]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: optimize btrget/set/removexattr
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
593060d7 23#include <asm/div64.h>
0b86a832
CM
24#include "ctree.h"
25#include "extent_map.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "print-tree.h"
29#include "volumes.h"
8b712842 30#include "async-thread.h"
0b86a832 31
593060d7
CM
32struct map_lookup {
33 u64 type;
34 int io_align;
35 int io_width;
36 int stripe_len;
37 int sector_size;
38 int num_stripes;
321aecc6 39 int sub_stripes;
cea9e445 40 struct btrfs_bio_stripe stripes[];
593060d7
CM
41};
42
43#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 44 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 45
8a4b83cc
CM
46static DEFINE_MUTEX(uuid_mutex);
47static LIST_HEAD(fs_uuids);
48
a061fc8d
CM
49void btrfs_lock_volumes(void)
50{
51 mutex_lock(&uuid_mutex);
52}
53
54void btrfs_unlock_volumes(void)
55{
56 mutex_unlock(&uuid_mutex);
57}
58
7d9eb12c
CM
59static void lock_chunks(struct btrfs_root *root)
60{
61 mutex_lock(&root->fs_info->alloc_mutex);
62 mutex_lock(&root->fs_info->chunk_mutex);
63}
64
65static void unlock_chunks(struct btrfs_root *root)
66{
67 mutex_unlock(&root->fs_info->alloc_mutex);
68 mutex_unlock(&root->fs_info->chunk_mutex);
69}
70
8a4b83cc
CM
71int btrfs_cleanup_fs_uuids(void)
72{
73 struct btrfs_fs_devices *fs_devices;
74 struct list_head *uuid_cur;
75 struct list_head *devices_cur;
76 struct btrfs_device *dev;
77
78 list_for_each(uuid_cur, &fs_uuids) {
79 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
80 list);
81 while(!list_empty(&fs_devices->devices)) {
82 devices_cur = fs_devices->devices.next;
83 dev = list_entry(devices_cur, struct btrfs_device,
84 dev_list);
8a4b83cc 85 if (dev->bdev) {
8a4b83cc 86 close_bdev_excl(dev->bdev);
a0af469b 87 fs_devices->open_devices--;
8a4b83cc
CM
88 }
89 list_del(&dev->dev_list);
dfe25020 90 kfree(dev->name);
8a4b83cc
CM
91 kfree(dev);
92 }
93 }
94 return 0;
95}
96
a443755f
CM
97static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
98 u8 *uuid)
8a4b83cc
CM
99{
100 struct btrfs_device *dev;
101 struct list_head *cur;
102
103 list_for_each(cur, head) {
104 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f 105 if (dev->devid == devid &&
8f18cf13 106 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 107 return dev;
a443755f 108 }
8a4b83cc
CM
109 }
110 return NULL;
111}
112
113static struct btrfs_fs_devices *find_fsid(u8 *fsid)
114{
115 struct list_head *cur;
116 struct btrfs_fs_devices *fs_devices;
117
118 list_for_each(cur, &fs_uuids) {
119 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
120 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
121 return fs_devices;
122 }
123 return NULL;
124}
125
8b712842
CM
126/*
127 * we try to collect pending bios for a device so we don't get a large
128 * number of procs sending bios down to the same device. This greatly
129 * improves the schedulers ability to collect and merge the bios.
130 *
131 * But, it also turns into a long list of bios to process and that is sure
132 * to eventually make the worker thread block. The solution here is to
133 * make some progress and then put this work struct back at the end of
134 * the list if the block device is congested. This way, multiple devices
135 * can make progress from a single worker thread.
136 */
137int run_scheduled_bios(struct btrfs_device *device)
138{
139 struct bio *pending;
140 struct backing_dev_info *bdi;
b64a2851 141 struct btrfs_fs_info *fs_info;
8b712842
CM
142 struct bio *tail;
143 struct bio *cur;
144 int again = 0;
145 unsigned long num_run = 0;
b64a2851 146 unsigned long limit;
8b712842
CM
147
148 bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
b64a2851
CM
149 fs_info = device->dev_root->fs_info;
150 limit = btrfs_async_submit_limit(fs_info);
151 limit = limit * 2 / 3;
152
8b712842
CM
153loop:
154 spin_lock(&device->io_lock);
155
156 /* take all the bios off the list at once and process them
157 * later on (without the lock held). But, remember the
158 * tail and other pointers so the bios can be properly reinserted
159 * into the list if we hit congestion
160 */
161 pending = device->pending_bios;
162 tail = device->pending_bio_tail;
163 WARN_ON(pending && !tail);
164 device->pending_bios = NULL;
165 device->pending_bio_tail = NULL;
166
167 /*
168 * if pending was null this time around, no bios need processing
169 * at all and we can stop. Otherwise it'll loop back up again
170 * and do an additional check so no bios are missed.
171 *
172 * device->running_pending is used to synchronize with the
173 * schedule_bio code.
174 */
175 if (pending) {
176 again = 1;
177 device->running_pending = 1;
178 } else {
179 again = 0;
180 device->running_pending = 0;
181 }
182 spin_unlock(&device->io_lock);
183
184 while(pending) {
185 cur = pending;
186 pending = pending->bi_next;
187 cur->bi_next = NULL;
b64a2851
CM
188 atomic_dec(&fs_info->nr_async_bios);
189
190 if (atomic_read(&fs_info->nr_async_bios) < limit &&
191 waitqueue_active(&fs_info->async_submit_wait))
192 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
193
194 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
195 bio_get(cur);
8b712842 196 submit_bio(cur->bi_rw, cur);
492bb6de 197 bio_put(cur);
8b712842
CM
198 num_run++;
199
200 /*
201 * we made progress, there is more work to do and the bdi
202 * is now congested. Back off and let other work structs
203 * run instead
204 */
492bb6de 205 if (pending && bdi_write_congested(bdi)) {
8b712842
CM
206 struct bio *old_head;
207
208 spin_lock(&device->io_lock);
492bb6de 209
8b712842
CM
210 old_head = device->pending_bios;
211 device->pending_bios = pending;
212 if (device->pending_bio_tail)
213 tail->bi_next = old_head;
214 else
215 device->pending_bio_tail = tail;
216
217 spin_unlock(&device->io_lock);
218 btrfs_requeue_work(&device->work);
219 goto done;
220 }
221 }
222 if (again)
223 goto loop;
224done:
225 return 0;
226}
227
228void pending_bios_fn(struct btrfs_work *work)
229{
230 struct btrfs_device *device;
231
232 device = container_of(work, struct btrfs_device, work);
233 run_scheduled_bios(device);
234}
235
8a4b83cc
CM
236static int device_list_add(const char *path,
237 struct btrfs_super_block *disk_super,
238 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
239{
240 struct btrfs_device *device;
241 struct btrfs_fs_devices *fs_devices;
242 u64 found_transid = btrfs_super_generation(disk_super);
243
244 fs_devices = find_fsid(disk_super->fsid);
245 if (!fs_devices) {
515dc322 246 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
247 if (!fs_devices)
248 return -ENOMEM;
249 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 250 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
251 list_add(&fs_devices->list, &fs_uuids);
252 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
253 fs_devices->latest_devid = devid;
254 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
255 device = NULL;
256 } else {
a443755f
CM
257 device = __find_device(&fs_devices->devices, devid,
258 disk_super->dev_item.uuid);
8a4b83cc
CM
259 }
260 if (!device) {
261 device = kzalloc(sizeof(*device), GFP_NOFS);
262 if (!device) {
263 /* we can safely leave the fs_devices entry around */
264 return -ENOMEM;
265 }
266 device->devid = devid;
8b712842 267 device->work.func = pending_bios_fn;
a443755f
CM
268 memcpy(device->uuid, disk_super->dev_item.uuid,
269 BTRFS_UUID_SIZE);
f2984462 270 device->barriers = 1;
b248a415 271 spin_lock_init(&device->io_lock);
8a4b83cc
CM
272 device->name = kstrdup(path, GFP_NOFS);
273 if (!device->name) {
274 kfree(device);
275 return -ENOMEM;
276 }
277 list_add(&device->dev_list, &fs_devices->devices);
b3075717 278 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
8a4b83cc
CM
279 fs_devices->num_devices++;
280 }
281
282 if (found_transid > fs_devices->latest_trans) {
283 fs_devices->latest_devid = devid;
284 fs_devices->latest_trans = found_transid;
285 }
8a4b83cc
CM
286 *fs_devices_ret = fs_devices;
287 return 0;
288}
289
dfe25020
CM
290int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
291{
292 struct list_head *head = &fs_devices->devices;
293 struct list_head *cur;
294 struct btrfs_device *device;
295
296 mutex_lock(&uuid_mutex);
297again:
298 list_for_each(cur, head) {
299 device = list_entry(cur, struct btrfs_device, dev_list);
300 if (!device->in_fs_metadata) {
a74a4b97 301 struct block_device *bdev;
dfe25020
CM
302 list_del(&device->dev_list);
303 list_del(&device->dev_alloc_list);
304 fs_devices->num_devices--;
a74a4b97
CM
305 if (device->bdev) {
306 bdev = device->bdev;
307 fs_devices->open_devices--;
308 mutex_unlock(&uuid_mutex);
309 close_bdev_excl(bdev);
310 mutex_lock(&uuid_mutex);
311 }
dfe25020
CM
312 kfree(device->name);
313 kfree(device);
314 goto again;
315 }
316 }
317 mutex_unlock(&uuid_mutex);
318 return 0;
319}
a0af469b 320
8a4b83cc
CM
321int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
322{
323 struct list_head *head = &fs_devices->devices;
324 struct list_head *cur;
325 struct btrfs_device *device;
326
327 mutex_lock(&uuid_mutex);
328 list_for_each(cur, head) {
329 device = list_entry(cur, struct btrfs_device, dev_list);
330 if (device->bdev) {
331 close_bdev_excl(device->bdev);
a0af469b 332 fs_devices->open_devices--;
8a4b83cc
CM
333 }
334 device->bdev = NULL;
dfe25020 335 device->in_fs_metadata = 0;
8a4b83cc 336 }
a0af469b 337 fs_devices->mounted = 0;
8a4b83cc
CM
338 mutex_unlock(&uuid_mutex);
339 return 0;
340}
341
342int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
343 int flags, void *holder)
344{
345 struct block_device *bdev;
346 struct list_head *head = &fs_devices->devices;
347 struct list_head *cur;
348 struct btrfs_device *device;
a0af469b
CM
349 struct block_device *latest_bdev = NULL;
350 struct buffer_head *bh;
351 struct btrfs_super_block *disk_super;
352 u64 latest_devid = 0;
353 u64 latest_transid = 0;
354 u64 transid;
355 u64 devid;
356 int ret = 0;
8a4b83cc
CM
357
358 mutex_lock(&uuid_mutex);
a0af469b
CM
359 if (fs_devices->mounted)
360 goto out;
361
