]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
Btrfs: cleanup for btrfs_btree_balance_dirty
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
a41ad394
JB
91static int btrfs_setsize(struct inode *inode, loff_t newsize);
92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
7b128766 98
f34f57a3 99static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
100 struct inode *inode, struct inode *dir,
101 const struct qstr *qstr)
0279b4cd
JO
102{
103 int err;
104
f34f57a3 105 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 106 if (!err)
2a7dba39 107 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
108 return err;
109}
110
c8b97818
CM
111/*
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
115 */
d397712b 116static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
117 struct btrfs_root *root, struct inode *inode,
118 u64 start, size_t size, size_t compressed_size,
fe3f566c 119 int compress_type,
c8b97818
CM
120 struct page **compressed_pages)
121{
122 struct btrfs_key key;
123 struct btrfs_path *path;
124 struct extent_buffer *leaf;
125 struct page *page = NULL;
126 char *kaddr;
127 unsigned long ptr;
128 struct btrfs_file_extent_item *ei;
129 int err = 0;
130 int ret;
131 size_t cur_size = size;
132 size_t datasize;
133 unsigned long offset;
c8b97818 134
fe3f566c 135 if (compressed_size && compressed_pages)
c8b97818 136 cur_size = compressed_size;
c8b97818 137
d397712b
CM
138 path = btrfs_alloc_path();
139 if (!path)
c8b97818
CM
140 return -ENOMEM;
141
b9473439 142 path->leave_spinning = 1;
c8b97818 143
33345d01 144 key.objectid = btrfs_ino(inode);
c8b97818
CM
145 key.offset = start;
146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
147 datasize = btrfs_file_extent_calc_inline_size(cur_size);
148
149 inode_add_bytes(inode, size);
150 ret = btrfs_insert_empty_item(trans, root, path, &key,
151 datasize);
c8b97818
CM
152 if (ret) {
153 err = ret;
c8b97818
CM
154 goto fail;
155 }
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
165
261507a0 166 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
167 struct page *cpage;
168 int i = 0;
d397712b 169 while (compressed_size > 0) {
c8b97818 170 cpage = compressed_pages[i];
5b050f04 171 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
172 PAGE_CACHE_SIZE);
173
7ac687d9 174 kaddr = kmap_atomic(cpage);
c8b97818 175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 176 kunmap_atomic(kaddr);
c8b97818
CM
177
178 i++;
179 ptr += cur_size;
180 compressed_size -= cur_size;
181 }
182 btrfs_set_file_extent_compression(leaf, ei,
261507a0 183 compress_type);
c8b97818
CM
184 } else {
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 188 kaddr = kmap_atomic(page);
c8b97818
CM
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 191 kunmap_atomic(kaddr);
c8b97818
CM
192 page_cache_release(page);
193 }
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
196
c2167754
YZ
197 /*
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
201 *
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
205 */
c8b97818 206 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 207 ret = btrfs_update_inode(trans, root, inode);
c2167754 208
79787eaa 209 return ret;
c8b97818
CM
210fail:
211 btrfs_free_path(path);
212 return err;
213}
214
215
216/*
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
220 */
7f366cfe 221static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
fe3f566c 224 size_t compressed_size, int compress_type,
c8b97818
CM
225 struct page **compressed_pages)
226{
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
c8b97818
CM
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
2671485d 248 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
249 if (ret)
250 return ret;
c8b97818
CM
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
2adcac1a 257 if (ret && ret != -ENOSPC) {
79787eaa
JM
258 btrfs_abort_transaction(trans, root, ret);
259 return ret;
2adcac1a
JB
260 } else if (ret == -ENOSPC) {
261 return 1;
79787eaa 262 }
2adcac1a 263
0ca1f7ce 264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
266 return 0;
267}
268
771ed689
CM
269struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
261507a0 275 int compress_type;
771ed689
CM
276 struct list_head list;
277};
278
279struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287};
288
289static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
261507a0
LZ
293 unsigned long nr_pages,
294 int compress_type)
771ed689
CM
295{
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 299 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
261507a0 305 async_extent->compress_type = compress_type;
771ed689
CM
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308}
309
d352ac68 310/*
771ed689
CM
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
c8b97818 314 *
771ed689
CM
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
c8b97818 320 *
771ed689
CM
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
324 * are written in the same order that the flusher thread sent them
325 * down.
d352ac68 326 */
771ed689
CM
327static noinline int compress_file_range(struct inode *inode,
328 struct page *locked_page,
329 u64 start, u64 end,
330 struct async_cow *async_cow,
331 int *num_added)
b888db2b
CM
332{
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct btrfs_trans_handle *trans;
db94535d 335 u64 num_bytes;
db94535d 336 u64 blocksize = root->sectorsize;
c8b97818 337 u64 actual_end;
42dc7bab 338 u64 isize = i_size_read(inode);
e6dcd2dc 339 int ret = 0;
c8b97818
CM
340 struct page **pages = NULL;
341 unsigned long nr_pages;
342 unsigned long nr_pages_ret = 0;
343 unsigned long total_compressed = 0;
344 unsigned long total_in = 0;
345 unsigned long max_compressed = 128 * 1024;
771ed689 346 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
347 int i;
348 int will_compress;
261507a0 349 int compress_type = root->fs_info->compress_type;
b888db2b 350
4cb13e5d
LB
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end - start + 1) < 16 * 1024 &&
353 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
354 btrfs_add_inode_defrag(NULL, inode);
355
42dc7bab 356 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
357again:
358 will_compress = 0;
359 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
360 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 361
f03d9301
CM
362 /*
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
368 *
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
371 */
372 if (actual_end <= start)
373 goto cleanup_and_bail_uncompressed;
374
c8b97818
CM
375 total_compressed = actual_end - start;
376
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
382 *
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
c8b97818
CM
386 */
387 total_compressed = min(total_compressed, max_uncompressed);
db94535d 388 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 389 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
390 total_in = 0;
391 ret = 0;
db94535d 392
771ed689
CM
393 /*
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
c8b97818 397 */
6cbff00f 398 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 399 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
400 (BTRFS_I(inode)->force_compress) ||
401 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 402 WARN_ON(pages);
cfbc246e 403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
404 if (!pages) {
405 /* just bail out to the uncompressed code */
406 goto cont;
407 }
c8b97818 408
261507a0
LZ
409 if (BTRFS_I(inode)->force_compress)
410 compress_type = BTRFS_I(inode)->force_compress;
411
412 ret = btrfs_compress_pages(compress_type,
413 inode->i_mapping, start,
414 total_compressed, pages,
415 nr_pages, &nr_pages_ret,
416 &total_in,
417 &total_compressed,
418 max_compressed);
c8b97818
CM
419
420 if (!ret) {
421 unsigned long offset = total_compressed &
422 (PAGE_CACHE_SIZE - 1);
423 struct page *page = pages[nr_pages_ret - 1];
424 char *kaddr;
425
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
428 */
429 if (offset) {
7ac687d9 430 kaddr = kmap_atomic(page);
c8b97818
CM
431 memset(kaddr + offset, 0,
432 PAGE_CACHE_SIZE - offset);
7ac687d9 433 kunmap_atomic(kaddr);
c8b97818
CM
434 }
435 will_compress = 1;
436 }
437 }
560f7d75 438cont:
c8b97818 439 if (start == 0) {
7a7eaa40 440 trans = btrfs_join_transaction(root);
79787eaa
JM
441 if (IS_ERR(trans)) {
442 ret = PTR_ERR(trans);
443 trans = NULL;
444 goto cleanup_and_out;
445 }
0ca1f7ce 446 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 447
c8b97818 448 /* lets try to make an inline extent */
771ed689 449 if (ret || total_in < (actual_end - start)) {
c8b97818 450 /* we didn't compress the entire range, try
771ed689 451 * to make an uncompressed inline extent.
c8b97818
CM
452 */
453 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 454 start, end, 0, 0, NULL);
c8b97818 455 } else {
771ed689 456 /* try making a compressed inline extent */
c8b97818
CM
457 ret = cow_file_range_inline(trans, root, inode,
458 start, end,
fe3f566c
LZ
459 total_compressed,
460 compress_type, pages);
c8b97818 461 }
79787eaa 462 if (ret <= 0) {
771ed689 463 /*
79787eaa
JM
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
771ed689 467 */
c8b97818 468 extent_clear_unlock_delalloc(inode,
a791e35e
CM
469 &BTRFS_I(inode)->io_tree,
470 start, end, NULL,
471 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 472 EXTENT_CLEAR_DELALLOC |
a791e35e 473 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
474
475 btrfs_end_transaction(trans, root);
c8b97818
CM
476 goto free_pages_out;
477 }
c2167754 478 btrfs_end_transaction(trans, root);
c8b97818
CM
479 }
480
481 if (will_compress) {
482 /*
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
485 * things
486 */
487 total_compressed = (total_compressed + blocksize - 1) &
488 ~(blocksize - 1);
489
490 /*
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
493 */
494 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
495 ~(PAGE_CACHE_SIZE - 1);
496 if (total_compressed >= total_in) {
497 will_compress = 0;
498 } else {
c8b97818
CM
499 num_bytes = total_in;
500 }
501 }
502 if (!will_compress && pages) {
503 /*
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
506 */
507 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 508 WARN_ON(pages[i]->mapping);
c8b97818
CM
509 page_cache_release(pages[i]);
510 }
511 kfree(pages);
512 pages = NULL;
513 total_compressed = 0;
514 nr_pages_ret = 0;
515
516 /* flag the file so we don't compress in the future */
1e701a32
CM
517 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
518 !(BTRFS_I(inode)->force_compress)) {
a555f810 519 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 520 }
c8b97818 521 }
771ed689
CM
522 if (will_compress) {
523 *num_added += 1;
c8b97818 524
771ed689
CM
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
528 */
529 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
530 total_compressed, pages, nr_pages_ret,
531 compress_type);
179e29e4 532
24ae6365 533 if (start + num_bytes < end) {
771ed689
CM
534 start += num_bytes;
535 pages = NULL;
536 cond_resched();
537 goto again;
538 }
539 } else {
f03d9301 540cleanup_and_bail_uncompressed:
771ed689
CM
541 /*
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
547 */
548 if (page_offset(locked_page) >= start &&
549 page_offset(locked_page) <= end) {
550 __set_page_dirty_nobuffers(locked_page);
551 /* unlocked later on in the async handlers */
552 }
261507a0
LZ
553 add_async_extent(async_cow, start, end - start + 1,
554 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
555 *num_added += 1;
556 }
3b951516 557
771ed689 558out:
79787eaa 559 return ret;
771ed689
CM
560
561free_pages_out:
562 for (i = 0; i < nr_pages_ret; i++) {
563 WARN_ON(pages[i]->mapping);
564 page_cache_release(pages[i]);
565 }
d397712b 566 kfree(pages);
771ed689
CM
567
568 goto out;
79787eaa
JM
569
570cleanup_and_out:
571 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
572 start, end, NULL,
573 EXTENT_CLEAR_UNLOCK_PAGE |
574 EXTENT_CLEAR_DIRTY |
575 EXTENT_CLEAR_DELALLOC |
576 EXTENT_SET_WRITEBACK |
577 EXTENT_END_WRITEBACK);
578 if (!trans || IS_ERR(trans))
579 btrfs_error(root->fs_info, ret, "Failed to join transaction");
580 else
581 btrfs_abort_transaction(trans, root, ret);
582 goto free_pages_out;
771ed689
CM
583}
584
585/*
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
590 */
591static noinline int submit_compressed_extents(struct inode *inode,
592 struct async_cow *async_cow)
593{
594 struct async_extent *async_extent;
595 u64 alloc_hint = 0;
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key ins;
598 struct extent_map *em;
599 struct btrfs_root *root = BTRFS_I(inode)->root;
600 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
601 struct extent_io_tree *io_tree;
f5a84ee3 602 int ret = 0;
771ed689
CM
603
604 if (list_empty(&async_cow->extents))
605 return 0;
606
771ed689 607
d397712b 608 while (!list_empty(&async_cow->extents)) {
771ed689
CM
609 async_extent = list_entry(async_cow->extents.next,
610 struct async_extent, list);
611 list_del(&async_extent->list);
c8b97818 612
771ed689
CM
613 io_tree = &BTRFS_I(inode)->io_tree;
614
f5a84ee3 615retry:
771ed689
CM
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent->pages) {
618 int page_started = 0;
619 unsigned long nr_written = 0;
620
621 lock_extent(io_tree, async_extent->start,
2ac55d41 622 async_extent->start +
d0082371 623 async_extent->ram_size - 1);
771ed689
CM
624
625 /* allocate blocks */
f5a84ee3
JB
626 ret = cow_file_range(inode, async_cow->locked_page,
627 async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1,
630 &page_started, &nr_written, 0);
771ed689 631
79787eaa
JM
632 /* JDM XXX */
633
771ed689
CM
634 /*
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
639 */
f5a84ee3 640 if (!page_started && !ret)
771ed689
CM
641 extent_write_locked_range(io_tree,
642 inode, async_extent->start,
d397712b 643 async_extent->start +
771ed689
CM
644 async_extent->ram_size - 1,
645 btrfs_get_extent,
646 WB_SYNC_ALL);
647 kfree(async_extent);
648 cond_resched();
649 continue;
650 }
651
652 lock_extent(io_tree, async_extent->start,
d0082371 653 async_extent->start + async_extent->ram_size - 1);
771ed689 654
7a7eaa40 655 trans = btrfs_join_transaction(root);
79787eaa
JM
656 if (IS_ERR(trans)) {
657 ret = PTR_ERR(trans);
658 } else {
659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
660 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
661 async_extent->compressed_size,
662 async_extent->compressed_size,
81c9ad23 663 0, alloc_hint, &ins, 1);
962197ba 664 if (ret && ret != -ENOSPC)
79787eaa
JM
665 btrfs_abort_transaction(trans, root, ret);
666 btrfs_end_transaction(trans, root);
667 }
c2167754 668
f5a84ee3
JB
669 if (ret) {
670 int i;
671 for (i = 0; i < async_extent->nr_pages; i++) {
672 WARN_ON(async_extent->pages[i]->mapping);
673 page_cache_release(async_extent->pages[i]);
674 }
675 kfree(async_extent->pages);
676 async_extent->nr_pages = 0;
677 async_extent->pages = NULL;
678 unlock_extent(io_tree, async_extent->start,
679 async_extent->start +
d0082371 680 async_extent->ram_size - 1);
79787eaa
JM
681 if (ret == -ENOSPC)
682 goto retry;
683 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
684 }
685
c2167754
YZ
686 /*
687 * here we're doing allocation and writeback of the
688 * compressed pages
689 */
690 btrfs_drop_extent_cache(inode, async_extent->start,
691 async_extent->start +
692 async_extent->ram_size - 1, 0);
693
172ddd60 694 em = alloc_extent_map();
79787eaa 695 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
696 em->start = async_extent->start;
697 em->len = async_extent->ram_size;
445a6944 698 em->orig_start = em->start;
c8b97818 699
771ed689
CM
700 em->block_start = ins.objectid;
701 em->block_len = ins.offset;
702 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 703 em->compress_type = async_extent->compress_type;
771ed689
CM
704 set_bit(EXTENT_FLAG_PINNED, &em->flags);
705 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
706
d397712b 707 while (1) {
890871be 708 write_lock(&em_tree->lock);
771ed689 709 ret = add_extent_mapping(em_tree, em);
890871be 710 write_unlock(&em_tree->lock);
771ed689
CM
711 if (ret != -EEXIST) {
712 free_extent_map(em);
713 break;
714 }
715 btrfs_drop_extent_cache(inode, async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1, 0);
718 }
719
261507a0
LZ
720 ret = btrfs_add_ordered_extent_compress(inode,
721 async_extent->start,
722 ins.objectid,
723 async_extent->ram_size,
724 ins.offset,
725 BTRFS_ORDERED_COMPRESSED,
726 async_extent->compress_type);
79787eaa 727 BUG_ON(ret); /* -ENOMEM */
771ed689 728
771ed689
CM
729 /*
730 * clear dirty, set writeback and unlock the pages.
731 */
732 extent_clear_unlock_delalloc(inode,
a791e35e
CM
733 &BTRFS_I(inode)->io_tree,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
738 EXTENT_CLEAR_UNLOCK |
a3429ab7 739 EXTENT_CLEAR_DELALLOC |
a791e35e 740 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
741
742 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
743 async_extent->start,
744 async_extent->ram_size,
745 ins.objectid,
746 ins.offset, async_extent->pages,
747 async_extent->nr_pages);
771ed689 748
79787eaa 749 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
750 alloc_hint = ins.objectid + ins.offset;
751 kfree(async_extent);
752 cond_resched();
753 }
79787eaa
JM
754 ret = 0;
755out:
756 return ret;
757out_free:
758 kfree(async_extent);
759 goto out;
771ed689
CM
760}
761
4b46fce2
JB
762static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
763 u64 num_bytes)
764{
765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766 struct extent_map *em;
767 u64 alloc_hint = 0;
768
769 read_lock(&em_tree->lock);
770 em = search_extent_mapping(em_tree, start, num_bytes);
771 if (em) {
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
788 }
789 read_unlock(&em_tree->lock);
790
791 return alloc_hint;
792}
793
771ed689
CM
794/*
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
799 *
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
802 *
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
805 * IO when we return.
806 */
b7d5b0a8
MX
807static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
808 struct inode *inode,
809 struct btrfs_root *root,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
771ed689 814{
771ed689
CM
815 u64 alloc_hint = 0;
816 u64 num_bytes;
817 unsigned long ram_size;
818 u64 disk_num_bytes;
819 u64 cur_alloc_size;
820 u64 blocksize = root->sectorsize;
771ed689
CM
821 struct btrfs_key ins;
822 struct extent_map *em;
823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
824 int ret = 0;
825
83eea1f1 826 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 827
771ed689
CM
828 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
829 num_bytes = max(blocksize, num_bytes);
830 disk_num_bytes = num_bytes;
771ed689 831
4cb5300b 832 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
833 if (num_bytes < 64 * 1024 &&
834 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
835 btrfs_add_inode_defrag(trans, inode);
836
771ed689
CM
837 if (start == 0) {
838 /* lets try to make an inline extent */
839 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 840 start, end, 0, 0, NULL);
771ed689
CM
841 if (ret == 0) {
842 extent_clear_unlock_delalloc(inode,
a791e35e
CM
843 &BTRFS_I(inode)->io_tree,
844 start, end, NULL,
845 EXTENT_CLEAR_UNLOCK_PAGE |
846 EXTENT_CLEAR_UNLOCK |
847 EXTENT_CLEAR_DELALLOC |
848 EXTENT_CLEAR_DIRTY |
849 EXTENT_SET_WRITEBACK |
850 EXTENT_END_WRITEBACK);
c2167754 851
771ed689
CM
852 *nr_written = *nr_written +
853 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
854 *page_started = 1;
771ed689 855 goto out;
79787eaa
JM
856 } else if (ret < 0) {
857 btrfs_abort_transaction(trans, root, ret);
858 goto out_unlock;
771ed689
CM
859 }
860 }
861
862 BUG_ON(disk_num_bytes >
6c41761f 863 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 864
4b46fce2 865 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
866 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
867
d397712b 868 while (disk_num_bytes > 0) {
a791e35e
CM
869 unsigned long op;
870
287a0ab9 871 cur_alloc_size = disk_num_bytes;
e6dcd2dc 872 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 873 root->sectorsize, 0, alloc_hint,
81c9ad23 874 &ins, 1);
79787eaa
JM
875 if (ret < 0) {
876 btrfs_abort_transaction(trans, root, ret);
877 goto out_unlock;
878 }
d397712b 879
172ddd60 880 em = alloc_extent_map();
79787eaa 881 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 882 em->start = start;
445a6944 883 em->orig_start = em->start;
771ed689
CM
884 ram_size = ins.offset;
885 em->len = ins.offset;
c8b97818 886
e6dcd2dc 887 em->block_start = ins.objectid;
c8b97818 888 em->block_len = ins.offset;
e6dcd2dc 889 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 890 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 891
d397712b 892 while (1) {
890871be 893 write_lock(&em_tree->lock);
e6dcd2dc 894 ret = add_extent_mapping(em_tree, em);
890871be 895 write_unlock(&em_tree->lock);
e6dcd2dc
CM
896 if (ret != -EEXIST) {
897 free_extent_map(em);
898 break;
899 }
900 btrfs_drop_extent_cache(inode, start,
c8b97818 901 start + ram_size - 1, 0);
e6dcd2dc
CM
902 }
903
98d20f67 904 cur_alloc_size = ins.offset;
e6dcd2dc 905 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 906 ram_size, cur_alloc_size, 0);
79787eaa 907 BUG_ON(ret); /* -ENOMEM */
c8b97818 908
17d217fe
YZ
909 if (root->root_key.objectid ==
910 BTRFS_DATA_RELOC_TREE_OBJECTID) {
911 ret = btrfs_reloc_clone_csums(inode, start,
912 cur_alloc_size);
79787eaa
JM
913 if (ret) {
914 btrfs_abort_transaction(trans, root, ret);
915 goto out_unlock;
916 }
17d217fe
YZ
917 }
918
d397712b 919 if (disk_num_bytes < cur_alloc_size)
3b951516 920 break;
d397712b 921
c8b97818
CM
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
925 *
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
c8b97818 928 */
a791e35e
CM
929 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
930 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
931 EXTENT_SET_PRIVATE2;
932
c8b97818
CM
933 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
934 start, start + ram_size - 1,
a791e35e 935 locked_page, op);
c8b97818 936 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
937 num_bytes -= cur_alloc_size;
938 alloc_hint = ins.objectid + ins.offset;
939 start += cur_alloc_size;
b888db2b 940 }
79787eaa 941out:
be20aa9d 942 return ret;
b7d5b0a8 943
79787eaa
JM
944out_unlock:
945 extent_clear_unlock_delalloc(inode,
946 &BTRFS_I(inode)->io_tree,
beb42dd7 947 start, end, locked_page,
79787eaa
JM
948 EXTENT_CLEAR_UNLOCK_PAGE |
949 EXTENT_CLEAR_UNLOCK |
950 EXTENT_CLEAR_DELALLOC |
951 EXTENT_CLEAR_DIRTY |
952 EXTENT_SET_WRITEBACK |
953 EXTENT_END_WRITEBACK);
954
955 goto out;
771ed689 956}
c8b97818 957
b7d5b0a8
MX
958static noinline int cow_file_range(struct inode *inode,
959 struct page *locked_page,
960 u64 start, u64 end, int *page_started,
961 unsigned long *nr_written,
962 int unlock)
963{
964 struct btrfs_trans_handle *trans;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 int ret;
967
968 trans = btrfs_join_transaction(root);
969 if (IS_ERR(trans)) {
970 extent_clear_unlock_delalloc(inode,
971 &BTRFS_I(inode)->io_tree,
972 start, end, locked_page,
973 EXTENT_CLEAR_UNLOCK_PAGE |
974 EXTENT_CLEAR_UNLOCK |
975 EXTENT_CLEAR_DELALLOC |
976 EXTENT_CLEAR_DIRTY |
977 EXTENT_SET_WRITEBACK |
978 EXTENT_END_WRITEBACK);
979 return PTR_ERR(trans);
980 }
981 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
982
983 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
984 page_started, nr_written, unlock);
985
986 btrfs_end_transaction(trans, root);
987
988 return ret;
989}
990
771ed689
CM
991/*
992 * work queue call back to started compression on a file and pages
993 */
994static noinline void async_cow_start(struct btrfs_work *work)
995{
996 struct async_cow *async_cow;
997 int num_added = 0;
998 async_cow = container_of(work, struct async_cow, work);
999
1000 compress_file_range(async_cow->inode, async_cow->locked_page,
1001 async_cow->start, async_cow->end, async_cow,
1002 &num_added);
8180ef88 1003 if (num_added == 0) {
cb77fcd8 1004 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1005 async_cow->inode = NULL;
8180ef88 1006 }
771ed689
CM
1007}
1008
1009/*
1010 * work queue call back to submit previously compressed pages
1011 */
1012static noinline void async_cow_submit(struct btrfs_work *work)
1013{
1014 struct async_cow *async_cow;
1015 struct btrfs_root *root;
1016 unsigned long nr_pages;
1017
1018 async_cow = container_of(work, struct async_cow, work);
1019
1020 root = async_cow->root;
1021 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1022 PAGE_CACHE_SHIFT;
1023
66657b31 1024 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1025 5 * 1024 * 1024 &&
771ed689
CM
1026 waitqueue_active(&root->fs_info->async_submit_wait))
1027 wake_up(&root->fs_info->async_submit_wait);
1028
d397712b 1029 if (async_cow->inode)
771ed689 1030 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1031}
c8b97818 1032
771ed689
CM
1033static noinline void async_cow_free(struct btrfs_work *work)
1034{
1035 struct async_cow *async_cow;
1036 async_cow = container_of(work, struct async_cow, work);
8180ef88 1037 if (async_cow->inode)
cb77fcd8 1038 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1039 kfree(async_cow);
1040}
1041
1042static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1043 u64 start, u64 end, int *page_started,
1044 unsigned long *nr_written)
1045{
1046 struct async_cow *async_cow;
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 unsigned long nr_pages;
1049 u64 cur_end;
287082b0 1050 int limit = 10 * 1024 * 1024;
771ed689 1051
a3429ab7
CM
1052 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1053 1, 0, NULL, GFP_NOFS);
d397712b 1054 while (start < end) {
771ed689 1055 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1056 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1057 async_cow->inode = igrab(inode);
771ed689
CM
1058 async_cow->root = root;
1059 async_cow->locked_page = locked_page;
1060 async_cow->start = start;
1061
6cbff00f 1062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1063 cur_end = end;
1064 else
1065 cur_end = min(end, start + 512 * 1024 - 1);
1066
1067 async_cow->end = cur_end;
1068 INIT_LIST_HEAD(&async_cow->extents);
1069
1070 async_cow->work.func = async_cow_start;
1071 async_cow->work.ordered_func = async_cow_submit;
1072 async_cow->work.ordered_free = async_cow_free;
1073 async_cow->work.flags = 0;
1074
771ed689
CM
1075 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1076 PAGE_CACHE_SHIFT;
1077 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1078
1079 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1080 &async_cow->work);
1081
1082 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1083 wait_event(root->fs_info->async_submit_wait,
1084 (atomic_read(&root->fs_info->async_delalloc_pages) <
1085 limit));
1086 }
1087
d397712b 1088 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1089 atomic_read(&root->fs_info->async_delalloc_pages)) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1092 0));
1093 }
1094
1095 *nr_written += nr_pages;
1096 start = cur_end + 1;
1097 }
1098 *page_started = 1;
1099 return 0;
be20aa9d
CM
1100}
1101
d397712b 1102static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1103 u64 bytenr, u64 num_bytes)
1104{
1105 int ret;
1106 struct btrfs_ordered_sum *sums;
1107 LIST_HEAD(list);
1108
07d400a6 1109 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1110 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1111 if (ret == 0 && list_empty(&list))
1112 return 0;
1113
1114 while (!list_empty(&list)) {
1115 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1116 list_del(&sums->list);
1117 kfree(sums);
1118 }
1119 return 1;
1120}
1121
d352ac68
CM
1122/*
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1125 *
1126 * If no cow copies or snapshots exist, we write directly to the existing
1127 * blocks on disk
1128 */
7f366cfe
CM
1129static noinline int run_delalloc_nocow(struct inode *inode,
1130 struct page *locked_page,
771ed689
CM
1131 u64 start, u64 end, int *page_started, int force,
1132 unsigned long *nr_written)
be20aa9d 1133{
be20aa9d 1134 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1135 struct btrfs_trans_handle *trans;
be20aa9d 1136 struct extent_buffer *leaf;
be20aa9d 1137 struct btrfs_path *path;
80ff3856 1138 struct btrfs_file_extent_item *fi;
be20aa9d 1139 struct btrfs_key found_key;
80ff3856
YZ
1140 u64 cow_start;
1141 u64 cur_offset;
1142 u64 extent_end;
5d4f98a2 1143 u64 extent_offset;
80ff3856
YZ
1144 u64 disk_bytenr;
1145 u64 num_bytes;
1146 int extent_type;
79787eaa 1147 int ret, err;
d899e052 1148 int type;
80ff3856
YZ
1149 int nocow;
1150 int check_prev = 1;
82d5902d 1151 bool nolock;
33345d01 1152 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1153
1154 path = btrfs_alloc_path();
17ca04af
JB
1155 if (!path) {
1156 extent_clear_unlock_delalloc(inode,
1157 &BTRFS_I(inode)->io_tree,
1158 start, end, locked_page,
1159 EXTENT_CLEAR_UNLOCK_PAGE |
1160 EXTENT_CLEAR_UNLOCK |
1161 EXTENT_CLEAR_DELALLOC |
1162 EXTENT_CLEAR_DIRTY |
1163 EXTENT_SET_WRITEBACK |
1164 EXTENT_END_WRITEBACK);
d8926bb3 1165 return -ENOMEM;
17ca04af 1166 }
82d5902d 1167
83eea1f1 1168 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1169
1170 if (nolock)
7a7eaa40 1171 trans = btrfs_join_transaction_nolock(root);
82d5902d 1172 else
7a7eaa40 1173 trans = btrfs_join_transaction(root);
ff5714cc 1174
79787eaa 1175 if (IS_ERR(trans)) {
17ca04af
JB
1176 extent_clear_unlock_delalloc(inode,
1177 &BTRFS_I(inode)->io_tree,
1178 start, end, locked_page,
1179 EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK |
1181 EXTENT_CLEAR_DELALLOC |
1182 EXTENT_CLEAR_DIRTY |
1183 EXTENT_SET_WRITEBACK |
1184 EXTENT_END_WRITEBACK);
79787eaa
JM
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1187 }
1188
74b21075 1189 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1190
80ff3856
YZ
1191 cow_start = (u64)-1;
1192 cur_offset = start;
1193 while (1) {
33345d01 1194 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1195 cur_offset, 0);
79787eaa
JM
1196 if (ret < 0) {
1197 btrfs_abort_transaction(trans, root, ret);
1198 goto error;
1199 }
80ff3856
YZ
1200 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1201 leaf = path->nodes[0];
1202 btrfs_item_key_to_cpu(leaf, &found_key,
1203 path->slots[0] - 1);
33345d01 1204 if (found_key.objectid == ino &&
80ff3856
YZ
1205 found_key.type == BTRFS_EXTENT_DATA_KEY)
1206 path->slots[0]--;
1207 }
1208 check_prev = 0;
1209next_slot:
1210 leaf = path->nodes[0];
1211 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1212 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1213 if (ret < 0) {
1214 btrfs_abort_transaction(trans, root, ret);
1215 goto error;
1216 }
80ff3856
YZ
1217 if (ret > 0)
1218 break;
1219 leaf = path->nodes[0];
1220 }
be20aa9d 1221
80ff3856
YZ
1222 nocow = 0;
1223 disk_bytenr = 0;
17d217fe 1224 num_bytes = 0;
80ff3856
YZ
1225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1226
33345d01 1227 if (found_key.objectid > ino ||
80ff3856
YZ
1228 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1229 found_key.offset > end)
1230 break;
1231
1232 if (found_key.offset > cur_offset) {
1233 extent_end = found_key.offset;
e9061e21 1234 extent_type = 0;
80ff3856
YZ
1235 goto out_check;
1236 }
1237
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
1240 extent_type = btrfs_file_extent_type(leaf, fi);
1241
d899e052
YZ
1242 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1243 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1245 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1246 extent_end = found_key.offset +
1247 btrfs_file_extent_num_bytes(leaf, fi);
1248 if (extent_end <= start) {
1249 path->slots[0]++;
1250 goto next_slot;
1251 }
17d217fe
YZ
1252 if (disk_bytenr == 0)
1253 goto out_check;
80ff3856
YZ
1254 if (btrfs_file_extent_compression(leaf, fi) ||
1255 btrfs_file_extent_encryption(leaf, fi) ||
1256 btrfs_file_extent_other_encoding(leaf, fi))
1257 goto out_check;
d899e052
YZ
1258 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1259 goto out_check;
