]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/file.c
btrfs: root->fs_info cleanup, io_ctl_init
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
39279cc3 30#include <linux/compat.h>
5a0e3ad6 31#include <linux/slab.h>
55e301fd 32#include <linux/btrfs.h>
e2e40f2c 33#include <linux/uio.h>
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
2aaa6655 41#include "volumes.h"
fcebe456 42#include "qgroup.h"
ebb8765b 43#include "compression.h"
39279cc3 44
9247f317 45static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
762f2263
MX
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
4cb5300b
CM
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
8ddc4734 95static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
96 struct inode_defrag *defrag)
97{
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
762f2263 102 int ret;
4cb5300b
CM
103
104 p = &root->fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
762f2263
MX
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
4cb5300b 111 p = &parent->rb_left;
762f2263 112 else if (ret > 0)
4cb5300b
CM
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
8ddc4734 123 return -EEXIST;
4cb5300b
CM
124 }
125 }
72ac3c0d 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
129 return 0;
130}
4cb5300b 131
8ddc4734
MX
132static inline int __need_auto_defrag(struct btrfs_root *root)
133{
3cdde224 134 if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG))
8ddc4734
MX
135 return 0;
136
137 if (btrfs_fs_closing(root->fs_info))
138 return 0;
4cb5300b 139
8ddc4734 140 return 1;
4cb5300b
CM
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct inode *inode)
149{
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
4cb5300b 152 u64 transid;
8ddc4734 153 int ret;
4cb5300b 154
8ddc4734 155 if (!__need_auto_defrag(root))
4cb5300b
CM
156 return 0;
157
72ac3c0d 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
159 return 0;
160
161 if (trans)
162 transid = trans->transid;
163 else
164 transid = BTRFS_I(inode)->root->last_trans;
165
9247f317 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
167 if (!defrag)
168 return -ENOMEM;
169
a4689d2b 170 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
173
174 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 /*
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 */
181 ret = __btrfs_add_inode_defrag(inode, defrag);
182 if (ret)
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 } else {
9247f317 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 186 }
4cb5300b 187 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 188 return 0;
4cb5300b
CM
189}
190
191/*
8ddc4734
MX
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 195 */
48a3b636
ES
196static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
8ddc4734
MX
198{
199 struct btrfs_root *root = BTRFS_I(inode)->root;
200 int ret;
201
202 if (!__need_auto_defrag(root))
203 goto out;
204
205 /*
206 * Here we don't check the IN_DEFRAG flag, because we need merge
207 * them together.
208 */
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
212 if (ret)
213 goto out;
214 return;
215out:
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217}
218
4cb5300b 219/*
26176e7c
MX
220 * pick the defragable inode that we want, if it doesn't exist, we will get
221 * the next one.
4cb5300b 222 */
26176e7c
MX
223static struct inode_defrag *
224btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
225{
226 struct inode_defrag *entry = NULL;
762f2263 227 struct inode_defrag tmp;
4cb5300b
CM
228 struct rb_node *p;
229 struct rb_node *parent = NULL;
762f2263
MX
230 int ret;
231
232 tmp.ino = ino;
233 tmp.root = root;
4cb5300b 234
26176e7c
MX
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
237 while (p) {
238 parent = p;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
240
762f2263
MX
241 ret = __compare_inode_defrag(&tmp, entry);
242 if (ret < 0)
4cb5300b 243 p = parent->rb_left;
762f2263 244 else if (ret > 0)
4cb5300b
CM
245 p = parent->rb_right;
246 else
26176e7c 247 goto out;
4cb5300b
CM
248 }
249
26176e7c
MX
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
252 if (parent)
4cb5300b 253 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
254 else
255 entry = NULL;
4cb5300b 256 }
26176e7c
MX
257out:
258 if (entry)
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
261 return entry;
4cb5300b
CM
262}
263
26176e7c 264void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
265{
266 struct inode_defrag *defrag;
26176e7c
MX
267 struct rb_node *node;
268
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
271 while (node) {
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275
351810c1 276 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
277
278 node = rb_first(&fs_info->defrag_inodes);
279 }
280 spin_unlock(&fs_info->defrag_inodes_lock);
281}
282
283#define BTRFS_DEFRAG_BATCH 1024
284
285static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 struct inode_defrag *defrag)
287{
4cb5300b
CM
288 struct btrfs_root *inode_root;
289 struct inode *inode;
4cb5300b
CM
290 struct btrfs_key key;
291 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 292 int num_defrag;
6f1c3605
LB
293 int index;
294 int ret;
4cb5300b 295
26176e7c
MX
296 /* get the inode */
297 key.objectid = defrag->root;
962a298f 298 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 299 key.offset = (u64)-1;
6f1c3605
LB
300
301 index = srcu_read_lock(&fs_info->subvol_srcu);
302
26176e7c
MX
303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 if (IS_ERR(inode_root)) {
6f1c3605
LB
305 ret = PTR_ERR(inode_root);
306 goto cleanup;
307 }
26176e7c
MX
308
309 key.objectid = defrag->ino;
962a298f 310 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
311 key.offset = 0;
312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 if (IS_ERR(inode)) {
6f1c3605
LB
314 ret = PTR_ERR(inode);
315 goto cleanup;
26176e7c 316 }
6f1c3605 317 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
318
319 /* do a chunk of defrag */
320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
321 memset(&range, 0, sizeof(range));
322 range.len = (u64)-1;
26176e7c 323 range.start = defrag->last_offset;
b66f00da
MX
324
325 sb_start_write(fs_info->sb);
26176e7c
MX
326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 BTRFS_DEFRAG_BATCH);
b66f00da 328 sb_end_write(fs_info->sb);
26176e7c
MX
329 /*
330 * if we filled the whole defrag batch, there
331 * must be more work to do. Queue this defrag
332 * again
333 */
334 if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 defrag->last_offset = range.start;
336 btrfs_requeue_inode_defrag(inode, defrag);
337 } else if (defrag->last_offset && !defrag->cycled) {
338 /*
339 * we didn't fill our defrag batch, but
340 * we didn't start at zero. Make sure we loop
341 * around to the start of the file.
342 */
343 defrag->last_offset = 0;
344 defrag->cycled = 1;
345 btrfs_requeue_inode_defrag(inode, defrag);
346 } else {
347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 }
349
350 iput(inode);
351 return 0;
6f1c3605
LB
352cleanup:
353 srcu_read_unlock(&fs_info->subvol_srcu, index);
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 return ret;
26176e7c
MX
356}
357
358/*
359 * run through the list of inodes in the FS that need
360 * defragging
361 */
362int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363{
364 struct inode_defrag *defrag;
365 u64 first_ino = 0;
366 u64 root_objectid = 0;
4cb5300b
CM
367
368 atomic_inc(&fs_info->defrag_running);
67871254 369 while (1) {
dc81cdc5
MX
370 /* Pause the auto defragger. */
371 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 &fs_info->fs_state))
373 break;
374
26176e7c
MX
375 if (!__need_auto_defrag(fs_info->tree_root))
376 break;
4cb5300b
CM
377
378 /* find an inode to defrag */
26176e7c
MX
379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 first_ino);
4cb5300b 381 if (!defrag) {
26176e7c 382 if (root_objectid || first_ino) {
762f2263 383 root_objectid = 0;
4cb5300b
CM
384 first_ino = 0;
385 continue;
386 } else {
387 break;
388 }
389 }
390
4cb5300b 391 first_ino = defrag->ino + 1;
762f2263 392 root_objectid = defrag->root;
4cb5300b 393
26176e7c 394 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 395 }
4cb5300b
CM
396 atomic_dec(&fs_info->defrag_running);
397
398 /*
399 * during unmount, we use the transaction_wait queue to
400 * wait for the defragger to stop
401 */
402 wake_up(&fs_info->transaction_wait);
403 return 0;
404}
39279cc3 405
d352ac68
CM
406/* simple helper to fault in pages and copy. This should go away
407 * and be replaced with calls into generic code.
408 */
ee22f0c4 409static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 410 struct page **prepared_pages,
11c65dcc 411 struct iov_iter *i)
39279cc3 412{
914ee295 413 size_t copied = 0;
d0215f3e 414 size_t total_copied = 0;
11c65dcc 415 int pg = 0;
09cbfeaf 416 int offset = pos & (PAGE_SIZE - 1);
39279cc3 417
11c65dcc 418 while (write_bytes > 0) {
39279cc3 419 size_t count = min_t(size_t,
09cbfeaf 420 PAGE_SIZE - offset, write_bytes);
11c65dcc 421 struct page *page = prepared_pages[pg];
914ee295
XZ
422 /*
423 * Copy data from userspace to the current page
914ee295 424 */
914ee295 425 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 426
39279cc3
CM
427 /* Flush processor's dcache for this page */
428 flush_dcache_page(page);
31339acd
CM
429
430 /*
431 * if we get a partial write, we can end up with
432 * partially up to date pages. These add
433 * a lot of complexity, so make sure they don't
434 * happen by forcing this copy to be retried.
435 *
436 * The rest of the btrfs_file_write code will fall
437 * back to page at a time copies after we return 0.
438 */
439 if (!PageUptodate(page) && copied < count)
440 copied = 0;
441
11c65dcc
JB
442 iov_iter_advance(i, copied);
443 write_bytes -= copied;
914ee295 444 total_copied += copied;
39279cc3 445
b30ac0fc 446 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 447 if (unlikely(copied == 0))
914ee295 448 break;
11c65dcc 449
09cbfeaf 450 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
451 offset += copied;
452 } else {
453 pg++;
454 offset = 0;
455 }
39279cc3 456 }
914ee295 457 return total_copied;
39279cc3
CM
458}
459
d352ac68
CM
460/*
461 * unlocks pages after btrfs_file_write is done with them
462 */
48a3b636 463static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
464{
465 size_t i;
466 for (i = 0; i < num_pages; i++) {
d352ac68
CM
467 /* page checked is some magic around finding pages that
468 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
469 * clear it here. There should be no need to mark the pages
470 * accessed as prepare_pages should have marked them accessed
471 * in prepare_pages via find_or_create_page()
d352ac68 472 */
4a096752 473 ClearPageChecked(pages[i]);
39279cc3 474 unlock_page(pages[i]);
09cbfeaf 475 put_page(pages[i]);
39279cc3
CM
476 }
477}
478
d352ac68
CM
479/*
480 * after copy_from_user, pages need to be dirtied and we need to make
481 * sure holes are created between the current EOF and the start of
482 * any next extents (if required).
483 *
484 * this also makes the decision about creating an inline extent vs
485 * doing real data extents, marking pages dirty and delalloc as required.
486 */
be1a12a0 487int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
48a3b636
ES
488 struct page **pages, size_t num_pages,
489 loff_t pos, size_t write_bytes,
490 struct extent_state **cached)
39279cc3 491{
39279cc3 492 int err = 0;
a52d9a80 493 int i;
db94535d 494 u64 num_bytes;
a52d9a80
CM
495 u64 start_pos;
496 u64 end_of_last_block;
497 u64 end_pos = pos + write_bytes;
498 loff_t isize = i_size_read(inode);
39279cc3 499
5f39d397 500 start_pos = pos & ~((u64)root->sectorsize - 1);
2e78c927 501 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
39279cc3 502
db94535d 503 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 504 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
ba8b04c1 505 cached, 0);
d0215f3e
JB
506 if (err)
507 return err;
9ed74f2d 508
c8b97818
CM
509 for (i = 0; i < num_pages; i++) {
510 struct page *p = pages[i];
511 SetPageUptodate(p);
512 ClearPageChecked(p);
513 set_page_dirty(p);
a52d9a80 514 }
9f570b8d
JB
515
516 /*
517 * we've only changed i_size in ram, and we haven't updated
518 * the disk i_size. There is no need to log the inode
519 * at this time.
520 */
521 if (end_pos > isize)
a52d9a80 522 i_size_write(inode, end_pos);
a22285a6 523 return 0;
39279cc3
CM
524}
525
d352ac68
CM
526/*
527 * this drops all the extents in the cache that intersect the range
528 * [start, end]. Existing extents are split as required.
