]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
btrfs: restructure find_free_dev_extent()
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
593060d7 25#include <asm/div64.h>
4b4e25f2 26#include "compat.h"
0b86a832
CM
27#include "ctree.h"
28#include "extent_map.h"
29#include "disk-io.h"
30#include "transaction.h"
31#include "print-tree.h"
32#include "volumes.h"
8b712842 33#include "async-thread.h"
0b86a832 34
593060d7
CM
35struct map_lookup {
36 u64 type;
37 int io_align;
38 int io_width;
39 int stripe_len;
40 int sector_size;
41 int num_stripes;
321aecc6 42 int sub_stripes;
cea9e445 43 struct btrfs_bio_stripe stripes[];
593060d7
CM
44};
45
2b82032c
YZ
46static int init_first_rw_device(struct btrfs_trans_handle *trans,
47 struct btrfs_root *root,
48 struct btrfs_device *device);
49static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
50
593060d7 51#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 52 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 53
8a4b83cc
CM
54static DEFINE_MUTEX(uuid_mutex);
55static LIST_HEAD(fs_uuids);
56
a061fc8d
CM
57void btrfs_lock_volumes(void)
58{
59 mutex_lock(&uuid_mutex);
60}
61
62void btrfs_unlock_volumes(void)
63{
64 mutex_unlock(&uuid_mutex);
65}
66
7d9eb12c
CM
67static void lock_chunks(struct btrfs_root *root)
68{
7d9eb12c
CM
69 mutex_lock(&root->fs_info->chunk_mutex);
70}
71
72static void unlock_chunks(struct btrfs_root *root)
73{
7d9eb12c
CM
74 mutex_unlock(&root->fs_info->chunk_mutex);
75}
76
e4404d6e
YZ
77static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
78{
79 struct btrfs_device *device;
80 WARN_ON(fs_devices->opened);
81 while (!list_empty(&fs_devices->devices)) {
82 device = list_entry(fs_devices->devices.next,
83 struct btrfs_device, dev_list);
84 list_del(&device->dev_list);
85 kfree(device->name);
86 kfree(device);
87 }
88 kfree(fs_devices);
89}
90
8a4b83cc
CM
91int btrfs_cleanup_fs_uuids(void)
92{
93 struct btrfs_fs_devices *fs_devices;
8a4b83cc 94
2b82032c
YZ
95 while (!list_empty(&fs_uuids)) {
96 fs_devices = list_entry(fs_uuids.next,
97 struct btrfs_fs_devices, list);
98 list_del(&fs_devices->list);
e4404d6e 99 free_fs_devices(fs_devices);
8a4b83cc
CM
100 }
101 return 0;
102}
103
a1b32a59
CM
104static noinline struct btrfs_device *__find_device(struct list_head *head,
105 u64 devid, u8 *uuid)
8a4b83cc
CM
106{
107 struct btrfs_device *dev;
8a4b83cc 108
c6e30871 109 list_for_each_entry(dev, head, dev_list) {
a443755f 110 if (dev->devid == devid &&
8f18cf13 111 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 112 return dev;
a443755f 113 }
8a4b83cc
CM
114 }
115 return NULL;
116}
117
a1b32a59 118static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 119{
8a4b83cc
CM
120 struct btrfs_fs_devices *fs_devices;
121
c6e30871 122 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
123 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
124 return fs_devices;
125 }
126 return NULL;
127}
128
ffbd517d
CM
129static void requeue_list(struct btrfs_pending_bios *pending_bios,
130 struct bio *head, struct bio *tail)
131{
132
133 struct bio *old_head;
134
135 old_head = pending_bios->head;
136 pending_bios->head = head;
137 if (pending_bios->tail)
138 tail->bi_next = old_head;
139 else
140 pending_bios->tail = tail;
141}
142
8b712842
CM
143/*
144 * we try to collect pending bios for a device so we don't get a large
145 * number of procs sending bios down to the same device. This greatly
146 * improves the schedulers ability to collect and merge the bios.
147 *
148 * But, it also turns into a long list of bios to process and that is sure
149 * to eventually make the worker thread block. The solution here is to
150 * make some progress and then put this work struct back at the end of
151 * the list if the block device is congested. This way, multiple devices
152 * can make progress from a single worker thread.
153 */
d397712b 154static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
155{
156 struct bio *pending;
157 struct backing_dev_info *bdi;
b64a2851 158 struct btrfs_fs_info *fs_info;
ffbd517d 159 struct btrfs_pending_bios *pending_bios;
8b712842
CM
160 struct bio *tail;
161 struct bio *cur;
162 int again = 0;
ffbd517d
CM
163 unsigned long num_run;
164 unsigned long num_sync_run;
d644d8a1 165 unsigned long batch_run = 0;
b64a2851 166 unsigned long limit;
b765ead5 167 unsigned long last_waited = 0;
d84275c9 168 int force_reg = 0;
8b712842 169
bedf762b 170 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
171 fs_info = device->dev_root->fs_info;
172 limit = btrfs_async_submit_limit(fs_info);
173 limit = limit * 2 / 3;
174
ffbd517d
CM
175 /* we want to make sure that every time we switch from the sync
176 * list to the normal list, we unplug
177 */
178 num_sync_run = 0;
179
8b712842
CM
180loop:
181 spin_lock(&device->io_lock);
182
a6837051 183loop_lock:
d84275c9 184 num_run = 0;
ffbd517d 185
8b712842
CM
186 /* take all the bios off the list at once and process them
187 * later on (without the lock held). But, remember the
188 * tail and other pointers so the bios can be properly reinserted
189 * into the list if we hit congestion
190 */
d84275c9 191 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 192 pending_bios = &device->pending_sync_bios;
d84275c9
CM
193 force_reg = 1;
194 } else {
ffbd517d 195 pending_bios = &device->pending_bios;
d84275c9
CM
196 force_reg = 0;
197 }
ffbd517d
CM
198
199 pending = pending_bios->head;
200 tail = pending_bios->tail;
8b712842 201 WARN_ON(pending && !tail);
8b712842
CM
202
203 /*
204 * if pending was null this time around, no bios need processing
205 * at all and we can stop. Otherwise it'll loop back up again
206 * and do an additional check so no bios are missed.
207 *
208 * device->running_pending is used to synchronize with the
209 * schedule_bio code.
210 */
ffbd517d
CM
211 if (device->pending_sync_bios.head == NULL &&
212 device->pending_bios.head == NULL) {
8b712842
CM
213 again = 0;
214 device->running_pending = 0;
ffbd517d
CM
215 } else {
216 again = 1;
217 device->running_pending = 1;
8b712842 218 }
ffbd517d
CM
219
220 pending_bios->head = NULL;
221 pending_bios->tail = NULL;
222
8b712842
CM
223 spin_unlock(&device->io_lock);
224
ffbd517d
CM
225 /*
226 * if we're doing the regular priority list, make sure we unplug
227 * for any high prio bios we've sent down
228 */
229 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
230 num_sync_run = 0;
231 blk_run_backing_dev(bdi, NULL);
232 }
233
d397712b 234 while (pending) {
ffbd517d
CM
235
236 rmb();
d84275c9
CM
237 /* we want to work on both lists, but do more bios on the
238 * sync list than the regular list
239 */
240 if ((num_run > 32 &&
241 pending_bios != &device->pending_sync_bios &&
242 device->pending_sync_bios.head) ||
243 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
244 device->pending_bios.head)) {
ffbd517d
CM
245 spin_lock(&device->io_lock);
246 requeue_list(pending_bios, pending, tail);
247 goto loop_lock;
248 }
249
8b712842
CM
250 cur = pending;
251 pending = pending->bi_next;
252 cur->bi_next = NULL;
b64a2851
CM
253 atomic_dec(&fs_info->nr_async_bios);
254
255 if (atomic_read(&fs_info->nr_async_bios) < limit &&
256 waitqueue_active(&fs_info->async_submit_wait))
257 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
258
259 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 260
7b6d91da 261 if (cur->bi_rw & REQ_SYNC)
ffbd517d
CM
262 num_sync_run++;
263
5ff7ba3a
CM
264 submit_bio(cur->bi_rw, cur);
265 num_run++;
266 batch_run++;
ffbd517d
CM
267 if (need_resched()) {
268 if (num_sync_run) {
269 blk_run_backing_dev(bdi, NULL);
270 num_sync_run = 0;
271 }
272 cond_resched();
273 }
8b712842
CM
274
275 /*
276 * we made progress, there is more work to do and the bdi
277 * is now congested. Back off and let other work structs
278 * run instead
279 */
57fd5a5f 280 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 281 fs_info->fs_devices->open_devices > 1) {
b765ead5 282 struct io_context *ioc;
8b712842 283
b765ead5
CM
284 ioc = current->io_context;
285
286 /*
287 * the main goal here is that we don't want to
288 * block if we're going to be able to submit
289 * more requests without blocking.
290 *
291 * This code does two great things, it pokes into
292 * the elevator code from a filesystem _and_
293 * it makes assumptions about how batching works.
294 */
295 if (ioc && ioc->nr_batch_requests > 0 &&
296 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
297 (last_waited == 0 ||
298 ioc->last_waited == last_waited)) {
299 /*
300 * we want to go through our batch of
301 * requests and stop. So, we copy out
302 * the ioc->last_waited time and test
303 * against it before looping
304 */
305 last_waited = ioc->last_waited;
ffbd517d
CM
306 if (need_resched()) {
307 if (num_sync_run) {
308 blk_run_backing_dev(bdi, NULL);
309 num_sync_run = 0;
310 }
311 cond_resched();
312 }
b765ead5
CM
313 continue;
314 }
8b712842 315 spin_lock(&device->io_lock);
ffbd517d 316 requeue_list(pending_bios, pending, tail);
a6837051 317 device->running_pending = 1;
8b712842
CM
318
319 spin_unlock(&device->io_lock);
320 btrfs_requeue_work(&device->work);
321 goto done;
322 }
323 }
ffbd517d
CM
324
325 if (num_sync_run) {
326 num_sync_run = 0;
327 blk_run_backing_dev(bdi, NULL);
328 }
bedf762b
CM
329 /*
330 * IO has already been through a long path to get here. Checksumming,
331 * async helper threads, perhaps compression. We've done a pretty
332 * good job of collecting a batch of IO and should just unplug
333 * the device right away.
334 *
335 * This will help anyone who is waiting on the IO, they might have
336 * already unplugged, but managed to do so before the bio they
337 * cared about found its way down here.
