]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: Make btrfs_device_fsid() return unsigned long
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
4b4e25f2 31#include "compat.h"
0b86a832
CM
32#include "ctree.h"
33#include "extent_map.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "print-tree.h"
37#include "volumes.h"
53b381b3 38#include "raid56.h"
8b712842 39#include "async-thread.h"
21adbd5c 40#include "check-integrity.h"
606686ee 41#include "rcu-string.h"
3fed40cc 42#include "math.h"
8dabb742 43#include "dev-replace.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
419 btrfs_requeue_work(&device->work);
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
a1b32a59 451static noinline int device_list_add(const char *path,
8a4b83cc
CM
452 struct btrfs_super_block *disk_super,
453 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454{
455 struct btrfs_device *device;
456 struct btrfs_fs_devices *fs_devices;
606686ee 457 struct rcu_string *name;
8a4b83cc
CM
458 u64 found_transid = btrfs_super_generation(disk_super);
459
460 fs_devices = find_fsid(disk_super->fsid);
461 if (!fs_devices) {
2208a378
ID
462 fs_devices = alloc_fs_devices(disk_super->fsid);
463 if (IS_ERR(fs_devices))
464 return PTR_ERR(fs_devices);
465
8a4b83cc 466 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
467 fs_devices->latest_devid = devid;
468 fs_devices->latest_trans = found_transid;
2208a378 469
8a4b83cc
CM
470 device = NULL;
471 } else {
a443755f
CM
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
8a4b83cc
CM
474 }
475 if (!device) {
2b82032c
YZ
476 if (fs_devices->opened)
477 return -EBUSY;
478
12bd2fc0
ID
479 device = btrfs_alloc_device(NULL, &devid,
480 disk_super->dev_item.uuid);
481 if (IS_ERR(device)) {
8a4b83cc 482 /* we can safely leave the fs_devices entry around */
12bd2fc0 483 return PTR_ERR(device);
8a4b83cc 484 }
606686ee
JB
485
486 name = rcu_string_strdup(path, GFP_NOFS);
487 if (!name) {
8a4b83cc
CM
488 kfree(device);
489 return -ENOMEM;
490 }
606686ee 491 rcu_assign_pointer(device->name, name);
90519d66 492
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 494 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
495 mutex_unlock(&fs_devices->device_list_mutex);
496
2b82032c 497 device->fs_devices = fs_devices;
8a4b83cc 498 fs_devices->num_devices++;
606686ee
JB
499 } else if (!device->name || strcmp(device->name->str, path)) {
500 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
501 if (!name)
502 return -ENOMEM;
606686ee
JB
503 rcu_string_free(device->name);
504 rcu_assign_pointer(device->name, name);
cd02dca5
CM
505 if (device->missing) {
506 fs_devices->missing_devices--;
507 device->missing = 0;
508 }
8a4b83cc
CM
509 }
510
511 if (found_transid > fs_devices->latest_trans) {
512 fs_devices->latest_devid = devid;
513 fs_devices->latest_trans = found_transid;
514 }
8a4b83cc
CM
515 *fs_devices_ret = fs_devices;
516 return 0;
517}
518
e4404d6e
YZ
519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520{
521 struct btrfs_fs_devices *fs_devices;
522 struct btrfs_device *device;
523 struct btrfs_device *orig_dev;
524
2208a378
ID
525 fs_devices = alloc_fs_devices(orig->fsid);
526 if (IS_ERR(fs_devices))
527 return fs_devices;
e4404d6e 528
e4404d6e
YZ
529 fs_devices->latest_devid = orig->latest_devid;
530 fs_devices->latest_trans = orig->latest_trans;
02db0844 531 fs_devices->total_devices = orig->total_devices;
e4404d6e 532
46224705 533 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
535 struct rcu_string *name;
536
12bd2fc0
ID
537 device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 orig_dev->uuid);
539 if (IS_ERR(device))
e4404d6e
YZ
540 goto error;
541
606686ee
JB
542 /*
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
545 */
546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 if (!name) {
fd2696f3 548 kfree(device);
e4404d6e 549 goto error;
fd2696f3 550 }
606686ee 551 rcu_assign_pointer(device->name, name);
e4404d6e 552
e4404d6e
YZ
553 list_add(&device->dev_list, &fs_devices->devices);
554 device->fs_devices = fs_devices;
555 fs_devices->num_devices++;
556 }
557 return fs_devices;
558error:
559 free_fs_devices(fs_devices);
560 return ERR_PTR(-ENOMEM);
561}
562
8dabb742
SB
563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 565{
c6e30871 566 struct btrfs_device *device, *next;
dfe25020 567
a6b0d5c8
CM
568 struct block_device *latest_bdev = NULL;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571
dfe25020
CM
572 mutex_lock(&uuid_mutex);
573again:
46224705 574 /* This is the initialized path, it is safe to release the devices. */
c6e30871 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 576 if (device->in_fs_metadata) {
63a212ab
SB
577 if (!device->is_tgtdev_for_dev_replace &&
578 (!latest_transid ||
579 device->generation > latest_transid)) {
a6b0d5c8
CM
580 latest_devid = device->devid;
581 latest_transid = device->generation;
582 latest_bdev = device->bdev;
583 }
2b82032c 584 continue;
a6b0d5c8 585 }
2b82032c 586
8dabb742
SB
587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 /*
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
597 */
598 if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 continue;
600 }
601 }
2b82032c 602 if (device->bdev) {
d4d77629 603 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
604 device->bdev = NULL;
605 fs_devices->open_devices--;
606 }
607 if (device->writeable) {
608 list_del_init(&device->dev_alloc_list);
609 device->writeable = 0;
8dabb742
SB
610 if (!device->is_tgtdev_for_dev_replace)
611 fs_devices->rw_devices--;
2b82032c 612 }
e4404d6e
YZ
613 list_del_init(&device->dev_list);
614 fs_devices->num_devices--;
606686ee 615 rcu_string_free(device->name);
e4404d6e 616 kfree(device);
dfe25020 617 }
2b82032c
YZ
618
619 if (fs_devices->seed) {
620 fs_devices = fs_devices->seed;
2b82032c
YZ
621 goto again;
622 }
623
a6b0d5c8
CM
624 fs_devices->latest_bdev = latest_bdev;
625 fs_devices->latest_devid = latest_devid;
626 fs_devices->latest_trans = latest_transid;
627
dfe25020 628 mutex_unlock(&uuid_mutex);
dfe25020 629}
a0af469b 630
1f78160c
XG
631static void __free_device(struct work_struct *work)
632{
633 struct btrfs_device *device;
634
635 device = container_of(work, struct btrfs_device, rcu_work);
636
637 if (device->bdev)
638 blkdev_put(device->bdev, device->mode);
639
606686ee 640 rcu_string_free(device->name);
1f78160c
XG
641 kfree(device);
642}
643
644static void free_device(struct rcu_head *head)
645{
646 struct btrfs_device *device;
647
648 device = container_of(head, struct btrfs_device, rcu);
649
650 INIT_WORK(&device->rcu_work, __free_device);
651 schedule_work(&device->rcu_work);
652}
653
2b82032c 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 655{
8a4b83cc 656 struct btrfs_device *device;
e4404d6e 657
2b82032c
YZ
658 if (--fs_devices->opened > 0)
659 return 0;
8a4b83cc 660
c9513edb 661 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 663 struct btrfs_device *new_device;
606686ee 664 struct rcu_string *name;
1f78160c
XG
665
666 if (device->bdev)
a0af469b 667 fs_devices->open_devices--;
1f78160c 668
8dabb742 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
676
a1e8780a
ID
677 new_device = btrfs_alloc_device(NULL, &device->devid,
678 device->uuid);
679 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
680
681 /* Safe because we are under uuid_mutex */
99f5944b
JB
682 if (device->name) {
683 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 684 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
685 rcu_assign_pointer(new_device->name, name);
686 }
a1e8780a 687
1f78160c 688 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 689 new_device->fs_devices = device->fs_devices;
1f78160c
XG
690
691 call_rcu(&device->rcu, free_device);
8a4b83cc 692 }
c9513edb
XG
693 mutex_unlock(&fs_devices->device_list_mutex);
694
e4404d6e
YZ
695 WARN_ON(fs_devices->open_devices);
696 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
697 fs_devices->opened = 0;
698 fs_devices->seeding = 0;
2b82032c 699
8a4b83cc
CM
700 return 0;
701}
702
2b82032c
YZ
703int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
704{
e4404d6e 705 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
706 int ret;
707
708 mutex_lock(&uuid_mutex);
709 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
710 if (!fs_devices->opened) {
711 seed_devices = fs_devices->seed;
712 fs_devices->seed = NULL;
713 }
2b82032c 714 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
715
716 while (seed_devices) {
717 fs_devices = seed_devices;
718 seed_devices = fs_devices->seed;
719 __btrfs_close_devices(fs_devices);
720 free_fs_devices(fs_devices);
721 }
bc178622
ES
722 /*
723 * Wait for rcu kworkers under __btrfs_close_devices
724 * to finish all blkdev_puts so device is really
725 * free when umount is done.
726 */
727 rcu_barrier();
2b82032c
YZ
728 return ret;
729}
730
e4404d6e
YZ
731static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
732 fmode_t flags, void *holder)
8a4b83cc 733{
d5e2003c 734 struct request_queue *q;
8a4b83cc
CM
735 struct block_device *bdev;
736 struct list_head *head = &fs_devices->devices;
8a4b83cc 737 struct btrfs_device *device;
a0af469b
CM
738 struct block_device *latest_bdev = NULL;
739 struct buffer_head *bh;
740 struct btrfs_super_block *disk_super;
741 u64 latest_devid = 0;
742 u64 latest_transid = 0;
a0af469b 743 u64 devid;
2b82032c 744 int seeding = 1;
a0af469b 745 int ret = 0;
8a4b83cc 746
d4d77629
TH
747 flags |= FMODE_EXCL;
748
c6e30871 749 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
750 if (device->bdev)
751 continue;
dfe25020
CM
752 if (!device->name)
753 continue;
754
f63e0cca
ES
755 /* Just open everything we can; ignore failures here */
756 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
757 &bdev, &bh))
beaf8ab3 758 continue;
a0af469b
CM
759
760 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 761 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
762 if (devid != device->devid)
763 goto error_brelse;
764
2b82032c
YZ
765 if (memcmp(device->uuid, disk_super->dev_item.uuid,
766 BTRFS_UUID_SIZE))
767 goto error_brelse;
768
769 device->generation = btrfs_super_generation(disk_super);
770 if (!latest_transid || device->generation > latest_transid) {
a0af469b 771 latest_devid = devid;
2b82032c 772 latest_transid = device->generation;
a0af469b
CM
773 latest_bdev = bdev;
774 }
775
2b82032c
YZ
776 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
777 device->writeable = 0;
778 } else {
779 device->writeable = !bdev_read_only(bdev);
780 seeding = 0;
781 }
782
d5e2003c
JB
783 q = bdev_get_queue(bdev);
784 if (blk_queue_discard(q)) {
785 device->can_discard = 1;
786 fs_devices->num_can_discard++;
787 }
788
8a4b83cc 789 device->bdev = bdev;
dfe25020 790 device->in_fs_metadata = 0;
15916de8
CM
791 device->mode = flags;
792
c289811c
CM
793 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
794 fs_devices->rotating = 1;
795
a0af469b 796 fs_devices->open_devices++;
8dabb742 797 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
798 fs_devices->rw_devices++;
799 list_add(&device->dev_alloc_list,
800 &fs_devices->alloc_list);
801 }
4f6c9328 802 brelse(bh);
a0af469b 803 continue;
a061fc8d 804
a0af469b
CM
805error_brelse:
806 brelse(bh);
d4d77629 807 blkdev_put(bdev, flags);
a0af469b 808 continue;
8a4b83cc 809 }
a0af469b 810 if (fs_devices->open_devices == 0) {
20bcd649 811 ret = -EINVAL;
a0af469b
CM
812 goto out;
813 }
2b82032c
YZ
814 fs_devices->seeding = seeding;
815 fs_devices->opened = 1;
a0af469b
CM
816 fs_devices->latest_bdev = latest_bdev;
817 fs_devices->latest_devid = latest_devid;
818 fs_devices->latest_trans = latest_transid;
2b82032c 819 fs_devices->total_rw_bytes = 0;
a0af469b 820out:
2b82032c
YZ
821 return ret;
822}
823
824int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 825 fmode_t flags, void *holder)
2b82032c
YZ
826{
827 int ret;
828
829 mutex_lock(&uuid_mutex);
830 if (fs_devices->opened) {
e4404d6e
YZ
831 fs_devices->opened++;
832 ret = 0;
2b82032c 833 } else {
15916de8 834 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 835 }
8a4b83cc 836 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
837 return ret;
838}
839
6f60cbd3
DS
840/*
841 * Look for a btrfs signature on a device. This may be called out of the mount path
842 * and we are not allowed to call set_blocksize during the scan. The superblock
843 * is read via pagecache
844 */
97288f2c 845int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
846 struct btrfs_fs_devices **fs_devices_ret)
847{
848 struct btrfs_super_block *disk_super;
849 struct block_device *bdev;
6f60cbd3
DS
850 struct page *page;
851 void *p;
852 int ret = -EINVAL;
8a4b83cc 853 u64 devid;
f2984462 854 u64 transid;
02db0844 855 u64 total_devices;
6f60cbd3
DS
856 u64 bytenr;
857 pgoff_t index;
8a4b83cc 858
6f60cbd3
DS
859 /*
860 * we would like to check all the supers, but that would make
861 * a btrfs mount succeed after a mkfs from a different FS.
862 * So, we need to add a special mount option to scan for
863 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
864 */
865 bytenr = btrfs_sb_offset(0);
d4d77629 866 flags |= FMODE_EXCL;
10f6327b 867 mutex_lock(&uuid_mutex);
6f60cbd3
DS
868
869 bdev = blkdev_get_by_path(path, flags, holder);
870
871 if (IS_ERR(bdev)) {
872 ret = PTR_ERR(bdev);
beaf8ab3 873 goto error;
6f60cbd3
DS
874 }
875
876 /* make sure our super fits in the device */
877 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
878 goto error_bdev_put;
879
880 /* make sure our super fits in the page */
881 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
882 goto error_bdev_put;
883
884 /* make sure our super doesn't straddle pages on disk */
885 index = bytenr >> PAGE_CACHE_SHIFT;
886 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
887 goto error_bdev_put;
888
889 /* pull in the page with our super */
890 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
891 index, GFP_NOFS);
892
893 if (IS_ERR_OR_NULL(page))
894 goto error_bdev_put;
895
896 p = kmap(page);
897
898 /* align our pointer to the offset of the super block */
899 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
900
901 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 902 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
903 goto error_unmap;
904
a343832f 905 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 906 transid = btrfs_super_generation(disk_super);
02db0844 907 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 908
d03f918a
SB
909 if (disk_super->label[0]) {
910 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
911 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 912 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 913 } else {
22b63a29 914 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 915 }
6f60cbd3 916
c1c9ff7c 917 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
6f60cbd3 918
8a4b83cc 919 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
920 if (!ret && fs_devices_ret)
921 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
922
923error_unmap:
924 kunmap(page);
925 page_cache_release(page);
926
927error_bdev_put:
d4d77629 928 blkdev_put(bdev, flags);
8a4b83cc 929error:
beaf8ab3 930 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
931 return ret;
932}
0b86a832 933
6d07bcec
MX
934/* helper to account the used device space in the range */
935int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
936 u64 end, u64 *length)
937{
938 struct btrfs_key key;
939 struct btrfs_root *root = device->dev_root;
940 struct btrfs_dev_extent *dev_extent;
941 struct btrfs_path *path;
942 u64 extent_end;
943 int ret;
944 int slot;
945 struct extent_buffer *l;
946
947 *length = 0;
948
63a212ab 949 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
950 return 0;
951
952 path = btrfs_alloc_path();
953 if (!path)
954 return -ENOMEM;
955 path->reada = 2;
956
957 key.objectid = device->devid;
958 key.offset = start;
959 key.type = BTRFS_DEV_EXTENT_KEY;
960
961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
962 if (ret < 0)
963 goto out;
964 if (ret > 0) {
965 ret = btrfs_previous_item(root, path, key.objectid, key.type);
966 if (ret < 0)
967 goto out;
968 }
969
970 while (1) {
971 l = path->nodes[0];
972 slot = path->slots[0];
973 if (slot >= btrfs_header_nritems(l)) {
974 ret = btrfs_next_leaf(root, path);
975 if (ret == 0)
976 continue;
977 if (ret < 0)
978 goto out;
979
980 break;
981 }
982 btrfs_item_key_to_cpu(l, &key, slot);
983
984 if (key.objectid < device->devid)
985 goto next;
986
987 if (key.objectid > device->devid)
988 break;
989
990 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
991 goto next;
992
993 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
994 extent_end = key.offset + btrfs_dev_extent_length(l,
995 dev_extent);
996 if (key.offset <= start && extent_end > end) {
997 *length = end - start + 1;
998 break;
999 } else if (key.offset <= start && extent_end > start)
1000 *length += extent_end - start;
1001 else if (key.offset > start && extent_end <= end)
1002 *length += extent_end - key.offset;
1003 else if (key.offset > start && key.offset <= end) {
1004 *length += end - key.offset + 1;
1005 break;
1006 } else if (key.offset > end)
1007 break;
1008
1009next:
1010 path->slots[0]++;
1011 }
1012 ret = 0;
1013out:
1014 btrfs_free_path(path);
1015 return ret;
1016}
1017
6df9a95e
JB
1018static int contains_pending_extent(struct btrfs_trans_handle *trans,
1019 struct btrfs_device *device,
1020 u64 *start, u64 len)
1021{
1022 struct extent_map *em;
1023 int ret = 0;
1024
1025 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1026 struct map_lookup *map;
1027 int i;
1028
1029 map = (struct map_lookup *)em->bdev;
1030 for (i = 0; i < map->num_stripes; i++) {
1031 if (map->stripes[i].dev != device)
1032 continue;
1033 if (map->stripes[i].physical >= *start + len ||
1034 map->stripes[i].physical + em->orig_block_len <=
1035 *start)
1036 continue;
1037 *start = map->stripes[i].physical +
1038 em->orig_block_len;
1039 ret = 1;
1040 }
1041 }
1042
1043 return ret;
1044}
1045
1046
0b86a832 1047/*
7bfc837d 1048 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1049 * @device: the device which we search the free space in
1050 * @num_bytes: the size of the free space that we need
1051 * @start: store the start of the free space.
1052 * @len: the size of the free space. that we find, or the size of the max
1053 * free space if we don't find suitable free space
1054 *
0b86a832
CM
1055 * this uses a pretty simple search, the expectation is that it is
1056 * called very infrequently and that a given device has a small number
1057 * of extents
7bfc837d
MX
1058 *
1059 * @start is used to store the start of the free space if we find. But if we
1060 * don't find suitable free space, it will be used to store the start position
1061 * of the max free space.
1062 *
1063 * @len is used to store the size of the free space that we find.
1064 * But if we don't find suitable free space, it is used to store the size of
1065 * the max free space.
0b86a832 1066 */
6df9a95e
JB
1067int find_free_dev_extent(struct btrfs_trans_handle *trans,
1068 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1069 u64 *start, u64 *len)
0b86a832
CM
1070{
1071 struct btrfs_key key;
1072 struct btrfs_root *root = device->dev_root;
7bfc837d 1073 struct btrfs_dev_extent *dev_extent;
2b82032c 1074 struct btrfs_path *path;
7bfc837d
MX
1075 u64 hole_size;
1076 u64 max_hole_start;
1077 u64 max_hole_size;
1078 u64 extent_end;
1079 u64 search_start;
0b86a832
CM
1080 u64 search_end = device->total_bytes;
1081 int ret;
7bfc837d 1082 int slot;
0b86a832
CM
1083 struct extent_buffer *l;
1084
0b86a832
CM
1085 /* FIXME use last free of some kind */
1086
8a4b83cc
CM
1087 /* we don't want to overwrite the superblock on the drive,
1088 * so we make sure to start at an offset of at least 1MB
1089 */
a9c9bf68 1090 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1091
6df9a95e
JB
1092 path = btrfs_alloc_path();
1093 if (!path)
1094 return -ENOMEM;
1095again:
7bfc837d
MX
1096 max_hole_start = search_start;
1097 max_hole_size = 0;
38c01b96 1098 hole_size = 0;
7bfc837d 1099
63a212ab 1100 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1101 ret = -ENOSPC;
6df9a95e 1102 goto out;
7bfc837d
MX
1103 }
1104
7bfc837d 1105 path->reada = 2;
6df9a95e
JB
1106 path->search_commit_root = 1;
1107 path->skip_locking = 1;
7bfc837d 1108
0b86a832
CM
1109 key.objectid = device->devid;
1110 key.offset = search_start;
1111 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1112
125ccb0a 1113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1114 if (ret < 0)
7bfc837d 1115 goto out;
1fcbac58
YZ
1116 if (ret > 0) {
1117 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 if (ret < 0)
7bfc837d 1119 goto out;
1fcbac58 1120 }
7bfc837d 1121
0b86a832
CM
1122 while (1) {
1123 l = path->nodes[0];
1124 slot = path->slots[0];
1125 if (slot >= btrfs_header_nritems(l)) {
1126 ret = btrfs_next_leaf(root, path);
1127 if (ret == 0)
1128 continue;
1129 if (ret < 0)
7bfc837d
MX
1130 goto out;
1131
1132 break;
0b86a832
CM
1133 }
1134 btrfs_item_key_to_cpu(l, &key, slot);
1135
1136 if (key.objectid < device->devid)
1137 goto next;
1138
1139 if (key.objectid > device->devid)
7bfc837d 1140 break;
0b86a832 1141
7bfc837d
MX
1142 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1143 goto next;
9779b72f 1144
7bfc837d
MX
1145 if (key.offset > search_start) {
1146 hole_size = key.offset - search_start;
9779b72f 1147
6df9a95e
JB
1148 /*
1149 * Have to check before we set max_hole_start, otherwise
1150 * we could end up sending back this offset anyway.
1151 */
1152 if (contains_pending_extent(trans, device,
1153 &search_start,
1154 hole_size))
1155 hole_size = 0;
1156
7bfc837d
MX
1157 if (hole_size > max_hole_size) {
1158 max_hole_start = search_start;
1159 max_hole_size = hole_size;
1160 }
9779b72f 1161
7bfc837d
MX
1162 /*
1163 * If this free space is greater than which we need,
1164 * it must be the max free space that we have found
1165 * until now, so max_hole_start must point to the start
1166 * of this free space and the length of this free space
1167 * is stored in max_hole_size. Thus, we return
1168 * max_hole_start and max_hole_size and go back to the
1169 * caller.
1170 */
1171 if (hole_size >= num_bytes) {
1172 ret = 0;
1173 goto out;
0b86a832
CM
1174 }
1175 }
0b86a832 1176
0b86a832 1177 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1178 extent_end = key.offset + btrfs_dev_extent_length(l,
1179 dev_extent);
1180 if (extent_end > search_start)
1181 search_start = extent_end;
0b86a832
CM
1182next:
1183 path->slots[0]++;
1184 cond_resched();
1185 }
0b86a832 1186
38c01b96 1187 /*
1188 * At this point, search_start should be the end of
1189 * allocated dev extents, and when shrinking the device,
1190 * search_end may be smaller than search_start.