529 */
7014cdb4
JB
530void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
531 int skip_pinned)
a52d9a80
CM
532{
533 struct extent_map *em;
3b951516
CM
534 struct extent_map *split = NULL;
535 struct extent_map *split2 = NULL;
a52d9a80 536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 537 u64 len = end - start + 1;
5dc562c5 538 u64 gen;
3b951516
CM
539 int ret;
540 int testend = 1;
5b21f2ed 541 unsigned long flags;
c8b97818 542 int compressed = 0;
09a2a8f9 543 bool modified;
a52d9a80 544
e6dcd2dc 545 WARN_ON(end < start);
3b951516 546 if (end == (u64)-1) {
39b5637f 547 len = (u64)-1;
3b951516
CM
548 testend = 0;
549 }
d397712b 550 while (1) {
7014cdb4
JB
551 int no_splits = 0;
552
09a2a8f9 553 modified = false;
3b951516 554 if (!split)
172ddd60 555 split = alloc_extent_map();
3b951516 556 if (!split2)
172ddd60 557 split2 = alloc_extent_map();
7014cdb4
JB
558 if (!split || !split2)
559 no_splits = 1;
3b951516 560
890871be 561 write_lock(&em_tree->lock);
39b5637f 562 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 563 if (!em) {
890871be 564 write_unlock(&em_tree->lock);
a52d9a80 565 break;
d1310b2e 566 }
5b21f2ed 567 flags = em->flags;
5dc562c5 568 gen = em->generation;
5b21f2ed 569 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 570 if (testend && em->start + em->len >= start + len) {
5b21f2ed 571 free_extent_map(em);
a1ed835e 572 write_unlock(&em_tree->lock);
5b21f2ed
ZY
573 break;
574 }
55ef6899
YZ
575 start = em->start + em->len;
576 if (testend)
5b21f2ed 577 len = start + len - (em->start + em->len);
5b21f2ed 578 free_extent_map(em);
a1ed835e 579 write_unlock(&em_tree->lock);
5b21f2ed
ZY
580 continue;
581 }
c8b97818 582 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 583 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 584 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 585 modified = !list_empty(&em->list);
7014cdb4
JB
586 if (no_splits)
587 goto next;
3b951516 588
ee20a983 589 if (em->start < start) {
3b951516
CM
590 split->start = em->start;
591 split->len = start - em->start;
ee20a983
JB
592
593 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
594 split->orig_start = em->orig_start;
595 split->block_start = em->block_start;
596
597 if (compressed)
598 split->block_len = em->block_len;
599 else
600 split->block_len = split->len;
601 split->orig_block_len = max(split->block_len,
602 em->orig_block_len);
603 split->ram_bytes = em->ram_bytes;
604 } else {
605 split->orig_start = split->start;
606 split->block_len = 0;
607 split->block_start = em->block_start;
608 split->orig_block_len = 0;
609 split->ram_bytes = split->len;
610 }
611
5dc562c5 612 split->generation = gen;
3b951516 613 split->bdev = em->bdev;
5b21f2ed 614 split->flags = flags;
261507a0 615 split->compress_type = em->compress_type;
176840b3 616 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
617 free_extent_map(split);
618 split = split2;
619 split2 = NULL;
620 }
ee20a983 621 if (testend && em->start + em->len > start + len) {
3b951516
CM
622 u64 diff = start + len - em->start;
623
624 split->start = start + len;
625 split->len = em->start + em->len - (start + len);
626 split->bdev = em->bdev;
5b21f2ed 627 split->flags = flags;
261507a0 628 split->compress_type = em->compress_type;
5dc562c5 629 split->generation = gen;
ee20a983
JB
630
631 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
632 split->orig_block_len = max(em->block_len,
b4939680 633 em->orig_block_len);
3b951516 634
ee20a983
JB
635 split->ram_bytes = em->ram_bytes;
636 if (compressed) {
637 split->block_len = em->block_len;
638 split->block_start = em->block_start;
639 split->orig_start = em->orig_start;
640 } else {
641 split->block_len = split->len;
642 split->block_start = em->block_start
643 + diff;
644 split->orig_start = em->orig_start;
645 }
c8b97818 646 } else {
ee20a983
JB
647 split->ram_bytes = split->len;
648 split->orig_start = split->start;
649 split->block_len = 0;
650 split->block_start = em->block_start;
651 split->orig_block_len = 0;
c8b97818 652 }
3b951516 653
176840b3
FM
654 if (extent_map_in_tree(em)) {
655 replace_extent_mapping(em_tree, em, split,
656 modified);
657 } else {
658 ret = add_extent_mapping(em_tree, split,
659 modified);
660 ASSERT(ret == 0); /* Logic error */
661 }
3b951516
CM
662 free_extent_map(split);
663 split = NULL;
664 }
7014cdb4 665next:
176840b3
FM
666 if (extent_map_in_tree(em))
667 remove_extent_mapping(em_tree, em);
890871be 668 write_unlock(&em_tree->lock);
d1310b2e 669
a52d9a80
CM
670 /* once for us */
671 free_extent_map(em);
672 /* once for the tree*/
673 free_extent_map(em);
674 }
3b951516
CM
675 if (split)
676 free_extent_map(split);
677 if (split2)
678 free_extent_map(split2);
a52d9a80
CM
679}
680
39279cc3
CM
681/*
682 * this is very complex, but the basic idea is to drop all extents
683 * in the range start - end. hint_block is filled in with a block number
684 * that would be a good hint to the block allocator for this file.
685 *
686 * If an extent intersects the range but is not entirely inside the range
687 * it is either truncated or split. Anything entirely inside the range
688 * is deleted from the tree.
689 */
5dc562c5
JB
690int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
691 struct btrfs_root *root, struct inode *inode,
692 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
693 u64 *drop_end, int drop_cache,
694 int replace_extent,
695 u32 extent_item_size,
696 int *key_inserted)
39279cc3 697{
5f39d397 698 struct extent_buffer *leaf;
920bbbfb 699 struct btrfs_file_extent_item *fi;
00f5c795 700 struct btrfs_key key;
920bbbfb 701 struct btrfs_key new_key;
33345d01 702 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
703 u64 search_start = start;
704 u64 disk_bytenr = 0;
705 u64 num_bytes = 0;
706 u64 extent_offset = 0;
707 u64 extent_end = 0;
62fe51c1 708 u64 last_end = start;
920bbbfb
YZ
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
ccd467d6 712 int recow;
00f5c795 713 int ret;
dc7fdde3 714 int modify_tree = -1;
27cdeb70 715 int update_refs;
c3308f84 716 int found = 0;
1acae57b 717 int leafs_visited = 0;
39279cc3 718
a1ed835e
CM
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 721
d5f37527 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
723 modify_tree = 0;
724
27cdeb70
MX
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
d397712b 727 while (1) {
ccd467d6 728 recow = 0;
33345d01 729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 730 search_start, modify_tree);
39279cc3 731 if (ret < 0)
920bbbfb
YZ
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 736 if (key.objectid == ino &&
920bbbfb
YZ
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
39279cc3 739 }
920bbbfb 740 ret = 0;
1acae57b 741 leafs_visited++;
8c2383c3 742next_slot:
5f39d397 743 leaf = path->nodes[0];
920bbbfb
YZ
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
8c2383c3 752 }
1acae57b 753 leafs_visited++;
920bbbfb
YZ
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
759
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
767 }
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
769 break;
770
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
774
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
514ac8ad
CM
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
8c2383c3 786 } else {
aeafbf84
FM
787 /* can't happen */
788 BUG();
39279cc3
CM
789 }
790
fc19c5e7
FM
791 /*
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
799 */
62fe51c1
JB
800 if (extent_end == key.offset && extent_end >= search_start) {
801 last_end = extent_end;
fc19c5e7 802 goto delete_extent_item;
62fe51c1 803 }
fc19c5e7 804
920bbbfb
YZ
805 if (extent_end <= search_start) {
806 path->slots[0]++;
8c2383c3 807 goto next_slot;
39279cc3
CM
808 }
809
c3308f84 810 found = 1;
920bbbfb 811 search_start = max(key.offset, start);
dc7fdde3
CM
812 if (recow || !modify_tree) {
813 modify_tree = -1;
b3b4aa74 814 btrfs_release_path(path);
920bbbfb 815 continue;
39279cc3 816 }
6643558d 817
920bbbfb
YZ
818 /*
819 * | - range to drop - |
820 * | -------- extent -------- |
821 */
822 if (start > key.offset && end < extent_end) {
823 BUG_ON(del_nr > 0);
00fdf13a 824 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 825 ret = -EOPNOTSUPP;
00fdf13a
LB
826 break;
827 }
920bbbfb
YZ
828
829 memcpy(&new_key, &key, sizeof(new_key));
830 new_key.offset = start;
831 ret = btrfs_duplicate_item(trans, root, path,
832 &new_key);
833 if (ret == -EAGAIN) {
b3b4aa74 834 btrfs_release_path(path);
920bbbfb 835 continue;
6643558d 836 }
920bbbfb
YZ
837 if (ret < 0)
838 break;
839
840 leaf = path->nodes[0];
841 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
842 struct btrfs_file_extent_item);
843 btrfs_set_file_extent_num_bytes(leaf, fi,
844 start - key.offset);
845
846 fi = btrfs_item_ptr(leaf, path->slots[0],
847 struct btrfs_file_extent_item);
848
849 extent_offset += start - key.offset;
850 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
851 btrfs_set_file_extent_num_bytes(leaf, fi,
852 extent_end - start);
853 btrfs_mark_buffer_dirty(leaf);
854
5dc562c5 855 if (update_refs && disk_bytenr > 0) {
771ed689 856 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
857 disk_bytenr, num_bytes, 0,
858 root->root_key.objectid,
859 new_key.objectid,
b06c4bf5 860 start - extent_offset);
79787eaa 861 BUG_ON(ret); /* -ENOMEM */
771ed689 862 }
920bbbfb 863 key.offset = start;
6643558d 864 }
62fe51c1
JB
865 /*
866 * From here on out we will have actually dropped something, so
867 * last_end can be updated.
868 */
869 last_end = extent_end;
870
920bbbfb
YZ
871 /*
872 * | ---- range to drop ----- |
873 * | -------- extent -------- |
874 */
875 if (start <= key.offset && end < extent_end) {
00fdf13a 876 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 877 ret = -EOPNOTSUPP;
00fdf13a
LB
878 break;
879 }
6643558d 880
920bbbfb
YZ
881 memcpy(&new_key, &key, sizeof(new_key));
882 new_key.offset = end;
b7a0365e 883 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
6643558d 884
920bbbfb
YZ
885 extent_offset += end - key.offset;
886 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
887 btrfs_set_file_extent_num_bytes(leaf, fi,
888 extent_end - end);
889 btrfs_mark_buffer_dirty(leaf);
2671485d 890 if (update_refs && disk_bytenr > 0)
920bbbfb 891 inode_sub_bytes(inode, end - key.offset);
920bbbfb 892 break;
39279cc3 893 }
771ed689 894
920bbbfb
YZ
895 search_start = extent_end;
896 /*
897 * | ---- range to drop ----- |
898 * | -------- extent -------- |
899 */
900 if (start > key.offset && end >= extent_end) {
901 BUG_ON(del_nr > 0);
00fdf13a 902 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 903 ret = -EOPNOTSUPP;
00fdf13a
LB
904 break;
905 }
8c2383c3 906
920bbbfb
YZ
907 btrfs_set_file_extent_num_bytes(leaf, fi,
908 start - key.offset);
909 btrfs_mark_buffer_dirty(leaf);
2671485d 910 if (update_refs && disk_bytenr > 0)
920bbbfb 911 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
912 if (end == extent_end)
913 break;
c8b97818 914
920bbbfb
YZ
915 path->slots[0]++;
916 goto next_slot;
31840ae1
ZY
917 }
918
920bbbfb
YZ
919 /*
920 * | ---- range to drop ----- |
921 * | ------ extent ------ |
922 */
923 if (start <= key.offset && end >= extent_end) {
fc19c5e7 924delete_extent_item:
920bbbfb
YZ
925 if (del_nr == 0) {
926 del_slot = path->slots[0];
927 del_nr = 1;
928 } else {
929 BUG_ON(del_slot + del_nr != path->slots[0]);
930 del_nr++;
931 }
31840ae1 932
5dc562c5
JB
933 if (update_refs &&
934 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 935 inode_sub_bytes(inode,
920bbbfb
YZ
936 extent_end - key.offset);
937 extent_end = ALIGN(extent_end,
938 root->sectorsize);
5dc562c5 939 } else if (update_refs && disk_bytenr > 0) {
31840ae1 940 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
941 disk_bytenr, num_bytes, 0,
942 root->root_key.objectid,
5d4f98a2 943 key.objectid, key.offset -
b06c4bf5 944 extent_offset);
79787eaa 945 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
946 inode_sub_bytes(inode,
947 extent_end - key.offset);
31840ae1 948 }
31840ae1 949
920bbbfb
YZ
950 if (end == extent_end)
951 break;
952
953 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
954 path->slots[0]++;
955 goto next_slot;
956 }
957
958 ret = btrfs_del_items(trans, root, path, del_slot,
959 del_nr);
79787eaa 960 if (ret) {
66642832 961 btrfs_abort_transaction(trans, ret);
5dc562c5 962 break;
79787eaa 963 }
920bbbfb
YZ
964
965 del_nr = 0;
966 del_slot = 0;
967
b3b4aa74 968 btrfs_release_path(path);
920bbbfb 969 continue;
39279cc3 970 }
920bbbfb
YZ
971
972 BUG_ON(1);
39279cc3 973 }
920bbbfb 974
79787eaa 975 if (!ret && del_nr > 0) {
1acae57b
FDBM
976 /*
977 * Set path->slots[0] to first slot, so that after the delete
978 * if items are move off from our leaf to its immediate left or
979 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 980 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
981 */
982 path->slots[0] = del_slot;
920bbbfb 983 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 984 if (ret)
66642832 985 btrfs_abort_transaction(trans, ret);
d5f37527 986 }
1acae57b 987
d5f37527
FDBM
988 leaf = path->nodes[0];
989 /*
990 * If btrfs_del_items() was called, it might have deleted a leaf, in
991 * which case it unlocked our path, so check path->locks[0] matches a
992 * write lock.
