]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
Btrfs: kill unused argument of btrfs_pin_extent_for_log_replay
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
70c8a91c
JB
98static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
99 u64 len, u64 orig_start,
100 u64 block_start, u64 block_len,
101 u64 orig_block_len, int type);
7b128766 102
f34f57a3 103static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
104 struct inode *inode, struct inode *dir,
105 const struct qstr *qstr)
0279b4cd
JO
106{
107 int err;
108
f34f57a3 109 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 110 if (!err)
2a7dba39 111 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
112 return err;
113}
114
c8b97818
CM
115/*
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
119 */
d397712b 120static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
121 struct btrfs_root *root, struct inode *inode,
122 u64 start, size_t size, size_t compressed_size,
fe3f566c 123 int compress_type,
c8b97818
CM
124 struct page **compressed_pages)
125{
126 struct btrfs_key key;
127 struct btrfs_path *path;
128 struct extent_buffer *leaf;
129 struct page *page = NULL;
130 char *kaddr;
131 unsigned long ptr;
132 struct btrfs_file_extent_item *ei;
133 int err = 0;
134 int ret;
135 size_t cur_size = size;
136 size_t datasize;
137 unsigned long offset;
c8b97818 138
fe3f566c 139 if (compressed_size && compressed_pages)
c8b97818 140 cur_size = compressed_size;
c8b97818 141
d397712b
CM
142 path = btrfs_alloc_path();
143 if (!path)
c8b97818
CM
144 return -ENOMEM;
145
b9473439 146 path->leave_spinning = 1;
c8b97818 147
33345d01 148 key.objectid = btrfs_ino(inode);
c8b97818
CM
149 key.offset = start;
150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
151 datasize = btrfs_file_extent_calc_inline_size(cur_size);
152
153 inode_add_bytes(inode, size);
154 ret = btrfs_insert_empty_item(trans, root, path, &key,
155 datasize);
c8b97818
CM
156 if (ret) {
157 err = ret;
c8b97818
CM
158 goto fail;
159 }
160 leaf = path->nodes[0];
161 ei = btrfs_item_ptr(leaf, path->slots[0],
162 struct btrfs_file_extent_item);
163 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
165 btrfs_set_file_extent_encryption(leaf, ei, 0);
166 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
167 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
168 ptr = btrfs_file_extent_inline_start(ei);
169
261507a0 170 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
171 struct page *cpage;
172 int i = 0;
d397712b 173 while (compressed_size > 0) {
c8b97818 174 cpage = compressed_pages[i];
5b050f04 175 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
176 PAGE_CACHE_SIZE);
177
7ac687d9 178 kaddr = kmap_atomic(cpage);
c8b97818 179 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 180 kunmap_atomic(kaddr);
c8b97818
CM
181
182 i++;
183 ptr += cur_size;
184 compressed_size -= cur_size;
185 }
186 btrfs_set_file_extent_compression(leaf, ei,
261507a0 187 compress_type);
c8b97818
CM
188 } else {
189 page = find_get_page(inode->i_mapping,
190 start >> PAGE_CACHE_SHIFT);
191 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 192 kaddr = kmap_atomic(page);
c8b97818
CM
193 offset = start & (PAGE_CACHE_SIZE - 1);
194 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196 page_cache_release(page);
197 }
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_free_path(path);
200
c2167754
YZ
201 /*
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
205 *
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
209 */
c8b97818 210 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 211 ret = btrfs_update_inode(trans, root, inode);
c2167754 212
79787eaa 213 return ret;
c8b97818
CM
214fail:
215 btrfs_free_path(path);
216 return err;
217}
218
219
220/*
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
224 */
7f366cfe 225static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
226 struct btrfs_root *root,
227 struct inode *inode, u64 start, u64 end,
fe3f566c 228 size_t compressed_size, int compress_type,
c8b97818
CM
229 struct page **compressed_pages)
230{
231 u64 isize = i_size_read(inode);
232 u64 actual_end = min(end + 1, isize);
233 u64 inline_len = actual_end - start;
234 u64 aligned_end = (end + root->sectorsize - 1) &
235 ~((u64)root->sectorsize - 1);
c8b97818
CM
236 u64 data_len = inline_len;
237 int ret;
238
239 if (compressed_size)
240 data_len = compressed_size;
241
242 if (start > 0 ||
70b99e69 243 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (!compressed_size &&
246 (actual_end & (root->sectorsize - 1)) == 0) ||
247 end + 1 < isize ||
248 data_len > root->fs_info->max_inline) {
249 return 1;
250 }
251
2671485d 252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
253 if (ret)
254 return ret;
c8b97818
CM
255
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
fe3f566c 260 compress_type, compressed_pages);
2adcac1a 261 if (ret && ret != -ENOSPC) {
79787eaa
JM
262 btrfs_abort_transaction(trans, root, ret);
263 return ret;
2adcac1a
JB
264 } else if (ret == -ENOSPC) {
265 return 1;
79787eaa 266 }
2adcac1a 267
0ca1f7ce 268 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
270 return 0;
271}
272
771ed689
CM
273struct async_extent {
274 u64 start;
275 u64 ram_size;
276 u64 compressed_size;
277 struct page **pages;
278 unsigned long nr_pages;
261507a0 279 int compress_type;
771ed689
CM
280 struct list_head list;
281};
282
283struct async_cow {
284 struct inode *inode;
285 struct btrfs_root *root;
286 struct page *locked_page;
287 u64 start;
288 u64 end;
289 struct list_head extents;
290 struct btrfs_work work;
291};
292
293static noinline int add_async_extent(struct async_cow *cow,
294 u64 start, u64 ram_size,
295 u64 compressed_size,
296 struct page **pages,
261507a0
LZ
297 unsigned long nr_pages,
298 int compress_type)
771ed689
CM
299{
300 struct async_extent *async_extent;
301
302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 303 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
304 async_extent->start = start;
305 async_extent->ram_size = ram_size;
306 async_extent->compressed_size = compressed_size;
307 async_extent->pages = pages;
308 async_extent->nr_pages = nr_pages;
261507a0 309 async_extent->compress_type = compress_type;
771ed689
CM
310 list_add_tail(&async_extent->list, &cow->extents);
311 return 0;
312}
313
d352ac68 314/*
771ed689
CM
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
c8b97818 318 *
771ed689
CM
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
c8b97818 324 *
771ed689
CM
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
328 * are written in the same order that the flusher thread sent them
329 * down.
d352ac68 330 */
771ed689
CM
331static noinline int compress_file_range(struct inode *inode,
332 struct page *locked_page,
333 u64 start, u64 end,
334 struct async_cow *async_cow,
335 int *num_added)
b888db2b
CM
336{
337 struct btrfs_root *root = BTRFS_I(inode)->root;
338 struct btrfs_trans_handle *trans;
db94535d 339 u64 num_bytes;
db94535d 340 u64 blocksize = root->sectorsize;
c8b97818 341 u64 actual_end;
42dc7bab 342 u64 isize = i_size_read(inode);
e6dcd2dc 343 int ret = 0;
c8b97818
CM
344 struct page **pages = NULL;
345 unsigned long nr_pages;
346 unsigned long nr_pages_ret = 0;
347 unsigned long total_compressed = 0;
348 unsigned long total_in = 0;
349 unsigned long max_compressed = 128 * 1024;
771ed689 350 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
351 int i;
352 int will_compress;
261507a0 353 int compress_type = root->fs_info->compress_type;
b888db2b 354
4cb13e5d
LB
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end - start + 1) < 16 * 1024 &&
357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
358 btrfs_add_inode_defrag(NULL, inode);
359
42dc7bab 360 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
361again:
362 will_compress = 0;
363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 365
f03d9301
CM
366 /*
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
372 *
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
375 */
376 if (actual_end <= start)
377 goto cleanup_and_bail_uncompressed;
378
c8b97818
CM
379 total_compressed = actual_end - start;
380
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
386 *
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
c8b97818
CM
390 */
391 total_compressed = min(total_compressed, max_uncompressed);
db94535d 392 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 393 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
394 total_in = 0;
395 ret = 0;
db94535d 396
771ed689
CM
397 /*
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
c8b97818 401 */
6cbff00f 402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 403 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
404 (BTRFS_I(inode)->force_compress) ||
405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 406 WARN_ON(pages);
cfbc246e 407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
408 if (!pages) {
409 /* just bail out to the uncompressed code */
410 goto cont;
411 }
c8b97818 412
261507a0
LZ
413 if (BTRFS_I(inode)->force_compress)
414 compress_type = BTRFS_I(inode)->force_compress;
415
416 ret = btrfs_compress_pages(compress_type,
417 inode->i_mapping, start,
418 total_compressed, pages,
419 nr_pages, &nr_pages_ret,
420 &total_in,
421 &total_compressed,
422 max_compressed);
c8b97818
CM
423
424 if (!ret) {
425 unsigned long offset = total_compressed &
426 (PAGE_CACHE_SIZE - 1);
427 struct page *page = pages[nr_pages_ret - 1];
428 char *kaddr;
429
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
432 */
433 if (offset) {
7ac687d9 434 kaddr = kmap_atomic(page);
c8b97818
CM
435 memset(kaddr + offset, 0,
436 PAGE_CACHE_SIZE - offset);
7ac687d9 437 kunmap_atomic(kaddr);
c8b97818
CM
438 }
439 will_compress = 1;
440 }
441 }
560f7d75 442cont:
c8b97818 443 if (start == 0) {
7a7eaa40 444 trans = btrfs_join_transaction(root);
79787eaa
JM
445 if (IS_ERR(trans)) {
446 ret = PTR_ERR(trans);
447 trans = NULL;
448 goto cleanup_and_out;
449 }
0ca1f7ce 450 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 451
c8b97818 452 /* lets try to make an inline extent */
771ed689 453 if (ret || total_in < (actual_end - start)) {
c8b97818 454 /* we didn't compress the entire range, try
771ed689 455 * to make an uncompressed inline extent.
c8b97818
CM
456 */
457 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 458 start, end, 0, 0, NULL);
c8b97818 459 } else {
771ed689 460 /* try making a compressed inline extent */
c8b97818
CM
461 ret = cow_file_range_inline(trans, root, inode,
462 start, end,
fe3f566c
LZ
463 total_compressed,
464 compress_type, pages);
c8b97818 465 }
79787eaa 466 if (ret <= 0) {
771ed689 467 /*
79787eaa
JM
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
771ed689 471 */
c8b97818 472 extent_clear_unlock_delalloc(inode,
a791e35e
CM
473 &BTRFS_I(inode)->io_tree,
474 start, end, NULL,
475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 476 EXTENT_CLEAR_DELALLOC |
a791e35e 477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
478
479 btrfs_end_transaction(trans, root);
c8b97818
CM
480 goto free_pages_out;
481 }
c2167754 482 btrfs_end_transaction(trans, root);
c8b97818
CM
483 }
484
485 if (will_compress) {
486 /*
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
489 * things
490 */
491 total_compressed = (total_compressed + blocksize - 1) &
492 ~(blocksize - 1);
493
494 /*
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
497 */
498 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
499 ~(PAGE_CACHE_SIZE - 1);
500 if (total_compressed >= total_in) {
501 will_compress = 0;
502 } else {
c8b97818
CM
503 num_bytes = total_in;
504 }
505 }
506 if (!will_compress && pages) {
507 /*
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
510 */
511 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 512 WARN_ON(pages[i]->mapping);
c8b97818
CM
513 page_cache_release(pages[i]);
514 }
515 kfree(pages);
516 pages = NULL;
517 total_compressed = 0;
518 nr_pages_ret = 0;
519
520 /* flag the file so we don't compress in the future */
1e701a32
CM
521 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
522 !(BTRFS_I(inode)->force_compress)) {
a555f810 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 524 }
c8b97818 525 }
771ed689
CM
526 if (will_compress) {
527 *num_added += 1;
c8b97818 528
771ed689
CM
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
532 */
533 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
534 total_compressed, pages, nr_pages_ret,
535 compress_type);
179e29e4 536
24ae6365 537 if (start + num_bytes < end) {
771ed689
CM
538 start += num_bytes;
539 pages = NULL;
540 cond_resched();
541 goto again;
542 }
543 } else {
f03d9301 544cleanup_and_bail_uncompressed:
771ed689
CM
545 /*
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
551 */
552 if (page_offset(locked_page) >= start &&
553 page_offset(locked_page) <= end) {
554 __set_page_dirty_nobuffers(locked_page);
555 /* unlocked later on in the async handlers */
556 }
261507a0
LZ
557 add_async_extent(async_cow, start, end - start + 1,
558 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
559 *num_added += 1;
560 }
3b951516 561
771ed689 562out:
79787eaa 563 return ret;
771ed689
CM
564
565free_pages_out:
566 for (i = 0; i < nr_pages_ret; i++) {
567 WARN_ON(pages[i]->mapping);
568 page_cache_release(pages[i]);
569 }
d397712b 570 kfree(pages);
771ed689
CM
571
572 goto out;
79787eaa
JM
573
574cleanup_and_out:
575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
576 start, end, NULL,
577 EXTENT_CLEAR_UNLOCK_PAGE |
578 EXTENT_CLEAR_DIRTY |
579 EXTENT_CLEAR_DELALLOC |
580 EXTENT_SET_WRITEBACK |
581 EXTENT_END_WRITEBACK);
582 if (!trans || IS_ERR(trans))
583 btrfs_error(root->fs_info, ret, "Failed to join transaction");
584 else
585 btrfs_abort_transaction(trans, root, ret);
586 goto free_pages_out;
771ed689
CM
587}
588
589/*
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
594 */
595static noinline int submit_compressed_extents(struct inode *inode,
596 struct async_cow *async_cow)
597{
598 struct async_extent *async_extent;
599 u64 alloc_hint = 0;
600 struct btrfs_trans_handle *trans;
601 struct btrfs_key ins;
602 struct extent_map *em;
603 struct btrfs_root *root = BTRFS_I(inode)->root;
604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
605 struct extent_io_tree *io_tree;
f5a84ee3 606 int ret = 0;
771ed689
CM
607
608 if (list_empty(&async_cow->extents))
609 return 0;
610
771ed689 611
d397712b 612 while (!list_empty(&async_cow->extents)) {
771ed689
CM
613 async_extent = list_entry(async_cow->extents.next,
614 struct async_extent, list);
615 list_del(&async_extent->list);
c8b97818 616
771ed689
CM
617 io_tree = &BTRFS_I(inode)->io_tree;
618
f5a84ee3 619retry:
771ed689
CM
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent->pages) {
622 int page_started = 0;
623 unsigned long nr_written = 0;
624
625 lock_extent(io_tree, async_extent->start,
2ac55d41 626 async_extent->start +
d0082371 627 async_extent->ram_size - 1);
771ed689
CM
628
629 /* allocate blocks */
f5a84ee3
JB
630 ret = cow_file_range(inode, async_cow->locked_page,
631 async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1,
634 &page_started, &nr_written, 0);
771ed689 635
79787eaa
JM
636 /* JDM XXX */
637
771ed689
CM
638 /*
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
643 */
f5a84ee3 644 if (!page_started && !ret)
771ed689
CM
645 extent_write_locked_range(io_tree,
646 inode, async_extent->start,
d397712b 647 async_extent->start +
771ed689
CM
648 async_extent->ram_size - 1,
649 btrfs_get_extent,
650 WB_SYNC_ALL);
651 kfree(async_extent);
652 cond_resched();
653 continue;
654 }
655
656 lock_extent(io_tree, async_extent->start,
d0082371 657 async_extent->start + async_extent->ram_size - 1);
771ed689 658
7a7eaa40 659 trans = btrfs_join_transaction(root);
79787eaa
JM
660 if (IS_ERR(trans)) {
661 ret = PTR_ERR(trans);
662 } else {
663 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
664 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
665 async_extent->compressed_size,
666 async_extent->compressed_size,
81c9ad23 667 0, alloc_hint, &ins, 1);
962197ba 668 if (ret && ret != -ENOSPC)
79787eaa
JM
669 btrfs_abort_transaction(trans, root, ret);
670 btrfs_end_transaction(trans, root);
671 }
c2167754 672
f5a84ee3
JB
673 if (ret) {
674 int i;
675 for (i = 0; i < async_extent->nr_pages; i++) {
676 WARN_ON(async_extent->pages[i]->mapping);
677 page_cache_release(async_extent->pages[i]);
678 }
679 kfree(async_extent->pages);
680 async_extent->nr_pages = 0;
681 async_extent->pages = NULL;
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
d0082371 684 async_extent->ram_size - 1);
79787eaa
JM
685 if (ret == -ENOSPC)
686 goto retry;
687 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
688 }
689
c2167754
YZ
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
172ddd60 698 em = alloc_extent_map();
79787eaa 699 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
700 em->start = async_extent->start;
701 em->len = async_extent->ram_size;
445a6944 702 em->orig_start = em->start;
2ab28f32
JB
703 em->mod_start = em->start;
704 em->mod_len = em->len;
c8b97818 705
771ed689
CM
706 em->block_start = ins.objectid;
707 em->block_len = ins.offset;
b4939680 708 em->orig_block_len = ins.offset;
771ed689 709 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 710 em->compress_type = async_extent->compress_type;
771ed689
CM
711 set_bit(EXTENT_FLAG_PINNED, &em->flags);
712 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 713 em->generation = -1;
771ed689 714
d397712b 715 while (1) {
890871be 716 write_lock(&em_tree->lock);
771ed689 717 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
718 if (!ret)
719 list_move(&em->list,
720 &em_tree->modified_extents);
890871be 721 write_unlock(&em_tree->lock);
771ed689
CM
722 if (ret != -EEXIST) {
723 free_extent_map(em);
724 break;
725 }
726 btrfs_drop_extent_cache(inode, async_extent->start,
727 async_extent->start +
728 async_extent->ram_size - 1, 0);
729 }
730
261507a0
LZ
731 ret = btrfs_add_ordered_extent_compress(inode,
732 async_extent->start,
733 ins.objectid,
734 async_extent->ram_size,
735 ins.offset,
736 BTRFS_ORDERED_COMPRESSED,
737 async_extent->compress_type);
79787eaa 738 BUG_ON(ret); /* -ENOMEM */
771ed689 739
771ed689
CM
740 /*
741 * clear dirty, set writeback and unlock the pages.
742 */
743 extent_clear_unlock_delalloc(inode,
a791e35e
CM
744 &BTRFS_I(inode)->io_tree,
745 async_extent->start,
746 async_extent->start +
747 async_extent->ram_size - 1,
748 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
749 EXTENT_CLEAR_UNLOCK |
a3429ab7 750 EXTENT_CLEAR_DELALLOC |
a791e35e 751 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
752
753 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
754 async_extent->start,
755 async_extent->ram_size,
756 ins.objectid,
757 ins.offset, async_extent->pages,
758 async_extent->nr_pages);
771ed689 759
79787eaa 760 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
761 alloc_hint = ins.objectid + ins.offset;
762 kfree(async_extent);
763 cond_resched();
764 }
79787eaa
JM
765 ret = 0;
766out:
767 return ret;
768out_free:
769 kfree(async_extent);
770 goto out;
771ed689
CM
771}
772
4b46fce2
JB
773static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
774 u64 num_bytes)
775{
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 struct extent_map *em;
778 u64 alloc_hint = 0;
779
780 read_lock(&em_tree->lock);
781 em = search_extent_mapping(em_tree, start, num_bytes);
782 if (em) {
783 /*
784 * if block start isn't an actual block number then find the
785 * first block in this inode and use that as a hint. If that
786 * block is also bogus then just don't worry about it.
787 */
788 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
789 free_extent_map(em);
790 em = search_extent_mapping(em_tree, 0, 0);
791 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
792 alloc_hint = em->block_start;
793 if (em)
794 free_extent_map(em);
795 } else {
796 alloc_hint = em->block_start;
797 free_extent_map(em);
798 }
799 }
800 read_unlock(&em_tree->lock);
801
802 return alloc_hint;
803}
804
771ed689
CM
805/*
806 * when extent_io.c finds a delayed allocation range in the file,
807 * the call backs end up in this code. The basic idea is to
808 * allocate extents on disk for the range, and create ordered data structs
809 * in ram to track those extents.
810 *
811 * locked_page is the page that writepage had locked already. We use
812 * it to make sure we don't do extra locks or unlocks.
813 *
814 * *page_started is set to one if we unlock locked_page and do everything
815 * required to start IO on it. It may be clean and already done with
816 * IO when we return.
817 */
b7d5b0a8
MX
818static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
819 struct inode *inode,
820 struct btrfs_root *root,
821 struct page *locked_page,
822 u64 start, u64 end, int *page_started,
823 unsigned long *nr_written,
824 int unlock)
771ed689 825{
771ed689
CM
826 u64 alloc_hint = 0;
827 u64 num_bytes;
828 unsigned long ram_size;
829 u64 disk_num_bytes;
830 u64 cur_alloc_size;
831 u64 blocksize = root->sectorsize;
771ed689
CM
832 struct btrfs_key ins;
833 struct extent_map *em;
834 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
835 int ret = 0;
836
83eea1f1 837 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 838
771ed689
CM
839 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
840 num_bytes = max(blocksize, num_bytes);
841 disk_num_bytes = num_bytes;
771ed689 842
4cb5300b 843 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
844 if (num_bytes < 64 * 1024 &&
845 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
846 btrfs_add_inode_defrag(trans, inode);
847
771ed689
CM
848 if (start == 0) {
849 /* lets try to make an inline extent */
850 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 851 start, end, 0, 0, NULL);
771ed689
CM
852 if (ret == 0) {
853 extent_clear_unlock_delalloc(inode,
a791e35e
CM
854 &BTRFS_I(inode)->io_tree,
855 start, end, NULL,
856 EXTENT_CLEAR_UNLOCK_PAGE |
857 EXTENT_CLEAR_UNLOCK |
858 EXTENT_CLEAR_DELALLOC |
859 EXTENT_CLEAR_DIRTY |
860 EXTENT_SET_WRITEBACK |
861 EXTENT_END_WRITEBACK);
c2167754 862
771ed689
CM
863 *nr_written = *nr_written +
864 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
865 *page_started = 1;
771ed689 866 goto out;
79787eaa
JM
867 } else if (ret < 0) {
868 btrfs_abort_transaction(trans, root, ret);
869 goto out_unlock;
771ed689
CM
870 }
871 }
872
873 BUG_ON(disk_num_bytes >
6c41761f 874 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 875
4b46fce2 876 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
877 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
878
d397712b 879 while (disk_num_bytes > 0) {
a791e35e
CM
880 unsigned long op;
881
287a0ab9 882 cur_alloc_size = disk_num_bytes;
e6dcd2dc 883 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 884 root->sectorsize, 0, alloc_hint,
81c9ad23 885 &ins, 1);
79787eaa
JM
886 if (ret < 0) {
887 btrfs_abort_transaction(trans, root, ret);
888 goto out_unlock;
889 }
d397712b 890
172ddd60 891 em = alloc_extent_map();
79787eaa 892 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 893 em->start = start;
445a6944 894 em->orig_start = em->start;
771ed689
CM
895 ram_size = ins.offset;
896 em->len = ins.offset;
2ab28f32
JB
897 em->mod_start = em->start;
898 em->mod_len = em->len;
c8b97818 899
e6dcd2dc 900 em->block_start = ins.objectid;
c8b97818 901 em->block_len = ins.offset;
b4939680 902 em->orig_block_len = ins.offset;
e6dcd2dc 903 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 905 em->generation = -1;
c8b97818 906
d397712b 907 while (1) {
890871be 908 write_lock(&em_tree->lock);
e6dcd2dc 909 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
910 if (!ret)
911 list_move(&em->list,
912 &em_tree->modified_extents);
890871be 913 write_unlock(&em_tree->lock);
e6dcd2dc
CM
914 if (ret != -EEXIST) {
915 free_extent_map(em);
916 break;
917 }
918 btrfs_drop_extent_cache(inode, start,
c8b97818 919 start + ram_size - 1, 0);
e6dcd2dc
CM
920 }
921
98d20f67 922 cur_alloc_size = ins.offset;
e6dcd2dc 923 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 924 ram_size, cur_alloc_size, 0);
79787eaa 925 BUG_ON(ret); /* -ENOMEM */
c8b97818 926
17d217fe
YZ
927 if (root->root_key.objectid ==
928 BTRFS_DATA_RELOC_TREE_OBJECTID) {
929 ret = btrfs_reloc_clone_csums(inode, start,
930 cur_alloc_size);
79787eaa
JM
931 if (ret) {
932 btrfs_abort_transaction(trans, root, ret);
933 goto out_unlock;
934 }
17d217fe
YZ
935 }
936
d397712b 937 if (disk_num_bytes < cur_alloc_size)
3b951516 938 break;
d397712b 939
c8b97818
CM
940 /* we're not doing compressed IO, don't unlock the first
941 * page (which the caller expects to stay locked), don't
942 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
943 *
944 * Do set the Private2 bit so we know this page was properly
945 * setup for writepage
c8b97818 946 */
a791e35e
CM
947 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
948 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
949 EXTENT_SET_PRIVATE2;
950
c8b97818
CM
951 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
952 start, start + ram_size - 1,
a791e35e 953 locked_page, op);
c8b97818 954 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
955 num_bytes -= cur_alloc_size;
956 alloc_hint = ins.objectid + ins.offset;
957 start += cur_alloc_size;
b888db2b 958 }
79787eaa 959out:
be20aa9d 960 return ret;
b7d5b0a8 961
79787eaa
JM
962out_unlock:
963 extent_clear_unlock_delalloc(inode,
964 &BTRFS_I(inode)->io_tree,
beb42dd7 965 start, end, locked_page,
79787eaa
JM
966 EXTENT_CLEAR_UNLOCK_PAGE |
967 EXTENT_CLEAR_UNLOCK |
968 EXTENT_CLEAR_DELALLOC |
969 EXTENT_CLEAR_DIRTY |
970 EXTENT_SET_WRITEBACK |
971 EXTENT_END_WRITEBACK);
972
973 goto out;
771ed689 974}
c8b97818 975
b7d5b0a8
MX
976static noinline int cow_file_range(struct inode *inode,
977 struct page *locked_page,
978 u64 start, u64 end, int *page_started,
979 unsigned long *nr_written,
980 int unlock)
981{
982 struct btrfs_trans_handle *trans;
983 struct btrfs_root *root = BTRFS_I(inode)->root;
984 int ret;
985
986 trans = btrfs_join_transaction(root);
987 if (IS_ERR(trans)) {
988 extent_clear_unlock_delalloc(inode,
989 &BTRFS_I(inode)->io_tree,
990 start, end, locked_page,
991 EXTENT_CLEAR_UNLOCK_PAGE |
992 EXTENT_CLEAR_UNLOCK |
993 EXTENT_CLEAR_DELALLOC |
994 EXTENT_CLEAR_DIRTY |
995 EXTENT_SET_WRITEBACK |
996 EXTENT_END_WRITEBACK);
997 return PTR_ERR(trans);
998 }
999 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1000
1001 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1002 page_started, nr_written, unlock);
1003
1004 btrfs_end_transaction(trans, root);
1005
1006 return ret;
1007}
1008
771ed689
CM
1009/*
1010 * work queue call back to started compression on a file and pages
1011 */
1012static noinline void async_cow_start(struct btrfs_work *work)
1013{
1014 struct async_cow *async_cow;
1015 int num_added = 0;
1016 async_cow = container_of(work, struct async_cow, work);
1017
1018 compress_file_range(async_cow->inode, async_cow->locked_page,
1019 async_cow->start, async_cow->end, async_cow,
1020 &num_added);
8180ef88 1021 if (num_added == 0) {
cb77fcd8 1022 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1023 async_cow->inode = NULL;
8180ef88 1024 }
771ed689
CM
1025}
1026
1027/*
1028 * work queue call back to submit previously compressed pages
1029 */
1030static noinline void async_cow_submit(struct btrfs_work *work)
1031{
1032 struct async_cow *async_cow;
1033 struct btrfs_root *root;
1034 unsigned long nr_pages;
1035
1036 async_cow = container_of(work, struct async_cow, work);
1037
1038 root = async_cow->root;
1039 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1040 PAGE_CACHE_SHIFT;
1041
66657b31 1042 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1043 5 * 1024 * 1024 &&
771ed689
CM
1044 waitqueue_active(&root->fs_info->async_submit_wait))
1045 wake_up(&root->fs_info->async_submit_wait);
1046
d397712b 1047 if (async_cow->inode)
771ed689 1048 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1049}
c8b97818 1050
771ed689
CM
1051static noinline void async_cow_free(struct btrfs_work *work)
1052{
1053 struct async_cow *async_cow;
1054 async_cow = container_of(work, struct async_cow, work);
8180ef88 1055 if (async_cow->inode)
cb77fcd8 1056 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1057 kfree(async_cow);
1058}
1059
1060static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1061 u64 start, u64 end, int *page_started,
1062 unsigned long *nr_written)
1063{
1064 struct async_cow *async_cow;
1065 struct btrfs_root *root = BTRFS_I(inode)->root;
1066 unsigned long nr_pages;
1067 u64 cur_end;
287082b0 1068 int limit = 10 * 1024 * 1024;
771ed689 1069
a3429ab7
CM
1070 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1071 1, 0, NULL, GFP_NOFS);
d397712b 1072 while (start < end) {
771ed689 1073 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1074 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1075 async_cow->inode = igrab(inode);
771ed689
CM
1076 async_cow->root = root;
1077 async_cow->locked_page = locked_page;
1078 async_cow->start = start;
1079
6cbff00f 1080 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1081 cur_end = end;
1082 else
1083 cur_end = min(end, start + 512 * 1024 - 1);
1084
1085 async_cow->end = cur_end;
1086 INIT_LIST_HEAD(&async_cow->extents);
1087
1088 async_cow->work.func = async_cow_start;
1089 async_cow->work.ordered_func = async_cow_submit;
1090 async_cow->work.ordered_free = async_cow_free;
1091 async_cow->work.flags = 0;
1092
771ed689
CM
1093 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1094 PAGE_CACHE_SHIFT;
1095 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1096
1097 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1098 &async_cow->work);
1099
1100 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1101 wait_event(root->fs_info->async_submit_wait,
1102 (atomic_read(&root->fs_info->async_delalloc_pages) <
1103 limit));
1104 }
1105
d397712b 1106 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1107 atomic_read(&root->fs_info->async_delalloc_pages)) {
1108 wait_event(root->fs_info->async_submit_wait,
1109 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1110 0));
1111 }
1112
1113 *nr_written += nr_pages;
1114 start = cur_end + 1;
1115 }
1116 *page_started = 1;
1117 return 0;
be20aa9d
CM
1118}
1119
d397712b 1120static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1121 u64 bytenr, u64 num_bytes)
1122{
1123 int ret;
1124 struct btrfs_ordered_sum *sums;
1125 LIST_HEAD(list);
1126
07d400a6 1127 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1128 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1129 if (ret == 0 && list_empty(&list))
1130 return 0;
1131
1132 while (!list_empty(&list)) {
1133 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1134 list_del(&sums->list);
1135 kfree(sums);
1136 }
1137 return 1;
1138}
1139
d352ac68
CM
1140/*
1141 * when nowcow writeback call back. This checks for snapshots or COW copies
1142 * of the extents that exist in the file, and COWs the file as required.