8a4b83cc
CM
362 list_for_each(cur, head) {
363 device = list_entry(cur, struct btrfs_device, dev_list);
c1c4d91c
CM
364 if (device->bdev)
365 continue;
366
dfe25020
CM
367 if (!device->name)
368 continue;
369
8a4b83cc 370 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 371
8a4b83cc
CM
372 if (IS_ERR(bdev)) {
373 printk("open %s failed\n", device->name);
a0af469b 374 goto error;
8a4b83cc 375 }
a061fc8d 376 set_blocksize(bdev, 4096);
a0af469b
CM
377
378 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
379 if (!bh)
380 goto error_close;
381
382 disk_super = (struct btrfs_super_block *)bh->b_data;
383 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
384 sizeof(disk_super->magic)))
385 goto error_brelse;
386
387 devid = le64_to_cpu(disk_super->dev_item.devid);
388 if (devid != device->devid)
389 goto error_brelse;
390
391 transid = btrfs_super_generation(disk_super);
6af5ac3c 392 if (!latest_transid || transid > latest_transid) {
a0af469b
CM
393 latest_devid = devid;
394 latest_transid = transid;
395 latest_bdev = bdev;
396 }
397
8a4b83cc 398 device->bdev = bdev;
dfe25020 399 device->in_fs_metadata = 0;
a0af469b
CM
400 fs_devices->open_devices++;
401 continue;
a061fc8d 402
a0af469b
CM
403error_brelse:
404 brelse(bh);
405error_close:
406 close_bdev_excl(bdev);
407error:
408 continue;
8a4b83cc 409 }
a0af469b
CM
410 if (fs_devices->open_devices == 0) {
411 ret = -EIO;
412 goto out;
413 }
414 fs_devices->mounted = 1;
415 fs_devices->latest_bdev = latest_bdev;
416 fs_devices->latest_devid = latest_devid;
417 fs_devices->latest_trans = latest_transid;
418out:
8a4b83cc 419 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
420 return ret;
421}
422
423int btrfs_scan_one_device(const char *path, int flags, void *holder,
424 struct btrfs_fs_devices **fs_devices_ret)
425{
426 struct btrfs_super_block *disk_super;
427 struct block_device *bdev;
428 struct buffer_head *bh;
429 int ret;
430 u64 devid;
f2984462 431 u64 transid;
8a4b83cc
CM
432
433 mutex_lock(&uuid_mutex);
434
8a4b83cc
CM
435 bdev = open_bdev_excl(path, flags, holder);
436
437 if (IS_ERR(bdev)) {
8a4b83cc
CM
438 ret = PTR_ERR(bdev);
439 goto error;
440 }
441
442 ret = set_blocksize(bdev, 4096);
443 if (ret)
444 goto error_close;
445 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
446 if (!bh) {
447 ret = -EIO;
448 goto error_close;
449 }
450 disk_super = (struct btrfs_super_block *)bh->b_data;
451 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
452 sizeof(disk_super->magic))) {
e58ca020 453 ret = -EINVAL;
8a4b83cc
CM
454 goto error_brelse;
455 }
456 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 457 transid = btrfs_super_generation(disk_super);
7ae9c09d
CM
458 if (disk_super->label[0])
459 printk("device label %s ", disk_super->label);
460 else {
461 /* FIXME, make a readl uuid parser */
462 printk("device fsid %llx-%llx ",
463 *(unsigned long long *)disk_super->fsid,
464 *(unsigned long long *)(disk_super->fsid + 8));
465 }
466 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
8a4b83cc
CM
467 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
468
469error_brelse:
470 brelse(bh);
471error_close:
472 close_bdev_excl(bdev);
8a4b83cc
CM
473error:
474 mutex_unlock(&uuid_mutex);
475 return ret;
476}
0b86a832
CM
477
478/*
479 * this uses a pretty simple search, the expectation is that it is
480 * called very infrequently and that a given device has a small number
481 * of extents
482 */
483static int find_free_dev_extent(struct btrfs_trans_handle *trans,
484 struct btrfs_device *device,
485 struct btrfs_path *path,
486 u64 num_bytes, u64 *start)
487{
488 struct btrfs_key key;
489 struct btrfs_root *root = device->dev_root;
490 struct btrfs_dev_extent *dev_extent = NULL;
491 u64 hole_size = 0;
492 u64 last_byte = 0;
493 u64 search_start = 0;
494 u64 search_end = device->total_bytes;
495 int ret;
496 int slot = 0;
497 int start_found;
498 struct extent_buffer *l;
499
500 start_found = 0;
501 path->reada = 2;
502
503 /* FIXME use last free of some kind */
504
8a4b83cc
CM
505 /* we don't want to overwrite the superblock on the drive,
506 * so we make sure to start at an offset of at least 1MB
507 */
508 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
509
510 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
511 search_start = max(root->fs_info->alloc_start, search_start);
512
0b86a832
CM
513 key.objectid = device->devid;
514 key.offset = search_start;
515 key.type = BTRFS_DEV_EXTENT_KEY;
516 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
517 if (ret < 0)
518 goto error;
519 ret = btrfs_previous_item(root, path, 0, key.type);
520 if (ret < 0)
521 goto error;
522 l = path->nodes[0];
523 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
524 while (1) {
525 l = path->nodes[0];
526 slot = path->slots[0];
527 if (slot >= btrfs_header_nritems(l)) {
528 ret = btrfs_next_leaf(root, path);
529 if (ret == 0)
530 continue;
531 if (ret < 0)
532 goto error;
533no_more_items:
534 if (!start_found) {
535 if (search_start >= search_end) {
536 ret = -ENOSPC;
537 goto error;
538 }
539 *start = search_start;
540 start_found = 1;
541 goto check_pending;
542 }
543 *start = last_byte > search_start ?
544 last_byte : search_start;
545 if (search_end <= *start) {
546 ret = -ENOSPC;
547 goto error;
548 }
549 goto check_pending;
550 }
551 btrfs_item_key_to_cpu(l, &key, slot);
552
553 if (key.objectid < device->devid)
554 goto next;
555
556 if (key.objectid > device->devid)
557 goto no_more_items;
558
559 if (key.offset >= search_start && key.offset > last_byte &&
560 start_found) {
561 if (last_byte < search_start)
562 last_byte = search_start;
563 hole_size = key.offset - last_byte;
564 if (key.offset > last_byte &&
565 hole_size >= num_bytes) {
566 *start = last_byte;
567 goto check_pending;
568 }
569 }
570 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
571 goto next;
572 }
573
574 start_found = 1;
575 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
576 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
577next:
578 path->slots[0]++;
579 cond_resched();
580 }
581check_pending:
582 /* we have to make sure we didn't find an extent that has already
583 * been allocated by the map tree or the original allocation
584 */
585 btrfs_release_path(root, path);
586 BUG_ON(*start < search_start);
587
6324fbf3 588 if (*start + num_bytes > search_end) {
0b86a832
CM
589 ret = -ENOSPC;
590 goto error;
591 }
592 /* check for pending inserts here */
593 return 0;
594
595error:
596 btrfs_release_path(root, path);
597 return ret;
598}
599
8f18cf13
CM
600int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
601 struct btrfs_device *device,
602 u64 start)
603{
604 int ret;
605 struct btrfs_path *path;
606 struct btrfs_root *root = device->dev_root;
607 struct btrfs_key key;
a061fc8d
CM
608 struct btrfs_key found_key;
609 struct extent_buffer *leaf = NULL;
610 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
611
612 path = btrfs_alloc_path();
613 if (!path)
614 return -ENOMEM;
615
616 key.objectid = device->devid;
617 key.offset = start;
618 key.type = BTRFS_DEV_EXTENT_KEY;
619
620 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
621 if (ret > 0) {
622 ret = btrfs_previous_item(root, path, key.objectid,
623 BTRFS_DEV_EXTENT_KEY);
624 BUG_ON(ret);
625 leaf = path->nodes[0];
626 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
627 extent = btrfs_item_ptr(leaf, path->slots[0],
628 struct btrfs_dev_extent);
629 BUG_ON(found_key.offset > start || found_key.offset +
630 btrfs_dev_extent_length(leaf, extent) < start);
631 ret = 0;
632 } else if (ret == 0) {
633 leaf = path->nodes[0];
634 extent = btrfs_item_ptr(leaf, path->slots[0],
635 struct btrfs_dev_extent);
636 }
8f18cf13
CM
637 BUG_ON(ret);
638
dfe25020
CM
639 if (device->bytes_used > 0)
640 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
641 ret = btrfs_del_item(trans, root, path);
642 BUG_ON(ret);
643
644 btrfs_free_path(path);
645 return ret;
646}
647
0b86a832
CM
648int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
649 struct btrfs_device *device,
e17cade2
CM
650 u64 chunk_tree, u64 chunk_objectid,
651 u64 chunk_offset,
652 u64 num_bytes, u64 *start)
0b86a832
CM
653{
654 int ret;
655 struct btrfs_path *path;
656 struct btrfs_root *root = device->dev_root;
657 struct btrfs_dev_extent *extent;
658 struct extent_buffer *leaf;
659 struct btrfs_key key;
660
dfe25020 661 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
662 path = btrfs_alloc_path();
663 if (!path)
664 return -ENOMEM;
665
666 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 667 if (ret) {
0b86a832 668 goto err;
6324fbf3 669 }
0b86a832
CM
670
671 key.objectid = device->devid;
672 key.offset = *start;
673 key.type = BTRFS_DEV_EXTENT_KEY;
674 ret = btrfs_insert_empty_item(trans, root, path, &key,
675 sizeof(*extent));
676 BUG_ON(ret);
677
678 leaf = path->nodes[0];
679 extent = btrfs_item_ptr(leaf, path->slots[0],
680 struct btrfs_dev_extent);
e17cade2
CM
681 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
682 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
683 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
684
685 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
686 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
687 BTRFS_UUID_SIZE);
688
0b86a832
CM
689 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
690 btrfs_mark_buffer_dirty(leaf);
691err:
692 btrfs_free_path(path);
693 return ret;
694}
695
e17cade2 696static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
0b86a832
CM
697{
698 struct btrfs_path *path;
699 int ret;
700 struct btrfs_key key;
e17cade2 701 struct btrfs_chunk *chunk;
0b86a832
CM
702 struct btrfs_key found_key;
703
704 path = btrfs_alloc_path();
705 BUG_ON(!path);
706
e17cade2 707 key.objectid = objectid;
0b86a832
CM
708 key.offset = (u64)-1;
709 key.type = BTRFS_CHUNK_ITEM_KEY;
710
711 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
712 if (ret < 0)
713 goto error;
714
715 BUG_ON(ret == 0);
716
717 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
718 if (ret) {
e17cade2 719 *offset = 0;