338 */
339 blk_run_backing_dev(bdi, NULL);
51684082
CM
340
341 cond_resched();
342 if (again)
343 goto loop;
344
345 spin_lock(&device->io_lock);
346 if (device->pending_bios.head || device->pending_sync_bios.head)
347 goto loop_lock;
348 spin_unlock(&device->io_lock);
349
8b712842
CM
350done:
351 return 0;
352}
353
b2950863 354static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
355{
356 struct btrfs_device *device;
357
358 device = container_of(work, struct btrfs_device, work);
359 run_scheduled_bios(device);
360}
361
a1b32a59 362static noinline int device_list_add(const char *path,
8a4b83cc
CM
363 struct btrfs_super_block *disk_super,
364 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
365{
366 struct btrfs_device *device;
367 struct btrfs_fs_devices *fs_devices;
368 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 369 char *name;
8a4b83cc
CM
370
371 fs_devices = find_fsid(disk_super->fsid);
372 if (!fs_devices) {
515dc322 373 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
374 if (!fs_devices)
375 return -ENOMEM;
376 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 377 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
378 list_add(&fs_devices->list, &fs_uuids);
379 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
380 fs_devices->latest_devid = devid;
381 fs_devices->latest_trans = found_transid;
e5e9a520 382 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
383 device = NULL;
384 } else {
a443755f
CM
385 device = __find_device(&fs_devices->devices, devid,
386 disk_super->dev_item.uuid);
8a4b83cc
CM
387 }
388 if (!device) {
2b82032c
YZ
389 if (fs_devices->opened)
390 return -EBUSY;
391
8a4b83cc
CM
392 device = kzalloc(sizeof(*device), GFP_NOFS);
393 if (!device) {
394 /* we can safely leave the fs_devices entry around */
395 return -ENOMEM;
396 }
397 device->devid = devid;
8b712842 398 device->work.func = pending_bios_fn;
a443755f
CM
399 memcpy(device->uuid, disk_super->dev_item.uuid,
400 BTRFS_UUID_SIZE);
f2984462 401 device->barriers = 1;
b248a415 402 spin_lock_init(&device->io_lock);
8a4b83cc
CM
403 device->name = kstrdup(path, GFP_NOFS);
404 if (!device->name) {
405 kfree(device);
406 return -ENOMEM;
407 }
2b82032c 408 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520
CM
409
410 mutex_lock(&fs_devices->device_list_mutex);
8a4b83cc 411 list_add(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
412 mutex_unlock(&fs_devices->device_list_mutex);
413
2b82032c 414 device->fs_devices = fs_devices;
8a4b83cc 415 fs_devices->num_devices++;
cd02dca5 416 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
417 name = kstrdup(path, GFP_NOFS);
418 if (!name)
419 return -ENOMEM;
420 kfree(device->name);
421 device->name = name;
cd02dca5
CM
422 if (device->missing) {
423 fs_devices->missing_devices--;
424 device->missing = 0;
425 }
8a4b83cc
CM
426 }
427
428 if (found_transid > fs_devices->latest_trans) {
429 fs_devices->latest_devid = devid;
430 fs_devices->latest_trans = found_transid;
431 }
8a4b83cc
CM
432 *fs_devices_ret = fs_devices;
433 return 0;
434}
435
e4404d6e
YZ
436static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437{
438 struct btrfs_fs_devices *fs_devices;
439 struct btrfs_device *device;
440 struct btrfs_device *orig_dev;
441
442 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443 if (!fs_devices)
444 return ERR_PTR(-ENOMEM);
445
446 INIT_LIST_HEAD(&fs_devices->devices);
447 INIT_LIST_HEAD(&fs_devices->alloc_list);
448 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 449 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
450 fs_devices->latest_devid = orig->latest_devid;
451 fs_devices->latest_trans = orig->latest_trans;
452 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453
e5e9a520 454 mutex_lock(&orig->device_list_mutex);
e4404d6e
YZ
455 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456 device = kzalloc(sizeof(*device), GFP_NOFS);
457 if (!device)
458 goto error;
459
460 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
461 if (!device->name) {
462 kfree(device);
e4404d6e 463 goto error;
fd2696f3 464 }
e4404d6e
YZ
465
466 device->devid = orig_dev->devid;
467 device->work.func = pending_bios_fn;
468 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469 device->barriers = 1;
470 spin_lock_init(&device->io_lock);
471 INIT_LIST_HEAD(&device->dev_list);
472 INIT_LIST_HEAD(&device->dev_alloc_list);
473
474 list_add(&device->dev_list, &fs_devices->devices);
475 device->fs_devices = fs_devices;
476 fs_devices->num_devices++;
477 }
e5e9a520 478 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
479 return fs_devices;
480error:
e5e9a520 481 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
482 free_fs_devices(fs_devices);
483 return ERR_PTR(-ENOMEM);
484}
485
dfe25020
CM
486int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
487{
c6e30871 488 struct btrfs_device *device, *next;
dfe25020
CM
489
490 mutex_lock(&uuid_mutex);
491again:
e5e9a520 492 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 493 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
494 if (device->in_fs_metadata)
495 continue;
496
497 if (device->bdev) {
15916de8 498 close_bdev_exclusive(device->bdev, device->mode);
2b82032c
YZ
499 device->bdev = NULL;
500 fs_devices->open_devices--;
501 }
502 if (device->writeable) {
503 list_del_init(&device->dev_alloc_list);
504 device->writeable = 0;
505 fs_devices->rw_devices--;
506 }
e4404d6e
YZ
507 list_del_init(&device->dev_list);
508 fs_devices->num_devices--;
509 kfree(device->name);
510 kfree(device);
dfe25020 511 }
e5e9a520 512 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c
YZ
513
514 if (fs_devices->seed) {
515 fs_devices = fs_devices->seed;
2b82032c
YZ
516 goto again;
517 }
518
dfe25020
CM
519 mutex_unlock(&uuid_mutex);
520 return 0;
521}
a0af469b 522
2b82032c 523static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 524{
8a4b83cc 525 struct btrfs_device *device;
e4404d6e 526
2b82032c
YZ
527 if (--fs_devices->opened > 0)
528 return 0;
8a4b83cc 529
c6e30871 530 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 531 if (device->bdev) {
15916de8 532 close_bdev_exclusive(device->bdev, device->mode);
a0af469b 533 fs_devices->open_devices--;
8a4b83cc 534 }
2b82032c
YZ
535 if (device->writeable) {
536 list_del_init(&device->dev_alloc_list);
537 fs_devices->rw_devices--;
538 }
539
8a4b83cc 540 device->bdev = NULL;
2b82032c 541 device->writeable = 0;
dfe25020 542 device->in_fs_metadata = 0;
8a4b83cc 543 }
e4404d6e
YZ
544 WARN_ON(fs_devices->open_devices);
545 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
546 fs_devices->opened = 0;
547 fs_devices->seeding = 0;
2b82032c 548
8a4b83cc
CM
549 return 0;
550}
551
2b82032c
YZ
552int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
553{
e4404d6e 554 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
555 int ret;
556
557 mutex_lock(&uuid_mutex);
558 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
559 if (!fs_devices->opened) {
560 seed_devices = fs_devices->seed;
561 fs_devices->seed = NULL;
562 }
2b82032c 563 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
564
565 while (seed_devices) {
566 fs_devices = seed_devices;
567 seed_devices = fs_devices->seed;
568 __btrfs_close_devices(fs_devices);
569 free_fs_devices(fs_devices);
570 }
2b82032c
YZ
571 return ret;
572}
573
e4404d6e
YZ
574static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
575 fmode_t flags, void *holder)
8a4b83cc
CM
576{
577 struct block_device *bdev;
578 struct list_head *head = &fs_devices->devices;
8a4b83cc 579 struct btrfs_device *device;
a0af469b
CM
580 struct block_device *latest_bdev = NULL;
581 struct buffer_head *bh;
582 struct btrfs_super_block *disk_super;
583 u64 latest_devid = 0;
584 u64 latest_transid = 0;
a0af469b 585 u64 devid;
2b82032c 586 int seeding = 1;
a0af469b 587 int ret = 0;
8a4b83cc 588
c6e30871 589 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
590 if (device->bdev)
591 continue;
dfe25020
CM
592 if (!device->name)
593 continue;
594
15916de8 595 bdev = open_bdev_exclusive(device->name, flags, holder);
8a4b83cc 596 if (IS_ERR(bdev)) {
d397712b 597 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 598 goto error;
8a4b83cc 599 }
a061fc8d 600 set_blocksize(bdev, 4096);
a0af469b 601
a512bbf8 602 bh = btrfs_read_dev_super(bdev);
a0af469b
CM
603 if (!bh)
604 goto error_close;
605
606 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 607 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
608 if (devid != device->devid)
609 goto error_brelse;
610
2b82032c
YZ
611 if (memcmp(device->uuid, disk_super->dev_item.uuid,
612 BTRFS_UUID_SIZE))
613 goto error_brelse;
614
615 device->generation = btrfs_super_generation(disk_super);
616 if (!latest_transid || device->generation > latest_transid) {
a0af469b 617 latest_devid = devid;
2b82032c 618 latest_transid = device->generation;
a0af469b
CM
619 latest_bdev = bdev;
620 }
621
2b82032c
YZ
622 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
623 device->writeable = 0;
624 } else {
625 device->writeable = !bdev_read_only(bdev);
626 seeding = 0;
627 }
628
8a4b83cc 629 device->bdev = bdev;
dfe25020 630 device->in_fs_metadata = 0;
15916de8
CM
631 device->mode = flags;
632
c289811c
CM
633 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
634 fs_devices->rotating = 1;
635
a0af469b 636 fs_devices->open_devices++;
2b82032c
YZ
637 if (device->writeable) {
638 fs_devices->rw_devices++;
639 list_add(&device->dev_alloc_list,
640 &fs_devices->alloc_list);
641 }
a0af469b 642 continue;
a061fc8d 643
a0af469b
CM
644error_brelse:
645 brelse(bh);
646error_close:
97288f2c 647 close_bdev_exclusive(bdev, FMODE_READ);
a0af469b
CM
648error:
649 continue;
8a4b83cc 650 }
a0af469b
CM
651 if (fs_devices->open_devices == 0) {
652 ret = -EIO;
653 goto out;
654 }
2b82032c
YZ
655 fs_devices->seeding = seeding;
656 fs_devices->opened = 1;
a0af469b
CM
657 fs_devices->latest_bdev = latest_bdev;
658 fs_devices->latest_devid = latest_devid;
659 fs_devices->latest_trans = latest_transid;
2b82032c 660 fs_devices->total_rw_bytes = 0;
a0af469b 661out:
2b82032c
YZ
662 return ret;
663}
664
665int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 666 fmode_t flags, void *holder)
2b82032c
YZ
667{
668 int ret;
669
670 mutex_lock(&uuid_mutex);
671 if (fs_devices->opened) {
e4404d6e
YZ
672 fs_devices->opened++;
673 ret = 0;
2b82032c 674 } else {
15916de8 675 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 676 }
8a4b83cc 677 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
678 return ret;
679}
680
97288f2c 681int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
682 struct btrfs_fs_devices **fs_devices_ret)
683{
684 struct btrfs_super_block *disk_super;
685 struct block_device *bdev;
686 struct buffer_head *bh;
687 int ret;
688 u64 devid;
f2984462 689 u64 transid;
8a4b83cc
CM
690
691 mutex_lock(&uuid_mutex);
692
15916de8 693 bdev = open_bdev_exclusive(path, flags, holder);
8a4b83cc
CM
694
695 if (IS_ERR(bdev)) {
8a4b83cc
CM
696 ret = PTR_ERR(bdev);
697 goto error;
698 }
699
700 ret = set_blocksize(bdev, 4096);
701 if (ret)
702 goto error_close;
a512bbf8 703 bh = btrfs_read_dev_super(bdev);
8a4b83cc
CM
704 if (!bh) {
705 ret = -EIO;
706 goto error_close;
707 }
708 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 709 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 710 transid = btrfs_super_generation(disk_super);
7ae9c09d 711 if (disk_super->label[0])
d397712b 712 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
713 else {
714 /* FIXME, make a readl uuid parser */
d397712b 715 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
716 *(unsigned long long *)disk_super->fsid,
717 *(unsigned long long *)(disk_super->fsid + 8));
718 }
119e10cf 719 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 720 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
721 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
722
8a4b83cc
CM
723 brelse(bh);
724error_close:
15916de8 725 close_bdev_exclusive(bdev, flags);
8a4b83cc
CM
726error:
727 mutex_unlock(&uuid_mutex);
728 return ret;
729}
0b86a832
CM
730
731/*
7bfc837d
MX
732 * find_free_dev_extent - find free space in the specified device
733 * @trans: transaction handler
734 * @device: the device which we search the free space in
735 * @num_bytes: the size of the free space that we need
736 * @start: store the start of the free space.
737 * @len: the size of the free space. that we find, or the size of the max
738 * free space if we don't find suitable free space
739 *
0b86a832
CM
740 * this uses a pretty simple search, the expectation is that it is
741 * called very infrequently and that a given device has a small number
742 * of extents
7bfc837d
MX
743 *
744 * @start is used to store the start of the free space if we find. But if we
745 * don't find suitable free space, it will be used to store the start position
746 * of the max free space.
747 *
748 * @len is used to store the size of the free space that we find.
749 * But if we don't find suitable free space, it is used to store the size of
750 * the max free space.
0b86a832 751 */
ba1bf481
JB
752int find_free_dev_extent(struct btrfs_trans_handle *trans,
753 struct btrfs_device *device, u64 num_bytes,
7bfc837d 754 u64 *start, u64 *len)
0b86a832
CM
755{
756 struct btrfs_key key;
757 struct btrfs_root *root = device->dev_root;
7bfc837d 758 struct btrfs_dev_extent *dev_extent;
2b82032c 759 struct btrfs_path *path;
7bfc837d
MX
760 u64 hole_size;
761 u64 max_hole_start;
762 u64 max_hole_size;
763 u64 extent_end;
764 u64 search_start;
0b86a832
CM
765 u64 search_end = device->total_bytes;
766 int ret;
7bfc837d 767 int slot;
0b86a832
CM
768 struct extent_buffer *l;
769
0b86a832
CM
770 /* FIXME use last free of some kind */
771
8a4b83cc
CM
772 /* we don't want to overwrite the superblock on the drive,
773 * so we make sure to start at an offset of at least 1MB
774 */
7bfc837d 775 search_start = 1024 * 1024;
8f18cf13 776
7bfc837d 777 if (root->fs_info->alloc_start + num_bytes <= search_end)
8f18cf13
CM
778 search_start = max(root->fs_info->alloc_start, search_start);
779
7bfc837d
MX
780 max_hole_start = search_start;
781 max_hole_size = 0;
782
783 if (search_start >= search_end) {
784 ret = -ENOSPC;
785 goto error;
786 }
787
788 path = btrfs_alloc_path();
789 if (!path) {
790 ret = -ENOMEM;
791 goto error;
792 }
793 path->reada = 2;
794
0b86a832
CM
795 key.objectid = device->devid;
796 key.offset = search_start;
797 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 798
0b86a832
CM
799 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
800 if (ret < 0)
7bfc837d 801 goto out;
1fcbac58
YZ
802 if (ret > 0) {
803 ret = btrfs_previous_item(root, path, key.objectid, key.type);
804 if (ret < 0)
7bfc837d 805 goto out;
1fcbac58 806 }
7bfc837d 807
0b86a832
CM
808 while (1) {
809 l = path->nodes[0];
810 slot = path->slots[0];
811 if (slot >= btrfs_header_nritems(l)) {
812 ret = btrfs_next_leaf(root, path);
813 if (ret == 0)
814 continue;
815 if (ret < 0)
7bfc837d
MX
816 goto out;
817
818 break;
0b86a832
CM
819 }
820 btrfs_item_key_to_cpu(l, &key, slot);
821
822 if (key.objectid < device->devid)
823 goto next;
824
825 if (key.objectid > device->devid)
7bfc837d 826 break;
0b86a832 827
7bfc837d
MX
828 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
829 goto next;
9779b72f 830
7bfc837d
MX
831 if (key.offset > search_start) {
832 hole_size = key.offset - search_start;
9779b72f 833
7bfc837d
MX
834 if (hole_size > max_hole_size) {
835 max_hole_start = search_start;
836 max_hole_size = hole_size;
837 }
838
839 /*
840 * If this free space is greater than which we need,
841 * it must be the max free space that we have found
842 * until now, so max_hole_start must point to the start
843 * of this free space and the length of this free space
844 * is stored in max_hole_size. Thus, we return
845 * max_hole_start and max_hole_size and go back to the
846 * caller.
