]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
ext4: delete unnecessary C statements
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertation failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2 516
d3922a77
ZL
517 ext4_es_lru_add(inode);
518
d100eef2
ZL
519 /* Lookup extent status tree firstly */
520 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
521 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
522 map->m_pblk = ext4_es_pblock(&es) +
523 map->m_lblk - es.es_lblk;
524 map->m_flags |= ext4_es_is_written(&es) ?
525 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
526 retval = es.es_len - (map->m_lblk - es.es_lblk);
527 if (retval > map->m_len)
528 retval = map->m_len;
529 map->m_len = retval;
530 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
531 retval = 0;
532 } else {
533 BUG_ON(1);
534 }
921f266b
DM
535#ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
537 &orig_map, flags);
538#endif
d100eef2
ZL
539 goto found;
540 }
541
4df3d265 542 /*
b920c755
TT
543 * Try to see if we can get the block without requesting a new
544 * file system block.
4df3d265 545 */
729f52c6
ZL
546 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
547 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
549 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 551 } else {
a4e5d88b
DM
552 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 554 }
f7fec032
ZL
555 if (retval > 0) {
556 int ret;
557 unsigned long long status;
558
921f266b
DM
559#ifdef ES_AGGRESSIVE_TEST
560 if (retval != map->m_len) {
561 printk("ES len assertation failed for inode: %lu "
562 "retval %d != map->m_len %d "
563 "in %s (lookup)\n", inode->i_ino, retval,
564 map->m_len, __func__);
565 }
566#endif
567
f7fec032
ZL
568 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
569 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
570 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
571 ext4_find_delalloc_range(inode, map->m_lblk,
572 map->m_lblk + map->m_len - 1))
573 status |= EXTENT_STATUS_DELAYED;
574 ret = ext4_es_insert_extent(inode, map->m_lblk,
575 map->m_len, map->m_pblk, status);
576 if (ret < 0)
577 retval = ret;
578 }
729f52c6
ZL
579 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
580 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 581
d100eef2 582found:
e35fd660 583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 584 int ret = check_block_validity(inode, map);
6fd058f7
TT
585 if (ret != 0)
586 return ret;
587 }
588
f5ab0d1f 589 /* If it is only a block(s) look up */
c2177057 590 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
591 return retval;
592
593 /*
594 * Returns if the blocks have already allocated
595 *
596 * Note that if blocks have been preallocated
df3ab170 597 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
598 * with buffer head unmapped.
599 */
e35fd660 600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
601 return retval;
602
2a8964d6 603 /*
a25a4e1a
ZL
604 * Here we clear m_flags because after allocating an new extent,
605 * it will be set again.
2a8964d6 606 */
a25a4e1a 607 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 608
4df3d265 609 /*
f5ab0d1f
MC
610 * New blocks allocate and/or writing to uninitialized extent
611 * will possibly result in updating i_data, so we take
612 * the write lock of i_data_sem, and call get_blocks()
613 * with create == 1 flag.
4df3d265
AK
614 */
615 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
616
617 /*
618 * if the caller is from delayed allocation writeout path
619 * we have already reserved fs blocks for allocation
620 * let the underlying get_block() function know to
621 * avoid double accounting
622 */
c2177057 623 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 624 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
625 /*
626 * We need to check for EXT4 here because migrate
627 * could have changed the inode type in between
628 */
12e9b892 629 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 630 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 631 } else {
e35fd660 632 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 633
e35fd660 634 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
635 /*
636 * We allocated new blocks which will result in
637 * i_data's format changing. Force the migrate
638 * to fail by clearing migrate flags
639 */
19f5fb7a 640 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 641 }
d2a17637 642
5f634d06
AK
643 /*
644 * Update reserved blocks/metadata blocks after successful
645 * block allocation which had been deferred till now. We don't
646 * support fallocate for non extent files. So we can update
647 * reserve space here.
