]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/buffer.c
btrfs: use attach/detach_page_private
[mirror_ubuntu-jammy-kernel.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
31fb992c 50#include <linux/fscrypt.h>
1da177e4 51
2b211dc0
BD
52#include "internal.h"
53
1da177e4 54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 55static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 56 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
57
58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
f0059afd
TH
60inline void touch_buffer(struct buffer_head *bh)
61{
5305cb83 62 trace_block_touch_buffer(bh);
f0059afd
TH
63 mark_page_accessed(bh->b_page);
64}
65EXPORT_SYMBOL(touch_buffer);
66
fc9b52cd 67void __lock_buffer(struct buffer_head *bh)
1da177e4 68{
74316201 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
70}
71EXPORT_SYMBOL(__lock_buffer);
72
fc9b52cd 73void unlock_buffer(struct buffer_head *bh)
1da177e4 74{
51b07fc3 75 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 76 smp_mb__after_atomic();
1da177e4
LT
77 wake_up_bit(&bh->b_state, BH_Lock);
78}
1fe72eaa 79EXPORT_SYMBOL(unlock_buffer);
1da177e4 80
b4597226
MG
81/*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88{
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112}
113EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
1da177e4
LT
115/*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120void __wait_on_buffer(struct buffer_head * bh)
121{
74316201 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 123}
1fe72eaa 124EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
125
126static void
127__clear_page_buffers(struct page *page)
128{
129 ClearPagePrivate(page);
4c21e2f2 130 set_page_private(page, 0);
09cbfeaf 131 put_page(page);
1da177e4
LT
132}
133
b744c2ac 134static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 135{
432f16e6
RE
136 if (!test_bit(BH_Quiet, &bh->b_state))
137 printk_ratelimited(KERN_ERR
a1c6f057
DM
138 "Buffer I/O error on dev %pg, logical block %llu%s\n",
139 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
140}
141
142/*
68671f35
DM
143 * End-of-IO handler helper function which does not touch the bh after
144 * unlocking it.
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
148 * itself.
1da177e4 149 */
68671f35 150static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
151{
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
70246286 155 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
156 clear_buffer_uptodate(bh);
157 }
158 unlock_buffer(bh);
68671f35
DM
159}
160
161/*
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
164 */
165void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166{
167 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
168 put_bh(bh);
169}
1fe72eaa 170EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
171
172void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173{
1da177e4
LT
174 if (uptodate) {
175 set_buffer_uptodate(bh);
176 } else {
432f16e6 177 buffer_io_error(bh, ", lost sync page write");
87354e5d 178 mark_buffer_write_io_error(bh);
1da177e4
LT
179 clear_buffer_uptodate(bh);
180 }
181 unlock_buffer(bh);
182 put_bh(bh);
183}
1fe72eaa 184EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 185
1da177e4
LT
186/*
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
190 * private_lock.
191 *
b93b0163 192 * Hack idea: for the blockdev mapping, private_lock contention
1da177e4 193 * may be quite high. This code could TryLock the page, and if that
b93b0163 194 * succeeds, there is no need to take private_lock.
1da177e4
LT
195 */
196static struct buffer_head *
385fd4c5 197__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
198{
199 struct inode *bd_inode = bdev->bd_inode;
200 struct address_space *bd_mapping = bd_inode->i_mapping;
201 struct buffer_head *ret = NULL;
202 pgoff_t index;
203 struct buffer_head *bh;
204 struct buffer_head *head;
205 struct page *page;
206 int all_mapped = 1;
43636c80 207 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 208
09cbfeaf 209 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
211 if (!page)
212 goto out;
213
214 spin_lock(&bd_mapping->private_lock);
215 if (!page_has_buffers(page))
216 goto out_unlock;
217 head = page_buffers(page);
218 bh = head;
219 do {
97f76d3d
NK
220 if (!buffer_mapped(bh))
221 all_mapped = 0;
222 else if (bh->b_blocknr == block) {
1da177e4
LT
223 ret = bh;
224 get_bh(bh);
225 goto out_unlock;
226 }
1da177e4
LT
227 bh = bh->b_this_page;
228 } while (bh != head);
229
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
234 */
43636c80
TH
235 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236 if (all_mapped && __ratelimit(&last_warned)) {
237 printk("__find_get_block_slow() failed. block=%llu, "
238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 "device %pg blocksize: %d\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr,
242 bh->b_state, bh->b_size, bdev,
243 1 << bd_inode->i_blkbits);
1da177e4
LT
244 }
245out_unlock:
246 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 247 put_page(page);
1da177e4
LT
248out:
249 return ret;
250}
251
1da177e4
LT
252static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253{
1da177e4 254 unsigned long flags;
a3972203 255 struct buffer_head *first;
1da177e4
LT
256 struct buffer_head *tmp;
257 struct page *page;
258 int page_uptodate = 1;
259
260 BUG_ON(!buffer_async_read(bh));
261
262 page = bh->b_page;
263 if (uptodate) {
264 set_buffer_uptodate(bh);
265 } else {
266 clear_buffer_uptodate(bh);
432f16e6 267 buffer_io_error(bh, ", async page read");
1da177e4
LT
268 SetPageError(page);
269 }
270
271 /*
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
275 */
a3972203 276 first = page_buffers(page);
f1e67e35 277 spin_lock_irqsave(&first->b_uptodate_lock, flags);
1da177e4
LT
278 clear_buffer_async_read(bh);
279 unlock_buffer(bh);
280 tmp = bh;
281 do {
282 if (!buffer_uptodate(tmp))
283 page_uptodate = 0;
284 if (buffer_async_read(tmp)) {
285 BUG_ON(!buffer_locked(tmp));
286 goto still_busy;
287 }
288 tmp = tmp->b_this_page;
289 } while (tmp != bh);
f1e67e35 290 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
291
292 /*
293 * If none of the buffers had errors and they are all
294 * uptodate then we can set the page uptodate.
295 */
296 if (page_uptodate && !PageError(page))
297 SetPageUptodate(page);
298 unlock_page(page);
299 return;
300
301still_busy:
f1e67e35 302 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
303 return;
304}
305
31fb992c
EB
306struct decrypt_bh_ctx {
307 struct work_struct work;
308 struct buffer_head *bh;
309};
310
311static void decrypt_bh(struct work_struct *work)
312{
313 struct decrypt_bh_ctx *ctx =
314 container_of(work, struct decrypt_bh_ctx, work);
315 struct buffer_head *bh = ctx->bh;
316 int err;
317
318 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
319 bh_offset(bh));
320 end_buffer_async_read(bh, err == 0);
321 kfree(ctx);
322}
323
324/*
325 * I/O completion handler for block_read_full_page() - pages
326 * which come unlocked at the end of I/O.
327 */
328static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
329{
330 /* Decrypt if needed */
331 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
332 IS_ENCRYPTED(bh->b_page->mapping->host) &&
333 S_ISREG(bh->b_page->mapping->host->i_mode)) {
334 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
335
336 if (ctx) {
337 INIT_WORK(&ctx->work, decrypt_bh);
338 ctx->bh = bh;
339 fscrypt_enqueue_decrypt_work(&ctx->work);
340 return;
341 }
342 uptodate = 0;
343 }
344 end_buffer_async_read(bh, uptodate);
345}
346
1da177e4
LT
347/*
348 * Completion handler for block_write_full_page() - pages which are unlocked
349 * during I/O, and which have PageWriteback cleared upon I/O completion.
350 */
35c80d5f 351void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 352{
1da177e4 353 unsigned long flags;
a3972203 354 struct buffer_head *first;
1da177e4
LT
355 struct buffer_head *tmp;
356 struct page *page;
357
358 BUG_ON(!buffer_async_write(bh));
359
360 page = bh->b_page;
361 if (uptodate) {
362 set_buffer_uptodate(bh);
363 } else {
432f16e6 364 buffer_io_error(bh, ", lost async page write");
87354e5d 365 mark_buffer_write_io_error(bh);
1da177e4
LT
366 clear_buffer_uptodate(bh);
367 SetPageError(page);
368 }
369
a3972203 370 first = page_buffers(page);
f1e67e35 371 spin_lock_irqsave(&first->b_uptodate_lock, flags);
a3972203 372
1da177e4
LT
373 clear_buffer_async_write(bh);
374 unlock_buffer(bh);
375 tmp = bh->b_this_page;
376 while (tmp != bh) {
377 if (buffer_async_write(tmp)) {
378 BUG_ON(!buffer_locked(tmp));
379 goto still_busy;
380 }
381 tmp = tmp->b_this_page;
382 }
f1e67e35 383 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
384 end_page_writeback(page);
385 return;
386
387still_busy:
f1e67e35 388 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
389 return;
390}
1fe72eaa 391EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
392
393/*
394 * If a page's buffers are under async readin (end_buffer_async_read
395 * completion) then there is a possibility that another thread of
396 * control could lock one of the buffers after it has completed
397 * but while some of the other buffers have not completed. This
398 * locked buffer would confuse end_buffer_async_read() into not unlocking
399 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
400 * that this buffer is not under async I/O.
401 *
402 * The page comes unlocked when it has no locked buffer_async buffers
403 * left.
404 *
405 * PageLocked prevents anyone starting new async I/O reads any of
406 * the buffers.
407 *
408 * PageWriteback is used to prevent simultaneous writeout of the same
409 * page.
410 *
411 * PageLocked prevents anyone from starting writeback of a page which is
412 * under read I/O (PageWriteback is only ever set against a locked page).
413 */
414static void mark_buffer_async_read(struct buffer_head *bh)
415{
31fb992c 416 bh->b_end_io = end_buffer_async_read_io;
1da177e4
LT
417 set_buffer_async_read(bh);
418}
419
1fe72eaa
HS
420static void mark_buffer_async_write_endio(struct buffer_head *bh,
421 bh_end_io_t *handler)
1da177e4 422{
35c80d5f 423 bh->b_end_io = handler;
1da177e4
LT
424 set_buffer_async_write(bh);
425}
35c80d5f
CM
426
427void mark_buffer_async_write(struct buffer_head *bh)
428{
429 mark_buffer_async_write_endio(bh, end_buffer_async_write);
430}
1da177e4
LT
431EXPORT_SYMBOL(mark_buffer_async_write);
432
433
434/*
435 * fs/buffer.c contains helper functions for buffer-backed address space's
436 * fsync functions. A common requirement for buffer-based filesystems is
437 * that certain data from the backing blockdev needs to be written out for
438 * a successful fsync(). For example, ext2 indirect blocks need to be
439 * written back and waited upon before fsync() returns.
440 *
441 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443 * management of a list of dependent buffers at ->i_mapping->private_list.
444 *
445 * Locking is a little subtle: try_to_free_buffers() will remove buffers
446 * from their controlling inode's queue when they are being freed. But
447 * try_to_free_buffers() will be operating against the *blockdev* mapping
448 * at the time, not against the S_ISREG file which depends on those buffers.
449 * So the locking for private_list is via the private_lock in the address_space
450 * which backs the buffers. Which is different from the address_space
451 * against which the buffers are listed. So for a particular address_space,
452 * mapping->private_lock does *not* protect mapping->private_list! In fact,
453 * mapping->private_list will always be protected by the backing blockdev's
454 * ->private_lock.
455 *
456 * Which introduces a requirement: all buffers on an address_space's
457 * ->private_list must be from the same address_space: the blockdev's.
458 *
459 * address_spaces which do not place buffers at ->private_list via these
460 * utility functions are free to use private_lock and private_list for
461 * whatever they want. The only requirement is that list_empty(private_list)
462 * be true at clear_inode() time.
463 *
464 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
465 * filesystems should do that. invalidate_inode_buffers() should just go
466 * BUG_ON(!list_empty).
467 *
468 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
469 * take an address_space, not an inode. And it should be called
470 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
471 * queued up.
472 *
473 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474 * list if it is already on a list. Because if the buffer is on a list,
475 * it *must* already be on the right one. If not, the filesystem is being
476 * silly. This will save a ton of locking. But first we have to ensure
477 * that buffers are taken *off* the old inode's list when they are freed
478 * (presumably in truncate). That requires careful auditing of all
479 * filesystems (do it inside bforget()). It could also be done by bringing
480 * b_inode back.
481 */
482
483/*
484 * The buffer's backing address_space's private_lock must be held
485 */
dbacefc9 486static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
487{
488 list_del_init(&bh->b_assoc_buffers);
58ff407b 489 WARN_ON(!bh->b_assoc_map);
58ff407b 490 bh->b_assoc_map = NULL;
1da177e4
LT
491}
492
493int inode_has_buffers(struct inode *inode)
494{
495 return !list_empty(&inode->i_data.private_list);
496}
497
498/*
499 * osync is designed to support O_SYNC io. It waits synchronously for
500 * all already-submitted IO to complete, but does not queue any new
501 * writes to the disk.
502 *
503 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504 * you dirty the buffers, and then use osync_inode_buffers to wait for
505 * completion. Any other dirty buffers which are not yet queued for
506 * write will not be flushed to disk by the osync.
507 */
508static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
509{
510 struct buffer_head *bh;
511 struct list_head *p;
512 int err = 0;
513
514 spin_lock(lock);
515repeat:
516 list_for_each_prev(p, list) {
517 bh = BH_ENTRY(p);
518 if (buffer_locked(bh)) {
519 get_bh(bh);
520 spin_unlock(lock);
521 wait_on_buffer(bh);
522 if (!buffer_uptodate(bh))
523 err = -EIO;
524 brelse(bh);
525 spin_lock(lock);
526 goto repeat;
527 }
528 }
529 spin_unlock(lock);
530 return err;
531}
532
08fdc8a0 533void emergency_thaw_bdev(struct super_block *sb)
c2d75438 534{
01a05b33 535 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 536 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 537}
c2d75438 538
1da177e4 539/**
78a4a50a 540 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 541 * @mapping: the mapping which wants those buffers written
1da177e4
LT
542 *
543 * Starts I/O against the buffers at mapping->private_list, and waits upon
544 * that I/O.
