTR(ret);
7948
d88033db
MX
7949 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7950 global_updated = true;
7951 update_global_block_rsv(root->fs_info);
7952 goto again;
7953 }
7954
b586b323
MX
7955 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7956 static DEFINE_RATELIMIT_STATE(_rs,
7957 DEFAULT_RATELIMIT_INTERVAL * 10,
7958 /*DEFAULT_RATELIMIT_BURST*/ 1);
7959 if (__ratelimit(&_rs))
7960 WARN(1, KERN_DEBUG
efe120a0 7961 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7962 }
7963try_reserve:
7964 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7965 BTRFS_RESERVE_NO_FLUSH);
7966 if (!ret)
7967 return block_rsv;
7968 /*
7969 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7970 * the global reserve if its space type is the same as the global
7971 * reservation.
b586b323 7972 */
5881cfc9
MX
7973 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7974 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7975 ret = block_rsv_use_bytes(global_rsv, blocksize);
7976 if (!ret)
7977 return global_rsv;
7978 }
7979 return ERR_PTR(ret);
f0486c68
YZ
7980}
7981
8c2a3ca2
JB
7982static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7983 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7984{
7985 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7986 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7987}
7988
fec577fb 7989/*
f0486c68 7990 * finds a free extent and does all the dirty work required for allocation
67b7859e 7991 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7992 */
4d75f8a9
DS
7993struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7994 struct btrfs_root *root,
5d4f98a2
YZ
7995 u64 parent, u64 root_objectid,
7996 struct btrfs_disk_key *key, int level,
5581a51a 7997 u64 hint, u64 empty_size)
fec577fb 7998{
e2fa7227 7999 struct btrfs_key ins;
f0486c68 8000 struct btrfs_block_rsv *block_rsv;
5f39d397 8001 struct extent_buffer *buf;
67b7859e 8002 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8003 u64 flags = 0;
8004 int ret;
4d75f8a9 8005 u32 blocksize = root->nodesize;
3173a18f
JB
8006 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8007 SKINNY_METADATA);
fec577fb 8008
fccb84c9 8009 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 8010 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8011 level);
faa2dbf0
JB
8012 if (!IS_ERR(buf))
8013 root->alloc_bytenr += blocksize;
8014 return buf;
8015 }
fccb84c9 8016
f0486c68
YZ
8017 block_rsv = use_block_rsv(trans, root, blocksize);
8018 if (IS_ERR(block_rsv))
8019 return ERR_CAST(block_rsv);
8020
00361589 8021 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8022 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8023 if (ret)
8024 goto out_unuse;
55c69072 8025
fe864576 8026 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8027 if (IS_ERR(buf)) {
8028 ret = PTR_ERR(buf);
8029 goto out_free_reserved;
8030 }
f0486c68
YZ
8031
8032 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8033 if (parent == 0)
8034 parent = ins.objectid;
8035 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8036 } else
8037 BUG_ON(parent > 0);
8038
8039 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8040 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8041 if (!extent_op) {
8042 ret = -ENOMEM;
8043 goto out_free_buf;
8044 }
f0486c68
YZ
8045 if (key)
8046 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8047 else
8048 memset(&extent_op->key, 0, sizeof(extent_op->key));
8049 extent_op->flags_to_set = flags;
35b3ad50
DS
8050 extent_op->update_key = skinny_metadata ? false : true;
8051 extent_op->update_flags = true;
8052 extent_op->is_data = false;
b1c79e09 8053 extent_op->level = level;
f0486c68 8054
66d7e7f0 8055 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8056 ins.objectid, ins.offset,
8057 parent, root_objectid, level,
8058 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8059 extent_op);
67b7859e
OS
8060 if (ret)
8061 goto out_free_delayed;
f0486c68 8062 }
fec577fb 8063 return buf;
67b7859e
OS
8064
8065out_free_delayed:
8066 btrfs_free_delayed_extent_op(extent_op);
8067out_free_buf:
8068 free_extent_buffer(buf);
8069out_free_reserved:
8070 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8071out_unuse:
8072 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8073 return ERR_PTR(ret);
fec577fb 8074}
a28ec197 8075
2c47e605
YZ
8076struct walk_control {
8077 u64 refs[BTRFS_MAX_LEVEL];
8078 u64 flags[BTRFS_MAX_LEVEL];
8079 struct btrfs_key update_progress;
8080 int stage;
8081 int level;
8082 int shared_level;
8083 int update_ref;
8084 int keep_locks;
1c4850e2
YZ
8085 int reada_slot;
8086 int reada_count;
66d7e7f0 8087 int for_reloc;
2c47e605
YZ
8088};
8089
8090#define DROP_REFERENCE 1
8091#define UPDATE_BACKREF 2
8092
1c4850e2
YZ
8093static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8094 struct btrfs_root *root,
8095 struct walk_control *wc,
8096 struct btrfs_path *path)
6407bf6d 8097{
1c4850e2
YZ
8098 u64 bytenr;
8099 u64 generation;
8100 u64 refs;
94fcca9f 8101 u64 flags;
5d4f98a2 8102 u32 nritems;
1c4850e2
YZ
8103 u32 blocksize;
8104 struct btrfs_key key;
8105 struct extent_buffer *eb;
6407bf6d 8106 int ret;
1c4850e2
YZ
8107 int slot;
8108 int nread = 0;
6407bf6d 8109
1c4850e2
YZ
8110 if (path->slots[wc->level] < wc->reada_slot) {
8111 wc->reada_count = wc->reada_count * 2 / 3;
8112 wc->reada_count = max(wc->reada_count, 2);
8113 } else {
8114 wc->reada_count = wc->reada_count * 3 / 2;
8115 wc->reada_count = min_t(int, wc->reada_count,
8116 BTRFS_NODEPTRS_PER_BLOCK(root));
8117 }
7bb86316 8118
1c4850e2
YZ
8119 eb = path->nodes[wc->level];
8120 nritems = btrfs_header_nritems(eb);
707e8a07 8121 blocksize = root->nodesize;
bd56b302 8122
1c4850e2
YZ
8123 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8124 if (nread >= wc->reada_count)
8125 break;
bd56b302 8126
2dd3e67b 8127 cond_resched();
1c4850e2
YZ
8128 bytenr = btrfs_node_blockptr(eb, slot);
8129 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8130
1c4850e2
YZ
8131 if (slot == path->slots[wc->level])
8132 goto reada;
5d4f98a2 8133
1c4850e2
YZ
8134 if (wc->stage == UPDATE_BACKREF &&
8135 generation <= root->root_key.offset)
bd56b302
CM
8136 continue;
8137
94fcca9f 8138 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8139 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8140 wc->level - 1, 1, &refs,
8141 &flags);
79787eaa
JM
8142 /* We don't care about errors in readahead. */
8143 if (ret < 0)
8144 continue;
94fcca9f
YZ
8145 BUG_ON(refs == 0);
8146
1c4850e2 8147 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8148 if (refs == 1)
8149 goto reada;
bd56b302 8150
94fcca9f
YZ
8151 if (wc->level == 1 &&
8152 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8153 continue;
1c4850e2
YZ
8154 if (!wc->update_ref ||
8155 generation <= root->root_key.offset)
8156 continue;
8157 btrfs_node_key_to_cpu(eb, &key, slot);
8158 ret = btrfs_comp_cpu_keys(&key,
8159 &wc->update_progress);
8160 if (ret < 0)
8161 continue;
94fcca9f
YZ
8162 } else {
8163 if (wc->level == 1 &&
8164 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8165 continue;
6407bf6d 8166 }
1c4850e2 8167reada:
d3e46fea 8168 readahead_tree_block(root, bytenr);
1c4850e2 8169 nread++;
20524f02 8170 }
1c4850e2 8171 wc->reada_slot = slot;
20524f02 8172}
2c47e605 8173
0ed4792a 8174/*
82bd101b
MF
8175 * These may not be seen by the usual inc/dec ref code so we have to
8176 * add them here.
0ed4792a 8177 */
82bd101b
MF
8178static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8179 struct btrfs_root *root, u64 bytenr,
8180 u64 num_bytes)
8181{
8182 struct btrfs_qgroup_extent_record *qrecord;
8183 struct btrfs_delayed_ref_root *delayed_refs;
8184
8185 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8186 if (!qrecord)
8187 return -ENOMEM;
8188
8189 qrecord->bytenr = bytenr;
8190 qrecord->num_bytes = num_bytes;
8191 qrecord->old_roots = NULL;
8192
8193 delayed_refs = &trans->transaction->delayed_refs;
8194 spin_lock(&delayed_refs->lock);
8195 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8196 kfree(qrecord);
8197 spin_unlock(&delayed_refs->lock);
8198
8199 return 0;
8200}
8201
1152651a
MF
8202static int account_leaf_items(struct btrfs_trans_handle *trans,
8203 struct btrfs_root *root,
8204 struct extent_buffer *eb)
8205{
8206 int nr = btrfs_header_nritems(eb);
82bd101b 8207 int i, extent_type, ret;
1152651a
MF
8208 struct btrfs_key key;
8209 struct btrfs_file_extent_item *fi;
8210 u64 bytenr, num_bytes;
8211
82bd101b
MF
8212 /* We can be called directly from walk_up_proc() */
8213 if (!root->fs_info->quota_enabled)
8214 return 0;
8215
1152651a
MF
8216 for (i = 0; i < nr; i++) {
8217 btrfs_item_key_to_cpu(eb, &key, i);
8218
8219 if (key.type != BTRFS_EXTENT_DATA_KEY)
8220 continue;
8221
8222 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8223 /* filter out non qgroup-accountable extents */
8224 extent_type = btrfs_file_extent_type(eb, fi);
8225
8226 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8227 continue;
8228
8229 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8230 if (!bytenr)
8231 continue;
8232
8233 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8234
8235 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8236 if (ret)
8237 return ret;
1152651a
MF
8238 }
8239 return 0;
8240}
8241
8242/*
8243 * Walk up the tree from the bottom, freeing leaves and any interior
8244 * nodes which have had all slots visited. If a node (leaf or
8245 * interior) is freed, the node above it will have it's slot
8246 * incremented. The root node will never be freed.
8247 *
8248 * At the end of this function, we should have a path which has all
8249 * slots incremented to the next position for a search. If we need to
8250 * read a new node it will be NULL and the node above it will have the
8251 * correct slot selected for a later read.
8252 *
8253 * If we increment the root nodes slot counter past the number of
8254 * elements, 1 is returned to signal completion of the search.
8255 */
8256static int adjust_slots_upwards(struct btrfs_root *root,
8257 struct btrfs_path *path, int root_level)
8258{
8259 int level = 0;
8260 int nr, slot;
8261 struct extent_buffer *eb;
8262
8263 if (root_level == 0)
8264 return 1;
8265
8266 while (level <= root_level) {
8267 eb = path->nodes[level];
8268 nr = btrfs_header_nritems(eb);
8269 path->slots[level]++;
8270 slot = path->slots[level];
8271 if (slot >= nr || level == 0) {
8272 /*
8273 * Don't free the root - we will detect this
8274 * condition after our loop and return a
8275 * positive value for caller to stop walking the tree.
8276 */
8277 if (level != root_level) {
8278 btrfs_tree_unlock_rw(eb, path->locks[level]);
8279 path->locks[level] = 0;
8280
8281 free_extent_buffer(eb);
8282 path->nodes[level] = NULL;
8283 path->slots[level] = 0;
8284 }
8285 } else {
8286 /*
8287 * We have a valid slot to walk back down
8288 * from. Stop here so caller can process these
8289 * new nodes.
8290 */
8291 break;
8292 }
8293
8294 level++;
8295 }
8296
8297 eb = path->nodes[root_level];
8298 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8299 return 1;
8300
8301 return 0;
8302}
8303
8304/*
8305 * root_eb is the subtree root and is locked before this function is called.