648 */
649 if ((retval > 0) &&
1296cc85 650 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
651 ext4_da_update_reserve_space(inode, retval, 1);
652 }
f7fec032 653 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 654 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 655
f7fec032
ZL
656 if (retval > 0) {
657 int ret;
658 unsigned long long status;
659
921f266b
DM
660#ifdef ES_AGGRESSIVE_TEST
661 if (retval != map->m_len) {
662 printk("ES len assertation failed for inode: %lu "
663 "retval %d != map->m_len %d "
664 "in %s (allocation)\n", inode->i_ino, retval,
665 map->m_len, __func__);
666 }
667#endif
668
adb23551
ZL
669 /*
670 * If the extent has been zeroed out, we don't need to update
671 * extent status tree.
672 */
673 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
674 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
675 if (ext4_es_is_written(&es))
676 goto has_zeroout;
677 }
f7fec032
ZL
678 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
679 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
680 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
681 ext4_find_delalloc_range(inode, map->m_lblk,
682 map->m_lblk + map->m_len - 1))
683 status |= EXTENT_STATUS_DELAYED;
684 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
685 map->m_pblk, status);
686 if (ret < 0)
687 retval = ret;
5356f261
AK
688 }
689
adb23551 690has_zeroout:
4df3d265 691 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 692 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 693 int ret = check_block_validity(inode, map);
6fd058f7
TT
694 if (ret != 0)
695 return ret;
696 }
0e855ac8
AK
697 return retval;
698}
699
f3bd1f3f
MC
700/* Maximum number of blocks we map for direct IO at once. */
701#define DIO_MAX_BLOCKS 4096
702
2ed88685
TT
703static int _ext4_get_block(struct inode *inode, sector_t iblock,
704 struct buffer_head *bh, int flags)
ac27a0ec 705{
3e4fdaf8 706 handle_t *handle = ext4_journal_current_handle();
2ed88685 707 struct ext4_map_blocks map;
7fb5409d 708 int ret = 0, started = 0;
f3bd1f3f 709 int dio_credits;
ac27a0ec 710
46c7f254
TM
711 if (ext4_has_inline_data(inode))
712 return -ERANGE;
713
2ed88685
TT
714 map.m_lblk = iblock;
715 map.m_len = bh->b_size >> inode->i_blkbits;
716
8b0f165f 717 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 718 /* Direct IO write... */
2ed88685
TT
719 if (map.m_len > DIO_MAX_BLOCKS)
720 map.m_len = DIO_MAX_BLOCKS;
721 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
722 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
723 dio_credits);
7fb5409d 724 if (IS_ERR(handle)) {
ac27a0ec 725 ret = PTR_ERR(handle);
2ed88685 726 return ret;
ac27a0ec 727 }
7fb5409d 728 started = 1;
ac27a0ec
DK
729 }
730
2ed88685 731 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 732 if (ret > 0) {
2ed88685
TT
733 map_bh(bh, inode->i_sb, map.m_pblk);
734 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
735 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 736 ret = 0;
ac27a0ec 737 }
7fb5409d
JK
738 if (started)
739 ext4_journal_stop(handle);
ac27a0ec
DK
740 return ret;
741}
742
2ed88685
TT
743int ext4_get_block(struct inode *inode, sector_t iblock,
744 struct buffer_head *bh, int create)
745{
746 return _ext4_get_block(inode, iblock, bh,
747 create ? EXT4_GET_BLOCKS_CREATE : 0);
748}
749
ac27a0ec
DK
750/*
751 * `handle' can be NULL if create is zero
752 */
617ba13b 753struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 754 ext4_lblk_t block, int create, int *errp)
ac27a0ec 755{
2ed88685
TT
756 struct ext4_map_blocks map;
757 struct buffer_head *bh;
ac27a0ec
DK
758 int fatal = 0, err;
759
760 J_ASSERT(handle != NULL || create == 0);
761
2ed88685
TT
762 map.m_lblk = block;
763 map.m_len = 1;
764 err = ext4_map_blocks(handle, inode, &map,
765 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 766
90b0a973
CM
767 /* ensure we send some value back into *errp */
768 *errp = 0;
769
0f70b406
TT
770 if (create && err == 0)
771 err = -ENOSPC; /* should never happen */
2ed88685
TT
772 if (err < 0)
773 *errp = err;
774 if (err <= 0)
775 return NULL;
2ed88685
TT
776
777 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 778 if (unlikely(!bh)) {
860d21e2 779 *errp = -ENOMEM;
2ed88685 780 return NULL;
ac27a0ec 781 }
2ed88685
TT
782 if (map.m_flags & EXT4_MAP_NEW) {
783 J_ASSERT(create != 0);
784 J_ASSERT(handle != NULL);
ac27a0ec 785
2ed88685
TT
786 /*
787 * Now that we do not always journal data, we should
788 * keep in mind whether this should always journal the
789 * new buffer as metadata. For now, regular file
790 * writes use ext4_get_block instead, so it's not a
791 * problem.