0b86a832
CM
720 } else {
721 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
722 path->slots[0]);
e17cade2
CM
723 if (found_key.objectid != objectid)
724 *offset = 0;
725 else {
726 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
727 struct btrfs_chunk);
728 *offset = found_key.offset +
729 btrfs_chunk_length(path->nodes[0], chunk);
730 }
0b86a832
CM
731 }
732 ret = 0;
733error:
734 btrfs_free_path(path);
735 return ret;
736}
737
0b86a832
CM
738static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
739 u64 *objectid)
740{
741 int ret;
742 struct btrfs_key key;
743 struct btrfs_key found_key;
744
745 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
746 key.type = BTRFS_DEV_ITEM_KEY;
747 key.offset = (u64)-1;
748
749 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
750 if (ret < 0)
751 goto error;
752
753 BUG_ON(ret == 0);
754
755 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
756 BTRFS_DEV_ITEM_KEY);
757 if (ret) {
758 *objectid = 1;
759 } else {
760 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
761 path->slots[0]);
762 *objectid = found_key.offset + 1;
763 }
764 ret = 0;
765error:
766 btrfs_release_path(root, path);
767 return ret;
768}
769
770/*
771 * the device information is stored in the chunk root
772 * the btrfs_device struct should be fully filled in
773 */
774int btrfs_add_device(struct btrfs_trans_handle *trans,
775 struct btrfs_root *root,
776 struct btrfs_device *device)
777{
778 int ret;
779 struct btrfs_path *path;
780 struct btrfs_dev_item *dev_item;
781 struct extent_buffer *leaf;
782 struct btrfs_key key;
783 unsigned long ptr;
006a58a2 784 u64 free_devid = 0;
0b86a832
CM
785
786 root = root->fs_info->chunk_root;
787
788 path = btrfs_alloc_path();
789 if (!path)
790 return -ENOMEM;
791
792 ret = find_next_devid(root, path, &free_devid);
793 if (ret)
794 goto out;
795
796 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
797 key.type = BTRFS_DEV_ITEM_KEY;
798 key.offset = free_devid;
799
800 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 801 sizeof(*dev_item));
0b86a832
CM
802 if (ret)
803 goto out;
804
805 leaf = path->nodes[0];
806 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
807
8a4b83cc 808 device->devid = free_devid;
0b86a832
CM
809 btrfs_set_device_id(leaf, dev_item, device->devid);
810 btrfs_set_device_type(leaf, dev_item, device->type);
811 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
812 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
813 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
814 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
815 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
816 btrfs_set_device_group(leaf, dev_item, 0);
817 btrfs_set_device_seek_speed(leaf, dev_item, 0);
818 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 819
0b86a832 820 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 821 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
822 btrfs_mark_buffer_dirty(leaf);
823 ret = 0;
824
825out:
826 btrfs_free_path(path);
827 return ret;
828}
8f18cf13 829
a061fc8d
CM
830static int btrfs_rm_dev_item(struct btrfs_root *root,
831 struct btrfs_device *device)
832{
833 int ret;
834 struct btrfs_path *path;
835 struct block_device *bdev = device->bdev;
836 struct btrfs_device *next_dev;
837 struct btrfs_key key;
838 u64 total_bytes;
839 struct btrfs_fs_devices *fs_devices;
840 struct btrfs_trans_handle *trans;
841
842 root = root->fs_info->chunk_root;
843
844 path = btrfs_alloc_path();
845 if (!path)
846 return -ENOMEM;
847
848 trans = btrfs_start_transaction(root, 1);
849 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
850 key.type = BTRFS_DEV_ITEM_KEY;
851 key.offset = device->devid;
7d9eb12c 852 lock_chunks(root);
a061fc8d
CM
853
854 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
855 if (ret < 0)
856 goto out;
857
858 if (ret > 0) {
859 ret = -ENOENT;
860 goto out;
861 }
862
863 ret = btrfs_del_item(trans, root, path);
864 if (ret)
865 goto out;
866
867 /*
868 * at this point, the device is zero sized. We want to
869 * remove it from the devices list and zero out the old super
870 */
871 list_del_init(&device->dev_list);
872 list_del_init(&device->dev_alloc_list);
873 fs_devices = root->fs_info->fs_devices;
874
875 next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
876 dev_list);
a061fc8d
CM
877 if (bdev == root->fs_info->sb->s_bdev)
878 root->fs_info->sb->s_bdev = next_dev->bdev;
879 if (bdev == fs_devices->latest_bdev)
880 fs_devices->latest_bdev = next_dev->bdev;
881
a061fc8d
CM
882 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
883 btrfs_set_super_num_devices(&root->fs_info->super_copy,
884 total_bytes - 1);
885out:
886 btrfs_free_path(path);
7d9eb12c 887 unlock_chunks(root);
a061fc8d
CM
888 btrfs_commit_transaction(trans, root);
889 return ret;
890}
891
892int btrfs_rm_device(struct btrfs_root *root, char *device_path)
893{
894 struct btrfs_device *device;
895 struct block_device *bdev;
dfe25020 896 struct buffer_head *bh = NULL;
a061fc8d
CM
897 struct btrfs_super_block *disk_super;
898 u64 all_avail;
899 u64 devid;
900 int ret = 0;
901
a061fc8d 902 mutex_lock(&uuid_mutex);
7d9eb12c 903 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
904
905 all_avail = root->fs_info->avail_data_alloc_bits |
906 root->fs_info->avail_system_alloc_bits |
907 root->fs_info->avail_metadata_alloc_bits;
908
909 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
dfe25020 910 btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
a061fc8d
CM
911 printk("btrfs: unable to go below four devices on raid10\n");
912 ret = -EINVAL;
913 goto out;
914 }
915
916 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
dfe25020 917 btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
a061fc8d
CM
918 printk("btrfs: unable to go below two devices on raid1\n");
919 ret = -EINVAL;
920 goto out;
921 }
922
dfe25020
CM
923 if (strcmp(device_path, "missing") == 0) {
924 struct list_head *cur;
925 struct list_head *devices;
926 struct btrfs_device *tmp;
a061fc8d 927
dfe25020
CM
928 device = NULL;
929 devices = &root->fs_info->fs_devices->devices;
930 list_for_each(cur, devices) {
931 tmp = list_entry(cur, struct btrfs_device, dev_list);
932 if (tmp->in_fs_metadata && !tmp->bdev) {
933 device = tmp;
934 break;
935 }
936 }
937 bdev = NULL;
938 bh = NULL;
939 disk_super = NULL;
940 if (!device) {
941 printk("btrfs: no missing devices found to remove\n");
942 goto out;
943 }
944
945 } else {
946 bdev = open_bdev_excl(device_path, 0,
947 root->fs_info->bdev_holder);
948 if (IS_ERR(bdev)) {
949 ret = PTR_ERR(bdev);
950 goto out;
951 }
a061fc8d 952
dfe25020
CM
953 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
954 if (!bh) {
955 ret = -EIO;
956 goto error_close;
957 }
958 disk_super = (struct btrfs_super_block *)bh->b_data;
959 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
960 sizeof(disk_super->magic))) {
961 ret = -ENOENT;
962 goto error_brelse;
963 }
964 if (memcmp(disk_super->fsid, root->fs_info->fsid,
965 BTRFS_FSID_SIZE)) {
966 ret = -ENOENT;
967 goto error_brelse;
968 }
969 devid = le64_to_cpu(disk_super->dev_item.devid);
970 device = btrfs_find_device(root, devid, NULL);
971 if (!device) {
972 ret = -ENOENT;
973 goto error_brelse;
974 }
975
976 }
a061fc8d 977 root->fs_info->fs_devices->num_devices--;
0ef3e66b 978 root->fs_info->fs_devices->open_devices--;
a061fc8d
CM
979
980 ret = btrfs_shrink_device(device, 0);
981 if (ret)
982 goto error_brelse;
983
984
985 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
986 if (ret)
987 goto error_brelse;
988
dfe25020
CM
989 if (bh) {
990 /* make sure this device isn't detected as part of
991 * the FS anymore
992 */
993 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
994 set_buffer_dirty(bh);
995 sync_dirty_buffer(bh);
a061fc8d 996
dfe25020
CM
997 brelse(bh);
998 }
a061fc8d 999
dfe25020
CM
1000 if (device->bdev) {
1001 /* one close for the device struct or super_block */
1002 close_bdev_excl(device->bdev);
1003 }
1004 if (bdev) {
1005 /* one close for us */
1006 close_bdev_excl(bdev);
1007 }
a061fc8d
CM
1008 kfree(device->name);
1009 kfree(device);
1010 ret = 0;
1011 goto out;
1012
1013error_brelse:
1014 brelse(bh);
1015error_close:
dfe25020
CM
1016 if (bdev)
1017 close_bdev_excl(bdev);
a061fc8d 1018out:
7d9eb12c 1019 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1020 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1021 return ret;
1022}
1023
788f20eb
CM
1024int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1025{
1026 struct btrfs_trans_handle *trans;
1027 struct btrfs_device *device;
1028 struct block_device *bdev;
1029 struct list_head *cur;
1030 struct list_head *devices;
1031 u64 total_bytes;
1032 int ret = 0;
1033
1034
1035 bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
1036 if (!bdev) {
1037 return -EIO;
1038 }
a2135011 1039
7d9eb12c 1040 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1041
788f20eb 1042 trans = btrfs_start_transaction(root, 1);
7d9eb12c 1043 lock_chunks(root);
788f20eb
CM
1044 devices = &root->fs_info->fs_devices->devices;
1045 list_for_each(cur, devices) {
1046 device = list_entry(cur, struct btrfs_device, dev_list);
1047 if (device->bdev == bdev) {
1048 ret = -EEXIST;
1049 goto out;
1050 }
1051 }
1052
1053 device = kzalloc(sizeof(*device), GFP_NOFS);
1054 if (!device) {
1055 /* we can safely leave the fs_devices entry around */
1056 ret = -ENOMEM;
1057 goto out_close_bdev;
1058 }
1059
1060 device->barriers = 1;
8b712842 1061 device->work.func = pending_bios_fn;
788f20eb
CM
1062 generate_random_uuid(device->uuid);
1063 spin_lock_init(&device->io_lock);
1064 device->name = kstrdup(device_path, GFP_NOFS);
1065 if (!device->name) {
1066 kfree(device);
1067 goto out_close_bdev;
1068 }
1069 device->io_width = root->sectorsize;
1070 device->io_align = root->sectorsize;
1071 device->sector_size = root->sectorsize;
1072 device->total_bytes = i_size_read(bdev->bd_inode);
1073 device->dev_root = root->fs_info->dev_root;
1074 device->bdev = bdev;
dfe25020 1075 device->in_fs_metadata = 1;
788f20eb
CM