1143 *
1144 * If no cow copies or snapshots exist, we write directly to the existing
1145 * blocks on disk
1146 */
7f366cfe
CM
1147static noinline int run_delalloc_nocow(struct inode *inode,
1148 struct page *locked_page,
771ed689
CM
1149 u64 start, u64 end, int *page_started, int force,
1150 unsigned long *nr_written)
be20aa9d 1151{
be20aa9d 1152 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1153 struct btrfs_trans_handle *trans;
be20aa9d 1154 struct extent_buffer *leaf;
be20aa9d 1155 struct btrfs_path *path;
80ff3856 1156 struct btrfs_file_extent_item *fi;
be20aa9d 1157 struct btrfs_key found_key;
80ff3856
YZ
1158 u64 cow_start;
1159 u64 cur_offset;
1160 u64 extent_end;
5d4f98a2 1161 u64 extent_offset;
80ff3856
YZ
1162 u64 disk_bytenr;
1163 u64 num_bytes;
b4939680 1164 u64 disk_num_bytes;
80ff3856 1165 int extent_type;
79787eaa 1166 int ret, err;
d899e052 1167 int type;
80ff3856
YZ
1168 int nocow;
1169 int check_prev = 1;
82d5902d 1170 bool nolock;
33345d01 1171 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1172
1173 path = btrfs_alloc_path();
17ca04af
JB
1174 if (!path) {
1175 extent_clear_unlock_delalloc(inode,
1176 &BTRFS_I(inode)->io_tree,
1177 start, end, locked_page,
1178 EXTENT_CLEAR_UNLOCK_PAGE |
1179 EXTENT_CLEAR_UNLOCK |
1180 EXTENT_CLEAR_DELALLOC |
1181 EXTENT_CLEAR_DIRTY |
1182 EXTENT_SET_WRITEBACK |
1183 EXTENT_END_WRITEBACK);
d8926bb3 1184 return -ENOMEM;
17ca04af 1185 }
82d5902d 1186
83eea1f1 1187 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1188
1189 if (nolock)
7a7eaa40 1190 trans = btrfs_join_transaction_nolock(root);
82d5902d 1191 else
7a7eaa40 1192 trans = btrfs_join_transaction(root);
ff5714cc 1193
79787eaa 1194 if (IS_ERR(trans)) {
17ca04af
JB
1195 extent_clear_unlock_delalloc(inode,
1196 &BTRFS_I(inode)->io_tree,
1197 start, end, locked_page,
1198 EXTENT_CLEAR_UNLOCK_PAGE |
1199 EXTENT_CLEAR_UNLOCK |
1200 EXTENT_CLEAR_DELALLOC |
1201 EXTENT_CLEAR_DIRTY |
1202 EXTENT_SET_WRITEBACK |
1203 EXTENT_END_WRITEBACK);
79787eaa
JM
1204 btrfs_free_path(path);
1205 return PTR_ERR(trans);
1206 }
1207
74b21075 1208 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1209
80ff3856
YZ
1210 cow_start = (u64)-1;
1211 cur_offset = start;
1212 while (1) {
33345d01 1213 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1214 cur_offset, 0);
79787eaa
JM
1215 if (ret < 0) {
1216 btrfs_abort_transaction(trans, root, ret);
1217 goto error;
1218 }
80ff3856
YZ
1219 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1220 leaf = path->nodes[0];
1221 btrfs_item_key_to_cpu(leaf, &found_key,
1222 path->slots[0] - 1);
33345d01 1223 if (found_key.objectid == ino &&
80ff3856
YZ
1224 found_key.type == BTRFS_EXTENT_DATA_KEY)
1225 path->slots[0]--;
1226 }
1227 check_prev = 0;
1228next_slot:
1229 leaf = path->nodes[0];
1230 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1231 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1232 if (ret < 0) {
1233 btrfs_abort_transaction(trans, root, ret);
1234 goto error;
1235 }
80ff3856
YZ
1236 if (ret > 0)
1237 break;
1238 leaf = path->nodes[0];
1239 }
be20aa9d 1240
80ff3856
YZ
1241 nocow = 0;
1242 disk_bytenr = 0;
17d217fe 1243 num_bytes = 0;
80ff3856
YZ
1244 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1245
33345d01 1246 if (found_key.objectid > ino ||
80ff3856
YZ
1247 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1248 found_key.offset > end)
1249 break;
1250
1251 if (found_key.offset > cur_offset) {
1252 extent_end = found_key.offset;
e9061e21 1253 extent_type = 0;
80ff3856
YZ
1254 goto out_check;
1255 }
1256
1257 fi = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_file_extent_item);
1259 extent_type = btrfs_file_extent_type(leaf, fi);
1260
d899e052
YZ
1261 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1262 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1263 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1264 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1265 extent_end = found_key.offset +
1266 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1267 disk_num_bytes =
1268 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1269 if (extent_end <= start) {
1270 path->slots[0]++;
1271 goto next_slot;
1272 }
17d217fe
YZ
1273 if (disk_bytenr == 0)
1274 goto out_check;
80ff3856
YZ
1275 if (btrfs_file_extent_compression(leaf, fi) ||
1276 btrfs_file_extent_encryption(leaf, fi) ||
1277 btrfs_file_extent_other_encoding(leaf, fi))
1278 goto out_check;
d899e052
YZ
1279 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1280 goto out_check;
d2fb3437 1281 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1282 goto out_check;
33345d01 1283 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1284 found_key.offset -
1285 extent_offset, disk_bytenr))
17d217fe 1286 goto out_check;
5d4f98a2 1287 disk_bytenr += extent_offset;
17d217fe
YZ
1288 disk_bytenr += cur_offset - found_key.offset;
1289 num_bytes = min(end + 1, extent_end) - cur_offset;
1290 /*
1291 * force cow if csum exists in the range.
1292 * this ensure that csum for a given extent are
1293 * either valid or do not exist.
1294 */
1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1296 goto out_check;
80ff3856
YZ
1297 nocow = 1;
1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1299 extent_end = found_key.offset +
1300 btrfs_file_extent_inline_len(leaf, fi);
1301 extent_end = ALIGN(extent_end, root->sectorsize);
1302 } else {
1303 BUG_ON(1);
1304 }
1305out_check:
1306 if (extent_end <= start) {
1307 path->slots[0]++;
1308 goto next_slot;
1309 }
1310 if (!nocow) {
1311 if (cow_start == (u64)-1)
1312 cow_start = cur_offset;
1313 cur_offset = extent_end;
1314 if (cur_offset > end)
1315 break;
1316 path->slots[0]++;
1317 goto next_slot;
7ea394f1
YZ
1318 }
1319
b3b4aa74 1320 btrfs_release_path(path);
80ff3856 1321 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1322 ret = __cow_file_range(trans, inode, root, locked_page,
1323 cow_start, found_key.offset - 1,
1324 page_started, nr_written, 1);
79787eaa
JM
1325 if (ret) {
1326 btrfs_abort_transaction(trans, root, ret);
1327 goto error;
1328 }
80ff3856 1329 cow_start = (u64)-1;
7ea394f1 1330 }
80ff3856 1331
d899e052
YZ
1332 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1333 struct extent_map *em;
1334 struct extent_map_tree *em_tree;
1335 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1336 em = alloc_extent_map();
79787eaa 1337 BUG_ON(!em); /* -ENOMEM */
d899e052 1338 em->start = cur_offset;
70c8a91c 1339 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1340 em->len = num_bytes;
1341 em->block_len = num_bytes;
1342 em->block_start = disk_bytenr;
b4939680 1343 em->orig_block_len = disk_num_bytes;
d899e052 1344 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1345 em->mod_start = em->start;
1346 em->mod_len = em->len;
d899e052 1347 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1348 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1349 em->generation = -1;
d899e052 1350 while (1) {
890871be 1351 write_lock(&em_tree->lock);
d899e052 1352 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
1353 if (!ret)
1354 list_move(&em->list,
1355 &em_tree->modified_extents);
890871be 1356 write_unlock(&em_tree->lock);
d899e052
YZ
1357 if (ret != -EEXIST) {
1358 free_extent_map(em);
1359 break;
1360 }
1361 btrfs_drop_extent_cache(inode, em->start,
1362 em->start + em->len - 1, 0);
1363 }
1364 type = BTRFS_ORDERED_PREALLOC;
1365 } else {
1366 type = BTRFS_ORDERED_NOCOW;
1367 }
80ff3856
YZ
1368
1369 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1370 num_bytes, num_bytes, type);
79787eaa 1371 BUG_ON(ret); /* -ENOMEM */
771ed689 1372
efa56464
YZ
1373 if (root->root_key.objectid ==
1374 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1375 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1376 num_bytes);
79787eaa
JM
1377 if (ret) {
1378 btrfs_abort_transaction(trans, root, ret);
1379 goto error;
1380 }
efa56464
YZ
1381 }
1382
d899e052 1383 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1384 cur_offset, cur_offset + num_bytes - 1,
1385 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1386 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1387 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1388 cur_offset = extent_end;
1389 if (cur_offset > end)
1390 break;
be20aa9d 1391 }
b3b4aa74 1392 btrfs_release_path(path);
80ff3856 1393
17ca04af 1394 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1395 cow_start = cur_offset;
17ca04af
JB
1396 cur_offset = end;
1397 }
1398
80ff3856 1399 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1400 ret = __cow_file_range(trans, inode, root, locked_page,
1401 cow_start, end,
1402 page_started, nr_written, 1);
79787eaa
JM
1403 if (ret) {
1404 btrfs_abort_transaction(trans, root, ret);
1405 goto error;
1406 }
80ff3856
YZ
1407 }
1408
79787eaa 1409error:
a698d075 1410 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1411 if (!ret)
1412 ret = err;
1413
17ca04af
JB
1414 if (ret && cur_offset < end)
1415 extent_clear_unlock_delalloc(inode,
1416 &BTRFS_I(inode)->io_tree,
1417 cur_offset, end, locked_page,
1418 EXTENT_CLEAR_UNLOCK_PAGE |
1419 EXTENT_CLEAR_UNLOCK |
1420 EXTENT_CLEAR_DELALLOC |
1421 EXTENT_CLEAR_DIRTY |
1422 EXTENT_SET_WRITEBACK |
1423 EXTENT_END_WRITEBACK);
1424
7ea394f1 1425 btrfs_free_path(path);
79787eaa 1426 return ret;
be20aa9d
CM
1427}
1428
d352ac68
CM
1429/*
1430 * extent_io.c call back to do delayed allocation processing
1431 */
c8b97818 1432static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1433 u64 start, u64 end, int *page_started,
1434 unsigned long *nr_written)
be20aa9d 1435{
be20aa9d 1436 int ret;
7f366cfe 1437 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1438
7ddf5a42 1439 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1440 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1441 page_started, 1, nr_written);
7ddf5a42 1442 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1443 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1444 page_started, 0, nr_written);
7ddf5a42
JB
1445 } else if (!btrfs_test_opt(root, COMPRESS) &&
1446 !(BTRFS_I(inode)->force_compress) &&
1447 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1448 ret = cow_file_range(inode, locked_page, start, end,
1449 page_started, nr_written, 1);
7ddf5a42
JB
1450 } else {
1451 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1452 &BTRFS_I(inode)->runtime_flags);
771ed689 1453 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1454 page_started, nr_written);
7ddf5a42 1455 }
b888db2b
CM
1456 return ret;
1457}
1458
1bf85046
JM
1459static void btrfs_split_extent_hook(struct inode *inode,
1460 struct extent_state *orig, u64 split)
9ed74f2d 1461{
0ca1f7ce 1462 /* not delalloc, ignore it */
9ed74f2d 1463 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1464 return;
9ed74f2d 1465
9e0baf60
JB
1466 spin_lock(&BTRFS_I(inode)->lock);
1467 BTRFS_I(inode)->outstanding_extents++;
1468 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1469}
1470
1471/*
1472 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1473 * extents so we can keep track of new extents that are just merged onto old
1474 * extents, such as when we are doing sequential writes, so we can properly
1475 * account for the metadata space we'll need.
1476 */
1bf85046
JM
1477static void btrfs_merge_extent_hook(struct inode *inode,
1478 struct extent_state *new,
1479 struct extent_state *other)
9ed74f2d 1480{
9ed74f2d
JB
1481 /* not delalloc, ignore it */
1482 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1483 return;
9ed74f2d 1484
9e0baf60
JB
1485 spin_lock(&BTRFS_I(inode)->lock);
1486 BTRFS_I(inode)->outstanding_extents--;
1487 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1488}
1489
d352ac68
CM
1490/*
1491 * extent_io.c set_bit_hook, used to track delayed allocation
1492 * bytes in this file, and to maintain the list of inodes that
1493 * have pending delalloc work to be done.
1494 */
1bf85046
JM
1495static void btrfs_set_bit_hook(struct inode *inode,
1496 struct extent_state *state, int *bits)
291d673e 1497{
9ed74f2d 1498
75eff68e
CM
1499 /*
1500 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1501 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1502 * bit, which is only set or cleared with irqs on
1503 */
0ca1f7ce 1504 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1505 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1506 u64 len = state->end + 1 - state->start;
83eea1f1 1507 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1508
9e0baf60 1509 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1510 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1511 } else {
1512 spin_lock(&BTRFS_I(inode)->lock);
1513 BTRFS_I(inode)->outstanding_extents++;
1514 spin_unlock(&BTRFS_I(inode)->lock);
1515 }
287a0ab9 1516
75eff68e 1517 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1518 BTRFS_I(inode)->delalloc_bytes += len;
1519 root->fs_info->delalloc_bytes += len;
0cb59c99 1520 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1521 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1522 &root->fs_info->delalloc_inodes);
1523 }
75eff68e 1524 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1525 }
291d673e
CM
1526}
1527
d352ac68
CM
1528/*
1529 * extent_io.c clear_bit_hook, see set_bit_hook for why
1530 */
1bf85046
JM
1531static void btrfs_clear_bit_hook(struct inode *inode,
1532 struct extent_state *state, int *bits)
291d673e 1533{
75eff68e
CM
1534 /*
1535 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1536 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1537 * bit, which is only set or cleared with irqs on
1538 */
0ca1f7ce 1539 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1540 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1541 u64 len = state->end + 1 - state->start;
83eea1f1 1542 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1543
9e0baf60 1544 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1545 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1546 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1547 spin_lock(&BTRFS_I(inode)->lock);
1548 BTRFS_I(inode)->outstanding_extents--;
1549 spin_unlock(&BTRFS_I(inode)->lock);
1550 }
0ca1f7ce
YZ
1551
1552 if (*bits & EXTENT_DO_ACCOUNTING)
1553 btrfs_delalloc_release_metadata(inode, len);
1554
0cb59c99
JB
1555 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1556 && do_list)
0ca1f7ce 1557 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1558
75eff68e 1559 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1560 root->fs_info->delalloc_bytes -= len;
1561 BTRFS_I(inode)->delalloc_bytes -= len;
1562
0cb59c99 1563 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1564 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1565 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1566 }
75eff68e 1567 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1568 }
291d673e
CM
1569}
1570
d352ac68
CM
1571/*
1572 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573 * we don't create bios that span stripes or chunks
1574 */
239b14b3 1575int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1576 size_t size, struct bio *bio,
1577 unsigned long bio_flags)
239b14b3
CM
1578{
1579 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1580 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1581 u64 length = 0;
1582 u64 map_length;
239b14b3
CM
1583 int ret;
1584
771ed689
CM
1585 if (bio_flags & EXTENT_BIO_COMPRESSED)
1586 return 0;
1587
f2d8d74d 1588 length = bio->bi_size;
239b14b3 1589 map_length = length;
3ec706c8 1590 ret = btrfs_map_block(root->fs_info, READ, logical,
f188591e 1591 &map_length, NULL, 0);
3ec706c8 1592 /* Will always return 0 with map_multi == NULL */
3444a972 1593 BUG_ON(ret < 0);
d397712b 1594 if (map_length < length + size)
239b14b3 1595 return 1;
3444a972 1596 return 0;
239b14b3
CM
1597}
1598
d352ac68
CM
1599/*
1600 * in order to insert checksums into the metadata in large chunks,
1601 * we wait until bio submission time. All the pages in the bio are
1602 * checksummed and sums are attached onto the ordered extent record.
1603 *
1604 * At IO completion time the cums attached on the ordered extent record
1605 * are inserted into the btree
1606 */
d397712b
CM
1607static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608 struct bio *bio, int mirror_num,
eaf25d93
CM
1609 unsigned long bio_flags,
1610 u64 bio_offset)
065631f6 1611{
065631f6 1612 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1613 int ret = 0;
e015640f 1614
d20f7043 1615 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1616 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1617 return 0;
1618}
e015640f 1619
4a69a410
CM
1620/*
1621 * in order to insert checksums into the metadata in large chunks,
1622 * we wait until bio submission time. All the pages in the bio are
1623 * checksummed and sums are attached onto the ordered extent record.
1624 *
1625 * At IO completion time the cums attached on the ordered extent record
1626 * are inserted into the btree
1627 */
b2950863 1628static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1629 int mirror_num, unsigned long bio_flags,
1630 u64 bio_offset)
4a69a410
CM
1631{
1632 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1633 int ret;
1634
1635 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1636 if (ret)
1637 bio_endio(bio, ret);
1638 return ret;
44b8bd7e
CM
1639}
1640
d352ac68 1641/*
cad321ad
CM
1642 * extent_io.c submission hook. This does the right thing for csum calculation
1643 * on write, or reading the csums from the tree before a read
d352ac68 1644 */
b2950863 1645static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1646 int mirror_num, unsigned long bio_flags,
1647 u64 bio_offset)
44b8bd7e
CM
1648{
1649 struct btrfs_root *root = BTRFS_I(inode)->root;
1650 int ret = 0;
19b9bdb0 1651 int skip_sum;
0417341e 1652 int metadata = 0;
b812ce28 1653 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1654
6cbff00f 1655 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1656
83eea1f1 1657 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1658 metadata = 2;
1659
7b6d91da 1660 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1661 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1662 if (ret)
61891923 1663 goto out;
5fd02043 1664
d20f7043 1665 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1666 ret = btrfs_submit_compressed_read(inode, bio,
1667 mirror_num,
1668 bio_flags);
1669 goto out;
c2db1073
TI
1670 } else if (!skip_sum) {
1671 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1672 if (ret)
61891923 1673 goto out;
c2db1073 1674 }
4d1b5fb4 1675 goto mapit;
b812ce28 1676 } else if (async && !skip_sum) {
17d217fe
YZ
1677 /* csum items have already been cloned */
1678 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1679 goto mapit;
19b9bdb0 1680 /* we're doing a write, do the async checksumming */
61891923 1681 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1682 inode, rw, bio, mirror_num,
eaf25d93
CM
1683 bio_flags, bio_offset,
1684 __btrfs_submit_bio_start,
4a69a410 1685 __btrfs_submit_bio_done);
61891923 1686 goto out;
b812ce28
JB
1687 } else if (!skip_sum) {
1688 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1689 if (ret)
1690 goto out;
19b9bdb0
CM
1691 }
1692
0b86a832 1693mapit:
61891923
SB
1694 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1695
1696out:
1697 if (ret < 0)
1698 bio_endio(bio, ret);
1699 return ret;
065631f6 1700}
6885f308 1701
d352ac68
CM
1702/*
1703 * given a list of ordered sums record them in the inode. This happens
1704 * at IO completion time based on sums calculated at bio submission time.
1705 */
ba1da2f4 1706static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1707 struct inode *inode, u64 file_offset,
1708 struct list_head *list)
1709{
e6dcd2dc
CM
1710 struct btrfs_ordered_sum *sum;
1711
c6e30871 1712 list_for_each_entry(sum, list, list) {
d20f7043
CM
1713 btrfs_csum_file_blocks(trans,
1714 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1715 }
1716 return 0;
1717}
1718
2ac55d41
JB
1719int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1720 struct extent_state **cached_state)
ea8c2819 1721{
6c1500f2 1722 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1723 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1724 cached_state, GFP_NOFS);
ea8c2819
CM
1725}
1726
d352ac68 1727/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1728struct btrfs_writepage_fixup {
1729 struct page *page;
1730 struct btrfs_work work;
1731};
1732
b2950863 1733static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1734{
1735 struct btrfs_writepage_fixup *fixup;
1736 struct btrfs_ordered_extent *ordered;
2ac55d41 1737 struct extent_state *cached_state = NULL;
247e743c
CM
1738 struct page *page;
1739 struct inode *inode;
1740 u64 page_start;
1741 u64 page_end;
87826df0 1742 int ret;
247e743c
CM
1743
1744 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1745 page = fixup->page;
4a096752 1746again:
247e743c
CM
1747 lock_page(page);
1748 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1749 ClearPageChecked(page);
1750 goto out_page;
1751 }
1752
1753 inode = page->mapping->host;
1754 page_start = page_offset(page);
1755 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1756
2ac55d41 1757 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1758 &cached_state);
4a096752
CM
1759
1760 /* already ordered? We're done */
8b62b72b 1761 if (PagePrivate2(page))
247e743c 1762 goto out;
4a096752
CM
1763
1764 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1765 if (ordered) {
2ac55d41
JB
1766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1767 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1768 unlock_page(page);
1769 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1770 btrfs_put_ordered_extent(ordered);
4a096752
CM
1771 goto again;
1772 }
247e743c 1773
87826df0
JM
1774 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1775 if (ret) {
1776 mapping_set_error(page->mapping, ret);
1777 end_extent_writepage(page, ret, page_start, page_end);
1778 ClearPageChecked(page);
1779 goto out;
1780 }
1781
2ac55d41 1782 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1783 ClearPageChecked(page);
87826df0 1784 set_page_dirty(page);
247e743c 1785out:
2ac55d41
JB
1786 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1787 &cached_state, GFP_NOFS);
247e743c
CM
1788out_page:
1789 unlock_page(page);
1790 page_cache_release(page);
b897abec 1791 kfree(fixup);
247e743c
CM
1792}
1793
1794/*
1795 * There are a few paths in the higher layers of the kernel that directly
1796 * set the page dirty bit without asking the filesystem if it is a
1797 * good idea. This causes problems because we want to make sure COW
1798 * properly happens and the data=ordered rules are followed.
1799 *
c8b97818 1800 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1801 * hasn't been properly setup for IO. We kick off an async process
1802 * to fix it up. The async helper will wait for ordered extents, set
1803 * the delalloc bit and make it safe to write the page.
1804 */
b2950863 1805static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1806{
1807 struct inode *inode = page->mapping->host;
1808 struct btrfs_writepage_fixup *fixup;
1809 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1810
8b62b72b
CM
1811 /* this page is properly in the ordered list */
1812 if (TestClearPagePrivate2(page))
247e743c
CM
1813 return 0;
1814
1815 if (PageChecked(page))
1816 return -EAGAIN;
1817
1818 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1819 if (!fixup)
1820 return -EAGAIN;
f421950f 1821
247e743c
CM
1822 SetPageChecked(page);
1823 page_cache_get(page);
1824 fixup->work.func = btrfs_writepage_fixup_worker;
1825 fixup->page = page;
1826 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1827 return -EBUSY;
247e743c
CM
1828}
1829
d899e052
YZ
1830static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1831 struct inode *inode, u64 file_pos,
1832 u64 disk_bytenr, u64 disk_num_bytes,
1833 u64 num_bytes, u64 ram_bytes,
1834 u8 compression, u8 encryption,
1835 u16 other_encoding, int extent_type)
1836{
1837 struct btrfs_root *root = BTRFS_I(inode)->root;
1838 struct btrfs_file_extent_item *fi;
1839 struct btrfs_path *path;
1840 struct extent_buffer *leaf;
1841 struct btrfs_key ins;
d899e052
YZ
1842 int ret;
1843
1844 path = btrfs_alloc_path();
d8926bb3
MF
1845 if (!path)
1846 return -ENOMEM;
d899e052 1847
b9473439 1848 path->leave_spinning = 1;
a1ed835e
CM
1849
1850 /*
1851 * we may be replacing one extent in the tree with another.
1852 * The new extent is pinned in the extent map, and we don't want
1853 * to drop it from the cache until it is completely in the btree.
1854 *
1855 * So, tell btrfs_drop_extents to leave this extent in the cache.
1856 * the caller is expected to unpin it and allow it to be merged
1857 * with the others.
1858 */
5dc562c5 1859 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1860 file_pos + num_bytes, 0);
79787eaa
JM
1861 if (ret)
1862 goto out;
d899e052 1863
33345d01 1864 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1865 ins.offset = file_pos;
1866 ins.type = BTRFS_EXTENT_DATA_KEY;
1867 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1868 if (ret)
1869 goto out;
d899e052
YZ
1870 leaf = path->nodes[0];
1871 fi = btrfs_item_ptr(leaf, path->slots[0],
1872 struct btrfs_file_extent_item);
1873 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1874 btrfs_set_file_extent_type(leaf, fi, extent_type);
1875 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1876 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1877 btrfs_set_file_extent_offset(leaf, fi, 0);
1878 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1879 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1880 btrfs_set_file_extent_compression(leaf, fi, compression);
1881 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1882 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1883
d899e052 1884 btrfs_mark_buffer_dirty(leaf);
ce195332 1885 btrfs_release_path(path);
d899e052
YZ
1886
1887 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1888
1889 ins.objectid = disk_bytenr;
1890 ins.offset = disk_num_bytes;
1891 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1892 ret = btrfs_alloc_reserved_file_extent(trans, root,
1893 root->root_key.objectid,
33345d01 1894 btrfs_ino(inode), file_pos, &ins);
79787eaa 1895out:
d899e052 1896 btrfs_free_path(path);
b9473439 1897
79787eaa 1898 return ret;
d899e052
YZ
1899}
1900
5d13a98f
CM
1901/*
1902 * helper function for btrfs_finish_ordered_io, this
1903 * just reads in some of the csum leaves to prime them into ram
1904 * before we start the transaction. It limits the amount of btree
1905 * reads required while inside the transaction.
1906 */
d352ac68
CM
1907/* as ordered data IO finishes, this gets called so we can finish
1908 * an ordered extent if the range of bytes in the file it covers are
1909 * fully written.
1910 */
5fd02043 1911static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1912{
5fd02043 1913 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1914 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1915 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1917 struct extent_state *cached_state = NULL;
261507a0 1918 int compress_type = 0;
e6dcd2dc 1919 int ret;
82d5902d 1920 bool nolock;
e6dcd2dc 1921
83eea1f1 1922 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1923
5fd02043
JB
1924 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1925 ret = -EIO;
1926 goto out;
1927 }
1928
c2167754 1929 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1930 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
1931 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1932 if (nolock)
1933 trans = btrfs_join_transaction_nolock(root);
1934 else
1935 trans = btrfs_join_transaction(root);
1936 if (IS_ERR(trans)) {
1937 ret = PTR_ERR(trans);
1938 trans = NULL;
1939 goto out;
c2167754 1940 }
6c760c07
JB
1941 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1942 ret = btrfs_update_inode_fallback(trans, root, inode);
1943 if (ret) /* -ENOMEM or corruption */
1944 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1945 goto out;
1946 }
e6dcd2dc 1947
2ac55d41
JB
1948 lock_extent_bits(io_tree, ordered_extent->file_offset,
1949 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1950 0, &cached_state);
e6dcd2dc 1951
0cb59c99 1952 if (nolock)
7a7eaa40 1953 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1954 else
7a7eaa40 1955 trans = btrfs_join_transaction(root);
79787eaa
JM
1956 if (IS_ERR(trans)) {
1957 ret = PTR_ERR(trans);
1958 trans = NULL;
1959 goto out_unlock;
1960 }
0ca1f7ce 1961 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1962
c8b97818 1963 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1964 compress_type = ordered_extent->compress_type;
d899e052 1965 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1966 BUG_ON(compress_type);
920bbbfb 1967 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1968 ordered_extent->file_offset,
1969 ordered_extent->file_offset +
1970 ordered_extent->len);
d899e052 1971 } else {
0af3d00b 1972 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1973 ret = insert_reserved_file_extent(trans, inode,
1974 ordered_extent->file_offset,
1975 ordered_extent->start,
1976 ordered_extent->disk_len,
1977 ordered_extent->len,
1978 ordered_extent->len,
261507a0 1979 compress_type, 0, 0,
d899e052 1980 BTRFS_FILE_EXTENT_REG);
d899e052 1981 }
5dc562c5
JB
1982 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1983 ordered_extent->file_offset, ordered_extent->len,
1984 trans->transid);
79787eaa
JM
1985 if (ret < 0) {
1986 btrfs_abort_transaction(trans, root, ret);
5fd02043 1987 goto out_unlock;
79787eaa 1988 }
2ac55d41 1989
e6dcd2dc
CM
1990 add_pending_csums(trans, inode, ordered_extent->file_offset,
1991 &ordered_extent->list);
1992
6c760c07
JB
1993 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1994 ret = btrfs_update_inode_fallback(trans, root, inode);
1995 if (ret) { /* -ENOMEM or corruption */
1996 btrfs_abort_transaction(trans, root, ret);
1997 goto out_unlock;
1ef30be1
JB
1998 }
1999 ret = 0;
5fd02043
JB
2000out_unlock:
2001 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2002 ordered_extent->file_offset +
2003 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2004out:
5b0e95bf 2005 if (root != root->fs_info->tree_root)
0cb59c99 2006 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2007 if (trans)
2008 btrfs_end_transaction(trans, root);
0cb59c99 2009
5fd02043
JB
2010 if (ret)
2011 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2012 ordered_extent->file_offset +
2013 ordered_extent->len - 1, NULL, GFP_NOFS);
2014
2015 /*
8bad3c02
LB
2016 * This needs to be done to make sure anybody waiting knows we are done
2017 * updating everything for this ordered extent.
5fd02043
JB
2018 */
2019 btrfs_remove_ordered_extent(inode, ordered_extent);
2020
e6dcd2dc
CM
2021 /* once for us */
2022 btrfs_put_ordered_extent(ordered_extent);
2023 /* once for the tree */
2024 btrfs_put_ordered_extent(ordered_extent);
2025
5fd02043
JB
2026 return ret;
2027}
2028
2029static void finish_ordered_fn(struct btrfs_work *work)
2030{
2031 struct btrfs_ordered_extent *ordered_extent;
2032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2033 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2034}
2035
b2950863 2036static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2037 struct extent_state *state, int uptodate)
2038{
5fd02043
JB
2039 struct inode *inode = page->mapping->host;
2040 struct btrfs_root *root = BTRFS_I(inode)->root;
2041 struct btrfs_ordered_extent *ordered_extent = NULL;
2042 struct btrfs_workers *workers;
2043
1abe9b8a 2044 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2045
8b62b72b 2046 ClearPagePrivate2(page);
5fd02043
JB
2047 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2048 end - start + 1, uptodate))
2049 return 0;
2050
2051 ordered_extent->work.func = finish_ordered_fn;
2052 ordered_extent->work.flags = 0;
2053
83eea1f1 2054 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2055 workers = &root->fs_info->endio_freespace_worker;
2056 else
2057 workers = &root->fs_info->endio_write_workers;
2058 btrfs_queue_worker(workers, &ordered_extent->work);
2059
2060 return 0;
211f90e6
CM
2061}
2062
d352ac68
CM
2063/*
2064 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2065 * if there's a match, we allow the bio to finish. If not, the code in
2066 * extent_io.c will try to find good copies for us.
d352ac68 2067 */
b2950863 2068static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2069 struct extent_state *state, int mirror)
07157aac 2070{
4eee4fa4 2071 size_t offset = start - page_offset(page);
07157aac 2072 struct inode *inode = page->mapping->host;
d1310b2e 2073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2074 char *kaddr;
aadfeb6e 2075 u64 private = ~(u32)0;
07157aac 2076 int ret;
ff79f819
CM
2077 struct btrfs_root *root = BTRFS_I(inode)->root;
2078 u32 csum = ~(u32)0;
d1310b2e 2079
d20f7043
CM
2080 if (PageChecked(page)) {
2081 ClearPageChecked(page);
2082 goto good;
2083 }
6cbff00f
CH
2084
2085 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2086 goto good;
17d217fe
YZ
2087
2088 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2089 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2090 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2091 GFP_NOFS);
b6cda9bc 2092 return 0;
17d217fe 2093 }
d20f7043 2094
c2e639f0 2095 if (state && state->start == start) {
70dec807
CM
2096 private = state->private;
2097 ret = 0;
2098 } else {
2099 ret = get_state_private(io_tree, start, &private);
2100 }
7ac687d9 2101 kaddr = kmap_atomic(page);
d397712b 2102 if (ret)
07157aac 2103 goto zeroit;
d397712b 2104
ff79f819
CM
2105 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2106 btrfs_csum_final(csum, (char *)&csum);
d397712b 2107 if (csum != private)
07157aac 2108 goto zeroit;
d397712b 2109
7ac687d9 2110 kunmap_atomic(kaddr);
d20f7043 2111good:
07157aac
CM
2112 return 0;
2113
2114zeroit:
945d8962 2115 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2116 "private %llu\n",
2117 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2118 (unsigned long long)start, csum,
2119 (unsigned long long)private);
db94535d
CM
2120 memset(kaddr + offset, 1, end - start + 1);
2121 flush_dcache_page(page);
7ac687d9 2122 kunmap_atomic(kaddr);
3b951516
CM
2123 if (private == 0)
2124 return 0;
7e38326f 2125 return -EIO;
07157aac 2126}
b888db2b 2127
24bbcf04
YZ
2128struct delayed_iput {
2129 struct list_head list;
2130 struct inode *inode;
2131};
2132
79787eaa
JM
2133/* JDM: If this is fs-wide, why can't we add a pointer to
2134 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2135void btrfs_add_delayed_iput(struct inode *inode)
2136{
2137 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2138 struct delayed_iput *delayed;
2139
2140 if (atomic_add_unless(&inode->i_count, -1, 1))
2141 return;
2142
2143 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2144 delayed->inode = inode;
2145
2146 spin_lock(&fs_info->delayed_iput_lock);
2147 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2148 spin_unlock(&fs_info->delayed_iput_lock);
2149}
2150
2151void btrfs_run_delayed_iputs(struct btrfs_root *root)
2152{
2153 LIST_HEAD(list);
2154 struct btrfs_fs_info *fs_info = root->fs_info;
2155 struct delayed_iput *delayed;
2156 int empty;
2157
2158 spin_lock(&fs_info->delayed_iput_lock);
2159 empty = list_empty(&fs_info->delayed_iputs);
2160 spin_unlock(&fs_info->delayed_iput_lock);
2161 if (empty)
2162 return;
2163
24bbcf04
YZ
2164 spin_lock(&fs_info->delayed_iput_lock);
2165 list_splice_init(&fs_info->delayed_iputs, &list);
2166 spin_unlock(&fs_info->delayed_iput_lock);
2167
2168 while (!list_empty(&list)) {
2169 delayed = list_entry(list.next, struct delayed_iput, list);
2170 list_del(&delayed->list);
2171 iput(delayed->inode);
2172 kfree(delayed);
2173 }
24bbcf04
YZ
2174}
2175
d68fc57b
YZ
2176enum btrfs_orphan_cleanup_state {
2177 ORPHAN_CLEANUP_STARTED = 1,
2178 ORPHAN_CLEANUP_DONE = 2,
2179};
2180
2181/*
42b2aa86 2182 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2183 * files in the subvolume, it removes orphan item and frees block_rsv
2184 * structure.