8306 */
8307static int account_shared_subtree(struct btrfs_trans_handle *trans,
8308 struct btrfs_root *root,
8309 struct extent_buffer *root_eb,
8310 u64 root_gen,
8311 int root_level)
8312{
8313 int ret = 0;
8314 int level;
8315 struct extent_buffer *eb = root_eb;
8316 struct btrfs_path *path = NULL;
8317
8318 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8319 BUG_ON(root_eb == NULL);
8320
8321 if (!root->fs_info->quota_enabled)
8322 return 0;
8323
8324 if (!extent_buffer_uptodate(root_eb)) {
8325 ret = btrfs_read_buffer(root_eb, root_gen);
8326 if (ret)
8327 goto out;
8328 }
8329
8330 if (root_level == 0) {
8331 ret = account_leaf_items(trans, root, root_eb);
8332 goto out;
8333 }
8334
8335 path = btrfs_alloc_path();
8336 if (!path)
8337 return -ENOMEM;
8338
8339 /*
8340 * Walk down the tree. Missing extent blocks are filled in as
8341 * we go. Metadata is accounted every time we read a new
8342 * extent block.
8343 *
8344 * When we reach a leaf, we account for file extent items in it,
8345 * walk back up the tree (adjusting slot pointers as we go)
8346 * and restart the search process.
8347 */
8348 extent_buffer_get(root_eb); /* For path */
8349 path->nodes[root_level] = root_eb;
8350 path->slots[root_level] = 0;
8351 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8352walk_down:
8353 level = root_level;
8354 while (level >= 0) {
8355 if (path->nodes[level] == NULL) {
1152651a
MF
8356 int parent_slot;
8357 u64 child_gen;
8358 u64 child_bytenr;
8359
8360 /* We need to get child blockptr/gen from
8361 * parent before we can read it. */
8362 eb = path->nodes[level + 1];
8363 parent_slot = path->slots[level + 1];
8364 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8365 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8366
ce86cd59 8367 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8368 if (IS_ERR(eb)) {
8369 ret = PTR_ERR(eb);
8370 goto out;
8371 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8372 free_extent_buffer(eb);
64c043de 8373 ret = -EIO;
1152651a
MF
8374 goto out;
8375 }
8376
8377 path->nodes[level] = eb;
8378 path->slots[level] = 0;
8379
8380 btrfs_tree_read_lock(eb);
8381 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8382 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8383
8384 ret = record_one_subtree_extent(trans, root, child_bytenr,
8385 root->nodesize);
8386 if (ret)
8387 goto out;
1152651a
MF
8388 }
8389
8390 if (level == 0) {
8391 ret = account_leaf_items(trans, root, path->nodes[level]);
8392 if (ret)
8393 goto out;
8394
8395 /* Nonzero return here means we completed our search */
8396 ret = adjust_slots_upwards(root, path, root_level);
8397 if (ret)
8398 break;
8399
8400 /* Restart search with new slots */
8401 goto walk_down;
8402 }
8403
8404 level--;
8405 }
8406
8407 ret = 0;
8408out:
8409 btrfs_free_path(path);
8410
8411 return ret;
8412}
8413
f82d02d9 8414/*
2c016dc2 8415 * helper to process tree block while walking down the tree.
2c47e605 8416 *
2c47e605
YZ
8417 * when wc->stage == UPDATE_BACKREF, this function updates
8418 * back refs for pointers in the block.
8419 *
8420 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8421 */
2c47e605 8422static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8423 struct btrfs_root *root,
2c47e605 8424 struct btrfs_path *path,
94fcca9f 8425 struct walk_control *wc, int lookup_info)
f82d02d9 8426{
2c47e605
YZ
8427 int level = wc->level;
8428 struct extent_buffer *eb = path->nodes[level];
2c47e605 8429 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8430 int ret;
8431
2c47e605
YZ
8432 if (wc->stage == UPDATE_BACKREF &&
8433 btrfs_header_owner(eb) != root->root_key.objectid)
8434 return 1;
f82d02d9 8435
2c47e605
YZ
8436 /*
8437 * when reference count of tree block is 1, it won't increase
8438 * again. once full backref flag is set, we never clear it.
8439 */
94fcca9f
YZ
8440 if (lookup_info &&
8441 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8442 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8443 BUG_ON(!path->locks[level]);
8444 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8445 eb->start, level, 1,
2c47e605
YZ
8446 &wc->refs[level],
8447 &wc->flags[level]);
79787eaa
JM
8448 BUG_ON(ret == -ENOMEM);
8449 if (ret)
8450 return ret;
2c47e605
YZ
8451 BUG_ON(wc->refs[level] == 0);
8452 }
5d4f98a2 8453
2c47e605
YZ
8454 if (wc->stage == DROP_REFERENCE) {
8455 if (wc->refs[level] > 1)
8456 return 1;
f82d02d9 8457
2c47e605 8458 if (path->locks[level] && !wc->keep_locks) {
bd681513 8459 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8460 path->locks[level] = 0;
8461 }
8462 return 0;
8463 }
f82d02d9 8464
2c47e605
YZ
8465 /* wc->stage == UPDATE_BACKREF */
8466 if (!(wc->flags[level] & flag)) {
8467 BUG_ON(!path->locks[level]);
e339a6b0 8468 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8469 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8470 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8471 BUG_ON(ret); /* -ENOMEM */
2c47e605 8472 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8473 eb->len, flag,
8474 btrfs_header_level(eb), 0);
79787eaa 8475 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8476 wc->flags[level] |= flag;
8477 }
8478
8479 /*
8480 * the block is shared by multiple trees, so it's not good to
8481 * keep the tree lock
8482 */
8483 if (path->locks[level] && level > 0) {
bd681513 8484 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8485 path->locks[level] = 0;
8486 }
8487 return 0;
8488}
8489
1c4850e2 8490/*
2c016dc2 8491 * helper to process tree block pointer.
1c4850e2
YZ
8492 *
8493 * when wc->stage == DROP_REFERENCE, this function checks
8494 * reference count of the block pointed to. if the block
8495 * is shared and we need update back refs for the subtree
8496 * rooted at the block, this function changes wc->stage to
8497 * UPDATE_BACKREF. if the block is shared and there is no
8498 * need to update back, this function drops the reference
8499 * to the block.
8500 *
8501 * NOTE: return value 1 means we should stop walking down.
8502 */
8503static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8504 struct btrfs_root *root,
8505 struct btrfs_path *path,
94fcca9f 8506 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8507{
8508 u64 bytenr;
8509 u64 generation;
8510 u64 parent;
8511 u32 blocksize;
8512 struct btrfs_key key;
8513 struct extent_buffer *next;
8514 int level = wc->level;
8515 int reada = 0;
8516 int ret = 0;
1152651a 8517 bool need_account = false;
1c4850e2
YZ
8518
8519 generation = btrfs_node_ptr_generation(path->nodes[level],
8520 path->slots[level]);
8521 /*
8522 * if the lower level block was created before the snapshot
8523 * was created, we know there is no need to update back refs
8524 * for the subtree
8525 */
8526 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8527 generation <= root->root_key.offset) {
8528 *lookup_info = 1;
1c4850e2 8529 return 1;
94fcca9f 8530 }
1c4850e2
YZ
8531
8532 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8533 blocksize = root->nodesize;
1c4850e2 8534
01d58472 8535 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8536 if (!next) {
a83fffb7 8537 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8538 if (!next)
8539 return -ENOMEM;
b2aaaa3b
JB
8540 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8541 level - 1);
1c4850e2
YZ
8542 reada = 1;
8543 }
8544 btrfs_tree_lock(next);
8545 btrfs_set_lock_blocking(next);
8546
3173a18f 8547 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8548 &wc->refs[level - 1],
8549 &wc->flags[level - 1]);
79787eaa
JM
8550 if (ret < 0) {
8551 btrfs_tree_unlock(next);
8552 return ret;
8553 }
8554
c2cf52eb
SK
8555 if (unlikely(wc->refs[level - 1] == 0)) {
8556 btrfs_err(root->fs_info, "Missing references.");
8557 BUG();
8558 }
94fcca9f 8559 *lookup_info = 0;
1c4850e2 8560
94fcca9f 8561 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8562 if (wc->refs[level - 1] > 1) {
1152651a 8563 need_account = true;
94fcca9f
YZ
8564 if (level == 1 &&
8565 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8566 goto skip;
8567
1c4850e2
YZ
8568 if (!wc->update_ref ||
8569 generation <= root->root_key.offset)
8570 goto skip;
8571
8572 btrfs_node_key_to_cpu(path->nodes[level], &key,
8573 path->slots[level]);
8574 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8575 if (ret < 0)
8576 goto skip;
8577
8578 wc->stage = UPDATE_BACKREF;
8579 wc->shared_level = level - 1;
8580 }
94fcca9f
YZ
8581 } else {
8582 if (level == 1 &&
8583 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8584 goto skip;
1c4850e2
YZ
8585 }
8586
b9fab919 8587 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8588 btrfs_tree_unlock(next);
8589 free_extent_buffer(next);
8590 next = NULL;
94fcca9f 8591 *lookup_info = 1;
1c4850e2
YZ
8592 }
8593
8594 if (!next) {
8595 if (reada && level == 1)
8596 reada_walk_down(trans, root, wc, path);
ce86cd59 8597 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8598 if (IS_ERR(next)) {
8599 return PTR_ERR(next);
8600 } else if (!extent_buffer_uptodate(next)) {
416bc658 8601 free_extent_buffer(next);
97d9a8a4 8602 return -EIO;
416bc658 8603 }
1c4850e2
YZ
8604 btrfs_tree_lock(next);
8605 btrfs_set_lock_blocking(next);
8606 }
8607
8608 level--;
8609 BUG_ON(level != btrfs_header_level(next));
8610 path->nodes[level] = next;
8611 path->slots[level] = 0;
bd681513 8612 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8613 wc->level = level;
8614 if (wc->level == 1)
8615 wc->reada_slot = 0;
8616 return 0;
8617skip:
8618 wc->refs[level - 1] = 0;
8619 wc->flags[level - 1] = 0;
94fcca9f
YZ
8620 if (wc->stage == DROP_REFERENCE) {
8621 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8622 parent = path->nodes[level]->start;
8623 } else {
8624 BUG_ON(root->root_key.objectid !=
8625 btrfs_header_owner(path->nodes[level]));
8626 parent = 0;
8627 }
1c4850e2 8628
1152651a
MF
8629 if (need_account) {
8630 ret = account_shared_subtree(trans, root, next,
8631 generation, level - 1);
8632 if (ret) {
94647322
DS
8633 btrfs_err_rl(root->fs_info,
8634 "Error "
1152651a 8635 "%d accounting shared subtree. Quota "
94647322
DS
8636 "is out of sync, rescan required.",
8637 ret);
1152651a
MF
8638 }
8639 }
94fcca9f 8640 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8641 root->root_key.objectid, level - 1, 0);
79787eaa 8642 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8643 }
1c4850e2
YZ
8644 btrfs_tree_unlock(next);
8645 free_extent_buffer(next);
94fcca9f 8646 *lookup_info = 1;
1c4850e2
YZ
8647 return 1;
8648}
8649
2c47e605 8650/*
2c016dc2 8651 * helper to process tree block while walking up the tree.
2c47e605
YZ
8652 *
8653 * when wc->stage == DROP_REFERENCE, this function drops
8654 * reference count on the block.
8655 *
8656 * when wc->stage == UPDATE_BACKREF, this function changes
8657 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8658 * to UPDATE_BACKREF previously while processing the block.
8659 *
8660 * NOTE: return value 1 means we should stop walking up.
8661 */
8662static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8663 struct btrfs_root *root,
8664 struct btrfs_path *path,
8665 struct walk_control *wc)
8666{
f0486c68 8667 int ret;
2c47e605
YZ
8668 int level = wc->level;
8669 struct extent_buffer *eb = path->nodes[level];
8670 u64 parent = 0;
8671
8672 if (wc->stage == UPDATE_BACKREF) {
8673 BUG_ON(wc->shared_level < level);
8674 if (level < wc->shared_level)
8675 goto out;
8676
2c47e605
YZ
8677 ret = find_next_key(path, level + 1, &wc->update_progress);
8678 if (ret > 0)
8679 wc->update_ref = 0;
8680
8681 wc->stage = DROP_REFERENCE;
8682 wc->shared_level = -1;
8683 path->slots[level] = 0;
8684
8685 /*
8686 * check reference count again if the block isn't locked.