1076
1077 ret = btrfs_add_device(trans, root, device);
1078 if (ret)
1079 goto out_close_bdev;
1080
1081 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1082 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1083 total_bytes + device->total_bytes);
1084
1085 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1086 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1087 total_bytes + 1);
1088
1089 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1090 list_add(&device->dev_alloc_list,
1091 &root->fs_info->fs_devices->alloc_list);
1092 root->fs_info->fs_devices->num_devices++;
a0af469b 1093 root->fs_info->fs_devices->open_devices++;
788f20eb 1094out:
7d9eb12c 1095 unlock_chunks(root);
788f20eb 1096 btrfs_end_transaction(trans, root);
7d9eb12c 1097 mutex_unlock(&root->fs_info->volume_mutex);
a2135011 1098
788f20eb
CM
1099 return ret;
1100
1101out_close_bdev:
1102 close_bdev_excl(bdev);
1103 goto out;
1104}
1105
0b86a832
CM
1106int btrfs_update_device(struct btrfs_trans_handle *trans,
1107 struct btrfs_device *device)
1108{
1109 int ret;
1110 struct btrfs_path *path;
1111 struct btrfs_root *root;
1112 struct btrfs_dev_item *dev_item;
1113 struct extent_buffer *leaf;
1114 struct btrfs_key key;
1115
1116 root = device->dev_root->fs_info->chunk_root;
1117
1118 path = btrfs_alloc_path();
1119 if (!path)
1120 return -ENOMEM;
1121
1122 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1123 key.type = BTRFS_DEV_ITEM_KEY;
1124 key.offset = device->devid;
1125
1126 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1127 if (ret < 0)
1128 goto out;
1129
1130 if (ret > 0) {
1131 ret = -ENOENT;
1132 goto out;
1133 }
1134
1135 leaf = path->nodes[0];
1136 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1137
1138 btrfs_set_device_id(leaf, dev_item, device->devid);
1139 btrfs_set_device_type(leaf, dev_item, device->type);
1140 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1141 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1142 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1143 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1144 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1145 btrfs_mark_buffer_dirty(leaf);
1146
1147out:
1148 btrfs_free_path(path);
1149 return ret;
1150}
1151
7d9eb12c 1152static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1153 struct btrfs_device *device, u64 new_size)
1154{
1155 struct btrfs_super_block *super_copy =
1156 &device->dev_root->fs_info->super_copy;
1157 u64 old_total = btrfs_super_total_bytes(super_copy);
1158 u64 diff = new_size - device->total_bytes;
1159
1160 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1161 return btrfs_update_device(trans, device);
1162}
1163
7d9eb12c
CM
1164int btrfs_grow_device(struct btrfs_trans_handle *trans,
1165 struct btrfs_device *device, u64 new_size)
1166{
1167 int ret;
1168 lock_chunks(device->dev_root);
1169 ret = __btrfs_grow_device(trans, device, new_size);
1170 unlock_chunks(device->dev_root);
1171 return ret;
1172}
1173
8f18cf13
CM
1174static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 u64 chunk_tree, u64 chunk_objectid,
1177 u64 chunk_offset)
1178{
1179 int ret;
1180 struct btrfs_path *path;
1181 struct btrfs_key key;
1182
1183 root = root->fs_info->chunk_root;
1184 path = btrfs_alloc_path();
1185 if (!path)
1186 return -ENOMEM;
1187
1188 key.objectid = chunk_objectid;
1189 key.offset = chunk_offset;
1190 key.type = BTRFS_CHUNK_ITEM_KEY;
1191
1192 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1193 BUG_ON(ret);
1194
1195 ret = btrfs_del_item(trans, root, path);
1196 BUG_ON(ret);
1197
1198 btrfs_free_path(path);
1199 return 0;
1200}
1201
1202int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1203 chunk_offset)
1204{
1205 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1206 struct btrfs_disk_key *disk_key;
1207 struct btrfs_chunk *chunk;
1208 u8 *ptr;
1209 int ret = 0;
1210 u32 num_stripes;
1211 u32 array_size;
1212 u32 len = 0;
1213 u32 cur;
1214 struct btrfs_key key;
1215
1216 array_size = btrfs_super_sys_array_size(super_copy);
1217
1218 ptr = super_copy->sys_chunk_array;
1219 cur = 0;
1220
1221 while (cur < array_size) {
1222 disk_key = (struct btrfs_disk_key *)ptr;
1223 btrfs_disk_key_to_cpu(&key, disk_key);
1224
1225 len = sizeof(*disk_key);
1226
1227 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1228 chunk = (struct btrfs_chunk *)(ptr + len);
1229 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1230 len += btrfs_chunk_item_size(num_stripes);
1231 } else {
1232 ret = -EIO;
1233 break;
1234 }
1235 if (key.objectid == chunk_objectid &&
1236 key.offset == chunk_offset) {
1237 memmove(ptr, ptr + len, array_size - (cur + len));
1238 array_size -= len;
1239 btrfs_set_super_sys_array_size(super_copy, array_size);
1240 } else {
1241 ptr += len;
1242 cur += len;
1243 }
1244 }
1245 return ret;
1246}
1247
1248
1249int btrfs_relocate_chunk(struct btrfs_root *root,
1250 u64 chunk_tree, u64 chunk_objectid,
1251 u64 chunk_offset)
1252{
1253 struct extent_map_tree *em_tree;
1254 struct btrfs_root *extent_root;
1255 struct btrfs_trans_handle *trans;
1256 struct extent_map *em;
1257 struct map_lookup *map;
1258 int ret;
1259 int i;
1260
323da79c
CM
1261 printk("btrfs relocating chunk %llu\n",
1262 (unsigned long long)chunk_offset);
8f18cf13
CM
1263 root = root->fs_info->chunk_root;
1264 extent_root = root->fs_info->extent_root;
1265 em_tree = &root->fs_info->mapping_tree.map_tree;
1266
1267 /* step one, relocate all the extents inside this chunk */
1268 ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
1269 BUG_ON(ret);
1270
1271 trans = btrfs_start_transaction(root, 1);
1272 BUG_ON(!trans);
1273
7d9eb12c
CM
1274 lock_chunks(root);
1275
8f18cf13
CM
1276 /*
1277 * step two, delete the device extents and the
1278 * chunk tree entries
1279 */
1280 spin_lock(&em_tree->lock);
1281 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1282 spin_unlock(&em_tree->lock);
1283
a061fc8d
CM
1284 BUG_ON(em->start > chunk_offset ||
1285 em->start + em->len < chunk_offset);
8f18cf13
CM
1286 map = (struct map_lookup *)em->bdev;
1287
1288 for (i = 0; i < map->num_stripes; i++) {
1289 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1290 map->stripes[i].physical);
1291 BUG_ON(ret);
a061fc8d 1292
dfe25020
CM
1293 if (map->stripes[i].dev) {
1294 ret = btrfs_update_device(trans, map->stripes[i].dev);
1295 BUG_ON(ret);
1296 }
8f18cf13
CM
1297 }
1298 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1299 chunk_offset);
1300
1301 BUG_ON(ret);
1302
1303 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1304 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1305 BUG_ON(ret);
8f18cf13
CM
1306 }
1307
8f18cf13
CM
1308 spin_lock(&em_tree->lock);
1309 remove_extent_mapping(em_tree, em);
1310 kfree(map);
1311 em->bdev = NULL;
1312
1313 /* once for the tree */
1314 free_extent_map(em);
1315 spin_unlock(&em_tree->lock);
1316
8f18cf13
CM
1317 /* once for us */
1318 free_extent_map(em);
1319
7d9eb12c 1320 unlock_chunks(root);
8f18cf13
CM
1321 btrfs_end_transaction(trans, root);
1322 return 0;
1323}
1324
ec44a35c
CM
1325static u64 div_factor(u64 num, int factor)
1326{
1327 if (factor == 10)
1328 return num;
1329 num *= factor;
1330 do_div(num, 10);
1331 return num;
1332}
1333
1334
1335int btrfs_balance(struct btrfs_root *dev_root)
1336{
1337 int ret;
1338 struct list_head *cur;
1339 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1340 struct btrfs_device *device;
1341 u64 old_size;
1342 u64 size_to_free;
1343 struct btrfs_path *path;
1344 struct btrfs_key key;
1345 struct btrfs_chunk *chunk;
1346 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1347 struct btrfs_trans_handle *trans;
1348 struct btrfs_key found_key;
1349
1350
7d9eb12c 1351 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1352 dev_root = dev_root->fs_info->dev_root;
1353
ec44a35c
CM
1354 /* step one make some room on all the devices */
1355 list_for_each(cur, devices) {
1356 device = list_entry(cur, struct btrfs_device, dev_list);
1357 old_size = device->total_bytes;
1358 size_to_free = div_factor(old_size, 1);
1359 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1360 if (device->total_bytes - device->bytes_used > size_to_free)
1361 continue;
1362
1363 ret = btrfs_shrink_device(device, old_size - size_to_free);
1364 BUG_ON(ret);
1365
1366 trans = btrfs_start_transaction(dev_root, 1);
1367 BUG_ON(!trans);
1368
1369 ret = btrfs_grow_device(trans, device, old_size);
1370 BUG_ON(ret);
1371
1372 btrfs_end_transaction(trans, dev_root);
1373 }
1374
1375 /* step two, relocate all the chunks */
1376 path = btrfs_alloc_path();
1377 BUG_ON(!path);
1378
1379 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1380 key.offset = (u64)-1;
1381 key.type = BTRFS_CHUNK_ITEM_KEY;
1382
1383 while(1) {
1384 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1385 if (ret < 0)
1386 goto error;
1387
1388 /*
1389 * this shouldn't happen, it means the last relocate
1390 * failed
1391 */
1392 if (ret == 0)
1393 break;
1394
1395 ret = btrfs_previous_item(chunk_root, path, 0,
1396 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 1397 if (ret)
ec44a35c 1398 break;
7d9eb12c 1399
ec44a35c
CM
1400 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1401 path->slots[0]);
1402 if (found_key.objectid != key.objectid)
1403 break;
7d9eb12c 1404
ec44a35c
CM
1405 chunk = btrfs_item_ptr(path->nodes[0],
1406 path->slots[0],
1407 struct btrfs_chunk);
1408 key.offset = found_key.offset;
1409 /* chunk zero is special */
1410 if (key.offset == 0)
1411 break;
1412
7d9eb12c 1413 btrfs_release_path(chunk_root, path);
ec44a35c
CM
1414 ret = btrfs_relocate_chunk(chunk_root,
1415 chunk_root->root_key.objectid,
1416 found_key.objectid,
1417 found_key.offset);
1418 BUG_ON(ret);
ec44a35c
CM
1419 }
1420 ret = 0;
1421error:
1422 btrfs_free_path(path);
7d9eb12c 1423 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1424 return ret;
1425}
1426
8f18cf13
CM
1427/*
1428 * shrinking a device means finding all of the device extents past
1429 * the new size, and then following the back refs to the chunks.