1191 */
1192 if (search_end > search_start)
1193 hole_size = search_end - search_start;
1194
7bfc837d
MX
1195 if (hole_size > max_hole_size) {
1196 max_hole_start = search_start;
1197 max_hole_size = hole_size;
0b86a832 1198 }
0b86a832 1199
6df9a95e
JB
1200 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1201 btrfs_release_path(path);
1202 goto again;
1203 }
1204
7bfc837d
MX
1205 /* See above. */
1206 if (hole_size < num_bytes)
1207 ret = -ENOSPC;
1208 else
1209 ret = 0;
1210
1211out:
2b82032c 1212 btrfs_free_path(path);
7bfc837d 1213 *start = max_hole_start;
b2117a39 1214 if (len)
7bfc837d 1215 *len = max_hole_size;
0b86a832
CM
1216 return ret;
1217}
1218
b2950863 1219static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1220 struct btrfs_device *device,
1221 u64 start)
1222{
1223 int ret;
1224 struct btrfs_path *path;
1225 struct btrfs_root *root = device->dev_root;
1226 struct btrfs_key key;
a061fc8d
CM
1227 struct btrfs_key found_key;
1228 struct extent_buffer *leaf = NULL;
1229 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1230
1231 path = btrfs_alloc_path();
1232 if (!path)
1233 return -ENOMEM;
1234
1235 key.objectid = device->devid;
1236 key.offset = start;
1237 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1238again:
8f18cf13 1239 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1240 if (ret > 0) {
1241 ret = btrfs_previous_item(root, path, key.objectid,
1242 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1243 if (ret)
1244 goto out;
a061fc8d
CM
1245 leaf = path->nodes[0];
1246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1247 extent = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_dev_extent);
1249 BUG_ON(found_key.offset > start || found_key.offset +
1250 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1251 key = found_key;
1252 btrfs_release_path(path);
1253 goto again;
a061fc8d
CM
1254 } else if (ret == 0) {
1255 leaf = path->nodes[0];
1256 extent = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_dev_extent);
79787eaa
JM
1258 } else {
1259 btrfs_error(root->fs_info, ret, "Slot search failed");
1260 goto out;
a061fc8d 1261 }
8f18cf13 1262
2bf64758
JB
1263 if (device->bytes_used > 0) {
1264 u64 len = btrfs_dev_extent_length(leaf, extent);
1265 device->bytes_used -= len;
1266 spin_lock(&root->fs_info->free_chunk_lock);
1267 root->fs_info->free_chunk_space += len;
1268 spin_unlock(&root->fs_info->free_chunk_lock);
1269 }
8f18cf13 1270 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1271 if (ret) {
1272 btrfs_error(root->fs_info, ret,
1273 "Failed to remove dev extent item");
1274 }
b0b802d7 1275out:
8f18cf13
CM
1276 btrfs_free_path(path);
1277 return ret;
1278}
1279
48a3b636
ES
1280static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1281 struct btrfs_device *device,
1282 u64 chunk_tree, u64 chunk_objectid,
1283 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1284{
1285 int ret;
1286 struct btrfs_path *path;
1287 struct btrfs_root *root = device->dev_root;
1288 struct btrfs_dev_extent *extent;
1289 struct extent_buffer *leaf;
1290 struct btrfs_key key;
1291
dfe25020 1292 WARN_ON(!device->in_fs_metadata);
63a212ab 1293 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1294 path = btrfs_alloc_path();
1295 if (!path)
1296 return -ENOMEM;
1297
0b86a832 1298 key.objectid = device->devid;
2b82032c 1299 key.offset = start;
0b86a832
CM
1300 key.type = BTRFS_DEV_EXTENT_KEY;
1301 ret = btrfs_insert_empty_item(trans, root, path, &key,
1302 sizeof(*extent));
2cdcecbc
MF
1303 if (ret)
1304 goto out;
0b86a832
CM
1305
1306 leaf = path->nodes[0];
1307 extent = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_dev_extent);
e17cade2
CM
1309 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1310 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1311 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1312
1313 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1314 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1315 BTRFS_UUID_SIZE);
1316
0b86a832
CM
1317 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1318 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1319out:
0b86a832
CM
1320 btrfs_free_path(path);
1321 return ret;
1322}
1323
6df9a95e 1324static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1325{
6df9a95e
JB
1326 struct extent_map_tree *em_tree;
1327 struct extent_map *em;
1328 struct rb_node *n;
1329 u64 ret = 0;
0b86a832 1330
6df9a95e
JB
1331 em_tree = &fs_info->mapping_tree.map_tree;
1332 read_lock(&em_tree->lock);
1333 n = rb_last(&em_tree->map);
1334 if (n) {
1335 em = rb_entry(n, struct extent_map, rb_node);
1336 ret = em->start + em->len;
0b86a832 1337 }
6df9a95e
JB
1338 read_unlock(&em_tree->lock);
1339
0b86a832
CM
1340 return ret;
1341}
1342
53f10659
ID
1343static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1344 u64 *devid_ret)
0b86a832
CM
1345{
1346 int ret;
1347 struct btrfs_key key;
1348 struct btrfs_key found_key;
2b82032c
YZ
1349 struct btrfs_path *path;
1350
2b82032c
YZ
1351 path = btrfs_alloc_path();
1352 if (!path)
1353 return -ENOMEM;
0b86a832
CM
1354
1355 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1356 key.type = BTRFS_DEV_ITEM_KEY;
1357 key.offset = (u64)-1;
1358
53f10659 1359 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1360 if (ret < 0)
1361 goto error;
1362
79787eaa 1363 BUG_ON(ret == 0); /* Corruption */
0b86a832 1364
53f10659
ID
1365 ret = btrfs_previous_item(fs_info->chunk_root, path,
1366 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1367 BTRFS_DEV_ITEM_KEY);
1368 if (ret) {
53f10659 1369 *devid_ret = 1;
0b86a832
CM
1370 } else {
1371 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1372 path->slots[0]);
53f10659 1373 *devid_ret = found_key.offset + 1;
0b86a832
CM
1374 }
1375 ret = 0;
1376error:
2b82032c 1377 btrfs_free_path(path);
0b86a832
CM
1378 return ret;
1379}
1380
1381/*
1382 * the device information is stored in the chunk root
1383 * the btrfs_device struct should be fully filled in
1384 */
48a3b636
ES
1385static int btrfs_add_device(struct btrfs_trans_handle *trans,
1386 struct btrfs_root *root,
1387 struct btrfs_device *device)
0b86a832
CM
1388{
1389 int ret;
1390 struct btrfs_path *path;
1391 struct btrfs_dev_item *dev_item;
1392 struct extent_buffer *leaf;
1393 struct btrfs_key key;
1394 unsigned long ptr;
0b86a832
CM
1395
1396 root = root->fs_info->chunk_root;
1397
1398 path = btrfs_alloc_path();
1399 if (!path)
1400 return -ENOMEM;
1401
0b86a832
CM
1402 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1403 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1404 key.offset = device->devid;
0b86a832
CM
1405
1406 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1407 sizeof(*dev_item));
0b86a832
CM
1408 if (ret)
1409 goto out;
1410
1411 leaf = path->nodes[0];
1412 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1413
1414 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1415 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1416 btrfs_set_device_type(leaf, dev_item, device->type);
1417 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1418 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1419 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1420 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1421 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1422 btrfs_set_device_group(leaf, dev_item, 0);
1423 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1424 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1425 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1426
410ba3a2 1427 ptr = btrfs_device_uuid(dev_item);
e17cade2 1428 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1429 ptr = btrfs_device_fsid(dev_item);
2b82032c 1430 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1431 btrfs_mark_buffer_dirty(leaf);
0b86a832 1432
2b82032c 1433 ret = 0;
0b86a832
CM
1434out:
1435 btrfs_free_path(path);
1436 return ret;
1437}
8f18cf13 1438
a061fc8d
CM
1439static int btrfs_rm_dev_item(struct btrfs_root *root,
1440 struct btrfs_device *device)
1441{
1442 int ret;
1443 struct btrfs_path *path;
a061fc8d 1444 struct btrfs_key key;
a061fc8d
CM
1445 struct btrfs_trans_handle *trans;
1446
1447 root = root->fs_info->chunk_root;
1448
1449 path = btrfs_alloc_path();
1450 if (!path)
1451 return -ENOMEM;
1452
a22285a6 1453 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1454 if (IS_ERR(trans)) {
1455 btrfs_free_path(path);
1456 return PTR_ERR(trans);
1457 }
a061fc8d
CM
1458 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1459 key.type = BTRFS_DEV_ITEM_KEY;
1460 key.offset = device->devid;
7d9eb12c 1461 lock_chunks(root);
a061fc8d
CM
1462
1463 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1464 if (ret < 0)
1465 goto out;
1466
1467 if (ret > 0) {
1468 ret = -ENOENT;
1469 goto out;
1470 }
1471
1472 ret = btrfs_del_item(trans, root, path);
1473 if (ret)
1474 goto out;
a061fc8d
CM
1475out:
1476 btrfs_free_path(path);
7d9eb12c 1477 unlock_chunks(root);
a061fc8d
CM
1478 btrfs_commit_transaction(trans, root);
1479 return ret;
1480}
1481
1482int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1483{
1484 struct btrfs_device *device;
2b82032c 1485 struct btrfs_device *next_device;
a061fc8d 1486 struct block_device *bdev;
dfe25020 1487 struct buffer_head *bh = NULL;
a061fc8d 1488 struct btrfs_super_block *disk_super;
1f78160c 1489 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1490 u64 all_avail;
1491 u64 devid;
2b82032c
YZ
1492 u64 num_devices;
1493 u8 *dev_uuid;
de98ced9 1494 unsigned seq;
a061fc8d 1495 int ret = 0;
1f78160c 1496 bool clear_super = false;
a061fc8d 1497
a061fc8d
CM
1498 mutex_lock(&uuid_mutex);
1499
de98ced9
MX
1500 do {
1501 seq = read_seqbegin(&root->fs_info->profiles_lock);
1502
1503 all_avail = root->fs_info->avail_data_alloc_bits |
1504 root->fs_info->avail_system_alloc_bits |
1505 root->fs_info->avail_metadata_alloc_bits;
1506 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1507
8dabb742
SB
1508 num_devices = root->fs_info->fs_devices->num_devices;
1509 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1510 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1511 WARN_ON(num_devices < 1);
1512 num_devices--;
1513 }
1514 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1515
1516 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1517 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1518 goto out;
1519 }
1520
8dabb742 1521 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1522 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1523 goto out;
1524 }
1525
53b381b3
DW
1526 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1527 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1528 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1529 goto out;
1530 }
1531 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1532 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1533 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1534 goto out;
1535 }
1536
dfe25020 1537 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1538 struct list_head *devices;
1539 struct btrfs_device *tmp;
a061fc8d 1540
dfe25020
CM
1541 device = NULL;
1542 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1543 /*
1544 * It is safe to read the devices since the volume_mutex
1545 * is held.
1546 */
c6e30871 1547 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1548 if (tmp->in_fs_metadata &&
1549 !tmp->is_tgtdev_for_dev_replace &&
1550 !tmp->bdev) {
dfe25020
CM
1551 device = tmp;
1552 break;
1553 }
1554 }
1555 bdev = NULL;
1556 bh = NULL;
1557 disk_super = NULL;
1558 if (!device) {
183860f6 1559 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1560 goto out;
1561 }
dfe25020 1562 } else {
beaf8ab3 1563 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1564 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1565 root->fs_info->bdev_holder, 0,
1566 &bdev, &bh);
1567 if (ret)
dfe25020 1568 goto out;
dfe25020 1569 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1570 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1571 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1572 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1573 disk_super->fsid);
dfe25020
CM
1574 if (!device) {
1575 ret = -ENOENT;
1576 goto error_brelse;
1577 }
2b82032c 1578 }
dfe25020 1579
63a212ab 1580 if (device->is_tgtdev_for_dev_replace) {
183860f6 1581 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1582 goto error_brelse;
1583 }
1584
2b82032c 1585 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1586 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1587 goto error_brelse;
1588 }
1589
1590 if (device->writeable) {
0c1daee0 1591 lock_chunks(root);
2b82032c 1592 list_del_init(&device->dev_alloc_list);
0c1daee0 1593 unlock_chunks(root);
2b82032c 1594 root->fs_info->fs_devices->rw_devices--;
1f78160c 1595 clear_super = true;
dfe25020 1596 }
a061fc8d 1597
d7901554 1598 mutex_unlock(&uuid_mutex);
a061fc8d 1599 ret = btrfs_shrink_device(device, 0);
d7901554 1600 mutex_lock(&uuid_mutex);
a061fc8d 1601 if (ret)
9b3517e9 1602 goto error_undo;
a061fc8d 1603
63a212ab
SB
1604 /*
1605 * TODO: the superblock still includes this device in its num_devices
1606 * counter although write_all_supers() is not locked out. This
1607 * could give a filesystem state which requires a degraded mount.
1608 */
a061fc8d
CM
1609 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1610 if (ret)
9b3517e9 1611 goto error_undo;
a061fc8d 1612
2bf64758
JB
1613 spin_lock(&root->fs_info->free_chunk_lock);
1614 root->fs_info->free_chunk_space = device->total_bytes -
1615 device->bytes_used;
1616 spin_unlock(&root->fs_info->free_chunk_lock);
1617
2b82032c 1618 device->in_fs_metadata = 0;
aa1b8cd4 1619 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1620
1621 /*
1622 * the device list mutex makes sure that we don't change
1623 * the device list while someone else is writing out all
1624 * the device supers.
1625 */
1f78160c
XG
1626
1627 cur_devices = device->fs_devices;
e5e9a520 1628 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1629 list_del_rcu(&device->dev_list);
e5e9a520 1630
e4404d6e 1631 device->fs_devices->num_devices--;
02db0844 1632 device->fs_devices->total_devices--;
2b82032c 1633
cd02dca5
CM
1634 if (device->missing)
1635 root->fs_info->fs_devices->missing_devices--;
1636
2b82032c
YZ
1637 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1638 struct btrfs_device, dev_list);
1639 if (device->bdev == root->fs_info->sb->s_bdev)
1640 root->fs_info->sb->s_bdev = next_device->bdev;
1641 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1642 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1643
1f78160c 1644 if (device->bdev)
e4404d6e 1645 device->fs_devices->open_devices--;
1f78160c
XG
1646
1647 call_rcu(&device->rcu, free_device);
1648 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1649
6c41761f
DS
1650 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1651 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1652
1f78160c 1653 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1654 struct btrfs_fs_devices *fs_devices;
1655 fs_devices = root->fs_info->fs_devices;
1656 while (fs_devices) {
1f78160c 1657 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1658 break;
1659 fs_devices = fs_devices->seed;
2b82032c 1660 }
1f78160c
XG
1661 fs_devices->seed = cur_devices->seed;
1662 cur_devices->seed = NULL;
0c1daee0 1663 lock_chunks(root);
1f78160c 1664 __btrfs_close_devices(cur_devices);
0c1daee0 1665 unlock_chunks(root);
1f78160c 1666 free_fs_devices(cur_devices);
2b82032c
YZ
1667 }
1668
5af3e8cc
SB
1669 root->fs_info->num_tolerated_disk_barrier_failures =
1670 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1671
2b82032c
YZ
1672 /*
1673 * at this point, the device is zero sized. We want to
1674 * remove it from the devices list and zero out the old super
1675 */
aa1b8cd4 1676 if (clear_super && disk_super) {
dfe25020
CM
1677 /* make sure this device isn't detected as part of
1678 * the FS anymore
1679 */
1680 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1681 set_buffer_dirty(bh);
1682 sync_dirty_buffer(bh);
dfe25020 1683 }
a061fc8d 1684
a061fc8d 1685 ret = 0;
a061fc8d 1686
b8b8ff59 1687 /* Notify udev that device has changed */
3c911608
ES
1688 if (bdev)
1689 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1690
a061fc8d
CM
1691error_brelse:
1692 brelse(bh);
dfe25020 1693 if (bdev)
e525fd89 1694 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1695out:
1696 mutex_unlock(&uuid_mutex);
a061fc8d 1697 return ret;
9b3517e9
ID
1698error_undo:
1699 if (device->writeable) {
0c1daee0 1700 lock_chunks(root);
9b3517e9
ID
1701 list_add(&device->dev_alloc_list,
1702 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1703 unlock_chunks(root);
9b3517e9
ID
1704 root->fs_info->fs_devices->rw_devices++;
1705 }
1706 goto error_brelse;
a061fc8d
CM
1707}
1708
e93c89c1
SB
1709void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1710 struct btrfs_device *srcdev)
1711{
1712 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1713 list_del_rcu(&srcdev->dev_list);
1714 list_del_rcu(&srcdev->dev_alloc_list);
1715 fs_info->fs_devices->num_devices--;
1716 if (srcdev->missing) {
1717 fs_info->fs_devices->missing_devices--;
1718 fs_info->fs_devices->rw_devices++;
1719 }
1720 if (srcdev->can_discard)
1721 fs_info->fs_devices->num_can_discard--;
1722 if (srcdev->bdev)
1723 fs_info->fs_devices->open_devices--;
1724
1725 call_rcu(&srcdev->rcu, free_device);
1726}
1727
1728void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1729 struct btrfs_device *tgtdev)
1730{
1731 struct btrfs_device *next_device;
1732
1733 WARN_ON(!tgtdev);
1734 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1735 if (tgtdev->bdev) {
1736 btrfs_scratch_superblock(tgtdev);
1737 fs_info->fs_devices->open_devices--;
1738 }
1739 fs_info->fs_devices->num_devices--;
1740 if (tgtdev->can_discard)
1741 fs_info->fs_devices->num_can_discard++;
1742
1743 next_device = list_entry(fs_info->fs_devices->devices.next,
1744 struct btrfs_device, dev_list);
1745 if (tgtdev->bdev == fs_info->sb->s_bdev)
1746 fs_info->sb->s_bdev = next_device->bdev;
1747 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1748 fs_info->fs_devices->latest_bdev = next_device->bdev;
1749 list_del_rcu(&tgtdev->dev_list);
1750
1751 call_rcu(&tgtdev->rcu, free_device);
1752
1753 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1754}
1755
48a3b636
ES
1756static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1757 struct btrfs_device **device)
7ba15b7d
SB
1758{
1759 int ret = 0;
1760 struct btrfs_super_block *disk_super;
1761 u64 devid;
1762 u8 *dev_uuid;
1763 struct block_device *bdev;
1764 struct buffer_head *bh;
1765
1766 *device = NULL;
1767 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1768 root->fs_info->bdev_holder, 0, &bdev, &bh);
1769 if (ret)
1770 return ret;
1771 disk_super = (struct btrfs_super_block *)bh->b_data;
1772 devid = btrfs_stack_device_id(&disk_super->dev_item);
1773 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1774 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1775 disk_super->fsid);
1776 brelse(bh);
1777 if (!*device)
1778 ret = -ENOENT;
1779 blkdev_put(bdev, FMODE_READ);
1780 return ret;
1781}
1782
1783int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1784 char *device_path,
1785 struct btrfs_device **device)
1786{
1787 *device = NULL;
1788 if (strcmp(device_path, "missing") == 0) {
1789 struct list_head *devices;
1790 struct btrfs_device *tmp;
1791
1792 devices = &root->fs_info->fs_devices->devices;
1793 /*
1794 * It is safe to read the devices since the volume_mutex
1795 * is held by the caller.
1796 */
1797 list_for_each_entry(tmp, devices, dev_list) {
1798 if (tmp->in_fs_metadata && !tmp->bdev) {
1799 *device = tmp;
1800 break;
1801 }
1802 }
1803
1804 if (!*device) {
1805 pr_err("btrfs: no missing device found\n");
1806 return -ENOENT;
1807 }
1808
1809 return 0;
1810 } else {
1811 return btrfs_find_device_by_path(root, device_path, device);
1812 }
1813}
1814
2b82032c
YZ
1815/*
1816 * does all the dirty work required for changing file system's UUID.
1817 */
125ccb0a 1818static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1819{
1820 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1821 struct btrfs_fs_devices *old_devices;
e4404d6e 1822 struct btrfs_fs_devices *seed_devices;
6c41761f 1823 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1824 struct btrfs_device *device;
1825 u64 super_flags;
1826
1827 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1828 if (!fs_devices->seeding)
2b82032c
YZ
1829 return -EINVAL;
1830
2208a378
ID
1831 seed_devices = __alloc_fs_devices();
1832 if (IS_ERR(seed_devices))
1833 return PTR_ERR(seed_devices);
2b82032c 1834
e4404d6e
YZ
1835 old_devices = clone_fs_devices(fs_devices);
1836 if (IS_ERR(old_devices)) {
1837 kfree(seed_devices);
1838 return PTR_ERR(old_devices);
2b82032c 1839 }
e4404d6e 1840
2b82032c
YZ
1841 list_add(&old_devices->list, &fs_uuids);
1842
e4404d6e
YZ
1843 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1844 seed_devices->opened = 1;
1845 INIT_LIST_HEAD(&seed_devices->devices);
1846 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1847 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1848
1849 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1850 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1851 synchronize_rcu);
c9513edb
XG
1852 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1853
e4404d6e
YZ
1854 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1855 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1856 device->fs_devices = seed_devices;
1857 }
1858
2b82032c
YZ
1859 fs_devices->seeding = 0;
1860 fs_devices->num_devices = 0;
1861 fs_devices->open_devices = 0;
02db0844 1862 fs_devices->total_devices = 0;
e4404d6e 1863 fs_devices->seed = seed_devices;
2b82032c
YZ
1864
1865 generate_random_uuid(fs_devices->fsid);
1866 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1867 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1868 super_flags = btrfs_super_flags(disk_super) &
1869 ~BTRFS_SUPER_FLAG_SEEDING;
1870 btrfs_set_super_flags(disk_super, super_flags);
1871
1872 return 0;
1873}
1874
1875/*
1876 * strore the expected generation for seed devices in device items.