8687 * we should start walking down the tree again if reference
8688 * count is one.
8689 */
8690 if (!path->locks[level]) {
8691 BUG_ON(level == 0);
8692 btrfs_tree_lock(eb);
8693 btrfs_set_lock_blocking(eb);
bd681513 8694 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8695
8696 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8697 eb->start, level, 1,
2c47e605
YZ
8698 &wc->refs[level],
8699 &wc->flags[level]);
79787eaa
JM
8700 if (ret < 0) {
8701 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8702 path->locks[level] = 0;
79787eaa
JM
8703 return ret;
8704 }
2c47e605
YZ
8705 BUG_ON(wc->refs[level] == 0);
8706 if (wc->refs[level] == 1) {
bd681513 8707 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8708 path->locks[level] = 0;
2c47e605
YZ
8709 return 1;
8710 }
f82d02d9 8711 }
2c47e605 8712 }
f82d02d9 8713
2c47e605
YZ
8714 /* wc->stage == DROP_REFERENCE */
8715 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8716
2c47e605
YZ
8717 if (wc->refs[level] == 1) {
8718 if (level == 0) {
8719 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8720 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8721 else
e339a6b0 8722 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8723 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8724 ret = account_leaf_items(trans, root, eb);
8725 if (ret) {
94647322
DS
8726 btrfs_err_rl(root->fs_info,
8727 "error "
1152651a 8728 "%d accounting leaf items. Quota "
94647322
DS
8729 "is out of sync, rescan required.",
8730 ret);
1152651a 8731 }
2c47e605
YZ
8732 }
8733 /* make block locked assertion in clean_tree_block happy */
8734 if (!path->locks[level] &&
8735 btrfs_header_generation(eb) == trans->transid) {
8736 btrfs_tree_lock(eb);
8737 btrfs_set_lock_blocking(eb);
bd681513 8738 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8739 }
01d58472 8740 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8741 }
8742
8743 if (eb == root->node) {
8744 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8745 parent = eb->start;
8746 else
8747 BUG_ON(root->root_key.objectid !=
8748 btrfs_header_owner(eb));
8749 } else {
8750 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8751 parent = path->nodes[level + 1]->start;
8752 else
8753 BUG_ON(root->root_key.objectid !=
8754 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8755 }
f82d02d9 8756
5581a51a 8757 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8758out:
8759 wc->refs[level] = 0;
8760 wc->flags[level] = 0;
f0486c68 8761 return 0;
2c47e605
YZ
8762}
8763
8764static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8765 struct btrfs_root *root,
8766 struct btrfs_path *path,
8767 struct walk_control *wc)
8768{
2c47e605 8769 int level = wc->level;
94fcca9f 8770 int lookup_info = 1;
2c47e605
YZ
8771 int ret;
8772
8773 while (level >= 0) {
94fcca9f 8774 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8775 if (ret > 0)
8776 break;
8777
8778 if (level == 0)
8779 break;
8780
7a7965f8
YZ
8781 if (path->slots[level] >=
8782 btrfs_header_nritems(path->nodes[level]))
8783 break;
8784
94fcca9f 8785 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8786 if (ret > 0) {
8787 path->slots[level]++;
8788 continue;
90d2c51d
MX
8789 } else if (ret < 0)
8790 return ret;
1c4850e2 8791 level = wc->level;
f82d02d9 8792 }
f82d02d9
YZ
8793 return 0;
8794}
8795
d397712b 8796static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8797 struct btrfs_root *root,
f82d02d9 8798 struct btrfs_path *path,
2c47e605 8799 struct walk_control *wc, int max_level)
20524f02 8800{
2c47e605 8801 int level = wc->level;
20524f02 8802 int ret;
9f3a7427 8803
2c47e605
YZ
8804 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8805 while (level < max_level && path->nodes[level]) {
8806 wc->level = level;
8807 if (path->slots[level] + 1 <
8808 btrfs_header_nritems(path->nodes[level])) {
8809 path->slots[level]++;
20524f02
CM
8810 return 0;
8811 } else {
2c47e605
YZ
8812 ret = walk_up_proc(trans, root, path, wc);
8813 if (ret > 0)
8814 return 0;
bd56b302 8815
2c47e605 8816 if (path->locks[level]) {
bd681513
CM
8817 btrfs_tree_unlock_rw(path->nodes[level],
8818 path->locks[level]);
2c47e605 8819 path->locks[level] = 0;
f82d02d9 8820 }
2c47e605
YZ
8821 free_extent_buffer(path->nodes[level]);
8822 path->nodes[level] = NULL;
8823 level++;
20524f02
CM
8824 }
8825 }
8826 return 1;
8827}
8828
9aca1d51 8829/*
2c47e605
YZ
8830 * drop a subvolume tree.
8831 *
8832 * this function traverses the tree freeing any blocks that only
8833 * referenced by the tree.
8834 *
8835 * when a shared tree block is found. this function decreases its
8836 * reference count by one. if update_ref is true, this function
8837 * also make sure backrefs for the shared block and all lower level
8838 * blocks are properly updated.
9d1a2a3a
DS
8839 *
8840 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8841 */
2c536799 8842int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8843 struct btrfs_block_rsv *block_rsv, int update_ref,
8844 int for_reloc)
20524f02 8845{
5caf2a00 8846 struct btrfs_path *path;
2c47e605
YZ
8847 struct btrfs_trans_handle *trans;
8848 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8849 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8850 struct walk_control *wc;
8851 struct btrfs_key key;
8852 int err = 0;
8853 int ret;
8854 int level;
d29a9f62 8855 bool root_dropped = false;
20524f02 8856
1152651a
MF
8857 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8858
5caf2a00 8859 path = btrfs_alloc_path();
cb1b69f4
TI
8860 if (!path) {
8861 err = -ENOMEM;
8862 goto out;
8863 }
20524f02 8864
2c47e605 8865 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8866 if (!wc) {
8867 btrfs_free_path(path);
cb1b69f4
TI
8868 err = -ENOMEM;
8869 goto out;
38a1a919 8870 }
2c47e605 8871
a22285a6 8872 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8873 if (IS_ERR(trans)) {
8874 err = PTR_ERR(trans);
8875 goto out_free;
8876 }
98d5dc13 8877
3fd0a558
YZ
8878 if (block_rsv)
8879 trans->block_rsv = block_rsv;
2c47e605 8880
9f3a7427 8881 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8882 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8883 path->nodes[level] = btrfs_lock_root_node(root);
8884 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8885 path->slots[level] = 0;
bd681513 8886 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8887 memset(&wc->update_progress, 0,
8888 sizeof(wc->update_progress));
9f3a7427 8889 } else {
9f3a7427 8890 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8891 memcpy(&wc->update_progress, &key,
8892 sizeof(wc->update_progress));
8893
6702ed49 8894 level = root_item->drop_level;
2c47e605 8895 BUG_ON(level == 0);
6702ed49 8896 path->lowest_level = level;
2c47e605
YZ
8897 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8898 path->lowest_level = 0;
8899 if (ret < 0) {
8900 err = ret;
79787eaa 8901 goto out_end_trans;
9f3a7427 8902 }
1c4850e2 8903 WARN_ON(ret > 0);
2c47e605 8904
7d9eb12c
CM
8905 /*
8906 * unlock our path, this is safe because only this
8907 * function is allowed to delete this snapshot
8908 */
5d4f98a2 8909 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8910
8911 level = btrfs_header_level(root->node);
8912 while (1) {
8913 btrfs_tree_lock(path->nodes[level]);
8914 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8915 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8916
8917 ret = btrfs_lookup_extent_info(trans, root,
8918 path->nodes[level]->start,
3173a18f 8919 level, 1, &wc->refs[level],
2c47e605 8920 &wc->flags[level]);
79787eaa
JM
8921 if (ret < 0) {
8922 err = ret;
8923 goto out_end_trans;
8924 }
2c47e605
YZ
8925 BUG_ON(wc->refs[level] == 0);
8926
8927 if (level == root_item->drop_level)
8928 break;
8929
8930 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8931 path->locks[level] = 0;
2c47e605
YZ
8932 WARN_ON(wc->refs[level] != 1);
8933 level--;
8934 }
9f3a7427 8935 }
2c47e605
YZ
8936
8937 wc->level = level;
8938 wc->shared_level = -1;
8939 wc->stage = DROP_REFERENCE;
8940 wc->update_ref = update_ref;
8941 wc->keep_locks = 0;
66d7e7f0 8942 wc->for_reloc = for_reloc;
1c4850e2 8943 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8944
d397712b 8945 while (1) {
9d1a2a3a 8946
2c47e605
YZ
8947 ret = walk_down_tree(trans, root, path, wc);
8948 if (ret < 0) {
8949 err = ret;
20524f02 8950 break;
2c47e605 8951 }
9aca1d51 8952
2c47e605
YZ
8953 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8954 if (ret < 0) {
8955 err = ret;
20524f02 8956 break;
2c47e605
YZ
8957 }
8958
8959 if (ret > 0) {
8960 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8961 break;
8962 }
2c47e605
YZ
8963
8964 if (wc->stage == DROP_REFERENCE) {
8965 level = wc->level;
8966 btrfs_node_key(path->nodes[level],
8967 &root_item->drop_progress,
8968 path->slots[level]);
8969 root_item->drop_level = level;
8970 }
8971
8972 BUG_ON(wc->level == 0);
3c8f2422
JB
8973 if (btrfs_should_end_transaction(trans, tree_root) ||
8974 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8975 ret = btrfs_update_root(trans, tree_root,
8976 &root->root_key,
8977 root_item);
79787eaa
JM
8978 if (ret) {
8979 btrfs_abort_transaction(trans, tree_root, ret);
8980 err = ret;
8981 goto out_end_trans;
8982 }
2c47e605 8983
3fd0a558 8984 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8985 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8986 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8987 err = -EAGAIN;
8988 goto out_free;
8989 }
8990
a22285a6 8991 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8992 if (IS_ERR(trans)) {
8993 err = PTR_ERR(trans);
8994 goto out_free;
8995 }
3fd0a558
YZ
8996 if (block_rsv)
8997 trans->block_rsv = block_rsv;
c3e69d58 8998 }
20524f02 8999 }
b3b4aa74 9000 btrfs_release_path(path);
79787eaa
JM
9001 if (err)
9002 goto out_end_trans;
2c47e605
YZ
9003
9004 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9005 if (ret) {
9006 btrfs_abort_transaction(trans, tree_root, ret);
9007 goto out_end_trans;
9008 }
2c47e605 9009
76dda93c 9010 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9011 ret = btrfs_find_root(tree_root, &root->root_key, path,
9012 NULL, NULL);
79787eaa
JM
9013 if (ret < 0) {
9014 btrfs_abort_transaction(trans, tree_root, ret);
9015 err = ret;
9016 goto out_end_trans;
9017 } else if (ret > 0) {
84cd948c
JB
9018 /* if we fail to delete the orphan item this time
9019 * around, it'll get picked up the next time.
9020 *
9021 * The most common failure here is just -ENOENT.
9022 */
9023 btrfs_del_orphan_item(trans, tree_root,
9024 root->root_key.objectid);
76dda93c
YZ
9025 }
9026 }
9027
27cdeb70 9028 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9029 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9030 } else {
9031 free_extent_buffer(root->node);
9032 free_extent_buffer(root->commit_root);
b0feb9d9 9033 btrfs_put_fs_root(root);
76dda93c 9034 }
d29a9f62 9035 root_dropped = true;
79787eaa 9036out_end_trans:
3fd0a558 9037 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9038out_free:
2c47e605 9039 kfree(wc);
5caf2a00 9040 btrfs_free_path(path);
cb1b69f4 9041out:
d29a9f62
JB
9042 /*
9043 * So if we need to stop dropping the snapshot for whatever reason we
9044 * need to make sure to add it back to the dead root list so that we
9045 * keep trying to do the work later. This also cleans up roots if we
9046 * don't have it in the radix (like when we recover after a power fail
9047 * or unmount) so we don't leak memory.