1430 * The chunk relocation code actually frees the device extent
1431 */
1432int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1433{
1434 struct btrfs_trans_handle *trans;
1435 struct btrfs_root *root = device->dev_root;
1436 struct btrfs_dev_extent *dev_extent = NULL;
1437 struct btrfs_path *path;
1438 u64 length;
1439 u64 chunk_tree;
1440 u64 chunk_objectid;
1441 u64 chunk_offset;
1442 int ret;
1443 int slot;
1444 struct extent_buffer *l;
1445 struct btrfs_key key;
1446 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1447 u64 old_total = btrfs_super_total_bytes(super_copy);
1448 u64 diff = device->total_bytes - new_size;
1449
1450
1451 path = btrfs_alloc_path();
1452 if (!path)
1453 return -ENOMEM;
1454
1455 trans = btrfs_start_transaction(root, 1);
1456 if (!trans) {
1457 ret = -ENOMEM;
1458 goto done;
1459 }
1460
1461 path->reada = 2;
1462
7d9eb12c
CM
1463 lock_chunks(root);
1464
8f18cf13
CM
1465 device->total_bytes = new_size;
1466 ret = btrfs_update_device(trans, device);
1467 if (ret) {
7d9eb12c 1468 unlock_chunks(root);
8f18cf13
CM
1469 btrfs_end_transaction(trans, root);
1470 goto done;
1471 }
1472 WARN_ON(diff > old_total);
1473 btrfs_set_super_total_bytes(super_copy, old_total - diff);
7d9eb12c 1474 unlock_chunks(root);
8f18cf13
CM
1475 btrfs_end_transaction(trans, root);
1476
1477 key.objectid = device->devid;
1478 key.offset = (u64)-1;
1479 key.type = BTRFS_DEV_EXTENT_KEY;
1480
1481 while (1) {
1482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1483 if (ret < 0)
1484 goto done;
1485
1486 ret = btrfs_previous_item(root, path, 0, key.type);
1487 if (ret < 0)
1488 goto done;
1489 if (ret) {
1490 ret = 0;
1491 goto done;
1492 }
1493
1494 l = path->nodes[0];
1495 slot = path->slots[0];
1496 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1497
1498 if (key.objectid != device->devid)
1499 goto done;
1500
1501 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1502 length = btrfs_dev_extent_length(l, dev_extent);
1503
1504 if (key.offset + length <= new_size)
1505 goto done;
1506
1507 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1508 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1509 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1510 btrfs_release_path(root, path);
1511
1512 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1513 chunk_offset);
1514 if (ret)
1515 goto done;
1516 }
1517
1518done:
1519 btrfs_free_path(path);
1520 return ret;
1521}
1522
0b86a832
CM
1523int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1524 struct btrfs_root *root,
1525 struct btrfs_key *key,
1526 struct btrfs_chunk *chunk, int item_size)
1527{
1528 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1529 struct btrfs_disk_key disk_key;
1530 u32 array_size;
1531 u8 *ptr;
1532
1533 array_size = btrfs_super_sys_array_size(super_copy);
1534 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1535 return -EFBIG;
1536
1537 ptr = super_copy->sys_chunk_array + array_size;
1538 btrfs_cpu_key_to_disk(&disk_key, key);
1539 memcpy(ptr, &disk_key, sizeof(disk_key));
1540 ptr += sizeof(disk_key);
1541 memcpy(ptr, chunk, item_size);
1542 item_size += sizeof(disk_key);
1543 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1544 return 0;
1545}
1546
9b3f68b9
CM
1547static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
1548 int sub_stripes)
1549{
1550 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1551 return calc_size;
1552 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1553 return calc_size * (num_stripes / sub_stripes);
1554 else
1555 return calc_size * num_stripes;
1556}
1557
1558
0b86a832
CM
1559int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1560 struct btrfs_root *extent_root, u64 *start,
6324fbf3 1561 u64 *num_bytes, u64 type)
0b86a832
CM
1562{
1563 u64 dev_offset;
593060d7 1564 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 1565 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
8f18cf13 1566 struct btrfs_path *path;
0b86a832
CM
1567 struct btrfs_stripe *stripes;
1568 struct btrfs_device *device = NULL;
1569 struct btrfs_chunk *chunk;
6324fbf3 1570 struct list_head private_devs;
b3075717 1571 struct list_head *dev_list;
6324fbf3 1572 struct list_head *cur;
0b86a832
CM
1573 struct extent_map_tree *em_tree;
1574 struct map_lookup *map;
1575 struct extent_map *em;
a40a90a0 1576 int min_stripe_size = 1 * 1024 * 1024;
0b86a832
CM
1577 u64 physical;
1578 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
1579 u64 max_chunk_size = calc_size;
1580 u64 min_free;
6324fbf3
CM
1581 u64 avail;
1582 u64 max_avail = 0;
9b3f68b9 1583 u64 percent_max;
6324fbf3 1584 int num_stripes = 1;
a40a90a0 1585 int min_stripes = 1;
321aecc6 1586 int sub_stripes = 0;
6324fbf3 1587 int looped = 0;
0b86a832 1588 int ret;
6324fbf3 1589 int index;
593060d7 1590 int stripe_len = 64 * 1024;
0b86a832
CM
1591 struct btrfs_key key;
1592
ec44a35c
CM
1593 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1594 (type & BTRFS_BLOCK_GROUP_DUP)) {
1595 WARN_ON(1);
1596 type &= ~BTRFS_BLOCK_GROUP_DUP;
1597 }
b3075717 1598 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
6324fbf3
CM
1599 if (list_empty(dev_list))
1600 return -ENOSPC;
593060d7 1601
a40a90a0 1602 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
0ef3e66b 1603 num_stripes = extent_root->fs_info->fs_devices->open_devices;
a40a90a0
CM
1604 min_stripes = 2;
1605 }
1606 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 1607 num_stripes = 2;
a40a90a0
CM
1608 min_stripes = 2;
1609 }
8790d502
CM
1610 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1611 num_stripes = min_t(u64, 2,
0ef3e66b 1612 extent_root->fs_info->fs_devices->open_devices);
9b3f68b9
CM
1613 if (num_stripes < 2)
1614 return -ENOSPC;
a40a90a0 1615 min_stripes = 2;
8790d502 1616 }
321aecc6 1617 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
0ef3e66b 1618 num_stripes = extent_root->fs_info->fs_devices->open_devices;
321aecc6
CM
1619 if (num_stripes < 4)
1620 return -ENOSPC;
1621 num_stripes &= ~(u32)1;
1622 sub_stripes = 2;
a40a90a0 1623 min_stripes = 4;
321aecc6 1624 }
9b3f68b9
CM
1625
1626 if (type & BTRFS_BLOCK_GROUP_DATA) {
1627 max_chunk_size = 10 * calc_size;
a40a90a0 1628 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
1629 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1630 max_chunk_size = 4 * calc_size;
a40a90a0
CM
1631 min_stripe_size = 32 * 1024 * 1024;
1632 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1633 calc_size = 8 * 1024 * 1024;
1634 max_chunk_size = calc_size * 2;
1635 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
1636 }
1637
8f18cf13
CM
1638 path = btrfs_alloc_path();
1639 if (!path)
1640 return -ENOMEM;
1641
9b3f68b9
CM
1642 /* we don't want a chunk larger than 10% of the FS */
1643 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1644 max_chunk_size = min(percent_max, max_chunk_size);
1645
a40a90a0 1646again:
9b3f68b9
CM
1647 if (calc_size * num_stripes > max_chunk_size) {
1648 calc_size = max_chunk_size;
1649 do_div(calc_size, num_stripes);
1650 do_div(calc_size, stripe_len);
1651 calc_size *= stripe_len;
1652 }
1653 /* we don't want tiny stripes */
a40a90a0 1654 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 1655
9b3f68b9
CM
1656 do_div(calc_size, stripe_len);
1657 calc_size *= stripe_len;
1658
6324fbf3
CM
1659 INIT_LIST_HEAD(&private_devs);
1660 cur = dev_list->next;
1661 index = 0;
611f0e00
CM
1662
1663 if (type & BTRFS_BLOCK_GROUP_DUP)
1664 min_free = calc_size * 2;
9b3f68b9
CM
1665 else
1666 min_free = calc_size;
611f0e00 1667
ad5bd91e
CM
1668 /* we add 1MB because we never use the first 1MB of the device */
1669 min_free += 1024 * 1024;
1670
6324fbf3
CM
1671 /* build a private list of devices we will allocate from */
1672 while(index < num_stripes) {
b3075717 1673 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00 1674
dfe25020
CM
1675 if (device->total_bytes > device->bytes_used)
1676 avail = device->total_bytes - device->bytes_used;
1677 else
1678 avail = 0;
6324fbf3 1679 cur = cur->next;
8f18cf13 1680
dfe25020 1681 if (device->in_fs_metadata && avail >= min_free) {
8f18cf13
CM
1682 u64 ignored_start = 0;
1683 ret = find_free_dev_extent(trans, device, path,
1684 min_free,
1685 &ignored_start);
1686 if (ret == 0) {
1687 list_move_tail(&device->dev_alloc_list,
1688 &private_devs);
611f0e00 1689 index++;
8f18cf13
CM
1690 if (type & BTRFS_BLOCK_GROUP_DUP)
1691 index++;
1692 }
dfe25020 1693 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 1694 max_avail = avail;
6324fbf3
CM
1695 if (cur == dev_list)
1696 break;
1697 }
1698 if (index < num_stripes) {
1699 list_splice(&private_devs, dev_list);
a40a90a0
CM
1700 if (index >= min_stripes) {
1701 num_stripes = index;
1702 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1703 num_stripes /= sub_stripes;
1704 num_stripes *= sub_stripes;
1705 }
1706 looped = 1;
1707 goto again;
1708 }
6324fbf3
CM
1709 if (!looped && max_avail > 0) {
1710 looped = 1;
1711 calc_size = max_avail;