847 */
848 if (hole_size >= num_bytes) {
849 ret = 0;
850 goto out;
0b86a832
CM
851 }
852 }
0b86a832 853
0b86a832 854 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
855 extent_end = key.offset + btrfs_dev_extent_length(l,
856 dev_extent);
857 if (extent_end > search_start)
858 search_start = extent_end;
0b86a832
CM
859next:
860 path->slots[0]++;
861 cond_resched();
862 }
0b86a832 863
7bfc837d
MX
864 hole_size = search_end- search_start;
865 if (hole_size > max_hole_size) {
866 max_hole_start = search_start;
867 max_hole_size = hole_size;
0b86a832 868 }
0b86a832 869
7bfc837d
MX
870 /* See above. */
871 if (hole_size < num_bytes)
872 ret = -ENOSPC;
873 else
874 ret = 0;
875
876out:
2b82032c 877 btrfs_free_path(path);
7bfc837d
MX
878error:
879 *start = max_hole_start;
880 if (len && max_hole_size > *len)
881 *len = max_hole_size;
0b86a832
CM
882 return ret;
883}
884
b2950863 885static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
886 struct btrfs_device *device,
887 u64 start)
888{
889 int ret;
890 struct btrfs_path *path;
891 struct btrfs_root *root = device->dev_root;
892 struct btrfs_key key;
a061fc8d
CM
893 struct btrfs_key found_key;
894 struct extent_buffer *leaf = NULL;
895 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
896
897 path = btrfs_alloc_path();
898 if (!path)
899 return -ENOMEM;
900
901 key.objectid = device->devid;
902 key.offset = start;
903 key.type = BTRFS_DEV_EXTENT_KEY;
904
905 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
906 if (ret > 0) {
907 ret = btrfs_previous_item(root, path, key.objectid,
908 BTRFS_DEV_EXTENT_KEY);
909 BUG_ON(ret);
910 leaf = path->nodes[0];
911 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
912 extent = btrfs_item_ptr(leaf, path->slots[0],
913 struct btrfs_dev_extent);
914 BUG_ON(found_key.offset > start || found_key.offset +
915 btrfs_dev_extent_length(leaf, extent) < start);
916 ret = 0;
917 } else if (ret == 0) {
918 leaf = path->nodes[0];
919 extent = btrfs_item_ptr(leaf, path->slots[0],
920 struct btrfs_dev_extent);
921 }
8f18cf13
CM
922 BUG_ON(ret);
923
dfe25020
CM
924 if (device->bytes_used > 0)
925 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
926 ret = btrfs_del_item(trans, root, path);
927 BUG_ON(ret);
928
929 btrfs_free_path(path);
930 return ret;
931}
932
2b82032c 933int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 934 struct btrfs_device *device,
e17cade2 935 u64 chunk_tree, u64 chunk_objectid,
2b82032c 936 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
937{
938 int ret;
939 struct btrfs_path *path;
940 struct btrfs_root *root = device->dev_root;
941 struct btrfs_dev_extent *extent;
942 struct extent_buffer *leaf;
943 struct btrfs_key key;
944
dfe25020 945 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
946 path = btrfs_alloc_path();
947 if (!path)
948 return -ENOMEM;
949
0b86a832 950 key.objectid = device->devid;
2b82032c 951 key.offset = start;
0b86a832
CM
952 key.type = BTRFS_DEV_EXTENT_KEY;
953 ret = btrfs_insert_empty_item(trans, root, path, &key,
954 sizeof(*extent));
955 BUG_ON(ret);
956
957 leaf = path->nodes[0];
958 extent = btrfs_item_ptr(leaf, path->slots[0],
959 struct btrfs_dev_extent);
e17cade2
CM
960 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
961 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
962 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
963
964 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
965 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
966 BTRFS_UUID_SIZE);
967
0b86a832
CM
968 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
969 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
970 btrfs_free_path(path);
971 return ret;
972}
973
a1b32a59
CM
974static noinline int find_next_chunk(struct btrfs_root *root,
975 u64 objectid, u64 *offset)
0b86a832
CM
976{
977 struct btrfs_path *path;
978 int ret;
979 struct btrfs_key key;
e17cade2 980 struct btrfs_chunk *chunk;
0b86a832
CM
981 struct btrfs_key found_key;
982
983 path = btrfs_alloc_path();
984 BUG_ON(!path);
985
e17cade2 986 key.objectid = objectid;
0b86a832
CM
987 key.offset = (u64)-1;
988 key.type = BTRFS_CHUNK_ITEM_KEY;
989
990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
991 if (ret < 0)
992 goto error;
993
994 BUG_ON(ret == 0);
995
996 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
997 if (ret) {
e17cade2 998 *offset = 0;
0b86a832
CM
999 } else {
1000 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1001 path->slots[0]);
e17cade2
CM
1002 if (found_key.objectid != objectid)
1003 *offset = 0;
1004 else {
1005 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1006 struct btrfs_chunk);
1007 *offset = found_key.offset +
1008 btrfs_chunk_length(path->nodes[0], chunk);
1009 }
0b86a832
CM
1010 }
1011 ret = 0;
1012error:
1013 btrfs_free_path(path);
1014 return ret;
1015}
1016
2b82032c 1017static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1018{
1019 int ret;
1020 struct btrfs_key key;
1021 struct btrfs_key found_key;
2b82032c
YZ
1022 struct btrfs_path *path;
1023
1024 root = root->fs_info->chunk_root;
1025
1026 path = btrfs_alloc_path();
1027 if (!path)
1028 return -ENOMEM;
0b86a832
CM
1029
1030 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1031 key.type = BTRFS_DEV_ITEM_KEY;
1032 key.offset = (u64)-1;
1033
1034 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1035 if (ret < 0)
1036 goto error;
1037
1038 BUG_ON(ret == 0);
1039
1040 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1041 BTRFS_DEV_ITEM_KEY);
1042 if (ret) {
1043 *objectid = 1;
1044 } else {
1045 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1046 path->slots[0]);
1047 *objectid = found_key.offset + 1;
1048 }
1049 ret = 0;
1050error:
2b82032c 1051 btrfs_free_path(path);
0b86a832
CM
1052 return ret;
1053}
1054
1055/*
1056 * the device information is stored in the chunk root
1057 * the btrfs_device struct should be fully filled in
1058 */
1059int btrfs_add_device(struct btrfs_trans_handle *trans,
1060 struct btrfs_root *root,
1061 struct btrfs_device *device)
1062{
1063 int ret;
1064 struct btrfs_path *path;
1065 struct btrfs_dev_item *dev_item;
1066 struct extent_buffer *leaf;
1067 struct btrfs_key key;
1068 unsigned long ptr;
0b86a832
CM
1069
1070 root = root->fs_info->chunk_root;
1071
1072 path = btrfs_alloc_path();
1073 if (!path)
1074 return -ENOMEM;
1075
0b86a832
CM
1076 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1077 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1078 key.offset = device->devid;
0b86a832
CM
1079
1080 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1081 sizeof(*dev_item));
0b86a832
CM
1082 if (ret)
1083 goto out;
1084
1085 leaf = path->nodes[0];
1086 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1087
1088 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1089 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1090 btrfs_set_device_type(leaf, dev_item, device->type);
1091 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1092 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1093 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1094 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1095 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1096 btrfs_set_device_group(leaf, dev_item, 0);
1097 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1098 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1099 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1100
0b86a832 1101 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1102 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1103 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1104 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1105 btrfs_mark_buffer_dirty(leaf);
0b86a832 1106
2b82032c 1107 ret = 0;
0b86a832
CM
1108out:
1109 btrfs_free_path(path);
1110 return ret;
1111}
8f18cf13 1112
a061fc8d
CM
1113static int btrfs_rm_dev_item(struct btrfs_root *root,
1114 struct btrfs_device *device)
1115{
1116 int ret;
1117 struct btrfs_path *path;
a061fc8d 1118 struct btrfs_key key;
a061fc8d
CM
1119 struct btrfs_trans_handle *trans;
1120
1121 root = root->fs_info->chunk_root;
1122
1123 path = btrfs_alloc_path();
1124 if (!path)
1125 return -ENOMEM;
1126
a22285a6 1127 trans = btrfs_start_transaction(root, 0);
a061fc8d
CM
1128 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1129 key.type = BTRFS_DEV_ITEM_KEY;
1130 key.offset = device->devid;
7d9eb12c 1131 lock_chunks(root);
a061fc8d
CM
1132
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0)
1135 goto out;
1136
1137 if (ret > 0) {
1138 ret = -ENOENT;
1139 goto out;
1140 }
1141
1142 ret = btrfs_del_item(trans, root, path);
1143 if (ret)
1144 goto out;
a061fc8d
CM
1145out:
1146 btrfs_free_path(path);
7d9eb12c 1147 unlock_chunks(root);
a061fc8d
CM
1148 btrfs_commit_transaction(trans, root);
1149 return ret;
1150}
1151
1152int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1153{
1154 struct btrfs_device *device;
2b82032c 1155 struct btrfs_device *next_device;
a061fc8d 1156 struct block_device *bdev;
dfe25020 1157 struct buffer_head *bh = NULL;
a061fc8d
CM
1158 struct btrfs_super_block *disk_super;
1159 u64 all_avail;
1160 u64 devid;
2b82032c
YZ
1161 u64 num_devices;
1162 u8 *dev_uuid;
a061fc8d
CM
1163 int ret = 0;
1164
a061fc8d 1165 mutex_lock(&uuid_mutex);
7d9eb12c 1166 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1167
1168 all_avail = root->fs_info->avail_data_alloc_bits |
1169 root->fs_info->avail_system_alloc_bits |
1170 root->fs_info->avail_metadata_alloc_bits;
1171
1172 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1173 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1174 printk(KERN_ERR "btrfs: unable to go below four devices "
1175 "on raid10\n");
a061fc8d
CM
1176 ret = -EINVAL;
1177 goto out;
1178 }
1179
1180 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1181 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1182 printk(KERN_ERR "btrfs: unable to go below two "
1183 "devices on raid1\n");
a061fc8d
CM
1184 ret = -EINVAL;
1185 goto out;
1186 }
1187
dfe25020 1188 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1189 struct list_head *devices;
1190 struct btrfs_device *tmp;
a061fc8d 1191
dfe25020
CM
1192 device = NULL;
1193 devices = &root->fs_info->fs_devices->devices;
e5e9a520 1194 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1195 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1196 if (tmp->in_fs_metadata && !tmp->bdev) {
1197 device = tmp;
1198 break;
1199 }
1200 }
e5e9a520 1201 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
dfe25020
CM
1202 bdev = NULL;
1203 bh = NULL;
1204 disk_super = NULL;
1205 if (!device) {
d397712b
CM
1206 printk(KERN_ERR "btrfs: no missing devices found to "
1207 "remove\n");
dfe25020
CM
1208 goto out;
1209 }
dfe25020 1210 } else {
97288f2c 1211 bdev = open_bdev_exclusive(device_path, FMODE_READ,
dfe25020
CM
1212 root->fs_info->bdev_holder);
1213 if (IS_ERR(bdev)) {
1214 ret = PTR_ERR(bdev);
1215 goto out;
1216 }
a061fc8d 1217
2b82032c 1218 set_blocksize(bdev, 4096);
a512bbf8 1219 bh = btrfs_read_dev_super(bdev);
dfe25020
CM
1220 if (!bh) {
1221 ret = -EIO;
1222 goto error_close;
1223 }
1224 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1225 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1226 dev_uuid = disk_super->dev_item.uuid;
1227 device = btrfs_find_device(root, devid, dev_uuid,
1228 disk_super->fsid);
dfe25020
CM
1229 if (!device) {
1230 ret = -ENOENT;
1231 goto error_brelse;
1232 }
2b82032c 1233 }
dfe25020 1234
2b82032c 1235 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1236 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1237 "device\n");
2b82032c
YZ
1238 ret = -EINVAL;
1239 goto error_brelse;
1240 }
1241
1242 if (device->writeable) {
1243 list_del_init(&device->dev_alloc_list);
1244 root->fs_info->fs_devices->rw_devices--;
dfe25020 1245 }
a061fc8d
CM
1246
1247 ret = btrfs_shrink_device(device, 0);
1248 if (ret)
1249 goto error_brelse;
1250
a061fc8d
CM
1251 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1252 if (ret)
1253 goto error_brelse;
1254
2b82032c 1255 device->in_fs_metadata = 0;
e5e9a520
CM
1256
1257 /*
1258 * the device list mutex makes sure that we don't change
1259 * the device list while someone else is writing out all
1260 * the device supers.
1261 */
1262 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1263 list_del_init(&device->dev_list);
e5e9a520
CM
1264 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1265
e4404d6e 1266 device->fs_devices->num_devices--;
2b82032c 1267
cd02dca5
CM
1268 if (device->missing)
1269 root->fs_info->fs_devices->missing_devices--;
1270
2b82032c
YZ
1271 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1272 struct btrfs_device, dev_list);
1273 if (device->bdev == root->fs_info->sb->s_bdev)
1274 root->fs_info->sb->s_bdev = next_device->bdev;
1275 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1276 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1277
e4404d6e
YZ
1278 if (device->bdev) {
1279 close_bdev_exclusive(device->bdev, device->mode);
1280 device->bdev = NULL;
1281 device->fs_devices->open_devices--;
1282 }
1283
2b82032c
YZ
1284 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1285 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1286
e4404d6e
YZ
1287 if (device->fs_devices->open_devices == 0) {
1288 struct btrfs_fs_devices *fs_devices;
1289 fs_devices = root->fs_info->fs_devices;
1290 while (fs_devices) {
1291 if (fs_devices->seed == device->fs_devices)
1292 break;
1293 fs_devices = fs_devices->seed;
2b82032c 1294 }
e4404d6e
YZ
1295 fs_devices->seed = device->fs_devices->seed;
1296 device->fs_devices->seed = NULL;
1297 __btrfs_close_devices(device->fs_devices);
1298 free_fs_devices(device->fs_devices);
2b82032c
YZ
1299 }
1300
1301 /*
1302 * at this point, the device is zero sized. We want to
1303 * remove it from the devices list and zero out the old super
1304 */
1305 if (device->writeable) {
dfe25020
CM
1306 /* make sure this device isn't detected as part of
1307 * the FS anymore
1308 */
1309 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1310 set_buffer_dirty(bh);
1311 sync_dirty_buffer(bh);
dfe25020 1312 }
a061fc8d
CM
1313
1314 kfree(device->name);
1315 kfree(device);
1316 ret = 0;
a061fc8d
CM
1317
1318error_brelse:
1319 brelse(bh);
1320error_close:
dfe25020 1321 if (bdev)
97288f2c 1322 close_bdev_exclusive(bdev, FMODE_READ);
a061fc8d 1323out:
7d9eb12c 1324 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1325 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1326 return ret;
1327}
1328
2b82032c
YZ
1329/*
1330 * does all the dirty work required for changing file system's UUID.