792 */
793 lock_buffer(bh);
794 BUFFER_TRACE(bh, "call get_create_access");
795 fatal = ext4_journal_get_create_access(handle, bh);
796 if (!fatal && !buffer_uptodate(bh)) {
797 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
798 set_buffer_uptodate(bh);
ac27a0ec 799 }
2ed88685
TT
800 unlock_buffer(bh);
801 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
802 err = ext4_handle_dirty_metadata(handle, inode, bh);
803 if (!fatal)
804 fatal = err;
805 } else {
806 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 807 }
2ed88685
TT
808 if (fatal) {
809 *errp = fatal;
810 brelse(bh);
811 bh = NULL;
812 }
813 return bh;
ac27a0ec
DK
814}
815
617ba13b 816struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 817 ext4_lblk_t block, int create, int *err)
ac27a0ec 818{
af5bc92d 819 struct buffer_head *bh;
ac27a0ec 820
617ba13b 821 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
822 if (!bh)
823 return bh;
824 if (buffer_uptodate(bh))
825 return bh;
65299a3b 826 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
827 wait_on_buffer(bh);
828 if (buffer_uptodate(bh))
829 return bh;
830 put_bh(bh);
831 *err = -EIO;
832 return NULL;
833}
834
f19d5870
TM
835int ext4_walk_page_buffers(handle_t *handle,
836 struct buffer_head *head,
837 unsigned from,
838 unsigned to,
839 int *partial,
840 int (*fn)(handle_t *handle,
841 struct buffer_head *bh))
ac27a0ec
DK
842{
843 struct buffer_head *bh;
844 unsigned block_start, block_end;
845 unsigned blocksize = head->b_size;
846 int err, ret = 0;
847 struct buffer_head *next;
848
af5bc92d
TT
849 for (bh = head, block_start = 0;
850 ret == 0 && (bh != head || !block_start);
de9a55b8 851 block_start = block_end, bh = next) {
ac27a0ec
DK
852 next = bh->b_this_page;
853 block_end = block_start + blocksize;
854 if (block_end <= from || block_start >= to) {
855 if (partial && !buffer_uptodate(bh))
856 *partial = 1;
857 continue;
858 }
859 err = (*fn)(handle, bh);
860 if (!ret)
861 ret = err;
862 }
863 return ret;
864}
865
866/*
867 * To preserve ordering, it is essential that the hole instantiation and
868 * the data write be encapsulated in a single transaction. We cannot
617ba13b 869 * close off a transaction and start a new one between the ext4_get_block()
dab291af 870 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
871 * prepare_write() is the right place.
872 *
36ade451
JK
873 * Also, this function can nest inside ext4_writepage(). In that case, we
874 * *know* that ext4_writepage() has generated enough buffer credits to do the
875 * whole page. So we won't block on the journal in that case, which is good,
876 * because the caller may be PF_MEMALLOC.
ac27a0ec 877 *
617ba13b 878 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
879 * quota file writes. If we were to commit the transaction while thus
880 * reentered, there can be a deadlock - we would be holding a quota
881 * lock, and the commit would never complete if another thread had a
882 * transaction open and was blocking on the quota lock - a ranking
883 * violation.
884 *
dab291af 885 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
886 * will _not_ run commit under these circumstances because handle->h_ref
887 * is elevated. We'll still have enough credits for the tiny quotafile
888 * write.