993 */
994 if (!ret && replace_extent && leafs_visited == 1 &&
995 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
996 path->locks[0] == BTRFS_WRITE_LOCK) &&
997 btrfs_leaf_free_space(root, leaf) >=
998 sizeof(struct btrfs_item) + extent_item_size) {
999
1000 key.objectid = ino;
1001 key.type = BTRFS_EXTENT_DATA_KEY;
1002 key.offset = start;
1003 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1004 struct btrfs_key slot_key;
1005
1006 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1007 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1008 path->slots[0]++;
1acae57b 1009 }
d5f37527
FDBM
1010 setup_items_for_insert(root, path, &key,
1011 &extent_item_size,
1012 extent_item_size,
1013 sizeof(struct btrfs_item) +
1014 extent_item_size, 1);
1015 *key_inserted = 1;
6643558d 1016 }
920bbbfb 1017
1acae57b
FDBM
1018 if (!replace_extent || !(*key_inserted))
1019 btrfs_release_path(path);
2aaa6655 1020 if (drop_end)
62fe51c1 1021 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1022 return ret;
1023}
1024
1025int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1026 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1027 u64 end, int drop_cache)
5dc562c5
JB
1028{
1029 struct btrfs_path *path;
1030 int ret;
1031
1032 path = btrfs_alloc_path();
1033 if (!path)
1034 return -ENOMEM;
2aaa6655 1035 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1036 drop_cache, 0, 0, NULL);
920bbbfb 1037 btrfs_free_path(path);
39279cc3
CM
1038 return ret;
1039}
1040
d899e052 1041static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1042 u64 objectid, u64 bytenr, u64 orig_offset,
1043 u64 *start, u64 *end)
d899e052
YZ
1044{
1045 struct btrfs_file_extent_item *fi;
1046 struct btrfs_key key;
1047 u64 extent_end;
1048
1049 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1050 return 0;
1051
1052 btrfs_item_key_to_cpu(leaf, &key, slot);
1053 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1054 return 0;
1055
1056 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1057 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1058 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1059 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1060 btrfs_file_extent_compression(leaf, fi) ||
1061 btrfs_file_extent_encryption(leaf, fi) ||
1062 btrfs_file_extent_other_encoding(leaf, fi))
1063 return 0;
1064
1065 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1066 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1067 return 0;
1068
1069 *start = key.offset;
1070 *end = extent_end;
1071 return 1;
1072}
1073
1074/*
1075 * Mark extent in the range start - end as written.
1076 *
1077 * This changes extent type from 'pre-allocated' to 'regular'. If only
1078 * part of extent is marked as written, the extent will be split into
1079 * two or three.
1080 */
1081int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1082 struct inode *inode, u64 start, u64 end)
1083{
920bbbfb 1084 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1085 struct extent_buffer *leaf;
1086 struct btrfs_path *path;
1087 struct btrfs_file_extent_item *fi;
1088 struct btrfs_key key;
920bbbfb 1089 struct btrfs_key new_key;
d899e052
YZ
1090 u64 bytenr;
1091 u64 num_bytes;
1092 u64 extent_end;
5d4f98a2 1093 u64 orig_offset;
d899e052
YZ
1094 u64 other_start;
1095 u64 other_end;
920bbbfb
YZ
1096 u64 split;
1097 int del_nr = 0;
1098 int del_slot = 0;
6c7d54ac 1099 int recow;
d899e052 1100 int ret;
33345d01 1101 u64 ino = btrfs_ino(inode);
d899e052 1102
d899e052 1103 path = btrfs_alloc_path();
d8926bb3
MF
1104 if (!path)
1105 return -ENOMEM;
d899e052 1106again:
6c7d54ac 1107 recow = 0;
920bbbfb 1108 split = start;
33345d01 1109 key.objectid = ino;
d899e052 1110 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1111 key.offset = split;
d899e052
YZ
1112
1113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1114 if (ret < 0)
1115 goto out;
d899e052
YZ
1116 if (ret > 0 && path->slots[0] > 0)
1117 path->slots[0]--;
1118
1119 leaf = path->nodes[0];
1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1121 if (key.objectid != ino ||
1122 key.type != BTRFS_EXTENT_DATA_KEY) {
1123 ret = -EINVAL;
1124 btrfs_abort_transaction(trans, ret);
1125 goto out;
1126 }
d899e052
YZ
1127 fi = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
9c8e63db
JB
1129 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1130 ret = -EINVAL;
1131 btrfs_abort_transaction(trans, ret);
1132 goto out;
1133 }
d899e052 1134 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1135 if (key.offset > start || extent_end < end) {
1136 ret = -EINVAL;
1137 btrfs_abort_transaction(trans, ret);
1138 goto out;
1139 }
d899e052
YZ
1140
1141 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1142 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1143 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1144 memcpy(&new_key, &key, sizeof(new_key));
1145
1146 if (start == key.offset && end < extent_end) {
1147 other_start = 0;
1148 other_end = start;
1149 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1150 ino, bytenr, orig_offset,
6c7d54ac
YZ
1151 &other_start, &other_end)) {
1152 new_key.offset = end;
b7a0365e 1153 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
6c7d54ac
YZ
1154 fi = btrfs_item_ptr(leaf, path->slots[0],
1155 struct btrfs_file_extent_item);
224ecce5
JB
1156 btrfs_set_file_extent_generation(leaf, fi,
1157 trans->transid);
6c7d54ac
YZ
1158 btrfs_set_file_extent_num_bytes(leaf, fi,
1159 extent_end - end);
1160 btrfs_set_file_extent_offset(leaf, fi,
1161 end - orig_offset);
1162 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1163 struct btrfs_file_extent_item);
224ecce5
JB
1164 btrfs_set_file_extent_generation(leaf, fi,
1165 trans->transid);
6c7d54ac
YZ
1166 btrfs_set_file_extent_num_bytes(leaf, fi,
1167 end - other_start);
1168 btrfs_mark_buffer_dirty(leaf);
1169 goto out;
1170 }
1171 }
1172
1173 if (start > key.offset && end == extent_end) {
1174 other_start = end;
1175 other_end = 0;
1176 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1177 ino, bytenr, orig_offset,
6c7d54ac
YZ
1178 &other_start, &other_end)) {
1179 fi = btrfs_item_ptr(leaf, path->slots[0],
1180 struct btrfs_file_extent_item);
1181 btrfs_set_file_extent_num_bytes(leaf, fi,
1182 start - key.offset);
224ecce5
JB
1183 btrfs_set_file_extent_generation(leaf, fi,
1184 trans->transid);
6c7d54ac
YZ
1185 path->slots[0]++;
1186 new_key.offset = start;
b7a0365e 1187 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
6c7d54ac
YZ
1188
1189 fi = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_file_extent_item);
224ecce5
JB
1191 btrfs_set_file_extent_generation(leaf, fi,
1192 trans->transid);
6c7d54ac
YZ
1193 btrfs_set_file_extent_num_bytes(leaf, fi,
1194 other_end - start);
1195 btrfs_set_file_extent_offset(leaf, fi,
1196 start - orig_offset);
1197 btrfs_mark_buffer_dirty(leaf);
1198 goto out;
1199 }
1200 }
d899e052 1201
920bbbfb
YZ
1202 while (start > key.offset || end < extent_end) {
1203 if (key.offset == start)
1204 split = end;
1205
920bbbfb
YZ
1206 new_key.offset = split;
1207 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1208 if (ret == -EAGAIN) {
b3b4aa74 1209 btrfs_release_path(path);
920bbbfb 1210 goto again;
d899e052 1211 }
79787eaa 1212 if (ret < 0) {
66642832 1213 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1214 goto out;
1215 }
d899e052 1216
920bbbfb
YZ
1217 leaf = path->nodes[0];
1218 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1219 struct btrfs_file_extent_item);
224ecce5 1220 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1221 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1222 split - key.offset);
1223
1224 fi = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_file_extent_item);
1226
224ecce5 1227 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1228 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1229 btrfs_set_file_extent_num_bytes(leaf, fi,
1230 extent_end - split);
d899e052
YZ
1231 btrfs_mark_buffer_dirty(leaf);
1232
920bbbfb
YZ
1233 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1234 root->root_key.objectid,
b06c4bf5 1235 ino, orig_offset);
9c8e63db
JB
1236 if (ret) {
1237 btrfs_abort_transaction(trans, ret);
1238 goto out;
1239 }
d899e052 1240
920bbbfb
YZ
1241 if (split == start) {
1242 key.offset = start;
1243 } else {
9c8e63db
JB
1244 if (start != key.offset) {
1245 ret = -EINVAL;
1246 btrfs_abort_transaction(trans, ret);
1247 goto out;
1248 }
d899e052 1249 path->slots[0]--;
920bbbfb 1250 extent_end = end;
d899e052 1251 }
6c7d54ac 1252 recow = 1;
d899e052
YZ
1253 }
1254
920bbbfb
YZ
1255 other_start = end;
1256 other_end = 0;
6c7d54ac 1257 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1258 ino, bytenr, orig_offset,
6c7d54ac
YZ
1259 &other_start, &other_end)) {
1260 if (recow) {
b3b4aa74 1261 btrfs_release_path(path);
6c7d54ac
YZ
1262 goto again;
1263 }
920bbbfb
YZ
1264 extent_end = other_end;
1265 del_slot = path->slots[0] + 1;
1266 del_nr++;
1267 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1268 0, root->root_key.objectid,
b06c4bf5 1269 ino, orig_offset);
9c8e63db
JB
1270 if (ret) {
1271 btrfs_abort_transaction(trans, ret);
1272 goto out;
1273 }
d899e052 1274 }
920bbbfb
YZ
1275 other_start = 0;
1276 other_end = start;
6c7d54ac 1277 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1278 ino, bytenr, orig_offset,
6c7d54ac
YZ
1279 &other_start, &other_end)) {
1280 if (recow) {
b3b4aa74 1281 btrfs_release_path(path);
6c7d54ac
YZ
1282 goto again;
1283 }
920bbbfb
YZ
1284 key.offset = other_start;
1285 del_slot = path->slots[0];
1286 del_nr++;
1287 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1288 0, root->root_key.objectid,
b06c4bf5 1289 ino, orig_offset);
9c8e63db
JB
1290 if (ret) {
1291 btrfs_abort_transaction(trans, ret);
1292 goto out;
1293 }
920bbbfb
YZ
1294 }
1295 if (del_nr == 0) {
3f6fae95
SL
1296 fi = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_file_extent_item);
920bbbfb
YZ
1298 btrfs_set_file_extent_type(leaf, fi,
1299 BTRFS_FILE_EXTENT_REG);
224ecce5 1300 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1301 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1302 } else {
3f6fae95
SL
1303 fi = btrfs_item_ptr(leaf, del_slot - 1,
1304 struct btrfs_file_extent_item);
6c7d54ac
YZ
1305 btrfs_set_file_extent_type(leaf, fi,
1306 BTRFS_FILE_EXTENT_REG);
224ecce5 1307 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1308 btrfs_set_file_extent_num_bytes(leaf, fi,
1309 extent_end - key.offset);
1310 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1311
6c7d54ac 1312 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1313 if (ret < 0) {
66642832 1314 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1315 goto out;
1316 }
6c7d54ac 1317 }
920bbbfb 1318out:
d899e052
YZ
1319 btrfs_free_path(path);
1320 return 0;
1321}
1322
b1bf862e
CM
1323/*
1324 * on error we return an unlocked page and the error value
1325 * on success we return a locked page and 0
1326 */
bb1591b4
CM
1327static int prepare_uptodate_page(struct inode *inode,
1328 struct page *page, u64 pos,
b6316429 1329 bool force_uptodate)
b1bf862e
CM
1330{
1331 int ret = 0;
1332
09cbfeaf 1333 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1334 !PageUptodate(page)) {
b1bf862e
CM
1335 ret = btrfs_readpage(NULL, page);
1336 if (ret)
1337 return ret;
1338 lock_page(page);
1339 if (!PageUptodate(page)) {
1340 unlock_page(page);
1341 return -EIO;
1342 }
bb1591b4
CM
1343 if (page->mapping != inode->i_mapping) {
1344 unlock_page(page);
1345 return -EAGAIN;
1346 }
b1bf862e
CM
1347 }
1348 return 0;
1349}
1350
39279cc3 1351/*
376cc685 1352 * this just gets pages into the page cache and locks them down.
