]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: fix unprotected device->bytes_used update
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 77 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
78 INIT_LIST_HEAD(&fs_devs->alloc_list);
79 INIT_LIST_HEAD(&fs_devs->list);
80
81 return fs_devs;
82}
83
84/**
85 * alloc_fs_devices - allocate struct btrfs_fs_devices
86 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
87 * generated.
88 *
89 * Return: a pointer to a new &struct btrfs_fs_devices on success;
90 * ERR_PTR() on error. Returned struct is not linked onto any lists and
91 * can be destroyed with kfree() right away.
92 */
93static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
94{
95 struct btrfs_fs_devices *fs_devs;
96
97 fs_devs = __alloc_fs_devices();
98 if (IS_ERR(fs_devs))
99 return fs_devs;
100
101 if (fsid)
102 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
103 else
104 generate_random_uuid(fs_devs->fsid);
105
106 return fs_devs;
107}
108
e4404d6e
YZ
109static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
110{
111 struct btrfs_device *device;
112 WARN_ON(fs_devices->opened);
113 while (!list_empty(&fs_devices->devices)) {
114 device = list_entry(fs_devices->devices.next,
115 struct btrfs_device, dev_list);
116 list_del(&device->dev_list);
606686ee 117 rcu_string_free(device->name);
e4404d6e
YZ
118 kfree(device);
119 }
120 kfree(fs_devices);
121}
122
b8b8ff59
LC
123static void btrfs_kobject_uevent(struct block_device *bdev,
124 enum kobject_action action)
125{
126 int ret;
127
128 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
129 if (ret)
efe120a0 130 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
131 action,
132 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
133 &disk_to_dev(bdev->bd_disk)->kobj);
134}
135
143bede5 136void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
137{
138 struct btrfs_fs_devices *fs_devices;
8a4b83cc 139
2b82032c
YZ
140 while (!list_empty(&fs_uuids)) {
141 fs_devices = list_entry(fs_uuids.next,
142 struct btrfs_fs_devices, list);
143 list_del(&fs_devices->list);
e4404d6e 144 free_fs_devices(fs_devices);
8a4b83cc 145 }
8a4b83cc
CM
146}
147
12bd2fc0
ID
148static struct btrfs_device *__alloc_device(void)
149{
150 struct btrfs_device *dev;
151
152 dev = kzalloc(sizeof(*dev), GFP_NOFS);
153 if (!dev)
154 return ERR_PTR(-ENOMEM);
155
156 INIT_LIST_HEAD(&dev->dev_list);
157 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 158 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
159
160 spin_lock_init(&dev->io_lock);
161
162 spin_lock_init(&dev->reada_lock);
163 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 164 atomic_set(&dev->dev_stats_ccnt, 0);
12bd2fc0
ID
165 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
166 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
167
168 return dev;
169}
170
a1b32a59
CM
171static noinline struct btrfs_device *__find_device(struct list_head *head,
172 u64 devid, u8 *uuid)
8a4b83cc
CM
173{
174 struct btrfs_device *dev;
8a4b83cc 175
c6e30871 176 list_for_each_entry(dev, head, dev_list) {
a443755f 177 if (dev->devid == devid &&
8f18cf13 178 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 179 return dev;
a443755f 180 }
8a4b83cc
CM
181 }
182 return NULL;
183}
184
a1b32a59 185static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 186{
8a4b83cc
CM
187 struct btrfs_fs_devices *fs_devices;
188
c6e30871 189 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
190 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
191 return fs_devices;
192 }
193 return NULL;
194}
195
beaf8ab3
SB
196static int
197btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
198 int flush, struct block_device **bdev,
199 struct buffer_head **bh)
200{
201 int ret;
202
203 *bdev = blkdev_get_by_path(device_path, flags, holder);
204
205 if (IS_ERR(*bdev)) {
206 ret = PTR_ERR(*bdev);
efe120a0 207 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
208 goto error;
209 }
210
211 if (flush)
212 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
213 ret = set_blocksize(*bdev, 4096);
214 if (ret) {
215 blkdev_put(*bdev, flags);
216 goto error;
217 }
218 invalidate_bdev(*bdev);
219 *bh = btrfs_read_dev_super(*bdev);
220 if (!*bh) {
221 ret = -EINVAL;
222 blkdev_put(*bdev, flags);
223 goto error;
224 }
225
226 return 0;
227
228error:
229 *bdev = NULL;
230 *bh = NULL;
231 return ret;
232}
233
ffbd517d
CM
234static void requeue_list(struct btrfs_pending_bios *pending_bios,
235 struct bio *head, struct bio *tail)
236{
237
238 struct bio *old_head;
239
240 old_head = pending_bios->head;
241 pending_bios->head = head;
242 if (pending_bios->tail)
243 tail->bi_next = old_head;
244 else
245 pending_bios->tail = tail;
246}
247
8b712842
CM
248/*
249 * we try to collect pending bios for a device so we don't get a large
250 * number of procs sending bios down to the same device. This greatly
251 * improves the schedulers ability to collect and merge the bios.
252 *
253 * But, it also turns into a long list of bios to process and that is sure
254 * to eventually make the worker thread block. The solution here is to
255 * make some progress and then put this work struct back at the end of
256 * the list if the block device is congested. This way, multiple devices
257 * can make progress from a single worker thread.
258 */
143bede5 259static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
260{
261 struct bio *pending;
262 struct backing_dev_info *bdi;
b64a2851 263 struct btrfs_fs_info *fs_info;
ffbd517d 264 struct btrfs_pending_bios *pending_bios;
8b712842
CM
265 struct bio *tail;
266 struct bio *cur;
267 int again = 0;
ffbd517d 268 unsigned long num_run;
d644d8a1 269 unsigned long batch_run = 0;
b64a2851 270 unsigned long limit;
b765ead5 271 unsigned long last_waited = 0;
d84275c9 272 int force_reg = 0;
0e588859 273 int sync_pending = 0;
211588ad
CM
274 struct blk_plug plug;
275
276 /*
277 * this function runs all the bios we've collected for
278 * a particular device. We don't want to wander off to
279 * another device without first sending all of these down.
280 * So, setup a plug here and finish it off before we return
281 */
282 blk_start_plug(&plug);
8b712842 283
bedf762b 284 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
285 fs_info = device->dev_root->fs_info;
286 limit = btrfs_async_submit_limit(fs_info);
287 limit = limit * 2 / 3;
288
8b712842
CM
289loop:
290 spin_lock(&device->io_lock);
291
a6837051 292loop_lock:
d84275c9 293 num_run = 0;
ffbd517d 294
8b712842
CM
295 /* take all the bios off the list at once and process them
296 * later on (without the lock held). But, remember the
297 * tail and other pointers so the bios can be properly reinserted
298 * into the list if we hit congestion
299 */
d84275c9 300 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 301 pending_bios = &device->pending_sync_bios;
d84275c9
CM
302 force_reg = 1;
303 } else {
ffbd517d 304 pending_bios = &device->pending_bios;
d84275c9
CM
305 force_reg = 0;
306 }
ffbd517d
CM
307
308 pending = pending_bios->head;
309 tail = pending_bios->tail;
8b712842 310 WARN_ON(pending && !tail);
8b712842
CM
311
312 /*
313 * if pending was null this time around, no bios need processing
314 * at all and we can stop. Otherwise it'll loop back up again
315 * and do an additional check so no bios are missed.
316 *
317 * device->running_pending is used to synchronize with the
318 * schedule_bio code.
319 */
ffbd517d
CM
320 if (device->pending_sync_bios.head == NULL &&
321 device->pending_bios.head == NULL) {
8b712842
CM
322 again = 0;
323 device->running_pending = 0;
ffbd517d
CM
324 } else {
325 again = 1;
326 device->running_pending = 1;
8b712842 327 }
ffbd517d
CM
328
329 pending_bios->head = NULL;
330 pending_bios->tail = NULL;
331
8b712842
CM
332 spin_unlock(&device->io_lock);
333
d397712b 334 while (pending) {
ffbd517d
CM
335
336 rmb();
d84275c9
CM
337 /* we want to work on both lists, but do more bios on the
338 * sync list than the regular list
339 */
340 if ((num_run > 32 &&
341 pending_bios != &device->pending_sync_bios &&
342 device->pending_sync_bios.head) ||
343 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
344 device->pending_bios.head)) {
ffbd517d
CM
345 spin_lock(&device->io_lock);
346 requeue_list(pending_bios, pending, tail);
347 goto loop_lock;
348 }
349
8b712842
CM
350 cur = pending;
351 pending = pending->bi_next;
352 cur->bi_next = NULL;
b64a2851 353
66657b31 354 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
355 waitqueue_active(&fs_info->async_submit_wait))
356 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
357
358 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 359
2ab1ba68
CM
360 /*
361 * if we're doing the sync list, record that our
362 * plug has some sync requests on it
363 *
364 * If we're doing the regular list and there are
365 * sync requests sitting around, unplug before
366 * we add more
367 */
368 if (pending_bios == &device->pending_sync_bios) {
369 sync_pending = 1;
370 } else if (sync_pending) {
371 blk_finish_plug(&plug);
372 blk_start_plug(&plug);
373 sync_pending = 0;
374 }
375
21adbd5c 376 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
377 num_run++;
378 batch_run++;
7eaceacc 379 if (need_resched())
ffbd517d 380 cond_resched();
8b712842
CM
381
382 /*
383 * we made progress, there is more work to do and the bdi
384 * is now congested. Back off and let other work structs
385 * run instead
386 */
57fd5a5f 387 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 388 fs_info->fs_devices->open_devices > 1) {
b765ead5 389 struct io_context *ioc;
8b712842 390
b765ead5
CM
391 ioc = current->io_context;
392
393 /*
394 * the main goal here is that we don't want to
395 * block if we're going to be able to submit
396 * more requests without blocking.
397 *
398 * This code does two great things, it pokes into
399 * the elevator code from a filesystem _and_
400 * it makes assumptions about how batching works.
401 */
402 if (ioc && ioc->nr_batch_requests > 0 &&
403 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
404 (last_waited == 0 ||
405 ioc->last_waited == last_waited)) {
406 /*
407 * we want to go through our batch of
408 * requests and stop. So, we copy out
409 * the ioc->last_waited time and test
410 * against it before looping
411 */
412 last_waited = ioc->last_waited;
7eaceacc 413 if (need_resched())
ffbd517d 414 cond_resched();
b765ead5
CM
415 continue;
416 }
8b712842 417 spin_lock(&device->io_lock);
ffbd517d 418 requeue_list(pending_bios, pending, tail);
a6837051 419 device->running_pending = 1;
8b712842
CM
420
421 spin_unlock(&device->io_lock);
a8c93d4e
QW
422 btrfs_queue_work(fs_info->submit_workers,
423 &device->work);
8b712842
CM
424 goto done;
425 }
d85c8a6f
CM
426 /* unplug every 64 requests just for good measure */
427 if (batch_run % 64 == 0) {
428 blk_finish_plug(&plug);
429 blk_start_plug(&plug);
430 sync_pending = 0;
431 }
8b712842 432 }
ffbd517d 433
51684082
CM
434 cond_resched();
435 if (again)
436 goto loop;
437
438 spin_lock(&device->io_lock);
439 if (device->pending_bios.head || device->pending_sync_bios.head)
440 goto loop_lock;
441 spin_unlock(&device->io_lock);
442
8b712842 443done:
211588ad 444 blk_finish_plug(&plug);
8b712842
CM
445}
446
b2950863 447static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
448{
449 struct btrfs_device *device;
450
451 device = container_of(work, struct btrfs_device, work);
452 run_scheduled_bios(device);
453}
454
60999ca4
DS
455/*
456 * Add new device to list of registered devices
457 *
458 * Returns:
459 * 1 - first time device is seen
460 * 0 - device already known
461 * < 0 - error
462 */
a1b32a59 463static noinline int device_list_add(const char *path,
8a4b83cc
CM
464 struct btrfs_super_block *disk_super,
465 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
466{
467 struct btrfs_device *device;
468 struct btrfs_fs_devices *fs_devices;
606686ee 469 struct rcu_string *name;
60999ca4 470 int ret = 0;
8a4b83cc
CM
471 u64 found_transid = btrfs_super_generation(disk_super);
472
473 fs_devices = find_fsid(disk_super->fsid);
474 if (!fs_devices) {
2208a378
ID
475 fs_devices = alloc_fs_devices(disk_super->fsid);
476 if (IS_ERR(fs_devices))
477 return PTR_ERR(fs_devices);
478
8a4b83cc 479 list_add(&fs_devices->list, &fs_uuids);
2208a378 480
8a4b83cc
CM
481 device = NULL;
482 } else {
a443755f
CM
483 device = __find_device(&fs_devices->devices, devid,
484 disk_super->dev_item.uuid);
8a4b83cc 485 }
443f24fe 486
8a4b83cc 487 if (!device) {
2b82032c
YZ
488 if (fs_devices->opened)
489 return -EBUSY;
490
12bd2fc0
ID
491 device = btrfs_alloc_device(NULL, &devid,
492 disk_super->dev_item.uuid);
493 if (IS_ERR(device)) {
8a4b83cc 494 /* we can safely leave the fs_devices entry around */
12bd2fc0 495 return PTR_ERR(device);
8a4b83cc 496 }
606686ee
JB
497
498 name = rcu_string_strdup(path, GFP_NOFS);
499 if (!name) {
8a4b83cc
CM
500 kfree(device);
501 return -ENOMEM;
502 }
606686ee 503 rcu_assign_pointer(device->name, name);
90519d66 504
e5e9a520 505 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 506 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 507 fs_devices->num_devices++;
e5e9a520
CM
508 mutex_unlock(&fs_devices->device_list_mutex);
509
60999ca4 510 ret = 1;
2b82032c 511 device->fs_devices = fs_devices;
606686ee 512 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
513 /*
514 * When FS is already mounted.
515 * 1. If you are here and if the device->name is NULL that
516 * means this device was missing at time of FS mount.
517 * 2. If you are here and if the device->name is different
518 * from 'path' that means either
519 * a. The same device disappeared and reappeared with
520 * different name. or
521 * b. The missing-disk-which-was-replaced, has
522 * reappeared now.
523 *
524 * We must allow 1 and 2a above. But 2b would be a spurious
525 * and unintentional.
526 *
527 * Further in case of 1 and 2a above, the disk at 'path'
528 * would have missed some transaction when it was away and
529 * in case of 2a the stale bdev has to be updated as well.
530 * 2b must not be allowed at all time.
531 */
532
533 /*
534 * As of now don't allow update to btrfs_fs_device through
535 * the btrfs dev scan cli, after FS has been mounted.
536 */
77bdae4d 537 if (fs_devices->opened) {
b96de000 538 return -EBUSY;
77bdae4d
AJ
539 } else {
540 /*
541 * That is if the FS is _not_ mounted and if you
542 * are here, that means there is more than one
543 * disk with same uuid and devid.We keep the one
544 * with larger generation number or the last-in if
545 * generation are equal.
546 */
547 if (found_transid < device->generation)
548 return -EEXIST;
549 }
b96de000 550
606686ee 551 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
552 if (!name)
553 return -ENOMEM;
606686ee
JB
554 rcu_string_free(device->name);
555 rcu_assign_pointer(device->name, name);
cd02dca5
CM
556 if (device->missing) {
557 fs_devices->missing_devices--;
558 device->missing = 0;
559 }
8a4b83cc
CM
560 }
561
77bdae4d
AJ
562 /*
563 * Unmount does not free the btrfs_device struct but would zero
564 * generation along with most of the other members. So just update
565 * it back. We need it to pick the disk with largest generation
566 * (as above).
567 */
568 if (!fs_devices->opened)
569 device->generation = found_transid;
570
8a4b83cc 571 *fs_devices_ret = fs_devices;
60999ca4
DS
572
573 return ret;
8a4b83cc
CM
574}
575
e4404d6e
YZ
576static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
577{
578 struct btrfs_fs_devices *fs_devices;
579 struct btrfs_device *device;
580 struct btrfs_device *orig_dev;
581
2208a378
ID
582 fs_devices = alloc_fs_devices(orig->fsid);
583 if (IS_ERR(fs_devices))
584 return fs_devices;
e4404d6e 585
02db0844 586 fs_devices->total_devices = orig->total_devices;
e4404d6e 587
46224705 588 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 589 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
590 struct rcu_string *name;
591
12bd2fc0
ID
592 device = btrfs_alloc_device(NULL, &orig_dev->devid,
593 orig_dev->uuid);
594 if (IS_ERR(device))
e4404d6e
YZ
595 goto error;
596
606686ee
JB
597 /*
598 * This is ok to do without rcu read locked because we hold the
599 * uuid mutex so nothing we touch in here is going to disappear.
600 */
e755f780
AJ
601 if (orig_dev->name) {
602 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
603 if (!name) {
604 kfree(device);
605 goto error;
606 }
607 rcu_assign_pointer(device->name, name);
fd2696f3 608 }
e4404d6e 609
e4404d6e
YZ
610 list_add(&device->dev_list, &fs_devices->devices);
611 device->fs_devices = fs_devices;
612 fs_devices->num_devices++;
613 }
614 return fs_devices;
615error:
616 free_fs_devices(fs_devices);
617 return ERR_PTR(-ENOMEM);
618}
619
8dabb742
SB
620void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
621 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 622{
c6e30871 623 struct btrfs_device *device, *next;
443f24fe 624 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 625
dfe25020
CM
626 mutex_lock(&uuid_mutex);
627again:
46224705 628 /* This is the initialized path, it is safe to release the devices. */
c6e30871 629 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 630 if (device->in_fs_metadata) {
63a212ab 631 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
632 (!latest_dev ||
633 device->generation > latest_dev->generation)) {
634 latest_dev = device;
a6b0d5c8 635 }
2b82032c 636 continue;
a6b0d5c8 637 }
2b82032c 638
8dabb742
SB
639 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
640 /*
641 * In the first step, keep the device which has
642 * the correct fsid and the devid that is used
643 * for the dev_replace procedure.
644 * In the second step, the dev_replace state is
645 * read from the device tree and it is known
646 * whether the procedure is really active or
647 * not, which means whether this device is
648 * used or whether it should be removed.
649 */
650 if (step == 0 || device->is_tgtdev_for_dev_replace) {
651 continue;
652 }
653 }
2b82032c 654 if (device->bdev) {
d4d77629 655 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
656 device->bdev = NULL;
657 fs_devices->open_devices--;
658 }
659 if (device->writeable) {
660 list_del_init(&device->dev_alloc_list);
661 device->writeable = 0;
8dabb742
SB
662 if (!device->is_tgtdev_for_dev_replace)
663 fs_devices->rw_devices--;
2b82032c 664 }
e4404d6e
YZ
665 list_del_init(&device->dev_list);
666 fs_devices->num_devices--;
606686ee 667 rcu_string_free(device->name);
e4404d6e 668 kfree(device);
dfe25020 669 }
2b82032c
YZ
670
671 if (fs_devices->seed) {
672 fs_devices = fs_devices->seed;
2b82032c
YZ
673 goto again;
674 }
675
443f24fe 676 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 677
dfe25020 678 mutex_unlock(&uuid_mutex);
dfe25020 679}
a0af469b 680
1f78160c
XG
681static void __free_device(struct work_struct *work)
682{
683 struct btrfs_device *device;
684
685 device = container_of(work, struct btrfs_device, rcu_work);
686
687 if (device->bdev)
688 blkdev_put(device->bdev, device->mode);
689
606686ee 690 rcu_string_free(device->name);
1f78160c
XG
691 kfree(device);
692}
693
694static void free_device(struct rcu_head *head)
695{
696 struct btrfs_device *device;
697
698 device = container_of(head, struct btrfs_device, rcu);
699
700 INIT_WORK(&device->rcu_work, __free_device);
701 schedule_work(&device->rcu_work);
702}
703
2b82032c 704static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 705{
8a4b83cc 706 struct btrfs_device *device;
e4404d6e 707
2b82032c
YZ
708 if (--fs_devices->opened > 0)
709 return 0;
8a4b83cc 710
c9513edb 711 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 712 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 713 struct btrfs_device *new_device;
606686ee 714 struct rcu_string *name;
1f78160c
XG
715
716 if (device->bdev)
a0af469b 717 fs_devices->open_devices--;
1f78160c 718
f747cab7
ID
719 if (device->writeable &&
720 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
721 list_del_init(&device->dev_alloc_list);
722 fs_devices->rw_devices--;
723 }
724
726551eb
JB
725 if (device->missing)
726 fs_devices->missing_devices--;
d5e2003c 727
a1e8780a
ID
728 new_device = btrfs_alloc_device(NULL, &device->devid,
729 device->uuid);
730 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
731
732 /* Safe because we are under uuid_mutex */
99f5944b
JB
733 if (device->name) {
734 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 735 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
736 rcu_assign_pointer(new_device->name, name);
737 }
a1e8780a 738
1f78160c 739 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 740 new_device->fs_devices = device->fs_devices;
1f78160c
XG
741
742 call_rcu(&device->rcu, free_device);
8a4b83cc 743 }
c9513edb
XG
744 mutex_unlock(&fs_devices->device_list_mutex);
745
e4404d6e
YZ
746 WARN_ON(fs_devices->open_devices);
747 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
748 fs_devices->opened = 0;
749 fs_devices->seeding = 0;
2b82032c 750
8a4b83cc
CM
751 return 0;
752}
753
2b82032c
YZ
754int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
755{
e4404d6e 756 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
757 int ret;
758
759 mutex_lock(&uuid_mutex);
760 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
761 if (!fs_devices->opened) {
762 seed_devices = fs_devices->seed;
763 fs_devices->seed = NULL;
764 }
2b82032c 765 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
766
767 while (seed_devices) {
768 fs_devices = seed_devices;
769 seed_devices = fs_devices->seed;
770 __btrfs_close_devices(fs_devices);
771 free_fs_devices(fs_devices);
772 }
bc178622
ES
773 /*
774 * Wait for rcu kworkers under __btrfs_close_devices
775 * to finish all blkdev_puts so device is really
776 * free when umount is done.
777 */
778 rcu_barrier();
2b82032c
YZ
779 return ret;
780}
781
e4404d6e
YZ
782static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
783 fmode_t flags, void *holder)
8a4b83cc 784{
d5e2003c 785 struct request_queue *q;
8a4b83cc
CM
786 struct block_device *bdev;
787 struct list_head *head = &fs_devices->devices;
8a4b83cc 788 struct btrfs_device *device;
443f24fe 789 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
790 struct buffer_head *bh;
791 struct btrfs_super_block *disk_super;
a0af469b 792 u64 devid;
2b82032c 793 int seeding = 1;
a0af469b 794 int ret = 0;
8a4b83cc 795
d4d77629
TH
796 flags |= FMODE_EXCL;
797
c6e30871 798 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
799 if (device->bdev)
800 continue;
dfe25020
CM
801 if (!device->name)
802 continue;
803
f63e0cca
ES
804 /* Just open everything we can; ignore failures here */
805 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
806 &bdev, &bh))
beaf8ab3 807 continue;
a0af469b
CM
808
809 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 810 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
811 if (devid != device->devid)
812 goto error_brelse;
813
2b82032c
YZ
814 if (memcmp(device->uuid, disk_super->dev_item.uuid,
815 BTRFS_UUID_SIZE))
816 goto error_brelse;
817
818 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
819 if (!latest_dev ||
820 device->generation > latest_dev->generation)
821 latest_dev = device;
a0af469b 822
2b82032c
YZ
823 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
824 device->writeable = 0;
825 } else {
826 device->writeable = !bdev_read_only(bdev);
827 seeding = 0;
828 }
829
d5e2003c 830 q = bdev_get_queue(bdev);
90180da4 831 if (blk_queue_discard(q))
d5e2003c 832 device->can_discard = 1;
d5e2003c 833
8a4b83cc 834 device->bdev = bdev;
dfe25020 835 device->in_fs_metadata = 0;
15916de8
CM
836 device->mode = flags;
837
c289811c
CM
838 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
839 fs_devices->rotating = 1;
840
a0af469b 841 fs_devices->open_devices++;
55e50e45
ID
842 if (device->writeable &&
843 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
844 fs_devices->rw_devices++;
845 list_add(&device->dev_alloc_list,
846 &fs_devices->alloc_list);
847 }
4f6c9328 848 brelse(bh);
a0af469b 849 continue;
a061fc8d 850
a0af469b
CM
851error_brelse:
852 brelse(bh);
d4d77629 853 blkdev_put(bdev, flags);
a0af469b 854 continue;
8a4b83cc 855 }
a0af469b 856 if (fs_devices->open_devices == 0) {
20bcd649 857 ret = -EINVAL;
a0af469b
CM
858 goto out;
859 }
2b82032c
YZ
860 fs_devices->seeding = seeding;
861 fs_devices->opened = 1;
443f24fe 862 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 863 fs_devices->total_rw_bytes = 0;
a0af469b 864out:
2b82032c
YZ
865 return ret;
866}
867
868int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 869 fmode_t flags, void *holder)
2b82032c
YZ
870{
871 int ret;
872
873 mutex_lock(&uuid_mutex);
874 if (fs_devices->opened) {
e4404d6e
YZ
875 fs_devices->opened++;
876 ret = 0;
2b82032c 877 } else {
15916de8 878 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 879 }
8a4b83cc 880 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
881 return ret;
882}
883
6f60cbd3
DS
884/*
885 * Look for a btrfs signature on a device. This may be called out of the mount path
886 * and we are not allowed to call set_blocksize during the scan. The superblock
887 * is read via pagecache
888 */
97288f2c 889int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
890 struct btrfs_fs_devices **fs_devices_ret)
891{
892 struct btrfs_super_block *disk_super;
893 struct block_device *bdev;
6f60cbd3
DS
894 struct page *page;
895 void *p;
896 int ret = -EINVAL;
8a4b83cc 897 u64 devid;
f2984462 898 u64 transid;
02db0844 899 u64 total_devices;
6f60cbd3
DS
900 u64 bytenr;
901 pgoff_t index;
8a4b83cc 902
6f60cbd3
DS
903 /*
904 * we would like to check all the supers, but that would make
905 * a btrfs mount succeed after a mkfs from a different FS.