d2fb3437 1260 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1261 goto out_check;
33345d01 1262 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1263 found_key.offset -
1264 extent_offset, disk_bytenr))
17d217fe 1265 goto out_check;
5d4f98a2 1266 disk_bytenr += extent_offset;
17d217fe
YZ
1267 disk_bytenr += cur_offset - found_key.offset;
1268 num_bytes = min(end + 1, extent_end) - cur_offset;
1269 /*
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1273 */
1274 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1275 goto out_check;
80ff3856
YZ
1276 nocow = 1;
1277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1278 extent_end = found_key.offset +
1279 btrfs_file_extent_inline_len(leaf, fi);
1280 extent_end = ALIGN(extent_end, root->sectorsize);
1281 } else {
1282 BUG_ON(1);
1283 }
1284out_check:
1285 if (extent_end <= start) {
1286 path->slots[0]++;
1287 goto next_slot;
1288 }
1289 if (!nocow) {
1290 if (cow_start == (u64)-1)
1291 cow_start = cur_offset;
1292 cur_offset = extent_end;
1293 if (cur_offset > end)
1294 break;
1295 path->slots[0]++;
1296 goto next_slot;
7ea394f1
YZ
1297 }
1298
b3b4aa74 1299 btrfs_release_path(path);
80ff3856 1300 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1301 ret = __cow_file_range(trans, inode, root, locked_page,
1302 cow_start, found_key.offset - 1,
1303 page_started, nr_written, 1);
79787eaa
JM
1304 if (ret) {
1305 btrfs_abort_transaction(trans, root, ret);
1306 goto error;
1307 }
80ff3856 1308 cow_start = (u64)-1;
7ea394f1 1309 }
80ff3856 1310
d899e052
YZ
1311 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1312 struct extent_map *em;
1313 struct extent_map_tree *em_tree;
1314 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1315 em = alloc_extent_map();
79787eaa 1316 BUG_ON(!em); /* -ENOMEM */
d899e052 1317 em->start = cur_offset;
445a6944 1318 em->orig_start = em->start;
d899e052
YZ
1319 em->len = num_bytes;
1320 em->block_len = num_bytes;
1321 em->block_start = disk_bytenr;
1322 em->bdev = root->fs_info->fs_devices->latest_bdev;
1323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
4e2f84e6 1324 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
d899e052 1325 while (1) {
890871be 1326 write_lock(&em_tree->lock);
d899e052 1327 ret = add_extent_mapping(em_tree, em);
890871be 1328 write_unlock(&em_tree->lock);
d899e052
YZ
1329 if (ret != -EEXIST) {
1330 free_extent_map(em);
1331 break;
1332 }
1333 btrfs_drop_extent_cache(inode, em->start,
1334 em->start + em->len - 1, 0);
1335 }
1336 type = BTRFS_ORDERED_PREALLOC;
1337 } else {
1338 type = BTRFS_ORDERED_NOCOW;
1339 }
80ff3856
YZ
1340
1341 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1342 num_bytes, num_bytes, type);
79787eaa 1343 BUG_ON(ret); /* -ENOMEM */
771ed689 1344
efa56464
YZ
1345 if (root->root_key.objectid ==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1347 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1348 num_bytes);
79787eaa
JM
1349 if (ret) {
1350 btrfs_abort_transaction(trans, root, ret);
1351 goto error;
1352 }
efa56464
YZ
1353 }
1354
d899e052 1355 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1356 cur_offset, cur_offset + num_bytes - 1,
1357 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1358 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1359 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1360 cur_offset = extent_end;
1361 if (cur_offset > end)
1362 break;
be20aa9d 1363 }
b3b4aa74 1364 btrfs_release_path(path);
80ff3856 1365
17ca04af 1366 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1367 cow_start = cur_offset;
17ca04af
JB
1368 cur_offset = end;
1369 }
1370
80ff3856 1371 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, end,
1374 page_started, nr_written, 1);
79787eaa
JM
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
80ff3856
YZ
1379 }
1380
79787eaa 1381error:
a698d075 1382 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1383 if (!ret)
1384 ret = err;
1385
17ca04af
JB
1386 if (ret && cur_offset < end)
1387 extent_clear_unlock_delalloc(inode,
1388 &BTRFS_I(inode)->io_tree,
1389 cur_offset, end, locked_page,
1390 EXTENT_CLEAR_UNLOCK_PAGE |
1391 EXTENT_CLEAR_UNLOCK |
1392 EXTENT_CLEAR_DELALLOC |
1393 EXTENT_CLEAR_DIRTY |
1394 EXTENT_SET_WRITEBACK |
1395 EXTENT_END_WRITEBACK);
1396
7ea394f1 1397 btrfs_free_path(path);
79787eaa 1398 return ret;
be20aa9d
CM
1399}
1400
d352ac68
CM
1401/*
1402 * extent_io.c call back to do delayed allocation processing
1403 */
c8b97818 1404static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
be20aa9d 1407{
be20aa9d 1408 int ret;
7f366cfe 1409 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1410
7ddf5a42 1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1413 page_started, 1, nr_written);
7ddf5a42 1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1416 page_started, 0, nr_written);
7ddf5a42
JB
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
7ddf5a42
JB
1422 } else {
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
771ed689 1425 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1426 page_started, nr_written);
7ddf5a42 1427 }
b888db2b
CM
1428 return ret;
1429}
1430
1bf85046
JM
1431static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
9ed74f2d 1433{
0ca1f7ce 1434 /* not delalloc, ignore it */
9ed74f2d 1435 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1436 return;
9ed74f2d 1437
9e0baf60
JB
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1441}
1442
1443/*
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1448 */
1bf85046
JM
1449static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
9ed74f2d 1452{
9ed74f2d
JB
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1455 return;
9ed74f2d 1456
9e0baf60
JB
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1460}
1461
d352ac68
CM
1462/*
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1466 */
1bf85046
JM
1467static void btrfs_set_bit_hook(struct inode *inode,
1468 struct extent_state *state, int *bits)
291d673e 1469{
9ed74f2d 1470
75eff68e
CM
1471 /*
1472 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1473 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1474 * bit, which is only set or cleared with irqs on
1475 */
0ca1f7ce 1476 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1477 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1478 u64 len = state->end + 1 - state->start;
83eea1f1 1479 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1480
9e0baf60 1481 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1482 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1483 } else {
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1487 }
287a0ab9 1488
75eff68e 1489 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1490 BTRFS_I(inode)->delalloc_bytes += len;
1491 root->fs_info->delalloc_bytes += len;
0cb59c99 1492 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1493 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1494 &root->fs_info->delalloc_inodes);
1495 }
75eff68e 1496 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1497 }
291d673e
CM
1498}
1499
d352ac68
CM
1500/*
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1502 */
1bf85046
JM
1503static void btrfs_clear_bit_hook(struct inode *inode,
1504 struct extent_state *state, int *bits)
291d673e 1505{
75eff68e
CM
1506 /*
1507 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1508 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1509 * bit, which is only set or cleared with irqs on
1510 */
0ca1f7ce 1511 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1512 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1513 u64 len = state->end + 1 - state->start;
83eea1f1 1514 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1515
9e0baf60 1516 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1517 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1518 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->outstanding_extents--;
1521 spin_unlock(&BTRFS_I(inode)->lock);
1522 }
0ca1f7ce
YZ
1523
1524 if (*bits & EXTENT_DO_ACCOUNTING)
1525 btrfs_delalloc_release_metadata(inode, len);
1526
0cb59c99
JB
1527 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1528 && do_list)
0ca1f7ce 1529 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1530
75eff68e 1531 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1532 root->fs_info->delalloc_bytes -= len;
1533 BTRFS_I(inode)->delalloc_bytes -= len;
1534
0cb59c99 1535 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1536 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1537 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1538 }
75eff68e 1539 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1540 }
291d673e
CM
1541}
1542
d352ac68
CM
1543/*
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1546 */
239b14b3 1547int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1548 size_t size, struct bio *bio,
1549 unsigned long bio_flags)
239b14b3
CM
1550{
1551 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1552 struct btrfs_mapping_tree *map_tree;
a62b9401 1553 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1554 u64 length = 0;
1555 u64 map_length;
239b14b3
CM
1556 int ret;
1557
771ed689
CM
1558 if (bio_flags & EXTENT_BIO_COMPRESSED)
1559 return 0;
1560
f2d8d74d 1561 length = bio->bi_size;
239b14b3
CM
1562 map_tree = &root->fs_info->mapping_tree;
1563 map_length = length;
cea9e445 1564 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1565 &map_length, NULL, 0);
3444a972
JM
1566 /* Will always return 0 or 1 with map_multi == NULL */
1567 BUG_ON(ret < 0);
d397712b 1568 if (map_length < length + size)
239b14b3 1569 return 1;
3444a972 1570 return 0;
239b14b3
CM
1571}
1572
d352ac68
CM
1573/*
1574 * in order to insert checksums into the metadata in large chunks,
1575 * we wait until bio submission time. All the pages in the bio are
1576 * checksummed and sums are attached onto the ordered extent record.
1577 *
1578 * At IO completion time the cums attached on the ordered extent record
1579 * are inserted into the btree
1580 */
d397712b
CM
1581static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1582 struct bio *bio, int mirror_num,
eaf25d93
CM
1583 unsigned long bio_flags,
1584 u64 bio_offset)
065631f6 1585{
065631f6 1586 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1587 int ret = 0;
e015640f 1588
d20f7043 1589 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1590 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1591 return 0;
1592}
e015640f 1593
4a69a410
CM
1594/*
1595 * in order to insert checksums into the metadata in large chunks,
1596 * we wait until bio submission time. All the pages in the bio are
1597 * checksummed and sums are attached onto the ordered extent record.
1598 *
1599 * At IO completion time the cums attached on the ordered extent record
1600 * are inserted into the btree
1601 */
b2950863 1602static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1603 int mirror_num, unsigned long bio_flags,
1604 u64 bio_offset)
4a69a410
CM
1605{
1606 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1607 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1608}
1609
d352ac68 1610/*
cad321ad
CM
1611 * extent_io.c submission hook. This does the right thing for csum calculation
1612 * on write, or reading the csums from the tree before a read
d352ac68 1613 */
b2950863 1614static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1615 int mirror_num, unsigned long bio_flags,
1616 u64 bio_offset)
44b8bd7e
CM
1617{
1618 struct btrfs_root *root = BTRFS_I(inode)->root;
1619 int ret = 0;
19b9bdb0 1620 int skip_sum;
0417341e 1621 int metadata = 0;
44b8bd7e 1622
6cbff00f 1623 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1624
83eea1f1 1625 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1626 metadata = 2;
1627
7b6d91da 1628 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1629 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1630 if (ret)
1631 return ret;
1632
d20f7043 1633 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1634 return btrfs_submit_compressed_read(inode, bio,
1635 mirror_num, bio_flags);
c2db1073
TI
1636 } else if (!skip_sum) {
1637 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1638 if (ret)
1639 return ret;
1640 }
4d1b5fb4 1641 goto mapit;
19b9bdb0 1642 } else if (!skip_sum) {
17d217fe
YZ
1643 /* csum items have already been cloned */
1644 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1645 goto mapit;
19b9bdb0
CM
1646 /* we're doing a write, do the async checksumming */
1647 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1648 inode, rw, bio, mirror_num,
eaf25d93
CM
1649 bio_flags, bio_offset,
1650 __btrfs_submit_bio_start,
4a69a410 1651 __btrfs_submit_bio_done);
19b9bdb0
CM
1652 }
1653
0b86a832 1654mapit:
8b712842 1655 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1656}
6885f308 1657
d352ac68
CM
1658/*
1659 * given a list of ordered sums record them in the inode. This happens
1660 * at IO completion time based on sums calculated at bio submission time.
1661 */
ba1da2f4 1662static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1663 struct inode *inode, u64 file_offset,
1664 struct list_head *list)
1665{
e6dcd2dc
CM
1666 struct btrfs_ordered_sum *sum;
1667
c6e30871 1668 list_for_each_entry(sum, list, list) {
d20f7043
CM
1669 btrfs_csum_file_blocks(trans,
1670 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1671 }
1672 return 0;
1673}
1674
2ac55d41
JB
1675int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1676 struct extent_state **cached_state)
ea8c2819 1677{
6c1500f2 1678 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1679 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1680 cached_state, GFP_NOFS);
ea8c2819
CM
1681}
1682
d352ac68 1683/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1684struct btrfs_writepage_fixup {
1685 struct page *page;
1686 struct btrfs_work work;
1687};
1688
b2950863 1689static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1690{
1691 struct btrfs_writepage_fixup *fixup;
1692 struct btrfs_ordered_extent *ordered;
2ac55d41 1693 struct extent_state *cached_state = NULL;
247e743c
CM
1694 struct page *page;
1695 struct inode *inode;
1696 u64 page_start;
1697 u64 page_end;
87826df0 1698 int ret;
247e743c
CM
1699
1700 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1701 page = fixup->page;
4a096752 1702again:
247e743c
CM
1703 lock_page(page);
1704 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1705 ClearPageChecked(page);
1706 goto out_page;
1707 }
1708
1709 inode = page->mapping->host;
1710 page_start = page_offset(page);
1711 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1712
2ac55d41 1713 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1714 &cached_state);
4a096752
CM
1715
1716 /* already ordered? We're done */
8b62b72b 1717 if (PagePrivate2(page))
247e743c 1718 goto out;
4a096752
CM
1719
1720 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1721 if (ordered) {
2ac55d41
JB
1722 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1723 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1724 unlock_page(page);
1725 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1726 btrfs_put_ordered_extent(ordered);
4a096752
CM
1727 goto again;
1728 }
247e743c 1729
87826df0
JM
1730 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1731 if (ret) {
1732 mapping_set_error(page->mapping, ret);
1733 end_extent_writepage(page, ret, page_start, page_end);
1734 ClearPageChecked(page);
1735 goto out;
1736 }
1737
2ac55d41 1738 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1739 ClearPageChecked(page);
87826df0 1740 set_page_dirty(page);
247e743c 1741out:
2ac55d41
JB
1742 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1743 &cached_state, GFP_NOFS);
247e743c
CM
1744out_page:
1745 unlock_page(page);
1746 page_cache_release(page);
b897abec 1747 kfree(fixup);
247e743c
CM
1748}
1749
1750/*
1751 * There are a few paths in the higher layers of the kernel that directly
1752 * set the page dirty bit without asking the filesystem if it is a
1753 * good idea. This causes problems because we want to make sure COW
1754 * properly happens and the data=ordered rules are followed.
1755 *
c8b97818 1756 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1757 * hasn't been properly setup for IO. We kick off an async process
1758 * to fix it up. The async helper will wait for ordered extents, set
1759 * the delalloc bit and make it safe to write the page.
1760 */
b2950863 1761static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1762{
1763 struct inode *inode = page->mapping->host;
1764 struct btrfs_writepage_fixup *fixup;
1765 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1766
8b62b72b
CM
1767 /* this page is properly in the ordered list */
1768 if (TestClearPagePrivate2(page))
247e743c
CM
1769 return 0;
1770
1771 if (PageChecked(page))
1772 return -EAGAIN;
1773
1774 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1775 if (!fixup)
1776 return -EAGAIN;
f421950f 1777
247e743c
CM
1778 SetPageChecked(page);
1779 page_cache_get(page);
1780 fixup->work.func = btrfs_writepage_fixup_worker;
1781 fixup->page = page;
1782 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1783 return -EBUSY;
247e743c
CM
1784}
1785
d899e052
YZ
1786static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1787 struct inode *inode, u64 file_pos,
1788 u64 disk_bytenr, u64 disk_num_bytes,
1789 u64 num_bytes, u64 ram_bytes,
1790 u8 compression, u8 encryption,
1791 u16 other_encoding, int extent_type)
1792{
1793 struct btrfs_root *root = BTRFS_I(inode)->root;
1794 struct btrfs_file_extent_item *fi;
1795 struct btrfs_path *path;
1796 struct extent_buffer *leaf;
1797 struct btrfs_key ins;
d899e052
YZ
1798 int ret;
1799
1800 path = btrfs_alloc_path();
d8926bb3
MF
1801 if (!path)
1802 return -ENOMEM;
d899e052 1803
b9473439 1804 path->leave_spinning = 1;
a1ed835e
CM
1805
1806 /*
1807 * we may be replacing one extent in the tree with another.
1808 * The new extent is pinned in the extent map, and we don't want
1809 * to drop it from the cache until it is completely in the btree.
1810 *
1811 * So, tell btrfs_drop_extents to leave this extent in the cache.
1812 * the caller is expected to unpin it and allow it to be merged
1813 * with the others.
1814 */
5dc562c5 1815 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1816 file_pos + num_bytes, 0);
79787eaa
JM
1817 if (ret)
1818 goto out;
d899e052 1819
33345d01 1820 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1821 ins.offset = file_pos;
1822 ins.type = BTRFS_EXTENT_DATA_KEY;
1823 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1824 if (ret)
1825 goto out;
d899e052
YZ
1826 leaf = path->nodes[0];
1827 fi = btrfs_item_ptr(leaf, path->slots[0],
1828 struct btrfs_file_extent_item);
1829 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1830 btrfs_set_file_extent_type(leaf, fi, extent_type);
1831 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1832 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1833 btrfs_set_file_extent_offset(leaf, fi, 0);
1834 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1835 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1836 btrfs_set_file_extent_compression(leaf, fi, compression);
1837 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1838 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1839
d899e052 1840 btrfs_mark_buffer_dirty(leaf);
ce195332 1841 btrfs_release_path(path);
d899e052
YZ
1842
1843 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1844
1845 ins.objectid = disk_bytenr;
1846 ins.offset = disk_num_bytes;
1847 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1848 ret = btrfs_alloc_reserved_file_extent(trans, root,
1849 root->root_key.objectid,
33345d01 1850 btrfs_ino(inode), file_pos, &ins);
79787eaa 1851out:
d899e052 1852 btrfs_free_path(path);
b9473439 1853
79787eaa 1854 return ret;
d899e052
YZ
1855}
1856
5d13a98f
CM
1857/*
1858 * helper function for btrfs_finish_ordered_io, this
1859 * just reads in some of the csum leaves to prime them into ram
1860 * before we start the transaction. It limits the amount of btree
1861 * reads required while inside the transaction.
1862 */
d352ac68
CM
1863/* as ordered data IO finishes, this gets called so we can finish
1864 * an ordered extent if the range of bytes in the file it covers are
1865 * fully written.
1866 */
5fd02043 1867static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1868{
5fd02043 1869 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1870 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1871 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1872 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1873 struct extent_state *cached_state = NULL;
261507a0 1874 int compress_type = 0;
e6dcd2dc 1875 int ret;
82d5902d 1876 bool nolock;
e6dcd2dc 1877
83eea1f1 1878 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1879
5fd02043
JB
1880 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1881 ret = -EIO;
1882 goto out;
1883 }
1884
c2167754 1885 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1886 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1887 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1888 if (!ret) {
0cb59c99 1889 if (nolock)
7a7eaa40 1890 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1891 else
7a7eaa40 1892 trans = btrfs_join_transaction(root);
d280e5be
LB
1893 if (IS_ERR(trans)) {
1894 ret = PTR_ERR(trans);
1895 trans = NULL;
1896 goto out;
1897 }
0ca1f7ce 1898 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1899 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1900 if (ret) /* -ENOMEM or corruption */
1901 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1902 }
1903 goto out;
1904 }
e6dcd2dc 1905
2ac55d41
JB
1906 lock_extent_bits(io_tree, ordered_extent->file_offset,
1907 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1908 0, &cached_state);
e6dcd2dc 1909
0cb59c99 1910 if (nolock)
7a7eaa40 1911 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1912 else
7a7eaa40 1913 trans = btrfs_join_transaction(root);
79787eaa
JM
1914 if (IS_ERR(trans)) {
1915 ret = PTR_ERR(trans);
1916 trans = NULL;
1917 goto out_unlock;
1918 }
0ca1f7ce 1919 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1920
c8b97818 1921 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1922 compress_type = ordered_extent->compress_type;
d899e052 1923 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1924 BUG_ON(compress_type);
920bbbfb 1925 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1926 ordered_extent->file_offset,
1927 ordered_extent->file_offset +
1928 ordered_extent->len);
d899e052 1929 } else {
0af3d00b 1930 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1931 ret = insert_reserved_file_extent(trans, inode,
1932 ordered_extent->file_offset,
1933 ordered_extent->start,
1934 ordered_extent->disk_len,
1935 ordered_extent->len,
1936 ordered_extent->len,
261507a0 1937 compress_type, 0, 0,
d899e052 1938 BTRFS_FILE_EXTENT_REG);
d899e052 1939 }
5dc562c5
JB
1940 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1941 ordered_extent->file_offset, ordered_extent->len,
1942 trans->transid);
79787eaa
JM
1943 if (ret < 0) {
1944 btrfs_abort_transaction(trans, root, ret);
5fd02043 1945 goto out_unlock;
79787eaa 1946 }
2ac55d41 1947
e6dcd2dc
CM
1948 add_pending_csums(trans, inode, ordered_extent->file_offset,
1949 &ordered_extent->list);
1950
1ef30be1 1951 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1952 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1953 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1954 if (ret) { /* -ENOMEM or corruption */
1955 btrfs_abort_transaction(trans, root, ret);
5fd02043 1956 goto out_unlock;
79787eaa 1957 }
7c735313
JB
1958 } else {
1959 btrfs_set_inode_last_trans(trans, inode);
1ef30be1
JB
1960 }
1961 ret = 0;
5fd02043
JB
1962out_unlock:
1963 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1964 ordered_extent->file_offset +
1965 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 1966out:
5b0e95bf 1967 if (root != root->fs_info->tree_root)
0cb59c99 1968 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
1969 if (trans)
1970 btrfs_end_transaction(trans, root);
0cb59c99 1971
5fd02043
JB
1972 if (ret)
1973 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1974 ordered_extent->file_offset +
1975 ordered_extent->len - 1, NULL, GFP_NOFS);
1976
1977 /*
8bad3c02
LB
1978 * This needs to be done to make sure anybody waiting knows we are done
1979 * updating everything for this ordered extent.
5fd02043
JB
1980 */
1981 btrfs_remove_ordered_extent(inode, ordered_extent);
1982
e6dcd2dc
CM
1983 /* once for us */
1984 btrfs_put_ordered_extent(ordered_extent);
1985 /* once for the tree */
1986 btrfs_put_ordered_extent(ordered_extent);
1987
5fd02043
JB
1988 return ret;
1989}
1990
1991static void finish_ordered_fn(struct btrfs_work *work)
1992{
1993 struct btrfs_ordered_extent *ordered_extent;
1994 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1995 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
1996}
1997
b2950863 1998static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1999 struct extent_state *state, int uptodate)
2000{
5fd02043
JB
2001 struct inode *inode = page->mapping->host;
2002 struct btrfs_root *root = BTRFS_I(inode)->root;
2003 struct btrfs_ordered_extent *ordered_extent = NULL;
2004 struct btrfs_workers *workers;
2005
1abe9b8a 2006 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2007
8b62b72b 2008 ClearPagePrivate2(page);
5fd02043
JB
2009 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2010 end - start + 1, uptodate))
2011 return 0;
2012
2013 ordered_extent->work.func = finish_ordered_fn;
2014 ordered_extent->work.flags = 0;
2015
83eea1f1 2016 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2017 workers = &root->fs_info->endio_freespace_worker;
2018 else
2019 workers = &root->fs_info->endio_write_workers;
2020 btrfs_queue_worker(workers, &ordered_extent->work);
2021
2022 return 0;
211f90e6
CM
2023}
2024
d352ac68
CM
2025/*
2026 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2027 * if there's a match, we allow the bio to finish. If not, the code in
2028 * extent_io.c will try to find good copies for us.
d352ac68 2029 */
b2950863 2030static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2031 struct extent_state *state, int mirror)
07157aac 2032{
35ebb934 2033 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2034 struct inode *inode = page->mapping->host;
d1310b2e 2035 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2036 char *kaddr;
aadfeb6e 2037 u64 private = ~(u32)0;
07157aac 2038 int ret;
ff79f819
CM
2039 struct btrfs_root *root = BTRFS_I(inode)->root;
2040 u32 csum = ~(u32)0;
d1310b2e 2041
d20f7043
CM
2042 if (PageChecked(page)) {
2043 ClearPageChecked(page);
2044 goto good;
2045 }
6cbff00f
CH
2046
2047 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2048 goto good;
17d217fe
YZ
2049
2050 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2051 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2052 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2053 GFP_NOFS);
b6cda9bc 2054 return 0;
17d217fe 2055 }
d20f7043 2056
c2e639f0 2057 if (state && state->start == start) {
70dec807
CM
2058 private = state->private;
2059 ret = 0;
2060 } else {
2061 ret = get_state_private(io_tree, start, &private);
2062 }
7ac687d9 2063 kaddr = kmap_atomic(page);
d397712b 2064 if (ret)
07157aac 2065 goto zeroit;
d397712b 2066
ff79f819
CM
2067 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2068 btrfs_csum_final(csum, (char *)&csum);
d397712b 2069 if (csum != private)
07157aac 2070 goto zeroit;
d397712b 2071
7ac687d9 2072 kunmap_atomic(kaddr);
d20f7043 2073good:
07157aac
CM
2074 return 0;
2075
2076zeroit:
945d8962 2077 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2078 "private %llu\n",
2079 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2080 (unsigned long long)start, csum,
2081 (unsigned long long)private);
db94535d
CM
2082 memset(kaddr + offset, 1, end - start + 1);
2083 flush_dcache_page(page);
7ac687d9 2084 kunmap_atomic(kaddr);
3b951516
CM
2085 if (private == 0)
2086 return 0;
7e38326f 2087 return -EIO;
07157aac 2088}
b888db2b 2089
24bbcf04
YZ
2090struct delayed_iput {
2091 struct list_head list;
2092 struct inode *inode;
2093};
2094
79787eaa
JM
2095/* JDM: If this is fs-wide, why can't we add a pointer to
2096 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2097void btrfs_add_delayed_iput(struct inode *inode)
2098{
2099 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2100 struct delayed_iput *delayed;
2101
2102 if (atomic_add_unless(&inode->i_count, -1, 1))
2103 return;
2104
2105 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2106 delayed->inode = inode;
2107
2108 spin_lock(&fs_info->delayed_iput_lock);
2109 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2110 spin_unlock(&fs_info->delayed_iput_lock);
2111}
2112
2113void btrfs_run_delayed_iputs(struct btrfs_root *root)
2114{
2115 LIST_HEAD(list);
2116 struct btrfs_fs_info *fs_info = root->fs_info;
2117 struct delayed_iput *delayed;
2118 int empty;
2119
2120 spin_lock(&fs_info->delayed_iput_lock);
2121 empty = list_empty(&fs_info->delayed_iputs);
2122 spin_unlock(&fs_info->delayed_iput_lock);
2123 if (empty)
2124 return;
2125
24bbcf04
YZ
2126 spin_lock(&fs_info->delayed_iput_lock);
2127 list_splice_init(&fs_info->delayed_iputs, &list);
2128 spin_unlock(&fs_info->delayed_iput_lock);
2129
2130 while (!list_empty(&list)) {
2131 delayed = list_entry(list.next, struct delayed_iput, list);
2132 list_del(&delayed->list);
2133 iput(delayed->inode);
2134 kfree(delayed);
2135 }
24bbcf04
YZ
2136}
2137
d68fc57b
YZ
2138enum btrfs_orphan_cleanup_state {
2139 ORPHAN_CLEANUP_STARTED = 1,
2140 ORPHAN_CLEANUP_DONE = 2,
2141};
2142
2143/*
42b2aa86 2144 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2145 * files in the subvolume, it removes orphan item and frees block_rsv
2146 * structure.
2147 */
2148void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2149 struct btrfs_root *root)
2150{
90290e19 2151 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2152 int ret;
2153
8a35d95f 2154 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2155 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2156 return;
2157
90290e19 2158 spin_lock(&root->orphan_lock);
8a35d95f 2159 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2160 spin_unlock(&root->orphan_lock);
2161 return;
2162 }
2163
2164 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2165 spin_unlock(&root->orphan_lock);
2166 return;
2167 }
2168
2169 block_rsv = root->orphan_block_rsv;
2170 root->orphan_block_rsv = NULL;
2171 spin_unlock(&root->orphan_lock);
2172
d68fc57b
YZ
2173 if (root->orphan_item_inserted &&
2174 btrfs_root_refs(&root->root_item) > 0) {
2175 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2176 root->root_key.objectid);
2177 BUG_ON(ret);
2178 root->orphan_item_inserted = 0;
2179 }
2180
90290e19
JB
2181 if (block_rsv) {
2182 WARN_ON(block_rsv->size > 0);
2183 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2184 }
2185}
2186
7b128766
JB
2187/*
2188 * This creates an orphan entry for the given inode in case something goes
2189 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2190 *
2191 * NOTE: caller of this function should reserve 5 units of metadata for
2192 * this function.
7b128766
JB
2193 */
2194int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2195{
2196 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2197 struct btrfs_block_rsv *block_rsv = NULL;
2198 int reserve = 0;
2199 int insert = 0;
2200 int ret;
7b128766 2201
d68fc57b 2202 if (!root->orphan_block_rsv) {
66d8f3dd 2203 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2204 if (!block_rsv)
2205 return -ENOMEM;
d68fc57b 2206 }
7b128766 2207
d68fc57b
YZ
2208 spin_lock(&root->orphan_lock);
2209 if (!root->orphan_block_rsv) {
2210 root->orphan_block_rsv = block_rsv;
2211 } else if (block_rsv) {
2212 btrfs_free_block_rsv(root, block_rsv);
2213 block_rsv = NULL;
7b128766 2214 }
7b128766 2215
8a35d95f
JB
2216 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2217 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2218#if 0
2219 /*
2220 * For proper ENOSPC handling, we should do orphan
2221 * cleanup when mounting. But this introduces backward
2222 * compatibility issue.