545 *
67be2dd1
MW
546 * Basically, this is a convenience function for fsync().
547 * @mapping is a file or directory which needs those buffers to be written for
548 * a successful fsync().
1da177e4
LT
549 */
550int sync_mapping_buffers(struct address_space *mapping)
551{
252aa6f5 552 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
553
554 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
555 return 0;
556
557 return fsync_buffers_list(&buffer_mapping->private_lock,
558 &mapping->private_list);
559}
560EXPORT_SYMBOL(sync_mapping_buffers);
561
562/*
563 * Called when we've recently written block `bblock', and it is known that
564 * `bblock' was for a buffer_boundary() buffer. This means that the block at
565 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
566 * dirty, schedule it for IO. So that indirects merge nicely with their data.
567 */
568void write_boundary_block(struct block_device *bdev,
569 sector_t bblock, unsigned blocksize)
570{
571 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
572 if (bh) {
573 if (buffer_dirty(bh))
dfec8a14 574 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
575 put_bh(bh);
576 }
577}
578
579void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
580{
581 struct address_space *mapping = inode->i_mapping;
582 struct address_space *buffer_mapping = bh->b_page->mapping;
583
584 mark_buffer_dirty(bh);
252aa6f5
RA
585 if (!mapping->private_data) {
586 mapping->private_data = buffer_mapping;
1da177e4 587 } else {
252aa6f5 588 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 589 }
535ee2fb 590 if (!bh->b_assoc_map) {
1da177e4
LT
591 spin_lock(&buffer_mapping->private_lock);
592 list_move_tail(&bh->b_assoc_buffers,
593 &mapping->private_list);
58ff407b 594 bh->b_assoc_map = mapping;
1da177e4
LT
595 spin_unlock(&buffer_mapping->private_lock);
596 }
597}
598EXPORT_SYMBOL(mark_buffer_dirty_inode);
599
787d2214 600/*
ec82e1c1 601 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
787d2214
NP
602 * dirty.
603 *
604 * If warn is true, then emit a warning if the page is not uptodate and has
605 * not been truncated.
c4843a75 606 *
81f8c3a4 607 * The caller must hold lock_page_memcg().
787d2214 608 */
f82b3764 609void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 610 int warn)
787d2214 611{
227d53b3
KM
612 unsigned long flags;
613
b93b0163 614 xa_lock_irqsave(&mapping->i_pages, flags);
787d2214
NP
615 if (page->mapping) { /* Race with truncate? */
616 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 617 account_page_dirtied(page, mapping);
ec82e1c1
MW
618 __xa_set_mark(&mapping->i_pages, page_index(page),
619 PAGECACHE_TAG_DIRTY);
787d2214 620 }
b93b0163 621 xa_unlock_irqrestore(&mapping->i_pages, flags);
787d2214 622}
f82b3764 623EXPORT_SYMBOL_GPL(__set_page_dirty);
787d2214 624
1da177e4
LT
625/*
626 * Add a page to the dirty page list.
627 *
628 * It is a sad fact of life that this function is called from several places
629 * deeply under spinlocking. It may not sleep.
630 *
631 * If the page has buffers, the uptodate buffers are set dirty, to preserve
632 * dirty-state coherency between the page and the buffers. It the page does
633 * not have buffers then when they are later attached they will all be set
634 * dirty.
635 *
636 * The buffers are dirtied before the page is dirtied. There's a small race
637 * window in which a writepage caller may see the page cleanness but not the
638 * buffer dirtiness. That's fine. If this code were to set the page dirty
639 * before the buffers, a concurrent writepage caller could clear the page dirty
640 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641 * page on the dirty page list.
642 *
643 * We use private_lock to lock against try_to_free_buffers while using the
644 * page's buffer list. Also use this to protect against clean buffers being
645 * added to the page after it was set dirty.
646 *
647 * FIXME: may need to call ->reservepage here as well. That's rather up to the
648 * address_space though.
649 */
650int __set_page_dirty_buffers(struct page *page)
651{
a8e7d49a 652 int newly_dirty;
787d2214 653 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
654
655 if (unlikely(!mapping))
656 return !TestSetPageDirty(page);
1da177e4
LT
657
658 spin_lock(&mapping->private_lock);
659 if (page_has_buffers(page)) {
660 struct buffer_head *head = page_buffers(page);
661 struct buffer_head *bh = head;
662
663 do {
664 set_buffer_dirty(bh);
665 bh = bh->b_this_page;
666 } while (bh != head);
667 }
c4843a75 668 /*
81f8c3a4
JW
669 * Lock out page->mem_cgroup migration to keep PageDirty
670 * synchronized with per-memcg dirty page counters.
c4843a75 671 */
62cccb8c 672 lock_page_memcg(page);
a8e7d49a 673 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
674 spin_unlock(&mapping->private_lock);
675
a8e7d49a 676 if (newly_dirty)
62cccb8c 677 __set_page_dirty(page, mapping, 1);
c4843a75 678
62cccb8c 679 unlock_page_memcg(page);
c4843a75
GT
680
681 if (newly_dirty)
682 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
683
a8e7d49a 684 return newly_dirty;
1da177e4
LT
685}
686EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688/*
689 * Write out and wait upon a list of buffers.
690 *
691 * We have conflicting pressures: we want to make sure that all
692 * initially dirty buffers get waited on, but that any subsequently
693 * dirtied buffers don't. After all, we don't want fsync to last
694 * forever if somebody is actively writing to the file.
695 *
696 * Do this in two main stages: first we copy dirty buffers to a
697 * temporary inode list, queueing the writes as we go. Then we clean
698 * up, waiting for those writes to complete.
699 *
700 * During this second stage, any subsequent updates to the file may end
701 * up refiling the buffer on the original inode's dirty list again, so
702 * there is a chance we will end up with a buffer queued for write but
703 * not yet completed on that list. So, as a final cleanup we go through
704 * the osync code to catch these locked, dirty buffers without requeuing
705 * any newly dirty buffers for write.
706 */
707static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708{
709 struct buffer_head *bh;
710 struct list_head tmp;
7eaceacc 711 struct address_space *mapping;
1da177e4 712 int err = 0, err2;
4ee2491e 713 struct blk_plug plug;
1da177e4
LT
714
715 INIT_LIST_HEAD(&tmp);
4ee2491e 716 blk_start_plug(&plug);
1da177e4
LT
717
718 spin_lock(lock);
719 while (!list_empty(list)) {
720 bh = BH_ENTRY(list->next);
535ee2fb 721 mapping = bh->b_assoc_map;
58ff407b 722 __remove_assoc_queue(bh);
535ee2fb
JK
723 /* Avoid race with mark_buffer_dirty_inode() which does
724 * a lockless check and we rely on seeing the dirty bit */
725 smp_mb();
1da177e4
LT
726 if (buffer_dirty(bh) || buffer_locked(bh)) {
727 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 728 bh->b_assoc_map = mapping;
1da177e4
LT
729 if (buffer_dirty(bh)) {
730 get_bh(bh);
731 spin_unlock(lock);
732 /*
733 * Ensure any pending I/O completes so that
9cb569d6
CH
734 * write_dirty_buffer() actually writes the
735 * current contents - it is a noop if I/O is
736 * still in flight on potentially older
737 * contents.
1da177e4 738 */
70fd7614 739 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
740
741 /*
742 * Kick off IO for the previous mapping. Note
743 * that we will not run the very last mapping,
744 * wait_on_buffer() will do that for us
745 * through sync_buffer().
746 */
1da177e4
LT
747 brelse(bh);
748 spin_lock(lock);
749 }
750 }
751 }
752
4ee2491e
JA
753 spin_unlock(lock);
754 blk_finish_plug(&plug);
755 spin_lock(lock);
756
1da177e4
LT
757 while (!list_empty(&tmp)) {
758 bh = BH_ENTRY(tmp.prev);
1da177e4 759 get_bh(bh);
535ee2fb
JK
760 mapping = bh->b_assoc_map;
761 __remove_assoc_queue(bh);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
765 if (buffer_dirty(bh)) {
766 list_add(&bh->b_assoc_buffers,
e3892296 767 &mapping->private_list);
535ee2fb
JK
768 bh->b_assoc_map = mapping;
769 }
1da177e4
LT
770 spin_unlock(lock);
771 wait_on_buffer(bh);
772 if (!buffer_uptodate(bh))
773 err = -EIO;
774 brelse(bh);
775 spin_lock(lock);
776 }
777
778 spin_unlock(lock);
779 err2 = osync_buffers_list(lock, list);
780 if (err)
781 return err;
782 else
783 return err2;
784}
785
786/*
787 * Invalidate any and all dirty buffers on a given inode. We are
788 * probably unmounting the fs, but that doesn't mean we have already
789 * done a sync(). Just drop the buffers from the inode list.
790 *
791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
792 * assumes that all the buffers are against the blockdev. Not true
793 * for reiserfs.
794 */
795void invalidate_inode_buffers(struct inode *inode)
796{
797 if (inode_has_buffers(inode)) {
798 struct address_space *mapping = &inode->i_data;
799 struct list_head *list = &mapping->private_list;
252aa6f5 800 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
801
802 spin_lock(&buffer_mapping->private_lock);
803 while (!list_empty(list))
804 __remove_assoc_queue(BH_ENTRY(list->next));
805 spin_unlock(&buffer_mapping->private_lock);
806 }
807}
52b19ac9 808EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
809
810/*
811 * Remove any clean buffers from the inode's buffer list. This is called
812 * when we're trying to free the inode itself. Those buffers can pin it.
813 *
814 * Returns true if all buffers were removed.
815 */
816int remove_inode_buffers(struct inode *inode)
817{
818 int ret = 1;
819
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
252aa6f5 823 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
824
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list)) {
827 struct buffer_head *bh = BH_ENTRY(list->next);
828 if (buffer_dirty(bh)) {
829 ret = 0;
830 break;
831 }
832 __remove_assoc_queue(bh);
833 }
834 spin_unlock(&buffer_mapping->private_lock);
835 }
836 return ret;
837}
838
839/*
840 * Create the appropriate buffers when given a page for data area and
841 * the size of each buffer.. Use the bh->b_this_page linked list to
842 * follow the buffers created. Return NULL if unable to create more
843 * buffers.
844 *
845 * The retry flag is used to differentiate async IO (paging, swapping)
846 * which may not fail from ordinary buffer allocations.
847 */
848struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
640ab98f 849 bool retry)
1da177e4
LT
850{
851 struct buffer_head *bh, *head;
f745c6f5 852 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
1da177e4 853 long offset;
f745c6f5 854 struct mem_cgroup *memcg;
1da177e4 855
640ab98f
JA
856 if (retry)
857 gfp |= __GFP_NOFAIL;
858
f745c6f5
SB
859 memcg = get_mem_cgroup_from_page(page);
860 memalloc_use_memcg(memcg);
861
1da177e4
LT
862 head = NULL;
863 offset = PAGE_SIZE;
864 while ((offset -= size) >= 0) {
640ab98f 865 bh = alloc_buffer_head(gfp);
1da177e4
LT
866 if (!bh)
867 goto no_grow;
868
1da177e4
LT
869 bh->b_this_page = head;
870 bh->b_blocknr = -1;
871 head = bh;
872
1da177e4
LT
873 bh->b_size = size;
874
875 /* Link the buffer to its page */
876 set_bh_page(bh, page, offset);
1da177e4 877 }
f745c6f5
SB
878out:
879 memalloc_unuse_memcg();
880 mem_cgroup_put(memcg);
1da177e4
LT
881 return head;
882/*
883 * In case anything failed, we just free everything we got.
884 */
885no_grow:
886 if (head) {
887 do {
888 bh = head;
889 head = head->b_this_page;
890 free_buffer_head(bh);
891 } while (head);
892 }
893
f745c6f5 894 goto out;
1da177e4
LT
895}
896EXPORT_SYMBOL_GPL(alloc_page_buffers);
897
898static inline void
899link_dev_buffers(struct page *page, struct buffer_head *head)
900{
901 struct buffer_head *bh, *tail;
902
903 bh = head;
904 do {
905 tail = bh;
906 bh = bh->b_this_page;
907 } while (bh);
908 tail->b_this_page = head;
909 attach_page_buffers(page, head);
910}
911
bbec0270
LT
912static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
913{
914 sector_t retval = ~((sector_t)0);
915 loff_t sz = i_size_read(bdev->bd_inode);
916
917 if (sz) {
918 unsigned int sizebits = blksize_bits(size);
919 retval = (sz >> sizebits);
920 }
921 return retval;
922}
923
1da177e4
LT
924/*
925 * Initialise the state of a blockdev page's buffers.
926 */
676ce6d5 927static sector_t
1da177e4
LT
928init_page_buffers(struct page *page, struct block_device *bdev,
929 sector_t block, int size)
930{
931 struct buffer_head *head = page_buffers(page);
932 struct buffer_head *bh = head;
933 int uptodate = PageUptodate(page);
bbec0270 934 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
935
936 do {
937 if (!buffer_mapped(bh)) {
01950a34
EB
938 bh->b_end_io = NULL;
939 bh->b_private = NULL;
1da177e4
LT
940 bh->b_bdev = bdev;
941 bh->b_blocknr = block;
942 if (uptodate)
943 set_buffer_uptodate(bh);
080399aa
JM
944 if (block < end_block)
945 set_buffer_mapped(bh);
1da177e4
LT
946 }
947 block++;
948 bh = bh->b_this_page;
949 } while (bh != head);
676ce6d5
HD
950
951 /*
952 * Caller needs to validate requested block against end of device.
953 */
954 return end_block;
1da177e4
LT
955}
956
957/*
958 * Create the page-cache page that contains the requested block.
959 *
676ce6d5 960 * This is used purely for blockdev mappings.