2185 */
2186void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2187 struct btrfs_root *root)
2188{
90290e19 2189 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2190 int ret;
2191
8a35d95f 2192 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2193 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2194 return;
2195
90290e19 2196 spin_lock(&root->orphan_lock);
8a35d95f 2197 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2198 spin_unlock(&root->orphan_lock);
2199 return;
2200 }
2201
2202 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2203 spin_unlock(&root->orphan_lock);
2204 return;
2205 }
2206
2207 block_rsv = root->orphan_block_rsv;
2208 root->orphan_block_rsv = NULL;
2209 spin_unlock(&root->orphan_lock);
2210
d68fc57b
YZ
2211 if (root->orphan_item_inserted &&
2212 btrfs_root_refs(&root->root_item) > 0) {
2213 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2214 root->root_key.objectid);
2215 BUG_ON(ret);
2216 root->orphan_item_inserted = 0;
2217 }
2218
90290e19
JB
2219 if (block_rsv) {
2220 WARN_ON(block_rsv->size > 0);
2221 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2222 }
2223}
2224
7b128766
JB
2225/*
2226 * This creates an orphan entry for the given inode in case something goes
2227 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2228 *
2229 * NOTE: caller of this function should reserve 5 units of metadata for
2230 * this function.
7b128766
JB
2231 */
2232int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2233{
2234 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2235 struct btrfs_block_rsv *block_rsv = NULL;
2236 int reserve = 0;
2237 int insert = 0;
2238 int ret;
7b128766 2239
d68fc57b 2240 if (!root->orphan_block_rsv) {
66d8f3dd 2241 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2242 if (!block_rsv)
2243 return -ENOMEM;
d68fc57b 2244 }
7b128766 2245
d68fc57b
YZ
2246 spin_lock(&root->orphan_lock);
2247 if (!root->orphan_block_rsv) {
2248 root->orphan_block_rsv = block_rsv;
2249 } else if (block_rsv) {
2250 btrfs_free_block_rsv(root, block_rsv);
2251 block_rsv = NULL;
7b128766 2252 }
7b128766 2253
8a35d95f
JB
2254 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2255 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2256#if 0
2257 /*
2258 * For proper ENOSPC handling, we should do orphan
2259 * cleanup when mounting. But this introduces backward
2260 * compatibility issue.
2261 */
2262 if (!xchg(&root->orphan_item_inserted, 1))
2263 insert = 2;
2264 else
2265 insert = 1;
2266#endif
2267 insert = 1;
321f0e70 2268 atomic_inc(&root->orphan_inodes);
7b128766
JB
2269 }
2270
72ac3c0d
JB
2271 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2272 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2273 reserve = 1;
d68fc57b 2274 spin_unlock(&root->orphan_lock);
7b128766 2275
d68fc57b
YZ
2276 /* grab metadata reservation from transaction handle */
2277 if (reserve) {
2278 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2279 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2280 }
7b128766 2281
d68fc57b
YZ
2282 /* insert an orphan item to track this unlinked/truncated file */
2283 if (insert >= 1) {
33345d01 2284 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2285 if (ret && ret != -EEXIST) {
8a35d95f
JB
2286 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2287 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2288 btrfs_abort_transaction(trans, root, ret);
2289 return ret;
2290 }
2291 ret = 0;
d68fc57b
YZ
2292 }
2293
2294 /* insert an orphan item to track subvolume contains orphan files */
2295 if (insert >= 2) {
2296 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2297 root->root_key.objectid);
79787eaa
JM
2298 if (ret && ret != -EEXIST) {
2299 btrfs_abort_transaction(trans, root, ret);
2300 return ret;
2301 }
d68fc57b
YZ
2302 }
2303 return 0;
7b128766
JB
2304}
2305
2306/*
2307 * We have done the truncate/delete so we can go ahead and remove the orphan
2308 * item for this particular inode.
2309 */
2310int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2311{
2312 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2313 int delete_item = 0;
2314 int release_rsv = 0;
7b128766
JB
2315 int ret = 0;
2316
d68fc57b 2317 spin_lock(&root->orphan_lock);
8a35d95f
JB
2318 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2319 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2320 delete_item = 1;
7b128766 2321
72ac3c0d
JB
2322 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2323 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2324 release_rsv = 1;
d68fc57b 2325 spin_unlock(&root->orphan_lock);
7b128766 2326
d68fc57b 2327 if (trans && delete_item) {
33345d01 2328 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2329 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2330 }
7b128766 2331
8a35d95f 2332 if (release_rsv) {
d68fc57b 2333 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2334 atomic_dec(&root->orphan_inodes);
2335 }
7b128766 2336
d68fc57b 2337 return 0;
7b128766
JB
2338}
2339
2340/*
2341 * this cleans up any orphans that may be left on the list from the last use
2342 * of this root.
2343 */
66b4ffd1 2344int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2345{
2346 struct btrfs_path *path;
2347 struct extent_buffer *leaf;
7b128766
JB
2348 struct btrfs_key key, found_key;
2349 struct btrfs_trans_handle *trans;
2350 struct inode *inode;
8f6d7f4f 2351 u64 last_objectid = 0;
7b128766
JB
2352 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2353
d68fc57b 2354 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2355 return 0;
c71bf099
YZ
2356
2357 path = btrfs_alloc_path();
66b4ffd1
JB
2358 if (!path) {
2359 ret = -ENOMEM;
2360 goto out;
2361 }
7b128766
JB
2362 path->reada = -1;
2363
2364 key.objectid = BTRFS_ORPHAN_OBJECTID;
2365 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2366 key.offset = (u64)-1;
2367
7b128766
JB
2368 while (1) {
2369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2370 if (ret < 0)
2371 goto out;
7b128766
JB
2372
2373 /*
2374 * if ret == 0 means we found what we were searching for, which
25985edc 2375 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2376 * find the key and see if we have stuff that matches
2377 */
2378 if (ret > 0) {
66b4ffd1 2379 ret = 0;
7b128766
JB
2380 if (path->slots[0] == 0)
2381 break;
2382 path->slots[0]--;
2383 }
2384
2385 /* pull out the item */
2386 leaf = path->nodes[0];
7b128766
JB
2387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2388
2389 /* make sure the item matches what we want */
2390 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2391 break;
2392 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2393 break;
2394
2395 /* release the path since we're done with it */
b3b4aa74 2396 btrfs_release_path(path);
7b128766
JB
2397
2398 /*
2399 * this is where we are basically btrfs_lookup, without the
2400 * crossing root thing. we store the inode number in the
2401 * offset of the orphan item.
2402 */
8f6d7f4f
JB
2403
2404 if (found_key.offset == last_objectid) {
2405 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2406 "stopping orphan cleanup\n");
2407 ret = -EINVAL;
2408 goto out;
2409 }
2410
2411 last_objectid = found_key.offset;
2412
5d4f98a2
YZ
2413 found_key.objectid = found_key.offset;
2414 found_key.type = BTRFS_INODE_ITEM_KEY;
2415 found_key.offset = 0;
73f73415 2416 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2417 ret = PTR_RET(inode);
2418 if (ret && ret != -ESTALE)
66b4ffd1 2419 goto out;
7b128766 2420
f8e9e0b0
AJ
2421 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2422 struct btrfs_root *dead_root;
2423 struct btrfs_fs_info *fs_info = root->fs_info;
2424 int is_dead_root = 0;
2425
2426 /*
2427 * this is an orphan in the tree root. Currently these
2428 * could come from 2 sources:
2429 * a) a snapshot deletion in progress
2430 * b) a free space cache inode
2431 * We need to distinguish those two, as the snapshot
2432 * orphan must not get deleted.
2433 * find_dead_roots already ran before us, so if this
2434 * is a snapshot deletion, we should find the root
2435 * in the dead_roots list
2436 */
2437 spin_lock(&fs_info->trans_lock);
2438 list_for_each_entry(dead_root, &fs_info->dead_roots,
2439 root_list) {
2440 if (dead_root->root_key.objectid ==
2441 found_key.objectid) {
2442 is_dead_root = 1;
2443 break;
2444 }
2445 }
2446 spin_unlock(&fs_info->trans_lock);
2447 if (is_dead_root) {
2448 /* prevent this orphan from being found again */
2449 key.offset = found_key.objectid - 1;
2450 continue;
2451 }
2452 }
7b128766 2453 /*
a8c9e576
JB
2454 * Inode is already gone but the orphan item is still there,
2455 * kill the orphan item.
7b128766 2456 */
a8c9e576
JB
2457 if (ret == -ESTALE) {
2458 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2459 if (IS_ERR(trans)) {
2460 ret = PTR_ERR(trans);
2461 goto out;
2462 }
8a35d95f
JB
2463 printk(KERN_ERR "auto deleting %Lu\n",
2464 found_key.objectid);
a8c9e576
JB
2465 ret = btrfs_del_orphan_item(trans, root,
2466 found_key.objectid);
79787eaa 2467 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2468 btrfs_end_transaction(trans, root);
7b128766
JB
2469 continue;
2470 }
2471
a8c9e576
JB
2472 /*
2473 * add this inode to the orphan list so btrfs_orphan_del does
2474 * the proper thing when we hit it
2475 */
8a35d95f
JB
2476 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2477 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2478
7b128766
JB
2479 /* if we have links, this was a truncate, lets do that */
2480 if (inode->i_nlink) {
a41ad394
JB
2481 if (!S_ISREG(inode->i_mode)) {
2482 WARN_ON(1);
2483 iput(inode);
2484 continue;
2485 }
7b128766 2486 nr_truncate++;
f3fe820c
JB
2487
2488 /* 1 for the orphan item deletion. */
2489 trans = btrfs_start_transaction(root, 1);
2490 if (IS_ERR(trans)) {
2491 ret = PTR_ERR(trans);
2492 goto out;
2493 }
2494 ret = btrfs_orphan_add(trans, inode);
2495 btrfs_end_transaction(trans, root);
2496 if (ret)
2497 goto out;
2498
66b4ffd1 2499 ret = btrfs_truncate(inode);
7b128766
JB
2500 } else {
2501 nr_unlink++;
2502 }
2503
2504 /* this will do delete_inode and everything for us */
2505 iput(inode);
66b4ffd1
JB
2506 if (ret)
2507 goto out;
7b128766 2508 }
3254c876
MX
2509 /* release the path since we're done with it */
2510 btrfs_release_path(path);
2511
d68fc57b
YZ
2512 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2513
2514 if (root->orphan_block_rsv)
2515 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2516 (u64)-1);
2517
2518 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2519 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2520 if (!IS_ERR(trans))
2521 btrfs_end_transaction(trans, root);
d68fc57b 2522 }
7b128766
JB
2523
2524 if (nr_unlink)
2525 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2526 if (nr_truncate)
2527 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2528
2529out:
2530 if (ret)
2531 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2532 btrfs_free_path(path);
2533 return ret;
7b128766
JB
2534}
2535
46a53cca
CM
2536/*
2537 * very simple check to peek ahead in the leaf looking for xattrs. If we
2538 * don't find any xattrs, we know there can't be any acls.
2539 *
2540 * slot is the slot the inode is in, objectid is the objectid of the inode
2541 */
2542static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2543 int slot, u64 objectid)
2544{
2545 u32 nritems = btrfs_header_nritems(leaf);
2546 struct btrfs_key found_key;
2547 int scanned = 0;
2548
2549 slot++;
2550 while (slot < nritems) {
2551 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2552
2553 /* we found a different objectid, there must not be acls */
2554 if (found_key.objectid != objectid)
2555 return 0;
2556
2557 /* we found an xattr, assume we've got an acl */
2558 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2559 return 1;
2560
2561 /*
2562 * we found a key greater than an xattr key, there can't
2563 * be any acls later on
2564 */
2565 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2566 return 0;
2567
2568 slot++;
2569 scanned++;
2570
2571 /*
2572 * it goes inode, inode backrefs, xattrs, extents,
2573 * so if there are a ton of hard links to an inode there can
2574 * be a lot of backrefs. Don't waste time searching too hard,
2575 * this is just an optimization
2576 */
2577 if (scanned >= 8)
2578 break;
2579 }
2580 /* we hit the end of the leaf before we found an xattr or
2581 * something larger than an xattr. We have to assume the inode
2582 * has acls
2583 */
2584 return 1;
2585}
2586
d352ac68
CM
2587/*
2588 * read an inode from the btree into the in-memory inode
2589 */
5d4f98a2 2590static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2591{
2592 struct btrfs_path *path;
5f39d397 2593 struct extent_buffer *leaf;
39279cc3 2594 struct btrfs_inode_item *inode_item;
0b86a832 2595 struct btrfs_timespec *tspec;
39279cc3
CM
2596 struct btrfs_root *root = BTRFS_I(inode)->root;
2597 struct btrfs_key location;
46a53cca 2598 int maybe_acls;
618e21d5 2599 u32 rdev;
39279cc3 2600 int ret;
2f7e33d4
MX
2601 bool filled = false;
2602
2603 ret = btrfs_fill_inode(inode, &rdev);
2604 if (!ret)
2605 filled = true;
39279cc3
CM
2606
2607 path = btrfs_alloc_path();
1748f843
MF
2608 if (!path)
2609 goto make_bad;
2610
d90c7321 2611 path->leave_spinning = 1;
39279cc3 2612 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2613
39279cc3 2614 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2615 if (ret)
39279cc3 2616 goto make_bad;
39279cc3 2617
5f39d397 2618 leaf = path->nodes[0];
2f7e33d4
MX
2619
2620 if (filled)
2621 goto cache_acl;
2622
5f39d397
CM
2623 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2624 struct btrfs_inode_item);
5f39d397 2625 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2626 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2627 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2628 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2629 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2630
2631 tspec = btrfs_inode_atime(inode_item);
2632 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2633 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2634
2635 tspec = btrfs_inode_mtime(inode_item);
2636 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2637 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2638
2639 tspec = btrfs_inode_ctime(inode_item);
2640 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2641 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2642
a76a3cd4 2643 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2644 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2645 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2646
2647 /*
2648 * If we were modified in the current generation and evicted from memory
2649 * and then re-read we need to do a full sync since we don't have any
2650 * idea about which extents were modified before we were evicted from
2651 * cache.
2652 */
2653 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2654 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2655 &BTRFS_I(inode)->runtime_flags);
2656
0c4d2d95 2657 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2658 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2659 inode->i_rdev = 0;
5f39d397
CM
2660 rdev = btrfs_inode_rdev(leaf, inode_item);
2661
aec7477b 2662 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2663 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2664cache_acl:
46a53cca
CM
2665 /*
2666 * try to precache a NULL acl entry for files that don't have
2667 * any xattrs or acls
2668 */
33345d01
LZ
2669 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2670 btrfs_ino(inode));
72c04902
AV
2671 if (!maybe_acls)
2672 cache_no_acl(inode);
46a53cca 2673
39279cc3 2674 btrfs_free_path(path);
39279cc3 2675
39279cc3 2676 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2677 case S_IFREG:
2678 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2679 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2680 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2681 inode->i_fop = &btrfs_file_operations;
2682 inode->i_op = &btrfs_file_inode_operations;
2683 break;
2684 case S_IFDIR:
2685 inode->i_fop = &btrfs_dir_file_operations;
2686 if (root == root->fs_info->tree_root)
2687 inode->i_op = &btrfs_dir_ro_inode_operations;
2688 else
2689 inode->i_op = &btrfs_dir_inode_operations;
2690 break;
2691 case S_IFLNK:
2692 inode->i_op = &btrfs_symlink_inode_operations;
2693 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2694 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2695 break;
618e21d5 2696 default:
0279b4cd 2697 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2698 init_special_inode(inode, inode->i_mode, rdev);
2699 break;
39279cc3 2700 }
6cbff00f
CH
2701
2702 btrfs_update_iflags(inode);
39279cc3
CM
2703 return;
2704
2705make_bad:
39279cc3 2706 btrfs_free_path(path);
39279cc3
CM
2707 make_bad_inode(inode);
2708}
2709
d352ac68
CM
2710/*
2711 * given a leaf and an inode, copy the inode fields into the leaf
2712 */
e02119d5
CM
2713static void fill_inode_item(struct btrfs_trans_handle *trans,
2714 struct extent_buffer *leaf,
5f39d397 2715 struct btrfs_inode_item *item,
39279cc3
CM
2716 struct inode *inode)
2717{
2f2f43d3
EB
2718 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2719 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
dbe674a9 2720 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2721 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2722 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2723
2724 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2725 inode->i_atime.tv_sec);
2726 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2727 inode->i_atime.tv_nsec);
2728
2729 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2730 inode->i_mtime.tv_sec);
2731 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2732 inode->i_mtime.tv_nsec);
2733
2734 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2735 inode->i_ctime.tv_sec);
2736 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2737 inode->i_ctime.tv_nsec);
2738
a76a3cd4 2739 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2740 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2741 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2742 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2743 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2744 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2745 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2746}
2747
d352ac68
CM
2748/*
2749 * copy everything in the in-memory inode into the btree.
2750 */
2115133f 2751static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2752 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2753{
2754 struct btrfs_inode_item *inode_item;
2755 struct btrfs_path *path;
5f39d397 2756 struct extent_buffer *leaf;
39279cc3
CM
2757 int ret;
2758
2759 path = btrfs_alloc_path();
16cdcec7
MX
2760 if (!path)
2761 return -ENOMEM;
2762
b9473439 2763 path->leave_spinning = 1;
16cdcec7
MX
2764 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2765 1);
39279cc3
CM
2766 if (ret) {
2767 if (ret > 0)
2768 ret = -ENOENT;
2769 goto failed;
2770 }
2771
b4ce94de 2772 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2773 leaf = path->nodes[0];
2774 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2775 struct btrfs_inode_item);
39279cc3 2776
e02119d5 2777 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2778 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2779 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2780 ret = 0;
2781failed:
39279cc3
CM
2782 btrfs_free_path(path);
2783 return ret;
2784}
2785
2115133f
CM
2786/*
2787 * copy everything in the in-memory inode into the btree.
2788 */
2789noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2790 struct btrfs_root *root, struct inode *inode)
2791{
2792 int ret;
2793
2794 /*
2795 * If the inode is a free space inode, we can deadlock during commit
2796 * if we put it into the delayed code.
2797 *
2798 * The data relocation inode should also be directly updated
2799 * without delay
2800 */
83eea1f1 2801 if (!btrfs_is_free_space_inode(inode)
2115133f 2802 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2803 btrfs_update_root_times(trans, root);
2804
2115133f
CM
2805 ret = btrfs_delayed_update_inode(trans, root, inode);
2806 if (!ret)
2807 btrfs_set_inode_last_trans(trans, inode);
2808 return ret;
2809 }
2810
2811 return btrfs_update_inode_item(trans, root, inode);
2812}
2813
be6aef60
JB
2814noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2815 struct btrfs_root *root,
2816 struct inode *inode)
2115133f
CM
2817{
2818 int ret;
2819
2820 ret = btrfs_update_inode(trans, root, inode);
2821 if (ret == -ENOSPC)
2822 return btrfs_update_inode_item(trans, root, inode);
2823 return ret;
2824}
2825
d352ac68
CM
2826/*
2827 * unlink helper that gets used here in inode.c and in the tree logging
2828 * recovery code. It remove a link in a directory with a given name, and
2829 * also drops the back refs in the inode to the directory
2830 */
92986796
AV
2831static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2832 struct btrfs_root *root,
2833 struct inode *dir, struct inode *inode,
2834 const char *name, int name_len)
39279cc3
CM
2835{
2836 struct btrfs_path *path;
39279cc3 2837 int ret = 0;
5f39d397 2838 struct extent_buffer *leaf;
39279cc3 2839 struct btrfs_dir_item *di;
5f39d397 2840 struct btrfs_key key;
aec7477b 2841 u64 index;
33345d01
LZ
2842 u64 ino = btrfs_ino(inode);
2843 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2844
2845 path = btrfs_alloc_path();
54aa1f4d
CM
2846 if (!path) {
2847 ret = -ENOMEM;
554233a6 2848 goto out;
54aa1f4d
CM
2849 }
2850
b9473439 2851 path->leave_spinning = 1;
33345d01 2852 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2853 name, name_len, -1);
2854 if (IS_ERR(di)) {
2855 ret = PTR_ERR(di);
2856 goto err;
2857 }
2858 if (!di) {
2859 ret = -ENOENT;
2860 goto err;
2861 }
5f39d397
CM
2862 leaf = path->nodes[0];
2863 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2864 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2865 if (ret)
2866 goto err;
b3b4aa74 2867 btrfs_release_path(path);
39279cc3 2868
33345d01
LZ
2869 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2870 dir_ino, &index);
aec7477b 2871 if (ret) {
d397712b 2872 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2873 "inode %llu parent %llu\n", name_len, name,
2874 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2875 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2876 goto err;
2877 }
2878
16cdcec7 2879 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2880 if (ret) {
2881 btrfs_abort_transaction(trans, root, ret);
39279cc3 2882 goto err;
79787eaa 2883 }
39279cc3 2884
e02119d5 2885 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2886 inode, dir_ino);
79787eaa
JM
2887 if (ret != 0 && ret != -ENOENT) {
2888 btrfs_abort_transaction(trans, root, ret);
2889 goto err;
2890 }
e02119d5
CM
2891
2892 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2893 dir, index);
6418c961
CM
2894 if (ret == -ENOENT)
2895 ret = 0;
39279cc3
CM
2896err:
2897 btrfs_free_path(path);
e02119d5
CM
2898 if (ret)
2899 goto out;
2900
2901 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2902 inode_inc_iversion(inode);
2903 inode_inc_iversion(dir);
e02119d5 2904 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2905 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2906out:
39279cc3
CM
2907 return ret;
2908}
2909
92986796
AV
2910int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2911 struct btrfs_root *root,
2912 struct inode *dir, struct inode *inode,
2913 const char *name, int name_len)
2914{
2915 int ret;
2916 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2917 if (!ret) {
2918 btrfs_drop_nlink(inode);
2919 ret = btrfs_update_inode(trans, root, inode);
2920 }
2921 return ret;
2922}
2923
2924
a22285a6
YZ
2925/* helper to check if there is any shared block in the path */
2926static int check_path_shared(struct btrfs_root *root,
2927 struct btrfs_path *path)
39279cc3 2928{
a22285a6
YZ
2929 struct extent_buffer *eb;
2930 int level;
0e4dcbef 2931 u64 refs = 1;
5df6a9f6 2932
a22285a6 2933 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2934 int ret;
2935
a22285a6
YZ
2936 if (!path->nodes[level])
2937 break;
2938 eb = path->nodes[level];
2939 if (!btrfs_block_can_be_shared(root, eb))
2940 continue;
2941 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2942 &refs, NULL);
2943 if (refs > 1)
2944 return 1;
5df6a9f6 2945 }
dedefd72 2946 return 0;
39279cc3
CM
2947}
2948
a22285a6
YZ
2949/*
2950 * helper to start transaction for unlink and rmdir.
2951 *
2952 * unlink and rmdir are special in btrfs, they do not always free space.
2953 * so in enospc case, we should make sure they will free space before
2954 * allowing them to use the global metadata reservation.
2955 */
2956static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2957 struct dentry *dentry)
4df27c4d 2958{
39279cc3 2959 struct btrfs_trans_handle *trans;
a22285a6 2960 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2961 struct btrfs_path *path;
4df27c4d 2962 struct btrfs_dir_item *di;
7b128766 2963 struct inode *inode = dentry->d_inode;
4df27c4d 2964 u64 index;
a22285a6
YZ
2965 int check_link = 1;
2966 int err = -ENOSPC;
4df27c4d 2967 int ret;
33345d01
LZ
2968 u64 ino = btrfs_ino(inode);
2969 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2970
e70bea5f
JB
2971 /*
2972 * 1 for the possible orphan item
2973 * 1 for the dir item
2974 * 1 for the dir index
2975 * 1 for the inode ref
2976 * 1 for the inode ref in the tree log
2977 * 2 for the dir entries in the log
2978 * 1 for the inode
2979 */
2980 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2981 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2982 return trans;
4df27c4d 2983
33345d01 2984 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2985 return ERR_PTR(-ENOSPC);
4df27c4d 2986
a22285a6
YZ
2987 /* check if there is someone else holds reference */
2988 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2989 return ERR_PTR(-ENOSPC);
4df27c4d 2990
a22285a6
YZ
2991 if (atomic_read(&inode->i_count) > 2)
2992 return ERR_PTR(-ENOSPC);
4df27c4d 2993
a22285a6
YZ
2994 if (xchg(&root->fs_info->enospc_unlink, 1))
2995 return ERR_PTR(-ENOSPC);
2996
2997 path = btrfs_alloc_path();
2998 if (!path) {
2999 root->fs_info->enospc_unlink = 0;
3000 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
3001 }
3002
3880a1b4
JB
3003 /* 1 for the orphan item */
3004 trans = btrfs_start_transaction(root, 1);
5df6a9f6 3005 if (IS_ERR(trans)) {
a22285a6
YZ
3006 btrfs_free_path(path);
3007 root->fs_info->enospc_unlink = 0;
3008 return trans;
3009 }
4df27c4d 3010
a22285a6
YZ
3011 path->skip_locking = 1;
3012 path->search_commit_root = 1;
4df27c4d 3013
a22285a6
YZ
3014 ret = btrfs_lookup_inode(trans, root, path,
3015 &BTRFS_I(dir)->location, 0);
3016 if (ret < 0) {
3017 err = ret;
3018 goto out;
3019 }
3020 if (ret == 0) {
3021 if (check_path_shared(root, path))
3022 goto out;
3023 } else {
3024 check_link = 0;
5df6a9f6 3025 }
b3b4aa74 3026 btrfs_release_path(path);
a22285a6
YZ
3027
3028 ret = btrfs_lookup_inode(trans, root, path,
3029 &BTRFS_I(inode)->location, 0);
3030 if (ret < 0) {
3031 err = ret;
3032 goto out;
3033 }
3034 if (ret == 0) {
3035 if (check_path_shared(root, path))
3036 goto out;
3037 } else {
3038 check_link = 0;
3039 }
b3b4aa74 3040 btrfs_release_path(path);
a22285a6
YZ
3041
3042 if (ret == 0 && S_ISREG(inode->i_mode)) {
3043 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3044 ino, (u64)-1, 0);
a22285a6
YZ
3045 if (ret < 0) {
3046 err = ret;
3047 goto out;
3048 }
79787eaa 3049 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3050 if (check_path_shared(root, path))
3051 goto out;
b3b4aa74 3052 btrfs_release_path(path);
a22285a6
YZ
3053 }
3054
3055 if (!check_link) {
3056 err = 0;
3057 goto out;
3058 }
3059
33345d01 3060 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3061 dentry->d_name.name, dentry->d_name.len, 0);
3062 if (IS_ERR(di)) {
3063 err = PTR_ERR(di);
3064 goto out;
3065 }
3066 if (di) {
3067 if (check_path_shared(root, path))
3068 goto out;
3069 } else {
3070 err = 0;
3071 goto out;
3072 }
b3b4aa74 3073 btrfs_release_path(path);
a22285a6 3074
f186373f
MF
3075 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3076 dentry->d_name.len, ino, dir_ino, 0,
3077 &index);
3078 if (ret) {
3079 err = ret;
a22285a6
YZ
3080 goto out;
3081 }
f186373f 3082
a22285a6
YZ
3083 if (check_path_shared(root, path))
3084 goto out;
f186373f 3085
b3b4aa74 3086 btrfs_release_path(path);
a22285a6 3087
16cdcec7
MX
3088 /*
3089 * This is a commit root search, if we can lookup inode item and other
3090 * relative items in the commit root, it means the transaction of
3091 * dir/file creation has been committed, and the dir index item that we
3092 * delay to insert has also been inserted into the commit root. So
3093 * we needn't worry about the delayed insertion of the dir index item
3094 * here.