2223 */
2224 if (!xchg(&root->orphan_item_inserted, 1))
2225 insert = 2;
2226 else
2227 insert = 1;
2228#endif
2229 insert = 1;
321f0e70 2230 atomic_inc(&root->orphan_inodes);
7b128766
JB
2231 }
2232
72ac3c0d
JB
2233 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2234 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2235 reserve = 1;
d68fc57b 2236 spin_unlock(&root->orphan_lock);
7b128766 2237
d68fc57b
YZ
2238 /* grab metadata reservation from transaction handle */
2239 if (reserve) {
2240 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2241 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2242 }
7b128766 2243
d68fc57b
YZ
2244 /* insert an orphan item to track this unlinked/truncated file */
2245 if (insert >= 1) {
33345d01 2246 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2247 if (ret && ret != -EEXIST) {
8a35d95f
JB
2248 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2249 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2250 btrfs_abort_transaction(trans, root, ret);
2251 return ret;
2252 }
2253 ret = 0;
d68fc57b
YZ
2254 }
2255
2256 /* insert an orphan item to track subvolume contains orphan files */
2257 if (insert >= 2) {
2258 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2259 root->root_key.objectid);
79787eaa
JM
2260 if (ret && ret != -EEXIST) {
2261 btrfs_abort_transaction(trans, root, ret);
2262 return ret;
2263 }
d68fc57b
YZ
2264 }
2265 return 0;
7b128766
JB
2266}
2267
2268/*
2269 * We have done the truncate/delete so we can go ahead and remove the orphan
2270 * item for this particular inode.
2271 */
2272int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2273{
2274 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2275 int delete_item = 0;
2276 int release_rsv = 0;
7b128766
JB
2277 int ret = 0;
2278
d68fc57b 2279 spin_lock(&root->orphan_lock);
8a35d95f
JB
2280 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2281 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2282 delete_item = 1;
7b128766 2283
72ac3c0d
JB
2284 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2285 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2286 release_rsv = 1;
d68fc57b 2287 spin_unlock(&root->orphan_lock);
7b128766 2288
d68fc57b 2289 if (trans && delete_item) {
33345d01 2290 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2291 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2292 }
7b128766 2293
8a35d95f 2294 if (release_rsv) {
d68fc57b 2295 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2296 atomic_dec(&root->orphan_inodes);
2297 }
7b128766 2298
d68fc57b 2299 return 0;
7b128766
JB
2300}
2301
2302/*
2303 * this cleans up any orphans that may be left on the list from the last use
2304 * of this root.
2305 */
66b4ffd1 2306int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2307{
2308 struct btrfs_path *path;
2309 struct extent_buffer *leaf;
7b128766
JB
2310 struct btrfs_key key, found_key;
2311 struct btrfs_trans_handle *trans;
2312 struct inode *inode;
8f6d7f4f 2313 u64 last_objectid = 0;
7b128766
JB
2314 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2315
d68fc57b 2316 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2317 return 0;
c71bf099
YZ
2318
2319 path = btrfs_alloc_path();
66b4ffd1
JB
2320 if (!path) {
2321 ret = -ENOMEM;
2322 goto out;
2323 }
7b128766
JB
2324 path->reada = -1;
2325
2326 key.objectid = BTRFS_ORPHAN_OBJECTID;
2327 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2328 key.offset = (u64)-1;
2329
7b128766
JB
2330 while (1) {
2331 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2332 if (ret < 0)
2333 goto out;
7b128766
JB
2334
2335 /*
2336 * if ret == 0 means we found what we were searching for, which
25985edc 2337 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2338 * find the key and see if we have stuff that matches
2339 */
2340 if (ret > 0) {
66b4ffd1 2341 ret = 0;
7b128766
JB
2342 if (path->slots[0] == 0)
2343 break;
2344 path->slots[0]--;
2345 }
2346
2347 /* pull out the item */
2348 leaf = path->nodes[0];
7b128766
JB
2349 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2350
2351 /* make sure the item matches what we want */
2352 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2353 break;
2354 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2355 break;
2356
2357 /* release the path since we're done with it */
b3b4aa74 2358 btrfs_release_path(path);
7b128766
JB
2359
2360 /*
2361 * this is where we are basically btrfs_lookup, without the
2362 * crossing root thing. we store the inode number in the
2363 * offset of the orphan item.
2364 */
8f6d7f4f
JB
2365
2366 if (found_key.offset == last_objectid) {
2367 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2368 "stopping orphan cleanup\n");
2369 ret = -EINVAL;
2370 goto out;
2371 }
2372
2373 last_objectid = found_key.offset;
2374
5d4f98a2
YZ
2375 found_key.objectid = found_key.offset;
2376 found_key.type = BTRFS_INODE_ITEM_KEY;
2377 found_key.offset = 0;
73f73415 2378 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2379 ret = PTR_RET(inode);
2380 if (ret && ret != -ESTALE)
66b4ffd1 2381 goto out;
7b128766 2382
f8e9e0b0
AJ
2383 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2384 struct btrfs_root *dead_root;
2385 struct btrfs_fs_info *fs_info = root->fs_info;
2386 int is_dead_root = 0;
2387
2388 /*
2389 * this is an orphan in the tree root. Currently these
2390 * could come from 2 sources:
2391 * a) a snapshot deletion in progress
2392 * b) a free space cache inode
2393 * We need to distinguish those two, as the snapshot
2394 * orphan must not get deleted.
2395 * find_dead_roots already ran before us, so if this
2396 * is a snapshot deletion, we should find the root
2397 * in the dead_roots list
2398 */
2399 spin_lock(&fs_info->trans_lock);
2400 list_for_each_entry(dead_root, &fs_info->dead_roots,
2401 root_list) {
2402 if (dead_root->root_key.objectid ==
2403 found_key.objectid) {
2404 is_dead_root = 1;
2405 break;
2406 }
2407 }
2408 spin_unlock(&fs_info->trans_lock);
2409 if (is_dead_root) {
2410 /* prevent this orphan from being found again */
2411 key.offset = found_key.objectid - 1;
2412 continue;
2413 }
2414 }
7b128766 2415 /*
a8c9e576
JB
2416 * Inode is already gone but the orphan item is still there,
2417 * kill the orphan item.
7b128766 2418 */
a8c9e576
JB
2419 if (ret == -ESTALE) {
2420 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2421 if (IS_ERR(trans)) {
2422 ret = PTR_ERR(trans);
2423 goto out;
2424 }
8a35d95f
JB
2425 printk(KERN_ERR "auto deleting %Lu\n",
2426 found_key.objectid);
a8c9e576
JB
2427 ret = btrfs_del_orphan_item(trans, root,
2428 found_key.objectid);
79787eaa 2429 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2430 btrfs_end_transaction(trans, root);
7b128766
JB
2431 continue;
2432 }
2433
a8c9e576
JB
2434 /*
2435 * add this inode to the orphan list so btrfs_orphan_del does
2436 * the proper thing when we hit it
2437 */
8a35d95f
JB
2438 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2439 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2440
7b128766
JB
2441 /* if we have links, this was a truncate, lets do that */
2442 if (inode->i_nlink) {
a41ad394
JB
2443 if (!S_ISREG(inode->i_mode)) {
2444 WARN_ON(1);
2445 iput(inode);
2446 continue;
2447 }
7b128766 2448 nr_truncate++;
66b4ffd1 2449 ret = btrfs_truncate(inode);
7b128766
JB
2450 } else {
2451 nr_unlink++;
2452 }
2453
2454 /* this will do delete_inode and everything for us */
2455 iput(inode);
66b4ffd1
JB
2456 if (ret)
2457 goto out;
7b128766 2458 }
3254c876
MX
2459 /* release the path since we're done with it */
2460 btrfs_release_path(path);
2461
d68fc57b
YZ
2462 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2463
2464 if (root->orphan_block_rsv)
2465 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2466 (u64)-1);
2467
2468 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2469 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2470 if (!IS_ERR(trans))
2471 btrfs_end_transaction(trans, root);
d68fc57b 2472 }
7b128766
JB
2473
2474 if (nr_unlink)
2475 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2476 if (nr_truncate)
2477 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2478
2479out:
2480 if (ret)
2481 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2482 btrfs_free_path(path);
2483 return ret;
7b128766
JB
2484}
2485
46a53cca
CM
2486/*
2487 * very simple check to peek ahead in the leaf looking for xattrs. If we
2488 * don't find any xattrs, we know there can't be any acls.
2489 *
2490 * slot is the slot the inode is in, objectid is the objectid of the inode
2491 */
2492static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2493 int slot, u64 objectid)
2494{
2495 u32 nritems = btrfs_header_nritems(leaf);
2496 struct btrfs_key found_key;
2497 int scanned = 0;
2498
2499 slot++;
2500 while (slot < nritems) {
2501 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2502
2503 /* we found a different objectid, there must not be acls */
2504 if (found_key.objectid != objectid)
2505 return 0;
2506
2507 /* we found an xattr, assume we've got an acl */
2508 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2509 return 1;
2510
2511 /*
2512 * we found a key greater than an xattr key, there can't
2513 * be any acls later on
2514 */
2515 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2516 return 0;
2517
2518 slot++;
2519 scanned++;
2520
2521 /*
2522 * it goes inode, inode backrefs, xattrs, extents,
2523 * so if there are a ton of hard links to an inode there can
2524 * be a lot of backrefs. Don't waste time searching too hard,
2525 * this is just an optimization
2526 */
2527 if (scanned >= 8)
2528 break;
2529 }
2530 /* we hit the end of the leaf before we found an xattr or
2531 * something larger than an xattr. We have to assume the inode
2532 * has acls
2533 */
2534 return 1;
2535}
2536
d352ac68
CM
2537/*
2538 * read an inode from the btree into the in-memory inode
2539 */
5d4f98a2 2540static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2541{
2542 struct btrfs_path *path;
5f39d397 2543 struct extent_buffer *leaf;
39279cc3 2544 struct btrfs_inode_item *inode_item;
0b86a832 2545 struct btrfs_timespec *tspec;
39279cc3
CM
2546 struct btrfs_root *root = BTRFS_I(inode)->root;
2547 struct btrfs_key location;
46a53cca 2548 int maybe_acls;
618e21d5 2549 u32 rdev;
39279cc3 2550 int ret;
2f7e33d4
MX
2551 bool filled = false;
2552
2553 ret = btrfs_fill_inode(inode, &rdev);
2554 if (!ret)
2555 filled = true;
39279cc3
CM
2556
2557 path = btrfs_alloc_path();
1748f843
MF
2558 if (!path)
2559 goto make_bad;
2560
d90c7321 2561 path->leave_spinning = 1;
39279cc3 2562 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2563
39279cc3 2564 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2565 if (ret)
39279cc3 2566 goto make_bad;
39279cc3 2567
5f39d397 2568 leaf = path->nodes[0];
2f7e33d4
MX
2569
2570 if (filled)
2571 goto cache_acl;
2572
5f39d397
CM
2573 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2574 struct btrfs_inode_item);
5f39d397 2575 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2576 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2577 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2578 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2579 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2580
2581 tspec = btrfs_inode_atime(inode_item);
2582 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2583 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2584
2585 tspec = btrfs_inode_mtime(inode_item);
2586 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2587 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2588
2589 tspec = btrfs_inode_ctime(inode_item);
2590 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2591 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2592
a76a3cd4 2593 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2594 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2595 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2596
2597 /*
2598 * If we were modified in the current generation and evicted from memory
2599 * and then re-read we need to do a full sync since we don't have any
2600 * idea about which extents were modified before we were evicted from
2601 * cache.
2602 */
2603 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2604 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2605 &BTRFS_I(inode)->runtime_flags);
2606
0c4d2d95 2607 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2608 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2609 inode->i_rdev = 0;
5f39d397
CM
2610 rdev = btrfs_inode_rdev(leaf, inode_item);
2611
aec7477b 2612 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2613 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2614cache_acl:
46a53cca
CM
2615 /*
2616 * try to precache a NULL acl entry for files that don't have
2617 * any xattrs or acls
2618 */
33345d01
LZ
2619 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2620 btrfs_ino(inode));
72c04902
AV
2621 if (!maybe_acls)
2622 cache_no_acl(inode);
46a53cca 2623
39279cc3 2624 btrfs_free_path(path);
39279cc3 2625
39279cc3 2626 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2627 case S_IFREG:
2628 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2629 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2630 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2631 inode->i_fop = &btrfs_file_operations;
2632 inode->i_op = &btrfs_file_inode_operations;
2633 break;
2634 case S_IFDIR:
2635 inode->i_fop = &btrfs_dir_file_operations;
2636 if (root == root->fs_info->tree_root)
2637 inode->i_op = &btrfs_dir_ro_inode_operations;
2638 else
2639 inode->i_op = &btrfs_dir_inode_operations;
2640 break;
2641 case S_IFLNK:
2642 inode->i_op = &btrfs_symlink_inode_operations;
2643 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2644 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2645 break;
618e21d5 2646 default:
0279b4cd 2647 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2648 init_special_inode(inode, inode->i_mode, rdev);
2649 break;
39279cc3 2650 }
6cbff00f
CH
2651
2652 btrfs_update_iflags(inode);
39279cc3
CM
2653 return;
2654
2655make_bad:
39279cc3 2656 btrfs_free_path(path);
39279cc3
CM
2657 make_bad_inode(inode);
2658}
2659
d352ac68
CM
2660/*
2661 * given a leaf and an inode, copy the inode fields into the leaf
2662 */
e02119d5
CM
2663static void fill_inode_item(struct btrfs_trans_handle *trans,
2664 struct extent_buffer *leaf,
5f39d397 2665 struct btrfs_inode_item *item,
39279cc3
CM
2666 struct inode *inode)
2667{
2f2f43d3
EB
2668 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2669 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
dbe674a9 2670 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2671 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2672 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2673
2674 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2675 inode->i_atime.tv_sec);
2676 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2677 inode->i_atime.tv_nsec);
2678
2679 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2680 inode->i_mtime.tv_sec);
2681 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2682 inode->i_mtime.tv_nsec);
2683
2684 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2685 inode->i_ctime.tv_sec);
2686 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2687 inode->i_ctime.tv_nsec);
2688
a76a3cd4 2689 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2690 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2691 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2692 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2693 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2694 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2695 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2696}
2697
d352ac68
CM
2698/*
2699 * copy everything in the in-memory inode into the btree.
2700 */
2115133f 2701static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2702 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2703{
2704 struct btrfs_inode_item *inode_item;
2705 struct btrfs_path *path;
5f39d397 2706 struct extent_buffer *leaf;
39279cc3
CM
2707 int ret;
2708
2709 path = btrfs_alloc_path();
16cdcec7
MX
2710 if (!path)
2711 return -ENOMEM;
2712
b9473439 2713 path->leave_spinning = 1;
16cdcec7
MX
2714 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2715 1);
39279cc3
CM
2716 if (ret) {
2717 if (ret > 0)
2718 ret = -ENOENT;
2719 goto failed;
2720 }
2721
b4ce94de 2722 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2723 leaf = path->nodes[0];
2724 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2725 struct btrfs_inode_item);
39279cc3 2726
e02119d5 2727 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2728 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2729 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2730 ret = 0;
2731failed:
39279cc3
CM
2732 btrfs_free_path(path);
2733 return ret;
2734}
2735
2115133f
CM
2736/*
2737 * copy everything in the in-memory inode into the btree.
2738 */
2739noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2740 struct btrfs_root *root, struct inode *inode)
2741{
2742 int ret;
2743
2744 /*
2745 * If the inode is a free space inode, we can deadlock during commit
2746 * if we put it into the delayed code.
2747 *
2748 * The data relocation inode should also be directly updated
2749 * without delay
2750 */
83eea1f1 2751 if (!btrfs_is_free_space_inode(inode)
2115133f 2752 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2753 btrfs_update_root_times(trans, root);
2754
2115133f
CM
2755 ret = btrfs_delayed_update_inode(trans, root, inode);
2756 if (!ret)
2757 btrfs_set_inode_last_trans(trans, inode);
2758 return ret;
2759 }
2760
2761 return btrfs_update_inode_item(trans, root, inode);
2762}
2763
be6aef60
JB
2764noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root,
2766 struct inode *inode)
2115133f
CM
2767{
2768 int ret;
2769
2770 ret = btrfs_update_inode(trans, root, inode);
2771 if (ret == -ENOSPC)
2772 return btrfs_update_inode_item(trans, root, inode);
2773 return ret;
2774}
2775
d352ac68
CM
2776/*
2777 * unlink helper that gets used here in inode.c and in the tree logging
2778 * recovery code. It remove a link in a directory with a given name, and
2779 * also drops the back refs in the inode to the directory
2780 */
92986796
AV
2781static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2782 struct btrfs_root *root,
2783 struct inode *dir, struct inode *inode,
2784 const char *name, int name_len)
39279cc3
CM
2785{
2786 struct btrfs_path *path;
39279cc3 2787 int ret = 0;
5f39d397 2788 struct extent_buffer *leaf;
39279cc3 2789 struct btrfs_dir_item *di;
5f39d397 2790 struct btrfs_key key;
aec7477b 2791 u64 index;
33345d01
LZ
2792 u64 ino = btrfs_ino(inode);
2793 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2794
2795 path = btrfs_alloc_path();
54aa1f4d
CM
2796 if (!path) {
2797 ret = -ENOMEM;
554233a6 2798 goto out;
54aa1f4d
CM
2799 }
2800
b9473439 2801 path->leave_spinning = 1;
33345d01 2802 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2803 name, name_len, -1);
2804 if (IS_ERR(di)) {
2805 ret = PTR_ERR(di);
2806 goto err;
2807 }
2808 if (!di) {
2809 ret = -ENOENT;
2810 goto err;
2811 }
5f39d397
CM
2812 leaf = path->nodes[0];
2813 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2814 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2815 if (ret)
2816 goto err;
b3b4aa74 2817 btrfs_release_path(path);
39279cc3 2818
33345d01
LZ
2819 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2820 dir_ino, &index);
aec7477b 2821 if (ret) {
d397712b 2822 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2823 "inode %llu parent %llu\n", name_len, name,
2824 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2825 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2826 goto err;
2827 }
2828
16cdcec7 2829 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2830 if (ret) {
2831 btrfs_abort_transaction(trans, root, ret);
39279cc3 2832 goto err;
79787eaa 2833 }
39279cc3 2834
e02119d5 2835 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2836 inode, dir_ino);
79787eaa
JM
2837 if (ret != 0 && ret != -ENOENT) {
2838 btrfs_abort_transaction(trans, root, ret);
2839 goto err;
2840 }
e02119d5
CM
2841
2842 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2843 dir, index);
6418c961
CM
2844 if (ret == -ENOENT)
2845 ret = 0;
39279cc3
CM
2846err:
2847 btrfs_free_path(path);
e02119d5
CM
2848 if (ret)
2849 goto out;
2850
2851 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2852 inode_inc_iversion(inode);
2853 inode_inc_iversion(dir);
e02119d5 2854 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2855 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2856out:
39279cc3
CM
2857 return ret;
2858}
2859
92986796
AV
2860int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2861 struct btrfs_root *root,
2862 struct inode *dir, struct inode *inode,
2863 const char *name, int name_len)
2864{
2865 int ret;
2866 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2867 if (!ret) {
2868 btrfs_drop_nlink(inode);
2869 ret = btrfs_update_inode(trans, root, inode);
2870 }
2871 return ret;
2872}
2873
2874
a22285a6
YZ
2875/* helper to check if there is any shared block in the path */
2876static int check_path_shared(struct btrfs_root *root,
2877 struct btrfs_path *path)
39279cc3 2878{
a22285a6
YZ
2879 struct extent_buffer *eb;
2880 int level;
0e4dcbef 2881 u64 refs = 1;
5df6a9f6 2882
a22285a6 2883 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2884 int ret;
2885
a22285a6
YZ
2886 if (!path->nodes[level])
2887 break;
2888 eb = path->nodes[level];
2889 if (!btrfs_block_can_be_shared(root, eb))
2890 continue;
2891 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2892 &refs, NULL);
2893 if (refs > 1)
2894 return 1;
5df6a9f6 2895 }
dedefd72 2896 return 0;
39279cc3
CM
2897}
2898
a22285a6
YZ
2899/*
2900 * helper to start transaction for unlink and rmdir.
2901 *
2902 * unlink and rmdir are special in btrfs, they do not always free space.
2903 * so in enospc case, we should make sure they will free space before
2904 * allowing them to use the global metadata reservation.
2905 */
2906static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2907 struct dentry *dentry)
4df27c4d 2908{
39279cc3 2909 struct btrfs_trans_handle *trans;
a22285a6 2910 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2911 struct btrfs_path *path;
4df27c4d 2912 struct btrfs_dir_item *di;
7b128766 2913 struct inode *inode = dentry->d_inode;
4df27c4d 2914 u64 index;
a22285a6
YZ
2915 int check_link = 1;
2916 int err = -ENOSPC;
4df27c4d 2917 int ret;
33345d01
LZ
2918 u64 ino = btrfs_ino(inode);
2919 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2920
e70bea5f
JB
2921 /*
2922 * 1 for the possible orphan item
2923 * 1 for the dir item
2924 * 1 for the dir index
2925 * 1 for the inode ref
2926 * 1 for the inode ref in the tree log
2927 * 2 for the dir entries in the log
2928 * 1 for the inode
2929 */
2930 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2931 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2932 return trans;
4df27c4d 2933
33345d01 2934 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2935 return ERR_PTR(-ENOSPC);
4df27c4d 2936
a22285a6
YZ
2937 /* check if there is someone else holds reference */
2938 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2939 return ERR_PTR(-ENOSPC);
4df27c4d 2940
a22285a6
YZ
2941 if (atomic_read(&inode->i_count) > 2)
2942 return ERR_PTR(-ENOSPC);
4df27c4d 2943
a22285a6
YZ
2944 if (xchg(&root->fs_info->enospc_unlink, 1))
2945 return ERR_PTR(-ENOSPC);
2946
2947 path = btrfs_alloc_path();
2948 if (!path) {
2949 root->fs_info->enospc_unlink = 0;
2950 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2951 }
2952
3880a1b4
JB
2953 /* 1 for the orphan item */
2954 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2955 if (IS_ERR(trans)) {
a22285a6
YZ
2956 btrfs_free_path(path);
2957 root->fs_info->enospc_unlink = 0;
2958 return trans;
2959 }
4df27c4d 2960
a22285a6
YZ
2961 path->skip_locking = 1;
2962 path->search_commit_root = 1;
4df27c4d 2963
a22285a6
YZ
2964 ret = btrfs_lookup_inode(trans, root, path,
2965 &BTRFS_I(dir)->location, 0);
2966 if (ret < 0) {
2967 err = ret;
2968 goto out;
2969 }
2970 if (ret == 0) {
2971 if (check_path_shared(root, path))
2972 goto out;
2973 } else {
2974 check_link = 0;
5df6a9f6 2975 }
b3b4aa74 2976 btrfs_release_path(path);
a22285a6
YZ
2977
2978 ret = btrfs_lookup_inode(trans, root, path,
2979 &BTRFS_I(inode)->location, 0);
2980 if (ret < 0) {
2981 err = ret;
2982 goto out;
2983 }
2984 if (ret == 0) {
2985 if (check_path_shared(root, path))
2986 goto out;
2987 } else {
2988 check_link = 0;
2989 }
b3b4aa74 2990 btrfs_release_path(path);
a22285a6
YZ
2991
2992 if (ret == 0 && S_ISREG(inode->i_mode)) {
2993 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2994 ino, (u64)-1, 0);
a22285a6
YZ
2995 if (ret < 0) {
2996 err = ret;
2997 goto out;
2998 }
79787eaa 2999 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3000 if (check_path_shared(root, path))
3001 goto out;
b3b4aa74 3002 btrfs_release_path(path);
a22285a6
YZ
3003 }
3004
3005 if (!check_link) {
3006 err = 0;
3007 goto out;
3008 }
3009
33345d01 3010 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3011 dentry->d_name.name, dentry->d_name.len, 0);
3012 if (IS_ERR(di)) {
3013 err = PTR_ERR(di);
3014 goto out;
3015 }
3016 if (di) {
3017 if (check_path_shared(root, path))
3018 goto out;
3019 } else {
3020 err = 0;
3021 goto out;
3022 }
b3b4aa74 3023 btrfs_release_path(path);
a22285a6 3024
f186373f
MF
3025 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3026 dentry->d_name.len, ino, dir_ino, 0,
3027 &index);
3028 if (ret) {
3029 err = ret;
a22285a6
YZ
3030 goto out;
3031 }
f186373f 3032
a22285a6
YZ
3033 if (check_path_shared(root, path))
3034 goto out;
f186373f 3035
b3b4aa74 3036 btrfs_release_path(path);
a22285a6 3037
16cdcec7
MX
3038 /*
3039 * This is a commit root search, if we can lookup inode item and other
3040 * relative items in the commit root, it means the transaction of
3041 * dir/file creation has been committed, and the dir index item that we
3042 * delay to insert has also been inserted into the commit root. So
3043 * we needn't worry about the delayed insertion of the dir index item
3044 * here.
3045 */
33345d01 3046 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3047 dentry->d_name.name, dentry->d_name.len, 0);
3048 if (IS_ERR(di)) {
3049 err = PTR_ERR(di);
3050 goto out;
3051 }
3052 BUG_ON(ret == -ENOENT);
3053 if (check_path_shared(root, path))
3054 goto out;
3055
3056 err = 0;
3057out:
3058 btrfs_free_path(path);
3880a1b4
JB
3059 /* Migrate the orphan reservation over */
3060 if (!err)
3061 err = btrfs_block_rsv_migrate(trans->block_rsv,
3062 &root->fs_info->global_block_rsv,
5a77d76c 3063 trans->bytes_reserved);
3880a1b4 3064
a22285a6
YZ
3065 if (err) {
3066 btrfs_end_transaction(trans, root);
3067 root->fs_info->enospc_unlink = 0;
3068 return ERR_PTR(err);
3069 }
3070
3071 trans->block_rsv = &root->fs_info->global_block_rsv;
3072 return trans;
3073}
3074
3075static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3076 struct btrfs_root *root)
3077{
66d8f3dd 3078 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3079 btrfs_block_rsv_release(root, trans->block_rsv,
3080 trans->bytes_reserved);
3081 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3082 BUG_ON(!root->fs_info->enospc_unlink);
3083 root->fs_info->enospc_unlink = 0;
3084 }
7ad85bb7 3085 btrfs_end_transaction(trans, root);
a22285a6
YZ
3086}
3087
3088static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3089{
3090 struct btrfs_root *root = BTRFS_I(dir)->root;
3091 struct btrfs_trans_handle *trans;
3092 struct inode *inode = dentry->d_inode;
3093 int ret;
a22285a6
YZ
3094
3095 trans = __unlink_start_trans(dir, dentry);
3096 if (IS_ERR(trans))
3097 return PTR_ERR(trans);
5f39d397 3098
12fcfd22
CM
3099 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3100
e02119d5
CM
3101 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3102 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3103 if (ret)
3104 goto out;
7b128766 3105
a22285a6 3106 if (inode->i_nlink == 0) {
7b128766 3107 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3108 if (ret)
3109 goto out;
a22285a6 3110 }
7b128766 3111
b532402e 3112out:
a22285a6 3113 __unlink_end_trans(trans, root);
b53d3f5d 3114 btrfs_btree_balance_dirty(root);
39279cc3
CM
3115 return ret;
3116}
3117
4df27c4d
YZ
3118int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3119 struct btrfs_root *root,
3120 struct inode *dir, u64 objectid,
3121 const char *name, int name_len)
3122{
3123 struct btrfs_path *path;
3124 struct extent_buffer *leaf;
3125 struct btrfs_dir_item *di;
3126 struct btrfs_key key;
3127 u64 index;
3128 int ret;
33345d01 3129 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3130
3131 path = btrfs_alloc_path();
3132 if (!path)
3133 return -ENOMEM;
3134
33345d01 3135 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3136 name, name_len, -1);
79787eaa
JM
3137 if (IS_ERR_OR_NULL(di)) {
3138 if (!di)
3139 ret = -ENOENT;
3140 else
3141 ret = PTR_ERR(di);
3142 goto out;
3143 }
4df27c4d
YZ
3144
3145 leaf = path->nodes[0];
3146 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3147 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3148 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3149 if (ret) {
3150 btrfs_abort_transaction(trans, root, ret);
3151 goto out;
3152 }
b3b4aa74 3153 btrfs_release_path(path);
4df27c4d
YZ
3154
3155 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3156 objectid, root->root_key.objectid,
33345d01 3157 dir_ino, &index, name, name_len);
4df27c4d 3158 if (ret < 0) {
79787eaa
JM
3159 if (ret != -ENOENT) {
3160 btrfs_abort_transaction(trans, root, ret);
3161 goto out;
3162 }
33345d01 3163 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3164 name, name_len);
79787eaa
JM
3165 if (IS_ERR_OR_NULL(di)) {
3166 if (!di)
3167 ret = -ENOENT;
3168 else
3169 ret = PTR_ERR(di);
3170 btrfs_abort_transaction(trans, root, ret);
3171 goto out;
3172 }
4df27c4d
YZ
3173
3174 leaf = path->nodes[0];
3175 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3176 btrfs_release_path(path);
4df27c4d
YZ
3177 index = key.offset;
3178 }
945d8962 3179 btrfs_release_path(path);
4df27c4d 3180
16cdcec7 3181 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3182 if (ret) {
3183 btrfs_abort_transaction(trans, root, ret);
3184 goto out;
3185 }
4df27c4d
YZ
3186
3187 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3188 inode_inc_iversion(dir);
4df27c4d 3189 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3190 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3191 if (ret)
3192 btrfs_abort_transaction(trans, root, ret);
3193out:
71d7aed0 3194 btrfs_free_path(path);
79787eaa 3195 return ret;
4df27c4d
YZ
3196}
3197
39279cc3
CM
3198static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3199{
3200 struct inode *inode = dentry->d_inode;
1832a6d5 3201 int err = 0;
39279cc3 3202 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3203 struct btrfs_trans_handle *trans;
39279cc3 3204
b3ae244e 3205 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3206 return -ENOTEMPTY;
b3ae244e
DS
3207 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3208 return -EPERM;
134d4512 3209
a22285a6
YZ
3210 trans = __unlink_start_trans(dir, dentry);
3211 if (IS_ERR(trans))
5df6a9f6 3212 return PTR_ERR(trans);
5df6a9f6 3213
33345d01 3214 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3215 err = btrfs_unlink_subvol(trans, root, dir,
3216 BTRFS_I(inode)->location.objectid,
3217 dentry->d_name.name,
3218 dentry->d_name.len);
3219 goto out;
3220 }
3221
7b128766
JB
3222 err = btrfs_orphan_add(trans, inode);
3223 if (err)
4df27c4d 3224 goto out;
7b128766 3225
39279cc3 3226 /* now the directory is empty */
e02119d5
CM
3227 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3228 dentry->d_name.name, dentry->d_name.len);
d397712b 3229 if (!err)
dbe674a9 3230 btrfs_i_size_write(inode, 0);
4df27c4d 3231out:
a22285a6 3232 __unlink_end_trans(trans, root);
b53d3f5d 3233 btrfs_btree_balance_dirty(root);
3954401f 3234
39279cc3
CM
3235 return err;
3236}
3237
39279cc3
CM
3238/*
3239 * this can truncate away extent items, csum items and directory items.