1da177e4 961 */
676ce6d5 962static int
1da177e4 963grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 964 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
965{
966 struct inode *inode = bdev->bd_inode;
967 struct page *page;
968 struct buffer_head *bh;
676ce6d5 969 sector_t end_block;
c4b4c2a7 970 int ret = 0;
84235de3 971 gfp_t gfp_mask;
1da177e4 972
c62d2555 973 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 974
84235de3
JW
975 /*
976 * XXX: __getblk_slow() can not really deal with failure and
977 * will endlessly loop on improvised global reclaim. Prefer
978 * looping in the allocator rather than here, at least that
979 * code knows what it's doing.
980 */
981 gfp_mask |= __GFP_NOFAIL;
982
983 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 984
e827f923 985 BUG_ON(!PageLocked(page));
1da177e4
LT
986
987 if (page_has_buffers(page)) {
988 bh = page_buffers(page);
989 if (bh->b_size == size) {
676ce6d5 990 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
991 (sector_t)index << sizebits,
992 size);
676ce6d5 993 goto done;
1da177e4
LT
994 }
995 if (!try_to_free_buffers(page))
996 goto failed;
997 }
998
999 /*
1000 * Allocate some buffers for this page
1001 */
94dc24c0 1002 bh = alloc_page_buffers(page, size, true);
1da177e4
LT
1003
1004 /*
1005 * Link the page to the buffers and initialise them. Take the
1006 * lock to be atomic wrt __find_get_block(), which does not
1007 * run under the page lock.
1008 */
1009 spin_lock(&inode->i_mapping->private_lock);
1010 link_dev_buffers(page, bh);
f2d5a944
AA
1011 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1012 size);
1da177e4 1013 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1014done:
1015 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1016failed:
1da177e4 1017 unlock_page(page);
09cbfeaf 1018 put_page(page);
676ce6d5 1019 return ret;
1da177e4
LT
1020}
1021
1022/*
1023 * Create buffers for the specified block device block's page. If
1024 * that page was dirty, the buffers are set dirty also.
1da177e4 1025 */
858119e1 1026static int
3b5e6454 1027grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1028{
1da177e4
LT
1029 pgoff_t index;
1030 int sizebits;
1031
1032 sizebits = -1;
1033 do {
1034 sizebits++;
1035 } while ((size << sizebits) < PAGE_SIZE);
1036
1037 index = block >> sizebits;
1da177e4 1038
e5657933
AM
1039 /*
1040 * Check for a block which wants to lie outside our maximum possible
1041 * pagecache index. (this comparison is done using sector_t types).
1042 */
1043 if (unlikely(index != block >> sizebits)) {
e5657933 1044 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1045 "device %pg\n",
8e24eea7 1046 __func__, (unsigned long long)block,
a1c6f057 1047 bdev);
e5657933
AM
1048 return -EIO;
1049 }
676ce6d5 1050
1da177e4 1051 /* Create a page with the proper size buffers.. */
3b5e6454 1052 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1053}
1054
0026ba40 1055static struct buffer_head *
3b5e6454
GK
1056__getblk_slow(struct block_device *bdev, sector_t block,
1057 unsigned size, gfp_t gfp)
1da177e4
LT
1058{
1059 /* Size must be multiple of hard sectorsize */
e1defc4f 1060 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1061 (size < 512 || size > PAGE_SIZE))) {
1062 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063 size);
e1defc4f
MP
1064 printk(KERN_ERR "logical block size: %d\n",
1065 bdev_logical_block_size(bdev));
1da177e4
LT
1066
1067 dump_stack();
1068 return NULL;
1069 }
1070
676ce6d5
HD
1071 for (;;) {
1072 struct buffer_head *bh;
1073 int ret;
1da177e4
LT
1074
1075 bh = __find_get_block(bdev, block, size);
1076 if (bh)
1077 return bh;
676ce6d5 1078
3b5e6454 1079 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1080 if (ret < 0)
1081 return NULL;
1da177e4
LT
1082 }
1083}
1084
1085/*
1086 * The relationship between dirty buffers and dirty pages:
1087 *
1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1089 * the page is tagged dirty in the page cache.
1da177e4
LT
1090 *
1091 * At all times, the dirtiness of the buffers represents the dirtiness of
1092 * subsections of the page. If the page has buffers, the page dirty bit is
1093 * merely a hint about the true dirty state.
1094 *
1095 * When a page is set dirty in its entirety, all its buffers are marked dirty
1096 * (if the page has buffers).
1097 *
1098 * When a buffer is marked dirty, its page is dirtied, but the page's other
1099 * buffers are not.
1100 *
1101 * Also. When blockdev buffers are explicitly read with bread(), they
1102 * individually become uptodate. But their backing page remains not
1103 * uptodate - even if all of its buffers are uptodate. A subsequent
1104 * block_read_full_page() against that page will discover all the uptodate
1105 * buffers, will set the page uptodate and will perform no I/O.
1106 */
1107
1108/**
1109 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1110 * @bh: the buffer_head to mark dirty
1da177e4 1111 *
ec82e1c1
MW
1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113 * its backing page dirty, then tag the page as dirty in the page cache
1114 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1115 * inode list.
1116 *
1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
b93b0163 1118 * i_pages lock and mapping->host->i_lock.
1da177e4 1119 */
fc9b52cd 1120void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1121{
787d2214 1122 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1123
5305cb83
TH
1124 trace_block_dirty_buffer(bh);
1125
1be62dc1
LT
1126 /*
1127 * Very *carefully* optimize the it-is-already-dirty case.
1128 *
1129 * Don't let the final "is it dirty" escape to before we
1130 * perhaps modified the buffer.
1131 */
1132 if (buffer_dirty(bh)) {
1133 smp_mb();
1134 if (buffer_dirty(bh))
1135 return;
1136 }
1137
a8e7d49a
LT
1138 if (!test_set_buffer_dirty(bh)) {
1139 struct page *page = bh->b_page;
c4843a75 1140 struct address_space *mapping = NULL;
c4843a75 1141
62cccb8c 1142 lock_page_memcg(page);
8e9d78ed 1143 if (!TestSetPageDirty(page)) {
c4843a75 1144 mapping = page_mapping(page);
8e9d78ed 1145 if (mapping)
62cccb8c 1146 __set_page_dirty(page, mapping, 0);
8e9d78ed 1147 }
62cccb8c 1148 unlock_page_memcg(page);
c4843a75
GT
1149 if (mapping)
1150 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1151 }
1da177e4 1152}
1fe72eaa 1153EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1154
87354e5d
JL
1155void mark_buffer_write_io_error(struct buffer_head *bh)
1156{
485e9605
JL
1157 struct super_block *sb;
1158
87354e5d
JL
1159 set_buffer_write_io_error(bh);
1160 /* FIXME: do we need to set this in both places? */
1161 if (bh->b_page && bh->b_page->mapping)
1162 mapping_set_error(bh->b_page->mapping, -EIO);
1163 if (bh->b_assoc_map)
1164 mapping_set_error(bh->b_assoc_map, -EIO);
485e9605
JL
1165 rcu_read_lock();
1166 sb = READ_ONCE(bh->b_bdev->bd_super);
1167 if (sb)
1168 errseq_set(&sb->s_wb_err, -EIO);
1169 rcu_read_unlock();
87354e5d
JL
1170}
1171EXPORT_SYMBOL(mark_buffer_write_io_error);
1172
1da177e4
LT
1173/*
1174 * Decrement a buffer_head's reference count. If all buffers against a page
1175 * have zero reference count, are clean and unlocked, and if the page is clean
1176 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1177 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1178 * a page but it ends up not being freed, and buffers may later be reattached).
1179 */
1180void __brelse(struct buffer_head * buf)
1181{
1182 if (atomic_read(&buf->b_count)) {
1183 put_bh(buf);
1184 return;
1185 }
5c752ad9 1186 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1187}
1fe72eaa 1188EXPORT_SYMBOL(__brelse);
1da177e4
LT
1189
1190/*
1191 * bforget() is like brelse(), except it discards any
1192 * potentially dirty data.
1193 */
1194void __bforget(struct buffer_head *bh)
1195{
1196 clear_buffer_dirty(bh);
535ee2fb 1197 if (bh->b_assoc_map) {
1da177e4
LT
1198 struct address_space *buffer_mapping = bh->b_page->mapping;
1199
1200 spin_lock(&buffer_mapping->private_lock);
1201 list_del_init(&bh->b_assoc_buffers);
58ff407b 1202 bh->b_assoc_map = NULL;
1da177e4
LT
1203 spin_unlock(&buffer_mapping->private_lock);
1204 }
1205 __brelse(bh);
1206}
1fe72eaa 1207EXPORT_SYMBOL(__bforget);
1da177e4
LT
1208
1209static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210{
1211 lock_buffer(bh);
1212 if (buffer_uptodate(bh)) {
1213 unlock_buffer(bh);
1214 return bh;
1215 } else {
1216 get_bh(bh);
1217 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1218 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1219 wait_on_buffer(bh);
1220 if (buffer_uptodate(bh))
1221 return bh;
1222 }
1223 brelse(bh);
1224 return NULL;
1225}
1226
1227/*
1228 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1229 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1230 * refcount elevated by one when they're in an LRU. A buffer can only appear
1231 * once in a particular CPU's LRU. A single buffer can be present in multiple
1232 * CPU's LRUs at the same time.
1233 *
1234 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235 * sb_find_get_block().
1236 *
1237 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1238 * a local interrupt disable for that.
1239 */
1240
86cf78d7 1241#define BH_LRU_SIZE 16
1da177e4
LT
1242
1243struct bh_lru {
1244 struct buffer_head *bhs[BH_LRU_SIZE];
1245};
1246
1247static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248
1249#ifdef CONFIG_SMP
1250#define bh_lru_lock() local_irq_disable()
1251#define bh_lru_unlock() local_irq_enable()
1252#else
1253#define bh_lru_lock() preempt_disable()
1254#define bh_lru_unlock() preempt_enable()
1255#endif
1256
1257static inline void check_irqs_on(void)
1258{
1259#ifdef irqs_disabled
1260 BUG_ON(irqs_disabled());
1261#endif
1262}
1263
1264/*
241f01fb
EB
1265 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1266 * inserted at the front, and the buffer_head at the back if any is evicted.
1267 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1268 */
1269static void bh_lru_install(struct buffer_head *bh)
1270{
241f01fb
EB
1271 struct buffer_head *evictee = bh;
1272 struct bh_lru *b;
1273 int i;
1da177e4
LT
1274
1275 check_irqs_on();
1276 bh_lru_lock();
1da177e4 1277
241f01fb
EB
1278 b = this_cpu_ptr(&bh_lrus);
1279 for (i = 0; i < BH_LRU_SIZE; i++) {
1280 swap(evictee, b->bhs[i]);
1281 if (evictee == bh) {
1282 bh_lru_unlock();
1283 return;
1da177e4 1284 }
1da177e4 1285 }
1da177e4 1286
241f01fb
EB
1287 get_bh(bh);
1288 bh_lru_unlock();
1289 brelse(evictee);
1da177e4
LT
1290}
1291
1292/*
1293 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1294 */
858119e1 1295static struct buffer_head *
3991d3bd 1296lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1297{
1298 struct buffer_head *ret = NULL;
3991d3bd 1299 unsigned int i;
1da177e4
LT
1300
1301 check_irqs_on();
1302 bh_lru_lock();
1da177e4 1303 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1304 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1305
9470dd5d
ZB
1306 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1307 bh->b_size == size) {
1da177e4
LT
1308 if (i) {
1309 while (i) {
c7b92516
CL
1310 __this_cpu_write(bh_lrus.bhs[i],
1311 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1312 i--;
1313 }
c7b92516 1314 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1315 }
1316 get_bh(bh);
1317 ret = bh;
1318 break;
1319 }
1320 }
1321 bh_lru_unlock();
1322 return ret;
1323}
1324
1325/*
1326 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1327 * it in the LRU and mark it as accessed. If it is not present then return
1328 * NULL
1329 */
1330struct buffer_head *
3991d3bd 1331__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1332{
1333 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334
1335 if (bh == NULL) {
2457aec6 1336 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1337 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1338 if (bh)
1339 bh_lru_install(bh);
2457aec6 1340 } else
1da177e4 1341 touch_buffer(bh);
2457aec6 1342
1da177e4
LT
1343 return bh;
1344}
1345EXPORT_SYMBOL(__find_get_block);
1346
1347/*
3b5e6454 1348 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1349 * which corresponds to the passed block_device, block and size. The
1350 * returned buffer has its reference count incremented.
1351 *
3b5e6454
GK
1352 * __getblk_gfp() will lock up the machine if grow_dev_page's
1353 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1354 */
1355struct buffer_head *
3b5e6454
GK
1356__getblk_gfp(struct block_device *bdev, sector_t block,
1357 unsigned size, gfp_t gfp)
1da177e4
LT
1358{
1359 struct buffer_head *bh = __find_get_block(bdev, block, size);
1360
1361 might_sleep();
1362 if (bh == NULL)
3b5e6454 1363 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1364 return bh;
1365}
3b5e6454 1366EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1367
1368/*
1369 * Do async read-ahead on a buffer..
1370 */
3991d3bd 1371void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1372{
1373 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1374 if (likely(bh)) {
70246286 1375 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1376 brelse(bh);
1377 }
1da177e4
LT
1378}
1379EXPORT_SYMBOL(__breadahead);
1380
d87f6392
RG
1381void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1382 gfp_t gfp)
1383{
1384 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1385 if (likely(bh)) {
1386 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1387 brelse(bh);
1388 }
1389}
1390EXPORT_SYMBOL(__breadahead_gfp);
1391
1da177e4 1392/**
3b5e6454 1393 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1394 * @bdev: the block_device to read from
1da177e4
LT
1395 * @block: number of block
1396 * @size: size (in bytes) to read
3b5e6454
GK
1397 * @gfp: page allocation flag
1398 *
1da177e4 1399 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1400 * The page cache can be allocated from non-movable area
1401 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1402 * It returns NULL if the block was unreadable.