9048 */
b37b39cd 9049 if (!for_reloc && root_dropped == false)
d29a9f62 9050 btrfs_add_dead_root(root);
90515e7f 9051 if (err && err != -EAGAIN)
a4553fef 9052 btrfs_std_error(root->fs_info, err, NULL);
2c536799 9053 return err;
20524f02 9054}
9078a3e1 9055
2c47e605
YZ
9056/*
9057 * drop subtree rooted at tree block 'node'.
9058 *
9059 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9060 * only used by relocation code
2c47e605 9061 */
f82d02d9
YZ
9062int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9063 struct btrfs_root *root,
9064 struct extent_buffer *node,
9065 struct extent_buffer *parent)
9066{
9067 struct btrfs_path *path;
2c47e605 9068 struct walk_control *wc;
f82d02d9
YZ
9069 int level;
9070 int parent_level;
9071 int ret = 0;
9072 int wret;
9073
2c47e605
YZ
9074 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9075
f82d02d9 9076 path = btrfs_alloc_path();
db5b493a
TI
9077 if (!path)
9078 return -ENOMEM;
f82d02d9 9079
2c47e605 9080 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9081 if (!wc) {
9082 btrfs_free_path(path);
9083 return -ENOMEM;
9084 }
2c47e605 9085
b9447ef8 9086 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9087 parent_level = btrfs_header_level(parent);
9088 extent_buffer_get(parent);
9089 path->nodes[parent_level] = parent;
9090 path->slots[parent_level] = btrfs_header_nritems(parent);
9091
b9447ef8 9092 btrfs_assert_tree_locked(node);
f82d02d9 9093 level = btrfs_header_level(node);
f82d02d9
YZ
9094 path->nodes[level] = node;
9095 path->slots[level] = 0;
bd681513 9096 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9097
9098 wc->refs[parent_level] = 1;
9099 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9100 wc->level = level;
9101 wc->shared_level = -1;
9102 wc->stage = DROP_REFERENCE;
9103 wc->update_ref = 0;
9104 wc->keep_locks = 1;
66d7e7f0 9105 wc->for_reloc = 1;
1c4850e2 9106 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9107
9108 while (1) {
2c47e605
YZ
9109 wret = walk_down_tree(trans, root, path, wc);
9110 if (wret < 0) {
f82d02d9 9111 ret = wret;
f82d02d9 9112 break;
2c47e605 9113 }
f82d02d9 9114
2c47e605 9115 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9116 if (wret < 0)
9117 ret = wret;
9118 if (wret != 0)
9119 break;
9120 }
9121
2c47e605 9122 kfree(wc);
f82d02d9
YZ
9123 btrfs_free_path(path);
9124 return ret;
9125}
9126
ec44a35c
CM
9127static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9128{
9129 u64 num_devices;
fc67c450 9130 u64 stripped;
e4d8ec0f 9131
fc67c450
ID
9132 /*
9133 * if restripe for this chunk_type is on pick target profile and
9134 * return, otherwise do the usual balance
9135 */
9136 stripped = get_restripe_target(root->fs_info, flags);
9137 if (stripped)
9138 return extended_to_chunk(stripped);
e4d8ec0f 9139
95669976 9140 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9141
fc67c450 9142 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9143 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9144 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9145
ec44a35c
CM
9146 if (num_devices == 1) {
9147 stripped |= BTRFS_BLOCK_GROUP_DUP;
9148 stripped = flags & ~stripped;
9149
9150 /* turn raid0 into single device chunks */
9151 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9152 return stripped;
9153
9154 /* turn mirroring into duplication */
9155 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9156 BTRFS_BLOCK_GROUP_RAID10))
9157 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9158 } else {
9159 /* they already had raid on here, just return */
ec44a35c
CM
9160 if (flags & stripped)
9161 return flags;
9162
9163 stripped |= BTRFS_BLOCK_GROUP_DUP;
9164 stripped = flags & ~stripped;
9165
9166 /* switch duplicated blocks with raid1 */
9167 if (flags & BTRFS_BLOCK_GROUP_DUP)
9168 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9169
e3176ca2 9170 /* this is drive concat, leave it alone */
ec44a35c 9171 }
e3176ca2 9172
ec44a35c
CM
9173 return flags;
9174}
9175
868f401a 9176static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9177{
f0486c68
YZ
9178 struct btrfs_space_info *sinfo = cache->space_info;
9179 u64 num_bytes;
199c36ea 9180 u64 min_allocable_bytes;
f0486c68 9181 int ret = -ENOSPC;
0ef3e66b 9182
199c36ea
MX
9183 /*
9184 * We need some metadata space and system metadata space for
9185 * allocating chunks in some corner cases until we force to set
9186 * it to be readonly.
9187 */
9188 if ((sinfo->flags &
9189 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9190 !force)
ee22184b 9191 min_allocable_bytes = SZ_1M;
199c36ea
MX
9192 else
9193 min_allocable_bytes = 0;
9194
f0486c68
YZ
9195 spin_lock(&sinfo->lock);
9196 spin_lock(&cache->lock);
61cfea9b
W
9197
9198 if (cache->ro) {
868f401a 9199 cache->ro++;
61cfea9b
W
9200 ret = 0;
9201 goto out;
9202 }
9203
f0486c68
YZ
9204 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9205 cache->bytes_super - btrfs_block_group_used(&cache->item);
9206
9207 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9208 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9209 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9210 sinfo->bytes_readonly += num_bytes;
868f401a 9211 cache->ro++;
633c0aad 9212 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9213 ret = 0;
9214 }
61cfea9b 9215out:
f0486c68
YZ
9216 spin_unlock(&cache->lock);
9217 spin_unlock(&sinfo->lock);
9218 return ret;
9219}
7d9eb12c 9220
868f401a 9221int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9222 struct btrfs_block_group_cache *cache)
c286ac48 9223
f0486c68
YZ
9224{
9225 struct btrfs_trans_handle *trans;
9226 u64 alloc_flags;
9227 int ret;
7d9eb12c 9228
1bbc621e 9229again:
ff5714cc 9230 trans = btrfs_join_transaction(root);
79787eaa
JM
9231 if (IS_ERR(trans))
9232 return PTR_ERR(trans);
5d4f98a2 9233
1bbc621e
CM
9234 /*
9235 * we're not allowed to set block groups readonly after the dirty
9236 * block groups cache has started writing. If it already started,
9237 * back off and let this transaction commit
9238 */
9239 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9240 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9241 u64 transid = trans->transid;
9242
9243 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9244 btrfs_end_transaction(trans, root);
9245
9246 ret = btrfs_wait_for_commit(root, transid);
9247 if (ret)
9248 return ret;
9249 goto again;
9250 }
9251
153c35b6
CM
9252 /*
9253 * if we are changing raid levels, try to allocate a corresponding
9254 * block group with the new raid level.
9255 */
9256 alloc_flags = update_block_group_flags(root, cache->flags);
9257 if (alloc_flags != cache->flags) {
9258 ret = do_chunk_alloc(trans, root, alloc_flags,
9259 CHUNK_ALLOC_FORCE);
9260 /*
9261 * ENOSPC is allowed here, we may have enough space
9262 * already allocated at the new raid level to
9263 * carry on
9264 */
9265 if (ret == -ENOSPC)
9266 ret = 0;
9267 if (ret < 0)
9268 goto out;
9269 }
1bbc621e 9270
868f401a 9271 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9272 if (!ret)
9273 goto out;
9274 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9275 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9276 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9277 if (ret < 0)
9278 goto out;
868f401a 9279 ret = inc_block_group_ro(cache, 0);
f0486c68 9280out:
2f081088
SL
9281 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9282 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9283 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9284 check_system_chunk(trans, root, alloc_flags);
a9629596 9285 unlock_chunks(root->fs_info->chunk_root);
2f081088 9286 }
1bbc621e 9287 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9288
f0486c68
YZ
9289 btrfs_end_transaction(trans, root);
9290 return ret;
9291}
5d4f98a2 9292
c87f08ca
CM
9293int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9294 struct btrfs_root *root, u64 type)
9295{
9296 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9297 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9298 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9299}
9300
6d07bcec
MX
9301/*
9302 * helper to account the unused space of all the readonly block group in the
633c0aad 9303 * space_info. takes mirrors into account.
6d07bcec 9304 */
633c0aad 9305u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9306{
9307 struct btrfs_block_group_cache *block_group;
9308 u64 free_bytes = 0;
9309 int factor;
9310
633c0aad
JB
9311 /* It's df, we don't care if it's racey */
9312 if (list_empty(&sinfo->ro_bgs))
9313 return 0;
9314
9315 spin_lock(&sinfo->lock);
9316 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9317 spin_lock(&block_group->lock);
9318
9319 if (!block_group->ro) {
9320 spin_unlock(&block_group->lock);
9321 continue;
9322 }
9323
9324 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9325 BTRFS_BLOCK_GROUP_RAID10 |
9326 BTRFS_BLOCK_GROUP_DUP))
9327 factor = 2;
9328 else
9329 factor = 1;
9330
9331 free_bytes += (block_group->key.offset -
9332 btrfs_block_group_used(&block_group->item)) *
9333 factor;
9334
9335 spin_unlock(&block_group->lock);
9336 }
6d07bcec
MX
9337 spin_unlock(&sinfo->lock);
9338
9339 return free_bytes;
9340}
9341
868f401a 9342void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9343 struct btrfs_block_group_cache *cache)
5d4f98a2 9344{
f0486c68
YZ
9345 struct btrfs_space_info *sinfo = cache->space_info;
9346 u64 num_bytes;
9347
9348 BUG_ON(!cache->ro);
9349
9350 spin_lock(&sinfo->lock);
9351 spin_lock(&cache->lock);
868f401a
Z
9352 if (!--cache->ro) {
9353 num_bytes = cache->key.offset - cache->reserved -
9354 cache->pinned - cache->bytes_super -
9355 btrfs_block_group_used(&cache->item);
9356 sinfo->bytes_readonly -= num_bytes;
9357 list_del_init(&cache->ro_list);
9358 }
f0486c68
YZ
9359 spin_unlock(&cache->lock);
9360 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9361}
9362
ba1bf481
JB
9363/*
9364 * checks to see if its even possible to relocate this block group.
9365 *
9366 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9367 * ok to go ahead and try.
9368 */
9369int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9370{
ba1bf481
JB
9371 struct btrfs_block_group_cache *block_group;
9372 struct btrfs_space_info *space_info;
9373 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9374 struct btrfs_device *device;
6df9a95e 9375 struct btrfs_trans_handle *trans;
cdcb725c 9376 u64 min_free;
6719db6a
JB
9377 u64 dev_min = 1;
9378 u64 dev_nr = 0;
4a5e98f5 9379 u64 target;
cdcb725c 9380 int index;
ba1bf481
JB
9381 int full = 0;
9382 int ret = 0;
1a40e23b 9383
ba1bf481 9384 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9385
ba1bf481
JB
9386 /* odd, couldn't find the block group, leave it alone */
9387 if (!block_group)
9388 return -1;
1a40e23b 9389
cdcb725c 9390 min_free = btrfs_block_group_used(&block_group->item);
9391
ba1bf481 9392 /* no bytes used, we're good */
cdcb725c 9393 if (!min_free)
1a40e23b
ZY
9394 goto out;
9395
ba1bf481
JB
9396 space_info = block_group->space_info;
9397 spin_lock(&space_info->lock);
17d217fe 9398
ba1bf481 9399 full = space_info->full;
17d217fe 9400
ba1bf481
JB
9401 /*
9402 * if this is the last block group we have in this space, we can't
7ce618db
CM
9403 * relocate it unless we're able to allocate a new chunk below.