39279cc3 1353 */
b37392ea
MX
1354static noinline int prepare_pages(struct inode *inode, struct page **pages,
1355 size_t num_pages, loff_t pos,
1356 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1357{
1358 int i;
09cbfeaf 1359 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1360 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1361 int err = 0;
376cc685 1362 int faili;
8c2383c3 1363
39279cc3 1364 for (i = 0; i < num_pages; i++) {
bb1591b4 1365again:
a94733d0 1366 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1367 mask | __GFP_WRITE);
39279cc3 1368 if (!pages[i]) {
b1bf862e
CM
1369 faili = i - 1;
1370 err = -ENOMEM;
1371 goto fail;
1372 }
1373
1374 if (i == 0)
bb1591b4 1375 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1376 force_uptodate);
bb1591b4
CM
1377 if (!err && i == num_pages - 1)
1378 err = prepare_uptodate_page(inode, pages[i],
b6316429 1379 pos + write_bytes, false);
b1bf862e 1380 if (err) {
09cbfeaf 1381 put_page(pages[i]);
bb1591b4
CM
1382 if (err == -EAGAIN) {
1383 err = 0;
1384 goto again;
1385 }
b1bf862e
CM
1386 faili = i - 1;
1387 goto fail;
39279cc3 1388 }
ccd467d6 1389 wait_on_page_writeback(pages[i]);
39279cc3 1390 }
376cc685
MX
1391
1392 return 0;
1393fail:
1394 while (faili >= 0) {
1395 unlock_page(pages[faili]);
09cbfeaf 1396 put_page(pages[faili]);
376cc685
MX
1397 faili--;
1398 }
1399 return err;
1400
1401}
1402
1403/*
1404 * This function locks the extent and properly waits for data=ordered extents
1405 * to finish before allowing the pages to be modified if need.
1406 *
1407 * The return value:
1408 * 1 - the extent is locked
1409 * 0 - the extent is not locked, and everything is OK
1410 * -EAGAIN - need re-prepare the pages
1411 * the other < 0 number - Something wrong happens
1412 */
1413static noinline int
1414lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1415 size_t num_pages, loff_t pos,
2e78c927 1416 size_t write_bytes,
376cc685
MX
1417 u64 *lockstart, u64 *lockend,
1418 struct extent_state **cached_state)
1419{
2e78c927 1420 struct btrfs_root *root = BTRFS_I(inode)->root;
376cc685
MX
1421 u64 start_pos;
1422 u64 last_pos;
1423 int i;
1424 int ret = 0;
1425
2e78c927
CR
1426 start_pos = round_down(pos, root->sectorsize);
1427 last_pos = start_pos
1428 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
376cc685 1429
0762704b 1430 if (start_pos < inode->i_size) {
e6dcd2dc 1431 struct btrfs_ordered_extent *ordered;
2ac55d41 1432 lock_extent_bits(&BTRFS_I(inode)->io_tree,
ff13db41 1433 start_pos, last_pos, cached_state);
b88935bf
MX
1434 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1435 last_pos - start_pos + 1);
e6dcd2dc
CM
1436 if (ordered &&
1437 ordered->file_offset + ordered->len > start_pos &&
376cc685 1438 ordered->file_offset <= last_pos) {
2ac55d41 1439 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1440 start_pos, last_pos,
1441 cached_state, GFP_NOFS);
e6dcd2dc
CM
1442 for (i = 0; i < num_pages; i++) {
1443 unlock_page(pages[i]);
09cbfeaf 1444 put_page(pages[i]);
e6dcd2dc 1445 }
b88935bf
MX
1446 btrfs_start_ordered_extent(inode, ordered, 1);
1447 btrfs_put_ordered_extent(ordered);
1448 return -EAGAIN;
e6dcd2dc
CM
1449 }
1450 if (ordered)
1451 btrfs_put_ordered_extent(ordered);
1452
2ac55d41 1453 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1454 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1455 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1456 0, 0, cached_state, GFP_NOFS);
1457 *lockstart = start_pos;
1458 *lockend = last_pos;
1459 ret = 1;
0762704b 1460 }
376cc685 1461
e6dcd2dc 1462 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1463 if (clear_page_dirty_for_io(pages[i]))
1464 account_page_redirty(pages[i]);
e6dcd2dc
CM
1465 set_page_extent_mapped(pages[i]);
1466 WARN_ON(!PageLocked(pages[i]));
1467 }
b1bf862e 1468
376cc685 1469 return ret;
39279cc3
CM
1470}
1471
7ee9e440
JB
1472static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1473 size_t *write_bytes)
1474{
7ee9e440
JB
1475 struct btrfs_root *root = BTRFS_I(inode)->root;
1476 struct btrfs_ordered_extent *ordered;
1477 u64 lockstart, lockend;
1478 u64 num_bytes;
1479 int ret;
1480
9ea24bbe 1481 ret = btrfs_start_write_no_snapshoting(root);
8257b2dc
MX
1482 if (!ret)
1483 return -ENOSPC;
1484
7ee9e440 1485 lockstart = round_down(pos, root->sectorsize);
c933956d 1486 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
7ee9e440
JB
1487
1488 while (1) {
1489 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1490 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1491 lockend - lockstart + 1);
1492 if (!ordered) {
1493 break;
1494 }
1495 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1496 btrfs_start_ordered_extent(inode, ordered, 1);
1497 btrfs_put_ordered_extent(ordered);
1498 }
1499
7ee9e440 1500 num_bytes = lockend - lockstart + 1;
00361589 1501 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
7ee9e440
JB
1502 if (ret <= 0) {
1503 ret = 0;
9ea24bbe 1504 btrfs_end_write_no_snapshoting(root);
7ee9e440 1505 } else {
c933956d
MX
1506 *write_bytes = min_t(size_t, *write_bytes ,
1507 num_bytes - pos + lockstart);
7ee9e440
JB
1508 }
1509
1510 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1511
1512 return ret;
1513}
1514
d0215f3e
JB
1515static noinline ssize_t __btrfs_buffered_write(struct file *file,
1516 struct iov_iter *i,
1517 loff_t pos)
4b46fce2 1518{
496ad9aa 1519 struct inode *inode = file_inode(file);
11c65dcc 1520 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1521 struct page **pages = NULL;
376cc685 1522 struct extent_state *cached_state = NULL;
7ee9e440 1523 u64 release_bytes = 0;
376cc685
MX
1524 u64 lockstart;
1525 u64 lockend;
d0215f3e
JB
1526 size_t num_written = 0;
1527 int nrptrs;
c9149235 1528 int ret = 0;
7ee9e440 1529 bool only_release_metadata = false;
b6316429 1530 bool force_page_uptodate = false;
376cc685 1531 bool need_unlock;
4b46fce2 1532
09cbfeaf
KS
1533 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1534 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1535 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1536 nrptrs = max(nrptrs, 8);
31e818fe 1537 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1538 if (!pages)
1539 return -ENOMEM;
ab93dbec 1540
d0215f3e 1541 while (iov_iter_count(i) > 0) {
09cbfeaf 1542 size_t offset = pos & (PAGE_SIZE - 1);
2e78c927 1543 size_t sector_offset;
d0215f3e 1544 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1545 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1546 offset);
ed6078f7 1547 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1548 PAGE_SIZE);
7ee9e440 1549 size_t reserve_bytes;
d0215f3e
JB
1550 size_t dirty_pages;
1551 size_t copied;
2e78c927
CR
1552 size_t dirty_sectors;
1553 size_t num_sectors;
39279cc3 1554
8c2383c3 1555 WARN_ON(num_pages > nrptrs);
1832a6d5 1556
914ee295
XZ
1557 /*
1558 * Fault pages before locking them in prepare_pages
1559 * to avoid recursive lock
1560 */
d0215f3e 1561 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1562 ret = -EFAULT;
d0215f3e 1563 break;
914ee295
XZ
1564 }
1565
2e78c927
CR
1566 sector_offset = pos & (root->sectorsize - 1);
1567 reserve_bytes = round_up(write_bytes + sector_offset,
1568 root->sectorsize);
d9d8b2a5 1569
7cf5b976 1570 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
c6887cd1
JB
1571 if (ret < 0) {
1572 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1573 BTRFS_INODE_PREALLOC)) &&
1574 check_can_nocow(inode, pos, &write_bytes) > 0) {
1575 /*
1576 * For nodata cow case, no need to reserve
1577 * data space.
1578 */
1579 only_release_metadata = true;
1580 /*
1581 * our prealloc extent may be smaller than
1582 * write_bytes, so scale down.
1583 */
1584 num_pages = DIV_ROUND_UP(write_bytes + offset,
1585 PAGE_SIZE);
1586 reserve_bytes = round_up(write_bytes +
1587 sector_offset,
1588 root->sectorsize);
1589 } else {
1590 break;
1591 }
1592 }
1832a6d5 1593
7ee9e440
JB
1594 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1595 if (ret) {
1596 if (!only_release_metadata)
7cf5b976
QW
1597 btrfs_free_reserved_data_space(inode, pos,
1598 write_bytes);
8257b2dc 1599 else
9ea24bbe 1600 btrfs_end_write_no_snapshoting(root);
7ee9e440
JB
1601 break;
1602 }
1603
1604 release_bytes = reserve_bytes;
376cc685
MX
1605 need_unlock = false;
1606again:
4a64001f
JB
1607 /*
1608 * This is going to setup the pages array with the number of
1609 * pages we want, so we don't really need to worry about the
1610 * contents of pages from loop to loop
1611 */
b37392ea
MX
1612 ret = prepare_pages(inode, pages, num_pages,
1613 pos, write_bytes,
b6316429 1614 force_page_uptodate);
7ee9e440 1615 if (ret)
d0215f3e 1616 break;
39279cc3 1617
376cc685 1618 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
2e78c927
CR
1619 pos, write_bytes, &lockstart,
1620 &lockend, &cached_state);
376cc685
MX
1621 if (ret < 0) {
1622 if (ret == -EAGAIN)
1623 goto again;
1624 break;
1625 } else if (ret > 0) {
1626 need_unlock = true;
1627 ret = 0;
1628 }
1629
ee22f0c4 1630 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1631
56244ef1
CM
1632 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1633 reserve_bytes);
1634 dirty_sectors = round_up(copied + sector_offset,
1635 root->sectorsize);
1636 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1637 dirty_sectors);
1638
b1bf862e
CM
1639 /*
1640 * if we have trouble faulting in the pages, fall
1641 * back to one page at a time
1642 */
1643 if (copied < write_bytes)
1644 nrptrs = 1;
1645
b6316429
JB
1646 if (copied == 0) {
1647 force_page_uptodate = true;
56244ef1 1648 dirty_sectors = 0;
b1bf862e 1649 dirty_pages = 0;
b6316429
JB
1650 } else {
1651 force_page_uptodate = false;
ed6078f7 1652 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1653 PAGE_SIZE);
b6316429 1654 }
914ee295 1655
d0215f3e
JB
1656 /*
1657 * If we had a short copy we need to release the excess delaloc
1658 * bytes we reserved. We need to increment outstanding_extents
56244ef1
CM
1659 * because btrfs_delalloc_release_space and
1660 * btrfs_delalloc_release_metadata will decrement it, but
d0215f3e
JB
1661 * we still have an outstanding extent for the chunk we actually
1662 * managed to copy.
