]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
btrfs: simplify btrfs_wait_cache_io prototype
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c
YZ
136static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 143
67a2c45e 144DEFINE_MUTEX(uuid_mutex);
8a4b83cc 145static LIST_HEAD(fs_uuids);
c73eccf7
AJ
146struct list_head *btrfs_get_fs_uuids(void)
147{
148 return &fs_uuids;
149}
8a4b83cc 150
2208a378
ID
151static struct btrfs_fs_devices *__alloc_fs_devices(void)
152{
153 struct btrfs_fs_devices *fs_devs;
154
78f2c9e6 155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 162 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167}
168
169/**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179{
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192}
193
e4404d6e
YZ
194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195{
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
606686ee 202 rcu_string_free(device->name);
e4404d6e
YZ
203 kfree(device);
204 }
205 kfree(fs_devices);
206}
207
b8b8ff59
LC
208static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210{
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
efe120a0 215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219}
220
143bede5 221void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
222{
223 struct btrfs_fs_devices *fs_devices;
8a4b83cc 224
2b82032c
YZ
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
e4404d6e 229 free_fs_devices(fs_devices);
8a4b83cc 230 }
8a4b83cc
CM
231}
232
12bd2fc0
ID
233static struct btrfs_device *__alloc_device(void)
234{
235 struct btrfs_device *dev;
236
78f2c9e6 237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
d0164adc
MG
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
a1b32a59
CM
257static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
8a4b83cc
CM
259{
260 struct btrfs_device *dev;
8a4b83cc 261
c6e30871 262 list_for_each_entry(dev, head, dev_list) {
a443755f 263 if (dev->devid == devid &&
8f18cf13 264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 265 return dev;
a443755f 266 }
8a4b83cc
CM
267 }
268 return NULL;
269}
270
a1b32a59 271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 272{
8a4b83cc
CM
273 struct btrfs_fs_devices *fs_devices;
274
c6e30871 275 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280}
281
beaf8ab3
SB
282static int
283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286{
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
beaf8ab3
SB
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
beaf8ab3
SB
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317}
318
ffbd517d
CM
319static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321{
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331}
332
8b712842
CM
333/*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
143bede5 344static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 345{
0b246afa 346 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
347 struct bio *pending;
348 struct backing_dev_info *bdi;
ffbd517d 349 struct btrfs_pending_bios *pending_bios;
8b712842
CM
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
ffbd517d 353 unsigned long num_run;
d644d8a1 354 unsigned long batch_run = 0;
b64a2851 355 unsigned long limit;
b765ead5 356 unsigned long last_waited = 0;
d84275c9 357 int force_reg = 0;
0e588859 358 int sync_pending = 0;
211588ad
CM
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
8b712842 368
bedf762b 369 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
370 limit = btrfs_async_submit_limit(fs_info);
371 limit = limit * 2 / 3;
372
8b712842
CM
373loop:
374 spin_lock(&device->io_lock);
375
a6837051 376loop_lock:
d84275c9 377 num_run = 0;
ffbd517d 378
8b712842
CM
379 /* take all the bios off the list at once and process them
380 * later on (without the lock held). But, remember the
381 * tail and other pointers so the bios can be properly reinserted
382 * into the list if we hit congestion
383 */
d84275c9 384 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 385 pending_bios = &device->pending_sync_bios;
d84275c9
CM
386 force_reg = 1;
387 } else {
ffbd517d 388 pending_bios = &device->pending_bios;
d84275c9
CM
389 force_reg = 0;
390 }
ffbd517d
CM
391
392 pending = pending_bios->head;
393 tail = pending_bios->tail;
8b712842 394 WARN_ON(pending && !tail);
8b712842
CM
395
396 /*
397 * if pending was null this time around, no bios need processing
398 * at all and we can stop. Otherwise it'll loop back up again
399 * and do an additional check so no bios are missed.
400 *
401 * device->running_pending is used to synchronize with the
402 * schedule_bio code.
403 */
ffbd517d
CM
404 if (device->pending_sync_bios.head == NULL &&
405 device->pending_bios.head == NULL) {
8b712842
CM
406 again = 0;
407 device->running_pending = 0;
ffbd517d
CM
408 } else {
409 again = 1;
410 device->running_pending = 1;
8b712842 411 }
ffbd517d
CM
412
413 pending_bios->head = NULL;
414 pending_bios->tail = NULL;
415
8b712842
CM
416 spin_unlock(&device->io_lock);
417
d397712b 418 while (pending) {
ffbd517d
CM
419
420 rmb();
d84275c9
CM
421 /* we want to work on both lists, but do more bios on the
422 * sync list than the regular list
423 */
424 if ((num_run > 32 &&
425 pending_bios != &device->pending_sync_bios &&
426 device->pending_sync_bios.head) ||
427 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
428 device->pending_bios.head)) {
ffbd517d
CM
429 spin_lock(&device->io_lock);
430 requeue_list(pending_bios, pending, tail);
431 goto loop_lock;
432 }
433
8b712842
CM
434 cur = pending;
435 pending = pending->bi_next;
436 cur->bi_next = NULL;
b64a2851 437
ee863954
DS
438 /*
439 * atomic_dec_return implies a barrier for waitqueue_active
440 */
66657b31 441 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
442 waitqueue_active(&fs_info->async_submit_wait))
443 wake_up(&fs_info->async_submit_wait);
492bb6de 444
dac56212 445 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 446
2ab1ba68
CM
447 /*
448 * if we're doing the sync list, record that our
449 * plug has some sync requests on it
450 *
451 * If we're doing the regular list and there are
452 * sync requests sitting around, unplug before
453 * we add more
454 */
455 if (pending_bios == &device->pending_sync_bios) {
456 sync_pending = 1;
457 } else if (sync_pending) {
458 blk_finish_plug(&plug);
459 blk_start_plug(&plug);
460 sync_pending = 0;
461 }
462
4e49ea4a 463 btrfsic_submit_bio(cur);
5ff7ba3a
CM
464 num_run++;
465 batch_run++;
853d8ec4
DS
466
467 cond_resched();
8b712842
CM
468
469 /*
470 * we made progress, there is more work to do and the bdi
471 * is now congested. Back off and let other work structs
472 * run instead
473 */
57fd5a5f 474 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 475 fs_info->fs_devices->open_devices > 1) {
b765ead5 476 struct io_context *ioc;
8b712842 477
b765ead5
CM
478 ioc = current->io_context;
479
480 /*
481 * the main goal here is that we don't want to
482 * block if we're going to be able to submit
483 * more requests without blocking.
484 *
485 * This code does two great things, it pokes into
486 * the elevator code from a filesystem _and_
487 * it makes assumptions about how batching works.
488 */
489 if (ioc && ioc->nr_batch_requests > 0 &&
490 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
491 (last_waited == 0 ||
492 ioc->last_waited == last_waited)) {
493 /*
494 * we want to go through our batch of
495 * requests and stop. So, we copy out
496 * the ioc->last_waited time and test
497 * against it before looping
498 */
499 last_waited = ioc->last_waited;
853d8ec4 500 cond_resched();
b765ead5
CM
501 continue;
502 }
8b712842 503 spin_lock(&device->io_lock);
ffbd517d 504 requeue_list(pending_bios, pending, tail);
a6837051 505 device->running_pending = 1;
8b712842
CM
506
507 spin_unlock(&device->io_lock);
a8c93d4e
QW
508 btrfs_queue_work(fs_info->submit_workers,
509 &device->work);
8b712842
CM
510 goto done;
511 }
d85c8a6f
CM
512 /* unplug every 64 requests just for good measure */
513 if (batch_run % 64 == 0) {
514 blk_finish_plug(&plug);
515 blk_start_plug(&plug);
516 sync_pending = 0;
517 }
8b712842 518 }
ffbd517d 519
51684082
CM
520 cond_resched();
521 if (again)
522 goto loop;
523
524 spin_lock(&device->io_lock);
525 if (device->pending_bios.head || device->pending_sync_bios.head)
526 goto loop_lock;
527 spin_unlock(&device->io_lock);
528
8b712842 529done:
211588ad 530 blk_finish_plug(&plug);
8b712842
CM
531}
532
b2950863 533static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
534{
535 struct btrfs_device *device;
536
537 device = container_of(work, struct btrfs_device, work);
538 run_scheduled_bios(device);
539}
540
4fde46f0
AJ
541
542void btrfs_free_stale_device(struct btrfs_device *cur_dev)
543{
544 struct btrfs_fs_devices *fs_devs;
545 struct btrfs_device *dev;
546
547 if (!cur_dev->name)
548 return;
549
550 list_for_each_entry(fs_devs, &fs_uuids, list) {
551 int del = 1;
552
553 if (fs_devs->opened)
554 continue;
555 if (fs_devs->seeding)
556 continue;
557
558 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
559
560 if (dev == cur_dev)
561 continue;
562 if (!dev->name)
563 continue;
564
565 /*
566 * Todo: This won't be enough. What if the same device
567 * comes back (with new uuid and) with its mapper path?
568 * But for now, this does help as mostly an admin will
569 * either use mapper or non mapper path throughout.
570 */
571 rcu_read_lock();
572 del = strcmp(rcu_str_deref(dev->name),
573 rcu_str_deref(cur_dev->name));
574 rcu_read_unlock();
575 if (!del)
576 break;
577 }
578
579 if (!del) {
580 /* delete the stale device */
581 if (fs_devs->num_devices == 1) {
582 btrfs_sysfs_remove_fsid(fs_devs);
583 list_del(&fs_devs->list);
584 free_fs_devices(fs_devs);
585 } else {
586 fs_devs->num_devices--;
587 list_del(&dev->dev_list);
588 rcu_string_free(dev->name);
589 kfree(dev);
590 }
591 break;
592 }
593 }
594}
595
60999ca4
DS
596/*
597 * Add new device to list of registered devices
598 *
599 * Returns:
600 * 1 - first time device is seen
601 * 0 - device already known
602 * < 0 - error
603 */
a1b32a59 604static noinline int device_list_add(const char *path,
8a4b83cc
CM
605 struct btrfs_super_block *disk_super,
606 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
607{
608 struct btrfs_device *device;
609 struct btrfs_fs_devices *fs_devices;
606686ee 610 struct rcu_string *name;
60999ca4 611 int ret = 0;
8a4b83cc
CM
612 u64 found_transid = btrfs_super_generation(disk_super);
613
614 fs_devices = find_fsid(disk_super->fsid);
615 if (!fs_devices) {
2208a378
ID
616 fs_devices = alloc_fs_devices(disk_super->fsid);
617 if (IS_ERR(fs_devices))
618 return PTR_ERR(fs_devices);
619
8a4b83cc 620 list_add(&fs_devices->list, &fs_uuids);
2208a378 621
8a4b83cc
CM
622 device = NULL;
623 } else {
a443755f
CM
624 device = __find_device(&fs_devices->devices, devid,
625 disk_super->dev_item.uuid);
8a4b83cc 626 }
443f24fe 627
8a4b83cc 628 if (!device) {
2b82032c
YZ
629 if (fs_devices->opened)
630 return -EBUSY;
631
12bd2fc0
ID
632 device = btrfs_alloc_device(NULL, &devid,
633 disk_super->dev_item.uuid);
634 if (IS_ERR(device)) {
8a4b83cc 635 /* we can safely leave the fs_devices entry around */
12bd2fc0 636 return PTR_ERR(device);
8a4b83cc 637 }
606686ee
JB
638
639 name = rcu_string_strdup(path, GFP_NOFS);
640 if (!name) {
8a4b83cc
CM
641 kfree(device);
642 return -ENOMEM;
643 }
606686ee 644 rcu_assign_pointer(device->name, name);
90519d66 645
e5e9a520 646 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 647 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 648 fs_devices->num_devices++;
e5e9a520
CM
649 mutex_unlock(&fs_devices->device_list_mutex);
650
60999ca4 651 ret = 1;
2b82032c 652 device->fs_devices = fs_devices;
606686ee 653 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
654 /*
655 * When FS is already mounted.
656 * 1. If you are here and if the device->name is NULL that
657 * means this device was missing at time of FS mount.
658 * 2. If you are here and if the device->name is different
659 * from 'path' that means either
660 * a. The same device disappeared and reappeared with
661 * different name. or
662 * b. The missing-disk-which-was-replaced, has
663 * reappeared now.
664 *
665 * We must allow 1 and 2a above. But 2b would be a spurious
666 * and unintentional.
667 *
668 * Further in case of 1 and 2a above, the disk at 'path'
669 * would have missed some transaction when it was away and
670 * in case of 2a the stale bdev has to be updated as well.
671 * 2b must not be allowed at all time.
672 */
673
674 /*
0f23ae74
CM
675 * For now, we do allow update to btrfs_fs_device through the
676 * btrfs dev scan cli after FS has been mounted. We're still
677 * tracking a problem where systems fail mount by subvolume id
678 * when we reject replacement on a mounted FS.
b96de000 679 */
0f23ae74 680 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
681 /*
682 * That is if the FS is _not_ mounted and if you
683 * are here, that means there is more than one
684 * disk with same uuid and devid.We keep the one
685 * with larger generation number or the last-in if
686 * generation are equal.
687 */
0f23ae74 688 return -EEXIST;
77bdae4d 689 }
b96de000 690
606686ee 691 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
692 if (!name)
693 return -ENOMEM;
606686ee
JB
694 rcu_string_free(device->name);
695 rcu_assign_pointer(device->name, name);
cd02dca5
CM
696 if (device->missing) {
697 fs_devices->missing_devices--;
698 device->missing = 0;
699 }
8a4b83cc
CM
700 }
701
77bdae4d
AJ
702 /*
703 * Unmount does not free the btrfs_device struct but would zero
704 * generation along with most of the other members. So just update
705 * it back. We need it to pick the disk with largest generation
706 * (as above).
707 */
708 if (!fs_devices->opened)
709 device->generation = found_transid;
710
4fde46f0
AJ
711 /*
712 * if there is new btrfs on an already registered device,
713 * then remove the stale device entry.
714 */
02feae3c
AJ
715 if (ret > 0)
716 btrfs_free_stale_device(device);
4fde46f0 717
8a4b83cc 718 *fs_devices_ret = fs_devices;
60999ca4
DS
719
720 return ret;
8a4b83cc
CM
721}
722
e4404d6e
YZ
723static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
724{
725 struct btrfs_fs_devices *fs_devices;
726 struct btrfs_device *device;
727 struct btrfs_device *orig_dev;
728
2208a378
ID
729 fs_devices = alloc_fs_devices(orig->fsid);
730 if (IS_ERR(fs_devices))
731 return fs_devices;
e4404d6e 732
adbbb863 733 mutex_lock(&orig->device_list_mutex);
02db0844 734 fs_devices->total_devices = orig->total_devices;
e4404d6e 735
46224705 736 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 737 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
738 struct rcu_string *name;
739
12bd2fc0
ID
740 device = btrfs_alloc_device(NULL, &orig_dev->devid,
741 orig_dev->uuid);
742 if (IS_ERR(device))
e4404d6e
YZ
743 goto error;
744
606686ee
JB
745 /*
746 * This is ok to do without rcu read locked because we hold the
747 * uuid mutex so nothing we touch in here is going to disappear.
748 */
e755f780 749 if (orig_dev->name) {
78f2c9e6
DS
750 name = rcu_string_strdup(orig_dev->name->str,
751 GFP_KERNEL);
e755f780
AJ
752 if (!name) {
753 kfree(device);
754 goto error;
755 }
756 rcu_assign_pointer(device->name, name);
fd2696f3 757 }
e4404d6e 758
e4404d6e
YZ
759 list_add(&device->dev_list, &fs_devices->devices);
760 device->fs_devices = fs_devices;
761 fs_devices->num_devices++;
762 }
adbbb863 763 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
764 return fs_devices;
765error:
adbbb863 766 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
767 free_fs_devices(fs_devices);
768 return ERR_PTR(-ENOMEM);
769}
770
9eaed21e 771void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 772{
c6e30871 773 struct btrfs_device *device, *next;
443f24fe 774 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 775
dfe25020
CM
776 mutex_lock(&uuid_mutex);
777again:
46224705 778 /* This is the initialized path, it is safe to release the devices. */
c6e30871 779 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 780 if (device->in_fs_metadata) {
63a212ab 781 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
782 (!latest_dev ||
783 device->generation > latest_dev->generation)) {
784 latest_dev = device;
a6b0d5c8 785 }
2b82032c 786 continue;
a6b0d5c8 787 }
2b82032c 788
8dabb742
SB
789 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
790 /*
791 * In the first step, keep the device which has
792 * the correct fsid and the devid that is used
793 * for the dev_replace procedure.
794 * In the second step, the dev_replace state is
795 * read from the device tree and it is known
796 * whether the procedure is really active or
797 * not, which means whether this device is
798 * used or whether it should be removed.
799 */
800 if (step == 0 || device->is_tgtdev_for_dev_replace) {
801 continue;
802 }
803 }
2b82032c 804 if (device->bdev) {
d4d77629 805 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
806 device->bdev = NULL;
807 fs_devices->open_devices--;
808 }
809 if (device->writeable) {
810 list_del_init(&device->dev_alloc_list);
811 device->writeable = 0;
8dabb742
SB
812 if (!device->is_tgtdev_for_dev_replace)
813 fs_devices->rw_devices--;
2b82032c 814 }
e4404d6e
YZ
815 list_del_init(&device->dev_list);
816 fs_devices->num_devices--;
606686ee 817 rcu_string_free(device->name);
e4404d6e 818 kfree(device);
dfe25020 819 }
2b82032c
YZ
820
821 if (fs_devices->seed) {
822 fs_devices = fs_devices->seed;
2b82032c
YZ
823 goto again;
824 }
825
443f24fe 826 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 827
dfe25020 828 mutex_unlock(&uuid_mutex);
dfe25020 829}
a0af469b 830
1f78160c
XG
831static void __free_device(struct work_struct *work)
832{
833 struct btrfs_device *device;
834
835 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 836 rcu_string_free(device->name);
1f78160c
XG
837 kfree(device);
838}
839
840static void free_device(struct rcu_head *head)
841{
842 struct btrfs_device *device;
843
844 device = container_of(head, struct btrfs_device, rcu);
845
846 INIT_WORK(&device->rcu_work, __free_device);
847 schedule_work(&device->rcu_work);
848}
849
14238819
AJ
850static void btrfs_close_bdev(struct btrfs_device *device)
851{
852 if (device->bdev && device->writeable) {
853 sync_blockdev(device->bdev);
854 invalidate_bdev(device->bdev);
855 }
856
857 if (device->bdev)
858 blkdev_put(device->bdev, device->mode);
859}
860
0ccd0528 861static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
862{
863 struct btrfs_fs_devices *fs_devices = device->fs_devices;
864 struct btrfs_device *new_device;
865 struct rcu_string *name;
866
867 if (device->bdev)
868 fs_devices->open_devices--;
869
870 if (device->writeable &&
871 device->devid != BTRFS_DEV_REPLACE_DEVID) {
872 list_del_init(&device->dev_alloc_list);
873 fs_devices->rw_devices--;
874 }
875
876 if (device->missing)
877 fs_devices->missing_devices--;
878
879 new_device = btrfs_alloc_device(NULL, &device->devid,
880 device->uuid);
881 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
882
883 /* Safe because we are under uuid_mutex */
884 if (device->name) {
885 name = rcu_string_strdup(device->name->str, GFP_NOFS);
886 BUG_ON(!name); /* -ENOMEM */
887 rcu_assign_pointer(new_device->name, name);
888 }
889
890 list_replace_rcu(&device->dev_list, &new_device->dev_list);
891 new_device->fs_devices = device->fs_devices;
f448341a
AJ
892}
893
2b82032c 894static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 895{
2037a093 896 struct btrfs_device *device, *tmp;
0ccd0528
AJ
897 struct list_head pending_put;
898
899 INIT_LIST_HEAD(&pending_put);
e4404d6e 900
2b82032c
YZ
901 if (--fs_devices->opened > 0)
902 return 0;
8a4b83cc 903
c9513edb 904 mutex_lock(&fs_devices->device_list_mutex);
2037a093 905 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
906 btrfs_prepare_close_one_device(device);
907 list_add(&device->dev_list, &pending_put);
8a4b83cc 908 }
c9513edb
XG
909 mutex_unlock(&fs_devices->device_list_mutex);
910
0ccd0528
AJ
911 /*
912 * btrfs_show_devname() is using the device_list_mutex,
913 * sometimes call to blkdev_put() leads vfs calling
914 * into this func. So do put outside of device_list_mutex,
915 * as of now.
916 */
917 while (!list_empty(&pending_put)) {
918 device = list_first_entry(&pending_put,
919 struct btrfs_device, dev_list);
920 list_del(&device->dev_list);
921 btrfs_close_bdev(device);
922 call_rcu(&device->rcu, free_device);
923 }
924
e4404d6e
YZ
925 WARN_ON(fs_devices->open_devices);
926 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
927 fs_devices->opened = 0;
928 fs_devices->seeding = 0;
2b82032c 929
8a4b83cc
CM
930 return 0;
931}
932
2b82032c
YZ
933int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
934{
e4404d6e 935 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
936 int ret;
937
938 mutex_lock(&uuid_mutex);
939 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
940 if (!fs_devices->opened) {
941 seed_devices = fs_devices->seed;
942 fs_devices->seed = NULL;
943 }
2b82032c 944 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
945
946 while (seed_devices) {
947 fs_devices = seed_devices;
948 seed_devices = fs_devices->seed;
949 __btrfs_close_devices(fs_devices);
950 free_fs_devices(fs_devices);
951 }
bc178622
ES
952 /*
953 * Wait for rcu kworkers under __btrfs_close_devices
954 * to finish all blkdev_puts so device is really
955 * free when umount is done.
956 */
957 rcu_barrier();
2b82032c
YZ
958 return ret;
959}
960
e4404d6e
YZ
961static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
962 fmode_t flags, void *holder)
8a4b83cc 963{
d5e2003c 964 struct request_queue *q;
8a4b83cc
CM
965 struct block_device *bdev;
966 struct list_head *head = &fs_devices->devices;
8a4b83cc 967 struct btrfs_device *device;
443f24fe 968 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
969 struct buffer_head *bh;
970 struct btrfs_super_block *disk_super;
a0af469b 971 u64 devid;
2b82032c 972 int seeding = 1;
a0af469b 973 int ret = 0;
8a4b83cc 974
d4d77629
TH
975 flags |= FMODE_EXCL;
976
c6e30871 977 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
978 if (device->bdev)
979 continue;
dfe25020
CM
980 if (!device->name)
981 continue;
982
f63e0cca
ES
983 /* Just open everything we can; ignore failures here */
984 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
985 &bdev, &bh))
beaf8ab3 986 continue;
a0af469b
CM
987
988 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 989 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
990 if (devid != device->devid)
991 goto error_brelse;
992
2b82032c
YZ
993 if (memcmp(device->uuid, disk_super->dev_item.uuid,
994 BTRFS_UUID_SIZE))
995 goto error_brelse;
996
997 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
998 if (!latest_dev ||
999 device->generation > latest_dev->generation)
1000 latest_dev = device;
a0af469b 1001
2b82032c
YZ
1002 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1003 device->writeable = 0;
1004 } else {
1005 device->writeable = !bdev_read_only(bdev);
1006 seeding = 0;
1007 }
1008
d5e2003c 1009 q = bdev_get_queue(bdev);
90180da4 1010 if (blk_queue_discard(q))
d5e2003c 1011 device->can_discard = 1;
d5e2003c 1012
8a4b83cc 1013 device->bdev = bdev;
dfe25020 1014 device->in_fs_metadata = 0;
15916de8
CM
1015 device->mode = flags;
1016
c289811c
CM
1017 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1018 fs_devices->rotating = 1;
1019
a0af469b 1020 fs_devices->open_devices++;
55e50e45
ID
1021 if (device->writeable &&
1022 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1023 fs_devices->rw_devices++;
1024 list_add(&device->dev_alloc_list,
1025 &fs_devices->alloc_list);
1026 }
4f6c9328 1027 brelse(bh);
a0af469b 1028 continue;
a061fc8d 1029
a0af469b
CM
1030error_brelse:
1031 brelse(bh);
d4d77629 1032 blkdev_put(bdev, flags);
a0af469b 1033 continue;
8a4b83cc 1034 }
a0af469b 1035 if (fs_devices->open_devices == 0) {
20bcd649 1036 ret = -EINVAL;
a0af469b
CM
1037 goto out;
1038 }
2b82032c
YZ
1039 fs_devices->seeding = seeding;
1040 fs_devices->opened = 1;
443f24fe 1041 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1042 fs_devices->total_rw_bytes = 0;
a0af469b 1043out:
2b82032c
YZ
1044 return ret;
1045}
1046
1047int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1048 fmode_t flags, void *holder)
2b82032c
YZ
1049{
1050 int ret;
1051
1052 mutex_lock(&uuid_mutex);
1053 if (fs_devices->opened) {
e4404d6e
YZ
1054 fs_devices->opened++;
1055 ret = 0;
2b82032c 1056 } else {
15916de8 1057 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1058 }
8a4b83cc 1059 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1060 return ret;
1061}
1062
6cf86a00
AJ
1063void btrfs_release_disk_super(struct page *page)
1064{
1065 kunmap(page);
1066 put_page(page);
1067}
1068
1069int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1070 struct page **page, struct btrfs_super_block **disk_super)
1071{
1072 void *p;
1073 pgoff_t index;
1074
1075 /* make sure our super fits in the device */
1076 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1077 return 1;
1078
1079 /* make sure our super fits in the page */
1080 if (sizeof(**disk_super) > PAGE_SIZE)
1081 return 1;
1082
1083 /* make sure our super doesn't straddle pages on disk */
1084 index = bytenr >> PAGE_SHIFT;
1085 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1086 return 1;
1087
1088 /* pull in the page with our super */
1089 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1090 index, GFP_KERNEL);
1091
1092 if (IS_ERR_OR_NULL(*page))
1093 return 1;
1094
1095 p = kmap(*page);
1096
1097 /* align our pointer to the offset of the super block */
1098 *disk_super = p + (bytenr & ~PAGE_MASK);
1099
1100 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1101 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1102 btrfs_release_disk_super(*page);
1103 return 1;
1104 }
1105
1106 if ((*disk_super)->label[0] &&
1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1108 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1109
1110 return 0;
1111}
1112
6f60cbd3
DS
1113/*
1114 * Look for a btrfs signature on a device. This may be called out of the mount path
1115 * and we are not allowed to call set_blocksize during the scan. The superblock
1116 * is read via pagecache
1117 */
97288f2c 1118int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1119 struct btrfs_fs_devices **fs_devices_ret)
1120{
1121 struct btrfs_super_block *disk_super;
1122 struct block_device *bdev;
6f60cbd3 1123 struct page *page;
6f60cbd3 1124 int ret = -EINVAL;
8a4b83cc 1125 u64 devid;
f2984462 1126 u64 transid;
02db0844 1127 u64 total_devices;
6f60cbd3 1128 u64 bytenr;
8a4b83cc 1129
6f60cbd3
DS
1130 /*
1131 * we would like to check all the supers, but that would make
1132 * a btrfs mount succeed after a mkfs from a different FS.