1331 */
1332static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1333 struct btrfs_root *root)
1334{
1335 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1336 struct btrfs_fs_devices *old_devices;
e4404d6e 1337 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1338 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1339 struct btrfs_device *device;
1340 u64 super_flags;
1341
1342 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1343 if (!fs_devices->seeding)
2b82032c
YZ
1344 return -EINVAL;
1345
e4404d6e
YZ
1346 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1347 if (!seed_devices)
2b82032c
YZ
1348 return -ENOMEM;
1349
e4404d6e
YZ
1350 old_devices = clone_fs_devices(fs_devices);
1351 if (IS_ERR(old_devices)) {
1352 kfree(seed_devices);
1353 return PTR_ERR(old_devices);
2b82032c 1354 }
e4404d6e 1355
2b82032c
YZ
1356 list_add(&old_devices->list, &fs_uuids);
1357
e4404d6e
YZ
1358 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1359 seed_devices->opened = 1;
1360 INIT_LIST_HEAD(&seed_devices->devices);
1361 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1362 mutex_init(&seed_devices->device_list_mutex);
e4404d6e
YZ
1363 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1364 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1365 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1366 device->fs_devices = seed_devices;
1367 }
1368
2b82032c
YZ
1369 fs_devices->seeding = 0;
1370 fs_devices->num_devices = 0;
1371 fs_devices->open_devices = 0;
e4404d6e 1372 fs_devices->seed = seed_devices;
2b82032c
YZ
1373
1374 generate_random_uuid(fs_devices->fsid);
1375 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1376 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1377 super_flags = btrfs_super_flags(disk_super) &
1378 ~BTRFS_SUPER_FLAG_SEEDING;
1379 btrfs_set_super_flags(disk_super, super_flags);
1380
1381 return 0;
1382}
1383
1384/*
1385 * strore the expected generation for seed devices in device items.
1386 */
1387static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1388 struct btrfs_root *root)
1389{
1390 struct btrfs_path *path;
1391 struct extent_buffer *leaf;
1392 struct btrfs_dev_item *dev_item;
1393 struct btrfs_device *device;
1394 struct btrfs_key key;
1395 u8 fs_uuid[BTRFS_UUID_SIZE];
1396 u8 dev_uuid[BTRFS_UUID_SIZE];
1397 u64 devid;
1398 int ret;
1399
1400 path = btrfs_alloc_path();
1401 if (!path)
1402 return -ENOMEM;
1403
1404 root = root->fs_info->chunk_root;
1405 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1406 key.offset = 0;
1407 key.type = BTRFS_DEV_ITEM_KEY;
1408
1409 while (1) {
1410 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1411 if (ret < 0)
1412 goto error;
1413
1414 leaf = path->nodes[0];
1415next_slot:
1416 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1417 ret = btrfs_next_leaf(root, path);
1418 if (ret > 0)
1419 break;
1420 if (ret < 0)
1421 goto error;
1422 leaf = path->nodes[0];
1423 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1424 btrfs_release_path(root, path);
1425 continue;
1426 }
1427
1428 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1429 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1430 key.type != BTRFS_DEV_ITEM_KEY)
1431 break;
1432
1433 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_dev_item);
1435 devid = btrfs_device_id(leaf, dev_item);
1436 read_extent_buffer(leaf, dev_uuid,
1437 (unsigned long)btrfs_device_uuid(dev_item),
1438 BTRFS_UUID_SIZE);
1439 read_extent_buffer(leaf, fs_uuid,
1440 (unsigned long)btrfs_device_fsid(dev_item),
1441 BTRFS_UUID_SIZE);
1442 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1443 BUG_ON(!device);
1444
1445 if (device->fs_devices->seeding) {
1446 btrfs_set_device_generation(leaf, dev_item,
1447 device->generation);
1448 btrfs_mark_buffer_dirty(leaf);
1449 }
1450
1451 path->slots[0]++;
1452 goto next_slot;
1453 }
1454 ret = 0;
1455error:
1456 btrfs_free_path(path);
1457 return ret;
1458}
1459
788f20eb
CM
1460int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1461{
1462 struct btrfs_trans_handle *trans;
1463 struct btrfs_device *device;
1464 struct block_device *bdev;
788f20eb 1465 struct list_head *devices;
2b82032c 1466 struct super_block *sb = root->fs_info->sb;
788f20eb 1467 u64 total_bytes;
2b82032c 1468 int seeding_dev = 0;
788f20eb
CM
1469 int ret = 0;
1470
2b82032c
YZ
1471 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1472 return -EINVAL;
788f20eb 1473
15916de8 1474 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
7f59203a
JB
1475 if (IS_ERR(bdev))
1476 return PTR_ERR(bdev);
a2135011 1477
2b82032c
YZ
1478 if (root->fs_info->fs_devices->seeding) {
1479 seeding_dev = 1;
1480 down_write(&sb->s_umount);
1481 mutex_lock(&uuid_mutex);
1482 }
1483
8c8bee1d 1484 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1485 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1486
788f20eb 1487 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1488 /*
1489 * we have the volume lock, so we don't need the extra
1490 * device list mutex while reading the list here.
1491 */
c6e30871 1492 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1493 if (device->bdev == bdev) {
1494 ret = -EEXIST;
2b82032c 1495 goto error;
788f20eb
CM
1496 }
1497 }
1498
1499 device = kzalloc(sizeof(*device), GFP_NOFS);
1500 if (!device) {
1501 /* we can safely leave the fs_devices entry around */
1502 ret = -ENOMEM;
2b82032c 1503 goto error;
788f20eb
CM
1504 }
1505
788f20eb
CM
1506 device->name = kstrdup(device_path, GFP_NOFS);
1507 if (!device->name) {
1508 kfree(device);
2b82032c
YZ
1509 ret = -ENOMEM;
1510 goto error;
788f20eb 1511 }
2b82032c
YZ
1512
1513 ret = find_next_devid(root, &device->devid);
1514 if (ret) {
1515 kfree(device);
1516 goto error;
1517 }
1518
a22285a6 1519 trans = btrfs_start_transaction(root, 0);
2b82032c
YZ
1520 lock_chunks(root);
1521
1522 device->barriers = 1;
1523 device->writeable = 1;
1524 device->work.func = pending_bios_fn;
1525 generate_random_uuid(device->uuid);
1526 spin_lock_init(&device->io_lock);
1527 device->generation = trans->transid;
788f20eb
CM
1528 device->io_width = root->sectorsize;
1529 device->io_align = root->sectorsize;
1530 device->sector_size = root->sectorsize;
1531 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1532 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1533 device->dev_root = root->fs_info->dev_root;
1534 device->bdev = bdev;
dfe25020 1535 device->in_fs_metadata = 1;
15916de8 1536 device->mode = 0;
2b82032c 1537 set_blocksize(device->bdev, 4096);
788f20eb 1538
2b82032c
YZ
1539 if (seeding_dev) {
1540 sb->s_flags &= ~MS_RDONLY;
1541 ret = btrfs_prepare_sprout(trans, root);
1542 BUG_ON(ret);
1543 }
788f20eb 1544
2b82032c 1545 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1546
1547 /*
1548 * we don't want write_supers to jump in here with our device
1549 * half setup
1550 */
1551 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c
YZ
1552 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1553 list_add(&device->dev_alloc_list,
1554 &root->fs_info->fs_devices->alloc_list);
1555 root->fs_info->fs_devices->num_devices++;
1556 root->fs_info->fs_devices->open_devices++;
1557 root->fs_info->fs_devices->rw_devices++;
1558 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1559
c289811c
CM
1560 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1561 root->fs_info->fs_devices->rotating = 1;
1562
788f20eb
CM
1563 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1564 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1565 total_bytes + device->total_bytes);
1566
1567 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1568 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1569 total_bytes + 1);
e5e9a520 1570 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1571
2b82032c
YZ
1572 if (seeding_dev) {
1573 ret = init_first_rw_device(trans, root, device);
1574 BUG_ON(ret);
1575 ret = btrfs_finish_sprout(trans, root);
1576 BUG_ON(ret);
1577 } else {
1578 ret = btrfs_add_device(trans, root, device);
1579 }
1580
913d952e
CM
1581 /*
1582 * we've got more storage, clear any full flags on the space
1583 * infos
1584 */
1585 btrfs_clear_space_info_full(root->fs_info);
1586
7d9eb12c 1587 unlock_chunks(root);
2b82032c 1588 btrfs_commit_transaction(trans, root);
a2135011 1589
2b82032c
YZ
1590 if (seeding_dev) {
1591 mutex_unlock(&uuid_mutex);
1592 up_write(&sb->s_umount);
788f20eb 1593
2b82032c
YZ
1594 ret = btrfs_relocate_sys_chunks(root);
1595 BUG_ON(ret);
1596 }
1597out:
1598 mutex_unlock(&root->fs_info->volume_mutex);
1599 return ret;
1600error:
15916de8 1601 close_bdev_exclusive(bdev, 0);
2b82032c
YZ
1602 if (seeding_dev) {
1603 mutex_unlock(&uuid_mutex);
1604 up_write(&sb->s_umount);
1605 }
788f20eb
CM
1606 goto out;
1607}
1608
d397712b
CM
1609static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1610 struct btrfs_device *device)
0b86a832
CM
1611{
1612 int ret;
1613 struct btrfs_path *path;
1614 struct btrfs_root *root;
1615 struct btrfs_dev_item *dev_item;
1616 struct extent_buffer *leaf;
1617 struct btrfs_key key;
1618
1619 root = device->dev_root->fs_info->chunk_root;
1620
1621 path = btrfs_alloc_path();
1622 if (!path)
1623 return -ENOMEM;
1624
1625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626 key.type = BTRFS_DEV_ITEM_KEY;
1627 key.offset = device->devid;
1628
1629 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1630 if (ret < 0)
1631 goto out;
1632
1633 if (ret > 0) {
1634 ret = -ENOENT;
1635 goto out;
1636 }
1637
1638 leaf = path->nodes[0];
1639 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1640
1641 btrfs_set_device_id(leaf, dev_item, device->devid);
1642 btrfs_set_device_type(leaf, dev_item, device->type);
1643 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1644 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1645 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1646 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1647 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1648 btrfs_mark_buffer_dirty(leaf);
1649
1650out:
1651 btrfs_free_path(path);
1652 return ret;
1653}
1654
7d9eb12c 1655static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1656 struct btrfs_device *device, u64 new_size)
1657{
1658 struct btrfs_super_block *super_copy =
1659 &device->dev_root->fs_info->super_copy;
1660 u64 old_total = btrfs_super_total_bytes(super_copy);
1661 u64 diff = new_size - device->total_bytes;
1662
2b82032c
YZ
1663 if (!device->writeable)
1664 return -EACCES;
1665 if (new_size <= device->total_bytes)
1666 return -EINVAL;
1667
8f18cf13 1668 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1669 device->fs_devices->total_rw_bytes += diff;
1670
1671 device->total_bytes = new_size;
9779b72f 1672 device->disk_total_bytes = new_size;
4184ea7f
CM
1673 btrfs_clear_space_info_full(device->dev_root->fs_info);
1674
8f18cf13
CM
1675 return btrfs_update_device(trans, device);
1676}
1677
7d9eb12c
CM
1678int btrfs_grow_device(struct btrfs_trans_handle *trans,
1679 struct btrfs_device *device, u64 new_size)
1680{
1681 int ret;
1682 lock_chunks(device->dev_root);
1683 ret = __btrfs_grow_device(trans, device, new_size);
1684 unlock_chunks(device->dev_root);
1685 return ret;
1686}
1687
8f18cf13
CM
1688static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1689 struct btrfs_root *root,
1690 u64 chunk_tree, u64 chunk_objectid,
1691 u64 chunk_offset)
1692{
1693 int ret;
1694 struct btrfs_path *path;
1695 struct btrfs_key key;
1696
1697 root = root->fs_info->chunk_root;
1698 path = btrfs_alloc_path();
1699 if (!path)
1700 return -ENOMEM;
1701
1702 key.objectid = chunk_objectid;
1703 key.offset = chunk_offset;
1704 key.type = BTRFS_CHUNK_ITEM_KEY;
1705
1706 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1707 BUG_ON(ret);
1708
1709 ret = btrfs_del_item(trans, root, path);
1710 BUG_ON(ret);
1711
1712 btrfs_free_path(path);
1713 return 0;
1714}
1715
b2950863 1716static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1717 chunk_offset)
1718{
1719 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1720 struct btrfs_disk_key *disk_key;
1721 struct btrfs_chunk *chunk;
1722 u8 *ptr;
1723 int ret = 0;
1724 u32 num_stripes;
1725 u32 array_size;
1726 u32 len = 0;
1727 u32 cur;
1728 struct btrfs_key key;
1729
1730 array_size = btrfs_super_sys_array_size(super_copy);
1731
1732 ptr = super_copy->sys_chunk_array;
1733 cur = 0;
1734
1735 while (cur < array_size) {
1736 disk_key = (struct btrfs_disk_key *)ptr;
1737 btrfs_disk_key_to_cpu(&key, disk_key);
1738
1739 len = sizeof(*disk_key);
1740
1741 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1742 chunk = (struct btrfs_chunk *)(ptr + len);
1743 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1744 len += btrfs_chunk_item_size(num_stripes);
1745 } else {