3095 */
33345d01 3096 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3097 dentry->d_name.name, dentry->d_name.len, 0);
3098 if (IS_ERR(di)) {
3099 err = PTR_ERR(di);
3100 goto out;
3101 }
3102 BUG_ON(ret == -ENOENT);
3103 if (check_path_shared(root, path))
3104 goto out;
3105
3106 err = 0;
3107out:
3108 btrfs_free_path(path);
3880a1b4
JB
3109 /* Migrate the orphan reservation over */
3110 if (!err)
3111 err = btrfs_block_rsv_migrate(trans->block_rsv,
3112 &root->fs_info->global_block_rsv,
5a77d76c 3113 trans->bytes_reserved);
3880a1b4 3114
a22285a6
YZ
3115 if (err) {
3116 btrfs_end_transaction(trans, root);
3117 root->fs_info->enospc_unlink = 0;
3118 return ERR_PTR(err);
3119 }
3120
3121 trans->block_rsv = &root->fs_info->global_block_rsv;
3122 return trans;
3123}
3124
3125static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3126 struct btrfs_root *root)
3127{
66d8f3dd 3128 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3129 btrfs_block_rsv_release(root, trans->block_rsv,
3130 trans->bytes_reserved);
3131 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3132 BUG_ON(!root->fs_info->enospc_unlink);
3133 root->fs_info->enospc_unlink = 0;
3134 }
7ad85bb7 3135 btrfs_end_transaction(trans, root);
a22285a6
YZ
3136}
3137
3138static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3139{
3140 struct btrfs_root *root = BTRFS_I(dir)->root;
3141 struct btrfs_trans_handle *trans;
3142 struct inode *inode = dentry->d_inode;
3143 int ret;
a22285a6
YZ
3144
3145 trans = __unlink_start_trans(dir, dentry);
3146 if (IS_ERR(trans))
3147 return PTR_ERR(trans);
5f39d397 3148
12fcfd22
CM
3149 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3150
e02119d5
CM
3151 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3152 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3153 if (ret)
3154 goto out;
7b128766 3155
a22285a6 3156 if (inode->i_nlink == 0) {
7b128766 3157 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3158 if (ret)
3159 goto out;
a22285a6 3160 }
7b128766 3161
b532402e 3162out:
a22285a6 3163 __unlink_end_trans(trans, root);
b53d3f5d 3164 btrfs_btree_balance_dirty(root);
39279cc3
CM
3165 return ret;
3166}
3167
4df27c4d
YZ
3168int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3169 struct btrfs_root *root,
3170 struct inode *dir, u64 objectid,
3171 const char *name, int name_len)
3172{
3173 struct btrfs_path *path;
3174 struct extent_buffer *leaf;
3175 struct btrfs_dir_item *di;
3176 struct btrfs_key key;
3177 u64 index;
3178 int ret;
33345d01 3179 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3180
3181 path = btrfs_alloc_path();
3182 if (!path)
3183 return -ENOMEM;
3184
33345d01 3185 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3186 name, name_len, -1);
79787eaa
JM
3187 if (IS_ERR_OR_NULL(di)) {
3188 if (!di)
3189 ret = -ENOENT;
3190 else
3191 ret = PTR_ERR(di);
3192 goto out;
3193 }
4df27c4d
YZ
3194
3195 leaf = path->nodes[0];
3196 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3197 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3198 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3199 if (ret) {
3200 btrfs_abort_transaction(trans, root, ret);
3201 goto out;
3202 }
b3b4aa74 3203 btrfs_release_path(path);
4df27c4d
YZ
3204
3205 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3206 objectid, root->root_key.objectid,
33345d01 3207 dir_ino, &index, name, name_len);
4df27c4d 3208 if (ret < 0) {
79787eaa
JM
3209 if (ret != -ENOENT) {
3210 btrfs_abort_transaction(trans, root, ret);
3211 goto out;
3212 }
33345d01 3213 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3214 name, name_len);
79787eaa
JM
3215 if (IS_ERR_OR_NULL(di)) {
3216 if (!di)
3217 ret = -ENOENT;
3218 else
3219 ret = PTR_ERR(di);
3220 btrfs_abort_transaction(trans, root, ret);
3221 goto out;
3222 }
4df27c4d
YZ
3223
3224 leaf = path->nodes[0];
3225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3226 btrfs_release_path(path);
4df27c4d
YZ
3227 index = key.offset;
3228 }
945d8962 3229 btrfs_release_path(path);
4df27c4d 3230
16cdcec7 3231 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3232 if (ret) {
3233 btrfs_abort_transaction(trans, root, ret);
3234 goto out;
3235 }
4df27c4d
YZ
3236
3237 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3238 inode_inc_iversion(dir);
4df27c4d 3239 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3240 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3241 if (ret)
3242 btrfs_abort_transaction(trans, root, ret);
3243out:
71d7aed0 3244 btrfs_free_path(path);
79787eaa 3245 return ret;
4df27c4d
YZ
3246}
3247
39279cc3
CM
3248static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3249{
3250 struct inode *inode = dentry->d_inode;
1832a6d5 3251 int err = 0;
39279cc3 3252 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3253 struct btrfs_trans_handle *trans;
39279cc3 3254
b3ae244e 3255 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3256 return -ENOTEMPTY;
b3ae244e
DS
3257 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3258 return -EPERM;
134d4512 3259
a22285a6
YZ
3260 trans = __unlink_start_trans(dir, dentry);
3261 if (IS_ERR(trans))
5df6a9f6 3262 return PTR_ERR(trans);
5df6a9f6 3263
33345d01 3264 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3265 err = btrfs_unlink_subvol(trans, root, dir,
3266 BTRFS_I(inode)->location.objectid,
3267 dentry->d_name.name,
3268 dentry->d_name.len);
3269 goto out;
3270 }
3271
7b128766
JB
3272 err = btrfs_orphan_add(trans, inode);
3273 if (err)
4df27c4d 3274 goto out;
7b128766 3275
39279cc3 3276 /* now the directory is empty */
e02119d5
CM
3277 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3278 dentry->d_name.name, dentry->d_name.len);
d397712b 3279 if (!err)
dbe674a9 3280 btrfs_i_size_write(inode, 0);
4df27c4d 3281out:
a22285a6 3282 __unlink_end_trans(trans, root);
b53d3f5d 3283 btrfs_btree_balance_dirty(root);
3954401f 3284
39279cc3
CM
3285 return err;
3286}
3287
39279cc3
CM
3288/*
3289 * this can truncate away extent items, csum items and directory items.
3290 * It starts at a high offset and removes keys until it can't find
d352ac68 3291 * any higher than new_size
39279cc3
CM
3292 *
3293 * csum items that cross the new i_size are truncated to the new size
3294 * as well.
7b128766
JB
3295 *
3296 * min_type is the minimum key type to truncate down to. If set to 0, this
3297 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3298 */
8082510e
YZ
3299int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3300 struct btrfs_root *root,
3301 struct inode *inode,
3302 u64 new_size, u32 min_type)
39279cc3 3303{
39279cc3 3304 struct btrfs_path *path;
5f39d397 3305 struct extent_buffer *leaf;
39279cc3 3306 struct btrfs_file_extent_item *fi;
8082510e
YZ
3307 struct btrfs_key key;
3308 struct btrfs_key found_key;
39279cc3 3309 u64 extent_start = 0;
db94535d 3310 u64 extent_num_bytes = 0;
5d4f98a2 3311 u64 extent_offset = 0;
39279cc3 3312 u64 item_end = 0;
8082510e
YZ
3313 u64 mask = root->sectorsize - 1;
3314 u32 found_type = (u8)-1;
39279cc3
CM
3315 int found_extent;
3316 int del_item;
85e21bac
CM
3317 int pending_del_nr = 0;
3318 int pending_del_slot = 0;
179e29e4 3319 int extent_type = -1;
8082510e
YZ
3320 int ret;
3321 int err = 0;
33345d01 3322 u64 ino = btrfs_ino(inode);
8082510e
YZ
3323
3324 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3325
0eb0e19c
MF
3326 path = btrfs_alloc_path();
3327 if (!path)
3328 return -ENOMEM;
3329 path->reada = -1;
3330
5dc562c5
JB
3331 /*
3332 * We want to drop from the next block forward in case this new size is
3333 * not block aligned since we will be keeping the last block of the
3334 * extent just the way it is.
3335 */
0af3d00b 3336 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3337 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3338
16cdcec7
MX
3339 /*
3340 * This function is also used to drop the items in the log tree before
3341 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3342 * it is used to drop the loged items. So we shouldn't kill the delayed
3343 * items.
3344 */
3345 if (min_type == 0 && root == BTRFS_I(inode)->root)
3346 btrfs_kill_delayed_inode_items(inode);
3347
33345d01 3348 key.objectid = ino;
39279cc3 3349 key.offset = (u64)-1;
5f39d397
CM
3350 key.type = (u8)-1;
3351
85e21bac 3352search_again:
b9473439 3353 path->leave_spinning = 1;
85e21bac 3354 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3355 if (ret < 0) {
3356 err = ret;
3357 goto out;
3358 }
d397712b 3359
85e21bac 3360 if (ret > 0) {
e02119d5
CM
3361 /* there are no items in the tree for us to truncate, we're
3362 * done
3363 */
8082510e
YZ
3364 if (path->slots[0] == 0)
3365 goto out;
85e21bac
CM
3366 path->slots[0]--;
3367 }
3368
d397712b 3369 while (1) {
39279cc3 3370 fi = NULL;
5f39d397
CM
3371 leaf = path->nodes[0];
3372 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3373 found_type = btrfs_key_type(&found_key);
39279cc3 3374
33345d01 3375 if (found_key.objectid != ino)
39279cc3 3376 break;
5f39d397 3377
85e21bac 3378 if (found_type < min_type)
39279cc3
CM
3379 break;
3380
5f39d397 3381 item_end = found_key.offset;
39279cc3 3382 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3383 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3384 struct btrfs_file_extent_item);
179e29e4
CM
3385 extent_type = btrfs_file_extent_type(leaf, fi);
3386 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3387 item_end +=
db94535d 3388 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3390 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3391 fi);
39279cc3 3392 }
008630c1 3393 item_end--;
39279cc3 3394 }
8082510e
YZ
3395 if (found_type > min_type) {
3396 del_item = 1;
3397 } else {
3398 if (item_end < new_size)
b888db2b 3399 break;
8082510e
YZ
3400 if (found_key.offset >= new_size)
3401 del_item = 1;
3402 else
3403 del_item = 0;
39279cc3 3404 }
39279cc3 3405 found_extent = 0;
39279cc3 3406 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3407 if (found_type != BTRFS_EXTENT_DATA_KEY)
3408 goto delete;
3409
3410 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3411 u64 num_dec;
db94535d 3412 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3413 if (!del_item) {
db94535d
CM
3414 u64 orig_num_bytes =
3415 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3416 extent_num_bytes = new_size -
5f39d397 3417 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3418 extent_num_bytes = extent_num_bytes &
3419 ~((u64)root->sectorsize - 1);
db94535d
CM
3420 btrfs_set_file_extent_num_bytes(leaf, fi,
3421 extent_num_bytes);
3422 num_dec = (orig_num_bytes -
9069218d 3423 extent_num_bytes);
e02119d5 3424 if (root->ref_cows && extent_start != 0)
a76a3cd4 3425 inode_sub_bytes(inode, num_dec);
5f39d397 3426 btrfs_mark_buffer_dirty(leaf);
39279cc3 3427 } else {
db94535d
CM
3428 extent_num_bytes =
3429 btrfs_file_extent_disk_num_bytes(leaf,
3430 fi);
5d4f98a2
YZ
3431 extent_offset = found_key.offset -
3432 btrfs_file_extent_offset(leaf, fi);
3433
39279cc3 3434 /* FIXME blocksize != 4096 */
9069218d 3435 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3436 if (extent_start != 0) {
3437 found_extent = 1;
e02119d5 3438 if (root->ref_cows)
a76a3cd4 3439 inode_sub_bytes(inode, num_dec);
e02119d5 3440 }
39279cc3 3441 }
9069218d 3442 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3443 /*
3444 * we can't truncate inline items that have had
3445 * special encodings
3446 */
3447 if (!del_item &&
3448 btrfs_file_extent_compression(leaf, fi) == 0 &&
3449 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3450 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3451 u32 size = new_size - found_key.offset;
3452
3453 if (root->ref_cows) {
a76a3cd4
YZ
3454 inode_sub_bytes(inode, item_end + 1 -
3455 new_size);
e02119d5
CM
3456 }
3457 size =
3458 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3459 btrfs_truncate_item(trans, root, path,
3460 size, 1);
e02119d5 3461 } else if (root->ref_cows) {
a76a3cd4
YZ
3462 inode_sub_bytes(inode, item_end + 1 -
3463 found_key.offset);
9069218d 3464 }
39279cc3 3465 }
179e29e4 3466delete:
39279cc3 3467 if (del_item) {
85e21bac
CM
3468 if (!pending_del_nr) {
3469 /* no pending yet, add ourselves */
3470 pending_del_slot = path->slots[0];
3471 pending_del_nr = 1;
3472 } else if (pending_del_nr &&
3473 path->slots[0] + 1 == pending_del_slot) {
3474 /* hop on the pending chunk */
3475 pending_del_nr++;
3476 pending_del_slot = path->slots[0];
3477 } else {
d397712b 3478 BUG();
85e21bac 3479 }
39279cc3
CM
3480 } else {
3481 break;
3482 }
0af3d00b
JB
3483 if (found_extent && (root->ref_cows ||
3484 root == root->fs_info->tree_root)) {
b9473439 3485 btrfs_set_path_blocking(path);
39279cc3 3486 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3487 extent_num_bytes, 0,
3488 btrfs_header_owner(leaf),
66d7e7f0 3489 ino, extent_offset, 0);
39279cc3
CM
3490 BUG_ON(ret);
3491 }
85e21bac 3492
8082510e
YZ
3493 if (found_type == BTRFS_INODE_ITEM_KEY)
3494 break;
3495
3496 if (path->slots[0] == 0 ||
3497 path->slots[0] != pending_del_slot) {
8082510e
YZ
3498 if (pending_del_nr) {
3499 ret = btrfs_del_items(trans, root, path,
3500 pending_del_slot,
3501 pending_del_nr);
79787eaa
JM
3502 if (ret) {
3503 btrfs_abort_transaction(trans,
3504 root, ret);
3505 goto error;
3506 }
8082510e
YZ
3507 pending_del_nr = 0;
3508 }
b3b4aa74 3509 btrfs_release_path(path);
85e21bac 3510 goto search_again;
8082510e
YZ
3511 } else {
3512 path->slots[0]--;
85e21bac 3513 }
39279cc3 3514 }
8082510e 3515out:
85e21bac
CM
3516 if (pending_del_nr) {
3517 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3518 pending_del_nr);
79787eaa
JM
3519 if (ret)
3520 btrfs_abort_transaction(trans, root, ret);
85e21bac 3521 }
79787eaa 3522error:
39279cc3 3523 btrfs_free_path(path);
8082510e 3524 return err;
39279cc3
CM
3525}
3526
3527/*
2aaa6655
JB
3528 * btrfs_truncate_page - read, zero a chunk and write a page
3529 * @inode - inode that we're zeroing
3530 * @from - the offset to start zeroing
3531 * @len - the length to zero, 0 to zero the entire range respective to the
3532 * offset
3533 * @front - zero up to the offset instead of from the offset on
3534 *
3535 * This will find the page for the "from" offset and cow the page and zero the
3536 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3537 */
2aaa6655
JB
3538int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3539 int front)
39279cc3 3540{
2aaa6655 3541 struct address_space *mapping = inode->i_mapping;
db94535d 3542 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3543 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3544 struct btrfs_ordered_extent *ordered;
2ac55d41 3545 struct extent_state *cached_state = NULL;
e6dcd2dc 3546 char *kaddr;
db94535d 3547 u32 blocksize = root->sectorsize;
39279cc3
CM
3548 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3549 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3550 struct page *page;
3b16a4e3 3551 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3552 int ret = 0;
a52d9a80 3553 u64 page_start;
e6dcd2dc 3554 u64 page_end;
39279cc3 3555
2aaa6655
JB
3556 if ((offset & (blocksize - 1)) == 0 &&
3557 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3558 goto out;
0ca1f7ce 3559 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3560 if (ret)
3561 goto out;
39279cc3 3562
211c17f5 3563again:
3b16a4e3 3564 page = find_or_create_page(mapping, index, mask);
5d5e103a 3565 if (!page) {
0ca1f7ce 3566 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 3567 ret = -ENOMEM;
39279cc3 3568 goto out;
5d5e103a 3569 }
e6dcd2dc
CM
3570
3571 page_start = page_offset(page);
3572 page_end = page_start + PAGE_CACHE_SIZE - 1;
3573
39279cc3 3574 if (!PageUptodate(page)) {
9ebefb18 3575 ret = btrfs_readpage(NULL, page);
39279cc3 3576 lock_page(page);
211c17f5
CM
3577 if (page->mapping != mapping) {
3578 unlock_page(page);
3579 page_cache_release(page);
3580 goto again;
3581 }
39279cc3
CM
3582 if (!PageUptodate(page)) {
3583 ret = -EIO;
89642229 3584 goto out_unlock;
39279cc3
CM
3585 }
3586 }
211c17f5 3587 wait_on_page_writeback(page);
e6dcd2dc 3588
d0082371 3589 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3590 set_page_extent_mapped(page);
3591
3592 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3593 if (ordered) {
2ac55d41
JB
3594 unlock_extent_cached(io_tree, page_start, page_end,
3595 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3596 unlock_page(page);
3597 page_cache_release(page);
eb84ae03 3598 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3599 btrfs_put_ordered_extent(ordered);
3600 goto again;
3601 }
3602
2ac55d41 3603 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3604 EXTENT_DIRTY | EXTENT_DELALLOC |
3605 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3606 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3607
2ac55d41
JB
3608 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3609 &cached_state);
9ed74f2d 3610 if (ret) {
2ac55d41
JB
3611 unlock_extent_cached(io_tree, page_start, page_end,
3612 &cached_state, GFP_NOFS);
9ed74f2d
JB
3613 goto out_unlock;
3614 }
3615
e6dcd2dc 3616 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3617 if (!len)
3618 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3619 kaddr = kmap(page);
2aaa6655
JB
3620 if (front)
3621 memset(kaddr, 0, offset);
3622 else
3623 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3624 flush_dcache_page(page);
3625 kunmap(page);
3626 }
247e743c 3627 ClearPageChecked(page);
e6dcd2dc 3628 set_page_dirty(page);
2ac55d41
JB
3629 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3630 GFP_NOFS);
39279cc3 3631
89642229 3632out_unlock:
5d5e103a 3633 if (ret)
0ca1f7ce 3634 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3635 unlock_page(page);
3636 page_cache_release(page);
3637out:
3638 return ret;
3639}
3640
695a0d0d
JB
3641/*
3642 * This function puts in dummy file extents for the area we're creating a hole
3643 * for. So if we are truncating this file to a larger size we need to insert
3644 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3645 * the range between oldsize and size
3646 */
a41ad394 3647int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3648{
9036c102
YZ
3649 struct btrfs_trans_handle *trans;
3650 struct btrfs_root *root = BTRFS_I(inode)->root;
3651 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3652 struct extent_map *em = NULL;
2ac55d41 3653 struct extent_state *cached_state = NULL;
5dc562c5 3654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3655 u64 mask = root->sectorsize - 1;
a41ad394 3656 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3657 u64 block_end = (size + mask) & ~mask;
3658 u64 last_byte;
3659 u64 cur_offset;
3660 u64 hole_size;
9ed74f2d 3661 int err = 0;
39279cc3 3662
9036c102
YZ
3663 if (size <= hole_start)
3664 return 0;
3665
9036c102
YZ
3666 while (1) {
3667 struct btrfs_ordered_extent *ordered;
3668 btrfs_wait_ordered_range(inode, hole_start,
3669 block_end - hole_start);
2ac55d41 3670 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3671 &cached_state);
9036c102
YZ
3672 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3673 if (!ordered)
3674 break;
2ac55d41
JB
3675 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3676 &cached_state, GFP_NOFS);
9036c102
YZ
3677 btrfs_put_ordered_extent(ordered);
3678 }
39279cc3 3679
9036c102
YZ
3680 cur_offset = hole_start;
3681 while (1) {
3682 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3683 block_end - cur_offset, 0);
79787eaa
JM
3684 if (IS_ERR(em)) {
3685 err = PTR_ERR(em);
f2767956 3686 em = NULL;
79787eaa
JM
3687 break;
3688 }
9036c102
YZ
3689 last_byte = min(extent_map_end(em), block_end);
3690 last_byte = (last_byte + mask) & ~mask;
8082510e 3691 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3692 struct extent_map *hole_em;
9036c102 3693 hole_size = last_byte - cur_offset;
9ed74f2d 3694
3642320e 3695 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3696 if (IS_ERR(trans)) {
3697 err = PTR_ERR(trans);
9ed74f2d 3698 break;
a22285a6 3699 }
8082510e 3700
5dc562c5
JB
3701 err = btrfs_drop_extents(trans, root, inode,
3702 cur_offset,
2671485d 3703 cur_offset + hole_size, 1);
5b397377 3704 if (err) {
79787eaa 3705 btrfs_abort_transaction(trans, root, err);
5b397377 3706 btrfs_end_transaction(trans, root);
3893e33b 3707 break;
5b397377 3708 }
8082510e 3709
9036c102 3710 err = btrfs_insert_file_extent(trans, root,
33345d01 3711 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3712 0, hole_size, 0, hole_size,
3713 0, 0, 0);
5b397377 3714 if (err) {
79787eaa 3715 btrfs_abort_transaction(trans, root, err);
5b397377 3716 btrfs_end_transaction(trans, root);
3893e33b 3717 break;
5b397377 3718 }
8082510e 3719
5dc562c5
JB
3720 btrfs_drop_extent_cache(inode, cur_offset,
3721 cur_offset + hole_size - 1, 0);
3722 hole_em = alloc_extent_map();
3723 if (!hole_em) {
3724 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3725 &BTRFS_I(inode)->runtime_flags);
3726 goto next;
3727 }
3728 hole_em->start = cur_offset;
3729 hole_em->len = hole_size;
3730 hole_em->orig_start = cur_offset;
8082510e 3731
5dc562c5
JB
3732 hole_em->block_start = EXTENT_MAP_HOLE;
3733 hole_em->block_len = 0;
b4939680 3734 hole_em->orig_block_len = 0;
5dc562c5
JB
3735 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3736 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3737 hole_em->generation = trans->transid;
8082510e 3738
5dc562c5
JB
3739 while (1) {
3740 write_lock(&em_tree->lock);
3741 err = add_extent_mapping(em_tree, hole_em);
3742 if (!err)
3743 list_move(&hole_em->list,
3744 &em_tree->modified_extents);
3745 write_unlock(&em_tree->lock);
3746 if (err != -EEXIST)
3747 break;
3748 btrfs_drop_extent_cache(inode, cur_offset,
3749 cur_offset +
3750 hole_size - 1, 0);
3751 }
3752 free_extent_map(hole_em);
3753next:
3642320e 3754 btrfs_update_inode(trans, root, inode);
8082510e 3755 btrfs_end_transaction(trans, root);
9036c102
YZ
3756 }
3757 free_extent_map(em);
a22285a6 3758 em = NULL;
9036c102 3759 cur_offset = last_byte;
8082510e 3760 if (cur_offset >= block_end)
9036c102
YZ
3761 break;
3762 }
1832a6d5 3763
a22285a6 3764 free_extent_map(em);
2ac55d41
JB
3765 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3766 GFP_NOFS);
9036c102
YZ
3767 return err;
3768}
39279cc3 3769
3972f260 3770static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 3771{
f4a2f4c5
MX
3772 struct btrfs_root *root = BTRFS_I(inode)->root;
3773 struct btrfs_trans_handle *trans;
a41ad394 3774 loff_t oldsize = i_size_read(inode);
3972f260
ES
3775 loff_t newsize = attr->ia_size;
3776 int mask = attr->ia_valid;
8082510e
YZ
3777 int ret;
3778
a41ad394 3779 if (newsize == oldsize)
8082510e
YZ
3780 return 0;
3781
3972f260
ES
3782 /*
3783 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
3784 * special case where we need to update the times despite not having
3785 * these flags set. For all other operations the VFS set these flags
3786 * explicitly if it wants a timestamp update.
3787 */
3788 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
3789 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
3790
a41ad394 3791 if (newsize > oldsize) {
a41ad394
JB
3792 truncate_pagecache(inode, oldsize, newsize);
3793 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3794 if (ret)
8082510e 3795 return ret;
8082510e 3796
f4a2f4c5
MX
3797 trans = btrfs_start_transaction(root, 1);
3798 if (IS_ERR(trans))
3799 return PTR_ERR(trans);
3800
3801 i_size_write(inode, newsize);
3802 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3803 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3804 btrfs_end_transaction(trans, root);
a41ad394 3805 } else {
8082510e 3806
a41ad394
JB
3807 /*
3808 * We're truncating a file that used to have good data down to
3809 * zero. Make sure it gets into the ordered flush list so that
3810 * any new writes get down to disk quickly.
3811 */
3812 if (newsize == 0)
72ac3c0d
JB
3813 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3814 &BTRFS_I(inode)->runtime_flags);
8082510e 3815
f3fe820c
JB
3816 /*
3817 * 1 for the orphan item we're going to add
3818 * 1 for the orphan item deletion.
3819 */
3820 trans = btrfs_start_transaction(root, 2);
3821 if (IS_ERR(trans))
3822 return PTR_ERR(trans);
3823
3824 /*
3825 * We need to do this in case we fail at _any_ point during the
3826 * actual truncate. Once we do the truncate_setsize we could
3827 * invalidate pages which forces any outstanding ordered io to
3828 * be instantly completed which will give us extents that need
3829 * to be truncated. If we fail to get an orphan inode down we
3830 * could have left over extents that were never meant to live,
3831 * so we need to garuntee from this point on that everything
3832 * will be consistent.
3833 */
3834 ret = btrfs_orphan_add(trans, inode);
3835 btrfs_end_transaction(trans, root);
3836 if (ret)
3837 return ret;
3838
a41ad394
JB
3839 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3840 truncate_setsize(inode, newsize);
3841 ret = btrfs_truncate(inode);
f3fe820c
JB
3842 if (ret && inode->i_nlink)
3843 btrfs_orphan_del(NULL, inode);
8082510e
YZ
3844 }
3845
a41ad394 3846 return ret;
8082510e
YZ
3847}
3848
9036c102
YZ
3849static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3850{
3851 struct inode *inode = dentry->d_inode;
b83cc969 3852 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3853 int err;
39279cc3 3854
b83cc969
LZ
3855 if (btrfs_root_readonly(root))
3856 return -EROFS;
3857
9036c102
YZ
3858 err = inode_change_ok(inode, attr);
3859 if (err)
3860 return err;
2bf5a725 3861
5a3f23d5 3862 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 3863 err = btrfs_setsize(inode, attr);
8082510e
YZ
3864 if (err)
3865 return err;
39279cc3 3866 }
9036c102 3867
1025774c
CH
3868 if (attr->ia_valid) {
3869 setattr_copy(inode, attr);
0c4d2d95 3870 inode_inc_iversion(inode);
22c44fe6 3871 err = btrfs_dirty_inode(inode);
1025774c 3872
22c44fe6 3873 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3874 err = btrfs_acl_chmod(inode);
3875 }
33268eaf 3876
39279cc3
CM
3877 return err;
3878}
61295eb8 3879
bd555975 3880void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3881{
3882 struct btrfs_trans_handle *trans;
3883 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3884 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3885 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3886 int ret;
3887
1abe9b8a 3888 trace_btrfs_inode_evict(inode);
3889
39279cc3 3890 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3891 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3892 btrfs_is_free_space_inode(inode)))
bd555975
AV
3893 goto no_delete;
3894
39279cc3 3895 if (is_bad_inode(inode)) {
7b128766 3896 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3897 goto no_delete;
3898 }
bd555975 3899 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3900 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3901
c71bf099 3902 if (root->fs_info->log_root_recovering) {
6bf02314 3903 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3904 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3905 goto no_delete;
3906 }
3907
76dda93c
YZ
3908 if (inode->i_nlink > 0) {
3909 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3910 goto no_delete;
3911 }
3912
0e8c36a9
MX
3913 ret = btrfs_commit_inode_delayed_inode(inode);
3914 if (ret) {
3915 btrfs_orphan_del(NULL, inode);
3916 goto no_delete;
3917 }
3918
66d8f3dd 3919 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3920 if (!rsv) {
3921 btrfs_orphan_del(NULL, inode);
3922 goto no_delete;
3923 }
4a338542 3924 rsv->size = min_size;
ca7e70f5 3925 rsv->failfast = 1;
726c35fa 3926 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3927
dbe674a9 3928 btrfs_i_size_write(inode, 0);
5f39d397 3929
4289a667 3930 /*
8407aa46
MX
3931 * This is a bit simpler than btrfs_truncate since we've already
3932 * reserved our space for our orphan item in the unlink, so we just
3933 * need to reserve some slack space in case we add bytes and update
3934 * inode item when doing the truncate.
4289a667 3935 */
8082510e 3936 while (1) {
08e007d2
MX
3937 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3938 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3939
3940 /*
3941 * Try and steal from the global reserve since we will
3942 * likely not use this space anyway, we want to try as
3943 * hard as possible to get this to work.
3944 */
3945 if (ret)
3946 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3947
d68fc57b 3948 if (ret) {
4289a667 3949 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3950 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3951 btrfs_orphan_del(NULL, inode);
3952 btrfs_free_block_rsv(root, rsv);
3953 goto no_delete;
d68fc57b 3954 }
7b128766 3955
0e8c36a9 3956 trans = btrfs_join_transaction(root);
4289a667
JB
3957 if (IS_ERR(trans)) {
3958 btrfs_orphan_del(NULL, inode);
3959 btrfs_free_block_rsv(root, rsv);
3960 goto no_delete;
d68fc57b 3961 }
7b128766 3962
4289a667
JB
3963 trans->block_rsv = rsv;
3964
d68fc57b 3965 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3966 if (ret != -ENOSPC)
8082510e 3967 break;
85e21bac 3968
8407aa46 3969 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
3970 btrfs_end_transaction(trans, root);
3971 trans = NULL;
b53d3f5d 3972 btrfs_btree_balance_dirty(root);
8082510e 3973 }
5f39d397 3974
4289a667
JB
3975 btrfs_free_block_rsv(root, rsv);
3976
8082510e 3977 if (ret == 0) {
4289a667 3978 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3979 ret = btrfs_orphan_del(trans, inode);
3980 BUG_ON(ret);
3981 }
54aa1f4d 3982
4289a667 3983 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3984 if (!(root == root->fs_info->tree_root ||
3985 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3986 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3987
54aa1f4d 3988 btrfs_end_transaction(trans, root);
b53d3f5d 3989 btrfs_btree_balance_dirty(root);
39279cc3 3990no_delete:
dbd5768f 3991 clear_inode(inode);
8082510e 3992 return;
39279cc3
CM
3993}
3994
3995/*
3996 * this returns the key found in the dir entry in the location pointer.
3997 * If no dir entries were found, location->objectid is 0.
3998 */
3999static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4000 struct btrfs_key *location)
4001{
4002 const char *name = dentry->d_name.name;
4003 int namelen = dentry->d_name.len;
4004 struct btrfs_dir_item *di;
4005 struct btrfs_path *path;
4006 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4007 int ret = 0;
39279cc3
CM
4008
4009 path = btrfs_alloc_path();
d8926bb3
MF
4010 if (!path)
4011 return -ENOMEM;
3954401f 4012
33345d01 4013 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4014 namelen, 0);
0d9f7f3e
Y
4015 if (IS_ERR(di))
4016 ret = PTR_ERR(di);
d397712b 4017
c704005d 4018 if (IS_ERR_OR_NULL(di))
3954401f 4019 goto out_err;
d397712b 4020
5f39d397 4021 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4022out:
39279cc3
CM
4023 btrfs_free_path(path);
4024 return ret;
3954401f
CM
4025out_err:
4026 location->objectid = 0;
4027 goto out;
39279cc3
CM
4028}
4029
4030/*
4031 * when we hit a tree root in a directory, the btrfs part of the inode
4032 * needs to be changed to reflect the root directory of the tree root. This
4033 * is kind of like crossing a mount point.
4034 */
4035static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4036 struct inode *dir,
4037 struct dentry *dentry,
4038 struct btrfs_key *location,
4039 struct btrfs_root **sub_root)
39279cc3 4040{
4df27c4d
YZ
4041 struct btrfs_path *path;
4042 struct btrfs_root *new_root;
4043 struct btrfs_root_ref *ref;
4044 struct extent_buffer *leaf;
4045 int ret;
4046 int err = 0;
39279cc3 4047
4df27c4d
YZ
4048 path = btrfs_alloc_path();
4049 if (!path) {
4050 err = -ENOMEM;
4051 goto out;
4052 }
39279cc3 4053
4df27c4d
YZ
4054 err = -ENOENT;
4055 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4056 BTRFS_I(dir)->root->root_key.objectid,
4057 location->objectid);
4058 if (ret) {
4059 if (ret < 0)
4060 err = ret;
4061 goto out;
4062 }
39279cc3 4063
4df27c4d
YZ
4064 leaf = path->nodes[0];
4065 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4066 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4067 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4068 goto out;
39279cc3 4069
4df27c4d
YZ
4070 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4071 (unsigned long)(ref + 1),
4072 dentry->d_name.len);
4073 if (ret)
4074 goto out;
4075
b3b4aa74 4076 btrfs_release_path(path);
4df27c4d
YZ
4077
4078 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4079 if (IS_ERR(new_root)) {
4080 err = PTR_ERR(new_root);
4081 goto out;
4082 }
4083
4084 if (btrfs_root_refs(&new_root->root_item) == 0) {
4085 err = -ENOENT;
4086 goto out;
4087 }
4088
4089 *sub_root = new_root;
4090 location->objectid = btrfs_root_dirid(&new_root->root_item);
4091 location->type = BTRFS_INODE_ITEM_KEY;
4092 location->offset = 0;
4093 err = 0;
4094out:
4095 btrfs_free_path(path);
4096 return err;
39279cc3
CM
4097}
4098
5d4f98a2
YZ
4099static void inode_tree_add(struct inode *inode)
4100{
4101 struct btrfs_root *root = BTRFS_I(inode)->root;
4102 struct btrfs_inode *entry;
03e860bd
FNP
4103 struct rb_node **p;
4104 struct rb_node *parent;
33345d01 4105 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4106again:
4107 p = &root->inode_tree.rb_node;
4108 parent = NULL;
5d4f98a2 4109
1d3382cb 4110 if (inode_unhashed(inode))
76dda93c
YZ
4111 return;
4112
5d4f98a2
YZ
4113 spin_lock(&root->inode_lock);
4114 while (*p) {
4115 parent = *p;
4116 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4117
33345d01 4118 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4119 p = &parent->rb_left;
33345d01 4120 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4121 p = &parent->rb_right;
5d4f98a2
YZ
4122 else {
4123 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4124 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4125 rb_erase(parent, &root->inode_tree);
4126 RB_CLEAR_NODE(parent);
4127 spin_unlock(&root->inode_lock);
4128 goto again;
5d4f98a2
YZ
4129 }
4130 }
4131 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4132 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4133 spin_unlock(&root->inode_lock);
4134}
4135
4136static void inode_tree_del(struct inode *inode)
4137{
4138 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4139 int empty = 0;
5d4f98a2 4140
03e860bd 4141 spin_lock(&root->inode_lock);
5d4f98a2 4142 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4143 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4145 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4146 }
03e860bd 4147 spin_unlock(&root->inode_lock);
76dda93c 4148
0af3d00b
JB
4149 /*
4150 * Free space cache has inodes in the tree root, but the tree root has a
4151 * root_refs of 0, so this could end up dropping the tree root as a
4152 * snapshot, so we need the extra !root->fs_info->tree_root check to
4153 * make sure we don't drop it.