1133 * So, we need to add a special mount option to scan for
1134 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1135 */
1136 bytenr = btrfs_sb_offset(0);
d4d77629 1137 flags |= FMODE_EXCL;
10f6327b 1138 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1139
1140 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1141 if (IS_ERR(bdev)) {
1142 ret = PTR_ERR(bdev);
beaf8ab3 1143 goto error;
6f60cbd3
DS
1144 }
1145
6cf86a00 1146 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1147 goto error_bdev_put;
1148
a343832f 1149 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1150 transid = btrfs_super_generation(disk_super);
02db0844 1151 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1152
8a4b83cc 1153 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1154 if (ret > 0) {
1155 if (disk_super->label[0]) {
62e85577 1156 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1157 } else {
62e85577 1158 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1159 }
1160
62e85577 1161 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1162 ret = 0;
1163 }
02db0844
JB
1164 if (!ret && fs_devices_ret)
1165 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1166
6cf86a00 1167 btrfs_release_disk_super(page);
6f60cbd3
DS
1168
1169error_bdev_put:
d4d77629 1170 blkdev_put(bdev, flags);
8a4b83cc 1171error:
beaf8ab3 1172 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1173 return ret;
1174}
0b86a832 1175
6d07bcec
MX
1176/* helper to account the used device space in the range */
1177int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1178 u64 end, u64 *length)
1179{
1180 struct btrfs_key key;
fb456252 1181 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1182 struct btrfs_dev_extent *dev_extent;
1183 struct btrfs_path *path;
1184 u64 extent_end;
1185 int ret;
1186 int slot;
1187 struct extent_buffer *l;
1188
1189 *length = 0;
1190
63a212ab 1191 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1192 return 0;
1193
1194 path = btrfs_alloc_path();
1195 if (!path)
1196 return -ENOMEM;
e4058b54 1197 path->reada = READA_FORWARD;
6d07bcec
MX
1198
1199 key.objectid = device->devid;
1200 key.offset = start;
1201 key.type = BTRFS_DEV_EXTENT_KEY;
1202
1203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1204 if (ret < 0)
1205 goto out;
1206 if (ret > 0) {
1207 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1208 if (ret < 0)
1209 goto out;
1210 }
1211
1212 while (1) {
1213 l = path->nodes[0];
1214 slot = path->slots[0];
1215 if (slot >= btrfs_header_nritems(l)) {
1216 ret = btrfs_next_leaf(root, path);
1217 if (ret == 0)
1218 continue;
1219 if (ret < 0)
1220 goto out;
1221
1222 break;
1223 }
1224 btrfs_item_key_to_cpu(l, &key, slot);
1225
1226 if (key.objectid < device->devid)
1227 goto next;
1228
1229 if (key.objectid > device->devid)
1230 break;
1231
962a298f 1232 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1233 goto next;
1234
1235 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1236 extent_end = key.offset + btrfs_dev_extent_length(l,
1237 dev_extent);
1238 if (key.offset <= start && extent_end > end) {
1239 *length = end - start + 1;
1240 break;
1241 } else if (key.offset <= start && extent_end > start)
1242 *length += extent_end - start;
1243 else if (key.offset > start && extent_end <= end)
1244 *length += extent_end - key.offset;
1245 else if (key.offset > start && key.offset <= end) {
1246 *length += end - key.offset + 1;
1247 break;
1248 } else if (key.offset > end)
1249 break;
1250
1251next:
1252 path->slots[0]++;
1253 }
1254 ret = 0;
1255out:
1256 btrfs_free_path(path);
1257 return ret;
1258}
1259
499f377f 1260static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1261 struct btrfs_device *device,
1262 u64 *start, u64 len)
1263{
fb456252 1264 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1265 struct extent_map *em;
499f377f 1266 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1267 int ret = 0;
1b984508 1268 u64 physical_start = *start;
6df9a95e 1269
499f377f
JM
1270 if (transaction)
1271 search_list = &transaction->pending_chunks;
04216820
FM
1272again:
1273 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1274 struct map_lookup *map;
1275 int i;
1276
95617d69 1277 map = em->map_lookup;
6df9a95e 1278 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1279 u64 end;
1280
6df9a95e
JB
1281 if (map->stripes[i].dev != device)
1282 continue;
1b984508 1283 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1284 map->stripes[i].physical + em->orig_block_len <=
1b984508 1285 physical_start)
6df9a95e 1286 continue;
c152b63e
FM
1287 /*
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1297 * pending chunk.
1298 */
1299 end = map->stripes[i].physical + em->orig_block_len;
1300 if (end > *start) {
1301 *start = end;
1302 ret = 1;
1303 }
6df9a95e
JB
1304 }
1305 }
499f377f
JM
1306 if (search_list != &fs_info->pinned_chunks) {
1307 search_list = &fs_info->pinned_chunks;
04216820
FM
1308 goto again;
1309 }
6df9a95e
JB
1310
1311 return ret;
1312}
1313
1314
0b86a832 1315/*
499f377f
JM
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
7bfc837d 1323 *
0b86a832
CM
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1326 * of extents
7bfc837d
MX
1327 *
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1331 *
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
0b86a832 1335 */
499f377f
JM
1336int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 struct btrfs_device *device, u64 num_bytes,
1338 u64 search_start, u64 *start, u64 *len)
0b86a832 1339{
0b246afa
JM
1340 struct btrfs_fs_info *fs_info = device->fs_info;
1341 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1342 struct btrfs_key key;
7bfc837d 1343 struct btrfs_dev_extent *dev_extent;
2b82032c 1344 struct btrfs_path *path;
7bfc837d
MX
1345 u64 hole_size;
1346 u64 max_hole_start;
1347 u64 max_hole_size;
1348 u64 extent_end;
0b86a832
CM
1349 u64 search_end = device->total_bytes;
1350 int ret;
7bfc837d 1351 int slot;
0b86a832 1352 struct extent_buffer *l;
8cdc7c5b
FM
1353 u64 min_search_start;
1354
1355 /*
1356 * We don't want to overwrite the superblock on the drive nor any area
1357 * used by the boot loader (grub for example), so we make sure to start
1358 * at an offset of at least 1MB.
1359 */
0b246afa 1360 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
8cdc7c5b 1361 search_start = max(search_start, min_search_start);
0b86a832 1362
6df9a95e
JB
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
f2ab7618 1366
7bfc837d
MX
1367 max_hole_start = search_start;
1368 max_hole_size = 0;
1369
f2ab7618 1370again:
63a212ab 1371 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1372 ret = -ENOSPC;
6df9a95e 1373 goto out;
7bfc837d
MX
1374 }
1375
e4058b54 1376 path->reada = READA_FORWARD;
6df9a95e
JB
1377 path->search_commit_root = 1;
1378 path->skip_locking = 1;
7bfc837d 1379
0b86a832
CM
1380 key.objectid = device->devid;
1381 key.offset = search_start;
1382 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1383
125ccb0a 1384 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1385 if (ret < 0)
7bfc837d 1386 goto out;
1fcbac58
YZ
1387 if (ret > 0) {
1388 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389 if (ret < 0)
7bfc837d 1390 goto out;
1fcbac58 1391 }
7bfc837d 1392
0b86a832
CM
1393 while (1) {
1394 l = path->nodes[0];
1395 slot = path->slots[0];
1396 if (slot >= btrfs_header_nritems(l)) {
1397 ret = btrfs_next_leaf(root, path);
1398 if (ret == 0)
1399 continue;
1400 if (ret < 0)
7bfc837d
MX
1401 goto out;
1402
1403 break;
0b86a832
CM
1404 }
1405 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407 if (key.objectid < device->devid)
1408 goto next;
1409
1410 if (key.objectid > device->devid)
7bfc837d 1411 break;
0b86a832 1412
962a298f 1413 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1414 goto next;
9779b72f 1415
7bfc837d
MX
1416 if (key.offset > search_start) {
1417 hole_size = key.offset - search_start;
9779b72f 1418
6df9a95e
JB
1419 /*
1420 * Have to check before we set max_hole_start, otherwise
1421 * we could end up sending back this offset anyway.
1422 */
499f377f 1423 if (contains_pending_extent(transaction, device,
6df9a95e 1424 &search_start,
1b984508
FL
1425 hole_size)) {
1426 if (key.offset >= search_start) {
1427 hole_size = key.offset - search_start;
1428 } else {
1429 WARN_ON_ONCE(1);
1430 hole_size = 0;
1431 }
1432 }
6df9a95e 1433
7bfc837d
MX
1434 if (hole_size > max_hole_size) {
1435 max_hole_start = search_start;
1436 max_hole_size = hole_size;
1437 }
9779b72f 1438
7bfc837d
MX
1439 /*
1440 * If this free space is greater than which we need,
1441 * it must be the max free space that we have found
1442 * until now, so max_hole_start must point to the start
1443 * of this free space and the length of this free space
1444 * is stored in max_hole_size. Thus, we return
1445 * max_hole_start and max_hole_size and go back to the
1446 * caller.
1447 */
1448 if (hole_size >= num_bytes) {
1449 ret = 0;
1450 goto out;
0b86a832
CM
1451 }
1452 }
0b86a832 1453
0b86a832 1454 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1455 extent_end = key.offset + btrfs_dev_extent_length(l,
1456 dev_extent);
1457 if (extent_end > search_start)
1458 search_start = extent_end;
0b86a832
CM
1459next:
1460 path->slots[0]++;
1461 cond_resched();
1462 }
0b86a832 1463
38c01b96 1464 /*
1465 * At this point, search_start should be the end of
1466 * allocated dev extents, and when shrinking the device,
1467 * search_end may be smaller than search_start.
1468 */
f2ab7618 1469 if (search_end > search_start) {
38c01b96 1470 hole_size = search_end - search_start;
1471
499f377f 1472 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1473 hole_size)) {
1474 btrfs_release_path(path);
1475 goto again;
1476 }
0b86a832 1477
f2ab7618
ZL
1478 if (hole_size > max_hole_size) {
1479 max_hole_start = search_start;
1480 max_hole_size = hole_size;
1481 }
6df9a95e
JB
1482 }
1483
7bfc837d 1484 /* See above. */
f2ab7618 1485 if (max_hole_size < num_bytes)
7bfc837d
MX
1486 ret = -ENOSPC;
1487 else
1488 ret = 0;
1489
1490out:
2b82032c 1491 btrfs_free_path(path);
7bfc837d 1492 *start = max_hole_start;
b2117a39 1493 if (len)
7bfc837d 1494 *len = max_hole_size;
0b86a832
CM
1495 return ret;
1496}
1497
499f377f
JM
1498int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device, u64 num_bytes,
1500 u64 *start, u64 *len)
1501{
499f377f 1502 /* FIXME use last free of some kind */
499f377f 1503 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1504 num_bytes, 0, start, len);
499f377f
JM
1505}
1506
b2950863 1507static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1508 struct btrfs_device *device,
2196d6e8 1509 u64 start, u64 *dev_extent_len)
8f18cf13 1510{
0b246afa
JM
1511 struct btrfs_fs_info *fs_info = device->fs_info;
1512 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1513 int ret;
1514 struct btrfs_path *path;
8f18cf13 1515 struct btrfs_key key;
a061fc8d
CM
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 key.objectid = device->devid;
1525 key.offset = start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1527again:
8f18cf13 1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1529 if (ret > 0) {
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1532 if (ret)
1533 goto out;
a061fc8d
CM
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1540 key = found_key;
1541 btrfs_release_path(path);
1542 goto again;
a061fc8d
CM
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
79787eaa 1547 } else {
0b246afa 1548 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1549 goto out;
a061fc8d 1550 }
8f18cf13 1551
2196d6e8
MX
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553
8f18cf13 1554 ret = btrfs_del_item(trans, root, path);
79787eaa 1555 if (ret) {
0b246afa
JM
1556 btrfs_handle_fs_error(fs_info, ret,
1557 "Failed to remove dev extent item");
13212b54 1558 } else {
3204d33c 1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1560 }
b0b802d7 1561out:
8f18cf13
CM
1562 btrfs_free_path(path);
1563 return ret;
1564}
1565
48a3b636
ES
1566static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_tree, u64 chunk_objectid,
1569 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1570{
1571 int ret;
1572 struct btrfs_path *path;
0b246afa
JM
1573 struct btrfs_fs_info *fs_info = device->fs_info;
1574 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1575 struct btrfs_dev_extent *extent;
1576 struct extent_buffer *leaf;
1577 struct btrfs_key key;
1578
dfe25020 1579 WARN_ON(!device->in_fs_metadata);
63a212ab 1580 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return -ENOMEM;
1584
0b86a832 1585 key.objectid = device->devid;
2b82032c 1586 key.offset = start;
0b86a832
CM
1587 key.type = BTRFS_DEV_EXTENT_KEY;
1588 ret = btrfs_insert_empty_item(trans, root, path, &key,
1589 sizeof(*extent));
2cdcecbc
MF
1590 if (ret)
1591 goto out;
0b86a832
CM
1592
1593 leaf = path->nodes[0];
1594 extent = btrfs_item_ptr(leaf, path->slots[0],
1595 struct btrfs_dev_extent);
e17cade2
CM
1596 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1597 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1598 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
0b246afa 1600 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
e17cade2 1601
0b86a832
CM
1602 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1604out:
0b86a832
CM
1605 btrfs_free_path(path);
1606 return ret;
1607}
1608
6df9a95e 1609static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1610{
6df9a95e
JB
1611 struct extent_map_tree *em_tree;
1612 struct extent_map *em;
1613 struct rb_node *n;
1614 u64 ret = 0;
0b86a832 1615
6df9a95e
JB
1616 em_tree = &fs_info->mapping_tree.map_tree;
1617 read_lock(&em_tree->lock);
1618 n = rb_last(&em_tree->map);
1619 if (n) {
1620 em = rb_entry(n, struct extent_map, rb_node);
1621 ret = em->start + em->len;
0b86a832 1622 }
6df9a95e
JB
1623 read_unlock(&em_tree->lock);
1624
0b86a832
CM
1625 return ret;
1626}
1627
53f10659
ID
1628static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1629 u64 *devid_ret)
0b86a832
CM
1630{
1631 int ret;
1632 struct btrfs_key key;
1633 struct btrfs_key found_key;
2b82032c
YZ
1634 struct btrfs_path *path;
1635
2b82032c
YZ
1636 path = btrfs_alloc_path();
1637 if (!path)
1638 return -ENOMEM;
0b86a832
CM
1639
1640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 key.type = BTRFS_DEV_ITEM_KEY;
1642 key.offset = (u64)-1;
1643
53f10659 1644 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1645 if (ret < 0)
1646 goto error;
1647
79787eaa 1648 BUG_ON(ret == 0); /* Corruption */
0b86a832 1649
53f10659
ID
1650 ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1652 BTRFS_DEV_ITEM_KEY);
1653 if (ret) {
53f10659 1654 *devid_ret = 1;
0b86a832
CM
1655 } else {
1656 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1657 path->slots[0]);
53f10659 1658 *devid_ret = found_key.offset + 1;
0b86a832
CM
1659 }
1660 ret = 0;
1661error:
2b82032c 1662 btrfs_free_path(path);
0b86a832
CM
1663 return ret;
1664}
1665
1666/*
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1669 */
48a3b636 1670static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1671 struct btrfs_fs_info *fs_info,
48a3b636 1672 struct btrfs_device *device)
0b86a832 1673{
5b4aacef 1674 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1675 int ret;
1676 struct btrfs_path *path;
1677 struct btrfs_dev_item *dev_item;
1678 struct extent_buffer *leaf;
1679 struct btrfs_key key;
1680 unsigned long ptr;
0b86a832 1681
0b86a832
CM
1682 path = btrfs_alloc_path();
1683 if (!path)
1684 return -ENOMEM;
1685
0b86a832
CM
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1688 key.offset = device->devid;
0b86a832
CM
1689
1690 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1691 sizeof(*dev_item));
0b86a832
CM
1692 if (ret)
1693 goto out;
1694
1695 leaf = path->nodes[0];
1696 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1699 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1700 btrfs_set_device_type(leaf, dev_item, device->type);
1701 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1704 btrfs_set_device_total_bytes(leaf, dev_item,
1705 btrfs_device_get_disk_total_bytes(device));
1706 btrfs_set_device_bytes_used(leaf, dev_item,
1707 btrfs_device_get_bytes_used(device));
e17cade2
CM
1708 btrfs_set_device_group(leaf, dev_item, 0);
1709 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1711 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1712
410ba3a2 1713 ptr = btrfs_device_uuid(dev_item);
e17cade2 1714 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1715 ptr = btrfs_device_fsid(dev_item);
0b246afa 1716 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1717 btrfs_mark_buffer_dirty(leaf);
0b86a832 1718
2b82032c 1719 ret = 0;
0b86a832
CM
1720out:
1721 btrfs_free_path(path);
1722 return ret;
1723}
8f18cf13 1724
5a1972bd
QW
1725/*
1726 * Function to update ctime/mtime for a given device path.
1727 * Mainly used for ctime/mtime based probe like libblkid.
1728 */
1729static void update_dev_time(char *path_name)
1730{
1731 struct file *filp;
1732
1733 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1734 if (IS_ERR(filp))
5a1972bd
QW
1735 return;
1736 file_update_time(filp);
1737 filp_close(filp, NULL);
5a1972bd
QW
1738}
1739
5b4aacef 1740static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1741 struct btrfs_device *device)
1742{
5b4aacef 1743 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1744 int ret;
1745 struct btrfs_path *path;
a061fc8d 1746 struct btrfs_key key;
a061fc8d
CM
1747 struct btrfs_trans_handle *trans;
1748
a061fc8d
CM
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
a22285a6 1753 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1754 if (IS_ERR(trans)) {
1755 btrfs_free_path(path);
1756 return PTR_ERR(trans);
1757 }
a061fc8d
CM
1758 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1759 key.type = BTRFS_DEV_ITEM_KEY;
1760 key.offset = device->devid;
1761
1762 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1763 if (ret < 0)
1764 goto out;
1765
1766 if (ret > 0) {
1767 ret = -ENOENT;
1768 goto out;
1769 }
1770
1771 ret = btrfs_del_item(trans, root, path);
1772 if (ret)
1773 goto out;
a061fc8d
CM
1774out:
1775 btrfs_free_path(path);
1776 btrfs_commit_transaction(trans, root);
1777 return ret;
1778}
1779
3cc31a0d
DS
1780/*
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1783 * replace.
1784 */
1785static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 u64 num_devices)
a061fc8d 1787{
a061fc8d 1788 u64 all_avail;
de98ced9 1789 unsigned seq;
418775a2 1790 int i;
a061fc8d 1791
de98ced9 1792 do {
bd45ffbc 1793 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1794
bd45ffbc
AJ
1795 all_avail = fs_info->avail_data_alloc_bits |
1796 fs_info->avail_system_alloc_bits |
1797 fs_info->avail_metadata_alloc_bits;
1798 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1799
418775a2
DS
1800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 if (!(all_avail & btrfs_raid_group[i]))
1802 continue;
a061fc8d 1803
418775a2
DS
1804 if (num_devices < btrfs_raid_array[i].devs_min) {
1805 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1806
418775a2
DS
1807 if (ret)
1808 return ret;
1809 }
53b381b3
DW
1810 }
1811
bd45ffbc 1812 return 0;
f1fa7f26
AJ
1813}
1814
88acff64
AJ
1815struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1816 struct btrfs_device *device)
a061fc8d 1817{
2b82032c 1818 struct btrfs_device *next_device;
88acff64
AJ
1819
1820 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 if (next_device != device &&
1822 !next_device->missing && next_device->bdev)
1823 return next_device;
1824 }
1825
1826 return NULL;
1827}
1828
1829/*
1830 * Helper function to check if the given device is part of s_bdev / latest_bdev
1831 * and replace it with the provided or the next active device, in the context
1832 * where this function called, there should be always be another device (or
1833 * this_dev) which is active.
1834 */
1835void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1836 struct btrfs_device *device, struct btrfs_device *this_dev)
1837{
1838 struct btrfs_device *next_device;
1839
1840 if (this_dev)
1841 next_device = this_dev;
1842 else
1843 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1844 device);
1845 ASSERT(next_device);
1846
1847 if (fs_info->sb->s_bdev &&
1848 (fs_info->sb->s_bdev == device->bdev))
1849 fs_info->sb->s_bdev = next_device->bdev;
1850
1851 if (fs_info->fs_devices->latest_bdev == device->bdev)
1852 fs_info->fs_devices->latest_bdev = next_device->bdev;
1853}
1854
6b526ed7 1855int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
f1fa7f26 1856{
0b246afa 1857 struct btrfs_fs_info *fs_info = root->fs_info;
f1fa7f26 1858 struct btrfs_device *device;
1f78160c 1859 struct btrfs_fs_devices *cur_devices;
2b82032c 1860 u64 num_devices;
a061fc8d 1861 int ret = 0;
1f78160c 1862 bool clear_super = false;
a061fc8d 1863
a061fc8d
CM
1864 mutex_lock(&uuid_mutex);
1865
0b246afa
JM
1866 num_devices = fs_info->fs_devices->num_devices;
1867 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1868 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1869 WARN_ON(num_devices < 1);
1870 num_devices--;
1871 }
0b246afa 1872 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1873
0b246afa 1874 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1875 if (ret)
a061fc8d 1876 goto out;
a061fc8d 1877
5c5c0df0 1878 ret = btrfs_find_device_by_devspec(root, devid, device_path,
24fc572f
AJ
1879 &device);
1880 if (ret)
53b381b3 1881 goto out;
dfe25020 1882
63a212ab 1883 if (device->is_tgtdev_for_dev_replace) {
183860f6 1884 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1885 goto out;
63a212ab
SB
1886 }
1887
0b246afa 1888 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1889 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1890 goto out;
2b82032c
YZ
1891 }
1892
1893 if (device->writeable) {
0b246afa 1894 lock_chunks(fs_info);
2b82032c 1895 list_del_init(&device->dev_alloc_list);
c3929c36 1896 device->fs_devices->rw_devices--;
0b246afa 1897 unlock_chunks(fs_info);
1f78160c 1898 clear_super = true;
dfe25020 1899 }
a061fc8d 1900
d7901554 1901 mutex_unlock(&uuid_mutex);
a061fc8d 1902 ret = btrfs_shrink_device(device, 0);
d7901554 1903 mutex_lock(&uuid_mutex);
a061fc8d 1904 if (ret)
9b3517e9 1905 goto error_undo;
a061fc8d 1906
63a212ab
SB
1907 /*
1908 * TODO: the superblock still includes this device in its num_devices
1909 * counter although write_all_supers() is not locked out. This
1910 * could give a filesystem state which requires a degraded mount.
1911 */
0b246afa 1912 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1913 if (ret)
9b3517e9 1914 goto error_undo;
a061fc8d 1915
2b82032c 1916 device->in_fs_metadata = 0;
0b246afa 1917 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1918
1919 /*
1920 * the device list mutex makes sure that we don't change
1921 * the device list while someone else is writing out all
d7306801
FDBM
1922 * the device supers. Whoever is writing all supers, should
1923 * lock the device list mutex before getting the number of
1924 * devices in the super block (super_copy). Conversely,
1925 * whoever updates the number of devices in the super block
1926 * (super_copy) should hold the device list mutex.
e5e9a520 1927 */
1f78160c
XG
1928
1929 cur_devices = device->fs_devices;
0b246afa 1930 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1931 list_del_rcu(&device->dev_list);
e5e9a520 1932
e4404d6e 1933 device->fs_devices->num_devices--;
02db0844 1934 device->fs_devices->total_devices--;
2b82032c 1935
cd02dca5 1936 if (device->missing)
3a7d55c8 1937 device->fs_devices->missing_devices--;
cd02dca5 1938
0b246afa 1939 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1940
0bfaa9c5 1941 if (device->bdev) {
e4404d6e 1942 device->fs_devices->open_devices--;
0bfaa9c5 1943 /* remove sysfs entry */
0b246afa 1944 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1945 }
99994cde 1946
0b246afa
JM
1947 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1948 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1949 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1950
cea67ab9
JM
1951 /*
1952 * at this point, the device is zero sized and detached from
1953 * the devices list. All that's left is to zero out the old
1954 * supers and free the device.
1955 */
1956 if (device->writeable)
1957 btrfs_scratch_superblocks(device->bdev, device->name->str);
1958
1959 btrfs_close_bdev(device);
1960 call_rcu(&device->rcu, free_device);
1961
1f78160c 1962 if (cur_devices->open_devices == 0) {
e4404d6e 1963 struct btrfs_fs_devices *fs_devices;
0b246afa 1964 fs_devices = fs_info->fs_devices;
e4404d6e 1965 while (fs_devices) {
8321cf25
RS
1966 if (fs_devices->seed == cur_devices) {
1967 fs_devices->seed = cur_devices->seed;
e4404d6e 1968 break;
8321cf25 1969 }
e4404d6e 1970 fs_devices = fs_devices->seed;
2b82032c 1971 }
1f78160c 1972 cur_devices->seed = NULL;
1f78160c 1973 __btrfs_close_devices(cur_devices);
1f78160c 1974 free_fs_devices(cur_devices);
2b82032c
YZ
1975 }
1976
0b246afa
JM
1977 fs_info->num_tolerated_disk_barrier_failures =
1978 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
5af3e8cc 1979
a061fc8d
CM
1980out:
1981 mutex_unlock(&uuid_mutex);
a061fc8d 1982 return ret;
24fc572f 1983
9b3517e9
ID
1984error_undo:
1985 if (device->writeable) {
0b246afa 1986 lock_chunks(fs_info);
9b3517e9 1987 list_add(&device->dev_alloc_list,
0b246afa 1988 &fs_info->fs_devices->alloc_list);
c3929c36 1989 device->fs_devices->rw_devices++;
0b246afa 1990 unlock_chunks(fs_info);
9b3517e9 1991 }
24fc572f 1992 goto out;
a061fc8d
CM
1993}
1994
084b6e7c
QW
1995void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996 struct btrfs_device *srcdev)
e93c89c1 1997{
d51908ce
AJ
1998 struct btrfs_fs_devices *fs_devices;
1999
e93c89c1 2000 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2001
25e8e911
AJ
2002 /*
2003 * in case of fs with no seed, srcdev->fs_devices will point
2004 * to fs_devices of fs_info. However when the dev being replaced is
2005 * a seed dev it will point to the seed's local fs_devices. In short
2006 * srcdev will have its correct fs_devices in both the cases.
2007 */
2008 fs_devices = srcdev->fs_devices;
d51908ce 2009
e93c89c1
SB
2010 list_del_rcu(&srcdev->dev_list);
2011 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2012 fs_devices->num_devices--;
82372bc8 2013 if (srcdev->missing)
d51908ce 2014 fs_devices->missing_devices--;
e93c89c1 2015
48b3b9d4 2016 if (srcdev->writeable)
82372bc8 2017 fs_devices->rw_devices--;
1357272f 2018
82372bc8 2019 if (srcdev->bdev)
d51908ce 2020 fs_devices->open_devices--;
084b6e7c
QW
2021}
2022
2023void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024 struct btrfs_device *srcdev)
2025{
2026 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2027
48b3b9d4
AJ
2028 if (srcdev->writeable) {
2029 /* zero out the old super if it is writable */
2030 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031 }
14238819
AJ
2032
2033 btrfs_close_bdev(srcdev);
2034
e93c89c1 2035 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2036
2037 /*
2038 * unless fs_devices is seed fs, num_devices shouldn't go
2039 * zero
2040 */
2041 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042
2043 /* if this is no devs we rather delete the fs_devices */
2044 if (!fs_devices->num_devices) {
2045 struct btrfs_fs_devices *tmp_fs_devices;
2046
2047 tmp_fs_devices = fs_info->fs_devices;
2048 while (tmp_fs_devices) {
2049 if (tmp_fs_devices->seed == fs_devices) {
2050 tmp_fs_devices->seed = fs_devices->seed;
2051 break;
2052 }
2053 tmp_fs_devices = tmp_fs_devices->seed;
2054 }
2055 fs_devices->seed = NULL;
8bef8401
AJ
2056 __btrfs_close_devices(fs_devices);
2057 free_fs_devices(fs_devices);
94d5f0c2 2058 }
e93c89c1
SB
2059}
2060
2061void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062 struct btrfs_device *tgtdev)
2063{
67a2c45e 2064 mutex_lock(&uuid_mutex);
e93c89c1
SB
2065 WARN_ON(!tgtdev);
2066 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2067
32576040 2068 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2069
779bf3fe 2070 if (tgtdev->bdev)
e93c89c1 2071 fs_info->fs_devices->open_devices--;
779bf3fe 2072
e93c89c1 2073 fs_info->fs_devices->num_devices--;
e93c89c1 2074
88acff64 2075 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2076
e93c89c1 2077 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2078
2079 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2080 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2081
2082 /*
2083 * The update_dev_time() with in btrfs_scratch_superblocks()
2084 * may lead to a call to btrfs_show_devname() which will try
2085 * to hold device_list_mutex. And here this device
2086 * is already out of device list, so we don't have to hold
2087 * the device_list_mutex lock.