1746 ret = -EIO;
1747 break;
1748 }
1749 if (key.objectid == chunk_objectid &&
1750 key.offset == chunk_offset) {
1751 memmove(ptr, ptr + len, array_size - (cur + len));
1752 array_size -= len;
1753 btrfs_set_super_sys_array_size(super_copy, array_size);
1754 } else {
1755 ptr += len;
1756 cur += len;
1757 }
1758 }
1759 return ret;
1760}
1761
b2950863 1762static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1763 u64 chunk_tree, u64 chunk_objectid,
1764 u64 chunk_offset)
1765{
1766 struct extent_map_tree *em_tree;
1767 struct btrfs_root *extent_root;
1768 struct btrfs_trans_handle *trans;
1769 struct extent_map *em;
1770 struct map_lookup *map;
1771 int ret;
1772 int i;
1773
1774 root = root->fs_info->chunk_root;
1775 extent_root = root->fs_info->extent_root;
1776 em_tree = &root->fs_info->mapping_tree.map_tree;
1777
ba1bf481
JB
1778 ret = btrfs_can_relocate(extent_root, chunk_offset);
1779 if (ret)
1780 return -ENOSPC;
1781
8f18cf13 1782 /* step one, relocate all the extents inside this chunk */
1a40e23b 1783 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1784 if (ret)
1785 return ret;
8f18cf13 1786
a22285a6 1787 trans = btrfs_start_transaction(root, 0);
8f18cf13
CM
1788 BUG_ON(!trans);
1789
7d9eb12c
CM
1790 lock_chunks(root);
1791
8f18cf13
CM
1792 /*
1793 * step two, delete the device extents and the
1794 * chunk tree entries
1795 */
890871be 1796 read_lock(&em_tree->lock);
8f18cf13 1797 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1798 read_unlock(&em_tree->lock);
8f18cf13 1799
a061fc8d
CM
1800 BUG_ON(em->start > chunk_offset ||
1801 em->start + em->len < chunk_offset);
8f18cf13
CM
1802 map = (struct map_lookup *)em->bdev;
1803
1804 for (i = 0; i < map->num_stripes; i++) {
1805 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1806 map->stripes[i].physical);
1807 BUG_ON(ret);
a061fc8d 1808
dfe25020
CM
1809 if (map->stripes[i].dev) {
1810 ret = btrfs_update_device(trans, map->stripes[i].dev);
1811 BUG_ON(ret);
1812 }
8f18cf13
CM
1813 }
1814 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1815 chunk_offset);
1816
1817 BUG_ON(ret);
1818
1819 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1820 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1821 BUG_ON(ret);
8f18cf13
CM
1822 }
1823
2b82032c
YZ
1824 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1825 BUG_ON(ret);
1826
890871be 1827 write_lock(&em_tree->lock);
2b82032c 1828 remove_extent_mapping(em_tree, em);
890871be 1829 write_unlock(&em_tree->lock);
2b82032c
YZ
1830
1831 kfree(map);
1832 em->bdev = NULL;
1833
1834 /* once for the tree */
1835 free_extent_map(em);
1836 /* once for us */
1837 free_extent_map(em);
1838
1839 unlock_chunks(root);
1840 btrfs_end_transaction(trans, root);
1841 return 0;
1842}
1843
1844static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1845{
1846 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1847 struct btrfs_path *path;
1848 struct extent_buffer *leaf;
1849 struct btrfs_chunk *chunk;
1850 struct btrfs_key key;
1851 struct btrfs_key found_key;
1852 u64 chunk_tree = chunk_root->root_key.objectid;
1853 u64 chunk_type;
ba1bf481
JB
1854 bool retried = false;
1855 int failed = 0;
2b82032c
YZ
1856 int ret;
1857
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1861
ba1bf481 1862again:
2b82032c
YZ
1863 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1864 key.offset = (u64)-1;
1865 key.type = BTRFS_CHUNK_ITEM_KEY;
1866
1867 while (1) {
1868 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1869 if (ret < 0)
1870 goto error;
1871 BUG_ON(ret == 0);
1872
1873 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1874 key.type);
1875 if (ret < 0)
1876 goto error;
1877 if (ret > 0)
1878 break;
1a40e23b 1879
2b82032c
YZ
1880 leaf = path->nodes[0];
1881 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1882
2b82032c
YZ
1883 chunk = btrfs_item_ptr(leaf, path->slots[0],
1884 struct btrfs_chunk);
1885 chunk_type = btrfs_chunk_type(leaf, chunk);
1886 btrfs_release_path(chunk_root, path);
8f18cf13 1887
2b82032c
YZ
1888 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1889 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1890 found_key.objectid,
1891 found_key.offset);
ba1bf481
JB
1892 if (ret == -ENOSPC)
1893 failed++;
1894 else if (ret)
1895 BUG();
2b82032c 1896 }
8f18cf13 1897
2b82032c
YZ
1898 if (found_key.offset == 0)
1899 break;
1900 key.offset = found_key.offset - 1;
1901 }
1902 ret = 0;
ba1bf481
JB
1903 if (failed && !retried) {
1904 failed = 0;
1905 retried = true;
1906 goto again;
1907 } else if (failed && retried) {
1908 WARN_ON(1);
1909 ret = -ENOSPC;
1910 }
2b82032c
YZ
1911error:
1912 btrfs_free_path(path);
1913 return ret;
8f18cf13
CM
1914}
1915
ec44a35c
CM
1916static u64 div_factor(u64 num, int factor)
1917{
1918 if (factor == 10)
1919 return num;
1920 num *= factor;
1921 do_div(num, 10);
1922 return num;
1923}
1924
ec44a35c
CM
1925int btrfs_balance(struct btrfs_root *dev_root)
1926{
1927 int ret;
ec44a35c
CM
1928 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1929 struct btrfs_device *device;
1930 u64 old_size;
1931 u64 size_to_free;
1932 struct btrfs_path *path;
1933 struct btrfs_key key;
ec44a35c
CM
1934 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1935 struct btrfs_trans_handle *trans;
1936 struct btrfs_key found_key;
1937
2b82032c
YZ
1938 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1939 return -EROFS;
ec44a35c 1940
7d9eb12c 1941 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1942 dev_root = dev_root->fs_info->dev_root;
1943
ec44a35c 1944 /* step one make some room on all the devices */
c6e30871 1945 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
1946 old_size = device->total_bytes;
1947 size_to_free = div_factor(old_size, 1);
1948 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
1949 if (!device->writeable ||
1950 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
1951 continue;
1952
1953 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
1954 if (ret == -ENOSPC)
1955 break;
ec44a35c
CM
1956 BUG_ON(ret);
1957
a22285a6 1958 trans = btrfs_start_transaction(dev_root, 0);
ec44a35c
CM
1959 BUG_ON(!trans);
1960
1961 ret = btrfs_grow_device(trans, device, old_size);
1962 BUG_ON(ret);
1963
1964 btrfs_end_transaction(trans, dev_root);
1965 }
1966
1967 /* step two, relocate all the chunks */
1968 path = btrfs_alloc_path();
1969 BUG_ON(!path);
1970
1971 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1972 key.offset = (u64)-1;
1973 key.type = BTRFS_CHUNK_ITEM_KEY;
1974
d397712b 1975 while (1) {
ec44a35c
CM
1976 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1977 if (ret < 0)
1978 goto error;
1979
1980 /*
1981 * this shouldn't happen, it means the last relocate
1982 * failed
1983 */
1984 if (ret == 0)
1985 break;
1986
1987 ret = btrfs_previous_item(chunk_root, path, 0,
1988 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 1989 if (ret)
ec44a35c 1990 break;
7d9eb12c 1991
ec44a35c
CM
1992 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1993 path->slots[0]);
1994 if (found_key.objectid != key.objectid)
1995 break;
7d9eb12c 1996
ec44a35c 1997 /* chunk zero is special */
ba1bf481 1998 if (found_key.offset == 0)
ec44a35c
CM
1999 break;
2000
7d9eb12c 2001 btrfs_release_path(chunk_root, path);
ec44a35c
CM
2002 ret = btrfs_relocate_chunk(chunk_root,
2003 chunk_root->root_key.objectid,
2004 found_key.objectid,
2005 found_key.offset);
ba1bf481
JB
2006 BUG_ON(ret && ret != -ENOSPC);
2007 key.offset = found_key.offset - 1;
ec44a35c
CM
2008 }
2009 ret = 0;
2010error:
2011 btrfs_free_path(path);
7d9eb12c 2012 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2013 return ret;
2014}
2015
8f18cf13
CM
2016/*
2017 * shrinking a device means finding all of the device extents past
2018 * the new size, and then following the back refs to the chunks.
2019 * The chunk relocation code actually frees the device extent
2020 */
2021int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2022{
2023 struct btrfs_trans_handle *trans;
2024 struct btrfs_root *root = device->dev_root;
2025 struct btrfs_dev_extent *dev_extent = NULL;
2026 struct btrfs_path *path;
2027 u64 length;
2028 u64 chunk_tree;
2029 u64 chunk_objectid;
2030 u64 chunk_offset;
2031 int ret;
2032 int slot;
ba1bf481
JB
2033 int failed = 0;
2034 bool retried = false;
8f18cf13
CM
2035 struct extent_buffer *l;
2036 struct btrfs_key key;
2037 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2038 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2039 u64 old_size = device->total_bytes;
8f18cf13
CM
2040 u64 diff = device->total_bytes - new_size;
2041
2b82032c
YZ
2042 if (new_size >= device->total_bytes)
2043 return -EINVAL;
8f18cf13
CM
2044
2045 path = btrfs_alloc_path();
2046 if (!path)
2047 return -ENOMEM;
2048
8f18cf13
CM
2049 path->reada = 2;
2050
7d9eb12c
CM
2051 lock_chunks(root);
2052
8f18cf13 2053 device->total_bytes = new_size;
2b82032c
YZ
2054 if (device->writeable)
2055 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 2056 unlock_chunks(root);
8f18cf13 2057
ba1bf481 2058again:
8f18cf13
CM
2059 key.objectid = device->devid;
2060 key.offset = (u64)-1;
2061 key.type = BTRFS_DEV_EXTENT_KEY;
2062
2063 while (1) {
2064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2065 if (ret < 0)
2066 goto done;
2067
2068 ret = btrfs_previous_item(root, path, 0, key.type);
2069 if (ret < 0)
2070 goto done;
2071 if (ret) {
2072 ret = 0;
ba1bf481 2073 btrfs_release_path(root, path);
bf1fb512 2074 break;
8f18cf13
CM
2075 }
2076
2077 l = path->nodes[0];
2078 slot = path->slots[0];
2079 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2080
ba1bf481
JB
2081 if (key.objectid != device->devid) {
2082 btrfs_release_path(root, path);
bf1fb512 2083 break;
ba1bf481 2084 }
8f18cf13
CM
2085
2086 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2087 length = btrfs_dev_extent_length(l, dev_extent);
2088
ba1bf481
JB
2089 if (key.offset + length <= new_size) {
2090 btrfs_release_path(root, path);
d6397bae 2091 break;
ba1bf481 2092 }
8f18cf13
CM
2093
2094 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2095 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2096 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2097 btrfs_release_path(root, path);
2098
2099 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2100 chunk_offset);
ba1bf481 2101 if (ret && ret != -ENOSPC)
8f18cf13 2102 goto done;
ba1bf481
JB
2103 if (ret == -ENOSPC)
2104 failed++;
2105 key.offset -= 1;
2106 }
2107
2108 if (failed && !retried) {
2109 failed = 0;
2110 retried = true;
2111 goto again;
2112 } else if (failed && retried) {
2113 ret = -ENOSPC;
2114 lock_chunks(root);
2115
2116 device->total_bytes = old_size;
2117 if (device->writeable)
2118 device->fs_devices->total_rw_bytes += diff;
2119 unlock_chunks(root);
2120 goto done;
8f18cf13
CM
2121 }
2122
d6397bae 2123 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2124 trans = btrfs_start_transaction(root, 0);
d6397bae
CB
2125 lock_chunks(root);
2126
2127 device->disk_total_bytes = new_size;
2128 /* Now btrfs_update_device() will change the on-disk size. */
2129 ret = btrfs_update_device(trans, device);
2130 if (ret) {
2131 unlock_chunks(root);
2132 btrfs_end_transaction(trans, root);
2133 goto done;
2134 }
2135 WARN_ON(diff > old_total);
2136 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2137 unlock_chunks(root);
2138 btrfs_end_transaction(trans, root);
8f18cf13
CM
2139done:
2140 btrfs_free_path(path);
2141 return ret;
2142}
2143
b2950863 2144static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2145 struct btrfs_root *root,
2146 struct btrfs_key *key,
2147 struct btrfs_chunk *chunk, int item_size)
2148{
2149 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2150 struct btrfs_disk_key disk_key;
2151 u32 array_size;
2152 u8 *ptr;
2153
2154 array_size = btrfs_super_sys_array_size(super_copy);
2155 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2156 return -EFBIG;
2157
2158 ptr = super_copy->sys_chunk_array + array_size;
2159 btrfs_cpu_key_to_disk(&disk_key, key);
2160 memcpy(ptr, &disk_key, sizeof(disk_key));
2161 ptr += sizeof(disk_key);
2162 memcpy(ptr, chunk, item_size);
2163 item_size += sizeof(disk_key);
2164 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2165 return 0;
2166}
2167
d397712b 2168static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2169 int num_stripes, int sub_stripes)
9b3f68b9
CM
2170{
2171 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2172 return calc_size;
2173 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2174 return calc_size * (num_stripes / sub_stripes);
2175 else
2176 return calc_size * num_stripes;
2177}
2178
2b82032c
YZ
2179static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *extent_root,
2181 struct map_lookup **map_ret,
2182 u64 *num_bytes, u64 *stripe_size,