4154 */
4155 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4156 root != root->fs_info->tree_root) {
76dda93c
YZ
4157 synchronize_srcu(&root->fs_info->subvol_srcu);
4158 spin_lock(&root->inode_lock);
4159 empty = RB_EMPTY_ROOT(&root->inode_tree);
4160 spin_unlock(&root->inode_lock);
4161 if (empty)
4162 btrfs_add_dead_root(root);
4163 }
4164}
4165
143bede5 4166void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4167{
4168 struct rb_node *node;
4169 struct rb_node *prev;
4170 struct btrfs_inode *entry;
4171 struct inode *inode;
4172 u64 objectid = 0;
4173
4174 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4175
4176 spin_lock(&root->inode_lock);
4177again:
4178 node = root->inode_tree.rb_node;
4179 prev = NULL;
4180 while (node) {
4181 prev = node;
4182 entry = rb_entry(node, struct btrfs_inode, rb_node);
4183
33345d01 4184 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4185 node = node->rb_left;
33345d01 4186 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4187 node = node->rb_right;
4188 else
4189 break;
4190 }
4191 if (!node) {
4192 while (prev) {
4193 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4194 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4195 node = prev;
4196 break;
4197 }
4198 prev = rb_next(prev);
4199 }
4200 }
4201 while (node) {
4202 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4203 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4204 inode = igrab(&entry->vfs_inode);
4205 if (inode) {
4206 spin_unlock(&root->inode_lock);
4207 if (atomic_read(&inode->i_count) > 1)
4208 d_prune_aliases(inode);
4209 /*
45321ac5 4210 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4211 * the inode cache when its usage count
4212 * hits zero.
4213 */
4214 iput(inode);
4215 cond_resched();
4216 spin_lock(&root->inode_lock);
4217 goto again;
4218 }
4219
4220 if (cond_resched_lock(&root->inode_lock))
4221 goto again;
4222
4223 node = rb_next(node);
4224 }
4225 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4226}
4227
e02119d5
CM
4228static int btrfs_init_locked_inode(struct inode *inode, void *p)
4229{
4230 struct btrfs_iget_args *args = p;
4231 inode->i_ino = args->ino;
e02119d5 4232 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4233 return 0;
4234}
4235
4236static int btrfs_find_actor(struct inode *inode, void *opaque)
4237{
4238 struct btrfs_iget_args *args = opaque;
33345d01 4239 return args->ino == btrfs_ino(inode) &&
d397712b 4240 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4241}
4242
5d4f98a2
YZ
4243static struct inode *btrfs_iget_locked(struct super_block *s,
4244 u64 objectid,
4245 struct btrfs_root *root)
39279cc3
CM
4246{
4247 struct inode *inode;
4248 struct btrfs_iget_args args;
4249 args.ino = objectid;
4250 args.root = root;
4251
4252 inode = iget5_locked(s, objectid, btrfs_find_actor,
4253 btrfs_init_locked_inode,
4254 (void *)&args);
4255 return inode;
4256}
4257
1a54ef8c
BR
4258/* Get an inode object given its location and corresponding root.
4259 * Returns in *is_new if the inode was read from disk
4260 */
4261struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4262 struct btrfs_root *root, int *new)
1a54ef8c
BR
4263{
4264 struct inode *inode;
4265
4266 inode = btrfs_iget_locked(s, location->objectid, root);
4267 if (!inode)
5d4f98a2 4268 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4269
4270 if (inode->i_state & I_NEW) {
4271 BTRFS_I(inode)->root = root;
4272 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4273 btrfs_read_locked_inode(inode);
1748f843
MF
4274 if (!is_bad_inode(inode)) {
4275 inode_tree_add(inode);
4276 unlock_new_inode(inode);
4277 if (new)
4278 *new = 1;
4279 } else {
e0b6d65b
ST
4280 unlock_new_inode(inode);
4281 iput(inode);
4282 inode = ERR_PTR(-ESTALE);
1748f843
MF
4283 }
4284 }
4285
1a54ef8c
BR
4286 return inode;
4287}
4288
4df27c4d
YZ
4289static struct inode *new_simple_dir(struct super_block *s,
4290 struct btrfs_key *key,
4291 struct btrfs_root *root)
4292{
4293 struct inode *inode = new_inode(s);
4294
4295 if (!inode)
4296 return ERR_PTR(-ENOMEM);
4297
4df27c4d
YZ
4298 BTRFS_I(inode)->root = root;
4299 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4300 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4301
4302 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4303 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4304 inode->i_fop = &simple_dir_operations;
4305 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4306 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4307
4308 return inode;
4309}
4310
3de4586c 4311struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4312{
d397712b 4313 struct inode *inode;
4df27c4d 4314 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4315 struct btrfs_root *sub_root = root;
4316 struct btrfs_key location;
76dda93c 4317 int index;
b4aff1f8 4318 int ret = 0;
39279cc3
CM
4319
4320 if (dentry->d_name.len > BTRFS_NAME_LEN)
4321 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4322
b4aff1f8
JB
4323 if (unlikely(d_need_lookup(dentry))) {
4324 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4325 kfree(dentry->d_fsdata);
4326 dentry->d_fsdata = NULL;
a66e7cc6
JB
4327 /* This thing is hashed, drop it for now */
4328 d_drop(dentry);
b4aff1f8
JB
4329 } else {
4330 ret = btrfs_inode_by_name(dir, dentry, &location);
4331 }
5f39d397 4332
39279cc3
CM
4333 if (ret < 0)
4334 return ERR_PTR(ret);
5f39d397 4335
4df27c4d
YZ
4336 if (location.objectid == 0)
4337 return NULL;
4338
4339 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4340 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4341 return inode;
4342 }
4343
4344 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4345
76dda93c 4346 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4347 ret = fixup_tree_root_location(root, dir, dentry,
4348 &location, &sub_root);
4349 if (ret < 0) {
4350 if (ret != -ENOENT)
4351 inode = ERR_PTR(ret);
4352 else
4353 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4354 } else {
73f73415 4355 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4356 }
76dda93c
YZ
4357 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4358
34d19bad 4359 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4360 down_read(&root->fs_info->cleanup_work_sem);
4361 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4362 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4363 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4364 if (ret)
4365 inode = ERR_PTR(ret);
c71bf099
YZ
4366 }
4367
3de4586c
CM
4368 return inode;
4369}
4370
fe15ce44 4371static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4372{
4373 struct btrfs_root *root;
848cce0d 4374 struct inode *inode = dentry->d_inode;
76dda93c 4375
848cce0d
LZ
4376 if (!inode && !IS_ROOT(dentry))
4377 inode = dentry->d_parent->d_inode;
76dda93c 4378
848cce0d
LZ
4379 if (inode) {
4380 root = BTRFS_I(inode)->root;
efefb143
YZ
4381 if (btrfs_root_refs(&root->root_item) == 0)
4382 return 1;
848cce0d
LZ
4383
4384 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4385 return 1;
efefb143 4386 }
76dda93c
YZ
4387 return 0;
4388}
4389
b4aff1f8
JB
4390static void btrfs_dentry_release(struct dentry *dentry)
4391{
4392 if (dentry->d_fsdata)
4393 kfree(dentry->d_fsdata);
4394}
4395
3de4586c 4396static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4397 unsigned int flags)
3de4586c 4398{
a66e7cc6
JB
4399 struct dentry *ret;
4400
4401 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4402 if (unlikely(d_need_lookup(dentry))) {
4403 spin_lock(&dentry->d_lock);
4404 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4405 spin_unlock(&dentry->d_lock);
4406 }
4407 return ret;
39279cc3
CM
4408}
4409
16cdcec7 4410unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4411 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4412};
4413
cbdf5a24
DW
4414static int btrfs_real_readdir(struct file *filp, void *dirent,
4415 filldir_t filldir)
39279cc3 4416{
6da6abae 4417 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4418 struct btrfs_root *root = BTRFS_I(inode)->root;
4419 struct btrfs_item *item;
4420 struct btrfs_dir_item *di;
4421 struct btrfs_key key;
5f39d397 4422 struct btrfs_key found_key;
39279cc3 4423 struct btrfs_path *path;
16cdcec7
MX
4424 struct list_head ins_list;
4425 struct list_head del_list;
39279cc3 4426 int ret;
5f39d397 4427 struct extent_buffer *leaf;
39279cc3 4428 int slot;
39279cc3
CM
4429 unsigned char d_type;
4430 int over = 0;
4431 u32 di_cur;
4432 u32 di_total;
4433 u32 di_len;
4434 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4435 char tmp_name[32];
4436 char *name_ptr;
4437 int name_len;
16cdcec7 4438 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4439
4440 /* FIXME, use a real flag for deciding about the key type */
4441 if (root->fs_info->tree_root == root)
4442 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4443
3954401f
CM
4444 /* special case for "." */
4445 if (filp->f_pos == 0) {
3765fefa
HS
4446 over = filldir(dirent, ".", 1,
4447 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4448 if (over)
4449 return 0;
4450 filp->f_pos = 1;
4451 }
3954401f
CM
4452 /* special case for .., just use the back ref */
4453 if (filp->f_pos == 1) {
5ecc7e5d 4454 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4455 over = filldir(dirent, "..", 2,
3765fefa 4456 filp->f_pos, pino, DT_DIR);
3954401f 4457 if (over)
49593bfa 4458 return 0;
3954401f
CM
4459 filp->f_pos = 2;
4460 }
49593bfa 4461 path = btrfs_alloc_path();
16cdcec7
MX
4462 if (!path)
4463 return -ENOMEM;
ff5714cc 4464
026fd317 4465 path->reada = 1;
49593bfa 4466
16cdcec7
MX
4467 if (key_type == BTRFS_DIR_INDEX_KEY) {
4468 INIT_LIST_HEAD(&ins_list);
4469 INIT_LIST_HEAD(&del_list);
4470 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4471 }
4472
39279cc3
CM
4473 btrfs_set_key_type(&key, key_type);
4474 key.offset = filp->f_pos;
33345d01 4475 key.objectid = btrfs_ino(inode);
5f39d397 4476
39279cc3
CM
4477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4478 if (ret < 0)
4479 goto err;
49593bfa
DW
4480
4481 while (1) {
5f39d397 4482 leaf = path->nodes[0];
39279cc3 4483 slot = path->slots[0];
b9e03af0
LZ
4484 if (slot >= btrfs_header_nritems(leaf)) {
4485 ret = btrfs_next_leaf(root, path);
4486 if (ret < 0)
4487 goto err;
4488 else if (ret > 0)
4489 break;
4490 continue;
39279cc3 4491 }
3de4586c 4492
5f39d397
CM
4493 item = btrfs_item_nr(leaf, slot);
4494 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4495
4496 if (found_key.objectid != key.objectid)
39279cc3 4497 break;
5f39d397 4498 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4499 break;
5f39d397 4500 if (found_key.offset < filp->f_pos)
b9e03af0 4501 goto next;
16cdcec7
MX
4502 if (key_type == BTRFS_DIR_INDEX_KEY &&
4503 btrfs_should_delete_dir_index(&del_list,
4504 found_key.offset))
4505 goto next;
5f39d397
CM
4506
4507 filp->f_pos = found_key.offset;
16cdcec7 4508 is_curr = 1;
49593bfa 4509
39279cc3
CM
4510 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4511 di_cur = 0;
5f39d397 4512 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4513
4514 while (di_cur < di_total) {
5f39d397
CM
4515 struct btrfs_key location;
4516
22a94d44
JB
4517 if (verify_dir_item(root, leaf, di))
4518 break;
4519
5f39d397 4520 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4521 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4522 name_ptr = tmp_name;
4523 } else {
4524 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4525 if (!name_ptr) {
4526 ret = -ENOMEM;
4527 goto err;
4528 }
5f39d397
CM
4529 }
4530 read_extent_buffer(leaf, name_ptr,
4531 (unsigned long)(di + 1), name_len);
4532
4533 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4534 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4535
fede766f 4536
3de4586c 4537 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4538 * skip it.
4539 *
4540 * In contrast to old kernels, we insert the snapshot's
4541 * dir item and dir index after it has been created, so
4542 * we won't find a reference to our own snapshot. We
4543 * still keep the following code for backward
4544 * compatibility.
3de4586c
CM
4545 */
4546 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4547 location.objectid == root->root_key.objectid) {
4548 over = 0;
4549 goto skip;
4550 }
5f39d397 4551 over = filldir(dirent, name_ptr, name_len,
49593bfa 4552 found_key.offset, location.objectid,
39279cc3 4553 d_type);
5f39d397 4554
3de4586c 4555skip:
5f39d397
CM
4556 if (name_ptr != tmp_name)
4557 kfree(name_ptr);
4558
39279cc3
CM
4559 if (over)
4560 goto nopos;
5103e947 4561 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4562 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4563 di_cur += di_len;
4564 di = (struct btrfs_dir_item *)((char *)di + di_len);
4565 }
b9e03af0
LZ
4566next:
4567 path->slots[0]++;
39279cc3 4568 }
49593bfa 4569
16cdcec7
MX
4570 if (key_type == BTRFS_DIR_INDEX_KEY) {
4571 if (is_curr)
4572 filp->f_pos++;
4573 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4574 &ins_list);
4575 if (ret)
4576 goto nopos;
4577 }
4578
49593bfa 4579 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4580 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4581 /*
4582 * 32-bit glibc will use getdents64, but then strtol -
4583 * so the last number we can serve is this.
4584 */
4585 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4586 else
4587 filp->f_pos++;
39279cc3
CM
4588nopos:
4589 ret = 0;
4590err:
16cdcec7
MX
4591 if (key_type == BTRFS_DIR_INDEX_KEY)
4592 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4593 btrfs_free_path(path);
39279cc3
CM
4594 return ret;
4595}
4596
a9185b41 4597int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4598{
4599 struct btrfs_root *root = BTRFS_I(inode)->root;
4600 struct btrfs_trans_handle *trans;
4601 int ret = 0;
0af3d00b 4602 bool nolock = false;
39279cc3 4603
72ac3c0d 4604 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4605 return 0;
4606
83eea1f1 4607 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4608 nolock = true;
0af3d00b 4609
a9185b41 4610 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4611 if (nolock)
7a7eaa40 4612 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4613 else
7a7eaa40 4614 trans = btrfs_join_transaction(root);
3612b495
TI
4615 if (IS_ERR(trans))
4616 return PTR_ERR(trans);
a698d075 4617 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4618 }
4619 return ret;
4620}
4621
4622/*
54aa1f4d 4623 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4624 * inode changes. But, it is most likely to find the inode in cache.
4625 * FIXME, needs more benchmarking...there are no reasons other than performance
4626 * to keep or drop this code.
4627 */
22c44fe6 4628int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4629{
4630 struct btrfs_root *root = BTRFS_I(inode)->root;
4631 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4632 int ret;
4633
72ac3c0d 4634 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4635 return 0;
39279cc3 4636
7a7eaa40 4637 trans = btrfs_join_transaction(root);
22c44fe6
JB
4638 if (IS_ERR(trans))
4639 return PTR_ERR(trans);
8929ecfa
YZ
4640
4641 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4642 if (ret && ret == -ENOSPC) {
4643 /* whoops, lets try again with the full transaction */
4644 btrfs_end_transaction(trans, root);
4645 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4646 if (IS_ERR(trans))
4647 return PTR_ERR(trans);
8929ecfa 4648
94b60442 4649 ret = btrfs_update_inode(trans, root, inode);
94b60442 4650 }
39279cc3 4651 btrfs_end_transaction(trans, root);
16cdcec7
MX
4652 if (BTRFS_I(inode)->delayed_node)
4653 btrfs_balance_delayed_items(root);
22c44fe6
JB
4654
4655 return ret;
4656}
4657
4658/*
4659 * This is a copy of file_update_time. We need this so we can return error on
4660 * ENOSPC for updating the inode in the case of file write and mmap writes.
4661 */
e41f941a
JB
4662static int btrfs_update_time(struct inode *inode, struct timespec *now,
4663 int flags)
22c44fe6 4664{
2bc55652
AB
4665 struct btrfs_root *root = BTRFS_I(inode)->root;
4666
4667 if (btrfs_root_readonly(root))
4668 return -EROFS;
4669
e41f941a 4670 if (flags & S_VERSION)
22c44fe6 4671 inode_inc_iversion(inode);
e41f941a
JB
4672 if (flags & S_CTIME)
4673 inode->i_ctime = *now;
4674 if (flags & S_MTIME)
4675 inode->i_mtime = *now;
4676 if (flags & S_ATIME)
4677 inode->i_atime = *now;
4678 return btrfs_dirty_inode(inode);
39279cc3
CM
4679}
4680
d352ac68
CM
4681/*
4682 * find the highest existing sequence number in a directory
4683 * and then set the in-memory index_cnt variable to reflect
4684 * free sequence numbers
4685 */
aec7477b
JB
4686static int btrfs_set_inode_index_count(struct inode *inode)
4687{
4688 struct btrfs_root *root = BTRFS_I(inode)->root;
4689 struct btrfs_key key, found_key;
4690 struct btrfs_path *path;
4691 struct extent_buffer *leaf;
4692 int ret;
4693
33345d01 4694 key.objectid = btrfs_ino(inode);
aec7477b
JB
4695 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4696 key.offset = (u64)-1;
4697
4698 path = btrfs_alloc_path();
4699 if (!path)
4700 return -ENOMEM;
4701
4702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4703 if (ret < 0)
4704 goto out;
4705 /* FIXME: we should be able to handle this */
4706 if (ret == 0)
4707 goto out;
4708 ret = 0;
4709
4710 /*
4711 * MAGIC NUMBER EXPLANATION:
4712 * since we search a directory based on f_pos we have to start at 2
4713 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4714 * else has to start at 2
4715 */
4716 if (path->slots[0] == 0) {
4717 BTRFS_I(inode)->index_cnt = 2;
4718 goto out;
4719 }
4720
4721 path->slots[0]--;
4722
4723 leaf = path->nodes[0];
4724 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4725
33345d01 4726 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4727 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4728 BTRFS_I(inode)->index_cnt = 2;
4729 goto out;
4730 }
4731
4732 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4733out:
4734 btrfs_free_path(path);
4735 return ret;
4736}
4737
d352ac68
CM
4738/*
4739 * helper to find a free sequence number in a given directory. This current
4740 * code is very simple, later versions will do smarter things in the btree
4741 */
3de4586c 4742int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4743{
4744 int ret = 0;
4745
4746 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4747 ret = btrfs_inode_delayed_dir_index_count(dir);
4748 if (ret) {
4749 ret = btrfs_set_inode_index_count(dir);
4750 if (ret)
4751 return ret;
4752 }
aec7477b
JB
4753 }
4754
00e4e6b3 4755 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4756 BTRFS_I(dir)->index_cnt++;
4757
4758 return ret;
4759}
4760
39279cc3
CM
4761static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4762 struct btrfs_root *root,
aec7477b 4763 struct inode *dir,
9c58309d 4764 const char *name, int name_len,
175a4eb7
AV
4765 u64 ref_objectid, u64 objectid,
4766 umode_t mode, u64 *index)
39279cc3
CM
4767{
4768 struct inode *inode;
5f39d397 4769 struct btrfs_inode_item *inode_item;
39279cc3 4770 struct btrfs_key *location;
5f39d397 4771 struct btrfs_path *path;
9c58309d
CM
4772 struct btrfs_inode_ref *ref;
4773 struct btrfs_key key[2];
4774 u32 sizes[2];
4775 unsigned long ptr;
39279cc3
CM
4776 int ret;
4777 int owner;
4778
5f39d397 4779 path = btrfs_alloc_path();
d8926bb3
MF
4780 if (!path)
4781 return ERR_PTR(-ENOMEM);
5f39d397 4782
39279cc3 4783 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4784 if (!inode) {
4785 btrfs_free_path(path);
39279cc3 4786 return ERR_PTR(-ENOMEM);
8fb27640 4787 }
39279cc3 4788
581bb050
LZ
4789 /*
4790 * we have to initialize this early, so we can reclaim the inode
4791 * number if we fail afterwards in this function.
4792 */
4793 inode->i_ino = objectid;
4794
aec7477b 4795 if (dir) {
1abe9b8a 4796 trace_btrfs_inode_request(dir);
4797
3de4586c 4798 ret = btrfs_set_inode_index(dir, index);
09771430 4799 if (ret) {
8fb27640 4800 btrfs_free_path(path);
09771430 4801 iput(inode);
aec7477b 4802 return ERR_PTR(ret);
09771430 4803 }
aec7477b
JB
4804 }
4805 /*
4806 * index_cnt is ignored for everything but a dir,
4807 * btrfs_get_inode_index_count has an explanation for the magic
4808 * number
4809 */
4810 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4811 BTRFS_I(inode)->root = root;
e02119d5 4812 BTRFS_I(inode)->generation = trans->transid;
76195853 4813 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4814
5dc562c5
JB
4815 /*
4816 * We could have gotten an inode number from somebody who was fsynced
4817 * and then removed in this same transaction, so let's just set full
4818 * sync since it will be a full sync anyway and this will blow away the
4819 * old info in the log.
4820 */
4821 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4822
569254b0 4823 if (S_ISDIR(mode))
39279cc3
CM
4824 owner = 0;
4825 else
4826 owner = 1;
9c58309d
CM
4827
4828 key[0].objectid = objectid;
4829 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4830 key[0].offset = 0;
4831
f186373f
MF
4832 /*
4833 * Start new inodes with an inode_ref. This is slightly more
4834 * efficient for small numbers of hard links since they will
4835 * be packed into one item. Extended refs will kick in if we
4836 * add more hard links than can fit in the ref item.
4837 */
9c58309d
CM
4838 key[1].objectid = objectid;
4839 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4840 key[1].offset = ref_objectid;
4841
4842 sizes[0] = sizeof(struct btrfs_inode_item);
4843 sizes[1] = name_len + sizeof(*ref);
4844
b9473439 4845 path->leave_spinning = 1;
9c58309d
CM
4846 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4847 if (ret != 0)
5f39d397
CM
4848 goto fail;
4849
ecc11fab 4850 inode_init_owner(inode, dir, mode);
a76a3cd4 4851 inode_set_bytes(inode, 0);
39279cc3 4852 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4853 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4854 struct btrfs_inode_item);
293f7e07
LZ
4855 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4856 sizeof(*inode_item));
e02119d5 4857 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4858
4859 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4860 struct btrfs_inode_ref);
4861 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4862 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4863 ptr = (unsigned long)(ref + 1);
4864 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4865
5f39d397
CM
4866 btrfs_mark_buffer_dirty(path->nodes[0]);
4867 btrfs_free_path(path);
4868
39279cc3
CM
4869 location = &BTRFS_I(inode)->location;
4870 location->objectid = objectid;
39279cc3
CM
4871 location->offset = 0;
4872 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4873
6cbff00f
CH
4874 btrfs_inherit_iflags(inode, dir);
4875
569254b0 4876 if (S_ISREG(mode)) {
94272164
CM
4877 if (btrfs_test_opt(root, NODATASUM))
4878 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 4879 if (btrfs_test_opt(root, NODATACOW))
94272164
CM
4880 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4881 }
4882
39279cc3 4883 insert_inode_hash(inode);
5d4f98a2 4884 inode_tree_add(inode);
1abe9b8a 4885
4886 trace_btrfs_inode_new(inode);
1973f0fa 4887 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4888
8ea05e3a
AB
4889 btrfs_update_root_times(trans, root);
4890
39279cc3 4891 return inode;
5f39d397 4892fail:
aec7477b
JB
4893 if (dir)
4894 BTRFS_I(dir)->index_cnt--;
5f39d397 4895 btrfs_free_path(path);
09771430 4896 iput(inode);
5f39d397 4897 return ERR_PTR(ret);
39279cc3
CM
4898}
4899
4900static inline u8 btrfs_inode_type(struct inode *inode)
4901{
4902 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4903}
4904
d352ac68
CM
4905/*
4906 * utility function to add 'inode' into 'parent_inode' with
4907 * a give name and a given sequence number.
4908 * if 'add_backref' is true, also insert a backref from the
4909 * inode to the parent directory.
4910 */
e02119d5
CM
4911int btrfs_add_link(struct btrfs_trans_handle *trans,
4912 struct inode *parent_inode, struct inode *inode,
4913 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4914{
4df27c4d 4915 int ret = 0;
39279cc3 4916 struct btrfs_key key;
e02119d5 4917 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4918 u64 ino = btrfs_ino(inode);
4919 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4920
33345d01 4921 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4922 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4923 } else {
33345d01 4924 key.objectid = ino;
4df27c4d
YZ
4925 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4926 key.offset = 0;
4927 }
4928
33345d01 4929 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4930 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4931 key.objectid, root->root_key.objectid,
33345d01 4932 parent_ino, index, name, name_len);
4df27c4d 4933 } else if (add_backref) {
33345d01
LZ
4934 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4935 parent_ino, index);
4df27c4d 4936 }
39279cc3 4937
79787eaa
JM
4938 /* Nothing to clean up yet */
4939 if (ret)
4940 return ret;
4df27c4d 4941
79787eaa
JM
4942 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4943 parent_inode, &key,
4944 btrfs_inode_type(inode), index);
9c52057c 4945 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
4946 goto fail_dir_item;
4947 else if (ret) {
4948 btrfs_abort_transaction(trans, root, ret);
4949 return ret;
39279cc3 4950 }
79787eaa
JM
4951
4952 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4953 name_len * 2);
0c4d2d95 4954 inode_inc_iversion(parent_inode);
79787eaa
JM
4955 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4956 ret = btrfs_update_inode(trans, root, parent_inode);
4957 if (ret)
4958 btrfs_abort_transaction(trans, root, ret);
39279cc3 4959 return ret;
fe66a05a
CM
4960
4961fail_dir_item:
4962 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4963 u64 local_index;
4964 int err;
4965 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4966 key.objectid, root->root_key.objectid,
4967 parent_ino, &local_index, name, name_len);
4968
4969 } else if (add_backref) {
4970 u64 local_index;
4971 int err;
4972
4973 err = btrfs_del_inode_ref(trans, root, name, name_len,
4974 ino, parent_ino, &local_index);
4975 }
4976 return ret;
39279cc3
CM
4977}
4978
4979static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4980 struct inode *dir, struct dentry *dentry,
4981 struct inode *inode, int backref, u64 index)
39279cc3 4982{
a1b075d2
JB
4983 int err = btrfs_add_link(trans, dir, inode,
4984 dentry->d_name.name, dentry->d_name.len,
4985 backref, index);
39279cc3
CM
4986 if (err > 0)
4987 err = -EEXIST;
4988 return err;
4989}
4990
618e21d5 4991static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4992 umode_t mode, dev_t rdev)
618e21d5
JB
4993{
4994 struct btrfs_trans_handle *trans;
4995 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4996 struct inode *inode = NULL;
618e21d5
JB
4997 int err;
4998 int drop_inode = 0;
4999 u64 objectid;
00e4e6b3 5000 u64 index = 0;
618e21d5
JB
5001
5002 if (!new_valid_dev(rdev))
5003 return -EINVAL;
5004
9ed74f2d
JB
5005 /*
5006 * 2 for inode item and ref
5007 * 2 for dir items
5008 * 1 for xattr if selinux is on
5009 */
a22285a6
YZ
5010 trans = btrfs_start_transaction(root, 5);
5011 if (IS_ERR(trans))
5012 return PTR_ERR(trans);
1832a6d5 5013
581bb050
LZ
5014 err = btrfs_find_free_ino(root, &objectid);
5015 if (err)
5016 goto out_unlock;
5017
aec7477b 5018 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5019 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5020 mode, &index);
7cf96da3
TI
5021 if (IS_ERR(inode)) {
5022 err = PTR_ERR(inode);
618e21d5 5023 goto out_unlock;
7cf96da3 5024 }
618e21d5 5025
2a7dba39 5026 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5027 if (err) {
5028 drop_inode = 1;
5029 goto out_unlock;
5030 }
5031
2794ed01
FB
5032 err = btrfs_update_inode(trans, root, inode);
5033 if (err) {
5034 drop_inode = 1;
5035 goto out_unlock;
5036 }
5037
ad19db71
CS
5038 /*
5039 * If the active LSM wants to access the inode during
5040 * d_instantiate it needs these. Smack checks to see
5041 * if the filesystem supports xattrs by looking at the
5042 * ops vector.
5043 */
5044
5045 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5046 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5047 if (err)
5048 drop_inode = 1;
5049 else {
618e21d5 5050 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5051 btrfs_update_inode(trans, root, inode);
08c422c2 5052 d_instantiate(dentry, inode);
618e21d5 5053 }
618e21d5 5054out_unlock:
7ad85bb7 5055 btrfs_end_transaction(trans, root);
b53d3f5d 5056 btrfs_btree_balance_dirty(root);
618e21d5
JB
5057 if (drop_inode) {
5058 inode_dec_link_count(inode);
5059 iput(inode);
5060 }
618e21d5
JB
5061 return err;
5062}
5063
39279cc3 5064static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5065 umode_t mode, bool excl)
39279cc3
CM
5066{
5067 struct btrfs_trans_handle *trans;
5068 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5069 struct inode *inode = NULL;
43baa579 5070 int drop_inode_on_err = 0;
a22285a6 5071 int err;
39279cc3 5072 u64 objectid;
00e4e6b3 5073 u64 index = 0;
39279cc3 5074
9ed74f2d
JB
5075 /*
5076 * 2 for inode item and ref
5077 * 2 for dir items
5078 * 1 for xattr if selinux is on
5079 */
a22285a6
YZ
5080 trans = btrfs_start_transaction(root, 5);
5081 if (IS_ERR(trans))
5082 return PTR_ERR(trans);
9ed74f2d 5083
581bb050
LZ
5084 err = btrfs_find_free_ino(root, &objectid);
5085 if (err)
5086 goto out_unlock;
5087
aec7477b 5088 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5089 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5090 mode, &index);
7cf96da3
TI
5091 if (IS_ERR(inode)) {
5092 err = PTR_ERR(inode);
39279cc3 5093 goto out_unlock;
7cf96da3 5094 }
43baa579 5095 drop_inode_on_err = 1;
39279cc3 5096
2a7dba39 5097 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5098 if (err)
33268eaf 5099 goto out_unlock;
33268eaf 5100
9185aa58
FB
5101 err = btrfs_update_inode(trans, root, inode);
5102 if (err)
5103 goto out_unlock;
5104
ad19db71
CS
5105 /*
5106 * If the active LSM wants to access the inode during
5107 * d_instantiate it needs these. Smack checks to see
5108 * if the filesystem supports xattrs by looking at the
5109 * ops vector.