2088 */
2089 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2090
2091 btrfs_close_bdev(tgtdev);
779bf3fe 2092 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2093}
2094
48a3b636
ES
2095static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2096 struct btrfs_device **device)
7ba15b7d 2097{
0b246afa 2098 struct btrfs_fs_info *fs_info = root->fs_info;
7ba15b7d
SB
2099 int ret = 0;
2100 struct btrfs_super_block *disk_super;
2101 u64 devid;
2102 u8 *dev_uuid;
2103 struct block_device *bdev;
2104 struct buffer_head *bh;
2105
2106 *device = NULL;
2107 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2108 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2109 if (ret)
2110 return ret;
2111 disk_super = (struct btrfs_super_block *)bh->b_data;
2112 devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2114 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2115 brelse(bh);
2116 if (!*device)
2117 ret = -ENOENT;
2118 blkdev_put(bdev, FMODE_READ);
2119 return ret;
2120}
2121
2122int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2123 char *device_path,
2124 struct btrfs_device **device)
2125{
0b246afa
JM
2126 struct btrfs_fs_info *fs_info = root->fs_info;
2127
7ba15b7d
SB
2128 *device = NULL;
2129 if (strcmp(device_path, "missing") == 0) {
2130 struct list_head *devices;
2131 struct btrfs_device *tmp;
2132
0b246afa 2133 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2134 /*
2135 * It is safe to read the devices since the volume_mutex
2136 * is held by the caller.
2137 */
2138 list_for_each_entry(tmp, devices, dev_list) {
2139 if (tmp->in_fs_metadata && !tmp->bdev) {
2140 *device = tmp;
2141 break;
2142 }
2143 }
2144
d74a6259
AJ
2145 if (!*device)
2146 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2147
2148 return 0;
2149 } else {
2150 return btrfs_find_device_by_path(root, device_path, device);
2151 }
2152}
2153
5c5c0df0
DS
2154/*
2155 * Lookup a device given by device id, or the path if the id is 0.
2156 */
2157int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2158 char *devpath,
24e0474b
AJ
2159 struct btrfs_device **device)
2160{
0b246afa 2161 struct btrfs_fs_info *fs_info = root->fs_info;
24e0474b
AJ
2162 int ret;
2163
5c5c0df0 2164 if (devid) {
24e0474b 2165 ret = 0;
0b246afa 2166 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2167 if (!*device)
2168 ret = -ENOENT;
2169 } else {
5c5c0df0 2170 if (!devpath || !devpath[0])
b3d1b153
AJ
2171 return -EINVAL;
2172
5c5c0df0 2173 ret = btrfs_find_device_missing_or_by_path(root, devpath,
24e0474b
AJ
2174 device);
2175 }
2176 return ret;
2177}
2178
2b82032c
YZ
2179/*
2180 * does all the dirty work required for changing file system's UUID.
2181 */
125ccb0a 2182static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c 2183{
0b246afa
JM
2184 struct btrfs_fs_info *fs_info = root->fs_info;
2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2186 struct btrfs_fs_devices *old_devices;
e4404d6e 2187 struct btrfs_fs_devices *seed_devices;
0b246afa 2188 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2189 struct btrfs_device *device;
2190 u64 super_flags;
2191
2192 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2193 if (!fs_devices->seeding)
2b82032c
YZ
2194 return -EINVAL;
2195
2208a378
ID
2196 seed_devices = __alloc_fs_devices();
2197 if (IS_ERR(seed_devices))
2198 return PTR_ERR(seed_devices);
2b82032c 2199
e4404d6e
YZ
2200 old_devices = clone_fs_devices(fs_devices);
2201 if (IS_ERR(old_devices)) {
2202 kfree(seed_devices);
2203 return PTR_ERR(old_devices);
2b82032c 2204 }
e4404d6e 2205
2b82032c
YZ
2206 list_add(&old_devices->list, &fs_uuids);
2207
e4404d6e
YZ
2208 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2209 seed_devices->opened = 1;
2210 INIT_LIST_HEAD(&seed_devices->devices);
2211 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2212 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2213
0b246afa 2214 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2215 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2216 synchronize_rcu);
2196d6e8
MX
2217 list_for_each_entry(device, &seed_devices->devices, dev_list)
2218 device->fs_devices = seed_devices;
c9513edb 2219
0b246afa 2220 lock_chunks(fs_info);
e4404d6e 2221 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
0b246afa 2222 unlock_chunks(fs_info);
e4404d6e 2223
2b82032c
YZ
2224 fs_devices->seeding = 0;
2225 fs_devices->num_devices = 0;
2226 fs_devices->open_devices = 0;
69611ac8 2227 fs_devices->missing_devices = 0;
69611ac8 2228 fs_devices->rotating = 0;
e4404d6e 2229 fs_devices->seed = seed_devices;
2b82032c
YZ
2230
2231 generate_random_uuid(fs_devices->fsid);
0b246afa 2232 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2233 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2234 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2235
2b82032c
YZ
2236 super_flags = btrfs_super_flags(disk_super) &
2237 ~BTRFS_SUPER_FLAG_SEEDING;
2238 btrfs_set_super_flags(disk_super, super_flags);
2239
2240 return 0;
2241}
2242
2243/*
01327610 2244 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2245 */
2246static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2247 struct btrfs_fs_info *fs_info)
2b82032c 2248{
5b4aacef 2249 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2250 struct btrfs_path *path;
2251 struct extent_buffer *leaf;
2252 struct btrfs_dev_item *dev_item;
2253 struct btrfs_device *device;
2254 struct btrfs_key key;
2255 u8 fs_uuid[BTRFS_UUID_SIZE];
2256 u8 dev_uuid[BTRFS_UUID_SIZE];
2257 u64 devid;
2258 int ret;
2259
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2b82032c
YZ
2264 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2265 key.offset = 0;
2266 key.type = BTRFS_DEV_ITEM_KEY;
2267
2268 while (1) {
2269 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2270 if (ret < 0)
2271 goto error;
2272
2273 leaf = path->nodes[0];
2274next_slot:
2275 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2276 ret = btrfs_next_leaf(root, path);
2277 if (ret > 0)
2278 break;
2279 if (ret < 0)
2280 goto error;
2281 leaf = path->nodes[0];
2282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2283 btrfs_release_path(path);
2b82032c
YZ
2284 continue;
2285 }
2286
2287 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2288 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2289 key.type != BTRFS_DEV_ITEM_KEY)
2290 break;
2291
2292 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2293 struct btrfs_dev_item);
2294 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2295 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2296 BTRFS_UUID_SIZE);
1473b24e 2297 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2298 BTRFS_UUID_SIZE);
0b246afa 2299 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2300 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2301
2302 if (device->fs_devices->seeding) {
2303 btrfs_set_device_generation(leaf, dev_item,
2304 device->generation);
2305 btrfs_mark_buffer_dirty(leaf);
2306 }
2307
2308 path->slots[0]++;
2309 goto next_slot;
2310 }
2311 ret = 0;
2312error:
2313 btrfs_free_path(path);
2314 return ret;
2315}
2316
5112febb 2317int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
788f20eb 2318{
5112febb 2319 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2320 struct request_queue *q;
788f20eb
CM
2321 struct btrfs_trans_handle *trans;
2322 struct btrfs_device *device;
2323 struct block_device *bdev;
788f20eb 2324 struct list_head *devices;
0b246afa 2325 struct super_block *sb = fs_info->sb;
606686ee 2326 struct rcu_string *name;
3c1dbdf5 2327 u64 tmp;
2b82032c 2328 int seeding_dev = 0;
788f20eb
CM
2329 int ret = 0;
2330
0b246afa 2331 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
f8c5d0b4 2332 return -EROFS;
788f20eb 2333
a5d16333 2334 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2335 fs_info->bdev_holder);
7f59203a
JB
2336 if (IS_ERR(bdev))
2337 return PTR_ERR(bdev);
a2135011 2338
0b246afa 2339 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2340 seeding_dev = 1;
2341 down_write(&sb->s_umount);
2342 mutex_lock(&uuid_mutex);
2343 }
2344
8c8bee1d 2345 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2346
0b246afa 2347 devices = &fs_info->fs_devices->devices;
d25628bd 2348
0b246afa 2349 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2350 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2351 if (device->bdev == bdev) {
2352 ret = -EEXIST;
d25628bd 2353 mutex_unlock(
0b246afa 2354 &fs_info->fs_devices->device_list_mutex);
2b82032c 2355 goto error;
788f20eb
CM
2356 }
2357 }
0b246afa 2358 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2359
0b246afa 2360 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2361 if (IS_ERR(device)) {
788f20eb 2362 /* we can safely leave the fs_devices entry around */
12bd2fc0 2363 ret = PTR_ERR(device);
2b82032c 2364 goto error;
788f20eb
CM
2365 }
2366
78f2c9e6 2367 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2368 if (!name) {
788f20eb 2369 kfree(device);
2b82032c
YZ
2370 ret = -ENOMEM;
2371 goto error;
788f20eb 2372 }
606686ee 2373 rcu_assign_pointer(device->name, name);
2b82032c 2374
a22285a6 2375 trans = btrfs_start_transaction(root, 0);
98d5dc13 2376 if (IS_ERR(trans)) {
606686ee 2377 rcu_string_free(device->name);
98d5dc13
TI
2378 kfree(device);
2379 ret = PTR_ERR(trans);
2380 goto error;
2381 }
2382
d5e2003c
JB
2383 q = bdev_get_queue(bdev);
2384 if (blk_queue_discard(q))
2385 device->can_discard = 1;
2b82032c 2386 device->writeable = 1;
2b82032c 2387 device->generation = trans->transid;
0b246afa
JM
2388 device->io_width = fs_info->sectorsize;
2389 device->io_align = fs_info->sectorsize;
2390 device->sector_size = fs_info->sectorsize;
788f20eb 2391 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2392 device->disk_total_bytes = device->total_bytes;
935e5cc9 2393 device->commit_total_bytes = device->total_bytes;
fb456252 2394 device->fs_info = fs_info;
788f20eb 2395 device->bdev = bdev;
dfe25020 2396 device->in_fs_metadata = 1;
63a212ab 2397 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2398 device->mode = FMODE_EXCL;
27087f37 2399 device->dev_stats_valid = 1;
2b82032c 2400 set_blocksize(device->bdev, 4096);
788f20eb 2401
2b82032c
YZ
2402 if (seeding_dev) {
2403 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2404 ret = btrfs_prepare_sprout(root);
79787eaa 2405 BUG_ON(ret); /* -ENOMEM */
2b82032c 2406 }
788f20eb 2407
0b246afa 2408 device->fs_devices = fs_info->fs_devices;
e5e9a520 2409
0b246afa
JM
2410 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2411 lock_chunks(fs_info);
2412 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2413 list_add(&device->dev_alloc_list,
0b246afa
JM
2414 &fs_info->fs_devices->alloc_list);
2415 fs_info->fs_devices->num_devices++;
2416 fs_info->fs_devices->open_devices++;
2417 fs_info->fs_devices->rw_devices++;
2418 fs_info->fs_devices->total_devices++;
2419 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2420
0b246afa
JM
2421 spin_lock(&fs_info->free_chunk_lock);
2422 fs_info->free_chunk_space += device->total_bytes;
2423 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 2424
c289811c 2425 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
0b246afa 2426 fs_info->fs_devices->rotating = 1;
c289811c 2427
0b246afa
JM
2428 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2429 btrfs_set_super_total_bytes(fs_info->super_copy,
3c1dbdf5 2430 tmp + device->total_bytes);
788f20eb 2431
0b246afa
JM
2432 tmp = btrfs_super_num_devices(fs_info->super_copy);
2433 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2434
2435 /* add sysfs device entry */
0b246afa 2436 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2437
2196d6e8
MX
2438 /*
2439 * we've got more storage, clear any full flags on the space
2440 * infos
2441 */
0b246afa 2442 btrfs_clear_space_info_full(fs_info);
2196d6e8 2443
0b246afa
JM
2444 unlock_chunks(fs_info);
2445 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2446
2b82032c 2447 if (seeding_dev) {
0b246afa 2448 lock_chunks(fs_info);
2b82032c 2449 ret = init_first_rw_device(trans, root, device);
0b246afa 2450 unlock_chunks(fs_info);
005d6427 2451 if (ret) {
66642832 2452 btrfs_abort_transaction(trans, ret);
79787eaa 2453 goto error_trans;
005d6427 2454 }
2196d6e8
MX
2455 }
2456
0b246afa 2457 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2458 if (ret) {
66642832 2459 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2460 goto error_trans;
2461 }
2462
2463 if (seeding_dev) {
2464 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2465
0b246afa 2466 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2467 if (ret) {
66642832 2468 btrfs_abort_transaction(trans, ret);
79787eaa 2469 goto error_trans;
005d6427 2470 }
b2373f25
AJ
2471
2472 /* Sprouting would change fsid of the mounted root,
2473 * so rename the fsid on the sysfs
2474 */
2475 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2476 fs_info->fsid);
2477 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2478 btrfs_warn(fs_info,
2479 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2480 }
2481
0b246afa
JM
2482 fs_info->num_tolerated_disk_barrier_failures =
2483 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
79787eaa 2484 ret = btrfs_commit_transaction(trans, root);
a2135011 2485
2b82032c
YZ
2486 if (seeding_dev) {
2487 mutex_unlock(&uuid_mutex);
2488 up_write(&sb->s_umount);
788f20eb 2489
79787eaa
JM
2490 if (ret) /* transaction commit */
2491 return ret;
2492
2b82032c 2493 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2494 if (ret < 0)
0b246afa 2495 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2496 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2497 trans = btrfs_attach_transaction(root);
2498 if (IS_ERR(trans)) {
2499 if (PTR_ERR(trans) == -ENOENT)
2500 return 0;
2501 return PTR_ERR(trans);
2502 }
2503 ret = btrfs_commit_transaction(trans, root);
2b82032c 2504 }
c9e9f97b 2505
5a1972bd
QW
2506 /* Update ctime/mtime for libblkid */
2507 update_dev_time(device_path);
2b82032c 2508 return ret;
79787eaa
JM
2509
2510error_trans:
79787eaa 2511 btrfs_end_transaction(trans, root);
606686ee 2512 rcu_string_free(device->name);
0b246afa 2513 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2514 kfree(device);
2b82032c 2515error:
e525fd89 2516 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2517 if (seeding_dev) {
2518 mutex_unlock(&uuid_mutex);
2519 up_write(&sb->s_umount);
2520 }
c9e9f97b 2521 return ret;
788f20eb
CM
2522}
2523
e93c89c1 2524int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2525 struct btrfs_device *srcdev,
e93c89c1
SB
2526 struct btrfs_device **device_out)
2527{
2528 struct request_queue *q;
2529 struct btrfs_device *device;
2530 struct block_device *bdev;
2531 struct btrfs_fs_info *fs_info = root->fs_info;
2532 struct list_head *devices;
2533 struct rcu_string *name;
12bd2fc0 2534 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2535 int ret = 0;
2536
2537 *device_out = NULL;
1c43366d
MX
2538 if (fs_info->fs_devices->seeding) {
2539 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2540 return -EINVAL;
1c43366d 2541 }
e93c89c1
SB
2542
2543 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2544 fs_info->bdev_holder);
1c43366d
MX
2545 if (IS_ERR(bdev)) {
2546 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2547 return PTR_ERR(bdev);
1c43366d 2548 }
e93c89c1
SB
2549
2550 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2551
2552 devices = &fs_info->fs_devices->devices;
2553 list_for_each_entry(device, devices, dev_list) {
2554 if (device->bdev == bdev) {
5d163e0e
JM
2555 btrfs_err(fs_info,
2556 "target device is in the filesystem!");
e93c89c1
SB
2557 ret = -EEXIST;
2558 goto error;
2559 }
2560 }
2561
1c43366d 2562
7cc8e58d
MX
2563 if (i_size_read(bdev->bd_inode) <
2564 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2565 btrfs_err(fs_info,
2566 "target device is smaller than source device!");
1c43366d
MX
2567 ret = -EINVAL;
2568 goto error;
2569 }
2570
2571
12bd2fc0
ID
2572 device = btrfs_alloc_device(NULL, &devid, NULL);
2573 if (IS_ERR(device)) {
2574 ret = PTR_ERR(device);
e93c89c1
SB
2575 goto error;
2576 }
2577
2578 name = rcu_string_strdup(device_path, GFP_NOFS);
2579 if (!name) {
2580 kfree(device);
2581 ret = -ENOMEM;
2582 goto error;
2583 }
2584 rcu_assign_pointer(device->name, name);
2585
2586 q = bdev_get_queue(bdev);
2587 if (blk_queue_discard(q))
2588 device->can_discard = 1;
0b246afa 2589 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2590 device->writeable = 1;
e93c89c1 2591 device->generation = 0;
0b246afa
JM
2592 device->io_width = fs_info->sectorsize;
2593 device->io_align = fs_info->sectorsize;
2594 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2595 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2596 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2597 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2598 ASSERT(list_empty(&srcdev->resized_list));
2599 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2600 device->commit_bytes_used = device->bytes_used;
fb456252 2601 device->fs_info = fs_info;
e93c89c1
SB
2602 device->bdev = bdev;
2603 device->in_fs_metadata = 1;
2604 device->is_tgtdev_for_dev_replace = 1;
2605 device->mode = FMODE_EXCL;
27087f37 2606 device->dev_stats_valid = 1;
e93c89c1
SB
2607 set_blocksize(device->bdev, 4096);
2608 device->fs_devices = fs_info->fs_devices;
2609 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2610 fs_info->fs_devices->num_devices++;
2611 fs_info->fs_devices->open_devices++;
0b246afa 2612 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2613
2614 *device_out = device;
2615 return ret;
2616
2617error:
2618 blkdev_put(bdev, FMODE_EXCL);
2619 return ret;
2620}
2621
2622void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2623 struct btrfs_device *tgtdev)
2624{
da17066c
JM
2625 u32 sectorsize = fs_info->sectorsize;
2626
e93c89c1 2627 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2628 tgtdev->io_width = sectorsize;
2629 tgtdev->io_align = sectorsize;
2630 tgtdev->sector_size = sectorsize;
fb456252 2631 tgtdev->fs_info = fs_info;
e93c89c1
SB
2632 tgtdev->in_fs_metadata = 1;
2633}
2634
d397712b
CM
2635static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2636 struct btrfs_device *device)
0b86a832
CM
2637{
2638 int ret;
2639 struct btrfs_path *path;
0b246afa 2640 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2641 struct btrfs_dev_item *dev_item;
2642 struct extent_buffer *leaf;
2643 struct btrfs_key key;
2644
0b86a832
CM
2645 path = btrfs_alloc_path();
2646 if (!path)
2647 return -ENOMEM;
2648
2649 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2650 key.type = BTRFS_DEV_ITEM_KEY;
2651 key.offset = device->devid;
2652
2653 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654 if (ret < 0)
2655 goto out;
2656
2657 if (ret > 0) {
2658 ret = -ENOENT;
2659 goto out;
2660 }
2661
2662 leaf = path->nodes[0];
2663 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2664
2665 btrfs_set_device_id(leaf, dev_item, device->devid);
2666 btrfs_set_device_type(leaf, dev_item, device->type);
2667 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2668 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2669 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2670 btrfs_set_device_total_bytes(leaf, dev_item,
2671 btrfs_device_get_disk_total_bytes(device));
2672 btrfs_set_device_bytes_used(leaf, dev_item,
2673 btrfs_device_get_bytes_used(device));
0b86a832
CM
2674 btrfs_mark_buffer_dirty(leaf);
2675
2676out:
2677 btrfs_free_path(path);
2678 return ret;
2679}
2680
2196d6e8 2681int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2682 struct btrfs_device *device, u64 new_size)
2683{
0b246afa
JM
2684 struct btrfs_fs_info *fs_info = device->fs_info;
2685 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2686 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2687 u64 old_total;
2688 u64 diff;
8f18cf13 2689
2b82032c
YZ
2690 if (!device->writeable)
2691 return -EACCES;
2196d6e8 2692
0b246afa 2693 lock_chunks(fs_info);
2196d6e8
MX
2694 old_total = btrfs_super_total_bytes(super_copy);
2695 diff = new_size - device->total_bytes;
2696
63a212ab 2697 if (new_size <= device->total_bytes ||
2196d6e8 2698 device->is_tgtdev_for_dev_replace) {
0b246afa 2699 unlock_chunks(fs_info);
2b82032c 2700 return -EINVAL;
2196d6e8 2701 }
2b82032c 2702
0b246afa 2703 fs_devices = fs_info->fs_devices;
2b82032c 2704
8f18cf13 2705 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2706 device->fs_devices->total_rw_bytes += diff;
2707
7cc8e58d
MX
2708 btrfs_device_set_total_bytes(device, new_size);
2709 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2710 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2711 if (list_empty(&device->resized_list))
2712 list_add_tail(&device->resized_list,
2713 &fs_devices->resized_devices);
0b246afa 2714 unlock_chunks(fs_info);
4184ea7f 2715
8f18cf13
CM
2716 return btrfs_update_device(trans, device);
2717}
2718
2719static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2720 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
8f18cf13
CM
2721 u64 chunk_offset)
2722{
5b4aacef 2723 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2724 int ret;
2725 struct btrfs_path *path;
2726 struct btrfs_key key;
2727
8f18cf13
CM
2728 path = btrfs_alloc_path();
2729 if (!path)
2730 return -ENOMEM;
2731
2732 key.objectid = chunk_objectid;
2733 key.offset = chunk_offset;
2734 key.type = BTRFS_CHUNK_ITEM_KEY;
2735
2736 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2737 if (ret < 0)
2738 goto out;
2739 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2740 btrfs_handle_fs_error(fs_info, -ENOENT,
2741 "Failed lookup while freeing chunk.");
79787eaa
JM
2742 ret = -ENOENT;
2743 goto out;
2744 }
8f18cf13
CM
2745
2746 ret = btrfs_del_item(trans, root, path);
79787eaa 2747 if (ret < 0)
0b246afa
JM
2748 btrfs_handle_fs_error(fs_info, ret,
2749 "Failed to delete chunk item.");
79787eaa 2750out:
8f18cf13 2751 btrfs_free_path(path);
65a246c5 2752 return ret;
8f18cf13
CM
2753}
2754
6bccf3ab
JM
2755static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2756 u64 chunk_objectid, u64 chunk_offset)
8f18cf13 2757{
0b246afa 2758 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2759 struct btrfs_disk_key *disk_key;
2760 struct btrfs_chunk *chunk;
2761 u8 *ptr;
2762 int ret = 0;
2763 u32 num_stripes;
2764 u32 array_size;
2765 u32 len = 0;
2766 u32 cur;
2767 struct btrfs_key key;
2768
0b246afa 2769 lock_chunks(fs_info);
8f18cf13
CM
2770 array_size = btrfs_super_sys_array_size(super_copy);
2771
2772 ptr = super_copy->sys_chunk_array;
2773 cur = 0;
2774
2775 while (cur < array_size) {
2776 disk_key = (struct btrfs_disk_key *)ptr;
2777 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779 len = sizeof(*disk_key);
2780
2781 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782 chunk = (struct btrfs_chunk *)(ptr + len);
2783 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784 len += btrfs_chunk_item_size(num_stripes);
2785 } else {
2786 ret = -EIO;
2787 break;
2788 }
2789 if (key.objectid == chunk_objectid &&
2790 key.offset == chunk_offset) {
2791 memmove(ptr, ptr + len, array_size - (cur + len));
2792 array_size -= len;
2793 btrfs_set_super_sys_array_size(super_copy, array_size);
2794 } else {
2795 ptr += len;
2796 cur += len;
2797 }
2798 }
0b246afa 2799 unlock_chunks(fs_info);
8f18cf13
CM
2800 return ret;
2801}
2802
47ab2a6c 2803int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2804 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13
CM
2805{
2806 struct extent_map_tree *em_tree;
8f18cf13 2807 struct extent_map *em;
0b246afa 2808 struct btrfs_root *extent_root = fs_info->extent_root;
8f18cf13 2809 struct map_lookup *map;
2196d6e8 2810 u64 dev_extent_len = 0;
47ab2a6c 2811 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2812 int i, ret = 0;
0b246afa 2813 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2814
5b4aacef 2815 em_tree = &fs_info->mapping_tree.map_tree;
8f18cf13 2816
890871be 2817 read_lock(&em_tree->lock);
8f18cf13 2818 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2819 read_unlock(&em_tree->lock);
8f18cf13 2820
47ab2a6c
JB
2821 if (!em || em->start > chunk_offset ||
2822 em->start + em->len < chunk_offset) {
2823 /*
2824 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2825 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2826 * do anything we still error out.
2827 */
2828 ASSERT(0);
2829 if (em)
2830 free_extent_map(em);
2831 return -EINVAL;
2832 }
95617d69 2833 map = em->map_lookup;
3796d335 2834 lock_chunks(fs_info);
4617ea3a 2835 check_system_chunk(trans, extent_root, map->type);
3796d335 2836 unlock_chunks(fs_info);
8f18cf13 2837
57ba4cb8
FM
2838 /*
2839 * Take the device list mutex to prevent races with the final phase of
2840 * a device replace operation that replaces the device object associated
2841 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2842 */
2843 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2844 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2845 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2846 ret = btrfs_free_dev_extent(trans, device,
2847 map->stripes[i].physical,
2848 &dev_extent_len);
47ab2a6c 2849 if (ret) {
57ba4cb8 2850 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2851 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2852 goto out;
2853 }
a061fc8d 2854
2196d6e8 2855 if (device->bytes_used > 0) {
0b246afa 2856 lock_chunks(fs_info);
2196d6e8
MX
2857 btrfs_device_set_bytes_used(device,
2858 device->bytes_used - dev_extent_len);
0b246afa
JM
2859 spin_lock(&fs_info->free_chunk_lock);
2860 fs_info->free_chunk_space += dev_extent_len;
2861 spin_unlock(&fs_info->free_chunk_lock);
2862 btrfs_clear_space_info_full(fs_info);
2863 unlock_chunks(fs_info);
2196d6e8 2864 }
a061fc8d 2865
dfe25020
CM
2866 if (map->stripes[i].dev) {
2867 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2868 if (ret) {
57ba4cb8 2869 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2870 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2871 goto out;
2872 }
dfe25020 2873 }
8f18cf13 2874 }
57ba4cb8
FM
2875 mutex_unlock(&fs_devices->device_list_mutex);
2876
0b246afa 2877 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
47ab2a6c 2878 if (ret) {
66642832 2879 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2880 goto out;
2881 }
8f18cf13 2882
6bccf3ab 2883 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2884
8f18cf13 2885 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
6bccf3ab
JM
2886 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2887 chunk_offset);
47ab2a6c 2888 if (ret) {
66642832 2889 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2890 goto out;
2891 }
8f18cf13
CM
2892 }
2893
6bccf3ab 2894 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2895 if (ret) {
66642832 2896 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2897 goto out;
2898 }
2b82032c 2899
47ab2a6c 2900out:
2b82032c
YZ
2901 /* once for us */
2902 free_extent_map(em);
47ab2a6c
JB
2903 return ret;
2904}
2b82032c 2905
5b4aacef 2906static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2907{
5b4aacef
JM
2908 struct btrfs_root *root = fs_info->chunk_root;
2909 struct btrfs_root *extent_root = fs_info->extent_root;
19c4d2f9 2910 struct btrfs_trans_handle *trans;
47ab2a6c 2911 int ret;
2b82032c 2912
67c5e7d4
FM
2913 /*
2914 * Prevent races with automatic removal of unused block groups.