1877 */
1878static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1879 struct btrfs_root *root)
1880{
1881 struct btrfs_path *path;
1882 struct extent_buffer *leaf;
1883 struct btrfs_dev_item *dev_item;
1884 struct btrfs_device *device;
1885 struct btrfs_key key;
1886 u8 fs_uuid[BTRFS_UUID_SIZE];
1887 u8 dev_uuid[BTRFS_UUID_SIZE];
1888 u64 devid;
1889 int ret;
1890
1891 path = btrfs_alloc_path();
1892 if (!path)
1893 return -ENOMEM;
1894
1895 root = root->fs_info->chunk_root;
1896 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1897 key.offset = 0;
1898 key.type = BTRFS_DEV_ITEM_KEY;
1899
1900 while (1) {
1901 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1902 if (ret < 0)
1903 goto error;
1904
1905 leaf = path->nodes[0];
1906next_slot:
1907 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1908 ret = btrfs_next_leaf(root, path);
1909 if (ret > 0)
1910 break;
1911 if (ret < 0)
1912 goto error;
1913 leaf = path->nodes[0];
1914 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1915 btrfs_release_path(path);
2b82032c
YZ
1916 continue;
1917 }
1918
1919 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1920 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1921 key.type != BTRFS_DEV_ITEM_KEY)
1922 break;
1923
1924 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1925 struct btrfs_dev_item);
1926 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1927 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1928 BTRFS_UUID_SIZE);
1473b24e 1929 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1930 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1931 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1932 fs_uuid);
79787eaa 1933 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1934
1935 if (device->fs_devices->seeding) {
1936 btrfs_set_device_generation(leaf, dev_item,
1937 device->generation);
1938 btrfs_mark_buffer_dirty(leaf);
1939 }
1940
1941 path->slots[0]++;
1942 goto next_slot;
1943 }
1944 ret = 0;
1945error:
1946 btrfs_free_path(path);
1947 return ret;
1948}
1949
788f20eb
CM
1950int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1951{
d5e2003c 1952 struct request_queue *q;
788f20eb
CM
1953 struct btrfs_trans_handle *trans;
1954 struct btrfs_device *device;
1955 struct block_device *bdev;
788f20eb 1956 struct list_head *devices;
2b82032c 1957 struct super_block *sb = root->fs_info->sb;
606686ee 1958 struct rcu_string *name;
788f20eb 1959 u64 total_bytes;
2b82032c 1960 int seeding_dev = 0;
788f20eb
CM
1961 int ret = 0;
1962
2b82032c 1963 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1964 return -EROFS;
788f20eb 1965
a5d16333 1966 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1967 root->fs_info->bdev_holder);
7f59203a
JB
1968 if (IS_ERR(bdev))
1969 return PTR_ERR(bdev);
a2135011 1970
2b82032c
YZ
1971 if (root->fs_info->fs_devices->seeding) {
1972 seeding_dev = 1;
1973 down_write(&sb->s_umount);
1974 mutex_lock(&uuid_mutex);
1975 }
1976
8c8bee1d 1977 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1978
788f20eb 1979 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1980
1981 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1982 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1983 if (device->bdev == bdev) {
1984 ret = -EEXIST;
d25628bd
LB
1985 mutex_unlock(
1986 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1987 goto error;
788f20eb
CM
1988 }
1989 }
d25628bd 1990 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1991
12bd2fc0
ID
1992 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1993 if (IS_ERR(device)) {
788f20eb 1994 /* we can safely leave the fs_devices entry around */
12bd2fc0 1995 ret = PTR_ERR(device);
2b82032c 1996 goto error;
788f20eb
CM
1997 }
1998
606686ee
JB
1999 name = rcu_string_strdup(device_path, GFP_NOFS);
2000 if (!name) {
788f20eb 2001 kfree(device);
2b82032c
YZ
2002 ret = -ENOMEM;
2003 goto error;
788f20eb 2004 }
606686ee 2005 rcu_assign_pointer(device->name, name);
2b82032c 2006
a22285a6 2007 trans = btrfs_start_transaction(root, 0);
98d5dc13 2008 if (IS_ERR(trans)) {
606686ee 2009 rcu_string_free(device->name);
98d5dc13
TI
2010 kfree(device);
2011 ret = PTR_ERR(trans);
2012 goto error;
2013 }
2014
2b82032c
YZ
2015 lock_chunks(root);
2016
d5e2003c
JB
2017 q = bdev_get_queue(bdev);
2018 if (blk_queue_discard(q))
2019 device->can_discard = 1;
2b82032c 2020 device->writeable = 1;
2b82032c 2021 device->generation = trans->transid;
788f20eb
CM
2022 device->io_width = root->sectorsize;
2023 device->io_align = root->sectorsize;
2024 device->sector_size = root->sectorsize;
2025 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2026 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2027 device->dev_root = root->fs_info->dev_root;
2028 device->bdev = bdev;
dfe25020 2029 device->in_fs_metadata = 1;
63a212ab 2030 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2031 device->mode = FMODE_EXCL;
2b82032c 2032 set_blocksize(device->bdev, 4096);
788f20eb 2033
2b82032c
YZ
2034 if (seeding_dev) {
2035 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2036 ret = btrfs_prepare_sprout(root);
79787eaa 2037 BUG_ON(ret); /* -ENOMEM */
2b82032c 2038 }
788f20eb 2039
2b82032c 2040 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2041
e5e9a520 2042 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2043 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2044 list_add(&device->dev_alloc_list,
2045 &root->fs_info->fs_devices->alloc_list);
2046 root->fs_info->fs_devices->num_devices++;
2047 root->fs_info->fs_devices->open_devices++;
2048 root->fs_info->fs_devices->rw_devices++;
02db0844 2049 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2050 if (device->can_discard)
2051 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2052 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2053
2bf64758
JB
2054 spin_lock(&root->fs_info->free_chunk_lock);
2055 root->fs_info->free_chunk_space += device->total_bytes;
2056 spin_unlock(&root->fs_info->free_chunk_lock);
2057
c289811c
CM
2058 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2059 root->fs_info->fs_devices->rotating = 1;
2060
6c41761f
DS
2061 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2062 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2063 total_bytes + device->total_bytes);
2064
6c41761f
DS
2065 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2066 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2067 total_bytes + 1);
e5e9a520 2068 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2069
2b82032c
YZ
2070 if (seeding_dev) {
2071 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2072 if (ret) {
2073 btrfs_abort_transaction(trans, root, ret);
79787eaa 2074 goto error_trans;
005d6427 2075 }
2b82032c 2076 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2077 if (ret) {
2078 btrfs_abort_transaction(trans, root, ret);
79787eaa 2079 goto error_trans;
005d6427 2080 }
2b82032c
YZ
2081 } else {
2082 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2083 if (ret) {
2084 btrfs_abort_transaction(trans, root, ret);
79787eaa 2085 goto error_trans;
005d6427 2086 }
2b82032c
YZ
2087 }
2088
913d952e
CM
2089 /*
2090 * we've got more storage, clear any full flags on the space
2091 * infos
2092 */
2093 btrfs_clear_space_info_full(root->fs_info);
2094
7d9eb12c 2095 unlock_chunks(root);
5af3e8cc
SB
2096 root->fs_info->num_tolerated_disk_barrier_failures =
2097 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2098 ret = btrfs_commit_transaction(trans, root);
a2135011 2099
2b82032c
YZ
2100 if (seeding_dev) {
2101 mutex_unlock(&uuid_mutex);
2102 up_write(&sb->s_umount);
788f20eb 2103
79787eaa
JM
2104 if (ret) /* transaction commit */
2105 return ret;
2106
2b82032c 2107 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2108 if (ret < 0)
2109 btrfs_error(root->fs_info, ret,
2110 "Failed to relocate sys chunks after "
2111 "device initialization. This can be fixed "
2112 "using the \"btrfs balance\" command.");
671415b7
MX
2113 trans = btrfs_attach_transaction(root);
2114 if (IS_ERR(trans)) {
2115 if (PTR_ERR(trans) == -ENOENT)
2116 return 0;
2117 return PTR_ERR(trans);
2118 }
2119 ret = btrfs_commit_transaction(trans, root);
2b82032c 2120 }
c9e9f97b 2121
2b82032c 2122 return ret;
79787eaa
JM
2123
2124error_trans:
2125 unlock_chunks(root);
79787eaa 2126 btrfs_end_transaction(trans, root);
606686ee 2127 rcu_string_free(device->name);
79787eaa 2128 kfree(device);
2b82032c 2129error:
e525fd89 2130 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2131 if (seeding_dev) {
2132 mutex_unlock(&uuid_mutex);
2133 up_write(&sb->s_umount);
2134 }
c9e9f97b 2135 return ret;
788f20eb
CM
2136}
2137
e93c89c1
SB
2138int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2139 struct btrfs_device **device_out)
2140{
2141 struct request_queue *q;
2142 struct btrfs_device *device;
2143 struct block_device *bdev;
2144 struct btrfs_fs_info *fs_info = root->fs_info;
2145 struct list_head *devices;
2146 struct rcu_string *name;
12bd2fc0 2147 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2148 int ret = 0;
2149
2150 *device_out = NULL;
2151 if (fs_info->fs_devices->seeding)
2152 return -EINVAL;
2153
2154 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2155 fs_info->bdev_holder);
2156 if (IS_ERR(bdev))
2157 return PTR_ERR(bdev);
2158
2159 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2160
2161 devices = &fs_info->fs_devices->devices;
2162 list_for_each_entry(device, devices, dev_list) {
2163 if (device->bdev == bdev) {
2164 ret = -EEXIST;
2165 goto error;
2166 }
2167 }
2168
12bd2fc0
ID
2169 device = btrfs_alloc_device(NULL, &devid, NULL);
2170 if (IS_ERR(device)) {
2171 ret = PTR_ERR(device);
e93c89c1
SB
2172 goto error;
2173 }
2174
2175 name = rcu_string_strdup(device_path, GFP_NOFS);
2176 if (!name) {
2177 kfree(device);
2178 ret = -ENOMEM;
2179 goto error;
2180 }
2181 rcu_assign_pointer(device->name, name);
2182
2183 q = bdev_get_queue(bdev);
2184 if (blk_queue_discard(q))
2185 device->can_discard = 1;
2186 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2187 device->writeable = 1;
e93c89c1
SB
2188 device->generation = 0;
2189 device->io_width = root->sectorsize;
2190 device->io_align = root->sectorsize;
2191 device->sector_size = root->sectorsize;
2192 device->total_bytes = i_size_read(bdev->bd_inode);
2193 device->disk_total_bytes = device->total_bytes;
2194 device->dev_root = fs_info->dev_root;
2195 device->bdev = bdev;
2196 device->in_fs_metadata = 1;
2197 device->is_tgtdev_for_dev_replace = 1;
2198 device->mode = FMODE_EXCL;
2199 set_blocksize(device->bdev, 4096);
2200 device->fs_devices = fs_info->fs_devices;
2201 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2202 fs_info->fs_devices->num_devices++;
2203 fs_info->fs_devices->open_devices++;
2204 if (device->can_discard)
2205 fs_info->fs_devices->num_can_discard++;
2206 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2207
2208 *device_out = device;
2209 return ret;
2210
2211error:
2212 blkdev_put(bdev, FMODE_EXCL);
2213 return ret;
2214}
2215
2216void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2217 struct btrfs_device *tgtdev)
2218{
2219 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2220 tgtdev->io_width = fs_info->dev_root->sectorsize;
2221 tgtdev->io_align = fs_info->dev_root->sectorsize;
2222 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2223 tgtdev->dev_root = fs_info->dev_root;
2224 tgtdev->in_fs_metadata = 1;
2225}
2226
d397712b
CM
2227static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2228 struct btrfs_device *device)
0b86a832
CM
2229{
2230 int ret;
2231 struct btrfs_path *path;
2232 struct btrfs_root *root;
2233 struct btrfs_dev_item *dev_item;
2234 struct extent_buffer *leaf;
2235 struct btrfs_key key;
2236
2237 root = device->dev_root->fs_info->chunk_root;
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242
2243 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2244 key.type = BTRFS_DEV_ITEM_KEY;
2245 key.offset = device->devid;
2246
2247 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2248 if (ret < 0)
2249 goto out;
2250
2251 if (ret > 0) {
2252 ret = -ENOENT;
2253 goto out;
2254 }
2255
2256 leaf = path->nodes[0];
2257 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2258
2259 btrfs_set_device_id(leaf, dev_item, device->devid);
2260 btrfs_set_device_type(leaf, dev_item, device->type);
2261 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2262 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2263 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2264 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2265 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2266 btrfs_mark_buffer_dirty(leaf);
2267
2268out:
2269 btrfs_free_path(path);
2270 return ret;
2271}
2272
7d9eb12c 2273static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2274 struct btrfs_device *device, u64 new_size)
2275{
2276 struct btrfs_super_block *super_copy =
6c41761f 2277 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2278 u64 old_total = btrfs_super_total_bytes(super_copy);
2279 u64 diff = new_size - device->total_bytes;
2280
2b82032c
YZ
2281 if (!device->writeable)
2282 return -EACCES;
63a212ab
SB
2283 if (new_size <= device->total_bytes ||
2284 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2285 return -EINVAL;
2286
8f18cf13 2287 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2288 device->fs_devices->total_rw_bytes += diff;
2289
2290 device->total_bytes = new_size;
9779b72f 2291 device->disk_total_bytes = new_size;
4184ea7f
CM
2292 btrfs_clear_space_info_full(device->dev_root->fs_info);
2293
8f18cf13
CM
2294 return btrfs_update_device(trans, device);
2295}
2296
7d9eb12c
CM
2297int btrfs_grow_device(struct btrfs_trans_handle *trans,
2298 struct btrfs_device *device, u64 new_size)
2299{
2300 int ret;
2301 lock_chunks(device->dev_root);
2302 ret = __btrfs_grow_device(trans, device, new_size);
2303 unlock_chunks(device->dev_root);
2304 return ret;
2305}
2306
8f18cf13
CM
2307static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2308 struct btrfs_root *root,
2309 u64 chunk_tree, u64 chunk_objectid,
2310 u64 chunk_offset)
2311{
2312 int ret;
2313 struct btrfs_path *path;
2314 struct btrfs_key key;
2315
2316 root = root->fs_info->chunk_root;
2317 path = btrfs_alloc_path();
2318 if (!path)
2319 return -ENOMEM;
2320
2321 key.objectid = chunk_objectid;
2322 key.offset = chunk_offset;
2323 key.type = BTRFS_CHUNK_ITEM_KEY;
2324
2325 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2326 if (ret < 0)
2327 goto out;
2328 else if (ret > 0) { /* Logic error or corruption */
2329 btrfs_error(root->fs_info, -ENOENT,
2330 "Failed lookup while freeing chunk.");
2331 ret = -ENOENT;
2332 goto out;
2333 }
8f18cf13
CM
2334
2335 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2336 if (ret < 0)
2337 btrfs_error(root->fs_info, ret,
2338 "Failed to delete chunk item.");
2339out:
8f18cf13 2340 btrfs_free_path(path);
65a246c5 2341 return ret;
8f18cf13
CM
2342}
2343
b2950863 2344static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2345 chunk_offset)
2346{
6c41761f 2347 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2348 struct btrfs_disk_key *disk_key;
2349 struct btrfs_chunk *chunk;
2350 u8 *ptr;
2351 int ret = 0;
2352 u32 num_stripes;
2353 u32 array_size;
2354 u32 len = 0;
2355 u32 cur;
2356 struct btrfs_key key;
2357
2358 array_size = btrfs_super_sys_array_size(super_copy);
2359
2360 ptr = super_copy->sys_chunk_array;
2361 cur = 0;
2362
2363 while (cur < array_size) {
2364 disk_key = (struct btrfs_disk_key *)ptr;
2365 btrfs_disk_key_to_cpu(&key, disk_key);
2366
2367 len = sizeof(*disk_key);
2368
2369 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2370 chunk = (struct btrfs_chunk *)(ptr + len);
2371 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2372 len += btrfs_chunk_item_size(num_stripes);
2373 } else {
2374 ret = -EIO;
2375 break;
2376 }
2377 if (key.objectid == chunk_objectid &&
2378 key.offset == chunk_offset) {
2379 memmove(ptr, ptr + len, array_size - (cur + len));
2380 array_size -= len;
2381 btrfs_set_super_sys_array_size(super_copy, array_size);
2382 } else {
2383 ptr += len;
2384 cur += len;
2385 }
2386 }
2387 return ret;
2388}
2389
b2950863 2390static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2391 u64 chunk_tree, u64 chunk_objectid,
2392 u64 chunk_offset)
2393{
2394 struct extent_map_tree *em_tree;
2395 struct btrfs_root *extent_root;
2396 struct btrfs_trans_handle *trans;
2397 struct extent_map *em;
2398 struct map_lookup *map;
2399 int ret;
2400 int i;
2401
2402 root = root->fs_info->chunk_root;
2403 extent_root = root->fs_info->extent_root;
2404 em_tree = &root->fs_info->mapping_tree.map_tree;
2405
ba1bf481
JB
2406 ret = btrfs_can_relocate(extent_root, chunk_offset);
2407 if (ret)
2408 return -ENOSPC;
2409
8f18cf13 2410 /* step one, relocate all the extents inside this chunk */
1a40e23b 2411 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2412 if (ret)
2413 return ret;
8f18cf13 2414
a22285a6 2415 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2416 if (IS_ERR(trans)) {
2417 ret = PTR_ERR(trans);
2418 btrfs_std_error(root->fs_info, ret);
2419 return ret;
2420 }
8f18cf13 2421
7d9eb12c
CM
2422 lock_chunks(root);
2423
8f18cf13
CM
2424 /*
2425 * step two, delete the device extents and the
2426 * chunk tree entries
2427 */
890871be 2428 read_lock(&em_tree->lock);
8f18cf13 2429 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2430 read_unlock(&em_tree->lock);
8f18cf13 2431
285190d9 2432 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2433 em->start + em->len < chunk_offset);
8f18cf13
CM
2434 map = (struct map_lookup *)em->bdev;
2435
2436 for (i = 0; i < map->num_stripes; i++) {
2437 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2438 map->stripes[i].physical);
2439 BUG_ON(ret);
a061fc8d 2440
dfe25020
CM
2441 if (map->stripes[i].dev) {
2442 ret = btrfs_update_device(trans, map->stripes[i].dev);
2443 BUG_ON(ret);
2444 }
8f18cf13
CM
2445 }
2446 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2447 chunk_offset);
2448
2449 BUG_ON(ret);
2450
1abe9b8a 2451 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2452
8f18cf13
CM
2453 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2454 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2455 BUG_ON(ret);
8f18cf13
CM
2456 }
2457
2b82032c
YZ
2458 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2459 BUG_ON(ret);
2460
890871be 2461 write_lock(&em_tree->lock);
2b82032c 2462 remove_extent_mapping(em_tree, em);
890871be 2463 write_unlock(&em_tree->lock);
2b82032c
YZ
2464
2465 kfree(map);
2466 em->bdev = NULL;
2467
2468 /* once for the tree */
2469 free_extent_map(em);
2470 /* once for us */
2471 free_extent_map(em);
2472
2473 unlock_chunks(root);
2474 btrfs_end_transaction(trans, root);
2475 return 0;
2476}
2477
2478static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2479{
2480 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2481 struct btrfs_path *path;
2482 struct extent_buffer *leaf;
2483 struct btrfs_chunk *chunk;
2484 struct btrfs_key key;
2485 struct btrfs_key found_key;
2486 u64 chunk_tree = chunk_root->root_key.objectid;
2487 u64 chunk_type;
ba1bf481
JB
2488 bool retried = false;
2489 int failed = 0;
2b82032c
YZ
2490 int ret;
2491
2492 path = btrfs_alloc_path();
2493 if (!path)
2494 return -ENOMEM;
2495
ba1bf481 2496again:
2b82032c
YZ
2497 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2498 key.offset = (u64)-1;
2499 key.type = BTRFS_CHUNK_ITEM_KEY;
2500
2501 while (1) {
2502 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2503 if (ret < 0)
2504 goto error;
79787eaa 2505 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2506
2507 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2508 key.type);
2509 if (ret < 0)
2510 goto error;
2511 if (ret > 0)
2512 break;
1a40e23b 2513
2b82032c
YZ
2514 leaf = path->nodes[0];
2515 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2516
2b82032c
YZ
2517 chunk = btrfs_item_ptr(leaf, path->slots[0],
2518 struct btrfs_chunk);
2519 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2520 btrfs_release_path(path);
8f18cf13 2521
2b82032c
YZ
2522 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2523 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2524 found_key.objectid,
2525 found_key.offset);
ba1bf481
JB
2526 if (ret == -ENOSPC)
2527 failed++;
2528 else if (ret)
2529 BUG();
2b82032c 2530 }
8f18cf13 2531
2b82032c
YZ
2532 if (found_key.offset == 0)
2533 break;
2534 key.offset = found_key.offset - 1;
2535 }
2536 ret = 0;
ba1bf481
JB
2537 if (failed && !retried) {
2538 failed = 0;
2539 retried = true;
2540 goto again;
2541 } else if (failed && retried) {
2542 WARN_ON(1);
2543 ret = -ENOSPC;
2544 }
2b82032c
YZ
2545error:
2546 btrfs_free_path(path);
2547 return ret;
8f18cf13
CM
2548}
2549
0940ebf6
ID
2550static int insert_balance_item(struct btrfs_root *root,
2551 struct btrfs_balance_control *bctl)
2552{
2553 struct btrfs_trans_handle *trans;
2554 struct btrfs_balance_item *item;
2555 struct btrfs_disk_balance_args disk_bargs;
2556 struct btrfs_path *path;
2557 struct extent_buffer *leaf;
2558 struct btrfs_key key;
2559 int ret, err;
2560
2561 path = btrfs_alloc_path();
2562 if (!path)
2563 return -ENOMEM;
2564
2565 trans = btrfs_start_transaction(root, 0);
2566 if (IS_ERR(trans)) {
2567 btrfs_free_path(path);
2568 return PTR_ERR(trans);
2569 }
2570
2571 key.objectid = BTRFS_BALANCE_OBJECTID;
2572 key.type = BTRFS_BALANCE_ITEM_KEY;
2573 key.offset = 0;
2574
2575 ret = btrfs_insert_empty_item(trans, root, path, &key,
2576 sizeof(*item));
2577 if (ret)
2578 goto out;
2579
2580 leaf = path->nodes[0];
2581 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2582
2583 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2584
2585 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2586 btrfs_set_balance_data(leaf, item, &disk_bargs);
2587 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2588 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2589 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2590 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2591
2592 btrfs_set_balance_flags(leaf, item, bctl->flags);
2593
2594 btrfs_mark_buffer_dirty(leaf);
2595out:
2596 btrfs_free_path(path);
2597 err = btrfs_commit_transaction(trans, root);
2598 if (err && !ret)
2599 ret = err;
2600 return ret;
2601}
2602
2603static int del_balance_item(struct btrfs_root *root)
2604{
2605 struct btrfs_trans_handle *trans;
2606 struct btrfs_path *path;
2607 struct btrfs_key key;
2608 int ret, err;
2609
2610 path = btrfs_alloc_path();
2611 if (!path)
2612 return -ENOMEM;
2613
2614 trans = btrfs_start_transaction(root, 0);
2615 if (IS_ERR(trans)) {
2616 btrfs_free_path(path);
2617 return PTR_ERR(trans);
2618 }
2619
2620 key.objectid = BTRFS_BALANCE_OBJECTID;
2621 key.type = BTRFS_BALANCE_ITEM_KEY;
2622 key.offset = 0;
2623
2624 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2625 if (ret < 0)
2626 goto out;
2627 if (ret > 0) {
2628 ret = -ENOENT;
2629 goto out;
2630 }
2631
2632 ret = btrfs_del_item(trans, root, path);
2633out:
2634 btrfs_free_path(path);
2635 err = btrfs_commit_transaction(trans, root);
2636 if (err && !ret)
2637 ret = err;
2638 return ret;
2639}
2640
59641015
ID
2641/*
2642 * This is a heuristic used to reduce the number of chunks balanced on
2643 * resume after balance was interrupted.