5110 */
5111 inode->i_fop = &btrfs_file_operations;
5112 inode->i_op = &btrfs_file_inode_operations;
5113
a1b075d2 5114 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5115 if (err)
43baa579
FB
5116 goto out_unlock;
5117
5118 inode->i_mapping->a_ops = &btrfs_aops;
5119 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5120 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5121 d_instantiate(dentry, inode);
5122
39279cc3 5123out_unlock:
7ad85bb7 5124 btrfs_end_transaction(trans, root);
43baa579 5125 if (err && drop_inode_on_err) {
39279cc3
CM
5126 inode_dec_link_count(inode);
5127 iput(inode);
5128 }
b53d3f5d 5129 btrfs_btree_balance_dirty(root);
39279cc3
CM
5130 return err;
5131}
5132
5133static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5134 struct dentry *dentry)
5135{
5136 struct btrfs_trans_handle *trans;
5137 struct btrfs_root *root = BTRFS_I(dir)->root;
5138 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5139 u64 index;
39279cc3
CM
5140 int err;
5141 int drop_inode = 0;
5142
4a8be425
TH
5143 /* do not allow sys_link's with other subvols of the same device */
5144 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5145 return -EXDEV;
4a8be425 5146
f186373f 5147 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5148 return -EMLINK;
4a8be425 5149
3de4586c 5150 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5151 if (err)
5152 goto fail;
5153
a22285a6 5154 /*
7e6b6465 5155 * 2 items for inode and inode ref
a22285a6 5156 * 2 items for dir items
7e6b6465 5157 * 1 item for parent inode
a22285a6 5158 */
7e6b6465 5159 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5160 if (IS_ERR(trans)) {
5161 err = PTR_ERR(trans);
5162 goto fail;
5163 }
5f39d397 5164
3153495d 5165 btrfs_inc_nlink(inode);
0c4d2d95 5166 inode_inc_iversion(inode);
3153495d 5167 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5168 ihold(inode);
e9976151 5169 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5170
a1b075d2 5171 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5172
a5719521 5173 if (err) {
54aa1f4d 5174 drop_inode = 1;
a5719521 5175 } else {
10d9f309 5176 struct dentry *parent = dentry->d_parent;
a5719521 5177 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5178 if (err)
5179 goto fail;
08c422c2 5180 d_instantiate(dentry, inode);
6a912213 5181 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5182 }
39279cc3 5183
7ad85bb7 5184 btrfs_end_transaction(trans, root);
1832a6d5 5185fail:
39279cc3
CM
5186 if (drop_inode) {
5187 inode_dec_link_count(inode);
5188 iput(inode);
5189 }
b53d3f5d 5190 btrfs_btree_balance_dirty(root);
39279cc3
CM
5191 return err;
5192}
5193
18bb1db3 5194static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5195{
b9d86667 5196 struct inode *inode = NULL;
39279cc3
CM
5197 struct btrfs_trans_handle *trans;
5198 struct btrfs_root *root = BTRFS_I(dir)->root;
5199 int err = 0;
5200 int drop_on_err = 0;
b9d86667 5201 u64 objectid = 0;
00e4e6b3 5202 u64 index = 0;
39279cc3 5203
9ed74f2d
JB
5204 /*
5205 * 2 items for inode and ref
5206 * 2 items for dir items
5207 * 1 for xattr if selinux is on
5208 */
a22285a6
YZ
5209 trans = btrfs_start_transaction(root, 5);
5210 if (IS_ERR(trans))
5211 return PTR_ERR(trans);
39279cc3 5212
581bb050
LZ
5213 err = btrfs_find_free_ino(root, &objectid);
5214 if (err)
5215 goto out_fail;
5216
aec7477b 5217 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5218 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5219 S_IFDIR | mode, &index);
39279cc3
CM
5220 if (IS_ERR(inode)) {
5221 err = PTR_ERR(inode);
5222 goto out_fail;
5223 }
5f39d397 5224
39279cc3 5225 drop_on_err = 1;
33268eaf 5226
2a7dba39 5227 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5228 if (err)
5229 goto out_fail;
5230
39279cc3
CM
5231 inode->i_op = &btrfs_dir_inode_operations;
5232 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5233
dbe674a9 5234 btrfs_i_size_write(inode, 0);
39279cc3
CM
5235 err = btrfs_update_inode(trans, root, inode);
5236 if (err)
5237 goto out_fail;
5f39d397 5238
a1b075d2
JB
5239 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5240 dentry->d_name.len, 0, index);
39279cc3
CM
5241 if (err)
5242 goto out_fail;
5f39d397 5243
39279cc3
CM
5244 d_instantiate(dentry, inode);
5245 drop_on_err = 0;
39279cc3
CM
5246
5247out_fail:
7ad85bb7 5248 btrfs_end_transaction(trans, root);
39279cc3
CM
5249 if (drop_on_err)
5250 iput(inode);
b53d3f5d 5251 btrfs_btree_balance_dirty(root);
39279cc3
CM
5252 return err;
5253}
5254
d352ac68
CM
5255/* helper for btfs_get_extent. Given an existing extent in the tree,
5256 * and an extent that you want to insert, deal with overlap and insert
5257 * the new extent into the tree.
5258 */
3b951516
CM
5259static int merge_extent_mapping(struct extent_map_tree *em_tree,
5260 struct extent_map *existing,
e6dcd2dc
CM
5261 struct extent_map *em,
5262 u64 map_start, u64 map_len)
3b951516
CM
5263{
5264 u64 start_diff;
3b951516 5265
e6dcd2dc
CM
5266 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5267 start_diff = map_start - em->start;
5268 em->start = map_start;
5269 em->len = map_len;
c8b97818
CM
5270 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5271 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5272 em->block_start += start_diff;
c8b97818
CM
5273 em->block_len -= start_diff;
5274 }
e6dcd2dc 5275 return add_extent_mapping(em_tree, em);
3b951516
CM
5276}
5277
c8b97818
CM
5278static noinline int uncompress_inline(struct btrfs_path *path,
5279 struct inode *inode, struct page *page,
5280 size_t pg_offset, u64 extent_offset,
5281 struct btrfs_file_extent_item *item)
5282{
5283 int ret;
5284 struct extent_buffer *leaf = path->nodes[0];
5285 char *tmp;
5286 size_t max_size;
5287 unsigned long inline_size;
5288 unsigned long ptr;
261507a0 5289 int compress_type;
c8b97818
CM
5290
5291 WARN_ON(pg_offset != 0);
261507a0 5292 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5293 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5294 inline_size = btrfs_file_extent_inline_item_len(leaf,
5295 btrfs_item_nr(leaf, path->slots[0]));
5296 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5297 if (!tmp)
5298 return -ENOMEM;
c8b97818
CM
5299 ptr = btrfs_file_extent_inline_start(item);
5300
5301 read_extent_buffer(leaf, tmp, ptr, inline_size);
5302
5b050f04 5303 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5304 ret = btrfs_decompress(compress_type, tmp, page,
5305 extent_offset, inline_size, max_size);
c8b97818 5306 if (ret) {
7ac687d9 5307 char *kaddr = kmap_atomic(page);
c8b97818
CM
5308 unsigned long copy_size = min_t(u64,
5309 PAGE_CACHE_SIZE - pg_offset,
5310 max_size - extent_offset);
5311 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5312 kunmap_atomic(kaddr);
c8b97818
CM
5313 }
5314 kfree(tmp);
5315 return 0;
5316}
5317
d352ac68
CM
5318/*
5319 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5320 * the ugly parts come from merging extents from the disk with the in-ram
5321 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5322 * where the in-ram extents might be locked pending data=ordered completion.
5323 *
5324 * This also copies inline extents directly into the page.
5325 */
d397712b 5326
a52d9a80 5327struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5328 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5329 int create)
5330{
5331 int ret;
5332 int err = 0;
db94535d 5333 u64 bytenr;
a52d9a80
CM
5334 u64 extent_start = 0;
5335 u64 extent_end = 0;
33345d01 5336 u64 objectid = btrfs_ino(inode);
a52d9a80 5337 u32 found_type;
f421950f 5338 struct btrfs_path *path = NULL;
a52d9a80
CM
5339 struct btrfs_root *root = BTRFS_I(inode)->root;
5340 struct btrfs_file_extent_item *item;
5f39d397
CM
5341 struct extent_buffer *leaf;
5342 struct btrfs_key found_key;
a52d9a80
CM
5343 struct extent_map *em = NULL;
5344 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5345 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5346 struct btrfs_trans_handle *trans = NULL;
261507a0 5347 int compress_type;
a52d9a80 5348
a52d9a80 5349again:
890871be 5350 read_lock(&em_tree->lock);
d1310b2e 5351 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5352 if (em)
5353 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5354 read_unlock(&em_tree->lock);
d1310b2e 5355
a52d9a80 5356 if (em) {
e1c4b745
CM
5357 if (em->start > start || em->start + em->len <= start)
5358 free_extent_map(em);
5359 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5360 free_extent_map(em);
5361 else
5362 goto out;
a52d9a80 5363 }
172ddd60 5364 em = alloc_extent_map();
a52d9a80 5365 if (!em) {
d1310b2e
CM
5366 err = -ENOMEM;
5367 goto out;
a52d9a80 5368 }
e6dcd2dc 5369 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5370 em->start = EXTENT_MAP_HOLE;
445a6944 5371 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5372 em->len = (u64)-1;
c8b97818 5373 em->block_len = (u64)-1;
f421950f
CM
5374
5375 if (!path) {
5376 path = btrfs_alloc_path();
026fd317
JB
5377 if (!path) {
5378 err = -ENOMEM;
5379 goto out;
5380 }
5381 /*
5382 * Chances are we'll be called again, so go ahead and do
5383 * readahead
5384 */
5385 path->reada = 1;
f421950f
CM
5386 }
5387
179e29e4
CM
5388 ret = btrfs_lookup_file_extent(trans, root, path,
5389 objectid, start, trans != NULL);
a52d9a80
CM
5390 if (ret < 0) {
5391 err = ret;
5392 goto out;
5393 }
5394
5395 if (ret != 0) {
5396 if (path->slots[0] == 0)
5397 goto not_found;
5398 path->slots[0]--;
5399 }
5400
5f39d397
CM
5401 leaf = path->nodes[0];
5402 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5403 struct btrfs_file_extent_item);
a52d9a80 5404 /* are we inside the extent that was found? */
5f39d397
CM
5405 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5406 found_type = btrfs_key_type(&found_key);
5407 if (found_key.objectid != objectid ||
a52d9a80
CM
5408 found_type != BTRFS_EXTENT_DATA_KEY) {
5409 goto not_found;
5410 }
5411
5f39d397
CM
5412 found_type = btrfs_file_extent_type(leaf, item);
5413 extent_start = found_key.offset;
261507a0 5414 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5415 if (found_type == BTRFS_FILE_EXTENT_REG ||
5416 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5417 extent_end = extent_start +
db94535d 5418 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5419 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5420 size_t size;
5421 size = btrfs_file_extent_inline_len(leaf, item);
5422 extent_end = (extent_start + size + root->sectorsize - 1) &
5423 ~((u64)root->sectorsize - 1);
5424 }
5425
5426 if (start >= extent_end) {
5427 path->slots[0]++;
5428 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5429 ret = btrfs_next_leaf(root, path);
5430 if (ret < 0) {
5431 err = ret;
5432 goto out;
a52d9a80 5433 }
9036c102
YZ
5434 if (ret > 0)
5435 goto not_found;
5436 leaf = path->nodes[0];
a52d9a80 5437 }
9036c102
YZ
5438 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5439 if (found_key.objectid != objectid ||
5440 found_key.type != BTRFS_EXTENT_DATA_KEY)
5441 goto not_found;
5442 if (start + len <= found_key.offset)
5443 goto not_found;
5444 em->start = start;
70c8a91c 5445 em->orig_start = start;
9036c102
YZ
5446 em->len = found_key.offset - start;
5447 goto not_found_em;
5448 }
5449
d899e052
YZ
5450 if (found_type == BTRFS_FILE_EXTENT_REG ||
5451 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5452 em->start = extent_start;
5453 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5454 em->orig_start = extent_start -
5455 btrfs_file_extent_offset(leaf, item);
b4939680
JB
5456 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5457 item);
db94535d
CM
5458 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5459 if (bytenr == 0) {
5f39d397 5460 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5461 goto insert;
5462 }
261507a0 5463 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5464 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5465 em->compress_type = compress_type;
c8b97818 5466 em->block_start = bytenr;
b4939680 5467 em->block_len = em->orig_block_len;
c8b97818
CM
5468 } else {
5469 bytenr += btrfs_file_extent_offset(leaf, item);
5470 em->block_start = bytenr;
5471 em->block_len = em->len;
d899e052
YZ
5472 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5473 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5474 }
a52d9a80
CM
5475 goto insert;
5476 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5477 unsigned long ptr;
a52d9a80 5478 char *map;
3326d1b0
CM
5479 size_t size;
5480 size_t extent_offset;
5481 size_t copy_size;
a52d9a80 5482
689f9346 5483 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5484 if (!page || create) {
689f9346 5485 em->start = extent_start;
9036c102 5486 em->len = extent_end - extent_start;
689f9346
Y
5487 goto out;
5488 }
5f39d397 5489
9036c102
YZ
5490 size = btrfs_file_extent_inline_len(leaf, item);
5491 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5492 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5493 size - extent_offset);
3326d1b0 5494 em->start = extent_start + extent_offset;
70dec807
CM
5495 em->len = (copy_size + root->sectorsize - 1) &
5496 ~((u64)root->sectorsize - 1);
b4939680 5497 em->orig_block_len = em->len;
70c8a91c 5498 em->orig_start = em->start;
261507a0 5499 if (compress_type) {
c8b97818 5500 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5501 em->compress_type = compress_type;
5502 }
689f9346 5503 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5504 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5505 if (btrfs_file_extent_compression(leaf, item) !=
5506 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5507 ret = uncompress_inline(path, inode, page,
5508 pg_offset,
5509 extent_offset, item);
79787eaa 5510 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5511 } else {
5512 map = kmap(page);
5513 read_extent_buffer(leaf, map + pg_offset, ptr,
5514 copy_size);
93c82d57
CM
5515 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5516 memset(map + pg_offset + copy_size, 0,
5517 PAGE_CACHE_SIZE - pg_offset -
5518 copy_size);
5519 }
c8b97818
CM
5520 kunmap(page);
5521 }
179e29e4
CM
5522 flush_dcache_page(page);
5523 } else if (create && PageUptodate(page)) {
6bf7e080 5524 BUG();
179e29e4
CM
5525 if (!trans) {
5526 kunmap(page);
5527 free_extent_map(em);
5528 em = NULL;
ff5714cc 5529
b3b4aa74 5530 btrfs_release_path(path);
7a7eaa40 5531 trans = btrfs_join_transaction(root);
ff5714cc 5532
3612b495
TI
5533 if (IS_ERR(trans))
5534 return ERR_CAST(trans);
179e29e4
CM
5535 goto again;
5536 }
c8b97818 5537 map = kmap(page);
70dec807 5538 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5539 copy_size);
c8b97818 5540 kunmap(page);
179e29e4 5541 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5542 }
d1310b2e 5543 set_extent_uptodate(io_tree, em->start,
507903b8 5544 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5545 goto insert;
5546 } else {
31b1a2bd 5547 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5548 }
5549not_found:
5550 em->start = start;
70c8a91c 5551 em->orig_start = start;
d1310b2e 5552 em->len = len;
a52d9a80 5553not_found_em:
5f39d397 5554 em->block_start = EXTENT_MAP_HOLE;
9036c102 5555 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5556insert:
b3b4aa74 5557 btrfs_release_path(path);
d1310b2e 5558 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5559 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5560 "[%llu %llu]\n", (unsigned long long)em->start,
5561 (unsigned long long)em->len,
5562 (unsigned long long)start,
5563 (unsigned long long)len);
a52d9a80
CM
5564 err = -EIO;
5565 goto out;
5566 }
d1310b2e
CM
5567
5568 err = 0;
890871be 5569 write_lock(&em_tree->lock);
a52d9a80 5570 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5571 /* it is possible that someone inserted the extent into the tree
5572 * while we had the lock dropped. It is also possible that
5573 * an overlapping map exists in the tree
5574 */
a52d9a80 5575 if (ret == -EEXIST) {
3b951516 5576 struct extent_map *existing;
e6dcd2dc
CM
5577
5578 ret = 0;
5579
3b951516 5580 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5581 if (existing && (existing->start > start ||
5582 existing->start + existing->len <= start)) {
5583 free_extent_map(existing);
5584 existing = NULL;
5585 }
3b951516
CM
5586 if (!existing) {
5587 existing = lookup_extent_mapping(em_tree, em->start,
5588 em->len);
5589 if (existing) {
5590 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5591 em, start,
5592 root->sectorsize);
3b951516
CM
5593 free_extent_map(existing);
5594 if (err) {
5595 free_extent_map(em);
5596 em = NULL;
5597 }
5598 } else {
5599 err = -EIO;
3b951516
CM
5600 free_extent_map(em);
5601 em = NULL;
5602 }
5603 } else {
5604 free_extent_map(em);
5605 em = existing;
e6dcd2dc 5606 err = 0;
a52d9a80 5607 }
a52d9a80 5608 }
890871be 5609 write_unlock(&em_tree->lock);
a52d9a80 5610out:
1abe9b8a 5611
f0bd95ea
TI
5612 if (em)
5613 trace_btrfs_get_extent(root, em);
1abe9b8a 5614
f421950f
CM
5615 if (path)
5616 btrfs_free_path(path);
a52d9a80
CM
5617 if (trans) {
5618 ret = btrfs_end_transaction(trans, root);
d397712b 5619 if (!err)
a52d9a80
CM
5620 err = ret;
5621 }
a52d9a80
CM
5622 if (err) {
5623 free_extent_map(em);
a52d9a80
CM
5624 return ERR_PTR(err);
5625 }
79787eaa 5626 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5627 return em;
5628}
5629
ec29ed5b
CM
5630struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5631 size_t pg_offset, u64 start, u64 len,
5632 int create)
5633{
5634 struct extent_map *em;
5635 struct extent_map *hole_em = NULL;
5636 u64 range_start = start;
5637 u64 end;
5638 u64 found;
5639 u64 found_end;
5640 int err = 0;
5641
5642 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5643 if (IS_ERR(em))
5644 return em;
5645 if (em) {
5646 /*
f9e4fb53
LB
5647 * if our em maps to
5648 * - a hole or
5649 * - a pre-alloc extent,
5650 * there might actually be delalloc bytes behind it.
ec29ed5b 5651 */
f9e4fb53
LB
5652 if (em->block_start != EXTENT_MAP_HOLE &&
5653 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
5654 return em;
5655 else
5656 hole_em = em;
5657 }
5658
5659 /* check to see if we've wrapped (len == -1 or similar) */
5660 end = start + len;
5661 if (end < start)
5662 end = (u64)-1;
5663 else
5664 end -= 1;
5665
5666 em = NULL;
5667
5668 /* ok, we didn't find anything, lets look for delalloc */
5669 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5670 end, len, EXTENT_DELALLOC, 1);
5671 found_end = range_start + found;
5672 if (found_end < range_start)
5673 found_end = (u64)-1;
5674
5675 /*
5676 * we didn't find anything useful, return
5677 * the original results from get_extent()
5678 */
5679 if (range_start > end || found_end <= start) {
5680 em = hole_em;
5681 hole_em = NULL;
5682 goto out;
5683 }
5684
5685 /* adjust the range_start to make sure it doesn't
5686 * go backwards from the start they passed in
5687 */
5688 range_start = max(start,range_start);
5689 found = found_end - range_start;
5690
5691 if (found > 0) {
5692 u64 hole_start = start;
5693 u64 hole_len = len;
5694
172ddd60 5695 em = alloc_extent_map();
ec29ed5b
CM
5696 if (!em) {
5697 err = -ENOMEM;
5698 goto out;
5699 }
5700 /*
5701 * when btrfs_get_extent can't find anything it
5702 * returns one huge hole
5703 *
5704 * make sure what it found really fits our range, and
5705 * adjust to make sure it is based on the start from
5706 * the caller
5707 */
5708 if (hole_em) {
5709 u64 calc_end = extent_map_end(hole_em);
5710
5711 if (calc_end <= start || (hole_em->start > end)) {
5712 free_extent_map(hole_em);
5713 hole_em = NULL;
5714 } else {
5715 hole_start = max(hole_em->start, start);
5716 hole_len = calc_end - hole_start;
5717 }
5718 }
5719 em->bdev = NULL;
5720 if (hole_em && range_start > hole_start) {
5721 /* our hole starts before our delalloc, so we
5722 * have to return just the parts of the hole
5723 * that go until the delalloc starts
5724 */
5725 em->len = min(hole_len,
5726 range_start - hole_start);
5727 em->start = hole_start;
5728 em->orig_start = hole_start;
5729 /*
5730 * don't adjust block start at all,
5731 * it is fixed at EXTENT_MAP_HOLE
5732 */
5733 em->block_start = hole_em->block_start;
5734 em->block_len = hole_len;
f9e4fb53
LB
5735 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
5736 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
5737 } else {
5738 em->start = range_start;
5739 em->len = found;
5740 em->orig_start = range_start;
5741 em->block_start = EXTENT_MAP_DELALLOC;
5742 em->block_len = found;
5743 }
5744 } else if (hole_em) {
5745 return hole_em;
5746 }
5747out:
5748
5749 free_extent_map(hole_em);
5750 if (err) {
5751 free_extent_map(em);
5752 return ERR_PTR(err);
5753 }
5754 return em;
5755}
5756
4b46fce2
JB
5757static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5758 u64 start, u64 len)
5759{
5760 struct btrfs_root *root = BTRFS_I(inode)->root;
5761 struct btrfs_trans_handle *trans;
70c8a91c 5762 struct extent_map *em;
4b46fce2
JB
5763 struct btrfs_key ins;
5764 u64 alloc_hint;
5765 int ret;
4b46fce2 5766
7a7eaa40 5767 trans = btrfs_join_transaction(root);
3612b495
TI
5768 if (IS_ERR(trans))
5769 return ERR_CAST(trans);
4b46fce2
JB
5770
5771 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5772
5773 alloc_hint = get_extent_allocation_hint(inode, start, len);
5774 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5775 alloc_hint, &ins, 1);
4b46fce2
JB
5776 if (ret) {
5777 em = ERR_PTR(ret);
5778 goto out;
5779 }
5780
70c8a91c
JB
5781 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
5782 ins.offset, ins.offset, 0);
5783 if (IS_ERR(em))
5784 goto out;
4b46fce2
JB
5785
5786 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5787 ins.offset, ins.offset, 0);
5788 if (ret) {
5789 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5790 em = ERR_PTR(ret);
5791 }
5792out:
5793 btrfs_end_transaction(trans, root);
5794 return em;
5795}
5796
46bfbb5c
CM
5797/*
5798 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5799 * block must be cow'd
5800 */
5801static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5802 struct inode *inode, u64 offset, u64 len)
5803{
5804 struct btrfs_path *path;
5805 int ret;
5806 struct extent_buffer *leaf;
5807 struct btrfs_root *root = BTRFS_I(inode)->root;
5808 struct btrfs_file_extent_item *fi;
5809 struct btrfs_key key;
5810 u64 disk_bytenr;
5811 u64 backref_offset;
5812 u64 extent_end;
5813 u64 num_bytes;
5814 int slot;
5815 int found_type;
5816
5817 path = btrfs_alloc_path();
5818 if (!path)
5819 return -ENOMEM;
5820
33345d01 5821 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5822 offset, 0);
5823 if (ret < 0)
5824 goto out;
5825
5826 slot = path->slots[0];
5827 if (ret == 1) {
5828 if (slot == 0) {
5829 /* can't find the item, must cow */
5830 ret = 0;
5831 goto out;
5832 }
5833 slot--;
5834 }
5835 ret = 0;
5836 leaf = path->nodes[0];
5837 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5838 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5839 key.type != BTRFS_EXTENT_DATA_KEY) {
5840 /* not our file or wrong item type, must cow */
5841 goto out;
5842 }
5843
5844 if (key.offset > offset) {
5845 /* Wrong offset, must cow */
5846 goto out;
5847 }
5848
5849 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5850 found_type = btrfs_file_extent_type(leaf, fi);
5851 if (found_type != BTRFS_FILE_EXTENT_REG &&
5852 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5853 /* not a regular extent, must cow */
5854 goto out;
5855 }
5856 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5857 backref_offset = btrfs_file_extent_offset(leaf, fi);
5858
5859 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5860 if (extent_end < offset + len) {
5861 /* extent doesn't include our full range, must cow */
5862 goto out;
5863 }
5864
5865 if (btrfs_extent_readonly(root, disk_bytenr))
5866 goto out;
5867
5868 /*
5869 * look for other files referencing this extent, if we
5870 * find any we must cow
5871 */
33345d01 5872 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5873 key.offset - backref_offset, disk_bytenr))
5874 goto out;
5875
5876 /*
5877 * adjust disk_bytenr and num_bytes to cover just the bytes
5878 * in this extent we are about to write. If there
5879 * are any csums in that range we have to cow in order
5880 * to keep the csums correct
5881 */
5882 disk_bytenr += backref_offset;
5883 disk_bytenr += offset - key.offset;
5884 num_bytes = min(offset + len, extent_end) - offset;
5885 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5886 goto out;
5887 /*
5888 * all of the above have passed, it is safe to overwrite this extent
5889 * without cow
5890 */
5891 ret = 1;
5892out:
5893 btrfs_free_path(path);
5894 return ret;
5895}
5896
eb838e73
JB
5897static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5898 struct extent_state **cached_state, int writing)
5899{
5900 struct btrfs_ordered_extent *ordered;
5901 int ret = 0;
5902
5903 while (1) {
5904 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5905 0, cached_state);
5906 /*
5907 * We're concerned with the entire range that we're going to be
5908 * doing DIO to, so we need to make sure theres no ordered
5909 * extents in this range.
5910 */
5911 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5912 lockend - lockstart + 1);
5913
5914 /*
5915 * We need to make sure there are no buffered pages in this
5916 * range either, we could have raced between the invalidate in
5917 * generic_file_direct_write and locking the extent. The
5918 * invalidate needs to happen so that reads after a write do not
5919 * get stale data.
5920 */
5921 if (!ordered && (!writing ||
5922 !test_range_bit(&BTRFS_I(inode)->io_tree,
5923 lockstart, lockend, EXTENT_UPTODATE, 0,
5924 *cached_state)))
5925 break;
5926
5927 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5928 cached_state, GFP_NOFS);
5929
5930 if (ordered) {
5931 btrfs_start_ordered_extent(inode, ordered, 1);
5932 btrfs_put_ordered_extent(ordered);
5933 } else {
5934 /* Screw you mmap */
5935 ret = filemap_write_and_wait_range(inode->i_mapping,
5936 lockstart,
5937 lockend);
5938 if (ret)
5939 break;
5940
5941 /*
5942 * If we found a page that couldn't be invalidated just
5943 * fall back to buffered.
5944 */
5945 ret = invalidate_inode_pages2_range(inode->i_mapping,
5946 lockstart >> PAGE_CACHE_SHIFT,
5947 lockend >> PAGE_CACHE_SHIFT);
5948 if (ret)
5949 break;
5950 }
5951
5952 cond_resched();
5953 }
5954
5955 return ret;
5956}
5957
69ffb543
JB
5958static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5959 u64 len, u64 orig_start,
5960 u64 block_start, u64 block_len,
b4939680 5961 u64 orig_block_len, int type)
69ffb543
JB
5962{
5963 struct extent_map_tree *em_tree;
5964 struct extent_map *em;
5965 struct btrfs_root *root = BTRFS_I(inode)->root;
5966 int ret;
5967
5968 em_tree = &BTRFS_I(inode)->extent_tree;
5969 em = alloc_extent_map();
5970 if (!em)
5971 return ERR_PTR(-ENOMEM);
5972
5973 em->start = start;
5974 em->orig_start = orig_start;
2ab28f32
JB
5975 em->mod_start = start;
5976 em->mod_len = len;
69ffb543
JB
5977 em->len = len;
5978 em->block_len = block_len;
5979 em->block_start = block_start;
5980 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 5981 em->orig_block_len = orig_block_len;
70c8a91c 5982 em->generation = -1;
69ffb543
JB
5983 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5984 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 5985 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
5986
5987 do {
5988 btrfs_drop_extent_cache(inode, em->start,
5989 em->start + em->len - 1, 0);
5990 write_lock(&em_tree->lock);
5991 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
5992 if (!ret)
5993 list_move(&em->list,
5994 &em_tree->modified_extents);
69ffb543
JB
5995 write_unlock(&em_tree->lock);
5996 } while (ret == -EEXIST);
5997
5998 if (ret) {
5999 free_extent_map(em);
6000 return ERR_PTR(ret);
6001 }
6002
6003 return em;
6004}
6005
6006
4b46fce2
JB
6007static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6008 struct buffer_head *bh_result, int create)
6009{
6010 struct extent_map *em;
6011 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6012 struct extent_state *cached_state = NULL;
4b46fce2 6013 u64 start = iblock << inode->i_blkbits;
eb838e73 6014 u64 lockstart, lockend;
4b46fce2 6015 u64 len = bh_result->b_size;
46bfbb5c 6016 struct btrfs_trans_handle *trans;
eb838e73
JB
6017 int unlock_bits = EXTENT_LOCKED;
6018 int ret;
6019
eb838e73
JB
6020 if (create) {
6021 ret = btrfs_delalloc_reserve_space(inode, len);
6022 if (ret)
6023 return ret;
6024 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
6025 } else {
6026 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
6027 }
6028
c329861d
JB
6029 lockstart = start;
6030 lockend = start + len - 1;
6031
eb838e73
JB
6032 /*
6033 * If this errors out it's because we couldn't invalidate pagecache for
6034 * this range and we need to fallback to buffered.
6035 */
6036 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6037 return -ENOTBLK;
6038
6039 if (create) {
6040 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6041 lockend, EXTENT_DELALLOC, NULL,
6042 &cached_state, GFP_NOFS);
6043 if (ret)
6044 goto unlock_err;
6045 }
4b46fce2
JB
6046
6047 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6048 if (IS_ERR(em)) {
6049 ret = PTR_ERR(em);
6050 goto unlock_err;
6051 }
4b46fce2
JB
6052
6053 /*
6054 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6055 * io. INLINE is special, and we could probably kludge it in here, but
6056 * it's still buffered so for safety lets just fall back to the generic
6057 * buffered path.
6058 *
6059 * For COMPRESSED we _have_ to read the entire extent in so we can
6060 * decompress it, so there will be buffering required no matter what we
6061 * do, so go ahead and fallback to buffered.
6062 *
6063 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6064 * to buffered IO. Don't blame me, this is the price we pay for using
6065 * the generic code.
6066 */
6067 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6068 em->block_start == EXTENT_MAP_INLINE) {
6069 free_extent_map(em);
eb838e73
JB
6070 ret = -ENOTBLK;
6071 goto unlock_err;
4b46fce2
JB
6072 }
6073
6074 /* Just a good old fashioned hole, return */
6075 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6076 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6077 free_extent_map(em);
eb838e73
JB
6078 ret = 0;
6079 goto unlock_err;
4b46fce2
JB
6080 }
6081
6082 /*
6083 * We don't allocate a new extent in the following cases
6084 *
6085 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6086 * existing extent.
6087 * 2) The extent is marked as PREALLOC. We're good to go here and can
6088 * just use the extent.
6089 *
6090 */
46bfbb5c 6091 if (!create) {
eb838e73
JB
6092 len = min(len, em->len - (start - em->start));
6093 lockstart = start + len;
6094 goto unlock;
46bfbb5c 6095 }
4b46fce2
JB
6096
6097 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6098 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6099 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6100 int type;
6101 int ret;
46bfbb5c 6102 u64 block_start;
4b46fce2
JB
6103
6104 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6105 type = BTRFS_ORDERED_PREALLOC;
6106 else
6107 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6108 len = min(len, em->len - (start - em->start));
4b46fce2 6109 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6110
6111 /*
6112 * we're not going to log anything, but we do need
6113 * to make sure the current transaction stays open
6114 * while we look for nocow cross refs
6115 */
7a7eaa40 6116 trans = btrfs_join_transaction(root);
3612b495 6117 if (IS_ERR(trans))
46bfbb5c
CM
6118 goto must_cow;
6119
6120 if (can_nocow_odirect(trans, inode, start, len) == 1) {
70c8a91c 6121 u64 orig_start = em->orig_start;
b4939680 6122 u64 orig_block_len = em->orig_block_len;
69ffb543
JB
6123
6124 if (type == BTRFS_ORDERED_PREALLOC) {
6125 free_extent_map(em);
6126 em = create_pinned_em(inode, start, len,
6127 orig_start,
b4939680
JB
6128 block_start, len,
6129 orig_block_len, type);
69ffb543
JB
6130 if (IS_ERR(em)) {
6131 btrfs_end_transaction(trans, root);
6132 goto unlock_err;
6133 }
6134 }
6135
46bfbb5c
CM
6136 ret = btrfs_add_ordered_extent_dio(inode, start,
6137 block_start, len, len, type);
6138 btrfs_end_transaction(trans, root);
6139 if (ret) {
6140 free_extent_map(em);
eb838e73 6141 goto unlock_err;
46bfbb5c
CM
6142 }
6143 goto unlock;
4b46fce2 6144 }
46bfbb5c 6145 btrfs_end_transaction(trans, root);
4b46fce2 6146 }
46bfbb5c
CM
6147must_cow:
6148 /*
6149 * this will cow the extent, reset the len in case we changed
6150 * it above
6151 */
6152 len = bh_result->b_size;
70c8a91c
JB
6153 free_extent_map(em);
6154 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6155 if (IS_ERR(em)) {
6156 ret = PTR_ERR(em);
6157 goto unlock_err;
6158 }
46bfbb5c
CM
6159 len = min(len, em->len - (start - em->start));
6160unlock:
4b46fce2
JB
6161 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6162 inode->i_blkbits;
46bfbb5c 6163 bh_result->b_size = len;
4b46fce2
JB
6164 bh_result->b_bdev = em->bdev;
6165 set_buffer_mapped(bh_result);
c3473e83
JB
6166 if (create) {
6167 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6168 set_buffer_new(bh_result);
6169
6170 /*
6171 * Need to update the i_size under the extent lock so buffered
6172 * readers will get the updated i_size when we unlock.