1712 goto again;
1713 }
8f18cf13 1714 btrfs_free_path(path);
6324fbf3
CM
1715 return -ENOSPC;
1716 }
e17cade2
CM
1717 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1718 key.type = BTRFS_CHUNK_ITEM_KEY;
1719 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1720 &key.offset);
8f18cf13
CM
1721 if (ret) {
1722 btrfs_free_path(path);
0b86a832 1723 return ret;
8f18cf13 1724 }
0b86a832 1725
0b86a832 1726 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
8f18cf13
CM
1727 if (!chunk) {
1728 btrfs_free_path(path);
0b86a832 1729 return -ENOMEM;
8f18cf13 1730 }
0b86a832 1731
593060d7
CM
1732 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1733 if (!map) {
1734 kfree(chunk);
8f18cf13 1735 btrfs_free_path(path);
593060d7
CM
1736 return -ENOMEM;
1737 }
8f18cf13
CM
1738 btrfs_free_path(path);
1739 path = NULL;
593060d7 1740
0b86a832 1741 stripes = &chunk->stripe;
9b3f68b9
CM
1742 *num_bytes = chunk_bytes_by_type(type, calc_size,
1743 num_stripes, sub_stripes);
0b86a832 1744
6324fbf3 1745 index = 0;
0b86a832 1746 while(index < num_stripes) {
e17cade2 1747 struct btrfs_stripe *stripe;
6324fbf3
CM
1748 BUG_ON(list_empty(&private_devs));
1749 cur = private_devs.next;
b3075717 1750 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00
CM
1751
1752 /* loop over this device again if we're doing a dup group */
1753 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1754 (index == num_stripes - 1))
b3075717 1755 list_move_tail(&device->dev_alloc_list, dev_list);
0b86a832
CM
1756
1757 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
1758 info->chunk_root->root_key.objectid,
1759 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1760 calc_size, &dev_offset);
0b86a832 1761 BUG_ON(ret);
0b86a832
CM
1762 device->bytes_used += calc_size;
1763 ret = btrfs_update_device(trans, device);
1764 BUG_ON(ret);
1765
593060d7
CM
1766 map->stripes[index].dev = device;
1767 map->stripes[index].physical = dev_offset;
e17cade2
CM
1768 stripe = stripes + index;
1769 btrfs_set_stack_stripe_devid(stripe, device->devid);
1770 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1771 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
1772 physical = dev_offset;
1773 index++;
1774 }
6324fbf3 1775 BUG_ON(!list_empty(&private_devs));
0b86a832 1776
e17cade2
CM
1777 /* key was set above */
1778 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 1779 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 1780 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
1781 btrfs_set_stack_chunk_type(chunk, type);
1782 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
1783 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1784 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 1785 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
321aecc6 1786 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
593060d7
CM
1787 map->sector_size = extent_root->sectorsize;
1788 map->stripe_len = stripe_len;
1789 map->io_align = stripe_len;
1790 map->io_width = stripe_len;
1791 map->type = type;
1792 map->num_stripes = num_stripes;
321aecc6 1793 map->sub_stripes = sub_stripes;
0b86a832
CM
1794
1795 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1796 btrfs_chunk_item_size(num_stripes));
1797 BUG_ON(ret);
e17cade2 1798 *start = key.offset;;
0b86a832
CM
1799
1800 em = alloc_extent_map(GFP_NOFS);
1801 if (!em)
1802 return -ENOMEM;
0b86a832 1803 em->bdev = (struct block_device *)map;
e17cade2
CM
1804 em->start = key.offset;
1805 em->len = *num_bytes;
0b86a832
CM
1806 em->block_start = 0;
1807
8f18cf13
CM
1808 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1809 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1810 chunk, btrfs_chunk_item_size(num_stripes));
1811 BUG_ON(ret);
1812 }
0b86a832
CM
1813 kfree(chunk);
1814
1815 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1816 spin_lock(&em_tree->lock);
1817 ret = add_extent_mapping(em_tree, em);
0b86a832 1818 spin_unlock(&em_tree->lock);
b248a415 1819 BUG_ON(ret);
0b86a832
CM
1820 free_extent_map(em);
1821 return ret;
1822}
1823
1824void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1825{
1826 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1827}
1828
1829void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1830{
1831 struct extent_map *em;
1832
1833 while(1) {
1834 spin_lock(&tree->map_tree.lock);
1835 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1836 if (em)
1837 remove_extent_mapping(&tree->map_tree, em);
1838 spin_unlock(&tree->map_tree.lock);
1839 if (!em)
1840 break;
1841 kfree(em->bdev);
1842 /* once for us */
1843 free_extent_map(em);
1844 /* once for the tree */
1845 free_extent_map(em);
1846 }
1847}
1848
f188591e
CM
1849int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1850{
1851 struct extent_map *em;
1852 struct map_lookup *map;
1853 struct extent_map_tree *em_tree = &map_tree->map_tree;
1854 int ret;
1855
1856 spin_lock(&em_tree->lock);
1857 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 1858 spin_unlock(&em_tree->lock);
f188591e
CM
1859 BUG_ON(!em);
1860
1861 BUG_ON(em->start > logical || em->start + em->len < logical);
1862 map = (struct map_lookup *)em->bdev;
1863 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1864 ret = map->num_stripes;
321aecc6
CM
1865 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1866 ret = map->sub_stripes;
f188591e
CM
1867 else
1868 ret = 1;
1869 free_extent_map(em);
f188591e
CM
1870 return ret;
1871}
1872
dfe25020
CM
1873static int find_live_mirror(struct map_lookup *map, int first, int num,
1874 int optimal)
1875{
1876 int i;
1877 if (map->stripes[optimal].dev->bdev)
1878 return optimal;
1879 for (i = first; i < first + num; i++) {
1880 if (map->stripes[i].dev->bdev)
1881 return i;
1882 }
1883 /* we couldn't find one that doesn't fail. Just return something
1884 * and the io error handling code will clean up eventually
1885 */
1886 return optimal;
1887}
1888
f2d8d74d
CM
1889static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1890 u64 logical, u64 *length,
1891 struct btrfs_multi_bio **multi_ret,
1892 int mirror_num, struct page *unplug_page)
0b86a832
CM
1893{
1894 struct extent_map *em;
1895 struct map_lookup *map;
1896 struct extent_map_tree *em_tree = &map_tree->map_tree;
1897 u64 offset;
593060d7
CM
1898 u64 stripe_offset;
1899 u64 stripe_nr;
cea9e445 1900 int stripes_allocated = 8;
321aecc6 1901 int stripes_required = 1;
593060d7 1902 int stripe_index;
cea9e445 1903 int i;
f2d8d74d 1904 int num_stripes;
a236aed1 1905 int max_errors = 0;
cea9e445 1906 struct btrfs_multi_bio *multi = NULL;
0b86a832 1907
cea9e445
CM
1908 if (multi_ret && !(rw & (1 << BIO_RW))) {
1909 stripes_allocated = 1;
1910 }
1911again:
1912 if (multi_ret) {
1913 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1914 GFP_NOFS);
1915 if (!multi)
1916 return -ENOMEM;
a236aed1
CM
1917
1918 atomic_set(&multi->error, 0);
cea9e445 1919 }
0b86a832
CM
1920
1921 spin_lock(&em_tree->lock);
1922 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 1923 spin_unlock(&em_tree->lock);
f2d8d74d
CM
1924
1925 if (!em && unplug_page)
1926 return 0;
1927
3b951516 1928 if (!em) {
a061fc8d 1929 printk("unable to find logical %Lu len %Lu\n", logical, *length);
f2d8d74d 1930 BUG();
3b951516 1931 }
0b86a832
CM
1932
1933 BUG_ON(em->start > logical || em->start + em->len < logical);
1934 map = (struct map_lookup *)em->bdev;
1935 offset = logical - em->start;
593060d7 1936
f188591e
CM
1937 if (mirror_num > map->num_stripes)
1938 mirror_num = 0;
1939
cea9e445 1940 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
1941 if (rw & (1 << BIO_RW)) {
1942 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1943 BTRFS_BLOCK_GROUP_DUP)) {
1944 stripes_required = map->num_stripes;
a236aed1 1945 max_errors = 1;
321aecc6
CM
1946 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1947 stripes_required = map->sub_stripes;
a236aed1 1948 max_errors = 1;
321aecc6
CM
1949 }
1950 }
1951 if (multi_ret && rw == WRITE &&
1952 stripes_allocated < stripes_required) {
cea9e445 1953 stripes_allocated = map->num_stripes;
cea9e445
CM
1954 free_extent_map(em);
1955 kfree(multi);
1956 goto again;
1957 }
593060d7
CM
1958 stripe_nr = offset;
1959 /*
1960 * stripe_nr counts the total number of stripes we have to stride
1961 * to get to this block
1962 */
1963 do_div(stripe_nr, map->stripe_len);
1964
1965 stripe_offset = stripe_nr * map->stripe_len;
1966 BUG_ON(offset < stripe_offset);
1967
1968 /* stripe_offset is the offset of this block in its stripe*/
1969 stripe_offset = offset - stripe_offset;
1970
cea9e445 1971 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 1972 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
1973 BTRFS_BLOCK_GROUP_DUP)) {
1974 /* we limit the length of each bio to what fits in a stripe */
1975 *length = min_t(u64, em->len - offset,
1976 map->stripe_len - stripe_offset);
1977 } else {
1978 *length = em->len - offset;
1979 }
f2d8d74d
CM
1980
1981 if (!multi_ret && !unplug_page)
cea9e445
CM
1982 goto out;