2915 * After we relocate and before we remove the chunk with offset
2916 * chunk_offset, automatic removal of the block group can kick in,
2917 * resulting in a failure when calling btrfs_remove_chunk() below.
2918 *
2919 * Make sure to acquire this mutex before doing a tree search (dev
2920 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2921 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2922 * we release the path used to search the chunk/dev tree and before
2923 * the current task acquires this mutex and calls us.
2924 */
0b246afa 2925 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2926
0b246afa 2927 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2928 if (ret)
2929 return -ENOSPC;
2930
2931 /* step one, relocate all the extents inside this chunk */
55e3a601 2932 btrfs_scrub_pause(root);
0b246afa 2933 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
55e3a601 2934 btrfs_scrub_continue(root);
47ab2a6c
JB
2935 if (ret)
2936 return ret;
2937
19c4d2f9
CM
2938 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2939 chunk_offset);
2940 if (IS_ERR(trans)) {
2941 ret = PTR_ERR(trans);
2942 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2943 return ret;
2944 }
2945
47ab2a6c 2946 /*
19c4d2f9
CM
2947 * step two, delete the device extents and the
2948 * chunk tree entries
47ab2a6c 2949 */
5b4aacef 2950 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
19c4d2f9
CM
2951 btrfs_end_transaction(trans, extent_root);
2952 return ret;
2b82032c
YZ
2953}
2954
2955static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2956{
0b246afa
JM
2957 struct btrfs_fs_info *fs_info = root->fs_info;
2958 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2959 struct btrfs_path *path;
2960 struct extent_buffer *leaf;
2961 struct btrfs_chunk *chunk;
2962 struct btrfs_key key;
2963 struct btrfs_key found_key;
2b82032c 2964 u64 chunk_type;
ba1bf481
JB
2965 bool retried = false;
2966 int failed = 0;
2b82032c
YZ
2967 int ret;
2968
2969 path = btrfs_alloc_path();
2970 if (!path)
2971 return -ENOMEM;
2972
ba1bf481 2973again:
2b82032c
YZ
2974 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2975 key.offset = (u64)-1;
2976 key.type = BTRFS_CHUNK_ITEM_KEY;
2977
2978 while (1) {
0b246afa 2979 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2980 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2981 if (ret < 0) {
0b246afa 2982 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2983 goto error;
67c5e7d4 2984 }
79787eaa 2985 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2986
2987 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2988 key.type);
67c5e7d4 2989 if (ret)
0b246afa 2990 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2991 if (ret < 0)
2992 goto error;
2993 if (ret > 0)
2994 break;
1a40e23b 2995
2b82032c
YZ
2996 leaf = path->nodes[0];
2997 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2998
2b82032c
YZ
2999 chunk = btrfs_item_ptr(leaf, path->slots[0],
3000 struct btrfs_chunk);
3001 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3002 btrfs_release_path(path);
8f18cf13 3003
2b82032c 3004 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3005 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3006 if (ret == -ENOSPC)
3007 failed++;
14586651
HS
3008 else
3009 BUG_ON(ret);
2b82032c 3010 }
0b246afa 3011 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3012
2b82032c
YZ
3013 if (found_key.offset == 0)
3014 break;
3015 key.offset = found_key.offset - 1;
3016 }
3017 ret = 0;
ba1bf481
JB
3018 if (failed && !retried) {
3019 failed = 0;
3020 retried = true;
3021 goto again;
fae7f21c 3022 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3023 ret = -ENOSPC;
3024 }
2b82032c
YZ
3025error:
3026 btrfs_free_path(path);
3027 return ret;
8f18cf13
CM
3028}
3029
6bccf3ab 3030static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3031 struct btrfs_balance_control *bctl)
3032{
6bccf3ab 3033 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3034 struct btrfs_trans_handle *trans;
3035 struct btrfs_balance_item *item;
3036 struct btrfs_disk_balance_args disk_bargs;
3037 struct btrfs_path *path;
3038 struct extent_buffer *leaf;
3039 struct btrfs_key key;
3040 int ret, err;
3041
3042 path = btrfs_alloc_path();
3043 if (!path)
3044 return -ENOMEM;
3045
3046 trans = btrfs_start_transaction(root, 0);
3047 if (IS_ERR(trans)) {
3048 btrfs_free_path(path);
3049 return PTR_ERR(trans);
3050 }
3051
3052 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3053 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3054 key.offset = 0;
3055
3056 ret = btrfs_insert_empty_item(trans, root, path, &key,
3057 sizeof(*item));
3058 if (ret)
3059 goto out;
3060
3061 leaf = path->nodes[0];
3062 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3063
b159fa28 3064 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3065
3066 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3067 btrfs_set_balance_data(leaf, item, &disk_bargs);
3068 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3069 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3071 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3072
3073 btrfs_set_balance_flags(leaf, item, bctl->flags);
3074
3075 btrfs_mark_buffer_dirty(leaf);
3076out:
3077 btrfs_free_path(path);
3078 err = btrfs_commit_transaction(trans, root);
3079 if (err && !ret)
3080 ret = err;
3081 return ret;
3082}
3083
6bccf3ab 3084static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3085{
6bccf3ab 3086 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3087 struct btrfs_trans_handle *trans;
3088 struct btrfs_path *path;
3089 struct btrfs_key key;
3090 int ret, err;
3091
3092 path = btrfs_alloc_path();
3093 if (!path)
3094 return -ENOMEM;
3095
3096 trans = btrfs_start_transaction(root, 0);
3097 if (IS_ERR(trans)) {
3098 btrfs_free_path(path);
3099 return PTR_ERR(trans);
3100 }
3101
3102 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3103 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3104 key.offset = 0;
3105
3106 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3107 if (ret < 0)
3108 goto out;
3109 if (ret > 0) {
3110 ret = -ENOENT;
3111 goto out;
3112 }
3113
3114 ret = btrfs_del_item(trans, root, path);
3115out:
3116 btrfs_free_path(path);
3117 err = btrfs_commit_transaction(trans, root);
3118 if (err && !ret)
3119 ret = err;
3120 return ret;
3121}
3122
59641015
ID
3123/*
3124 * This is a heuristic used to reduce the number of chunks balanced on
3125 * resume after balance was interrupted.
3126 */
3127static void update_balance_args(struct btrfs_balance_control *bctl)
3128{
3129 /*
3130 * Turn on soft mode for chunk types that were being converted.
3131 */
3132 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138
3139 /*
3140 * Turn on usage filter if is not already used. The idea is
3141 * that chunks that we have already balanced should be
3142 * reasonably full. Don't do it for chunks that are being
3143 * converted - that will keep us from relocating unconverted
3144 * (albeit full) chunks.
3145 */
3146 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3147 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3148 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3149 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3150 bctl->data.usage = 90;
3151 }
3152 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3153 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3154 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3155 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3156 bctl->sys.usage = 90;
3157 }
3158 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3159 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3160 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162 bctl->meta.usage = 90;
3163 }
3164}
3165
c9e9f97b
ID
3166/*
3167 * Should be called with both balance and volume mutexes held to
3168 * serialize other volume operations (add_dev/rm_dev/resize) with
3169 * restriper. Same goes for unset_balance_control.
3170 */
3171static void set_balance_control(struct btrfs_balance_control *bctl)
3172{
3173 struct btrfs_fs_info *fs_info = bctl->fs_info;
3174
3175 BUG_ON(fs_info->balance_ctl);
3176
3177 spin_lock(&fs_info->balance_lock);
3178 fs_info->balance_ctl = bctl;
3179 spin_unlock(&fs_info->balance_lock);
3180}
3181
3182static void unset_balance_control(struct btrfs_fs_info *fs_info)
3183{
3184 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3185
3186 BUG_ON(!fs_info->balance_ctl);
3187
3188 spin_lock(&fs_info->balance_lock);
3189 fs_info->balance_ctl = NULL;
3190 spin_unlock(&fs_info->balance_lock);
3191
3192 kfree(bctl);
3193}
3194
ed25e9b2
ID
3195/*
3196 * Balance filters. Return 1 if chunk should be filtered out
3197 * (should not be balanced).
3198 */
899c81ea 3199static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3200 struct btrfs_balance_args *bargs)
3201{
899c81ea
ID
3202 chunk_type = chunk_to_extended(chunk_type) &
3203 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3204
899c81ea 3205 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3206 return 0;
3207
3208 return 1;
3209}
3210
dba72cb3 3211static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3212 struct btrfs_balance_args *bargs)
bc309467
DS
3213{
3214 struct btrfs_block_group_cache *cache;
3215 u64 chunk_used;
3216 u64 user_thresh_min;
3217 u64 user_thresh_max;
3218 int ret = 1;
3219
3220 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3221 chunk_used = btrfs_block_group_used(&cache->item);
3222
3223 if (bargs->usage_min == 0)
3224 user_thresh_min = 0;
3225 else
3226 user_thresh_min = div_factor_fine(cache->key.offset,
3227 bargs->usage_min);
3228
3229 if (bargs->usage_max == 0)
3230 user_thresh_max = 1;
3231 else if (bargs->usage_max > 100)
3232 user_thresh_max = cache->key.offset;
3233 else
3234 user_thresh_max = div_factor_fine(cache->key.offset,
3235 bargs->usage_max);
3236
3237 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3238 ret = 0;
3239
3240 btrfs_put_block_group(cache);
3241 return ret;
3242}
3243
dba72cb3 3244static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3245 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3246{
3247 struct btrfs_block_group_cache *cache;
3248 u64 chunk_used, user_thresh;
3249 int ret = 1;
3250
3251 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3252 chunk_used = btrfs_block_group_used(&cache->item);
3253
bc309467 3254 if (bargs->usage_min == 0)
3e39cea6 3255 user_thresh = 1;
a105bb88
ID
3256 else if (bargs->usage > 100)
3257 user_thresh = cache->key.offset;
3258 else
3259 user_thresh = div_factor_fine(cache->key.offset,
3260 bargs->usage);
3261
5ce5b3c0
ID
3262 if (chunk_used < user_thresh)
3263 ret = 0;
3264
3265 btrfs_put_block_group(cache);
3266 return ret;
3267}
3268
409d404b
ID
3269static int chunk_devid_filter(struct extent_buffer *leaf,
3270 struct btrfs_chunk *chunk,
3271 struct btrfs_balance_args *bargs)
3272{
3273 struct btrfs_stripe *stripe;
3274 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3275 int i;
3276
3277 for (i = 0; i < num_stripes; i++) {
3278 stripe = btrfs_stripe_nr(chunk, i);
3279 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3280 return 0;
3281 }
3282
3283 return 1;
3284}
3285
94e60d5a
ID
3286/* [pstart, pend) */
3287static int chunk_drange_filter(struct extent_buffer *leaf,
3288 struct btrfs_chunk *chunk,
3289 u64 chunk_offset,
3290 struct btrfs_balance_args *bargs)
3291{
3292 struct btrfs_stripe *stripe;
3293 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3294 u64 stripe_offset;
3295 u64 stripe_length;
3296 int factor;
3297 int i;
3298
3299 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3300 return 0;
3301
3302 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3303 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3304 factor = num_stripes / 2;
3305 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3306 factor = num_stripes - 1;
3307 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3308 factor = num_stripes - 2;
3309 } else {
3310 factor = num_stripes;
3311 }
94e60d5a
ID
3312
3313 for (i = 0; i < num_stripes; i++) {
3314 stripe = btrfs_stripe_nr(chunk, i);
3315 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3316 continue;
3317
3318 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3319 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3320 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3321
3322 if (stripe_offset < bargs->pend &&
3323 stripe_offset + stripe_length > bargs->pstart)
3324 return 0;
3325 }
3326
3327 return 1;
3328}
3329
ea67176a
ID
3330/* [vstart, vend) */
3331static int chunk_vrange_filter(struct extent_buffer *leaf,
3332 struct btrfs_chunk *chunk,
3333 u64 chunk_offset,
3334 struct btrfs_balance_args *bargs)
3335{
3336 if (chunk_offset < bargs->vend &&
3337 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3338 /* at least part of the chunk is inside this vrange */
3339 return 0;
3340
3341 return 1;
3342}
3343
dee32d0a
GAP
3344static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3345 struct btrfs_chunk *chunk,
3346 struct btrfs_balance_args *bargs)
3347{
3348 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349
3350 if (bargs->stripes_min <= num_stripes
3351 && num_stripes <= bargs->stripes_max)
3352 return 0;
3353
3354 return 1;
3355}
3356
899c81ea 3357static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3358 struct btrfs_balance_args *bargs)
3359{
3360 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3361 return 0;
3362
899c81ea
ID
3363 chunk_type = chunk_to_extended(chunk_type) &
3364 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3365
899c81ea 3366 if (bargs->target == chunk_type)
cfa4c961
ID
3367 return 1;
3368
3369 return 0;
3370}
3371
f43ffb60
ID
3372static int should_balance_chunk(struct btrfs_root *root,
3373 struct extent_buffer *leaf,
3374 struct btrfs_chunk *chunk, u64 chunk_offset)
3375{
0b246afa
JM
3376 struct btrfs_fs_info *fs_info = root->fs_info;
3377 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3378 struct btrfs_balance_args *bargs = NULL;
3379 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3380
3381 /* type filter */
3382 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3383 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3384 return 0;
3385 }
3386
3387 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3388 bargs = &bctl->data;
3389 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3390 bargs = &bctl->sys;
3391 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3392 bargs = &bctl->meta;
3393
ed25e9b2
ID
3394 /* profiles filter */
3395 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3396 chunk_profiles_filter(chunk_type, bargs)) {
3397 return 0;
5ce5b3c0
ID
3398 }
3399
3400 /* usage filter */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3402 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3403 return 0;
bc309467 3404 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3405 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3406 return 0;
409d404b
ID
3407 }
3408
3409 /* devid filter */
3410 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3411 chunk_devid_filter(leaf, chunk, bargs)) {
3412 return 0;
94e60d5a
ID
3413 }
3414
3415 /* drange filter, makes sense only with devid filter */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3417 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3418 return 0;
ea67176a
ID
3419 }
3420
3421 /* vrange filter */
3422 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3423 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3424 return 0;
ed25e9b2
ID
3425 }
3426
dee32d0a
GAP
3427 /* stripes filter */
3428 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3429 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3430 return 0;
3431 }
3432
cfa4c961
ID
3433 /* soft profile changing mode */
3434 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3435 chunk_soft_convert_filter(chunk_type, bargs)) {
3436 return 0;
3437 }
3438
7d824b6f
DS
3439 /*
3440 * limited by count, must be the last filter
3441 */
3442 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3443 if (bargs->limit == 0)
3444 return 0;
3445 else
3446 bargs->limit--;
12907fc7
DS
3447 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3448 /*
3449 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3450 * determined here because we do not have the global information
12907fc7
DS
3451 * about the count of all chunks that satisfy the filters.
3452 */
3453 if (bargs->limit_max == 0)
3454 return 0;
3455 else
3456 bargs->limit_max--;
7d824b6f
DS
3457 }
3458
f43ffb60
ID
3459 return 1;
3460}
3461
c9e9f97b 3462static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3463{
19a39dce 3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3465 struct btrfs_root *chunk_root = fs_info->chunk_root;
3466 struct btrfs_root *dev_root = fs_info->dev_root;
3467 struct list_head *devices;
ec44a35c
CM
3468 struct btrfs_device *device;
3469 u64 old_size;
3470 u64 size_to_free;
12907fc7 3471 u64 chunk_type;
f43ffb60 3472 struct btrfs_chunk *chunk;
5a488b9d 3473 struct btrfs_path *path = NULL;
ec44a35c 3474 struct btrfs_key key;
ec44a35c 3475 struct btrfs_key found_key;
c9e9f97b 3476 struct btrfs_trans_handle *trans;
f43ffb60
ID
3477 struct extent_buffer *leaf;
3478 int slot;
c9e9f97b
ID
3479 int ret;
3480 int enospc_errors = 0;
19a39dce 3481 bool counting = true;
12907fc7 3482 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3483 u64 limit_data = bctl->data.limit;
3484 u64 limit_meta = bctl->meta.limit;
3485 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3486 u32 count_data = 0;
3487 u32 count_meta = 0;
3488 u32 count_sys = 0;
2c9fe835 3489 int chunk_reserved = 0;
cf25ce51 3490 u64 bytes_used = 0;
ec44a35c 3491
ec44a35c 3492 /* step one make some room on all the devices */
c9e9f97b 3493 devices = &fs_info->fs_devices->devices;
c6e30871 3494 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3495 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3496 size_to_free = div_factor(old_size, 1);
ee22184b 3497 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3498 if (!device->writeable ||
7cc8e58d
MX
3499 btrfs_device_get_total_bytes(device) -
3500 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3501 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3502 continue;
3503
3504 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3505 if (ret == -ENOSPC)
3506 break;
5a488b9d
LB
3507 if (ret) {
3508 /* btrfs_shrink_device never returns ret > 0 */
3509 WARN_ON(ret > 0);
3510 goto error;
3511 }
ec44a35c 3512
a22285a6 3513 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3514 if (IS_ERR(trans)) {
3515 ret = PTR_ERR(trans);
3516 btrfs_info_in_rcu(fs_info,
3517 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3518 rcu_str_deref(device->name), ret,
3519 old_size, old_size - size_to_free);
3520 goto error;
3521 }
ec44a35c
CM
3522
3523 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d
LB
3524 if (ret) {
3525 btrfs_end_transaction(trans, dev_root);
3526 /* btrfs_grow_device never returns ret > 0 */
3527 WARN_ON(ret > 0);
3528 btrfs_info_in_rcu(fs_info,
3529 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3530 rcu_str_deref(device->name), ret,
3531 old_size, old_size - size_to_free);
3532 goto error;
3533 }
ec44a35c
CM
3534
3535 btrfs_end_transaction(trans, dev_root);
3536 }
3537
3538 /* step two, relocate all the chunks */
3539 path = btrfs_alloc_path();
17e9f796
MF
3540 if (!path) {
3541 ret = -ENOMEM;
3542 goto error;
3543 }
19a39dce
ID
3544
3545 /* zero out stat counters */
3546 spin_lock(&fs_info->balance_lock);
3547 memset(&bctl->stat, 0, sizeof(bctl->stat));
3548 spin_unlock(&fs_info->balance_lock);
3549again:
7d824b6f 3550 if (!counting) {
12907fc7
DS
3551 /*
3552 * The single value limit and min/max limits use the same bytes
3553 * in the
3554 */
7d824b6f
DS
3555 bctl->data.limit = limit_data;
3556 bctl->meta.limit = limit_meta;
3557 bctl->sys.limit = limit_sys;
3558 }
ec44a35c
CM
3559 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3560 key.offset = (u64)-1;
3561 key.type = BTRFS_CHUNK_ITEM_KEY;
3562
d397712b 3563 while (1) {
19a39dce 3564 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3565 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3566 ret = -ECANCELED;
3567 goto error;
3568 }
3569
67c5e7d4 3570 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3571 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3572 if (ret < 0) {
3573 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3574 goto error;
67c5e7d4 3575 }
ec44a35c
CM
3576
3577 /*
3578 * this shouldn't happen, it means the last relocate
3579 * failed
3580 */
3581 if (ret == 0)
c9e9f97b 3582 BUG(); /* FIXME break ? */
ec44a35c
CM
3583
3584 ret = btrfs_previous_item(chunk_root, path, 0,
3585 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3586 if (ret) {
67c5e7d4 3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3588 ret = 0;
ec44a35c 3589 break;
c9e9f97b 3590 }
7d9eb12c 3591
f43ffb60
ID
3592 leaf = path->nodes[0];
3593 slot = path->slots[0];
3594 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3595
67c5e7d4
FM
3596 if (found_key.objectid != key.objectid) {
3597 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3598 break;
67c5e7d4 3599 }
7d9eb12c 3600
f43ffb60 3601 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3602 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3603
19a39dce
ID
3604 if (!counting) {
3605 spin_lock(&fs_info->balance_lock);
3606 bctl->stat.considered++;
3607 spin_unlock(&fs_info->balance_lock);
3608 }
3609
f43ffb60
ID
3610 ret = should_balance_chunk(chunk_root, leaf, chunk,
3611 found_key.offset);
2c9fe835 3612
b3b4aa74 3613 btrfs_release_path(path);
67c5e7d4
FM
3614 if (!ret) {
3615 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3616 goto loop;
67c5e7d4 3617 }
f43ffb60 3618
19a39dce 3619 if (counting) {
67c5e7d4 3620 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3621 spin_lock(&fs_info->balance_lock);
3622 bctl->stat.expected++;
3623 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3624
3625 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3626 count_data++;
3627 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3628 count_sys++;
3629 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3630 count_meta++;
3631
3632 goto loop;
3633 }
3634
3635 /*
3636 * Apply limit_min filter, no need to check if the LIMITS
3637 * filter is used, limit_min is 0 by default
3638 */
3639 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3640 count_data < bctl->data.limit_min)
3641 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3642 count_meta < bctl->meta.limit_min)
3643 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3644 count_sys < bctl->sys.limit_min)) {
3645 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3646 goto loop;
3647 }
3648
cf25ce51
LB
3649 ASSERT(fs_info->data_sinfo);
3650 spin_lock(&fs_info->data_sinfo->lock);
3651 bytes_used = fs_info->data_sinfo->bytes_used;
3652 spin_unlock(&fs_info->data_sinfo->lock);
3653
3654 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3656 trans = btrfs_start_transaction(chunk_root, 0);
3657 if (IS_ERR(trans)) {
3658 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659 ret = PTR_ERR(trans);
3660 goto error;
3661 }
3662
3663 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3664 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3665 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3666 if (ret < 0) {
3667 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3668 goto error;
3669 }
2c9fe835
ZL
3670 chunk_reserved = 1;
3671 }
3672
5b4aacef 3673 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3674 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3675 if (ret && ret != -ENOSPC)
3676 goto error;
19a39dce 3677 if (ret == -ENOSPC) {
c9e9f97b 3678 enospc_errors++;
19a39dce
ID
3679 } else {
3680 spin_lock(&fs_info->balance_lock);
3681 bctl->stat.completed++;
3682 spin_unlock(&fs_info->balance_lock);
3683 }
f43ffb60 3684loop:
795a3321
ID
3685 if (found_key.offset == 0)
3686 break;
ba1bf481 3687 key.offset = found_key.offset - 1;
ec44a35c 3688 }
c9e9f97b 3689
19a39dce
ID
3690 if (counting) {
3691 btrfs_release_path(path);
3692 counting = false;
3693 goto again;
3694 }
ec44a35c
CM
3695error:
3696 btrfs_free_path(path);
c9e9f97b 3697 if (enospc_errors) {
efe120a0 3698 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3699 enospc_errors);
c9e9f97b
ID
3700 if (!ret)
3701 ret = -ENOSPC;
3702 }
3703
ec44a35c
CM
3704 return ret;
3705}
3706
0c460c0d
ID
3707/**
3708 * alloc_profile_is_valid - see if a given profile is valid and reduced
3709 * @flags: profile to validate
3710 * @extended: if true @flags is treated as an extended profile
3711 */
3712static int alloc_profile_is_valid(u64 flags, int extended)
3713{
3714 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3715 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3716
3717 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3718
3719 /* 1) check that all other bits are zeroed */
3720 if (flags & ~mask)
3721 return 0;
3722
3723 /* 2) see if profile is reduced */
3724 if (flags == 0)
3725 return !extended; /* "0" is valid for usual profiles */
3726
3727 /* true if exactly one bit set */
3728 return (flags & (flags - 1)) == 0;
3729}
3730
837d5b6e
ID
3731static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3732{
a7e99c69
ID
3733 /* cancel requested || normal exit path */
3734 return atomic_read(&fs_info->balance_cancel_req) ||
3735 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3736 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3737}
3738
c9e9f97b
ID
3739static void __cancel_balance(struct btrfs_fs_info *fs_info)
3740{
0940ebf6
ID
3741 int ret;
3742
c9e9f97b 3743 unset_balance_control(fs_info);
6bccf3ab 3744 ret = del_balance_item(fs_info);
0f788c58 3745 if (ret)
34d97007 3746 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f
ID
3747
3748 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3749}
3750
bdcd3c97
AM
3751/* Non-zero return value signifies invalidity */
3752static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3753 u64 allowed)
3754{
3755 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3756 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3757 (bctl_arg->target & ~allowed)));
3758}
3759
c9e9f97b
ID
3760/*
3761 * Should be called with both balance and volume mutexes held
3762 */
3763int btrfs_balance(struct btrfs_balance_control *bctl,
3764 struct btrfs_ioctl_balance_args *bargs)
3765{
3766 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3767 u64 allowed;
e4837f8f 3768 int mixed = 0;
c9e9f97b 3769 int ret;
8dabb742 3770 u64 num_devices;
de98ced9 3771 unsigned seq;
c9e9f97b 3772
837d5b6e 3773 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3774 atomic_read(&fs_info->balance_pause_req) ||
3775 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3776 ret = -EINVAL;
3777 goto out;
3778 }
3779
e4837f8f
ID
3780 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3781 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3782 mixed = 1;
3783
f43ffb60
ID
3784 /*
3785 * In case of mixed groups both data and meta should be picked,
3786 * and identical options should be given for both of them.