6173 */
6174 if (start + len > i_size_read(inode))
6175 i_size_write(inode, start + len);
6176 }
4b46fce2 6177
eb838e73
JB
6178 /*
6179 * In the case of write we need to clear and unlock the entire range,
6180 * in the case of read we need to unlock only the end area that we
6181 * aren't using if there is any left over space.
6182 */
24c03fa5
LB
6183 if (lockstart < lockend) {
6184 if (create && len < lockend - lockstart) {
6185 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6186 lockstart + len - 1,
6187 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6188 &cached_state, GFP_NOFS);
6189 /*
6190 * Beside unlock, we also need to cleanup reserved space
6191 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6192 */
6193 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6194 lockstart + len, lockend,
9e8a4a8b
LB
6195 unlock_bits | EXTENT_DO_ACCOUNTING |
6196 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6197 } else {
6198 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6199 lockend, unlock_bits, 1, 0,
6200 &cached_state, GFP_NOFS);
6201 }
6202 } else {
eb838e73 6203 free_extent_state(cached_state);
24c03fa5 6204 }
eb838e73 6205
4b46fce2
JB
6206 free_extent_map(em);
6207
6208 return 0;
eb838e73
JB
6209
6210unlock_err:
6211 if (create)
6212 unlock_bits |= EXTENT_DO_ACCOUNTING;
6213
6214 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6215 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6216 return ret;
4b46fce2
JB
6217}
6218
6219struct btrfs_dio_private {
6220 struct inode *inode;
6221 u64 logical_offset;
6222 u64 disk_bytenr;
6223 u64 bytes;
4b46fce2 6224 void *private;
e65e1535
MX
6225
6226 /* number of bios pending for this dio */
6227 atomic_t pending_bios;
6228
6229 /* IO errors */
6230 int errors;
6231
6232 struct bio *orig_bio;
4b46fce2
JB
6233};
6234
6235static void btrfs_endio_direct_read(struct bio *bio, int err)
6236{
e65e1535 6237 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6238 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6239 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6240 struct inode *inode = dip->inode;
6241 struct btrfs_root *root = BTRFS_I(inode)->root;
6242 u64 start;
4b46fce2
JB
6243
6244 start = dip->logical_offset;
6245 do {
6246 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6247 struct page *page = bvec->bv_page;
6248 char *kaddr;
6249 u32 csum = ~(u32)0;
c329861d 6250 u64 private = ~(u32)0;
4b46fce2
JB
6251 unsigned long flags;
6252
c329861d
JB
6253 if (get_state_private(&BTRFS_I(inode)->io_tree,
6254 start, &private))
6255 goto failed;
4b46fce2 6256 local_irq_save(flags);
7ac687d9 6257 kaddr = kmap_atomic(page);
4b46fce2
JB
6258 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6259 csum, bvec->bv_len);
6260 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6261 kunmap_atomic(kaddr);
4b46fce2
JB
6262 local_irq_restore(flags);
6263
6264 flush_dcache_page(bvec->bv_page);
c329861d
JB
6265 if (csum != private) {
6266failed:
33345d01 6267 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6268 " %llu csum %u private %u\n",
33345d01
LZ
6269 (unsigned long long)btrfs_ino(inode),
6270 (unsigned long long)start,
c329861d 6271 csum, (unsigned)private);
4b46fce2
JB
6272 err = -EIO;
6273 }
6274 }
6275
6276 start += bvec->bv_len;
4b46fce2
JB
6277 bvec++;
6278 } while (bvec <= bvec_end);
6279
6280 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6281 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6282 bio->bi_private = dip->private;
6283
4b46fce2 6284 kfree(dip);
c0da7aa1
JB
6285
6286 /* If we had a csum failure make sure to clear the uptodate flag */
6287 if (err)
6288 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6289 dio_end_io(bio, err);
6290}
6291
6292static void btrfs_endio_direct_write(struct bio *bio, int err)
6293{
6294 struct btrfs_dio_private *dip = bio->bi_private;
6295 struct inode *inode = dip->inode;
6296 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6297 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6298 u64 ordered_offset = dip->logical_offset;
6299 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6300 int ret;
6301
6302 if (err)
6303 goto out_done;
163cf09c
CM
6304again:
6305 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6306 &ordered_offset,
5fd02043 6307 ordered_bytes, !err);
4b46fce2 6308 if (!ret)
163cf09c 6309 goto out_test;
4b46fce2 6310
5fd02043
JB
6311 ordered->work.func = finish_ordered_fn;
6312 ordered->work.flags = 0;
6313 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6314 &ordered->work);
163cf09c
CM
6315out_test:
6316 /*
6317 * our bio might span multiple ordered extents. If we haven't
6318 * completed the accounting for the whole dio, go back and try again
6319 */
6320 if (ordered_offset < dip->logical_offset + dip->bytes) {
6321 ordered_bytes = dip->logical_offset + dip->bytes -
6322 ordered_offset;
5fd02043 6323 ordered = NULL;
163cf09c
CM
6324 goto again;
6325 }
4b46fce2
JB
6326out_done:
6327 bio->bi_private = dip->private;
6328
4b46fce2 6329 kfree(dip);
c0da7aa1
JB
6330
6331 /* If we had an error make sure to clear the uptodate flag */
6332 if (err)
6333 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6334 dio_end_io(bio, err);
6335}
6336
eaf25d93
CM
6337static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6338 struct bio *bio, int mirror_num,
6339 unsigned long bio_flags, u64 offset)
6340{
6341 int ret;
6342 struct btrfs_root *root = BTRFS_I(inode)->root;
6343 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6344 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6345 return 0;
6346}
6347
e65e1535
MX
6348static void btrfs_end_dio_bio(struct bio *bio, int err)
6349{
6350 struct btrfs_dio_private *dip = bio->bi_private;
6351
6352 if (err) {
33345d01 6353 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6354 "sector %#Lx len %u err no %d\n",
33345d01 6355 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6356 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6357 dip->errors = 1;
6358
6359 /*
6360 * before atomic variable goto zero, we must make sure
6361 * dip->errors is perceived to be set.
6362 */
6363 smp_mb__before_atomic_dec();
6364 }
6365
6366 /* if there are more bios still pending for this dio, just exit */
6367 if (!atomic_dec_and_test(&dip->pending_bios))
6368 goto out;
6369
6370 if (dip->errors)
6371 bio_io_error(dip->orig_bio);
6372 else {
6373 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6374 bio_endio(dip->orig_bio, 0);
6375 }
6376out:
6377 bio_put(bio);
6378}
6379
6380static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6381 u64 first_sector, gfp_t gfp_flags)
6382{
6383 int nr_vecs = bio_get_nr_vecs(bdev);
6384 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6385}
6386
6387static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6388 int rw, u64 file_offset, int skip_sum,
c329861d 6389 int async_submit)
e65e1535
MX
6390{
6391 int write = rw & REQ_WRITE;
6392 struct btrfs_root *root = BTRFS_I(inode)->root;
6393 int ret;
6394
b812ce28
JB
6395 if (async_submit)
6396 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6397
e65e1535 6398 bio_get(bio);
5fd02043
JB
6399
6400 if (!write) {
6401 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6402 if (ret)
6403 goto err;
6404 }
e65e1535 6405
1ae39938
JB
6406 if (skip_sum)
6407 goto map;
6408
6409 if (write && async_submit) {
e65e1535
MX
6410 ret = btrfs_wq_submit_bio(root->fs_info,
6411 inode, rw, bio, 0, 0,
6412 file_offset,
6413 __btrfs_submit_bio_start_direct_io,
6414 __btrfs_submit_bio_done);
6415 goto err;
1ae39938
JB
6416 } else if (write) {
6417 /*
6418 * If we aren't doing async submit, calculate the csum of the
6419 * bio now.
6420 */
6421 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6422 if (ret)
6423 goto err;
c2db1073 6424 } else if (!skip_sum) {
c329861d 6425 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6426 if (ret)
6427 goto err;
6428 }
e65e1535 6429
1ae39938
JB
6430map:
6431 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6432err:
6433 bio_put(bio);
6434 return ret;
6435}
6436
6437static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6438 int skip_sum)
6439{
6440 struct inode *inode = dip->inode;
6441 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6442 struct bio *bio;
6443 struct bio *orig_bio = dip->orig_bio;
6444 struct bio_vec *bvec = orig_bio->bi_io_vec;
6445 u64 start_sector = orig_bio->bi_sector;
6446 u64 file_offset = dip->logical_offset;
6447 u64 submit_len = 0;
6448 u64 map_length;
6449 int nr_pages = 0;
e65e1535 6450 int ret = 0;
1ae39938 6451 int async_submit = 0;
e65e1535 6452
e65e1535 6453 map_length = orig_bio->bi_size;
3ec706c8 6454 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
e65e1535
MX
6455 &map_length, NULL, 0);
6456 if (ret) {
64728bbb 6457 bio_put(orig_bio);
e65e1535
MX
6458 return -EIO;
6459 }
6460
02f57c7a
JB
6461 if (map_length >= orig_bio->bi_size) {
6462 bio = orig_bio;
6463 goto submit;
6464 }
6465
1ae39938 6466 async_submit = 1;
02f57c7a
JB
6467 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6468 if (!bio)
6469 return -ENOMEM;
6470 bio->bi_private = dip;
6471 bio->bi_end_io = btrfs_end_dio_bio;
6472 atomic_inc(&dip->pending_bios);
6473
e65e1535
MX
6474 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6475 if (unlikely(map_length < submit_len + bvec->bv_len ||
6476 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6477 bvec->bv_offset) < bvec->bv_len)) {
6478 /*
6479 * inc the count before we submit the bio so
6480 * we know the end IO handler won't happen before
6481 * we inc the count. Otherwise, the dip might get freed
6482 * before we're done setting it up
6483 */
6484 atomic_inc(&dip->pending_bios);
6485 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6486 file_offset, skip_sum,
c329861d 6487 async_submit);
e65e1535
MX
6488 if (ret) {
6489 bio_put(bio);
6490 atomic_dec(&dip->pending_bios);
6491 goto out_err;
6492 }
6493
e65e1535
MX
6494 start_sector += submit_len >> 9;
6495 file_offset += submit_len;
6496
6497 submit_len = 0;
6498 nr_pages = 0;
6499
6500 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6501 start_sector, GFP_NOFS);
6502 if (!bio)
6503 goto out_err;
6504 bio->bi_private = dip;
6505 bio->bi_end_io = btrfs_end_dio_bio;
6506
6507 map_length = orig_bio->bi_size;
3ec706c8
SB
6508 ret = btrfs_map_block(root->fs_info, READ,
6509 start_sector << 9,
e65e1535
MX
6510 &map_length, NULL, 0);
6511 if (ret) {
6512 bio_put(bio);
6513 goto out_err;
6514 }
6515 } else {
6516 submit_len += bvec->bv_len;
6517 nr_pages ++;
6518 bvec++;
6519 }
6520 }
6521
02f57c7a 6522submit:
e65e1535 6523 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6524 async_submit);
e65e1535
MX
6525 if (!ret)
6526 return 0;
6527
6528 bio_put(bio);
6529out_err:
6530 dip->errors = 1;
6531 /*
6532 * before atomic variable goto zero, we must
6533 * make sure dip->errors is perceived to be set.
6534 */
6535 smp_mb__before_atomic_dec();
6536 if (atomic_dec_and_test(&dip->pending_bios))
6537 bio_io_error(dip->orig_bio);
6538
6539 /* bio_end_io() will handle error, so we needn't return it */
6540 return 0;
6541}
6542
4b46fce2
JB
6543static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6544 loff_t file_offset)
6545{
6546 struct btrfs_root *root = BTRFS_I(inode)->root;
6547 struct btrfs_dio_private *dip;
6548 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6549 int skip_sum;
7b6d91da 6550 int write = rw & REQ_WRITE;
4b46fce2
JB
6551 int ret = 0;
6552
6553 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6554
6555 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6556 if (!dip) {
6557 ret = -ENOMEM;
6558 goto free_ordered;
6559 }
4b46fce2
JB
6560
6561 dip->private = bio->bi_private;
6562 dip->inode = inode;
6563 dip->logical_offset = file_offset;
6564
4b46fce2
JB
6565 dip->bytes = 0;
6566 do {
6567 dip->bytes += bvec->bv_len;
6568 bvec++;
6569 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6570
46bfbb5c 6571 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6572 bio->bi_private = dip;
e65e1535
MX
6573 dip->errors = 0;
6574 dip->orig_bio = bio;
6575 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6576
6577 if (write)
6578 bio->bi_end_io = btrfs_endio_direct_write;
6579 else
6580 bio->bi_end_io = btrfs_endio_direct_read;
6581
e65e1535
MX
6582 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6583 if (!ret)
eaf25d93 6584 return;
4b46fce2
JB
6585free_ordered:
6586 /*
6587 * If this is a write, we need to clean up the reserved space and kill
6588 * the ordered extent.
6589 */
6590 if (write) {
6591 struct btrfs_ordered_extent *ordered;
955256f2 6592 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6593 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6594 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6595 btrfs_free_reserved_extent(root, ordered->start,
6596 ordered->disk_len);
6597 btrfs_put_ordered_extent(ordered);
6598 btrfs_put_ordered_extent(ordered);
6599 }
6600 bio_endio(bio, ret);
6601}
6602
5a5f79b5
CM
6603static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6604 const struct iovec *iov, loff_t offset,
6605 unsigned long nr_segs)
6606{
6607 int seg;
a1b75f7d 6608 int i;
5a5f79b5
CM
6609 size_t size;
6610 unsigned long addr;
6611 unsigned blocksize_mask = root->sectorsize - 1;
6612 ssize_t retval = -EINVAL;
6613 loff_t end = offset;
6614
6615 if (offset & blocksize_mask)
6616 goto out;
6617
6618 /* Check the memory alignment. Blocks cannot straddle pages */
6619 for (seg = 0; seg < nr_segs; seg++) {
6620 addr = (unsigned long)iov[seg].iov_base;
6621 size = iov[seg].iov_len;
6622 end += size;
a1b75f7d 6623 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6624 goto out;
a1b75f7d
JB
6625
6626 /* If this is a write we don't need to check anymore */
6627 if (rw & WRITE)
6628 continue;
6629
6630 /*
6631 * Check to make sure we don't have duplicate iov_base's in this
6632 * iovec, if so return EINVAL, otherwise we'll get csum errors
6633 * when reading back.
6634 */
6635 for (i = seg + 1; i < nr_segs; i++) {
6636 if (iov[seg].iov_base == iov[i].iov_base)
6637 goto out;
6638 }
5a5f79b5
CM
6639 }
6640 retval = 0;
6641out:
6642 return retval;
6643}
eb838e73 6644
16432985
CM
6645static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6646 const struct iovec *iov, loff_t offset,
6647 unsigned long nr_segs)
6648{
4b46fce2
JB
6649 struct file *file = iocb->ki_filp;
6650 struct inode *inode = file->f_mapping->host;
4b46fce2 6651
5a5f79b5 6652 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6653 offset, nr_segs))
5a5f79b5 6654 return 0;
3f7c579c 6655
eb838e73 6656 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6657 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6658 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6659 btrfs_submit_direct, 0);
16432985
CM
6660}
6661
05dadc09
TI
6662#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6663
1506fcc8
YS
6664static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6665 __u64 start, __u64 len)
6666{
05dadc09
TI
6667 int ret;
6668
6669 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6670 if (ret)
6671 return ret;
6672
ec29ed5b 6673 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6674}
6675
a52d9a80 6676int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6677{
d1310b2e
CM
6678 struct extent_io_tree *tree;
6679 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6680 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6681}
1832a6d5 6682
a52d9a80 6683static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6684{
d1310b2e 6685 struct extent_io_tree *tree;
b888db2b
CM
6686
6687
6688 if (current->flags & PF_MEMALLOC) {
6689 redirty_page_for_writepage(wbc, page);
6690 unlock_page(page);
6691 return 0;
6692 }
d1310b2e 6693 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6694 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6695}
6696
f421950f
CM
6697int btrfs_writepages(struct address_space *mapping,
6698 struct writeback_control *wbc)
b293f02e 6699{
d1310b2e 6700 struct extent_io_tree *tree;
771ed689 6701
d1310b2e 6702 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6703 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6704}
6705
3ab2fb5a
CM
6706static int
6707btrfs_readpages(struct file *file, struct address_space *mapping,
6708 struct list_head *pages, unsigned nr_pages)
6709{
d1310b2e
CM
6710 struct extent_io_tree *tree;
6711 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6712 return extent_readpages(tree, mapping, pages, nr_pages,
6713 btrfs_get_extent);
6714}
e6dcd2dc 6715static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6716{
d1310b2e
CM
6717 struct extent_io_tree *tree;
6718 struct extent_map_tree *map;
a52d9a80 6719 int ret;
8c2383c3 6720
d1310b2e
CM
6721 tree = &BTRFS_I(page->mapping->host)->io_tree;
6722 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6723 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6724 if (ret == 1) {
6725 ClearPagePrivate(page);
6726 set_page_private(page, 0);
6727 page_cache_release(page);
39279cc3 6728 }
a52d9a80 6729 return ret;
39279cc3
CM
6730}
6731
e6dcd2dc
CM
6732static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6733{
98509cfc
CM
6734 if (PageWriteback(page) || PageDirty(page))
6735 return 0;
b335b003 6736 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6737}
6738
a52d9a80 6739static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6740{
5fd02043 6741 struct inode *inode = page->mapping->host;
d1310b2e 6742 struct extent_io_tree *tree;
e6dcd2dc 6743 struct btrfs_ordered_extent *ordered;
2ac55d41 6744 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6745 u64 page_start = page_offset(page);
6746 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6747
8b62b72b
CM
6748 /*
6749 * we have the page locked, so new writeback can't start,
6750 * and the dirty bit won't be cleared while we are here.
6751 *
6752 * Wait for IO on this page so that we can safely clear
6753 * the PagePrivate2 bit and do ordered accounting
6754 */
e6dcd2dc 6755 wait_on_page_writeback(page);
8b62b72b 6756
5fd02043 6757 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6758 if (offset) {
6759 btrfs_releasepage(page, GFP_NOFS);
6760 return;
6761 }
d0082371 6762 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 6763 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 6764 if (ordered) {
eb84ae03
CM
6765 /*
6766 * IO on this page will never be started, so we need
6767 * to account for any ordered extents now
6768 */
e6dcd2dc
CM
6769 clear_extent_bit(tree, page_start, page_end,
6770 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6771 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6772 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6773 /*
6774 * whoever cleared the private bit is responsible
6775 * for the finish_ordered_io
6776 */
5fd02043
JB
6777 if (TestClearPagePrivate2(page) &&
6778 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6779 PAGE_CACHE_SIZE, 1)) {
6780 btrfs_finish_ordered_io(ordered);
8b62b72b 6781 }
e6dcd2dc 6782 btrfs_put_ordered_extent(ordered);
2ac55d41 6783 cached_state = NULL;
d0082371 6784 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6785 }
6786 clear_extent_bit(tree, page_start, page_end,
32c00aff 6787 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6788 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6789 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6790 __btrfs_releasepage(page, GFP_NOFS);
6791
4a096752 6792 ClearPageChecked(page);
9ad6b7bc 6793 if (PagePrivate(page)) {
9ad6b7bc
CM
6794 ClearPagePrivate(page);
6795 set_page_private(page, 0);
6796 page_cache_release(page);
6797 }
39279cc3
CM
6798}
6799
9ebefb18
CM
6800/*
6801 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6802 * called from a page fault handler when a page is first dirtied. Hence we must
6803 * be careful to check for EOF conditions here. We set the page up correctly
6804 * for a written page which means we get ENOSPC checking when writing into
6805 * holes and correct delalloc and unwritten extent mapping on filesystems that
6806 * support these features.
6807 *
6808 * We are not allowed to take the i_mutex here so we have to play games to
6809 * protect against truncate races as the page could now be beyond EOF. Because
6810 * vmtruncate() writes the inode size before removing pages, once we have the
6811 * page lock we can determine safely if the page is beyond EOF. If it is not
6812 * beyond EOF, then the page is guaranteed safe against truncation until we
6813 * unlock the page.
6814 */
c2ec175c 6815int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6816{
c2ec175c 6817 struct page *page = vmf->page;
6da6abae 6818 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6819 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6820 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6821 struct btrfs_ordered_extent *ordered;
2ac55d41 6822 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6823 char *kaddr;
6824 unsigned long zero_start;
9ebefb18 6825 loff_t size;
1832a6d5 6826 int ret;
9998eb70 6827 int reserved = 0;
a52d9a80 6828 u64 page_start;
e6dcd2dc 6829 u64 page_end;
9ebefb18 6830
b2b5ef5c 6831 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6832 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6833 if (!ret) {
e41f941a 6834 ret = file_update_time(vma->vm_file);
9998eb70
CM
6835 reserved = 1;
6836 }
56a76f82
NP
6837 if (ret) {
6838 if (ret == -ENOMEM)
6839 ret = VM_FAULT_OOM;
6840 else /* -ENOSPC, -EIO, etc */
6841 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6842 if (reserved)
6843 goto out;
6844 goto out_noreserve;
56a76f82 6845 }
1832a6d5 6846
56a76f82 6847 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6848again:
9ebefb18 6849 lock_page(page);
9ebefb18 6850 size = i_size_read(inode);
e6dcd2dc
CM
6851 page_start = page_offset(page);
6852 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6853
9ebefb18 6854 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6855 (page_start >= size)) {
9ebefb18
CM
6856 /* page got truncated out from underneath us */
6857 goto out_unlock;
6858 }
e6dcd2dc
CM
6859 wait_on_page_writeback(page);
6860
d0082371 6861 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6862 set_page_extent_mapped(page);
6863
eb84ae03
CM
6864 /*
6865 * we can't set the delalloc bits if there are pending ordered
6866 * extents. Drop our locks and wait for them to finish
6867 */
e6dcd2dc
CM
6868 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6869 if (ordered) {
2ac55d41
JB
6870 unlock_extent_cached(io_tree, page_start, page_end,
6871 &cached_state, GFP_NOFS);
e6dcd2dc 6872 unlock_page(page);
eb84ae03 6873 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6874 btrfs_put_ordered_extent(ordered);
6875 goto again;
6876 }
6877
fbf19087
JB
6878 /*
6879 * XXX - page_mkwrite gets called every time the page is dirtied, even
6880 * if it was already dirty, so for space accounting reasons we need to
6881 * clear any delalloc bits for the range we are fixing to save. There
6882 * is probably a better way to do this, but for now keep consistent with
6883 * prepare_pages in the normal write path.
6884 */
2ac55d41 6885 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6886 EXTENT_DIRTY | EXTENT_DELALLOC |
6887 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6888 0, 0, &cached_state, GFP_NOFS);
fbf19087 6889
2ac55d41
JB
6890 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6891 &cached_state);
9ed74f2d 6892 if (ret) {
2ac55d41
JB
6893 unlock_extent_cached(io_tree, page_start, page_end,
6894 &cached_state, GFP_NOFS);
9ed74f2d
JB
6895 ret = VM_FAULT_SIGBUS;
6896 goto out_unlock;
6897 }
e6dcd2dc 6898 ret = 0;
9ebefb18
CM
6899
6900 /* page is wholly or partially inside EOF */
a52d9a80 6901 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6902 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6903 else
e6dcd2dc 6904 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6905
e6dcd2dc
CM
6906 if (zero_start != PAGE_CACHE_SIZE) {
6907 kaddr = kmap(page);
6908 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6909 flush_dcache_page(page);
6910 kunmap(page);
6911 }
247e743c 6912 ClearPageChecked(page);
e6dcd2dc 6913 set_page_dirty(page);
50a9b214 6914 SetPageUptodate(page);
5a3f23d5 6915
257c62e1
CM
6916 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6917 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6918 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6919
2ac55d41 6920 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6921
6922out_unlock:
b2b5ef5c
JK
6923 if (!ret) {
6924 sb_end_pagefault(inode->i_sb);
50a9b214 6925 return VM_FAULT_LOCKED;
b2b5ef5c 6926 }
9ebefb18 6927 unlock_page(page);
1832a6d5 6928out:
ec39e180 6929 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6930out_noreserve:
b2b5ef5c 6931 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6932 return ret;
6933}
6934
a41ad394 6935static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6936{
6937 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6938 struct btrfs_block_rsv *rsv;
39279cc3 6939 int ret;
3893e33b 6940 int err = 0;
39279cc3 6941 struct btrfs_trans_handle *trans;
dbe674a9 6942 u64 mask = root->sectorsize - 1;
07127184 6943 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6944
2aaa6655 6945 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6946 if (ret)
a41ad394 6947 return ret;
8082510e 6948
4a096752 6949 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6950 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6951
fcb80c2a
JB
6952 /*
6953 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6954 * 3 things going on here
6955 *
6956 * 1) We need to reserve space for our orphan item and the space to
6957 * delete our orphan item. Lord knows we don't want to have a dangling
6958 * orphan item because we didn't reserve space to remove it.
6959 *
6960 * 2) We need to reserve space to update our inode.
6961 *
6962 * 3) We need to have something to cache all the space that is going to
6963 * be free'd up by the truncate operation, but also have some slack
6964 * space reserved in case it uses space during the truncate (thank you
6965 * very much snapshotting).
6966 *
6967 * And we need these to all be seperate. The fact is we can use alot of
6968 * space doing the truncate, and we have no earthly idea how much space
6969 * we will use, so we need the truncate reservation to be seperate so it
6970 * doesn't end up using space reserved for updating the inode or
6971 * removing the orphan item. We also need to be able to stop the
6972 * transaction and start a new one, which means we need to be able to
6973 * update the inode several times, and we have no idea of knowing how
6974 * many times that will be, so we can't just reserve 1 item for the
6975 * entirety of the opration, so that has to be done seperately as well.
6976 * Then there is the orphan item, which does indeed need to be held on
6977 * to for the whole operation, and we need nobody to touch this reserved
6978 * space except the orphan code.
6979 *
6980 * So that leaves us with
6981 *
6982 * 1) root->orphan_block_rsv - for the orphan deletion.
6983 * 2) rsv - for the truncate reservation, which we will steal from the
6984 * transaction reservation.
6985 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6986 * updating the inode.
6987 */
66d8f3dd 6988 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
6989 if (!rsv)
6990 return -ENOMEM;
4a338542 6991 rsv->size = min_size;
ca7e70f5 6992 rsv->failfast = 1;
f0cd846e 6993
907cbceb 6994 /*
07127184 6995 * 1 for the truncate slack space
907cbceb
JB
6996 * 1 for updating the inode.
6997 */
f3fe820c 6998 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
6999 if (IS_ERR(trans)) {
7000 err = PTR_ERR(trans);
7001 goto out;
7002 }
f0cd846e 7003
907cbceb
JB
7004 /* Migrate the slack space for the truncate to our reserve */
7005 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7006 min_size);
fcb80c2a 7007 BUG_ON(ret);
f0cd846e 7008
5a3f23d5
CM
7009 /*
7010 * setattr is responsible for setting the ordered_data_close flag,
7011 * but that is only tested during the last file release. That
7012 * could happen well after the next commit, leaving a great big
7013 * window where new writes may get lost if someone chooses to write
7014 * to this file after truncating to zero
7015 *
7016 * The inode doesn't have any dirty data here, and so if we commit
7017 * this is a noop. If someone immediately starts writing to the inode
7018 * it is very likely we'll catch some of their writes in this
7019 * transaction, and the commit will find this file on the ordered
7020 * data list with good things to send down.
7021 *
7022 * This is a best effort solution, there is still a window where
7023 * using truncate to replace the contents of the file will
7024 * end up with a zero length file after a crash.
7025 */
72ac3c0d
JB
7026 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7027 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7028 btrfs_add_ordered_operation(trans, root, inode);
7029
5dc562c5
JB
7030 /*
7031 * So if we truncate and then write and fsync we normally would just
7032 * write the extents that changed, which is a problem if we need to
7033 * first truncate that entire inode. So set this flag so we write out
7034 * all of the extents in the inode to the sync log so we're completely
7035 * safe.
7036 */
7037 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7038 trans->block_rsv = rsv;
907cbceb 7039
8082510e
YZ
7040 while (1) {
7041 ret = btrfs_truncate_inode_items(trans, root, inode,
7042 inode->i_size,
7043 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7044 if (ret != -ENOSPC) {
3893e33b 7045 err = ret;
8082510e 7046 break;
3893e33b 7047 }
39279cc3 7048
fcb80c2a 7049 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7050 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7051 if (ret) {
7052 err = ret;
7053 break;
7054 }
ca7e70f5 7055
8082510e 7056 btrfs_end_transaction(trans, root);
b53d3f5d 7057 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7058
7059 trans = btrfs_start_transaction(root, 2);
7060 if (IS_ERR(trans)) {
7061 ret = err = PTR_ERR(trans);
7062 trans = NULL;
7063 break;
7064 }
7065
7066 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7067 rsv, min_size);
7068 BUG_ON(ret); /* shouldn't happen */
7069 trans->block_rsv = rsv;
8082510e
YZ
7070 }
7071
7072 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7073 trans->block_rsv = root->orphan_block_rsv;
8082510e 7074 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7075 if (ret)
7076 err = ret;
8082510e
YZ
7077 }
7078
917c16b2
CM
7079 if (trans) {
7080 trans->block_rsv = &root->fs_info->trans_block_rsv;
7081 ret = btrfs_update_inode(trans, root, inode);
7082 if (ret && !err)
7083 err = ret;
7b128766 7084
7ad85bb7 7085 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7086 btrfs_btree_balance_dirty(root);
917c16b2 7087 }
fcb80c2a
JB
7088
7089out:
7090 btrfs_free_block_rsv(root, rsv);
7091
3893e33b
JB
7092 if (ret && !err)
7093 err = ret;
a41ad394 7094
3893e33b 7095 return err;
39279cc3
CM
7096}
7097
d352ac68
CM
7098/*
7099 * create a new subvolume directory/inode (helper for the ioctl).