906 * So, we need to add a special mount option to scan for
907 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
908 */
909 bytenr = btrfs_sb_offset(0);
d4d77629 910 flags |= FMODE_EXCL;
10f6327b 911 mutex_lock(&uuid_mutex);
6f60cbd3
DS
912
913 bdev = blkdev_get_by_path(path, flags, holder);
914
915 if (IS_ERR(bdev)) {
916 ret = PTR_ERR(bdev);
beaf8ab3 917 goto error;
6f60cbd3
DS
918 }
919
920 /* make sure our super fits in the device */
921 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
922 goto error_bdev_put;
923
924 /* make sure our super fits in the page */
925 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
926 goto error_bdev_put;
927
928 /* make sure our super doesn't straddle pages on disk */
929 index = bytenr >> PAGE_CACHE_SHIFT;
930 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
931 goto error_bdev_put;
932
933 /* pull in the page with our super */
934 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
935 index, GFP_NOFS);
936
937 if (IS_ERR_OR_NULL(page))
938 goto error_bdev_put;
939
940 p = kmap(page);
941
942 /* align our pointer to the offset of the super block */
943 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
944
945 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 946 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
947 goto error_unmap;
948
a343832f 949 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 950 transid = btrfs_super_generation(disk_super);
02db0844 951 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 952
8a4b83cc 953 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
954 if (ret > 0) {
955 if (disk_super->label[0]) {
956 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
957 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
958 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
959 } else {
960 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
961 }
962
963 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
964 ret = 0;
965 }
02db0844
JB
966 if (!ret && fs_devices_ret)
967 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
968
969error_unmap:
970 kunmap(page);
971 page_cache_release(page);
972
973error_bdev_put:
d4d77629 974 blkdev_put(bdev, flags);
8a4b83cc 975error:
beaf8ab3 976 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
977 return ret;
978}
0b86a832 979
6d07bcec
MX
980/* helper to account the used device space in the range */
981int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
982 u64 end, u64 *length)
983{
984 struct btrfs_key key;
985 struct btrfs_root *root = device->dev_root;
986 struct btrfs_dev_extent *dev_extent;
987 struct btrfs_path *path;
988 u64 extent_end;
989 int ret;
990 int slot;
991 struct extent_buffer *l;
992
993 *length = 0;
994
63a212ab 995 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
996 return 0;
997
998 path = btrfs_alloc_path();
999 if (!path)
1000 return -ENOMEM;
1001 path->reada = 2;
1002
1003 key.objectid = device->devid;
1004 key.offset = start;
1005 key.type = BTRFS_DEV_EXTENT_KEY;
1006
1007 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1008 if (ret < 0)
1009 goto out;
1010 if (ret > 0) {
1011 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1012 if (ret < 0)
1013 goto out;
1014 }
1015
1016 while (1) {
1017 l = path->nodes[0];
1018 slot = path->slots[0];
1019 if (slot >= btrfs_header_nritems(l)) {
1020 ret = btrfs_next_leaf(root, path);
1021 if (ret == 0)
1022 continue;
1023 if (ret < 0)
1024 goto out;
1025
1026 break;
1027 }
1028 btrfs_item_key_to_cpu(l, &key, slot);
1029
1030 if (key.objectid < device->devid)
1031 goto next;
1032
1033 if (key.objectid > device->devid)
1034 break;
1035
962a298f 1036 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1037 goto next;
1038
1039 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1040 extent_end = key.offset + btrfs_dev_extent_length(l,
1041 dev_extent);
1042 if (key.offset <= start && extent_end > end) {
1043 *length = end - start + 1;
1044 break;
1045 } else if (key.offset <= start && extent_end > start)
1046 *length += extent_end - start;
1047 else if (key.offset > start && extent_end <= end)
1048 *length += extent_end - key.offset;
1049 else if (key.offset > start && key.offset <= end) {
1050 *length += end - key.offset + 1;
1051 break;
1052 } else if (key.offset > end)
1053 break;
1054
1055next:
1056 path->slots[0]++;
1057 }
1058 ret = 0;
1059out:
1060 btrfs_free_path(path);
1061 return ret;
1062}
1063
6df9a95e
JB
1064static int contains_pending_extent(struct btrfs_trans_handle *trans,
1065 struct btrfs_device *device,
1066 u64 *start, u64 len)
1067{
1068 struct extent_map *em;
1069 int ret = 0;
1070
1071 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1072 struct map_lookup *map;
1073 int i;
1074
1075 map = (struct map_lookup *)em->bdev;
1076 for (i = 0; i < map->num_stripes; i++) {
1077 if (map->stripes[i].dev != device)
1078 continue;
1079 if (map->stripes[i].physical >= *start + len ||
1080 map->stripes[i].physical + em->orig_block_len <=
1081 *start)
1082 continue;
1083 *start = map->stripes[i].physical +
1084 em->orig_block_len;
1085 ret = 1;
1086 }
1087 }
1088
1089 return ret;
1090}
1091
1092
0b86a832 1093/*
7bfc837d 1094 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1095 * @device: the device which we search the free space in
1096 * @num_bytes: the size of the free space that we need
1097 * @start: store the start of the free space.
1098 * @len: the size of the free space. that we find, or the size of the max
1099 * free space if we don't find suitable free space
1100 *
0b86a832
CM
1101 * this uses a pretty simple search, the expectation is that it is
1102 * called very infrequently and that a given device has a small number
1103 * of extents
7bfc837d
MX
1104 *
1105 * @start is used to store the start of the free space if we find. But if we
1106 * don't find suitable free space, it will be used to store the start position
1107 * of the max free space.
1108 *
1109 * @len is used to store the size of the free space that we find.
1110 * But if we don't find suitable free space, it is used to store the size of
1111 * the max free space.
0b86a832 1112 */
6df9a95e
JB
1113int find_free_dev_extent(struct btrfs_trans_handle *trans,
1114 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1115 u64 *start, u64 *len)
0b86a832
CM
1116{
1117 struct btrfs_key key;
1118 struct btrfs_root *root = device->dev_root;
7bfc837d 1119 struct btrfs_dev_extent *dev_extent;
2b82032c 1120 struct btrfs_path *path;
7bfc837d
MX
1121 u64 hole_size;
1122 u64 max_hole_start;
1123 u64 max_hole_size;
1124 u64 extent_end;
1125 u64 search_start;
0b86a832
CM
1126 u64 search_end = device->total_bytes;
1127 int ret;
7bfc837d 1128 int slot;
0b86a832
CM
1129 struct extent_buffer *l;
1130
0b86a832
CM
1131 /* FIXME use last free of some kind */
1132
8a4b83cc
CM
1133 /* we don't want to overwrite the superblock on the drive,
1134 * so we make sure to start at an offset of at least 1MB
1135 */
a9c9bf68 1136 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1137
6df9a95e
JB
1138 path = btrfs_alloc_path();
1139 if (!path)
1140 return -ENOMEM;
1141again:
7bfc837d
MX
1142 max_hole_start = search_start;
1143 max_hole_size = 0;
38c01b96 1144 hole_size = 0;
7bfc837d 1145
63a212ab 1146 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1147 ret = -ENOSPC;
6df9a95e 1148 goto out;
7bfc837d
MX
1149 }
1150
7bfc837d 1151 path->reada = 2;
6df9a95e
JB
1152 path->search_commit_root = 1;
1153 path->skip_locking = 1;
7bfc837d 1154
0b86a832
CM
1155 key.objectid = device->devid;
1156 key.offset = search_start;
1157 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1158
125ccb0a 1159 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1160 if (ret < 0)
7bfc837d 1161 goto out;
1fcbac58
YZ
1162 if (ret > 0) {
1163 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1164 if (ret < 0)
7bfc837d 1165 goto out;
1fcbac58 1166 }
7bfc837d 1167
0b86a832
CM
1168 while (1) {
1169 l = path->nodes[0];
1170 slot = path->slots[0];
1171 if (slot >= btrfs_header_nritems(l)) {
1172 ret = btrfs_next_leaf(root, path);
1173 if (ret == 0)
1174 continue;
1175 if (ret < 0)
7bfc837d
MX
1176 goto out;
1177
1178 break;
0b86a832
CM
1179 }
1180 btrfs_item_key_to_cpu(l, &key, slot);
1181
1182 if (key.objectid < device->devid)
1183 goto next;
1184
1185 if (key.objectid > device->devid)
7bfc837d 1186 break;
0b86a832 1187
962a298f 1188 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1189 goto next;
9779b72f 1190
7bfc837d
MX
1191 if (key.offset > search_start) {
1192 hole_size = key.offset - search_start;
9779b72f 1193
6df9a95e
JB
1194 /*
1195 * Have to check before we set max_hole_start, otherwise
1196 * we could end up sending back this offset anyway.
1197 */
1198 if (contains_pending_extent(trans, device,
1199 &search_start,
1200 hole_size))
1201 hole_size = 0;
1202
7bfc837d
MX
1203 if (hole_size > max_hole_size) {
1204 max_hole_start = search_start;
1205 max_hole_size = hole_size;
1206 }
9779b72f 1207
7bfc837d
MX
1208 /*
1209 * If this free space is greater than which we need,
1210 * it must be the max free space that we have found
1211 * until now, so max_hole_start must point to the start
1212 * of this free space and the length of this free space
1213 * is stored in max_hole_size. Thus, we return
1214 * max_hole_start and max_hole_size and go back to the
1215 * caller.
1216 */
1217 if (hole_size >= num_bytes) {
1218 ret = 0;
1219 goto out;
0b86a832
CM
1220 }
1221 }
0b86a832 1222
0b86a832 1223 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1224 extent_end = key.offset + btrfs_dev_extent_length(l,
1225 dev_extent);
1226 if (extent_end > search_start)
1227 search_start = extent_end;
0b86a832
CM
1228next:
1229 path->slots[0]++;
1230 cond_resched();
1231 }
0b86a832 1232
38c01b96 1233 /*
1234 * At this point, search_start should be the end of
1235 * allocated dev extents, and when shrinking the device,
1236 * search_end may be smaller than search_start.
1237 */
1238 if (search_end > search_start)
1239 hole_size = search_end - search_start;
1240
7bfc837d
MX
1241 if (hole_size > max_hole_size) {
1242 max_hole_start = search_start;
1243 max_hole_size = hole_size;
0b86a832 1244 }
0b86a832 1245
6df9a95e
JB
1246 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1247 btrfs_release_path(path);
1248 goto again;
1249 }
1250
7bfc837d
MX
1251 /* See above. */
1252 if (hole_size < num_bytes)
1253 ret = -ENOSPC;
1254 else
1255 ret = 0;
1256
1257out:
2b82032c 1258 btrfs_free_path(path);
7bfc837d 1259 *start = max_hole_start;
b2117a39 1260 if (len)
7bfc837d 1261 *len = max_hole_size;
0b86a832
CM
1262 return ret;
1263}
1264
b2950863 1265static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1266 struct btrfs_device *device,
1267 u64 start)
1268{
1269 int ret;
1270 struct btrfs_path *path;
1271 struct btrfs_root *root = device->dev_root;
1272 struct btrfs_key key;
a061fc8d
CM
1273 struct btrfs_key found_key;
1274 struct extent_buffer *leaf = NULL;
1275 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1276
1277 path = btrfs_alloc_path();
1278 if (!path)
1279 return -ENOMEM;
1280
1281 key.objectid = device->devid;
1282 key.offset = start;
1283 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1284again:
8f18cf13 1285 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1286 if (ret > 0) {
1287 ret = btrfs_previous_item(root, path, key.objectid,
1288 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1289 if (ret)
1290 goto out;
a061fc8d
CM
1291 leaf = path->nodes[0];
1292 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1293 extent = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_dev_extent);
1295 BUG_ON(found_key.offset > start || found_key.offset +
1296 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1297 key = found_key;
1298 btrfs_release_path(path);
1299 goto again;
a061fc8d
CM
1300 } else if (ret == 0) {
1301 leaf = path->nodes[0];
1302 extent = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_dev_extent);
79787eaa
JM
1304 } else {
1305 btrfs_error(root->fs_info, ret, "Slot search failed");
1306 goto out;
a061fc8d 1307 }
8f18cf13 1308
2bf64758
JB
1309 if (device->bytes_used > 0) {
1310 u64 len = btrfs_dev_extent_length(leaf, extent);
1311 device->bytes_used -= len;
1312 spin_lock(&root->fs_info->free_chunk_lock);
1313 root->fs_info->free_chunk_space += len;
1314 spin_unlock(&root->fs_info->free_chunk_lock);
1315 }
8f18cf13 1316 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1317 if (ret) {
1318 btrfs_error(root->fs_info, ret,
1319 "Failed to remove dev extent item");
1320 }
b0b802d7 1321out:
8f18cf13
CM
1322 btrfs_free_path(path);
1323 return ret;
1324}
1325
48a3b636
ES
1326static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1327 struct btrfs_device *device,
1328 u64 chunk_tree, u64 chunk_objectid,
1329 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1330{
1331 int ret;
1332 struct btrfs_path *path;
1333 struct btrfs_root *root = device->dev_root;
1334 struct btrfs_dev_extent *extent;
1335 struct extent_buffer *leaf;
1336 struct btrfs_key key;
1337
dfe25020 1338 WARN_ON(!device->in_fs_metadata);
63a212ab 1339 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1340 path = btrfs_alloc_path();
1341 if (!path)
1342 return -ENOMEM;
1343
0b86a832 1344 key.objectid = device->devid;
2b82032c 1345 key.offset = start;
0b86a832
CM
1346 key.type = BTRFS_DEV_EXTENT_KEY;
1347 ret = btrfs_insert_empty_item(trans, root, path, &key,
1348 sizeof(*extent));
2cdcecbc
MF
1349 if (ret)
1350 goto out;
0b86a832
CM
1351
1352 leaf = path->nodes[0];
1353 extent = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_dev_extent);
e17cade2
CM
1355 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1356 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1357 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1358
1359 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1360 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1361
0b86a832
CM
1362 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1363 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1364out:
0b86a832
CM
1365 btrfs_free_path(path);
1366 return ret;
1367}
1368
6df9a95e 1369static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1370{
6df9a95e
JB
1371 struct extent_map_tree *em_tree;
1372 struct extent_map *em;
1373 struct rb_node *n;
1374 u64 ret = 0;
0b86a832 1375
6df9a95e
JB
1376 em_tree = &fs_info->mapping_tree.map_tree;
1377 read_lock(&em_tree->lock);
1378 n = rb_last(&em_tree->map);
1379 if (n) {
1380 em = rb_entry(n, struct extent_map, rb_node);
1381 ret = em->start + em->len;
0b86a832 1382 }
6df9a95e
JB
1383 read_unlock(&em_tree->lock);
1384
0b86a832
CM
1385 return ret;
1386}
1387
53f10659
ID
1388static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1389 u64 *devid_ret)
0b86a832
CM
1390{
1391 int ret;
1392 struct btrfs_key key;
1393 struct btrfs_key found_key;
2b82032c
YZ
1394 struct btrfs_path *path;
1395
2b82032c
YZ
1396 path = btrfs_alloc_path();
1397 if (!path)
1398 return -ENOMEM;
0b86a832
CM
1399
1400 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1401 key.type = BTRFS_DEV_ITEM_KEY;
1402 key.offset = (u64)-1;
1403
53f10659 1404 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1405 if (ret < 0)
1406 goto error;
1407
79787eaa 1408 BUG_ON(ret == 0); /* Corruption */
0b86a832 1409
53f10659
ID
1410 ret = btrfs_previous_item(fs_info->chunk_root, path,
1411 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1412 BTRFS_DEV_ITEM_KEY);
1413 if (ret) {
53f10659 1414 *devid_ret = 1;
0b86a832
CM
1415 } else {
1416 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1417 path->slots[0]);
53f10659 1418 *devid_ret = found_key.offset + 1;
0b86a832
CM
1419 }
1420 ret = 0;
1421error:
2b82032c 1422 btrfs_free_path(path);
0b86a832
CM
1423 return ret;
1424}
1425
1426/*
1427 * the device information is stored in the chunk root
1428 * the btrfs_device struct should be fully filled in
1429 */
48a3b636
ES
1430static int btrfs_add_device(struct btrfs_trans_handle *trans,
1431 struct btrfs_root *root,
1432 struct btrfs_device *device)
0b86a832
CM
1433{
1434 int ret;
1435 struct btrfs_path *path;
1436 struct btrfs_dev_item *dev_item;
1437 struct extent_buffer *leaf;
1438 struct btrfs_key key;
1439 unsigned long ptr;
0b86a832
CM
1440
1441 root = root->fs_info->chunk_root;
1442
1443 path = btrfs_alloc_path();
1444 if (!path)
1445 return -ENOMEM;
1446
0b86a832
CM
1447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1448 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1449 key.offset = device->devid;
0b86a832
CM
1450
1451 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1452 sizeof(*dev_item));
0b86a832
CM
1453 if (ret)
1454 goto out;
1455
1456 leaf = path->nodes[0];
1457 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1458
1459 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1460 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1461 btrfs_set_device_type(leaf, dev_item, device->type);
1462 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1463 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1464 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7df69d3e 1465 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832 1466 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1467 btrfs_set_device_group(leaf, dev_item, 0);
1468 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1469 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1470 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1471
410ba3a2 1472 ptr = btrfs_device_uuid(dev_item);
e17cade2 1473 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1474 ptr = btrfs_device_fsid(dev_item);
2b82032c 1475 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1476 btrfs_mark_buffer_dirty(leaf);
0b86a832 1477
2b82032c 1478 ret = 0;
0b86a832
CM
1479out:
1480 btrfs_free_path(path);
1481 return ret;
1482}
8f18cf13 1483
5a1972bd
QW
1484/*
1485 * Function to update ctime/mtime for a given device path.
1486 * Mainly used for ctime/mtime based probe like libblkid.
1487 */
1488static void update_dev_time(char *path_name)
1489{
1490 struct file *filp;
1491
1492 filp = filp_open(path_name, O_RDWR, 0);
1493 if (!filp)
1494 return;
1495 file_update_time(filp);
1496 filp_close(filp, NULL);
1497 return;
1498}
1499
a061fc8d
CM
1500static int btrfs_rm_dev_item(struct btrfs_root *root,
1501 struct btrfs_device *device)
1502{
1503 int ret;
1504 struct btrfs_path *path;
a061fc8d 1505 struct btrfs_key key;
a061fc8d
CM
1506 struct btrfs_trans_handle *trans;
1507
1508 root = root->fs_info->chunk_root;
1509
1510 path = btrfs_alloc_path();
1511 if (!path)
1512 return -ENOMEM;
1513
a22285a6 1514 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1515 if (IS_ERR(trans)) {
1516 btrfs_free_path(path);
1517 return PTR_ERR(trans);
1518 }
a061fc8d
CM
1519 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1520 key.type = BTRFS_DEV_ITEM_KEY;
1521 key.offset = device->devid;
7d9eb12c 1522 lock_chunks(root);
a061fc8d
CM
1523
1524 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1525 if (ret < 0)
1526 goto out;
1527
1528 if (ret > 0) {
1529 ret = -ENOENT;
1530 goto out;
1531 }
1532
1533 ret = btrfs_del_item(trans, root, path);
1534 if (ret)
1535 goto out;
a061fc8d
CM
1536out:
1537 btrfs_free_path(path);
7d9eb12c 1538 unlock_chunks(root);
a061fc8d
CM
1539 btrfs_commit_transaction(trans, root);
1540 return ret;
1541}
1542
1543int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1544{
1545 struct btrfs_device *device;
2b82032c 1546 struct btrfs_device *next_device;
a061fc8d 1547 struct block_device *bdev;
dfe25020 1548 struct buffer_head *bh = NULL;
a061fc8d 1549 struct btrfs_super_block *disk_super;
1f78160c 1550 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1551 u64 all_avail;
1552 u64 devid;
2b82032c
YZ
1553 u64 num_devices;
1554 u8 *dev_uuid;
de98ced9 1555 unsigned seq;
a061fc8d 1556 int ret = 0;
1f78160c 1557 bool clear_super = false;
a061fc8d 1558
a061fc8d
CM
1559 mutex_lock(&uuid_mutex);
1560
de98ced9
MX
1561 do {
1562 seq = read_seqbegin(&root->fs_info->profiles_lock);
1563
1564 all_avail = root->fs_info->avail_data_alloc_bits |
1565 root->fs_info->avail_system_alloc_bits |
1566 root->fs_info->avail_metadata_alloc_bits;
1567 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1568
8dabb742
SB
1569 num_devices = root->fs_info->fs_devices->num_devices;
1570 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1571 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1572 WARN_ON(num_devices < 1);
1573 num_devices--;
1574 }
1575 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1576
1577 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1578 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1579 goto out;
1580 }
1581
8dabb742 1582 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1583 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1584 goto out;
1585 }
1586
53b381b3
DW
1587 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1588 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1589 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1590 goto out;
1591 }
1592 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1593 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1594 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1595 goto out;
1596 }
1597
dfe25020 1598 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1599 struct list_head *devices;
1600 struct btrfs_device *tmp;
a061fc8d 1601
dfe25020
CM
1602 device = NULL;
1603 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1604 /*
1605 * It is safe to read the devices since the volume_mutex
1606 * is held.
1607 */
c6e30871 1608 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1609 if (tmp->in_fs_metadata &&
1610 !tmp->is_tgtdev_for_dev_replace &&
1611 !tmp->bdev) {
dfe25020
CM
1612 device = tmp;
1613 break;
1614 }
1615 }
1616 bdev = NULL;
1617 bh = NULL;
1618 disk_super = NULL;
1619 if (!device) {
183860f6 1620 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1621 goto out;
1622 }
dfe25020 1623 } else {
beaf8ab3 1624 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1625 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1626 root->fs_info->bdev_holder, 0,
1627 &bdev, &bh);
1628 if (ret)
dfe25020 1629 goto out;
dfe25020 1630 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1631 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1632 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1633 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1634 disk_super->fsid);
dfe25020
CM
1635 if (!device) {
1636 ret = -ENOENT;
1637 goto error_brelse;
1638 }
2b82032c 1639 }
dfe25020 1640
63a212ab 1641 if (device->is_tgtdev_for_dev_replace) {
183860f6 1642 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1643 goto error_brelse;
1644 }
1645
2b82032c 1646 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1647 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1648 goto error_brelse;
1649 }
1650
1651 if (device->writeable) {
0c1daee0 1652 lock_chunks(root);
2b82032c 1653 list_del_init(&device->dev_alloc_list);
0c1daee0 1654 unlock_chunks(root);
2b82032c 1655 root->fs_info->fs_devices->rw_devices--;
1f78160c 1656 clear_super = true;
dfe25020 1657 }
a061fc8d 1658
d7901554 1659 mutex_unlock(&uuid_mutex);
a061fc8d 1660 ret = btrfs_shrink_device(device, 0);
d7901554 1661 mutex_lock(&uuid_mutex);
a061fc8d 1662 if (ret)
9b3517e9 1663 goto error_undo;
a061fc8d 1664
63a212ab
SB
1665 /*
1666 * TODO: the superblock still includes this device in its num_devices
1667 * counter although write_all_supers() is not locked out. This
1668 * could give a filesystem state which requires a degraded mount.