9404 *
9405 * Otherwise, we need to make sure we have room in the space to handle
9406 * all of the extents from this block group. If we can, we're good
ba1bf481 9407 */
7ce618db 9408 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9409 (space_info->bytes_used + space_info->bytes_reserved +
9410 space_info->bytes_pinned + space_info->bytes_readonly +
9411 min_free < space_info->total_bytes)) {
ba1bf481
JB
9412 spin_unlock(&space_info->lock);
9413 goto out;
17d217fe 9414 }
ba1bf481 9415 spin_unlock(&space_info->lock);
ea8c2819 9416
ba1bf481
JB
9417 /*
9418 * ok we don't have enough space, but maybe we have free space on our
9419 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9420 * alloc devices and guess if we have enough space. if this block
9421 * group is going to be restriped, run checks against the target
9422 * profile instead of the current one.
ba1bf481
JB
9423 */
9424 ret = -1;
ea8c2819 9425
cdcb725c 9426 /*
9427 * index:
9428 * 0: raid10
9429 * 1: raid1
9430 * 2: dup
9431 * 3: raid0
9432 * 4: single
9433 */
4a5e98f5
ID
9434 target = get_restripe_target(root->fs_info, block_group->flags);
9435 if (target) {
31e50229 9436 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9437 } else {
9438 /*
9439 * this is just a balance, so if we were marked as full
9440 * we know there is no space for a new chunk
9441 */
9442 if (full)
9443 goto out;
9444
9445 index = get_block_group_index(block_group);
9446 }
9447
e6ec716f 9448 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9449 dev_min = 4;
6719db6a
JB
9450 /* Divide by 2 */
9451 min_free >>= 1;
e6ec716f 9452 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9453 dev_min = 2;
e6ec716f 9454 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9455 /* Multiply by 2 */
9456 min_free <<= 1;
e6ec716f 9457 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9458 dev_min = fs_devices->rw_devices;
47c5713f 9459 min_free = div64_u64(min_free, dev_min);
cdcb725c 9460 }
9461
6df9a95e
JB
9462 /* We need to do this so that we can look at pending chunks */
9463 trans = btrfs_join_transaction(root);
9464 if (IS_ERR(trans)) {
9465 ret = PTR_ERR(trans);
9466 goto out;
9467 }
9468
ba1bf481
JB
9469 mutex_lock(&root->fs_info->chunk_mutex);
9470 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9471 u64 dev_offset;
56bec294 9472
ba1bf481
JB
9473 /*
9474 * check to make sure we can actually find a chunk with enough
9475 * space to fit our block group in.
9476 */
63a212ab
SB
9477 if (device->total_bytes > device->bytes_used + min_free &&
9478 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9479 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9480 &dev_offset, NULL);
ba1bf481 9481 if (!ret)
cdcb725c 9482 dev_nr++;
9483
9484 if (dev_nr >= dev_min)
73e48b27 9485 break;
cdcb725c 9486
ba1bf481 9487 ret = -1;
725c8463 9488 }
edbd8d4e 9489 }
ba1bf481 9490 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9491 btrfs_end_transaction(trans, root);
edbd8d4e 9492out:
ba1bf481 9493 btrfs_put_block_group(block_group);
edbd8d4e
CM
9494 return ret;
9495}
9496
b2950863
CH
9497static int find_first_block_group(struct btrfs_root *root,
9498 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9499{
925baedd 9500 int ret = 0;
0b86a832
CM
9501 struct btrfs_key found_key;
9502 struct extent_buffer *leaf;
9503 int slot;
edbd8d4e 9504
0b86a832
CM
9505 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9506 if (ret < 0)
925baedd
CM
9507 goto out;
9508
d397712b 9509 while (1) {
0b86a832 9510 slot = path->slots[0];
edbd8d4e 9511 leaf = path->nodes[0];
0b86a832
CM
9512 if (slot >= btrfs_header_nritems(leaf)) {
9513 ret = btrfs_next_leaf(root, path);
9514 if (ret == 0)
9515 continue;
9516 if (ret < 0)
925baedd 9517 goto out;
0b86a832 9518 break;
edbd8d4e 9519 }
0b86a832 9520 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9521
0b86a832 9522 if (found_key.objectid >= key->objectid &&
925baedd
CM
9523 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9524 ret = 0;
9525 goto out;
9526 }
0b86a832 9527 path->slots[0]++;
edbd8d4e 9528 }
925baedd 9529out:
0b86a832 9530 return ret;
edbd8d4e
CM
9531}
9532
0af3d00b
JB
9533void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9534{
9535 struct btrfs_block_group_cache *block_group;
9536 u64 last = 0;
9537
9538 while (1) {
9539 struct inode *inode;
9540
9541 block_group = btrfs_lookup_first_block_group(info, last);
9542 while (block_group) {
9543 spin_lock(&block_group->lock);
9544 if (block_group->iref)
9545 break;
9546 spin_unlock(&block_group->lock);
9547 block_group = next_block_group(info->tree_root,
9548 block_group);
9549 }
9550 if (!block_group) {
9551 if (last == 0)
9552 break;
9553 last = 0;
9554 continue;
9555 }
9556
9557 inode = block_group->inode;
9558 block_group->iref = 0;
9559 block_group->inode = NULL;
9560 spin_unlock(&block_group->lock);
9561 iput(inode);
9562 last = block_group->key.objectid + block_group->key.offset;
9563 btrfs_put_block_group(block_group);
9564 }
9565}
9566
1a40e23b
ZY
9567int btrfs_free_block_groups(struct btrfs_fs_info *info)
9568{
9569 struct btrfs_block_group_cache *block_group;
4184ea7f 9570 struct btrfs_space_info *space_info;
11833d66 9571 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9572 struct rb_node *n;
9573
9e351cc8 9574 down_write(&info->commit_root_sem);
11833d66
YZ
9575 while (!list_empty(&info->caching_block_groups)) {
9576 caching_ctl = list_entry(info->caching_block_groups.next,
9577 struct btrfs_caching_control, list);
9578 list_del(&caching_ctl->list);
9579 put_caching_control(caching_ctl);
9580 }
9e351cc8 9581 up_write(&info->commit_root_sem);
11833d66 9582
47ab2a6c
JB
9583 spin_lock(&info->unused_bgs_lock);
9584 while (!list_empty(&info->unused_bgs)) {
9585 block_group = list_first_entry(&info->unused_bgs,
9586 struct btrfs_block_group_cache,
9587 bg_list);
9588 list_del_init(&block_group->bg_list);
9589 btrfs_put_block_group(block_group);
9590 }
9591 spin_unlock(&info->unused_bgs_lock);
9592
1a40e23b
ZY
9593 spin_lock(&info->block_group_cache_lock);
9594 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9595 block_group = rb_entry(n, struct btrfs_block_group_cache,
9596 cache_node);
1a40e23b
ZY
9597 rb_erase(&block_group->cache_node,
9598 &info->block_group_cache_tree);
01eacb27 9599 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9600 spin_unlock(&info->block_group_cache_lock);
9601
80eb234a 9602 down_write(&block_group->space_info->groups_sem);
1a40e23b 9603 list_del(&block_group->list);
80eb234a 9604 up_write(&block_group->space_info->groups_sem);
d2fb3437 9605
817d52f8 9606 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9607 wait_block_group_cache_done(block_group);
817d52f8 9608
3c14874a
JB
9609 /*
9610 * We haven't cached this block group, which means we could
9611 * possibly have excluded extents on this block group.
9612 */
36cce922
JB
9613 if (block_group->cached == BTRFS_CACHE_NO ||
9614 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9615 free_excluded_extents(info->extent_root, block_group);
9616
817d52f8 9617 btrfs_remove_free_space_cache(block_group);
11dfe35a 9618 btrfs_put_block_group(block_group);
d899e052
YZ
9619
9620 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9621 }
9622 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9623
9624 /* now that all the block groups are freed, go through and
9625 * free all the space_info structs. This is only called during
9626 * the final stages of unmount, and so we know nobody is
9627 * using them. We call synchronize_rcu() once before we start,
9628 * just to be on the safe side.
9629 */
9630 synchronize_rcu();
9631
8929ecfa
YZ
9632 release_global_block_rsv(info);
9633
67871254 9634 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9635 int i;
9636
4184ea7f
CM
9637 space_info = list_entry(info->space_info.next,
9638 struct btrfs_space_info,
9639 list);
b069e0c3 9640 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9641 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9642 space_info->bytes_reserved > 0 ||
fae7f21c 9643 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9644 dump_space_info(space_info, 0, 0);
9645 }
f0486c68 9646 }
4184ea7f 9647 list_del(&space_info->list);
6ab0a202
JM
9648 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9649 struct kobject *kobj;
c1895442
JM
9650 kobj = space_info->block_group_kobjs[i];
9651 space_info->block_group_kobjs[i] = NULL;
9652 if (kobj) {
6ab0a202
JM
9653 kobject_del(kobj);
9654 kobject_put(kobj);
9655 }
9656 }
9657 kobject_del(&space_info->kobj);
9658 kobject_put(&space_info->kobj);
4184ea7f 9659 }
1a40e23b
ZY
9660 return 0;
9661}
9662
b742bb82
YZ
9663static void __link_block_group(struct btrfs_space_info *space_info,
9664 struct btrfs_block_group_cache *cache)
9665{
9666 int index = get_block_group_index(cache);
ed55b6ac 9667 bool first = false;
b742bb82
YZ
9668
9669 down_write(&space_info->groups_sem);
ed55b6ac
JM
9670 if (list_empty(&space_info->block_groups[index]))
9671 first = true;
9672 list_add_tail(&cache->list, &space_info->block_groups[index]);
9673 up_write(&space_info->groups_sem);
9674
9675 if (first) {
c1895442 9676 struct raid_kobject *rkobj;
6ab0a202
JM
9677 int ret;
9678
c1895442
JM
9679 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9680 if (!rkobj)
9681 goto out_err;
9682 rkobj->raid_type = index;
9683 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9684 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9685 "%s", get_raid_name(index));
6ab0a202 9686 if (ret) {
c1895442
JM
9687 kobject_put(&rkobj->kobj);
9688 goto out_err;
6ab0a202 9689 }
c1895442 9690 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9691 }
c1895442
JM
9692
9693 return;
9694out_err:
9695 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9696}
9697
920e4a58
MX
9698static struct btrfs_block_group_cache *
9699btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9700{
9701 struct btrfs_block_group_cache *cache;
9702
9703 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9704 if (!cache)
9705 return NULL;
9706
9707 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9708 GFP_NOFS);
9709 if (!cache->free_space_ctl) {
9710 kfree(cache);
9711 return NULL;
9712 }
9713
9714 cache->key.objectid = start;
9715 cache->key.offset = size;
9716 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9717
9718 cache->sectorsize = root->sectorsize;
9719 cache->fs_info = root->fs_info;
9720 cache->full_stripe_len = btrfs_full_stripe_len(root,
9721 &root->fs_info->mapping_tree,
9722 start);
1e144fb8
OS
9723 set_free_space_tree_thresholds(cache);
9724
920e4a58
MX
9725 atomic_set(&cache->count, 1);
9726 spin_lock_init(&cache->lock);
e570fd27 9727 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9728 INIT_LIST_HEAD(&cache->list);
9729 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9730 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9731 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9732 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9733 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9734 btrfs_init_free_space_ctl(cache);
04216820 9735 atomic_set(&cache->trimming, 0);
a5ed9182 9736 mutex_init(&cache->free_space_lock);
920e4a58
MX
9737
9738 return cache;
9739}
9740
9078a3e1
CM
9741int btrfs_read_block_groups(struct btrfs_root *root)
9742{
9743 struct btrfs_path *path;
9744 int ret;
9078a3e1 9745 struct btrfs_block_group_cache *cache;
be744175 9746 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9747 struct btrfs_space_info *space_info;
9078a3e1
CM
9748 struct btrfs_key key;
9749 struct btrfs_key found_key;
5f39d397 9750 struct extent_buffer *leaf;
0af3d00b
JB
9751 int need_clear = 0;
9752 u64 cache_gen;
96b5179d 9753
be744175 9754 root = info->extent_root;
9078a3e1 9755 key.objectid = 0;
0b86a832 9756 key.offset = 0;
962a298f 9757 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9758 path = btrfs_alloc_path();
9759 if (!path)
9760 return -ENOMEM;
e4058b54 9761 path->reada = READA_FORWARD;
9078a3e1 9762
6c41761f 9763 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9764 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9765 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9766 need_clear = 1;
88c2ba3b
JB
9767 if (btrfs_test_opt(root, CLEAR_CACHE))
9768 need_clear = 1;
0af3d00b 9769
d397712b 9770 while (1) {
0b86a832 9771 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9772 if (ret > 0)
9773 break;
0b86a832
CM
9774 if (ret != 0)
9775 goto error;
920e4a58 9776
5f39d397
CM
9777 leaf = path->nodes[0];
9778 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9779
9780 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9781 found_key.offset);
9078a3e1 9782 if (!cache) {
0b86a832 9783 ret = -ENOMEM;
f0486c68 9784 goto error;
9078a3e1 9785 }
96303081 9786
cf7c1ef6
LB
9787 if (need_clear) {
9788 /*
9789 * When we mount with old space cache, we need to
9790 * set BTRFS_DC_CLEAR and set dirty flag.