7100 */
d2fb3437 7101int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7102 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7103{
39279cc3 7104 struct inode *inode;
76dda93c 7105 int err;
00e4e6b3 7106 u64 index = 0;
39279cc3 7107
12fc9d09
FA
7108 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7109 new_dirid, new_dirid,
7110 S_IFDIR | (~current_umask() & S_IRWXUGO),
7111 &index);
54aa1f4d 7112 if (IS_ERR(inode))
f46b5a66 7113 return PTR_ERR(inode);
39279cc3
CM
7114 inode->i_op = &btrfs_dir_inode_operations;
7115 inode->i_fop = &btrfs_dir_file_operations;
7116
bfe86848 7117 set_nlink(inode, 1);
dbe674a9 7118 btrfs_i_size_write(inode, 0);
3b96362c 7119
76dda93c 7120 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7121
76dda93c 7122 iput(inode);
ce598979 7123 return err;
39279cc3
CM
7124}
7125
39279cc3
CM
7126struct inode *btrfs_alloc_inode(struct super_block *sb)
7127{
7128 struct btrfs_inode *ei;
2ead6ae7 7129 struct inode *inode;
39279cc3
CM
7130
7131 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7132 if (!ei)
7133 return NULL;
2ead6ae7
YZ
7134
7135 ei->root = NULL;
2ead6ae7 7136 ei->generation = 0;
15ee9bc7 7137 ei->last_trans = 0;
257c62e1 7138 ei->last_sub_trans = 0;
e02119d5 7139 ei->logged_trans = 0;
2ead6ae7 7140 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7141 ei->disk_i_size = 0;
7142 ei->flags = 0;
7709cde3 7143 ei->csum_bytes = 0;
2ead6ae7
YZ
7144 ei->index_cnt = (u64)-1;
7145 ei->last_unlink_trans = 0;
46d8bc34 7146 ei->last_log_commit = 0;
2ead6ae7 7147
9e0baf60
JB
7148 spin_lock_init(&ei->lock);
7149 ei->outstanding_extents = 0;
7150 ei->reserved_extents = 0;
2ead6ae7 7151
72ac3c0d 7152 ei->runtime_flags = 0;
261507a0 7153 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7154
16cdcec7
MX
7155 ei->delayed_node = NULL;
7156
2ead6ae7 7157 inode = &ei->vfs_inode;
a8067e02 7158 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7159 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7160 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7161 ei->io_tree.track_uptodate = 1;
7162 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7163 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7164 mutex_init(&ei->log_mutex);
f248679e 7165 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7166 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7167 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7168 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7169 RB_CLEAR_NODE(&ei->rb_node);
7170
7171 return inode;
39279cc3
CM
7172}
7173
fa0d7e3d
NP
7174static void btrfs_i_callback(struct rcu_head *head)
7175{
7176 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7177 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7178}
7179
39279cc3
CM
7180void btrfs_destroy_inode(struct inode *inode)
7181{
e6dcd2dc 7182 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7183 struct btrfs_root *root = BTRFS_I(inode)->root;
7184
b3d9b7a3 7185 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7186 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7187 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7188 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7189 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7190 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7191
a6dbd429
JB
7192 /*
7193 * This can happen where we create an inode, but somebody else also
7194 * created the same inode and we need to destroy the one we already
7195 * created.
7196 */
7197 if (!root)
7198 goto free;
7199
5a3f23d5
CM
7200 /*
7201 * Make sure we're properly removed from the ordered operation
7202 * lists.
7203 */
7204 smp_mb();
7205 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7206 spin_lock(&root->fs_info->ordered_extent_lock);
7207 list_del_init(&BTRFS_I(inode)->ordered_operations);
7208 spin_unlock(&root->fs_info->ordered_extent_lock);
7209 }
7210
8a35d95f
JB
7211 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7212 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7213 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7214 (unsigned long long)btrfs_ino(inode));
8a35d95f 7215 atomic_dec(&root->orphan_inodes);
7b128766 7216 }
7b128766 7217
d397712b 7218 while (1) {
e6dcd2dc
CM
7219 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7220 if (!ordered)
7221 break;
7222 else {
d397712b
CM
7223 printk(KERN_ERR "btrfs found ordered "
7224 "extent %llu %llu on inode cleanup\n",
7225 (unsigned long long)ordered->file_offset,
7226 (unsigned long long)ordered->len);
e6dcd2dc
CM
7227 btrfs_remove_ordered_extent(inode, ordered);
7228 btrfs_put_ordered_extent(ordered);
7229 btrfs_put_ordered_extent(ordered);
7230 }
7231 }
5d4f98a2 7232 inode_tree_del(inode);
5b21f2ed 7233 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7234free:
16cdcec7 7235 btrfs_remove_delayed_node(inode);
fa0d7e3d 7236 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7237}
7238
45321ac5 7239int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7240{
7241 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7242
0af3d00b 7243 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7244 !btrfs_is_free_space_inode(inode))
45321ac5 7245 return 1;
76dda93c 7246 else
45321ac5 7247 return generic_drop_inode(inode);
76dda93c
YZ
7248}
7249
0ee0fda0 7250static void init_once(void *foo)
39279cc3
CM
7251{
7252 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7253
7254 inode_init_once(&ei->vfs_inode);
7255}
7256
7257void btrfs_destroy_cachep(void)
7258{
8c0a8537
KS
7259 /*
7260 * Make sure all delayed rcu free inodes are flushed before we
7261 * destroy cache.
7262 */
7263 rcu_barrier();
39279cc3
CM
7264 if (btrfs_inode_cachep)
7265 kmem_cache_destroy(btrfs_inode_cachep);
7266 if (btrfs_trans_handle_cachep)
7267 kmem_cache_destroy(btrfs_trans_handle_cachep);
7268 if (btrfs_transaction_cachep)
7269 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7270 if (btrfs_path_cachep)
7271 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7272 if (btrfs_free_space_cachep)
7273 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7274 if (btrfs_delalloc_work_cachep)
7275 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7276}
7277
7278int btrfs_init_cachep(void)
7279{
837e1972 7280 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7281 sizeof(struct btrfs_inode), 0,
7282 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7283 if (!btrfs_inode_cachep)
7284 goto fail;
9601e3f6 7285
837e1972 7286 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7287 sizeof(struct btrfs_trans_handle), 0,
7288 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7289 if (!btrfs_trans_handle_cachep)
7290 goto fail;
9601e3f6 7291
837e1972 7292 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7293 sizeof(struct btrfs_transaction), 0,
7294 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7295 if (!btrfs_transaction_cachep)
7296 goto fail;
9601e3f6 7297
837e1972 7298 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7299 sizeof(struct btrfs_path), 0,
7300 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7301 if (!btrfs_path_cachep)
7302 goto fail;
9601e3f6 7303
837e1972 7304 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7305 sizeof(struct btrfs_free_space), 0,
7306 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7307 if (!btrfs_free_space_cachep)
7308 goto fail;
7309
8ccf6f19
MX
7310 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7311 sizeof(struct btrfs_delalloc_work), 0,
7312 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7313 NULL);
7314 if (!btrfs_delalloc_work_cachep)
7315 goto fail;
7316
39279cc3
CM
7317 return 0;
7318fail:
7319 btrfs_destroy_cachep();
7320 return -ENOMEM;
7321}
7322
7323static int btrfs_getattr(struct vfsmount *mnt,
7324 struct dentry *dentry, struct kstat *stat)
7325{
7326 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7327 u32 blocksize = inode->i_sb->s_blocksize;
7328
39279cc3 7329 generic_fillattr(inode, stat);
0ee5dc67 7330 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7331 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7332 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7333 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7334 return 0;
7335}
7336
75e7cb7f
LB
7337/*
7338 * If a file is moved, it will inherit the cow and compression flags of the new
7339 * directory.
7340 */
7341static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7342{
7343 struct btrfs_inode *b_dir = BTRFS_I(dir);
7344 struct btrfs_inode *b_inode = BTRFS_I(inode);
7345
7346 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7347 b_inode->flags |= BTRFS_INODE_NODATACOW;
7348 else
7349 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7350
bc178237 7351 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7352 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7353 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7354 } else {
7355 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7356 BTRFS_INODE_NOCOMPRESS);
7357 }
75e7cb7f
LB
7358}
7359
d397712b
CM
7360static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7361 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7362{
7363 struct btrfs_trans_handle *trans;
7364 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7365 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7366 struct inode *new_inode = new_dentry->d_inode;
7367 struct inode *old_inode = old_dentry->d_inode;
7368 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7369 u64 index = 0;
4df27c4d 7370 u64 root_objectid;
39279cc3 7371 int ret;
33345d01 7372 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7373
33345d01 7374 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7375 return -EPERM;
7376
4df27c4d 7377 /* we only allow rename subvolume link between subvolumes */
33345d01 7378 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7379 return -EXDEV;
7380
33345d01
LZ
7381 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7382 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7383 return -ENOTEMPTY;
5f39d397 7384
4df27c4d
YZ
7385 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7386 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7387 return -ENOTEMPTY;
9c52057c
CM
7388
7389
7390 /* check for collisions, even if the name isn't there */
7391 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7392 new_dentry->d_name.name,
7393 new_dentry->d_name.len);
7394
7395 if (ret) {
7396 if (ret == -EEXIST) {
7397 /* we shouldn't get
7398 * eexist without a new_inode */
7399 if (!new_inode) {
7400 WARN_ON(1);
7401 return ret;
7402 }
7403 } else {
7404 /* maybe -EOVERFLOW */
7405 return ret;
7406 }
7407 }
7408 ret = 0;
7409
5a3f23d5
CM
7410 /*
7411 * we're using rename to replace one file with another.
7412 * and the replacement file is large. Start IO on it now so
7413 * we don't add too much work to the end of the transaction
7414 */
4baf8c92 7415 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7416 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7417 filemap_flush(old_inode->i_mapping);
7418
76dda93c 7419 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7420 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7421 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7422 /*
7423 * We want to reserve the absolute worst case amount of items. So if
7424 * both inodes are subvols and we need to unlink them then that would
7425 * require 4 item modifications, but if they are both normal inodes it
7426 * would require 5 item modifications, so we'll assume their normal
7427 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7428 * should cover the worst case number of items we'll modify.
7429 */
7430 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7431 if (IS_ERR(trans)) {
7432 ret = PTR_ERR(trans);
7433 goto out_notrans;
7434 }
76dda93c 7435
4df27c4d
YZ
7436 if (dest != root)
7437 btrfs_record_root_in_trans(trans, dest);
5f39d397 7438
a5719521
YZ
7439 ret = btrfs_set_inode_index(new_dir, &index);
7440 if (ret)
7441 goto out_fail;
5a3f23d5 7442
33345d01 7443 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7444 /* force full log commit if subvolume involved. */
7445 root->fs_info->last_trans_log_full_commit = trans->transid;
7446 } else {
a5719521
YZ
7447 ret = btrfs_insert_inode_ref(trans, dest,
7448 new_dentry->d_name.name,
7449 new_dentry->d_name.len,
33345d01
LZ
7450 old_ino,
7451 btrfs_ino(new_dir), index);
a5719521
YZ
7452 if (ret)
7453 goto out_fail;
4df27c4d
YZ
7454 /*
7455 * this is an ugly little race, but the rename is required
7456 * to make sure that if we crash, the inode is either at the
7457 * old name or the new one. pinning the log transaction lets
7458 * us make sure we don't allow a log commit to come in after
7459 * we unlink the name but before we add the new name back in.
7460 */
7461 btrfs_pin_log_trans(root);
7462 }
5a3f23d5
CM
7463 /*
7464 * make sure the inode gets flushed if it is replacing
7465 * something.
7466 */
33345d01 7467 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7468 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7469
0c4d2d95
JB
7470 inode_inc_iversion(old_dir);
7471 inode_inc_iversion(new_dir);
7472 inode_inc_iversion(old_inode);
39279cc3
CM
7473 old_dir->i_ctime = old_dir->i_mtime = ctime;
7474 new_dir->i_ctime = new_dir->i_mtime = ctime;
7475 old_inode->i_ctime = ctime;
5f39d397 7476
12fcfd22
CM
7477 if (old_dentry->d_parent != new_dentry->d_parent)
7478 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7479
33345d01 7480 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7481 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7482 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7483 old_dentry->d_name.name,
7484 old_dentry->d_name.len);
7485 } else {
92986796
AV
7486 ret = __btrfs_unlink_inode(trans, root, old_dir,
7487 old_dentry->d_inode,
7488 old_dentry->d_name.name,
7489 old_dentry->d_name.len);
7490 if (!ret)
7491 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7492 }
79787eaa
JM
7493 if (ret) {
7494 btrfs_abort_transaction(trans, root, ret);
7495 goto out_fail;
7496 }
39279cc3
CM
7497
7498 if (new_inode) {
0c4d2d95 7499 inode_inc_iversion(new_inode);
39279cc3 7500 new_inode->i_ctime = CURRENT_TIME;
33345d01 7501 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7502 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7503 root_objectid = BTRFS_I(new_inode)->location.objectid;
7504 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7505 root_objectid,
7506 new_dentry->d_name.name,
7507 new_dentry->d_name.len);
7508 BUG_ON(new_inode->i_nlink == 0);
7509 } else {
7510 ret = btrfs_unlink_inode(trans, dest, new_dir,
7511 new_dentry->d_inode,
7512 new_dentry->d_name.name,
7513 new_dentry->d_name.len);
7514 }
79787eaa 7515 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7516 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7517 BUG_ON(ret);
7b128766 7518 }
79787eaa
JM
7519 if (ret) {
7520 btrfs_abort_transaction(trans, root, ret);
7521 goto out_fail;
7522 }
39279cc3 7523 }
aec7477b 7524
75e7cb7f
LB
7525 fixup_inode_flags(new_dir, old_inode);
7526
4df27c4d
YZ
7527 ret = btrfs_add_link(trans, new_dir, old_inode,
7528 new_dentry->d_name.name,
a5719521 7529 new_dentry->d_name.len, 0, index);
79787eaa
JM
7530 if (ret) {
7531 btrfs_abort_transaction(trans, root, ret);
7532 goto out_fail;
7533 }
39279cc3 7534
33345d01 7535 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7536 struct dentry *parent = new_dentry->d_parent;
6a912213 7537 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7538 btrfs_end_log_trans(root);
7539 }
39279cc3 7540out_fail:
7ad85bb7 7541 btrfs_end_transaction(trans, root);
b44c59a8 7542out_notrans:
33345d01 7543 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7544 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7545
39279cc3
CM
7546 return ret;
7547}
7548
8ccf6f19
MX
7549static void btrfs_run_delalloc_work(struct btrfs_work *work)
7550{
7551 struct btrfs_delalloc_work *delalloc_work;
7552
7553 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7554 work);
7555 if (delalloc_work->wait)
7556 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7557 else
7558 filemap_flush(delalloc_work->inode->i_mapping);
7559
7560 if (delalloc_work->delay_iput)
7561 btrfs_add_delayed_iput(delalloc_work->inode);
7562 else
7563 iput(delalloc_work->inode);
7564 complete(&delalloc_work->completion);
7565}
7566
7567struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7568 int wait, int delay_iput)
7569{
7570 struct btrfs_delalloc_work *work;
7571
7572 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7573 if (!work)
7574 return NULL;
7575
7576 init_completion(&work->completion);
7577 INIT_LIST_HEAD(&work->list);
7578 work->inode = inode;
7579 work->wait = wait;
7580 work->delay_iput = delay_iput;
7581 work->work.func = btrfs_run_delalloc_work;
7582
7583 return work;
7584}
7585
7586void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7587{
7588 wait_for_completion(&work->completion);
7589 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7590}
7591
d352ac68
CM
7592/*
7593 * some fairly slow code that needs optimization. This walks the list
7594 * of all the inodes with pending delalloc and forces them to disk.
7595 */
24bbcf04 7596int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 7597{
ea8c2819 7598 struct btrfs_inode *binode;
5b21f2ed 7599 struct inode *inode;
8ccf6f19
MX
7600 struct btrfs_delalloc_work *work, *next;
7601 struct list_head works;
1eafa6c7 7602 struct list_head splice;
8ccf6f19 7603 int ret = 0;
ea8c2819 7604
c146afad
YZ
7605 if (root->fs_info->sb->s_flags & MS_RDONLY)
7606 return -EROFS;
7607
8ccf6f19 7608 INIT_LIST_HEAD(&works);
1eafa6c7
MX
7609 INIT_LIST_HEAD(&splice);
7610again:
75eff68e 7611 spin_lock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
7612 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
7613 while (!list_empty(&splice)) {
7614 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 7615 delalloc_inodes);
1eafa6c7
MX
7616
7617 list_del_init(&binode->delalloc_inodes);
7618
5b21f2ed
ZY
7619 inode = igrab(&binode->vfs_inode);
7620 if (!inode)
1eafa6c7
MX
7621 continue;
7622
7623 list_add_tail(&binode->delalloc_inodes,
7624 &root->fs_info->delalloc_inodes);
75eff68e 7625 spin_unlock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
7626
7627 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7628 if (unlikely(!work)) {
7629 ret = -ENOMEM;
7630 goto out;
5b21f2ed 7631 }
1eafa6c7
MX
7632 list_add_tail(&work->list, &works);
7633 btrfs_queue_worker(&root->fs_info->flush_workers,
7634 &work->work);
7635
5b21f2ed 7636 cond_resched();
75eff68e 7637 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7638 }
75eff68e 7639 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d 7640
1eafa6c7
MX
7641 list_for_each_entry_safe(work, next, &works, list) {
7642 list_del_init(&work->list);
7643 btrfs_wait_and_free_delalloc_work(work);
7644 }
7645
7646 spin_lock(&root->fs_info->delalloc_lock);
7647 if (!list_empty(&root->fs_info->delalloc_inodes)) {
7648 spin_unlock(&root->fs_info->delalloc_lock);
7649 goto again;
7650 }
7651 spin_unlock(&root->fs_info->delalloc_lock);
7652
8c8bee1d
CM
7653 /* the filemap_flush will queue IO into the worker threads, but
7654 * we have to make sure the IO is actually started and that
7655 * ordered extents get created before we return
7656 */
7657 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7658 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7659 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7660 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7661 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7662 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7663 }
7664 atomic_dec(&root->fs_info->async_submit_draining);
1eafa6c7 7665 return 0;
8ccf6f19
MX
7666out:
7667 list_for_each_entry_safe(work, next, &works, list) {
7668 list_del_init(&work->list);
7669 btrfs_wait_and_free_delalloc_work(work);
7670 }
1eafa6c7
MX
7671
7672 if (!list_empty_careful(&splice)) {
7673 spin_lock(&root->fs_info->delalloc_lock);
7674 list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
7675 spin_unlock(&root->fs_info->delalloc_lock);
7676 }
8ccf6f19 7677 return ret;
ea8c2819
CM
7678}
7679
39279cc3
CM
7680static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7681 const char *symname)
7682{
7683 struct btrfs_trans_handle *trans;
7684 struct btrfs_root *root = BTRFS_I(dir)->root;
7685 struct btrfs_path *path;
7686 struct btrfs_key key;
1832a6d5 7687 struct inode *inode = NULL;
39279cc3
CM
7688 int err;
7689 int drop_inode = 0;
7690 u64 objectid;
00e4e6b3 7691 u64 index = 0 ;
39279cc3
CM
7692 int name_len;
7693 int datasize;
5f39d397 7694 unsigned long ptr;
39279cc3 7695 struct btrfs_file_extent_item *ei;
5f39d397 7696 struct extent_buffer *leaf;
39279cc3
CM
7697
7698 name_len = strlen(symname) + 1;
7699 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7700 return -ENAMETOOLONG;
1832a6d5 7701
9ed74f2d
JB
7702 /*
7703 * 2 items for inode item and ref
7704 * 2 items for dir items
7705 * 1 item for xattr if selinux is on
7706 */
a22285a6
YZ
7707 trans = btrfs_start_transaction(root, 5);
7708 if (IS_ERR(trans))
7709 return PTR_ERR(trans);
1832a6d5 7710
581bb050
LZ
7711 err = btrfs_find_free_ino(root, &objectid);
7712 if (err)
7713 goto out_unlock;
7714
aec7477b 7715 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7716 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7717 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7718 if (IS_ERR(inode)) {
7719 err = PTR_ERR(inode);
39279cc3 7720 goto out_unlock;
7cf96da3 7721 }
39279cc3 7722
2a7dba39 7723 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7724 if (err) {
7725 drop_inode = 1;
7726 goto out_unlock;
7727 }
7728
ad19db71
CS
7729 /*
7730 * If the active LSM wants to access the inode during
7731 * d_instantiate it needs these. Smack checks to see
7732 * if the filesystem supports xattrs by looking at the
7733 * ops vector.
7734 */
7735 inode->i_fop = &btrfs_file_operations;
7736 inode->i_op = &btrfs_file_inode_operations;
7737
a1b075d2 7738 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7739 if (err)
7740 drop_inode = 1;
7741 else {
7742 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7743 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7744 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7745 }
39279cc3
CM
7746 if (drop_inode)
7747 goto out_unlock;
7748
7749 path = btrfs_alloc_path();
d8926bb3
MF
7750 if (!path) {
7751 err = -ENOMEM;
7752 drop_inode = 1;
7753 goto out_unlock;
7754 }
33345d01 7755 key.objectid = btrfs_ino(inode);
39279cc3 7756 key.offset = 0;
39279cc3
CM
7757 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7758 datasize = btrfs_file_extent_calc_inline_size(name_len);
7759 err = btrfs_insert_empty_item(trans, root, path, &key,
7760 datasize);
54aa1f4d
CM
7761 if (err) {
7762 drop_inode = 1;
b0839166 7763 btrfs_free_path(path);
54aa1f4d
CM
7764 goto out_unlock;
7765 }
5f39d397
CM
7766 leaf = path->nodes[0];
7767 ei = btrfs_item_ptr(leaf, path->slots[0],
7768 struct btrfs_file_extent_item);
7769 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7770 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7771 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7772 btrfs_set_file_extent_encryption(leaf, ei, 0);
7773 btrfs_set_file_extent_compression(leaf, ei, 0);
7774 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7775 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7776
39279cc3 7777 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7778 write_extent_buffer(leaf, symname, ptr, name_len);
7779 btrfs_mark_buffer_dirty(leaf);
39279cc3 7780 btrfs_free_path(path);
5f39d397 7781
39279cc3
CM
7782 inode->i_op = &btrfs_symlink_inode_operations;
7783 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7784 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7785 inode_set_bytes(inode, name_len);
dbe674a9 7786 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7787 err = btrfs_update_inode(trans, root, inode);
7788 if (err)
7789 drop_inode = 1;
39279cc3
CM
7790
7791out_unlock:
08c422c2
AV
7792 if (!err)
7793 d_instantiate(dentry, inode);
7ad85bb7 7794 btrfs_end_transaction(trans, root);
39279cc3
CM
7795 if (drop_inode) {
7796 inode_dec_link_count(inode);
7797 iput(inode);
7798 }
b53d3f5d 7799 btrfs_btree_balance_dirty(root);
39279cc3
CM
7800 return err;
7801}
16432985 7802
0af3d00b
JB
7803static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7804 u64 start, u64 num_bytes, u64 min_size,
7805 loff_t actual_len, u64 *alloc_hint,
7806 struct btrfs_trans_handle *trans)
d899e052 7807{
5dc562c5
JB
7808 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7809 struct extent_map *em;
d899e052
YZ
7810 struct btrfs_root *root = BTRFS_I(inode)->root;
7811 struct btrfs_key ins;
d899e052 7812 u64 cur_offset = start;
55a61d1d 7813 u64 i_size;
d899e052 7814 int ret = 0;
0af3d00b 7815 bool own_trans = true;
d899e052 7816
0af3d00b
JB
7817 if (trans)
7818 own_trans = false;
d899e052 7819 while (num_bytes > 0) {
0af3d00b
JB
7820 if (own_trans) {
7821 trans = btrfs_start_transaction(root, 3);
7822 if (IS_ERR(trans)) {
7823 ret = PTR_ERR(trans);
7824 break;
7825 }
5a303d5d
YZ
7826 }
7827
efa56464 7828 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7829 0, *alloc_hint, &ins, 1);
5a303d5d 7830 if (ret) {
0af3d00b
JB
7831 if (own_trans)
7832 btrfs_end_transaction(trans, root);
a22285a6 7833 break;
d899e052 7834 }
5a303d5d 7835
d899e052
YZ
7836 ret = insert_reserved_file_extent(trans, inode,
7837 cur_offset, ins.objectid,
7838 ins.offset, ins.offset,
920bbbfb 7839 ins.offset, 0, 0, 0,
d899e052 7840 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7841 if (ret) {
7842 btrfs_abort_transaction(trans, root, ret);
7843 if (own_trans)
7844 btrfs_end_transaction(trans, root);
7845 break;
7846 }
a1ed835e
CM
7847 btrfs_drop_extent_cache(inode, cur_offset,
7848 cur_offset + ins.offset -1, 0);
5a303d5d 7849
5dc562c5
JB
7850 em = alloc_extent_map();
7851 if (!em) {
7852 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7853 &BTRFS_I(inode)->runtime_flags);
7854 goto next;
7855 }
7856
7857 em->start = cur_offset;
7858 em->orig_start = cur_offset;
7859 em->len = ins.offset;
7860 em->block_start = ins.objectid;
7861 em->block_len = ins.offset;
b4939680 7862 em->orig_block_len = ins.offset;
5dc562c5
JB
7863 em->bdev = root->fs_info->fs_devices->latest_bdev;
7864 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7865 em->generation = trans->transid;
7866
7867 while (1) {
7868 write_lock(&em_tree->lock);
7869 ret = add_extent_mapping(em_tree, em);
7870 if (!ret)
7871 list_move(&em->list,
7872 &em_tree->modified_extents);
7873 write_unlock(&em_tree->lock);
7874 if (ret != -EEXIST)
7875 break;
7876 btrfs_drop_extent_cache(inode, cur_offset,
7877 cur_offset + ins.offset - 1,
7878 0);
7879 }
7880 free_extent_map(em);
7881next:
d899e052
YZ
7882 num_bytes -= ins.offset;
7883 cur_offset += ins.offset;
efa56464 7884 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7885
0c4d2d95 7886 inode_inc_iversion(inode);
d899e052 7887 inode->i_ctime = CURRENT_TIME;
6cbff00f 7888 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7889 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7890 (actual_len > inode->i_size) &&
7891 (cur_offset > inode->i_size)) {
d1ea6a61 7892 if (cur_offset > actual_len)
55a61d1d 7893 i_size = actual_len;
d1ea6a61 7894 else
55a61d1d
JB
7895 i_size = cur_offset;
7896 i_size_write(inode, i_size);
7897 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7898 }
7899
d899e052 7900 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7901
7902 if (ret) {
7903 btrfs_abort_transaction(trans, root, ret);
7904 if (own_trans)
7905 btrfs_end_transaction(trans, root);
7906 break;
7907 }
d899e052 7908
0af3d00b
JB
7909 if (own_trans)
7910 btrfs_end_transaction(trans, root);
5a303d5d 7911 }
d899e052
YZ
7912 return ret;
7913}
7914
0af3d00b
JB
7915int btrfs_prealloc_file_range(struct inode *inode, int mode,
7916 u64 start, u64 num_bytes, u64 min_size,
7917 loff_t actual_len, u64 *alloc_hint)
7918{
7919 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7920 min_size, actual_len, alloc_hint,
7921 NULL);
7922}
7923
7924int btrfs_prealloc_file_range_trans(struct inode *inode,
7925 struct btrfs_trans_handle *trans, int mode,
7926 u64 start, u64 num_bytes, u64 min_size,
7927 loff_t actual_len, u64 *alloc_hint)
7928{
7929 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7930 min_size, actual_len, alloc_hint, trans);
7931}
7932
e6dcd2dc
CM
7933static int btrfs_set_page_dirty(struct page *page)
7934{
e6dcd2dc
CM
7935 return __set_page_dirty_nobuffers(page);
7936}
7937
10556cb2 7938static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7939{
b83cc969 7940 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7941 umode_t mode = inode->i_mode;
b83cc969 7942
cb6db4e5
JM
7943 if (mask & MAY_WRITE &&
7944 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7945 if (btrfs_root_readonly(root))
7946 return -EROFS;
7947 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7948 return -EACCES;
7949 }
2830ba7f 7950 return generic_permission(inode, mask);
fdebe2bd 7951}
39279cc3 7952
6e1d5dcc 7953static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7954 .getattr = btrfs_getattr,
39279cc3
CM
7955 .lookup = btrfs_lookup,
7956 .create = btrfs_create,
7957 .unlink = btrfs_unlink,
7958 .link = btrfs_link,
7959 .mkdir = btrfs_mkdir,
7960 .rmdir = btrfs_rmdir,
7961 .rename = btrfs_rename,
7962 .symlink = btrfs_symlink,
7963 .setattr = btrfs_setattr,
618e21d5 7964 .mknod = btrfs_mknod,
95819c05
CH
7965 .setxattr = btrfs_setxattr,
7966 .getxattr = btrfs_getxattr,
5103e947 7967 .listxattr = btrfs_listxattr,
95819c05 7968 .removexattr = btrfs_removexattr,
fdebe2bd 7969 .permission = btrfs_permission,
4e34e719 7970 .get_acl = btrfs_get_acl,
39279cc3 7971};
6e1d5dcc 7972static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7973 .lookup = btrfs_lookup,
fdebe2bd 7974 .permission = btrfs_permission,
4e34e719 7975 .get_acl = btrfs_get_acl,
39279cc3 7976};
76dda93c 7977
828c0950 7978static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7979 .llseek = generic_file_llseek,
7980 .read = generic_read_dir,
cbdf5a24 7981 .readdir = btrfs_real_readdir,
34287aa3 7982 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7983#ifdef CONFIG_COMPAT
34287aa3 7984 .compat_ioctl = btrfs_ioctl,
39279cc3 7985#endif
6bf13c0c 7986 .release = btrfs_release_file,
e02119d5 7987 .fsync = btrfs_sync_file,
39279cc3
CM
7988};
7989
d1310b2e 7990static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7991 .fill_delalloc = run_delalloc_range,
065631f6 7992 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7993 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7994 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7995 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7996 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7997 .set_bit_hook = btrfs_set_bit_hook,
7998 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7999 .merge_extent_hook = btrfs_merge_extent_hook,
8000 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8001};
8002
35054394
CM
8003/*
8004 * btrfs doesn't support the bmap operation because swapfiles
8005 * use bmap to make a mapping of extents in the file. They assume
8006 * these extents won't change over the life of the file and they
8007 * use the bmap result to do IO directly to the drive.
8008 *
8009 * the btrfs bmap call would return logical addresses that aren't
8010 * suitable for IO and they also will change frequently as COW
8011 * operations happen. So, swapfile + btrfs == corruption.
8012 *
8013 * For now we're avoiding this by dropping bmap.
8014 */
7f09410b 8015static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8016 .readpage = btrfs_readpage,
8017 .writepage = btrfs_writepage,
b293f02e 8018 .writepages = btrfs_writepages,
3ab2fb5a 8019 .readpages = btrfs_readpages,
16432985 8020 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8021 .invalidatepage = btrfs_invalidatepage,
8022 .releasepage = btrfs_releasepage,
e6dcd2dc 8023 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8024 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8025};
8026
7f09410b 8027static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8028 .readpage = btrfs_readpage,
8029 .writepage = btrfs_writepage,
2bf5a725
CM
8030 .invalidatepage = btrfs_invalidatepage,
8031 .releasepage = btrfs_releasepage,
39279cc3
CM
8032};
8033
6e1d5dcc 8034static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8035 .getattr = btrfs_getattr,
8036 .setattr = btrfs_setattr,
95819c05
CH
8037 .setxattr = btrfs_setxattr,
8038 .getxattr = btrfs_getxattr,
5103e947 8039 .listxattr = btrfs_listxattr,
95819c05 8040 .removexattr = btrfs_removexattr,
fdebe2bd 8041 .permission = btrfs_permission,
1506fcc8 8042 .fiemap = btrfs_fiemap,
4e34e719 8043 .get_acl = btrfs_get_acl,
e41f941a 8044 .update_time = btrfs_update_time,
39279cc3 8045};
6e1d5dcc 8046static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8047 .getattr = btrfs_getattr,
8048 .setattr = btrfs_setattr,
fdebe2bd 8049 .permission = btrfs_permission,
95819c05
CH
8050 .setxattr = btrfs_setxattr,
8051 .getxattr = btrfs_getxattr,
33268eaf 8052 .listxattr = btrfs_listxattr,
95819c05 8053 .removexattr = btrfs_removexattr,
4e34e719 8054 .get_acl = btrfs_get_acl,
e41f941a 8055 .update_time = btrfs_update_time,
618e21d5 8056};
6e1d5dcc 8057static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8058 .readlink = generic_readlink,
8059 .follow_link = page_follow_link_light,
8060 .put_link = page_put_link,
f209561a 8061 .getattr = btrfs_getattr,
22c44fe6 8062 .setattr = btrfs_setattr,
fdebe2bd 8063 .permission = btrfs_permission,
0279b4cd
JO
8064 .setxattr = btrfs_setxattr,
8065 .getxattr = btrfs_getxattr,
8066 .listxattr = btrfs_listxattr,
8067 .removexattr = btrfs_removexattr,
4e34e719 8068 .get_acl = btrfs_get_acl,
e41f941a 8069 .update_time = btrfs_update_time,
39279cc3 8070};
76dda93c 8071
82d339d9 8072const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8073 .d_delete = btrfs_dentry_delete,
b4aff1f8 8074 .d_release = btrfs_dentry_release,
76dda93c 8075};