1663 */
2e78c927 1664 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1665
1666 /* release everything except the sectors we dirtied */
1667 release_bytes -= dirty_sectors <<
1668 root->fs_info->sb->s_blocksize_bits;
1669
9e0baf60
JB
1670 if (copied > 0) {
1671 spin_lock(&BTRFS_I(inode)->lock);
1672 BTRFS_I(inode)->outstanding_extents++;
1673 spin_unlock(&BTRFS_I(inode)->lock);
1674 }
485290a7 1675 if (only_release_metadata) {
7ee9e440
JB
1676 btrfs_delalloc_release_metadata(inode,
1677 release_bytes);
485290a7
QW
1678 } else {
1679 u64 __pos;
1680
1681 __pos = round_down(pos, root->sectorsize) +
09cbfeaf 1682 (dirty_pages << PAGE_SHIFT);
485290a7 1683 btrfs_delalloc_release_space(inode, __pos,
7ee9e440 1684 release_bytes);
485290a7 1685 }
914ee295
XZ
1686 }
1687
2e78c927
CR
1688 release_bytes = round_up(copied + sector_offset,
1689 root->sectorsize);
376cc685
MX
1690
1691 if (copied > 0)
be1a12a0
JB
1692 ret = btrfs_dirty_pages(root, inode, pages,
1693 dirty_pages, pos, copied,
1694 NULL);
376cc685
MX
1695 if (need_unlock)
1696 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1697 lockstart, lockend, &cached_state,
1698 GFP_NOFS);
f1de9683
MX
1699 if (ret) {
1700 btrfs_drop_pages(pages, num_pages);
376cc685 1701 break;
f1de9683 1702 }
39279cc3 1703
376cc685 1704 release_bytes = 0;
8257b2dc 1705 if (only_release_metadata)
9ea24bbe 1706 btrfs_end_write_no_snapshoting(root);
8257b2dc 1707
7ee9e440 1708 if (only_release_metadata && copied > 0) {
f64c7b12 1709 lockstart = round_down(pos, root->sectorsize);
2e78c927 1710 lockend = round_up(pos + copied, root->sectorsize) - 1;
7ee9e440
JB
1711
1712 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1713 lockend, EXTENT_NORESERVE, NULL,
1714 NULL, GFP_NOFS);
1715 only_release_metadata = false;
1716 }
1717
f1de9683
MX
1718 btrfs_drop_pages(pages, num_pages);
1719
d0215f3e
JB
1720 cond_resched();
1721
d0e1d66b 1722 balance_dirty_pages_ratelimited(inode->i_mapping);
09cbfeaf 1723 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
b53d3f5d 1724 btrfs_btree_balance_dirty(root);
cb843a6f 1725
914ee295
XZ
1726 pos += copied;
1727 num_written += copied;
d0215f3e 1728 }
39279cc3 1729
d0215f3e
JB
1730 kfree(pages);
1731
7ee9e440 1732 if (release_bytes) {
8257b2dc 1733 if (only_release_metadata) {
9ea24bbe 1734 btrfs_end_write_no_snapshoting(root);
7ee9e440 1735 btrfs_delalloc_release_metadata(inode, release_bytes);
8257b2dc 1736 } else {
a2af23b7
CR
1737 btrfs_delalloc_release_space(inode,
1738 round_down(pos, root->sectorsize),
1739 release_bytes);
8257b2dc 1740 }
7ee9e440
JB
1741 }
1742
d0215f3e
JB
1743 return num_written ? num_written : ret;
1744}
1745
1af5bb49 1746static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1747{
1748 struct file *file = iocb->ki_filp;
728404da 1749 struct inode *inode = file_inode(file);
1af5bb49 1750 loff_t pos = iocb->ki_pos;
d0215f3e
JB
1751 ssize_t written;
1752 ssize_t written_buffered;
1753 loff_t endbyte;
1754 int err;
1755
1af5bb49 1756 written = generic_file_direct_write(iocb, from);
d0215f3e 1757
0c949334 1758 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1759 return written;
1760
1761 pos += written;
0ae5e4d3 1762 written_buffered = __btrfs_buffered_write(file, from, pos);
d0215f3e
JB
1763 if (written_buffered < 0) {
1764 err = written_buffered;
1765 goto out;
39279cc3 1766 }
075bdbdb
FM
1767 /*
1768 * Ensure all data is persisted. We want the next direct IO read to be
1769 * able to read what was just written.
1770 */
d0215f3e 1771 endbyte = pos + written_buffered - 1;
728404da 1772 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1773 if (err)
1774 goto out;
728404da 1775 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1776 if (err)
1777 goto out;
1778 written += written_buffered;
867c4f93 1779 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1780 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1781 endbyte >> PAGE_SHIFT);
39279cc3 1782out:
d0215f3e
JB
1783 return written ? written : err;
1784}
5b92ee72 1785
6c760c07
JB
1786static void update_time_for_write(struct inode *inode)
1787{
1788 struct timespec now;
1789
1790 if (IS_NOCMTIME(inode))
1791 return;
1792
c2050a45 1793 now = current_time(inode);
6c760c07
JB
1794 if (!timespec_equal(&inode->i_mtime, &now))
1795 inode->i_mtime = now;
1796
1797 if (!timespec_equal(&inode->i_ctime, &now))
1798 inode->i_ctime = now;
1799
1800 if (IS_I_VERSION(inode))
1801 inode_inc_iversion(inode);
1802}
1803
b30ac0fc
AV
1804static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1805 struct iov_iter *from)
d0215f3e
JB
1806{
1807 struct file *file = iocb->ki_filp;
496ad9aa 1808 struct inode *inode = file_inode(file);
d0215f3e 1809 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1810 u64 start_pos;
3ac0d7b9 1811 u64 end_pos;
d0215f3e 1812 ssize_t num_written = 0;
b812ce28 1813 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04
AV
1814 ssize_t err;
1815 loff_t pos;
1816 size_t count;
27772b68
CR
1817 loff_t oldsize;
1818 int clean_page = 0;
d0215f3e 1819
5955102c 1820 inode_lock(inode);
3309dd04
AV
1821 err = generic_write_checks(iocb, from);
1822 if (err <= 0) {
5955102c 1823 inode_unlock(inode);
3309dd04 1824 return err;
d0215f3e
JB
1825 }
1826
3309dd04 1827 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1828 err = file_remove_privs(file);
d0215f3e 1829 if (err) {
5955102c 1830 inode_unlock(inode);
d0215f3e
JB
1831 goto out;
1832 }
1833
1834 /*
1835 * If BTRFS flips readonly due to some impossible error
1836 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1837 * although we have opened a file as writable, we have
1838 * to stop this write operation to ensure FS consistency.
1839 */
87533c47 1840 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
5955102c 1841 inode_unlock(inode);
d0215f3e
JB
1842 err = -EROFS;
1843 goto out;
1844 }
1845
6c760c07
JB
1846 /*
1847 * We reserve space for updating the inode when we reserve space for the
1848 * extent we are going to write, so we will enospc out there. We don't
1849 * need to start yet another transaction to update the inode as we will
1850 * update the inode when we finish writing whatever data we write.
1851 */
1852 update_time_for_write(inode);
d0215f3e 1853
3309dd04
AV
1854 pos = iocb->ki_pos;
1855 count = iov_iter_count(from);
0c1a98c8 1856 start_pos = round_down(pos, root->sectorsize);
27772b68
CR
1857 oldsize = i_size_read(inode);
1858 if (start_pos > oldsize) {
3ac0d7b9 1859 /* Expand hole size to cover write data, preventing empty gap */
c5f7d0bb 1860 end_pos = round_up(pos + count, root->sectorsize);
27772b68 1861 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1862 if (err) {
5955102c 1863 inode_unlock(inode);
0c1a98c8
MX
1864 goto out;
1865 }
27772b68
CR
1866 if (start_pos > round_up(oldsize, root->sectorsize))
1867 clean_page = 1;
0c1a98c8
MX
1868 }
1869
b812ce28
JB
1870 if (sync)
1871 atomic_inc(&BTRFS_I(inode)->sync_writers);
1872
2ba48ce5 1873 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1874 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1875 } else {
b30ac0fc 1876 num_written = __btrfs_buffered_write(file, from, pos);
d0215f3e 1877 if (num_written > 0)
867c4f93 1878 iocb->ki_pos = pos + num_written;
27772b68
CR
1879 if (clean_page)
1880 pagecache_isize_extended(inode, oldsize,
1881 i_size_read(inode));
d0215f3e
JB
1882 }
1883
5955102c 1884 inode_unlock(inode);
2ff3e9b6 1885
5a3f23d5 1886 /*
6c760c07
JB
1887 * We also have to set last_sub_trans to the current log transid,
1888 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1889 * transaction will appear to have already occurred.
5a3f23d5 1890 */
2f2ff0ee 1891 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1892 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1893 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1894 if (num_written > 0)
1895 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1896
b812ce28
JB
1897 if (sync)
1898 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1899out:
39279cc3 1900 current->backing_dev_info = NULL;
39279cc3
CM
1901 return num_written ? num_written : err;
1902}
1903
d397712b 1904int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1905{
6bf13c0c
SW
1906 if (filp->private_data)
1907 btrfs_ioctl_trans_end(filp);
f6dc45c7
CM
1908 /*
1909 * ordered_data_close is set by settattr when we are about to truncate
1910 * a file from a non-zero size to a zero size. This tries to
1911 * flush down new bytes that may have been written if the
1912 * application were using truncate to replace a file in place.
1913 */
1914 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1915 &BTRFS_I(inode)->runtime_flags))
1916 filemap_flush(inode->i_mapping);
e1b81e67
M
1917 return 0;
1918}
1919
669249ee
FM
1920static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1921{
1922 int ret;
1923
1924 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 1925 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee
FM
1926 atomic_dec(&BTRFS_I(inode)->sync_writers);
1927
1928 return ret;
1929}
1930
d352ac68
CM
1931/*
1932 * fsync call for both files and directories. This logs the inode into
1933 * the tree log instead of forcing full commits whenever possible.
1934 *
1935 * It needs to call filemap_fdatawait so that all ordered extent updates are
1936 * in the metadata btree are up to date for copying to the log.
1937 *
1938 * It drops the inode mutex before doing the tree log commit. This is an
1939 * important optimization for directories because holding the mutex prevents
1940 * new operations on the dir while we write to disk.
1941 */
02c24a82 1942int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1943{
de17e793 1944 struct dentry *dentry = file_dentry(file);
2b0143b5 1945 struct inode *inode = d_inode(dentry);
39279cc3 1946 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1947 struct btrfs_trans_handle *trans;
8b050d35
MX
1948 struct btrfs_log_ctx ctx;
1949 int ret = 0;
2ab28f32 1950 bool full_sync = 0;
9dcbeed4 1951 u64 len;
39279cc3 1952
9dcbeed4
DS
1953 /*
1954 * The range length can be represented by u64, we have to do the typecasts
1955 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1956 */
1957 len = (u64)end - (u64)start + 1;
1abe9b8a 1958 trace_btrfs_sync_file(file, datasync);
257c62e1 1959
90abccf2
MX
1960 /*
1961 * We write the dirty pages in the range and wait until they complete
1962 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1963 * multi-task, and make the performance up. See
1964 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1965 */
669249ee 1966 ret = start_ordered_ops(inode, start, end);
90abccf2
MX
1967 if (ret)
1968 return ret;
1969
5955102c 1970 inode_lock(inode);
2ecb7923 1971 atomic_inc(&root->log_batch);
2ab28f32
JB
1972 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1973 &BTRFS_I(inode)->runtime_flags);
669249ee
FM
1974 /*
1975 * We might have have had more pages made dirty after calling
1976 * start_ordered_ops and before acquiring the inode's i_mutex.
1977 */
0ef8b726 1978 if (full_sync) {
669249ee
FM
1979 /*
1980 * For a full sync, we need to make sure any ordered operations
1981 * start and finish before we start logging the inode, so that
1982 * all extents are persisted and the respective file extent
1983 * items are in the fs/subvol btree.
1984 */
b659ef02 1985 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee
FM
1986 } else {
1987 /*
1988 * Start any new ordered operations before starting to log the
1989 * inode. We will wait for them to finish in btrfs_sync_log().