1669 */
a061fc8d
CM
1670 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1671 if (ret)
9b3517e9 1672 goto error_undo;
a061fc8d 1673
2b82032c 1674 device->in_fs_metadata = 0;
aa1b8cd4 1675 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1676
1677 /*
1678 * the device list mutex makes sure that we don't change
1679 * the device list while someone else is writing out all
d7306801
FDBM
1680 * the device supers. Whoever is writing all supers, should
1681 * lock the device list mutex before getting the number of
1682 * devices in the super block (super_copy). Conversely,
1683 * whoever updates the number of devices in the super block
1684 * (super_copy) should hold the device list mutex.
e5e9a520 1685 */
1f78160c
XG
1686
1687 cur_devices = device->fs_devices;
e5e9a520 1688 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1689 list_del_rcu(&device->dev_list);
e5e9a520 1690
e4404d6e 1691 device->fs_devices->num_devices--;
02db0844 1692 device->fs_devices->total_devices--;
2b82032c 1693
cd02dca5 1694 if (device->missing)
3a7d55c8 1695 device->fs_devices->missing_devices--;
cd02dca5 1696
2b82032c
YZ
1697 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1698 struct btrfs_device, dev_list);
1699 if (device->bdev == root->fs_info->sb->s_bdev)
1700 root->fs_info->sb->s_bdev = next_device->bdev;
1701 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1702 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1703
0bfaa9c5 1704 if (device->bdev) {
e4404d6e 1705 device->fs_devices->open_devices--;
0bfaa9c5
ES
1706 /* remove sysfs entry */
1707 btrfs_kobj_rm_device(root->fs_info, device);
1708 }
99994cde 1709
1f78160c 1710 call_rcu(&device->rcu, free_device);
e4404d6e 1711
6c41761f
DS
1712 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1713 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1714 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1715
1f78160c 1716 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1717 struct btrfs_fs_devices *fs_devices;
1718 fs_devices = root->fs_info->fs_devices;
1719 while (fs_devices) {
8321cf25
RS
1720 if (fs_devices->seed == cur_devices) {
1721 fs_devices->seed = cur_devices->seed;
e4404d6e 1722 break;
8321cf25 1723 }
e4404d6e 1724 fs_devices = fs_devices->seed;
2b82032c 1725 }
1f78160c 1726 cur_devices->seed = NULL;
0c1daee0 1727 lock_chunks(root);
1f78160c 1728 __btrfs_close_devices(cur_devices);
0c1daee0 1729 unlock_chunks(root);
1f78160c 1730 free_fs_devices(cur_devices);
2b82032c
YZ
1731 }
1732
5af3e8cc
SB
1733 root->fs_info->num_tolerated_disk_barrier_failures =
1734 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1735
2b82032c
YZ
1736 /*
1737 * at this point, the device is zero sized. We want to
1738 * remove it from the devices list and zero out the old super
1739 */
aa1b8cd4 1740 if (clear_super && disk_super) {
4d90d28b
AJ
1741 u64 bytenr;
1742 int i;
1743
dfe25020
CM
1744 /* make sure this device isn't detected as part of
1745 * the FS anymore
1746 */
1747 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1748 set_buffer_dirty(bh);
1749 sync_dirty_buffer(bh);
4d90d28b
AJ
1750
1751 /* clear the mirror copies of super block on the disk
1752 * being removed, 0th copy is been taken care above and
1753 * the below would take of the rest
1754 */
1755 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1756 bytenr = btrfs_sb_offset(i);
1757 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1758 i_size_read(bdev->bd_inode))
1759 break;
1760
1761 brelse(bh);
1762 bh = __bread(bdev, bytenr / 4096,
1763 BTRFS_SUPER_INFO_SIZE);
1764 if (!bh)
1765 continue;
1766
1767 disk_super = (struct btrfs_super_block *)bh->b_data;
1768
1769 if (btrfs_super_bytenr(disk_super) != bytenr ||
1770 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1771 continue;
1772 }
1773 memset(&disk_super->magic, 0,
1774 sizeof(disk_super->magic));
1775 set_buffer_dirty(bh);
1776 sync_dirty_buffer(bh);
1777 }
dfe25020 1778 }
a061fc8d 1779
a061fc8d 1780 ret = 0;
a061fc8d 1781
5a1972bd
QW
1782 if (bdev) {
1783 /* Notify udev that device has changed */
3c911608 1784 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1785
5a1972bd
QW
1786 /* Update ctime/mtime for device path for libblkid */
1787 update_dev_time(device_path);
1788 }
1789
a061fc8d
CM
1790error_brelse:
1791 brelse(bh);
dfe25020 1792 if (bdev)
e525fd89 1793 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1794out:
1795 mutex_unlock(&uuid_mutex);
a061fc8d 1796 return ret;
9b3517e9
ID
1797error_undo:
1798 if (device->writeable) {
0c1daee0 1799 lock_chunks(root);
9b3517e9
ID
1800 list_add(&device->dev_alloc_list,
1801 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1802 unlock_chunks(root);
9b3517e9
ID
1803 root->fs_info->fs_devices->rw_devices++;
1804 }
1805 goto error_brelse;
a061fc8d
CM
1806}
1807
e93c89c1
SB
1808void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1809 struct btrfs_device *srcdev)
1810{
d51908ce
AJ
1811 struct btrfs_fs_devices *fs_devices;
1812
e93c89c1 1813 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1814
25e8e911
AJ
1815 /*
1816 * in case of fs with no seed, srcdev->fs_devices will point
1817 * to fs_devices of fs_info. However when the dev being replaced is
1818 * a seed dev it will point to the seed's local fs_devices. In short
1819 * srcdev will have its correct fs_devices in both the cases.
1820 */
1821 fs_devices = srcdev->fs_devices;
d51908ce 1822
e93c89c1
SB
1823 list_del_rcu(&srcdev->dev_list);
1824 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1825 fs_devices->num_devices--;
e93c89c1 1826 if (srcdev->missing) {
d51908ce 1827 fs_devices->missing_devices--;
b2efedca
AJ
1828 if (!fs_devices->seeding)
1829 fs_devices->rw_devices++;
e93c89c1 1830 }
90180da4 1831
1357272f 1832 if (srcdev->bdev) {
d51908ce 1833 fs_devices->open_devices--;
e93c89c1 1834
ff61d17c
MX
1835 /*
1836 * zero out the old super if it is not writable
1837 * (e.g. seed device)
1838 */
1839 if (srcdev->writeable)
1840 btrfs_scratch_superblock(srcdev);
1357272f
ID
1841 }
1842
e93c89c1 1843 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1844
1845 /*
1846 * unless fs_devices is seed fs, num_devices shouldn't go
1847 * zero
1848 */
1849 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1850
1851 /* if this is no devs we rather delete the fs_devices */
1852 if (!fs_devices->num_devices) {
1853 struct btrfs_fs_devices *tmp_fs_devices;
1854
1855 tmp_fs_devices = fs_info->fs_devices;
1856 while (tmp_fs_devices) {
1857 if (tmp_fs_devices->seed == fs_devices) {
1858 tmp_fs_devices->seed = fs_devices->seed;
1859 break;
1860 }
1861 tmp_fs_devices = tmp_fs_devices->seed;
1862 }
1863 fs_devices->seed = NULL;
8bef8401
AJ
1864 __btrfs_close_devices(fs_devices);
1865 free_fs_devices(fs_devices);
94d5f0c2 1866 }
e93c89c1
SB
1867}
1868
1869void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1870 struct btrfs_device *tgtdev)
1871{
1872 struct btrfs_device *next_device;
1873
1874 WARN_ON(!tgtdev);
1875 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1876 if (tgtdev->bdev) {
1877 btrfs_scratch_superblock(tgtdev);
1878 fs_info->fs_devices->open_devices--;
1879 }
1880 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1881
1882 next_device = list_entry(fs_info->fs_devices->devices.next,
1883 struct btrfs_device, dev_list);
1884 if (tgtdev->bdev == fs_info->sb->s_bdev)
1885 fs_info->sb->s_bdev = next_device->bdev;
1886 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1887 fs_info->fs_devices->latest_bdev = next_device->bdev;
1888 list_del_rcu(&tgtdev->dev_list);
1889
1890 call_rcu(&tgtdev->rcu, free_device);
1891
1892 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1893}
1894
48a3b636
ES
1895static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1896 struct btrfs_device **device)
7ba15b7d
SB
1897{
1898 int ret = 0;
1899 struct btrfs_super_block *disk_super;
1900 u64 devid;
1901 u8 *dev_uuid;
1902 struct block_device *bdev;
1903 struct buffer_head *bh;
1904
1905 *device = NULL;
1906 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1907 root->fs_info->bdev_holder, 0, &bdev, &bh);
1908 if (ret)
1909 return ret;
1910 disk_super = (struct btrfs_super_block *)bh->b_data;
1911 devid = btrfs_stack_device_id(&disk_super->dev_item);
1912 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1913 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1914 disk_super->fsid);
1915 brelse(bh);
1916 if (!*device)
1917 ret = -ENOENT;
1918 blkdev_put(bdev, FMODE_READ);
1919 return ret;
1920}
1921
1922int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1923 char *device_path,
1924 struct btrfs_device **device)
1925{
1926 *device = NULL;
1927 if (strcmp(device_path, "missing") == 0) {
1928 struct list_head *devices;
1929 struct btrfs_device *tmp;
1930
1931 devices = &root->fs_info->fs_devices->devices;
1932 /*
1933 * It is safe to read the devices since the volume_mutex
1934 * is held by the caller.
1935 */
1936 list_for_each_entry(tmp, devices, dev_list) {
1937 if (tmp->in_fs_metadata && !tmp->bdev) {
1938 *device = tmp;
1939 break;
1940 }
1941 }
1942
1943 if (!*device) {
efe120a0 1944 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
1945 return -ENOENT;
1946 }
1947
1948 return 0;
1949 } else {
1950 return btrfs_find_device_by_path(root, device_path, device);
1951 }
1952}
1953
2b82032c
YZ
1954/*
1955 * does all the dirty work required for changing file system's UUID.
1956 */
125ccb0a 1957static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1958{
1959 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1960 struct btrfs_fs_devices *old_devices;
e4404d6e 1961 struct btrfs_fs_devices *seed_devices;
6c41761f 1962 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1963 struct btrfs_device *device;
1964 u64 super_flags;
1965
1966 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1967 if (!fs_devices->seeding)
2b82032c
YZ
1968 return -EINVAL;
1969
2208a378
ID
1970 seed_devices = __alloc_fs_devices();
1971 if (IS_ERR(seed_devices))
1972 return PTR_ERR(seed_devices);
2b82032c 1973
e4404d6e
YZ
1974 old_devices = clone_fs_devices(fs_devices);
1975 if (IS_ERR(old_devices)) {
1976 kfree(seed_devices);
1977 return PTR_ERR(old_devices);
2b82032c 1978 }
e4404d6e 1979
2b82032c
YZ
1980 list_add(&old_devices->list, &fs_uuids);
1981
e4404d6e
YZ
1982 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1983 seed_devices->opened = 1;
1984 INIT_LIST_HEAD(&seed_devices->devices);
1985 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1986 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1987
1988 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1989 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1990 synchronize_rcu);
c9513edb 1991
e4404d6e
YZ
1992 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1993 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1994 device->fs_devices = seed_devices;
1995 }
1996
2b82032c
YZ
1997 fs_devices->seeding = 0;
1998 fs_devices->num_devices = 0;
1999 fs_devices->open_devices = 0;
69611ac8 2000 fs_devices->missing_devices = 0;
69611ac8 2001 fs_devices->rotating = 0;
e4404d6e 2002 fs_devices->seed = seed_devices;
2b82032c
YZ
2003
2004 generate_random_uuid(fs_devices->fsid);
2005 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2006 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2007 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2008
2b82032c
YZ
2009 super_flags = btrfs_super_flags(disk_super) &
2010 ~BTRFS_SUPER_FLAG_SEEDING;
2011 btrfs_set_super_flags(disk_super, super_flags);
2012
2013 return 0;
2014}
2015
2016/*
2017 * strore the expected generation for seed devices in device items.
2018 */
2019static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2020 struct btrfs_root *root)
2021{
2022 struct btrfs_path *path;
2023 struct extent_buffer *leaf;
2024 struct btrfs_dev_item *dev_item;
2025 struct btrfs_device *device;
2026 struct btrfs_key key;
2027 u8 fs_uuid[BTRFS_UUID_SIZE];
2028 u8 dev_uuid[BTRFS_UUID_SIZE];
2029 u64 devid;
2030 int ret;
2031
2032 path = btrfs_alloc_path();
2033 if (!path)
2034 return -ENOMEM;
2035
2036 root = root->fs_info->chunk_root;
2037 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2038 key.offset = 0;
2039 key.type = BTRFS_DEV_ITEM_KEY;
2040
2041 while (1) {
2042 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2043 if (ret < 0)
2044 goto error;
2045
2046 leaf = path->nodes[0];
2047next_slot:
2048 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2049 ret = btrfs_next_leaf(root, path);
2050 if (ret > 0)
2051 break;
2052 if (ret < 0)
2053 goto error;
2054 leaf = path->nodes[0];
2055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2056 btrfs_release_path(path);
2b82032c
YZ
2057 continue;
2058 }
2059
2060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2061 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2062 key.type != BTRFS_DEV_ITEM_KEY)
2063 break;
2064
2065 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2066 struct btrfs_dev_item);
2067 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2068 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2069 BTRFS_UUID_SIZE);
1473b24e 2070 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2071 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2072 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2073 fs_uuid);
79787eaa 2074 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2075
2076 if (device->fs_devices->seeding) {
2077 btrfs_set_device_generation(leaf, dev_item,
2078 device->generation);
2079 btrfs_mark_buffer_dirty(leaf);
2080 }
2081
2082 path->slots[0]++;
2083 goto next_slot;
2084 }
2085 ret = 0;
2086error:
2087 btrfs_free_path(path);
2088 return ret;
2089}
2090
788f20eb
CM
2091int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2092{
d5e2003c 2093 struct request_queue *q;
788f20eb
CM
2094 struct btrfs_trans_handle *trans;
2095 struct btrfs_device *device;
2096 struct block_device *bdev;
788f20eb 2097 struct list_head *devices;
2b82032c 2098 struct super_block *sb = root->fs_info->sb;
606686ee 2099 struct rcu_string *name;
3c1dbdf5 2100 u64 tmp;
2b82032c 2101 int seeding_dev = 0;
788f20eb
CM
2102 int ret = 0;
2103
2b82032c 2104 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2105 return -EROFS;
788f20eb 2106
a5d16333 2107 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2108 root->fs_info->bdev_holder);
7f59203a
JB
2109 if (IS_ERR(bdev))
2110 return PTR_ERR(bdev);
a2135011 2111
2b82032c
YZ
2112 if (root->fs_info->fs_devices->seeding) {
2113 seeding_dev = 1;
2114 down_write(&sb->s_umount);
2115 mutex_lock(&uuid_mutex);
2116 }
2117
8c8bee1d 2118 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2119
788f20eb 2120 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2121
2122 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2123 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2124 if (device->bdev == bdev) {
2125 ret = -EEXIST;
d25628bd
LB
2126 mutex_unlock(
2127 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2128 goto error;
788f20eb
CM
2129 }
2130 }
d25628bd 2131 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2132
12bd2fc0
ID
2133 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2134 if (IS_ERR(device)) {
788f20eb 2135 /* we can safely leave the fs_devices entry around */
12bd2fc0 2136 ret = PTR_ERR(device);
2b82032c 2137 goto error;
788f20eb
CM
2138 }
2139
606686ee
JB
2140 name = rcu_string_strdup(device_path, GFP_NOFS);
2141 if (!name) {
788f20eb 2142 kfree(device);
2b82032c
YZ
2143 ret = -ENOMEM;
2144 goto error;
788f20eb 2145 }
606686ee 2146 rcu_assign_pointer(device->name, name);
2b82032c 2147
a22285a6 2148 trans = btrfs_start_transaction(root, 0);
98d5dc13 2149 if (IS_ERR(trans)) {
606686ee 2150 rcu_string_free(device->name);
98d5dc13
TI
2151 kfree(device);
2152 ret = PTR_ERR(trans);
2153 goto error;
2154 }
2155
2b82032c
YZ
2156 lock_chunks(root);
2157
d5e2003c
JB
2158 q = bdev_get_queue(bdev);
2159 if (blk_queue_discard(q))
2160 device->can_discard = 1;
2b82032c 2161 device->writeable = 1;
2b82032c 2162 device->generation = trans->transid;
788f20eb
CM
2163 device->io_width = root->sectorsize;
2164 device->io_align = root->sectorsize;
2165 device->sector_size = root->sectorsize;
2166 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2167 device->disk_total_bytes = device->total_bytes;
935e5cc9 2168 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2169 device->dev_root = root->fs_info->dev_root;
2170 device->bdev = bdev;
dfe25020 2171 device->in_fs_metadata = 1;
63a212ab 2172 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2173 device->mode = FMODE_EXCL;
27087f37 2174 device->dev_stats_valid = 1;
2b82032c 2175 set_blocksize(device->bdev, 4096);
788f20eb 2176
2b82032c
YZ
2177 if (seeding_dev) {
2178 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2179 ret = btrfs_prepare_sprout(root);
79787eaa 2180 BUG_ON(ret); /* -ENOMEM */
2b82032c 2181 }
788f20eb 2182
2b82032c 2183 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2184
e5e9a520 2185 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2186 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2187 list_add(&device->dev_alloc_list,
2188 &root->fs_info->fs_devices->alloc_list);
2189 root->fs_info->fs_devices->num_devices++;
2190 root->fs_info->fs_devices->open_devices++;
2191 root->fs_info->fs_devices->rw_devices++;
02db0844 2192 root->fs_info->fs_devices->total_devices++;
2b82032c 2193 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2194
2bf64758
JB
2195 spin_lock(&root->fs_info->free_chunk_lock);
2196 root->fs_info->free_chunk_space += device->total_bytes;
2197 spin_unlock(&root->fs_info->free_chunk_lock);
2198
c289811c
CM
2199 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2200 root->fs_info->fs_devices->rotating = 1;
2201
3c1dbdf5 2202 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2203 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2204 tmp + device->total_bytes);
788f20eb 2205
3c1dbdf5 2206 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2207 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2208 tmp + 1);
0d39376a
AJ
2209
2210 /* add sysfs device entry */
2211 btrfs_kobj_add_device(root->fs_info, device);
2212
e5e9a520 2213 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2214
2b82032c 2215 if (seeding_dev) {
b2373f25 2216 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2b82032c 2217 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2218 if (ret) {
2219 btrfs_abort_transaction(trans, root, ret);
79787eaa 2220 goto error_trans;
005d6427 2221 }
2b82032c 2222 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2223 if (ret) {
2224 btrfs_abort_transaction(trans, root, ret);
79787eaa 2225 goto error_trans;
005d6427 2226 }
b2373f25
AJ
2227
2228 /* Sprouting would change fsid of the mounted root,
2229 * so rename the fsid on the sysfs
2230 */
2231 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2232 root->fs_info->fsid);
2233 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2234 goto error_trans;
2b82032c
YZ
2235 } else {
2236 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2237 if (ret) {
2238 btrfs_abort_transaction(trans, root, ret);
79787eaa 2239 goto error_trans;
005d6427 2240 }
2b82032c
YZ
2241 }
2242
913d952e
CM
2243 /*
2244 * we've got more storage, clear any full flags on the space
2245 * infos
2246 */
2247 btrfs_clear_space_info_full(root->fs_info);
2248
7d9eb12c 2249 unlock_chunks(root);
5af3e8cc
SB
2250 root->fs_info->num_tolerated_disk_barrier_failures =
2251 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2252 ret = btrfs_commit_transaction(trans, root);
a2135011 2253
2b82032c
YZ
2254 if (seeding_dev) {
2255 mutex_unlock(&uuid_mutex);
2256 up_write(&sb->s_umount);
788f20eb 2257
79787eaa
JM
2258 if (ret) /* transaction commit */
2259 return ret;
2260
2b82032c 2261 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2262 if (ret < 0)
2263 btrfs_error(root->fs_info, ret,
2264 "Failed to relocate sys chunks after "
2265 "device initialization. This can be fixed "
2266 "using the \"btrfs balance\" command.");
671415b7
MX
2267 trans = btrfs_attach_transaction(root);
2268 if (IS_ERR(trans)) {
2269 if (PTR_ERR(trans) == -ENOENT)
2270 return 0;
2271 return PTR_ERR(trans);
2272 }
2273 ret = btrfs_commit_transaction(trans, root);
2b82032c 2274 }
c9e9f97b 2275
5a1972bd
QW
2276 /* Update ctime/mtime for libblkid */
2277 update_dev_time(device_path);
2b82032c 2278 return ret;
79787eaa
JM
2279
2280error_trans:
2281 unlock_chunks(root);
79787eaa 2282 btrfs_end_transaction(trans, root);
606686ee 2283 rcu_string_free(device->name);
0d39376a 2284 btrfs_kobj_rm_device(root->fs_info, device);
79787eaa 2285 kfree(device);
2b82032c 2286error:
e525fd89 2287 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2288 if (seeding_dev) {
2289 mutex_unlock(&uuid_mutex);
2290 up_write(&sb->s_umount);
2291 }
c9e9f97b 2292 return ret;
788f20eb
CM
2293}
2294
e93c89c1 2295int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2296 struct btrfs_device *srcdev,
e93c89c1
SB
2297 struct btrfs_device **device_out)
2298{
2299 struct request_queue *q;
2300 struct btrfs_device *device;
2301 struct block_device *bdev;
2302 struct btrfs_fs_info *fs_info = root->fs_info;
2303 struct list_head *devices;
2304 struct rcu_string *name;
12bd2fc0 2305 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2306 int ret = 0;
2307
2308 *device_out = NULL;
1c43366d
MX
2309 if (fs_info->fs_devices->seeding) {
2310 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2311 return -EINVAL;
1c43366d 2312 }
e93c89c1
SB
2313
2314 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2315 fs_info->bdev_holder);
1c43366d
MX
2316 if (IS_ERR(bdev)) {
2317 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2318 return PTR_ERR(bdev);
1c43366d 2319 }
e93c89c1
SB
2320
2321 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2322
2323 devices = &fs_info->fs_devices->devices;
2324 list_for_each_entry(device, devices, dev_list) {
2325 if (device->bdev == bdev) {
1c43366d 2326 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2327 ret = -EEXIST;
2328 goto error;
2329 }
2330 }
2331
1c43366d
MX
2332
2333 if (i_size_read(bdev->bd_inode) < srcdev->total_bytes) {
2334 btrfs_err(fs_info, "target device is smaller than source device!");
2335 ret = -EINVAL;
2336 goto error;
2337 }
2338
2339
12bd2fc0
ID
2340 device = btrfs_alloc_device(NULL, &devid, NULL);
2341 if (IS_ERR(device)) {
2342 ret = PTR_ERR(device);
e93c89c1
SB
2343 goto error;
2344 }
2345
2346 name = rcu_string_strdup(device_path, GFP_NOFS);
2347 if (!name) {
2348 kfree(device);
2349 ret = -ENOMEM;
2350 goto error;
2351 }
2352 rcu_assign_pointer(device->name, name);
2353
2354 q = bdev_get_queue(bdev);
2355 if (blk_queue_discard(q))
2356 device->can_discard = 1;
2357 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2358 device->writeable = 1;
e93c89c1
SB
2359 device->generation = 0;
2360 device->io_width = root->sectorsize;
2361 device->io_align = root->sectorsize;
2362 device->sector_size = root->sectorsize;
1c43366d
MX
2363 device->total_bytes = srcdev->total_bytes;
2364 device->disk_total_bytes = srcdev->disk_total_bytes;
935e5cc9
MX
2365 ASSERT(list_empty(&srcdev->resized_list));
2366 device->commit_total_bytes = srcdev->commit_total_bytes;
1c43366d 2367 device->bytes_used = srcdev->bytes_used;
ce7213c7 2368 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2369 device->dev_root = fs_info->dev_root;
2370 device->bdev = bdev;
2371 device->in_fs_metadata = 1;
2372 device->is_tgtdev_for_dev_replace = 1;
2373 device->mode = FMODE_EXCL;
27087f37 2374 device->dev_stats_valid = 1;
e93c89c1
SB
2375 set_blocksize(device->bdev, 4096);
2376 device->fs_devices = fs_info->fs_devices;
2377 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2378 fs_info->fs_devices->num_devices++;
2379 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2380 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2381
2382 *device_out = device;
2383 return ret;
2384
2385error:
2386 blkdev_put(bdev, FMODE_EXCL);
2387 return ret;
2388}
2389
2390void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2391 struct btrfs_device *tgtdev)
2392{
2393 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2394 tgtdev->io_width = fs_info->dev_root->sectorsize;
2395 tgtdev->io_align = fs_info->dev_root->sectorsize;
2396 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2397 tgtdev->dev_root = fs_info->dev_root;
2398 tgtdev->in_fs_metadata = 1;
2399}
2400
d397712b
CM
2401static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2402 struct btrfs_device *device)
0b86a832
CM
2403{
2404 int ret;
2405 struct btrfs_path *path;
2406 struct btrfs_root *root;
2407 struct btrfs_dev_item *dev_item;
2408 struct extent_buffer *leaf;
2409 struct btrfs_key key;
2410
2411 root = device->dev_root->fs_info->chunk_root;
2412
2413 path = btrfs_alloc_path();
2414 if (!path)
2415 return -ENOMEM;
2416
2417 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2418 key.type = BTRFS_DEV_ITEM_KEY;
2419 key.offset = device->devid;
2420
2421 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2422 if (ret < 0)
2423 goto out;
2424
2425 if (ret > 0) {
2426 ret = -ENOENT;
2427 goto out;
2428 }
2429
2430 leaf = path->nodes[0];
2431 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2432
2433 btrfs_set_device_id(leaf, dev_item, device->devid);
2434 btrfs_set_device_type(leaf, dev_item, device->type);
2435 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2436 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2437 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2438 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2439 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2440 btrfs_mark_buffer_dirty(leaf);
2441
2442out:
2443 btrfs_free_path(path);
2444 return ret;
2445}
2446
7d9eb12c 2447static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2448 struct btrfs_device *device, u64 new_size)
2449{
2450 struct btrfs_super_block *super_copy =
6c41761f 2451 device->dev_root->fs_info->super_copy;
935e5cc9 2452 struct btrfs_fs_devices *fs_devices;