889 */
f19d5870
TM
890int do_journal_get_write_access(handle_t *handle,
891 struct buffer_head *bh)
ac27a0ec 892{
56d35a4c
JK
893 int dirty = buffer_dirty(bh);
894 int ret;
895
ac27a0ec
DK
896 if (!buffer_mapped(bh) || buffer_freed(bh))
897 return 0;
56d35a4c 898 /*
ebdec241 899 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
900 * the dirty bit as jbd2_journal_get_write_access() could complain
901 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 902 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
903 * the bit before releasing a page lock and thus writeback cannot
904 * ever write the buffer.
905 */
906 if (dirty)
907 clear_buffer_dirty(bh);
908 ret = ext4_journal_get_write_access(handle, bh);
909 if (!ret && dirty)
910 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
911 return ret;
ac27a0ec
DK
912}
913
8b0f165f
AP
914static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
915 struct buffer_head *bh_result, int create);
bfc1af65 916static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
917 loff_t pos, unsigned len, unsigned flags,
918 struct page **pagep, void **fsdata)
ac27a0ec 919{
af5bc92d 920 struct inode *inode = mapping->host;
1938a150 921 int ret, needed_blocks;
ac27a0ec
DK
922 handle_t *handle;
923 int retries = 0;
af5bc92d 924 struct page *page;
de9a55b8 925 pgoff_t index;
af5bc92d 926 unsigned from, to;
bfc1af65 927
9bffad1e 928 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
929 /*
930 * Reserve one block more for addition to orphan list in case
931 * we allocate blocks but write fails for some reason
932 */
933 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 934 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
935 from = pos & (PAGE_CACHE_SIZE - 1);
936 to = from + len;
ac27a0ec 937
f19d5870
TM
938 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
939 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
940 flags, pagep);
941 if (ret < 0)
47564bfb
TT
942 return ret;
943 if (ret == 1)
944 return 0;
f19d5870
TM
945 }
946
47564bfb
TT
947 /*
948 * grab_cache_page_write_begin() can take a long time if the
949 * system is thrashing due to memory pressure, or if the page
950 * is being written back. So grab it first before we start
951 * the transaction handle. This also allows us to allocate
952 * the page (if needed) without using GFP_NOFS.
953 */
954retry_grab:
955 page = grab_cache_page_write_begin(mapping, index, flags);
956 if (!page)
957 return -ENOMEM;
958 unlock_page(page);
959
960retry_journal:
9924a92a 961 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 962 if (IS_ERR(handle)) {
47564bfb
TT
963 page_cache_release(page);
964 return PTR_ERR(handle);
7479d2b9 965 }
ac27a0ec 966
47564bfb
TT
967 lock_page(page);
968 if (page->mapping != mapping) {
969 /* The page got truncated from under us */
970 unlock_page(page);
971 page_cache_release(page);
cf108bca 972 ext4_journal_stop(handle);
47564bfb 973 goto retry_grab;
cf108bca 974 }
47564bfb 975 wait_on_page_writeback(page);
cf108bca 976
744692dc 977 if (ext4_should_dioread_nolock(inode))
6e1db88d 978 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 979 else
6e1db88d 980 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
981
982 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
983 ret = ext4_walk_page_buffers(handle, page_buffers(page),
984 from, to, NULL,
985 do_journal_get_write_access);
ac27a0ec 986 }
bfc1af65
NP
987
988 if (ret) {
af5bc92d 989 unlock_page(page);
ae4d5372 990 /*
6e1db88d 991 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
992 * outside i_size. Trim these off again. Don't need
993 * i_size_read because we hold i_mutex.
1938a150
AK
994 *
995 * Add inode to orphan list in case we crash before
996 * truncate finishes
ae4d5372 997 */
ffacfa7a 998 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
999 ext4_orphan_add(handle, inode);
1000
1001 ext4_journal_stop(handle);
1002 if (pos + len > inode->i_size) {
b9a4207d 1003 ext4_truncate_failed_write(inode);
de9a55b8 1004 /*
ffacfa7a 1005 * If truncate failed early the inode might
1938a150
AK
1006 * still be on the orphan list; we need to
1007 * make sure the inode is removed from the
1008 * orphan list in that case.