3787 */
e4837f8f
ID
3788 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3789 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3790 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3791 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3792 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3793 btrfs_err(fs_info,
3794 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3795 ret = -EINVAL;
3796 goto out;
3797 }
3798 }
3799
8dabb742 3800 num_devices = fs_info->fs_devices->num_devices;
73beece9 3801 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3802 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3803 BUG_ON(num_devices < 1);
3804 num_devices--;
3805 }
73beece9 3806 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3807 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3808 if (num_devices > 1)
e4d8ec0f 3809 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3810 if (num_devices > 2)
3811 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3812 if (num_devices > 3)
3813 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3814 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3815 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3816 btrfs_err(fs_info,
3817 "unable to start balance with target data profile %llu",
3818 bctl->data.target);
e4d8ec0f
ID
3819 ret = -EINVAL;
3820 goto out;
3821 }
bdcd3c97 3822 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3823 btrfs_err(fs_info,
5d163e0e
JM
3824 "unable to start balance with target metadata profile %llu",
3825 bctl->meta.target);
e4d8ec0f
ID
3826 ret = -EINVAL;
3827 goto out;
3828 }
bdcd3c97 3829 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3830 btrfs_err(fs_info,
5d163e0e
JM
3831 "unable to start balance with target system profile %llu",
3832 bctl->sys.target);
e4d8ec0f
ID
3833 ret = -EINVAL;
3834 goto out;
3835 }
3836
e4d8ec0f
ID
3837 /* allow to reduce meta or sys integrity only if force set */
3838 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3839 BTRFS_BLOCK_GROUP_RAID10 |
3840 BTRFS_BLOCK_GROUP_RAID5 |
3841 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3842 do {
3843 seq = read_seqbegin(&fs_info->profiles_lock);
3844
3845 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3846 (fs_info->avail_system_alloc_bits & allowed) &&
3847 !(bctl->sys.target & allowed)) ||
3848 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 (fs_info->avail_metadata_alloc_bits & allowed) &&
3850 !(bctl->meta.target & allowed))) {
3851 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3852 btrfs_info(fs_info,
3853 "force reducing metadata integrity");
de98ced9 3854 } else {
5d163e0e
JM
3855 btrfs_err(fs_info,
3856 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3857 ret = -EINVAL;
3858 goto out;
3859 }
e4d8ec0f 3860 }
de98ced9 3861 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3862
ee592d07
ST
3863 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3864 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3865 btrfs_warn(fs_info,
5d163e0e
JM
3866 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3867 bctl->meta.target, bctl->data.target);
ee592d07
ST
3868 }
3869
5af3e8cc 3870 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3871 fs_info->num_tolerated_disk_barrier_failures = min(
3872 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3873 btrfs_get_num_tolerated_disk_barrier_failures(
3874 bctl->sys.target));
5af3e8cc
SB
3875 }
3876
6bccf3ab 3877 ret = insert_balance_item(fs_info, bctl);
59641015 3878 if (ret && ret != -EEXIST)
0940ebf6
ID
3879 goto out;
3880
59641015
ID
3881 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3882 BUG_ON(ret == -EEXIST);
3883 set_balance_control(bctl);
3884 } else {
3885 BUG_ON(ret != -EEXIST);
3886 spin_lock(&fs_info->balance_lock);
3887 update_balance_args(bctl);
3888 spin_unlock(&fs_info->balance_lock);
3889 }
c9e9f97b 3890
837d5b6e 3891 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3892 mutex_unlock(&fs_info->balance_mutex);
3893
3894 ret = __btrfs_balance(fs_info);
3895
3896 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3897 atomic_dec(&fs_info->balance_running);
c9e9f97b 3898
bf023ecf
ID
3899 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900 fs_info->num_tolerated_disk_barrier_failures =
3901 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3902 }
3903
c9e9f97b
ID
3904 if (bargs) {
3905 memset(bargs, 0, sizeof(*bargs));
19a39dce 3906 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3907 }
3908
3a01aa7a
ID
3909 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3910 balance_need_close(fs_info)) {
3911 __cancel_balance(fs_info);
3912 }
3913
837d5b6e 3914 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3915
3916 return ret;
3917out:
59641015
ID
3918 if (bctl->flags & BTRFS_BALANCE_RESUME)
3919 __cancel_balance(fs_info);
ed0fb78f 3920 else {
59641015 3921 kfree(bctl);
ed0fb78f
ID
3922 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3923 }
59641015
ID
3924 return ret;
3925}
3926
3927static int balance_kthread(void *data)
3928{
2b6ba629 3929 struct btrfs_fs_info *fs_info = data;
9555c6c1 3930 int ret = 0;
59641015
ID
3931
3932 mutex_lock(&fs_info->volume_mutex);
3933 mutex_lock(&fs_info->balance_mutex);
3934
2b6ba629 3935 if (fs_info->balance_ctl) {
efe120a0 3936 btrfs_info(fs_info, "continuing balance");
2b6ba629 3937 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3938 }
59641015
ID
3939
3940 mutex_unlock(&fs_info->balance_mutex);
3941 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3942
59641015
ID
3943 return ret;
3944}
3945
2b6ba629
ID
3946int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3947{
3948 struct task_struct *tsk;
3949
3950 spin_lock(&fs_info->balance_lock);
3951 if (!fs_info->balance_ctl) {
3952 spin_unlock(&fs_info->balance_lock);
3953 return 0;
3954 }
3955 spin_unlock(&fs_info->balance_lock);
3956
3cdde224 3957 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3958 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3959 return 0;
3960 }
3961
3962 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3963 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3964}
3965
68310a5e 3966int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3967{
59641015
ID
3968 struct btrfs_balance_control *bctl;
3969 struct btrfs_balance_item *item;
3970 struct btrfs_disk_balance_args disk_bargs;
3971 struct btrfs_path *path;
3972 struct extent_buffer *leaf;
3973 struct btrfs_key key;
3974 int ret;
3975
3976 path = btrfs_alloc_path();
3977 if (!path)
3978 return -ENOMEM;
3979
59641015 3980 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3981 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3982 key.offset = 0;
3983
68310a5e 3984 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3985 if (ret < 0)
68310a5e 3986 goto out;
59641015
ID
3987 if (ret > 0) { /* ret = -ENOENT; */
3988 ret = 0;
68310a5e
ID
3989 goto out;
3990 }
3991
3992 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3993 if (!bctl) {
3994 ret = -ENOMEM;
3995 goto out;
59641015
ID
3996 }
3997
3998 leaf = path->nodes[0];
3999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4000
68310a5e
ID
4001 bctl->fs_info = fs_info;
4002 bctl->flags = btrfs_balance_flags(leaf, item);
4003 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4004
4005 btrfs_balance_data(leaf, item, &disk_bargs);
4006 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4007 btrfs_balance_meta(leaf, item, &disk_bargs);
4008 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4009 btrfs_balance_sys(leaf, item, &disk_bargs);
4010 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4011
ed0fb78f
ID
4012 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4013
68310a5e
ID
4014 mutex_lock(&fs_info->volume_mutex);
4015 mutex_lock(&fs_info->balance_mutex);
59641015 4016
68310a5e
ID
4017 set_balance_control(bctl);
4018
4019 mutex_unlock(&fs_info->balance_mutex);
4020 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4021out:
4022 btrfs_free_path(path);
ec44a35c
CM
4023 return ret;
4024}
4025
837d5b6e
ID
4026int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4027{
4028 int ret = 0;
4029
4030 mutex_lock(&fs_info->balance_mutex);
4031 if (!fs_info->balance_ctl) {
4032 mutex_unlock(&fs_info->balance_mutex);
4033 return -ENOTCONN;
4034 }
4035
4036 if (atomic_read(&fs_info->balance_running)) {
4037 atomic_inc(&fs_info->balance_pause_req);
4038 mutex_unlock(&fs_info->balance_mutex);
4039
4040 wait_event(fs_info->balance_wait_q,
4041 atomic_read(&fs_info->balance_running) == 0);
4042
4043 mutex_lock(&fs_info->balance_mutex);
4044 /* we are good with balance_ctl ripped off from under us */
4045 BUG_ON(atomic_read(&fs_info->balance_running));
4046 atomic_dec(&fs_info->balance_pause_req);
4047 } else {
4048 ret = -ENOTCONN;
4049 }
4050
4051 mutex_unlock(&fs_info->balance_mutex);
4052 return ret;
4053}
4054
a7e99c69
ID
4055int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4056{
e649e587
ID
4057 if (fs_info->sb->s_flags & MS_RDONLY)
4058 return -EROFS;
4059
a7e99c69
ID
4060 mutex_lock(&fs_info->balance_mutex);
4061 if (!fs_info->balance_ctl) {
4062 mutex_unlock(&fs_info->balance_mutex);
4063 return -ENOTCONN;
4064 }
4065
4066 atomic_inc(&fs_info->balance_cancel_req);
4067 /*
4068 * if we are running just wait and return, balance item is
4069 * deleted in btrfs_balance in this case
4070 */
4071 if (atomic_read(&fs_info->balance_running)) {
4072 mutex_unlock(&fs_info->balance_mutex);
4073 wait_event(fs_info->balance_wait_q,
4074 atomic_read(&fs_info->balance_running) == 0);
4075 mutex_lock(&fs_info->balance_mutex);
4076 } else {
4077 /* __cancel_balance needs volume_mutex */
4078 mutex_unlock(&fs_info->balance_mutex);
4079 mutex_lock(&fs_info->volume_mutex);
4080 mutex_lock(&fs_info->balance_mutex);
4081
4082 if (fs_info->balance_ctl)
4083 __cancel_balance(fs_info);
4084
4085 mutex_unlock(&fs_info->volume_mutex);
4086 }
4087
4088 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4089 atomic_dec(&fs_info->balance_cancel_req);
4090 mutex_unlock(&fs_info->balance_mutex);
4091 return 0;
4092}
4093
803b2f54
SB
4094static int btrfs_uuid_scan_kthread(void *data)
4095{
4096 struct btrfs_fs_info *fs_info = data;
4097 struct btrfs_root *root = fs_info->tree_root;
4098 struct btrfs_key key;
4099 struct btrfs_key max_key;
4100 struct btrfs_path *path = NULL;
4101 int ret = 0;
4102 struct extent_buffer *eb;
4103 int slot;
4104 struct btrfs_root_item root_item;
4105 u32 item_size;
f45388f3 4106 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4107
4108 path = btrfs_alloc_path();
4109 if (!path) {
4110 ret = -ENOMEM;
4111 goto out;
4112 }
4113
4114 key.objectid = 0;
4115 key.type = BTRFS_ROOT_ITEM_KEY;
4116 key.offset = 0;
4117
4118 max_key.objectid = (u64)-1;
4119 max_key.type = BTRFS_ROOT_ITEM_KEY;
4120 max_key.offset = (u64)-1;
4121
803b2f54 4122 while (1) {
6174d3cb 4123 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4124 if (ret) {
4125 if (ret > 0)
4126 ret = 0;
4127 break;
4128 }
4129
4130 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4131 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4132 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4133 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4134 goto skip;
4135
4136 eb = path->nodes[0];
4137 slot = path->slots[0];
4138 item_size = btrfs_item_size_nr(eb, slot);
4139 if (item_size < sizeof(root_item))
4140 goto skip;
4141
803b2f54
SB
4142 read_extent_buffer(eb, &root_item,
4143 btrfs_item_ptr_offset(eb, slot),
4144 (int)sizeof(root_item));
4145 if (btrfs_root_refs(&root_item) == 0)
4146 goto skip;
f45388f3
FDBM
4147
4148 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4149 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4150 if (trans)
4151 goto update_tree;
4152
4153 btrfs_release_path(path);
803b2f54
SB
4154 /*
4155 * 1 - subvol uuid item
4156 * 1 - received_subvol uuid item
4157 */
4158 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4159 if (IS_ERR(trans)) {
4160 ret = PTR_ERR(trans);
4161 break;
4162 }
f45388f3
FDBM
4163 continue;
4164 } else {
4165 goto skip;
4166 }
4167update_tree:
4168 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4169 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4170 root_item.uuid,
4171 BTRFS_UUID_KEY_SUBVOL,
4172 key.objectid);
4173 if (ret < 0) {
efe120a0 4174 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4175 ret);
803b2f54
SB
4176 break;
4177 }
4178 }
4179
4180 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4181 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4182 root_item.received_uuid,
4183 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4184 key.objectid);
4185 if (ret < 0) {
efe120a0 4186 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4187 ret);
803b2f54
SB
4188 break;
4189 }
4190 }
4191
f45388f3 4192skip:
803b2f54
SB
4193 if (trans) {
4194 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4195 trans = NULL;
803b2f54
SB
4196 if (ret)
4197 break;
4198 }
4199
803b2f54
SB
4200 btrfs_release_path(path);
4201 if (key.offset < (u64)-1) {
4202 key.offset++;
4203 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4204 key.offset = 0;
4205 key.type = BTRFS_ROOT_ITEM_KEY;
4206 } else if (key.objectid < (u64)-1) {
4207 key.offset = 0;
4208 key.type = BTRFS_ROOT_ITEM_KEY;
4209 key.objectid++;
4210 } else {
4211 break;
4212 }
4213 cond_resched();
4214 }
4215
4216out:
4217 btrfs_free_path(path);
f45388f3
FDBM
4218 if (trans && !IS_ERR(trans))
4219 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4220 if (ret)
efe120a0 4221 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4222 else
afcdd129 4223 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4224 up(&fs_info->uuid_tree_rescan_sem);
4225 return 0;
4226}
4227
70f80175
SB
4228/*
4229 * Callback for btrfs_uuid_tree_iterate().
4230 * returns:
4231 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4232 * < 0 if an error occurred.
70f80175
SB
4233 * > 0 if the check failed, which means the caller shall remove the entry.
4234 */
4235static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4236 u8 *uuid, u8 type, u64 subid)
4237{
4238 struct btrfs_key key;
4239 int ret = 0;
4240 struct btrfs_root *subvol_root;
4241
4242 if (type != BTRFS_UUID_KEY_SUBVOL &&
4243 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4244 goto out;
4245
4246 key.objectid = subid;
4247 key.type = BTRFS_ROOT_ITEM_KEY;
4248 key.offset = (u64)-1;
4249 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4250 if (IS_ERR(subvol_root)) {
4251 ret = PTR_ERR(subvol_root);
4252 if (ret == -ENOENT)
4253 ret = 1;
4254 goto out;
4255 }
4256
4257 switch (type) {
4258 case BTRFS_UUID_KEY_SUBVOL:
4259 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4260 ret = 1;
4261 break;
4262 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4263 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4264 BTRFS_UUID_SIZE))
4265 ret = 1;
4266 break;
4267 }
4268
4269out:
4270 return ret;
4271}
4272
4273static int btrfs_uuid_rescan_kthread(void *data)
4274{
4275 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4276 int ret;
4277
4278 /*
4279 * 1st step is to iterate through the existing UUID tree and
4280 * to delete all entries that contain outdated data.
4281 * 2nd step is to add all missing entries to the UUID tree.
4282 */
4283 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4284 if (ret < 0) {
efe120a0 4285 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4286 up(&fs_info->uuid_tree_rescan_sem);
4287 return ret;
4288 }
4289 return btrfs_uuid_scan_kthread(data);
4290}
4291
f7a81ea4
SB
4292int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4293{
4294 struct btrfs_trans_handle *trans;
4295 struct btrfs_root *tree_root = fs_info->tree_root;
4296 struct btrfs_root *uuid_root;
803b2f54
SB
4297 struct task_struct *task;
4298 int ret;
f7a81ea4
SB
4299
4300 /*
4301 * 1 - root node
4302 * 1 - root item
4303 */
4304 trans = btrfs_start_transaction(tree_root, 2);
4305 if (IS_ERR(trans))
4306 return PTR_ERR(trans);
4307
4308 uuid_root = btrfs_create_tree(trans, fs_info,
4309 BTRFS_UUID_TREE_OBJECTID);
4310 if (IS_ERR(uuid_root)) {
6d13f549 4311 ret = PTR_ERR(uuid_root);
66642832 4312 btrfs_abort_transaction(trans, ret);
65d4f4c1 4313 btrfs_end_transaction(trans, tree_root);
6d13f549 4314 return ret;
f7a81ea4
SB
4315 }
4316
4317 fs_info->uuid_root = uuid_root;
4318
803b2f54
SB
4319 ret = btrfs_commit_transaction(trans, tree_root);
4320 if (ret)
4321 return ret;
4322
4323 down(&fs_info->uuid_tree_rescan_sem);
4324 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4325 if (IS_ERR(task)) {
70f80175 4326 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4327 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4328 up(&fs_info->uuid_tree_rescan_sem);
4329 return PTR_ERR(task);
4330 }
4331
4332 return 0;
f7a81ea4 4333}
803b2f54 4334
70f80175
SB
4335int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4336{
4337 struct task_struct *task;
4338
4339 down(&fs_info->uuid_tree_rescan_sem);
4340 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4341 if (IS_ERR(task)) {
4342 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4343 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4344 up(&fs_info->uuid_tree_rescan_sem);
4345 return PTR_ERR(task);
4346 }
4347
4348 return 0;
4349}
4350
8f18cf13
CM
4351/*
4352 * shrinking a device means finding all of the device extents past
4353 * the new size, and then following the back refs to the chunks.
4354 * The chunk relocation code actually frees the device extent
4355 */
4356int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4357{
0b246afa
JM
4358 struct btrfs_fs_info *fs_info = device->fs_info;
4359 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4360 struct btrfs_trans_handle *trans;
8f18cf13
CM
4361 struct btrfs_dev_extent *dev_extent = NULL;
4362 struct btrfs_path *path;
4363 u64 length;
8f18cf13
CM
4364 u64 chunk_offset;
4365 int ret;
4366 int slot;
ba1bf481
JB
4367 int failed = 0;
4368 bool retried = false;
53e489bc 4369 bool checked_pending_chunks = false;
8f18cf13
CM
4370 struct extent_buffer *l;
4371 struct btrfs_key key;
0b246afa 4372 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4373 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4374 u64 old_size = btrfs_device_get_total_bytes(device);
4375 u64 diff = old_size - new_size;
8f18cf13 4376
63a212ab
SB
4377 if (device->is_tgtdev_for_dev_replace)
4378 return -EINVAL;
4379
8f18cf13
CM
4380 path = btrfs_alloc_path();
4381 if (!path)
4382 return -ENOMEM;
4383
e4058b54 4384 path->reada = READA_FORWARD;
8f18cf13 4385
0b246afa 4386 lock_chunks(fs_info);
7d9eb12c 4387
7cc8e58d 4388 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4389 if (device->writeable) {
2b82032c 4390 device->fs_devices->total_rw_bytes -= diff;
0b246afa
JM
4391 spin_lock(&fs_info->free_chunk_lock);
4392 fs_info->free_chunk_space -= diff;
4393 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 4394 }
0b246afa 4395 unlock_chunks(fs_info);
8f18cf13 4396
ba1bf481 4397again:
8f18cf13
CM
4398 key.objectid = device->devid;
4399 key.offset = (u64)-1;
4400 key.type = BTRFS_DEV_EXTENT_KEY;
4401
213e64da 4402 do {
0b246afa 4403 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4405 if (ret < 0) {
0b246afa 4406 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4407 goto done;
67c5e7d4 4408 }
8f18cf13
CM
4409
4410 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4411 if (ret)
0b246afa 4412 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4413 if (ret < 0)
4414 goto done;
4415 if (ret) {
4416 ret = 0;
b3b4aa74 4417 btrfs_release_path(path);
bf1fb512 4418 break;
8f18cf13
CM
4419 }
4420
4421 l = path->nodes[0];
4422 slot = path->slots[0];
4423 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4424
ba1bf481 4425 if (key.objectid != device->devid) {
0b246afa 4426 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4427 btrfs_release_path(path);
bf1fb512 4428 break;
ba1bf481 4429 }
8f18cf13
CM
4430
4431 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4432 length = btrfs_dev_extent_length(l, dev_extent);
4433
ba1bf481 4434 if (key.offset + length <= new_size) {
0b246afa 4435 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4436 btrfs_release_path(path);
d6397bae 4437 break;
ba1bf481 4438 }
8f18cf13 4439
8f18cf13 4440 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4441 btrfs_release_path(path);
8f18cf13 4442
0b246afa
JM
4443 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4444 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4445 if (ret && ret != -ENOSPC)
8f18cf13 4446 goto done;
ba1bf481
JB
4447 if (ret == -ENOSPC)
4448 failed++;
213e64da 4449 } while (key.offset-- > 0);
ba1bf481
JB
4450
4451 if (failed && !retried) {
4452 failed = 0;
4453 retried = true;
4454 goto again;
4455 } else if (failed && retried) {
4456 ret = -ENOSPC;
ba1bf481 4457 goto done;
8f18cf13
CM
4458 }
4459
d6397bae 4460 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4461 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4462 if (IS_ERR(trans)) {
4463 ret = PTR_ERR(trans);
4464 goto done;
4465 }
4466
0b246afa 4467 lock_chunks(fs_info);
53e489bc
FM
4468
4469 /*
4470 * We checked in the above loop all device extents that were already in
4471 * the device tree. However before we have updated the device's
4472 * total_bytes to the new size, we might have had chunk allocations that
4473 * have not complete yet (new block groups attached to transaction
4474 * handles), and therefore their device extents were not yet in the
4475 * device tree and we missed them in the loop above. So if we have any
4476 * pending chunk using a device extent that overlaps the device range
4477 * that we can not use anymore, commit the current transaction and
4478 * repeat the search on the device tree - this way we guarantee we will
4479 * not have chunks using device extents that end beyond 'new_size'.
4480 */
4481 if (!checked_pending_chunks) {
4482 u64 start = new_size;
4483 u64 len = old_size - new_size;
4484
499f377f
JM
4485 if (contains_pending_extent(trans->transaction, device,
4486 &start, len)) {
0b246afa 4487 unlock_chunks(fs_info);
53e489bc
FM
4488 checked_pending_chunks = true;
4489 failed = 0;
4490 retried = false;
4491 ret = btrfs_commit_transaction(trans, root);
4492 if (ret)
4493 goto done;
4494 goto again;
4495 }
4496 }
4497
7cc8e58d 4498 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4499 if (list_empty(&device->resized_list))
4500 list_add_tail(&device->resized_list,
0b246afa 4501 &fs_info->fs_devices->resized_devices);
d6397bae 4502
d6397bae
CB
4503 WARN_ON(diff > old_total);
4504 btrfs_set_super_total_bytes(super_copy, old_total - diff);
0b246afa 4505 unlock_chunks(fs_info);
2196d6e8
MX
4506
4507 /* Now btrfs_update_device() will change the on-disk size. */
4508 ret = btrfs_update_device(trans, device);
d6397bae 4509 btrfs_end_transaction(trans, root);
8f18cf13
CM
4510done:
4511 btrfs_free_path(path);
53e489bc 4512 if (ret) {
0b246afa 4513 lock_chunks(fs_info);
53e489bc
FM
4514 btrfs_device_set_total_bytes(device, old_size);
4515 if (device->writeable)
4516 device->fs_devices->total_rw_bytes += diff;
0b246afa
JM
4517 spin_lock(&fs_info->free_chunk_lock);
4518 fs_info->free_chunk_space += diff;
4519 spin_unlock(&fs_info->free_chunk_lock);
4520 unlock_chunks(fs_info);
53e489bc 4521 }
8f18cf13
CM
4522 return ret;
4523}
4524
125ccb0a 4525static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4526 struct btrfs_key *key,
4527 struct btrfs_chunk *chunk, int item_size)
4528{
0b246afa
JM
4529 struct btrfs_fs_info *fs_info = root->fs_info;
4530 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4531 struct btrfs_disk_key disk_key;
4532 u32 array_size;
4533 u8 *ptr;
4534
0b246afa 4535 lock_chunks(fs_info);
0b86a832 4536 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4537 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4538 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
0b246afa 4539 unlock_chunks(fs_info);
0b86a832 4540 return -EFBIG;
fe48a5c0 4541 }
0b86a832
CM
4542
4543 ptr = super_copy->sys_chunk_array + array_size;
4544 btrfs_cpu_key_to_disk(&disk_key, key);
4545 memcpy(ptr, &disk_key, sizeof(disk_key));
4546 ptr += sizeof(disk_key);
4547 memcpy(ptr, chunk, item_size);
4548 item_size += sizeof(disk_key);
4549 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
0b246afa 4550 unlock_chunks(fs_info);
fe48a5c0 4551
0b86a832
CM
4552 return 0;
4553}
4554
73c5de00
AJ
4555/*
4556 * sort the devices in descending order by max_avail, total_avail
4557 */
4558static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4559{
73c5de00
AJ
4560 const struct btrfs_device_info *di_a = a;
4561 const struct btrfs_device_info *di_b = b;
9b3f68b9 4562
73c5de00 4563 if (di_a->max_avail > di_b->max_avail)
b2117a39 4564 return -1;
73c5de00 4565 if (di_a->max_avail < di_b->max_avail)
b2117a39 4566 return 1;
73c5de00
AJ
4567 if (di_a->total_avail > di_b->total_avail)
4568 return -1;
4569 if (di_a->total_avail < di_b->total_avail)
4570 return 1;
4571 return 0;
b2117a39 4572}
0b86a832 4573
53b381b3
DW
4574static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4575{
4576 /* TODO allow them to set a preferred stripe size */
ee22184b 4577 return SZ_64K;
53b381b3
DW
4578}
4579
4580static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4581{
ffe2d203 4582 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4583 return;
4584
ceda0864 4585 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4586}
4587
da17066c 4588#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4589 - sizeof(struct btrfs_chunk)) \
4590 / sizeof(struct btrfs_stripe) + 1)
4591
4592#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4593 - 2 * sizeof(struct btrfs_disk_key) \
4594 - 2 * sizeof(struct btrfs_chunk)) \
4595 / sizeof(struct btrfs_stripe) + 1)
4596
73c5de00 4597static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4598 struct btrfs_root *extent_root, u64 start,
4599 u64 type)
b2117a39 4600{
73c5de00
AJ
4601 struct btrfs_fs_info *info = extent_root->fs_info;
4602 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4603 struct list_head *cur;
4604 struct map_lookup *map = NULL;
4605 struct extent_map_tree *em_tree;
4606 struct extent_map *em;
4607 struct btrfs_device_info *devices_info = NULL;
4608 u64 total_avail;
4609 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4610 int data_stripes; /* number of stripes that count for
4611 block group size */
73c5de00
AJ
4612 int sub_stripes; /* sub_stripes info for map */
4613 int dev_stripes; /* stripes per dev */
4614 int devs_max; /* max devs to use */
4615 int devs_min; /* min devs needed */
4616 int devs_increment; /* ndevs has to be a multiple of this */
4617 int ncopies; /* how many copies to data has */
4618 int ret;
4619 u64 max_stripe_size;
4620 u64 max_chunk_size;
4621 u64 stripe_size;
4622 u64 num_bytes;
53b381b3 4623 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4624 int ndevs;
4625 int i;
4626 int j;
31e50229 4627 int index;
593060d7 4628
0c460c0d 4629 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4630
73c5de00
AJ
4631 if (list_empty(&fs_devices->alloc_list))
4632 return -ENOSPC;
b2117a39 4633
31e50229 4634 index = __get_raid_index(type);
73c5de00 4635
31e50229
LB
4636 sub_stripes = btrfs_raid_array[index].sub_stripes;
4637 dev_stripes = btrfs_raid_array[index].dev_stripes;
4638 devs_max = btrfs_raid_array[index].devs_max;
4639 devs_min = btrfs_raid_array[index].devs_min;
4640 devs_increment = btrfs_raid_array[index].devs_increment;
4641 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4642
9b3f68b9 4643 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4644 max_stripe_size = SZ_1G;
73c5de00 4645 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4646 if (!devs_max)
4647 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4648 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4649 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4650 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4651 max_stripe_size = SZ_1G;
1100373f 4652 else
ee22184b 4653 max_stripe_size = SZ_256M;
73c5de00 4654 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4655 if (!devs_max)
4656 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4657 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4658 max_stripe_size = SZ_32M;
73c5de00 4659 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4660 if (!devs_max)
4661 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4662 } else {
351fd353 4663 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4664 type);
4665 BUG_ON(1);
9b3f68b9
CM
4666 }
4667
2b82032c
YZ
4668 /* we don't want a chunk larger than 10% of writeable space */
4669 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4670 max_chunk_size);
9b3f68b9 4671
31e818fe 4672 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4673 GFP_NOFS);
4674 if (!devices_info)
4675 return -ENOMEM;
0cad8a11 4676
73c5de00 4677 cur = fs_devices->alloc_list.next;
9b3f68b9 4678
9f680ce0 4679 /*
73c5de00
AJ
4680 * in the first pass through the devices list, we gather information
4681 * about the available holes on each device.