3240 * It starts at a high offset and removes keys until it can't find
d352ac68 3241 * any higher than new_size
39279cc3
CM
3242 *
3243 * csum items that cross the new i_size are truncated to the new size
3244 * as well.
7b128766
JB
3245 *
3246 * min_type is the minimum key type to truncate down to. If set to 0, this
3247 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3248 */
8082510e
YZ
3249int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3250 struct btrfs_root *root,
3251 struct inode *inode,
3252 u64 new_size, u32 min_type)
39279cc3 3253{
39279cc3 3254 struct btrfs_path *path;
5f39d397 3255 struct extent_buffer *leaf;
39279cc3 3256 struct btrfs_file_extent_item *fi;
8082510e
YZ
3257 struct btrfs_key key;
3258 struct btrfs_key found_key;
39279cc3 3259 u64 extent_start = 0;
db94535d 3260 u64 extent_num_bytes = 0;
5d4f98a2 3261 u64 extent_offset = 0;
39279cc3 3262 u64 item_end = 0;
8082510e
YZ
3263 u64 mask = root->sectorsize - 1;
3264 u32 found_type = (u8)-1;
39279cc3
CM
3265 int found_extent;
3266 int del_item;
85e21bac
CM
3267 int pending_del_nr = 0;
3268 int pending_del_slot = 0;
179e29e4 3269 int extent_type = -1;
8082510e
YZ
3270 int ret;
3271 int err = 0;
33345d01 3272 u64 ino = btrfs_ino(inode);
8082510e
YZ
3273
3274 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3275
0eb0e19c
MF
3276 path = btrfs_alloc_path();
3277 if (!path)
3278 return -ENOMEM;
3279 path->reada = -1;
3280
5dc562c5
JB
3281 /*
3282 * We want to drop from the next block forward in case this new size is
3283 * not block aligned since we will be keeping the last block of the
3284 * extent just the way it is.
3285 */
0af3d00b 3286 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3287 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3288
16cdcec7
MX
3289 /*
3290 * This function is also used to drop the items in the log tree before
3291 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3292 * it is used to drop the loged items. So we shouldn't kill the delayed
3293 * items.
3294 */
3295 if (min_type == 0 && root == BTRFS_I(inode)->root)
3296 btrfs_kill_delayed_inode_items(inode);
3297
33345d01 3298 key.objectid = ino;
39279cc3 3299 key.offset = (u64)-1;
5f39d397
CM
3300 key.type = (u8)-1;
3301
85e21bac 3302search_again:
b9473439 3303 path->leave_spinning = 1;
85e21bac 3304 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3305 if (ret < 0) {
3306 err = ret;
3307 goto out;
3308 }
d397712b 3309
85e21bac 3310 if (ret > 0) {
e02119d5
CM
3311 /* there are no items in the tree for us to truncate, we're
3312 * done
3313 */
8082510e
YZ
3314 if (path->slots[0] == 0)
3315 goto out;
85e21bac
CM
3316 path->slots[0]--;
3317 }
3318
d397712b 3319 while (1) {
39279cc3 3320 fi = NULL;
5f39d397
CM
3321 leaf = path->nodes[0];
3322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3323 found_type = btrfs_key_type(&found_key);
39279cc3 3324
33345d01 3325 if (found_key.objectid != ino)
39279cc3 3326 break;
5f39d397 3327
85e21bac 3328 if (found_type < min_type)
39279cc3
CM
3329 break;
3330
5f39d397 3331 item_end = found_key.offset;
39279cc3 3332 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3333 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3334 struct btrfs_file_extent_item);
179e29e4
CM
3335 extent_type = btrfs_file_extent_type(leaf, fi);
3336 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3337 item_end +=
db94535d 3338 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3339 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3340 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3341 fi);
39279cc3 3342 }
008630c1 3343 item_end--;
39279cc3 3344 }
8082510e
YZ
3345 if (found_type > min_type) {
3346 del_item = 1;
3347 } else {
3348 if (item_end < new_size)
b888db2b 3349 break;
8082510e
YZ
3350 if (found_key.offset >= new_size)
3351 del_item = 1;
3352 else
3353 del_item = 0;
39279cc3 3354 }
39279cc3 3355 found_extent = 0;
39279cc3 3356 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3357 if (found_type != BTRFS_EXTENT_DATA_KEY)
3358 goto delete;
3359
3360 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3361 u64 num_dec;
db94535d 3362 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3363 if (!del_item) {
db94535d
CM
3364 u64 orig_num_bytes =
3365 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3366 extent_num_bytes = new_size -
5f39d397 3367 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3368 extent_num_bytes = extent_num_bytes &
3369 ~((u64)root->sectorsize - 1);
db94535d
CM
3370 btrfs_set_file_extent_num_bytes(leaf, fi,
3371 extent_num_bytes);
3372 num_dec = (orig_num_bytes -
9069218d 3373 extent_num_bytes);
e02119d5 3374 if (root->ref_cows && extent_start != 0)
a76a3cd4 3375 inode_sub_bytes(inode, num_dec);
5f39d397 3376 btrfs_mark_buffer_dirty(leaf);
39279cc3 3377 } else {
db94535d
CM
3378 extent_num_bytes =
3379 btrfs_file_extent_disk_num_bytes(leaf,
3380 fi);
5d4f98a2
YZ
3381 extent_offset = found_key.offset -
3382 btrfs_file_extent_offset(leaf, fi);
3383
39279cc3 3384 /* FIXME blocksize != 4096 */
9069218d 3385 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3386 if (extent_start != 0) {
3387 found_extent = 1;
e02119d5 3388 if (root->ref_cows)
a76a3cd4 3389 inode_sub_bytes(inode, num_dec);
e02119d5 3390 }
39279cc3 3391 }
9069218d 3392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3393 /*
3394 * we can't truncate inline items that have had
3395 * special encodings
3396 */
3397 if (!del_item &&
3398 btrfs_file_extent_compression(leaf, fi) == 0 &&
3399 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3400 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3401 u32 size = new_size - found_key.offset;
3402
3403 if (root->ref_cows) {
a76a3cd4
YZ
3404 inode_sub_bytes(inode, item_end + 1 -
3405 new_size);
e02119d5
CM
3406 }
3407 size =
3408 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3409 btrfs_truncate_item(trans, root, path,
3410 size, 1);
e02119d5 3411 } else if (root->ref_cows) {
a76a3cd4
YZ
3412 inode_sub_bytes(inode, item_end + 1 -
3413 found_key.offset);
9069218d 3414 }
39279cc3 3415 }
179e29e4 3416delete:
39279cc3 3417 if (del_item) {
85e21bac
CM
3418 if (!pending_del_nr) {
3419 /* no pending yet, add ourselves */
3420 pending_del_slot = path->slots[0];
3421 pending_del_nr = 1;
3422 } else if (pending_del_nr &&
3423 path->slots[0] + 1 == pending_del_slot) {
3424 /* hop on the pending chunk */
3425 pending_del_nr++;
3426 pending_del_slot = path->slots[0];
3427 } else {
d397712b 3428 BUG();
85e21bac 3429 }
39279cc3
CM
3430 } else {
3431 break;
3432 }
0af3d00b
JB
3433 if (found_extent && (root->ref_cows ||
3434 root == root->fs_info->tree_root)) {
b9473439 3435 btrfs_set_path_blocking(path);
39279cc3 3436 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3437 extent_num_bytes, 0,
3438 btrfs_header_owner(leaf),
66d7e7f0 3439 ino, extent_offset, 0);
39279cc3
CM
3440 BUG_ON(ret);
3441 }
85e21bac 3442
8082510e
YZ
3443 if (found_type == BTRFS_INODE_ITEM_KEY)
3444 break;
3445
3446 if (path->slots[0] == 0 ||
3447 path->slots[0] != pending_del_slot) {
8082510e
YZ
3448 if (pending_del_nr) {
3449 ret = btrfs_del_items(trans, root, path,
3450 pending_del_slot,
3451 pending_del_nr);
79787eaa
JM
3452 if (ret) {
3453 btrfs_abort_transaction(trans,
3454 root, ret);
3455 goto error;
3456 }
8082510e
YZ
3457 pending_del_nr = 0;
3458 }
b3b4aa74 3459 btrfs_release_path(path);
85e21bac 3460 goto search_again;
8082510e
YZ
3461 } else {
3462 path->slots[0]--;
85e21bac 3463 }
39279cc3 3464 }
8082510e 3465out:
85e21bac
CM
3466 if (pending_del_nr) {
3467 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3468 pending_del_nr);
79787eaa
JM
3469 if (ret)
3470 btrfs_abort_transaction(trans, root, ret);
85e21bac 3471 }
79787eaa 3472error:
39279cc3 3473 btrfs_free_path(path);
8082510e 3474 return err;
39279cc3
CM
3475}
3476
3477/*
2aaa6655
JB
3478 * btrfs_truncate_page - read, zero a chunk and write a page
3479 * @inode - inode that we're zeroing
3480 * @from - the offset to start zeroing
3481 * @len - the length to zero, 0 to zero the entire range respective to the
3482 * offset
3483 * @front - zero up to the offset instead of from the offset on
3484 *
3485 * This will find the page for the "from" offset and cow the page and zero the
3486 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3487 */
2aaa6655
JB
3488int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3489 int front)
39279cc3 3490{
2aaa6655 3491 struct address_space *mapping = inode->i_mapping;
db94535d 3492 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3493 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3494 struct btrfs_ordered_extent *ordered;
2ac55d41 3495 struct extent_state *cached_state = NULL;
e6dcd2dc 3496 char *kaddr;
db94535d 3497 u32 blocksize = root->sectorsize;
39279cc3
CM
3498 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3499 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3500 struct page *page;
3b16a4e3 3501 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3502 int ret = 0;
a52d9a80 3503 u64 page_start;
e6dcd2dc 3504 u64 page_end;
39279cc3 3505
2aaa6655
JB
3506 if ((offset & (blocksize - 1)) == 0 &&
3507 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3508 goto out;
0ca1f7ce 3509 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3510 if (ret)
3511 goto out;
39279cc3
CM
3512
3513 ret = -ENOMEM;
211c17f5 3514again:
3b16a4e3 3515 page = find_or_create_page(mapping, index, mask);
5d5e103a 3516 if (!page) {
0ca1f7ce 3517 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3518 goto out;
5d5e103a 3519 }
e6dcd2dc
CM
3520
3521 page_start = page_offset(page);
3522 page_end = page_start + PAGE_CACHE_SIZE - 1;
3523
39279cc3 3524 if (!PageUptodate(page)) {
9ebefb18 3525 ret = btrfs_readpage(NULL, page);
39279cc3 3526 lock_page(page);
211c17f5
CM
3527 if (page->mapping != mapping) {
3528 unlock_page(page);
3529 page_cache_release(page);
3530 goto again;
3531 }
39279cc3
CM
3532 if (!PageUptodate(page)) {
3533 ret = -EIO;
89642229 3534 goto out_unlock;
39279cc3
CM
3535 }
3536 }
211c17f5 3537 wait_on_page_writeback(page);
e6dcd2dc 3538
d0082371 3539 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3540 set_page_extent_mapped(page);
3541
3542 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3543 if (ordered) {
2ac55d41
JB
3544 unlock_extent_cached(io_tree, page_start, page_end,
3545 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3546 unlock_page(page);
3547 page_cache_release(page);
eb84ae03 3548 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3549 btrfs_put_ordered_extent(ordered);
3550 goto again;
3551 }
3552
2ac55d41 3553 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3554 EXTENT_DIRTY | EXTENT_DELALLOC |
3555 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3556 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3557
2ac55d41
JB
3558 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3559 &cached_state);
9ed74f2d 3560 if (ret) {
2ac55d41
JB
3561 unlock_extent_cached(io_tree, page_start, page_end,
3562 &cached_state, GFP_NOFS);
9ed74f2d
JB
3563 goto out_unlock;
3564 }
3565
e6dcd2dc
CM
3566 ret = 0;
3567 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3568 if (!len)
3569 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3570 kaddr = kmap(page);
2aaa6655
JB
3571 if (front)
3572 memset(kaddr, 0, offset);
3573 else
3574 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3575 flush_dcache_page(page);
3576 kunmap(page);
3577 }
247e743c 3578 ClearPageChecked(page);
e6dcd2dc 3579 set_page_dirty(page);
2ac55d41
JB
3580 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3581 GFP_NOFS);
39279cc3 3582
89642229 3583out_unlock:
5d5e103a 3584 if (ret)
0ca1f7ce 3585 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3586 unlock_page(page);
3587 page_cache_release(page);
3588out:
3589 return ret;
3590}
3591
695a0d0d
JB
3592/*
3593 * This function puts in dummy file extents for the area we're creating a hole
3594 * for. So if we are truncating this file to a larger size we need to insert
3595 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3596 * the range between oldsize and size
3597 */
a41ad394 3598int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3599{
9036c102
YZ
3600 struct btrfs_trans_handle *trans;
3601 struct btrfs_root *root = BTRFS_I(inode)->root;
3602 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3603 struct extent_map *em = NULL;
2ac55d41 3604 struct extent_state *cached_state = NULL;
5dc562c5 3605 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3606 u64 mask = root->sectorsize - 1;
a41ad394 3607 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3608 u64 block_end = (size + mask) & ~mask;
3609 u64 last_byte;
3610 u64 cur_offset;
3611 u64 hole_size;
9ed74f2d 3612 int err = 0;
39279cc3 3613
9036c102
YZ
3614 if (size <= hole_start)
3615 return 0;
3616
9036c102
YZ
3617 while (1) {
3618 struct btrfs_ordered_extent *ordered;
3619 btrfs_wait_ordered_range(inode, hole_start,
3620 block_end - hole_start);
2ac55d41 3621 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3622 &cached_state);
9036c102
YZ
3623 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3624 if (!ordered)
3625 break;
2ac55d41
JB
3626 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3627 &cached_state, GFP_NOFS);
9036c102
YZ
3628 btrfs_put_ordered_extent(ordered);
3629 }
39279cc3 3630
9036c102
YZ
3631 cur_offset = hole_start;
3632 while (1) {
3633 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3634 block_end - cur_offset, 0);
79787eaa
JM
3635 if (IS_ERR(em)) {
3636 err = PTR_ERR(em);
3637 break;
3638 }
9036c102
YZ
3639 last_byte = min(extent_map_end(em), block_end);
3640 last_byte = (last_byte + mask) & ~mask;
8082510e 3641 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3642 struct extent_map *hole_em;
9036c102 3643 hole_size = last_byte - cur_offset;
9ed74f2d 3644
3642320e 3645 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3646 if (IS_ERR(trans)) {
3647 err = PTR_ERR(trans);
9ed74f2d 3648 break;
a22285a6 3649 }
8082510e 3650
5dc562c5
JB
3651 err = btrfs_drop_extents(trans, root, inode,
3652 cur_offset,
2671485d 3653 cur_offset + hole_size, 1);
5b397377 3654 if (err) {
79787eaa 3655 btrfs_abort_transaction(trans, root, err);
5b397377 3656 btrfs_end_transaction(trans, root);
3893e33b 3657 break;
5b397377 3658 }
8082510e 3659
9036c102 3660 err = btrfs_insert_file_extent(trans, root,
33345d01 3661 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3662 0, hole_size, 0, hole_size,
3663 0, 0, 0);
5b397377 3664 if (err) {
79787eaa 3665 btrfs_abort_transaction(trans, root, err);
5b397377 3666 btrfs_end_transaction(trans, root);
3893e33b 3667 break;
5b397377 3668 }
8082510e 3669
5dc562c5
JB
3670 btrfs_drop_extent_cache(inode, cur_offset,
3671 cur_offset + hole_size - 1, 0);
3672 hole_em = alloc_extent_map();
3673 if (!hole_em) {
3674 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3675 &BTRFS_I(inode)->runtime_flags);
3676 goto next;
3677 }
3678 hole_em->start = cur_offset;
3679 hole_em->len = hole_size;
3680 hole_em->orig_start = cur_offset;
8082510e 3681
5dc562c5
JB
3682 hole_em->block_start = EXTENT_MAP_HOLE;
3683 hole_em->block_len = 0;
3684 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3685 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3686 hole_em->generation = trans->transid;
8082510e 3687
5dc562c5
JB
3688 while (1) {
3689 write_lock(&em_tree->lock);
3690 err = add_extent_mapping(em_tree, hole_em);
3691 if (!err)
3692 list_move(&hole_em->list,
3693 &em_tree->modified_extents);
3694 write_unlock(&em_tree->lock);
3695 if (err != -EEXIST)
3696 break;
3697 btrfs_drop_extent_cache(inode, cur_offset,
3698 cur_offset +
3699 hole_size - 1, 0);
3700 }
3701 free_extent_map(hole_em);
3702next:
3642320e 3703 btrfs_update_inode(trans, root, inode);
8082510e 3704 btrfs_end_transaction(trans, root);
9036c102
YZ
3705 }
3706 free_extent_map(em);
a22285a6 3707 em = NULL;
9036c102 3708 cur_offset = last_byte;
8082510e 3709 if (cur_offset >= block_end)
9036c102
YZ
3710 break;
3711 }
1832a6d5 3712
a22285a6 3713 free_extent_map(em);
2ac55d41
JB
3714 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3715 GFP_NOFS);
9036c102
YZ
3716 return err;
3717}
39279cc3 3718
a41ad394 3719static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3720{
f4a2f4c5
MX
3721 struct btrfs_root *root = BTRFS_I(inode)->root;
3722 struct btrfs_trans_handle *trans;
a41ad394 3723 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3724 int ret;
3725
a41ad394 3726 if (newsize == oldsize)
8082510e
YZ
3727 return 0;
3728
a41ad394 3729 if (newsize > oldsize) {
a41ad394
JB
3730 truncate_pagecache(inode, oldsize, newsize);
3731 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3732 if (ret)
8082510e 3733 return ret;
8082510e 3734
f4a2f4c5
MX
3735 trans = btrfs_start_transaction(root, 1);
3736 if (IS_ERR(trans))
3737 return PTR_ERR(trans);
3738
3739 i_size_write(inode, newsize);
3740 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3741 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3742 btrfs_end_transaction(trans, root);
a41ad394 3743 } else {
8082510e 3744
a41ad394
JB
3745 /*
3746 * We're truncating a file that used to have good data down to
3747 * zero. Make sure it gets into the ordered flush list so that
3748 * any new writes get down to disk quickly.
3749 */
3750 if (newsize == 0)
72ac3c0d
JB
3751 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3752 &BTRFS_I(inode)->runtime_flags);
8082510e 3753
a41ad394
JB
3754 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3755 truncate_setsize(inode, newsize);
3756 ret = btrfs_truncate(inode);
8082510e
YZ
3757 }
3758
a41ad394 3759 return ret;
8082510e
YZ
3760}
3761
9036c102
YZ
3762static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3763{
3764 struct inode *inode = dentry->d_inode;
b83cc969 3765 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3766 int err;
39279cc3 3767
b83cc969
LZ
3768 if (btrfs_root_readonly(root))
3769 return -EROFS;
3770
9036c102
YZ
3771 err = inode_change_ok(inode, attr);
3772 if (err)
3773 return err;
2bf5a725 3774
5a3f23d5 3775 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3776 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3777 if (err)
3778 return err;
39279cc3 3779 }
9036c102 3780
1025774c
CH
3781 if (attr->ia_valid) {
3782 setattr_copy(inode, attr);
0c4d2d95 3783 inode_inc_iversion(inode);
22c44fe6 3784 err = btrfs_dirty_inode(inode);
1025774c 3785
22c44fe6 3786 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3787 err = btrfs_acl_chmod(inode);
3788 }
33268eaf 3789
39279cc3
CM
3790 return err;
3791}
61295eb8 3792
bd555975 3793void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3794{
3795 struct btrfs_trans_handle *trans;
3796 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3797 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3798 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3799 int ret;
3800
1abe9b8a 3801 trace_btrfs_inode_evict(inode);
3802
39279cc3 3803 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3804 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3805 btrfs_is_free_space_inode(inode)))
bd555975
AV
3806 goto no_delete;
3807
39279cc3 3808 if (is_bad_inode(inode)) {
7b128766 3809 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3810 goto no_delete;
3811 }
bd555975 3812 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3813 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3814
c71bf099 3815 if (root->fs_info->log_root_recovering) {
6bf02314 3816 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3817 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3818 goto no_delete;
3819 }
3820
76dda93c
YZ
3821 if (inode->i_nlink > 0) {
3822 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3823 goto no_delete;
3824 }
3825
66d8f3dd 3826 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3827 if (!rsv) {
3828 btrfs_orphan_del(NULL, inode);
3829 goto no_delete;
3830 }
4a338542 3831 rsv->size = min_size;
ca7e70f5 3832 rsv->failfast = 1;
726c35fa 3833 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3834
dbe674a9 3835 btrfs_i_size_write(inode, 0);
5f39d397 3836
4289a667 3837 /*
8407aa46
MX
3838 * This is a bit simpler than btrfs_truncate since we've already
3839 * reserved our space for our orphan item in the unlink, so we just
3840 * need to reserve some slack space in case we add bytes and update
3841 * inode item when doing the truncate.
4289a667 3842 */
8082510e 3843 while (1) {
08e007d2
MX
3844 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3845 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3846
3847 /*
3848 * Try and steal from the global reserve since we will
3849 * likely not use this space anyway, we want to try as
3850 * hard as possible to get this to work.
3851 */
3852 if (ret)
3853 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3854
d68fc57b 3855 if (ret) {
4289a667 3856 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3857 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3858 btrfs_orphan_del(NULL, inode);
3859 btrfs_free_block_rsv(root, rsv);
3860 goto no_delete;
d68fc57b 3861 }
7b128766 3862
08e007d2 3863 trans = btrfs_start_transaction_lflush(root, 1);
4289a667
JB
3864 if (IS_ERR(trans)) {
3865 btrfs_orphan_del(NULL, inode);
3866 btrfs_free_block_rsv(root, rsv);
3867 goto no_delete;
d68fc57b 3868 }
7b128766 3869
4289a667
JB
3870 trans->block_rsv = rsv;
3871
d68fc57b 3872 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3873 if (ret != -ENOSPC)
8082510e 3874 break;
85e21bac 3875
8407aa46
MX
3876 trans->block_rsv = &root->fs_info->trans_block_rsv;
3877 ret = btrfs_update_inode(trans, root, inode);
3878 BUG_ON(ret);
3879
8082510e
YZ
3880 btrfs_end_transaction(trans, root);
3881 trans = NULL;
b53d3f5d 3882 btrfs_btree_balance_dirty(root);
8082510e 3883 }
5f39d397 3884
4289a667
JB
3885 btrfs_free_block_rsv(root, rsv);
3886
8082510e 3887 if (ret == 0) {
4289a667 3888 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3889 ret = btrfs_orphan_del(trans, inode);
3890 BUG_ON(ret);
3891 }
54aa1f4d 3892
4289a667 3893 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3894 if (!(root == root->fs_info->tree_root ||
3895 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3896 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3897
54aa1f4d 3898 btrfs_end_transaction(trans, root);
b53d3f5d 3899 btrfs_btree_balance_dirty(root);
39279cc3 3900no_delete:
dbd5768f 3901 clear_inode(inode);
8082510e 3902 return;
39279cc3
CM
3903}
3904
3905/*
3906 * this returns the key found in the dir entry in the location pointer.
3907 * If no dir entries were found, location->objectid is 0.
3908 */
3909static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3910 struct btrfs_key *location)
3911{
3912 const char *name = dentry->d_name.name;
3913 int namelen = dentry->d_name.len;
3914 struct btrfs_dir_item *di;
3915 struct btrfs_path *path;
3916 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3917 int ret = 0;
39279cc3
CM
3918
3919 path = btrfs_alloc_path();
d8926bb3
MF
3920 if (!path)
3921 return -ENOMEM;
3954401f 3922
33345d01 3923 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3924 namelen, 0);
0d9f7f3e
Y
3925 if (IS_ERR(di))
3926 ret = PTR_ERR(di);
d397712b 3927
c704005d 3928 if (IS_ERR_OR_NULL(di))
3954401f 3929 goto out_err;
d397712b 3930
5f39d397 3931 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3932out:
39279cc3
CM
3933 btrfs_free_path(path);
3934 return ret;
3954401f
CM
3935out_err:
3936 location->objectid = 0;
3937 goto out;
39279cc3
CM
3938}
3939
3940/*
3941 * when we hit a tree root in a directory, the btrfs part of the inode
3942 * needs to be changed to reflect the root directory of the tree root. This
3943 * is kind of like crossing a mount point.
3944 */
3945static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3946 struct inode *dir,
3947 struct dentry *dentry,
3948 struct btrfs_key *location,
3949 struct btrfs_root **sub_root)
39279cc3 3950{
4df27c4d
YZ
3951 struct btrfs_path *path;
3952 struct btrfs_root *new_root;
3953 struct btrfs_root_ref *ref;
3954 struct extent_buffer *leaf;
3955 int ret;
3956 int err = 0;
39279cc3 3957
4df27c4d
YZ
3958 path = btrfs_alloc_path();
3959 if (!path) {
3960 err = -ENOMEM;
3961 goto out;
3962 }
39279cc3 3963
4df27c4d
YZ
3964 err = -ENOENT;
3965 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3966 BTRFS_I(dir)->root->root_key.objectid,
3967 location->objectid);
3968 if (ret) {
3969 if (ret < 0)
3970 err = ret;
3971 goto out;
3972 }
39279cc3 3973
4df27c4d
YZ
3974 leaf = path->nodes[0];
3975 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3976 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3977 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3978 goto out;
39279cc3 3979
4df27c4d
YZ
3980 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3981 (unsigned long)(ref + 1),
3982 dentry->d_name.len);
3983 if (ret)
3984 goto out;
3985
b3b4aa74 3986 btrfs_release_path(path);
4df27c4d
YZ
3987
3988 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3989 if (IS_ERR(new_root)) {
3990 err = PTR_ERR(new_root);
3991 goto out;
3992 }
3993
3994 if (btrfs_root_refs(&new_root->root_item) == 0) {
3995 err = -ENOENT;
3996 goto out;
3997 }
3998
3999 *sub_root = new_root;
4000 location->objectid = btrfs_root_dirid(&new_root->root_item);
4001 location->type = BTRFS_INODE_ITEM_KEY;
4002 location->offset = 0;
4003 err = 0;
4004out:
4005 btrfs_free_path(path);
4006 return err;
39279cc3
CM
4007}
4008
5d4f98a2
YZ
4009static void inode_tree_add(struct inode *inode)
4010{
4011 struct btrfs_root *root = BTRFS_I(inode)->root;
4012 struct btrfs_inode *entry;
03e860bd
FNP
4013 struct rb_node **p;
4014 struct rb_node *parent;
33345d01 4015 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4016again:
4017 p = &root->inode_tree.rb_node;
4018 parent = NULL;
5d4f98a2 4019
1d3382cb 4020 if (inode_unhashed(inode))
76dda93c
YZ
4021 return;
4022
5d4f98a2
YZ
4023 spin_lock(&root->inode_lock);
4024 while (*p) {
4025 parent = *p;
4026 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4027
33345d01 4028 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4029 p = &parent->rb_left;
33345d01 4030 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4031 p = &parent->rb_right;
5d4f98a2
YZ
4032 else {
4033 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4034 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4035 rb_erase(parent, &root->inode_tree);
4036 RB_CLEAR_NODE(parent);
4037 spin_unlock(&root->inode_lock);
4038 goto again;
5d4f98a2
YZ
4039 }
4040 }
4041 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4042 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4043 spin_unlock(&root->inode_lock);
4044}
4045
4046static void inode_tree_del(struct inode *inode)
4047{
4048 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4049 int empty = 0;
5d4f98a2 4050
03e860bd 4051 spin_lock(&root->inode_lock);
5d4f98a2 4052 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4053 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4054 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4055 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4056 }
03e860bd 4057 spin_unlock(&root->inode_lock);
76dda93c 4058
0af3d00b
JB
4059 /*
4060 * Free space cache has inodes in the tree root, but the tree root has a
4061 * root_refs of 0, so this could end up dropping the tree root as a
4062 * snapshot, so we need the extra !root->fs_info->tree_root check to
4063 * make sure we don't drop it.
4064 */
4065 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4066 root != root->fs_info->tree_root) {
76dda93c
YZ
4067 synchronize_srcu(&root->fs_info->subvol_srcu);
4068 spin_lock(&root->inode_lock);
4069 empty = RB_EMPTY_ROOT(&root->inode_tree);
4070 spin_unlock(&root->inode_lock);
4071 if (empty)
4072 btrfs_add_dead_root(root);
4073 }
4074}
4075
143bede5 4076void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4077{
4078 struct rb_node *node;
4079 struct rb_node *prev;
4080 struct btrfs_inode *entry;
4081 struct inode *inode;
4082 u64 objectid = 0;
4083
4084 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4085
4086 spin_lock(&root->inode_lock);
4087again:
4088 node = root->inode_tree.rb_node;
4089 prev = NULL;
4090 while (node) {
4091 prev = node;
4092 entry = rb_entry(node, struct btrfs_inode, rb_node);
4093
33345d01 4094 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4095 node = node->rb_left;
33345d01 4096 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4097 node = node->rb_right;
4098 else
4099 break;
4100 }
4101 if (!node) {
4102 while (prev) {
4103 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4104 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4105 node = prev;
4106 break;
4107 }
4108 prev = rb_next(prev);
4109 }
4110 }
4111 while (node) {
4112 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4113 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4114 inode = igrab(&entry->vfs_inode);
4115 if (inode) {
4116 spin_unlock(&root->inode_lock);
4117 if (atomic_read(&inode->i_count) > 1)
4118 d_prune_aliases(inode);
4119 /*
45321ac5 4120 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4121 * the inode cache when its usage count
4122 * hits zero.
4123 */
4124 iput(inode);
4125 cond_resched();
4126 spin_lock(&root->inode_lock);
4127 goto again;
4128 }
4129
4130 if (cond_resched_lock(&root->inode_lock))
4131 goto again;
4132
4133 node = rb_next(node);
4134 }
4135 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4136}
4137
e02119d5
CM
4138static int btrfs_init_locked_inode(struct inode *inode, void *p)
4139{
4140 struct btrfs_iget_args *args = p;
4141 inode->i_ino = args->ino;
e02119d5 4142 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4143 return 0;
4144}
4145
4146static int btrfs_find_actor(struct inode *inode, void *opaque)
4147{
4148 struct btrfs_iget_args *args = opaque;
33345d01 4149 return args->ino == btrfs_ino(inode) &&
d397712b 4150 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4151}
4152
5d4f98a2
YZ
4153static struct inode *btrfs_iget_locked(struct super_block *s,
4154 u64 objectid,
4155 struct btrfs_root *root)
39279cc3
CM
4156{
4157 struct inode *inode;
4158 struct btrfs_iget_args args;
4159 args.ino = objectid;
4160 args.root = root;
4161
4162 inode = iget5_locked(s, objectid, btrfs_find_actor,
4163 btrfs_init_locked_inode,
4164 (void *)&args);
4165 return inode;
4166}
4167
1a54ef8c
BR
4168/* Get an inode object given its location and corresponding root.