8f18cf13
CM
2453 u64 old_total = btrfs_super_total_bytes(super_copy);
2454 u64 diff = new_size - device->total_bytes;
2455
2b82032c
YZ
2456 if (!device->writeable)
2457 return -EACCES;
63a212ab
SB
2458 if (new_size <= device->total_bytes ||
2459 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2460 return -EINVAL;
2461
935e5cc9
MX
2462 fs_devices = device->dev_root->fs_info->fs_devices;
2463
8f18cf13 2464 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2465 device->fs_devices->total_rw_bytes += diff;
2466
2467 device->total_bytes = new_size;
9779b72f 2468 device->disk_total_bytes = new_size;
4184ea7f 2469 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2470 if (list_empty(&device->resized_list))
2471 list_add_tail(&device->resized_list,
2472 &fs_devices->resized_devices);
4184ea7f 2473
8f18cf13
CM
2474 return btrfs_update_device(trans, device);
2475}
2476
7d9eb12c
CM
2477int btrfs_grow_device(struct btrfs_trans_handle *trans,
2478 struct btrfs_device *device, u64 new_size)
2479{
2480 int ret;
2481 lock_chunks(device->dev_root);
2482 ret = __btrfs_grow_device(trans, device, new_size);
2483 unlock_chunks(device->dev_root);
2484 return ret;
2485}
2486
8f18cf13
CM
2487static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2488 struct btrfs_root *root,
2489 u64 chunk_tree, u64 chunk_objectid,
2490 u64 chunk_offset)
2491{
2492 int ret;
2493 struct btrfs_path *path;
2494 struct btrfs_key key;
2495
2496 root = root->fs_info->chunk_root;
2497 path = btrfs_alloc_path();
2498 if (!path)
2499 return -ENOMEM;
2500
2501 key.objectid = chunk_objectid;
2502 key.offset = chunk_offset;
2503 key.type = BTRFS_CHUNK_ITEM_KEY;
2504
2505 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2506 if (ret < 0)
2507 goto out;
2508 else if (ret > 0) { /* Logic error or corruption */
2509 btrfs_error(root->fs_info, -ENOENT,
2510 "Failed lookup while freeing chunk.");
2511 ret = -ENOENT;
2512 goto out;
2513 }
8f18cf13
CM
2514
2515 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2516 if (ret < 0)
2517 btrfs_error(root->fs_info, ret,
2518 "Failed to delete chunk item.");
2519out:
8f18cf13 2520 btrfs_free_path(path);
65a246c5 2521 return ret;
8f18cf13
CM
2522}
2523
b2950863 2524static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2525 chunk_offset)
2526{
6c41761f 2527 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2528 struct btrfs_disk_key *disk_key;
2529 struct btrfs_chunk *chunk;
2530 u8 *ptr;
2531 int ret = 0;
2532 u32 num_stripes;
2533 u32 array_size;
2534 u32 len = 0;
2535 u32 cur;
2536 struct btrfs_key key;
2537
2538 array_size = btrfs_super_sys_array_size(super_copy);
2539
2540 ptr = super_copy->sys_chunk_array;
2541 cur = 0;
2542
2543 while (cur < array_size) {
2544 disk_key = (struct btrfs_disk_key *)ptr;
2545 btrfs_disk_key_to_cpu(&key, disk_key);
2546
2547 len = sizeof(*disk_key);
2548
2549 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2550 chunk = (struct btrfs_chunk *)(ptr + len);
2551 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2552 len += btrfs_chunk_item_size(num_stripes);
2553 } else {
2554 ret = -EIO;
2555 break;
2556 }
2557 if (key.objectid == chunk_objectid &&
2558 key.offset == chunk_offset) {
2559 memmove(ptr, ptr + len, array_size - (cur + len));
2560 array_size -= len;
2561 btrfs_set_super_sys_array_size(super_copy, array_size);
2562 } else {
2563 ptr += len;
2564 cur += len;
2565 }
2566 }
2567 return ret;
2568}
2569
b2950863 2570static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2571 u64 chunk_tree, u64 chunk_objectid,
2572 u64 chunk_offset)
2573{
2574 struct extent_map_tree *em_tree;
2575 struct btrfs_root *extent_root;
2576 struct btrfs_trans_handle *trans;
2577 struct extent_map *em;
2578 struct map_lookup *map;
2579 int ret;
2580 int i;
2581
2582 root = root->fs_info->chunk_root;
2583 extent_root = root->fs_info->extent_root;
2584 em_tree = &root->fs_info->mapping_tree.map_tree;
2585
ba1bf481
JB
2586 ret = btrfs_can_relocate(extent_root, chunk_offset);
2587 if (ret)
2588 return -ENOSPC;
2589
8f18cf13 2590 /* step one, relocate all the extents inside this chunk */
1a40e23b 2591 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2592 if (ret)
2593 return ret;
8f18cf13 2594
a22285a6 2595 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2596 if (IS_ERR(trans)) {
2597 ret = PTR_ERR(trans);
2598 btrfs_std_error(root->fs_info, ret);
2599 return ret;
2600 }
8f18cf13 2601
7d9eb12c
CM
2602 lock_chunks(root);
2603
8f18cf13
CM
2604 /*
2605 * step two, delete the device extents and the
2606 * chunk tree entries
2607 */
890871be 2608 read_lock(&em_tree->lock);
8f18cf13 2609 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2610 read_unlock(&em_tree->lock);
8f18cf13 2611
285190d9 2612 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2613 em->start + em->len < chunk_offset);
8f18cf13
CM
2614 map = (struct map_lookup *)em->bdev;
2615
2616 for (i = 0; i < map->num_stripes; i++) {
2617 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2618 map->stripes[i].physical);
2619 BUG_ON(ret);
a061fc8d 2620
dfe25020
CM
2621 if (map->stripes[i].dev) {
2622 ret = btrfs_update_device(trans, map->stripes[i].dev);
2623 BUG_ON(ret);
2624 }
8f18cf13
CM
2625 }
2626 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2627 chunk_offset);
2628
2629 BUG_ON(ret);
2630
1abe9b8a 2631 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2632
8f18cf13
CM
2633 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2634 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2635 BUG_ON(ret);
8f18cf13
CM
2636 }
2637
2b82032c
YZ
2638 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2639 BUG_ON(ret);
2640
890871be 2641 write_lock(&em_tree->lock);
2b82032c 2642 remove_extent_mapping(em_tree, em);
890871be 2643 write_unlock(&em_tree->lock);
2b82032c 2644
2b82032c
YZ
2645 /* once for the tree */
2646 free_extent_map(em);
2647 /* once for us */
2648 free_extent_map(em);
2649
2650 unlock_chunks(root);
2651 btrfs_end_transaction(trans, root);
2652 return 0;
2653}
2654
2655static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2656{
2657 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2658 struct btrfs_path *path;
2659 struct extent_buffer *leaf;
2660 struct btrfs_chunk *chunk;
2661 struct btrfs_key key;
2662 struct btrfs_key found_key;
2663 u64 chunk_tree = chunk_root->root_key.objectid;
2664 u64 chunk_type;
ba1bf481
JB
2665 bool retried = false;
2666 int failed = 0;
2b82032c
YZ
2667 int ret;
2668
2669 path = btrfs_alloc_path();
2670 if (!path)
2671 return -ENOMEM;
2672
ba1bf481 2673again:
2b82032c
YZ
2674 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2675 key.offset = (u64)-1;
2676 key.type = BTRFS_CHUNK_ITEM_KEY;
2677
2678 while (1) {
2679 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2680 if (ret < 0)
2681 goto error;
79787eaa 2682 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2683
2684 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2685 key.type);
2686 if (ret < 0)
2687 goto error;
2688 if (ret > 0)
2689 break;
1a40e23b 2690
2b82032c
YZ
2691 leaf = path->nodes[0];
2692 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2693
2b82032c
YZ
2694 chunk = btrfs_item_ptr(leaf, path->slots[0],
2695 struct btrfs_chunk);
2696 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2697 btrfs_release_path(path);
8f18cf13 2698
2b82032c
YZ
2699 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2700 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2701 found_key.objectid,
2702 found_key.offset);
ba1bf481
JB
2703 if (ret == -ENOSPC)
2704 failed++;
14586651
HS
2705 else
2706 BUG_ON(ret);
2b82032c 2707 }
8f18cf13 2708
2b82032c
YZ
2709 if (found_key.offset == 0)
2710 break;
2711 key.offset = found_key.offset - 1;
2712 }
2713 ret = 0;
ba1bf481
JB
2714 if (failed && !retried) {
2715 failed = 0;
2716 retried = true;
2717 goto again;
fae7f21c 2718 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2719 ret = -ENOSPC;
2720 }
2b82032c
YZ
2721error:
2722 btrfs_free_path(path);
2723 return ret;
8f18cf13
CM
2724}
2725
0940ebf6
ID
2726static int insert_balance_item(struct btrfs_root *root,
2727 struct btrfs_balance_control *bctl)
2728{
2729 struct btrfs_trans_handle *trans;
2730 struct btrfs_balance_item *item;
2731 struct btrfs_disk_balance_args disk_bargs;
2732 struct btrfs_path *path;
2733 struct extent_buffer *leaf;
2734 struct btrfs_key key;
2735 int ret, err;
2736
2737 path = btrfs_alloc_path();
2738 if (!path)
2739 return -ENOMEM;
2740
2741 trans = btrfs_start_transaction(root, 0);
2742 if (IS_ERR(trans)) {
2743 btrfs_free_path(path);
2744 return PTR_ERR(trans);
2745 }
2746
2747 key.objectid = BTRFS_BALANCE_OBJECTID;
2748 key.type = BTRFS_BALANCE_ITEM_KEY;
2749 key.offset = 0;
2750
2751 ret = btrfs_insert_empty_item(trans, root, path, &key,
2752 sizeof(*item));
2753 if (ret)
2754 goto out;
2755
2756 leaf = path->nodes[0];
2757 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2758
2759 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2760
2761 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2762 btrfs_set_balance_data(leaf, item, &disk_bargs);
2763 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2764 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2765 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2766 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2767
2768 btrfs_set_balance_flags(leaf, item, bctl->flags);
2769
2770 btrfs_mark_buffer_dirty(leaf);
2771out:
2772 btrfs_free_path(path);
2773 err = btrfs_commit_transaction(trans, root);
2774 if (err && !ret)
2775 ret = err;
2776 return ret;
2777}
2778
2779static int del_balance_item(struct btrfs_root *root)
2780{
2781 struct btrfs_trans_handle *trans;
2782 struct btrfs_path *path;
2783 struct btrfs_key key;
2784 int ret, err;
2785
2786 path = btrfs_alloc_path();
2787 if (!path)
2788 return -ENOMEM;
2789
2790 trans = btrfs_start_transaction(root, 0);
2791 if (IS_ERR(trans)) {
2792 btrfs_free_path(path);
2793 return PTR_ERR(trans);
2794 }
2795
2796 key.objectid = BTRFS_BALANCE_OBJECTID;
2797 key.type = BTRFS_BALANCE_ITEM_KEY;
2798 key.offset = 0;
2799
2800 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2801 if (ret < 0)
2802 goto out;
2803 if (ret > 0) {
2804 ret = -ENOENT;
2805 goto out;
2806 }
2807
2808 ret = btrfs_del_item(trans, root, path);
2809out:
2810 btrfs_free_path(path);
2811 err = btrfs_commit_transaction(trans, root);
2812 if (err && !ret)
2813 ret = err;
2814 return ret;
2815}
2816
59641015
ID
2817/*
2818 * This is a heuristic used to reduce the number of chunks balanced on
2819 * resume after balance was interrupted.
2820 */
2821static void update_balance_args(struct btrfs_balance_control *bctl)
2822{
2823 /*
2824 * Turn on soft mode for chunk types that were being converted.
2825 */
2826 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2827 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2828 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2829 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2830 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2831 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2832
2833 /*
2834 * Turn on usage filter if is not already used. The idea is
2835 * that chunks that we have already balanced should be
2836 * reasonably full. Don't do it for chunks that are being
2837 * converted - that will keep us from relocating unconverted
2838 * (albeit full) chunks.
2839 */
2840 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2841 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2842 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2843 bctl->data.usage = 90;
2844 }
2845 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2846 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2847 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2848 bctl->sys.usage = 90;
2849 }
2850 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2851 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2852 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2853 bctl->meta.usage = 90;
2854 }
2855}
2856
c9e9f97b
ID
2857/*
2858 * Should be called with both balance and volume mutexes held to
2859 * serialize other volume operations (add_dev/rm_dev/resize) with
2860 * restriper. Same goes for unset_balance_control.
2861 */
2862static void set_balance_control(struct btrfs_balance_control *bctl)
2863{
2864 struct btrfs_fs_info *fs_info = bctl->fs_info;
2865
2866 BUG_ON(fs_info->balance_ctl);
2867
2868 spin_lock(&fs_info->balance_lock);
2869 fs_info->balance_ctl = bctl;
2870 spin_unlock(&fs_info->balance_lock);
2871}
2872
2873static void unset_balance_control(struct btrfs_fs_info *fs_info)
2874{
2875 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2876
2877 BUG_ON(!fs_info->balance_ctl);
2878
2879 spin_lock(&fs_info->balance_lock);
2880 fs_info->balance_ctl = NULL;
2881 spin_unlock(&fs_info->balance_lock);
2882
2883 kfree(bctl);
2884}
2885
ed25e9b2
ID
2886/*
2887 * Balance filters. Return 1 if chunk should be filtered out
2888 * (should not be balanced).
2889 */
899c81ea 2890static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2891 struct btrfs_balance_args *bargs)
2892{
899c81ea
ID
2893 chunk_type = chunk_to_extended(chunk_type) &
2894 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2895
899c81ea 2896 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2897 return 0;
2898
2899 return 1;
2900}
2901
5ce5b3c0
ID
2902static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2903 struct btrfs_balance_args *bargs)
2904{
2905 struct btrfs_block_group_cache *cache;
2906 u64 chunk_used, user_thresh;
2907 int ret = 1;
2908
2909 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2910 chunk_used = btrfs_block_group_used(&cache->item);
2911
a105bb88 2912 if (bargs->usage == 0)
3e39cea6 2913 user_thresh = 1;
a105bb88
ID
2914 else if (bargs->usage > 100)
2915 user_thresh = cache->key.offset;
2916 else
2917 user_thresh = div_factor_fine(cache->key.offset,
2918 bargs->usage);
2919
5ce5b3c0
ID
2920 if (chunk_used < user_thresh)
2921 ret = 0;
2922
2923 btrfs_put_block_group(cache);
2924 return ret;
2925}
2926
409d404b
ID
2927static int chunk_devid_filter(struct extent_buffer *leaf,
2928 struct btrfs_chunk *chunk,
2929 struct btrfs_balance_args *bargs)
2930{
2931 struct btrfs_stripe *stripe;
2932 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2933 int i;
2934
2935 for (i = 0; i < num_stripes; i++) {
2936 stripe = btrfs_stripe_nr(chunk, i);
2937 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2938 return 0;
2939 }
2940
2941 return 1;
2942}
2943
94e60d5a
ID
2944/* [pstart, pend) */
2945static int chunk_drange_filter(struct extent_buffer *leaf,
2946 struct btrfs_chunk *chunk,
2947 u64 chunk_offset,
2948 struct btrfs_balance_args *bargs)
2949{
2950 struct btrfs_stripe *stripe;
2951 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2952 u64 stripe_offset;
2953 u64 stripe_length;
2954 int factor;
2955 int i;
2956
2957 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2958 return 0;
2959
2960 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2961 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2962 factor = num_stripes / 2;
2963 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2964 factor = num_stripes - 1;
2965 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2966 factor = num_stripes - 2;
2967 } else {
2968 factor = num_stripes;
2969 }
94e60d5a
ID
2970
2971 for (i = 0; i < num_stripes; i++) {
2972 stripe = btrfs_stripe_nr(chunk, i);
2973 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2974 continue;
2975
2976 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2977 stripe_length = btrfs_chunk_length(leaf, chunk);
2978 do_div(stripe_length, factor);
2979
2980 if (stripe_offset < bargs->pend &&
2981 stripe_offset + stripe_length > bargs->pstart)
2982 return 0;
2983 }
2984
2985 return 1;
2986}
2987
ea67176a
ID
2988/* [vstart, vend) */
2989static int chunk_vrange_filter(struct extent_buffer *leaf,
2990 struct btrfs_chunk *chunk,
2991 u64 chunk_offset,
2992 struct btrfs_balance_args *bargs)
2993{
2994 if (chunk_offset < bargs->vend &&
2995 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2996 /* at least part of the chunk is inside this vrange */
2997 return 0;
2998
2999 return 1;
3000}
3001
899c81ea 3002static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3003 struct btrfs_balance_args *bargs)
3004{
3005 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3006 return 0;
3007
899c81ea
ID
3008 chunk_type = chunk_to_extended(chunk_type) &
3009 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3010
899c81ea 3011 if (bargs->target == chunk_type)
cfa4c961
ID
3012 return 1;
3013
3014 return 0;
3015}
3016
f43ffb60
ID
3017static int should_balance_chunk(struct btrfs_root *root,
3018 struct extent_buffer *leaf,
3019 struct btrfs_chunk *chunk, u64 chunk_offset)
3020{
3021 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3022 struct btrfs_balance_args *bargs = NULL;
3023 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3024
3025 /* type filter */
3026 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3027 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3028 return 0;
3029 }
3030
3031 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3032 bargs = &bctl->data;
3033 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3034 bargs = &bctl->sys;
3035 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3036 bargs = &bctl->meta;
3037
ed25e9b2
ID
3038 /* profiles filter */
3039 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3040 chunk_profiles_filter(chunk_type, bargs)) {
3041 return 0;
5ce5b3c0
ID
3042 }
3043
3044 /* usage filter */
3045 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3046 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3047 return 0;
409d404b
ID
3048 }
3049
3050 /* devid filter */
3051 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3052 chunk_devid_filter(leaf, chunk, bargs)) {
3053 return 0;
94e60d5a
ID
3054 }
3055
3056 /* drange filter, makes sense only with devid filter */
3057 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3058 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3059 return 0;
ea67176a
ID
3060 }
3061
3062 /* vrange filter */
3063 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3064 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3065 return 0;
ed25e9b2
ID
3066 }
3067
cfa4c961
ID
3068 /* soft profile changing mode */
3069 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3070 chunk_soft_convert_filter(chunk_type, bargs)) {
3071 return 0;
3072 }
3073
7d824b6f
DS
3074 /*
3075 * limited by count, must be the last filter
3076 */
3077 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3078 if (bargs->limit == 0)
3079 return 0;
3080 else
3081 bargs->limit--;
3082 }
3083
f43ffb60
ID
3084 return 1;
3085}
3086
c9e9f97b 3087static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3088{
19a39dce 3089 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3090 struct btrfs_root *chunk_root = fs_info->chunk_root;
3091 struct btrfs_root *dev_root = fs_info->dev_root;
3092 struct list_head *devices;
ec44a35c
CM
3093 struct btrfs_device *device;
3094 u64 old_size;
3095 u64 size_to_free;
f43ffb60 3096 struct btrfs_chunk *chunk;
ec44a35c
CM
3097 struct btrfs_path *path;
3098 struct btrfs_key key;
ec44a35c 3099 struct btrfs_key found_key;
c9e9f97b 3100 struct btrfs_trans_handle *trans;
f43ffb60
ID
3101 struct extent_buffer *leaf;
3102 int slot;
c9e9f97b
ID
3103 int ret;
3104 int enospc_errors = 0;
19a39dce 3105 bool counting = true;
7d824b6f
DS
3106 u64 limit_data = bctl->data.limit;
3107 u64 limit_meta = bctl->meta.limit;
3108 u64 limit_sys = bctl->sys.limit;
ec44a35c 3109
ec44a35c 3110 /* step one make some room on all the devices */
c9e9f97b 3111 devices = &fs_info->fs_devices->devices;
c6e30871 3112 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
3113 old_size = device->total_bytes;
3114 size_to_free = div_factor(old_size, 1);
3115 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3116 if (!device->writeable ||
63a212ab
SB
3117 device->total_bytes - device->bytes_used > size_to_free ||
3118 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3119 continue;
3120
3121 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3122 if (ret == -ENOSPC)
3123 break;
ec44a35c
CM
3124 BUG_ON(ret);
3125
a22285a6 3126 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3127 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3128
3129 ret = btrfs_grow_device(trans, device, old_size);
3130 BUG_ON(ret);
3131
3132 btrfs_end_transaction(trans, dev_root);
3133 }
3134
3135 /* step two, relocate all the chunks */
3136 path = btrfs_alloc_path();
17e9f796
MF
3137 if (!path) {
3138 ret = -ENOMEM;
3139 goto error;
3140 }
19a39dce
ID
3141
3142 /* zero out stat counters */
3143 spin_lock(&fs_info->balance_lock);
3144 memset(&bctl->stat, 0, sizeof(bctl->stat));
3145 spin_unlock(&fs_info->balance_lock);
3146again:
7d824b6f
DS
3147 if (!counting) {
3148 bctl->data.limit = limit_data;
3149 bctl->meta.limit = limit_meta;
3150 bctl->sys.limit = limit_sys;
3151 }
ec44a35c
CM
3152 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3153 key.offset = (u64)-1;
3154 key.type = BTRFS_CHUNK_ITEM_KEY;
3155
d397712b 3156 while (1) {
19a39dce 3157 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3158 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3159 ret = -ECANCELED;
3160 goto error;
3161 }
3162
ec44a35c
CM
3163 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3164 if (ret < 0)
3165 goto error;
3166
3167 /*
3168 * this shouldn't happen, it means the last relocate
3169 * failed
3170 */
3171 if (ret == 0)
c9e9f97b 3172 BUG(); /* FIXME break ? */
ec44a35c
CM
3173
3174 ret = btrfs_previous_item(chunk_root, path, 0,
3175 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
3176 if (ret) {
3177 ret = 0;
ec44a35c 3178 break;
c9e9f97b 3179 }
7d9eb12c 3180
f43ffb60
ID
3181 leaf = path->nodes[0];
3182 slot = path->slots[0];
3183 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3184
ec44a35c
CM
3185 if (found_key.objectid != key.objectid)
3186 break;
7d9eb12c 3187
f43ffb60
ID
3188 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3189
19a39dce
ID
3190 if (!counting) {
3191 spin_lock(&fs_info->balance_lock);
3192 bctl->stat.considered++;
3193 spin_unlock(&fs_info->balance_lock);
3194 }
3195
f43ffb60
ID
3196 ret = should_balance_chunk(chunk_root, leaf, chunk,
3197 found_key.offset);
b3b4aa74 3198 btrfs_release_path(path);
f43ffb60
ID
3199 if (!ret)
3200 goto loop;
3201
19a39dce
ID
3202 if (counting) {
3203 spin_lock(&fs_info->balance_lock);
3204 bctl->stat.expected++;
3205 spin_unlock(&fs_info->balance_lock);
3206 goto loop;
3207 }
3208
ec44a35c
CM
3209 ret = btrfs_relocate_chunk(chunk_root,
3210 chunk_root->root_key.objectid,
3211 found_key.objectid,
3212 found_key.offset);
508794eb
JB
3213 if (ret && ret != -ENOSPC)
3214 goto error;
19a39dce 3215 if (ret == -ENOSPC) {
c9e9f97b 3216 enospc_errors++;
19a39dce
ID
3217 } else {
3218 spin_lock(&fs_info->balance_lock);
3219 bctl->stat.completed++;
3220 spin_unlock(&fs_info->balance_lock);
3221 }
f43ffb60 3222loop:
795a3321
ID
3223 if (found_key.offset == 0)
3224 break;
ba1bf481 3225 key.offset = found_key.offset - 1;
ec44a35c 3226 }
c9e9f97b 3227
19a39dce
ID
3228 if (counting) {
3229 btrfs_release_path(path);
3230 counting = false;
3231 goto again;
3232 }
ec44a35c
CM
3233error:
3234 btrfs_free_path(path);
c9e9f97b 3235 if (enospc_errors) {
efe120a0 3236 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3237 enospc_errors);
3238 if (!ret)
3239 ret = -ENOSPC;
3240 }
3241
ec44a35c
CM
3242 return ret;
3243}
3244
0c460c0d
ID
3245/**
3246 * alloc_profile_is_valid - see if a given profile is valid and reduced
3247 * @flags: profile to validate
3248 * @extended: if true @flags is treated as an extended profile
3249 */
3250static int alloc_profile_is_valid(u64 flags, int extended)
3251{
3252 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3253 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3254
3255 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3256
3257 /* 1) check that all other bits are zeroed */
3258 if (flags & ~mask)
3259 return 0;
3260
3261 /* 2) see if profile is reduced */
3262 if (flags == 0)
3263 return !extended; /* "0" is valid for usual profiles */
3264
3265 /* true if exactly one bit set */
3266 return (flags & (flags - 1)) == 0;
3267}
3268
837d5b6e
ID
3269static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3270{
a7e99c69
ID
3271 /* cancel requested || normal exit path */
3272 return atomic_read(&fs_info->balance_cancel_req) ||
3273 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3274 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3275}
3276
c9e9f97b
ID
3277static void __cancel_balance(struct btrfs_fs_info *fs_info)
3278{
0940ebf6
ID
3279 int ret;
3280
c9e9f97b 3281 unset_balance_control(fs_info);
0940ebf6 3282 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3283 if (ret)
3284 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3285
3286 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3287}
3288
c9e9f97b
ID
3289/*
3290 * Should be called with both balance and volume mutexes held
3291 */
3292int btrfs_balance(struct btrfs_balance_control *bctl,
3293 struct btrfs_ioctl_balance_args *bargs)
3294{
3295 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3296 u64 allowed;
e4837f8f 3297 int mixed = 0;
c9e9f97b 3298 int ret;
8dabb742 3299 u64 num_devices;
de98ced9 3300 unsigned seq;
c9e9f97b 3301
837d5b6e 3302 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3303 atomic_read(&fs_info->balance_pause_req) ||
3304 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3305 ret = -EINVAL;
3306 goto out;
3307 }
3308
e4837f8f
ID
3309 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3310 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3311 mixed = 1;
3312
f43ffb60
ID
3313 /*
3314 * In case of mixed groups both data and meta should be picked,
3315 * and identical options should be given for both of them.