2183 u64 start, u64 type)
0b86a832 2184{
593060d7 2185 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 2186 struct btrfs_device *device = NULL;
2b82032c 2187 struct btrfs_fs_devices *fs_devices = info->fs_devices;
6324fbf3 2188 struct list_head *cur;
2b82032c 2189 struct map_lookup *map = NULL;
0b86a832 2190 struct extent_map_tree *em_tree;
0b86a832 2191 struct extent_map *em;
2b82032c 2192 struct list_head private_devs;
a40a90a0 2193 int min_stripe_size = 1 * 1024 * 1024;
0b86a832 2194 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
2195 u64 max_chunk_size = calc_size;
2196 u64 min_free;
6324fbf3
CM
2197 u64 avail;
2198 u64 max_avail = 0;
2b82032c 2199 u64 dev_offset;
6324fbf3 2200 int num_stripes = 1;
a40a90a0 2201 int min_stripes = 1;
321aecc6 2202 int sub_stripes = 0;
1974a3b4 2203 int ncopies = 1;
6324fbf3 2204 int looped = 0;
0b86a832 2205 int ret;
6324fbf3 2206 int index;
593060d7 2207 int stripe_len = 64 * 1024;
0b86a832 2208
ec44a35c
CM
2209 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2210 (type & BTRFS_BLOCK_GROUP_DUP)) {
2211 WARN_ON(1);
2212 type &= ~BTRFS_BLOCK_GROUP_DUP;
2213 }
2b82032c 2214 if (list_empty(&fs_devices->alloc_list))
6324fbf3 2215 return -ENOSPC;
593060d7 2216
a40a90a0 2217 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2b82032c 2218 num_stripes = fs_devices->rw_devices;
a40a90a0
CM
2219 min_stripes = 2;
2220 }
2221 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 2222 num_stripes = 2;
a40a90a0 2223 min_stripes = 2;
1974a3b4 2224 ncopies = 2;
a40a90a0 2225 }
8790d502 2226 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
f3eae7e8 2227 if (fs_devices->rw_devices < 2)
9b3f68b9 2228 return -ENOSPC;
f3eae7e8 2229 num_stripes = 2;
a40a90a0 2230 min_stripes = 2;
1974a3b4 2231 ncopies = 2;
8790d502 2232 }
321aecc6 2233 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2b82032c 2234 num_stripes = fs_devices->rw_devices;
321aecc6
CM
2235 if (num_stripes < 4)
2236 return -ENOSPC;
2237 num_stripes &= ~(u32)1;
2238 sub_stripes = 2;
1974a3b4 2239 ncopies = 2;
a40a90a0 2240 min_stripes = 4;
321aecc6 2241 }
9b3f68b9
CM
2242
2243 if (type & BTRFS_BLOCK_GROUP_DATA) {
2244 max_chunk_size = 10 * calc_size;
a40a90a0 2245 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9 2246 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
83d3c969 2247 max_chunk_size = 256 * 1024 * 1024;
a40a90a0
CM
2248 min_stripe_size = 32 * 1024 * 1024;
2249 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2250 calc_size = 8 * 1024 * 1024;
2251 max_chunk_size = calc_size * 2;
2252 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2253 }
2254
2b82032c
YZ
2255 /* we don't want a chunk larger than 10% of writeable space */
2256 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2257 max_chunk_size);
9b3f68b9 2258
a40a90a0 2259again:
9779b72f 2260 max_avail = 0;
2b82032c
YZ
2261 if (!map || map->num_stripes != num_stripes) {
2262 kfree(map);
2263 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2264 if (!map)
2265 return -ENOMEM;
2266 map->num_stripes = num_stripes;
2267 }
2268
1974a3b4
MX
2269 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2270 calc_size = max_chunk_size * ncopies;
9b3f68b9
CM
2271 do_div(calc_size, num_stripes);
2272 do_div(calc_size, stripe_len);
2273 calc_size *= stripe_len;
2274 }
0cad8a11 2275
9b3f68b9 2276 /* we don't want tiny stripes */
0cad8a11
JB
2277 if (!looped)
2278 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2279
9f680ce0
CM
2280 /*
2281 * we're about to do_div by the stripe_len so lets make sure
2282 * we end up with something bigger than a stripe
2283 */
2284 calc_size = max_t(u64, calc_size, stripe_len * 4);
2285
9b3f68b9
CM
2286 do_div(calc_size, stripe_len);
2287 calc_size *= stripe_len;
2288
2b82032c 2289 cur = fs_devices->alloc_list.next;
6324fbf3 2290 index = 0;
611f0e00
CM
2291
2292 if (type & BTRFS_BLOCK_GROUP_DUP)
2293 min_free = calc_size * 2;
9b3f68b9
CM
2294 else
2295 min_free = calc_size;
611f0e00 2296
0f9dd46c
JB
2297 /*
2298 * we add 1MB because we never use the first 1MB of the device, unless
2299 * we've looped, then we are likely allocating the maximum amount of
2300 * space left already
2301 */
2302 if (!looped)
2303 min_free += 1024 * 1024;
ad5bd91e 2304
2b82032c 2305 INIT_LIST_HEAD(&private_devs);
d397712b 2306 while (index < num_stripes) {
b3075717 2307 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2308 BUG_ON(!device->writeable);
dfe25020
CM
2309 if (device->total_bytes > device->bytes_used)
2310 avail = device->total_bytes - device->bytes_used;
2311 else
2312 avail = 0;
6324fbf3 2313 cur = cur->next;
8f18cf13 2314
dfe25020 2315 if (device->in_fs_metadata && avail >= min_free) {
2b82032c 2316 ret = find_free_dev_extent(trans, device,
9779b72f
CM
2317 min_free, &dev_offset,
2318 &max_avail);
8f18cf13
CM
2319 if (ret == 0) {
2320 list_move_tail(&device->dev_alloc_list,
2321 &private_devs);
2b82032c
YZ
2322 map->stripes[index].dev = device;
2323 map->stripes[index].physical = dev_offset;
611f0e00 2324 index++;
2b82032c
YZ
2325 if (type & BTRFS_BLOCK_GROUP_DUP) {
2326 map->stripes[index].dev = device;
2327 map->stripes[index].physical =
2328 dev_offset + calc_size;
8f18cf13 2329 index++;
2b82032c 2330 }
8f18cf13 2331 }
dfe25020 2332 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 2333 max_avail = avail;
2b82032c 2334 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2335 break;
2336 }
2b82032c 2337 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2338 if (index < num_stripes) {
a40a90a0
CM
2339 if (index >= min_stripes) {
2340 num_stripes = index;
2341 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2342 num_stripes /= sub_stripes;
2343 num_stripes *= sub_stripes;
2344 }
2345 looped = 1;
2346 goto again;
2347 }
6324fbf3
CM
2348 if (!looped && max_avail > 0) {
2349 looped = 1;
2350 calc_size = max_avail;
1974a3b4
MX
2351 if (type & BTRFS_BLOCK_GROUP_DUP)
2352 do_div(calc_size, 2);
6324fbf3
CM
2353 goto again;
2354 }
2b82032c 2355 kfree(map);
6324fbf3
CM
2356 return -ENOSPC;
2357 }
2b82032c
YZ
2358 map->sector_size = extent_root->sectorsize;
2359 map->stripe_len = stripe_len;
2360 map->io_align = stripe_len;
2361 map->io_width = stripe_len;
2362 map->type = type;
2363 map->num_stripes = num_stripes;
2364 map->sub_stripes = sub_stripes;
0b86a832 2365
2b82032c
YZ
2366 *map_ret = map;
2367 *stripe_size = calc_size;
2368 *num_bytes = chunk_bytes_by_type(type, calc_size,
2369 num_stripes, sub_stripes);
0b86a832 2370
2b82032c
YZ
2371 em = alloc_extent_map(GFP_NOFS);
2372 if (!em) {
2373 kfree(map);
593060d7
CM
2374 return -ENOMEM;
2375 }
2b82032c
YZ
2376 em->bdev = (struct block_device *)map;
2377 em->start = start;
2378 em->len = *num_bytes;
2379 em->block_start = 0;
2380 em->block_len = em->len;
593060d7 2381
2b82032c 2382 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2383 write_lock(&em_tree->lock);
2b82032c 2384 ret = add_extent_mapping(em_tree, em);
890871be 2385 write_unlock(&em_tree->lock);
2b82032c
YZ
2386 BUG_ON(ret);
2387 free_extent_map(em);
0b86a832 2388
2b82032c
YZ
2389 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2390 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2391 start, *num_bytes);
2392 BUG_ON(ret);
611f0e00 2393
2b82032c
YZ
2394 index = 0;
2395 while (index < map->num_stripes) {
2396 device = map->stripes[index].dev;
2397 dev_offset = map->stripes[index].physical;
0b86a832
CM
2398
2399 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2400 info->chunk_root->root_key.objectid,
2401 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2402 start, dev_offset, calc_size);
0b86a832 2403 BUG_ON(ret);
2b82032c
YZ
2404 index++;
2405 }
2406
2407 return 0;
2408}
2409
2410static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2411 struct btrfs_root *extent_root,
2412 struct map_lookup *map, u64 chunk_offset,
2413 u64 chunk_size, u64 stripe_size)
2414{
2415 u64 dev_offset;
2416 struct btrfs_key key;
2417 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2418 struct btrfs_device *device;
2419 struct btrfs_chunk *chunk;
2420 struct btrfs_stripe *stripe;
2421 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2422 int index = 0;
2423 int ret;
2424
2425 chunk = kzalloc(item_size, GFP_NOFS);
2426 if (!chunk)
2427 return -ENOMEM;
2428
2429 index = 0;
2430 while (index < map->num_stripes) {
2431 device = map->stripes[index].dev;
2432 device->bytes_used += stripe_size;
0b86a832
CM
2433 ret = btrfs_update_device(trans, device);
2434 BUG_ON(ret);
2b82032c
YZ
2435 index++;
2436 }
2437
2438 index = 0;
2439 stripe = &chunk->stripe;
2440 while (index < map->num_stripes) {
2441 device = map->stripes[index].dev;
2442 dev_offset = map->stripes[index].physical;
0b86a832 2443
e17cade2
CM
2444 btrfs_set_stack_stripe_devid(stripe, device->devid);
2445 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2446 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2447 stripe++;
0b86a832
CM
2448 index++;
2449 }
2450
2b82032c 2451 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2452 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2453 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2454 btrfs_set_stack_chunk_type(chunk, map->type);
2455 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2456 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2457 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2458 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2459 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2460
2b82032c
YZ
2461 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2462 key.type = BTRFS_CHUNK_ITEM_KEY;
2463 key.offset = chunk_offset;
0b86a832 2464
2b82032c
YZ
2465 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2466 BUG_ON(ret);
0b86a832 2467
2b82032c
YZ
2468 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2469 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2470 item_size);
8f18cf13
CM
2471 BUG_ON(ret);
2472 }
0b86a832 2473 kfree(chunk);
2b82032c
YZ
2474 return 0;
2475}
0b86a832 2476
2b82032c
YZ
2477/*
2478 * Chunk allocation falls into two parts. The first part does works
2479 * that make the new allocated chunk useable, but not do any operation
2480 * that modifies the chunk tree. The second part does the works that
2481 * require modifying the chunk tree. This division is important for the
2482 * bootstrap process of adding storage to a seed btrfs.
2483 */
2484int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2485 struct btrfs_root *extent_root, u64 type)
2486{
2487 u64 chunk_offset;
2488 u64 chunk_size;
2489 u64 stripe_size;
2490 struct map_lookup *map;
2491 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2492 int ret;
2493
2494 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2495 &chunk_offset);
2496 if (ret)
2497 return ret;
2498
2499 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2500 &stripe_size, chunk_offset, type);
2501 if (ret)
2502 return ret;
2503
2504 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2505 chunk_size, stripe_size);
2506 BUG_ON(ret);
2507 return 0;
2508}
2509
d397712b 2510static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2511 struct btrfs_root *root,
2512 struct btrfs_device *device)
2513{
2514 u64 chunk_offset;
2515 u64 sys_chunk_offset;
2516 u64 chunk_size;
2517 u64 sys_chunk_size;
2518 u64 stripe_size;
2519 u64 sys_stripe_size;
2520 u64 alloc_profile;
2521 struct map_lookup *map;
2522 struct map_lookup *sys_map;
2523 struct btrfs_fs_info *fs_info = root->fs_info;
2524 struct btrfs_root *extent_root = fs_info->extent_root;
2525 int ret;
2526
2527 ret = find_next_chunk(fs_info->chunk_root,
2528 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2529 BUG_ON(ret);
2530
2531 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2532 (fs_info->metadata_alloc_profile &
2533 fs_info->avail_metadata_alloc_bits);
2534 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2535
2536 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2537 &stripe_size, chunk_offset, alloc_profile);
2538 BUG_ON(ret);
2539
2540 sys_chunk_offset = chunk_offset + chunk_size;
2541
2542 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2543 (fs_info->system_alloc_profile &
2544 fs_info->avail_system_alloc_bits);
2545 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2546
2547 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2548 &sys_chunk_size, &sys_stripe_size,
2549 sys_chunk_offset, alloc_profile);
2550 BUG_ON(ret);
2551
2552 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2553 BUG_ON(ret);
2554
2555 /*
2556 * Modifying chunk tree needs allocating new blocks from both
2557 * system block group and metadata block group. So we only can
2558 * do operations require modifying the chunk tree after both
2559 * block groups were created.