1403 */
1404struct buffer_head *
3b5e6454
GK
1405__bread_gfp(struct block_device *bdev, sector_t block,
1406 unsigned size, gfp_t gfp)
1da177e4 1407{
3b5e6454 1408 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1409
a3e713b5 1410 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1411 bh = __bread_slow(bh);
1412 return bh;
1413}
3b5e6454 1414EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1415
1416/*
1417 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418 * This doesn't race because it runs in each cpu either in irq
1419 * or with preempt disabled.
1420 */
1421static void invalidate_bh_lru(void *arg)
1422{
1423 struct bh_lru *b = &get_cpu_var(bh_lrus);
1424 int i;
1425
1426 for (i = 0; i < BH_LRU_SIZE; i++) {
1427 brelse(b->bhs[i]);
1428 b->bhs[i] = NULL;
1429 }
1430 put_cpu_var(bh_lrus);
1431}
42be35d0
GBY
1432
1433static bool has_bh_in_lru(int cpu, void *dummy)
1434{
1435 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1436 int i;
1da177e4 1437
42be35d0
GBY
1438 for (i = 0; i < BH_LRU_SIZE; i++) {
1439 if (b->bhs[i])
1d706679 1440 return true;
42be35d0
GBY
1441 }
1442
1d706679 1443 return false;
42be35d0
GBY
1444}
1445
f9a14399 1446void invalidate_bh_lrus(void)
1da177e4 1447{
cb923159 1448 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1da177e4 1449}
9db5579b 1450EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1451
1452void set_bh_page(struct buffer_head *bh,
1453 struct page *page, unsigned long offset)
1454{
1455 bh->b_page = page;
e827f923 1456 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1457 if (PageHighMem(page))
1458 /*
1459 * This catches illegal uses and preserves the offset:
1460 */
1461 bh->b_data = (char *)(0 + offset);
1462 else
1463 bh->b_data = page_address(page) + offset;
1464}
1465EXPORT_SYMBOL(set_bh_page);
1466
1467/*
1468 * Called when truncating a buffer on a page completely.
1469 */
e7470ee8
MG
1470
1471/* Bits that are cleared during an invalidate */
1472#define BUFFER_FLAGS_DISCARD \
1473 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1474 1 << BH_Delay | 1 << BH_Unwritten)
1475
858119e1 1476static void discard_buffer(struct buffer_head * bh)
1da177e4 1477{
e7470ee8
MG
1478 unsigned long b_state, b_state_old;
1479
1da177e4
LT
1480 lock_buffer(bh);
1481 clear_buffer_dirty(bh);
1482 bh->b_bdev = NULL;
e7470ee8
MG
1483 b_state = bh->b_state;
1484 for (;;) {
1485 b_state_old = cmpxchg(&bh->b_state, b_state,
1486 (b_state & ~BUFFER_FLAGS_DISCARD));
1487 if (b_state_old == b_state)
1488 break;
1489 b_state = b_state_old;
1490 }
1da177e4
LT
1491 unlock_buffer(bh);
1492}
1493
1da177e4 1494/**
814e1d25 1495 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1496 *
1497 * @page: the page which is affected
d47992f8
LC
1498 * @offset: start of the range to invalidate
1499 * @length: length of the range to invalidate
1da177e4
LT
1500 *
1501 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1502 * invalidated by a truncate operation.
1da177e4
LT
1503 *
1504 * block_invalidatepage() does not have to release all buffers, but it must
1505 * ensure that no dirty buffer is left outside @offset and that no I/O
1506 * is underway against any of the blocks which are outside the truncation
1507 * point. Because the caller is about to free (and possibly reuse) those
1508 * blocks on-disk.
1509 */
d47992f8
LC
1510void block_invalidatepage(struct page *page, unsigned int offset,
1511 unsigned int length)
1da177e4
LT
1512{
1513 struct buffer_head *head, *bh, *next;
1514 unsigned int curr_off = 0;
d47992f8 1515 unsigned int stop = length + offset;
1da177e4
LT
1516
1517 BUG_ON(!PageLocked(page));
1518 if (!page_has_buffers(page))
1519 goto out;
1520
d47992f8
LC
1521 /*
1522 * Check for overflow
1523 */
09cbfeaf 1524 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1525
1da177e4
LT
1526 head = page_buffers(page);
1527 bh = head;
1528 do {
1529 unsigned int next_off = curr_off + bh->b_size;
1530 next = bh->b_this_page;
1531
d47992f8
LC
1532 /*
1533 * Are we still fully in range ?
1534 */
1535 if (next_off > stop)
1536 goto out;
1537
1da177e4
LT
1538 /*
1539 * is this block fully invalidated?
1540 */
1541 if (offset <= curr_off)
1542 discard_buffer(bh);
1543 curr_off = next_off;
1544 bh = next;
1545 } while (bh != head);
1546
1547 /*
1548 * We release buffers only if the entire page is being invalidated.
1549 * The get_block cached value has been unconditionally invalidated,
1550 * so real IO is not possible anymore.
1551 */
3172485f 1552 if (length == PAGE_SIZE)
2ff28e22 1553 try_to_release_page(page, 0);
1da177e4 1554out:
2ff28e22 1555 return;
1da177e4
LT
1556}
1557EXPORT_SYMBOL(block_invalidatepage);
1558
d47992f8 1559
1da177e4
LT
1560/*
1561 * We attach and possibly dirty the buffers atomically wrt
1562 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1563 * is already excluded via the page lock.
1564 */
1565void create_empty_buffers(struct page *page,
1566 unsigned long blocksize, unsigned long b_state)
1567{
1568 struct buffer_head *bh, *head, *tail;
1569
640ab98f 1570 head = alloc_page_buffers(page, blocksize, true);
1da177e4
LT
1571 bh = head;
1572 do {
1573 bh->b_state |= b_state;
1574 tail = bh;
1575 bh = bh->b_this_page;
1576 } while (bh);
1577 tail->b_this_page = head;
1578
1579 spin_lock(&page->mapping->private_lock);
1580 if (PageUptodate(page) || PageDirty(page)) {
1581 bh = head;
1582 do {
1583 if (PageDirty(page))
1584 set_buffer_dirty(bh);
1585 if (PageUptodate(page))
1586 set_buffer_uptodate(bh);
1587 bh = bh->b_this_page;
1588 } while (bh != head);
1589 }
1590 attach_page_buffers(page, head);
1591 spin_unlock(&page->mapping->private_lock);
1592}
1593EXPORT_SYMBOL(create_empty_buffers);
1594
29f3ad7d
JK
1595/**
1596 * clean_bdev_aliases: clean a range of buffers in block device
1597 * @bdev: Block device to clean buffers in
1598 * @block: Start of a range of blocks to clean
1599 * @len: Number of blocks to clean
1da177e4 1600 *
29f3ad7d
JK
1601 * We are taking a range of blocks for data and we don't want writeback of any
1602 * buffer-cache aliases starting from return from this function and until the
1603 * moment when something will explicitly mark the buffer dirty (hopefully that
1604 * will not happen until we will free that block ;-) We don't even need to mark
1605 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1606 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1607 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1608 * would confuse anyone who might pick it with bread() afterwards...
1609 *
1610 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1611 * writeout I/O going on against recently-freed buffers. We don't wait on that
1612 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1613 * need to. That happens here.
1da177e4 1614 */
29f3ad7d 1615void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1616{
29f3ad7d
JK
1617 struct inode *bd_inode = bdev->bd_inode;
1618 struct address_space *bd_mapping = bd_inode->i_mapping;
1619 struct pagevec pvec;
1620 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1621 pgoff_t end;
c10f778d 1622 int i, count;
29f3ad7d
JK
1623 struct buffer_head *bh;
1624 struct buffer_head *head;
1da177e4 1625
29f3ad7d 1626 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
86679820 1627 pagevec_init(&pvec);
397162ff 1628 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
c10f778d
JK
1629 count = pagevec_count(&pvec);
1630 for (i = 0; i < count; i++) {
29f3ad7d 1631 struct page *page = pvec.pages[i];
1da177e4 1632
29f3ad7d
JK
1633 if (!page_has_buffers(page))
1634 continue;
1635 /*
1636 * We use page lock instead of bd_mapping->private_lock
1637 * to pin buffers here since we can afford to sleep and
1638 * it scales better than a global spinlock lock.
1639 */
1640 lock_page(page);
1641 /* Recheck when the page is locked which pins bhs */
1642 if (!page_has_buffers(page))
1643 goto unlock_page;
1644 head = page_buffers(page);
1645 bh = head;
1646 do {
6c006a9d 1647 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1648 goto next;
1649 if (bh->b_blocknr >= block + len)
1650 break;
1651 clear_buffer_dirty(bh);
1652 wait_on_buffer(bh);
1653 clear_buffer_req(bh);
1654next:
1655 bh = bh->b_this_page;
1656 } while (bh != head);
1657unlock_page:
1658 unlock_page(page);
1659 }
1660 pagevec_release(&pvec);
1661 cond_resched();
c10f778d
JK
1662 /* End of range already reached? */
1663 if (index > end || !index)
1664 break;
1da177e4
LT
1665 }
1666}
29f3ad7d 1667EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1668
45bce8f3
LT
1669/*
1670 * Size is a power-of-two in the range 512..PAGE_SIZE,
1671 * and the case we care about most is PAGE_SIZE.
1672 *
1673 * So this *could* possibly be written with those
1674 * constraints in mind (relevant mostly if some
1675 * architecture has a slow bit-scan instruction)
1676 */
1677static inline int block_size_bits(unsigned int blocksize)
1678{
1679 return ilog2(blocksize);
1680}
1681
1682static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1683{
1684 BUG_ON(!PageLocked(page));
1685
1686 if (!page_has_buffers(page))
6aa7de05
MR
1687 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1688 b_state);
45bce8f3
LT
1689 return page_buffers(page);
1690}
1691
1da177e4
LT
1692/*
1693 * NOTE! All mapped/uptodate combinations are valid:
1694 *
1695 * Mapped Uptodate Meaning
1696 *
1697 * No No "unknown" - must do get_block()
1698 * No Yes "hole" - zero-filled
1699 * Yes No "allocated" - allocated on disk, not read in
1700 * Yes Yes "valid" - allocated and up-to-date in memory.
1701 *
1702 * "Dirty" is valid only with the last case (mapped+uptodate).
1703 */
1704
1705/*
1706 * While block_write_full_page is writing back the dirty buffers under
1707 * the page lock, whoever dirtied the buffers may decide to clean them
1708 * again at any time. We handle that by only looking at the buffer
1709 * state inside lock_buffer().
1710 *
1711 * If block_write_full_page() is called for regular writeback
1712 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1713 * locked buffer. This only can happen if someone has written the buffer
1714 * directly, with submit_bh(). At the address_space level PageWriteback
1715 * prevents this contention from occurring.
6e34eedd
TT
1716 *
1717 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1718 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1719 * causes the writes to be flagged as synchronous writes.
1da177e4 1720 */
b4bba389 1721int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1722 get_block_t *get_block, struct writeback_control *wbc,
1723 bh_end_io_t *handler)
1da177e4
LT
1724{
1725 int err;
1726 sector_t block;
1727 sector_t last_block;
f0fbd5fc 1728 struct buffer_head *bh, *head;
45bce8f3 1729 unsigned int blocksize, bbits;
1da177e4 1730 int nr_underway = 0;
7637241e 1731 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1732
45bce8f3 1733 head = create_page_buffers(page, inode,
1da177e4 1734 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1735
1736 /*
1737 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1738 * here, and the (potentially unmapped) buffers may become dirty at
1739 * any time. If a buffer becomes dirty here after we've inspected it
1740 * then we just miss that fact, and the page stays dirty.
1741 *
1742 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1743 * handle that here by just cleaning them.
1744 */
1745
1da177e4 1746 bh = head;
45bce8f3
LT
1747 blocksize = bh->b_size;
1748 bbits = block_size_bits(blocksize);
1749
09cbfeaf 1750 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1751 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1752
1753 /*
1754 * Get all the dirty buffers mapped to disk addresses and
1755 * handle any aliases from the underlying blockdev's mapping.
1756 */
1757 do {
1758 if (block > last_block) {
1759 /*
1760 * mapped buffers outside i_size will occur, because
1761 * this page can be outside i_size when there is a
1762 * truncate in progress.
1763 */
1764 /*
1765 * The buffer was zeroed by block_write_full_page()
1766 */
1767 clear_buffer_dirty(bh);
1768 set_buffer_uptodate(bh);
29a814d2
AT
1769 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1770 buffer_dirty(bh)) {
b0cf2321 1771 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1772 err = get_block(inode, block, bh, 1);
1773 if (err)
1774 goto recover;
29a814d2 1775 clear_buffer_delay(bh);
1da177e4
LT
1776 if (buffer_new(bh)) {
1777 /* blockdev mappings never come here */
1778 clear_buffer_new(bh);
e64855c6 1779 clean_bdev_bh_alias(bh);
1da177e4
LT
1780 }
1781 }
1782 bh = bh->b_this_page;
1783 block++;
1784 } while (bh != head);
1785
1786 do {
1da177e4
LT
1787 if (!buffer_mapped(bh))
1788 continue;
1789 /*
1790 * If it's a fully non-blocking write attempt and we cannot
1791 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1792 * potentially cause a busy-wait loop from writeback threads
1793 * and kswapd activity, but those code paths have their own
1794 * higher-level throttling.
1da177e4 1795 */
1b430bee 1796 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1797 lock_buffer(bh);
ca5de404 1798 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1799 redirty_page_for_writepage(wbc, page);
1800 continue;
1801 }
1802 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1803 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1804 } else {
1805 unlock_buffer(bh);
1806 }
1807 } while ((bh = bh->b_this_page) != head);
1808
1809 /*
1810 * The page and its buffers are protected by PageWriteback(), so we can
1811 * drop the bh refcounts early.