4169 * Returns in *is_new if the inode was read from disk
4170 */
4171struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4172 struct btrfs_root *root, int *new)
1a54ef8c
BR
4173{
4174 struct inode *inode;
4175
4176 inode = btrfs_iget_locked(s, location->objectid, root);
4177 if (!inode)
5d4f98a2 4178 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4179
4180 if (inode->i_state & I_NEW) {
4181 BTRFS_I(inode)->root = root;
4182 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4183 btrfs_read_locked_inode(inode);
1748f843
MF
4184 if (!is_bad_inode(inode)) {
4185 inode_tree_add(inode);
4186 unlock_new_inode(inode);
4187 if (new)
4188 *new = 1;
4189 } else {
e0b6d65b
ST
4190 unlock_new_inode(inode);
4191 iput(inode);
4192 inode = ERR_PTR(-ESTALE);
1748f843
MF
4193 }
4194 }
4195
1a54ef8c
BR
4196 return inode;
4197}
4198
4df27c4d
YZ
4199static struct inode *new_simple_dir(struct super_block *s,
4200 struct btrfs_key *key,
4201 struct btrfs_root *root)
4202{
4203 struct inode *inode = new_inode(s);
4204
4205 if (!inode)
4206 return ERR_PTR(-ENOMEM);
4207
4df27c4d
YZ
4208 BTRFS_I(inode)->root = root;
4209 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4210 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4211
4212 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4213 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4214 inode->i_fop = &simple_dir_operations;
4215 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4216 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4217
4218 return inode;
4219}
4220
3de4586c 4221struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4222{
d397712b 4223 struct inode *inode;
4df27c4d 4224 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4225 struct btrfs_root *sub_root = root;
4226 struct btrfs_key location;
76dda93c 4227 int index;
b4aff1f8 4228 int ret = 0;
39279cc3
CM
4229
4230 if (dentry->d_name.len > BTRFS_NAME_LEN)
4231 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4232
b4aff1f8
JB
4233 if (unlikely(d_need_lookup(dentry))) {
4234 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4235 kfree(dentry->d_fsdata);
4236 dentry->d_fsdata = NULL;
a66e7cc6
JB
4237 /* This thing is hashed, drop it for now */
4238 d_drop(dentry);
b4aff1f8
JB
4239 } else {
4240 ret = btrfs_inode_by_name(dir, dentry, &location);
4241 }
5f39d397 4242
39279cc3
CM
4243 if (ret < 0)
4244 return ERR_PTR(ret);
5f39d397 4245
4df27c4d
YZ
4246 if (location.objectid == 0)
4247 return NULL;
4248
4249 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4250 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4251 return inode;
4252 }
4253
4254 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4255
76dda93c 4256 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4257 ret = fixup_tree_root_location(root, dir, dentry,
4258 &location, &sub_root);
4259 if (ret < 0) {
4260 if (ret != -ENOENT)
4261 inode = ERR_PTR(ret);
4262 else
4263 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4264 } else {
73f73415 4265 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4266 }
76dda93c
YZ
4267 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4268
34d19bad 4269 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4270 down_read(&root->fs_info->cleanup_work_sem);
4271 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4272 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4273 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4274 if (ret)
4275 inode = ERR_PTR(ret);
c71bf099
YZ
4276 }
4277
3de4586c
CM
4278 return inode;
4279}
4280
fe15ce44 4281static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4282{
4283 struct btrfs_root *root;
848cce0d 4284 struct inode *inode = dentry->d_inode;
76dda93c 4285
848cce0d
LZ
4286 if (!inode && !IS_ROOT(dentry))
4287 inode = dentry->d_parent->d_inode;
76dda93c 4288
848cce0d
LZ
4289 if (inode) {
4290 root = BTRFS_I(inode)->root;
efefb143
YZ
4291 if (btrfs_root_refs(&root->root_item) == 0)
4292 return 1;
848cce0d
LZ
4293
4294 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4295 return 1;
efefb143 4296 }
76dda93c
YZ
4297 return 0;
4298}
4299
b4aff1f8
JB
4300static void btrfs_dentry_release(struct dentry *dentry)
4301{
4302 if (dentry->d_fsdata)
4303 kfree(dentry->d_fsdata);
4304}
4305
3de4586c 4306static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4307 unsigned int flags)
3de4586c 4308{
a66e7cc6
JB
4309 struct dentry *ret;
4310
4311 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4312 if (unlikely(d_need_lookup(dentry))) {
4313 spin_lock(&dentry->d_lock);
4314 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4315 spin_unlock(&dentry->d_lock);
4316 }
4317 return ret;
39279cc3
CM
4318}
4319
16cdcec7 4320unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4321 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4322};
4323
cbdf5a24
DW
4324static int btrfs_real_readdir(struct file *filp, void *dirent,
4325 filldir_t filldir)
39279cc3 4326{
6da6abae 4327 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4328 struct btrfs_root *root = BTRFS_I(inode)->root;
4329 struct btrfs_item *item;
4330 struct btrfs_dir_item *di;
4331 struct btrfs_key key;
5f39d397 4332 struct btrfs_key found_key;
39279cc3 4333 struct btrfs_path *path;
16cdcec7
MX
4334 struct list_head ins_list;
4335 struct list_head del_list;
39279cc3 4336 int ret;
5f39d397 4337 struct extent_buffer *leaf;
39279cc3 4338 int slot;
39279cc3
CM
4339 unsigned char d_type;
4340 int over = 0;
4341 u32 di_cur;
4342 u32 di_total;
4343 u32 di_len;
4344 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4345 char tmp_name[32];
4346 char *name_ptr;
4347 int name_len;
16cdcec7 4348 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4349
4350 /* FIXME, use a real flag for deciding about the key type */
4351 if (root->fs_info->tree_root == root)
4352 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4353
3954401f
CM
4354 /* special case for "." */
4355 if (filp->f_pos == 0) {
3765fefa
HS
4356 over = filldir(dirent, ".", 1,
4357 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4358 if (over)
4359 return 0;
4360 filp->f_pos = 1;
4361 }
3954401f
CM
4362 /* special case for .., just use the back ref */
4363 if (filp->f_pos == 1) {
5ecc7e5d 4364 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4365 over = filldir(dirent, "..", 2,
3765fefa 4366 filp->f_pos, pino, DT_DIR);
3954401f 4367 if (over)
49593bfa 4368 return 0;
3954401f
CM
4369 filp->f_pos = 2;
4370 }
49593bfa 4371 path = btrfs_alloc_path();
16cdcec7
MX
4372 if (!path)
4373 return -ENOMEM;
ff5714cc 4374
026fd317 4375 path->reada = 1;
49593bfa 4376
16cdcec7
MX
4377 if (key_type == BTRFS_DIR_INDEX_KEY) {
4378 INIT_LIST_HEAD(&ins_list);
4379 INIT_LIST_HEAD(&del_list);
4380 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4381 }
4382
39279cc3
CM
4383 btrfs_set_key_type(&key, key_type);
4384 key.offset = filp->f_pos;
33345d01 4385 key.objectid = btrfs_ino(inode);
5f39d397 4386
39279cc3
CM
4387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4388 if (ret < 0)
4389 goto err;
49593bfa
DW
4390
4391 while (1) {
5f39d397 4392 leaf = path->nodes[0];
39279cc3 4393 slot = path->slots[0];
b9e03af0
LZ
4394 if (slot >= btrfs_header_nritems(leaf)) {
4395 ret = btrfs_next_leaf(root, path);
4396 if (ret < 0)
4397 goto err;
4398 else if (ret > 0)
4399 break;
4400 continue;
39279cc3 4401 }
3de4586c 4402
5f39d397
CM
4403 item = btrfs_item_nr(leaf, slot);
4404 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4405
4406 if (found_key.objectid != key.objectid)
39279cc3 4407 break;
5f39d397 4408 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4409 break;
5f39d397 4410 if (found_key.offset < filp->f_pos)
b9e03af0 4411 goto next;
16cdcec7
MX
4412 if (key_type == BTRFS_DIR_INDEX_KEY &&
4413 btrfs_should_delete_dir_index(&del_list,
4414 found_key.offset))
4415 goto next;
5f39d397
CM
4416
4417 filp->f_pos = found_key.offset;
16cdcec7 4418 is_curr = 1;
49593bfa 4419
39279cc3
CM
4420 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4421 di_cur = 0;
5f39d397 4422 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4423
4424 while (di_cur < di_total) {
5f39d397
CM
4425 struct btrfs_key location;
4426
22a94d44
JB
4427 if (verify_dir_item(root, leaf, di))
4428 break;
4429
5f39d397 4430 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4431 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4432 name_ptr = tmp_name;
4433 } else {
4434 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4435 if (!name_ptr) {
4436 ret = -ENOMEM;
4437 goto err;
4438 }
5f39d397
CM
4439 }
4440 read_extent_buffer(leaf, name_ptr,
4441 (unsigned long)(di + 1), name_len);
4442
4443 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4444 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4445
fede766f 4446
3de4586c 4447 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4448 * skip it.
4449 *
4450 * In contrast to old kernels, we insert the snapshot's
4451 * dir item and dir index after it has been created, so
4452 * we won't find a reference to our own snapshot. We
4453 * still keep the following code for backward
4454 * compatibility.
3de4586c
CM
4455 */
4456 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4457 location.objectid == root->root_key.objectid) {
4458 over = 0;
4459 goto skip;
4460 }
5f39d397 4461 over = filldir(dirent, name_ptr, name_len,
49593bfa 4462 found_key.offset, location.objectid,
39279cc3 4463 d_type);
5f39d397 4464
3de4586c 4465skip:
5f39d397
CM
4466 if (name_ptr != tmp_name)
4467 kfree(name_ptr);
4468
39279cc3
CM
4469 if (over)
4470 goto nopos;
5103e947 4471 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4472 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4473 di_cur += di_len;
4474 di = (struct btrfs_dir_item *)((char *)di + di_len);
4475 }
b9e03af0
LZ
4476next:
4477 path->slots[0]++;
39279cc3 4478 }
49593bfa 4479
16cdcec7
MX
4480 if (key_type == BTRFS_DIR_INDEX_KEY) {
4481 if (is_curr)
4482 filp->f_pos++;
4483 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4484 &ins_list);
4485 if (ret)
4486 goto nopos;
4487 }
4488
49593bfa 4489 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4490 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4491 /*
4492 * 32-bit glibc will use getdents64, but then strtol -
4493 * so the last number we can serve is this.
4494 */
4495 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4496 else
4497 filp->f_pos++;
39279cc3
CM
4498nopos:
4499 ret = 0;
4500err:
16cdcec7
MX
4501 if (key_type == BTRFS_DIR_INDEX_KEY)
4502 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4503 btrfs_free_path(path);
39279cc3
CM
4504 return ret;
4505}
4506
a9185b41 4507int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4508{
4509 struct btrfs_root *root = BTRFS_I(inode)->root;
4510 struct btrfs_trans_handle *trans;
4511 int ret = 0;
0af3d00b 4512 bool nolock = false;
39279cc3 4513
72ac3c0d 4514 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4515 return 0;
4516
83eea1f1 4517 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4518 nolock = true;
0af3d00b 4519
a9185b41 4520 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4521 if (nolock)
7a7eaa40 4522 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4523 else
7a7eaa40 4524 trans = btrfs_join_transaction(root);
3612b495
TI
4525 if (IS_ERR(trans))
4526 return PTR_ERR(trans);
a698d075 4527 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4528 }
4529 return ret;
4530}
4531
4532/*
54aa1f4d 4533 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4534 * inode changes. But, it is most likely to find the inode in cache.
4535 * FIXME, needs more benchmarking...there are no reasons other than performance
4536 * to keep or drop this code.
4537 */
22c44fe6 4538int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4539{
4540 struct btrfs_root *root = BTRFS_I(inode)->root;
4541 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4542 int ret;
4543
72ac3c0d 4544 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4545 return 0;
39279cc3 4546
7a7eaa40 4547 trans = btrfs_join_transaction(root);
22c44fe6
JB
4548 if (IS_ERR(trans))
4549 return PTR_ERR(trans);
8929ecfa
YZ
4550
4551 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4552 if (ret && ret == -ENOSPC) {
4553 /* whoops, lets try again with the full transaction */
4554 btrfs_end_transaction(trans, root);
4555 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4556 if (IS_ERR(trans))
4557 return PTR_ERR(trans);
8929ecfa 4558
94b60442 4559 ret = btrfs_update_inode(trans, root, inode);
94b60442 4560 }
39279cc3 4561 btrfs_end_transaction(trans, root);
16cdcec7
MX
4562 if (BTRFS_I(inode)->delayed_node)
4563 btrfs_balance_delayed_items(root);
22c44fe6
JB
4564
4565 return ret;
4566}
4567
4568/*
4569 * This is a copy of file_update_time. We need this so we can return error on
4570 * ENOSPC for updating the inode in the case of file write and mmap writes.
4571 */
e41f941a
JB
4572static int btrfs_update_time(struct inode *inode, struct timespec *now,
4573 int flags)
22c44fe6 4574{
2bc55652
AB
4575 struct btrfs_root *root = BTRFS_I(inode)->root;
4576
4577 if (btrfs_root_readonly(root))
4578 return -EROFS;
4579
e41f941a 4580 if (flags & S_VERSION)
22c44fe6 4581 inode_inc_iversion(inode);
e41f941a
JB
4582 if (flags & S_CTIME)
4583 inode->i_ctime = *now;
4584 if (flags & S_MTIME)
4585 inode->i_mtime = *now;
4586 if (flags & S_ATIME)
4587 inode->i_atime = *now;
4588 return btrfs_dirty_inode(inode);
39279cc3
CM
4589}
4590
d352ac68
CM
4591/*
4592 * find the highest existing sequence number in a directory
4593 * and then set the in-memory index_cnt variable to reflect
4594 * free sequence numbers
4595 */
aec7477b
JB
4596static int btrfs_set_inode_index_count(struct inode *inode)
4597{
4598 struct btrfs_root *root = BTRFS_I(inode)->root;
4599 struct btrfs_key key, found_key;
4600 struct btrfs_path *path;
4601 struct extent_buffer *leaf;
4602 int ret;
4603
33345d01 4604 key.objectid = btrfs_ino(inode);
aec7477b
JB
4605 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4606 key.offset = (u64)-1;
4607
4608 path = btrfs_alloc_path();
4609 if (!path)
4610 return -ENOMEM;
4611
4612 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4613 if (ret < 0)
4614 goto out;
4615 /* FIXME: we should be able to handle this */
4616 if (ret == 0)
4617 goto out;
4618 ret = 0;
4619
4620 /*
4621 * MAGIC NUMBER EXPLANATION:
4622 * since we search a directory based on f_pos we have to start at 2
4623 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4624 * else has to start at 2
4625 */
4626 if (path->slots[0] == 0) {
4627 BTRFS_I(inode)->index_cnt = 2;
4628 goto out;
4629 }
4630
4631 path->slots[0]--;
4632
4633 leaf = path->nodes[0];
4634 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4635
33345d01 4636 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4637 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4638 BTRFS_I(inode)->index_cnt = 2;
4639 goto out;
4640 }
4641
4642 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4643out:
4644 btrfs_free_path(path);
4645 return ret;
4646}
4647
d352ac68
CM
4648/*
4649 * helper to find a free sequence number in a given directory. This current
4650 * code is very simple, later versions will do smarter things in the btree
4651 */
3de4586c 4652int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4653{
4654 int ret = 0;
4655
4656 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4657 ret = btrfs_inode_delayed_dir_index_count(dir);
4658 if (ret) {
4659 ret = btrfs_set_inode_index_count(dir);
4660 if (ret)
4661 return ret;
4662 }
aec7477b
JB
4663 }
4664
00e4e6b3 4665 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4666 BTRFS_I(dir)->index_cnt++;
4667
4668 return ret;
4669}
4670
39279cc3
CM
4671static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4672 struct btrfs_root *root,
aec7477b 4673 struct inode *dir,
9c58309d 4674 const char *name, int name_len,
175a4eb7
AV
4675 u64 ref_objectid, u64 objectid,
4676 umode_t mode, u64 *index)
39279cc3
CM
4677{
4678 struct inode *inode;
5f39d397 4679 struct btrfs_inode_item *inode_item;
39279cc3 4680 struct btrfs_key *location;
5f39d397 4681 struct btrfs_path *path;
9c58309d
CM
4682 struct btrfs_inode_ref *ref;
4683 struct btrfs_key key[2];
4684 u32 sizes[2];
4685 unsigned long ptr;
39279cc3
CM
4686 int ret;
4687 int owner;
4688
5f39d397 4689 path = btrfs_alloc_path();
d8926bb3
MF
4690 if (!path)
4691 return ERR_PTR(-ENOMEM);
5f39d397 4692
39279cc3 4693 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4694 if (!inode) {
4695 btrfs_free_path(path);
39279cc3 4696 return ERR_PTR(-ENOMEM);
8fb27640 4697 }
39279cc3 4698
581bb050
LZ
4699 /*
4700 * we have to initialize this early, so we can reclaim the inode
4701 * number if we fail afterwards in this function.
4702 */
4703 inode->i_ino = objectid;
4704
aec7477b 4705 if (dir) {
1abe9b8a 4706 trace_btrfs_inode_request(dir);
4707
3de4586c 4708 ret = btrfs_set_inode_index(dir, index);
09771430 4709 if (ret) {
8fb27640 4710 btrfs_free_path(path);
09771430 4711 iput(inode);
aec7477b 4712 return ERR_PTR(ret);
09771430 4713 }
aec7477b
JB
4714 }
4715 /*
4716 * index_cnt is ignored for everything but a dir,
4717 * btrfs_get_inode_index_count has an explanation for the magic
4718 * number
4719 */
4720 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4721 BTRFS_I(inode)->root = root;
e02119d5 4722 BTRFS_I(inode)->generation = trans->transid;
76195853 4723 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4724
5dc562c5
JB
4725 /*
4726 * We could have gotten an inode number from somebody who was fsynced
4727 * and then removed in this same transaction, so let's just set full
4728 * sync since it will be a full sync anyway and this will blow away the
4729 * old info in the log.
4730 */
4731 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4732
569254b0 4733 if (S_ISDIR(mode))
39279cc3
CM
4734 owner = 0;
4735 else
4736 owner = 1;
9c58309d
CM
4737
4738 key[0].objectid = objectid;
4739 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4740 key[0].offset = 0;
4741
f186373f
MF
4742 /*
4743 * Start new inodes with an inode_ref. This is slightly more
4744 * efficient for small numbers of hard links since they will
4745 * be packed into one item. Extended refs will kick in if we
4746 * add more hard links than can fit in the ref item.
4747 */
9c58309d
CM
4748 key[1].objectid = objectid;
4749 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4750 key[1].offset = ref_objectid;
4751
4752 sizes[0] = sizeof(struct btrfs_inode_item);
4753 sizes[1] = name_len + sizeof(*ref);
4754
b9473439 4755 path->leave_spinning = 1;
9c58309d
CM
4756 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4757 if (ret != 0)
5f39d397
CM
4758 goto fail;
4759
ecc11fab 4760 inode_init_owner(inode, dir, mode);
a76a3cd4 4761 inode_set_bytes(inode, 0);
39279cc3 4762 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4763 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4764 struct btrfs_inode_item);
293f7e07
LZ
4765 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4766 sizeof(*inode_item));
e02119d5 4767 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4768
4769 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4770 struct btrfs_inode_ref);
4771 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4772 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4773 ptr = (unsigned long)(ref + 1);
4774 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4775
5f39d397
CM
4776 btrfs_mark_buffer_dirty(path->nodes[0]);
4777 btrfs_free_path(path);
4778
39279cc3
CM
4779 location = &BTRFS_I(inode)->location;
4780 location->objectid = objectid;
39279cc3
CM
4781 location->offset = 0;
4782 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4783
6cbff00f
CH
4784 btrfs_inherit_iflags(inode, dir);
4785
569254b0 4786 if (S_ISREG(mode)) {
94272164
CM
4787 if (btrfs_test_opt(root, NODATASUM))
4788 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4789 if (btrfs_test_opt(root, NODATACOW) ||
4790 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4791 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4792 }
4793
39279cc3 4794 insert_inode_hash(inode);
5d4f98a2 4795 inode_tree_add(inode);
1abe9b8a 4796
4797 trace_btrfs_inode_new(inode);
1973f0fa 4798 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4799
8ea05e3a
AB
4800 btrfs_update_root_times(trans, root);
4801
39279cc3 4802 return inode;
5f39d397 4803fail:
aec7477b
JB
4804 if (dir)
4805 BTRFS_I(dir)->index_cnt--;
5f39d397 4806 btrfs_free_path(path);
09771430 4807 iput(inode);
5f39d397 4808 return ERR_PTR(ret);
39279cc3
CM
4809}
4810
4811static inline u8 btrfs_inode_type(struct inode *inode)
4812{
4813 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4814}
4815
d352ac68
CM
4816/*
4817 * utility function to add 'inode' into 'parent_inode' with
4818 * a give name and a given sequence number.
4819 * if 'add_backref' is true, also insert a backref from the
4820 * inode to the parent directory.
4821 */
e02119d5
CM
4822int btrfs_add_link(struct btrfs_trans_handle *trans,
4823 struct inode *parent_inode, struct inode *inode,
4824 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4825{
4df27c4d 4826 int ret = 0;
39279cc3 4827 struct btrfs_key key;
e02119d5 4828 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4829 u64 ino = btrfs_ino(inode);
4830 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4831
33345d01 4832 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4833 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4834 } else {
33345d01 4835 key.objectid = ino;
4df27c4d
YZ
4836 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4837 key.offset = 0;
4838 }
4839
33345d01 4840 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4841 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4842 key.objectid, root->root_key.objectid,
33345d01 4843 parent_ino, index, name, name_len);
4df27c4d 4844 } else if (add_backref) {
33345d01
LZ
4845 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4846 parent_ino, index);
4df27c4d 4847 }
39279cc3 4848
79787eaa
JM
4849 /* Nothing to clean up yet */
4850 if (ret)
4851 return ret;
4df27c4d 4852
79787eaa
JM
4853 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4854 parent_inode, &key,
4855 btrfs_inode_type(inode), index);
4856 if (ret == -EEXIST)
4857 goto fail_dir_item;
4858 else if (ret) {
4859 btrfs_abort_transaction(trans, root, ret);
4860 return ret;
39279cc3 4861 }
79787eaa
JM
4862
4863 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4864 name_len * 2);
0c4d2d95 4865 inode_inc_iversion(parent_inode);
79787eaa
JM
4866 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4867 ret = btrfs_update_inode(trans, root, parent_inode);
4868 if (ret)
4869 btrfs_abort_transaction(trans, root, ret);
39279cc3 4870 return ret;
fe66a05a
CM
4871
4872fail_dir_item:
4873 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4874 u64 local_index;
4875 int err;
4876 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4877 key.objectid, root->root_key.objectid,
4878 parent_ino, &local_index, name, name_len);
4879
4880 } else if (add_backref) {
4881 u64 local_index;
4882 int err;
4883
4884 err = btrfs_del_inode_ref(trans, root, name, name_len,
4885 ino, parent_ino, &local_index);
4886 }
4887 return ret;
39279cc3
CM
4888}
4889
4890static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4891 struct inode *dir, struct dentry *dentry,
4892 struct inode *inode, int backref, u64 index)
39279cc3 4893{
a1b075d2
JB
4894 int err = btrfs_add_link(trans, dir, inode,
4895 dentry->d_name.name, dentry->d_name.len,
4896 backref, index);
39279cc3
CM
4897 if (err > 0)
4898 err = -EEXIST;
4899 return err;
4900}
4901
618e21d5 4902static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4903 umode_t mode, dev_t rdev)
618e21d5
JB
4904{
4905 struct btrfs_trans_handle *trans;
4906 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4907 struct inode *inode = NULL;
618e21d5
JB
4908 int err;
4909 int drop_inode = 0;
4910 u64 objectid;
00e4e6b3 4911 u64 index = 0;
618e21d5
JB
4912
4913 if (!new_valid_dev(rdev))
4914 return -EINVAL;
4915
9ed74f2d
JB
4916 /*
4917 * 2 for inode item and ref
4918 * 2 for dir items
4919 * 1 for xattr if selinux is on
4920 */
a22285a6
YZ
4921 trans = btrfs_start_transaction(root, 5);
4922 if (IS_ERR(trans))
4923 return PTR_ERR(trans);
1832a6d5 4924
581bb050
LZ
4925 err = btrfs_find_free_ino(root, &objectid);
4926 if (err)
4927 goto out_unlock;
4928
aec7477b 4929 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4930 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4931 mode, &index);
7cf96da3
TI
4932 if (IS_ERR(inode)) {
4933 err = PTR_ERR(inode);
618e21d5 4934 goto out_unlock;
7cf96da3 4935 }
618e21d5 4936
2a7dba39 4937 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4938 if (err) {
4939 drop_inode = 1;
4940 goto out_unlock;
4941 }
4942
ad19db71
CS
4943 /*
4944 * If the active LSM wants to access the inode during
4945 * d_instantiate it needs these. Smack checks to see
4946 * if the filesystem supports xattrs by looking at the
4947 * ops vector.
4948 */
4949
4950 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4951 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4952 if (err)
4953 drop_inode = 1;
4954 else {
618e21d5 4955 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4956 btrfs_update_inode(trans, root, inode);
08c422c2 4957 d_instantiate(dentry, inode);
618e21d5 4958 }
618e21d5 4959out_unlock:
7ad85bb7 4960 btrfs_end_transaction(trans, root);
b53d3f5d 4961 btrfs_btree_balance_dirty(root);
618e21d5
JB
4962 if (drop_inode) {
4963 inode_dec_link_count(inode);
4964 iput(inode);
4965 }
618e21d5
JB
4966 return err;
4967}
4968
39279cc3 4969static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 4970 umode_t mode, bool excl)
39279cc3
CM
4971{
4972 struct btrfs_trans_handle *trans;
4973 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4974 struct inode *inode = NULL;
39279cc3 4975 int drop_inode = 0;
a22285a6 4976 int err;
39279cc3 4977 u64 objectid;
00e4e6b3 4978 u64 index = 0;
39279cc3 4979
9ed74f2d
JB
4980 /*
4981 * 2 for inode item and ref
4982 * 2 for dir items
4983 * 1 for xattr if selinux is on
4984 */
a22285a6
YZ
4985 trans = btrfs_start_transaction(root, 5);
4986 if (IS_ERR(trans))
4987 return PTR_ERR(trans);
9ed74f2d 4988
581bb050
LZ
4989 err = btrfs_find_free_ino(root, &objectid);
4990 if (err)
4991 goto out_unlock;
4992
aec7477b 4993 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4994 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4995 mode, &index);
7cf96da3
TI
4996 if (IS_ERR(inode)) {
4997 err = PTR_ERR(inode);
39279cc3 4998 goto out_unlock;
7cf96da3 4999 }
39279cc3 5000
2a7dba39 5001 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5002 if (err) {
5003 drop_inode = 1;
5004 goto out_unlock;
5005 }
5006
ad19db71
CS
5007 /*
5008 * If the active LSM wants to access the inode during
5009 * d_instantiate it needs these. Smack checks to see
5010 * if the filesystem supports xattrs by looking at the
5011 * ops vector.
5012 */
5013 inode->i_fop = &btrfs_file_operations;
5014 inode->i_op = &btrfs_file_inode_operations;
5015
a1b075d2 5016 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
5017 if (err)
5018 drop_inode = 1;
5019 else {
5020 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5021 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 5022 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 5023 d_instantiate(dentry, inode);
39279cc3 5024 }
39279cc3 5025out_unlock:
7ad85bb7 5026 btrfs_end_transaction(trans, root);
39279cc3
CM
5027 if (drop_inode) {
5028 inode_dec_link_count(inode);
5029 iput(inode);
5030 }
b53d3f5d 5031 btrfs_btree_balance_dirty(root);
39279cc3
CM
5032 return err;
5033}
5034
5035static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5036 struct dentry *dentry)
5037{
5038 struct btrfs_trans_handle *trans;
5039 struct btrfs_root *root = BTRFS_I(dir)->root;
5040 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5041 u64 index;
39279cc3
CM
5042 int err;
5043 int drop_inode = 0;
5044
4a8be425
TH
5045 /* do not allow sys_link's with other subvols of the same device */
5046 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5047 return -EXDEV;
4a8be425 5048
f186373f 5049 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5050 return -EMLINK;
4a8be425 5051
3de4586c 5052 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5053 if (err)
5054 goto fail;
5055
a22285a6 5056 /*
7e6b6465 5057 * 2 items for inode and inode ref
a22285a6 5058 * 2 items for dir items
7e6b6465 5059 * 1 item for parent inode
a22285a6 5060 */
7e6b6465 5061 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5062 if (IS_ERR(trans)) {
5063 err = PTR_ERR(trans);
5064 goto fail;
5065 }
5f39d397 5066
3153495d 5067 btrfs_inc_nlink(inode);
0c4d2d95 5068 inode_inc_iversion(inode);
3153495d 5069 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5070 ihold(inode);
aec7477b 5071
a1b075d2 5072 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5073
a5719521 5074 if (err) {
54aa1f4d 5075 drop_inode = 1;
a5719521 5076 } else {
10d9f309 5077 struct dentry *parent = dentry->d_parent;
a5719521 5078 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5079 if (err)
5080 goto fail;
08c422c2 5081 d_instantiate(dentry, inode);
6a912213 5082 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5083 }
39279cc3 5084
7ad85bb7 5085 btrfs_end_transaction(trans, root);
1832a6d5 5086fail:
39279cc3
CM
5087 if (drop_inode) {
5088 inode_dec_link_count(inode);
5089 iput(inode);
5090 }
b53d3f5d 5091 btrfs_btree_balance_dirty(root);
39279cc3
CM
5092 return err;
5093}
5094
18bb1db3 5095static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5096{
b9d86667 5097 struct inode *inode = NULL;
39279cc3
CM
5098 struct btrfs_trans_handle *trans;
5099 struct btrfs_root *root = BTRFS_I(dir)->root;
5100 int err = 0;
5101 int drop_on_err = 0;
b9d86667 5102 u64 objectid = 0;
00e4e6b3 5103 u64 index = 0;
39279cc3 5104
9ed74f2d
JB
5105 /*
5106 * 2 items for inode and ref
5107 * 2 items for dir items
5108 * 1 for xattr if selinux is on
5109 */
a22285a6
YZ
5110 trans = btrfs_start_transaction(root, 5);
5111 if (IS_ERR(trans))
5112 return PTR_ERR(trans);
39279cc3 5113
581bb050
LZ
5114 err = btrfs_find_free_ino(root, &objectid);
5115 if (err)
5116 goto out_fail;
5117
aec7477b 5118 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5119 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5120 S_IFDIR | mode, &index);
39279cc3
CM
5121 if (IS_ERR(inode)) {
5122 err = PTR_ERR(inode);
5123 goto out_fail;
5124 }
5f39d397 5125
39279cc3 5126 drop_on_err = 1;
33268eaf 5127
2a7dba39 5128 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5129 if (err)
5130 goto out_fail;
5131
39279cc3
CM
5132 inode->i_op = &btrfs_dir_inode_operations;
5133 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5134
dbe674a9 5135 btrfs_i_size_write(inode, 0);
39279cc3
CM
5136 err = btrfs_update_inode(trans, root, inode);
5137 if (err)
5138 goto out_fail;
5f39d397 5139
a1b075d2
JB
5140 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5141 dentry->d_name.len, 0, index);
39279cc3
CM
5142 if (err)
5143 goto out_fail;
5f39d397 5144
39279cc3
CM
5145 d_instantiate(dentry, inode);
5146 drop_on_err = 0;
39279cc3
CM
5147
5148out_fail:
7ad85bb7 5149 btrfs_end_transaction(trans, root);
39279cc3
CM
5150 if (drop_on_err)
5151 iput(inode);
b53d3f5d 5152 btrfs_btree_balance_dirty(root);
39279cc3
CM
5153 return err;
5154}
5155
d352ac68
CM
5156/* helper for btfs_get_extent. Given an existing extent in the tree,
5157 * and an extent that you want to insert, deal with overlap and insert
5158 * the new extent into the tree.