2644 */
2645static void update_balance_args(struct btrfs_balance_control *bctl)
2646{
2647 /*
2648 * Turn on soft mode for chunk types that were being converted.
2649 */
2650 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2651 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2652 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2653 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2654 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2655 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2656
2657 /*
2658 * Turn on usage filter if is not already used. The idea is
2659 * that chunks that we have already balanced should be
2660 * reasonably full. Don't do it for chunks that are being
2661 * converted - that will keep us from relocating unconverted
2662 * (albeit full) chunks.
2663 */
2664 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2665 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2666 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2667 bctl->data.usage = 90;
2668 }
2669 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2670 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2671 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2672 bctl->sys.usage = 90;
2673 }
2674 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2675 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2676 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2677 bctl->meta.usage = 90;
2678 }
2679}
2680
c9e9f97b
ID
2681/*
2682 * Should be called with both balance and volume mutexes held to
2683 * serialize other volume operations (add_dev/rm_dev/resize) with
2684 * restriper. Same goes for unset_balance_control.
2685 */
2686static void set_balance_control(struct btrfs_balance_control *bctl)
2687{
2688 struct btrfs_fs_info *fs_info = bctl->fs_info;
2689
2690 BUG_ON(fs_info->balance_ctl);
2691
2692 spin_lock(&fs_info->balance_lock);
2693 fs_info->balance_ctl = bctl;
2694 spin_unlock(&fs_info->balance_lock);
2695}
2696
2697static void unset_balance_control(struct btrfs_fs_info *fs_info)
2698{
2699 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2700
2701 BUG_ON(!fs_info->balance_ctl);
2702
2703 spin_lock(&fs_info->balance_lock);
2704 fs_info->balance_ctl = NULL;
2705 spin_unlock(&fs_info->balance_lock);
2706
2707 kfree(bctl);
2708}
2709
ed25e9b2
ID
2710/*
2711 * Balance filters. Return 1 if chunk should be filtered out
2712 * (should not be balanced).
2713 */
899c81ea 2714static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2715 struct btrfs_balance_args *bargs)
2716{
899c81ea
ID
2717 chunk_type = chunk_to_extended(chunk_type) &
2718 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2719
899c81ea 2720 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2721 return 0;
2722
2723 return 1;
2724}
2725
5ce5b3c0
ID
2726static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2727 struct btrfs_balance_args *bargs)
2728{
2729 struct btrfs_block_group_cache *cache;
2730 u64 chunk_used, user_thresh;
2731 int ret = 1;
2732
2733 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2734 chunk_used = btrfs_block_group_used(&cache->item);
2735
a105bb88 2736 if (bargs->usage == 0)
3e39cea6 2737 user_thresh = 1;
a105bb88
ID
2738 else if (bargs->usage > 100)
2739 user_thresh = cache->key.offset;
2740 else
2741 user_thresh = div_factor_fine(cache->key.offset,
2742 bargs->usage);
2743
5ce5b3c0
ID
2744 if (chunk_used < user_thresh)
2745 ret = 0;
2746
2747 btrfs_put_block_group(cache);
2748 return ret;
2749}
2750
409d404b
ID
2751static int chunk_devid_filter(struct extent_buffer *leaf,
2752 struct btrfs_chunk *chunk,
2753 struct btrfs_balance_args *bargs)
2754{
2755 struct btrfs_stripe *stripe;
2756 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2757 int i;
2758
2759 for (i = 0; i < num_stripes; i++) {
2760 stripe = btrfs_stripe_nr(chunk, i);
2761 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2762 return 0;
2763 }
2764
2765 return 1;
2766}
2767
94e60d5a
ID
2768/* [pstart, pend) */
2769static int chunk_drange_filter(struct extent_buffer *leaf,
2770 struct btrfs_chunk *chunk,
2771 u64 chunk_offset,
2772 struct btrfs_balance_args *bargs)
2773{
2774 struct btrfs_stripe *stripe;
2775 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2776 u64 stripe_offset;
2777 u64 stripe_length;
2778 int factor;
2779 int i;
2780
2781 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2782 return 0;
2783
2784 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2785 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2786 factor = num_stripes / 2;
2787 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2788 factor = num_stripes - 1;
2789 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2790 factor = num_stripes - 2;
2791 } else {
2792 factor = num_stripes;
2793 }
94e60d5a
ID
2794
2795 for (i = 0; i < num_stripes; i++) {
2796 stripe = btrfs_stripe_nr(chunk, i);
2797 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2798 continue;
2799
2800 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2801 stripe_length = btrfs_chunk_length(leaf, chunk);
2802 do_div(stripe_length, factor);
2803
2804 if (stripe_offset < bargs->pend &&
2805 stripe_offset + stripe_length > bargs->pstart)
2806 return 0;
2807 }
2808
2809 return 1;
2810}
2811
ea67176a
ID
2812/* [vstart, vend) */
2813static int chunk_vrange_filter(struct extent_buffer *leaf,
2814 struct btrfs_chunk *chunk,
2815 u64 chunk_offset,
2816 struct btrfs_balance_args *bargs)
2817{
2818 if (chunk_offset < bargs->vend &&
2819 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2820 /* at least part of the chunk is inside this vrange */
2821 return 0;
2822
2823 return 1;
2824}
2825
899c81ea 2826static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2827 struct btrfs_balance_args *bargs)
2828{
2829 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2830 return 0;
2831
899c81ea
ID
2832 chunk_type = chunk_to_extended(chunk_type) &
2833 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2834
899c81ea 2835 if (bargs->target == chunk_type)
cfa4c961
ID
2836 return 1;
2837
2838 return 0;
2839}
2840
f43ffb60
ID
2841static int should_balance_chunk(struct btrfs_root *root,
2842 struct extent_buffer *leaf,
2843 struct btrfs_chunk *chunk, u64 chunk_offset)
2844{
2845 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2846 struct btrfs_balance_args *bargs = NULL;
2847 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2848
2849 /* type filter */
2850 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2851 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2852 return 0;
2853 }
2854
2855 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2856 bargs = &bctl->data;
2857 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2858 bargs = &bctl->sys;
2859 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2860 bargs = &bctl->meta;
2861
ed25e9b2
ID
2862 /* profiles filter */
2863 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2864 chunk_profiles_filter(chunk_type, bargs)) {
2865 return 0;
5ce5b3c0
ID
2866 }
2867
2868 /* usage filter */
2869 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2870 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2871 return 0;
409d404b
ID
2872 }
2873
2874 /* devid filter */
2875 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2876 chunk_devid_filter(leaf, chunk, bargs)) {
2877 return 0;
94e60d5a
ID
2878 }
2879
2880 /* drange filter, makes sense only with devid filter */
2881 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2882 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2883 return 0;
ea67176a
ID
2884 }
2885
2886 /* vrange filter */
2887 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2888 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2889 return 0;
ed25e9b2
ID
2890 }
2891
cfa4c961
ID
2892 /* soft profile changing mode */
2893 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2894 chunk_soft_convert_filter(chunk_type, bargs)) {
2895 return 0;
2896 }
2897
f43ffb60
ID
2898 return 1;
2899}
2900
c9e9f97b 2901static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2902{
19a39dce 2903 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2904 struct btrfs_root *chunk_root = fs_info->chunk_root;
2905 struct btrfs_root *dev_root = fs_info->dev_root;
2906 struct list_head *devices;
ec44a35c
CM
2907 struct btrfs_device *device;
2908 u64 old_size;
2909 u64 size_to_free;
f43ffb60 2910 struct btrfs_chunk *chunk;
ec44a35c
CM
2911 struct btrfs_path *path;
2912 struct btrfs_key key;
ec44a35c 2913 struct btrfs_key found_key;
c9e9f97b 2914 struct btrfs_trans_handle *trans;
f43ffb60
ID
2915 struct extent_buffer *leaf;
2916 int slot;
c9e9f97b
ID
2917 int ret;
2918 int enospc_errors = 0;
19a39dce 2919 bool counting = true;
ec44a35c 2920
ec44a35c 2921 /* step one make some room on all the devices */
c9e9f97b 2922 devices = &fs_info->fs_devices->devices;
c6e30871 2923 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2924 old_size = device->total_bytes;
2925 size_to_free = div_factor(old_size, 1);
2926 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2927 if (!device->writeable ||
63a212ab
SB
2928 device->total_bytes - device->bytes_used > size_to_free ||
2929 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2930 continue;
2931
2932 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2933 if (ret == -ENOSPC)
2934 break;
ec44a35c
CM
2935 BUG_ON(ret);
2936
a22285a6 2937 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2938 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2939
2940 ret = btrfs_grow_device(trans, device, old_size);
2941 BUG_ON(ret);
2942
2943 btrfs_end_transaction(trans, dev_root);
2944 }
2945
2946 /* step two, relocate all the chunks */
2947 path = btrfs_alloc_path();
17e9f796
MF
2948 if (!path) {
2949 ret = -ENOMEM;
2950 goto error;
2951 }
19a39dce
ID
2952
2953 /* zero out stat counters */
2954 spin_lock(&fs_info->balance_lock);
2955 memset(&bctl->stat, 0, sizeof(bctl->stat));
2956 spin_unlock(&fs_info->balance_lock);
2957again:
ec44a35c
CM
2958 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2959 key.offset = (u64)-1;
2960 key.type = BTRFS_CHUNK_ITEM_KEY;
2961
d397712b 2962 while (1) {
19a39dce 2963 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2964 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2965 ret = -ECANCELED;
2966 goto error;
2967 }
2968
ec44a35c
CM
2969 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2970 if (ret < 0)
2971 goto error;
2972
2973 /*
2974 * this shouldn't happen, it means the last relocate
2975 * failed
2976 */
2977 if (ret == 0)
c9e9f97b 2978 BUG(); /* FIXME break ? */
ec44a35c
CM
2979
2980 ret = btrfs_previous_item(chunk_root, path, 0,
2981 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2982 if (ret) {
2983 ret = 0;
ec44a35c 2984 break;
c9e9f97b 2985 }
7d9eb12c 2986
f43ffb60
ID
2987 leaf = path->nodes[0];
2988 slot = path->slots[0];
2989 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2990
ec44a35c
CM
2991 if (found_key.objectid != key.objectid)
2992 break;
7d9eb12c 2993
ec44a35c 2994 /* chunk zero is special */
ba1bf481 2995 if (found_key.offset == 0)
ec44a35c
CM
2996 break;
2997
f43ffb60
ID
2998 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2999
19a39dce
ID
3000 if (!counting) {
3001 spin_lock(&fs_info->balance_lock);
3002 bctl->stat.considered++;
3003 spin_unlock(&fs_info->balance_lock);
3004 }
3005
f43ffb60
ID
3006 ret = should_balance_chunk(chunk_root, leaf, chunk,
3007 found_key.offset);
b3b4aa74 3008 btrfs_release_path(path);
f43ffb60
ID
3009 if (!ret)
3010 goto loop;
3011
19a39dce
ID
3012 if (counting) {
3013 spin_lock(&fs_info->balance_lock);
3014 bctl->stat.expected++;
3015 spin_unlock(&fs_info->balance_lock);
3016 goto loop;
3017 }
3018
ec44a35c
CM
3019 ret = btrfs_relocate_chunk(chunk_root,
3020 chunk_root->root_key.objectid,
3021 found_key.objectid,
3022 found_key.offset);
508794eb
JB
3023 if (ret && ret != -ENOSPC)
3024 goto error;
19a39dce 3025 if (ret == -ENOSPC) {
c9e9f97b 3026 enospc_errors++;
19a39dce
ID
3027 } else {
3028 spin_lock(&fs_info->balance_lock);
3029 bctl->stat.completed++;
3030 spin_unlock(&fs_info->balance_lock);
3031 }
f43ffb60 3032loop:
ba1bf481 3033 key.offset = found_key.offset - 1;
ec44a35c 3034 }
c9e9f97b 3035
19a39dce
ID
3036 if (counting) {
3037 btrfs_release_path(path);
3038 counting = false;
3039 goto again;
3040 }
ec44a35c
CM
3041error:
3042 btrfs_free_path(path);
c9e9f97b
ID
3043 if (enospc_errors) {
3044 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3045 enospc_errors);
3046 if (!ret)
3047 ret = -ENOSPC;
3048 }
3049
ec44a35c
CM
3050 return ret;
3051}
3052
0c460c0d
ID
3053/**
3054 * alloc_profile_is_valid - see if a given profile is valid and reduced
3055 * @flags: profile to validate
3056 * @extended: if true @flags is treated as an extended profile
3057 */
3058static int alloc_profile_is_valid(u64 flags, int extended)
3059{
3060 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3061 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3062
3063 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3064
3065 /* 1) check that all other bits are zeroed */
3066 if (flags & ~mask)
3067 return 0;
3068
3069 /* 2) see if profile is reduced */
3070 if (flags == 0)
3071 return !extended; /* "0" is valid for usual profiles */
3072
3073 /* true if exactly one bit set */
3074 return (flags & (flags - 1)) == 0;
3075}
3076
837d5b6e
ID
3077static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3078{
a7e99c69
ID
3079 /* cancel requested || normal exit path */
3080 return atomic_read(&fs_info->balance_cancel_req) ||
3081 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3082 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3083}
3084
c9e9f97b
ID
3085static void __cancel_balance(struct btrfs_fs_info *fs_info)
3086{
0940ebf6
ID
3087 int ret;
3088
c9e9f97b 3089 unset_balance_control(fs_info);
0940ebf6 3090 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3091 if (ret)
3092 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3093
3094 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3095}
3096
c9e9f97b
ID
3097/*
3098 * Should be called with both balance and volume mutexes held
3099 */
3100int btrfs_balance(struct btrfs_balance_control *bctl,
3101 struct btrfs_ioctl_balance_args *bargs)
3102{
3103 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3104 u64 allowed;
e4837f8f 3105 int mixed = 0;
c9e9f97b 3106 int ret;
8dabb742 3107 u64 num_devices;
de98ced9 3108 unsigned seq;
c9e9f97b 3109
837d5b6e 3110 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3111 atomic_read(&fs_info->balance_pause_req) ||
3112 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3113 ret = -EINVAL;
3114 goto out;
3115 }
3116
e4837f8f
ID
3117 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3118 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3119 mixed = 1;
3120
f43ffb60
ID
3121 /*
3122 * In case of mixed groups both data and meta should be picked,
3123 * and identical options should be given for both of them.
3124 */
e4837f8f
ID
3125 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3126 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3127 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3128 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3129 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3130 printk(KERN_ERR "btrfs: with mixed groups data and "
3131 "metadata balance options must be the same\n");
3132 ret = -EINVAL;
3133 goto out;
3134 }
3135 }
3136
8dabb742
SB
3137 num_devices = fs_info->fs_devices->num_devices;
3138 btrfs_dev_replace_lock(&fs_info->dev_replace);
3139 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3140 BUG_ON(num_devices < 1);
3141 num_devices--;
3142 }
3143 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3144 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3145 if (num_devices == 1)
e4d8ec0f 3146 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3147 else if (num_devices > 1)
e4d8ec0f 3148 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3149 if (num_devices > 2)
3150 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3151 if (num_devices > 3)
3152 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3153 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3154 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3155 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3156 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3157 printk(KERN_ERR "btrfs: unable to start balance with target "
3158 "data profile %llu\n",
c1c9ff7c 3159 bctl->data.target);
e4d8ec0f
ID
3160 ret = -EINVAL;
3161 goto out;
3162 }
6728b198
ID
3163 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3164 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3165 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3166 printk(KERN_ERR "btrfs: unable to start balance with target "
3167 "metadata profile %llu\n",
c1c9ff7c 3168 bctl->meta.target);
e4d8ec0f
ID
3169 ret = -EINVAL;
3170 goto out;
3171 }
6728b198
ID
3172 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3173 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3174 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3175 printk(KERN_ERR "btrfs: unable to start balance with target "
3176 "system profile %llu\n",
c1c9ff7c 3177 bctl->sys.target);
e4d8ec0f
ID
3178 ret = -EINVAL;
3179 goto out;
3180 }
3181
e4837f8f
ID
3182 /* allow dup'ed data chunks only in mixed mode */
3183 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3184 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3185 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3186 ret = -EINVAL;
3187 goto out;
3188 }
3189
3190 /* allow to reduce meta or sys integrity only if force set */
3191 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3192 BTRFS_BLOCK_GROUP_RAID10 |
3193 BTRFS_BLOCK_GROUP_RAID5 |
3194 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3195 do {
3196 seq = read_seqbegin(&fs_info->profiles_lock);
3197
3198 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3199 (fs_info->avail_system_alloc_bits & allowed) &&
3200 !(bctl->sys.target & allowed)) ||
3201 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3202 (fs_info->avail_metadata_alloc_bits & allowed) &&
3203 !(bctl->meta.target & allowed))) {
3204 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3205 printk(KERN_INFO "btrfs: force reducing metadata "
3206 "integrity\n");
3207 } else {
3208 printk(KERN_ERR "btrfs: balance will reduce metadata "
3209 "integrity, use force if you want this\n");
3210 ret = -EINVAL;
3211 goto out;
3212 }
e4d8ec0f 3213 }
de98ced9 3214 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3215
5af3e8cc
SB
3216 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3217 int num_tolerated_disk_barrier_failures;
3218 u64 target = bctl->sys.target;
3219
3220 num_tolerated_disk_barrier_failures =
3221 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3222 if (num_tolerated_disk_barrier_failures > 0 &&
3223 (target &
3224 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3225 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3226 num_tolerated_disk_barrier_failures = 0;
3227 else if (num_tolerated_disk_barrier_failures > 1 &&
3228 (target &
3229 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3230 num_tolerated_disk_barrier_failures = 1;
3231
3232 fs_info->num_tolerated_disk_barrier_failures =
3233 num_tolerated_disk_barrier_failures;
3234 }
3235
0940ebf6 3236 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3237 if (ret && ret != -EEXIST)
0940ebf6
ID
3238 goto out;
3239
59641015
ID
3240 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3241 BUG_ON(ret == -EEXIST);
3242 set_balance_control(bctl);
3243 } else {
3244 BUG_ON(ret != -EEXIST);
3245 spin_lock(&fs_info->balance_lock);
3246 update_balance_args(bctl);
3247 spin_unlock(&fs_info->balance_lock);
3248 }
c9e9f97b 3249
837d5b6e 3250 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3251 mutex_unlock(&fs_info->balance_mutex);
3252
3253 ret = __btrfs_balance(fs_info);
3254
3255 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3256 atomic_dec(&fs_info->balance_running);
c9e9f97b 3257
bf023ecf
ID
3258 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3259 fs_info->num_tolerated_disk_barrier_failures =
3260 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3261 }
3262
c9e9f97b
ID
3263 if (bargs) {
3264 memset(bargs, 0, sizeof(*bargs));
19a39dce 3265 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3266 }
3267
3a01aa7a
ID
3268 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3269 balance_need_close(fs_info)) {
3270 __cancel_balance(fs_info);
3271 }
3272
837d5b6e 3273 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3274
3275 return ret;
3276out:
59641015
ID
3277 if (bctl->flags & BTRFS_BALANCE_RESUME)
3278 __cancel_balance(fs_info);
ed0fb78f 3279 else {
59641015 3280 kfree(bctl);
ed0fb78f
ID
3281 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3282 }
59641015
ID
3283 return ret;
3284}
3285
3286static int balance_kthread(void *data)
3287{
2b6ba629 3288 struct btrfs_fs_info *fs_info = data;
9555c6c1 3289 int ret = 0;
59641015
ID
3290
3291 mutex_lock(&fs_info->volume_mutex);
3292 mutex_lock(&fs_info->balance_mutex);
3293
2b6ba629 3294 if (fs_info->balance_ctl) {
9555c6c1 3295 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3296 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3297 }
59641015
ID
3298
3299 mutex_unlock(&fs_info->balance_mutex);
3300 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3301
59641015
ID
3302 return ret;
3303}
3304
2b6ba629
ID
3305int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3306{
3307 struct task_struct *tsk;
3308
3309 spin_lock(&fs_info->balance_lock);
3310 if (!fs_info->balance_ctl) {
3311 spin_unlock(&fs_info->balance_lock);
3312 return 0;
3313 }
3314 spin_unlock(&fs_info->balance_lock);
3315
3316 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3317 printk(KERN_INFO "btrfs: force skipping balance\n");
3318 return 0;
3319 }
3320
3321 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
97a184fe 3322 return PTR_RET(tsk);
2b6ba629
ID
3323}
3324
68310a5e 3325int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3326{
59641015
ID
3327 struct btrfs_balance_control *bctl;
3328 struct btrfs_balance_item *item;
3329 struct btrfs_disk_balance_args disk_bargs;
3330 struct btrfs_path *path;
3331 struct extent_buffer *leaf;
3332 struct btrfs_key key;
3333 int ret;
3334
3335 path = btrfs_alloc_path();
3336 if (!path)
3337 return -ENOMEM;
3338
59641015
ID
3339 key.objectid = BTRFS_BALANCE_OBJECTID;
3340 key.type = BTRFS_BALANCE_ITEM_KEY;
3341 key.offset = 0;
3342
68310a5e 3343 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3344 if (ret < 0)
68310a5e 3345 goto out;
59641015
ID
3346 if (ret > 0) { /* ret = -ENOENT; */
3347 ret = 0;
68310a5e
ID
3348 goto out;
3349 }
3350
3351 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3352 if (!bctl) {
3353 ret = -ENOMEM;
3354 goto out;
59641015
ID
3355 }
3356
3357 leaf = path->nodes[0];
3358 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3359
68310a5e
ID
3360 bctl->fs_info = fs_info;
3361 bctl->flags = btrfs_balance_flags(leaf, item);
3362 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3363
3364 btrfs_balance_data(leaf, item, &disk_bargs);
3365 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3366 btrfs_balance_meta(leaf, item, &disk_bargs);
3367 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3368 btrfs_balance_sys(leaf, item, &disk_bargs);
3369 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3370
ed0fb78f
ID
3371 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3372
68310a5e
ID
3373 mutex_lock(&fs_info->volume_mutex);
3374 mutex_lock(&fs_info->balance_mutex);
59641015 3375
68310a5e
ID
3376 set_balance_control(bctl);
3377
3378 mutex_unlock(&fs_info->balance_mutex);
3379 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3380out:
3381 btrfs_free_path(path);
ec44a35c
CM
3382 return ret;
3383}
3384
837d5b6e
ID
3385int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3386{
3387 int ret = 0;
3388
3389 mutex_lock(&fs_info->balance_mutex);
3390 if (!fs_info->balance_ctl) {
3391 mutex_unlock(&fs_info->balance_mutex);
3392 return -ENOTCONN;
3393 }
3394
3395 if (atomic_read(&fs_info->balance_running)) {
3396 atomic_inc(&fs_info->balance_pause_req);
3397 mutex_unlock(&fs_info->balance_mutex);
3398
3399 wait_event(fs_info->balance_wait_q,
3400 atomic_read(&fs_info->balance_running) == 0);
3401
3402 mutex_lock(&fs_info->balance_mutex);
3403 /* we are good with balance_ctl ripped off from under us */
3404 BUG_ON(atomic_read(&fs_info->balance_running));
3405 atomic_dec(&fs_info->balance_pause_req);
3406 } else {
3407 ret = -ENOTCONN;
3408 }
3409
3410 mutex_unlock(&fs_info->balance_mutex);
3411 return ret;
3412}
3413
a7e99c69
ID
3414int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3415{
3416 mutex_lock(&fs_info->balance_mutex);
3417 if (!fs_info->balance_ctl) {
3418 mutex_unlock(&fs_info->balance_mutex);
3419 return -ENOTCONN;
3420 }
3421
3422 atomic_inc(&fs_info->balance_cancel_req);
3423 /*
3424 * if we are running just wait and return, balance item is
3425 * deleted in btrfs_balance in this case
3426 */
3427 if (atomic_read(&fs_info->balance_running)) {
3428 mutex_unlock(&fs_info->balance_mutex);
3429 wait_event(fs_info->balance_wait_q,
3430 atomic_read(&fs_info->balance_running) == 0);
3431 mutex_lock(&fs_info->balance_mutex);
3432 } else {
3433 /* __cancel_balance needs volume_mutex */
3434 mutex_unlock(&fs_info->balance_mutex);
3435 mutex_lock(&fs_info->volume_mutex);
3436 mutex_lock(&fs_info->balance_mutex);
3437
3438 if (fs_info->balance_ctl)
3439 __cancel_balance(fs_info);
3440
3441 mutex_unlock(&fs_info->volume_mutex);
3442 }
3443
3444 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3445 atomic_dec(&fs_info->balance_cancel_req);
3446 mutex_unlock(&fs_info->balance_mutex);
3447 return 0;
3448}
3449
803b2f54
SB
3450static int btrfs_uuid_scan_kthread(void *data)
3451{
3452 struct btrfs_fs_info *fs_info = data;
3453 struct btrfs_root *root = fs_info->tree_root;
3454 struct btrfs_key key;
3455 struct btrfs_key max_key;
3456 struct btrfs_path *path = NULL;
3457 int ret = 0;
3458 struct extent_buffer *eb;
3459 int slot;
3460 struct btrfs_root_item root_item;
3461 u32 item_size;
3462 struct btrfs_trans_handle *trans;
3463
3464 path = btrfs_alloc_path();
3465 if (!path) {
3466 ret = -ENOMEM;
3467 goto out;
3468 }
3469
3470 key.objectid = 0;
3471 key.type = BTRFS_ROOT_ITEM_KEY;
3472 key.offset = 0;
3473
3474 max_key.objectid = (u64)-1;
3475 max_key.type = BTRFS_ROOT_ITEM_KEY;
3476 max_key.offset = (u64)-1;
3477
3478 path->keep_locks = 1;
3479
3480 while (1) {
3481 ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3482 if (ret) {
3483 if (ret > 0)
3484 ret = 0;
3485 break;
3486 }
3487
3488 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3489 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3490 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3491 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3492 goto skip;
3493
3494 eb = path->nodes[0];
3495 slot = path->slots[0];
3496 item_size = btrfs_item_size_nr(eb, slot);
3497 if (item_size < sizeof(root_item))
3498 goto skip;
3499
3500 trans = NULL;
3501 read_extent_buffer(eb, &root_item,
3502 btrfs_item_ptr_offset(eb, slot),
3503 (int)sizeof(root_item));
3504 if (btrfs_root_refs(&root_item) == 0)
3505 goto skip;
3506 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3507 /*
3508 * 1 - subvol uuid item
3509 * 1 - received_subvol uuid item
3510 */
3511 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3512 if (IS_ERR(trans)) {
3513 ret = PTR_ERR(trans);
3514 break;
3515 }
3516 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3517 root_item.uuid,
3518 BTRFS_UUID_KEY_SUBVOL,
3519 key.objectid);
3520 if (ret < 0) {
3521 pr_warn("btrfs: uuid_tree_add failed %d\n",
3522 ret);
3523 btrfs_end_transaction(trans,
3524 fs_info->uuid_root);
3525 break;
3526 }
3527 }
3528
3529 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3530 if (!trans) {
3531 /* 1 - received_subvol uuid item */
3532 trans = btrfs_start_transaction(
3533 fs_info->uuid_root, 1);
3534 if (IS_ERR(trans)) {
3535 ret = PTR_ERR(trans);
3536 break;
3537 }
3538 }
3539 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3540 root_item.received_uuid,
3541 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3542 key.objectid);
3543 if (ret < 0) {
3544 pr_warn("btrfs: uuid_tree_add failed %d\n",
3545 ret);
3546 btrfs_end_transaction(trans,
3547 fs_info->uuid_root);
3548 break;
3549 }
3550 }
3551
3552 if (trans) {
3553 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3554 if (ret)
3555 break;
3556 }
3557
3558skip:
3559 btrfs_release_path(path);
3560 if (key.offset < (u64)-1) {
3561 key.offset++;
3562 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3563 key.offset = 0;
3564 key.type = BTRFS_ROOT_ITEM_KEY;
3565 } else if (key.objectid < (u64)-1) {
3566 key.offset = 0;
3567 key.type = BTRFS_ROOT_ITEM_KEY;
3568 key.objectid++;
3569 } else {
3570 break;
3571 }
3572 cond_resched();
3573 }
3574
3575out:
3576 btrfs_free_path(path);
3577 if (ret)
3578 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3579 else
3580 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3581 up(&fs_info->uuid_tree_rescan_sem);
3582 return 0;
3583}
3584
70f80175
SB
3585/*
3586 * Callback for btrfs_uuid_tree_iterate().