9f680ce0 4682 */
73c5de00
AJ
4683 ndevs = 0;
4684 while (cur != &fs_devices->alloc_list) {
4685 struct btrfs_device *device;
4686 u64 max_avail;
4687 u64 dev_offset;
b2117a39 4688
73c5de00 4689 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4690
73c5de00 4691 cur = cur->next;
b2117a39 4692
73c5de00 4693 if (!device->writeable) {
31b1a2bd 4694 WARN(1, KERN_ERR
efe120a0 4695 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4696 continue;
4697 }
b2117a39 4698
63a212ab
SB
4699 if (!device->in_fs_metadata ||
4700 device->is_tgtdev_for_dev_replace)
73c5de00 4701 continue;
b2117a39 4702
73c5de00
AJ
4703 if (device->total_bytes > device->bytes_used)
4704 total_avail = device->total_bytes - device->bytes_used;
4705 else
4706 total_avail = 0;
38c01b96 4707
4708 /* If there is no space on this device, skip it. */
4709 if (total_avail == 0)
4710 continue;
b2117a39 4711
6df9a95e 4712 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4713 max_stripe_size * dev_stripes,
4714 &dev_offset, &max_avail);
4715 if (ret && ret != -ENOSPC)
4716 goto error;
b2117a39 4717
73c5de00
AJ
4718 if (ret == 0)
4719 max_avail = max_stripe_size * dev_stripes;
b2117a39 4720
73c5de00
AJ
4721 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4722 continue;
b2117a39 4723
063d006f
ES
4724 if (ndevs == fs_devices->rw_devices) {
4725 WARN(1, "%s: found more than %llu devices\n",
4726 __func__, fs_devices->rw_devices);
4727 break;
4728 }
73c5de00
AJ
4729 devices_info[ndevs].dev_offset = dev_offset;
4730 devices_info[ndevs].max_avail = max_avail;
4731 devices_info[ndevs].total_avail = total_avail;
4732 devices_info[ndevs].dev = device;
4733 ++ndevs;
4734 }
b2117a39 4735
73c5de00
AJ
4736 /*
4737 * now sort the devices by hole size / available space
4738 */
4739 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4740 btrfs_cmp_device_info, NULL);
b2117a39 4741
73c5de00
AJ
4742 /* round down to number of usable stripes */
4743 ndevs -= ndevs % devs_increment;
b2117a39 4744
73c5de00
AJ
4745 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4746 ret = -ENOSPC;
4747 goto error;
b2117a39 4748 }
9f680ce0 4749
73c5de00
AJ
4750 if (devs_max && ndevs > devs_max)
4751 ndevs = devs_max;
4752 /*
4753 * the primary goal is to maximize the number of stripes, so use as many
4754 * devices as possible, even if the stripes are not maximum sized.
4755 */
4756 stripe_size = devices_info[ndevs-1].max_avail;
4757 num_stripes = ndevs * dev_stripes;
b2117a39 4758
53b381b3
DW
4759 /*
4760 * this will have to be fixed for RAID1 and RAID10 over
4761 * more drives
4762 */
4763 data_stripes = num_stripes / ncopies;
4764
53b381b3
DW
4765 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4766 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
da17066c 4767 info->stripesize);
53b381b3
DW
4768 data_stripes = num_stripes - 1;
4769 }
4770 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4771 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
da17066c 4772 info->stripesize);
53b381b3
DW
4773 data_stripes = num_stripes - 2;
4774 }
86db2578
CM
4775
4776 /*
4777 * Use the number of data stripes to figure out how big this chunk
4778 * is really going to be in terms of logical address space,
4779 * and compare that answer with the max chunk size
4780 */
4781 if (stripe_size * data_stripes > max_chunk_size) {
4782 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4783
4784 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4785
4786 /* bump the answer up to a 16MB boundary */
4787 stripe_size = (stripe_size + mask) & ~mask;
4788
4789 /* but don't go higher than the limits we found
4790 * while searching for free extents
4791 */
4792 if (stripe_size > devices_info[ndevs-1].max_avail)
4793 stripe_size = devices_info[ndevs-1].max_avail;
4794 }
4795
b8b93add 4796 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4797
4798 /* align to BTRFS_STRIPE_LEN */
b8b93add 4799 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4800 stripe_size *= raid_stripe_len;
b2117a39
MX
4801
4802 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4803 if (!map) {
4804 ret = -ENOMEM;
4805 goto error;
4806 }
4807 map->num_stripes = num_stripes;
9b3f68b9 4808
73c5de00
AJ
4809 for (i = 0; i < ndevs; ++i) {
4810 for (j = 0; j < dev_stripes; ++j) {
4811 int s = i * dev_stripes + j;
4812 map->stripes[s].dev = devices_info[i].dev;
4813 map->stripes[s].physical = devices_info[i].dev_offset +
4814 j * stripe_size;
6324fbf3 4815 }
6324fbf3 4816 }
da17066c 4817 map->sector_size = info->sectorsize;
53b381b3
DW
4818 map->stripe_len = raid_stripe_len;
4819 map->io_align = raid_stripe_len;
4820 map->io_width = raid_stripe_len;
2b82032c 4821 map->type = type;
2b82032c 4822 map->sub_stripes = sub_stripes;
0b86a832 4823
53b381b3 4824 num_bytes = stripe_size * data_stripes;
0b86a832 4825
6bccf3ab 4826 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4827
172ddd60 4828 em = alloc_extent_map();
2b82032c 4829 if (!em) {
298a8f9c 4830 kfree(map);
b2117a39
MX
4831 ret = -ENOMEM;
4832 goto error;
593060d7 4833 }
298a8f9c 4834 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4835 em->map_lookup = map;
2b82032c 4836 em->start = start;
73c5de00 4837 em->len = num_bytes;
2b82032c
YZ
4838 em->block_start = 0;
4839 em->block_len = em->len;
6df9a95e 4840 em->orig_block_len = stripe_size;
593060d7 4841
0b246afa 4842 em_tree = &info->mapping_tree.map_tree;
890871be 4843 write_lock(&em_tree->lock);
09a2a8f9 4844 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4845 if (!ret) {
4846 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4847 atomic_inc(&em->refs);
4848 }
890871be 4849 write_unlock(&em_tree->lock);
0f5d42b2
JB
4850 if (ret) {
4851 free_extent_map(em);
1dd4602f 4852 goto error;
0f5d42b2 4853 }
0b86a832 4854
04487488
JB
4855 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4856 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4857 start, num_bytes);
6df9a95e
JB
4858 if (ret)
4859 goto error_del_extent;
2b82032c 4860
7cc8e58d
MX
4861 for (i = 0; i < map->num_stripes; i++) {
4862 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4863 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4864 }
43530c46 4865
0b246afa
JM
4866 spin_lock(&info->free_chunk_lock);
4867 info->free_chunk_space -= (stripe_size * map->num_stripes);
4868 spin_unlock(&info->free_chunk_lock);
1c116187 4869
0f5d42b2 4870 free_extent_map(em);
0b246afa 4871 check_raid56_incompat_flag(info, type);
53b381b3 4872
b2117a39 4873 kfree(devices_info);
2b82032c 4874 return 0;
b2117a39 4875
6df9a95e 4876error_del_extent:
0f5d42b2
JB
4877 write_lock(&em_tree->lock);
4878 remove_extent_mapping(em_tree, em);
4879 write_unlock(&em_tree->lock);
4880
4881 /* One for our allocation */
4882 free_extent_map(em);
4883 /* One for the tree reference */
4884 free_extent_map(em);
495e64f4
FM
4885 /* One for the pending_chunks list reference */
4886 free_extent_map(em);
b2117a39 4887error:
b2117a39
MX
4888 kfree(devices_info);
4889 return ret;
2b82032c
YZ
4890}
4891
6df9a95e 4892int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4893 struct btrfs_fs_info *fs_info,
6df9a95e 4894 u64 chunk_offset, u64 chunk_size)
2b82032c 4895{
6bccf3ab
JM
4896 struct btrfs_root *extent_root = fs_info->extent_root;
4897 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4898 struct btrfs_key key;
2b82032c
YZ
4899 struct btrfs_device *device;
4900 struct btrfs_chunk *chunk;
4901 struct btrfs_stripe *stripe;
6df9a95e
JB
4902 struct extent_map_tree *em_tree;
4903 struct extent_map *em;
4904 struct map_lookup *map;
4905 size_t item_size;
4906 u64 dev_offset;
4907 u64 stripe_size;
4908 int i = 0;
140e639f 4909 int ret = 0;
2b82032c 4910
0b246afa 4911 em_tree = &fs_info->mapping_tree.map_tree;
6df9a95e
JB
4912 read_lock(&em_tree->lock);
4913 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4914 read_unlock(&em_tree->lock);
4915
4916 if (!em) {
0b246afa 4917 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
5d163e0e 4918 chunk_offset, chunk_size);
6df9a95e
JB
4919 return -EINVAL;
4920 }
4921
4922 if (em->start != chunk_offset || em->len != chunk_size) {
0b246afa 4923 btrfs_crit(fs_info,
5d163e0e
JM
4924 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4925 chunk_offset, chunk_size, em->start, em->len);
6df9a95e
JB
4926 free_extent_map(em);
4927 return -EINVAL;
4928 }
4929
95617d69 4930 map = em->map_lookup;
6df9a95e
JB
4931 item_size = btrfs_chunk_item_size(map->num_stripes);
4932 stripe_size = em->orig_block_len;
4933
2b82032c 4934 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4935 if (!chunk) {
4936 ret = -ENOMEM;
4937 goto out;
4938 }
4939
50460e37
FM
4940 /*
4941 * Take the device list mutex to prevent races with the final phase of
4942 * a device replace operation that replaces the device object associated
4943 * with the map's stripes, because the device object's id can change
4944 * at any time during that final phase of the device replace operation
4945 * (dev-replace.c:btrfs_dev_replace_finishing()).
4946 */
0b246afa 4947 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4948 for (i = 0; i < map->num_stripes; i++) {
4949 device = map->stripes[i].dev;
4950 dev_offset = map->stripes[i].physical;
2b82032c 4951
0b86a832 4952 ret = btrfs_update_device(trans, device);
3acd3953 4953 if (ret)
50460e37 4954 break;
6df9a95e
JB
4955 ret = btrfs_alloc_dev_extent(trans, device,
4956 chunk_root->root_key.objectid,
4957 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4958 chunk_offset, dev_offset,
4959 stripe_size);
4960 if (ret)
50460e37
FM
4961 break;
4962 }
4963 if (ret) {
0b246afa 4964 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4965 goto out;
2b82032c
YZ
4966 }
4967
2b82032c 4968 stripe = &chunk->stripe;
6df9a95e
JB
4969 for (i = 0; i < map->num_stripes; i++) {
4970 device = map->stripes[i].dev;
4971 dev_offset = map->stripes[i].physical;
0b86a832 4972
e17cade2
CM
4973 btrfs_set_stack_stripe_devid(stripe, device->devid);
4974 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4975 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4976 stripe++;
0b86a832 4977 }
0b246afa 4978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4979
2b82032c 4980 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4981 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4982 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4983 btrfs_set_stack_chunk_type(chunk, map->type);
4984 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4985 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4986 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4987 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4988 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4989
2b82032c
YZ
4990 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4991 key.type = BTRFS_CHUNK_ITEM_KEY;
4992 key.offset = chunk_offset;
0b86a832 4993
2b82032c 4994 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4995 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4996 /*
4997 * TODO: Cleanup of inserted chunk root in case of
4998 * failure.
4999 */
125ccb0a 5000 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 5001 item_size);
8f18cf13 5002 }
1abe9b8a 5003
6df9a95e 5004out:
0b86a832 5005 kfree(chunk);
6df9a95e 5006 free_extent_map(em);
4ed1d16e 5007 return ret;
2b82032c 5008}
0b86a832 5009
2b82032c
YZ
5010/*
5011 * Chunk allocation falls into two parts. The first part does works
5012 * that make the new allocated chunk useable, but not do any operation
5013 * that modifies the chunk tree. The second part does the works that
5014 * require modifying the chunk tree. This division is important for the
5015 * bootstrap process of adding storage to a seed btrfs.
5016 */
5017int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5018 struct btrfs_root *extent_root, u64 type)
5019{
0b246afa 5020 struct btrfs_fs_info *fs_info = extent_root->fs_info;
2b82032c 5021 u64 chunk_offset;
2b82032c 5022
0b246afa
JM
5023 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5024 chunk_offset = find_next_chunk(fs_info);
6df9a95e 5025 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
5026}
5027
d397712b 5028static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
5029 struct btrfs_root *root,
5030 struct btrfs_device *device)
5031{
5032 u64 chunk_offset;
5033 u64 sys_chunk_offset;
2b82032c 5034 u64 alloc_profile;
2b82032c
YZ
5035 struct btrfs_fs_info *fs_info = root->fs_info;
5036 struct btrfs_root *extent_root = fs_info->extent_root;
5037 int ret;
5038
6df9a95e 5039 chunk_offset = find_next_chunk(fs_info);
de98ced9 5040 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
5041 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5042 alloc_profile);
79787eaa
JM
5043 if (ret)
5044 return ret;
2b82032c 5045
0b246afa 5046 sys_chunk_offset = find_next_chunk(fs_info);
de98ced9 5047 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
5048 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5049 alloc_profile);
79787eaa 5050 return ret;
2b82032c
YZ
5051}
5052
d20983b4
MX
5053static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5054{
5055 int max_errors;
5056
5057 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5058 BTRFS_BLOCK_GROUP_RAID10 |
5059 BTRFS_BLOCK_GROUP_RAID5 |
5060 BTRFS_BLOCK_GROUP_DUP)) {
5061 max_errors = 1;
5062 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5063 max_errors = 2;
5064 } else {
5065 max_errors = 0;
005d6427 5066 }
2b82032c 5067
d20983b4 5068 return max_errors;
2b82032c
YZ
5069}
5070
5071int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5072{
0b246afa 5073 struct btrfs_fs_info *fs_info = root->fs_info;
2b82032c
YZ
5074 struct extent_map *em;
5075 struct map_lookup *map;
0b246afa 5076 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2b82032c 5077 int readonly = 0;
d20983b4 5078 int miss_ndevs = 0;
2b82032c
YZ
5079 int i;
5080
890871be 5081 read_lock(&map_tree->map_tree.lock);
2b82032c 5082 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 5083 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
5084 if (!em)
5085 return 1;
5086
95617d69 5087 map = em->map_lookup;
2b82032c 5088 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5089 if (map->stripes[i].dev->missing) {
5090 miss_ndevs++;
5091 continue;
5092 }
5093
2b82032c
YZ
5094 if (!map->stripes[i].dev->writeable) {
5095 readonly = 1;
d20983b4 5096 goto end;
2b82032c
YZ
5097 }
5098 }
d20983b4
MX
5099
5100 /*
5101 * If the number of missing devices is larger than max errors,
5102 * we can not write the data into that chunk successfully, so
5103 * set it readonly.
5104 */
5105 if (miss_ndevs > btrfs_chunk_max_errors(map))
5106 readonly = 1;
5107end:
0b86a832 5108 free_extent_map(em);
2b82032c 5109 return readonly;
0b86a832
CM
5110}
5111
5112void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5113{
a8067e02 5114 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5115}
5116
5117void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5118{
5119 struct extent_map *em;
5120
d397712b 5121 while (1) {
890871be 5122 write_lock(&tree->map_tree.lock);
0b86a832
CM
5123 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5124 if (em)
5125 remove_extent_mapping(&tree->map_tree, em);
890871be 5126 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5127 if (!em)
5128 break;
0b86a832
CM
5129 /* once for us */
5130 free_extent_map(em);
5131 /* once for the tree */
5132 free_extent_map(em);
5133 }
5134}
5135
5d964051 5136int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5137{
5d964051 5138 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5139 struct extent_map *em;
5140 struct map_lookup *map;
5141 struct extent_map_tree *em_tree = &map_tree->map_tree;
5142 int ret;
5143
890871be 5144 read_lock(&em_tree->lock);
f188591e 5145 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5146 read_unlock(&em_tree->lock);
f188591e 5147
fb7669b5
JB
5148 /*
5149 * We could return errors for these cases, but that could get ugly and
5150 * we'd probably do the same thing which is just not do anything else
5151 * and exit, so return 1 so the callers don't try to use other copies.
5152 */
5153 if (!em) {
351fd353 5154 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5155 logical+len);
5156 return 1;
5157 }
5158
5159 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5160 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5161 logical, logical+len, em->start,
5162 em->start + em->len);
7d3d1744 5163 free_extent_map(em);
fb7669b5
JB
5164 return 1;
5165 }
5166
95617d69 5167 map = em->map_lookup;
f188591e
CM
5168 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5169 ret = map->num_stripes;
321aecc6
CM
5170 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5171 ret = map->sub_stripes;
53b381b3
DW
5172 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5173 ret = 2;
5174 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5175 ret = 3;
f188591e
CM
5176 else
5177 ret = 1;
5178 free_extent_map(em);
ad6d620e 5179
73beece9 5180 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5181 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5182 ret++;
73beece9 5183 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5184
f188591e
CM
5185 return ret;
5186}
5187
53b381b3
DW
5188unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5189 struct btrfs_mapping_tree *map_tree,
5190 u64 logical)
5191{
0b246afa 5192 struct btrfs_fs_info *fs_info = root->fs_info;
53b381b3
DW
5193 struct extent_map *em;
5194 struct map_lookup *map;
5195 struct extent_map_tree *em_tree = &map_tree->map_tree;
0b246afa 5196 unsigned long len = fs_info->sectorsize;
53b381b3
DW
5197
5198 read_lock(&em_tree->lock);
5199 em = lookup_extent_mapping(em_tree, logical, len);
5200 read_unlock(&em_tree->lock);
5201 BUG_ON(!em);
5202
5203 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5204 map = em->map_lookup;
ffe2d203 5205 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5206 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5207 free_extent_map(em);
5208 return len;
5209}
5210
5211int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5212 u64 logical, u64 len, int mirror_num)
5213{
5214 struct extent_map *em;
5215 struct map_lookup *map;
5216 struct extent_map_tree *em_tree = &map_tree->map_tree;
5217 int ret = 0;
5218
5219 read_lock(&em_tree->lock);
5220 em = lookup_extent_mapping(em_tree, logical, len);
5221 read_unlock(&em_tree->lock);
5222 BUG_ON(!em);
5223
5224 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5225 map = em->map_lookup;
ffe2d203 5226 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5227 ret = 1;
5228 free_extent_map(em);
5229 return ret;
5230}
5231
30d9861f
SB
5232static int find_live_mirror(struct btrfs_fs_info *fs_info,
5233 struct map_lookup *map, int first, int num,
5234 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5235{
5236 int i;
30d9861f
SB
5237 int tolerance;
5238 struct btrfs_device *srcdev;
5239
5240 if (dev_replace_is_ongoing &&
5241 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5242 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5243 srcdev = fs_info->dev_replace.srcdev;
5244 else
5245 srcdev = NULL;
5246
5247 /*
5248 * try to avoid the drive that is the source drive for a
5249 * dev-replace procedure, only choose it if no other non-missing
5250 * mirror is available
5251 */
5252 for (tolerance = 0; tolerance < 2; tolerance++) {
5253 if (map->stripes[optimal].dev->bdev &&
5254 (tolerance || map->stripes[optimal].dev != srcdev))
5255 return optimal;
5256 for (i = first; i < first + num; i++) {
5257 if (map->stripes[i].dev->bdev &&
5258 (tolerance || map->stripes[i].dev != srcdev))
5259 return i;
5260 }
dfe25020 5261 }
30d9861f 5262
dfe25020
CM
5263 /* we couldn't find one that doesn't fail. Just return something
5264 * and the io error handling code will clean up eventually
5265 */
5266 return optimal;
5267}
5268
53b381b3
DW
5269static inline int parity_smaller(u64 a, u64 b)
5270{
5271 return a > b;
5272}
5273
5274/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5275static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5276{
5277 struct btrfs_bio_stripe s;
5278 int i;
5279 u64 l;
5280 int again = 1;
5281
5282 while (again) {
5283 again = 0;
cc7539ed 5284 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5285 if (parity_smaller(bbio->raid_map[i],
5286 bbio->raid_map[i+1])) {
53b381b3 5287 s = bbio->stripes[i];
8e5cfb55 5288 l = bbio->raid_map[i];
53b381b3 5289 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5290 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5291 bbio->stripes[i+1] = s;
8e5cfb55 5292 bbio->raid_map[i+1] = l;
2c8cdd6e 5293
53b381b3
DW
5294 again = 1;
5295 }
5296 }
5297 }
5298}
5299
6e9606d2
ZL
5300static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5301{
5302 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5303 /* the size of the btrfs_bio */
6e9606d2 5304 sizeof(struct btrfs_bio) +
e57cf21e 5305 /* plus the variable array for the stripes */
6e9606d2 5306 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5307 /* plus the variable array for the tgt dev */
6e9606d2 5308 sizeof(int) * (real_stripes) +
e57cf21e
CM
5309 /*
5310 * plus the raid_map, which includes both the tgt dev
5311 * and the stripes
5312 */
5313 sizeof(u64) * (total_stripes),
277fb5fc 5314 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5315
5316 atomic_set(&bbio->error, 0);
5317 atomic_set(&bbio->refs, 1);
5318
5319 return bbio;
5320}
5321
5322void btrfs_get_bbio(struct btrfs_bio *bbio)
5323{
5324 WARN_ON(!atomic_read(&bbio->refs));
5325 atomic_inc(&bbio->refs);
5326}
5327
5328void btrfs_put_bbio(struct btrfs_bio *bbio)
5329{
5330 if (!bbio)
5331 return;
5332 if (atomic_dec_and_test(&bbio->refs))
5333 kfree(bbio);
5334}
5335
cf8cddd3
CH
5336static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5337 enum btrfs_map_op op,
f2d8d74d 5338 u64 logical, u64 *length,
a1d3c478 5339 struct btrfs_bio **bbio_ret,
8e5cfb55 5340 int mirror_num, int need_raid_map)
0b86a832
CM
5341{
5342 struct extent_map *em;
5343 struct map_lookup *map;
3ec706c8 5344 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5345 struct extent_map_tree *em_tree = &map_tree->map_tree;
5346 u64 offset;
593060d7 5347 u64 stripe_offset;
fce3bb9a 5348 u64 stripe_end_offset;
593060d7 5349 u64 stripe_nr;
fce3bb9a
LD
5350 u64 stripe_nr_orig;
5351 u64 stripe_nr_end;
53b381b3 5352 u64 stripe_len;
9d644a62 5353 u32 stripe_index;
cea9e445 5354 int i;
de11cc12 5355 int ret = 0;
f2d8d74d 5356 int num_stripes;
a236aed1 5357 int max_errors = 0;
2c8cdd6e 5358 int tgtdev_indexes = 0;
a1d3c478 5359 struct btrfs_bio *bbio = NULL;
472262f3
SB
5360 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5361 int dev_replace_is_ongoing = 0;
5362 int num_alloc_stripes;
ad6d620e
SB
5363 int patch_the_first_stripe_for_dev_replace = 0;
5364 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5365 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5366
890871be 5367 read_lock(&em_tree->lock);
0b86a832 5368 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5369 read_unlock(&em_tree->lock);
f2d8d74d 5370
3b951516 5371 if (!em) {
c2cf52eb 5372 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5373 logical, *length);
9bb91873
JB
5374 return -EINVAL;
5375 }
5376
5377 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5378 btrfs_crit(fs_info,
5379 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5380 logical, em->start, em->start + em->len);
7d3d1744 5381 free_extent_map(em);
9bb91873 5382 return -EINVAL;
3b951516 5383 }
0b86a832 5384
95617d69 5385 map = em->map_lookup;
0b86a832 5386 offset = logical - em->start;
593060d7 5387
53b381b3 5388 stripe_len = map->stripe_len;
593060d7
CM
5389 stripe_nr = offset;
5390 /*
5391 * stripe_nr counts the total number of stripes we have to stride
5392 * to get to this block
5393 */
47c5713f 5394 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5395
53b381b3 5396 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5397 if (offset < stripe_offset) {
5d163e0e
JM
5398 btrfs_crit(fs_info,
5399 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5400 stripe_offset, offset, em->start, logical,
5401 stripe_len);
5402 free_extent_map(em);
5403 return -EINVAL;
5404 }
593060d7
CM
5405
5406 /* stripe_offset is the offset of this block in its stripe*/
5407 stripe_offset = offset - stripe_offset;
5408
53b381b3 5409 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5410 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5411 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5412 raid56_full_stripe_start = offset;
5413
5414 /* allow a write of a full stripe, but make sure we don't
5415 * allow straddling of stripes
5416 */
47c5713f
DS
5417 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5418 full_stripe_len);
53b381b3
DW
5419 raid56_full_stripe_start *= full_stripe_len;
5420 }
5421
cf8cddd3 5422 if (op == BTRFS_MAP_DISCARD) {
53b381b3 5423 /* we don't discard raid56 yet */
ffe2d203 5424 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5425 ret = -EOPNOTSUPP;
5426 goto out;
5427 }
fce3bb9a 5428 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5429 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5430 u64 max_len;
5431 /* For writes to RAID[56], allow a full stripeset across all disks.
5432 For other RAID types and for RAID[56] reads, just allow a single
5433 stripe (on a single disk). */
ffe2d203 5434 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5435 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5436 max_len = stripe_len * nr_data_stripes(map) -
5437 (offset - raid56_full_stripe_start);
5438 } else {
5439 /* we limit the length of each bio to what fits in a stripe */
5440 max_len = stripe_len - stripe_offset;
5441 }
5442 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5443 } else {
5444 *length = em->len - offset;
5445 }
f2d8d74d 5446
53b381b3
DW
5447 /* This is for when we're called from btrfs_merge_bio_hook() and all
5448 it cares about is the length */
a1d3c478 5449 if (!bbio_ret)
cea9e445
CM
5450 goto out;
5451
73beece9 5452 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5453 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5454 if (!dev_replace_is_ongoing)
73beece9
LB
5455 btrfs_dev_replace_unlock(dev_replace, 0);
5456 else
5457 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5458
ad6d620e 5459 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
cf8cddd3
CH
5460 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5461 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
ad6d620e
SB
5462 /*
5463 * in dev-replace case, for repair case (that's the only
5464 * case where the mirror is selected explicitly when
5465 * calling btrfs_map_block), blocks left of the left cursor
5466 * can also be read from the target drive.
5467 * For REQ_GET_READ_MIRRORS, the target drive is added as
5468 * the last one to the array of stripes. For READ, it also
5469 * needs to be supported using the same mirror number.
5470 * If the requested block is not left of the left cursor,
5471 * EIO is returned. This can happen because btrfs_num_copies()
5472 * returns one more in the dev-replace case.
5473 */
5474 u64 tmp_length = *length;
5475 struct btrfs_bio *tmp_bbio = NULL;
5476 int tmp_num_stripes;
5477 u64 srcdev_devid = dev_replace->srcdev->devid;
5478 int index_srcdev = 0;
5479 int found = 0;
5480 u64 physical_of_found = 0;
5481
cf8cddd3 5482 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
8e5cfb55 5483 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5484 if (ret) {
5485 WARN_ON(tmp_bbio != NULL);
5486 goto out;
5487 }
5488
5489 tmp_num_stripes = tmp_bbio->num_stripes;
5490 if (mirror_num > tmp_num_stripes) {
5491 /*
cf8cddd3 5492 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
ad6d620e
SB
5493 * mirror, that means that the requested area
5494 * is not left of the left cursor
5495 */
5496 ret = -EIO;
6e9606d2 5497 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5498 goto out;
5499 }
5500
5501 /*
5502 * process the rest of the function using the mirror_num
5503 * of the source drive. Therefore look it up first.
5504 * At the end, patch the device pointer to the one of the
5505 * target drive.