1983
f2d8d74d 1984 num_stripes = 1;
cea9e445 1985 stripe_index = 0;
8790d502 1986 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
1987 if (unplug_page || (rw & (1 << BIO_RW)))
1988 num_stripes = map->num_stripes;
2fff734f 1989 else if (mirror_num)
f188591e 1990 stripe_index = mirror_num - 1;
dfe25020
CM
1991 else {
1992 stripe_index = find_live_mirror(map, 0,
1993 map->num_stripes,
1994 current->pid % map->num_stripes);
1995 }
2fff734f 1996
611f0e00 1997 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 1998 if (rw & (1 << BIO_RW))
f2d8d74d 1999 num_stripes = map->num_stripes;
f188591e
CM
2000 else if (mirror_num)
2001 stripe_index = mirror_num - 1;
2fff734f 2002
321aecc6
CM
2003 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2004 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
2005
2006 stripe_index = do_div(stripe_nr, factor);
2007 stripe_index *= map->sub_stripes;
2008
f2d8d74d
CM
2009 if (unplug_page || (rw & (1 << BIO_RW)))
2010 num_stripes = map->sub_stripes;
321aecc6
CM
2011 else if (mirror_num)
2012 stripe_index += mirror_num - 1;
dfe25020
CM
2013 else {
2014 stripe_index = find_live_mirror(map, stripe_index,
2015 map->sub_stripes, stripe_index +
2016 current->pid % map->sub_stripes);
2017 }
8790d502
CM
2018 } else {
2019 /*
2020 * after this do_div call, stripe_nr is the number of stripes
2021 * on this device we have to walk to find the data, and
2022 * stripe_index is the number of our device in the stripe array
2023 */
2024 stripe_index = do_div(stripe_nr, map->num_stripes);
2025 }
593060d7 2026 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2027
f2d8d74d
CM
2028 for (i = 0; i < num_stripes; i++) {
2029 if (unplug_page) {
2030 struct btrfs_device *device;
2031 struct backing_dev_info *bdi;
2032
2033 device = map->stripes[stripe_index].dev;
dfe25020
CM
2034 if (device->bdev) {
2035 bdi = blk_get_backing_dev_info(device->bdev);
2036 if (bdi->unplug_io_fn) {
2037 bdi->unplug_io_fn(bdi, unplug_page);
2038 }
f2d8d74d
CM
2039 }
2040 } else {
2041 multi->stripes[i].physical =
2042 map->stripes[stripe_index].physical +
2043 stripe_offset + stripe_nr * map->stripe_len;
2044 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2045 }
cea9e445 2046 stripe_index++;
593060d7 2047 }
f2d8d74d
CM
2048 if (multi_ret) {
2049 *multi_ret = multi;
2050 multi->num_stripes = num_stripes;
a236aed1 2051 multi->max_errors = max_errors;
f2d8d74d 2052 }
cea9e445 2053out:
0b86a832 2054 free_extent_map(em);
0b86a832
CM
2055 return 0;
2056}
2057
f2d8d74d
CM
2058int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2059 u64 logical, u64 *length,
2060 struct btrfs_multi_bio **multi_ret, int mirror_num)
2061{
2062 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2063 mirror_num, NULL);
2064}
2065
2066int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2067 u64 logical, struct page *page)
2068{
2069 u64 length = PAGE_CACHE_SIZE;
2070 return __btrfs_map_block(map_tree, READ, logical, &length,
2071 NULL, 0, page);
2072}
2073
2074
8790d502
CM
2075#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
2076static void end_bio_multi_stripe(struct bio *bio, int err)
2077#else
2078static int end_bio_multi_stripe(struct bio *bio,
2079 unsigned int bytes_done, int err)
2080#endif
2081{
cea9e445 2082 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 2083 int is_orig_bio = 0;
8790d502
CM
2084
2085#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2086 if (bio->bi_size)
2087 return 1;
2088#endif
2089 if (err)
a236aed1 2090 atomic_inc(&multi->error);
8790d502 2091
7d2b4daa
CM
2092 if (bio == multi->orig_bio)
2093 is_orig_bio = 1;
2094
cea9e445 2095 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
2096 if (!is_orig_bio) {
2097 bio_put(bio);
2098 bio = multi->orig_bio;
2099 }
8790d502
CM
2100 bio->bi_private = multi->private;
2101 bio->bi_end_io = multi->end_io;
a236aed1
CM
2102 /* only send an error to the higher layers if it is
2103 * beyond the tolerance of the multi-bio
2104 */
1259ab75 2105 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2106 err = -EIO;
1259ab75
CM
2107 } else if (err) {
2108 /*
2109 * this bio is actually up to date, we didn't
2110 * go over the max number of errors
2111 */
2112 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2113 err = 0;
1259ab75 2114 }
8790d502
CM
2115 kfree(multi);
2116
73f61b2a
M
2117#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2118 bio_endio(bio, bio->bi_size, err);
2119#else
8790d502 2120 bio_endio(bio, err);
73f61b2a 2121#endif
7d2b4daa 2122 } else if (!is_orig_bio) {
8790d502
CM
2123 bio_put(bio);
2124 }
2125#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2126 return 0;
2127#endif
2128}
2129
8b712842
CM
2130struct async_sched {
2131 struct bio *bio;
2132 int rw;
2133 struct btrfs_fs_info *info;
2134 struct btrfs_work work;
2135};
2136
2137/*
2138 * see run_scheduled_bios for a description of why bios are collected for
2139 * async submit.
2140 *
2141 * This will add one bio to the pending list for a device and make sure
2142 * the work struct is scheduled.
2143 */
2144int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
2145 int rw, struct bio *bio)
2146{
2147 int should_queue = 1;
2148
2149 /* don't bother with additional async steps for reads, right now */
2150 if (!(rw & (1 << BIO_RW))) {
492bb6de 2151 bio_get(bio);
8b712842 2152 submit_bio(rw, bio);
492bb6de 2153 bio_put(bio);
8b712842
CM
2154 return 0;
2155 }
2156
2157 /*
0986fe9e 2158 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
2159 * higher layers. Otherwise, the async bio makes it appear we have
2160 * made progress against dirty pages when we've really just put it
2161 * on a queue for later
2162 */
0986fe9e 2163 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 2164 WARN_ON(bio->bi_next);
8b712842
CM
2165 bio->bi_next = NULL;
2166 bio->bi_rw |= rw;
2167
2168 spin_lock(&device->io_lock);
2169
2170 if (device->pending_bio_tail)
2171 device->pending_bio_tail->bi_next = bio;
2172
2173 device->pending_bio_tail = bio;
2174 if (!device->pending_bios)
2175 device->pending_bios = bio;
2176 if (device->running_pending)
2177 should_queue = 0;
2178
2179 spin_unlock(&device->io_lock);
2180
2181 if (should_queue)
1cc127b5
CM
2182 btrfs_queue_worker(&root->fs_info->submit_workers,
2183 &device->work);
8b712842
CM
2184 return 0;
2185}
2186
f188591e 2187int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 2188 int mirror_num, int async_submit)
0b86a832
CM
2189{
2190 struct btrfs_mapping_tree *map_tree;
2191 struct btrfs_device *dev;
8790d502 2192 struct bio *first_bio = bio;
0b86a832 2193 u64 logical = bio->bi_sector << 9;
0b86a832
CM
2194 u64 length = 0;
2195 u64 map_length;
cea9e445 2196 struct btrfs_multi_bio *multi = NULL;
0b86a832 2197 int ret;
8790d502
CM
2198 int dev_nr = 0;
2199 int total_devs = 1;
0b86a832 2200
f2d8d74d 2201 length = bio->bi_size;
0b86a832
CM
2202 map_tree = &root->fs_info->mapping_tree;
2203 map_length = length;
cea9e445 2204
f188591e
CM
2205 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2206 mirror_num);
cea9e445
CM
2207 BUG_ON(ret);
2208
2209 total_devs = multi->num_stripes;
2210 if (map_length < length) {
2211 printk("mapping failed logical %Lu bio len %Lu "
2212 "len %Lu\n", logical, length, map_length);
2213 BUG();
2214 }
2215 multi->end_io = first_bio->bi_end_io;
2216 multi->private = first_bio->bi_private;
7d2b4daa 2217 multi->orig_bio = first_bio;
cea9e445
CM
2218 atomic_set(&multi->stripes_pending, multi->num_stripes);
2219
8790d502 2220 while(dev_nr < total_devs) {
8790d502 2221 if (total_devs > 1) {
8790d502
CM
2222 if (dev_nr < total_devs - 1) {
2223 bio = bio_clone(first_bio, GFP_NOFS);
2224 BUG_ON(!bio);
2225 } else {
2226 bio = first_bio;
2227 }
2228 bio->bi_private = multi;
2229 bio->bi_end_io = end_bio_multi_stripe;
2230 }
cea9e445
CM
2231 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2232 dev = multi->stripes[dev_nr].dev;
dfe25020
CM
2233 if (dev && dev->bdev) {
2234 bio->bi_bdev = dev->bdev;
8b712842
CM
2235 if (async_submit)
2236 schedule_bio(root, dev, rw, bio);
2237 else
2238 submit_bio(rw, bio);
dfe25020
CM
2239 } else {
2240 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2241 bio->bi_sector = logical >> 9;
2242#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2243 bio_endio(bio, bio->bi_size, -EIO);
2244#else
2245 bio_endio(bio, -EIO);
2246#endif
2247 }
8790d502
CM
2248 dev_nr++;
2249 }
cea9e445
CM
2250 if (total_devs == 1)
2251 kfree(multi);
0b86a832
CM
2252 return 0;
2253}
2254
a443755f
CM
2255struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2256 u8 *uuid)
0b86a832 2257{
8a4b83cc 2258 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 2259
a443755f 2260 return __find_device(head, devid, uuid);
0b86a832
CM
2261}
2262
dfe25020
CM
2263static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2264 u64 devid, u8 *dev_uuid)
2265{
2266 struct btrfs_device *device;
2267 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2268