1009 */
1010 if (inode->i_nlink)
1011 ext4_orphan_del(NULL, inode);
1012 }
bfc1af65 1013
47564bfb
TT
1014 if (ret == -ENOSPC &&
1015 ext4_should_retry_alloc(inode->i_sb, &retries))
1016 goto retry_journal;
1017 page_cache_release(page);
1018 return ret;
1019 }
1020 *pagep = page;
ac27a0ec
DK
1021 return ret;
1022}
1023
bfc1af65
NP
1024/* For write_end() in data=journal mode */
1025static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1026{
13fca323 1027 int ret;
ac27a0ec
DK
1028 if (!buffer_mapped(bh) || buffer_freed(bh))
1029 return 0;
1030 set_buffer_uptodate(bh);
13fca323
TT
1031 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032 clear_buffer_meta(bh);
1033 clear_buffer_prio(bh);
1034 return ret;
ac27a0ec
DK
1035}
1036
eed4333f
ZL
1037/*
1038 * We need to pick up the new inode size which generic_commit_write gave us
1039 * `file' can be NULL - eg, when called from page_symlink().
1040 *
1041 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1042 * buffers are managed internally.
1043 */
1044static int ext4_write_end(struct file *file,
1045 struct address_space *mapping,
1046 loff_t pos, unsigned len, unsigned copied,
1047 struct page *page, void *fsdata)
f8514083 1048{
f8514083 1049 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1050 struct inode *inode = mapping->host;
1051 int ret = 0, ret2;
1052 int i_size_changed = 0;
1053
1054 trace_ext4_write_end(inode, pos, len, copied);
1055 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1056 ret = ext4_jbd2_file_inode(handle, inode);
1057 if (ret) {
1058 unlock_page(page);
1059 page_cache_release(page);
1060 goto errout;
1061 }
1062 }
f8514083 1063
f19d5870
TM
1064 if (ext4_has_inline_data(inode))
1065 copied = ext4_write_inline_data_end(inode, pos, len,
1066 copied, page);
1067 else
1068 copied = block_write_end(file, mapping, pos,
1069 len, copied, page, fsdata);
f8514083
AK
1070
1071 /*
1072 * No need to use i_size_read() here, the i_size
eed4333f 1073 * cannot change under us because we hole i_mutex.
f8514083
AK
1074 *
1075 * But it's important to update i_size while still holding page lock:
1076 * page writeout could otherwise come in and zero beyond i_size.
1077 */
1078 if (pos + copied > inode->i_size) {
1079 i_size_write(inode, pos + copied);
1080 i_size_changed = 1;
1081 }
1082
eed4333f 1083 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1084 /* We need to mark inode dirty even if
1085 * new_i_size is less that inode->i_size
eed4333f 1086 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1087 */
1088 ext4_update_i_disksize(inode, (pos + copied));
1089 i_size_changed = 1;
1090 }
1091 unlock_page(page);
1092 page_cache_release(page);
1093
1094 /*
1095 * Don't mark the inode dirty under page lock. First, it unnecessarily
1096 * makes the holding time of page lock longer. Second, it forces lock
1097 * ordering of page lock and transaction start for journaling
1098 * filesystems.
1099 */
1100 if (i_size_changed)
1101 ext4_mark_inode_dirty(handle, inode);
1102
ffacfa7a 1103 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1104 /* if we have allocated more blocks and copied
1105 * less. We will have blocks allocated outside
1106 * inode->i_size. So truncate them
1107 */
1108 ext4_orphan_add(handle, inode);
74d553aa 1109errout:
617ba13b 1110 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1111 if (!ret)
1112 ret = ret2;
bfc1af65 1113
f8514083 1114 if (pos + len > inode->i_size) {
b9a4207d 1115 ext4_truncate_failed_write(inode);
de9a55b8 1116 /*
ffacfa7a 1117 * If truncate failed early the inode might still be
f8514083
AK
1118 * on the orphan list; we need to make sure the inode
1119 * is removed from the orphan list in that case.