5159 */
3b951516
CM
5160static int merge_extent_mapping(struct extent_map_tree *em_tree,
5161 struct extent_map *existing,
e6dcd2dc
CM
5162 struct extent_map *em,
5163 u64 map_start, u64 map_len)
3b951516
CM
5164{
5165 u64 start_diff;
3b951516 5166
e6dcd2dc
CM
5167 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5168 start_diff = map_start - em->start;
5169 em->start = map_start;
5170 em->len = map_len;
c8b97818
CM
5171 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5172 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5173 em->block_start += start_diff;
c8b97818
CM
5174 em->block_len -= start_diff;
5175 }
e6dcd2dc 5176 return add_extent_mapping(em_tree, em);
3b951516
CM
5177}
5178
c8b97818
CM
5179static noinline int uncompress_inline(struct btrfs_path *path,
5180 struct inode *inode, struct page *page,
5181 size_t pg_offset, u64 extent_offset,
5182 struct btrfs_file_extent_item *item)
5183{
5184 int ret;
5185 struct extent_buffer *leaf = path->nodes[0];
5186 char *tmp;
5187 size_t max_size;
5188 unsigned long inline_size;
5189 unsigned long ptr;
261507a0 5190 int compress_type;
c8b97818
CM
5191
5192 WARN_ON(pg_offset != 0);
261507a0 5193 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5194 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5195 inline_size = btrfs_file_extent_inline_item_len(leaf,
5196 btrfs_item_nr(leaf, path->slots[0]));
5197 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5198 if (!tmp)
5199 return -ENOMEM;
c8b97818
CM
5200 ptr = btrfs_file_extent_inline_start(item);
5201
5202 read_extent_buffer(leaf, tmp, ptr, inline_size);
5203
5b050f04 5204 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5205 ret = btrfs_decompress(compress_type, tmp, page,
5206 extent_offset, inline_size, max_size);
c8b97818 5207 if (ret) {
7ac687d9 5208 char *kaddr = kmap_atomic(page);
c8b97818
CM
5209 unsigned long copy_size = min_t(u64,
5210 PAGE_CACHE_SIZE - pg_offset,
5211 max_size - extent_offset);
5212 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5213 kunmap_atomic(kaddr);
c8b97818
CM
5214 }
5215 kfree(tmp);
5216 return 0;
5217}
5218
d352ac68
CM
5219/*
5220 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5221 * the ugly parts come from merging extents from the disk with the in-ram
5222 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5223 * where the in-ram extents might be locked pending data=ordered completion.
5224 *
5225 * This also copies inline extents directly into the page.
5226 */
d397712b 5227
a52d9a80 5228struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5229 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5230 int create)
5231{
5232 int ret;
5233 int err = 0;
db94535d 5234 u64 bytenr;
a52d9a80
CM
5235 u64 extent_start = 0;
5236 u64 extent_end = 0;
33345d01 5237 u64 objectid = btrfs_ino(inode);
a52d9a80 5238 u32 found_type;
f421950f 5239 struct btrfs_path *path = NULL;
a52d9a80
CM
5240 struct btrfs_root *root = BTRFS_I(inode)->root;
5241 struct btrfs_file_extent_item *item;
5f39d397
CM
5242 struct extent_buffer *leaf;
5243 struct btrfs_key found_key;
a52d9a80
CM
5244 struct extent_map *em = NULL;
5245 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5246 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5247 struct btrfs_trans_handle *trans = NULL;
261507a0 5248 int compress_type;
a52d9a80 5249
a52d9a80 5250again:
890871be 5251 read_lock(&em_tree->lock);
d1310b2e 5252 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5253 if (em)
5254 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5255 read_unlock(&em_tree->lock);
d1310b2e 5256
a52d9a80 5257 if (em) {
e1c4b745
CM
5258 if (em->start > start || em->start + em->len <= start)
5259 free_extent_map(em);
5260 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5261 free_extent_map(em);
5262 else
5263 goto out;
a52d9a80 5264 }
172ddd60 5265 em = alloc_extent_map();
a52d9a80 5266 if (!em) {
d1310b2e
CM
5267 err = -ENOMEM;
5268 goto out;
a52d9a80 5269 }
e6dcd2dc 5270 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5271 em->start = EXTENT_MAP_HOLE;
445a6944 5272 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5273 em->len = (u64)-1;
c8b97818 5274 em->block_len = (u64)-1;
f421950f
CM
5275
5276 if (!path) {
5277 path = btrfs_alloc_path();
026fd317
JB
5278 if (!path) {
5279 err = -ENOMEM;
5280 goto out;
5281 }
5282 /*
5283 * Chances are we'll be called again, so go ahead and do
5284 * readahead
5285 */
5286 path->reada = 1;
f421950f
CM
5287 }
5288
179e29e4
CM
5289 ret = btrfs_lookup_file_extent(trans, root, path,
5290 objectid, start, trans != NULL);
a52d9a80
CM
5291 if (ret < 0) {
5292 err = ret;
5293 goto out;
5294 }
5295
5296 if (ret != 0) {
5297 if (path->slots[0] == 0)
5298 goto not_found;
5299 path->slots[0]--;
5300 }
5301
5f39d397
CM
5302 leaf = path->nodes[0];
5303 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5304 struct btrfs_file_extent_item);
a52d9a80 5305 /* are we inside the extent that was found? */
5f39d397
CM
5306 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5307 found_type = btrfs_key_type(&found_key);
5308 if (found_key.objectid != objectid ||
a52d9a80
CM
5309 found_type != BTRFS_EXTENT_DATA_KEY) {
5310 goto not_found;
5311 }
5312
5f39d397
CM
5313 found_type = btrfs_file_extent_type(leaf, item);
5314 extent_start = found_key.offset;
261507a0 5315 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5316 if (found_type == BTRFS_FILE_EXTENT_REG ||
5317 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5318 extent_end = extent_start +
db94535d 5319 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5320 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5321 size_t size;
5322 size = btrfs_file_extent_inline_len(leaf, item);
5323 extent_end = (extent_start + size + root->sectorsize - 1) &
5324 ~((u64)root->sectorsize - 1);
5325 }
5326
5327 if (start >= extent_end) {
5328 path->slots[0]++;
5329 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5330 ret = btrfs_next_leaf(root, path);
5331 if (ret < 0) {
5332 err = ret;
5333 goto out;
a52d9a80 5334 }
9036c102
YZ
5335 if (ret > 0)
5336 goto not_found;
5337 leaf = path->nodes[0];
a52d9a80 5338 }
9036c102
YZ
5339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5340 if (found_key.objectid != objectid ||
5341 found_key.type != BTRFS_EXTENT_DATA_KEY)
5342 goto not_found;
5343 if (start + len <= found_key.offset)
5344 goto not_found;
5345 em->start = start;
5346 em->len = found_key.offset - start;
5347 goto not_found_em;
5348 }
5349
d899e052
YZ
5350 if (found_type == BTRFS_FILE_EXTENT_REG ||
5351 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5352 em->start = extent_start;
5353 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5354 em->orig_start = extent_start -
5355 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5356 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5357 if (bytenr == 0) {
5f39d397 5358 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5359 goto insert;
5360 }
261507a0 5361 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5362 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5363 em->compress_type = compress_type;
c8b97818
CM
5364 em->block_start = bytenr;
5365 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5366 item);
5367 } else {
5368 bytenr += btrfs_file_extent_offset(leaf, item);
5369 em->block_start = bytenr;
5370 em->block_len = em->len;
d899e052
YZ
5371 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5372 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5373 }
a52d9a80
CM
5374 goto insert;
5375 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5376 unsigned long ptr;
a52d9a80 5377 char *map;
3326d1b0
CM
5378 size_t size;
5379 size_t extent_offset;
5380 size_t copy_size;
a52d9a80 5381
689f9346 5382 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5383 if (!page || create) {
689f9346 5384 em->start = extent_start;
9036c102 5385 em->len = extent_end - extent_start;
689f9346
Y
5386 goto out;
5387 }
5f39d397 5388
9036c102
YZ
5389 size = btrfs_file_extent_inline_len(leaf, item);
5390 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5391 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5392 size - extent_offset);
3326d1b0 5393 em->start = extent_start + extent_offset;
70dec807
CM
5394 em->len = (copy_size + root->sectorsize - 1) &
5395 ~((u64)root->sectorsize - 1);
ff5b7ee3 5396 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5397 if (compress_type) {
c8b97818 5398 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5399 em->compress_type = compress_type;
5400 }
689f9346 5401 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5402 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5403 if (btrfs_file_extent_compression(leaf, item) !=
5404 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5405 ret = uncompress_inline(path, inode, page,
5406 pg_offset,
5407 extent_offset, item);
79787eaa 5408 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5409 } else {
5410 map = kmap(page);
5411 read_extent_buffer(leaf, map + pg_offset, ptr,
5412 copy_size);
93c82d57
CM
5413 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5414 memset(map + pg_offset + copy_size, 0,
5415 PAGE_CACHE_SIZE - pg_offset -
5416 copy_size);
5417 }
c8b97818
CM
5418 kunmap(page);
5419 }
179e29e4
CM
5420 flush_dcache_page(page);
5421 } else if (create && PageUptodate(page)) {
6bf7e080 5422 BUG();
179e29e4
CM
5423 if (!trans) {
5424 kunmap(page);
5425 free_extent_map(em);
5426 em = NULL;
ff5714cc 5427
b3b4aa74 5428 btrfs_release_path(path);
7a7eaa40 5429 trans = btrfs_join_transaction(root);
ff5714cc 5430
3612b495
TI
5431 if (IS_ERR(trans))
5432 return ERR_CAST(trans);
179e29e4
CM
5433 goto again;
5434 }
c8b97818 5435 map = kmap(page);
70dec807 5436 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5437 copy_size);
c8b97818 5438 kunmap(page);
179e29e4 5439 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5440 }
d1310b2e 5441 set_extent_uptodate(io_tree, em->start,
507903b8 5442 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5443 goto insert;
5444 } else {
31b1a2bd 5445 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5446 }
5447not_found:
5448 em->start = start;
d1310b2e 5449 em->len = len;
a52d9a80 5450not_found_em:
5f39d397 5451 em->block_start = EXTENT_MAP_HOLE;
9036c102 5452 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5453insert:
b3b4aa74 5454 btrfs_release_path(path);
d1310b2e 5455 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5456 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5457 "[%llu %llu]\n", (unsigned long long)em->start,
5458 (unsigned long long)em->len,
5459 (unsigned long long)start,
5460 (unsigned long long)len);
a52d9a80
CM
5461 err = -EIO;
5462 goto out;
5463 }
d1310b2e
CM
5464
5465 err = 0;
890871be 5466 write_lock(&em_tree->lock);
a52d9a80 5467 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5468 /* it is possible that someone inserted the extent into the tree
5469 * while we had the lock dropped. It is also possible that
5470 * an overlapping map exists in the tree
5471 */
a52d9a80 5472 if (ret == -EEXIST) {
3b951516 5473 struct extent_map *existing;
e6dcd2dc
CM
5474
5475 ret = 0;
5476
3b951516 5477 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5478 if (existing && (existing->start > start ||
5479 existing->start + existing->len <= start)) {
5480 free_extent_map(existing);
5481 existing = NULL;
5482 }
3b951516
CM
5483 if (!existing) {
5484 existing = lookup_extent_mapping(em_tree, em->start,
5485 em->len);
5486 if (existing) {
5487 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5488 em, start,
5489 root->sectorsize);
3b951516
CM
5490 free_extent_map(existing);
5491 if (err) {
5492 free_extent_map(em);
5493 em = NULL;
5494 }
5495 } else {
5496 err = -EIO;
3b951516
CM
5497 free_extent_map(em);
5498 em = NULL;
5499 }
5500 } else {
5501 free_extent_map(em);
5502 em = existing;
e6dcd2dc 5503 err = 0;
a52d9a80 5504 }
a52d9a80 5505 }
890871be 5506 write_unlock(&em_tree->lock);
a52d9a80 5507out:
1abe9b8a 5508
f0bd95ea
TI
5509 if (em)
5510 trace_btrfs_get_extent(root, em);
1abe9b8a 5511
f421950f
CM
5512 if (path)
5513 btrfs_free_path(path);
a52d9a80
CM
5514 if (trans) {
5515 ret = btrfs_end_transaction(trans, root);
d397712b 5516 if (!err)
a52d9a80
CM
5517 err = ret;
5518 }
a52d9a80
CM
5519 if (err) {
5520 free_extent_map(em);
a52d9a80
CM
5521 return ERR_PTR(err);
5522 }
79787eaa 5523 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5524 return em;
5525}
5526
ec29ed5b
CM
5527struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5528 size_t pg_offset, u64 start, u64 len,
5529 int create)
5530{
5531 struct extent_map *em;
5532 struct extent_map *hole_em = NULL;
5533 u64 range_start = start;
5534 u64 end;
5535 u64 found;
5536 u64 found_end;
5537 int err = 0;
5538
5539 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5540 if (IS_ERR(em))
5541 return em;
5542 if (em) {
5543 /*
5544 * if our em maps to a hole, there might
5545 * actually be delalloc bytes behind it
5546 */
5547 if (em->block_start != EXTENT_MAP_HOLE)
5548 return em;
5549 else
5550 hole_em = em;
5551 }
5552
5553 /* check to see if we've wrapped (len == -1 or similar) */
5554 end = start + len;
5555 if (end < start)
5556 end = (u64)-1;
5557 else
5558 end -= 1;
5559
5560 em = NULL;
5561
5562 /* ok, we didn't find anything, lets look for delalloc */
5563 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5564 end, len, EXTENT_DELALLOC, 1);
5565 found_end = range_start + found;
5566 if (found_end < range_start)
5567 found_end = (u64)-1;
5568
5569 /*
5570 * we didn't find anything useful, return
5571 * the original results from get_extent()
5572 */
5573 if (range_start > end || found_end <= start) {
5574 em = hole_em;
5575 hole_em = NULL;
5576 goto out;
5577 }
5578
5579 /* adjust the range_start to make sure it doesn't
5580 * go backwards from the start they passed in
5581 */
5582 range_start = max(start,range_start);
5583 found = found_end - range_start;
5584
5585 if (found > 0) {
5586 u64 hole_start = start;
5587 u64 hole_len = len;
5588
172ddd60 5589 em = alloc_extent_map();
ec29ed5b
CM
5590 if (!em) {
5591 err = -ENOMEM;
5592 goto out;
5593 }
5594 /*
5595 * when btrfs_get_extent can't find anything it
5596 * returns one huge hole
5597 *
5598 * make sure what it found really fits our range, and
5599 * adjust to make sure it is based on the start from
5600 * the caller
5601 */
5602 if (hole_em) {
5603 u64 calc_end = extent_map_end(hole_em);
5604
5605 if (calc_end <= start || (hole_em->start > end)) {
5606 free_extent_map(hole_em);
5607 hole_em = NULL;
5608 } else {
5609 hole_start = max(hole_em->start, start);
5610 hole_len = calc_end - hole_start;
5611 }
5612 }
5613 em->bdev = NULL;
5614 if (hole_em && range_start > hole_start) {
5615 /* our hole starts before our delalloc, so we
5616 * have to return just the parts of the hole
5617 * that go until the delalloc starts
5618 */
5619 em->len = min(hole_len,
5620 range_start - hole_start);
5621 em->start = hole_start;
5622 em->orig_start = hole_start;
5623 /*
5624 * don't adjust block start at all,
5625 * it is fixed at EXTENT_MAP_HOLE
5626 */
5627 em->block_start = hole_em->block_start;
5628 em->block_len = hole_len;
5629 } else {
5630 em->start = range_start;
5631 em->len = found;
5632 em->orig_start = range_start;
5633 em->block_start = EXTENT_MAP_DELALLOC;
5634 em->block_len = found;
5635 }
5636 } else if (hole_em) {
5637 return hole_em;
5638 }
5639out:
5640
5641 free_extent_map(hole_em);
5642 if (err) {
5643 free_extent_map(em);
5644 return ERR_PTR(err);
5645 }
5646 return em;
5647}
5648
4b46fce2 5649static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5650 struct extent_map *em,
4b46fce2
JB
5651 u64 start, u64 len)
5652{
5653 struct btrfs_root *root = BTRFS_I(inode)->root;
5654 struct btrfs_trans_handle *trans;
4b46fce2
JB
5655 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5656 struct btrfs_key ins;
5657 u64 alloc_hint;
5658 int ret;
16d299ac 5659 bool insert = false;
4b46fce2 5660
16d299ac
JB
5661 /*
5662 * Ok if the extent map we looked up is a hole and is for the exact
5663 * range we want, there is no reason to allocate a new one, however if
5664 * it is not right then we need to free this one and drop the cache for
5665 * our range.
5666 */
5667 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5668 em->len != len) {
5669 free_extent_map(em);
5670 em = NULL;
5671 insert = true;
5672 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5673 }
4b46fce2 5674
7a7eaa40 5675 trans = btrfs_join_transaction(root);
3612b495
TI
5676 if (IS_ERR(trans))
5677 return ERR_CAST(trans);
4b46fce2 5678
4cb5300b
CM
5679 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5680 btrfs_add_inode_defrag(trans, inode);
5681
4b46fce2
JB
5682 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5683
5684 alloc_hint = get_extent_allocation_hint(inode, start, len);
5685 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5686 alloc_hint, &ins, 1);
4b46fce2
JB
5687 if (ret) {
5688 em = ERR_PTR(ret);
5689 goto out;
5690 }
5691
4b46fce2 5692 if (!em) {
172ddd60 5693 em = alloc_extent_map();
16d299ac
JB
5694 if (!em) {
5695 em = ERR_PTR(-ENOMEM);
5696 goto out;
5697 }
4b46fce2
JB
5698 }
5699
5700 em->start = start;
5701 em->orig_start = em->start;
5702 em->len = ins.offset;
5703
5704 em->block_start = ins.objectid;
5705 em->block_len = ins.offset;
5706 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5707
5708 /*
5709 * We need to do this because if we're using the original em we searched
5710 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5711 */
5712 em->flags = 0;
4b46fce2
JB
5713 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5714
16d299ac 5715 while (insert) {
4b46fce2
JB
5716 write_lock(&em_tree->lock);
5717 ret = add_extent_mapping(em_tree, em);
5718 write_unlock(&em_tree->lock);
5719 if (ret != -EEXIST)
5720 break;
5721 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5722 }
5723
5724 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5725 ins.offset, ins.offset, 0);
5726 if (ret) {
5727 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5728 em = ERR_PTR(ret);
5729 }
5730out:
5731 btrfs_end_transaction(trans, root);
5732 return em;
5733}
5734
46bfbb5c
CM
5735/*
5736 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5737 * block must be cow'd
5738 */
5739static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5740 struct inode *inode, u64 offset, u64 len)
5741{
5742 struct btrfs_path *path;
5743 int ret;
5744 struct extent_buffer *leaf;
5745 struct btrfs_root *root = BTRFS_I(inode)->root;
5746 struct btrfs_file_extent_item *fi;
5747 struct btrfs_key key;
5748 u64 disk_bytenr;
5749 u64 backref_offset;
5750 u64 extent_end;
5751 u64 num_bytes;
5752 int slot;
5753 int found_type;
5754
5755 path = btrfs_alloc_path();
5756 if (!path)
5757 return -ENOMEM;
5758
33345d01 5759 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5760 offset, 0);
5761 if (ret < 0)
5762 goto out;
5763
5764 slot = path->slots[0];
5765 if (ret == 1) {
5766 if (slot == 0) {
5767 /* can't find the item, must cow */
5768 ret = 0;
5769 goto out;
5770 }
5771 slot--;
5772 }
5773 ret = 0;
5774 leaf = path->nodes[0];
5775 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5776 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5777 key.type != BTRFS_EXTENT_DATA_KEY) {
5778 /* not our file or wrong item type, must cow */
5779 goto out;
5780 }
5781
5782 if (key.offset > offset) {
5783 /* Wrong offset, must cow */
5784 goto out;
5785 }
5786
5787 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5788 found_type = btrfs_file_extent_type(leaf, fi);
5789 if (found_type != BTRFS_FILE_EXTENT_REG &&
5790 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5791 /* not a regular extent, must cow */
5792 goto out;
5793 }
5794 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5795 backref_offset = btrfs_file_extent_offset(leaf, fi);
5796
5797 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5798 if (extent_end < offset + len) {
5799 /* extent doesn't include our full range, must cow */
5800 goto out;
5801 }
5802
5803 if (btrfs_extent_readonly(root, disk_bytenr))
5804 goto out;
5805
5806 /*
5807 * look for other files referencing this extent, if we
5808 * find any we must cow
5809 */
33345d01 5810 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5811 key.offset - backref_offset, disk_bytenr))
5812 goto out;
5813
5814 /*
5815 * adjust disk_bytenr and num_bytes to cover just the bytes
5816 * in this extent we are about to write. If there
5817 * are any csums in that range we have to cow in order
5818 * to keep the csums correct
5819 */
5820 disk_bytenr += backref_offset;
5821 disk_bytenr += offset - key.offset;
5822 num_bytes = min(offset + len, extent_end) - offset;
5823 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5824 goto out;
5825 /*
5826 * all of the above have passed, it is safe to overwrite this extent
5827 * without cow
5828 */
5829 ret = 1;
5830out:
5831 btrfs_free_path(path);
5832 return ret;
5833}
5834
eb838e73
JB
5835static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5836 struct extent_state **cached_state, int writing)
5837{
5838 struct btrfs_ordered_extent *ordered;
5839 int ret = 0;
5840
5841 while (1) {
5842 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5843 0, cached_state);
5844 /*
5845 * We're concerned with the entire range that we're going to be
5846 * doing DIO to, so we need to make sure theres no ordered
5847 * extents in this range.
5848 */
5849 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5850 lockend - lockstart + 1);
5851
5852 /*
5853 * We need to make sure there are no buffered pages in this
5854 * range either, we could have raced between the invalidate in
5855 * generic_file_direct_write and locking the extent. The
5856 * invalidate needs to happen so that reads after a write do not
5857 * get stale data.
5858 */
5859 if (!ordered && (!writing ||
5860 !test_range_bit(&BTRFS_I(inode)->io_tree,
5861 lockstart, lockend, EXTENT_UPTODATE, 0,
5862 *cached_state)))
5863 break;
5864
5865 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5866 cached_state, GFP_NOFS);
5867
5868 if (ordered) {
5869 btrfs_start_ordered_extent(inode, ordered, 1);
5870 btrfs_put_ordered_extent(ordered);
5871 } else {
5872 /* Screw you mmap */
5873 ret = filemap_write_and_wait_range(inode->i_mapping,
5874 lockstart,
5875 lockend);
5876 if (ret)
5877 break;
5878
5879 /*
5880 * If we found a page that couldn't be invalidated just
5881 * fall back to buffered.
5882 */
5883 ret = invalidate_inode_pages2_range(inode->i_mapping,
5884 lockstart >> PAGE_CACHE_SHIFT,
5885 lockend >> PAGE_CACHE_SHIFT);
5886 if (ret)
5887 break;
5888 }
5889
5890 cond_resched();
5891 }
5892
5893 return ret;
5894}
5895
69ffb543
JB
5896static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5897 u64 len, u64 orig_start,
5898 u64 block_start, u64 block_len,
5899 int type)
5900{
5901 struct extent_map_tree *em_tree;
5902 struct extent_map *em;
5903 struct btrfs_root *root = BTRFS_I(inode)->root;
5904 int ret;
5905
5906 em_tree = &BTRFS_I(inode)->extent_tree;
5907 em = alloc_extent_map();
5908 if (!em)
5909 return ERR_PTR(-ENOMEM);
5910
5911 em->start = start;
5912 em->orig_start = orig_start;
5913 em->len = len;
5914 em->block_len = block_len;
5915 em->block_start = block_start;
5916 em->bdev = root->fs_info->fs_devices->latest_bdev;
5917 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5918 if (type == BTRFS_ORDERED_PREALLOC)
5919 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5920
5921 do {
5922 btrfs_drop_extent_cache(inode, em->start,
5923 em->start + em->len - 1, 0);
5924 write_lock(&em_tree->lock);
5925 ret = add_extent_mapping(em_tree, em);
5926 write_unlock(&em_tree->lock);
5927 } while (ret == -EEXIST);
5928
5929 if (ret) {
5930 free_extent_map(em);
5931 return ERR_PTR(ret);
5932 }
5933
5934 return em;
5935}
5936
5937
4b46fce2
JB
5938static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5939 struct buffer_head *bh_result, int create)
5940{
5941 struct extent_map *em;
5942 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 5943 struct extent_state *cached_state = NULL;
4b46fce2 5944 u64 start = iblock << inode->i_blkbits;
eb838e73 5945 u64 lockstart, lockend;
4b46fce2 5946 u64 len = bh_result->b_size;
46bfbb5c 5947 struct btrfs_trans_handle *trans;
eb838e73
JB
5948 int unlock_bits = EXTENT_LOCKED;
5949 int ret;
5950
eb838e73
JB
5951 if (create) {
5952 ret = btrfs_delalloc_reserve_space(inode, len);
5953 if (ret)
5954 return ret;
5955 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
5956 } else {
5957 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
5958 }
5959
c329861d
JB
5960 lockstart = start;
5961 lockend = start + len - 1;
5962
eb838e73
JB
5963 /*
5964 * If this errors out it's because we couldn't invalidate pagecache for
5965 * this range and we need to fallback to buffered.
5966 */
5967 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5968 return -ENOTBLK;
5969
5970 if (create) {
5971 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5972 lockend, EXTENT_DELALLOC, NULL,
5973 &cached_state, GFP_NOFS);
5974 if (ret)
5975 goto unlock_err;
5976 }
4b46fce2
JB
5977
5978 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
5979 if (IS_ERR(em)) {
5980 ret = PTR_ERR(em);
5981 goto unlock_err;
5982 }
4b46fce2
JB
5983
5984 /*
5985 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5986 * io. INLINE is special, and we could probably kludge it in here, but
5987 * it's still buffered so for safety lets just fall back to the generic
5988 * buffered path.
5989 *
5990 * For COMPRESSED we _have_ to read the entire extent in so we can
5991 * decompress it, so there will be buffering required no matter what we
5992 * do, so go ahead and fallback to buffered.
5993 *
5994 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5995 * to buffered IO. Don't blame me, this is the price we pay for using
5996 * the generic code.
5997 */
5998 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5999 em->block_start == EXTENT_MAP_INLINE) {
6000 free_extent_map(em);
eb838e73
JB
6001 ret = -ENOTBLK;
6002 goto unlock_err;
4b46fce2
JB
6003 }
6004
6005 /* Just a good old fashioned hole, return */
6006 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6007 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6008 free_extent_map(em);
eb838e73
JB
6009 ret = 0;
6010 goto unlock_err;
4b46fce2
JB
6011 }
6012
6013 /*
6014 * We don't allocate a new extent in the following cases
6015 *
6016 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6017 * existing extent.
6018 * 2) The extent is marked as PREALLOC. We're good to go here and can
6019 * just use the extent.
6020 *
6021 */
46bfbb5c 6022 if (!create) {
eb838e73
JB
6023 len = min(len, em->len - (start - em->start));
6024 lockstart = start + len;
6025 goto unlock;
46bfbb5c 6026 }
4b46fce2
JB
6027
6028 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6029 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6030 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6031 int type;
6032 int ret;
46bfbb5c 6033 u64 block_start;
4b46fce2
JB
6034
6035 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6036 type = BTRFS_ORDERED_PREALLOC;
6037 else
6038 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6039 len = min(len, em->len - (start - em->start));
4b46fce2 6040 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6041
6042 /*
6043 * we're not going to log anything, but we do need
6044 * to make sure the current transaction stays open
6045 * while we look for nocow cross refs
6046 */
7a7eaa40 6047 trans = btrfs_join_transaction(root);
3612b495 6048 if (IS_ERR(trans))
46bfbb5c
CM
6049 goto must_cow;
6050
6051 if (can_nocow_odirect(trans, inode, start, len) == 1) {
69ffb543
JB
6052 u64 orig_start = em->start;
6053
6054 if (type == BTRFS_ORDERED_PREALLOC) {
6055 free_extent_map(em);
6056 em = create_pinned_em(inode, start, len,
6057 orig_start,
6058 block_start, len, type);
6059 if (IS_ERR(em)) {
6060 btrfs_end_transaction(trans, root);
6061 goto unlock_err;
6062 }
6063 }
6064
46bfbb5c
CM
6065 ret = btrfs_add_ordered_extent_dio(inode, start,
6066 block_start, len, len, type);
6067 btrfs_end_transaction(trans, root);
6068 if (ret) {
6069 free_extent_map(em);
eb838e73 6070 goto unlock_err;
46bfbb5c
CM
6071 }
6072 goto unlock;
4b46fce2 6073 }
46bfbb5c 6074 btrfs_end_transaction(trans, root);
4b46fce2 6075 }
46bfbb5c
CM
6076must_cow:
6077 /*
6078 * this will cow the extent, reset the len in case we changed
6079 * it above
6080 */
6081 len = bh_result->b_size;
16d299ac 6082 em = btrfs_new_extent_direct(inode, em, start, len);
eb838e73
JB
6083 if (IS_ERR(em)) {
6084 ret = PTR_ERR(em);
6085 goto unlock_err;
6086 }
46bfbb5c
CM
6087 len = min(len, em->len - (start - em->start));
6088unlock:
4b46fce2
JB
6089 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6090 inode->i_blkbits;
46bfbb5c 6091 bh_result->b_size = len;
4b46fce2
JB
6092 bh_result->b_bdev = em->bdev;
6093 set_buffer_mapped(bh_result);
c3473e83
JB
6094 if (create) {
6095 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6096 set_buffer_new(bh_result);
6097
6098 /*
6099 * Need to update the i_size under the extent lock so buffered
6100 * readers will get the updated i_size when we unlock.