5506 */
5507 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5508 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5509 continue;
5510
5511 /*
5512 * In case of DUP, in order to keep it simple, only add
5513 * the mirror with the lowest physical address
5514 */
5515 if (found &&
5516 physical_of_found <= tmp_bbio->stripes[i].physical)
5517 continue;
5518
5519 index_srcdev = i;
5520 found = 1;
5521 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5522 }
5523
94a97dfe
ZL
5524 btrfs_put_bbio(tmp_bbio);
5525
5526 if (!found) {
ad6d620e
SB
5527 WARN_ON(1);
5528 ret = -EIO;
ad6d620e
SB
5529 goto out;
5530 }
5531
94a97dfe
ZL
5532 mirror_num = index_srcdev + 1;
5533 patch_the_first_stripe_for_dev_replace = 1;
5534 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5535 } else if (mirror_num > map->num_stripes) {
5536 mirror_num = 0;
5537 }
5538
f2d8d74d 5539 num_stripes = 1;
cea9e445 5540 stripe_index = 0;
fce3bb9a 5541 stripe_nr_orig = stripe_nr;
fda2832f 5542 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5543 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5544 stripe_end_offset = stripe_nr_end * map->stripe_len -
5545 (offset + *length);
53b381b3 5546
fce3bb9a 5547 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
cf8cddd3 5548 if (op == BTRFS_MAP_DISCARD)
fce3bb9a
LD
5549 num_stripes = min_t(u64, map->num_stripes,
5550 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5551 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5552 &stripe_index);
cf8cddd3
CH
5553 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5554 op != BTRFS_MAP_GET_READ_MIRRORS)
28e1cc7d 5555 mirror_num = 1;
fce3bb9a 5556 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
cf8cddd3
CH
5557 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5558 op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5559 num_stripes = map->num_stripes;
2fff734f 5560 else if (mirror_num)
f188591e 5561 stripe_index = mirror_num - 1;
dfe25020 5562 else {
30d9861f 5563 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5564 map->num_stripes,
30d9861f
SB
5565 current->pid % map->num_stripes,
5566 dev_replace_is_ongoing);
a1d3c478 5567 mirror_num = stripe_index + 1;
dfe25020 5568 }
2fff734f 5569
611f0e00 5570 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cf8cddd3
CH
5571 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5572 op == BTRFS_MAP_GET_READ_MIRRORS) {
f2d8d74d 5573 num_stripes = map->num_stripes;
a1d3c478 5574 } else if (mirror_num) {
f188591e 5575 stripe_index = mirror_num - 1;
a1d3c478
JS
5576 } else {
5577 mirror_num = 1;
5578 }
2fff734f 5579
321aecc6 5580 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5581 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5582
47c5713f 5583 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5584 stripe_index *= map->sub_stripes;
5585
cf8cddd3 5586 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5587 num_stripes = map->sub_stripes;
cf8cddd3 5588 else if (op == BTRFS_MAP_DISCARD)
fce3bb9a
LD
5589 num_stripes = min_t(u64, map->sub_stripes *
5590 (stripe_nr_end - stripe_nr_orig),
5591 map->num_stripes);
321aecc6
CM
5592 else if (mirror_num)
5593 stripe_index += mirror_num - 1;
dfe25020 5594 else {
3e74317a 5595 int old_stripe_index = stripe_index;
30d9861f
SB
5596 stripe_index = find_live_mirror(fs_info, map,
5597 stripe_index,
dfe25020 5598 map->sub_stripes, stripe_index +
30d9861f
SB
5599 current->pid % map->sub_stripes,
5600 dev_replace_is_ongoing);
3e74317a 5601 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5602 }
53b381b3 5603
ffe2d203 5604 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5605 if (need_raid_map &&
cf8cddd3 5606 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
af8e2d1d 5607 mirror_num > 1)) {
53b381b3 5608 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5609 stripe_nr = div_u64(raid56_full_stripe_start,
5610 stripe_len * nr_data_stripes(map));
53b381b3
DW
5611
5612 /* RAID[56] write or recovery. Return all stripes */
5613 num_stripes = map->num_stripes;
5614 max_errors = nr_parity_stripes(map);
5615
53b381b3
DW
5616 *length = map->stripe_len;
5617 stripe_index = 0;
5618 stripe_offset = 0;
5619 } else {
5620 /*
5621 * Mirror #0 or #1 means the original data block.
5622 * Mirror #2 is RAID5 parity block.
5623 * Mirror #3 is RAID6 Q block.
5624 */
47c5713f
DS
5625 stripe_nr = div_u64_rem(stripe_nr,
5626 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5627 if (mirror_num > 1)
5628 stripe_index = nr_data_stripes(map) +
5629 mirror_num - 2;
5630
5631 /* We distribute the parity blocks across stripes */
47c5713f
DS
5632 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5633 &stripe_index);
cf8cddd3
CH
5634 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5635 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
28e1cc7d 5636 mirror_num = 1;
53b381b3 5637 }
8790d502
CM
5638 } else {
5639 /*
47c5713f
DS
5640 * after this, stripe_nr is the number of stripes on this
5641 * device we have to walk to find the data, and stripe_index is
5642 * the number of our device in the stripe array
8790d502 5643 */
47c5713f
DS
5644 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5645 &stripe_index);
a1d3c478 5646 mirror_num = stripe_index + 1;
8790d502 5647 }
e042d1ec 5648 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5649 btrfs_crit(fs_info,
5650 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5651 stripe_index, map->num_stripes);
5652 ret = -EINVAL;
5653 goto out;
5654 }
cea9e445 5655
472262f3 5656 num_alloc_stripes = num_stripes;
ad6d620e 5657 if (dev_replace_is_ongoing) {
cf8cddd3 5658 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
ad6d620e 5659 num_alloc_stripes <<= 1;
cf8cddd3 5660 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5661 num_alloc_stripes++;
2c8cdd6e 5662 tgtdev_indexes = num_stripes;
ad6d620e 5663 }
2c8cdd6e 5664
6e9606d2 5665 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5666 if (!bbio) {
5667 ret = -ENOMEM;
5668 goto out;
5669 }
2c8cdd6e
MX
5670 if (dev_replace_is_ongoing)
5671 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5672
8e5cfb55 5673 /* build raid_map */
ffe2d203 5674 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
b3d3fa51 5675 need_raid_map &&
cf8cddd3 5676 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
8e5cfb55
ZL
5677 mirror_num > 1)) {
5678 u64 tmp;
9d644a62 5679 unsigned rot;
8e5cfb55
ZL
5680
5681 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5682 sizeof(struct btrfs_bio_stripe) *
5683 num_alloc_stripes +
5684 sizeof(int) * tgtdev_indexes);
5685
5686 /* Work out the disk rotation on this stripe-set */
47c5713f 5687 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5688
5689 /* Fill in the logical address of each stripe */
5690 tmp = stripe_nr * nr_data_stripes(map);
5691 for (i = 0; i < nr_data_stripes(map); i++)
5692 bbio->raid_map[(i+rot) % num_stripes] =
5693 em->start + (tmp + i) * map->stripe_len;
5694
5695 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5696 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5697 bbio->raid_map[(i+rot+1) % num_stripes] =
5698 RAID6_Q_STRIPE;
5699 }
5700
cf8cddd3 5701 if (op == BTRFS_MAP_DISCARD) {
9d644a62
DS
5702 u32 factor = 0;
5703 u32 sub_stripes = 0;
ec9ef7a1
LZ
5704 u64 stripes_per_dev = 0;
5705 u32 remaining_stripes = 0;
b89203f7 5706 u32 last_stripe = 0;
ec9ef7a1
LZ
5707
5708 if (map->type &
5709 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5710 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5711 sub_stripes = 1;
5712 else
5713 sub_stripes = map->sub_stripes;
5714
5715 factor = map->num_stripes / sub_stripes;
5716 stripes_per_dev = div_u64_rem(stripe_nr_end -
5717 stripe_nr_orig,
5718 factor,
5719 &remaining_stripes);
b89203f7
LB
5720 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5721 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5722 }
5723
fce3bb9a 5724 for (i = 0; i < num_stripes; i++) {
a1d3c478 5725 bbio->stripes[i].physical =
f2d8d74d
CM
5726 map->stripes[stripe_index].physical +
5727 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5728 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5729
ec9ef7a1
LZ
5730 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5731 BTRFS_BLOCK_GROUP_RAID10)) {
5732 bbio->stripes[i].length = stripes_per_dev *
5733 map->stripe_len;
b89203f7 5734
ec9ef7a1
LZ
5735 if (i / sub_stripes < remaining_stripes)
5736 bbio->stripes[i].length +=
5737 map->stripe_len;
b89203f7
LB
5738
5739 /*
5740 * Special for the first stripe and
5741 * the last stripe:
5742 *
5743 * |-------|...|-------|
5744 * |----------|
5745 * off end_off
5746 */
ec9ef7a1 5747 if (i < sub_stripes)
a1d3c478 5748 bbio->stripes[i].length -=
fce3bb9a 5749 stripe_offset;
b89203f7
LB
5750
5751 if (stripe_index >= last_stripe &&
5752 stripe_index <= (last_stripe +
5753 sub_stripes - 1))
a1d3c478 5754 bbio->stripes[i].length -=
fce3bb9a 5755 stripe_end_offset;
b89203f7 5756
ec9ef7a1
LZ
5757 if (i == sub_stripes - 1)
5758 stripe_offset = 0;
fce3bb9a 5759 } else
a1d3c478 5760 bbio->stripes[i].length = *length;
fce3bb9a
LD
5761
5762 stripe_index++;
5763 if (stripe_index == map->num_stripes) {
5764 /* This could only happen for RAID0/10 */
5765 stripe_index = 0;
5766 stripe_nr++;
5767 }
5768 }
5769 } else {
5770 for (i = 0; i < num_stripes; i++) {
a1d3c478 5771 bbio->stripes[i].physical =
212a17ab
LT
5772 map->stripes[stripe_index].physical +
5773 stripe_offset +
5774 stripe_nr * map->stripe_len;
a1d3c478 5775 bbio->stripes[i].dev =
212a17ab 5776 map->stripes[stripe_index].dev;
fce3bb9a 5777 stripe_index++;
f2d8d74d 5778 }
593060d7 5779 }
de11cc12 5780
cf8cddd3 5781 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
d20983b4 5782 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5783
8e5cfb55
ZL
5784 if (bbio->raid_map)
5785 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5786
2c8cdd6e 5787 tgtdev_indexes = 0;
b3d3fa51 5788 if (dev_replace_is_ongoing &&
cf8cddd3 5789 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
472262f3
SB
5790 dev_replace->tgtdev != NULL) {
5791 int index_where_to_add;
5792 u64 srcdev_devid = dev_replace->srcdev->devid;
5793
5794 /*
5795 * duplicate the write operations while the dev replace
5796 * procedure is running. Since the copying of the old disk
5797 * to the new disk takes place at run time while the
5798 * filesystem is mounted writable, the regular write
5799 * operations to the old disk have to be duplicated to go
5800 * to the new disk as well.
5801 * Note that device->missing is handled by the caller, and
5802 * that the write to the old disk is already set up in the
5803 * stripes array.
5804 */
5805 index_where_to_add = num_stripes;
5806 for (i = 0; i < num_stripes; i++) {
5807 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5808 /* write to new disk, too */
5809 struct btrfs_bio_stripe *new =
5810 bbio->stripes + index_where_to_add;
5811 struct btrfs_bio_stripe *old =
5812 bbio->stripes + i;
5813
5814 new->physical = old->physical;
5815 new->length = old->length;
5816 new->dev = dev_replace->tgtdev;
2c8cdd6e 5817 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5818 index_where_to_add++;
5819 max_errors++;
2c8cdd6e 5820 tgtdev_indexes++;
472262f3
SB
5821 }
5822 }
5823 num_stripes = index_where_to_add;
cf8cddd3
CH
5824 } else if (dev_replace_is_ongoing &&
5825 op == BTRFS_MAP_GET_READ_MIRRORS &&
ad6d620e
SB
5826 dev_replace->tgtdev != NULL) {
5827 u64 srcdev_devid = dev_replace->srcdev->devid;
5828 int index_srcdev = 0;
5829 int found = 0;
5830 u64 physical_of_found = 0;
5831
5832 /*
5833 * During the dev-replace procedure, the target drive can
5834 * also be used to read data in case it is needed to repair
5835 * a corrupt block elsewhere. This is possible if the
5836 * requested area is left of the left cursor. In this area,
5837 * the target drive is a full copy of the source drive.
5838 */
5839 for (i = 0; i < num_stripes; i++) {
5840 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5841 /*
5842 * In case of DUP, in order to keep it
5843 * simple, only add the mirror with the
5844 * lowest physical address
5845 */
5846 if (found &&
5847 physical_of_found <=
5848 bbio->stripes[i].physical)
5849 continue;
5850 index_srcdev = i;
5851 found = 1;
5852 physical_of_found = bbio->stripes[i].physical;
5853 }
5854 }
5855 if (found) {
22ab04e8
FM
5856 struct btrfs_bio_stripe *tgtdev_stripe =
5857 bbio->stripes + num_stripes;
ad6d620e 5858
22ab04e8
FM
5859 tgtdev_stripe->physical = physical_of_found;
5860 tgtdev_stripe->length =
5861 bbio->stripes[index_srcdev].length;
5862 tgtdev_stripe->dev = dev_replace->tgtdev;
5863 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5864
22ab04e8
FM
5865 tgtdev_indexes++;
5866 num_stripes++;
ad6d620e 5867 }
472262f3
SB
5868 }
5869
de11cc12 5870 *bbio_ret = bbio;
10f11900 5871 bbio->map_type = map->type;
de11cc12
LZ
5872 bbio->num_stripes = num_stripes;
5873 bbio->max_errors = max_errors;
5874 bbio->mirror_num = mirror_num;
2c8cdd6e 5875 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5876
5877 /*
5878 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5879 * mirror_num == num_stripes + 1 && dev_replace target drive is
5880 * available as a mirror
5881 */
5882 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5883 WARN_ON(num_stripes > 1);
5884 bbio->stripes[0].dev = dev_replace->tgtdev;
5885 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5886 bbio->mirror_num = map->num_stripes + 1;
5887 }
cea9e445 5888out:
73beece9
LB
5889 if (dev_replace_is_ongoing) {
5890 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5891 btrfs_dev_replace_unlock(dev_replace, 0);
5892 }
0b86a832 5893 free_extent_map(em);
de11cc12 5894 return ret;
0b86a832
CM
5895}
5896
cf8cddd3 5897int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5898 u64 logical, u64 *length,
a1d3c478 5899 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5900{
b3d3fa51 5901 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5902 mirror_num, 0);
f2d8d74d
CM
5903}
5904
af8e2d1d 5905/* For Scrub/replace */
cf8cddd3 5906int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d
MX
5907 u64 logical, u64 *length,
5908 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5909 int need_raid_map)
af8e2d1d 5910{
b3d3fa51 5911 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5912 mirror_num, need_raid_map);
af8e2d1d
MX
5913}
5914
ab8d0fc4 5915int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5916 u64 chunk_start, u64 physical, u64 devid,
5917 u64 **logical, int *naddrs, int *stripe_len)
5918{
ab8d0fc4 5919 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
a512bbf8
YZ
5920 struct extent_map_tree *em_tree = &map_tree->map_tree;
5921 struct extent_map *em;
5922 struct map_lookup *map;
5923 u64 *buf;
5924 u64 bytenr;
5925 u64 length;
5926 u64 stripe_nr;
53b381b3 5927 u64 rmap_len;
a512bbf8
YZ
5928 int i, j, nr = 0;
5929
890871be 5930 read_lock(&em_tree->lock);
a512bbf8 5931 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5932 read_unlock(&em_tree->lock);
a512bbf8 5933
835d974f 5934 if (!em) {
ab8d0fc4
JM
5935 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5936 chunk_start);
835d974f
JB
5937 return -EIO;
5938 }
5939
5940 if (em->start != chunk_start) {
ab8d0fc4 5941 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
835d974f
JB
5942 em->start, chunk_start);
5943 free_extent_map(em);
5944 return -EIO;
5945 }
95617d69 5946 map = em->map_lookup;
a512bbf8
YZ
5947
5948 length = em->len;
53b381b3
DW
5949 rmap_len = map->stripe_len;
5950
a512bbf8 5951 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5952 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5953 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5954 length = div_u64(length, map->num_stripes);
ffe2d203 5955 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5956 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5957 rmap_len = map->stripe_len * nr_data_stripes(map);
5958 }
a512bbf8 5959
31e818fe 5960 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5961 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5962
5963 for (i = 0; i < map->num_stripes; i++) {
5964 if (devid && map->stripes[i].dev->devid != devid)
5965 continue;
5966 if (map->stripes[i].physical > physical ||
5967 map->stripes[i].physical + length <= physical)
5968 continue;
5969
5970 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5971 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5972
5973 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5974 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5975 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5976 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5977 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5978 } /* else if RAID[56], multiply by nr_data_stripes().
5979 * Alternatively, just use rmap_len below instead of
5980 * map->stripe_len */
5981
5982 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5983 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5984 for (j = 0; j < nr; j++) {
5985 if (buf[j] == bytenr)
5986 break;
5987 }
934d375b
CM
5988 if (j == nr) {
5989 WARN_ON(nr >= map->num_stripes);
a512bbf8 5990 buf[nr++] = bytenr;
934d375b 5991 }
a512bbf8
YZ
5992 }
5993
a512bbf8
YZ
5994 *logical = buf;
5995 *naddrs = nr;
53b381b3 5996 *stripe_len = rmap_len;
a512bbf8
YZ
5997
5998 free_extent_map(em);
5999 return 0;
f2d8d74d
CM
6000}
6001
4246a0b6 6002static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6003{
326e1dbb
MS
6004 bio->bi_private = bbio->private;
6005 bio->bi_end_io = bbio->end_io;
4246a0b6 6006 bio_endio(bio);
326e1dbb 6007
6e9606d2 6008 btrfs_put_bbio(bbio);
8408c716
MX
6009}
6010
4246a0b6 6011static void btrfs_end_bio(struct bio *bio)
8790d502 6012{
9be3395b 6013 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6014 int is_orig_bio = 0;
8790d502 6015
4246a0b6 6016 if (bio->bi_error) {
a1d3c478 6017 atomic_inc(&bbio->error);
4246a0b6 6018 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 6019 unsigned int stripe_index =
9be3395b 6020 btrfs_io_bio(bio)->stripe_index;
65f53338 6021 struct btrfs_device *dev;
442a4f63
SB
6022
6023 BUG_ON(stripe_index >= bbio->num_stripes);
6024 dev = bbio->stripes[stripe_index].dev;
597a60fa 6025 if (dev->bdev) {
37226b21 6026 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6027 btrfs_dev_stat_inc(dev,
6028 BTRFS_DEV_STAT_WRITE_ERRS);
6029 else
6030 btrfs_dev_stat_inc(dev,
6031 BTRFS_DEV_STAT_READ_ERRS);
1eff9d32 6032 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
597a60fa
SB
6033 btrfs_dev_stat_inc(dev,
6034 BTRFS_DEV_STAT_FLUSH_ERRS);
6035 btrfs_dev_stat_print_on_error(dev);
6036 }
442a4f63
SB
6037 }
6038 }
8790d502 6039
a1d3c478 6040 if (bio == bbio->orig_bio)
7d2b4daa
CM
6041 is_orig_bio = 1;
6042
c404e0dc
MX
6043 btrfs_bio_counter_dec(bbio->fs_info);
6044
a1d3c478 6045 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6046 if (!is_orig_bio) {
6047 bio_put(bio);
a1d3c478 6048 bio = bbio->orig_bio;
7d2b4daa 6049 }
c7b22bb1 6050
9be3395b 6051 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6052 /* only send an error to the higher layers if it is
53b381b3 6053 * beyond the tolerance of the btrfs bio
a236aed1 6054 */
a1d3c478 6055 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6056 bio->bi_error = -EIO;
5dbc8fca 6057 } else {
1259ab75
CM
6058 /*
6059 * this bio is actually up to date, we didn't
6060 * go over the max number of errors
6061 */
4246a0b6 6062 bio->bi_error = 0;
1259ab75 6063 }
c55f1396 6064
4246a0b6 6065 btrfs_end_bbio(bbio, bio);
7d2b4daa 6066 } else if (!is_orig_bio) {
8790d502
CM
6067 bio_put(bio);
6068 }
8790d502
CM
6069}
6070
8b712842
CM
6071/*
6072 * see run_scheduled_bios for a description of why bios are collected for
6073 * async submit.
6074 *
6075 * This will add one bio to the pending list for a device and make sure
6076 * the work struct is scheduled.
6077 */
48a3b636
ES
6078static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6079 struct btrfs_device *device,
4e49ea4a 6080 struct bio *bio)
8b712842 6081{
0b246afa 6082 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6083 int should_queue = 1;
ffbd517d 6084 struct btrfs_pending_bios *pending_bios;
8b712842 6085
53b381b3 6086 if (device->missing || !device->bdev) {
4246a0b6 6087 bio_io_error(bio);
53b381b3
DW
6088 return;
6089 }
6090
8b712842 6091 /* don't bother with additional async steps for reads, right now */
37226b21 6092 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6093 bio_get(bio);
4e49ea4a 6094 btrfsic_submit_bio(bio);
492bb6de 6095 bio_put(bio);
143bede5 6096 return;
8b712842
CM
6097 }
6098
6099 /*
0986fe9e 6100 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6101 * higher layers. Otherwise, the async bio makes it appear we have
6102 * made progress against dirty pages when we've really just put it
6103 * on a queue for later
6104 */
0b246afa 6105 atomic_inc(&fs_info->nr_async_bios);
492bb6de 6106 WARN_ON(bio->bi_next);
8b712842 6107 bio->bi_next = NULL;
8b712842
CM
6108
6109 spin_lock(&device->io_lock);
1eff9d32 6110 if (bio->bi_opf & REQ_SYNC)
ffbd517d
CM
6111 pending_bios = &device->pending_sync_bios;
6112 else
6113 pending_bios = &device->pending_bios;
8b712842 6114
ffbd517d
CM
6115 if (pending_bios->tail)
6116 pending_bios->tail->bi_next = bio;
8b712842 6117
ffbd517d
CM
6118 pending_bios->tail = bio;
6119 if (!pending_bios->head)
6120 pending_bios->head = bio;
8b712842
CM
6121 if (device->running_pending)
6122 should_queue = 0;
6123
6124 spin_unlock(&device->io_lock);
6125
6126 if (should_queue)
0b246afa 6127 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6128}
6129
de1ee92a
JB
6130static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6131 struct bio *bio, u64 physical, int dev_nr,
81a75f67 6132 int async)
de1ee92a
JB
6133{
6134 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6135
6136 bio->bi_private = bbio;
9be3395b 6137 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6138 bio->bi_end_io = btrfs_end_bio;
4f024f37 6139 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6140#ifdef DEBUG
6141 {
6142 struct rcu_string *name;
6143
6144 rcu_read_lock();
6145 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6146 btrfs_debug(fs_info,
6147 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6148 bio_op(bio), bio->bi_opf,
6149 (u64)bio->bi_iter.bi_sector,
6150 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6151 bio->bi_iter.bi_size);
de1ee92a
JB
6152 rcu_read_unlock();
6153 }
6154#endif
6155 bio->bi_bdev = dev->bdev;
c404e0dc
MX
6156
6157 btrfs_bio_counter_inc_noblocked(root->fs_info);
6158
de1ee92a 6159 if (async)
4e49ea4a 6160 btrfs_schedule_bio(root, dev, bio);
de1ee92a 6161 else
4e49ea4a 6162 btrfsic_submit_bio(bio);
de1ee92a
JB
6163}
6164
de1ee92a
JB
6165static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6166{
6167 atomic_inc(&bbio->error);
6168 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6169 /* Should be the original bio. */
8408c716
MX
6170 WARN_ON(bio != bbio->orig_bio);
6171
9be3395b 6172 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6173 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6174 bio->bi_error = -EIO;
6175 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6176 }
6177}
6178
81a75f67 6179int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
8b712842 6180 int mirror_num, int async_submit)
0b86a832 6181{
0b246afa 6182 struct btrfs_fs_info *fs_info = root->fs_info;
0b86a832 6183 struct btrfs_device *dev;
8790d502 6184 struct bio *first_bio = bio;
4f024f37 6185 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6186 u64 length = 0;
6187 u64 map_length;
0b86a832 6188 int ret;
08da757d
ZL
6189 int dev_nr;
6190 int total_devs;
a1d3c478 6191 struct btrfs_bio *bbio = NULL;
0b86a832 6192
4f024f37 6193 length = bio->bi_iter.bi_size;
0b86a832 6194 map_length = length;
cea9e445 6195
0b246afa
JM
6196 btrfs_bio_counter_inc_blocked(fs_info);
6197 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
37226b21 6198 &map_length, &bbio, mirror_num, 1);
c404e0dc 6199 if (ret) {
0b246afa 6200 btrfs_bio_counter_dec(fs_info);
79787eaa 6201 return ret;
c404e0dc 6202 }
cea9e445 6203
a1d3c478 6204 total_devs = bbio->num_stripes;
53b381b3
DW
6205 bbio->orig_bio = first_bio;
6206 bbio->private = first_bio->bi_private;
6207 bbio->end_io = first_bio->bi_end_io;
0b246afa 6208 bbio->fs_info = fs_info;
53b381b3
DW
6209 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6210
ad1ba2a0 6211 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6212 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6213 /* In this case, map_length has been set to the length of
6214 a single stripe; not the whole write */
37226b21 6215 if (bio_op(bio) == REQ_OP_WRITE) {
8e5cfb55 6216 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6217 } else {
8e5cfb55 6218 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6219 mirror_num, 1);
53b381b3 6220 }
4245215d 6221
0b246afa 6222 btrfs_bio_counter_dec(fs_info);
c404e0dc 6223 return ret;
53b381b3
DW
6224 }
6225
cea9e445 6226 if (map_length < length) {
0b246afa 6227 btrfs_crit(fs_info,
5d163e0e
JM
6228 "mapping failed logical %llu bio len %llu len %llu",
6229 logical, length, map_length);
cea9e445
CM
6230 BUG();
6231 }
a1d3c478 6232
08da757d 6233 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6234 dev = bbio->stripes[dev_nr].dev;
37226b21
MC
6235 if (!dev || !dev->bdev ||
6236 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6237 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6238 continue;
6239 }
6240
a1d3c478 6241 if (dev_nr < total_devs - 1) {
9be3395b 6242 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6243 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6244 } else
a1d3c478 6245 bio = first_bio;
de1ee92a
JB
6246
6247 submit_stripe_bio(root, bbio, bio,
81a75f67 6248 bbio->stripes[dev_nr].physical, dev_nr,
de1ee92a 6249 async_submit);
8790d502 6250 }
0b246afa 6251 btrfs_bio_counter_dec(fs_info);
0b86a832
CM
6252 return 0;
6253}
6254
aa1b8cd4 6255struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6256 u8 *uuid, u8 *fsid)
0b86a832 6257{
2b82032c
YZ
6258 struct btrfs_device *device;
6259 struct btrfs_fs_devices *cur_devices;
6260
aa1b8cd4 6261 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6262 while (cur_devices) {
6263 if (!fsid ||
6264 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6265 device = __find_device(&cur_devices->devices,
6266 devid, uuid);
6267 if (device)
6268 return device;
6269 }
6270 cur_devices = cur_devices->seed;
6271 }
6272 return NULL;
0b86a832
CM
6273}
6274
dfe25020 6275static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6276 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6277 u64 devid, u8 *dev_uuid)
6278{
6279 struct btrfs_device *device;
dfe25020 6280
12bd2fc0
ID
6281 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6282 if (IS_ERR(device))
7cbd8a83 6283 return NULL;
12bd2fc0
ID
6284
6285 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6286 device->fs_devices = fs_devices;
dfe25020 6287 fs_devices->num_devices++;
12bd2fc0
ID
6288
6289 device->missing = 1;
cd02dca5 6290 fs_devices->missing_devices++;
12bd2fc0 6291
dfe25020
CM
6292 return device;
6293}
6294
12bd2fc0
ID
6295/**
6296 * btrfs_alloc_device - allocate struct btrfs_device
6297 * @fs_info: used only for generating a new devid, can be NULL if
6298 * devid is provided (i.e. @devid != NULL).
6299 * @devid: a pointer to devid for this device. If NULL a new devid
6300 * is generated.
6301 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6302 * is generated.
6303 *
6304 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6305 * on error. Returned struct is not linked onto any lists and can be
6306 * destroyed with kfree() right away.