1990 *
1991 * Right before acquiring the inode's mutex, we might have new
1992 * writes dirtying pages, which won't immediately start the
1993 * respective ordered operations - that is done through the
1994 * fill_delalloc callbacks invoked from the writepage and
1995 * writepages address space operations. So make sure we start
1996 * all ordered operations before starting to log our inode. Not
1997 * doing this means that while logging the inode, writeback
1998 * could start and invoke writepage/writepages, which would call
1999 * the fill_delalloc callbacks (cow_file_range,
2000 * submit_compressed_extents). These callbacks add first an
2001 * extent map to the modified list of extents and then create
2002 * the respective ordered operation, which means in
2003 * tree-log.c:btrfs_log_inode() we might capture all existing
2004 * ordered operations (with btrfs_get_logged_extents()) before
2005 * the fill_delalloc callback adds its ordered operation, and by
2006 * the time we visit the modified list of extent maps (with
2007 * btrfs_log_changed_extents()), we see and process the extent
2008 * map they created. We then use the extent map to construct a
2009 * file extent item for logging without waiting for the
2010 * respective ordered operation to finish - this file extent
2011 * item points to a disk location that might not have yet been
2012 * written to, containing random data - so after a crash a log
2013 * replay will make our inode have file extent items that point
2014 * to disk locations containing invalid data, as we returned
2015 * success to userspace without waiting for the respective
2016 * ordered operation to finish, because it wasn't captured by
2017 * btrfs_get_logged_extents().
2018 */
2019 ret = start_ordered_ops(inode, start, end);
2020 }
2021 if (ret) {
5955102c 2022 inode_unlock(inode);
669249ee 2023 goto out;
0ef8b726 2024 }
2ecb7923 2025 atomic_inc(&root->log_batch);
257c62e1 2026
39279cc3 2027 /*
3a8b36f3
FM
2028 * If the last transaction that changed this file was before the current
2029 * transaction and we have the full sync flag set in our inode, we can
2030 * bail out now without any syncing.
2031 *
2032 * Note that we can't bail out if the full sync flag isn't set. This is
2033 * because when the full sync flag is set we start all ordered extents
2034 * and wait for them to fully complete - when they complete they update
2035 * the inode's last_trans field through:
2036 *
2037 * btrfs_finish_ordered_io() ->
2038 * btrfs_update_inode_fallback() ->
2039 * btrfs_update_inode() ->
2040 * btrfs_set_inode_last_trans()
2041 *
2042 * So we are sure that last_trans is up to date and can do this check to
2043 * bail out safely. For the fast path, when the full sync flag is not
2044 * set in our inode, we can not do it because we start only our ordered
2045 * extents and don't wait for them to complete (that is when
2046 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2047 * value might be less than or equals to fs_info->last_trans_committed,
2048 * and setting a speculative last_trans for an inode when a buffered
2049 * write is made (such as fs_info->generation + 1 for example) would not
2050 * be reliable since after setting the value and before fsync is called
2051 * any number of transactions can start and commit (transaction kthread
2052 * commits the current transaction periodically), and a transaction
2053 * commit does not start nor waits for ordered extents to complete.
257c62e1 2054 */
a4abeea4 2055 smp_mb();
22ee6985 2056 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
affc0ff9
FM
2057 (full_sync && BTRFS_I(inode)->last_trans <=
2058 root->fs_info->last_trans_committed) ||
2059 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2060 BTRFS_I(inode)->last_trans
2061 <= root->fs_info->last_trans_committed)) {
5dc562c5 2062 /*
01327610 2063 * We've had everything committed since the last time we were
5dc562c5
JB
2064 * modified so clear this flag in case it was set for whatever
2065 * reason, it's no longer relevant.
2066 */
2067 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2068 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2069 /*
2070 * An ordered extent might have started before and completed
2071 * already with io errors, in which case the inode was not
2072 * updated and we end up here. So check the inode's mapping
2073 * flags for any errors that might have happened while doing
2074 * writeback of file data.
2075 */
f0312210 2076 ret = filemap_check_errors(inode->i_mapping);
5955102c 2077 inode_unlock(inode);
15ee9bc7
JB
2078 goto out;
2079 }
15ee9bc7
JB
2080
2081 /*
a52d9a80
CM
2082 * ok we haven't committed the transaction yet, lets do a commit
2083 */
6f902af4 2084 if (file->private_data)
6bf13c0c
SW
2085 btrfs_ioctl_trans_end(file);
2086
5039eddc
JB
2087 /*
2088 * We use start here because we will need to wait on the IO to complete
2089 * in btrfs_sync_log, which could require joining a transaction (for
2090 * example checking cross references in the nocow path). If we use join
2091 * here we could get into a situation where we're waiting on IO to
2092 * happen that is blocked on a transaction trying to commit. With start
2093 * we inc the extwriter counter, so we wait for all extwriters to exit
2094 * before we start blocking join'ers. This comment is to keep somebody
2095 * from thinking they are super smart and changing this to
2096 * btrfs_join_transaction *cough*Josef*cough*.
2097 */
a22285a6
YZ
2098 trans = btrfs_start_transaction(root, 0);
2099 if (IS_ERR(trans)) {
2100 ret = PTR_ERR(trans);
5955102c 2101 inode_unlock(inode);
39279cc3
CM
2102 goto out;
2103 }
5039eddc 2104 trans->sync = true;
e02119d5 2105
28a23593 2106 btrfs_init_log_ctx(&ctx, inode);
8b050d35 2107
49dae1bc 2108 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
02c24a82 2109 if (ret < 0) {
a0634be5
FDBM
2110 /* Fallthrough and commit/free transaction. */
2111 ret = 1;
02c24a82 2112 }
49eb7e46
CM
2113
2114 /* we've logged all the items and now have a consistent
2115 * version of the file in the log. It is possible that
2116 * someone will come in and modify the file, but that's
2117 * fine because the log is consistent on disk, and we
2118 * have references to all of the file's extents
2119 *
2120 * It is possible that someone will come in and log the
2121 * file again, but that will end up using the synchronization
2122 * inside btrfs_sync_log to keep things safe.
2123 */
5955102c 2124 inode_unlock(inode);
49eb7e46 2125
8407f553
FM
2126 /*
2127 * If any of the ordered extents had an error, just return it to user
2128 * space, so that the application knows some writes didn't succeed and
2129 * can take proper action (retry for e.g.). Blindly committing the
2130 * transaction in this case, would fool userspace that everything was
2131 * successful. And we also want to make sure our log doesn't contain
2132 * file extent items pointing to extents that weren't fully written to -
2133 * just like in the non fast fsync path, where we check for the ordered
2134 * operation's error flag before writing to the log tree and return -EIO
2135 * if any of them had this flag set (btrfs_wait_ordered_range) -
2136 * therefore we need to check for errors in the ordered operations,
2137 * which are indicated by ctx.io_err.
2138 */
2139 if (ctx.io_err) {
2140 btrfs_end_transaction(trans, root);
2141 ret = ctx.io_err;
2142 goto out;
2143 }
2144
257c62e1 2145 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2146 if (!ret) {
8b050d35 2147 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2148 if (!ret) {
257c62e1 2149 ret = btrfs_end_transaction(trans, root);
0ef8b726 2150 goto out;
2ab28f32 2151 }
257c62e1 2152 }
0ef8b726 2153 if (!full_sync) {
9dcbeed4 2154 ret = btrfs_wait_ordered_range(inode, start, len);
b05fd874
FM
2155 if (ret) {
2156 btrfs_end_transaction(trans, root);
0ef8b726 2157 goto out;
b05fd874 2158 }
0ef8b726
JB
2159 }
2160 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
2161 } else {
2162 ret = btrfs_end_transaction(trans, root);
e02119d5 2163 }
39279cc3 2164out:
014e4ac4 2165 return ret > 0 ? -EIO : ret;
39279cc3
CM
2166}
2167
f0f37e2f 2168static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2169 .fault = filemap_fault,
f1820361 2170 .map_pages = filemap_map_pages,
9ebefb18
CM
2171 .page_mkwrite = btrfs_page_mkwrite,
2172};
2173
2174static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2175{
058a457e
MX
2176 struct address_space *mapping = filp->f_mapping;
2177
2178 if (!mapping->a_ops->readpage)
2179 return -ENOEXEC;
2180
9ebefb18 2181 file_accessed(filp);
058a457e 2182 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2183
9ebefb18
CM
2184 return 0;
2185}
2186
2aaa6655
JB
2187static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2188 int slot, u64 start, u64 end)
2189{
2190 struct btrfs_file_extent_item *fi;
2191 struct btrfs_key key;
2192
2193 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2194 return 0;
2195
2196 btrfs_item_key_to_cpu(leaf, &key, slot);
2197 if (key.objectid != btrfs_ino(inode) ||
2198 key.type != BTRFS_EXTENT_DATA_KEY)
2199 return 0;
2200
2201 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2202
2203 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2204 return 0;
2205
2206 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2207 return 0;
2208
2209 if (key.offset == end)
2210 return 1;
2211 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2212 return 1;
2213 return 0;
2214}
2215
2216static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2217 struct btrfs_path *path, u64 offset, u64 end)
2218{
2219 struct btrfs_root *root = BTRFS_I(inode)->root;
2220 struct extent_buffer *leaf;
2221 struct btrfs_file_extent_item *fi;
2222 struct extent_map *hole_em;
2223 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2224 struct btrfs_key key;
2225 int ret;
2226
16e7549f
JB
2227 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2228 goto out;
2229
2aaa6655
JB
2230 key.objectid = btrfs_ino(inode);
2231 key.type = BTRFS_EXTENT_DATA_KEY;
2232 key.offset = offset;
2233
2aaa6655 2234 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2235 if (ret <= 0) {
2236 /*
2237 * We should have dropped this offset, so if we find it then
2238 * something has gone horribly wrong.
2239 */
2240 if (ret == 0)
2241 ret = -EINVAL;
2aaa6655 2242 return ret;
f94480bd 2243 }
2aaa6655
JB
2244
2245 leaf = path->nodes[0];
2246 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2247 u64 num_bytes;
2248
2249 path->slots[0]--;
2250 fi = btrfs_item_ptr(leaf, path->slots[0],
2251 struct btrfs_file_extent_item);
2252 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2253 end - offset;
2254 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2255 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2256 btrfs_set_file_extent_offset(leaf, fi, 0);
2257 btrfs_mark_buffer_dirty(leaf);
2258 goto out;
2259 }
2260
1707e26d 2261 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2262 u64 num_bytes;
2263
2aaa6655 2264 key.offset = offset;
b7a0365e 2265 btrfs_set_item_key_safe(root->fs_info, path, &key);
2aaa6655
JB
2266 fi = btrfs_item_ptr(leaf, path->slots[0],
2267 struct btrfs_file_extent_item);
2268 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2269 offset;
2270 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2271 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2272 btrfs_set_file_extent_offset(leaf, fi, 0);
2273 btrfs_mark_buffer_dirty(leaf);
2274 goto out;
2275 }
2276 btrfs_release_path(path);
2277
2278 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2279 0, 0, end - offset, 0, end - offset,
2280 0, 0, 0);
2281 if (ret)
2282 return ret;
2283
2284out:
2285 btrfs_release_path(path);
2286
2287 hole_em = alloc_extent_map();
2288 if (!hole_em) {
2289 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2290 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2291 &BTRFS_I(inode)->runtime_flags);
2292 } else {
2293 hole_em->start = offset;
2294 hole_em->len = end - offset;
cc95bef6 2295 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2296 hole_em->orig_start = offset;
2297
2298 hole_em->block_start = EXTENT_MAP_HOLE;
2299 hole_em->block_len = 0;
b4939680 2300 hole_em->orig_block_len = 0;
2aaa6655
JB
2301 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2302 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2303 hole_em->generation = trans->transid;
2304
2305 do {
2306 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2307 write_lock(&em_tree->lock);
09a2a8f9 2308 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2309 write_unlock(&em_tree->lock);
2310 } while (ret == -EEXIST);
2311 free_extent_map(hole_em);
2312 if (ret)
2313 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2314 &BTRFS_I(inode)->runtime_flags);
2315 }
2316
2317 return 0;
2318}
2319
d7781546
QW
2320/*
2321 * Find a hole extent on given inode and change start/len to the end of hole
2322 * extent.(hole/vacuum extent whose em->start <= start &&
2323 * em->start + em->len > start)
2324 * When a hole extent is found, return 1 and modify start/len.
2325 */
2326static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2327{
2328 struct extent_map *em;
2329 int ret = 0;
2330
2331 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2332 if (IS_ERR_OR_NULL(em)) {
2333 if (!em)
2334 ret = -ENOMEM;
2335 else
2336 ret = PTR_ERR(em);
2337 return ret;
2338 }
2339
2340 /* Hole or vacuum extent(only exists in no-hole mode) */
2341 if (em->block_start == EXTENT_MAP_HOLE) {
2342 ret = 1;
2343 *len = em->start + em->len > *start + *len ?