3587 * returns:
3588 * 0 check succeeded, the entry is not outdated.
3589 * < 0 if an error occured.
3590 * > 0 if the check failed, which means the caller shall remove the entry.
3591 */
3592static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3593 u8 *uuid, u8 type, u64 subid)
3594{
3595 struct btrfs_key key;
3596 int ret = 0;
3597 struct btrfs_root *subvol_root;
3598
3599 if (type != BTRFS_UUID_KEY_SUBVOL &&
3600 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3601 goto out;
3602
3603 key.objectid = subid;
3604 key.type = BTRFS_ROOT_ITEM_KEY;
3605 key.offset = (u64)-1;
3606 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3607 if (IS_ERR(subvol_root)) {
3608 ret = PTR_ERR(subvol_root);
3609 if (ret == -ENOENT)
3610 ret = 1;
3611 goto out;
3612 }
3613
3614 switch (type) {
3615 case BTRFS_UUID_KEY_SUBVOL:
3616 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3617 ret = 1;
3618 break;
3619 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3620 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3621 BTRFS_UUID_SIZE))
3622 ret = 1;
3623 break;
3624 }
3625
3626out:
3627 return ret;
3628}
3629
3630static int btrfs_uuid_rescan_kthread(void *data)
3631{
3632 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3633 int ret;
3634
3635 /*
3636 * 1st step is to iterate through the existing UUID tree and
3637 * to delete all entries that contain outdated data.
3638 * 2nd step is to add all missing entries to the UUID tree.
3639 */
3640 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3641 if (ret < 0) {
3642 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3643 up(&fs_info->uuid_tree_rescan_sem);
3644 return ret;
3645 }
3646 return btrfs_uuid_scan_kthread(data);
3647}
3648
f7a81ea4
SB
3649int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3650{
3651 struct btrfs_trans_handle *trans;
3652 struct btrfs_root *tree_root = fs_info->tree_root;
3653 struct btrfs_root *uuid_root;
803b2f54
SB
3654 struct task_struct *task;
3655 int ret;
f7a81ea4
SB
3656
3657 /*
3658 * 1 - root node
3659 * 1 - root item
3660 */
3661 trans = btrfs_start_transaction(tree_root, 2);
3662 if (IS_ERR(trans))
3663 return PTR_ERR(trans);
3664
3665 uuid_root = btrfs_create_tree(trans, fs_info,
3666 BTRFS_UUID_TREE_OBJECTID);
3667 if (IS_ERR(uuid_root)) {
3668 btrfs_abort_transaction(trans, tree_root,
3669 PTR_ERR(uuid_root));
3670 return PTR_ERR(uuid_root);
3671 }
3672
3673 fs_info->uuid_root = uuid_root;
3674
803b2f54
SB
3675 ret = btrfs_commit_transaction(trans, tree_root);
3676 if (ret)
3677 return ret;
3678
3679 down(&fs_info->uuid_tree_rescan_sem);
3680 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3681 if (IS_ERR(task)) {
70f80175 3682 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3683 pr_warn("btrfs: failed to start uuid_scan task\n");
3684 up(&fs_info->uuid_tree_rescan_sem);
3685 return PTR_ERR(task);
3686 }
3687
3688 return 0;
f7a81ea4 3689}
803b2f54 3690
70f80175
SB
3691int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3692{
3693 struct task_struct *task;
3694
3695 down(&fs_info->uuid_tree_rescan_sem);
3696 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3697 if (IS_ERR(task)) {
3698 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3699 pr_warn("btrfs: failed to start uuid_rescan task\n");
3700 up(&fs_info->uuid_tree_rescan_sem);
3701 return PTR_ERR(task);
3702 }
3703
3704 return 0;
3705}
3706
8f18cf13
CM
3707/*
3708 * shrinking a device means finding all of the device extents past
3709 * the new size, and then following the back refs to the chunks.
3710 * The chunk relocation code actually frees the device extent
3711 */
3712int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3713{
3714 struct btrfs_trans_handle *trans;
3715 struct btrfs_root *root = device->dev_root;
3716 struct btrfs_dev_extent *dev_extent = NULL;
3717 struct btrfs_path *path;
3718 u64 length;
3719 u64 chunk_tree;
3720 u64 chunk_objectid;
3721 u64 chunk_offset;
3722 int ret;
3723 int slot;
ba1bf481
JB
3724 int failed = 0;
3725 bool retried = false;
8f18cf13
CM
3726 struct extent_buffer *l;
3727 struct btrfs_key key;
6c41761f 3728 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3729 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3730 u64 old_size = device->total_bytes;
8f18cf13
CM
3731 u64 diff = device->total_bytes - new_size;
3732
63a212ab
SB
3733 if (device->is_tgtdev_for_dev_replace)
3734 return -EINVAL;
3735
8f18cf13
CM
3736 path = btrfs_alloc_path();
3737 if (!path)
3738 return -ENOMEM;
3739
8f18cf13
CM
3740 path->reada = 2;
3741
7d9eb12c
CM
3742 lock_chunks(root);
3743
8f18cf13 3744 device->total_bytes = new_size;
2bf64758 3745 if (device->writeable) {
2b82032c 3746 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3747 spin_lock(&root->fs_info->free_chunk_lock);
3748 root->fs_info->free_chunk_space -= diff;
3749 spin_unlock(&root->fs_info->free_chunk_lock);
3750 }
7d9eb12c 3751 unlock_chunks(root);
8f18cf13 3752
ba1bf481 3753again:
8f18cf13
CM
3754 key.objectid = device->devid;
3755 key.offset = (u64)-1;
3756 key.type = BTRFS_DEV_EXTENT_KEY;
3757
213e64da 3758 do {
8f18cf13
CM
3759 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3760 if (ret < 0)
3761 goto done;
3762
3763 ret = btrfs_previous_item(root, path, 0, key.type);
3764 if (ret < 0)
3765 goto done;
3766 if (ret) {
3767 ret = 0;
b3b4aa74 3768 btrfs_release_path(path);
bf1fb512 3769 break;
8f18cf13
CM
3770 }
3771
3772 l = path->nodes[0];
3773 slot = path->slots[0];
3774 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3775
ba1bf481 3776 if (key.objectid != device->devid) {
b3b4aa74 3777 btrfs_release_path(path);
bf1fb512 3778 break;
ba1bf481 3779 }
8f18cf13
CM
3780
3781 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3782 length = btrfs_dev_extent_length(l, dev_extent);
3783
ba1bf481 3784 if (key.offset + length <= new_size) {
b3b4aa74 3785 btrfs_release_path(path);
d6397bae 3786 break;
ba1bf481 3787 }
8f18cf13
CM
3788
3789 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3790 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3791 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3792 btrfs_release_path(path);
8f18cf13
CM
3793
3794 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3795 chunk_offset);
ba1bf481 3796 if (ret && ret != -ENOSPC)
8f18cf13 3797 goto done;
ba1bf481
JB
3798 if (ret == -ENOSPC)
3799 failed++;
213e64da 3800 } while (key.offset-- > 0);
ba1bf481
JB
3801
3802 if (failed && !retried) {
3803 failed = 0;
3804 retried = true;
3805 goto again;
3806 } else if (failed && retried) {
3807 ret = -ENOSPC;
3808 lock_chunks(root);
3809
3810 device->total_bytes = old_size;
3811 if (device->writeable)
3812 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3813 spin_lock(&root->fs_info->free_chunk_lock);
3814 root->fs_info->free_chunk_space += diff;
3815 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3816 unlock_chunks(root);
3817 goto done;
8f18cf13
CM
3818 }
3819
d6397bae 3820 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3821 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3822 if (IS_ERR(trans)) {
3823 ret = PTR_ERR(trans);
3824 goto done;
3825 }
3826
d6397bae
CB
3827 lock_chunks(root);
3828
3829 device->disk_total_bytes = new_size;
3830 /* Now btrfs_update_device() will change the on-disk size. */
3831 ret = btrfs_update_device(trans, device);
3832 if (ret) {
3833 unlock_chunks(root);
3834 btrfs_end_transaction(trans, root);
3835 goto done;
3836 }
3837 WARN_ON(diff > old_total);
3838 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3839 unlock_chunks(root);
3840 btrfs_end_transaction(trans, root);
8f18cf13
CM
3841done:
3842 btrfs_free_path(path);
3843 return ret;
3844}
3845
125ccb0a 3846static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3847 struct btrfs_key *key,
3848 struct btrfs_chunk *chunk, int item_size)
3849{
6c41761f 3850 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3851 struct btrfs_disk_key disk_key;
3852 u32 array_size;
3853 u8 *ptr;
3854
3855 array_size = btrfs_super_sys_array_size(super_copy);
3856 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3857 return -EFBIG;
3858
3859 ptr = super_copy->sys_chunk_array + array_size;
3860 btrfs_cpu_key_to_disk(&disk_key, key);
3861 memcpy(ptr, &disk_key, sizeof(disk_key));
3862 ptr += sizeof(disk_key);
3863 memcpy(ptr, chunk, item_size);
3864 item_size += sizeof(disk_key);
3865 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3866 return 0;
3867}
3868
73c5de00
AJ
3869/*
3870 * sort the devices in descending order by max_avail, total_avail
3871 */
3872static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3873{
73c5de00
AJ
3874 const struct btrfs_device_info *di_a = a;
3875 const struct btrfs_device_info *di_b = b;
9b3f68b9 3876
73c5de00 3877 if (di_a->max_avail > di_b->max_avail)
b2117a39 3878 return -1;
73c5de00 3879 if (di_a->max_avail < di_b->max_avail)
b2117a39 3880 return 1;
73c5de00
AJ
3881 if (di_a->total_avail > di_b->total_avail)
3882 return -1;
3883 if (di_a->total_avail < di_b->total_avail)
3884 return 1;
3885 return 0;
b2117a39 3886}
0b86a832 3887
48a3b636 3888static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3889 [BTRFS_RAID_RAID10] = {
3890 .sub_stripes = 2,
3891 .dev_stripes = 1,
3892 .devs_max = 0, /* 0 == as many as possible */
3893 .devs_min = 4,
3894 .devs_increment = 2,
3895 .ncopies = 2,
3896 },
3897 [BTRFS_RAID_RAID1] = {
3898 .sub_stripes = 1,
3899 .dev_stripes = 1,
3900 .devs_max = 2,
3901 .devs_min = 2,
3902 .devs_increment = 2,
3903 .ncopies = 2,
3904 },
3905 [BTRFS_RAID_DUP] = {
3906 .sub_stripes = 1,
3907 .dev_stripes = 2,
3908 .devs_max = 1,
3909 .devs_min = 1,
3910 .devs_increment = 1,
3911 .ncopies = 2,
3912 },
3913 [BTRFS_RAID_RAID0] = {
3914 .sub_stripes = 1,
3915 .dev_stripes = 1,
3916 .devs_max = 0,
3917 .devs_min = 2,
3918 .devs_increment = 1,
3919 .ncopies = 1,
3920 },
3921 [BTRFS_RAID_SINGLE] = {
3922 .sub_stripes = 1,
3923 .dev_stripes = 1,
3924 .devs_max = 1,
3925 .devs_min = 1,
3926 .devs_increment = 1,
3927 .ncopies = 1,
3928 },
e942f883
CM
3929 [BTRFS_RAID_RAID5] = {
3930 .sub_stripes = 1,
3931 .dev_stripes = 1,
3932 .devs_max = 0,
3933 .devs_min = 2,
3934 .devs_increment = 1,
3935 .ncopies = 2,
3936 },
3937 [BTRFS_RAID_RAID6] = {
3938 .sub_stripes = 1,
3939 .dev_stripes = 1,
3940 .devs_max = 0,
3941 .devs_min = 3,
3942 .devs_increment = 1,
3943 .ncopies = 3,
3944 },
31e50229
LB
3945};
3946
53b381b3
DW
3947static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3948{
3949 /* TODO allow them to set a preferred stripe size */
3950 return 64 * 1024;
3951}
3952
3953static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3954{
53b381b3
DW
3955 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3956 return;
3957
ceda0864 3958 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3959}
3960
73c5de00 3961static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3962 struct btrfs_root *extent_root, u64 start,
3963 u64 type)
b2117a39 3964{
73c5de00
AJ
3965 struct btrfs_fs_info *info = extent_root->fs_info;
3966 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3967 struct list_head *cur;
3968 struct map_lookup *map = NULL;
3969 struct extent_map_tree *em_tree;
3970 struct extent_map *em;
3971 struct btrfs_device_info *devices_info = NULL;
3972 u64 total_avail;
3973 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3974 int data_stripes; /* number of stripes that count for
3975 block group size */
73c5de00
AJ
3976 int sub_stripes; /* sub_stripes info for map */
3977 int dev_stripes; /* stripes per dev */
3978 int devs_max; /* max devs to use */
3979 int devs_min; /* min devs needed */
3980 int devs_increment; /* ndevs has to be a multiple of this */
3981 int ncopies; /* how many copies to data has */
3982 int ret;
3983 u64 max_stripe_size;
3984 u64 max_chunk_size;
3985 u64 stripe_size;
3986 u64 num_bytes;
53b381b3 3987 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3988 int ndevs;
3989 int i;
3990 int j;
31e50229 3991 int index;
593060d7 3992
0c460c0d 3993 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3994
73c5de00
AJ
3995 if (list_empty(&fs_devices->alloc_list))
3996 return -ENOSPC;
b2117a39 3997
31e50229 3998 index = __get_raid_index(type);
73c5de00 3999
31e50229
LB
4000 sub_stripes = btrfs_raid_array[index].sub_stripes;
4001 dev_stripes = btrfs_raid_array[index].dev_stripes;
4002 devs_max = btrfs_raid_array[index].devs_max;
4003 devs_min = btrfs_raid_array[index].devs_min;
4004 devs_increment = btrfs_raid_array[index].devs_increment;
4005 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4006
9b3f68b9 4007 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4008 max_stripe_size = 1024 * 1024 * 1024;
4009 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4010 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4011 /* for larger filesystems, use larger metadata chunks */
4012 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4013 max_stripe_size = 1024 * 1024 * 1024;
4014 else
4015 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4016 max_chunk_size = max_stripe_size;
a40a90a0 4017 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4018 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4019 max_chunk_size = 2 * max_stripe_size;
4020 } else {
4021 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4022 type);
4023 BUG_ON(1);
9b3f68b9
CM
4024 }
4025
2b82032c
YZ
4026 /* we don't want a chunk larger than 10% of writeable space */
4027 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4028 max_chunk_size);
9b3f68b9 4029
73c5de00
AJ
4030 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4031 GFP_NOFS);
4032 if (!devices_info)
4033 return -ENOMEM;
0cad8a11 4034
73c5de00 4035 cur = fs_devices->alloc_list.next;
9b3f68b9 4036
9f680ce0 4037 /*
73c5de00
AJ
4038 * in the first pass through the devices list, we gather information
4039 * about the available holes on each device.
9f680ce0 4040 */
73c5de00
AJ
4041 ndevs = 0;
4042 while (cur != &fs_devices->alloc_list) {
4043 struct btrfs_device *device;
4044 u64 max_avail;
4045 u64 dev_offset;
b2117a39 4046
73c5de00 4047 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4048
73c5de00 4049 cur = cur->next;
b2117a39 4050
73c5de00 4051 if (!device->writeable) {
31b1a2bd 4052 WARN(1, KERN_ERR
73c5de00 4053 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4054 continue;
4055 }
b2117a39 4056
63a212ab
SB
4057 if (!device->in_fs_metadata ||
4058 device->is_tgtdev_for_dev_replace)
73c5de00 4059 continue;
b2117a39 4060
73c5de00
AJ
4061 if (device->total_bytes > device->bytes_used)
4062 total_avail = device->total_bytes - device->bytes_used;
4063 else
4064 total_avail = 0;
38c01b96 4065
4066 /* If there is no space on this device, skip it. */
4067 if (total_avail == 0)
4068 continue;
b2117a39 4069
6df9a95e 4070 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4071 max_stripe_size * dev_stripes,
4072 &dev_offset, &max_avail);
4073 if (ret && ret != -ENOSPC)
4074 goto error;
b2117a39 4075
73c5de00
AJ
4076 if (ret == 0)
4077 max_avail = max_stripe_size * dev_stripes;
b2117a39 4078
73c5de00
AJ
4079 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4080 continue;
b2117a39 4081
063d006f
ES
4082 if (ndevs == fs_devices->rw_devices) {
4083 WARN(1, "%s: found more than %llu devices\n",
4084 __func__, fs_devices->rw_devices);
4085 break;
4086 }
73c5de00
AJ
4087 devices_info[ndevs].dev_offset = dev_offset;
4088 devices_info[ndevs].max_avail = max_avail;
4089 devices_info[ndevs].total_avail = total_avail;
4090 devices_info[ndevs].dev = device;
4091 ++ndevs;
4092 }
b2117a39 4093
73c5de00
AJ
4094 /*
4095 * now sort the devices by hole size / available space
4096 */
4097 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4098 btrfs_cmp_device_info, NULL);
b2117a39 4099
73c5de00
AJ
4100 /* round down to number of usable stripes */
4101 ndevs -= ndevs % devs_increment;
b2117a39 4102
73c5de00
AJ
4103 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4104 ret = -ENOSPC;
4105 goto error;
b2117a39 4106 }
9f680ce0 4107
73c5de00
AJ
4108 if (devs_max && ndevs > devs_max)
4109 ndevs = devs_max;
4110 /*
4111 * the primary goal is to maximize the number of stripes, so use as many
4112 * devices as possible, even if the stripes are not maximum sized.