1812 */
1813 BUG_ON(PageWriteback(page));
1814 set_page_writeback(page);
1da177e4
LT
1815
1816 do {
1817 struct buffer_head *next = bh->b_this_page;
1818 if (buffer_async_write(bh)) {
8e8f9298
JA
1819 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1820 inode->i_write_hint, wbc);
1da177e4
LT
1821 nr_underway++;
1822 }
1da177e4
LT
1823 bh = next;
1824 } while (bh != head);
05937baa 1825 unlock_page(page);
1da177e4
LT
1826
1827 err = 0;
1828done:
1829 if (nr_underway == 0) {
1830 /*
1831 * The page was marked dirty, but the buffers were
1832 * clean. Someone wrote them back by hand with
1833 * ll_rw_block/submit_bh. A rare case.
1834 */
1da177e4 1835 end_page_writeback(page);
3d67f2d7 1836
1da177e4
LT
1837 /*
1838 * The page and buffer_heads can be released at any time from
1839 * here on.
1840 */
1da177e4
LT
1841 }
1842 return err;
1843
1844recover:
1845 /*
1846 * ENOSPC, or some other error. We may already have added some
1847 * blocks to the file, so we need to write these out to avoid
1848 * exposing stale data.
1849 * The page is currently locked and not marked for writeback
1850 */
1851 bh = head;
1852 /* Recovery: lock and submit the mapped buffers */
1853 do {
29a814d2
AT
1854 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1855 !buffer_delay(bh)) {
1da177e4 1856 lock_buffer(bh);
35c80d5f 1857 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1858 } else {
1859 /*
1860 * The buffer may have been set dirty during
1861 * attachment to a dirty page.
1862 */
1863 clear_buffer_dirty(bh);
1864 }
1865 } while ((bh = bh->b_this_page) != head);
1866 SetPageError(page);
1867 BUG_ON(PageWriteback(page));
7e4c3690 1868 mapping_set_error(page->mapping, err);
1da177e4 1869 set_page_writeback(page);
1da177e4
LT
1870 do {
1871 struct buffer_head *next = bh->b_this_page;
1872 if (buffer_async_write(bh)) {
1873 clear_buffer_dirty(bh);
8e8f9298
JA
1874 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1875 inode->i_write_hint, wbc);
1da177e4
LT
1876 nr_underway++;
1877 }
1da177e4
LT
1878 bh = next;
1879 } while (bh != head);
ffda9d30 1880 unlock_page(page);
1da177e4
LT
1881 goto done;
1882}
b4bba389 1883EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1884
afddba49
NP
1885/*
1886 * If a page has any new buffers, zero them out here, and mark them uptodate
1887 * and dirty so they'll be written out (in order to prevent uninitialised
1888 * block data from leaking). And clear the new bit.
1889 */
1890void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1891{
1892 unsigned int block_start, block_end;
1893 struct buffer_head *head, *bh;
1894
1895 BUG_ON(!PageLocked(page));
1896 if (!page_has_buffers(page))
1897 return;
1898
1899 bh = head = page_buffers(page);
1900 block_start = 0;
1901 do {
1902 block_end = block_start + bh->b_size;
1903
1904 if (buffer_new(bh)) {
1905 if (block_end > from && block_start < to) {
1906 if (!PageUptodate(page)) {
1907 unsigned start, size;
1908
1909 start = max(from, block_start);
1910 size = min(to, block_end) - start;
1911
eebd2aa3 1912 zero_user(page, start, size);
afddba49
NP
1913 set_buffer_uptodate(bh);
1914 }
1915
1916 clear_buffer_new(bh);
1917 mark_buffer_dirty(bh);
1918 }
1919 }
1920
1921 block_start = block_end;
1922 bh = bh->b_this_page;
1923 } while (bh != head);
1924}
1925EXPORT_SYMBOL(page_zero_new_buffers);
1926
ae259a9c
CH
1927static void
1928iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1929 struct iomap *iomap)
1930{
1931 loff_t offset = block << inode->i_blkbits;
1932
1933 bh->b_bdev = iomap->bdev;
1934
1935 /*
1936 * Block points to offset in file we need to map, iomap contains
1937 * the offset at which the map starts. If the map ends before the
1938 * current block, then do not map the buffer and let the caller
1939 * handle it.
1940 */
1941 BUG_ON(offset >= iomap->offset + iomap->length);
1942
1943 switch (iomap->type) {
1944 case IOMAP_HOLE:
1945 /*
1946 * If the buffer is not up to date or beyond the current EOF,
1947 * we need to mark it as new to ensure sub-block zeroing is
1948 * executed if necessary.
1949 */
1950 if (!buffer_uptodate(bh) ||
1951 (offset >= i_size_read(inode)))
1952 set_buffer_new(bh);
1953 break;
1954 case IOMAP_DELALLOC:
1955 if (!buffer_uptodate(bh) ||
1956 (offset >= i_size_read(inode)))
1957 set_buffer_new(bh);
1958 set_buffer_uptodate(bh);
1959 set_buffer_mapped(bh);
1960 set_buffer_delay(bh);
1961 break;
1962 case IOMAP_UNWRITTEN:
1963 /*
3d7b6b21
AG
1964 * For unwritten regions, we always need to ensure that regions
1965 * in the block we are not writing to are zeroed. Mark the
1966 * buffer as new to ensure this.
ae259a9c
CH
1967 */
1968 set_buffer_new(bh);
1969 set_buffer_unwritten(bh);
1970 /* FALLTHRU */
1971 case IOMAP_MAPPED:
3d7b6b21
AG
1972 if ((iomap->flags & IOMAP_F_NEW) ||
1973 offset >= i_size_read(inode))
ae259a9c 1974 set_buffer_new(bh);
19fe5f64
AG
1975 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1976 inode->i_blkbits;
ae259a9c
CH
1977 set_buffer_mapped(bh);
1978 break;
1979 }
1980}
1981
1982int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1983 get_block_t *get_block, struct iomap *iomap)
1da177e4 1984{
09cbfeaf 1985 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1986 unsigned to = from + len;
6e1db88d 1987 struct inode *inode = page->mapping->host;
1da177e4
LT
1988 unsigned block_start, block_end;
1989 sector_t block;
1990 int err = 0;
1991 unsigned blocksize, bbits;
1992 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1993
1994 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1995 BUG_ON(from > PAGE_SIZE);
1996 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
1997 BUG_ON(from > to);
1998
45bce8f3
LT
1999 head = create_page_buffers(page, inode, 0);
2000 blocksize = head->b_size;
2001 bbits = block_size_bits(blocksize);
1da177e4 2002
09cbfeaf 2003 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
2004
2005 for(bh = head, block_start = 0; bh != head || !block_start;
2006 block++, block_start=block_end, bh = bh->b_this_page) {
2007 block_end = block_start + blocksize;
2008 if (block_end <= from || block_start >= to) {
2009 if (PageUptodate(page)) {
2010 if (!buffer_uptodate(bh))
2011 set_buffer_uptodate(bh);
2012 }
2013 continue;
2014 }
2015 if (buffer_new(bh))
2016 clear_buffer_new(bh);
2017 if (!buffer_mapped(bh)) {
b0cf2321 2018 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2019 if (get_block) {
2020 err = get_block(inode, block, bh, 1);
2021 if (err)
2022 break;
2023 } else {
2024 iomap_to_bh(inode, block, bh, iomap);
2025 }
2026
1da177e4 2027 if (buffer_new(bh)) {
e64855c6 2028 clean_bdev_bh_alias(bh);
1da177e4 2029 if (PageUptodate(page)) {
637aff46 2030 clear_buffer_new(bh);
1da177e4 2031 set_buffer_uptodate(bh);
637aff46 2032 mark_buffer_dirty(bh);
1da177e4
LT
2033 continue;
2034 }
eebd2aa3
CL
2035 if (block_end > to || block_start < from)
2036 zero_user_segments(page,
2037 to, block_end,
2038 block_start, from);
1da177e4
LT
2039 continue;
2040 }
2041 }
2042 if (PageUptodate(page)) {
2043 if (!buffer_uptodate(bh))
2044 set_buffer_uptodate(bh);
2045 continue;
2046 }
2047 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2048 !buffer_unwritten(bh) &&
1da177e4 2049 (block_start < from || block_end > to)) {
dfec8a14 2050 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2051 *wait_bh++=bh;
2052 }
2053 }
2054 /*
2055 * If we issued read requests - let them complete.
2056 */
2057 while(wait_bh > wait) {
2058 wait_on_buffer(*--wait_bh);
2059 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2060 err = -EIO;
1da177e4 2061 }
f9f07b6c 2062 if (unlikely(err))
afddba49 2063 page_zero_new_buffers(page, from, to);
1da177e4
LT
2064 return err;
2065}
ae259a9c
CH
2066
2067int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2068 get_block_t *get_block)
2069{
2070 return __block_write_begin_int(page, pos, len, get_block, NULL);
2071}
ebdec241 2072EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2073
2074static int __block_commit_write(struct inode *inode, struct page *page,
2075 unsigned from, unsigned to)
2076{
2077 unsigned block_start, block_end;
2078 int partial = 0;
2079 unsigned blocksize;
2080 struct buffer_head *bh, *head;
2081
45bce8f3
LT
2082 bh = head = page_buffers(page);
2083 blocksize = bh->b_size;
1da177e4 2084
45bce8f3
LT
2085 block_start = 0;
2086 do {
1da177e4
LT
2087 block_end = block_start + blocksize;
2088 if (block_end <= from || block_start >= to) {
2089 if (!buffer_uptodate(bh))
2090 partial = 1;
2091 } else {
2092 set_buffer_uptodate(bh);
2093 mark_buffer_dirty(bh);
2094 }
afddba49 2095 clear_buffer_new(bh);
45bce8f3
LT
2096
2097 block_start = block_end;
2098 bh = bh->b_this_page;
2099 } while (bh != head);
1da177e4
LT
2100
2101 /*
2102 * If this is a partial write which happened to make all buffers
2103 * uptodate then we can optimize away a bogus readpage() for
2104 * the next read(). Here we 'discover' whether the page went
2105 * uptodate as a result of this (potentially partial) write.
2106 */
2107 if (!partial)
2108 SetPageUptodate(page);
2109 return 0;
2110}
2111
afddba49 2112/*
155130a4
CH
2113 * block_write_begin takes care of the basic task of block allocation and
2114 * bringing partial write blocks uptodate first.
2115 *
7bb46a67 2116 * The filesystem needs to handle block truncation upon failure.
afddba49 2117 */
155130a4
CH
2118int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2119 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2120{
09cbfeaf 2121 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2122 struct page *page;
6e1db88d 2123 int status;
afddba49 2124
6e1db88d
CH
2125 page = grab_cache_page_write_begin(mapping, index, flags);
2126 if (!page)
2127 return -ENOMEM;
afddba49 2128
6e1db88d 2129 status = __block_write_begin(page, pos, len, get_block);
afddba49 2130 if (unlikely(status)) {
6e1db88d 2131 unlock_page(page);
09cbfeaf 2132 put_page(page);
6e1db88d 2133 page = NULL;
afddba49
NP
2134 }
2135
6e1db88d 2136 *pagep = page;
afddba49
NP
2137 return status;
2138}
2139EXPORT_SYMBOL(block_write_begin);
2140
2141int block_write_end(struct file *file, struct address_space *mapping,
2142 loff_t pos, unsigned len, unsigned copied,
2143 struct page *page, void *fsdata)
2144{
2145 struct inode *inode = mapping->host;
2146 unsigned start;
2147
09cbfeaf 2148 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2149
2150 if (unlikely(copied < len)) {
2151 /*
2152 * The buffers that were written will now be uptodate, so we
2153 * don't have to worry about a readpage reading them and
2154 * overwriting a partial write. However if we have encountered
2155 * a short write and only partially written into a buffer, it
2156 * will not be marked uptodate, so a readpage might come in and
2157 * destroy our partial write.
2158 *
2159 * Do the simplest thing, and just treat any short write to a
2160 * non uptodate page as a zero-length write, and force the
2161 * caller to redo the whole thing.
2162 */
2163 if (!PageUptodate(page))
2164 copied = 0;
2165
2166 page_zero_new_buffers(page, start+copied, start+len);
2167 }
2168 flush_dcache_page(page);
2169
2170 /* This could be a short (even 0-length) commit */
2171 __block_commit_write(inode, page, start, start+copied);
2172
2173 return copied;
2174}
2175EXPORT_SYMBOL(block_write_end);
2176
2177int generic_write_end(struct file *file, struct address_space *mapping,
2178 loff_t pos, unsigned len, unsigned copied,
2179 struct page *page, void *fsdata)
2180{
8af54f29
CH
2181 struct inode *inode = mapping->host;
2182 loff_t old_size = inode->i_size;
2183 bool i_size_changed = false;
2184
afddba49 2185 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2186
2187 /*
2188 * No need to use i_size_read() here, the i_size cannot change under us
2189 * because we hold i_rwsem.
2190 *
2191 * But it's important to update i_size while still holding page lock:
2192 * page writeout could otherwise come in and zero beyond i_size.
2193 */
2194 if (pos + copied > inode->i_size) {
2195 i_size_write(inode, pos + copied);
2196 i_size_changed = true;
2197 }
2198
2199 unlock_page(page);
7a77dad7 2200 put_page(page);
8af54f29
CH
2201
2202 if (old_size < pos)
2203 pagecache_isize_extended(inode, old_size, pos);
2204 /*
2205 * Don't mark the inode dirty under page lock. First, it unnecessarily
2206 * makes the holding time of page lock longer. Second, it forces lock
2207 * ordering of page lock and transaction start for journaling
2208 * filesystems.