3316 */
e4837f8f
ID
3317 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3318 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3319 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3320 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3321 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3322 btrfs_err(fs_info, "with mixed groups data and "
3323 "metadata balance options must be the same");
f43ffb60
ID
3324 ret = -EINVAL;
3325 goto out;
3326 }
3327 }
3328
8dabb742
SB
3329 num_devices = fs_info->fs_devices->num_devices;
3330 btrfs_dev_replace_lock(&fs_info->dev_replace);
3331 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3332 BUG_ON(num_devices < 1);
3333 num_devices--;
3334 }
3335 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3336 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3337 if (num_devices == 1)
e4d8ec0f 3338 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3339 else if (num_devices > 1)
e4d8ec0f 3340 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3341 if (num_devices > 2)
3342 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3343 if (num_devices > 3)
3344 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3345 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3346 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3347 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3348 (bctl->data.target & ~allowed))) {
efe120a0
FH
3349 btrfs_err(fs_info, "unable to start balance with target "
3350 "data profile %llu",
c1c9ff7c 3351 bctl->data.target);
e4d8ec0f
ID
3352 ret = -EINVAL;
3353 goto out;
3354 }
6728b198
ID
3355 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3356 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3357 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3358 btrfs_err(fs_info,
3359 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3360 bctl->meta.target);
e4d8ec0f
ID
3361 ret = -EINVAL;
3362 goto out;
3363 }
6728b198
ID
3364 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3365 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3366 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3367 btrfs_err(fs_info,
3368 "unable to start balance with target system profile %llu",
c1c9ff7c 3369 bctl->sys.target);
e4d8ec0f
ID
3370 ret = -EINVAL;
3371 goto out;
3372 }
3373
e4837f8f
ID
3374 /* allow dup'ed data chunks only in mixed mode */
3375 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3376 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3377 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3378 ret = -EINVAL;
3379 goto out;
3380 }
3381
3382 /* allow to reduce meta or sys integrity only if force set */
3383 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3384 BTRFS_BLOCK_GROUP_RAID10 |
3385 BTRFS_BLOCK_GROUP_RAID5 |
3386 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3387 do {
3388 seq = read_seqbegin(&fs_info->profiles_lock);
3389
3390 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3391 (fs_info->avail_system_alloc_bits & allowed) &&
3392 !(bctl->sys.target & allowed)) ||
3393 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3394 (fs_info->avail_metadata_alloc_bits & allowed) &&
3395 !(bctl->meta.target & allowed))) {
3396 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3397 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3398 } else {
efe120a0
FH
3399 btrfs_err(fs_info, "balance will reduce metadata "
3400 "integrity, use force if you want this");
de98ced9
MX
3401 ret = -EINVAL;
3402 goto out;
3403 }
e4d8ec0f 3404 }
de98ced9 3405 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3406
5af3e8cc
SB
3407 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3408 int num_tolerated_disk_barrier_failures;
3409 u64 target = bctl->sys.target;
3410
3411 num_tolerated_disk_barrier_failures =
3412 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3413 if (num_tolerated_disk_barrier_failures > 0 &&
3414 (target &
3415 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3416 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3417 num_tolerated_disk_barrier_failures = 0;
3418 else if (num_tolerated_disk_barrier_failures > 1 &&
3419 (target &
3420 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3421 num_tolerated_disk_barrier_failures = 1;
3422
3423 fs_info->num_tolerated_disk_barrier_failures =
3424 num_tolerated_disk_barrier_failures;
3425 }
3426
0940ebf6 3427 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3428 if (ret && ret != -EEXIST)
0940ebf6
ID
3429 goto out;
3430
59641015
ID
3431 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3432 BUG_ON(ret == -EEXIST);
3433 set_balance_control(bctl);
3434 } else {
3435 BUG_ON(ret != -EEXIST);
3436 spin_lock(&fs_info->balance_lock);
3437 update_balance_args(bctl);
3438 spin_unlock(&fs_info->balance_lock);
3439 }
c9e9f97b 3440
837d5b6e 3441 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3442 mutex_unlock(&fs_info->balance_mutex);
3443
3444 ret = __btrfs_balance(fs_info);
3445
3446 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3447 atomic_dec(&fs_info->balance_running);
c9e9f97b 3448
bf023ecf
ID
3449 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3450 fs_info->num_tolerated_disk_barrier_failures =
3451 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3452 }
3453
c9e9f97b
ID
3454 if (bargs) {
3455 memset(bargs, 0, sizeof(*bargs));
19a39dce 3456 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3457 }
3458
3a01aa7a
ID
3459 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3460 balance_need_close(fs_info)) {
3461 __cancel_balance(fs_info);
3462 }
3463
837d5b6e 3464 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3465
3466 return ret;
3467out:
59641015
ID
3468 if (bctl->flags & BTRFS_BALANCE_RESUME)
3469 __cancel_balance(fs_info);
ed0fb78f 3470 else {
59641015 3471 kfree(bctl);
ed0fb78f
ID
3472 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3473 }
59641015
ID
3474 return ret;
3475}
3476
3477static int balance_kthread(void *data)
3478{
2b6ba629 3479 struct btrfs_fs_info *fs_info = data;
9555c6c1 3480 int ret = 0;
59641015
ID
3481
3482 mutex_lock(&fs_info->volume_mutex);
3483 mutex_lock(&fs_info->balance_mutex);
3484
2b6ba629 3485 if (fs_info->balance_ctl) {
efe120a0 3486 btrfs_info(fs_info, "continuing balance");
2b6ba629 3487 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3488 }
59641015
ID
3489
3490 mutex_unlock(&fs_info->balance_mutex);
3491 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3492
59641015
ID
3493 return ret;
3494}
3495
2b6ba629
ID
3496int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3497{
3498 struct task_struct *tsk;
3499
3500 spin_lock(&fs_info->balance_lock);
3501 if (!fs_info->balance_ctl) {
3502 spin_unlock(&fs_info->balance_lock);
3503 return 0;
3504 }
3505 spin_unlock(&fs_info->balance_lock);
3506
3507 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3508 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3509 return 0;
3510 }
3511
3512 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3513 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3514}
3515
68310a5e 3516int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3517{
59641015
ID
3518 struct btrfs_balance_control *bctl;
3519 struct btrfs_balance_item *item;
3520 struct btrfs_disk_balance_args disk_bargs;
3521 struct btrfs_path *path;
3522 struct extent_buffer *leaf;
3523 struct btrfs_key key;
3524 int ret;
3525
3526 path = btrfs_alloc_path();
3527 if (!path)
3528 return -ENOMEM;
3529
59641015
ID
3530 key.objectid = BTRFS_BALANCE_OBJECTID;
3531 key.type = BTRFS_BALANCE_ITEM_KEY;
3532 key.offset = 0;
3533
68310a5e 3534 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3535 if (ret < 0)
68310a5e 3536 goto out;
59641015
ID
3537 if (ret > 0) { /* ret = -ENOENT; */
3538 ret = 0;
68310a5e
ID
3539 goto out;
3540 }
3541
3542 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3543 if (!bctl) {
3544 ret = -ENOMEM;
3545 goto out;
59641015
ID
3546 }
3547
3548 leaf = path->nodes[0];
3549 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3550
68310a5e
ID
3551 bctl->fs_info = fs_info;
3552 bctl->flags = btrfs_balance_flags(leaf, item);
3553 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3554
3555 btrfs_balance_data(leaf, item, &disk_bargs);
3556 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3557 btrfs_balance_meta(leaf, item, &disk_bargs);
3558 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3559 btrfs_balance_sys(leaf, item, &disk_bargs);
3560 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3561
ed0fb78f
ID
3562 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3563
68310a5e
ID
3564 mutex_lock(&fs_info->volume_mutex);
3565 mutex_lock(&fs_info->balance_mutex);
59641015 3566
68310a5e
ID
3567 set_balance_control(bctl);
3568
3569 mutex_unlock(&fs_info->balance_mutex);
3570 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3571out:
3572 btrfs_free_path(path);
ec44a35c
CM
3573 return ret;
3574}
3575
837d5b6e
ID
3576int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3577{
3578 int ret = 0;
3579
3580 mutex_lock(&fs_info->balance_mutex);
3581 if (!fs_info->balance_ctl) {
3582 mutex_unlock(&fs_info->balance_mutex);
3583 return -ENOTCONN;
3584 }
3585
3586 if (atomic_read(&fs_info->balance_running)) {
3587 atomic_inc(&fs_info->balance_pause_req);
3588 mutex_unlock(&fs_info->balance_mutex);
3589
3590 wait_event(fs_info->balance_wait_q,
3591 atomic_read(&fs_info->balance_running) == 0);
3592
3593 mutex_lock(&fs_info->balance_mutex);
3594 /* we are good with balance_ctl ripped off from under us */
3595 BUG_ON(atomic_read(&fs_info->balance_running));
3596 atomic_dec(&fs_info->balance_pause_req);
3597 } else {
3598 ret = -ENOTCONN;
3599 }
3600
3601 mutex_unlock(&fs_info->balance_mutex);
3602 return ret;
3603}
3604
a7e99c69
ID
3605int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3606{
e649e587
ID
3607 if (fs_info->sb->s_flags & MS_RDONLY)
3608 return -EROFS;
3609
a7e99c69
ID
3610 mutex_lock(&fs_info->balance_mutex);
3611 if (!fs_info->balance_ctl) {
3612 mutex_unlock(&fs_info->balance_mutex);
3613 return -ENOTCONN;
3614 }
3615
3616 atomic_inc(&fs_info->balance_cancel_req);
3617 /*
3618 * if we are running just wait and return, balance item is
3619 * deleted in btrfs_balance in this case
3620 */
3621 if (atomic_read(&fs_info->balance_running)) {
3622 mutex_unlock(&fs_info->balance_mutex);
3623 wait_event(fs_info->balance_wait_q,
3624 atomic_read(&fs_info->balance_running) == 0);
3625 mutex_lock(&fs_info->balance_mutex);
3626 } else {
3627 /* __cancel_balance needs volume_mutex */
3628 mutex_unlock(&fs_info->balance_mutex);
3629 mutex_lock(&fs_info->volume_mutex);
3630 mutex_lock(&fs_info->balance_mutex);
3631
3632 if (fs_info->balance_ctl)
3633 __cancel_balance(fs_info);
3634
3635 mutex_unlock(&fs_info->volume_mutex);
3636 }
3637
3638 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3639 atomic_dec(&fs_info->balance_cancel_req);
3640 mutex_unlock(&fs_info->balance_mutex);
3641 return 0;
3642}
3643
803b2f54
SB
3644static int btrfs_uuid_scan_kthread(void *data)
3645{
3646 struct btrfs_fs_info *fs_info = data;
3647 struct btrfs_root *root = fs_info->tree_root;
3648 struct btrfs_key key;
3649 struct btrfs_key max_key;
3650 struct btrfs_path *path = NULL;
3651 int ret = 0;
3652 struct extent_buffer *eb;
3653 int slot;
3654 struct btrfs_root_item root_item;
3655 u32 item_size;
f45388f3 3656 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3657
3658 path = btrfs_alloc_path();
3659 if (!path) {
3660 ret = -ENOMEM;
3661 goto out;
3662 }
3663
3664 key.objectid = 0;
3665 key.type = BTRFS_ROOT_ITEM_KEY;
3666 key.offset = 0;
3667
3668 max_key.objectid = (u64)-1;
3669 max_key.type = BTRFS_ROOT_ITEM_KEY;
3670 max_key.offset = (u64)-1;
3671
803b2f54 3672 while (1) {
6174d3cb 3673 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3674 if (ret) {
3675 if (ret > 0)
3676 ret = 0;
3677 break;
3678 }
3679
3680 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3681 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3682 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3683 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3684 goto skip;
3685
3686 eb = path->nodes[0];
3687 slot = path->slots[0];
3688 item_size = btrfs_item_size_nr(eb, slot);
3689 if (item_size < sizeof(root_item))
3690 goto skip;
3691
803b2f54
SB
3692 read_extent_buffer(eb, &root_item,
3693 btrfs_item_ptr_offset(eb, slot),
3694 (int)sizeof(root_item));
3695 if (btrfs_root_refs(&root_item) == 0)
3696 goto skip;
f45388f3
FDBM
3697
3698 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3699 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3700 if (trans)
3701 goto update_tree;
3702
3703 btrfs_release_path(path);
803b2f54
SB
3704 /*
3705 * 1 - subvol uuid item
3706 * 1 - received_subvol uuid item
3707 */
3708 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3709 if (IS_ERR(trans)) {
3710 ret = PTR_ERR(trans);
3711 break;
3712 }
f45388f3
FDBM
3713 continue;
3714 } else {
3715 goto skip;
3716 }
3717update_tree:
3718 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3719 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3720 root_item.uuid,
3721 BTRFS_UUID_KEY_SUBVOL,
3722 key.objectid);
3723 if (ret < 0) {
efe120a0 3724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3725 ret);
803b2f54
SB
3726 break;
3727 }
3728 }
3729
3730 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3731 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3732 root_item.received_uuid,
3733 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3734 key.objectid);
3735 if (ret < 0) {
efe120a0 3736 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3737 ret);
803b2f54
SB
3738 break;
3739 }
3740 }
3741
f45388f3 3742skip:
803b2f54
SB
3743 if (trans) {
3744 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3745 trans = NULL;
803b2f54
SB
3746 if (ret)
3747 break;
3748 }
3749
803b2f54
SB
3750 btrfs_release_path(path);
3751 if (key.offset < (u64)-1) {
3752 key.offset++;
3753 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3754 key.offset = 0;
3755 key.type = BTRFS_ROOT_ITEM_KEY;
3756 } else if (key.objectid < (u64)-1) {
3757 key.offset = 0;
3758 key.type = BTRFS_ROOT_ITEM_KEY;
3759 key.objectid++;
3760 } else {
3761 break;
3762 }
3763 cond_resched();
3764 }
3765
3766out:
3767 btrfs_free_path(path);
f45388f3
FDBM
3768 if (trans && !IS_ERR(trans))
3769 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3770 if (ret)
efe120a0 3771 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3772 else
3773 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3774 up(&fs_info->uuid_tree_rescan_sem);
3775 return 0;
3776}
3777
70f80175
SB
3778/*
3779 * Callback for btrfs_uuid_tree_iterate().
3780 * returns:
3781 * 0 check succeeded, the entry is not outdated.
3782 * < 0 if an error occured.
3783 * > 0 if the check failed, which means the caller shall remove the entry.
3784 */
3785static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3786 u8 *uuid, u8 type, u64 subid)
3787{
3788 struct btrfs_key key;
3789 int ret = 0;
3790 struct btrfs_root *subvol_root;
3791
3792 if (type != BTRFS_UUID_KEY_SUBVOL &&
3793 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3794 goto out;
3795
3796 key.objectid = subid;
3797 key.type = BTRFS_ROOT_ITEM_KEY;
3798 key.offset = (u64)-1;
3799 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3800 if (IS_ERR(subvol_root)) {
3801 ret = PTR_ERR(subvol_root);
3802 if (ret == -ENOENT)
3803 ret = 1;
3804 goto out;
3805 }
3806
3807 switch (type) {
3808 case BTRFS_UUID_KEY_SUBVOL:
3809 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3810 ret = 1;
3811 break;
3812 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3813 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3814 BTRFS_UUID_SIZE))
3815 ret = 1;
3816 break;
3817 }
3818
3819out:
3820 return ret;
3821}
3822
3823static int btrfs_uuid_rescan_kthread(void *data)
3824{
3825 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3826 int ret;
3827
3828 /*
3829 * 1st step is to iterate through the existing UUID tree and
3830 * to delete all entries that contain outdated data.
3831 * 2nd step is to add all missing entries to the UUID tree.
3832 */
3833 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3834 if (ret < 0) {
efe120a0 3835 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
3836 up(&fs_info->uuid_tree_rescan_sem);
3837 return ret;
3838 }
3839 return btrfs_uuid_scan_kthread(data);
3840}
3841
f7a81ea4
SB
3842int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3843{
3844 struct btrfs_trans_handle *trans;
3845 struct btrfs_root *tree_root = fs_info->tree_root;
3846 struct btrfs_root *uuid_root;
803b2f54
SB
3847 struct task_struct *task;
3848 int ret;
f7a81ea4
SB
3849
3850 /*
3851 * 1 - root node
3852 * 1 - root item
3853 */
3854 trans = btrfs_start_transaction(tree_root, 2);
3855 if (IS_ERR(trans))
3856 return PTR_ERR(trans);
3857
3858 uuid_root = btrfs_create_tree(trans, fs_info,
3859 BTRFS_UUID_TREE_OBJECTID);
3860 if (IS_ERR(uuid_root)) {
3861 btrfs_abort_transaction(trans, tree_root,
3862 PTR_ERR(uuid_root));
3863 return PTR_ERR(uuid_root);
3864 }
3865
3866 fs_info->uuid_root = uuid_root;
3867
803b2f54
SB
3868 ret = btrfs_commit_transaction(trans, tree_root);
3869 if (ret)
3870 return ret;
3871
3872 down(&fs_info->uuid_tree_rescan_sem);
3873 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3874 if (IS_ERR(task)) {
70f80175 3875 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3876 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
3877 up(&fs_info->uuid_tree_rescan_sem);
3878 return PTR_ERR(task);
3879 }
3880
3881 return 0;
f7a81ea4 3882}
803b2f54 3883
70f80175
SB
3884int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3885{
3886 struct task_struct *task;
3887
3888 down(&fs_info->uuid_tree_rescan_sem);
3889 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3890 if (IS_ERR(task)) {
3891 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3892 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
3893 up(&fs_info->uuid_tree_rescan_sem);
3894 return PTR_ERR(task);
3895 }
3896
3897 return 0;
3898}
3899
8f18cf13
CM
3900/*
3901 * shrinking a device means finding all of the device extents past
3902 * the new size, and then following the back refs to the chunks.
3903 * The chunk relocation code actually frees the device extent
3904 */
3905int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3906{
3907 struct btrfs_trans_handle *trans;
3908 struct btrfs_root *root = device->dev_root;
3909 struct btrfs_dev_extent *dev_extent = NULL;
3910 struct btrfs_path *path;
3911 u64 length;
3912 u64 chunk_tree;
3913 u64 chunk_objectid;
3914 u64 chunk_offset;
3915 int ret;
3916 int slot;
ba1bf481
JB
3917 int failed = 0;
3918 bool retried = false;
8f18cf13
CM
3919 struct extent_buffer *l;
3920 struct btrfs_key key;
6c41761f 3921 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3922 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3923 u64 old_size = device->total_bytes;
8f18cf13
CM
3924 u64 diff = device->total_bytes - new_size;
3925
63a212ab
SB
3926 if (device->is_tgtdev_for_dev_replace)
3927 return -EINVAL;
3928
8f18cf13
CM
3929 path = btrfs_alloc_path();
3930 if (!path)
3931 return -ENOMEM;
3932
8f18cf13
CM
3933 path->reada = 2;
3934
7d9eb12c
CM
3935 lock_chunks(root);
3936
8f18cf13 3937 device->total_bytes = new_size;
2bf64758 3938 if (device->writeable) {
2b82032c 3939 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3940 spin_lock(&root->fs_info->free_chunk_lock);
3941 root->fs_info->free_chunk_space -= diff;
3942 spin_unlock(&root->fs_info->free_chunk_lock);
3943 }
7d9eb12c 3944 unlock_chunks(root);
8f18cf13 3945
ba1bf481 3946again:
8f18cf13
CM
3947 key.objectid = device->devid;
3948 key.offset = (u64)-1;
3949 key.type = BTRFS_DEV_EXTENT_KEY;
3950
213e64da 3951 do {
8f18cf13
CM
3952 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3953 if (ret < 0)
3954 goto done;
3955
3956 ret = btrfs_previous_item(root, path, 0, key.type);
3957 if (ret < 0)
3958 goto done;
3959 if (ret) {
3960 ret = 0;
b3b4aa74 3961 btrfs_release_path(path);
bf1fb512 3962 break;
8f18cf13
CM
3963 }
3964
3965 l = path->nodes[0];
3966 slot = path->slots[0];
3967 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3968
ba1bf481 3969 if (key.objectid != device->devid) {
b3b4aa74 3970 btrfs_release_path(path);
bf1fb512 3971 break;
ba1bf481 3972 }
8f18cf13
CM
3973
3974 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3975 length = btrfs_dev_extent_length(l, dev_extent);
3976
ba1bf481 3977 if (key.offset + length <= new_size) {
b3b4aa74 3978 btrfs_release_path(path);
d6397bae 3979 break;
ba1bf481 3980 }
8f18cf13
CM
3981
3982 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3983 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3984 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3985 btrfs_release_path(path);
8f18cf13
CM
3986
3987 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3988 chunk_offset);
ba1bf481 3989 if (ret && ret != -ENOSPC)
8f18cf13 3990 goto done;
ba1bf481
JB
3991 if (ret == -ENOSPC)
3992 failed++;
213e64da 3993 } while (key.offset-- > 0);
ba1bf481
JB
3994
3995 if (failed && !retried) {
3996 failed = 0;
3997 retried = true;
3998 goto again;
3999 } else if (failed && retried) {
4000 ret = -ENOSPC;
4001 lock_chunks(root);
4002
4003 device->total_bytes = old_size;
4004 if (device->writeable)
4005 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
4006 spin_lock(&root->fs_info->free_chunk_lock);
4007 root->fs_info->free_chunk_space += diff;
4008 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
4009 unlock_chunks(root);
4010 goto done;
8f18cf13
CM
4011 }
4012
d6397bae 4013 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4014 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4015 if (IS_ERR(trans)) {
4016 ret = PTR_ERR(trans);
4017 goto done;
4018 }
4019
d6397bae 4020 lock_chunks(root);
d6397bae 4021 device->disk_total_bytes = new_size;
935e5cc9
MX
4022 if (list_empty(&device->resized_list))
4023 list_add_tail(&device->resized_list,
4024 &root->fs_info->fs_devices->resized_devices);
4025
d6397bae
CB
4026 /* Now btrfs_update_device() will change the on-disk size. */
4027 ret = btrfs_update_device(trans, device);
4028 if (ret) {
4029 unlock_chunks(root);
4030 btrfs_end_transaction(trans, root);
4031 goto done;
4032 }
4033 WARN_ON(diff > old_total);
4034 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4035 unlock_chunks(root);
4036 btrfs_end_transaction(trans, root);
8f18cf13
CM
4037done:
4038 btrfs_free_path(path);
4039 return ret;
4040}
4041
125ccb0a 4042static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4043 struct btrfs_key *key,
4044 struct btrfs_chunk *chunk, int item_size)
4045{
6c41761f 4046 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4047 struct btrfs_disk_key disk_key;
4048 u32 array_size;
4049 u8 *ptr;
4050
4051 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e
GH
4052 if (array_size + item_size + sizeof(disk_key)
4053 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
4054 return -EFBIG;
4055
4056 ptr = super_copy->sys_chunk_array + array_size;
4057 btrfs_cpu_key_to_disk(&disk_key, key);
4058 memcpy(ptr, &disk_key, sizeof(disk_key));
4059 ptr += sizeof(disk_key);
4060 memcpy(ptr, chunk, item_size);
4061 item_size += sizeof(disk_key);
4062 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4063 return 0;
4064}
4065
73c5de00
AJ
4066/*
4067 * sort the devices in descending order by max_avail, total_avail
4068 */
4069static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4070{
73c5de00
AJ
4071 const struct btrfs_device_info *di_a = a;
4072 const struct btrfs_device_info *di_b = b;
9b3f68b9 4073
73c5de00 4074 if (di_a->max_avail > di_b->max_avail)
b2117a39 4075 return -1;
73c5de00 4076 if (di_a->max_avail < di_b->max_avail)
b2117a39 4077 return 1;
73c5de00
AJ
4078 if (di_a->total_avail > di_b->total_avail)
4079 return -1;
4080 if (di_a->total_avail < di_b->total_avail)
4081 return 1;
4082 return 0;
b2117a39 4083}
0b86a832 4084
48a3b636 4085static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
4086 [BTRFS_RAID_RAID10] = {
4087 .sub_stripes = 2,
4088 .dev_stripes = 1,
4089 .devs_max = 0, /* 0 == as many as possible */
4090 .devs_min = 4,
4091 .devs_increment = 2,
4092 .ncopies = 2,
4093 },
4094 [BTRFS_RAID_RAID1] = {
4095 .sub_stripes = 1,
4096 .dev_stripes = 1,
4097 .devs_max = 2,
4098 .devs_min = 2,
4099 .devs_increment = 2,
4100 .ncopies = 2,
4101 },
4102 [BTRFS_RAID_DUP] = {
4103 .sub_stripes = 1,
4104 .dev_stripes = 2,
4105 .devs_max = 1,
4106 .devs_min = 1,
4107 .devs_increment = 1,
4108 .ncopies = 2,
4109 },
4110 [BTRFS_RAID_RAID0] = {
4111 .sub_stripes = 1,
4112 .dev_stripes = 1,
4113 .devs_max = 0,
4114 .devs_min = 2,
4115 .devs_increment = 1,
4116 .ncopies = 1,
4117 },
4118 [BTRFS_RAID_SINGLE] = {
4119 .sub_stripes = 1,
4120 .dev_stripes = 1,
4121 .devs_max = 1,
4122 .devs_min = 1,
4123 .devs_increment = 1,
4124 .ncopies = 1,
4125 },
e942f883
CM
4126 [BTRFS_RAID_RAID5] = {
4127 .sub_stripes = 1,
4128 .dev_stripes = 1,
4129 .devs_max = 0,
4130 .devs_min = 2,
4131 .devs_increment = 1,
4132 .ncopies = 2,
4133 },
4134 [BTRFS_RAID_RAID6] = {
4135 .sub_stripes = 1,
4136 .dev_stripes = 1,
4137 .devs_max = 0,
4138 .devs_min = 3,
4139 .devs_increment = 1,
4140 .ncopies = 3,
4141 },
31e50229
LB
4142};
4143
53b381b3
DW
4144static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4145{
4146 /* TODO allow them to set a preferred stripe size */
4147 return 64 * 1024;
4148}
4149
4150static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4151{
53b381b3
DW
4152 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4153 return;
4154
ceda0864 4155 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4156}
4157
23f8f9b7
GH
4158#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4159 - sizeof(struct btrfs_item) \
4160 - sizeof(struct btrfs_chunk)) \
4161 / sizeof(struct btrfs_stripe) + 1)
4162
4163#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4164 - 2 * sizeof(struct btrfs_disk_key) \
4165 - 2 * sizeof(struct btrfs_chunk)) \
4166 / sizeof(struct btrfs_stripe) + 1)
4167
73c5de00 4168static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4169 struct btrfs_root *extent_root, u64 start,
4170 u64 type)
b2117a39 4171{
73c5de00
AJ
4172 struct btrfs_fs_info *info = extent_root->fs_info;
4173 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4174 struct list_head *cur;
4175 struct map_lookup *map = NULL;
4176 struct extent_map_tree *em_tree;
4177 struct extent_map *em;
4178 struct btrfs_device_info *devices_info = NULL;
4179 u64 total_avail;
4180 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4181 int data_stripes; /* number of stripes that count for
4182 block group size */
73c5de00
AJ
4183 int sub_stripes; /* sub_stripes info for map */
4184 int dev_stripes; /* stripes per dev */
4185 int devs_max; /* max devs to use */
4186 int devs_min; /* min devs needed */
4187 int devs_increment; /* ndevs has to be a multiple of this */
4188 int ncopies; /* how many copies to data has */
4189 int ret;
4190 u64 max_stripe_size;
4191 u64 max_chunk_size;
4192 u64 stripe_size;
4193 u64 num_bytes;
53b381b3 4194 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4195 int ndevs;
4196 int i;
4197 int j;
31e50229 4198 int index;
593060d7 4199
0c460c0d 4200 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4201
73c5de00
AJ
4202 if (list_empty(&fs_devices->alloc_list))
4203 return -ENOSPC;
b2117a39 4204
31e50229 4205 index = __get_raid_index(type);
73c5de00 4206
31e50229
LB
4207 sub_stripes = btrfs_raid_array[index].sub_stripes;
4208 dev_stripes = btrfs_raid_array[index].dev_stripes;
4209 devs_max = btrfs_raid_array[index].devs_max;
4210 devs_min = btrfs_raid_array[index].devs_min;
4211 devs_increment = btrfs_raid_array[index].devs_increment;
4212 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4213
9b3f68b9 4214 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4215 max_stripe_size = 1024 * 1024 * 1024;
4216 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4217 if (!devs_max)
4218 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4219 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4220 /* for larger filesystems, use larger metadata chunks */
4221 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4222 max_stripe_size = 1024 * 1024 * 1024;
4223 else
4224 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4225 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4226 if (!devs_max)
4227 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4228 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4229 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4230 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4231 if (!devs_max)
4232 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4233 } else {
351fd353 4234 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4235 type);
4236 BUG_ON(1);
9b3f68b9
CM
4237 }
4238
2b82032c
YZ
4239 /* we don't want a chunk larger than 10% of writeable space */
4240 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4241 max_chunk_size);
9b3f68b9 4242
73c5de00
AJ
4243 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4244 GFP_NOFS);
4245 if (!devices_info)
4246 return -ENOMEM;
0cad8a11 4247
73c5de00 4248 cur = fs_devices->alloc_list.next;
9b3f68b9 4249
9f680ce0 4250 /*
73c5de00
AJ
4251 * in the first pass through the devices list, we gather information
4252 * about the available holes on each device.