4113 */
4114 stripe_size = devices_info[ndevs-1].max_avail;
4115 num_stripes = ndevs * dev_stripes;
b2117a39 4116
53b381b3
DW
4117 /*
4118 * this will have to be fixed for RAID1 and RAID10 over
4119 * more drives
4120 */
4121 data_stripes = num_stripes / ncopies;
4122
53b381b3
DW
4123 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4124 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4125 btrfs_super_stripesize(info->super_copy));
4126 data_stripes = num_stripes - 1;
4127 }
4128 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4129 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4130 btrfs_super_stripesize(info->super_copy));
4131 data_stripes = num_stripes - 2;
4132 }
86db2578
CM
4133
4134 /*
4135 * Use the number of data stripes to figure out how big this chunk
4136 * is really going to be in terms of logical address space,
4137 * and compare that answer with the max chunk size
4138 */
4139 if (stripe_size * data_stripes > max_chunk_size) {
4140 u64 mask = (1ULL << 24) - 1;
4141 stripe_size = max_chunk_size;
4142 do_div(stripe_size, data_stripes);
4143
4144 /* bump the answer up to a 16MB boundary */
4145 stripe_size = (stripe_size + mask) & ~mask;
4146
4147 /* but don't go higher than the limits we found
4148 * while searching for free extents
4149 */
4150 if (stripe_size > devices_info[ndevs-1].max_avail)
4151 stripe_size = devices_info[ndevs-1].max_avail;
4152 }
4153
73c5de00 4154 do_div(stripe_size, dev_stripes);
37db63a4
ID
4155
4156 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4157 do_div(stripe_size, raid_stripe_len);
4158 stripe_size *= raid_stripe_len;
b2117a39
MX
4159
4160 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4161 if (!map) {
4162 ret = -ENOMEM;
4163 goto error;
4164 }
4165 map->num_stripes = num_stripes;
9b3f68b9 4166
73c5de00
AJ
4167 for (i = 0; i < ndevs; ++i) {
4168 for (j = 0; j < dev_stripes; ++j) {
4169 int s = i * dev_stripes + j;
4170 map->stripes[s].dev = devices_info[i].dev;
4171 map->stripes[s].physical = devices_info[i].dev_offset +
4172 j * stripe_size;
6324fbf3 4173 }
6324fbf3 4174 }
2b82032c 4175 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4176 map->stripe_len = raid_stripe_len;
4177 map->io_align = raid_stripe_len;
4178 map->io_width = raid_stripe_len;
2b82032c 4179 map->type = type;
2b82032c 4180 map->sub_stripes = sub_stripes;
0b86a832 4181
53b381b3 4182 num_bytes = stripe_size * data_stripes;
0b86a832 4183
73c5de00 4184 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4185
172ddd60 4186 em = alloc_extent_map();
2b82032c 4187 if (!em) {
b2117a39
MX
4188 ret = -ENOMEM;
4189 goto error;
593060d7 4190 }
2b82032c
YZ
4191 em->bdev = (struct block_device *)map;
4192 em->start = start;
73c5de00 4193 em->len = num_bytes;
2b82032c
YZ
4194 em->block_start = 0;
4195 em->block_len = em->len;
6df9a95e 4196 em->orig_block_len = stripe_size;
593060d7 4197
2b82032c 4198 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4199 write_lock(&em_tree->lock);
09a2a8f9 4200 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4201 if (!ret) {
4202 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4203 atomic_inc(&em->refs);
4204 }
890871be 4205 write_unlock(&em_tree->lock);
0f5d42b2
JB
4206 if (ret) {
4207 free_extent_map(em);
1dd4602f 4208 goto error;
0f5d42b2 4209 }
0b86a832 4210
04487488
JB
4211 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4212 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4213 start, num_bytes);
6df9a95e
JB
4214 if (ret)
4215 goto error_del_extent;
2b82032c 4216
0f5d42b2 4217 free_extent_map(em);
53b381b3
DW
4218 check_raid56_incompat_flag(extent_root->fs_info, type);
4219
b2117a39 4220 kfree(devices_info);
2b82032c 4221 return 0;
b2117a39 4222
6df9a95e 4223error_del_extent:
0f5d42b2
JB
4224 write_lock(&em_tree->lock);
4225 remove_extent_mapping(em_tree, em);
4226 write_unlock(&em_tree->lock);
4227
4228 /* One for our allocation */
4229 free_extent_map(em);
4230 /* One for the tree reference */
4231 free_extent_map(em);
b2117a39
MX
4232error:
4233 kfree(map);
4234 kfree(devices_info);
4235 return ret;
2b82032c
YZ
4236}
4237
6df9a95e 4238int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4239 struct btrfs_root *extent_root,
6df9a95e 4240 u64 chunk_offset, u64 chunk_size)
2b82032c 4241{
2b82032c
YZ
4242 struct btrfs_key key;
4243 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4244 struct btrfs_device *device;
4245 struct btrfs_chunk *chunk;
4246 struct btrfs_stripe *stripe;
6df9a95e
JB
4247 struct extent_map_tree *em_tree;
4248 struct extent_map *em;
4249 struct map_lookup *map;
4250 size_t item_size;
4251 u64 dev_offset;
4252 u64 stripe_size;
4253 int i = 0;
2b82032c
YZ
4254 int ret;
4255
6df9a95e
JB
4256 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4257 read_lock(&em_tree->lock);
4258 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4259 read_unlock(&em_tree->lock);
4260
4261 if (!em) {
4262 btrfs_crit(extent_root->fs_info, "unable to find logical "
4263 "%Lu len %Lu", chunk_offset, chunk_size);
4264 return -EINVAL;
4265 }
4266
4267 if (em->start != chunk_offset || em->len != chunk_size) {
4268 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4269 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4270 chunk_size, em->start, em->len);
4271 free_extent_map(em);
4272 return -EINVAL;
4273 }
4274
4275 map = (struct map_lookup *)em->bdev;
4276 item_size = btrfs_chunk_item_size(map->num_stripes);
4277 stripe_size = em->orig_block_len;
4278
2b82032c 4279 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4280 if (!chunk) {
4281 ret = -ENOMEM;
4282 goto out;
4283 }
4284
4285 for (i = 0; i < map->num_stripes; i++) {
4286 device = map->stripes[i].dev;
4287 dev_offset = map->stripes[i].physical;
2b82032c 4288
2b82032c 4289 device->bytes_used += stripe_size;
0b86a832 4290 ret = btrfs_update_device(trans, device);
3acd3953 4291 if (ret)
6df9a95e
JB
4292 goto out;
4293 ret = btrfs_alloc_dev_extent(trans, device,
4294 chunk_root->root_key.objectid,
4295 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4296 chunk_offset, dev_offset,
4297 stripe_size);
4298 if (ret)
4299 goto out;
2b82032c
YZ
4300 }
4301
2bf64758
JB
4302 spin_lock(&extent_root->fs_info->free_chunk_lock);
4303 extent_root->fs_info->free_chunk_space -= (stripe_size *
4304 map->num_stripes);
4305 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4306
2b82032c 4307 stripe = &chunk->stripe;
6df9a95e
JB
4308 for (i = 0; i < map->num_stripes; i++) {
4309 device = map->stripes[i].dev;
4310 dev_offset = map->stripes[i].physical;
0b86a832 4311
e17cade2
CM
4312 btrfs_set_stack_stripe_devid(stripe, device->devid);
4313 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4314 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4315 stripe++;
0b86a832
CM
4316 }
4317
2b82032c 4318 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4319 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4320 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4321 btrfs_set_stack_chunk_type(chunk, map->type);
4322 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4323 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4324 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4325 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4326 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4327
2b82032c
YZ
4328 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4329 key.type = BTRFS_CHUNK_ITEM_KEY;
4330 key.offset = chunk_offset;
0b86a832 4331
2b82032c 4332 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4333 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4334 /*
4335 * TODO: Cleanup of inserted chunk root in case of
4336 * failure.
4337 */
125ccb0a 4338 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4339 item_size);
8f18cf13 4340 }
1abe9b8a 4341
6df9a95e 4342out:
0b86a832 4343 kfree(chunk);
6df9a95e 4344 free_extent_map(em);
4ed1d16e 4345 return ret;
2b82032c 4346}
0b86a832 4347
2b82032c
YZ
4348/*
4349 * Chunk allocation falls into two parts. The first part does works
4350 * that make the new allocated chunk useable, but not do any operation
4351 * that modifies the chunk tree. The second part does the works that
4352 * require modifying the chunk tree. This division is important for the
4353 * bootstrap process of adding storage to a seed btrfs.
4354 */
4355int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4356 struct btrfs_root *extent_root, u64 type)
4357{
4358 u64 chunk_offset;
2b82032c 4359
6df9a95e
JB
4360 chunk_offset = find_next_chunk(extent_root->fs_info);
4361 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4362}
4363
d397712b 4364static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4365 struct btrfs_root *root,
4366 struct btrfs_device *device)
4367{
4368 u64 chunk_offset;
4369 u64 sys_chunk_offset;
2b82032c 4370 u64 alloc_profile;
2b82032c
YZ
4371 struct btrfs_fs_info *fs_info = root->fs_info;
4372 struct btrfs_root *extent_root = fs_info->extent_root;
4373 int ret;
4374
6df9a95e 4375 chunk_offset = find_next_chunk(fs_info);
de98ced9 4376 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4377 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4378 alloc_profile);
79787eaa
JM
4379 if (ret)
4380 return ret;
2b82032c 4381
6df9a95e 4382 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4383 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4384 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4385 alloc_profile);
005d6427
DS
4386 if (ret) {
4387 btrfs_abort_transaction(trans, root, ret);
4388 goto out;
4389 }
2b82032c
YZ
4390
4391 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4392 if (ret)
005d6427 4393 btrfs_abort_transaction(trans, root, ret);
005d6427 4394out:
79787eaa 4395 return ret;
2b82032c
YZ
4396}
4397
4398int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4399{
4400 struct extent_map *em;
4401 struct map_lookup *map;
4402 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4403 int readonly = 0;
4404 int i;
4405
890871be 4406 read_lock(&map_tree->map_tree.lock);
2b82032c 4407 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4408 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4409 if (!em)
4410 return 1;
4411
f48b9075
JB
4412 if (btrfs_test_opt(root, DEGRADED)) {
4413 free_extent_map(em);
4414 return 0;
4415 }
4416
2b82032c
YZ
4417 map = (struct map_lookup *)em->bdev;
4418 for (i = 0; i < map->num_stripes; i++) {
4419 if (!map->stripes[i].dev->writeable) {
4420 readonly = 1;
4421 break;
4422 }
4423 }
0b86a832 4424 free_extent_map(em);
2b82032c 4425 return readonly;
0b86a832
CM
4426}
4427
4428void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4429{
a8067e02 4430 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4431}
4432
4433void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4434{
4435 struct extent_map *em;
4436
d397712b 4437 while (1) {
890871be 4438 write_lock(&tree->map_tree.lock);
0b86a832
CM
4439 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4440 if (em)
4441 remove_extent_mapping(&tree->map_tree, em);
890871be 4442 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4443 if (!em)
4444 break;
4445 kfree(em->bdev);
4446 /* once for us */
4447 free_extent_map(em);
4448 /* once for the tree */
4449 free_extent_map(em);
4450 }
4451}
4452
5d964051 4453int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4454{
5d964051 4455 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4456 struct extent_map *em;
4457 struct map_lookup *map;
4458 struct extent_map_tree *em_tree = &map_tree->map_tree;
4459 int ret;
4460
890871be 4461 read_lock(&em_tree->lock);
f188591e 4462 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4463 read_unlock(&em_tree->lock);
f188591e 4464
fb7669b5
JB
4465 /*
4466 * We could return errors for these cases, but that could get ugly and
4467 * we'd probably do the same thing which is just not do anything else
4468 * and exit, so return 1 so the callers don't try to use other copies.
4469 */
4470 if (!em) {
ccf39f92 4471 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4472 logical+len);
4473 return 1;
4474 }
4475
4476 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4477 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4478 "%Lu-%Lu\n", logical, logical+len, em->start,
4479 em->start + em->len);
4480 return 1;
4481 }
4482
f188591e
CM
4483 map = (struct map_lookup *)em->bdev;
4484 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4485 ret = map->num_stripes;
321aecc6
CM
4486 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4487 ret = map->sub_stripes;
53b381b3
DW
4488 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4489 ret = 2;
4490 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4491 ret = 3;
f188591e
CM
4492 else
4493 ret = 1;
4494 free_extent_map(em);
ad6d620e
SB
4495
4496 btrfs_dev_replace_lock(&fs_info->dev_replace);
4497 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4498 ret++;
4499 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4500
f188591e
CM
4501 return ret;
4502}
4503
53b381b3
DW
4504unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4505 struct btrfs_mapping_tree *map_tree,
4506 u64 logical)
4507{
4508 struct extent_map *em;
4509 struct map_lookup *map;
4510 struct extent_map_tree *em_tree = &map_tree->map_tree;
4511 unsigned long len = root->sectorsize;
4512
4513 read_lock(&em_tree->lock);
4514 em = lookup_extent_mapping(em_tree, logical, len);
4515 read_unlock(&em_tree->lock);
4516 BUG_ON(!em);
4517
4518 BUG_ON(em->start > logical || em->start + em->len < logical);
4519 map = (struct map_lookup *)em->bdev;
4520 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4521 BTRFS_BLOCK_GROUP_RAID6)) {
4522 len = map->stripe_len * nr_data_stripes(map);
4523 }
4524 free_extent_map(em);
4525 return len;
4526}
4527
4528int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4529 u64 logical, u64 len, int mirror_num)
4530{
4531 struct extent_map *em;
4532 struct map_lookup *map;
4533 struct extent_map_tree *em_tree = &map_tree->map_tree;
4534 int ret = 0;
4535
4536 read_lock(&em_tree->lock);
4537 em = lookup_extent_mapping(em_tree, logical, len);
4538 read_unlock(&em_tree->lock);
4539 BUG_ON(!em);
4540
4541 BUG_ON(em->start > logical || em->start + em->len < logical);
4542 map = (struct map_lookup *)em->bdev;
4543 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4544 BTRFS_BLOCK_GROUP_RAID6))
4545 ret = 1;
4546 free_extent_map(em);
4547 return ret;
4548}
4549
30d9861f
SB
4550static int find_live_mirror(struct btrfs_fs_info *fs_info,
4551 struct map_lookup *map, int first, int num,
4552 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4553{
4554 int i;
30d9861f
SB
4555 int tolerance;
4556 struct btrfs_device *srcdev;
4557
4558 if (dev_replace_is_ongoing &&
4559 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4560 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4561 srcdev = fs_info->dev_replace.srcdev;
4562 else
4563 srcdev = NULL;
4564
4565 /*
4566 * try to avoid the drive that is the source drive for a
4567 * dev-replace procedure, only choose it if no other non-missing
4568 * mirror is available
4569 */
4570 for (tolerance = 0; tolerance < 2; tolerance++) {
4571 if (map->stripes[optimal].dev->bdev &&
4572 (tolerance || map->stripes[optimal].dev != srcdev))
4573 return optimal;
4574 for (i = first; i < first + num; i++) {
4575 if (map->stripes[i].dev->bdev &&
4576 (tolerance || map->stripes[i].dev != srcdev))
4577 return i;
4578 }
dfe25020 4579 }
30d9861f 4580
dfe25020
CM
4581 /* we couldn't find one that doesn't fail. Just return something
4582 * and the io error handling code will clean up eventually
4583 */
4584 return optimal;
4585}
4586
53b381b3
DW
4587static inline int parity_smaller(u64 a, u64 b)
4588{
4589 return a > b;
4590}
4591
4592/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4593static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4594{
4595 struct btrfs_bio_stripe s;
4596 int i;
4597 u64 l;
4598 int again = 1;
4599
4600 while (again) {
4601 again = 0;
4602 for (i = 0; i < bbio->num_stripes - 1; i++) {
4603 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4604 s = bbio->stripes[i];
4605 l = raid_map[i];
4606 bbio->stripes[i] = bbio->stripes[i+1];
4607 raid_map[i] = raid_map[i+1];
4608 bbio->stripes[i+1] = s;
4609 raid_map[i+1] = l;
4610 again = 1;
4611 }
4612 }
4613 }
4614}
4615
3ec706c8 4616static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4617 u64 logical, u64 *length,
a1d3c478 4618 struct btrfs_bio **bbio_ret,
53b381b3 4619 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4620{
4621 struct extent_map *em;
4622 struct map_lookup *map;
3ec706c8 4623 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4624 struct extent_map_tree *em_tree = &map_tree->map_tree;
4625 u64 offset;
593060d7 4626 u64 stripe_offset;
fce3bb9a 4627 u64 stripe_end_offset;
593060d7 4628 u64 stripe_nr;
fce3bb9a
LD
4629 u64 stripe_nr_orig;
4630 u64 stripe_nr_end;
53b381b3
DW
4631 u64 stripe_len;
4632 u64 *raid_map = NULL;
593060d7 4633 int stripe_index;
cea9e445 4634 int i;
de11cc12 4635 int ret = 0;
f2d8d74d 4636 int num_stripes;
a236aed1 4637 int max_errors = 0;
a1d3c478 4638 struct btrfs_bio *bbio = NULL;
472262f3
SB
4639 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4640 int dev_replace_is_ongoing = 0;
4641 int num_alloc_stripes;
ad6d620e
SB
4642 int patch_the_first_stripe_for_dev_replace = 0;
4643 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4644 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4645
890871be 4646 read_lock(&em_tree->lock);
0b86a832 4647 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4648 read_unlock(&em_tree->lock);
f2d8d74d 4649
3b951516 4650 if (!em) {
c2cf52eb 4651 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4652 logical, *length);
9bb91873
JB
4653 return -EINVAL;
4654 }
4655
4656 if (em->start > logical || em->start + em->len < logical) {
4657 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4658 "found %Lu-%Lu\n", logical, em->start,
4659 em->start + em->len);
4660 return -EINVAL;
3b951516 4661 }
0b86a832 4662
0b86a832
CM
4663 map = (struct map_lookup *)em->bdev;
4664 offset = logical - em->start;
593060d7 4665
53b381b3 4666 stripe_len = map->stripe_len;
593060d7
CM
4667 stripe_nr = offset;
4668 /*
4669 * stripe_nr counts the total number of stripes we have to stride
4670 * to get to this block
4671 */
53b381b3 4672 do_div(stripe_nr, stripe_len);
593060d7 4673
53b381b3 4674 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4675 BUG_ON(offset < stripe_offset);
4676
4677 /* stripe_offset is the offset of this block in its stripe*/
4678 stripe_offset = offset - stripe_offset;
4679
53b381b3
DW
4680 /* if we're here for raid56, we need to know the stripe aligned start */
4681 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4682 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4683 raid56_full_stripe_start = offset;
4684
4685 /* allow a write of a full stripe, but make sure we don't
4686 * allow straddling of stripes
4687 */
4688 do_div(raid56_full_stripe_start, full_stripe_len);
4689 raid56_full_stripe_start *= full_stripe_len;
4690 }
4691
4692 if (rw & REQ_DISCARD) {
4693 /* we don't discard raid56 yet */
4694 if (map->type &
4695 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4696 ret = -EOPNOTSUPP;
4697 goto out;
4698 }
fce3bb9a 4699 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4700 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4701 u64 max_len;
4702 /* For writes to RAID[56], allow a full stripeset across all disks.
4703 For other RAID types and for RAID[56] reads, just allow a single
4704 stripe (on a single disk). */
4705 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4706 (rw & REQ_WRITE)) {
4707 max_len = stripe_len * nr_data_stripes(map) -
4708 (offset - raid56_full_stripe_start);
4709 } else {
4710 /* we limit the length of each bio to what fits in a stripe */
4711 max_len = stripe_len - stripe_offset;
4712 }
4713 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4714 } else {
4715 *length = em->len - offset;
4716 }
f2d8d74d 4717
53b381b3
DW
4718 /* This is for when we're called from btrfs_merge_bio_hook() and all
4719 it cares about is the length */
a1d3c478 4720 if (!bbio_ret)
cea9e445
CM
4721 goto out;
4722
472262f3
SB
4723 btrfs_dev_replace_lock(dev_replace);
4724 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4725 if (!dev_replace_is_ongoing)
4726 btrfs_dev_replace_unlock(dev_replace);
4727
ad6d620e
SB
4728 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4729 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4730 dev_replace->tgtdev != NULL) {
4731 /*
4732 * in dev-replace case, for repair case (that's the only
4733 * case where the mirror is selected explicitly when
4734 * calling btrfs_map_block), blocks left of the left cursor
4735 * can also be read from the target drive.
4736 * For REQ_GET_READ_MIRRORS, the target drive is added as
4737 * the last one to the array of stripes. For READ, it also
4738 * needs to be supported using the same mirror number.
4739 * If the requested block is not left of the left cursor,
4740 * EIO is returned. This can happen because btrfs_num_copies()
4741 * returns one more in the dev-replace case.
4742 */
4743 u64 tmp_length = *length;
4744 struct btrfs_bio *tmp_bbio = NULL;
4745 int tmp_num_stripes;
4746 u64 srcdev_devid = dev_replace->srcdev->devid;
4747 int index_srcdev = 0;
4748 int found = 0;
4749 u64 physical_of_found = 0;
4750
4751 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4752 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4753 if (ret) {
4754 WARN_ON(tmp_bbio != NULL);
4755 goto out;
4756 }
4757
4758 tmp_num_stripes = tmp_bbio->num_stripes;
4759 if (mirror_num > tmp_num_stripes) {
4760 /*
4761 * REQ_GET_READ_MIRRORS does not contain this
4762 * mirror, that means that the requested area
4763 * is not left of the left cursor
4764 */
4765 ret = -EIO;
4766 kfree(tmp_bbio);
4767 goto out;
4768 }
4769
4770 /*
4771 * process the rest of the function using the mirror_num
4772 * of the source drive. Therefore look it up first.
4773 * At the end, patch the device pointer to the one of the
4774 * target drive.