6101 */
6102 if (start + len > i_size_read(inode))
6103 i_size_write(inode, start + len);
6104 }
4b46fce2 6105
eb838e73
JB
6106 /*
6107 * In the case of write we need to clear and unlock the entire range,
6108 * in the case of read we need to unlock only the end area that we
6109 * aren't using if there is any left over space.
6110 */
24c03fa5
LB
6111 if (lockstart < lockend) {
6112 if (create && len < lockend - lockstart) {
6113 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6114 lockstart + len - 1,
6115 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6116 &cached_state, GFP_NOFS);
6117 /*
6118 * Beside unlock, we also need to cleanup reserved space
6119 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6120 */
6121 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6122 lockstart + len, lockend,
9e8a4a8b
LB
6123 unlock_bits | EXTENT_DO_ACCOUNTING |
6124 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6125 } else {
6126 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6127 lockend, unlock_bits, 1, 0,
6128 &cached_state, GFP_NOFS);
6129 }
6130 } else {
eb838e73 6131 free_extent_state(cached_state);
24c03fa5 6132 }
eb838e73 6133
4b46fce2
JB
6134 free_extent_map(em);
6135
6136 return 0;
eb838e73
JB
6137
6138unlock_err:
6139 if (create)
6140 unlock_bits |= EXTENT_DO_ACCOUNTING;
6141
6142 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6143 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6144 return ret;
4b46fce2
JB
6145}
6146
6147struct btrfs_dio_private {
6148 struct inode *inode;
6149 u64 logical_offset;
6150 u64 disk_bytenr;
6151 u64 bytes;
4b46fce2 6152 void *private;
e65e1535
MX
6153
6154 /* number of bios pending for this dio */
6155 atomic_t pending_bios;
6156
6157 /* IO errors */
6158 int errors;
6159
6160 struct bio *orig_bio;
4b46fce2
JB
6161};
6162
6163static void btrfs_endio_direct_read(struct bio *bio, int err)
6164{
e65e1535 6165 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6166 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6167 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6168 struct inode *inode = dip->inode;
6169 struct btrfs_root *root = BTRFS_I(inode)->root;
6170 u64 start;
4b46fce2
JB
6171
6172 start = dip->logical_offset;
6173 do {
6174 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6175 struct page *page = bvec->bv_page;
6176 char *kaddr;
6177 u32 csum = ~(u32)0;
c329861d 6178 u64 private = ~(u32)0;
4b46fce2
JB
6179 unsigned long flags;
6180
c329861d
JB
6181 if (get_state_private(&BTRFS_I(inode)->io_tree,
6182 start, &private))
6183 goto failed;
4b46fce2 6184 local_irq_save(flags);
7ac687d9 6185 kaddr = kmap_atomic(page);
4b46fce2
JB
6186 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6187 csum, bvec->bv_len);
6188 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6189 kunmap_atomic(kaddr);
4b46fce2
JB
6190 local_irq_restore(flags);
6191
6192 flush_dcache_page(bvec->bv_page);
c329861d
JB
6193 if (csum != private) {
6194failed:
33345d01 6195 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6196 " %llu csum %u private %u\n",
33345d01
LZ
6197 (unsigned long long)btrfs_ino(inode),
6198 (unsigned long long)start,
c329861d 6199 csum, (unsigned)private);
4b46fce2
JB
6200 err = -EIO;
6201 }
6202 }
6203
6204 start += bvec->bv_len;
4b46fce2
JB
6205 bvec++;
6206 } while (bvec <= bvec_end);
6207
6208 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6209 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6210 bio->bi_private = dip->private;
6211
4b46fce2 6212 kfree(dip);
c0da7aa1
JB
6213
6214 /* If we had a csum failure make sure to clear the uptodate flag */
6215 if (err)
6216 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6217 dio_end_io(bio, err);
6218}
6219
6220static void btrfs_endio_direct_write(struct bio *bio, int err)
6221{
6222 struct btrfs_dio_private *dip = bio->bi_private;
6223 struct inode *inode = dip->inode;
6224 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6225 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6226 u64 ordered_offset = dip->logical_offset;
6227 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6228 int ret;
6229
6230 if (err)
6231 goto out_done;
163cf09c
CM
6232again:
6233 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6234 &ordered_offset,
5fd02043 6235 ordered_bytes, !err);
4b46fce2 6236 if (!ret)
163cf09c 6237 goto out_test;
4b46fce2 6238
5fd02043
JB
6239 ordered->work.func = finish_ordered_fn;
6240 ordered->work.flags = 0;
6241 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6242 &ordered->work);
163cf09c
CM
6243out_test:
6244 /*
6245 * our bio might span multiple ordered extents. If we haven't
6246 * completed the accounting for the whole dio, go back and try again
6247 */
6248 if (ordered_offset < dip->logical_offset + dip->bytes) {
6249 ordered_bytes = dip->logical_offset + dip->bytes -
6250 ordered_offset;
5fd02043 6251 ordered = NULL;
163cf09c
CM
6252 goto again;
6253 }
4b46fce2
JB
6254out_done:
6255 bio->bi_private = dip->private;
6256
4b46fce2 6257 kfree(dip);
c0da7aa1
JB
6258
6259 /* If we had an error make sure to clear the uptodate flag */
6260 if (err)
6261 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6262 dio_end_io(bio, err);
6263}
6264
eaf25d93
CM
6265static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6266 struct bio *bio, int mirror_num,
6267 unsigned long bio_flags, u64 offset)
6268{
6269 int ret;
6270 struct btrfs_root *root = BTRFS_I(inode)->root;
6271 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6272 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6273 return 0;
6274}
6275
e65e1535
MX
6276static void btrfs_end_dio_bio(struct bio *bio, int err)
6277{
6278 struct btrfs_dio_private *dip = bio->bi_private;
6279
6280 if (err) {
33345d01 6281 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6282 "sector %#Lx len %u err no %d\n",
33345d01 6283 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6284 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6285 dip->errors = 1;
6286
6287 /*
6288 * before atomic variable goto zero, we must make sure
6289 * dip->errors is perceived to be set.
6290 */
6291 smp_mb__before_atomic_dec();
6292 }
6293
6294 /* if there are more bios still pending for this dio, just exit */
6295 if (!atomic_dec_and_test(&dip->pending_bios))
6296 goto out;
6297
6298 if (dip->errors)
6299 bio_io_error(dip->orig_bio);
6300 else {
6301 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6302 bio_endio(dip->orig_bio, 0);
6303 }
6304out:
6305 bio_put(bio);
6306}
6307
6308static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6309 u64 first_sector, gfp_t gfp_flags)
6310{
6311 int nr_vecs = bio_get_nr_vecs(bdev);
6312 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6313}
6314
6315static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6316 int rw, u64 file_offset, int skip_sum,
c329861d 6317 int async_submit)
e65e1535
MX
6318{
6319 int write = rw & REQ_WRITE;
6320 struct btrfs_root *root = BTRFS_I(inode)->root;
6321 int ret;
6322
6323 bio_get(bio);
5fd02043
JB
6324
6325 if (!write) {
6326 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6327 if (ret)
6328 goto err;
6329 }
e65e1535 6330
1ae39938
JB
6331 if (skip_sum)
6332 goto map;
6333
6334 if (write && async_submit) {
e65e1535
MX
6335 ret = btrfs_wq_submit_bio(root->fs_info,
6336 inode, rw, bio, 0, 0,
6337 file_offset,
6338 __btrfs_submit_bio_start_direct_io,
6339 __btrfs_submit_bio_done);
6340 goto err;
1ae39938
JB
6341 } else if (write) {
6342 /*
6343 * If we aren't doing async submit, calculate the csum of the
6344 * bio now.
6345 */
6346 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6347 if (ret)
6348 goto err;
c2db1073 6349 } else if (!skip_sum) {
c329861d 6350 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6351 if (ret)
6352 goto err;
6353 }
e65e1535 6354
1ae39938
JB
6355map:
6356 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6357err:
6358 bio_put(bio);
6359 return ret;
6360}
6361
6362static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6363 int skip_sum)
6364{
6365 struct inode *inode = dip->inode;
6366 struct btrfs_root *root = BTRFS_I(inode)->root;
6367 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6368 struct bio *bio;
6369 struct bio *orig_bio = dip->orig_bio;
6370 struct bio_vec *bvec = orig_bio->bi_io_vec;
6371 u64 start_sector = orig_bio->bi_sector;
6372 u64 file_offset = dip->logical_offset;
6373 u64 submit_len = 0;
6374 u64 map_length;
6375 int nr_pages = 0;
e65e1535 6376 int ret = 0;
1ae39938 6377 int async_submit = 0;
e65e1535 6378
e65e1535
MX
6379 map_length = orig_bio->bi_size;
6380 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6381 &map_length, NULL, 0);
6382 if (ret) {
64728bbb 6383 bio_put(orig_bio);
e65e1535
MX
6384 return -EIO;
6385 }
6386
02f57c7a
JB
6387 if (map_length >= orig_bio->bi_size) {
6388 bio = orig_bio;
6389 goto submit;
6390 }
6391
1ae39938 6392 async_submit = 1;
02f57c7a
JB
6393 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6394 if (!bio)
6395 return -ENOMEM;
6396 bio->bi_private = dip;
6397 bio->bi_end_io = btrfs_end_dio_bio;
6398 atomic_inc(&dip->pending_bios);
6399
e65e1535
MX
6400 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6401 if (unlikely(map_length < submit_len + bvec->bv_len ||
6402 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6403 bvec->bv_offset) < bvec->bv_len)) {
6404 /*
6405 * inc the count before we submit the bio so
6406 * we know the end IO handler won't happen before
6407 * we inc the count. Otherwise, the dip might get freed
6408 * before we're done setting it up
6409 */
6410 atomic_inc(&dip->pending_bios);
6411 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6412 file_offset, skip_sum,
c329861d 6413 async_submit);
e65e1535
MX
6414 if (ret) {
6415 bio_put(bio);
6416 atomic_dec(&dip->pending_bios);
6417 goto out_err;
6418 }
6419
e65e1535
MX
6420 start_sector += submit_len >> 9;
6421 file_offset += submit_len;
6422
6423 submit_len = 0;
6424 nr_pages = 0;
6425
6426 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6427 start_sector, GFP_NOFS);
6428 if (!bio)
6429 goto out_err;
6430 bio->bi_private = dip;
6431 bio->bi_end_io = btrfs_end_dio_bio;
6432
6433 map_length = orig_bio->bi_size;
6434 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6435 &map_length, NULL, 0);
6436 if (ret) {
6437 bio_put(bio);
6438 goto out_err;
6439 }
6440 } else {
6441 submit_len += bvec->bv_len;
6442 nr_pages ++;
6443 bvec++;
6444 }
6445 }
6446
02f57c7a 6447submit:
e65e1535 6448 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6449 async_submit);
e65e1535
MX
6450 if (!ret)
6451 return 0;
6452
6453 bio_put(bio);
6454out_err:
6455 dip->errors = 1;
6456 /*
6457 * before atomic variable goto zero, we must
6458 * make sure dip->errors is perceived to be set.
6459 */
6460 smp_mb__before_atomic_dec();
6461 if (atomic_dec_and_test(&dip->pending_bios))
6462 bio_io_error(dip->orig_bio);
6463
6464 /* bio_end_io() will handle error, so we needn't return it */
6465 return 0;
6466}
6467
4b46fce2
JB
6468static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6469 loff_t file_offset)
6470{
6471 struct btrfs_root *root = BTRFS_I(inode)->root;
6472 struct btrfs_dio_private *dip;
6473 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6474 int skip_sum;
7b6d91da 6475 int write = rw & REQ_WRITE;
4b46fce2
JB
6476 int ret = 0;
6477
6478 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6479
6480 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6481 if (!dip) {
6482 ret = -ENOMEM;
6483 goto free_ordered;
6484 }
4b46fce2
JB
6485
6486 dip->private = bio->bi_private;
6487 dip->inode = inode;
6488 dip->logical_offset = file_offset;
6489
4b46fce2
JB
6490 dip->bytes = 0;
6491 do {
6492 dip->bytes += bvec->bv_len;
6493 bvec++;
6494 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6495
46bfbb5c 6496 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6497 bio->bi_private = dip;
e65e1535
MX
6498 dip->errors = 0;
6499 dip->orig_bio = bio;
6500 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6501
6502 if (write)
6503 bio->bi_end_io = btrfs_endio_direct_write;
6504 else
6505 bio->bi_end_io = btrfs_endio_direct_read;
6506
e65e1535
MX
6507 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6508 if (!ret)
eaf25d93 6509 return;
4b46fce2
JB
6510free_ordered:
6511 /*
6512 * If this is a write, we need to clean up the reserved space and kill
6513 * the ordered extent.
6514 */
6515 if (write) {
6516 struct btrfs_ordered_extent *ordered;
955256f2 6517 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6518 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6519 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6520 btrfs_free_reserved_extent(root, ordered->start,
6521 ordered->disk_len);
6522 btrfs_put_ordered_extent(ordered);
6523 btrfs_put_ordered_extent(ordered);
6524 }
6525 bio_endio(bio, ret);
6526}
6527
5a5f79b5
CM
6528static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6529 const struct iovec *iov, loff_t offset,
6530 unsigned long nr_segs)
6531{
6532 int seg;
a1b75f7d 6533 int i;
5a5f79b5
CM
6534 size_t size;
6535 unsigned long addr;
6536 unsigned blocksize_mask = root->sectorsize - 1;
6537 ssize_t retval = -EINVAL;
6538 loff_t end = offset;
6539
6540 if (offset & blocksize_mask)
6541 goto out;
6542
6543 /* Check the memory alignment. Blocks cannot straddle pages */
6544 for (seg = 0; seg < nr_segs; seg++) {
6545 addr = (unsigned long)iov[seg].iov_base;
6546 size = iov[seg].iov_len;
6547 end += size;
a1b75f7d 6548 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6549 goto out;
a1b75f7d
JB
6550
6551 /* If this is a write we don't need to check anymore */
6552 if (rw & WRITE)
6553 continue;
6554
6555 /*
6556 * Check to make sure we don't have duplicate iov_base's in this
6557 * iovec, if so return EINVAL, otherwise we'll get csum errors
6558 * when reading back.
6559 */
6560 for (i = seg + 1; i < nr_segs; i++) {
6561 if (iov[seg].iov_base == iov[i].iov_base)
6562 goto out;
6563 }
5a5f79b5
CM
6564 }
6565 retval = 0;
6566out:
6567 return retval;
6568}
eb838e73 6569
16432985
CM
6570static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6571 const struct iovec *iov, loff_t offset,
6572 unsigned long nr_segs)
6573{
4b46fce2
JB
6574 struct file *file = iocb->ki_filp;
6575 struct inode *inode = file->f_mapping->host;
4b46fce2 6576
5a5f79b5 6577 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6578 offset, nr_segs))
5a5f79b5 6579 return 0;
3f7c579c 6580
eb838e73 6581 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6582 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6583 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6584 btrfs_submit_direct, 0);
16432985
CM
6585}
6586
1506fcc8
YS
6587static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6588 __u64 start, __u64 len)
6589{
ec29ed5b 6590 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6591}
6592
a52d9a80 6593int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6594{
d1310b2e
CM
6595 struct extent_io_tree *tree;
6596 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6597 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6598}
1832a6d5 6599
a52d9a80 6600static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6601{
d1310b2e 6602 struct extent_io_tree *tree;
b888db2b
CM
6603
6604
6605 if (current->flags & PF_MEMALLOC) {
6606 redirty_page_for_writepage(wbc, page);
6607 unlock_page(page);
6608 return 0;
6609 }
d1310b2e 6610 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6611 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6612}
6613
f421950f
CM
6614int btrfs_writepages(struct address_space *mapping,
6615 struct writeback_control *wbc)
b293f02e 6616{
d1310b2e 6617 struct extent_io_tree *tree;
771ed689 6618
d1310b2e 6619 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6620 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6621}
6622
3ab2fb5a
CM
6623static int
6624btrfs_readpages(struct file *file, struct address_space *mapping,
6625 struct list_head *pages, unsigned nr_pages)
6626{
d1310b2e
CM
6627 struct extent_io_tree *tree;
6628 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6629 return extent_readpages(tree, mapping, pages, nr_pages,
6630 btrfs_get_extent);
6631}
e6dcd2dc 6632static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6633{
d1310b2e
CM
6634 struct extent_io_tree *tree;
6635 struct extent_map_tree *map;
a52d9a80 6636 int ret;
8c2383c3 6637
d1310b2e
CM
6638 tree = &BTRFS_I(page->mapping->host)->io_tree;
6639 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6640 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6641 if (ret == 1) {
6642 ClearPagePrivate(page);
6643 set_page_private(page, 0);
6644 page_cache_release(page);
39279cc3 6645 }
a52d9a80 6646 return ret;
39279cc3
CM
6647}
6648
e6dcd2dc
CM
6649static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6650{
98509cfc
CM
6651 if (PageWriteback(page) || PageDirty(page))
6652 return 0;
b335b003 6653 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6654}
6655
a52d9a80 6656static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6657{
5fd02043 6658 struct inode *inode = page->mapping->host;
d1310b2e 6659 struct extent_io_tree *tree;
e6dcd2dc 6660 struct btrfs_ordered_extent *ordered;
2ac55d41 6661 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6662 u64 page_start = page_offset(page);
6663 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6664
8b62b72b
CM
6665 /*
6666 * we have the page locked, so new writeback can't start,
6667 * and the dirty bit won't be cleared while we are here.
6668 *
6669 * Wait for IO on this page so that we can safely clear
6670 * the PagePrivate2 bit and do ordered accounting
6671 */
e6dcd2dc 6672 wait_on_page_writeback(page);
8b62b72b 6673
5fd02043 6674 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6675 if (offset) {
6676 btrfs_releasepage(page, GFP_NOFS);
6677 return;
6678 }
d0082371 6679 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6680 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6681 page_offset(page));
6682 if (ordered) {
eb84ae03
CM
6683 /*
6684 * IO on this page will never be started, so we need
6685 * to account for any ordered extents now
6686 */
e6dcd2dc
CM
6687 clear_extent_bit(tree, page_start, page_end,
6688 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6689 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6690 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6691 /*
6692 * whoever cleared the private bit is responsible
6693 * for the finish_ordered_io
6694 */
5fd02043
JB
6695 if (TestClearPagePrivate2(page) &&
6696 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6697 PAGE_CACHE_SIZE, 1)) {
6698 btrfs_finish_ordered_io(ordered);
8b62b72b 6699 }
e6dcd2dc 6700 btrfs_put_ordered_extent(ordered);
2ac55d41 6701 cached_state = NULL;
d0082371 6702 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6703 }
6704 clear_extent_bit(tree, page_start, page_end,
32c00aff 6705 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6706 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6707 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6708 __btrfs_releasepage(page, GFP_NOFS);
6709
4a096752 6710 ClearPageChecked(page);
9ad6b7bc 6711 if (PagePrivate(page)) {
9ad6b7bc
CM
6712 ClearPagePrivate(page);
6713 set_page_private(page, 0);
6714 page_cache_release(page);
6715 }
39279cc3
CM
6716}
6717
9ebefb18
CM
6718/*
6719 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6720 * called from a page fault handler when a page is first dirtied. Hence we must
6721 * be careful to check for EOF conditions here. We set the page up correctly
6722 * for a written page which means we get ENOSPC checking when writing into
6723 * holes and correct delalloc and unwritten extent mapping on filesystems that
6724 * support these features.
6725 *
6726 * We are not allowed to take the i_mutex here so we have to play games to
6727 * protect against truncate races as the page could now be beyond EOF. Because
6728 * vmtruncate() writes the inode size before removing pages, once we have the
6729 * page lock we can determine safely if the page is beyond EOF. If it is not
6730 * beyond EOF, then the page is guaranteed safe against truncation until we
6731 * unlock the page.
6732 */
c2ec175c 6733int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6734{
c2ec175c 6735 struct page *page = vmf->page;
6da6abae 6736 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6737 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6738 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6739 struct btrfs_ordered_extent *ordered;
2ac55d41 6740 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6741 char *kaddr;
6742 unsigned long zero_start;
9ebefb18 6743 loff_t size;
1832a6d5 6744 int ret;
9998eb70 6745 int reserved = 0;
a52d9a80 6746 u64 page_start;
e6dcd2dc 6747 u64 page_end;
9ebefb18 6748
b2b5ef5c 6749 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6750 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6751 if (!ret) {
e41f941a 6752 ret = file_update_time(vma->vm_file);
9998eb70
CM
6753 reserved = 1;
6754 }
56a76f82
NP
6755 if (ret) {
6756 if (ret == -ENOMEM)
6757 ret = VM_FAULT_OOM;
6758 else /* -ENOSPC, -EIO, etc */
6759 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6760 if (reserved)
6761 goto out;
6762 goto out_noreserve;
56a76f82 6763 }
1832a6d5 6764
56a76f82 6765 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6766again:
9ebefb18 6767 lock_page(page);
9ebefb18 6768 size = i_size_read(inode);
e6dcd2dc
CM
6769 page_start = page_offset(page);
6770 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6771
9ebefb18 6772 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6773 (page_start >= size)) {
9ebefb18
CM
6774 /* page got truncated out from underneath us */
6775 goto out_unlock;
6776 }
e6dcd2dc
CM
6777 wait_on_page_writeback(page);
6778
d0082371 6779 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6780 set_page_extent_mapped(page);
6781
eb84ae03
CM
6782 /*
6783 * we can't set the delalloc bits if there are pending ordered
6784 * extents. Drop our locks and wait for them to finish
6785 */
e6dcd2dc
CM
6786 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6787 if (ordered) {
2ac55d41
JB
6788 unlock_extent_cached(io_tree, page_start, page_end,
6789 &cached_state, GFP_NOFS);
e6dcd2dc 6790 unlock_page(page);
eb84ae03 6791 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6792 btrfs_put_ordered_extent(ordered);
6793 goto again;
6794 }
6795
fbf19087
JB
6796 /*
6797 * XXX - page_mkwrite gets called every time the page is dirtied, even
6798 * if it was already dirty, so for space accounting reasons we need to
6799 * clear any delalloc bits for the range we are fixing to save. There
6800 * is probably a better way to do this, but for now keep consistent with
6801 * prepare_pages in the normal write path.
6802 */
2ac55d41 6803 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6804 EXTENT_DIRTY | EXTENT_DELALLOC |
6805 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6806 0, 0, &cached_state, GFP_NOFS);
fbf19087 6807
2ac55d41
JB
6808 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6809 &cached_state);
9ed74f2d 6810 if (ret) {
2ac55d41
JB
6811 unlock_extent_cached(io_tree, page_start, page_end,
6812 &cached_state, GFP_NOFS);
9ed74f2d
JB
6813 ret = VM_FAULT_SIGBUS;
6814 goto out_unlock;
6815 }
e6dcd2dc 6816 ret = 0;
9ebefb18
CM
6817
6818 /* page is wholly or partially inside EOF */
a52d9a80 6819 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6820 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6821 else
e6dcd2dc 6822 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6823
e6dcd2dc
CM
6824 if (zero_start != PAGE_CACHE_SIZE) {
6825 kaddr = kmap(page);
6826 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6827 flush_dcache_page(page);
6828 kunmap(page);
6829 }
247e743c 6830 ClearPageChecked(page);
e6dcd2dc 6831 set_page_dirty(page);
50a9b214 6832 SetPageUptodate(page);
5a3f23d5 6833
257c62e1
CM
6834 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6835 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6836 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6837
2ac55d41 6838 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6839
6840out_unlock:
b2b5ef5c
JK
6841 if (!ret) {
6842 sb_end_pagefault(inode->i_sb);
50a9b214 6843 return VM_FAULT_LOCKED;
b2b5ef5c 6844 }
9ebefb18 6845 unlock_page(page);
1832a6d5 6846out:
ec39e180 6847 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6848out_noreserve:
b2b5ef5c 6849 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6850 return ret;
6851}
6852
a41ad394 6853static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6854{
6855 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6856 struct btrfs_block_rsv *rsv;
39279cc3 6857 int ret;
3893e33b 6858 int err = 0;
39279cc3 6859 struct btrfs_trans_handle *trans;
dbe674a9 6860 u64 mask = root->sectorsize - 1;
07127184 6861 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6862
2aaa6655 6863 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6864 if (ret)
a41ad394 6865 return ret;
8082510e 6866
4a096752 6867 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6868 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6869
fcb80c2a
JB
6870 /*
6871 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6872 * 3 things going on here
6873 *
6874 * 1) We need to reserve space for our orphan item and the space to
6875 * delete our orphan item. Lord knows we don't want to have a dangling
6876 * orphan item because we didn't reserve space to remove it.
6877 *
6878 * 2) We need to reserve space to update our inode.
6879 *
6880 * 3) We need to have something to cache all the space that is going to
6881 * be free'd up by the truncate operation, but also have some slack
6882 * space reserved in case it uses space during the truncate (thank you
6883 * very much snapshotting).
6884 *
6885 * And we need these to all be seperate. The fact is we can use alot of
6886 * space doing the truncate, and we have no earthly idea how much space
6887 * we will use, so we need the truncate reservation to be seperate so it
6888 * doesn't end up using space reserved for updating the inode or
6889 * removing the orphan item. We also need to be able to stop the
6890 * transaction and start a new one, which means we need to be able to
6891 * update the inode several times, and we have no idea of knowing how
6892 * many times that will be, so we can't just reserve 1 item for the
6893 * entirety of the opration, so that has to be done seperately as well.
6894 * Then there is the orphan item, which does indeed need to be held on
6895 * to for the whole operation, and we need nobody to touch this reserved
6896 * space except the orphan code.
6897 *
6898 * So that leaves us with
6899 *
6900 * 1) root->orphan_block_rsv - for the orphan deletion.
6901 * 2) rsv - for the truncate reservation, which we will steal from the
6902 * transaction reservation.
6903 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6904 * updating the inode.
6905 */
66d8f3dd 6906 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
6907 if (!rsv)
6908 return -ENOMEM;
4a338542 6909 rsv->size = min_size;
ca7e70f5 6910 rsv->failfast = 1;
f0cd846e 6911
907cbceb 6912 /*
07127184 6913 * 1 for the truncate slack space
907cbceb
JB
6914 * 1 for the orphan item we're going to add
6915 * 1 for the orphan item deletion
6916 * 1 for updating the inode.
6917 */
fcb80c2a
JB
6918 trans = btrfs_start_transaction(root, 4);
6919 if (IS_ERR(trans)) {
6920 err = PTR_ERR(trans);
6921 goto out;
6922 }
f0cd846e 6923
907cbceb
JB
6924 /* Migrate the slack space for the truncate to our reserve */
6925 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6926 min_size);
fcb80c2a 6927 BUG_ON(ret);
f0cd846e
JB
6928
6929 ret = btrfs_orphan_add(trans, inode);
6930 if (ret) {
6931 btrfs_end_transaction(trans, root);
fcb80c2a 6932 goto out;
f0cd846e
JB
6933 }
6934
5a3f23d5
CM
6935 /*
6936 * setattr is responsible for setting the ordered_data_close flag,
6937 * but that is only tested during the last file release. That
6938 * could happen well after the next commit, leaving a great big
6939 * window where new writes may get lost if someone chooses to write
6940 * to this file after truncating to zero
6941 *
6942 * The inode doesn't have any dirty data here, and so if we commit
6943 * this is a noop. If someone immediately starts writing to the inode
6944 * it is very likely we'll catch some of their writes in this
6945 * transaction, and the commit will find this file on the ordered
6946 * data list with good things to send down.
6947 *
6948 * This is a best effort solution, there is still a window where
6949 * using truncate to replace the contents of the file will
6950 * end up with a zero length file after a crash.
6951 */
72ac3c0d
JB
6952 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6953 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6954 btrfs_add_ordered_operation(trans, root, inode);
6955
5dc562c5
JB
6956 /*
6957 * So if we truncate and then write and fsync we normally would just
6958 * write the extents that changed, which is a problem if we need to
6959 * first truncate that entire inode. So set this flag so we write out
6960 * all of the extents in the inode to the sync log so we're completely
6961 * safe.
6962 */
6963 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 6964 trans->block_rsv = rsv;
907cbceb 6965
8082510e
YZ
6966 while (1) {
6967 ret = btrfs_truncate_inode_items(trans, root, inode,
6968 inode->i_size,
6969 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 6970 if (ret != -ENOSPC) {
3893e33b 6971 err = ret;
8082510e 6972 break;
3893e33b 6973 }
39279cc3 6974
fcb80c2a 6975 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6976 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6977 if (ret) {
6978 err = ret;
6979 break;
6980 }
ca7e70f5 6981
8082510e 6982 btrfs_end_transaction(trans, root);
b53d3f5d 6983 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
6984
6985 trans = btrfs_start_transaction(root, 2);
6986 if (IS_ERR(trans)) {
6987 ret = err = PTR_ERR(trans);
6988 trans = NULL;
6989 break;
6990 }
6991
6992 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
6993 rsv, min_size);
6994 BUG_ON(ret); /* shouldn't happen */
6995 trans->block_rsv = rsv;
8082510e
YZ
6996 }
6997
6998 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6999 trans->block_rsv = root->orphan_block_rsv;
8082510e 7000 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7001 if (ret)
7002 err = ret;
ded5db9d
JB
7003 } else if (ret && inode->i_nlink > 0) {
7004 /*
7005 * Failed to do the truncate, remove us from the in memory
7006 * orphan list.
7007 */
7008 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
7009 }
7010
917c16b2
CM
7011 if (trans) {
7012 trans->block_rsv = &root->fs_info->trans_block_rsv;
7013 ret = btrfs_update_inode(trans, root, inode);
7014 if (ret && !err)
7015 err = ret;
7b128766 7016
7ad85bb7 7017 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7018 btrfs_btree_balance_dirty(root);
917c16b2 7019 }
fcb80c2a
JB
7020
7021out:
7022 btrfs_free_block_rsv(root, rsv);
7023
3893e33b
JB
7024 if (ret && !err)
7025 err = ret;
a41ad394 7026
3893e33b 7027 return err;
39279cc3
CM
7028}
7029
d352ac68
CM
7030/*
7031 * create a new subvolume directory/inode (helper for the ioctl).