9791 *
9792 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9793 * truncate the old free space cache inode and
9794 * setup a new one.
9795 * b) Setting 'dirty flag' makes sure that we flush
9796 * the new space cache info onto disk.
9797 */
cf7c1ef6 9798 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9799 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9800 }
0af3d00b 9801
5f39d397
CM
9802 read_extent_buffer(leaf, &cache->item,
9803 btrfs_item_ptr_offset(leaf, path->slots[0]),
9804 sizeof(cache->item));
920e4a58 9805 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9806
9078a3e1 9807 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9808 btrfs_release_path(path);
34d52cb6 9809
3c14874a
JB
9810 /*
9811 * We need to exclude the super stripes now so that the space
9812 * info has super bytes accounted for, otherwise we'll think
9813 * we have more space than we actually do.
9814 */
835d974f
JB
9815 ret = exclude_super_stripes(root, cache);
9816 if (ret) {
9817 /*
9818 * We may have excluded something, so call this just in
9819 * case.
9820 */
9821 free_excluded_extents(root, cache);
920e4a58 9822 btrfs_put_block_group(cache);
835d974f
JB
9823 goto error;
9824 }
3c14874a 9825
817d52f8
JB
9826 /*
9827 * check for two cases, either we are full, and therefore
9828 * don't need to bother with the caching work since we won't
9829 * find any space, or we are empty, and we can just add all
9830 * the space in and be done with it. This saves us _alot_ of
9831 * time, particularly in the full case.
9832 */
9833 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9834 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9835 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9836 free_excluded_extents(root, cache);
817d52f8 9837 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9838 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9839 cache->cached = BTRFS_CACHE_FINISHED;
9840 add_new_free_space(cache, root->fs_info,
9841 found_key.objectid,
9842 found_key.objectid +
9843 found_key.offset);
11833d66 9844 free_excluded_extents(root, cache);
817d52f8 9845 }
96b5179d 9846
8c579fe7
JB
9847 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9848 if (ret) {
9849 btrfs_remove_free_space_cache(cache);
9850 btrfs_put_block_group(cache);
9851 goto error;
9852 }
9853
6324fbf3
CM
9854 ret = update_space_info(info, cache->flags, found_key.offset,
9855 btrfs_block_group_used(&cache->item),
9856 &space_info);
8c579fe7
JB
9857 if (ret) {
9858 btrfs_remove_free_space_cache(cache);
9859 spin_lock(&info->block_group_cache_lock);
9860 rb_erase(&cache->cache_node,
9861 &info->block_group_cache_tree);
01eacb27 9862 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9863 spin_unlock(&info->block_group_cache_lock);
9864 btrfs_put_block_group(cache);
9865 goto error;
9866 }
9867
6324fbf3 9868 cache->space_info = space_info;
1b2da372 9869 spin_lock(&cache->space_info->lock);
f0486c68 9870 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9871 spin_unlock(&cache->space_info->lock);
9872
b742bb82 9873 __link_block_group(space_info, cache);
0f9dd46c 9874
75ccf47d 9875 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9876 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9877 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9878 } else if (btrfs_block_group_used(&cache->item) == 0) {
9879 spin_lock(&info->unused_bgs_lock);
9880 /* Should always be true but just in case. */
9881 if (list_empty(&cache->bg_list)) {
9882 btrfs_get_block_group(cache);
9883 list_add_tail(&cache->bg_list,
9884 &info->unused_bgs);
9885 }
9886 spin_unlock(&info->unused_bgs_lock);
9887 }
9078a3e1 9888 }
b742bb82
YZ
9889
9890 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9891 if (!(get_alloc_profile(root, space_info->flags) &
9892 (BTRFS_BLOCK_GROUP_RAID10 |
9893 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9894 BTRFS_BLOCK_GROUP_RAID5 |
9895 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9896 BTRFS_BLOCK_GROUP_DUP)))
9897 continue;
9898 /*
9899 * avoid allocating from un-mirrored block group if there are
9900 * mirrored block groups.
9901 */
1095cc0d 9902 list_for_each_entry(cache,
9903 &space_info->block_groups[BTRFS_RAID_RAID0],
9904 list)
868f401a 9905 inc_block_group_ro(cache, 1);
1095cc0d 9906 list_for_each_entry(cache,
9907 &space_info->block_groups[BTRFS_RAID_SINGLE],
9908 list)
868f401a 9909 inc_block_group_ro(cache, 1);
9078a3e1 9910 }
f0486c68
YZ
9911
9912 init_global_block_rsv(info);
0b86a832
CM
9913 ret = 0;
9914error:
9078a3e1 9915 btrfs_free_path(path);
0b86a832 9916 return ret;
9078a3e1 9917}
6324fbf3 9918
ea658bad
JB
9919void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9920 struct btrfs_root *root)
9921{
9922 struct btrfs_block_group_cache *block_group, *tmp;
9923 struct btrfs_root *extent_root = root->fs_info->extent_root;
9924 struct btrfs_block_group_item item;
9925 struct btrfs_key key;
9926 int ret = 0;
d9a0540a 9927 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9928
d9a0540a 9929 trans->can_flush_pending_bgs = false;
47ab2a6c 9930 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9931 if (ret)
c92f6be3 9932 goto next;
ea658bad
JB
9933
9934 spin_lock(&block_group->lock);
9935 memcpy(&item, &block_group->item, sizeof(item));
9936 memcpy(&key, &block_group->key, sizeof(key));
9937 spin_unlock(&block_group->lock);
9938
9939 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9940 sizeof(item));
9941 if (ret)
9942 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9943 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9944 key.objectid, key.offset);
9945 if (ret)
9946 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
9947 add_block_group_free_space(trans, root->fs_info, block_group);
9948 /* already aborted the transaction if it failed. */
c92f6be3
FM
9949next:
9950 list_del_init(&block_group->bg_list);
ea658bad 9951 }
d9a0540a 9952 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9953}
9954
6324fbf3
CM
9955int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9956 struct btrfs_root *root, u64 bytes_used,
e17cade2 9957 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9958 u64 size)
9959{
9960 int ret;
6324fbf3
CM
9961 struct btrfs_root *extent_root;
9962 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9963
9964 extent_root = root->fs_info->extent_root;
6324fbf3 9965
995946dd 9966 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9967
920e4a58 9968 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9969 if (!cache)
9970 return -ENOMEM;
34d52cb6 9971
6324fbf3 9972 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9973 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9974 btrfs_set_block_group_flags(&cache->item, type);
9975
920e4a58 9976 cache->flags = type;
11833d66 9977 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9978 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 9979 cache->needs_free_space = 1;
835d974f
JB
9980 ret = exclude_super_stripes(root, cache);
9981 if (ret) {
9982 /*
9983 * We may have excluded something, so call this just in
9984 * case.
9985 */
9986 free_excluded_extents(root, cache);
920e4a58 9987 btrfs_put_block_group(cache);
835d974f
JB
9988 return ret;
9989 }
96303081 9990
817d52f8
JB
9991 add_new_free_space(cache, root->fs_info, chunk_offset,
9992 chunk_offset + size);
9993
11833d66
YZ
9994 free_excluded_extents(root, cache);
9995
d0bd4560
JB
9996#ifdef CONFIG_BTRFS_DEBUG
9997 if (btrfs_should_fragment_free_space(root, cache)) {
9998 u64 new_bytes_used = size - bytes_used;
9999
10000 bytes_used += new_bytes_used >> 1;
10001 fragment_free_space(root, cache);
10002 }
10003#endif
2e6e5183
FM
10004 /*
10005 * Call to ensure the corresponding space_info object is created and
10006 * assigned to our block group, but don't update its counters just yet.
10007 * We want our bg to be added to the rbtree with its ->space_info set.
10008 */
10009 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10010 &cache->space_info);
10011 if (ret) {
10012 btrfs_remove_free_space_cache(cache);
10013 btrfs_put_block_group(cache);
10014 return ret;
10015 }
10016
8c579fe7
JB
10017 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10018 if (ret) {
10019 btrfs_remove_free_space_cache(cache);
10020 btrfs_put_block_group(cache);
10021 return ret;
10022 }
10023
2e6e5183
FM
10024 /*
10025 * Now that our block group has its ->space_info set and is inserted in
10026 * the rbtree, update the space info's counters.
10027 */
6324fbf3
CM
10028 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10029 &cache->space_info);
8c579fe7
JB
10030 if (ret) {
10031 btrfs_remove_free_space_cache(cache);
10032 spin_lock(&root->fs_info->block_group_cache_lock);
10033 rb_erase(&cache->cache_node,
10034 &root->fs_info->block_group_cache_tree);
01eacb27 10035 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10036 spin_unlock(&root->fs_info->block_group_cache_lock);
10037 btrfs_put_block_group(cache);
10038 return ret;
10039 }
c7c144db 10040 update_global_block_rsv(root->fs_info);
1b2da372
JB
10041
10042 spin_lock(&cache->space_info->lock);
f0486c68 10043 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10044 spin_unlock(&cache->space_info->lock);
10045
b742bb82 10046 __link_block_group(cache->space_info, cache);
6324fbf3 10047
47ab2a6c 10048 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10049
d18a2c44 10050 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 10051
6324fbf3
CM
10052 return 0;
10053}
1a40e23b 10054
10ea00f5
ID
10055static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10056{
899c81ea
ID
10057 u64 extra_flags = chunk_to_extended(flags) &
10058 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10059
de98ced9 10060 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10061 if (flags & BTRFS_BLOCK_GROUP_DATA)
10062 fs_info->avail_data_alloc_bits &= ~extra_flags;
10063 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10064 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10065 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10066 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10067 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10068}
10069
1a40e23b 10070int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10071 struct btrfs_root *root, u64 group_start,
10072 struct extent_map *em)
1a40e23b
ZY
10073{
10074 struct btrfs_path *path;
10075 struct btrfs_block_group_cache *block_group;
44fb5511 10076 struct btrfs_free_cluster *cluster;
0af3d00b 10077 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10078 struct btrfs_key key;
0af3d00b 10079 struct inode *inode;
c1895442 10080 struct kobject *kobj = NULL;
1a40e23b 10081 int ret;
10ea00f5 10082 int index;
89a55897 10083 int factor;
4f69cb98 10084 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10085 bool remove_em;
1a40e23b 10086
1a40e23b
ZY
10087 root = root->fs_info->extent_root;
10088
10089 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10090 BUG_ON(!block_group);
c146afad 10091 BUG_ON(!block_group->ro);
1a40e23b 10092
9f7c43c9 10093 /*
10094 * Free the reserved super bytes from this block group before
10095 * remove it.