6307 */
6308struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6309 const u64 *devid,
6310 const u8 *uuid)
6311{
6312 struct btrfs_device *dev;
6313 u64 tmp;
6314
fae7f21c 6315 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6316 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6317
6318 dev = __alloc_device();
6319 if (IS_ERR(dev))
6320 return dev;
6321
6322 if (devid)
6323 tmp = *devid;
6324 else {
6325 int ret;
6326
6327 ret = find_next_devid(fs_info, &tmp);
6328 if (ret) {
6329 kfree(dev);
6330 return ERR_PTR(ret);
6331 }
6332 }
6333 dev->devid = tmp;
6334
6335 if (uuid)
6336 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6337 else
6338 generate_random_uuid(dev->uuid);
6339
9e0af237
LB
6340 btrfs_init_work(&dev->work, btrfs_submit_helper,
6341 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6342
6343 return dev;
6344}
6345
e06cd3dd
LB
6346/* Return -EIO if any error, otherwise return 0. */
6347static int btrfs_check_chunk_valid(struct btrfs_root *root,
6348 struct extent_buffer *leaf,
6349 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6350{
0b246afa 6351 struct btrfs_fs_info *fs_info = root->fs_info;
0b86a832 6352 u64 length;
f04b772b 6353 u64 stripe_len;
e06cd3dd
LB
6354 u16 num_stripes;
6355 u16 sub_stripes;
6356 u64 type;
0b86a832 6357
e17cade2 6358 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6359 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6360 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6361 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6362 type = btrfs_chunk_type(leaf, chunk);
6363
f04b772b 6364 if (!num_stripes) {
0b246afa 6365 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6366 num_stripes);
6367 return -EIO;
6368 }
0b246afa
JM
6369 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6370 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6371 return -EIO;
6372 }
0b246afa
JM
6373 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6374 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6375 btrfs_chunk_sector_size(leaf, chunk));
6376 return -EIO;
6377 }
0b246afa
JM
6378 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6379 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6380 return -EIO;
6381 }
3d8da678 6382 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6383 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6384 stripe_len);
6385 return -EIO;
6386 }
6387 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6388 type) {
0b246afa 6389 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6390 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6391 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6392 btrfs_chunk_type(leaf, chunk));
6393 return -EIO;
6394 }
e06cd3dd
LB
6395 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6396 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6397 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6398 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6399 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6400 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6401 num_stripes != 1)) {
0b246afa 6402 btrfs_err(fs_info,
e06cd3dd
LB
6403 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6404 num_stripes, sub_stripes,
6405 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6406 return -EIO;
6407 }
6408
6409 return 0;
6410}
6411
6412static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6413 struct extent_buffer *leaf,
6414 struct btrfs_chunk *chunk)
6415{
0b246afa
JM
6416 struct btrfs_fs_info *fs_info = root->fs_info;
6417 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6418 struct map_lookup *map;
6419 struct extent_map *em;
6420 u64 logical;
6421 u64 length;
6422 u64 stripe_len;
6423 u64 devid;
6424 u8 uuid[BTRFS_UUID_SIZE];
6425 int num_stripes;
6426 int ret;
6427 int i;
6428
6429 logical = key->offset;
6430 length = btrfs_chunk_length(leaf, chunk);
6431 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6432 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6433
6434 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6435 if (ret)
6436 return ret;
a061fc8d 6437
890871be 6438 read_lock(&map_tree->map_tree.lock);
0b86a832 6439 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6440 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6441
6442 /* already mapped? */
6443 if (em && em->start <= logical && em->start + em->len > logical) {
6444 free_extent_map(em);
0b86a832
CM
6445 return 0;
6446 } else if (em) {
6447 free_extent_map(em);
6448 }
0b86a832 6449
172ddd60 6450 em = alloc_extent_map();
0b86a832
CM
6451 if (!em)
6452 return -ENOMEM;
593060d7 6453 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6454 if (!map) {
6455 free_extent_map(em);
6456 return -ENOMEM;
6457 }
6458
298a8f9c 6459 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6460 em->map_lookup = map;
0b86a832
CM
6461 em->start = logical;
6462 em->len = length;
70c8a91c 6463 em->orig_start = 0;
0b86a832 6464 em->block_start = 0;
c8b97818 6465 em->block_len = em->len;
0b86a832 6466
593060d7
CM
6467 map->num_stripes = num_stripes;
6468 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6469 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6470 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6471 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6472 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6473 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6474 for (i = 0; i < num_stripes; i++) {
6475 map->stripes[i].physical =
6476 btrfs_stripe_offset_nr(leaf, chunk, i);
6477 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6478 read_extent_buffer(leaf, uuid, (unsigned long)
6479 btrfs_stripe_dev_uuid_nr(chunk, i),
6480 BTRFS_UUID_SIZE);
0b246afa 6481 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6482 uuid, NULL);
3cdde224 6483 if (!map->stripes[i].dev &&
0b246afa 6484 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7
CM
6485 free_extent_map(em);
6486 return -EIO;
6487 }
dfe25020
CM
6488 if (!map->stripes[i].dev) {
6489 map->stripes[i].dev =
0b246afa 6490 add_missing_dev(root, fs_info->fs_devices,
5f375835 6491 devid, uuid);
dfe25020 6492 if (!map->stripes[i].dev) {
dfe25020
CM
6493 free_extent_map(em);
6494 return -EIO;
6495 }
0b246afa 6496 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
5d163e0e 6497 devid, uuid);
dfe25020
CM
6498 }
6499 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6500 }
6501
890871be 6502 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6503 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6504 write_unlock(&map_tree->map_tree.lock);
79787eaa 6505 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6506 free_extent_map(em);
6507
6508 return 0;
6509}
6510
143bede5 6511static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6512 struct btrfs_dev_item *dev_item,
6513 struct btrfs_device *device)
6514{
6515 unsigned long ptr;
0b86a832
CM
6516
6517 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6518 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6519 device->total_bytes = device->disk_total_bytes;
935e5cc9 6520 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6521 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6522 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6523 device->type = btrfs_device_type(leaf, dev_item);
6524 device->io_align = btrfs_device_io_align(leaf, dev_item);
6525 device->io_width = btrfs_device_io_width(leaf, dev_item);
6526 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6527 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6528 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6529
410ba3a2 6530 ptr = btrfs_device_uuid(dev_item);
e17cade2 6531 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6532}
6533
5f375835
MX
6534static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6535 u8 *fsid)
2b82032c 6536{
0b246afa 6537 struct btrfs_fs_info *fs_info = root->fs_info;
2b82032c
YZ
6538 struct btrfs_fs_devices *fs_devices;
6539 int ret;
6540
b367e47f 6541 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c 6542
0b246afa 6543 fs_devices = fs_info->fs_devices->seed;
2b82032c 6544 while (fs_devices) {
5f375835
MX
6545 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6546 return fs_devices;
6547
2b82032c
YZ
6548 fs_devices = fs_devices->seed;
6549 }
6550
6551 fs_devices = find_fsid(fsid);
6552 if (!fs_devices) {
0b246afa 6553 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6554 return ERR_PTR(-ENOENT);
6555
6556 fs_devices = alloc_fs_devices(fsid);
6557 if (IS_ERR(fs_devices))
6558 return fs_devices;
6559
6560 fs_devices->seeding = 1;
6561 fs_devices->opened = 1;
6562 return fs_devices;
2b82032c 6563 }
e4404d6e
YZ
6564
6565 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6566 if (IS_ERR(fs_devices))
6567 return fs_devices;
2b82032c 6568
97288f2c 6569 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6570 fs_info->bdev_holder);
48d28232
JL
6571 if (ret) {
6572 free_fs_devices(fs_devices);
5f375835 6573 fs_devices = ERR_PTR(ret);
2b82032c 6574 goto out;
48d28232 6575 }
2b82032c
YZ
6576
6577 if (!fs_devices->seeding) {
6578 __btrfs_close_devices(fs_devices);
e4404d6e 6579 free_fs_devices(fs_devices);
5f375835 6580 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6581 goto out;
6582 }
6583
0b246afa
JM
6584 fs_devices->seed = fs_info->fs_devices->seed;
6585 fs_info->fs_devices->seed = fs_devices;
2b82032c 6586out:
5f375835 6587 return fs_devices;
2b82032c
YZ
6588}
6589
0d81ba5d 6590static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6591 struct extent_buffer *leaf,
6592 struct btrfs_dev_item *dev_item)
6593{
0b246afa
JM
6594 struct btrfs_fs_info *fs_info = root->fs_info;
6595 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6596 struct btrfs_device *device;
6597 u64 devid;
6598 int ret;
2b82032c 6599 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6600 u8 dev_uuid[BTRFS_UUID_SIZE];
6601
0b86a832 6602 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6603 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6604 BTRFS_UUID_SIZE);
1473b24e 6605 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6606 BTRFS_UUID_SIZE);
6607
0b246afa 6608 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6609 fs_devices = open_seed_devices(root, fs_uuid);
6610 if (IS_ERR(fs_devices))
6611 return PTR_ERR(fs_devices);
2b82032c
YZ
6612 }
6613
0b246afa 6614 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6615 if (!device) {
0b246afa 6616 if (!btrfs_test_opt(fs_info, DEGRADED))
2b82032c
YZ
6617 return -EIO;
6618
5f375835
MX
6619 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6620 if (!device)
6621 return -ENOMEM;
0b246afa 6622 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
33b97e43 6623 devid, dev_uuid);
5f375835 6624 } else {
0b246afa 6625 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6626 return -EIO;
6627
6628 if(!device->bdev && !device->missing) {
cd02dca5
CM
6629 /*
6630 * this happens when a device that was properly setup
6631 * in the device info lists suddenly goes bad.
6632 * device->bdev is NULL, and so we have to set
6633 * device->missing to one here
6634 */
5f375835 6635 device->fs_devices->missing_devices++;
cd02dca5 6636 device->missing = 1;
2b82032c 6637 }
5f375835
MX
6638
6639 /* Move the device to its own fs_devices */
6640 if (device->fs_devices != fs_devices) {
6641 ASSERT(device->missing);
6642
6643 list_move(&device->dev_list, &fs_devices->devices);
6644 device->fs_devices->num_devices--;
6645 fs_devices->num_devices++;
6646
6647 device->fs_devices->missing_devices--;
6648 fs_devices->missing_devices++;
6649
6650 device->fs_devices = fs_devices;
6651 }
2b82032c
YZ
6652 }
6653
0b246afa 6654 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6655 BUG_ON(device->writeable);
6656 if (device->generation !=
6657 btrfs_device_generation(leaf, dev_item))
6658 return -EINVAL;
6324fbf3 6659 }
0b86a832
CM
6660
6661 fill_device_from_item(leaf, dev_item, device);
dfe25020 6662 device->in_fs_metadata = 1;
63a212ab 6663 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6664 device->fs_devices->total_rw_bytes += device->total_bytes;
0b246afa
JM
6665 spin_lock(&fs_info->free_chunk_lock);
6666 fs_info->free_chunk_space += device->total_bytes -
2bf64758 6667 device->bytes_used;
0b246afa 6668 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 6669 }
0b86a832 6670 ret = 0;
0b86a832
CM
6671 return ret;
6672}
6673
6bccf3ab 6674int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6675{
6bccf3ab 6676 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6677 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6678 struct extent_buffer *sb;
0b86a832 6679 struct btrfs_disk_key *disk_key;
0b86a832 6680 struct btrfs_chunk *chunk;
1ffb22cf
DS
6681 u8 *array_ptr;
6682 unsigned long sb_array_offset;
84eed90f 6683 int ret = 0;
0b86a832
CM
6684 u32 num_stripes;
6685 u32 array_size;
6686 u32 len = 0;
1ffb22cf 6687 u32 cur_offset;
e06cd3dd 6688 u64 type;
84eed90f 6689 struct btrfs_key key;
0b86a832 6690
0b246afa 6691 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6692 /*
6693 * This will create extent buffer of nodesize, superblock size is
6694 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6695 * overallocate but we can keep it as-is, only the first page is used.
6696 */
6697 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6698 if (IS_ERR(sb))
6699 return PTR_ERR(sb);
4db8c528 6700 set_extent_buffer_uptodate(sb);
85d4e461 6701 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6702 /*
01327610 6703 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6704 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6705 * pages up-to-date when the page is larger: extent does not cover the
6706 * whole page and consequently check_page_uptodate does not find all
6707 * the page's extents up-to-date (the hole beyond sb),
6708 * write_extent_buffer then triggers a WARN_ON.
6709 *
6710 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6711 * but sb spans only this function. Add an explicit SetPageUptodate call
6712 * to silence the warning eg. on PowerPC 64.
6713 */
09cbfeaf 6714 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6715 SetPageUptodate(sb->pages[0]);
4008c04a 6716
a061fc8d 6717 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6718 array_size = btrfs_super_sys_array_size(super_copy);
6719
1ffb22cf
DS
6720 array_ptr = super_copy->sys_chunk_array;
6721 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6722 cur_offset = 0;
0b86a832 6723
1ffb22cf
DS
6724 while (cur_offset < array_size) {
6725 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6726 len = sizeof(*disk_key);
6727 if (cur_offset + len > array_size)
6728 goto out_short_read;
6729
0b86a832
CM
6730 btrfs_disk_key_to_cpu(&key, disk_key);
6731
1ffb22cf
DS
6732 array_ptr += len;
6733 sb_array_offset += len;
6734 cur_offset += len;
0b86a832 6735
0d81ba5d 6736 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6737 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6738 /*
6739 * At least one btrfs_chunk with one stripe must be
6740 * present, exact stripe count check comes afterwards
6741 */
6742 len = btrfs_chunk_item_size(1);
6743 if (cur_offset + len > array_size)
6744 goto out_short_read;
6745
6746 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6747 if (!num_stripes) {
ab8d0fc4
JM
6748 btrfs_err(fs_info,
6749 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6750 num_stripes, cur_offset);
6751 ret = -EIO;
6752 break;
6753 }
6754
e06cd3dd
LB
6755 type = btrfs_chunk_type(sb, chunk);
6756 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6757 btrfs_err(fs_info,
e06cd3dd
LB
6758 "invalid chunk type %llu in sys_array at offset %u",
6759 type, cur_offset);
6760 ret = -EIO;
6761 break;
6762 }
6763
e3540eab
DS
6764 len = btrfs_chunk_item_size(num_stripes);
6765 if (cur_offset + len > array_size)
6766 goto out_short_read;
6767
0d81ba5d 6768 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6769 if (ret)
6770 break;
0b86a832 6771 } else {
ab8d0fc4
JM
6772 btrfs_err(fs_info,
6773 "unexpected item type %u in sys_array at offset %u",
6774 (u32)key.type, cur_offset);
84eed90f
CM
6775 ret = -EIO;
6776 break;
0b86a832 6777 }
1ffb22cf
DS
6778 array_ptr += len;
6779 sb_array_offset += len;
6780 cur_offset += len;
0b86a832 6781 }
d865177a 6782 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6783 free_extent_buffer_stale(sb);
84eed90f 6784 return ret;
e3540eab
DS
6785
6786out_short_read:
ab8d0fc4 6787 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6788 len, cur_offset);
d865177a 6789 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6790 free_extent_buffer_stale(sb);
e3540eab 6791 return -EIO;
0b86a832
CM
6792}
6793
5b4aacef 6794int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6795{
5b4aacef 6796 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6797 struct btrfs_path *path;
6798 struct extent_buffer *leaf;
6799 struct btrfs_key key;
6800 struct btrfs_key found_key;
6801 int ret;
6802 int slot;
99e3ecfc 6803 u64 total_dev = 0;
0b86a832 6804
0b86a832
CM
6805 path = btrfs_alloc_path();
6806 if (!path)
6807 return -ENOMEM;
6808
b367e47f 6809 mutex_lock(&uuid_mutex);
0b246afa 6810 lock_chunks(fs_info);
b367e47f 6811
395927a9
FDBM
6812 /*
6813 * Read all device items, and then all the chunk items. All
6814 * device items are found before any chunk item (their object id
6815 * is smaller than the lowest possible object id for a chunk
6816 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6817 */
6818 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6819 key.offset = 0;
6820 key.type = 0;
0b86a832 6821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6822 if (ret < 0)
6823 goto error;
d397712b 6824 while (1) {
0b86a832
CM
6825 leaf = path->nodes[0];
6826 slot = path->slots[0];
6827 if (slot >= btrfs_header_nritems(leaf)) {
6828 ret = btrfs_next_leaf(root, path);
6829 if (ret == 0)
6830 continue;
6831 if (ret < 0)
6832 goto error;
6833 break;
6834 }
6835 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6836 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6837 struct btrfs_dev_item *dev_item;
6838 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6839 struct btrfs_dev_item);
395927a9
FDBM
6840 ret = read_one_dev(root, leaf, dev_item);
6841 if (ret)
6842 goto error;
99e3ecfc 6843 total_dev++;
0b86a832
CM
6844 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6845 struct btrfs_chunk *chunk;
6846 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6847 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6848 if (ret)
6849 goto error;
0b86a832
CM
6850 }
6851 path->slots[0]++;
6852 }
99e3ecfc
LB
6853
6854 /*
6855 * After loading chunk tree, we've got all device information,
6856 * do another round of validation checks.
6857 */
0b246afa
JM
6858 if (total_dev != fs_info->fs_devices->total_devices) {
6859 btrfs_err(fs_info,
99e3ecfc 6860 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6861 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6862 total_dev);
6863 ret = -EINVAL;
6864 goto error;
6865 }
0b246afa
JM
6866 if (btrfs_super_total_bytes(fs_info->super_copy) <
6867 fs_info->fs_devices->total_rw_bytes) {
6868 btrfs_err(fs_info,
99e3ecfc 6869 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6870 btrfs_super_total_bytes(fs_info->super_copy),
6871 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6872 ret = -EINVAL;
6873 goto error;
6874 }
0b86a832
CM
6875 ret = 0;
6876error:
0b246afa 6877 unlock_chunks(fs_info);
b367e47f
LZ
6878 mutex_unlock(&uuid_mutex);
6879
2b82032c 6880 btrfs_free_path(path);
0b86a832
CM
6881 return ret;
6882}
442a4f63 6883
cb517eab
MX
6884void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6885{
6886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6887 struct btrfs_device *device;
6888
29cc83f6
LB
6889 while (fs_devices) {
6890 mutex_lock(&fs_devices->device_list_mutex);
6891 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6892 device->fs_info = fs_info;
29cc83f6
LB
6893 mutex_unlock(&fs_devices->device_list_mutex);
6894
6895 fs_devices = fs_devices->seed;
6896 }
cb517eab
MX
6897}
6898
733f4fbb
SB
6899static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6900{
6901 int i;
6902
6903 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6904 btrfs_dev_stat_reset(dev, i);
6905}
6906
6907int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6908{
6909 struct btrfs_key key;
6910 struct btrfs_key found_key;
6911 struct btrfs_root *dev_root = fs_info->dev_root;
6912 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6913 struct extent_buffer *eb;
6914 int slot;
6915 int ret = 0;
6916 struct btrfs_device *device;
6917 struct btrfs_path *path = NULL;
6918 int i;
6919
6920 path = btrfs_alloc_path();
6921 if (!path) {
6922 ret = -ENOMEM;
6923 goto out;
6924 }
6925
6926 mutex_lock(&fs_devices->device_list_mutex);
6927 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6928 int item_size;
6929 struct btrfs_dev_stats_item *ptr;
6930
242e2956
DS
6931 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6932 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6933 key.offset = device->devid;
6934 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6935 if (ret) {
733f4fbb
SB
6936 __btrfs_reset_dev_stats(device);
6937 device->dev_stats_valid = 1;
6938 btrfs_release_path(path);
6939 continue;
6940 }
6941 slot = path->slots[0];
6942 eb = path->nodes[0];
6943 btrfs_item_key_to_cpu(eb, &found_key, slot);
6944 item_size = btrfs_item_size_nr(eb, slot);
6945
6946 ptr = btrfs_item_ptr(eb, slot,
6947 struct btrfs_dev_stats_item);
6948
6949 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6950 if (item_size >= (1 + i) * sizeof(__le64))
6951 btrfs_dev_stat_set(device, i,
6952 btrfs_dev_stats_value(eb, ptr, i));
6953 else
6954 btrfs_dev_stat_reset(device, i);
6955 }
6956
6957 device->dev_stats_valid = 1;
6958 btrfs_dev_stat_print_on_load(device);
6959 btrfs_release_path(path);
6960 }
6961 mutex_unlock(&fs_devices->device_list_mutex);
6962
6963out:
6964 btrfs_free_path(path);
6965 return ret < 0 ? ret : 0;
6966}
6967
6968static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 6969 struct btrfs_fs_info *fs_info,
733f4fbb
SB
6970 struct btrfs_device *device)
6971{
6bccf3ab 6972 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
6973 struct btrfs_path *path;
6974 struct btrfs_key key;
6975 struct extent_buffer *eb;
6976 struct btrfs_dev_stats_item *ptr;
6977 int ret;
6978 int i;
6979
242e2956
DS
6980 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6981 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6982 key.offset = device->devid;
6983
6984 path = btrfs_alloc_path();
6985 BUG_ON(!path);
6986 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6987 if (ret < 0) {
0b246afa 6988 btrfs_warn_in_rcu(fs_info,
ecaeb14b 6989 "error %d while searching for dev_stats item for device %s",
606686ee 6990 ret, rcu_str_deref(device->name));
733f4fbb
SB
6991 goto out;
6992 }
6993
6994 if (ret == 0 &&
6995 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6996 /* need to delete old one and insert a new one */
6997 ret = btrfs_del_item(trans, dev_root, path);
6998 if (ret != 0) {
0b246afa 6999 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7000 "delete too small dev_stats item for device %s failed %d",
606686ee 7001 rcu_str_deref(device->name), ret);
733f4fbb
SB
7002 goto out;
7003 }
7004 ret = 1;
7005 }
7006
7007 if (ret == 1) {
7008 /* need to insert a new item */
7009 btrfs_release_path(path);
7010 ret = btrfs_insert_empty_item(trans, dev_root, path,
7011 &key, sizeof(*ptr));
7012 if (ret < 0) {
0b246afa 7013 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7014 "insert dev_stats item for device %s failed %d",
7015 rcu_str_deref(device->name), ret);
733f4fbb
SB
7016 goto out;
7017 }
7018 }
7019
7020 eb = path->nodes[0];
7021 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7022 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7023 btrfs_set_dev_stats_value(eb, ptr, i,
7024 btrfs_dev_stat_read(device, i));
7025 btrfs_mark_buffer_dirty(eb);
7026
7027out:
7028 btrfs_free_path(path);
7029 return ret;
7030}
7031
7032/*
7033 * called from commit_transaction. Writes all changed device stats to disk.
7034 */
7035int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7036 struct btrfs_fs_info *fs_info)
7037{
733f4fbb
SB
7038 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7039 struct btrfs_device *device;
addc3fa7 7040 int stats_cnt;
733f4fbb
SB
7041 int ret = 0;
7042
7043 mutex_lock(&fs_devices->device_list_mutex);
7044 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7045 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7046 continue;
7047
addc3fa7 7048 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7049 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7050 if (!ret)
addc3fa7 7051 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7052 }
7053 mutex_unlock(&fs_devices->device_list_mutex);
7054
7055 return ret;
7056}
7057
442a4f63
SB
7058void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7059{
7060 btrfs_dev_stat_inc(dev, index);
7061 btrfs_dev_stat_print_on_error(dev);
7062}
7063
48a3b636 7064static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7065{
733f4fbb
SB
7066 if (!dev->dev_stats_valid)
7067 return;
fb456252 7068 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7069 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7070 rcu_str_deref(dev->name),
442a4f63
SB
7071 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7072 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7073 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7074 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7075 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7076}
c11d2c23 7077
733f4fbb
SB
7078static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7079{
a98cdb85
SB
7080 int i;
7081
7082 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7083 if (btrfs_dev_stat_read(dev, i) != 0)
7084 break;
7085 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7086 return; /* all values == 0, suppress message */
7087
fb456252 7088 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7089 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7090 rcu_str_deref(dev->name),
733f4fbb
SB
7091 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7092 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7093 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7094 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7095 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7096}
7097
c11d2c23 7098int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 7099 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7100{
0b246afa 7101 struct btrfs_fs_info *fs_info = root->fs_info;
c11d2c23 7102 struct btrfs_device *dev;
0b246afa 7103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7104 int i;
7105
7106 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7107 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7108 mutex_unlock(&fs_devices->device_list_mutex);
7109
7110 if (!dev) {
0b246afa 7111 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7112 return -ENODEV;
733f4fbb 7113 } else if (!dev->dev_stats_valid) {
0b246afa 7114 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7115 return -ENODEV;
b27f7c0c 7116 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7117 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7118 if (stats->nr_items > i)
7119 stats->values[i] =
7120 btrfs_dev_stat_read_and_reset(dev, i);
7121 else
7122 btrfs_dev_stat_reset(dev, i);
7123 }
7124 } else {
7125 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7126 if (stats->nr_items > i)
7127 stats->values[i] = btrfs_dev_stat_read(dev, i);
7128 }
7129 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7130 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7131 return 0;
7132}
a8a6dab7 7133
12b1c263 7134void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
7135{
7136 struct buffer_head *bh;
7137 struct btrfs_super_block *disk_super;
12b1c263 7138 int copy_num;
a8a6dab7 7139
12b1c263
AJ
7140 if (!bdev)
7141 return;
a8a6dab7 7142
12b1c263
AJ
7143 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7144 copy_num++) {
a8a6dab7 7145
12b1c263
AJ
7146 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7147 continue;
7148
7149 disk_super = (struct btrfs_super_block *)bh->b_data;
7150
7151 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7152 set_buffer_dirty(bh);
7153 sync_dirty_buffer(bh);
7154 brelse(bh);
7155 }
7156
7157 /* Notify udev that device has changed */
7158 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7159
7160 /* Update ctime/mtime for device path for libblkid */
7161 update_dev_time(device_path);
a8a6dab7 7162}
935e5cc9
MX
7163
7164/*
7165 * Update the size of all devices, which is used for writing out the
7166 * super blocks.
7167 */
7168void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7169{
7170 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7171 struct btrfs_device *curr, *next;
7172
7173 if (list_empty(&fs_devices->resized_devices))
7174 return;
7175
7176 mutex_lock(&fs_devices->device_list_mutex);
3796d335 7177 lock_chunks(fs_info);
935e5cc9
MX
7178 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7179 resized_list) {
7180 list_del_init(&curr->resized_list);
7181 curr->commit_total_bytes = curr->disk_total_bytes;
7182 }
3796d335 7183 unlock_chunks(fs_info);
935e5cc9
MX
7184 mutex_unlock(&fs_devices->device_list_mutex);
7185}
ce7213c7
MX
7186
7187/* Must be invoked during the transaction commit */
7188void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7189 struct btrfs_transaction *transaction)
7190{
0b246afa 7191 struct btrfs_fs_info *fs_info = root->fs_info;
ce7213c7
MX
7192 struct extent_map *em;
7193 struct map_lookup *map;
7194 struct btrfs_device *dev;
7195 int i;
7196
7197 if (list_empty(&transaction->pending_chunks))
7198 return;
7199
7200 /* In order to kick the device replace finish process */
0b246afa 7201 lock_chunks(fs_info);
ce7213c7 7202 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7203 map = em->map_lookup;
ce7213c7
MX
7204
7205 for (i = 0; i < map->num_stripes; i++) {
7206 dev = map->stripes[i].dev;
7207 dev->commit_bytes_used = dev->bytes_used;
7208 }
7209 }
0b246afa 7210 unlock_chunks(fs_info);
ce7213c7 7211}
5a13f430
AJ
7212
7213void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7214{
7215 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7216 while (fs_devices) {
7217 fs_devices->fs_info = fs_info;
7218 fs_devices = fs_devices->seed;
7219 }
7220}
7221
7222void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7223{
7224 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7225 while (fs_devices) {
7226 fs_devices->fs_info = NULL;
7227 fs_devices = fs_devices->seed;
7228 }
7229}