9f680ce0 4253 */
73c5de00
AJ
4254 ndevs = 0;
4255 while (cur != &fs_devices->alloc_list) {
4256 struct btrfs_device *device;
4257 u64 max_avail;
4258 u64 dev_offset;
b2117a39 4259
73c5de00 4260 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4261
73c5de00 4262 cur = cur->next;
b2117a39 4263
73c5de00 4264 if (!device->writeable) {
31b1a2bd 4265 WARN(1, KERN_ERR
efe120a0 4266 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4267 continue;
4268 }
b2117a39 4269
63a212ab
SB
4270 if (!device->in_fs_metadata ||
4271 device->is_tgtdev_for_dev_replace)
73c5de00 4272 continue;
b2117a39 4273
73c5de00
AJ
4274 if (device->total_bytes > device->bytes_used)
4275 total_avail = device->total_bytes - device->bytes_used;
4276 else
4277 total_avail = 0;
38c01b96 4278
4279 /* If there is no space on this device, skip it. */
4280 if (total_avail == 0)
4281 continue;
b2117a39 4282
6df9a95e 4283 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4284 max_stripe_size * dev_stripes,
4285 &dev_offset, &max_avail);
4286 if (ret && ret != -ENOSPC)
4287 goto error;
b2117a39 4288
73c5de00
AJ
4289 if (ret == 0)
4290 max_avail = max_stripe_size * dev_stripes;
b2117a39 4291
73c5de00
AJ
4292 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4293 continue;
b2117a39 4294
063d006f
ES
4295 if (ndevs == fs_devices->rw_devices) {
4296 WARN(1, "%s: found more than %llu devices\n",
4297 __func__, fs_devices->rw_devices);
4298 break;
4299 }
73c5de00
AJ
4300 devices_info[ndevs].dev_offset = dev_offset;
4301 devices_info[ndevs].max_avail = max_avail;
4302 devices_info[ndevs].total_avail = total_avail;
4303 devices_info[ndevs].dev = device;
4304 ++ndevs;
4305 }
b2117a39 4306
73c5de00
AJ
4307 /*
4308 * now sort the devices by hole size / available space
4309 */
4310 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4311 btrfs_cmp_device_info, NULL);
b2117a39 4312
73c5de00
AJ
4313 /* round down to number of usable stripes */
4314 ndevs -= ndevs % devs_increment;
b2117a39 4315
73c5de00
AJ
4316 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4317 ret = -ENOSPC;
4318 goto error;
b2117a39 4319 }
9f680ce0 4320
73c5de00
AJ
4321 if (devs_max && ndevs > devs_max)
4322 ndevs = devs_max;
4323 /*
4324 * the primary goal is to maximize the number of stripes, so use as many
4325 * devices as possible, even if the stripes are not maximum sized.
4326 */
4327 stripe_size = devices_info[ndevs-1].max_avail;
4328 num_stripes = ndevs * dev_stripes;
b2117a39 4329
53b381b3
DW
4330 /*
4331 * this will have to be fixed for RAID1 and RAID10 over
4332 * more drives
4333 */
4334 data_stripes = num_stripes / ncopies;
4335
53b381b3
DW
4336 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4337 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4338 btrfs_super_stripesize(info->super_copy));
4339 data_stripes = num_stripes - 1;
4340 }
4341 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4342 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4343 btrfs_super_stripesize(info->super_copy));
4344 data_stripes = num_stripes - 2;
4345 }
86db2578
CM
4346
4347 /*
4348 * Use the number of data stripes to figure out how big this chunk
4349 * is really going to be in terms of logical address space,
4350 * and compare that answer with the max chunk size
4351 */
4352 if (stripe_size * data_stripes > max_chunk_size) {
4353 u64 mask = (1ULL << 24) - 1;
4354 stripe_size = max_chunk_size;
4355 do_div(stripe_size, data_stripes);
4356
4357 /* bump the answer up to a 16MB boundary */
4358 stripe_size = (stripe_size + mask) & ~mask;
4359
4360 /* but don't go higher than the limits we found
4361 * while searching for free extents
4362 */
4363 if (stripe_size > devices_info[ndevs-1].max_avail)
4364 stripe_size = devices_info[ndevs-1].max_avail;
4365 }
4366
73c5de00 4367 do_div(stripe_size, dev_stripes);
37db63a4
ID
4368
4369 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4370 do_div(stripe_size, raid_stripe_len);
4371 stripe_size *= raid_stripe_len;
b2117a39
MX
4372
4373 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4374 if (!map) {
4375 ret = -ENOMEM;
4376 goto error;
4377 }
4378 map->num_stripes = num_stripes;
9b3f68b9 4379
73c5de00
AJ
4380 for (i = 0; i < ndevs; ++i) {
4381 for (j = 0; j < dev_stripes; ++j) {
4382 int s = i * dev_stripes + j;
4383 map->stripes[s].dev = devices_info[i].dev;
4384 map->stripes[s].physical = devices_info[i].dev_offset +
4385 j * stripe_size;
6324fbf3 4386 }
6324fbf3 4387 }
2b82032c 4388 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4389 map->stripe_len = raid_stripe_len;
4390 map->io_align = raid_stripe_len;
4391 map->io_width = raid_stripe_len;
2b82032c 4392 map->type = type;
2b82032c 4393 map->sub_stripes = sub_stripes;
0b86a832 4394
53b381b3 4395 num_bytes = stripe_size * data_stripes;
0b86a832 4396
73c5de00 4397 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4398
172ddd60 4399 em = alloc_extent_map();
2b82032c 4400 if (!em) {
298a8f9c 4401 kfree(map);
b2117a39
MX
4402 ret = -ENOMEM;
4403 goto error;
593060d7 4404 }
298a8f9c 4405 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4406 em->bdev = (struct block_device *)map;
4407 em->start = start;
73c5de00 4408 em->len = num_bytes;
2b82032c
YZ
4409 em->block_start = 0;
4410 em->block_len = em->len;
6df9a95e 4411 em->orig_block_len = stripe_size;
593060d7 4412
2b82032c 4413 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4414 write_lock(&em_tree->lock);
09a2a8f9 4415 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4416 if (!ret) {
4417 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4418 atomic_inc(&em->refs);
4419 }
890871be 4420 write_unlock(&em_tree->lock);
0f5d42b2
JB
4421 if (ret) {
4422 free_extent_map(em);
1dd4602f 4423 goto error;
0f5d42b2 4424 }
0b86a832 4425
04487488
JB
4426 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4427 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4428 start, num_bytes);
6df9a95e
JB
4429 if (ret)
4430 goto error_del_extent;
2b82032c 4431
43530c46
MX
4432 for (i = 0; i < map->num_stripes; i++)
4433 map->stripes[i].dev->bytes_used += stripe_size;
4434
0f5d42b2 4435 free_extent_map(em);
53b381b3
DW
4436 check_raid56_incompat_flag(extent_root->fs_info, type);
4437
b2117a39 4438 kfree(devices_info);
2b82032c 4439 return 0;
b2117a39 4440
6df9a95e 4441error_del_extent:
0f5d42b2
JB
4442 write_lock(&em_tree->lock);
4443 remove_extent_mapping(em_tree, em);
4444 write_unlock(&em_tree->lock);
4445
4446 /* One for our allocation */
4447 free_extent_map(em);
4448 /* One for the tree reference */
4449 free_extent_map(em);
b2117a39 4450error:
b2117a39
MX
4451 kfree(devices_info);
4452 return ret;
2b82032c
YZ
4453}
4454
6df9a95e 4455int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4456 struct btrfs_root *extent_root,
6df9a95e 4457 u64 chunk_offset, u64 chunk_size)
2b82032c 4458{
2b82032c
YZ
4459 struct btrfs_key key;
4460 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4461 struct btrfs_device *device;
4462 struct btrfs_chunk *chunk;
4463 struct btrfs_stripe *stripe;
6df9a95e
JB
4464 struct extent_map_tree *em_tree;
4465 struct extent_map *em;
4466 struct map_lookup *map;
4467 size_t item_size;
4468 u64 dev_offset;
4469 u64 stripe_size;
4470 int i = 0;
2b82032c
YZ
4471 int ret;
4472
6df9a95e
JB
4473 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4474 read_lock(&em_tree->lock);
4475 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4476 read_unlock(&em_tree->lock);
4477
4478 if (!em) {
4479 btrfs_crit(extent_root->fs_info, "unable to find logical "
4480 "%Lu len %Lu", chunk_offset, chunk_size);
4481 return -EINVAL;
4482 }
4483
4484 if (em->start != chunk_offset || em->len != chunk_size) {
4485 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4486 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4487 chunk_size, em->start, em->len);
4488 free_extent_map(em);
4489 return -EINVAL;
4490 }
4491
4492 map = (struct map_lookup *)em->bdev;
4493 item_size = btrfs_chunk_item_size(map->num_stripes);
4494 stripe_size = em->orig_block_len;
4495
2b82032c 4496 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4497 if (!chunk) {
4498 ret = -ENOMEM;
4499 goto out;
4500 }
4501
4502 for (i = 0; i < map->num_stripes; i++) {
4503 device = map->stripes[i].dev;
4504 dev_offset = map->stripes[i].physical;
2b82032c 4505
0b86a832 4506 ret = btrfs_update_device(trans, device);
3acd3953 4507 if (ret)
6df9a95e
JB
4508 goto out;
4509 ret = btrfs_alloc_dev_extent(trans, device,
4510 chunk_root->root_key.objectid,
4511 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4512 chunk_offset, dev_offset,
4513 stripe_size);
4514 if (ret)
4515 goto out;
2b82032c
YZ
4516 }
4517
2bf64758
JB
4518 spin_lock(&extent_root->fs_info->free_chunk_lock);
4519 extent_root->fs_info->free_chunk_space -= (stripe_size *
4520 map->num_stripes);
4521 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4522
2b82032c 4523 stripe = &chunk->stripe;
6df9a95e
JB
4524 for (i = 0; i < map->num_stripes; i++) {
4525 device = map->stripes[i].dev;
4526 dev_offset = map->stripes[i].physical;
0b86a832 4527
e17cade2
CM
4528 btrfs_set_stack_stripe_devid(stripe, device->devid);
4529 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4530 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4531 stripe++;
0b86a832
CM
4532 }
4533
2b82032c 4534 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4535 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4536 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4537 btrfs_set_stack_chunk_type(chunk, map->type);
4538 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4539 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4540 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4541 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4542 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4543
2b82032c
YZ
4544 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4545 key.type = BTRFS_CHUNK_ITEM_KEY;
4546 key.offset = chunk_offset;
0b86a832 4547
2b82032c 4548 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4549 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4550 /*
4551 * TODO: Cleanup of inserted chunk root in case of
4552 * failure.
4553 */
125ccb0a 4554 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4555 item_size);
8f18cf13 4556 }
1abe9b8a 4557
6df9a95e 4558out:
0b86a832 4559 kfree(chunk);
6df9a95e 4560 free_extent_map(em);
4ed1d16e 4561 return ret;
2b82032c 4562}
0b86a832 4563
2b82032c
YZ
4564/*
4565 * Chunk allocation falls into two parts. The first part does works
4566 * that make the new allocated chunk useable, but not do any operation
4567 * that modifies the chunk tree. The second part does the works that
4568 * require modifying the chunk tree. This division is important for the
4569 * bootstrap process of adding storage to a seed btrfs.
4570 */
4571int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4572 struct btrfs_root *extent_root, u64 type)
4573{
4574 u64 chunk_offset;
2b82032c 4575
6df9a95e
JB
4576 chunk_offset = find_next_chunk(extent_root->fs_info);
4577 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4578}
4579
d397712b 4580static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4581 struct btrfs_root *root,
4582 struct btrfs_device *device)
4583{
4584 u64 chunk_offset;
4585 u64 sys_chunk_offset;
2b82032c 4586 u64 alloc_profile;
2b82032c
YZ
4587 struct btrfs_fs_info *fs_info = root->fs_info;
4588 struct btrfs_root *extent_root = fs_info->extent_root;
4589 int ret;
4590
6df9a95e 4591 chunk_offset = find_next_chunk(fs_info);
de98ced9 4592 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4593 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4594 alloc_profile);
79787eaa
JM
4595 if (ret)
4596 return ret;
2b82032c 4597
6df9a95e 4598 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4599 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4600 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4601 alloc_profile);
005d6427
DS
4602 if (ret) {
4603 btrfs_abort_transaction(trans, root, ret);
4604 goto out;
4605 }
2b82032c
YZ
4606
4607 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4608 if (ret)
005d6427 4609 btrfs_abort_transaction(trans, root, ret);
005d6427 4610out:
79787eaa 4611 return ret;
2b82032c
YZ
4612}
4613
d20983b4
MX
4614static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4615{
4616 int max_errors;
4617
4618 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4619 BTRFS_BLOCK_GROUP_RAID10 |
4620 BTRFS_BLOCK_GROUP_RAID5 |
4621 BTRFS_BLOCK_GROUP_DUP)) {
4622 max_errors = 1;
4623 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4624 max_errors = 2;
4625 } else {
4626 max_errors = 0;
4627 }
4628
4629 return max_errors;
4630}
4631
2b82032c
YZ
4632int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4633{
4634 struct extent_map *em;
4635 struct map_lookup *map;
4636 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4637 int readonly = 0;
d20983b4 4638 int miss_ndevs = 0;
2b82032c
YZ
4639 int i;
4640
890871be 4641 read_lock(&map_tree->map_tree.lock);
2b82032c 4642 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4643 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4644 if (!em)
4645 return 1;
4646
4647 map = (struct map_lookup *)em->bdev;
4648 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4649 if (map->stripes[i].dev->missing) {
4650 miss_ndevs++;
4651 continue;
4652 }
4653
2b82032c
YZ
4654 if (!map->stripes[i].dev->writeable) {
4655 readonly = 1;
d20983b4 4656 goto end;
2b82032c
YZ
4657 }
4658 }
d20983b4
MX
4659
4660 /*
4661 * If the number of missing devices is larger than max errors,
4662 * we can not write the data into that chunk successfully, so
4663 * set it readonly.
4664 */
4665 if (miss_ndevs > btrfs_chunk_max_errors(map))
4666 readonly = 1;
4667end:
0b86a832 4668 free_extent_map(em);
2b82032c 4669 return readonly;
0b86a832
CM
4670}
4671
4672void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4673{
a8067e02 4674 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4675}
4676
4677void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4678{
4679 struct extent_map *em;
4680
d397712b 4681 while (1) {
890871be 4682 write_lock(&tree->map_tree.lock);
0b86a832
CM
4683 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4684 if (em)
4685 remove_extent_mapping(&tree->map_tree, em);
890871be 4686 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4687 if (!em)
4688 break;
0b86a832
CM
4689 /* once for us */
4690 free_extent_map(em);
4691 /* once for the tree */
4692 free_extent_map(em);
4693 }
4694}
4695
5d964051 4696int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4697{
5d964051 4698 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4699 struct extent_map *em;
4700 struct map_lookup *map;
4701 struct extent_map_tree *em_tree = &map_tree->map_tree;
4702 int ret;
4703
890871be 4704 read_lock(&em_tree->lock);
f188591e 4705 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4706 read_unlock(&em_tree->lock);
f188591e 4707
fb7669b5
JB
4708 /*
4709 * We could return errors for these cases, but that could get ugly and
4710 * we'd probably do the same thing which is just not do anything else
4711 * and exit, so return 1 so the callers don't try to use other copies.
4712 */
4713 if (!em) {
351fd353 4714 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4715 logical+len);
4716 return 1;
4717 }
4718
4719 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4720 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4721 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4722 em->start + em->len);
7d3d1744 4723 free_extent_map(em);
fb7669b5
JB
4724 return 1;
4725 }
4726
f188591e
CM
4727 map = (struct map_lookup *)em->bdev;
4728 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4729 ret = map->num_stripes;
321aecc6
CM
4730 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4731 ret = map->sub_stripes;
53b381b3
DW
4732 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4733 ret = 2;
4734 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4735 ret = 3;
f188591e
CM
4736 else
4737 ret = 1;
4738 free_extent_map(em);
ad6d620e
SB
4739
4740 btrfs_dev_replace_lock(&fs_info->dev_replace);
4741 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4742 ret++;
4743 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4744
f188591e
CM
4745 return ret;
4746}
4747
53b381b3
DW
4748unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4749 struct btrfs_mapping_tree *map_tree,
4750 u64 logical)
4751{
4752 struct extent_map *em;
4753 struct map_lookup *map;
4754 struct extent_map_tree *em_tree = &map_tree->map_tree;
4755 unsigned long len = root->sectorsize;
4756
4757 read_lock(&em_tree->lock);
4758 em = lookup_extent_mapping(em_tree, logical, len);
4759 read_unlock(&em_tree->lock);
4760 BUG_ON(!em);
4761
4762 BUG_ON(em->start > logical || em->start + em->len < logical);
4763 map = (struct map_lookup *)em->bdev;
4764 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4765 BTRFS_BLOCK_GROUP_RAID6)) {
4766 len = map->stripe_len * nr_data_stripes(map);
4767 }
4768 free_extent_map(em);
4769 return len;
4770}
4771
4772int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4773 u64 logical, u64 len, int mirror_num)
4774{
4775 struct extent_map *em;
4776 struct map_lookup *map;
4777 struct extent_map_tree *em_tree = &map_tree->map_tree;
4778 int ret = 0;
4779
4780 read_lock(&em_tree->lock);
4781 em = lookup_extent_mapping(em_tree, logical, len);
4782 read_unlock(&em_tree->lock);
4783 BUG_ON(!em);
4784
4785 BUG_ON(em->start > logical || em->start + em->len < logical);
4786 map = (struct map_lookup *)em->bdev;
4787 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4788 BTRFS_BLOCK_GROUP_RAID6))
4789 ret = 1;
4790 free_extent_map(em);
4791 return ret;
4792}
4793
30d9861f
SB
4794static int find_live_mirror(struct btrfs_fs_info *fs_info,
4795 struct map_lookup *map, int first, int num,
4796 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4797{
4798 int i;
30d9861f
SB
4799 int tolerance;
4800 struct btrfs_device *srcdev;
4801
4802 if (dev_replace_is_ongoing &&
4803 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4804 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4805 srcdev = fs_info->dev_replace.srcdev;
4806 else
4807 srcdev = NULL;
4808
4809 /*
4810 * try to avoid the drive that is the source drive for a
4811 * dev-replace procedure, only choose it if no other non-missing
4812 * mirror is available
4813 */
4814 for (tolerance = 0; tolerance < 2; tolerance++) {
4815 if (map->stripes[optimal].dev->bdev &&
4816 (tolerance || map->stripes[optimal].dev != srcdev))
4817 return optimal;
4818 for (i = first; i < first + num; i++) {
4819 if (map->stripes[i].dev->bdev &&
4820 (tolerance || map->stripes[i].dev != srcdev))
4821 return i;
4822 }
dfe25020 4823 }
30d9861f 4824
dfe25020
CM
4825 /* we couldn't find one that doesn't fail. Just return something
4826 * and the io error handling code will clean up eventually
4827 */
4828 return optimal;
4829}
4830
53b381b3
DW
4831static inline int parity_smaller(u64 a, u64 b)
4832{
4833 return a > b;
4834}
4835
4836/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4837static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4838{
4839 struct btrfs_bio_stripe s;
4840 int i;
4841 u64 l;
4842 int again = 1;
4843
4844 while (again) {
4845 again = 0;
4846 for (i = 0; i < bbio->num_stripes - 1; i++) {
4847 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4848 s = bbio->stripes[i];
4849 l = raid_map[i];
4850 bbio->stripes[i] = bbio->stripes[i+1];
4851 raid_map[i] = raid_map[i+1];
4852 bbio->stripes[i+1] = s;
4853 raid_map[i+1] = l;
4854 again = 1;
4855 }
4856 }
4857 }
4858}
4859
3ec706c8 4860static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4861 u64 logical, u64 *length,
a1d3c478 4862 struct btrfs_bio **bbio_ret,
53b381b3 4863 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4864{
4865 struct extent_map *em;
4866 struct map_lookup *map;
3ec706c8 4867 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4868 struct extent_map_tree *em_tree = &map_tree->map_tree;
4869 u64 offset;
593060d7 4870 u64 stripe_offset;
fce3bb9a 4871 u64 stripe_end_offset;
593060d7 4872 u64 stripe_nr;
fce3bb9a
LD
4873 u64 stripe_nr_orig;
4874 u64 stripe_nr_end;
53b381b3
DW
4875 u64 stripe_len;
4876 u64 *raid_map = NULL;
593060d7 4877 int stripe_index;
cea9e445 4878 int i;
de11cc12 4879 int ret = 0;
f2d8d74d 4880 int num_stripes;
a236aed1 4881 int max_errors = 0;
a1d3c478 4882 struct btrfs_bio *bbio = NULL;
472262f3
SB
4883 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4884 int dev_replace_is_ongoing = 0;
4885 int num_alloc_stripes;
ad6d620e
SB
4886 int patch_the_first_stripe_for_dev_replace = 0;
4887 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4888 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4889
890871be 4890 read_lock(&em_tree->lock);
0b86a832 4891 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4892 read_unlock(&em_tree->lock);
f2d8d74d 4893
3b951516 4894 if (!em) {
c2cf52eb 4895 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4896 logical, *length);
9bb91873
JB
4897 return -EINVAL;
4898 }
4899
4900 if (em->start > logical || em->start + em->len < logical) {
4901 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 4902 "found %Lu-%Lu", logical, em->start,
9bb91873 4903 em->start + em->len);
7d3d1744 4904 free_extent_map(em);
9bb91873 4905 return -EINVAL;
3b951516 4906 }
0b86a832 4907
0b86a832
CM
4908 map = (struct map_lookup *)em->bdev;
4909 offset = logical - em->start;
593060d7 4910
53b381b3 4911 stripe_len = map->stripe_len;
593060d7
CM
4912 stripe_nr = offset;
4913 /*
4914 * stripe_nr counts the total number of stripes we have to stride
4915 * to get to this block
4916 */
53b381b3 4917 do_div(stripe_nr, stripe_len);
593060d7 4918
53b381b3 4919 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4920 BUG_ON(offset < stripe_offset);
4921
4922 /* stripe_offset is the offset of this block in its stripe*/
4923 stripe_offset = offset - stripe_offset;
4924
53b381b3
DW
4925 /* if we're here for raid56, we need to know the stripe aligned start */
4926 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4927 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4928 raid56_full_stripe_start = offset;
4929
4930 /* allow a write of a full stripe, but make sure we don't
4931 * allow straddling of stripes
4932 */
4933 do_div(raid56_full_stripe_start, full_stripe_len);
4934 raid56_full_stripe_start *= full_stripe_len;
4935 }
4936
4937 if (rw & REQ_DISCARD) {
4938 /* we don't discard raid56 yet */
4939 if (map->type &
4940 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4941 ret = -EOPNOTSUPP;
4942 goto out;
4943 }
fce3bb9a 4944 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4945 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4946 u64 max_len;
4947 /* For writes to RAID[56], allow a full stripeset across all disks.
4948 For other RAID types and for RAID[56] reads, just allow a single
4949 stripe (on a single disk). */
4950 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4951 (rw & REQ_WRITE)) {
4952 max_len = stripe_len * nr_data_stripes(map) -
4953 (offset - raid56_full_stripe_start);
4954 } else {
4955 /* we limit the length of each bio to what fits in a stripe */
4956 max_len = stripe_len - stripe_offset;
4957 }
4958 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4959 } else {
4960 *length = em->len - offset;
4961 }
f2d8d74d 4962
53b381b3
DW
4963 /* This is for when we're called from btrfs_merge_bio_hook() and all
4964 it cares about is the length */
a1d3c478 4965 if (!bbio_ret)
cea9e445
CM
4966 goto out;
4967
472262f3
SB
4968 btrfs_dev_replace_lock(dev_replace);
4969 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4970 if (!dev_replace_is_ongoing)
4971 btrfs_dev_replace_unlock(dev_replace);
4972
ad6d620e
SB
4973 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4974 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4975 dev_replace->tgtdev != NULL) {
4976 /*
4977 * in dev-replace case, for repair case (that's the only
4978 * case where the mirror is selected explicitly when
4979 * calling btrfs_map_block), blocks left of the left cursor
4980 * can also be read from the target drive.