1120 */
1121 if (inode->i_nlink)
1122 ext4_orphan_del(NULL, inode);
1123 }
1124
bfc1af65 1125 return ret ? ret : copied;
ac27a0ec
DK
1126}
1127
bfc1af65 1128static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1129 struct address_space *mapping,
1130 loff_t pos, unsigned len, unsigned copied,
1131 struct page *page, void *fsdata)
ac27a0ec 1132{
617ba13b 1133 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1134 struct inode *inode = mapping->host;
ac27a0ec
DK
1135 int ret = 0, ret2;
1136 int partial = 0;
bfc1af65 1137 unsigned from, to;
cf17fea6 1138 loff_t new_i_size;
ac27a0ec 1139
9bffad1e 1140 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1141 from = pos & (PAGE_CACHE_SIZE - 1);
1142 to = from + len;
1143
441c8508
CW
1144 BUG_ON(!ext4_handle_valid(handle));
1145
3fdcfb66
TM
1146 if (ext4_has_inline_data(inode))
1147 copied = ext4_write_inline_data_end(inode, pos, len,
1148 copied, page);
1149 else {
1150 if (copied < len) {
1151 if (!PageUptodate(page))
1152 copied = 0;
1153 page_zero_new_buffers(page, from+copied, to);
1154 }
ac27a0ec 1155
3fdcfb66
TM
1156 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157 to, &partial, write_end_fn);
1158 if (!partial)
1159 SetPageUptodate(page);
1160 }
cf17fea6
AK
1161 new_i_size = pos + copied;
1162 if (new_i_size > inode->i_size)
bfc1af65 1163 i_size_write(inode, pos+copied);
19f5fb7a 1164 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1165 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1166 if (new_i_size > EXT4_I(inode)->i_disksize) {
1167 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1168 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1169 if (!ret)
1170 ret = ret2;
1171 }
bfc1af65 1172
cf108bca 1173 unlock_page(page);
f8514083 1174 page_cache_release(page);
ffacfa7a 1175 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1176 /* if we have allocated more blocks and copied
1177 * less. We will have blocks allocated outside
1178 * inode->i_size. So truncate them
1179 */
1180 ext4_orphan_add(handle, inode);
1181
617ba13b 1182 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1183 if (!ret)
1184 ret = ret2;
f8514083 1185 if (pos + len > inode->i_size) {
b9a4207d 1186 ext4_truncate_failed_write(inode);
de9a55b8 1187 /*
ffacfa7a 1188 * If truncate failed early the inode might still be
f8514083
AK
1189 * on the orphan list; we need to make sure the inode
1190 * is removed from the orphan list in that case.
1191 */
1192 if (inode->i_nlink)
1193 ext4_orphan_del(NULL, inode);
1194 }
bfc1af65
NP
1195
1196 return ret ? ret : copied;
ac27a0ec 1197}
d2a17637 1198
386ad67c
LC
1199/*
1200 * Reserve a metadata for a single block located at lblock
1201 */
1202static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203{
1204 int retries = 0;
1205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206 struct ext4_inode_info *ei = EXT4_I(inode);
1207 unsigned int md_needed;
1208 ext4_lblk_t save_last_lblock;
1209 int save_len;
1210
1211 /*
1212 * recalculate the amount of metadata blocks to reserve
1213 * in order to allocate nrblocks
1214 * worse case is one extent per block
1215 */
1216repeat:
1217 spin_lock(&ei->i_block_reservation_lock);
1218 /*
1219 * ext4_calc_metadata_amount() has side effects, which we have
1220 * to be prepared undo if we fail to claim space.
1221 */
1222 save_len = ei->i_da_metadata_calc_len;
1223 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 md_needed = EXT4_NUM_B2C(sbi,
1225 ext4_calc_metadata_amount(inode, lblock));
1226 trace_ext4_da_reserve_space(inode, md_needed);
1227
1228 /*
1229 * We do still charge estimated metadata to the sb though;
1230 * we cannot afford to run out of free blocks.