2560 */
2561 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2562 chunk_size, stripe_size);
2563 BUG_ON(ret);
2564
2565 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2566 sys_chunk_offset, sys_chunk_size,
2567 sys_stripe_size);
b248a415 2568 BUG_ON(ret);
2b82032c
YZ
2569 return 0;
2570}
2571
2572int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2573{
2574 struct extent_map *em;
2575 struct map_lookup *map;
2576 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2577 int readonly = 0;
2578 int i;
2579
890871be 2580 read_lock(&map_tree->map_tree.lock);
2b82032c 2581 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2582 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2583 if (!em)
2584 return 1;
2585
f48b9075
JB
2586 if (btrfs_test_opt(root, DEGRADED)) {
2587 free_extent_map(em);
2588 return 0;
2589 }
2590
2b82032c
YZ
2591 map = (struct map_lookup *)em->bdev;
2592 for (i = 0; i < map->num_stripes; i++) {
2593 if (!map->stripes[i].dev->writeable) {
2594 readonly = 1;
2595 break;
2596 }
2597 }
0b86a832 2598 free_extent_map(em);
2b82032c 2599 return readonly;
0b86a832
CM
2600}
2601
2602void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2603{
2604 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2605}
2606
2607void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2608{
2609 struct extent_map *em;
2610
d397712b 2611 while (1) {
890871be 2612 write_lock(&tree->map_tree.lock);
0b86a832
CM
2613 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2614 if (em)
2615 remove_extent_mapping(&tree->map_tree, em);
890871be 2616 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2617 if (!em)
2618 break;
2619 kfree(em->bdev);
2620 /* once for us */
2621 free_extent_map(em);
2622 /* once for the tree */
2623 free_extent_map(em);
2624 }
2625}
2626
f188591e
CM
2627int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2628{
2629 struct extent_map *em;
2630 struct map_lookup *map;
2631 struct extent_map_tree *em_tree = &map_tree->map_tree;
2632 int ret;
2633
890871be 2634 read_lock(&em_tree->lock);
f188591e 2635 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2636 read_unlock(&em_tree->lock);
f188591e
CM
2637 BUG_ON(!em);
2638
2639 BUG_ON(em->start > logical || em->start + em->len < logical);
2640 map = (struct map_lookup *)em->bdev;
2641 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2642 ret = map->num_stripes;
321aecc6
CM
2643 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2644 ret = map->sub_stripes;
f188591e
CM
2645 else
2646 ret = 1;
2647 free_extent_map(em);
f188591e
CM
2648 return ret;
2649}
2650
dfe25020
CM
2651static int find_live_mirror(struct map_lookup *map, int first, int num,
2652 int optimal)
2653{
2654 int i;
2655 if (map->stripes[optimal].dev->bdev)
2656 return optimal;
2657 for (i = first; i < first + num; i++) {
2658 if (map->stripes[i].dev->bdev)
2659 return i;
2660 }
2661 /* we couldn't find one that doesn't fail. Just return something
2662 * and the io error handling code will clean up eventually
2663 */
2664 return optimal;
2665}
2666
f2d8d74d
CM
2667static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2668 u64 logical, u64 *length,
2669 struct btrfs_multi_bio **multi_ret,
2670 int mirror_num, struct page *unplug_page)
0b86a832
CM
2671{
2672 struct extent_map *em;
2673 struct map_lookup *map;
2674 struct extent_map_tree *em_tree = &map_tree->map_tree;
2675 u64 offset;
593060d7
CM
2676 u64 stripe_offset;
2677 u64 stripe_nr;
cea9e445 2678 int stripes_allocated = 8;
321aecc6 2679 int stripes_required = 1;
593060d7 2680 int stripe_index;
cea9e445 2681 int i;
f2d8d74d 2682 int num_stripes;
a236aed1 2683 int max_errors = 0;
cea9e445 2684 struct btrfs_multi_bio *multi = NULL;
0b86a832 2685
7b6d91da 2686 if (multi_ret && !(rw & REQ_WRITE))
cea9e445 2687 stripes_allocated = 1;
cea9e445
CM
2688again:
2689 if (multi_ret) {
2690 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2691 GFP_NOFS);
2692 if (!multi)
2693 return -ENOMEM;
a236aed1
CM
2694
2695 atomic_set(&multi->error, 0);
cea9e445 2696 }
0b86a832 2697
890871be 2698 read_lock(&em_tree->lock);
0b86a832 2699 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2700 read_unlock(&em_tree->lock);
f2d8d74d 2701
2423fdfb
JS
2702 if (!em && unplug_page) {
2703 kfree(multi);
f2d8d74d 2704 return 0;
2423fdfb 2705 }
f2d8d74d 2706
3b951516 2707 if (!em) {
d397712b
CM
2708 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2709 (unsigned long long)logical,
2710 (unsigned long long)*length);
f2d8d74d 2711 BUG();
3b951516 2712 }
0b86a832
CM
2713
2714 BUG_ON(em->start > logical || em->start + em->len < logical);
2715 map = (struct map_lookup *)em->bdev;
2716 offset = logical - em->start;
593060d7 2717
f188591e
CM
2718 if (mirror_num > map->num_stripes)
2719 mirror_num = 0;
2720
cea9e445 2721 /* if our multi bio struct is too small, back off and try again */
7b6d91da 2722 if (rw & REQ_WRITE) {
321aecc6
CM
2723 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2724 BTRFS_BLOCK_GROUP_DUP)) {
2725 stripes_required = map->num_stripes;
a236aed1 2726 max_errors = 1;
321aecc6
CM
2727 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2728 stripes_required = map->sub_stripes;
a236aed1 2729 max_errors = 1;
321aecc6
CM
2730 }
2731 }
7b6d91da 2732 if (multi_ret && (rw & REQ_WRITE) &&
321aecc6 2733 stripes_allocated < stripes_required) {
cea9e445 2734 stripes_allocated = map->num_stripes;
cea9e445
CM
2735 free_extent_map(em);
2736 kfree(multi);
2737 goto again;
2738 }
593060d7
CM
2739 stripe_nr = offset;
2740 /*
2741 * stripe_nr counts the total number of stripes we have to stride
2742 * to get to this block
2743 */
2744 do_div(stripe_nr, map->stripe_len);
2745
2746 stripe_offset = stripe_nr * map->stripe_len;
2747 BUG_ON(offset < stripe_offset);
2748
2749 /* stripe_offset is the offset of this block in its stripe*/
2750 stripe_offset = offset - stripe_offset;
2751
cea9e445 2752 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 2753 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
2754 BTRFS_BLOCK_GROUP_DUP)) {
2755 /* we limit the length of each bio to what fits in a stripe */
2756 *length = min_t(u64, em->len - offset,
2757 map->stripe_len - stripe_offset);
2758 } else {
2759 *length = em->len - offset;
2760 }
f2d8d74d
CM
2761
2762 if (!multi_ret && !unplug_page)
cea9e445
CM
2763 goto out;
2764
f2d8d74d 2765 num_stripes = 1;
cea9e445 2766 stripe_index = 0;
8790d502 2767 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
7b6d91da 2768 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 2769 num_stripes = map->num_stripes;
2fff734f 2770 else if (mirror_num)
f188591e 2771 stripe_index = mirror_num - 1;
dfe25020
CM
2772 else {
2773 stripe_index = find_live_mirror(map, 0,
2774 map->num_stripes,
2775 current->pid % map->num_stripes);
2776 }
2fff734f 2777
611f0e00 2778 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
7b6d91da 2779 if (rw & REQ_WRITE)
f2d8d74d 2780 num_stripes = map->num_stripes;
f188591e
CM
2781 else if (mirror_num)
2782 stripe_index = mirror_num - 1;
2fff734f 2783
321aecc6
CM
2784 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2785 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
2786
2787 stripe_index = do_div(stripe_nr, factor);
2788 stripe_index *= map->sub_stripes;
2789
7b6d91da 2790 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 2791 num_stripes = map->sub_stripes;
321aecc6
CM
2792 else if (mirror_num)
2793 stripe_index += mirror_num - 1;
dfe25020
CM
2794 else {
2795 stripe_index = find_live_mirror(map, stripe_index,
2796 map->sub_stripes, stripe_index +
2797 current->pid % map->sub_stripes);
2798 }
8790d502
CM
2799 } else {
2800 /*
2801 * after this do_div call, stripe_nr is the number of stripes
2802 * on this device we have to walk to find the data, and
2803 * stripe_index is the number of our device in the stripe array
2804 */
2805 stripe_index = do_div(stripe_nr, map->num_stripes);
2806 }
593060d7 2807 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2808
f2d8d74d
CM
2809 for (i = 0; i < num_stripes; i++) {
2810 if (unplug_page) {
2811 struct btrfs_device *device;
2812 struct backing_dev_info *bdi;
2813
2814 device = map->stripes[stripe_index].dev;
dfe25020
CM
2815 if (device->bdev) {
2816 bdi = blk_get_backing_dev_info(device->bdev);
d397712b 2817 if (bdi->unplug_io_fn)
dfe25020 2818 bdi->unplug_io_fn(bdi, unplug_page);
f2d8d74d
CM
2819 }
2820 } else {
2821 multi->stripes[i].physical =
2822 map->stripes[stripe_index].physical +
2823 stripe_offset + stripe_nr * map->stripe_len;
2824 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2825 }
cea9e445 2826 stripe_index++;
593060d7 2827 }
f2d8d74d
CM
2828 if (multi_ret) {
2829 *multi_ret = multi;
2830 multi->num_stripes = num_stripes;
a236aed1 2831 multi->max_errors = max_errors;
f2d8d74d 2832 }
cea9e445 2833out:
0b86a832 2834 free_extent_map(em);
0b86a832
CM
2835 return 0;
2836}
2837
f2d8d74d
CM
2838int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2839 u64 logical, u64 *length,
2840 struct btrfs_multi_bio **multi_ret, int mirror_num)
2841{
2842 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2843 mirror_num, NULL);
2844}
2845
a512bbf8
YZ
2846int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2847 u64 chunk_start, u64 physical, u64 devid,
2848 u64 **logical, int *naddrs, int *stripe_len)
2849{
2850 struct extent_map_tree *em_tree = &map_tree->map_tree;
2851 struct extent_map *em;
2852 struct map_lookup *map;
2853 u64 *buf;
2854 u64 bytenr;
2855 u64 length;
2856 u64 stripe_nr;
2857 int i, j, nr = 0;
2858
890871be 2859 read_lock(&em_tree->lock);
a512bbf8 2860 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 2861 read_unlock(&em_tree->lock);
a512bbf8
YZ
2862
2863 BUG_ON(!em || em->start != chunk_start);
2864 map = (struct map_lookup *)em->bdev;
2865
2866 length = em->len;
2867 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2868 do_div(length, map->num_stripes / map->sub_stripes);
2869 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2870 do_div(length, map->num_stripes);
2871
2872 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2873 BUG_ON(!buf);
2874
2875 for (i = 0; i < map->num_stripes; i++) {
2876 if (devid && map->stripes[i].dev->devid != devid)
2877 continue;
2878 if (map->stripes[i].physical > physical ||
2879 map->stripes[i].physical + length <= physical)
2880 continue;
2881
2882 stripe_nr = physical - map->stripes[i].physical;
2883 do_div(stripe_nr, map->stripe_len);
2884
2885 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2886 stripe_nr = stripe_nr * map->num_stripes + i;
2887 do_div(stripe_nr, map->sub_stripes);
2888 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2889 stripe_nr = stripe_nr * map->num_stripes + i;
2890 }
2891 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 2892 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
2893 for (j = 0; j < nr; j++) {
2894 if (buf[j] == bytenr)
2895 break;
2896 }
934d375b
CM
2897 if (j == nr) {
2898 WARN_ON(nr >= map->num_stripes);
a512bbf8 2899 buf[nr++] = bytenr;
934d375b 2900 }
a512bbf8
YZ
2901 }
2902
a512bbf8
YZ
2903 *logical = buf;
2904 *naddrs = nr;
2905 *stripe_len = map->stripe_len;
2906
2907 free_extent_map(em);
2908 return 0;
2909}
2910
f2d8d74d
CM
2911int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2912 u64 logical, struct page *page)
2913{
2914 u64 length = PAGE_CACHE_SIZE;
2915 return __btrfs_map_block(map_tree, READ, logical, &length,
2916 NULL, 0, page);
2917}
2918
8790d502 2919static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 2920{
cea9e445 2921 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 2922 int is_orig_bio = 0;
8790d502 2923
8790d502 2924 if (err)
a236aed1 2925 atomic_inc(&multi->error);
8790d502 2926
7d2b4daa
CM
2927 if (bio == multi->orig_bio)
2928 is_orig_bio = 1;
2929
cea9e445 2930 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
2931 if (!is_orig_bio) {
2932 bio_put(bio);
2933 bio = multi->orig_bio;
2934 }
8790d502
CM
2935 bio->bi_private = multi->private;
2936 bio->bi_end_io = multi->end_io;
a236aed1
CM
2937 /* only send an error to the higher layers if it is
2938 * beyond the tolerance of the multi-bio
2939 */
1259ab75 2940 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2941 err = -EIO;
1259ab75
CM
2942 } else if (err) {
2943 /*
2944 * this bio is actually up to date, we didn't
2945 * go over the max number of errors
2946 */
2947 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2948 err = 0;
1259ab75 2949 }
8790d502
CM
2950 kfree(multi);
2951
2952 bio_endio(bio, err);
7d2b4daa 2953 } else if (!is_orig_bio) {
8790d502
CM
2954 bio_put(bio);
2955 }
8790d502
CM
2956}
2957
8b712842
CM
2958struct async_sched {
2959 struct bio *bio;
2960 int rw;
2961 struct btrfs_fs_info *info;
2962 struct btrfs_work work;
2963};
2964
2965/*
2966 * see run_scheduled_bios for a description of why bios are collected for
2967 * async submit.
2968 *
2969 * This will add one bio to the pending list for a device and make sure
2970 * the work struct is scheduled.