2269 device = kzalloc(sizeof(*device), GFP_NOFS);
2270 list_add(&device->dev_list,
2271 &fs_devices->devices);
2272 list_add(&device->dev_alloc_list,
2273 &fs_devices->alloc_list);
2274 device->barriers = 1;
2275 device->dev_root = root->fs_info->dev_root;
2276 device->devid = devid;
8b712842 2277 device->work.func = pending_bios_fn;
dfe25020
CM
2278 fs_devices->num_devices++;
2279 spin_lock_init(&device->io_lock);
2280 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2281 return device;
2282}
2283
2284
0b86a832
CM
2285static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2286 struct extent_buffer *leaf,
2287 struct btrfs_chunk *chunk)
2288{
2289 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2290 struct map_lookup *map;
2291 struct extent_map *em;
2292 u64 logical;
2293 u64 length;
2294 u64 devid;
a443755f 2295 u8 uuid[BTRFS_UUID_SIZE];
593060d7 2296 int num_stripes;
0b86a832 2297 int ret;
593060d7 2298 int i;
0b86a832 2299
e17cade2
CM
2300 logical = key->offset;
2301 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 2302
0b86a832
CM
2303 spin_lock(&map_tree->map_tree.lock);
2304 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 2305 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
2306
2307 /* already mapped? */
2308 if (em && em->start <= logical && em->start + em->len > logical) {
2309 free_extent_map(em);
0b86a832
CM
2310 return 0;
2311 } else if (em) {
2312 free_extent_map(em);
2313 }
0b86a832
CM
2314
2315 map = kzalloc(sizeof(*map), GFP_NOFS);
2316 if (!map)
2317 return -ENOMEM;
2318
2319 em = alloc_extent_map(GFP_NOFS);
2320 if (!em)
2321 return -ENOMEM;
593060d7
CM
2322 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2323 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
2324 if (!map) {
2325 free_extent_map(em);
2326 return -ENOMEM;
2327 }
2328
2329 em->bdev = (struct block_device *)map;
2330 em->start = logical;
2331 em->len = length;
2332 em->block_start = 0;
2333
593060d7
CM
2334 map->num_stripes = num_stripes;
2335 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2336 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2337 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2338 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2339 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 2340 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
2341 for (i = 0; i < num_stripes; i++) {
2342 map->stripes[i].physical =
2343 btrfs_stripe_offset_nr(leaf, chunk, i);
2344 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
2345 read_extent_buffer(leaf, uuid, (unsigned long)
2346 btrfs_stripe_dev_uuid_nr(chunk, i),
2347 BTRFS_UUID_SIZE);
2348 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
dfe25020
CM
2349
2350 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
2351 kfree(map);
2352 free_extent_map(em);
2353 return -EIO;
2354 }
dfe25020
CM
2355 if (!map->stripes[i].dev) {
2356 map->stripes[i].dev =
2357 add_missing_dev(root, devid, uuid);
2358 if (!map->stripes[i].dev) {
2359 kfree(map);
2360 free_extent_map(em);
2361 return -EIO;
2362 }
2363 }
2364 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
2365 }
2366
2367 spin_lock(&map_tree->map_tree.lock);
2368 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 2369 spin_unlock(&map_tree->map_tree.lock);
b248a415 2370 BUG_ON(ret);
0b86a832
CM
2371 free_extent_map(em);
2372
2373 return 0;
2374}
2375
2376static int fill_device_from_item(struct extent_buffer *leaf,
2377 struct btrfs_dev_item *dev_item,
2378 struct btrfs_device *device)
2379{
2380 unsigned long ptr;
0b86a832
CM
2381
2382 device->devid = btrfs_device_id(leaf, dev_item);
2383 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2384 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2385 device->type = btrfs_device_type(leaf, dev_item);
2386 device->io_align = btrfs_device_io_align(leaf, dev_item);
2387 device->io_width = btrfs_device_io_width(leaf, dev_item);
2388 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
2389
2390 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 2391 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 2392
0b86a832
CM
2393 return 0;
2394}
2395
0d81ba5d 2396static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
2397 struct extent_buffer *leaf,
2398 struct btrfs_dev_item *dev_item)
2399{
2400 struct btrfs_device *device;
2401 u64 devid;
2402 int ret;
a443755f
CM
2403 u8 dev_uuid[BTRFS_UUID_SIZE];
2404
0b86a832 2405 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
2406 read_extent_buffer(leaf, dev_uuid,
2407 (unsigned long)btrfs_device_uuid(dev_item),
2408 BTRFS_UUID_SIZE);
2409 device = btrfs_find_device(root, devid, dev_uuid);
6324fbf3 2410 if (!device) {
dfe25020
CM
2411 printk("warning devid %Lu missing\n", devid);
2412 device = add_missing_dev(root, devid, dev_uuid);
6324fbf3
CM
2413 if (!device)
2414 return -ENOMEM;
6324fbf3 2415 }
0b86a832
CM
2416
2417 fill_device_from_item(leaf, dev_item, device);
2418 device->dev_root = root->fs_info->dev_root;
dfe25020 2419 device->in_fs_metadata = 1;
0b86a832
CM
2420 ret = 0;
2421#if 0
2422 ret = btrfs_open_device(device);
2423 if (ret) {
2424 kfree(device);
2425 }
2426#endif
2427 return ret;
2428}
2429
0d81ba5d
CM
2430int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2431{
2432 struct btrfs_dev_item *dev_item;
2433
2434 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2435 dev_item);
2436 return read_one_dev(root, buf, dev_item);
2437}
2438
0b86a832
CM
2439int btrfs_read_sys_array(struct btrfs_root *root)
2440{
2441 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 2442 struct extent_buffer *sb;
0b86a832 2443 struct btrfs_disk_key *disk_key;
0b86a832 2444 struct btrfs_chunk *chunk;
84eed90f
CM
2445 u8 *ptr;
2446 unsigned long sb_ptr;
2447 int ret = 0;
0b86a832
CM
2448 u32 num_stripes;
2449 u32 array_size;
2450 u32 len = 0;
0b86a832 2451 u32 cur;
84eed90f 2452 struct btrfs_key key;
0b86a832 2453
a061fc8d
CM
2454 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2455 BTRFS_SUPER_INFO_SIZE);
2456 if (!sb)
2457 return -ENOMEM;
2458 btrfs_set_buffer_uptodate(sb);
2459 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
2460 array_size = btrfs_super_sys_array_size(super_copy);
2461
0b86a832
CM
2462 ptr = super_copy->sys_chunk_array;
2463 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2464 cur = 0;
2465
2466 while (cur < array_size) {
2467 disk_key = (struct btrfs_disk_key *)ptr;
2468 btrfs_disk_key_to_cpu(&key, disk_key);
2469
a061fc8d 2470 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
2471 sb_ptr += len;
2472 cur += len;
2473
0d81ba5d 2474 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 2475 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 2476 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
2477 if (ret)
2478 break;
0b86a832
CM
2479 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2480 len = btrfs_chunk_item_size(num_stripes);
2481 } else {
84eed90f
CM
2482 ret = -EIO;
2483 break;
0b86a832
CM
2484 }
2485 ptr += len;
2486 sb_ptr += len;
2487 cur += len;
2488 }
a061fc8d 2489 free_extent_buffer(sb);
84eed90f 2490 return ret;
0b86a832
CM
2491}
2492
2493int btrfs_read_chunk_tree(struct btrfs_root *root)
2494{
2495 struct btrfs_path *path;
2496 struct extent_buffer *leaf;
2497 struct btrfs_key key;
2498 struct btrfs_key found_key;
2499 int ret;
2500 int slot;
2501
2502 root = root->fs_info->chunk_root;
2503
2504 path = btrfs_alloc_path();
2505 if (!path)
2506 return -ENOMEM;
2507
2508 /* first we search for all of the device items, and then we
2509 * read in all of the chunk items. This way we can create chunk
2510 * mappings that reference all of the devices that are afound
2511 */
2512 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2513 key.offset = 0;
2514 key.type = 0;
2515again:
2516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2517 while(1) {
2518 leaf = path->nodes[0];
2519 slot = path->slots[0];
2520 if (slot >= btrfs_header_nritems(leaf)) {
2521 ret = btrfs_next_leaf(root, path);
2522 if (ret == 0)
2523 continue;
2524 if (ret < 0)
2525 goto error;
2526 break;
2527 }
2528 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2529 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2530 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2531 break;
2532 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2533 struct btrfs_dev_item *dev_item;
2534 dev_item = btrfs_item_ptr(leaf, slot,
2535 struct btrfs_dev_item);
0d81ba5d 2536 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
2537 BUG_ON(ret);
2538 }
2539 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2540 struct btrfs_chunk *chunk;
2541 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2542 ret = read_one_chunk(root, &found_key, leaf, chunk);
2543 }
2544 path->slots[0]++;
2545 }
2546 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2547 key.objectid = 0;
2548 btrfs_release_path(root, path);
2549 goto again;
2550 }
2551
2552 btrfs_free_path(path);
2553 ret = 0;
2554error:
2555 return ret;
2556}