4981 * For REQ_GET_READ_MIRRORS, the target drive is added as
4982 * the last one to the array of stripes. For READ, it also
4983 * needs to be supported using the same mirror number.
4984 * If the requested block is not left of the left cursor,
4985 * EIO is returned. This can happen because btrfs_num_copies()
4986 * returns one more in the dev-replace case.
4987 */
4988 u64 tmp_length = *length;
4989 struct btrfs_bio *tmp_bbio = NULL;
4990 int tmp_num_stripes;
4991 u64 srcdev_devid = dev_replace->srcdev->devid;
4992 int index_srcdev = 0;
4993 int found = 0;
4994 u64 physical_of_found = 0;
4995
4996 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4997 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4998 if (ret) {
4999 WARN_ON(tmp_bbio != NULL);
5000 goto out;
5001 }
5002
5003 tmp_num_stripes = tmp_bbio->num_stripes;
5004 if (mirror_num > tmp_num_stripes) {
5005 /*
5006 * REQ_GET_READ_MIRRORS does not contain this
5007 * mirror, that means that the requested area
5008 * is not left of the left cursor
5009 */
5010 ret = -EIO;
5011 kfree(tmp_bbio);
5012 goto out;
5013 }
5014
5015 /*
5016 * process the rest of the function using the mirror_num
5017 * of the source drive. Therefore look it up first.
5018 * At the end, patch the device pointer to the one of the
5019 * target drive.
5020 */
5021 for (i = 0; i < tmp_num_stripes; i++) {
5022 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5023 /*
5024 * In case of DUP, in order to keep it
5025 * simple, only add the mirror with the
5026 * lowest physical address
5027 */
5028 if (found &&
5029 physical_of_found <=
5030 tmp_bbio->stripes[i].physical)
5031 continue;
5032 index_srcdev = i;
5033 found = 1;
5034 physical_of_found =
5035 tmp_bbio->stripes[i].physical;
5036 }
5037 }
5038
5039 if (found) {
5040 mirror_num = index_srcdev + 1;
5041 patch_the_first_stripe_for_dev_replace = 1;
5042 physical_to_patch_in_first_stripe = physical_of_found;
5043 } else {
5044 WARN_ON(1);
5045 ret = -EIO;
5046 kfree(tmp_bbio);
5047 goto out;
5048 }
5049
5050 kfree(tmp_bbio);
5051 } else if (mirror_num > map->num_stripes) {
5052 mirror_num = 0;
5053 }
5054
f2d8d74d 5055 num_stripes = 1;
cea9e445 5056 stripe_index = 0;
fce3bb9a 5057 stripe_nr_orig = stripe_nr;
fda2832f 5058 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
5059 do_div(stripe_nr_end, map->stripe_len);
5060 stripe_end_offset = stripe_nr_end * map->stripe_len -
5061 (offset + *length);
53b381b3 5062
fce3bb9a
LD
5063 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5064 if (rw & REQ_DISCARD)
5065 num_stripes = min_t(u64, map->num_stripes,
5066 stripe_nr_end - stripe_nr_orig);
5067 stripe_index = do_div(stripe_nr, map->num_stripes);
5068 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5069 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5070 num_stripes = map->num_stripes;
2fff734f 5071 else if (mirror_num)
f188591e 5072 stripe_index = mirror_num - 1;
dfe25020 5073 else {
30d9861f 5074 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5075 map->num_stripes,
30d9861f
SB
5076 current->pid % map->num_stripes,
5077 dev_replace_is_ongoing);
a1d3c478 5078 mirror_num = stripe_index + 1;
dfe25020 5079 }
2fff734f 5080
611f0e00 5081 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5082 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5083 num_stripes = map->num_stripes;
a1d3c478 5084 } else if (mirror_num) {
f188591e 5085 stripe_index = mirror_num - 1;
a1d3c478
JS
5086 } else {
5087 mirror_num = 1;
5088 }
2fff734f 5089
321aecc6
CM
5090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5091 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
5092
5093 stripe_index = do_div(stripe_nr, factor);
5094 stripe_index *= map->sub_stripes;
5095
29a8d9a0 5096 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5097 num_stripes = map->sub_stripes;
fce3bb9a
LD
5098 else if (rw & REQ_DISCARD)
5099 num_stripes = min_t(u64, map->sub_stripes *
5100 (stripe_nr_end - stripe_nr_orig),
5101 map->num_stripes);
321aecc6
CM
5102 else if (mirror_num)
5103 stripe_index += mirror_num - 1;
dfe25020 5104 else {
3e74317a 5105 int old_stripe_index = stripe_index;
30d9861f
SB
5106 stripe_index = find_live_mirror(fs_info, map,
5107 stripe_index,
dfe25020 5108 map->sub_stripes, stripe_index +
30d9861f
SB
5109 current->pid % map->sub_stripes,
5110 dev_replace_is_ongoing);
3e74317a 5111 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5112 }
53b381b3
DW
5113
5114 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5115 BTRFS_BLOCK_GROUP_RAID6)) {
5116 u64 tmp;
5117
5118 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5119 && raid_map_ret) {
5120 int i, rot;
5121
5122 /* push stripe_nr back to the start of the full stripe */
5123 stripe_nr = raid56_full_stripe_start;
5124 do_div(stripe_nr, stripe_len);
5125
5126 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5127
5128 /* RAID[56] write or recovery. Return all stripes */
5129 num_stripes = map->num_stripes;
5130 max_errors = nr_parity_stripes(map);
5131
d9b0d9ba 5132 raid_map = kmalloc_array(num_stripes, sizeof(u64),
53b381b3
DW
5133 GFP_NOFS);
5134 if (!raid_map) {
5135 ret = -ENOMEM;
5136 goto out;
5137 }
5138
5139 /* Work out the disk rotation on this stripe-set */
5140 tmp = stripe_nr;
5141 rot = do_div(tmp, num_stripes);
5142
5143 /* Fill in the logical address of each stripe */
5144 tmp = stripe_nr * nr_data_stripes(map);
5145 for (i = 0; i < nr_data_stripes(map); i++)
5146 raid_map[(i+rot) % num_stripes] =
5147 em->start + (tmp + i) * map->stripe_len;
5148
5149 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5150 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5151 raid_map[(i+rot+1) % num_stripes] =
5152 RAID6_Q_STRIPE;
5153
5154 *length = map->stripe_len;
5155 stripe_index = 0;
5156 stripe_offset = 0;
5157 } else {
5158 /*
5159 * Mirror #0 or #1 means the original data block.
5160 * Mirror #2 is RAID5 parity block.
5161 * Mirror #3 is RAID6 Q block.
5162 */
5163 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5164 if (mirror_num > 1)
5165 stripe_index = nr_data_stripes(map) +
5166 mirror_num - 2;
5167
5168 /* We distribute the parity blocks across stripes */
5169 tmp = stripe_nr + stripe_index;
5170 stripe_index = do_div(tmp, map->num_stripes);
5171 }
8790d502
CM
5172 } else {
5173 /*
5174 * after this do_div call, stripe_nr is the number of stripes
5175 * on this device we have to walk to find the data, and
5176 * stripe_index is the number of our device in the stripe array
5177 */
5178 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 5179 mirror_num = stripe_index + 1;
8790d502 5180 }
593060d7 5181 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5182
472262f3 5183 num_alloc_stripes = num_stripes;
ad6d620e
SB
5184 if (dev_replace_is_ongoing) {
5185 if (rw & (REQ_WRITE | REQ_DISCARD))
5186 num_alloc_stripes <<= 1;
5187 if (rw & REQ_GET_READ_MIRRORS)
5188 num_alloc_stripes++;
5189 }
472262f3 5190 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 5191 if (!bbio) {
eb2067f7 5192 kfree(raid_map);
de11cc12
LZ
5193 ret = -ENOMEM;
5194 goto out;
5195 }
5196 atomic_set(&bbio->error, 0);
5197
fce3bb9a 5198 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
5199 int factor = 0;
5200 int sub_stripes = 0;
5201 u64 stripes_per_dev = 0;
5202 u32 remaining_stripes = 0;
b89203f7 5203 u32 last_stripe = 0;
ec9ef7a1
LZ
5204
5205 if (map->type &
5206 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5207 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5208 sub_stripes = 1;
5209 else
5210 sub_stripes = map->sub_stripes;
5211
5212 factor = map->num_stripes / sub_stripes;
5213 stripes_per_dev = div_u64_rem(stripe_nr_end -
5214 stripe_nr_orig,
5215 factor,
5216 &remaining_stripes);
b89203f7
LB
5217 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5218 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5219 }
5220
fce3bb9a 5221 for (i = 0; i < num_stripes; i++) {
a1d3c478 5222 bbio->stripes[i].physical =
f2d8d74d
CM
5223 map->stripes[stripe_index].physical +
5224 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5225 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5226
ec9ef7a1
LZ
5227 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5228 BTRFS_BLOCK_GROUP_RAID10)) {
5229 bbio->stripes[i].length = stripes_per_dev *
5230 map->stripe_len;
b89203f7 5231
ec9ef7a1
LZ
5232 if (i / sub_stripes < remaining_stripes)
5233 bbio->stripes[i].length +=
5234 map->stripe_len;
b89203f7
LB
5235
5236 /*
5237 * Special for the first stripe and
5238 * the last stripe:
5239 *
5240 * |-------|...|-------|
5241 * |----------|
5242 * off end_off
5243 */
ec9ef7a1 5244 if (i < sub_stripes)
a1d3c478 5245 bbio->stripes[i].length -=
fce3bb9a 5246 stripe_offset;
b89203f7
LB
5247
5248 if (stripe_index >= last_stripe &&
5249 stripe_index <= (last_stripe +
5250 sub_stripes - 1))
a1d3c478 5251 bbio->stripes[i].length -=
fce3bb9a 5252 stripe_end_offset;
b89203f7 5253
ec9ef7a1
LZ
5254 if (i == sub_stripes - 1)
5255 stripe_offset = 0;
fce3bb9a 5256 } else
a1d3c478 5257 bbio->stripes[i].length = *length;
fce3bb9a
LD
5258
5259 stripe_index++;
5260 if (stripe_index == map->num_stripes) {
5261 /* This could only happen for RAID0/10 */
5262 stripe_index = 0;
5263 stripe_nr++;
5264 }
5265 }
5266 } else {
5267 for (i = 0; i < num_stripes; i++) {
a1d3c478 5268 bbio->stripes[i].physical =
212a17ab
LT
5269 map->stripes[stripe_index].physical +
5270 stripe_offset +
5271 stripe_nr * map->stripe_len;
a1d3c478 5272 bbio->stripes[i].dev =
212a17ab 5273 map->stripes[stripe_index].dev;
fce3bb9a 5274 stripe_index++;
f2d8d74d 5275 }
593060d7 5276 }
de11cc12 5277
d20983b4
MX
5278 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5279 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5280
472262f3
SB
5281 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5282 dev_replace->tgtdev != NULL) {
5283 int index_where_to_add;
5284 u64 srcdev_devid = dev_replace->srcdev->devid;
5285
5286 /*
5287 * duplicate the write operations while the dev replace
5288 * procedure is running. Since the copying of the old disk
5289 * to the new disk takes place at run time while the
5290 * filesystem is mounted writable, the regular write
5291 * operations to the old disk have to be duplicated to go
5292 * to the new disk as well.
5293 * Note that device->missing is handled by the caller, and
5294 * that the write to the old disk is already set up in the
5295 * stripes array.
5296 */
5297 index_where_to_add = num_stripes;
5298 for (i = 0; i < num_stripes; i++) {
5299 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5300 /* write to new disk, too */
5301 struct btrfs_bio_stripe *new =
5302 bbio->stripes + index_where_to_add;
5303 struct btrfs_bio_stripe *old =
5304 bbio->stripes + i;
5305
5306 new->physical = old->physical;
5307 new->length = old->length;
5308 new->dev = dev_replace->tgtdev;
5309 index_where_to_add++;
5310 max_errors++;
5311 }
5312 }
5313 num_stripes = index_where_to_add;
ad6d620e
SB
5314 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5315 dev_replace->tgtdev != NULL) {
5316 u64 srcdev_devid = dev_replace->srcdev->devid;
5317 int index_srcdev = 0;
5318 int found = 0;
5319 u64 physical_of_found = 0;
5320
5321 /*
5322 * During the dev-replace procedure, the target drive can
5323 * also be used to read data in case it is needed to repair
5324 * a corrupt block elsewhere. This is possible if the
5325 * requested area is left of the left cursor. In this area,
5326 * the target drive is a full copy of the source drive.
5327 */
5328 for (i = 0; i < num_stripes; i++) {
5329 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5330 /*
5331 * In case of DUP, in order to keep it
5332 * simple, only add the mirror with the
5333 * lowest physical address
5334 */
5335 if (found &&
5336 physical_of_found <=
5337 bbio->stripes[i].physical)
5338 continue;
5339 index_srcdev = i;
5340 found = 1;
5341 physical_of_found = bbio->stripes[i].physical;
5342 }
5343 }
5344 if (found) {
5345 u64 length = map->stripe_len;
5346
5347 if (physical_of_found + length <=
5348 dev_replace->cursor_left) {
5349 struct btrfs_bio_stripe *tgtdev_stripe =
5350 bbio->stripes + num_stripes;
5351
5352 tgtdev_stripe->physical = physical_of_found;
5353 tgtdev_stripe->length =
5354 bbio->stripes[index_srcdev].length;
5355 tgtdev_stripe->dev = dev_replace->tgtdev;
5356
5357 num_stripes++;
5358 }
5359 }
472262f3
SB
5360 }
5361
de11cc12
LZ
5362 *bbio_ret = bbio;
5363 bbio->num_stripes = num_stripes;
5364 bbio->max_errors = max_errors;
5365 bbio->mirror_num = mirror_num;
ad6d620e
SB
5366
5367 /*
5368 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5369 * mirror_num == num_stripes + 1 && dev_replace target drive is
5370 * available as a mirror
5371 */
5372 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5373 WARN_ON(num_stripes > 1);
5374 bbio->stripes[0].dev = dev_replace->tgtdev;
5375 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5376 bbio->mirror_num = map->num_stripes + 1;
5377 }
53b381b3
DW
5378 if (raid_map) {
5379 sort_parity_stripes(bbio, raid_map);
5380 *raid_map_ret = raid_map;
5381 }
cea9e445 5382out:
472262f3
SB
5383 if (dev_replace_is_ongoing)
5384 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5385 free_extent_map(em);
de11cc12 5386 return ret;
0b86a832
CM
5387}
5388
3ec706c8 5389int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5390 u64 logical, u64 *length,
a1d3c478 5391 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5392{
3ec706c8 5393 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5394 mirror_num, NULL);
f2d8d74d
CM
5395}
5396
a512bbf8
YZ
5397int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5398 u64 chunk_start, u64 physical, u64 devid,
5399 u64 **logical, int *naddrs, int *stripe_len)
5400{
5401 struct extent_map_tree *em_tree = &map_tree->map_tree;
5402 struct extent_map *em;
5403 struct map_lookup *map;
5404 u64 *buf;
5405 u64 bytenr;
5406 u64 length;
5407 u64 stripe_nr;
53b381b3 5408 u64 rmap_len;
a512bbf8
YZ
5409 int i, j, nr = 0;
5410
890871be 5411 read_lock(&em_tree->lock);
a512bbf8 5412 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5413 read_unlock(&em_tree->lock);
a512bbf8 5414
835d974f 5415 if (!em) {
efe120a0 5416 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5417 chunk_start);
5418 return -EIO;
5419 }
5420
5421 if (em->start != chunk_start) {
efe120a0 5422 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5423 em->start, chunk_start);
5424 free_extent_map(em);
5425 return -EIO;
5426 }
a512bbf8
YZ
5427 map = (struct map_lookup *)em->bdev;
5428
5429 length = em->len;
53b381b3
DW
5430 rmap_len = map->stripe_len;
5431
a512bbf8
YZ
5432 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5433 do_div(length, map->num_stripes / map->sub_stripes);
5434 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5435 do_div(length, map->num_stripes);
53b381b3
DW
5436 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5437 BTRFS_BLOCK_GROUP_RAID6)) {
5438 do_div(length, nr_data_stripes(map));
5439 rmap_len = map->stripe_len * nr_data_stripes(map);
5440 }
a512bbf8
YZ
5441
5442 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5443 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5444
5445 for (i = 0; i < map->num_stripes; i++) {
5446 if (devid && map->stripes[i].dev->devid != devid)
5447 continue;
5448 if (map->stripes[i].physical > physical ||
5449 map->stripes[i].physical + length <= physical)
5450 continue;
5451
5452 stripe_nr = physical - map->stripes[i].physical;
5453 do_div(stripe_nr, map->stripe_len);
5454
5455 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5456 stripe_nr = stripe_nr * map->num_stripes + i;
5457 do_div(stripe_nr, map->sub_stripes);
5458 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5459 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5460 } /* else if RAID[56], multiply by nr_data_stripes().
5461 * Alternatively, just use rmap_len below instead of
5462 * map->stripe_len */
5463
5464 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5465 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5466 for (j = 0; j < nr; j++) {
5467 if (buf[j] == bytenr)
5468 break;
5469 }
934d375b
CM
5470 if (j == nr) {
5471 WARN_ON(nr >= map->num_stripes);
a512bbf8 5472 buf[nr++] = bytenr;
934d375b 5473 }
a512bbf8
YZ
5474 }
5475
a512bbf8
YZ
5476 *logical = buf;
5477 *naddrs = nr;
53b381b3 5478 *stripe_len = rmap_len;
a512bbf8
YZ
5479
5480 free_extent_map(em);
5481 return 0;
f2d8d74d
CM
5482}
5483
8408c716
MX
5484static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5485{
5486 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5487 bio_endio_nodec(bio, err);
5488 else
5489 bio_endio(bio, err);
5490 kfree(bbio);
5491}
5492
a1d3c478 5493static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5494{
9be3395b 5495 struct btrfs_bio *bbio = bio->bi_private;
c404e0dc 5496 struct btrfs_device *dev = bbio->stripes[0].dev;
7d2b4daa 5497 int is_orig_bio = 0;
8790d502 5498
442a4f63 5499 if (err) {
a1d3c478 5500 atomic_inc(&bbio->error);
442a4f63
SB
5501 if (err == -EIO || err == -EREMOTEIO) {
5502 unsigned int stripe_index =
9be3395b 5503 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5504
5505 BUG_ON(stripe_index >= bbio->num_stripes);
5506 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5507 if (dev->bdev) {
5508 if (bio->bi_rw & WRITE)
5509 btrfs_dev_stat_inc(dev,
5510 BTRFS_DEV_STAT_WRITE_ERRS);
5511 else
5512 btrfs_dev_stat_inc(dev,
5513 BTRFS_DEV_STAT_READ_ERRS);
5514 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5515 btrfs_dev_stat_inc(dev,
5516 BTRFS_DEV_STAT_FLUSH_ERRS);
5517 btrfs_dev_stat_print_on_error(dev);
5518 }
442a4f63
SB
5519 }
5520 }
8790d502 5521
a1d3c478 5522 if (bio == bbio->orig_bio)
7d2b4daa
CM
5523 is_orig_bio = 1;
5524
c404e0dc
MX
5525 btrfs_bio_counter_dec(bbio->fs_info);
5526
a1d3c478 5527 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5528 if (!is_orig_bio) {
5529 bio_put(bio);
a1d3c478 5530 bio = bbio->orig_bio;
7d2b4daa 5531 }
c7b22bb1 5532
a1d3c478
JS
5533 bio->bi_private = bbio->private;
5534 bio->bi_end_io = bbio->end_io;
9be3395b 5535 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5536 /* only send an error to the higher layers if it is
53b381b3 5537 * beyond the tolerance of the btrfs bio
a236aed1 5538 */
a1d3c478 5539 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5540 err = -EIO;
5dbc8fca 5541 } else {
1259ab75
CM
5542 /*
5543 * this bio is actually up to date, we didn't
5544 * go over the max number of errors
5545 */
5546 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5547 err = 0;
1259ab75 5548 }
c55f1396 5549
8408c716 5550 btrfs_end_bbio(bbio, bio, err);
7d2b4daa 5551 } else if (!is_orig_bio) {
8790d502
CM
5552 bio_put(bio);
5553 }
8790d502
CM
5554}
5555
8b712842
CM
5556/*
5557 * see run_scheduled_bios for a description of why bios are collected for
5558 * async submit.
5559 *
5560 * This will add one bio to the pending list for a device and make sure
5561 * the work struct is scheduled.
5562 */
48a3b636
ES
5563static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5564 struct btrfs_device *device,
5565 int rw, struct bio *bio)
8b712842
CM
5566{
5567 int should_queue = 1;
ffbd517d 5568 struct btrfs_pending_bios *pending_bios;
8b712842 5569
53b381b3
DW
5570 if (device->missing || !device->bdev) {
5571 bio_endio(bio, -EIO);
5572 return;
5573 }
5574
8b712842 5575 /* don't bother with additional async steps for reads, right now */
7b6d91da 5576 if (!(rw & REQ_WRITE)) {
492bb6de 5577 bio_get(bio);
21adbd5c 5578 btrfsic_submit_bio(rw, bio);
492bb6de 5579 bio_put(bio);
143bede5 5580 return;
8b712842
CM
5581 }
5582
5583 /*
0986fe9e 5584 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5585 * higher layers. Otherwise, the async bio makes it appear we have
5586 * made progress against dirty pages when we've really just put it
5587 * on a queue for later
5588 */
0986fe9e 5589 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5590 WARN_ON(bio->bi_next);
8b712842
CM
5591 bio->bi_next = NULL;
5592 bio->bi_rw |= rw;
5593
5594 spin_lock(&device->io_lock);
7b6d91da 5595 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5596 pending_bios = &device->pending_sync_bios;
5597 else
5598 pending_bios = &device->pending_bios;
8b712842 5599
ffbd517d
CM
5600 if (pending_bios->tail)
5601 pending_bios->tail->bi_next = bio;
8b712842 5602
ffbd517d
CM
5603 pending_bios->tail = bio;
5604 if (!pending_bios->head)
5605 pending_bios->head = bio;
8b712842
CM
5606 if (device->running_pending)
5607 should_queue = 0;
5608
5609 spin_unlock(&device->io_lock);
5610
5611 if (should_queue)
a8c93d4e
QW
5612 btrfs_queue_work(root->fs_info->submit_workers,
5613 &device->work);
8b712842
CM
5614}
5615
de1ee92a
JB
5616static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5617 sector_t sector)
5618{
5619 struct bio_vec *prev;
5620 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5621 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5622 struct bvec_merge_data bvm = {
5623 .bi_bdev = bdev,
5624 .bi_sector = sector,
5625 .bi_rw = bio->bi_rw,
5626 };
5627
fae7f21c 5628 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5629 return 1;
de1ee92a
JB
5630
5631 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5632 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5633 return 0;
5634
5635 if (!q->merge_bvec_fn)
5636 return 1;
5637
4f024f37 5638 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5639 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5640 return 0;
5641 return 1;
5642}
5643
5644static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5645 struct bio *bio, u64 physical, int dev_nr,
5646 int rw, int async)
5647{
5648 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5649
5650 bio->bi_private = bbio;
9be3395b 5651 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5652 bio->bi_end_io = btrfs_end_bio;
4f024f37 5653 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5654#ifdef DEBUG
5655 {
5656 struct rcu_string *name;
5657
5658 rcu_read_lock();
5659 name = rcu_dereference(dev->name);
d1423248 5660 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5661 "(%s id %llu), size=%u\n", rw,
5662 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5663 name->str, dev->devid, bio->bi_size);
5664 rcu_read_unlock();
5665 }
5666#endif
5667 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5668
5669 btrfs_bio_counter_inc_noblocked(root->fs_info);
5670
de1ee92a 5671 if (async)
53b381b3 5672 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5673 else
5674 btrfsic_submit_bio(rw, bio);
5675}
5676
5677static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5678 struct bio *first_bio, struct btrfs_device *dev,
5679 int dev_nr, int rw, int async)
5680{
5681 struct bio_vec *bvec = first_bio->bi_io_vec;
5682 struct bio *bio;
5683 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5684 u64 physical = bbio->stripes[dev_nr].physical;
5685
5686again:
5687 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5688 if (!bio)
5689 return -ENOMEM;
5690
5691 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5692 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5693 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5694 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5695
5696 atomic_inc(&bbio->stripes_pending);
5697 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5698 rw, async);
5699 physical += len;
5700 goto again;
5701 }
5702 bvec++;
5703 }
5704
5705 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5706 return 0;
5707}
5708
5709static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5710{
5711 atomic_inc(&bbio->error);
5712 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5713 /* Shoud be the original bio. */
5714 WARN_ON(bio != bbio->orig_bio);
5715
de1ee92a
JB
5716 bio->bi_private = bbio->private;
5717 bio->bi_end_io = bbio->end_io;
9be3395b 5718 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5719 bio->bi_iter.bi_sector = logical >> 9;
8408c716
MX
5720
5721 btrfs_end_bbio(bbio, bio, -EIO);
de1ee92a
JB
5722 }
5723}
5724
f188591e 5725int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5726 int mirror_num, int async_submit)
0b86a832 5727{
0b86a832 5728 struct btrfs_device *dev;
8790d502 5729 struct bio *first_bio = bio;
4f024f37 5730 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5731 u64 length = 0;
5732 u64 map_length;
53b381b3 5733 u64 *raid_map = NULL;
0b86a832 5734 int ret;
8790d502
CM
5735 int dev_nr = 0;
5736 int total_devs = 1;
a1d3c478 5737 struct btrfs_bio *bbio = NULL;
0b86a832 5738
4f024f37 5739 length = bio->bi_iter.bi_size;
0b86a832 5740 map_length = length;
cea9e445 5741
c404e0dc 5742 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3
DW
5743 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5744 mirror_num, &raid_map);
c404e0dc
MX
5745 if (ret) {
5746 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5747 return ret;
c404e0dc 5748 }
cea9e445 5749
a1d3c478 5750 total_devs = bbio->num_stripes;
53b381b3
DW
5751 bbio->orig_bio = first_bio;
5752 bbio->private = first_bio->bi_private;
5753 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5754 bbio->fs_info = root->fs_info;
53b381b3
DW
5755 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5756
5757 if (raid_map) {
5758 /* In this case, map_length has been set to the length of
5759 a single stripe; not the whole write */
5760 if (rw & WRITE) {
c404e0dc
MX
5761 ret = raid56_parity_write(root, bio, bbio,
5762 raid_map, map_length);
53b381b3 5763 } else {
c404e0dc
MX
5764 ret = raid56_parity_recover(root, bio, bbio,
5765 raid_map, map_length,
5766 mirror_num);
53b381b3 5767 }
c404e0dc
MX
5768 /*
5769 * FIXME, replace dosen't support raid56 yet, please fix
5770 * it in the future.