2209 */
2210 if (i_size_changed)
2211 mark_inode_dirty(inode);
26ddb1f4 2212 return copied;
afddba49
NP
2213}
2214EXPORT_SYMBOL(generic_write_end);
2215
8ab22b9a
HH
2216/*
2217 * block_is_partially_uptodate checks whether buffers within a page are
2218 * uptodate or not.
2219 *
2220 * Returns true if all buffers which correspond to a file portion
2221 * we want to read are uptodate.
2222 */
c186afb4
AV
2223int block_is_partially_uptodate(struct page *page, unsigned long from,
2224 unsigned long count)
8ab22b9a 2225{
8ab22b9a
HH
2226 unsigned block_start, block_end, blocksize;
2227 unsigned to;
2228 struct buffer_head *bh, *head;
2229 int ret = 1;
2230
2231 if (!page_has_buffers(page))
2232 return 0;
2233
45bce8f3
LT
2234 head = page_buffers(page);
2235 blocksize = head->b_size;
09cbfeaf 2236 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2237 to = from + to;
09cbfeaf 2238 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2239 return 0;
2240
8ab22b9a
HH
2241 bh = head;
2242 block_start = 0;
2243 do {
2244 block_end = block_start + blocksize;
2245 if (block_end > from && block_start < to) {
2246 if (!buffer_uptodate(bh)) {
2247 ret = 0;
2248 break;
2249 }
2250 if (block_end >= to)
2251 break;
2252 }
2253 block_start = block_end;
2254 bh = bh->b_this_page;
2255 } while (bh != head);
2256
2257 return ret;
2258}
2259EXPORT_SYMBOL(block_is_partially_uptodate);
2260
1da177e4
LT
2261/*
2262 * Generic "read page" function for block devices that have the normal
2263 * get_block functionality. This is most of the block device filesystems.
2264 * Reads the page asynchronously --- the unlock_buffer() and
2265 * set/clear_buffer_uptodate() functions propagate buffer state into the
2266 * page struct once IO has completed.
2267 */
2268int block_read_full_page(struct page *page, get_block_t *get_block)
2269{
2270 struct inode *inode = page->mapping->host;
2271 sector_t iblock, lblock;
2272 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2273 unsigned int blocksize, bbits;
1da177e4
LT
2274 int nr, i;
2275 int fully_mapped = 1;
2276
45bce8f3
LT
2277 head = create_page_buffers(page, inode, 0);
2278 blocksize = head->b_size;
2279 bbits = block_size_bits(blocksize);
1da177e4 2280
09cbfeaf 2281 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2282 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2283 bh = head;
2284 nr = 0;
2285 i = 0;
2286
2287 do {
2288 if (buffer_uptodate(bh))
2289 continue;
2290
2291 if (!buffer_mapped(bh)) {
c64610ba
AM
2292 int err = 0;
2293
1da177e4
LT
2294 fully_mapped = 0;
2295 if (iblock < lblock) {
b0cf2321 2296 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2297 err = get_block(inode, iblock, bh, 0);
2298 if (err)
1da177e4
LT
2299 SetPageError(page);
2300 }
2301 if (!buffer_mapped(bh)) {
eebd2aa3 2302 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2303 if (!err)
2304 set_buffer_uptodate(bh);
1da177e4
LT
2305 continue;
2306 }
2307 /*
2308 * get_block() might have updated the buffer
2309 * synchronously
2310 */
2311 if (buffer_uptodate(bh))
2312 continue;
2313 }
2314 arr[nr++] = bh;
2315 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2316
2317 if (fully_mapped)
2318 SetPageMappedToDisk(page);
2319
2320 if (!nr) {
2321 /*
2322 * All buffers are uptodate - we can set the page uptodate
2323 * as well. But not if get_block() returned an error.
2324 */
2325 if (!PageError(page))
2326 SetPageUptodate(page);
2327 unlock_page(page);
2328 return 0;
2329 }
2330
2331 /* Stage two: lock the buffers */
2332 for (i = 0; i < nr; i++) {
2333 bh = arr[i];
2334 lock_buffer(bh);
2335 mark_buffer_async_read(bh);
2336 }
2337
2338 /*
2339 * Stage 3: start the IO. Check for uptodateness
2340 * inside the buffer lock in case another process reading
2341 * the underlying blockdev brought it uptodate (the sct fix).
2342 */
2343 for (i = 0; i < nr; i++) {
2344 bh = arr[i];
2345 if (buffer_uptodate(bh))
2346 end_buffer_async_read(bh, 1);
2347 else
2a222ca9 2348 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2349 }
2350 return 0;
2351}
1fe72eaa 2352EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2353
2354/* utility function for filesystems that need to do work on expanding
89e10787 2355 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2356 * deal with the hole.
2357 */
89e10787 2358int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2359{
2360 struct address_space *mapping = inode->i_mapping;
2361 struct page *page;
89e10787 2362 void *fsdata;
1da177e4
LT
2363 int err;
2364
c08d3b0e
NP
2365 err = inode_newsize_ok(inode, size);
2366 if (err)
1da177e4
LT
2367 goto out;
2368
89e10787 2369 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2370 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2371 if (err)
05eb0b51 2372 goto out;
05eb0b51 2373
89e10787
NP
2374 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2375 BUG_ON(err > 0);
05eb0b51 2376
1da177e4
LT
2377out:
2378 return err;
2379}
1fe72eaa 2380EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2381
f1e3af72
AB
2382static int cont_expand_zero(struct file *file, struct address_space *mapping,
2383 loff_t pos, loff_t *bytes)
1da177e4 2384{
1da177e4 2385 struct inode *inode = mapping->host;
93407472 2386 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2387 struct page *page;
2388 void *fsdata;
2389 pgoff_t index, curidx;
2390 loff_t curpos;
2391 unsigned zerofrom, offset, len;
2392 int err = 0;
1da177e4 2393
09cbfeaf
KS
2394 index = pos >> PAGE_SHIFT;
2395 offset = pos & ~PAGE_MASK;
89e10787 2396
09cbfeaf
KS
2397 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2398 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2399 if (zerofrom & (blocksize-1)) {
2400 *bytes |= (blocksize-1);
2401 (*bytes)++;
2402 }
09cbfeaf 2403 len = PAGE_SIZE - zerofrom;
1da177e4 2404
c718a975
TH
2405 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2406 &page, &fsdata);
89e10787
NP
2407 if (err)
2408 goto out;
eebd2aa3 2409 zero_user(page, zerofrom, len);
89e10787
NP
2410 err = pagecache_write_end(file, mapping, curpos, len, len,
2411 page, fsdata);
2412 if (err < 0)
2413 goto out;
2414 BUG_ON(err != len);
2415 err = 0;
061e9746
OH
2416
2417 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2418
08d405c8 2419 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2420 err = -EINTR;
2421 goto out;
2422 }
89e10787 2423 }
1da177e4 2424
89e10787
NP
2425 /* page covers the boundary, find the boundary offset */
2426 if (index == curidx) {
09cbfeaf 2427 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2428 /* if we will expand the thing last block will be filled */
89e10787
NP
2429 if (offset <= zerofrom) {
2430 goto out;
2431 }
2432 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2433 *bytes |= (blocksize-1);
2434 (*bytes)++;
2435 }
89e10787 2436 len = offset - zerofrom;
1da177e4 2437
c718a975
TH
2438 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2439 &page, &fsdata);
89e10787
NP
2440 if (err)
2441 goto out;
eebd2aa3 2442 zero_user(page, zerofrom, len);
89e10787
NP
2443 err = pagecache_write_end(file, mapping, curpos, len, len,
2444 page, fsdata);
2445 if (err < 0)
2446 goto out;
2447 BUG_ON(err != len);
2448 err = 0;
1da177e4 2449 }
89e10787
NP
2450out:
2451 return err;
2452}
2453
2454/*
2455 * For moronic filesystems that do not allow holes in file.
2456 * We may have to extend the file.
2457 */
282dc178 2458int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2459 loff_t pos, unsigned len, unsigned flags,
2460 struct page **pagep, void **fsdata,
2461 get_block_t *get_block, loff_t *bytes)
2462{
2463 struct inode *inode = mapping->host;
93407472
FF
2464 unsigned int blocksize = i_blocksize(inode);
2465 unsigned int zerofrom;
89e10787
NP
2466 int err;
2467
2468 err = cont_expand_zero(file, mapping, pos, bytes);
2469 if (err)
155130a4 2470 return err;
89e10787 2471
09cbfeaf 2472 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2473 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2474 *bytes |= (blocksize-1);
2475 (*bytes)++;
1da177e4 2476 }
1da177e4 2477
155130a4 2478 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2479}
1fe72eaa 2480EXPORT_SYMBOL(cont_write_begin);
1da177e4 2481
1da177e4
LT
2482int block_commit_write(struct page *page, unsigned from, unsigned to)
2483{
2484 struct inode *inode = page->mapping->host;
2485 __block_commit_write(inode,page,from,to);
2486 return 0;
2487}
1fe72eaa 2488EXPORT_SYMBOL(block_commit_write);
1da177e4 2489
54171690
DC
2490/*
2491 * block_page_mkwrite() is not allowed to change the file size as it gets
2492 * called from a page fault handler when a page is first dirtied. Hence we must
2493 * be careful to check for EOF conditions here. We set the page up correctly
2494 * for a written page which means we get ENOSPC checking when writing into
2495 * holes and correct delalloc and unwritten extent mapping on filesystems that
2496 * support these features.
2497 *
2498 * We are not allowed to take the i_mutex here so we have to play games to
2499 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2500 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2501 * page lock we can determine safely if the page is beyond EOF. If it is not
2502 * beyond EOF, then the page is guaranteed safe against truncation until we
2503 * unlock the page.
ea13a864 2504 *
14da9200 2505 * Direct callers of this function should protect against filesystem freezing
5c500029 2506 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2507 */
5c500029 2508int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2509 get_block_t get_block)
54171690 2510{
c2ec175c 2511 struct page *page = vmf->page;
496ad9aa 2512 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2513 unsigned long end;
2514 loff_t size;
24da4fab 2515 int ret;
54171690
DC
2516
2517 lock_page(page);
2518 size = i_size_read(inode);
2519 if ((page->mapping != inode->i_mapping) ||
18336338 2520 (page_offset(page) > size)) {
24da4fab
JK
2521 /* We overload EFAULT to mean page got truncated */
2522 ret = -EFAULT;
2523 goto out_unlock;
54171690
DC
2524 }
2525
2526 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2527 if (((page->index + 1) << PAGE_SHIFT) > size)
2528 end = size & ~PAGE_MASK;
54171690 2529 else
09cbfeaf 2530 end = PAGE_SIZE;
54171690 2531
ebdec241 2532 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2533 if (!ret)
2534 ret = block_commit_write(page, 0, end);
2535
24da4fab
JK
2536 if (unlikely(ret < 0))
2537 goto out_unlock;
ea13a864 2538 set_page_dirty(page);
1d1d1a76 2539 wait_for_stable_page(page);
24da4fab
JK
2540 return 0;
2541out_unlock:
2542 unlock_page(page);
54171690 2543 return ret;
24da4fab 2544}
1fe72eaa 2545EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2546
2547/*
03158cd7 2548 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2549 * immediately, while under the page lock. So it needs a special end_io
2550 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2551 */
2552static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2553{
68671f35 2554 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2555}
2556
03158cd7
NP
2557/*
2558 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2559 * the page (converting it to circular linked list and taking care of page
2560 * dirty races).
2561 */
2562static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2563{
2564 struct buffer_head *bh;
2565
2566 BUG_ON(!PageLocked(page));
2567
2568 spin_lock(&page->mapping->private_lock);
2569 bh = head;
2570 do {
2571 if (PageDirty(page))
2572 set_buffer_dirty(bh);
2573 if (!bh->b_this_page)
2574 bh->b_this_page = head;
2575 bh = bh->b_this_page;
2576 } while (bh != head);
2577 attach_page_buffers(page, head);
2578 spin_unlock(&page->mapping->private_lock);
2579}
2580
1da177e4 2581/*
ea0f04e5
CH
2582 * On entry, the page is fully not uptodate.
2583 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2584 * The filesystem needs to handle block truncation upon failure.
1da177e4 2585 */
ea0f04e5 2586int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2587 loff_t pos, unsigned len, unsigned flags,
2588 struct page **pagep, void **fsdata,
1da177e4
LT
2589 get_block_t *get_block)
2590{
03158cd7 2591 struct inode *inode = mapping->host;
1da177e4
LT
2592 const unsigned blkbits = inode->i_blkbits;
2593 const unsigned blocksize = 1 << blkbits;
a4b0672d 2594 struct buffer_head *head, *bh;
03158cd7
NP
2595 struct page *page;
2596 pgoff_t index;
2597 unsigned from, to;
1da177e4 2598 unsigned block_in_page;
a4b0672d 2599 unsigned block_start, block_end;
1da177e4 2600 sector_t block_in_file;
1da177e4 2601 int nr_reads = 0;
1da177e4
LT
2602 int ret = 0;
2603 int is_mapped_to_disk = 1;
1da177e4 2604
09cbfeaf
KS
2605 index = pos >> PAGE_SHIFT;
2606 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2607 to = from + len;
2608
54566b2c 2609 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2610 if (!page)
2611 return -ENOMEM;
2612 *pagep = page;
2613 *fsdata = NULL;
2614
2615 if (page_has_buffers(page)) {
309f77ad
NK
2616 ret = __block_write_begin(page, pos, len, get_block);
2617 if (unlikely(ret))
2618 goto out_release;
2619 return ret;
03158cd7 2620 }
a4b0672d 2621
1da177e4
LT
2622 if (PageMappedToDisk(page))
2623 return 0;
2624
a4b0672d
NP
2625 /*
2626 * Allocate buffers so that we can keep track of state, and potentially
2627 * attach them to the page if an error occurs. In the common case of
2628 * no error, they will just be freed again without ever being attached
2629 * to the page (which is all OK, because we're under the page lock).