10096 */
10097 free_excluded_extents(root, block_group);
10098
1a40e23b 10099 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10100 index = get_block_group_index(block_group);
89a55897
JB
10101 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10102 BTRFS_BLOCK_GROUP_RAID1 |
10103 BTRFS_BLOCK_GROUP_RAID10))
10104 factor = 2;
10105 else
10106 factor = 1;
1a40e23b 10107
44fb5511
CM
10108 /* make sure this block group isn't part of an allocation cluster */
10109 cluster = &root->fs_info->data_alloc_cluster;
10110 spin_lock(&cluster->refill_lock);
10111 btrfs_return_cluster_to_free_space(block_group, cluster);
10112 spin_unlock(&cluster->refill_lock);
10113
10114 /*
10115 * make sure this block group isn't part of a metadata
10116 * allocation cluster
10117 */
10118 cluster = &root->fs_info->meta_alloc_cluster;
10119 spin_lock(&cluster->refill_lock);
10120 btrfs_return_cluster_to_free_space(block_group, cluster);
10121 spin_unlock(&cluster->refill_lock);
10122
1a40e23b 10123 path = btrfs_alloc_path();
d8926bb3
MF
10124 if (!path) {
10125 ret = -ENOMEM;
10126 goto out;
10127 }
1a40e23b 10128
1bbc621e
CM
10129 /*
10130 * get the inode first so any iput calls done for the io_list
10131 * aren't the final iput (no unlinks allowed now)
10132 */
10b2f34d 10133 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10134
10135 mutex_lock(&trans->transaction->cache_write_mutex);
10136 /*
10137 * make sure our free spache cache IO is done before remove the
10138 * free space inode
10139 */
10140 spin_lock(&trans->transaction->dirty_bgs_lock);
10141 if (!list_empty(&block_group->io_list)) {
10142 list_del_init(&block_group->io_list);
10143
10144 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10145
10146 spin_unlock(&trans->transaction->dirty_bgs_lock);
10147 btrfs_wait_cache_io(root, trans, block_group,
10148 &block_group->io_ctl, path,
10149 block_group->key.objectid);
10150 btrfs_put_block_group(block_group);
10151 spin_lock(&trans->transaction->dirty_bgs_lock);
10152 }
10153
10154 if (!list_empty(&block_group->dirty_list)) {
10155 list_del_init(&block_group->dirty_list);
10156 btrfs_put_block_group(block_group);
10157 }
10158 spin_unlock(&trans->transaction->dirty_bgs_lock);
10159 mutex_unlock(&trans->transaction->cache_write_mutex);
10160
0af3d00b 10161 if (!IS_ERR(inode)) {
b532402e 10162 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10163 if (ret) {
10164 btrfs_add_delayed_iput(inode);
10165 goto out;
10166 }
0af3d00b
JB
10167 clear_nlink(inode);
10168 /* One for the block groups ref */
10169 spin_lock(&block_group->lock);
10170 if (block_group->iref) {
10171 block_group->iref = 0;
10172 block_group->inode = NULL;
10173 spin_unlock(&block_group->lock);
10174 iput(inode);
10175 } else {
10176 spin_unlock(&block_group->lock);
10177 }
10178 /* One for our lookup ref */
455757c3 10179 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10180 }
10181
10182 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10183 key.offset = block_group->key.objectid;
10184 key.type = 0;
10185
10186 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10187 if (ret < 0)
10188 goto out;
10189 if (ret > 0)
b3b4aa74 10190 btrfs_release_path(path);
0af3d00b
JB
10191 if (ret == 0) {
10192 ret = btrfs_del_item(trans, tree_root, path);
10193 if (ret)
10194 goto out;
b3b4aa74 10195 btrfs_release_path(path);
0af3d00b
JB
10196 }
10197
3dfdb934 10198 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10199 rb_erase(&block_group->cache_node,
10200 &root->fs_info->block_group_cache_tree);
292cbd51 10201 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10202
10203 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10204 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10205 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10206
80eb234a 10207 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10208 /*
10209 * we must use list_del_init so people can check to see if they
10210 * are still on the list after taking the semaphore
10211 */
10212 list_del_init(&block_group->list);
6ab0a202 10213 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10214 kobj = block_group->space_info->block_group_kobjs[index];
10215 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10216 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10217 }
80eb234a 10218 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10219 if (kobj) {
10220 kobject_del(kobj);
10221 kobject_put(kobj);
10222 }
1a40e23b 10223
4f69cb98
FM
10224 if (block_group->has_caching_ctl)
10225 caching_ctl = get_caching_control(block_group);
817d52f8 10226 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10227 wait_block_group_cache_done(block_group);
4f69cb98
FM
10228 if (block_group->has_caching_ctl) {
10229 down_write(&root->fs_info->commit_root_sem);
10230 if (!caching_ctl) {
10231 struct btrfs_caching_control *ctl;
10232
10233 list_for_each_entry(ctl,
10234 &root->fs_info->caching_block_groups, list)
10235 if (ctl->block_group == block_group) {
10236 caching_ctl = ctl;
10237 atomic_inc(&caching_ctl->count);
10238 break;
10239 }
10240 }
10241 if (caching_ctl)
10242 list_del_init(&caching_ctl->list);
10243 up_write(&root->fs_info->commit_root_sem);
10244 if (caching_ctl) {
10245 /* Once for the caching bgs list and once for us. */
10246 put_caching_control(caching_ctl);
10247 put_caching_control(caching_ctl);
10248 }
10249 }
817d52f8 10250
ce93ec54
JB
10251 spin_lock(&trans->transaction->dirty_bgs_lock);
10252 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10253 WARN_ON(1);
10254 }
10255 if (!list_empty(&block_group->io_list)) {
10256 WARN_ON(1);
ce93ec54
JB
10257 }
10258 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10259 btrfs_remove_free_space_cache(block_group);
10260
c146afad 10261 spin_lock(&block_group->space_info->lock);
75c68e9f 10262 list_del_init(&block_group->ro_list);
18d018ad
ZL
10263
10264 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10265 WARN_ON(block_group->space_info->total_bytes
10266 < block_group->key.offset);
10267 WARN_ON(block_group->space_info->bytes_readonly
10268 < block_group->key.offset);
10269 WARN_ON(block_group->space_info->disk_total
10270 < block_group->key.offset * factor);
10271 }
c146afad
YZ
10272 block_group->space_info->total_bytes -= block_group->key.offset;
10273 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10274 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10275
c146afad 10276 spin_unlock(&block_group->space_info->lock);
283bb197 10277
0af3d00b
JB
10278 memcpy(&key, &block_group->key, sizeof(key));
10279
04216820 10280 lock_chunks(root);
495e64f4
FM
10281 if (!list_empty(&em->list)) {
10282 /* We're in the transaction->pending_chunks list. */
10283 free_extent_map(em);
10284 }
04216820
FM
10285 spin_lock(&block_group->lock);
10286 block_group->removed = 1;
10287 /*
10288 * At this point trimming can't start on this block group, because we
10289 * removed the block group from the tree fs_info->block_group_cache_tree
10290 * so no one can't find it anymore and even if someone already got this
10291 * block group before we removed it from the rbtree, they have already
10292 * incremented block_group->trimming - if they didn't, they won't find
10293 * any free space entries because we already removed them all when we
10294 * called btrfs_remove_free_space_cache().
10295 *
10296 * And we must not remove the extent map from the fs_info->mapping_tree
10297 * to prevent the same logical address range and physical device space
10298 * ranges from being reused for a new block group. This is because our
10299 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10300 * completely transactionless, so while it is trimming a range the
10301 * currently running transaction might finish and a new one start,
10302 * allowing for new block groups to be created that can reuse the same
10303 * physical device locations unless we take this special care.
e33e17ee
JM
10304 *
10305 * There may also be an implicit trim operation if the file system
10306 * is mounted with -odiscard. The same protections must remain
10307 * in place until the extents have been discarded completely when
10308 * the transaction commit has completed.
04216820
FM
10309 */
10310 remove_em = (atomic_read(&block_group->trimming) == 0);
10311 /*
10312 * Make sure a trimmer task always sees the em in the pinned_chunks list
10313 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10314 * before checking block_group->removed).
10315 */
10316 if (!remove_em) {
10317 /*
10318 * Our em might be in trans->transaction->pending_chunks which
10319 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10320 * and so is the fs_info->pinned_chunks list.
10321 *
10322 * So at this point we must be holding the chunk_mutex to avoid
10323 * any races with chunk allocation (more specifically at
10324 * volumes.c:contains_pending_extent()), to ensure it always
10325 * sees the em, either in the pending_chunks list or in the
10326 * pinned_chunks list.
10327 */
10328 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10329 }
10330 spin_unlock(&block_group->lock);
04216820
FM
10331
10332 if (remove_em) {
10333 struct extent_map_tree *em_tree;
10334
10335 em_tree = &root->fs_info->mapping_tree.map_tree;
10336 write_lock(&em_tree->lock);
8dbcd10f
FM
10337 /*
10338 * The em might be in the pending_chunks list, so make sure the
10339 * chunk mutex is locked, since remove_extent_mapping() will
10340 * delete us from that list.
10341 */
04216820
FM
10342 remove_extent_mapping(em_tree, em);
10343 write_unlock(&em_tree->lock);
10344 /* once for the tree */
10345 free_extent_map(em);
10346 }
10347
8dbcd10f
FM
10348 unlock_chunks(root);
10349
1e144fb8
OS
10350 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10351 if (ret)
10352 goto out;
10353
fa9c0d79
CM
10354 btrfs_put_block_group(block_group);
10355 btrfs_put_block_group(block_group);
1a40e23b
ZY
10356
10357 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10358 if (ret > 0)
10359 ret = -EIO;
10360 if (ret < 0)
10361 goto out;
10362
10363 ret = btrfs_del_item(trans, root, path);
10364out:
10365 btrfs_free_path(path);
10366 return ret;
10367}
acce952b 10368
8eab77ff 10369struct btrfs_trans_handle *
7fd01182
FM
10370btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10371 const u64 chunk_offset)
8eab77ff 10372{
7fd01182
FM
10373 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10374 struct extent_map *em;
10375 struct map_lookup *map;
10376 unsigned int num_items;
10377
10378 read_lock(&em_tree->lock);
10379 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10380 read_unlock(&em_tree->lock);
10381 ASSERT(em && em->start == chunk_offset);
10382
8eab77ff 10383 /*
7fd01182
FM
10384 * We need to reserve 3 + N units from the metadata space info in order
10385 * to remove a block group (done at btrfs_remove_chunk() and at
10386 * btrfs_remove_block_group()), which are used for:
10387 *
8eab77ff
FM
10388 * 1 unit for adding the free space inode's orphan (located in the tree
10389 * of tree roots).
7fd01182
FM
10390 * 1 unit for deleting the block group item (located in the extent
10391 * tree).
10392 * 1 unit for deleting the free space item (located in tree of tree
10393 * roots).
10394 * N units for deleting N device extent items corresponding to each
10395 * stripe (located in the device tree).
10396 *
10397 * In order to remove a block group we also need to reserve units in the
10398 * system space info in order to update the chunk tree (update one or
10399 * more device items and remove one chunk item), but this is done at
10400 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10401 */
95617d69 10402 map = em->map_lookup;
7fd01182
FM
10403 num_items = 3 + map->num_stripes;
10404 free_extent_map(em);
10405
8eab77ff 10406 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10407 num_items, 1);
8eab77ff
FM
10408}
10409
47ab2a6c
JB
10410/*
10411 * Process the unused_bgs list and remove any that don't have any allocated
10412 * space inside of them.