2344 0 : *start + *len - em->start - em->len;
2345 *start = em->start + em->len;
2346 }
2347 free_extent_map(em);
2348 return ret;
2349}
2350
2aaa6655
JB
2351static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2352{
2353 struct btrfs_root *root = BTRFS_I(inode)->root;
2354 struct extent_state *cached_state = NULL;
2355 struct btrfs_path *path;
2356 struct btrfs_block_rsv *rsv;
2357 struct btrfs_trans_handle *trans;
d7781546
QW
2358 u64 lockstart;
2359 u64 lockend;
2360 u64 tail_start;
2361 u64 tail_len;
2362 u64 orig_start = offset;
2363 u64 cur_offset;
2aaa6655
JB
2364 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2365 u64 drop_end;
2aaa6655
JB
2366 int ret = 0;
2367 int err = 0;
6e4d6fa1 2368 unsigned int rsv_count;
9703fefe 2369 bool same_block;
16e7549f 2370 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
a1a50f60 2371 u64 ino_size;
9703fefe 2372 bool truncated_block = false;
e8c1c76e 2373 bool updated_inode = false;
2aaa6655 2374
0ef8b726
JB
2375 ret = btrfs_wait_ordered_range(inode, offset, len);
2376 if (ret)
2377 return ret;
2aaa6655 2378
5955102c 2379 inode_lock(inode);
9703fefe 2380 ino_size = round_up(inode->i_size, root->sectorsize);
d7781546
QW
2381 ret = find_first_non_hole(inode, &offset, &len);
2382 if (ret < 0)
2383 goto out_only_mutex;
2384 if (ret && !len) {
2385 /* Already in a large hole */
2386 ret = 0;
2387 goto out_only_mutex;
2388 }
2389
51f395ad 2390 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
d7781546
QW
2391 lockend = round_down(offset + len,
2392 BTRFS_I(inode)->root->sectorsize) - 1;
9703fefe
CR
2393 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2394 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
7426cc04 2395 /*
9703fefe 2396 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2397 * because we are sure there is no data there.
2398 */
2aaa6655 2399 /*
9703fefe
CR
2400 * Only do this if we are in the same block and we aren't doing the
2401 * entire block.
2aaa6655 2402 */
9703fefe 2403 if (same_block && len < root->sectorsize) {
e8c1c76e 2404 if (offset < ino_size) {
9703fefe
CR
2405 truncated_block = true;
2406 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2407 } else {
2408 ret = 0;
2409 }
d7781546 2410 goto out_only_mutex;
2aaa6655
JB
2411 }
2412
9703fefe 2413 /* zero back part of the first block */
12870f1c 2414 if (offset < ino_size) {
9703fefe
CR
2415 truncated_block = true;
2416 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2417 if (ret) {
5955102c 2418 inode_unlock(inode);
7426cc04
MX
2419 return ret;
2420 }
2aaa6655
JB
2421 }
2422
d7781546
QW
2423 /* Check the aligned pages after the first unaligned page,
2424 * if offset != orig_start, which means the first unaligned page
01327610 2425 * including several following pages are already in holes,
d7781546
QW
2426 * the extra check can be skipped */
2427 if (offset == orig_start) {
2428 /* after truncate page, check hole again */
2429 len = offset + len - lockstart;
2430 offset = lockstart;
2431 ret = find_first_non_hole(inode, &offset, &len);
2432 if (ret < 0)
2433 goto out_only_mutex;
2434 if (ret && !len) {
2435 ret = 0;
2436 goto out_only_mutex;
2437 }
2438 lockstart = offset;
2439 }
2440
2441 /* Check the tail unaligned part is in a hole */
2442 tail_start = lockend + 1;
2443 tail_len = offset + len - tail_start;
2444 if (tail_len) {
2445 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2446 if (unlikely(ret < 0))
2447 goto out_only_mutex;
2448 if (!ret) {
2449 /* zero the front end of the last page */
2450 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2451 truncated_block = true;
2452 ret = btrfs_truncate_block(inode,
2453 tail_start + tail_len,
2454 0, 1);
d7781546
QW
2455 if (ret)
2456 goto out_only_mutex;
51f395ad 2457 }
0061280d 2458 }
2aaa6655
JB
2459 }
2460
2461 if (lockend < lockstart) {
e8c1c76e
FM
2462 ret = 0;
2463 goto out_only_mutex;
2aaa6655
JB
2464 }
2465
2466 while (1) {
2467 struct btrfs_ordered_extent *ordered;
2468
2469 truncate_pagecache_range(inode, lockstart, lockend);
2470
2471 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 2472 &cached_state);
2aaa6655
JB
2473 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2474
2475 /*
2476 * We need to make sure we have no ordered extents in this range
2477 * and nobody raced in and read a page in this range, if we did
2478 * we need to try again.
2479 */
2480 if ((!ordered ||
6126e3ca 2481 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655 2482 ordered->file_offset > lockend)) &&
fc4adbff 2483 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2aaa6655
JB
2484 if (ordered)
2485 btrfs_put_ordered_extent(ordered);
2486 break;
2487 }
2488 if (ordered)
2489 btrfs_put_ordered_extent(ordered);
2490 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2491 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2492 ret = btrfs_wait_ordered_range(inode, lockstart,
2493 lockend - lockstart + 1);
2494 if (ret) {
5955102c 2495 inode_unlock(inode);
0ef8b726
JB
2496 return ret;
2497 }
2aaa6655
JB
2498 }
2499
2500 path = btrfs_alloc_path();
2501 if (!path) {
2502 ret = -ENOMEM;
2503 goto out;
2504 }
2505
66d8f3dd 2506 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2507 if (!rsv) {
2508 ret = -ENOMEM;
2509 goto out_free;
2510 }
2511 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2512 rsv->failfast = 1;
2513
2514 /*
2515 * 1 - update the inode
2516 * 1 - removing the extents in the range
16e7549f 2517 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2518 */
16e7549f
JB
2519 rsv_count = no_holes ? 2 : 3;
2520 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2521 if (IS_ERR(trans)) {
2522 err = PTR_ERR(trans);
2523 goto out_free;
2524 }
2525
2526 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 2527 min_size, 0);
2aaa6655
JB
2528 BUG_ON(ret);
2529 trans->block_rsv = rsv;
2530
d7781546
QW
2531 cur_offset = lockstart;
2532 len = lockend - cur_offset;
2aaa6655
JB
2533 while (cur_offset < lockend) {
2534 ret = __btrfs_drop_extents(trans, root, inode, path,
2535 cur_offset, lockend + 1,
1acae57b 2536 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2537 if (ret != -ENOSPC)
2538 break;
2539
2540 trans->block_rsv = &root->fs_info->trans_block_rsv;
2541
62fe51c1 2542 if (cur_offset < drop_end && cur_offset < ino_size) {
12870f1c
FM
2543 ret = fill_holes(trans, inode, path, cur_offset,
2544 drop_end);
2545 if (ret) {
f94480bd
JB
2546 /*
2547 * If we failed then we didn't insert our hole
2548 * entries for the area we dropped, so now the
2549 * fs is corrupted, so we must abort the
2550 * transaction.
2551 */
2552 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2553 err = ret;
2554 break;
2555 }
2aaa6655
JB
2556 }
2557
2558 cur_offset = drop_end;
2559
2560 ret = btrfs_update_inode(trans, root, inode);
2561 if (ret) {
2562 err = ret;
2563 break;
2564 }
2565
2aaa6655 2566 btrfs_end_transaction(trans, root);
b53d3f5d 2567 btrfs_btree_balance_dirty(root);
2aaa6655 2568
16e7549f 2569 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2570 if (IS_ERR(trans)) {
2571 ret = PTR_ERR(trans);
2572 trans = NULL;
2573 break;
2574 }
2575
2576 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 2577 rsv, min_size, 0);
2aaa6655
JB
2578 BUG_ON(ret); /* shouldn't happen */
2579 trans->block_rsv = rsv;
d7781546
QW
2580
2581 ret = find_first_non_hole(inode, &cur_offset, &len);
2582 if (unlikely(ret < 0))
2583 break;
2584 if (ret && !len) {
2585 ret = 0;
2586 break;
2587 }
2aaa6655
JB
2588 }
2589
2590 if (ret) {
2591 err = ret;
2592 goto out_trans;
2593 }
2594
2595 trans->block_rsv = &root->fs_info->trans_block_rsv;
2959a32a
FM
2596 /*
2597 * If we are using the NO_HOLES feature we might have had already an
2598 * hole that overlaps a part of the region [lockstart, lockend] and
2599 * ends at (or beyond) lockend. Since we have no file extent items to
2600 * represent holes, drop_end can be less than lockend and so we must
2601 * make sure we have an extent map representing the existing hole (the
2602 * call to __btrfs_drop_extents() might have dropped the existing extent
2603 * map representing the existing hole), otherwise the fast fsync path
2604 * will not record the existence of the hole region
2605 * [existing_hole_start, lockend].
2606 */
2607 if (drop_end <= lockend)
2608 drop_end = lockend + 1;
fc19c5e7
FM
2609 /*
2610 * Don't insert file hole extent item if it's for a range beyond eof
2611 * (because it's useless) or if it represents a 0 bytes range (when
2612 * cur_offset == drop_end).
2613 */
2614 if (cur_offset < ino_size && cur_offset < drop_end) {
12870f1c
FM
2615 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2616 if (ret) {
f94480bd
JB
2617 /* Same comment as above. */
2618 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2619 err = ret;
2620 goto out_trans;
2621 }
2aaa6655
JB
2622 }
2623
2624out_trans:
2625 if (!trans)
2626 goto out_free;
2627
e1f5790e 2628 inode_inc_iversion(inode);
c2050a45 2629 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2630
2aaa6655
JB
2631 trans->block_rsv = &root->fs_info->trans_block_rsv;
2632 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2633 updated_inode = true;
2aaa6655 2634 btrfs_end_transaction(trans, root);
b53d3f5d 2635 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2636out_free:
2637 btrfs_free_path(path);
2638 btrfs_free_block_rsv(root, rsv);
2639out:
2640 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2641 &cached_state, GFP_NOFS);
d7781546 2642out_only_mutex:
9703fefe 2643 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2644 /*
2645 * If we only end up zeroing part of a page, we still need to
2646 * update the inode item, so that all the time fields are
2647 * updated as well as the necessary btrfs inode in memory fields
2648 * for detecting, at fsync time, if the inode isn't yet in the
2649 * log tree or it's there but not up to date.
2650 */
2651 trans = btrfs_start_transaction(root, 1);
2652 if (IS_ERR(trans)) {
2653 err = PTR_ERR(trans);
2654 } else {
2655 err = btrfs_update_inode(trans, root, inode);
2656 ret = btrfs_end_transaction(trans, root);
2657 }
2658 }
5955102c 2659 inode_unlock(inode);
2aaa6655
JB
2660 if (ret && !err)
2661 err = ret;
2662 return err;
2663}
2664
14524a84
QW
2665/* Helper structure to record which range is already reserved */
2666struct falloc_range {
2667 struct list_head list;
2668 u64 start;
2669 u64 len;
2670};
2671
2672/*
2673 * Helper function to add falloc range
2674 *
2675 * Caller should have locked the larger range of extent containing
2676 * [start, len)
2677 */
2678static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2679{
2680 struct falloc_range *prev = NULL;
2681 struct falloc_range *range = NULL;
2682
2683 if (list_empty(head))
2684 goto insert;
2685
2686 /*
2687 * As fallocate iterate by bytenr order, we only need to check
2688 * the last range.
2689 */
2690 prev = list_entry(head->prev, struct falloc_range, list);
2691 if (prev->start + prev->len == start) {
2692 prev->len += len;
2693 return 0;
2694 }
2695insert:
32fc932e 2696 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2697 if (!range)
2698 return -ENOMEM;
2699 range->start = start;
2700 range->len = len;
2701 list_add_tail(&range->list, head);
2702 return 0;
2703}
2704
2fe17c10
CH
2705static long btrfs_fallocate(struct file *file, int mode,
2706 loff_t offset, loff_t len)
2707{
496ad9aa 2708 struct inode *inode = file_inode(file);
2fe17c10 2709 struct extent_state *cached_state = NULL;
14524a84
QW
2710 struct falloc_range *range;
2711 struct falloc_range *tmp;
2712 struct list_head reserve_list;
2fe17c10
CH
2713 u64 cur_offset;
2714 u64 last_byte;
2715 u64 alloc_start;
2716 u64 alloc_end;
2717 u64 alloc_hint = 0;
2718 u64 locked_end;
14524a84 2719 u64 actual_end = 0;
2fe17c10 2720 struct extent_map *em;
797f4277 2721 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2722 int ret;
2723
797f4277
MX
2724 alloc_start = round_down(offset, blocksize);
2725 alloc_end = round_up(offset + len, blocksize);
18513091 2726 cur_offset = alloc_start;
2fe17c10 2727
2aaa6655
JB
2728 /* Make sure we aren't being give some crap mode */
2729 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2730 return -EOPNOTSUPP;
2731
2aaa6655
JB
2732 if (mode & FALLOC_FL_PUNCH_HOLE)
2733 return btrfs_punch_hole(inode, offset, len);
2734
d98456fc 2735 /*
14524a84
QW
2736 * Only trigger disk allocation, don't trigger qgroup reserve
2737 *
2738 * For qgroup space, it will be checked later.
d98456fc 2739 */
14524a84
QW
2740 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2741 if (ret < 0)
d98456fc
CM
2742 return ret;
2743
5955102c 2744 inode_lock(inode);
2a162ce9
DI
2745
2746 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2747 ret = inode_newsize_ok(inode, offset + len);
2748 if (ret)
2749 goto out;
2750 }
2fe17c10 2751
14524a84
QW
2752 /*
2753 * TODO: Move these two operations after we have checked
2754 * accurate reserved space, or fallocate can still fail but
2755 * with page truncated or size expanded.