5771 */
5772 btrfs_bio_counter_dec(root->fs_info);
5773 return ret;
53b381b3
DW
5774 }
5775
cea9e445 5776 if (map_length < length) {
c2cf52eb 5777 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5778 logical, length, map_length);
cea9e445
CM
5779 BUG();
5780 }
a1d3c478 5781
d397712b 5782 while (dev_nr < total_devs) {
de1ee92a
JB
5783 dev = bbio->stripes[dev_nr].dev;
5784 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5785 bbio_error(bbio, first_bio, logical);
5786 dev_nr++;
5787 continue;
5788 }
5789
5790 /*
5791 * Check and see if we're ok with this bio based on it's size
5792 * and offset with the given device.
5793 */
5794 if (!bio_size_ok(dev->bdev, first_bio,
5795 bbio->stripes[dev_nr].physical >> 9)) {
5796 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5797 dev_nr, rw, async_submit);
5798 BUG_ON(ret);
5799 dev_nr++;
5800 continue;
5801 }
5802
a1d3c478 5803 if (dev_nr < total_devs - 1) {
9be3395b 5804 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5805 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5806 } else {
5807 bio = first_bio;
c55f1396 5808 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
8790d502 5809 }
de1ee92a
JB
5810
5811 submit_stripe_bio(root, bbio, bio,
5812 bbio->stripes[dev_nr].physical, dev_nr, rw,
5813 async_submit);
8790d502
CM
5814 dev_nr++;
5815 }
c404e0dc 5816 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
5817 return 0;
5818}
5819
aa1b8cd4 5820struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5821 u8 *uuid, u8 *fsid)
0b86a832 5822{
2b82032c
YZ
5823 struct btrfs_device *device;
5824 struct btrfs_fs_devices *cur_devices;
5825
aa1b8cd4 5826 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5827 while (cur_devices) {
5828 if (!fsid ||
5829 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5830 device = __find_device(&cur_devices->devices,
5831 devid, uuid);
5832 if (device)
5833 return device;
5834 }
5835 cur_devices = cur_devices->seed;
5836 }
5837 return NULL;
0b86a832
CM
5838}
5839
dfe25020
CM
5840static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5841 u64 devid, u8 *dev_uuid)
5842{
5843 struct btrfs_device *device;
5844 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5845
12bd2fc0
ID
5846 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5847 if (IS_ERR(device))
7cbd8a83 5848 return NULL;
12bd2fc0
ID
5849
5850 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5851 device->fs_devices = fs_devices;
dfe25020 5852 fs_devices->num_devices++;
12bd2fc0
ID
5853
5854 device->missing = 1;
cd02dca5 5855 fs_devices->missing_devices++;
12bd2fc0 5856
dfe25020
CM
5857 return device;
5858}
5859
12bd2fc0
ID
5860/**
5861 * btrfs_alloc_device - allocate struct btrfs_device
5862 * @fs_info: used only for generating a new devid, can be NULL if
5863 * devid is provided (i.e. @devid != NULL).
5864 * @devid: a pointer to devid for this device. If NULL a new devid
5865 * is generated.
5866 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5867 * is generated.
5868 *
5869 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5870 * on error. Returned struct is not linked onto any lists and can be
5871 * destroyed with kfree() right away.
5872 */
5873struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5874 const u64 *devid,
5875 const u8 *uuid)
5876{
5877 struct btrfs_device *dev;
5878 u64 tmp;
5879
fae7f21c 5880 if (WARN_ON(!devid && !fs_info))
12bd2fc0 5881 return ERR_PTR(-EINVAL);
12bd2fc0
ID
5882
5883 dev = __alloc_device();
5884 if (IS_ERR(dev))
5885 return dev;
5886
5887 if (devid)
5888 tmp = *devid;
5889 else {
5890 int ret;
5891
5892 ret = find_next_devid(fs_info, &tmp);
5893 if (ret) {
5894 kfree(dev);
5895 return ERR_PTR(ret);
5896 }
5897 }
5898 dev->devid = tmp;
5899
5900 if (uuid)
5901 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5902 else
5903 generate_random_uuid(dev->uuid);
5904
9e0af237
LB
5905 btrfs_init_work(&dev->work, btrfs_submit_helper,
5906 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
5907
5908 return dev;
5909}
5910
0b86a832
CM
5911static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5912 struct extent_buffer *leaf,
5913 struct btrfs_chunk *chunk)
5914{
5915 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5916 struct map_lookup *map;
5917 struct extent_map *em;
5918 u64 logical;
5919 u64 length;
5920 u64 devid;
a443755f 5921 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5922 int num_stripes;
0b86a832 5923 int ret;
593060d7 5924 int i;
0b86a832 5925
e17cade2
CM
5926 logical = key->offset;
5927 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5928
890871be 5929 read_lock(&map_tree->map_tree.lock);
0b86a832 5930 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5931 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5932
5933 /* already mapped? */
5934 if (em && em->start <= logical && em->start + em->len > logical) {
5935 free_extent_map(em);
0b86a832
CM
5936 return 0;
5937 } else if (em) {
5938 free_extent_map(em);
5939 }
0b86a832 5940
172ddd60 5941 em = alloc_extent_map();
0b86a832
CM
5942 if (!em)
5943 return -ENOMEM;
593060d7
CM
5944 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5945 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5946 if (!map) {
5947 free_extent_map(em);
5948 return -ENOMEM;
5949 }
5950
298a8f9c 5951 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
5952 em->bdev = (struct block_device *)map;
5953 em->start = logical;
5954 em->len = length;
70c8a91c 5955 em->orig_start = 0;
0b86a832 5956 em->block_start = 0;
c8b97818 5957 em->block_len = em->len;
0b86a832 5958
593060d7
CM
5959 map->num_stripes = num_stripes;
5960 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5961 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5962 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5963 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5964 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5965 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5966 for (i = 0; i < num_stripes; i++) {
5967 map->stripes[i].physical =
5968 btrfs_stripe_offset_nr(leaf, chunk, i);
5969 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5970 read_extent_buffer(leaf, uuid, (unsigned long)
5971 btrfs_stripe_dev_uuid_nr(chunk, i),
5972 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5973 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5974 uuid, NULL);
dfe25020 5975 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5976 free_extent_map(em);
5977 return -EIO;
5978 }
dfe25020
CM
5979 if (!map->stripes[i].dev) {
5980 map->stripes[i].dev =
5981 add_missing_dev(root, devid, uuid);
5982 if (!map->stripes[i].dev) {
dfe25020
CM
5983 free_extent_map(em);
5984 return -EIO;
5985 }
5986 }
5987 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5988 }
5989
890871be 5990 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5991 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5992 write_unlock(&map_tree->map_tree.lock);
79787eaa 5993 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5994 free_extent_map(em);
5995
5996 return 0;
5997}
5998
143bede5 5999static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6000 struct btrfs_dev_item *dev_item,
6001 struct btrfs_device *device)
6002{
6003 unsigned long ptr;
0b86a832
CM
6004
6005 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6006 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6007 device->total_bytes = device->disk_total_bytes;
935e5cc9 6008 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6009 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6010 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6011 device->type = btrfs_device_type(leaf, dev_item);
6012 device->io_align = btrfs_device_io_align(leaf, dev_item);
6013 device->io_width = btrfs_device_io_width(leaf, dev_item);
6014 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6015 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6016 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6017
410ba3a2 6018 ptr = btrfs_device_uuid(dev_item);
e17cade2 6019 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6020}
6021
2b82032c
YZ
6022static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
6023{
6024 struct btrfs_fs_devices *fs_devices;
6025 int ret;
6026
b367e47f 6027 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6028
6029 fs_devices = root->fs_info->fs_devices->seed;
6030 while (fs_devices) {
6031 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6032 ret = 0;
6033 goto out;
6034 }
6035 fs_devices = fs_devices->seed;
6036 }
6037
6038 fs_devices = find_fsid(fsid);
6039 if (!fs_devices) {
6040 ret = -ENOENT;
6041 goto out;
6042 }
e4404d6e
YZ
6043
6044 fs_devices = clone_fs_devices(fs_devices);
6045 if (IS_ERR(fs_devices)) {
6046 ret = PTR_ERR(fs_devices);
2b82032c
YZ
6047 goto out;
6048 }
6049
97288f2c 6050 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6051 root->fs_info->bdev_holder);
48d28232
JL
6052 if (ret) {
6053 free_fs_devices(fs_devices);
2b82032c 6054 goto out;
48d28232 6055 }
2b82032c
YZ
6056
6057 if (!fs_devices->seeding) {
6058 __btrfs_close_devices(fs_devices);
e4404d6e 6059 free_fs_devices(fs_devices);
2b82032c
YZ
6060 ret = -EINVAL;
6061 goto out;
6062 }
6063
6064 fs_devices->seed = root->fs_info->fs_devices->seed;
6065 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6066out:
2b82032c
YZ
6067 return ret;
6068}
6069
0d81ba5d 6070static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6071 struct extent_buffer *leaf,
6072 struct btrfs_dev_item *dev_item)
6073{
6074 struct btrfs_device *device;
6075 u64 devid;
6076 int ret;
2b82032c 6077 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6078 u8 dev_uuid[BTRFS_UUID_SIZE];
6079
0b86a832 6080 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6081 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6082 BTRFS_UUID_SIZE);
1473b24e 6083 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6084 BTRFS_UUID_SIZE);
6085
6086 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6087 ret = open_seed_devices(root, fs_uuid);
e4404d6e 6088 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 6089 return ret;
2b82032c
YZ
6090 }
6091
aa1b8cd4 6092 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 6093 if (!device || !device->bdev) {
e4404d6e 6094 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6095 return -EIO;
6096
6097 if (!device) {
c1c9ff7c 6098 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
6099 device = add_missing_dev(root, devid, dev_uuid);
6100 if (!device)
6101 return -ENOMEM;
cd02dca5
CM
6102 } else if (!device->missing) {
6103 /*
6104 * this happens when a device that was properly setup
6105 * in the device info lists suddenly goes bad.
6106 * device->bdev is NULL, and so we have to set
6107 * device->missing to one here
6108 */
6109 root->fs_info->fs_devices->missing_devices++;
6110 device->missing = 1;
2b82032c
YZ
6111 }
6112 }
6113
6114 if (device->fs_devices != root->fs_info->fs_devices) {
6115 BUG_ON(device->writeable);
6116 if (device->generation !=
6117 btrfs_device_generation(leaf, dev_item))
6118 return -EINVAL;
6324fbf3 6119 }
0b86a832
CM
6120
6121 fill_device_from_item(leaf, dev_item, device);
dfe25020 6122 device->in_fs_metadata = 1;
63a212ab 6123 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6124 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6125 spin_lock(&root->fs_info->free_chunk_lock);
6126 root->fs_info->free_chunk_space += device->total_bytes -
6127 device->bytes_used;
6128 spin_unlock(&root->fs_info->free_chunk_lock);
6129 }
0b86a832 6130 ret = 0;
0b86a832
CM
6131 return ret;
6132}
6133
e4404d6e 6134int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6135{
6c41761f 6136 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6137 struct extent_buffer *sb;
0b86a832 6138 struct btrfs_disk_key *disk_key;
0b86a832 6139 struct btrfs_chunk *chunk;
84eed90f
CM
6140 u8 *ptr;
6141 unsigned long sb_ptr;
6142 int ret = 0;
0b86a832
CM
6143 u32 num_stripes;
6144 u32 array_size;
6145 u32 len = 0;
0b86a832 6146 u32 cur;
84eed90f 6147 struct btrfs_key key;
0b86a832 6148
e4404d6e 6149 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
6150 BTRFS_SUPER_INFO_SIZE);
6151 if (!sb)
6152 return -ENOMEM;
6153 btrfs_set_buffer_uptodate(sb);
85d4e461 6154 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6155 /*
6156 * The sb extent buffer is artifical and just used to read the system array.
6157 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6158 * pages up-to-date when the page is larger: extent does not cover the
6159 * whole page and consequently check_page_uptodate does not find all
6160 * the page's extents up-to-date (the hole beyond sb),
6161 * write_extent_buffer then triggers a WARN_ON.
6162 *
6163 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6164 * but sb spans only this function. Add an explicit SetPageUptodate call
6165 * to silence the warning eg. on PowerPC 64.
6166 */
6167 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6168 SetPageUptodate(sb->pages[0]);
4008c04a 6169
a061fc8d 6170 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6171 array_size = btrfs_super_sys_array_size(super_copy);
6172
0b86a832
CM
6173 ptr = super_copy->sys_chunk_array;
6174 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6175 cur = 0;
6176
6177 while (cur < array_size) {
6178 disk_key = (struct btrfs_disk_key *)ptr;
6179 btrfs_disk_key_to_cpu(&key, disk_key);
6180
a061fc8d 6181 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
6182 sb_ptr += len;
6183 cur += len;
6184
0d81ba5d 6185 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 6186 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 6187 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6188 if (ret)
6189 break;
0b86a832
CM
6190 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6191 len = btrfs_chunk_item_size(num_stripes);
6192 } else {
84eed90f
CM
6193 ret = -EIO;
6194 break;
0b86a832
CM
6195 }
6196 ptr += len;
6197 sb_ptr += len;
6198 cur += len;
6199 }
a061fc8d 6200 free_extent_buffer(sb);
84eed90f 6201 return ret;
0b86a832
CM
6202}
6203
6204int btrfs_read_chunk_tree(struct btrfs_root *root)
6205{
6206 struct btrfs_path *path;
6207 struct extent_buffer *leaf;
6208 struct btrfs_key key;
6209 struct btrfs_key found_key;
6210 int ret;
6211 int slot;
6212
6213 root = root->fs_info->chunk_root;
6214
6215 path = btrfs_alloc_path();
6216 if (!path)
6217 return -ENOMEM;
6218
b367e47f
LZ
6219 mutex_lock(&uuid_mutex);
6220 lock_chunks(root);
6221
395927a9
FDBM
6222 /*
6223 * Read all device items, and then all the chunk items. All
6224 * device items are found before any chunk item (their object id
6225 * is smaller than the lowest possible object id for a chunk
6226 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6227 */
6228 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6229 key.offset = 0;
6230 key.type = 0;
0b86a832 6231 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6232 if (ret < 0)
6233 goto error;
d397712b 6234 while (1) {
0b86a832
CM
6235 leaf = path->nodes[0];
6236 slot = path->slots[0];
6237 if (slot >= btrfs_header_nritems(leaf)) {
6238 ret = btrfs_next_leaf(root, path);
6239 if (ret == 0)
6240 continue;
6241 if (ret < 0)
6242 goto error;
6243 break;
6244 }
6245 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6246 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6247 struct btrfs_dev_item *dev_item;
6248 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6249 struct btrfs_dev_item);
395927a9
FDBM
6250 ret = read_one_dev(root, leaf, dev_item);
6251 if (ret)
6252 goto error;
0b86a832
CM
6253 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6254 struct btrfs_chunk *chunk;
6255 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6256 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6257 if (ret)
6258 goto error;
0b86a832
CM
6259 }
6260 path->slots[0]++;
6261 }
0b86a832
CM
6262 ret = 0;
6263error:
b367e47f
LZ
6264 unlock_chunks(root);
6265 mutex_unlock(&uuid_mutex);
6266
2b82032c 6267 btrfs_free_path(path);
0b86a832
CM
6268 return ret;
6269}
442a4f63 6270
cb517eab
MX
6271void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6272{
6273 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6274 struct btrfs_device *device;
6275
29cc83f6
LB
6276 while (fs_devices) {
6277 mutex_lock(&fs_devices->device_list_mutex);
6278 list_for_each_entry(device, &fs_devices->devices, dev_list)
6279 device->dev_root = fs_info->dev_root;
6280 mutex_unlock(&fs_devices->device_list_mutex);
6281
6282 fs_devices = fs_devices->seed;
6283 }
cb517eab
MX
6284}
6285
733f4fbb
SB
6286static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6287{
6288 int i;
6289
6290 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6291 btrfs_dev_stat_reset(dev, i);
6292}
6293
6294int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6295{
6296 struct btrfs_key key;
6297 struct btrfs_key found_key;
6298 struct btrfs_root *dev_root = fs_info->dev_root;
6299 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6300 struct extent_buffer *eb;
6301 int slot;
6302 int ret = 0;
6303 struct btrfs_device *device;
6304 struct btrfs_path *path = NULL;
6305 int i;
6306
6307 path = btrfs_alloc_path();
6308 if (!path) {
6309 ret = -ENOMEM;
6310 goto out;
6311 }
6312
6313 mutex_lock(&fs_devices->device_list_mutex);
6314 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6315 int item_size;
6316 struct btrfs_dev_stats_item *ptr;
6317
6318 key.objectid = 0;
6319 key.type = BTRFS_DEV_STATS_KEY;
6320 key.offset = device->devid;
6321 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6322 if (ret) {
733f4fbb
SB
6323 __btrfs_reset_dev_stats(device);
6324 device->dev_stats_valid = 1;
6325 btrfs_release_path(path);
6326 continue;
6327 }
6328 slot = path->slots[0];
6329 eb = path->nodes[0];
6330 btrfs_item_key_to_cpu(eb, &found_key, slot);
6331 item_size = btrfs_item_size_nr(eb, slot);
6332
6333 ptr = btrfs_item_ptr(eb, slot,
6334 struct btrfs_dev_stats_item);
6335
6336 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6337 if (item_size >= (1 + i) * sizeof(__le64))
6338 btrfs_dev_stat_set(device, i,
6339 btrfs_dev_stats_value(eb, ptr, i));
6340 else
6341 btrfs_dev_stat_reset(device, i);
6342 }
6343
6344 device->dev_stats_valid = 1;
6345 btrfs_dev_stat_print_on_load(device);
6346 btrfs_release_path(path);
6347 }
6348 mutex_unlock(&fs_devices->device_list_mutex);
6349
6350out:
6351 btrfs_free_path(path);
6352 return ret < 0 ? ret : 0;
6353}
6354
6355static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6356 struct btrfs_root *dev_root,
6357 struct btrfs_device *device)
6358{
6359 struct btrfs_path *path;
6360 struct btrfs_key key;
6361 struct extent_buffer *eb;
6362 struct btrfs_dev_stats_item *ptr;
6363 int ret;
6364 int i;
6365
6366 key.objectid = 0;
6367 key.type = BTRFS_DEV_STATS_KEY;
6368 key.offset = device->devid;
6369
6370 path = btrfs_alloc_path();
6371 BUG_ON(!path);
6372 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6373 if (ret < 0) {
efe120a0
FH
6374 printk_in_rcu(KERN_WARNING "BTRFS: "
6375 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6376 ret, rcu_str_deref(device->name));
733f4fbb
SB
6377 goto out;
6378 }
6379
6380 if (ret == 0 &&
6381 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6382 /* need to delete old one and insert a new one */
6383 ret = btrfs_del_item(trans, dev_root, path);
6384 if (ret != 0) {
efe120a0
FH
6385 printk_in_rcu(KERN_WARNING "BTRFS: "
6386 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6387 rcu_str_deref(device->name), ret);
733f4fbb
SB
6388 goto out;
6389 }
6390 ret = 1;
6391 }
6392
6393 if (ret == 1) {
6394 /* need to insert a new item */
6395 btrfs_release_path(path);
6396 ret = btrfs_insert_empty_item(trans, dev_root, path,
6397 &key, sizeof(*ptr));
6398 if (ret < 0) {
efe120a0
FH
6399 printk_in_rcu(KERN_WARNING "BTRFS: "
6400 "insert dev_stats item for device %s failed %d!\n",
606686ee 6401 rcu_str_deref(device->name), ret);
733f4fbb
SB
6402 goto out;
6403 }
6404 }
6405
6406 eb = path->nodes[0];
6407 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6408 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6409 btrfs_set_dev_stats_value(eb, ptr, i,
6410 btrfs_dev_stat_read(device, i));
6411 btrfs_mark_buffer_dirty(eb);
6412
6413out:
6414 btrfs_free_path(path);
6415 return ret;
6416}
6417
6418/*
6419 * called from commit_transaction. Writes all changed device stats to disk.
6420 */
6421int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6422 struct btrfs_fs_info *fs_info)
6423{
6424 struct btrfs_root *dev_root = fs_info->dev_root;
6425 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6426 struct btrfs_device *device;
addc3fa7 6427 int stats_cnt;
733f4fbb
SB
6428 int ret = 0;
6429
6430 mutex_lock(&fs_devices->device_list_mutex);
6431 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6432 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6433 continue;
6434
addc3fa7 6435 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6436 ret = update_dev_stat_item(trans, dev_root, device);
6437 if (!ret)
addc3fa7 6438 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6439 }
6440 mutex_unlock(&fs_devices->device_list_mutex);
6441
6442 return ret;
6443}
6444
442a4f63
SB
6445void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6446{
6447 btrfs_dev_stat_inc(dev, index);
6448 btrfs_dev_stat_print_on_error(dev);
6449}
6450
48a3b636 6451static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6452{
733f4fbb
SB
6453 if (!dev->dev_stats_valid)
6454 return;
efe120a0
FH
6455 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6456 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6457 rcu_str_deref(dev->name),
442a4f63
SB
6458 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6459 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6460 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6461 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6462 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6463}
c11d2c23 6464
733f4fbb
SB
6465static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6466{
a98cdb85
SB
6467 int i;
6468
6469 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6470 if (btrfs_dev_stat_read(dev, i) != 0)
6471 break;
6472 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6473 return; /* all values == 0, suppress message */
6474
efe120a0
FH
6475 printk_in_rcu(KERN_INFO "BTRFS: "
6476 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6477 rcu_str_deref(dev->name),
733f4fbb
SB
6478 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6479 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6480 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6481 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6482 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6483}
6484
c11d2c23 6485int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6486 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6487{
6488 struct btrfs_device *dev;
6489 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6490 int i;
6491
6492 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6493 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6494 mutex_unlock(&fs_devices->device_list_mutex);
6495
6496 if (!dev) {
efe120a0 6497 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6498 return -ENODEV;
733f4fbb 6499 } else if (!dev->dev_stats_valid) {
efe120a0 6500 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6501 return -ENODEV;
b27f7c0c 6502 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6503 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6504 if (stats->nr_items > i)
6505 stats->values[i] =
6506 btrfs_dev_stat_read_and_reset(dev, i);
6507 else
6508 btrfs_dev_stat_reset(dev, i);
6509 }
6510 } else {
6511 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6512 if (stats->nr_items > i)
6513 stats->values[i] = btrfs_dev_stat_read(dev, i);
6514 }
6515 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6516 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6517 return 0;
6518}
a8a6dab7
SB
6519
6520int btrfs_scratch_superblock(struct btrfs_device *device)
6521{
6522 struct buffer_head *bh;
6523 struct btrfs_super_block *disk_super;
6524
6525 bh = btrfs_read_dev_super(device->bdev);
6526 if (!bh)
6527 return -EINVAL;
6528 disk_super = (struct btrfs_super_block *)bh->b_data;
6529
6530 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6531 set_buffer_dirty(bh);
6532 sync_dirty_buffer(bh);
6533 brelse(bh);
6534
6535 return 0;
6536}
935e5cc9
MX
6537
6538/*
6539 * Update the size of all devices, which is used for writing out the
6540 * super blocks.
6541 */
6542void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6543{
6544 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6545 struct btrfs_device *curr, *next;
6546
6547 if (list_empty(&fs_devices->resized_devices))
6548 return;
6549
6550 mutex_lock(&fs_devices->device_list_mutex);
6551 lock_chunks(fs_info->dev_root);
6552 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6553 resized_list) {
6554 list_del_init(&curr->resized_list);
6555 curr->commit_total_bytes = curr->disk_total_bytes;
6556 }
6557 unlock_chunks(fs_info->dev_root);
6558 mutex_unlock(&fs_devices->device_list_mutex);
6559}
ce7213c7
MX
6560
6561/* Must be invoked during the transaction commit */
6562void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6563 struct btrfs_transaction *transaction)
6564{
6565 struct extent_map *em;
6566 struct map_lookup *map;
6567 struct btrfs_device *dev;
6568 int i;
6569
6570 if (list_empty(&transaction->pending_chunks))
6571 return;
6572
6573 /* In order to kick the device replace finish process */
6574 lock_chunks(root);
6575 list_for_each_entry(em, &transaction->pending_chunks, list) {
6576 map = (struct map_lookup *)em->bdev;
6577
6578 for (i = 0; i < map->num_stripes; i++) {
6579 dev = map->stripes[i].dev;
6580 dev->commit_bytes_used = dev->bytes_used;
6581 }
6582 }
6583 unlock_chunks(root);
6584}