7032 */
d2fb3437 7033int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7034 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7035{
39279cc3 7036 struct inode *inode;
76dda93c 7037 int err;
00e4e6b3 7038 u64 index = 0;
39279cc3 7039
12fc9d09
FA
7040 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7041 new_dirid, new_dirid,
7042 S_IFDIR | (~current_umask() & S_IRWXUGO),
7043 &index);
54aa1f4d 7044 if (IS_ERR(inode))
f46b5a66 7045 return PTR_ERR(inode);
39279cc3
CM
7046 inode->i_op = &btrfs_dir_inode_operations;
7047 inode->i_fop = &btrfs_dir_file_operations;
7048
bfe86848 7049 set_nlink(inode, 1);
dbe674a9 7050 btrfs_i_size_write(inode, 0);
3b96362c 7051
76dda93c 7052 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7053
76dda93c 7054 iput(inode);
ce598979 7055 return err;
39279cc3
CM
7056}
7057
39279cc3
CM
7058struct inode *btrfs_alloc_inode(struct super_block *sb)
7059{
7060 struct btrfs_inode *ei;
2ead6ae7 7061 struct inode *inode;
39279cc3
CM
7062
7063 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7064 if (!ei)
7065 return NULL;
2ead6ae7
YZ
7066
7067 ei->root = NULL;
2ead6ae7 7068 ei->generation = 0;
15ee9bc7 7069 ei->last_trans = 0;
257c62e1 7070 ei->last_sub_trans = 0;
e02119d5 7071 ei->logged_trans = 0;
2ead6ae7 7072 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7073 ei->disk_i_size = 0;
7074 ei->flags = 0;
7709cde3 7075 ei->csum_bytes = 0;
2ead6ae7
YZ
7076 ei->index_cnt = (u64)-1;
7077 ei->last_unlink_trans = 0;
46d8bc34 7078 ei->last_log_commit = 0;
2ead6ae7 7079
9e0baf60
JB
7080 spin_lock_init(&ei->lock);
7081 ei->outstanding_extents = 0;
7082 ei->reserved_extents = 0;
2ead6ae7 7083
72ac3c0d 7084 ei->runtime_flags = 0;
261507a0 7085 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7086
16cdcec7
MX
7087 ei->delayed_node = NULL;
7088
2ead6ae7 7089 inode = &ei->vfs_inode;
a8067e02 7090 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7091 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7092 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7093 ei->io_tree.track_uptodate = 1;
7094 ei->io_failure_tree.track_uptodate = 1;
2ead6ae7 7095 mutex_init(&ei->log_mutex);
f248679e 7096 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7097 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7098 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7099 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7100 RB_CLEAR_NODE(&ei->rb_node);
7101
7102 return inode;
39279cc3
CM
7103}
7104
fa0d7e3d
NP
7105static void btrfs_i_callback(struct rcu_head *head)
7106{
7107 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7108 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7109}
7110
39279cc3
CM
7111void btrfs_destroy_inode(struct inode *inode)
7112{
e6dcd2dc 7113 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7114 struct btrfs_root *root = BTRFS_I(inode)->root;
7115
b3d9b7a3 7116 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7117 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7118 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7119 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7120 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7121 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7122
a6dbd429
JB
7123 /*
7124 * This can happen where we create an inode, but somebody else also
7125 * created the same inode and we need to destroy the one we already
7126 * created.
7127 */
7128 if (!root)
7129 goto free;
7130
5a3f23d5
CM
7131 /*
7132 * Make sure we're properly removed from the ordered operation
7133 * lists.
7134 */
7135 smp_mb();
7136 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7137 spin_lock(&root->fs_info->ordered_extent_lock);
7138 list_del_init(&BTRFS_I(inode)->ordered_operations);
7139 spin_unlock(&root->fs_info->ordered_extent_lock);
7140 }
7141
8a35d95f
JB
7142 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7143 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7144 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7145 (unsigned long long)btrfs_ino(inode));
8a35d95f 7146 atomic_dec(&root->orphan_inodes);
7b128766 7147 }
7b128766 7148
d397712b 7149 while (1) {
e6dcd2dc
CM
7150 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7151 if (!ordered)
7152 break;
7153 else {
d397712b
CM
7154 printk(KERN_ERR "btrfs found ordered "
7155 "extent %llu %llu on inode cleanup\n",
7156 (unsigned long long)ordered->file_offset,
7157 (unsigned long long)ordered->len);
e6dcd2dc
CM
7158 btrfs_remove_ordered_extent(inode, ordered);
7159 btrfs_put_ordered_extent(ordered);
7160 btrfs_put_ordered_extent(ordered);
7161 }
7162 }
5d4f98a2 7163 inode_tree_del(inode);
5b21f2ed 7164 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7165free:
16cdcec7 7166 btrfs_remove_delayed_node(inode);
fa0d7e3d 7167 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7168}
7169
45321ac5 7170int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7171{
7172 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7173
0af3d00b 7174 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7175 !btrfs_is_free_space_inode(inode))
45321ac5 7176 return 1;
76dda93c 7177 else
45321ac5 7178 return generic_drop_inode(inode);
76dda93c
YZ
7179}
7180
0ee0fda0 7181static void init_once(void *foo)
39279cc3
CM
7182{
7183 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7184
7185 inode_init_once(&ei->vfs_inode);
7186}
7187
7188void btrfs_destroy_cachep(void)
7189{
8c0a8537
KS
7190 /*
7191 * Make sure all delayed rcu free inodes are flushed before we
7192 * destroy cache.
7193 */
7194 rcu_barrier();
39279cc3
CM
7195 if (btrfs_inode_cachep)
7196 kmem_cache_destroy(btrfs_inode_cachep);
7197 if (btrfs_trans_handle_cachep)
7198 kmem_cache_destroy(btrfs_trans_handle_cachep);
7199 if (btrfs_transaction_cachep)
7200 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7201 if (btrfs_path_cachep)
7202 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7203 if (btrfs_free_space_cachep)
7204 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7205 if (btrfs_delalloc_work_cachep)
7206 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7207}
7208
7209int btrfs_init_cachep(void)
7210{
837e1972 7211 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7212 sizeof(struct btrfs_inode), 0,
7213 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7214 if (!btrfs_inode_cachep)
7215 goto fail;
9601e3f6 7216
837e1972 7217 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7218 sizeof(struct btrfs_trans_handle), 0,
7219 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7220 if (!btrfs_trans_handle_cachep)
7221 goto fail;
9601e3f6 7222
837e1972 7223 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7224 sizeof(struct btrfs_transaction), 0,
7225 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7226 if (!btrfs_transaction_cachep)
7227 goto fail;
9601e3f6 7228
837e1972 7229 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7230 sizeof(struct btrfs_path), 0,
7231 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7232 if (!btrfs_path_cachep)
7233 goto fail;
9601e3f6 7234
837e1972 7235 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7236 sizeof(struct btrfs_free_space), 0,
7237 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7238 if (!btrfs_free_space_cachep)
7239 goto fail;
7240
8ccf6f19
MX
7241 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7242 sizeof(struct btrfs_delalloc_work), 0,
7243 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7244 NULL);
7245 if (!btrfs_delalloc_work_cachep)
7246 goto fail;
7247
39279cc3
CM
7248 return 0;
7249fail:
7250 btrfs_destroy_cachep();
7251 return -ENOMEM;
7252}
7253
7254static int btrfs_getattr(struct vfsmount *mnt,
7255 struct dentry *dentry, struct kstat *stat)
7256{
7257 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7258 u32 blocksize = inode->i_sb->s_blocksize;
7259
39279cc3 7260 generic_fillattr(inode, stat);
0ee5dc67 7261 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7262 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7263 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7264 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7265 return 0;
7266}
7267
75e7cb7f
LB
7268/*
7269 * If a file is moved, it will inherit the cow and compression flags of the new
7270 * directory.
7271 */
7272static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7273{
7274 struct btrfs_inode *b_dir = BTRFS_I(dir);
7275 struct btrfs_inode *b_inode = BTRFS_I(inode);
7276
7277 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7278 b_inode->flags |= BTRFS_INODE_NODATACOW;
7279 else
7280 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7281
bc178237 7282 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7283 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7284 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7285 } else {
7286 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7287 BTRFS_INODE_NOCOMPRESS);
7288 }
75e7cb7f
LB
7289}
7290
d397712b
CM
7291static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7292 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7293{
7294 struct btrfs_trans_handle *trans;
7295 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7296 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7297 struct inode *new_inode = new_dentry->d_inode;
7298 struct inode *old_inode = old_dentry->d_inode;
7299 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7300 u64 index = 0;
4df27c4d 7301 u64 root_objectid;
39279cc3 7302 int ret;
33345d01 7303 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7304
33345d01 7305 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7306 return -EPERM;
7307
4df27c4d 7308 /* we only allow rename subvolume link between subvolumes */
33345d01 7309 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7310 return -EXDEV;
7311
33345d01
LZ
7312 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7313 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7314 return -ENOTEMPTY;
5f39d397 7315
4df27c4d
YZ
7316 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7317 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7318 return -ENOTEMPTY;
5a3f23d5
CM
7319 /*
7320 * we're using rename to replace one file with another.
7321 * and the replacement file is large. Start IO on it now so
7322 * we don't add too much work to the end of the transaction
7323 */
4baf8c92 7324 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7325 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7326 filemap_flush(old_inode->i_mapping);
7327
76dda93c 7328 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7329 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7330 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7331 /*
7332 * We want to reserve the absolute worst case amount of items. So if
7333 * both inodes are subvols and we need to unlink them then that would
7334 * require 4 item modifications, but if they are both normal inodes it
7335 * would require 5 item modifications, so we'll assume their normal
7336 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7337 * should cover the worst case number of items we'll modify.
7338 */
7339 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7340 if (IS_ERR(trans)) {
7341 ret = PTR_ERR(trans);
7342 goto out_notrans;
7343 }
76dda93c 7344
4df27c4d
YZ
7345 if (dest != root)
7346 btrfs_record_root_in_trans(trans, dest);
5f39d397 7347
a5719521
YZ
7348 ret = btrfs_set_inode_index(new_dir, &index);
7349 if (ret)
7350 goto out_fail;
5a3f23d5 7351
33345d01 7352 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7353 /* force full log commit if subvolume involved. */
7354 root->fs_info->last_trans_log_full_commit = trans->transid;
7355 } else {
a5719521
YZ
7356 ret = btrfs_insert_inode_ref(trans, dest,
7357 new_dentry->d_name.name,
7358 new_dentry->d_name.len,
33345d01
LZ
7359 old_ino,
7360 btrfs_ino(new_dir), index);
a5719521
YZ
7361 if (ret)
7362 goto out_fail;
4df27c4d
YZ
7363 /*
7364 * this is an ugly little race, but the rename is required
7365 * to make sure that if we crash, the inode is either at the
7366 * old name or the new one. pinning the log transaction lets
7367 * us make sure we don't allow a log commit to come in after
7368 * we unlink the name but before we add the new name back in.
7369 */
7370 btrfs_pin_log_trans(root);
7371 }
5a3f23d5
CM
7372 /*
7373 * make sure the inode gets flushed if it is replacing
7374 * something.
7375 */
33345d01 7376 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7377 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7378
0c4d2d95
JB
7379 inode_inc_iversion(old_dir);
7380 inode_inc_iversion(new_dir);
7381 inode_inc_iversion(old_inode);
39279cc3
CM
7382 old_dir->i_ctime = old_dir->i_mtime = ctime;
7383 new_dir->i_ctime = new_dir->i_mtime = ctime;
7384 old_inode->i_ctime = ctime;
5f39d397 7385
12fcfd22
CM
7386 if (old_dentry->d_parent != new_dentry->d_parent)
7387 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7388
33345d01 7389 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7390 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7391 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7392 old_dentry->d_name.name,
7393 old_dentry->d_name.len);
7394 } else {
92986796
AV
7395 ret = __btrfs_unlink_inode(trans, root, old_dir,
7396 old_dentry->d_inode,
7397 old_dentry->d_name.name,
7398 old_dentry->d_name.len);
7399 if (!ret)
7400 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7401 }
79787eaa
JM
7402 if (ret) {
7403 btrfs_abort_transaction(trans, root, ret);
7404 goto out_fail;
7405 }
39279cc3
CM
7406
7407 if (new_inode) {
0c4d2d95 7408 inode_inc_iversion(new_inode);
39279cc3 7409 new_inode->i_ctime = CURRENT_TIME;
33345d01 7410 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7411 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7412 root_objectid = BTRFS_I(new_inode)->location.objectid;
7413 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7414 root_objectid,
7415 new_dentry->d_name.name,
7416 new_dentry->d_name.len);
7417 BUG_ON(new_inode->i_nlink == 0);
7418 } else {
7419 ret = btrfs_unlink_inode(trans, dest, new_dir,
7420 new_dentry->d_inode,
7421 new_dentry->d_name.name,
7422 new_dentry->d_name.len);
7423 }
79787eaa 7424 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7425 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7426 BUG_ON(ret);
7b128766 7427 }
79787eaa
JM
7428 if (ret) {
7429 btrfs_abort_transaction(trans, root, ret);
7430 goto out_fail;
7431 }
39279cc3 7432 }
aec7477b 7433
75e7cb7f
LB
7434 fixup_inode_flags(new_dir, old_inode);
7435
4df27c4d
YZ
7436 ret = btrfs_add_link(trans, new_dir, old_inode,
7437 new_dentry->d_name.name,
a5719521 7438 new_dentry->d_name.len, 0, index);
79787eaa
JM
7439 if (ret) {
7440 btrfs_abort_transaction(trans, root, ret);
7441 goto out_fail;
7442 }
39279cc3 7443
33345d01 7444 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7445 struct dentry *parent = new_dentry->d_parent;
6a912213 7446 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7447 btrfs_end_log_trans(root);
7448 }
39279cc3 7449out_fail:
7ad85bb7 7450 btrfs_end_transaction(trans, root);
b44c59a8 7451out_notrans:
33345d01 7452 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7453 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7454
39279cc3
CM
7455 return ret;
7456}
7457
8ccf6f19
MX
7458static void btrfs_run_delalloc_work(struct btrfs_work *work)
7459{
7460 struct btrfs_delalloc_work *delalloc_work;
7461
7462 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7463 work);
7464 if (delalloc_work->wait)
7465 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7466 else
7467 filemap_flush(delalloc_work->inode->i_mapping);
7468
7469 if (delalloc_work->delay_iput)
7470 btrfs_add_delayed_iput(delalloc_work->inode);
7471 else
7472 iput(delalloc_work->inode);
7473 complete(&delalloc_work->completion);
7474}
7475
7476struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7477 int wait, int delay_iput)
7478{
7479 struct btrfs_delalloc_work *work;
7480
7481 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7482 if (!work)
7483 return NULL;
7484
7485 init_completion(&work->completion);
7486 INIT_LIST_HEAD(&work->list);
7487 work->inode = inode;
7488 work->wait = wait;
7489 work->delay_iput = delay_iput;
7490 work->work.func = btrfs_run_delalloc_work;
7491
7492 return work;
7493}
7494
7495void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7496{
7497 wait_for_completion(&work->completion);
7498 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7499}
7500
d352ac68
CM
7501/*
7502 * some fairly slow code that needs optimization. This walks the list
7503 * of all the inodes with pending delalloc and forces them to disk.
7504 */
24bbcf04 7505int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7506{
7507 struct list_head *head = &root->fs_info->delalloc_inodes;
7508 struct btrfs_inode *binode;
5b21f2ed 7509 struct inode *inode;
8ccf6f19
MX
7510 struct btrfs_delalloc_work *work, *next;
7511 struct list_head works;
7512 int ret = 0;
ea8c2819 7513
c146afad
YZ
7514 if (root->fs_info->sb->s_flags & MS_RDONLY)
7515 return -EROFS;
7516
8ccf6f19
MX
7517 INIT_LIST_HEAD(&works);
7518
75eff68e 7519 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7520 while (!list_empty(head)) {
ea8c2819
CM
7521 binode = list_entry(head->next, struct btrfs_inode,
7522 delalloc_inodes);
5b21f2ed
ZY
7523 inode = igrab(&binode->vfs_inode);
7524 if (!inode)
7525 list_del_init(&binode->delalloc_inodes);
75eff68e 7526 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7527 if (inode) {
8ccf6f19
MX
7528 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7529 if (!work) {
7530 ret = -ENOMEM;
7531 goto out;
7532 }
7533 list_add_tail(&work->list, &works);
7534 btrfs_queue_worker(&root->fs_info->flush_workers,
7535 &work->work);
5b21f2ed
ZY
7536 }
7537 cond_resched();
75eff68e 7538 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7539 }
75eff68e 7540 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7541
7542 /* the filemap_flush will queue IO into the worker threads, but
7543 * we have to make sure the IO is actually started and that
7544 * ordered extents get created before we return
7545 */
7546 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7547 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7548 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7549 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7550 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7551 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7552 }
7553 atomic_dec(&root->fs_info->async_submit_draining);
8ccf6f19
MX
7554out:
7555 list_for_each_entry_safe(work, next, &works, list) {
7556 list_del_init(&work->list);
7557 btrfs_wait_and_free_delalloc_work(work);
7558 }
7559 return ret;
ea8c2819
CM
7560}
7561
39279cc3
CM
7562static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7563 const char *symname)
7564{
7565 struct btrfs_trans_handle *trans;
7566 struct btrfs_root *root = BTRFS_I(dir)->root;
7567 struct btrfs_path *path;
7568 struct btrfs_key key;
1832a6d5 7569 struct inode *inode = NULL;
39279cc3
CM
7570 int err;
7571 int drop_inode = 0;
7572 u64 objectid;
00e4e6b3 7573 u64 index = 0 ;
39279cc3
CM
7574 int name_len;
7575 int datasize;
5f39d397 7576 unsigned long ptr;
39279cc3 7577 struct btrfs_file_extent_item *ei;
5f39d397 7578 struct extent_buffer *leaf;
39279cc3
CM
7579
7580 name_len = strlen(symname) + 1;
7581 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7582 return -ENAMETOOLONG;
1832a6d5 7583
9ed74f2d
JB
7584 /*
7585 * 2 items for inode item and ref
7586 * 2 items for dir items
7587 * 1 item for xattr if selinux is on
7588 */
a22285a6
YZ
7589 trans = btrfs_start_transaction(root, 5);
7590 if (IS_ERR(trans))
7591 return PTR_ERR(trans);
1832a6d5 7592
581bb050
LZ
7593 err = btrfs_find_free_ino(root, &objectid);
7594 if (err)
7595 goto out_unlock;
7596
aec7477b 7597 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7598 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7599 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7600 if (IS_ERR(inode)) {
7601 err = PTR_ERR(inode);
39279cc3 7602 goto out_unlock;
7cf96da3 7603 }
39279cc3 7604
2a7dba39 7605 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7606 if (err) {
7607 drop_inode = 1;
7608 goto out_unlock;
7609 }
7610
ad19db71
CS
7611 /*
7612 * If the active LSM wants to access the inode during
7613 * d_instantiate it needs these. Smack checks to see
7614 * if the filesystem supports xattrs by looking at the
7615 * ops vector.
7616 */
7617 inode->i_fop = &btrfs_file_operations;
7618 inode->i_op = &btrfs_file_inode_operations;
7619
a1b075d2 7620 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7621 if (err)
7622 drop_inode = 1;
7623 else {
7624 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7625 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7626 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7627 }
39279cc3
CM
7628 if (drop_inode)
7629 goto out_unlock;
7630
7631 path = btrfs_alloc_path();
d8926bb3
MF
7632 if (!path) {
7633 err = -ENOMEM;
7634 drop_inode = 1;
7635 goto out_unlock;
7636 }
33345d01 7637 key.objectid = btrfs_ino(inode);
39279cc3 7638 key.offset = 0;
39279cc3
CM
7639 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7640 datasize = btrfs_file_extent_calc_inline_size(name_len);
7641 err = btrfs_insert_empty_item(trans, root, path, &key,
7642 datasize);
54aa1f4d
CM
7643 if (err) {
7644 drop_inode = 1;
b0839166 7645 btrfs_free_path(path);
54aa1f4d
CM
7646 goto out_unlock;
7647 }
5f39d397
CM
7648 leaf = path->nodes[0];
7649 ei = btrfs_item_ptr(leaf, path->slots[0],
7650 struct btrfs_file_extent_item);
7651 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7652 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7653 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7654 btrfs_set_file_extent_encryption(leaf, ei, 0);
7655 btrfs_set_file_extent_compression(leaf, ei, 0);
7656 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7657 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7658
39279cc3 7659 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7660 write_extent_buffer(leaf, symname, ptr, name_len);
7661 btrfs_mark_buffer_dirty(leaf);
39279cc3 7662 btrfs_free_path(path);
5f39d397 7663
39279cc3
CM
7664 inode->i_op = &btrfs_symlink_inode_operations;
7665 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7666 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7667 inode_set_bytes(inode, name_len);
dbe674a9 7668 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7669 err = btrfs_update_inode(trans, root, inode);
7670 if (err)
7671 drop_inode = 1;
39279cc3
CM
7672
7673out_unlock:
08c422c2
AV
7674 if (!err)
7675 d_instantiate(dentry, inode);
7ad85bb7 7676 btrfs_end_transaction(trans, root);
39279cc3
CM
7677 if (drop_inode) {
7678 inode_dec_link_count(inode);
7679 iput(inode);
7680 }
b53d3f5d 7681 btrfs_btree_balance_dirty(root);
39279cc3
CM
7682 return err;
7683}
16432985 7684
0af3d00b
JB
7685static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7686 u64 start, u64 num_bytes, u64 min_size,
7687 loff_t actual_len, u64 *alloc_hint,
7688 struct btrfs_trans_handle *trans)
d899e052 7689{
5dc562c5
JB
7690 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7691 struct extent_map *em;
d899e052
YZ
7692 struct btrfs_root *root = BTRFS_I(inode)->root;
7693 struct btrfs_key ins;
d899e052 7694 u64 cur_offset = start;
55a61d1d 7695 u64 i_size;
d899e052 7696 int ret = 0;
0af3d00b 7697 bool own_trans = true;
d899e052 7698
0af3d00b
JB
7699 if (trans)
7700 own_trans = false;
d899e052 7701 while (num_bytes > 0) {
0af3d00b
JB
7702 if (own_trans) {
7703 trans = btrfs_start_transaction(root, 3);
7704 if (IS_ERR(trans)) {
7705 ret = PTR_ERR(trans);
7706 break;
7707 }
5a303d5d
YZ
7708 }
7709
efa56464 7710 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7711 0, *alloc_hint, &ins, 1);
5a303d5d 7712 if (ret) {
0af3d00b
JB
7713 if (own_trans)
7714 btrfs_end_transaction(trans, root);
a22285a6 7715 break;
d899e052 7716 }
5a303d5d 7717
d899e052
YZ
7718 ret = insert_reserved_file_extent(trans, inode,
7719 cur_offset, ins.objectid,
7720 ins.offset, ins.offset,
920bbbfb 7721 ins.offset, 0, 0, 0,
d899e052 7722 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7723 if (ret) {
7724 btrfs_abort_transaction(trans, root, ret);
7725 if (own_trans)
7726 btrfs_end_transaction(trans, root);
7727 break;
7728 }
a1ed835e
CM
7729 btrfs_drop_extent_cache(inode, cur_offset,
7730 cur_offset + ins.offset -1, 0);
5a303d5d 7731
5dc562c5
JB
7732 em = alloc_extent_map();
7733 if (!em) {
7734 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7735 &BTRFS_I(inode)->runtime_flags);
7736 goto next;
7737 }
7738
7739 em->start = cur_offset;
7740 em->orig_start = cur_offset;
7741 em->len = ins.offset;
7742 em->block_start = ins.objectid;
7743 em->block_len = ins.offset;
7744 em->bdev = root->fs_info->fs_devices->latest_bdev;
7745 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7746 em->generation = trans->transid;
7747
7748 while (1) {
7749 write_lock(&em_tree->lock);
7750 ret = add_extent_mapping(em_tree, em);
7751 if (!ret)
7752 list_move(&em->list,
7753 &em_tree->modified_extents);
7754 write_unlock(&em_tree->lock);
7755 if (ret != -EEXIST)
7756 break;
7757 btrfs_drop_extent_cache(inode, cur_offset,
7758 cur_offset + ins.offset - 1,
7759 0);
7760 }
7761 free_extent_map(em);
7762next:
d899e052
YZ
7763 num_bytes -= ins.offset;
7764 cur_offset += ins.offset;
efa56464 7765 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7766
0c4d2d95 7767 inode_inc_iversion(inode);
d899e052 7768 inode->i_ctime = CURRENT_TIME;
6cbff00f 7769 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7770 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7771 (actual_len > inode->i_size) &&
7772 (cur_offset > inode->i_size)) {
d1ea6a61 7773 if (cur_offset > actual_len)
55a61d1d 7774 i_size = actual_len;
d1ea6a61 7775 else
55a61d1d
JB
7776 i_size = cur_offset;
7777 i_size_write(inode, i_size);
7778 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7779 }
7780
d899e052 7781 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7782
7783 if (ret) {
7784 btrfs_abort_transaction(trans, root, ret);
7785 if (own_trans)
7786 btrfs_end_transaction(trans, root);
7787 break;
7788 }
d899e052 7789
0af3d00b
JB
7790 if (own_trans)
7791 btrfs_end_transaction(trans, root);
5a303d5d 7792 }
d899e052
YZ
7793 return ret;
7794}
7795
0af3d00b
JB
7796int btrfs_prealloc_file_range(struct inode *inode, int mode,
7797 u64 start, u64 num_bytes, u64 min_size,
7798 loff_t actual_len, u64 *alloc_hint)
7799{
7800 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7801 min_size, actual_len, alloc_hint,
7802 NULL);
7803}
7804
7805int btrfs_prealloc_file_range_trans(struct inode *inode,
7806 struct btrfs_trans_handle *trans, int mode,
7807 u64 start, u64 num_bytes, u64 min_size,
7808 loff_t actual_len, u64 *alloc_hint)
7809{
7810 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7811 min_size, actual_len, alloc_hint, trans);
7812}
7813
e6dcd2dc
CM
7814static int btrfs_set_page_dirty(struct page *page)
7815{
e6dcd2dc
CM
7816 return __set_page_dirty_nobuffers(page);
7817}
7818
10556cb2 7819static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7820{
b83cc969 7821 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7822 umode_t mode = inode->i_mode;
b83cc969 7823
cb6db4e5
JM
7824 if (mask & MAY_WRITE &&
7825 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7826 if (btrfs_root_readonly(root))
7827 return -EROFS;
7828 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7829 return -EACCES;
7830 }
2830ba7f 7831 return generic_permission(inode, mask);
fdebe2bd 7832}
39279cc3 7833
6e1d5dcc 7834static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7835 .getattr = btrfs_getattr,
39279cc3
CM
7836 .lookup = btrfs_lookup,
7837 .create = btrfs_create,
7838 .unlink = btrfs_unlink,
7839 .link = btrfs_link,
7840 .mkdir = btrfs_mkdir,
7841 .rmdir = btrfs_rmdir,
7842 .rename = btrfs_rename,
7843 .symlink = btrfs_symlink,
7844 .setattr = btrfs_setattr,
618e21d5 7845 .mknod = btrfs_mknod,
95819c05
CH
7846 .setxattr = btrfs_setxattr,
7847 .getxattr = btrfs_getxattr,
5103e947 7848 .listxattr = btrfs_listxattr,
95819c05 7849 .removexattr = btrfs_removexattr,
fdebe2bd 7850 .permission = btrfs_permission,
4e34e719 7851 .get_acl = btrfs_get_acl,
39279cc3 7852};
6e1d5dcc 7853static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7854 .lookup = btrfs_lookup,
fdebe2bd 7855 .permission = btrfs_permission,
4e34e719 7856 .get_acl = btrfs_get_acl,
39279cc3 7857};
76dda93c 7858
828c0950 7859static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7860 .llseek = generic_file_llseek,
7861 .read = generic_read_dir,
cbdf5a24 7862 .readdir = btrfs_real_readdir,
34287aa3 7863 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7864#ifdef CONFIG_COMPAT
34287aa3 7865 .compat_ioctl = btrfs_ioctl,
39279cc3 7866#endif
6bf13c0c 7867 .release = btrfs_release_file,
e02119d5 7868 .fsync = btrfs_sync_file,
39279cc3
CM
7869};
7870
d1310b2e 7871static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7872 .fill_delalloc = run_delalloc_range,
065631f6 7873 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7874 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7875 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7876 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7877 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7878 .set_bit_hook = btrfs_set_bit_hook,
7879 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7880 .merge_extent_hook = btrfs_merge_extent_hook,
7881 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7882};
7883
35054394
CM
7884/*
7885 * btrfs doesn't support the bmap operation because swapfiles
7886 * use bmap to make a mapping of extents in the file. They assume
7887 * these extents won't change over the life of the file and they
7888 * use the bmap result to do IO directly to the drive.
7889 *
7890 * the btrfs bmap call would return logical addresses that aren't
7891 * suitable for IO and they also will change frequently as COW
7892 * operations happen. So, swapfile + btrfs == corruption.
7893 *
7894 * For now we're avoiding this by dropping bmap.
7895 */
7f09410b 7896static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7897 .readpage = btrfs_readpage,
7898 .writepage = btrfs_writepage,
b293f02e 7899 .writepages = btrfs_writepages,
3ab2fb5a 7900 .readpages = btrfs_readpages,
16432985 7901 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7902 .invalidatepage = btrfs_invalidatepage,
7903 .releasepage = btrfs_releasepage,
e6dcd2dc 7904 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7905 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7906};
7907
7f09410b 7908static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7909 .readpage = btrfs_readpage,
7910 .writepage = btrfs_writepage,
2bf5a725
CM
7911 .invalidatepage = btrfs_invalidatepage,
7912 .releasepage = btrfs_releasepage,
39279cc3
CM
7913};
7914
6e1d5dcc 7915static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7916 .getattr = btrfs_getattr,
7917 .setattr = btrfs_setattr,
95819c05
CH
7918 .setxattr = btrfs_setxattr,
7919 .getxattr = btrfs_getxattr,
5103e947 7920 .listxattr = btrfs_listxattr,
95819c05 7921 .removexattr = btrfs_removexattr,
fdebe2bd 7922 .permission = btrfs_permission,
1506fcc8 7923 .fiemap = btrfs_fiemap,
4e34e719 7924 .get_acl = btrfs_get_acl,
e41f941a 7925 .update_time = btrfs_update_time,
39279cc3 7926};
6e1d5dcc 7927static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7928 .getattr = btrfs_getattr,
7929 .setattr = btrfs_setattr,
fdebe2bd 7930 .permission = btrfs_permission,
95819c05
CH
7931 .setxattr = btrfs_setxattr,
7932 .getxattr = btrfs_getxattr,
33268eaf 7933 .listxattr = btrfs_listxattr,
95819c05 7934 .removexattr = btrfs_removexattr,
4e34e719 7935 .get_acl = btrfs_get_acl,
e41f941a 7936 .update_time = btrfs_update_time,
618e21d5 7937};
6e1d5dcc 7938static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7939 .readlink = generic_readlink,
7940 .follow_link = page_follow_link_light,
7941 .put_link = page_put_link,
f209561a 7942 .getattr = btrfs_getattr,
22c44fe6 7943 .setattr = btrfs_setattr,
fdebe2bd 7944 .permission = btrfs_permission,
0279b4cd
JO
7945 .setxattr = btrfs_setxattr,
7946 .getxattr = btrfs_getxattr,
7947 .listxattr = btrfs_listxattr,
7948 .removexattr = btrfs_removexattr,
4e34e719 7949 .get_acl = btrfs_get_acl,
e41f941a 7950 .update_time = btrfs_update_time,
39279cc3 7951};
76dda93c 7952
82d339d9 7953const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7954 .d_delete = btrfs_dentry_delete,
b4aff1f8 7955 .d_release = btrfs_dentry_release,
76dda93c 7956};