2756 *
2757 * But that's a minor problem and won't do much harm BTW.
2758 */
2fe17c10 2759 if (alloc_start > inode->i_size) {
a41ad394
JB
2760 ret = btrfs_cont_expand(inode, i_size_read(inode),
2761 alloc_start);
2fe17c10
CH
2762 if (ret)
2763 goto out;
0f6925fa 2764 } else if (offset + len > inode->i_size) {
a71754fc
JB
2765 /*
2766 * If we are fallocating from the end of the file onward we
9703fefe
CR
2767 * need to zero out the end of the block if i_size lands in the
2768 * middle of a block.
a71754fc 2769 */
9703fefe 2770 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
2771 if (ret)
2772 goto out;
2fe17c10
CH
2773 }
2774
a71754fc
JB
2775 /*
2776 * wait for ordered IO before we have any locks. We'll loop again
2777 * below with the locks held.
2778 */
0ef8b726
JB
2779 ret = btrfs_wait_ordered_range(inode, alloc_start,
2780 alloc_end - alloc_start);
2781 if (ret)
2782 goto out;
a71754fc 2783
2fe17c10
CH
2784 locked_end = alloc_end - 1;
2785 while (1) {
2786 struct btrfs_ordered_extent *ordered;
2787
2788 /* the extent lock is ordered inside the running
2789 * transaction
2790 */
2791 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 2792 locked_end, &cached_state);
2fe17c10
CH
2793 ordered = btrfs_lookup_first_ordered_extent(inode,
2794 alloc_end - 1);
2795 if (ordered &&
2796 ordered->file_offset + ordered->len > alloc_start &&
2797 ordered->file_offset < alloc_end) {
2798 btrfs_put_ordered_extent(ordered);
2799 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2800 alloc_start, locked_end,
32fc932e 2801 &cached_state, GFP_KERNEL);
2fe17c10
CH
2802 /*
2803 * we can't wait on the range with the transaction
2804 * running or with the extent lock held
2805 */
0ef8b726
JB
2806 ret = btrfs_wait_ordered_range(inode, alloc_start,
2807 alloc_end - alloc_start);
2808 if (ret)
2809 goto out;
2fe17c10
CH
2810 } else {
2811 if (ordered)
2812 btrfs_put_ordered_extent(ordered);
2813 break;
2814 }
2815 }
2816
14524a84
QW
2817 /* First, check if we exceed the qgroup limit */
2818 INIT_LIST_HEAD(&reserve_list);
2fe17c10
CH
2819 while (1) {
2820 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2821 alloc_end - cur_offset, 0);
79787eaa
JM
2822 if (IS_ERR_OR_NULL(em)) {
2823 if (!em)
2824 ret = -ENOMEM;
2825 else
2826 ret = PTR_ERR(em);
2827 break;
2828 }
2fe17c10 2829 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2830 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2831 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
2832 if (em->block_start == EXTENT_MAP_HOLE ||
2833 (cur_offset >= inode->i_size &&
2834 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
2835 ret = add_falloc_range(&reserve_list, cur_offset,
2836 last_byte - cur_offset);
2837 if (ret < 0) {
2838 free_extent_map(em);
2839 break;
3d850dd4 2840 }
14524a84
QW
2841 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2842 last_byte - cur_offset);
2843 if (ret < 0)
2844 break;
18513091
WX
2845 } else {
2846 /*
2847 * Do not need to reserve unwritten extent for this
2848 * range, free reserved data space first, otherwise
2849 * it'll result in false ENOSPC error.
2850 */
2851 btrfs_free_reserved_data_space(inode, cur_offset,
2852 last_byte - cur_offset);
2fe17c10
CH
2853 }
2854 free_extent_map(em);
2fe17c10 2855 cur_offset = last_byte;
14524a84 2856 if (cur_offset >= alloc_end)
2fe17c10 2857 break;
14524a84
QW
2858 }
2859
2860 /*
2861 * If ret is still 0, means we're OK to fallocate.
2862 * Or just cleanup the list and exit.
2863 */
2864 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2865 if (!ret)
2866 ret = btrfs_prealloc_file_range(inode, mode,
2867 range->start,
2868 range->len, 1 << inode->i_blkbits,
2869 offset + len, &alloc_hint);
18513091
WX
2870 else
2871 btrfs_free_reserved_data_space(inode, range->start,
2872 range->len);
14524a84
QW
2873 list_del(&range->list);
2874 kfree(range);
2875 }
2876 if (ret < 0)
2877 goto out_unlock;
2878
2879 if (actual_end > inode->i_size &&
2880 !(mode & FALLOC_FL_KEEP_SIZE)) {
2881 struct btrfs_trans_handle *trans;
2882 struct btrfs_root *root = BTRFS_I(inode)->root;
2883
2884 /*
2885 * We didn't need to allocate any more space, but we
2886 * still extended the size of the file so we need to
2887 * update i_size and the inode item.
2888 */
2889 trans = btrfs_start_transaction(root, 1);
2890 if (IS_ERR(trans)) {
2891 ret = PTR_ERR(trans);
2892 } else {
c2050a45 2893 inode->i_ctime = current_time(inode);
14524a84
QW
2894 i_size_write(inode, actual_end);
2895 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2896 ret = btrfs_update_inode(trans, root, inode);
2897 if (ret)
2898 btrfs_end_transaction(trans, root);
2899 else
2900 ret = btrfs_end_transaction(trans, root);
2fe17c10
CH
2901 }
2902 }
14524a84 2903out_unlock:
2fe17c10 2904 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
32fc932e 2905 &cached_state, GFP_KERNEL);
2fe17c10 2906out:
5955102c 2907 inode_unlock(inode);
d98456fc 2908 /* Let go of our reservation. */
18513091
WX
2909 if (ret != 0)
2910 btrfs_free_reserved_data_space(inode, alloc_start,
2911 alloc_end - cur_offset);
2fe17c10
CH
2912 return ret;
2913}
2914
965c8e59 2915static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2916{
2917 struct btrfs_root *root = BTRFS_I(inode)->root;
7f4ca37c 2918 struct extent_map *em = NULL;
b2675157 2919 struct extent_state *cached_state = NULL;
4d1a40c6
LB
2920 u64 lockstart;
2921 u64 lockend;
2922 u64 start;
2923 u64 len;
b2675157
JB
2924 int ret = 0;
2925
4d1a40c6
LB
2926 if (inode->i_size == 0)
2927 return -ENXIO;
2928
2929 /*
2930 * *offset can be negative, in this case we start finding DATA/HOLE from
2931 * the very start of the file.
2932 */
2933 start = max_t(loff_t, 0, *offset);
2934
2935 lockstart = round_down(start, root->sectorsize);
2936 lockend = round_up(i_size_read(inode), root->sectorsize);
b2675157
JB
2937 if (lockend <= lockstart)
2938 lockend = lockstart + root->sectorsize;
1214b53f 2939 lockend--;
b2675157
JB
2940 len = lockend - lockstart + 1;
2941
ff13db41 2942 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 2943 &cached_state);
b2675157 2944
7f4ca37c 2945 while (start < inode->i_size) {
b2675157
JB
2946 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2947 if (IS_ERR(em)) {
6af021d8 2948 ret = PTR_ERR(em);
7f4ca37c 2949 em = NULL;
b2675157
JB
2950 break;
2951 }
2952
7f4ca37c
JB
2953 if (whence == SEEK_HOLE &&
2954 (em->block_start == EXTENT_MAP_HOLE ||
2955 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2956 break;
2957 else if (whence == SEEK_DATA &&
2958 (em->block_start != EXTENT_MAP_HOLE &&
2959 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2960 break;
b2675157
JB
2961
2962 start = em->start + em->len;
b2675157 2963 free_extent_map(em);
7f4ca37c 2964 em = NULL;
b2675157
JB
2965 cond_resched();
2966 }
7f4ca37c
JB
2967 free_extent_map(em);
2968 if (!ret) {
2969 if (whence == SEEK_DATA && start >= inode->i_size)
2970 ret = -ENXIO;
2971 else
2972 *offset = min_t(loff_t, start, inode->i_size);
2973 }
b2675157
JB
2974 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2975 &cached_state, GFP_NOFS);
2976 return ret;
2977}
2978
965c8e59 2979static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2980{
2981 struct inode *inode = file->f_mapping->host;
2982 int ret;
2983
5955102c 2984 inode_lock(inode);
965c8e59 2985 switch (whence) {
b2675157
JB
2986 case SEEK_END:
2987 case SEEK_CUR:
965c8e59 2988 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2989 goto out;
2990 case SEEK_DATA:
2991 case SEEK_HOLE:
48802c8a 2992 if (offset >= i_size_read(inode)) {
5955102c 2993 inode_unlock(inode);
48802c8a
JL
2994 return -ENXIO;
2995 }
2996
965c8e59 2997 ret = find_desired_extent(inode, &offset, whence);
b2675157 2998 if (ret) {
5955102c 2999 inode_unlock(inode);
b2675157
JB
3000 return ret;
3001 }
3002 }
3003
46a1c2c7 3004 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3005out:
5955102c 3006 inode_unlock(inode);
b2675157
JB
3007 return offset;
3008}
3009
828c0950 3010const struct file_operations btrfs_file_operations = {
b2675157 3011 .llseek = btrfs_file_llseek,
aad4f8bb 3012 .read_iter = generic_file_read_iter,
e9906a98 3013 .splice_read = generic_file_splice_read,
b30ac0fc 3014 .write_iter = btrfs_file_write_iter,
9ebefb18 3015 .mmap = btrfs_file_mmap,
39279cc3 3016 .open = generic_file_open,
e1b81e67 3017 .release = btrfs_release_file,
39279cc3 3018 .fsync = btrfs_sync_file,
2fe17c10 3019 .fallocate = btrfs_fallocate,
34287aa3 3020 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3021#ifdef CONFIG_COMPAT
4c63c245 3022 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3023#endif
3db11b2e 3024 .copy_file_range = btrfs_copy_file_range,
04b38d60 3025 .clone_file_range = btrfs_clone_file_range,
2b3909f8 3026 .dedupe_file_range = btrfs_dedupe_file_range,
39279cc3 3027};
9247f317
MX
3028
3029void btrfs_auto_defrag_exit(void)
3030{
5598e900 3031 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3032}
3033
3034int btrfs_auto_defrag_init(void)
3035{
3036 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3037 sizeof(struct inode_defrag), 0,
fba4b697 3038 SLAB_MEM_SPREAD,
9247f317
MX
3039 NULL);
3040 if (!btrfs_inode_defrag_cachep)
3041 return -ENOMEM;
3042
3043 return 0;
3044}
728404da
FM
3045
3046int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3047{
3048 int ret;
3049
3050 /*
3051 * So with compression we will find and lock a dirty page and clear the
3052 * first one as dirty, setup an async extent, and immediately return
3053 * with the entire range locked but with nobody actually marked with
3054 * writeback. So we can't just filemap_write_and_wait_range() and
3055 * expect it to work since it will just kick off a thread to do the
3056 * actual work. So we need to call filemap_fdatawrite_range _again_
3057 * since it will wait on the page lock, which won't be unlocked until
3058 * after the pages have been marked as writeback and so we're good to go
3059 * from there. We have to do this otherwise we'll miss the ordered
3060 * extents and that results in badness. Please Josef, do not think you
3061 * know better and pull this out at some point in the future, it is
3062 * right and you are wrong.
3063 */
3064 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3065 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3066 &BTRFS_I(inode)->runtime_flags))
3067 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3068
3069 return ret;
3070}