4775 */
4776 for (i = 0; i < tmp_num_stripes; i++) {
4777 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4778 /*
4779 * In case of DUP, in order to keep it
4780 * simple, only add the mirror with the
4781 * lowest physical address
4782 */
4783 if (found &&
4784 physical_of_found <=
4785 tmp_bbio->stripes[i].physical)
4786 continue;
4787 index_srcdev = i;
4788 found = 1;
4789 physical_of_found =
4790 tmp_bbio->stripes[i].physical;
4791 }
4792 }
4793
4794 if (found) {
4795 mirror_num = index_srcdev + 1;
4796 patch_the_first_stripe_for_dev_replace = 1;
4797 physical_to_patch_in_first_stripe = physical_of_found;
4798 } else {
4799 WARN_ON(1);
4800 ret = -EIO;
4801 kfree(tmp_bbio);
4802 goto out;
4803 }
4804
4805 kfree(tmp_bbio);
4806 } else if (mirror_num > map->num_stripes) {
4807 mirror_num = 0;
4808 }
4809
f2d8d74d 4810 num_stripes = 1;
cea9e445 4811 stripe_index = 0;
fce3bb9a 4812 stripe_nr_orig = stripe_nr;
fda2832f 4813 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4814 do_div(stripe_nr_end, map->stripe_len);
4815 stripe_end_offset = stripe_nr_end * map->stripe_len -
4816 (offset + *length);
53b381b3 4817
fce3bb9a
LD
4818 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4819 if (rw & REQ_DISCARD)
4820 num_stripes = min_t(u64, map->num_stripes,
4821 stripe_nr_end - stripe_nr_orig);
4822 stripe_index = do_div(stripe_nr, map->num_stripes);
4823 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4824 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4825 num_stripes = map->num_stripes;
2fff734f 4826 else if (mirror_num)
f188591e 4827 stripe_index = mirror_num - 1;
dfe25020 4828 else {
30d9861f 4829 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4830 map->num_stripes,
30d9861f
SB
4831 current->pid % map->num_stripes,
4832 dev_replace_is_ongoing);
a1d3c478 4833 mirror_num = stripe_index + 1;
dfe25020 4834 }
2fff734f 4835
611f0e00 4836 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4837 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4838 num_stripes = map->num_stripes;
a1d3c478 4839 } else if (mirror_num) {
f188591e 4840 stripe_index = mirror_num - 1;
a1d3c478
JS
4841 } else {
4842 mirror_num = 1;
4843 }
2fff734f 4844
321aecc6
CM
4845 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4846 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4847
4848 stripe_index = do_div(stripe_nr, factor);
4849 stripe_index *= map->sub_stripes;
4850
29a8d9a0 4851 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4852 num_stripes = map->sub_stripes;
fce3bb9a
LD
4853 else if (rw & REQ_DISCARD)
4854 num_stripes = min_t(u64, map->sub_stripes *
4855 (stripe_nr_end - stripe_nr_orig),
4856 map->num_stripes);
321aecc6
CM
4857 else if (mirror_num)
4858 stripe_index += mirror_num - 1;
dfe25020 4859 else {
3e74317a 4860 int old_stripe_index = stripe_index;
30d9861f
SB
4861 stripe_index = find_live_mirror(fs_info, map,
4862 stripe_index,
dfe25020 4863 map->sub_stripes, stripe_index +
30d9861f
SB
4864 current->pid % map->sub_stripes,
4865 dev_replace_is_ongoing);
3e74317a 4866 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4867 }
53b381b3
DW
4868
4869 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4870 BTRFS_BLOCK_GROUP_RAID6)) {
4871 u64 tmp;
4872
4873 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4874 && raid_map_ret) {
4875 int i, rot;
4876
4877 /* push stripe_nr back to the start of the full stripe */
4878 stripe_nr = raid56_full_stripe_start;
4879 do_div(stripe_nr, stripe_len);
4880
4881 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4882
4883 /* RAID[56] write or recovery. Return all stripes */
4884 num_stripes = map->num_stripes;
4885 max_errors = nr_parity_stripes(map);
4886
4887 raid_map = kmalloc(sizeof(u64) * num_stripes,
4888 GFP_NOFS);
4889 if (!raid_map) {
4890 ret = -ENOMEM;
4891 goto out;
4892 }
4893
4894 /* Work out the disk rotation on this stripe-set */
4895 tmp = stripe_nr;
4896 rot = do_div(tmp, num_stripes);
4897
4898 /* Fill in the logical address of each stripe */
4899 tmp = stripe_nr * nr_data_stripes(map);
4900 for (i = 0; i < nr_data_stripes(map); i++)
4901 raid_map[(i+rot) % num_stripes] =
4902 em->start + (tmp + i) * map->stripe_len;
4903
4904 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4905 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4906 raid_map[(i+rot+1) % num_stripes] =
4907 RAID6_Q_STRIPE;
4908
4909 *length = map->stripe_len;
4910 stripe_index = 0;
4911 stripe_offset = 0;
4912 } else {
4913 /*
4914 * Mirror #0 or #1 means the original data block.
4915 * Mirror #2 is RAID5 parity block.
4916 * Mirror #3 is RAID6 Q block.
4917 */
4918 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4919 if (mirror_num > 1)
4920 stripe_index = nr_data_stripes(map) +
4921 mirror_num - 2;
4922
4923 /* We distribute the parity blocks across stripes */
4924 tmp = stripe_nr + stripe_index;
4925 stripe_index = do_div(tmp, map->num_stripes);
4926 }
8790d502
CM
4927 } else {
4928 /*
4929 * after this do_div call, stripe_nr is the number of stripes
4930 * on this device we have to walk to find the data, and
4931 * stripe_index is the number of our device in the stripe array
4932 */
4933 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4934 mirror_num = stripe_index + 1;
8790d502 4935 }
593060d7 4936 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4937
472262f3 4938 num_alloc_stripes = num_stripes;
ad6d620e
SB
4939 if (dev_replace_is_ongoing) {
4940 if (rw & (REQ_WRITE | REQ_DISCARD))
4941 num_alloc_stripes <<= 1;
4942 if (rw & REQ_GET_READ_MIRRORS)
4943 num_alloc_stripes++;
4944 }
472262f3 4945 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4946 if (!bbio) {
eb2067f7 4947 kfree(raid_map);
de11cc12
LZ
4948 ret = -ENOMEM;
4949 goto out;
4950 }
4951 atomic_set(&bbio->error, 0);
4952
fce3bb9a 4953 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4954 int factor = 0;
4955 int sub_stripes = 0;
4956 u64 stripes_per_dev = 0;
4957 u32 remaining_stripes = 0;
b89203f7 4958 u32 last_stripe = 0;
ec9ef7a1
LZ
4959
4960 if (map->type &
4961 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4962 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4963 sub_stripes = 1;
4964 else
4965 sub_stripes = map->sub_stripes;
4966
4967 factor = map->num_stripes / sub_stripes;
4968 stripes_per_dev = div_u64_rem(stripe_nr_end -
4969 stripe_nr_orig,
4970 factor,
4971 &remaining_stripes);
b89203f7
LB
4972 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4973 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4974 }
4975
fce3bb9a 4976 for (i = 0; i < num_stripes; i++) {
a1d3c478 4977 bbio->stripes[i].physical =
f2d8d74d
CM
4978 map->stripes[stripe_index].physical +
4979 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4980 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4981
ec9ef7a1
LZ
4982 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4983 BTRFS_BLOCK_GROUP_RAID10)) {
4984 bbio->stripes[i].length = stripes_per_dev *
4985 map->stripe_len;
b89203f7 4986
ec9ef7a1
LZ
4987 if (i / sub_stripes < remaining_stripes)
4988 bbio->stripes[i].length +=
4989 map->stripe_len;
b89203f7
LB
4990
4991 /*
4992 * Special for the first stripe and
4993 * the last stripe:
4994 *
4995 * |-------|...|-------|
4996 * |----------|
4997 * off end_off
4998 */
ec9ef7a1 4999 if (i < sub_stripes)
a1d3c478 5000 bbio->stripes[i].length -=
fce3bb9a 5001 stripe_offset;
b89203f7
LB
5002
5003 if (stripe_index >= last_stripe &&
5004 stripe_index <= (last_stripe +
5005 sub_stripes - 1))
a1d3c478 5006 bbio->stripes[i].length -=
fce3bb9a 5007 stripe_end_offset;
b89203f7 5008
ec9ef7a1
LZ
5009 if (i == sub_stripes - 1)
5010 stripe_offset = 0;
fce3bb9a 5011 } else
a1d3c478 5012 bbio->stripes[i].length = *length;
fce3bb9a
LD
5013
5014 stripe_index++;
5015 if (stripe_index == map->num_stripes) {
5016 /* This could only happen for RAID0/10 */
5017 stripe_index = 0;
5018 stripe_nr++;
5019 }
5020 }
5021 } else {
5022 for (i = 0; i < num_stripes; i++) {
a1d3c478 5023 bbio->stripes[i].physical =
212a17ab
LT
5024 map->stripes[stripe_index].physical +
5025 stripe_offset +
5026 stripe_nr * map->stripe_len;
a1d3c478 5027 bbio->stripes[i].dev =
212a17ab 5028 map->stripes[stripe_index].dev;
fce3bb9a 5029 stripe_index++;
f2d8d74d 5030 }
593060d7 5031 }
de11cc12 5032
29a8d9a0 5033 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5034 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5035 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5036 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5037 BTRFS_BLOCK_GROUP_DUP)) {
5038 max_errors = 1;
53b381b3
DW
5039 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5040 max_errors = 2;
de11cc12 5041 }
f2d8d74d 5042 }
de11cc12 5043
472262f3
SB
5044 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5045 dev_replace->tgtdev != NULL) {
5046 int index_where_to_add;
5047 u64 srcdev_devid = dev_replace->srcdev->devid;
5048
5049 /*
5050 * duplicate the write operations while the dev replace
5051 * procedure is running. Since the copying of the old disk
5052 * to the new disk takes place at run time while the
5053 * filesystem is mounted writable, the regular write
5054 * operations to the old disk have to be duplicated to go
5055 * to the new disk as well.
5056 * Note that device->missing is handled by the caller, and
5057 * that the write to the old disk is already set up in the
5058 * stripes array.
5059 */
5060 index_where_to_add = num_stripes;
5061 for (i = 0; i < num_stripes; i++) {
5062 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5063 /* write to new disk, too */
5064 struct btrfs_bio_stripe *new =
5065 bbio->stripes + index_where_to_add;
5066 struct btrfs_bio_stripe *old =
5067 bbio->stripes + i;
5068
5069 new->physical = old->physical;
5070 new->length = old->length;
5071 new->dev = dev_replace->tgtdev;
5072 index_where_to_add++;
5073 max_errors++;
5074 }
5075 }
5076 num_stripes = index_where_to_add;
ad6d620e
SB
5077 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5078 dev_replace->tgtdev != NULL) {
5079 u64 srcdev_devid = dev_replace->srcdev->devid;
5080 int index_srcdev = 0;
5081 int found = 0;
5082 u64 physical_of_found = 0;
5083
5084 /*
5085 * During the dev-replace procedure, the target drive can
5086 * also be used to read data in case it is needed to repair
5087 * a corrupt block elsewhere. This is possible if the
5088 * requested area is left of the left cursor. In this area,
5089 * the target drive is a full copy of the source drive.
5090 */
5091 for (i = 0; i < num_stripes; i++) {
5092 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5093 /*
5094 * In case of DUP, in order to keep it
5095 * simple, only add the mirror with the
5096 * lowest physical address
5097 */
5098 if (found &&
5099 physical_of_found <=
5100 bbio->stripes[i].physical)
5101 continue;
5102 index_srcdev = i;
5103 found = 1;
5104 physical_of_found = bbio->stripes[i].physical;
5105 }
5106 }
5107 if (found) {
5108 u64 length = map->stripe_len;
5109
5110 if (physical_of_found + length <=
5111 dev_replace->cursor_left) {
5112 struct btrfs_bio_stripe *tgtdev_stripe =
5113 bbio->stripes + num_stripes;
5114
5115 tgtdev_stripe->physical = physical_of_found;
5116 tgtdev_stripe->length =
5117 bbio->stripes[index_srcdev].length;
5118 tgtdev_stripe->dev = dev_replace->tgtdev;
5119
5120 num_stripes++;
5121 }
5122 }
472262f3
SB
5123 }
5124
de11cc12
LZ
5125 *bbio_ret = bbio;
5126 bbio->num_stripes = num_stripes;
5127 bbio->max_errors = max_errors;
5128 bbio->mirror_num = mirror_num;
ad6d620e
SB
5129
5130 /*
5131 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5132 * mirror_num == num_stripes + 1 && dev_replace target drive is
5133 * available as a mirror
5134 */
5135 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5136 WARN_ON(num_stripes > 1);
5137 bbio->stripes[0].dev = dev_replace->tgtdev;
5138 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5139 bbio->mirror_num = map->num_stripes + 1;
5140 }
53b381b3
DW
5141 if (raid_map) {
5142 sort_parity_stripes(bbio, raid_map);
5143 *raid_map_ret = raid_map;
5144 }
cea9e445 5145out:
472262f3
SB
5146 if (dev_replace_is_ongoing)
5147 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5148 free_extent_map(em);
de11cc12 5149 return ret;
0b86a832
CM
5150}
5151
3ec706c8 5152int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5153 u64 logical, u64 *length,
a1d3c478 5154 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5155{
3ec706c8 5156 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5157 mirror_num, NULL);
f2d8d74d
CM
5158}
5159
a512bbf8
YZ
5160int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5161 u64 chunk_start, u64 physical, u64 devid,
5162 u64 **logical, int *naddrs, int *stripe_len)
5163{
5164 struct extent_map_tree *em_tree = &map_tree->map_tree;
5165 struct extent_map *em;
5166 struct map_lookup *map;
5167 u64 *buf;
5168 u64 bytenr;
5169 u64 length;
5170 u64 stripe_nr;
53b381b3 5171 u64 rmap_len;
a512bbf8
YZ
5172 int i, j, nr = 0;
5173
890871be 5174 read_lock(&em_tree->lock);
a512bbf8 5175 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5176 read_unlock(&em_tree->lock);
a512bbf8 5177
835d974f
JB
5178 if (!em) {
5179 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5180 chunk_start);
5181 return -EIO;
5182 }
5183
5184 if (em->start != chunk_start) {
5185 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5186 em->start, chunk_start);
5187 free_extent_map(em);
5188 return -EIO;
5189 }
a512bbf8
YZ
5190 map = (struct map_lookup *)em->bdev;
5191
5192 length = em->len;
53b381b3
DW
5193 rmap_len = map->stripe_len;
5194
a512bbf8
YZ
5195 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5196 do_div(length, map->num_stripes / map->sub_stripes);
5197 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5198 do_div(length, map->num_stripes);
53b381b3
DW
5199 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5200 BTRFS_BLOCK_GROUP_RAID6)) {
5201 do_div(length, nr_data_stripes(map));
5202 rmap_len = map->stripe_len * nr_data_stripes(map);
5203 }
a512bbf8
YZ
5204
5205 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5206 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5207
5208 for (i = 0; i < map->num_stripes; i++) {
5209 if (devid && map->stripes[i].dev->devid != devid)
5210 continue;
5211 if (map->stripes[i].physical > physical ||
5212 map->stripes[i].physical + length <= physical)
5213 continue;
5214
5215 stripe_nr = physical - map->stripes[i].physical;
5216 do_div(stripe_nr, map->stripe_len);
5217
5218 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5219 stripe_nr = stripe_nr * map->num_stripes + i;
5220 do_div(stripe_nr, map->sub_stripes);
5221 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5222 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5223 } /* else if RAID[56], multiply by nr_data_stripes().
5224 * Alternatively, just use rmap_len below instead of
5225 * map->stripe_len */
5226
5227 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5228 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5229 for (j = 0; j < nr; j++) {
5230 if (buf[j] == bytenr)
5231 break;
5232 }
934d375b
CM
5233 if (j == nr) {
5234 WARN_ON(nr >= map->num_stripes);
a512bbf8 5235 buf[nr++] = bytenr;
934d375b 5236 }
a512bbf8
YZ
5237 }
5238
a512bbf8
YZ
5239 *logical = buf;
5240 *naddrs = nr;
53b381b3 5241 *stripe_len = rmap_len;
a512bbf8
YZ
5242
5243 free_extent_map(em);
5244 return 0;
f2d8d74d
CM
5245}
5246
a1d3c478 5247static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5248{
9be3395b 5249 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5250 int is_orig_bio = 0;
8790d502 5251
442a4f63 5252 if (err) {
a1d3c478 5253 atomic_inc(&bbio->error);
442a4f63
SB
5254 if (err == -EIO || err == -EREMOTEIO) {
5255 unsigned int stripe_index =
9be3395b 5256 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5257 struct btrfs_device *dev;
5258
5259 BUG_ON(stripe_index >= bbio->num_stripes);
5260 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5261 if (dev->bdev) {
5262 if (bio->bi_rw & WRITE)
5263 btrfs_dev_stat_inc(dev,
5264 BTRFS_DEV_STAT_WRITE_ERRS);
5265 else
5266 btrfs_dev_stat_inc(dev,
5267 BTRFS_DEV_STAT_READ_ERRS);
5268 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5269 btrfs_dev_stat_inc(dev,
5270 BTRFS_DEV_STAT_FLUSH_ERRS);
5271 btrfs_dev_stat_print_on_error(dev);
5272 }
442a4f63
SB
5273 }
5274 }
8790d502 5275
a1d3c478 5276 if (bio == bbio->orig_bio)
7d2b4daa
CM
5277 is_orig_bio = 1;
5278
a1d3c478 5279 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5280 if (!is_orig_bio) {
5281 bio_put(bio);
a1d3c478 5282 bio = bbio->orig_bio;
7d2b4daa 5283 }
a1d3c478
JS
5284 bio->bi_private = bbio->private;
5285 bio->bi_end_io = bbio->end_io;
9be3395b 5286 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5287 /* only send an error to the higher layers if it is
53b381b3 5288 * beyond the tolerance of the btrfs bio
a236aed1 5289 */
a1d3c478 5290 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5291 err = -EIO;
5dbc8fca 5292 } else {
1259ab75
CM
5293 /*
5294 * this bio is actually up to date, we didn't
5295 * go over the max number of errors
5296 */
5297 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5298 err = 0;
1259ab75 5299 }
a1d3c478 5300 kfree(bbio);
8790d502
CM
5301
5302 bio_endio(bio, err);
7d2b4daa 5303 } else if (!is_orig_bio) {
8790d502
CM
5304 bio_put(bio);
5305 }
8790d502
CM
5306}
5307
8b712842
CM
5308struct async_sched {
5309 struct bio *bio;
5310 int rw;
5311 struct btrfs_fs_info *info;
5312 struct btrfs_work work;
5313};
5314
5315/*
5316 * see run_scheduled_bios for a description of why bios are collected for
5317 * async submit.
5318 *
5319 * This will add one bio to the pending list for a device and make sure
5320 * the work struct is scheduled.
5321 */
48a3b636
ES
5322static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5323 struct btrfs_device *device,
5324 int rw, struct bio *bio)
8b712842
CM
5325{
5326 int should_queue = 1;
ffbd517d 5327 struct btrfs_pending_bios *pending_bios;
8b712842 5328
53b381b3
DW
5329 if (device->missing || !device->bdev) {
5330 bio_endio(bio, -EIO);
5331 return;
5332 }
5333
8b712842 5334 /* don't bother with additional async steps for reads, right now */
7b6d91da 5335 if (!(rw & REQ_WRITE)) {
492bb6de 5336 bio_get(bio);
21adbd5c 5337 btrfsic_submit_bio(rw, bio);
492bb6de 5338 bio_put(bio);
143bede5 5339 return;
8b712842
CM
5340 }
5341
5342 /*
0986fe9e 5343 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5344 * higher layers. Otherwise, the async bio makes it appear we have
5345 * made progress against dirty pages when we've really just put it
5346 * on a queue for later
5347 */
0986fe9e 5348 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5349 WARN_ON(bio->bi_next);
8b712842
CM
5350 bio->bi_next = NULL;
5351 bio->bi_rw |= rw;
5352
5353 spin_lock(&device->io_lock);
7b6d91da 5354 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5355 pending_bios = &device->pending_sync_bios;
5356 else
5357 pending_bios = &device->pending_bios;
8b712842 5358
ffbd517d
CM
5359 if (pending_bios->tail)
5360 pending_bios->tail->bi_next = bio;
8b712842 5361
ffbd517d
CM
5362 pending_bios->tail = bio;
5363 if (!pending_bios->head)
5364 pending_bios->head = bio;
8b712842
CM
5365 if (device->running_pending)
5366 should_queue = 0;
5367
5368 spin_unlock(&device->io_lock);
5369
5370 if (should_queue)
1cc127b5
CM
5371 btrfs_queue_worker(&root->fs_info->submit_workers,
5372 &device->work);
8b712842
CM
5373}
5374
de1ee92a
JB
5375static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5376 sector_t sector)
5377{
5378 struct bio_vec *prev;
5379 struct request_queue *q = bdev_get_queue(bdev);
5380 unsigned short max_sectors = queue_max_sectors(q);
5381 struct bvec_merge_data bvm = {
5382 .bi_bdev = bdev,
5383 .bi_sector = sector,
5384 .bi_rw = bio->bi_rw,
5385 };
5386
5387 if (bio->bi_vcnt == 0) {
5388 WARN_ON(1);
5389 return 1;
5390 }
5391
5392 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5393 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5394 return 0;
5395
5396 if (!q->merge_bvec_fn)
5397 return 1;
5398
5399 bvm.bi_size = bio->bi_size - prev->bv_len;
5400 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5401 return 0;
5402 return 1;
5403}
5404
5405static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5406 struct bio *bio, u64 physical, int dev_nr,
5407 int rw, int async)
5408{
5409 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5410
5411 bio->bi_private = bbio;
9be3395b 5412 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5413 bio->bi_end_io = btrfs_end_bio;
5414 bio->bi_sector = physical >> 9;
5415#ifdef DEBUG
5416 {
5417 struct rcu_string *name;
5418
5419 rcu_read_lock();
5420 name = rcu_dereference(dev->name);
d1423248 5421 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5422 "(%s id %llu), size=%u\n", rw,
5423 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5424 name->str, dev->devid, bio->bi_size);
5425 rcu_read_unlock();
5426 }
5427#endif
5428 bio->bi_bdev = dev->bdev;
5429 if (async)
53b381b3 5430 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5431 else
5432 btrfsic_submit_bio(rw, bio);
5433}
5434
5435static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5436 struct bio *first_bio, struct btrfs_device *dev,
5437 int dev_nr, int rw, int async)
5438{
5439 struct bio_vec *bvec = first_bio->bi_io_vec;
5440 struct bio *bio;
5441 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5442 u64 physical = bbio->stripes[dev_nr].physical;
5443
5444again:
5445 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5446 if (!bio)
5447 return -ENOMEM;
5448
5449 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5450 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5451 bvec->bv_offset) < bvec->bv_len) {
5452 u64 len = bio->bi_size;
5453
5454 atomic_inc(&bbio->stripes_pending);
5455 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5456 rw, async);
5457 physical += len;
5458 goto again;
5459 }
5460 bvec++;
5461 }
5462
5463 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5464 return 0;
5465}
5466
5467static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5468{
5469 atomic_inc(&bbio->error);
5470 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5471 bio->bi_private = bbio->private;
5472 bio->bi_end_io = bbio->end_io;
9be3395b 5473 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5474 bio->bi_sector = logical >> 9;
5475 kfree(bbio);
5476 bio_endio(bio, -EIO);
5477 }
5478}
5479
f188591e 5480int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5481 int mirror_num, int async_submit)
0b86a832 5482{
0b86a832 5483 struct btrfs_device *dev;
8790d502 5484 struct bio *first_bio = bio;
a62b9401 5485 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5486 u64 length = 0;
5487 u64 map_length;
53b381b3 5488 u64 *raid_map = NULL;
0b86a832 5489 int ret;
8790d502
CM
5490 int dev_nr = 0;
5491 int total_devs = 1;
a1d3c478 5492 struct btrfs_bio *bbio = NULL;
0b86a832 5493
f2d8d74d 5494 length = bio->bi_size;
0b86a832 5495 map_length = length;
cea9e445 5496
53b381b3
DW
5497 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5498 mirror_num, &raid_map);
5499 if (ret) /* -ENOMEM */
79787eaa 5500 return ret;
cea9e445 5501
a1d3c478 5502 total_devs = bbio->num_stripes;
53b381b3
DW
5503 bbio->orig_bio = first_bio;
5504 bbio->private = first_bio->bi_private;
5505 bbio->end_io = first_bio->bi_end_io;
5506 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5507
5508 if (raid_map) {
5509 /* In this case, map_length has been set to the length of
5510 a single stripe; not the whole write */
5511 if (rw & WRITE) {
5512 return raid56_parity_write(root, bio, bbio,
5513 raid_map, map_length);
5514 } else {
5515 return raid56_parity_recover(root, bio, bbio,
5516 raid_map, map_length,
5517 mirror_num);
5518 }
5519 }
5520
cea9e445 5521 if (map_length < length) {
c2cf52eb 5522 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5523 logical, length, map_length);
cea9e445
CM
5524 BUG();
5525 }
a1d3c478 5526
d397712b 5527 while (dev_nr < total_devs) {
de1ee92a
JB
5528 dev = bbio->stripes[dev_nr].dev;
5529 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5530 bbio_error(bbio, first_bio, logical);
5531 dev_nr++;
5532 continue;
5533 }
5534
5535 /*
5536 * Check and see if we're ok with this bio based on it's size
5537 * and offset with the given device.