1231 */
1232 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233 ei->i_da_metadata_calc_len = save_len;
1234 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235 spin_unlock(&ei->i_block_reservation_lock);
1236 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237 cond_resched();
1238 goto repeat;
1239 }
1240 return -ENOSPC;
1241 }
1242 ei->i_reserved_meta_blocks += md_needed;
1243 spin_unlock(&ei->i_block_reservation_lock);
1244
1245 return 0; /* success */
1246}
1247
9d0be502 1248/*
7b415bf6 1249 * Reserve a single cluster located at lblock
9d0be502 1250 */
01f49d0b 1251static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1252{
030ba6bc 1253 int retries = 0;
60e58e0f 1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1255 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1256 unsigned int md_needed;
5dd4056d 1257 int ret;
03179fe9
TT
1258 ext4_lblk_t save_last_lblock;
1259 int save_len;
1260
1261 /*
1262 * We will charge metadata quota at writeout time; this saves
1263 * us from metadata over-estimation, though we may go over by
1264 * a small amount in the end. Here we just reserve for data.
1265 */
1266 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267 if (ret)
1268 return ret;
d2a17637
MC
1269
1270 /*
1271 * recalculate the amount of metadata blocks to reserve
1272 * in order to allocate nrblocks
1273 * worse case is one extent per block
1274 */
030ba6bc 1275repeat:
0637c6f4 1276 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1277 /*
1278 * ext4_calc_metadata_amount() has side effects, which we have
1279 * to be prepared undo if we fail to claim space.
1280 */
1281 save_len = ei->i_da_metadata_calc_len;
1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1283 md_needed = EXT4_NUM_B2C(sbi,
1284 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1285 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1286
72b8ab9d
ES
1287 /*
1288 * We do still charge estimated metadata to the sb though;
1289 * we cannot afford to run out of free blocks.
1290 */
e7d5f315 1291 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1292 ei->i_da_metadata_calc_len = save_len;
1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1296 cond_resched();
030ba6bc
AK
1297 goto repeat;
1298 }
03179fe9 1299 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1300 return -ENOSPC;
1301 }
9d0be502 1302 ei->i_reserved_data_blocks++;
0637c6f4
TT
1303 ei->i_reserved_meta_blocks += md_needed;
1304 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1305
d2a17637
MC
1306 return 0; /* success */
1307}
1308
12219aea 1309static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1310{
1311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1312 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1313
cd213226
MC
1314 if (!to_free)
1315 return; /* Nothing to release, exit */
1316
d2a17637 1317 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1318
5a58ec87 1319 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1320 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1321 /*
0637c6f4
TT
1322 * if there aren't enough reserved blocks, then the
1323 * counter is messed up somewhere. Since this
1324 * function is called from invalidate page, it's
1325 * harmless to return without any action.
cd213226 1326 */
8de5c325 1327 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1328 "ino %lu, to_free %d with only %d reserved "
1084f252 1329 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1330 ei->i_reserved_data_blocks);
1331 WARN_ON(1);
1332 to_free = ei->i_reserved_data_blocks;
cd213226 1333 }
0637c6f4 1334 ei->i_reserved_data_blocks -= to_free;
cd213226 1335
0637c6f4
TT
1336 if (ei->i_reserved_data_blocks == 0) {
1337 /*
1338 * We can release all of the reserved metadata blocks
1339 * only when we have written all of the delayed
1340 * allocation blocks.