2630 *
2631 * Be careful: the buffer linked list is a NULL terminated one, rather
2632 * than the circular one we're used to.
2633 */
640ab98f 2634 head = alloc_page_buffers(page, blocksize, false);
03158cd7
NP
2635 if (!head) {
2636 ret = -ENOMEM;
2637 goto out_release;
2638 }
a4b0672d 2639
09cbfeaf 2640 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2641
2642 /*
2643 * We loop across all blocks in the page, whether or not they are
2644 * part of the affected region. This is so we can discover if the
2645 * page is fully mapped-to-disk.
2646 */
a4b0672d 2647 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2648 block_start < PAGE_SIZE;
a4b0672d 2649 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2650 int create;
2651
a4b0672d
NP
2652 block_end = block_start + blocksize;
2653 bh->b_state = 0;
1da177e4
LT
2654 create = 1;
2655 if (block_start >= to)
2656 create = 0;
2657 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2658 bh, create);
1da177e4
LT
2659 if (ret)
2660 goto failed;
a4b0672d 2661 if (!buffer_mapped(bh))
1da177e4 2662 is_mapped_to_disk = 0;
a4b0672d 2663 if (buffer_new(bh))
e64855c6 2664 clean_bdev_bh_alias(bh);
a4b0672d
NP
2665 if (PageUptodate(page)) {
2666 set_buffer_uptodate(bh);
1da177e4 2667 continue;
a4b0672d
NP
2668 }
2669 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2670 zero_user_segments(page, block_start, from,
2671 to, block_end);
1da177e4
LT
2672 continue;
2673 }
a4b0672d 2674 if (buffer_uptodate(bh))
1da177e4
LT
2675 continue; /* reiserfs does this */
2676 if (block_start < from || block_end > to) {
a4b0672d
NP
2677 lock_buffer(bh);
2678 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2679 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2680 nr_reads++;
1da177e4
LT
2681 }
2682 }
2683
2684 if (nr_reads) {
1da177e4
LT
2685 /*
2686 * The page is locked, so these buffers are protected from
2687 * any VM or truncate activity. Hence we don't need to care
2688 * for the buffer_head refcounts.
2689 */
a4b0672d 2690 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2691 wait_on_buffer(bh);
2692 if (!buffer_uptodate(bh))
2693 ret = -EIO;
1da177e4
LT
2694 }
2695 if (ret)
2696 goto failed;
2697 }
2698
2699 if (is_mapped_to_disk)
2700 SetPageMappedToDisk(page);
1da177e4 2701
03158cd7 2702 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2703
1da177e4
LT
2704 return 0;
2705
2706failed:
03158cd7 2707 BUG_ON(!ret);
1da177e4 2708 /*
a4b0672d
NP
2709 * Error recovery is a bit difficult. We need to zero out blocks that
2710 * were newly allocated, and dirty them to ensure they get written out.
2711 * Buffers need to be attached to the page at this point, otherwise
2712 * the handling of potential IO errors during writeout would be hard
2713 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2714 */
03158cd7
NP
2715 attach_nobh_buffers(page, head);
2716 page_zero_new_buffers(page, from, to);
a4b0672d 2717
03158cd7
NP
2718out_release:
2719 unlock_page(page);
09cbfeaf 2720 put_page(page);
03158cd7 2721 *pagep = NULL;
a4b0672d 2722
7bb46a67
NP
2723 return ret;
2724}
03158cd7 2725EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2726
03158cd7
NP
2727int nobh_write_end(struct file *file, struct address_space *mapping,
2728 loff_t pos, unsigned len, unsigned copied,
2729 struct page *page, void *fsdata)
1da177e4
LT
2730{
2731 struct inode *inode = page->mapping->host;
efdc3131 2732 struct buffer_head *head = fsdata;
03158cd7 2733 struct buffer_head *bh;
5b41e74a 2734 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2735
d4cf109f 2736 if (unlikely(copied < len) && head)
5b41e74a
DM
2737 attach_nobh_buffers(page, head);
2738 if (page_has_buffers(page))
2739 return generic_write_end(file, mapping, pos, len,
2740 copied, page, fsdata);
a4b0672d 2741
22c8ca78 2742 SetPageUptodate(page);
1da177e4 2743 set_page_dirty(page);
03158cd7
NP
2744 if (pos+copied > inode->i_size) {
2745 i_size_write(inode, pos+copied);
1da177e4
LT
2746 mark_inode_dirty(inode);
2747 }
03158cd7
NP
2748
2749 unlock_page(page);
09cbfeaf 2750 put_page(page);
03158cd7 2751
03158cd7
NP
2752 while (head) {
2753 bh = head;
2754 head = head->b_this_page;
2755 free_buffer_head(bh);
2756 }
2757
2758 return copied;
1da177e4 2759}
03158cd7 2760EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2761
2762/*
2763 * nobh_writepage() - based on block_full_write_page() except
2764 * that it tries to operate without attaching bufferheads to
2765 * the page.
2766 */
2767int nobh_writepage(struct page *page, get_block_t *get_block,
2768 struct writeback_control *wbc)
2769{
2770 struct inode * const inode = page->mapping->host;
2771 loff_t i_size = i_size_read(inode);
09cbfeaf 2772 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2773 unsigned offset;
1da177e4
LT
2774 int ret;
2775
2776 /* Is the page fully inside i_size? */
2777 if (page->index < end_index)
2778 goto out;
2779
2780 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2781 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2782 if (page->index >= end_index+1 || !offset) {
2783 /*
2784 * The page may have dirty, unmapped buffers. For example,
2785 * they may have been added in ext3_writepage(). Make them
2786 * freeable here, so the page does not leak.
2787 */
2788#if 0
2789 /* Not really sure about this - do we need this ? */
2790 if (page->mapping->a_ops->invalidatepage)
2791 page->mapping->a_ops->invalidatepage(page, offset);
2792#endif
2793 unlock_page(page);
2794 return 0; /* don't care */
2795 }
2796
2797 /*
2798 * The page straddles i_size. It must be zeroed out on each and every
2799 * writepage invocation because it may be mmapped. "A file is mapped
2800 * in multiples of the page size. For a file that is not a multiple of
2801 * the page size, the remaining memory is zeroed when mapped, and
2802 * writes to that region are not written out to the file."
2803 */
09cbfeaf 2804 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2805out:
2806 ret = mpage_writepage(page, get_block, wbc);
2807 if (ret == -EAGAIN)
35c80d5f
CM
2808 ret = __block_write_full_page(inode, page, get_block, wbc,
2809 end_buffer_async_write);
1da177e4
LT
2810 return ret;
2811}
2812EXPORT_SYMBOL(nobh_writepage);
2813
03158cd7
NP
2814int nobh_truncate_page(struct address_space *mapping,
2815 loff_t from, get_block_t *get_block)
1da177e4 2816{
09cbfeaf
KS
2817 pgoff_t index = from >> PAGE_SHIFT;
2818 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2819 unsigned blocksize;
2820 sector_t iblock;
2821 unsigned length, pos;
2822 struct inode *inode = mapping->host;
1da177e4 2823 struct page *page;
03158cd7
NP
2824 struct buffer_head map_bh;
2825 int err;
1da177e4 2826
93407472 2827 blocksize = i_blocksize(inode);
03158cd7
NP
2828 length = offset & (blocksize - 1);
2829
2830 /* Block boundary? Nothing to do */
2831 if (!length)
2832 return 0;
2833
2834 length = blocksize - length;
09cbfeaf 2835 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2836
1da177e4 2837 page = grab_cache_page(mapping, index);
03158cd7 2838 err = -ENOMEM;
1da177e4
LT
2839 if (!page)
2840 goto out;
2841
03158cd7
NP
2842 if (page_has_buffers(page)) {
2843has_buffers:
2844 unlock_page(page);
09cbfeaf 2845 put_page(page);
03158cd7
NP
2846 return block_truncate_page(mapping, from, get_block);
2847 }
2848
2849 /* Find the buffer that contains "offset" */
2850 pos = blocksize;
2851 while (offset >= pos) {
2852 iblock++;
2853 pos += blocksize;
2854 }
2855
460bcf57
TT
2856 map_bh.b_size = blocksize;
2857 map_bh.b_state = 0;
03158cd7
NP
2858 err = get_block(inode, iblock, &map_bh, 0);
2859 if (err)
2860 goto unlock;
2861 /* unmapped? It's a hole - nothing to do */
2862 if (!buffer_mapped(&map_bh))
2863 goto unlock;
2864
2865 /* Ok, it's mapped. Make sure it's up-to-date */
2866 if (!PageUptodate(page)) {
2867 err = mapping->a_ops->readpage(NULL, page);
2868 if (err) {
09cbfeaf 2869 put_page(page);
03158cd7
NP
2870 goto out;
2871 }
2872 lock_page(page);
2873 if (!PageUptodate(page)) {
2874 err = -EIO;
2875 goto unlock;
2876 }
2877 if (page_has_buffers(page))
2878 goto has_buffers;
1da177e4 2879 }
eebd2aa3 2880 zero_user(page, offset, length);
03158cd7
NP
2881 set_page_dirty(page);
2882 err = 0;
2883
2884unlock:
1da177e4 2885 unlock_page(page);
09cbfeaf 2886 put_page(page);
1da177e4 2887out:
03158cd7 2888 return err;
1da177e4
LT
2889}
2890EXPORT_SYMBOL(nobh_truncate_page);
2891
2892int block_truncate_page(struct address_space *mapping,
2893 loff_t from, get_block_t *get_block)
2894{
09cbfeaf
KS
2895 pgoff_t index = from >> PAGE_SHIFT;
2896 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2897 unsigned blocksize;
54b21a79 2898 sector_t iblock;
1da177e4
LT
2899 unsigned length, pos;
2900 struct inode *inode = mapping->host;
2901 struct page *page;
2902 struct buffer_head *bh;
1da177e4
LT
2903 int err;
2904
93407472 2905 blocksize = i_blocksize(inode);
1da177e4
LT
2906 length = offset & (blocksize - 1);
2907
2908 /* Block boundary? Nothing to do */
2909 if (!length)
2910 return 0;
2911
2912 length = blocksize - length;
09cbfeaf 2913 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2914
2915 page = grab_cache_page(mapping, index);
2916 err = -ENOMEM;
2917 if (!page)
2918 goto out;
2919
2920 if (!page_has_buffers(page))
2921 create_empty_buffers(page, blocksize, 0);
2922
2923 /* Find the buffer that contains "offset" */
2924 bh = page_buffers(page);
2925 pos = blocksize;
2926 while (offset >= pos) {
2927 bh = bh->b_this_page;
2928 iblock++;
2929 pos += blocksize;
2930 }
2931
2932 err = 0;
2933 if (!buffer_mapped(bh)) {
b0cf2321 2934 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2935 err = get_block(inode, iblock, bh, 0);
2936 if (err)
2937 goto unlock;
2938 /* unmapped? It's a hole - nothing to do */
2939 if (!buffer_mapped(bh))
2940 goto unlock;
2941 }
2942
2943 /* Ok, it's mapped. Make sure it's up-to-date */
2944 if (PageUptodate(page))
2945 set_buffer_uptodate(bh);
2946
33a266dd 2947 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2948 err = -EIO;
dfec8a14 2949 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2950 wait_on_buffer(bh);
2951 /* Uhhuh. Read error. Complain and punt. */
2952 if (!buffer_uptodate(bh))
2953 goto unlock;
2954 }
2955
eebd2aa3 2956 zero_user(page, offset, length);
1da177e4
LT
2957 mark_buffer_dirty(bh);
2958 err = 0;
2959
2960unlock:
2961 unlock_page(page);
09cbfeaf 2962 put_page(page);
1da177e4
LT
2963out:
2964 return err;
2965}
1fe72eaa 2966EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2967
2968/*
2969 * The generic ->writepage function for buffer-backed address_spaces
2970 */
1b938c08
MW
2971int block_write_full_page(struct page *page, get_block_t *get_block,
2972 struct writeback_control *wbc)
1da177e4
LT
2973{
2974 struct inode * const inode = page->mapping->host;
2975 loff_t i_size = i_size_read(inode);
09cbfeaf 2976 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2977 unsigned offset;
1da177e4
LT
2978
2979 /* Is the page fully inside i_size? */
2980 if (page->index < end_index)
35c80d5f 2981 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2982 end_buffer_async_write);
1da177e4
LT
2983
2984 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2985 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2986 if (page->index >= end_index+1 || !offset) {
2987 /*
2988 * The page may have dirty, unmapped buffers. For example,
2989 * they may have been added in ext3_writepage(). Make them
2990 * freeable here, so the page does not leak.
2991 */
09cbfeaf 2992 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
2993 unlock_page(page);
2994 return 0; /* don't care */
2995 }
2996
2997 /*
2998 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2999 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
3000 * in multiples of the page size. For a file that is not a multiple of
3001 * the page size, the remaining memory is zeroed when mapped, and
3002 * writes to that region are not written out to the file."