5538 */
5539 if (!bio_size_ok(dev->bdev, first_bio,
5540 bbio->stripes[dev_nr].physical >> 9)) {
5541 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5542 dev_nr, rw, async_submit);
5543 BUG_ON(ret);
5544 dev_nr++;
5545 continue;
5546 }
5547
a1d3c478 5548 if (dev_nr < total_devs - 1) {
9be3395b 5549 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5550 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5551 } else {
5552 bio = first_bio;
8790d502 5553 }
de1ee92a
JB
5554
5555 submit_stripe_bio(root, bbio, bio,
5556 bbio->stripes[dev_nr].physical, dev_nr, rw,
5557 async_submit);
8790d502
CM
5558 dev_nr++;
5559 }
0b86a832
CM
5560 return 0;
5561}
5562
aa1b8cd4 5563struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5564 u8 *uuid, u8 *fsid)
0b86a832 5565{
2b82032c
YZ
5566 struct btrfs_device *device;
5567 struct btrfs_fs_devices *cur_devices;
5568
aa1b8cd4 5569 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5570 while (cur_devices) {
5571 if (!fsid ||
5572 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5573 device = __find_device(&cur_devices->devices,
5574 devid, uuid);
5575 if (device)
5576 return device;
5577 }
5578 cur_devices = cur_devices->seed;
5579 }
5580 return NULL;
0b86a832
CM
5581}
5582
dfe25020
CM
5583static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5584 u64 devid, u8 *dev_uuid)
5585{
5586 struct btrfs_device *device;
5587 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5588
12bd2fc0
ID
5589 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5590 if (IS_ERR(device))
7cbd8a83 5591 return NULL;
12bd2fc0
ID
5592
5593 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5594 device->fs_devices = fs_devices;
dfe25020 5595 fs_devices->num_devices++;
12bd2fc0
ID
5596
5597 device->missing = 1;
cd02dca5 5598 fs_devices->missing_devices++;
12bd2fc0 5599
dfe25020
CM
5600 return device;
5601}
5602
12bd2fc0
ID
5603/**
5604 * btrfs_alloc_device - allocate struct btrfs_device
5605 * @fs_info: used only for generating a new devid, can be NULL if
5606 * devid is provided (i.e. @devid != NULL).
5607 * @devid: a pointer to devid for this device. If NULL a new devid
5608 * is generated.
5609 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5610 * is generated.
5611 *
5612 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5613 * on error. Returned struct is not linked onto any lists and can be
5614 * destroyed with kfree() right away.
5615 */
5616struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5617 const u64 *devid,
5618 const u8 *uuid)
5619{
5620 struct btrfs_device *dev;
5621 u64 tmp;
5622
5623 if (!devid && !fs_info) {
5624 WARN_ON(1);
5625 return ERR_PTR(-EINVAL);
5626 }
5627
5628 dev = __alloc_device();
5629 if (IS_ERR(dev))
5630 return dev;
5631
5632 if (devid)
5633 tmp = *devid;
5634 else {
5635 int ret;
5636
5637 ret = find_next_devid(fs_info, &tmp);
5638 if (ret) {
5639 kfree(dev);
5640 return ERR_PTR(ret);
5641 }
5642 }
5643 dev->devid = tmp;
5644
5645 if (uuid)
5646 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5647 else
5648 generate_random_uuid(dev->uuid);
5649
5650 dev->work.func = pending_bios_fn;
5651
5652 return dev;
5653}
5654
0b86a832
CM
5655static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5656 struct extent_buffer *leaf,
5657 struct btrfs_chunk *chunk)
5658{
5659 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5660 struct map_lookup *map;
5661 struct extent_map *em;
5662 u64 logical;
5663 u64 length;
5664 u64 devid;
a443755f 5665 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5666 int num_stripes;
0b86a832 5667 int ret;
593060d7 5668 int i;
0b86a832 5669
e17cade2
CM
5670 logical = key->offset;
5671 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5672
890871be 5673 read_lock(&map_tree->map_tree.lock);
0b86a832 5674 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5675 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5676
5677 /* already mapped? */
5678 if (em && em->start <= logical && em->start + em->len > logical) {
5679 free_extent_map(em);
0b86a832
CM
5680 return 0;
5681 } else if (em) {
5682 free_extent_map(em);
5683 }
0b86a832 5684
172ddd60 5685 em = alloc_extent_map();
0b86a832
CM
5686 if (!em)
5687 return -ENOMEM;
593060d7
CM
5688 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5689 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5690 if (!map) {
5691 free_extent_map(em);
5692 return -ENOMEM;
5693 }
5694
5695 em->bdev = (struct block_device *)map;
5696 em->start = logical;
5697 em->len = length;
70c8a91c 5698 em->orig_start = 0;
0b86a832 5699 em->block_start = 0;
c8b97818 5700 em->block_len = em->len;
0b86a832 5701
593060d7
CM
5702 map->num_stripes = num_stripes;
5703 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5704 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5705 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5706 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5707 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5708 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5709 for (i = 0; i < num_stripes; i++) {
5710 map->stripes[i].physical =
5711 btrfs_stripe_offset_nr(leaf, chunk, i);
5712 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5713 read_extent_buffer(leaf, uuid, (unsigned long)
5714 btrfs_stripe_dev_uuid_nr(chunk, i),
5715 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5716 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5717 uuid, NULL);
dfe25020 5718 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5719 kfree(map);
5720 free_extent_map(em);
5721 return -EIO;
5722 }
dfe25020
CM
5723 if (!map->stripes[i].dev) {
5724 map->stripes[i].dev =
5725 add_missing_dev(root, devid, uuid);
5726 if (!map->stripes[i].dev) {
5727 kfree(map);
5728 free_extent_map(em);
5729 return -EIO;
5730 }
5731 }
5732 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5733 }
5734
890871be 5735 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5736 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5737 write_unlock(&map_tree->map_tree.lock);
79787eaa 5738 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5739 free_extent_map(em);
5740
5741 return 0;
5742}
5743
143bede5 5744static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5745 struct btrfs_dev_item *dev_item,
5746 struct btrfs_device *device)
5747{
5748 unsigned long ptr;
0b86a832
CM
5749
5750 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5751 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5752 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5753 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5754 device->type = btrfs_device_type(leaf, dev_item);
5755 device->io_align = btrfs_device_io_align(leaf, dev_item);
5756 device->io_width = btrfs_device_io_width(leaf, dev_item);
5757 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5758 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5759 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5760
410ba3a2 5761 ptr = btrfs_device_uuid(dev_item);
e17cade2 5762 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5763}
5764
2b82032c
YZ
5765static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5766{
5767 struct btrfs_fs_devices *fs_devices;
5768 int ret;
5769
b367e47f 5770 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5771
5772 fs_devices = root->fs_info->fs_devices->seed;
5773 while (fs_devices) {
5774 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5775 ret = 0;
5776 goto out;
5777 }
5778 fs_devices = fs_devices->seed;
5779 }
5780
5781 fs_devices = find_fsid(fsid);
5782 if (!fs_devices) {
5783 ret = -ENOENT;
5784 goto out;
5785 }
e4404d6e
YZ
5786
5787 fs_devices = clone_fs_devices(fs_devices);
5788 if (IS_ERR(fs_devices)) {
5789 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5790 goto out;
5791 }
5792
97288f2c 5793 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5794 root->fs_info->bdev_holder);
48d28232
JL
5795 if (ret) {
5796 free_fs_devices(fs_devices);
2b82032c 5797 goto out;
48d28232 5798 }
2b82032c
YZ
5799
5800 if (!fs_devices->seeding) {
5801 __btrfs_close_devices(fs_devices);
e4404d6e 5802 free_fs_devices(fs_devices);
2b82032c
YZ
5803 ret = -EINVAL;
5804 goto out;
5805 }
5806
5807 fs_devices->seed = root->fs_info->fs_devices->seed;
5808 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5809out:
2b82032c
YZ
5810 return ret;
5811}
5812
0d81ba5d 5813static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5814 struct extent_buffer *leaf,
5815 struct btrfs_dev_item *dev_item)
5816{
5817 struct btrfs_device *device;
5818 u64 devid;
5819 int ret;
2b82032c 5820 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5821 u8 dev_uuid[BTRFS_UUID_SIZE];
5822
0b86a832 5823 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5824 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5825 BTRFS_UUID_SIZE);
1473b24e 5826 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5827 BTRFS_UUID_SIZE);
5828
5829 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5830 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5831 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5832 return ret;
2b82032c
YZ
5833 }
5834
aa1b8cd4 5835 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5836 if (!device || !device->bdev) {
e4404d6e 5837 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5838 return -EIO;
5839
5840 if (!device) {
c1c9ff7c 5841 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5842 device = add_missing_dev(root, devid, dev_uuid);
5843 if (!device)
5844 return -ENOMEM;
cd02dca5
CM
5845 } else if (!device->missing) {
5846 /*
5847 * this happens when a device that was properly setup
5848 * in the device info lists suddenly goes bad.
5849 * device->bdev is NULL, and so we have to set
5850 * device->missing to one here
5851 */
5852 root->fs_info->fs_devices->missing_devices++;
5853 device->missing = 1;
2b82032c
YZ
5854 }
5855 }
5856
5857 if (device->fs_devices != root->fs_info->fs_devices) {
5858 BUG_ON(device->writeable);
5859 if (device->generation !=
5860 btrfs_device_generation(leaf, dev_item))
5861 return -EINVAL;
6324fbf3 5862 }
0b86a832
CM
5863
5864 fill_device_from_item(leaf, dev_item, device);
dfe25020 5865 device->in_fs_metadata = 1;
63a212ab 5866 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5867 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5868 spin_lock(&root->fs_info->free_chunk_lock);
5869 root->fs_info->free_chunk_space += device->total_bytes -
5870 device->bytes_used;
5871 spin_unlock(&root->fs_info->free_chunk_lock);
5872 }
0b86a832 5873 ret = 0;
0b86a832
CM
5874 return ret;
5875}
5876
e4404d6e 5877int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5878{
6c41761f 5879 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5880 struct extent_buffer *sb;
0b86a832 5881 struct btrfs_disk_key *disk_key;
0b86a832 5882 struct btrfs_chunk *chunk;
84eed90f
CM
5883 u8 *ptr;
5884 unsigned long sb_ptr;
5885 int ret = 0;
0b86a832
CM
5886 u32 num_stripes;
5887 u32 array_size;
5888 u32 len = 0;
0b86a832 5889 u32 cur;
84eed90f 5890 struct btrfs_key key;
0b86a832 5891
e4404d6e 5892 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5893 BTRFS_SUPER_INFO_SIZE);
5894 if (!sb)
5895 return -ENOMEM;
5896 btrfs_set_buffer_uptodate(sb);
85d4e461 5897 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5898 /*
5899 * The sb extent buffer is artifical and just used to read the system array.
5900 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5901 * pages up-to-date when the page is larger: extent does not cover the
5902 * whole page and consequently check_page_uptodate does not find all
5903 * the page's extents up-to-date (the hole beyond sb),
5904 * write_extent_buffer then triggers a WARN_ON.
5905 *
5906 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5907 * but sb spans only this function. Add an explicit SetPageUptodate call
5908 * to silence the warning eg. on PowerPC 64.
5909 */
5910 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5911 SetPageUptodate(sb->pages[0]);
4008c04a 5912
a061fc8d 5913 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5914 array_size = btrfs_super_sys_array_size(super_copy);
5915
0b86a832
CM
5916 ptr = super_copy->sys_chunk_array;
5917 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5918 cur = 0;
5919
5920 while (cur < array_size) {
5921 disk_key = (struct btrfs_disk_key *)ptr;
5922 btrfs_disk_key_to_cpu(&key, disk_key);
5923
a061fc8d 5924 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5925 sb_ptr += len;
5926 cur += len;
5927
0d81ba5d 5928 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5929 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5930 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5931 if (ret)
5932 break;
0b86a832
CM
5933 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5934 len = btrfs_chunk_item_size(num_stripes);
5935 } else {
84eed90f
CM
5936 ret = -EIO;
5937 break;
0b86a832
CM
5938 }
5939 ptr += len;
5940 sb_ptr += len;
5941 cur += len;
5942 }
a061fc8d 5943 free_extent_buffer(sb);
84eed90f 5944 return ret;
0b86a832
CM
5945}
5946
5947int btrfs_read_chunk_tree(struct btrfs_root *root)
5948{
5949 struct btrfs_path *path;
5950 struct extent_buffer *leaf;
5951 struct btrfs_key key;
5952 struct btrfs_key found_key;
5953 int ret;
5954 int slot;
5955
5956 root = root->fs_info->chunk_root;
5957
5958 path = btrfs_alloc_path();
5959 if (!path)
5960 return -ENOMEM;
5961
b367e47f
LZ
5962 mutex_lock(&uuid_mutex);
5963 lock_chunks(root);
5964
395927a9
FDBM
5965 /*
5966 * Read all device items, and then all the chunk items. All
5967 * device items are found before any chunk item (their object id
5968 * is smaller than the lowest possible object id for a chunk
5969 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5970 */
5971 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5972 key.offset = 0;
5973 key.type = 0;
0b86a832 5974 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5975 if (ret < 0)
5976 goto error;
d397712b 5977 while (1) {
0b86a832
CM
5978 leaf = path->nodes[0];
5979 slot = path->slots[0];
5980 if (slot >= btrfs_header_nritems(leaf)) {
5981 ret = btrfs_next_leaf(root, path);
5982 if (ret == 0)
5983 continue;
5984 if (ret < 0)
5985 goto error;
5986 break;
5987 }
5988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
5989 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5990 struct btrfs_dev_item *dev_item;
5991 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 5992 struct btrfs_dev_item);
395927a9
FDBM
5993 ret = read_one_dev(root, leaf, dev_item);
5994 if (ret)
5995 goto error;
0b86a832
CM
5996 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
5997 struct btrfs_chunk *chunk;
5998 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
5999 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6000 if (ret)
6001 goto error;
0b86a832
CM
6002 }
6003 path->slots[0]++;
6004 }
0b86a832
CM
6005 ret = 0;
6006error:
b367e47f
LZ
6007 unlock_chunks(root);
6008 mutex_unlock(&uuid_mutex);
6009
2b82032c 6010 btrfs_free_path(path);
0b86a832
CM
6011 return ret;
6012}
442a4f63 6013
cb517eab
MX
6014void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6015{
6016 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6017 struct btrfs_device *device;
6018
6019 mutex_lock(&fs_devices->device_list_mutex);
6020 list_for_each_entry(device, &fs_devices->devices, dev_list)
6021 device->dev_root = fs_info->dev_root;
6022 mutex_unlock(&fs_devices->device_list_mutex);
6023}
6024
733f4fbb
SB
6025static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6026{
6027 int i;
6028
6029 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6030 btrfs_dev_stat_reset(dev, i);
6031}
6032
6033int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6034{
6035 struct btrfs_key key;
6036 struct btrfs_key found_key;
6037 struct btrfs_root *dev_root = fs_info->dev_root;
6038 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6039 struct extent_buffer *eb;
6040 int slot;
6041 int ret = 0;
6042 struct btrfs_device *device;
6043 struct btrfs_path *path = NULL;
6044 int i;
6045
6046 path = btrfs_alloc_path();
6047 if (!path) {
6048 ret = -ENOMEM;
6049 goto out;
6050 }
6051
6052 mutex_lock(&fs_devices->device_list_mutex);
6053 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6054 int item_size;
6055 struct btrfs_dev_stats_item *ptr;
6056
6057 key.objectid = 0;
6058 key.type = BTRFS_DEV_STATS_KEY;
6059 key.offset = device->devid;
6060 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6061 if (ret) {
733f4fbb
SB
6062 __btrfs_reset_dev_stats(device);
6063 device->dev_stats_valid = 1;
6064 btrfs_release_path(path);
6065 continue;
6066 }
6067 slot = path->slots[0];
6068 eb = path->nodes[0];
6069 btrfs_item_key_to_cpu(eb, &found_key, slot);
6070 item_size = btrfs_item_size_nr(eb, slot);
6071
6072 ptr = btrfs_item_ptr(eb, slot,
6073 struct btrfs_dev_stats_item);
6074
6075 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6076 if (item_size >= (1 + i) * sizeof(__le64))
6077 btrfs_dev_stat_set(device, i,
6078 btrfs_dev_stats_value(eb, ptr, i));
6079 else
6080 btrfs_dev_stat_reset(device, i);
6081 }
6082
6083 device->dev_stats_valid = 1;
6084 btrfs_dev_stat_print_on_load(device);
6085 btrfs_release_path(path);
6086 }
6087 mutex_unlock(&fs_devices->device_list_mutex);
6088
6089out:
6090 btrfs_free_path(path);
6091 return ret < 0 ? ret : 0;
6092}
6093
6094static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6095 struct btrfs_root *dev_root,
6096 struct btrfs_device *device)
6097{
6098 struct btrfs_path *path;
6099 struct btrfs_key key;
6100 struct extent_buffer *eb;
6101 struct btrfs_dev_stats_item *ptr;
6102 int ret;
6103 int i;
6104
6105 key.objectid = 0;
6106 key.type = BTRFS_DEV_STATS_KEY;
6107 key.offset = device->devid;
6108
6109 path = btrfs_alloc_path();
6110 BUG_ON(!path);
6111 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6112 if (ret < 0) {
606686ee
JB
6113 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6114 ret, rcu_str_deref(device->name));
733f4fbb
SB
6115 goto out;
6116 }
6117
6118 if (ret == 0 &&
6119 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6120 /* need to delete old one and insert a new one */
6121 ret = btrfs_del_item(trans, dev_root, path);
6122 if (ret != 0) {
606686ee
JB
6123 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6124 rcu_str_deref(device->name), ret);
733f4fbb
SB
6125 goto out;
6126 }
6127 ret = 1;
6128 }
6129
6130 if (ret == 1) {
6131 /* need to insert a new item */
6132 btrfs_release_path(path);
6133 ret = btrfs_insert_empty_item(trans, dev_root, path,
6134 &key, sizeof(*ptr));
6135 if (ret < 0) {
606686ee
JB
6136 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6137 rcu_str_deref(device->name), ret);
733f4fbb
SB
6138 goto out;
6139 }
6140 }
6141
6142 eb = path->nodes[0];
6143 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6144 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6145 btrfs_set_dev_stats_value(eb, ptr, i,
6146 btrfs_dev_stat_read(device, i));
6147 btrfs_mark_buffer_dirty(eb);
6148
6149out:
6150 btrfs_free_path(path);
6151 return ret;
6152}
6153
6154/*
6155 * called from commit_transaction. Writes all changed device stats to disk.
6156 */
6157int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6158 struct btrfs_fs_info *fs_info)
6159{
6160 struct btrfs_root *dev_root = fs_info->dev_root;
6161 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6162 struct btrfs_device *device;
6163 int ret = 0;
6164
6165 mutex_lock(&fs_devices->device_list_mutex);
6166 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6167 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6168 continue;
6169
6170 ret = update_dev_stat_item(trans, dev_root, device);
6171 if (!ret)
6172 device->dev_stats_dirty = 0;
6173 }
6174 mutex_unlock(&fs_devices->device_list_mutex);
6175
6176 return ret;
6177}
6178
442a4f63
SB
6179void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6180{
6181 btrfs_dev_stat_inc(dev, index);
6182 btrfs_dev_stat_print_on_error(dev);
6183}
6184
48a3b636 6185static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6186{
733f4fbb
SB
6187 if (!dev->dev_stats_valid)
6188 return;
606686ee 6189 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6190 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6191 rcu_str_deref(dev->name),
442a4f63
SB
6192 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6193 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6194 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6195 btrfs_dev_stat_read(dev,
6196 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6197 btrfs_dev_stat_read(dev,
6198 BTRFS_DEV_STAT_GENERATION_ERRS));
6199}
c11d2c23 6200
733f4fbb
SB
6201static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6202{
a98cdb85
SB
6203 int i;
6204
6205 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6206 if (btrfs_dev_stat_read(dev, i) != 0)
6207 break;
6208 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6209 return; /* all values == 0, suppress message */
6210
606686ee
JB
6211 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6212 rcu_str_deref(dev->name),
733f4fbb
SB
6213 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6214 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6215 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6216 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6217 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6218}
6219
c11d2c23 6220int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6221 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6222{
6223 struct btrfs_device *dev;
6224 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6225 int i;
6226
6227 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6228 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6229 mutex_unlock(&fs_devices->device_list_mutex);
6230
6231 if (!dev) {
6232 printk(KERN_WARNING
6233 "btrfs: get dev_stats failed, device not found\n");
6234 return -ENODEV;
733f4fbb
SB
6235 } else if (!dev->dev_stats_valid) {
6236 printk(KERN_WARNING
6237 "btrfs: get dev_stats failed, not yet valid\n");
6238 return -ENODEV;
b27f7c0c 6239 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6240 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6241 if (stats->nr_items > i)
6242 stats->values[i] =
6243 btrfs_dev_stat_read_and_reset(dev, i);
6244 else
6245 btrfs_dev_stat_reset(dev, i);
6246 }
6247 } else {
6248 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6249 if (stats->nr_items > i)
6250 stats->values[i] = btrfs_dev_stat_read(dev, i);
6251 }
6252 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6253 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6254 return 0;
6255}
a8a6dab7
SB
6256
6257int btrfs_scratch_superblock(struct btrfs_device *device)
6258{
6259 struct buffer_head *bh;
6260 struct btrfs_super_block *disk_super;
6261
6262 bh = btrfs_read_dev_super(device->bdev);
6263 if (!bh)
6264 return -EINVAL;
6265 disk_super = (struct btrfs_super_block *)bh->b_data;
6266
6267 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6268 set_buffer_dirty(bh);
6269 sync_dirty_buffer(bh);
6270 brelse(bh);
6271
6272 return 0;
6273}