2971 */
d397712b 2972static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
2973 struct btrfs_device *device,
2974 int rw, struct bio *bio)
8b712842
CM
2975{
2976 int should_queue = 1;
ffbd517d 2977 struct btrfs_pending_bios *pending_bios;
8b712842
CM
2978
2979 /* don't bother with additional async steps for reads, right now */
7b6d91da 2980 if (!(rw & REQ_WRITE)) {
492bb6de 2981 bio_get(bio);
8b712842 2982 submit_bio(rw, bio);
492bb6de 2983 bio_put(bio);
8b712842
CM
2984 return 0;
2985 }
2986
2987 /*
0986fe9e 2988 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
2989 * higher layers. Otherwise, the async bio makes it appear we have
2990 * made progress against dirty pages when we've really just put it
2991 * on a queue for later
2992 */
0986fe9e 2993 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 2994 WARN_ON(bio->bi_next);
8b712842
CM
2995 bio->bi_next = NULL;
2996 bio->bi_rw |= rw;
2997
2998 spin_lock(&device->io_lock);
7b6d91da 2999 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3000 pending_bios = &device->pending_sync_bios;
3001 else
3002 pending_bios = &device->pending_bios;
8b712842 3003
ffbd517d
CM
3004 if (pending_bios->tail)
3005 pending_bios->tail->bi_next = bio;
8b712842 3006
ffbd517d
CM
3007 pending_bios->tail = bio;
3008 if (!pending_bios->head)
3009 pending_bios->head = bio;
8b712842
CM
3010 if (device->running_pending)
3011 should_queue = 0;
3012
3013 spin_unlock(&device->io_lock);
3014
3015 if (should_queue)
1cc127b5
CM
3016 btrfs_queue_worker(&root->fs_info->submit_workers,
3017 &device->work);
8b712842
CM
3018 return 0;
3019}
3020
f188591e 3021int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3022 int mirror_num, int async_submit)
0b86a832
CM
3023{
3024 struct btrfs_mapping_tree *map_tree;
3025 struct btrfs_device *dev;
8790d502 3026 struct bio *first_bio = bio;
a62b9401 3027 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3028 u64 length = 0;
3029 u64 map_length;
cea9e445 3030 struct btrfs_multi_bio *multi = NULL;
0b86a832 3031 int ret;
8790d502
CM
3032 int dev_nr = 0;
3033 int total_devs = 1;
0b86a832 3034
f2d8d74d 3035 length = bio->bi_size;
0b86a832
CM
3036 map_tree = &root->fs_info->mapping_tree;
3037 map_length = length;
cea9e445 3038
f188591e
CM
3039 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3040 mirror_num);
cea9e445
CM
3041 BUG_ON(ret);
3042
3043 total_devs = multi->num_stripes;
3044 if (map_length < length) {
d397712b
CM
3045 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3046 "len %llu\n", (unsigned long long)logical,
3047 (unsigned long long)length,
3048 (unsigned long long)map_length);
cea9e445
CM
3049 BUG();
3050 }
3051 multi->end_io = first_bio->bi_end_io;
3052 multi->private = first_bio->bi_private;
7d2b4daa 3053 multi->orig_bio = first_bio;
cea9e445
CM
3054 atomic_set(&multi->stripes_pending, multi->num_stripes);
3055
d397712b 3056 while (dev_nr < total_devs) {
8790d502 3057 if (total_devs > 1) {
8790d502
CM
3058 if (dev_nr < total_devs - 1) {
3059 bio = bio_clone(first_bio, GFP_NOFS);
3060 BUG_ON(!bio);
3061 } else {
3062 bio = first_bio;
3063 }
3064 bio->bi_private = multi;
3065 bio->bi_end_io = end_bio_multi_stripe;
3066 }
cea9e445
CM
3067 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3068 dev = multi->stripes[dev_nr].dev;
18e503d6 3069 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
dfe25020 3070 bio->bi_bdev = dev->bdev;
8b712842
CM
3071 if (async_submit)
3072 schedule_bio(root, dev, rw, bio);
3073 else
3074 submit_bio(rw, bio);
dfe25020
CM
3075 } else {
3076 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3077 bio->bi_sector = logical >> 9;
dfe25020 3078 bio_endio(bio, -EIO);
dfe25020 3079 }
8790d502
CM
3080 dev_nr++;
3081 }
cea9e445
CM
3082 if (total_devs == 1)
3083 kfree(multi);
0b86a832
CM
3084 return 0;
3085}
3086
a443755f 3087struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3088 u8 *uuid, u8 *fsid)
0b86a832 3089{
2b82032c
YZ
3090 struct btrfs_device *device;
3091 struct btrfs_fs_devices *cur_devices;
3092
3093 cur_devices = root->fs_info->fs_devices;
3094 while (cur_devices) {
3095 if (!fsid ||
3096 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3097 device = __find_device(&cur_devices->devices,
3098 devid, uuid);
3099 if (device)
3100 return device;
3101 }
3102 cur_devices = cur_devices->seed;
3103 }
3104 return NULL;
0b86a832
CM
3105}
3106
dfe25020
CM
3107static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3108 u64 devid, u8 *dev_uuid)
3109{
3110 struct btrfs_device *device;
3111 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3112
3113 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3114 if (!device)
3115 return NULL;
dfe25020
CM
3116 list_add(&device->dev_list,
3117 &fs_devices->devices);
dfe25020
CM
3118 device->barriers = 1;
3119 device->dev_root = root->fs_info->dev_root;
3120 device->devid = devid;
8b712842 3121 device->work.func = pending_bios_fn;
e4404d6e 3122 device->fs_devices = fs_devices;
cd02dca5 3123 device->missing = 1;
dfe25020 3124 fs_devices->num_devices++;
cd02dca5 3125 fs_devices->missing_devices++;
dfe25020 3126 spin_lock_init(&device->io_lock);
d20f7043 3127 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3128 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3129 return device;
3130}
3131
0b86a832
CM
3132static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3133 struct extent_buffer *leaf,
3134 struct btrfs_chunk *chunk)
3135{
3136 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3137 struct map_lookup *map;
3138 struct extent_map *em;
3139 u64 logical;
3140 u64 length;
3141 u64 devid;
a443755f 3142 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3143 int num_stripes;
0b86a832 3144 int ret;
593060d7 3145 int i;
0b86a832 3146
e17cade2
CM
3147 logical = key->offset;
3148 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3149
890871be 3150 read_lock(&map_tree->map_tree.lock);
0b86a832 3151 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3152 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3153
3154 /* already mapped? */
3155 if (em && em->start <= logical && em->start + em->len > logical) {
3156 free_extent_map(em);
0b86a832
CM
3157 return 0;
3158 } else if (em) {
3159 free_extent_map(em);
3160 }
0b86a832 3161
0b86a832
CM
3162 em = alloc_extent_map(GFP_NOFS);
3163 if (!em)
3164 return -ENOMEM;
593060d7
CM
3165 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3166 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3167 if (!map) {
3168 free_extent_map(em);
3169 return -ENOMEM;
3170 }
3171
3172 em->bdev = (struct block_device *)map;
3173 em->start = logical;
3174 em->len = length;
3175 em->block_start = 0;
c8b97818 3176 em->block_len = em->len;
0b86a832 3177
593060d7
CM
3178 map->num_stripes = num_stripes;
3179 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3180 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3181 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3182 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3183 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3184 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3185 for (i = 0; i < num_stripes; i++) {
3186 map->stripes[i].physical =
3187 btrfs_stripe_offset_nr(leaf, chunk, i);
3188 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3189 read_extent_buffer(leaf, uuid, (unsigned long)
3190 btrfs_stripe_dev_uuid_nr(chunk, i),
3191 BTRFS_UUID_SIZE);
2b82032c
YZ
3192 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3193 NULL);
dfe25020 3194 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3195 kfree(map);
3196 free_extent_map(em);
3197 return -EIO;
3198 }
dfe25020
CM
3199 if (!map->stripes[i].dev) {
3200 map->stripes[i].dev =
3201 add_missing_dev(root, devid, uuid);
3202 if (!map->stripes[i].dev) {
3203 kfree(map);
3204 free_extent_map(em);
3205 return -EIO;
3206 }
3207 }
3208 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3209 }
3210
890871be 3211 write_lock(&map_tree->map_tree.lock);
0b86a832 3212 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3213 write_unlock(&map_tree->map_tree.lock);
b248a415 3214 BUG_ON(ret);
0b86a832
CM
3215 free_extent_map(em);
3216
3217 return 0;
3218}
3219
3220static int fill_device_from_item(struct extent_buffer *leaf,
3221 struct btrfs_dev_item *dev_item,
3222 struct btrfs_device *device)
3223{
3224 unsigned long ptr;
0b86a832
CM
3225
3226 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3227 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3228 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3229 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3230 device->type = btrfs_device_type(leaf, dev_item);
3231 device->io_align = btrfs_device_io_align(leaf, dev_item);
3232 device->io_width = btrfs_device_io_width(leaf, dev_item);
3233 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3234
3235 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3236 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3237
0b86a832
CM
3238 return 0;
3239}
3240
2b82032c
YZ
3241static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3242{
3243 struct btrfs_fs_devices *fs_devices;
3244 int ret;
3245
3246 mutex_lock(&uuid_mutex);
3247
3248 fs_devices = root->fs_info->fs_devices->seed;
3249 while (fs_devices) {
3250 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3251 ret = 0;
3252 goto out;
3253 }
3254 fs_devices = fs_devices->seed;
3255 }
3256
3257 fs_devices = find_fsid(fsid);
3258 if (!fs_devices) {
3259 ret = -ENOENT;
3260 goto out;
3261 }
e4404d6e
YZ
3262
3263 fs_devices = clone_fs_devices(fs_devices);
3264 if (IS_ERR(fs_devices)) {
3265 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3266 goto out;
3267 }
3268
97288f2c 3269 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3270 root->fs_info->bdev_holder);
2b82032c
YZ
3271 if (ret)
3272 goto out;
3273
3274 if (!fs_devices->seeding) {
3275 __btrfs_close_devices(fs_devices);
e4404d6e 3276 free_fs_devices(fs_devices);
2b82032c
YZ
3277 ret = -EINVAL;
3278 goto out;
3279 }
3280
3281 fs_devices->seed = root->fs_info->fs_devices->seed;
3282 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3283out:
3284 mutex_unlock(&uuid_mutex);
3285 return ret;
3286}
3287
0d81ba5d 3288static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3289 struct extent_buffer *leaf,
3290 struct btrfs_dev_item *dev_item)
3291{
3292 struct btrfs_device *device;
3293 u64 devid;
3294 int ret;
2b82032c 3295 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3296 u8 dev_uuid[BTRFS_UUID_SIZE];
3297
0b86a832 3298 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3299 read_extent_buffer(leaf, dev_uuid,
3300 (unsigned long)btrfs_device_uuid(dev_item),
3301 BTRFS_UUID_SIZE);
2b82032c
YZ
3302 read_extent_buffer(leaf, fs_uuid,
3303 (unsigned long)btrfs_device_fsid(dev_item),
3304 BTRFS_UUID_SIZE);
3305
3306 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3307 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3308 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3309 return ret;
2b82032c
YZ
3310 }
3311
3312 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3313 if (!device || !device->bdev) {
e4404d6e 3314 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3315 return -EIO;
3316
3317 if (!device) {
d397712b
CM
3318 printk(KERN_WARNING "warning devid %llu missing\n",
3319 (unsigned long long)devid);
2b82032c
YZ
3320 device = add_missing_dev(root, devid, dev_uuid);
3321 if (!device)
3322 return -ENOMEM;
cd02dca5
CM
3323 } else if (!device->missing) {
3324 /*
3325 * this happens when a device that was properly setup
3326 * in the device info lists suddenly goes bad.
3327 * device->bdev is NULL, and so we have to set
3328 * device->missing to one here
3329 */
3330 root->fs_info->fs_devices->missing_devices++;
3331 device->missing = 1;
2b82032c
YZ
3332 }
3333 }
3334
3335 if (device->fs_devices != root->fs_info->fs_devices) {
3336 BUG_ON(device->writeable);
3337 if (device->generation !=
3338 btrfs_device_generation(leaf, dev_item))
3339 return -EINVAL;
6324fbf3 3340 }
0b86a832
CM
3341
3342 fill_device_from_item(leaf, dev_item, device);
3343 device->dev_root = root->fs_info->dev_root;
dfe25020 3344 device->in_fs_metadata = 1;
2b82032c
YZ
3345 if (device->writeable)
3346 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3347 ret = 0;
0b86a832
CM
3348 return ret;
3349}
3350
0d81ba5d
CM
3351int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3352{
3353 struct btrfs_dev_item *dev_item;
3354
3355 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3356 dev_item);
3357 return read_one_dev(root, buf, dev_item);
3358}
3359
e4404d6e 3360int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3361{
3362 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3363 struct extent_buffer *sb;
0b86a832 3364 struct btrfs_disk_key *disk_key;
0b86a832 3365 struct btrfs_chunk *chunk;
84eed90f
CM
3366 u8 *ptr;
3367 unsigned long sb_ptr;
3368 int ret = 0;
0b86a832
CM
3369 u32 num_stripes;
3370 u32 array_size;
3371 u32 len = 0;
0b86a832 3372 u32 cur;
84eed90f 3373 struct btrfs_key key;
0b86a832 3374
e4404d6e 3375 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3376 BTRFS_SUPER_INFO_SIZE);
3377 if (!sb)
3378 return -ENOMEM;
3379 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3380 btrfs_set_buffer_lockdep_class(sb, 0);
3381
a061fc8d 3382 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3383 array_size = btrfs_super_sys_array_size(super_copy);
3384
0b86a832
CM
3385 ptr = super_copy->sys_chunk_array;
3386 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3387 cur = 0;
3388
3389 while (cur < array_size) {
3390 disk_key = (struct btrfs_disk_key *)ptr;
3391 btrfs_disk_key_to_cpu(&key, disk_key);
3392
a061fc8d 3393 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3394 sb_ptr += len;
3395 cur += len;
3396
0d81ba5d 3397 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3398 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3399 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3400 if (ret)
3401 break;
0b86a832
CM
3402 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3403 len = btrfs_chunk_item_size(num_stripes);
3404 } else {
84eed90f
CM
3405 ret = -EIO;
3406 break;
0b86a832
CM
3407 }
3408 ptr += len;
3409 sb_ptr += len;
3410 cur += len;
3411 }
a061fc8d 3412 free_extent_buffer(sb);
84eed90f 3413 return ret;
0b86a832
CM
3414}
3415
3416int btrfs_read_chunk_tree(struct btrfs_root *root)
3417{
3418 struct btrfs_path *path;
3419 struct extent_buffer *leaf;
3420 struct btrfs_key key;
3421 struct btrfs_key found_key;
3422 int ret;
3423 int slot;
3424
3425 root = root->fs_info->chunk_root;
3426
3427 path = btrfs_alloc_path();
3428 if (!path)
3429 return -ENOMEM;
3430
3431 /* first we search for all of the device items, and then we
3432 * read in all of the chunk items. This way we can create chunk
3433 * mappings that reference all of the devices that are afound
3434 */
3435 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3436 key.offset = 0;
3437 key.type = 0;
3438again:
3439 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3440 if (ret < 0)
3441 goto error;
d397712b 3442 while (1) {
0b86a832
CM
3443 leaf = path->nodes[0];
3444 slot = path->slots[0];
3445 if (slot >= btrfs_header_nritems(leaf)) {
3446 ret = btrfs_next_leaf(root, path);
3447 if (ret == 0)
3448 continue;
3449 if (ret < 0)
3450 goto error;
3451 break;
3452 }
3453 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3454 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3455 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3456 break;
3457 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3458 struct btrfs_dev_item *dev_item;
3459 dev_item = btrfs_item_ptr(leaf, slot,
3460 struct btrfs_dev_item);
0d81ba5d 3461 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3462 if (ret)
3463 goto error;
0b86a832
CM
3464 }
3465 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3466 struct btrfs_chunk *chunk;
3467 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3468 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3469 if (ret)
3470 goto error;
0b86a832
CM
3471 }
3472 path->slots[0]++;
3473 }
3474 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3475 key.objectid = 0;
3476 btrfs_release_path(root, path);
3477 goto again;
3478 }
0b86a832
CM
3479 ret = 0;
3480error:
2b82032c 3481 btrfs_free_path(path);
0b86a832
CM
3482 return ret;
3483}