10413 */
10414void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10415{
10416 struct btrfs_block_group_cache *block_group;
10417 struct btrfs_space_info *space_info;
10418 struct btrfs_root *root = fs_info->extent_root;
10419 struct btrfs_trans_handle *trans;
10420 int ret = 0;
10421
10422 if (!fs_info->open)
10423 return;
10424
10425 spin_lock(&fs_info->unused_bgs_lock);
10426 while (!list_empty(&fs_info->unused_bgs)) {
10427 u64 start, end;
e33e17ee 10428 int trimming;
47ab2a6c
JB
10429
10430 block_group = list_first_entry(&fs_info->unused_bgs,
10431 struct btrfs_block_group_cache,
10432 bg_list);
47ab2a6c 10433 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10434
10435 space_info = block_group->space_info;
10436
47ab2a6c
JB
10437 if (ret || btrfs_mixed_space_info(space_info)) {
10438 btrfs_put_block_group(block_group);
10439 continue;
10440 }
10441 spin_unlock(&fs_info->unused_bgs_lock);
10442
d5f2e33b 10443 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10444
47ab2a6c
JB
10445 /* Don't want to race with allocators so take the groups_sem */
10446 down_write(&space_info->groups_sem);
10447 spin_lock(&block_group->lock);
10448 if (block_group->reserved ||
10449 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10450 block_group->ro ||
10451 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10452 /*
10453 * We want to bail if we made new allocations or have
10454 * outstanding allocations in this block group. We do
10455 * the ro check in case balance is currently acting on
10456 * this block group.
10457 */
10458 spin_unlock(&block_group->lock);
10459 up_write(&space_info->groups_sem);
10460 goto next;
10461 }
10462 spin_unlock(&block_group->lock);
10463
10464 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10465 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10466 up_write(&space_info->groups_sem);
10467 if (ret < 0) {
10468 ret = 0;
10469 goto next;
10470 }
10471
10472 /*
10473 * Want to do this before we do anything else so we can recover
10474 * properly if we fail to join the transaction.
10475 */
7fd01182
FM
10476 trans = btrfs_start_trans_remove_block_group(fs_info,
10477 block_group->key.objectid);
47ab2a6c 10478 if (IS_ERR(trans)) {
868f401a 10479 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10480 ret = PTR_ERR(trans);
10481 goto next;
10482 }
10483
10484 /*
10485 * We could have pending pinned extents for this block group,
10486 * just delete them, we don't care about them anymore.
10487 */
10488 start = block_group->key.objectid;
10489 end = start + block_group->key.offset - 1;
d4b450cd
FM
10490 /*
10491 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10492 * btrfs_finish_extent_commit(). If we are at transaction N,
10493 * another task might be running finish_extent_commit() for the
10494 * previous transaction N - 1, and have seen a range belonging
10495 * to the block group in freed_extents[] before we were able to
10496 * clear the whole block group range from freed_extents[]. This
10497 * means that task can lookup for the block group after we
10498 * unpinned it from freed_extents[] and removed it, leading to
10499 * a BUG_ON() at btrfs_unpin_extent_range().
10500 */
10501 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10502 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10503 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10504 if (ret) {
d4b450cd 10505 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10506 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10507 goto end_trans;
10508 }
10509 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10510 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10511 if (ret) {
d4b450cd 10512 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10513 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10514 goto end_trans;
10515 }
d4b450cd 10516 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10517
10518 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10519 spin_lock(&space_info->lock);
10520 spin_lock(&block_group->lock);
10521
10522 space_info->bytes_pinned -= block_group->pinned;
10523 space_info->bytes_readonly += block_group->pinned;
10524 percpu_counter_add(&space_info->total_bytes_pinned,
10525 -block_group->pinned);
47ab2a6c
JB
10526 block_group->pinned = 0;
10527
c30666d4
ZL
10528 spin_unlock(&block_group->lock);
10529 spin_unlock(&space_info->lock);
10530
e33e17ee
JM
10531 /* DISCARD can flip during remount */
10532 trimming = btrfs_test_opt(root, DISCARD);
10533
10534 /* Implicit trim during transaction commit. */
10535 if (trimming)
10536 btrfs_get_block_group_trimming(block_group);
10537
47ab2a6c
JB
10538 /*
10539 * Btrfs_remove_chunk will abort the transaction if things go
10540 * horribly wrong.
10541 */
10542 ret = btrfs_remove_chunk(trans, root,
10543 block_group->key.objectid);
e33e17ee
JM
10544
10545 if (ret) {
10546 if (trimming)
10547 btrfs_put_block_group_trimming(block_group);
10548 goto end_trans;
10549 }
10550
10551 /*
10552 * If we're not mounted with -odiscard, we can just forget
10553 * about this block group. Otherwise we'll need to wait
10554 * until transaction commit to do the actual discard.
10555 */
10556 if (trimming) {
348a0013
FM
10557 spin_lock(&fs_info->unused_bgs_lock);
10558 /*
10559 * A concurrent scrub might have added us to the list
10560 * fs_info->unused_bgs, so use a list_move operation
10561 * to add the block group to the deleted_bgs list.
10562 */
e33e17ee
JM
10563 list_move(&block_group->bg_list,
10564 &trans->transaction->deleted_bgs);
348a0013 10565 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10566 btrfs_get_block_group(block_group);
10567 }
758eb51e 10568end_trans:
47ab2a6c
JB
10569 btrfs_end_transaction(trans, root);
10570next:
d5f2e33b 10571 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10572 btrfs_put_block_group(block_group);
10573 spin_lock(&fs_info->unused_bgs_lock);
10574 }
10575 spin_unlock(&fs_info->unused_bgs_lock);
10576}
10577
c59021f8 10578int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10579{
10580 struct btrfs_space_info *space_info;
1aba86d6 10581 struct btrfs_super_block *disk_super;
10582 u64 features;
10583 u64 flags;
10584 int mixed = 0;
c59021f8 10585 int ret;
10586
6c41761f 10587 disk_super = fs_info->super_copy;
1aba86d6 10588 if (!btrfs_super_root(disk_super))
0dc924c5 10589 return -EINVAL;
c59021f8 10590
1aba86d6 10591 features = btrfs_super_incompat_flags(disk_super);
10592 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10593 mixed = 1;
c59021f8 10594
1aba86d6 10595 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10596 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10597 if (ret)
1aba86d6 10598 goto out;
c59021f8 10599
1aba86d6 10600 if (mixed) {
10601 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10602 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10603 } else {
10604 flags = BTRFS_BLOCK_GROUP_METADATA;
10605 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10606 if (ret)
10607 goto out;
10608
10609 flags = BTRFS_BLOCK_GROUP_DATA;
10610 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10611 }
10612out:
c59021f8 10613 return ret;
10614}
10615
acce952b 10616int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10617{
678886bd 10618 return unpin_extent_range(root, start, end, false);
acce952b 10619}
10620
499f377f
JM
10621/*
10622 * It used to be that old block groups would be left around forever.
10623 * Iterating over them would be enough to trim unused space. Since we
10624 * now automatically remove them, we also need to iterate over unallocated
10625 * space.
10626 *
10627 * We don't want a transaction for this since the discard may take a
10628 * substantial amount of time. We don't require that a transaction be
10629 * running, but we do need to take a running transaction into account
10630 * to ensure that we're not discarding chunks that were released in
10631 * the current transaction.
10632 *
10633 * Holding the chunks lock will prevent other threads from allocating
10634 * or releasing chunks, but it won't prevent a running transaction
10635 * from committing and releasing the memory that the pending chunks
10636 * list head uses. For that, we need to take a reference to the
10637 * transaction.
10638 */
10639static int btrfs_trim_free_extents(struct btrfs_device *device,
10640 u64 minlen, u64 *trimmed)
10641{
10642 u64 start = 0, len = 0;
10643 int ret;
10644
10645 *trimmed = 0;
10646
10647 /* Not writeable = nothing to do. */
10648 if (!device->writeable)
10649 return 0;
10650
10651 /* No free space = nothing to do. */
10652 if (device->total_bytes <= device->bytes_used)
10653 return 0;
10654
10655 ret = 0;
10656
10657 while (1) {
10658 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10659 struct btrfs_transaction *trans;
10660 u64 bytes;
10661
10662 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10663 if (ret)
10664 return ret;
10665
10666 down_read(&fs_info->commit_root_sem);
10667
10668 spin_lock(&fs_info->trans_lock);
10669 trans = fs_info->running_transaction;
10670 if (trans)
10671 atomic_inc(&trans->use_count);
10672 spin_unlock(&fs_info->trans_lock);
10673
10674 ret = find_free_dev_extent_start(trans, device, minlen, start,
10675 &start, &len);
10676 if (trans)
10677 btrfs_put_transaction(trans);
10678
10679 if (ret) {
10680 up_read(&fs_info->commit_root_sem);
10681 mutex_unlock(&fs_info->chunk_mutex);
10682 if (ret == -ENOSPC)
10683 ret = 0;
10684 break;
10685 }
10686
10687 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10688 up_read(&fs_info->commit_root_sem);
10689 mutex_unlock(&fs_info->chunk_mutex);
10690
10691 if (ret)
10692 break;
10693
10694 start += len;
10695 *trimmed += bytes;
10696
10697 if (fatal_signal_pending(current)) {
10698 ret = -ERESTARTSYS;
10699 break;
10700 }
10701
10702 cond_resched();
10703 }
10704
10705 return ret;
10706}
10707
f7039b1d
LD
10708int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10709{
10710 struct btrfs_fs_info *fs_info = root->fs_info;
10711 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10712 struct btrfs_device *device;
10713 struct list_head *devices;
f7039b1d
LD
10714 u64 group_trimmed;
10715 u64 start;
10716 u64 end;
10717 u64 trimmed = 0;
2cac13e4 10718 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10719 int ret = 0;
10720
2cac13e4
LB
10721 /*
10722 * try to trim all FS space, our block group may start from non-zero.
10723 */
10724 if (range->len == total_bytes)
10725 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10726 else
10727 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10728
10729 while (cache) {
10730 if (cache->key.objectid >= (range->start + range->len)) {
10731 btrfs_put_block_group(cache);
10732 break;
10733 }
10734
10735 start = max(range->start, cache->key.objectid);
10736 end = min(range->start + range->len,
10737 cache->key.objectid + cache->key.offset);
10738
10739 if (end - start >= range->minlen) {
10740 if (!block_group_cache_done(cache)) {
f6373bf3 10741 ret = cache_block_group(cache, 0);
1be41b78
JB
10742 if (ret) {
10743 btrfs_put_block_group(cache);
10744 break;
10745 }
10746 ret = wait_block_group_cache_done(cache);
10747 if (ret) {
10748 btrfs_put_block_group(cache);
10749 break;
10750 }
f7039b1d
LD
10751 }
10752 ret = btrfs_trim_block_group(cache,
10753 &group_trimmed,
10754 start,
10755 end,
10756 range->minlen);
10757
10758 trimmed += group_trimmed;
10759 if (ret) {
10760 btrfs_put_block_group(cache);
10761 break;
10762 }
10763 }
10764
10765 cache = next_block_group(fs_info->tree_root, cache);
10766 }
10767
499f377f
JM
10768 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10769 devices = &root->fs_info->fs_devices->alloc_list;
10770 list_for_each_entry(device, devices, dev_alloc_list) {
10771 ret = btrfs_trim_free_extents(device, range->minlen,
10772 &group_trimmed);
10773 if (ret)
10774 break;
10775
10776 trimmed += group_trimmed;
10777 }
10778 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10779
f7039b1d
LD
10780 range->len = trimmed;
10781 return ret;
10782}
8257b2dc
MX
10783
10784/*
9ea24bbe
FM
10785 * btrfs_{start,end}_write_no_snapshoting() are similar to
10786 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10787 * data into the page cache through nocow before the subvolume is snapshoted,
10788 * but flush the data into disk after the snapshot creation, or to prevent
10789 * operations while snapshoting is ongoing and that cause the snapshot to be
10790 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10791 */
9ea24bbe 10792void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10793{
10794 percpu_counter_dec(&root->subv_writers->counter);
10795 /*
a83342aa 10796 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10797 */
10798 smp_mb();
10799 if (waitqueue_active(&root->subv_writers->wait))
10800 wake_up(&root->subv_writers->wait);
10801}
10802
9ea24bbe 10803int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10804{
ee39b432 10805 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10806 return 0;
10807
10808 percpu_counter_inc(&root->subv_writers->counter);
10809 /*
10810 * Make sure counter is updated before we check for snapshot creation.
10811 */
10812 smp_mb();
ee39b432 10813 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10814 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10815 return 0;
10816 }
10817 return 1;
10818}