3003 */
09cbfeaf 3004 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
3005 return __block_write_full_page(inode, page, get_block, wbc,
3006 end_buffer_async_write);
35c80d5f 3007}
1fe72eaa 3008EXPORT_SYMBOL(block_write_full_page);
35c80d5f 3009
1da177e4
LT
3010sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3011 get_block_t *get_block)
3012{
1da177e4 3013 struct inode *inode = mapping->host;
2a527d68
AP
3014 struct buffer_head tmp = {
3015 .b_size = i_blocksize(inode),
3016 };
3017
1da177e4
LT
3018 get_block(inode, block, &tmp, 0);
3019 return tmp.b_blocknr;
3020}
1fe72eaa 3021EXPORT_SYMBOL(generic_block_bmap);
1da177e4 3022
4246a0b6 3023static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
3024{
3025 struct buffer_head *bh = bio->bi_private;
3026
b7c44ed9 3027 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
3028 set_bit(BH_Quiet, &bh->b_state);
3029
4e4cbee9 3030 bh->b_end_io(bh, !bio->bi_status);
1da177e4 3031 bio_put(bio);
1da177e4
LT
3032}
3033
2a222ca9 3034static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3035 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3036{
3037 struct bio *bio;
1da177e4
LT
3038
3039 BUG_ON(!buffer_locked(bh));
3040 BUG_ON(!buffer_mapped(bh));
3041 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3042 BUG_ON(buffer_delay(bh));
3043 BUG_ON(buffer_unwritten(bh));
1da177e4 3044
1da177e4 3045 /*
48fd4f93 3046 * Only clear out a write error when rewriting
1da177e4 3047 */
2a222ca9 3048 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3049 clear_buffer_write_io_error(bh);
3050
3051 /*
3052 * from here on down, it's all bio -- do the initial mapping,
3053 * submit_bio -> generic_make_request may further map this bio around
3054 */
3055 bio = bio_alloc(GFP_NOIO, 1);
3056
4f024f37 3057 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 3058 bio_set_dev(bio, bh->b_bdev);
8e8f9298 3059 bio->bi_write_hint = write_hint;
1da177e4 3060
6cf66b4c
KO
3061 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3062 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3063
3064 bio->bi_end_io = end_bio_bh_io_sync;
3065 bio->bi_private = bh;
3066
877f962c 3067 if (buffer_meta(bh))
2a222ca9 3068 op_flags |= REQ_META;
877f962c 3069 if (buffer_prio(bh))
2a222ca9
MC
3070 op_flags |= REQ_PRIO;
3071 bio_set_op_attrs(bio, op, op_flags);
877f962c 3072
83c9c547
ML
3073 /* Take care of bh's that straddle the end of the device */
3074 guard_bio_eod(bio);
3075
fd42df30
DZ
3076 if (wbc) {
3077 wbc_init_bio(wbc, bio);
34e51a5e 3078 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
3079 }
3080
4e49ea4a 3081 submit_bio(bio);
f6454b04 3082 return 0;
1da177e4 3083}
bafc0dba 3084
020c2833 3085int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3086{
8e8f9298 3087 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3088}
1fe72eaa 3089EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3090
3091/**
3092 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3093 * @op: whether to %READ or %WRITE
ef295ecf 3094 * @op_flags: req_flag_bits
1da177e4
LT
3095 * @nr: number of &struct buffer_heads in the array
3096 * @bhs: array of pointers to &struct buffer_head
3097 *
a7662236 3098 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3099 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3100 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3101 * %REQ_RAHEAD.
1da177e4
LT
3102 *
3103 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3104 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3105 * request, and any buffer that appears to be up-to-date when doing read
3106 * request. Further it marks as clean buffers that are processed for
3107 * writing (the buffer cache won't assume that they are actually clean
3108 * until the buffer gets unlocked).
1da177e4
LT
3109 *
3110 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3111 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3112 * any waiters.
3113 *
3114 * All of the buffers must be for the same device, and must also be a
3115 * multiple of the current approved size for the device.
3116 */
dfec8a14 3117void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3118{
3119 int i;
3120
3121 for (i = 0; i < nr; i++) {
3122 struct buffer_head *bh = bhs[i];
3123
9cb569d6 3124 if (!trylock_buffer(bh))
1da177e4 3125 continue;
dfec8a14 3126 if (op == WRITE) {
1da177e4 3127 if (test_clear_buffer_dirty(bh)) {
76c3073a 3128 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3129 get_bh(bh);
dfec8a14 3130 submit_bh(op, op_flags, bh);
1da177e4
LT
3131 continue;
3132 }
3133 } else {
1da177e4 3134 if (!buffer_uptodate(bh)) {
76c3073a 3135 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3136 get_bh(bh);
dfec8a14 3137 submit_bh(op, op_flags, bh);
1da177e4
LT
3138 continue;
3139 }
3140 }
3141 unlock_buffer(bh);
1da177e4
LT
3142 }
3143}
1fe72eaa 3144EXPORT_SYMBOL(ll_rw_block);
1da177e4 3145
2a222ca9 3146void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3147{
3148 lock_buffer(bh);
3149 if (!test_clear_buffer_dirty(bh)) {
3150 unlock_buffer(bh);
3151 return;
3152 }
3153 bh->b_end_io = end_buffer_write_sync;
3154 get_bh(bh);
2a222ca9 3155 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3156}
3157EXPORT_SYMBOL(write_dirty_buffer);
3158
1da177e4
LT
3159/*
3160 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3161 * and then start new I/O and then wait upon it. The caller must have a ref on
3162 * the buffer_head.
3163 */
2a222ca9 3164int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3165{
3166 int ret = 0;
3167
3168 WARN_ON(atomic_read(&bh->b_count) < 1);
3169 lock_buffer(bh);
3170 if (test_clear_buffer_dirty(bh)) {
3171 get_bh(bh);
3172 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3173 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3174 wait_on_buffer(bh);
1da177e4
LT
3175 if (!ret && !buffer_uptodate(bh))
3176 ret = -EIO;
3177 } else {
3178 unlock_buffer(bh);
3179 }
3180 return ret;
3181}
87e99511
CH
3182EXPORT_SYMBOL(__sync_dirty_buffer);
3183
3184int sync_dirty_buffer(struct buffer_head *bh)
3185{
70fd7614 3186 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3187}
1fe72eaa 3188EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3189
3190/*
3191 * try_to_free_buffers() checks if all the buffers on this particular page
3192 * are unused, and releases them if so.
3193 *
3194 * Exclusion against try_to_free_buffers may be obtained by either
3195 * locking the page or by holding its mapping's private_lock.
3196 *
3197 * If the page is dirty but all the buffers are clean then we need to
3198 * be sure to mark the page clean as well. This is because the page
3199 * may be against a block device, and a later reattachment of buffers
3200 * to a dirty page will set *all* buffers dirty. Which would corrupt
3201 * filesystem data on the same device.
3202 *
3203 * The same applies to regular filesystem pages: if all the buffers are
3204 * clean then we set the page clean and proceed. To do that, we require
3205 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3206 * private_lock.
3207 *
3208 * try_to_free_buffers() is non-blocking.
3209 */
3210static inline int buffer_busy(struct buffer_head *bh)
3211{
3212 return atomic_read(&bh->b_count) |
3213 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3214}
3215
3216static int
3217drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3218{
3219 struct buffer_head *head = page_buffers(page);
3220 struct buffer_head *bh;
3221
3222 bh = head;
3223 do {
1da177e4
LT
3224 if (buffer_busy(bh))
3225 goto failed;
3226 bh = bh->b_this_page;
3227 } while (bh != head);
3228
3229 do {
3230 struct buffer_head *next = bh->b_this_page;
3231
535ee2fb 3232 if (bh->b_assoc_map)
1da177e4
LT
3233 __remove_assoc_queue(bh);
3234 bh = next;
3235 } while (bh != head);
3236 *buffers_to_free = head;
3237 __clear_page_buffers(page);
3238 return 1;
3239failed:
3240 return 0;
3241}
3242
3243int try_to_free_buffers(struct page *page)
3244{
3245 struct address_space * const mapping = page->mapping;
3246 struct buffer_head *buffers_to_free = NULL;
3247 int ret = 0;
3248
3249 BUG_ON(!PageLocked(page));
ecdfc978 3250 if (PageWriteback(page))
1da177e4
LT
3251 return 0;
3252
3253 if (mapping == NULL) { /* can this still happen? */
3254 ret = drop_buffers(page, &buffers_to_free);
3255 goto out;
3256 }
3257
3258 spin_lock(&mapping->private_lock);
3259 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3260
3261 /*
3262 * If the filesystem writes its buffers by hand (eg ext3)
3263 * then we can have clean buffers against a dirty page. We
3264 * clean the page here; otherwise the VM will never notice
3265 * that the filesystem did any IO at all.
3266 *
3267 * Also, during truncate, discard_buffer will have marked all
3268 * the page's buffers clean. We discover that here and clean
3269 * the page also.
87df7241
NP
3270 *
3271 * private_lock must be held over this entire operation in order
3272 * to synchronise against __set_page_dirty_buffers and prevent the
3273 * dirty bit from being lost.
ecdfc978 3274 */
11f81bec
TH
3275 if (ret)
3276 cancel_dirty_page(page);
87df7241 3277 spin_unlock(&mapping->private_lock);
1da177e4
LT
3278out:
3279 if (buffers_to_free) {
3280 struct buffer_head *bh = buffers_to_free;
3281
3282 do {
3283 struct buffer_head *next = bh->b_this_page;
3284 free_buffer_head(bh);
3285 bh = next;
3286 } while (bh != buffers_to_free);
3287 }
3288 return ret;
3289}
3290EXPORT_SYMBOL(try_to_free_buffers);
3291
1da177e4
LT
3292/*
3293 * There are no bdflush tunables left. But distributions are
3294 * still running obsolete flush daemons, so we terminate them here.
3295 *
3296 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3297 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3298 */
bdc480e3 3299SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3300{
3301 static int msg_count;
3302
3303 if (!capable(CAP_SYS_ADMIN))
3304 return -EPERM;
3305
3306 if (msg_count < 5) {
3307 msg_count++;
3308 printk(KERN_INFO
3309 "warning: process `%s' used the obsolete bdflush"
3310 " system call\n", current->comm);
3311 printk(KERN_INFO "Fix your initscripts?\n");
3312 }
3313
3314 if (func == 1)
3315 do_exit(0);
3316 return 0;
3317}
3318
3319/*
3320 * Buffer-head allocation
3321 */
a0a9b043 3322static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3323
3324/*
3325 * Once the number of bh's in the machine exceeds this level, we start
3326 * stripping them in writeback.
3327 */
43be594a 3328static unsigned long max_buffer_heads;
1da177e4
LT
3329
3330int buffer_heads_over_limit;
3331
3332struct bh_accounting {
3333 int nr; /* Number of live bh's */
3334 int ratelimit; /* Limit cacheline bouncing */
3335};
3336
3337static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3338
3339static void recalc_bh_state(void)
3340{
3341 int i;
3342 int tot = 0;
3343
ee1be862 3344 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3345 return;
c7b92516 3346 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3347 for_each_online_cpu(i)
1da177e4
LT
3348 tot += per_cpu(bh_accounting, i).nr;
3349 buffer_heads_over_limit = (tot > max_buffer_heads);
3350}
c7b92516 3351
dd0fc66f 3352struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3353{
019b4d12 3354 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3355 if (ret) {
a35afb83 3356 INIT_LIST_HEAD(&ret->b_assoc_buffers);
f1e67e35 3357 spin_lock_init(&ret->b_uptodate_lock);
c7b92516
CL
3358 preempt_disable();
3359 __this_cpu_inc(bh_accounting.nr);
1da177e4 3360 recalc_bh_state();
c7b92516 3361 preempt_enable();
1da177e4
LT
3362 }
3363 return ret;
3364}
3365EXPORT_SYMBOL(alloc_buffer_head);
3366
3367void free_buffer_head(struct buffer_head *bh)
3368{
3369 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3370 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3371 preempt_disable();
3372 __this_cpu_dec(bh_accounting.nr);
1da177e4 3373 recalc_bh_state();
c7b92516 3374 preempt_enable();
1da177e4
LT
3375}
3376EXPORT_SYMBOL(free_buffer_head);
3377
fc4d24c9 3378static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3379{
3380 int i;
3381 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3382
3383 for (i = 0; i < BH_LRU_SIZE; i++) {
3384 brelse(b->bhs[i]);
3385 b->bhs[i] = NULL;
3386 }
c7b92516 3387 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3388 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3389 return 0;
1da177e4 3390}
1da177e4 3391
389d1b08 3392/**
a6b91919 3393 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3394 * @bh: struct buffer_head
3395 *
3396 * Return true if the buffer is up-to-date and false,
3397 * with the buffer locked, if not.
3398 */
3399int bh_uptodate_or_lock(struct buffer_head *bh)
3400{
3401 if (!buffer_uptodate(bh)) {
3402 lock_buffer(bh);
3403 if (!buffer_uptodate(bh))
3404 return 0;
3405 unlock_buffer(bh);
3406 }
3407 return 1;
3408}
3409EXPORT_SYMBOL(bh_uptodate_or_lock);
3410
3411/**
a6b91919 3412 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3413 * @bh: struct buffer_head
3414 *
3415 * Returns zero on success and -EIO on error.
3416 */
3417int bh_submit_read(struct buffer_head *bh)
3418{
3419 BUG_ON(!buffer_locked(bh));
3420
3421 if (buffer_uptodate(bh)) {
3422 unlock_buffer(bh);
3423 return 0;
3424 }
3425
3426 get_bh(bh);
3427 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3428 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3429 wait_on_buffer(bh);
3430 if (buffer_uptodate(bh))
3431 return 0;
3432 return -EIO;
3433}
3434EXPORT_SYMBOL(bh_submit_read);
3435
1da177e4
LT
3436void __init buffer_init(void)
3437{
43be594a 3438 unsigned long nrpages;
fc4d24c9 3439 int ret;
1da177e4 3440
b98938c3
CL
3441 bh_cachep = kmem_cache_create("buffer_head",
3442 sizeof(struct buffer_head), 0,
3443 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3444 SLAB_MEM_SPREAD),
019b4d12 3445 NULL);
1da177e4
LT
3446
3447 /*
3448 * Limit the bh occupancy to 10% of ZONE_NORMAL
3449 */
3450 nrpages = (nr_free_buffer_pages() * 10) / 100;
3451 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3452 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3453 NULL, buffer_exit_cpu_dead);
3454 WARN_ON(ret < 0);
1da177e4 3455}