7b415bf6
AK
1341 * Note that in case of bigalloc, i_reserved_meta_blocks,
1342 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1343 */
57042651 1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1345 ei->i_reserved_meta_blocks);
ee5f4d9c 1346 ei->i_reserved_meta_blocks = 0;
9d0be502 1347 ei->i_da_metadata_calc_len = 0;
0637c6f4 1348 }
d2a17637 1349
72b8ab9d 1350 /* update fs dirty data blocks counter */
57042651 1351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1352
d2a17637 1353 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1354
7b415bf6 1355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1356}
1357
1358static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1359 unsigned int offset,
1360 unsigned int length)
d2a17637
MC
1361{
1362 int to_release = 0;
1363 struct buffer_head *head, *bh;
1364 unsigned int curr_off = 0;
7b415bf6
AK
1365 struct inode *inode = page->mapping->host;
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1367 unsigned int stop = offset + length;
7b415bf6 1368 int num_clusters;
51865fda 1369 ext4_fsblk_t lblk;
d2a17637 1370
ca99fdd2
LC
1371 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372
d2a17637
MC
1373 head = page_buffers(page);
1374 bh = head;
1375 do {
1376 unsigned int next_off = curr_off + bh->b_size;
1377
ca99fdd2
LC
1378 if (next_off > stop)
1379 break;
1380
d2a17637
MC
1381 if ((offset <= curr_off) && (buffer_delay(bh))) {
1382 to_release++;
1383 clear_buffer_delay(bh);
1384 }
1385 curr_off = next_off;
1386 } while ((bh = bh->b_this_page) != head);
7b415bf6 1387
51865fda
ZL
1388 if (to_release) {
1389 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390 ext4_es_remove_extent(inode, lblk, to_release);
1391 }
1392
7b415bf6
AK
1393 /* If we have released all the blocks belonging to a cluster, then we
1394 * need to release the reserved space for that cluster. */
1395 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396 while (num_clusters > 0) {
7b415bf6
AK
1397 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398 ((num_clusters - 1) << sbi->s_cluster_bits);
1399 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1400 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1401 ext4_da_release_space(inode, 1);
1402
1403 num_clusters--;
1404 }
d2a17637 1405}
ac27a0ec 1406
64769240
AT
1407/*
1408 * Delayed allocation stuff
1409 */
1410
4e7ea81d
JK
1411struct mpage_da_data {
1412 struct inode *inode;
1413 struct writeback_control *wbc;
6b523df4 1414
4e7ea81d
JK
1415 pgoff_t first_page; /* The first page to write */
1416 pgoff_t next_page; /* Current page to examine */
1417 pgoff_t last_page; /* Last page to examine */
791b7f08 1418 /*
4e7ea81d
JK
1419 * Extent to map - this can be after first_page because that can be
1420 * fully mapped. We somewhat abuse m_flags to store whether the extent
1421 * is delalloc or unwritten.
791b7f08 1422 */
4e7ea81d
JK
1423 struct ext4_map_blocks map;
1424 struct ext4_io_submit io_submit; /* IO submission data */
1425};
64769240 1426
4e7ea81d
JK
1427static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428 bool invalidate)
c4a0c46e
AK
1429{
1430 int nr_pages, i;
1431 pgoff_t index, end;
1432 struct pagevec pvec;
1433 struct inode *inode = mpd->inode;
1434 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1435
1436 /* This is necessary when next_page == 0. */
1437 if (mpd->first_page >= mpd->next_page)
1438 return;
c4a0c46e 1439
c7f5938a
CW
1440 index = mpd->first_page;
1441 end = mpd->next_page - 1;
4e7ea81d
JK
1442 if (invalidate) {
1443 ext4_lblk_t start, last;
1444 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446 ext4_es_remove_extent(inode, start, last - start + 1);
1447 }
51865fda 1448
66bea92c 1449 pagevec_init(&pvec, 0);
c4a0c46e
AK
1450 while (index <= end) {
1451 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452 if (nr_pages == 0)
1453 break;
1454 for (i = 0; i < nr_pages; i++) {
1455 struct page *page = pvec.pages[i];
9b1d0998 1456 if (page->index > end)
c4a0c46e 1457 break;
c4a0c46e
AK
1458 BUG_ON(!PageLocked(page));
1459 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1460 if (invalidate) {
1461 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462 ClearPageUptodate(page);
1463 }
c4a0c46e
AK
1464 unlock_page(page);
1465 }
9b1d0998
JK
1466 index = pvec.pages[nr_pages - 1]->index + 1;
1467 pagevec_release(&pvec);
c4a0c46e 1468 }
c4a0c46e
AK
1469}
1470
df22291f
AK
1471static void ext4_print_free_blocks(struct inode *inode)
1472{
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1474 struct super_block *sb = inode->i_sb;
f78ee70d 1475 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1476
1477 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1478 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1479 ext4_count_free_clusters(sb)));
92b97816
TT
1480 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1482 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1483 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1484 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1485 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1486 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1487 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1489 ei->i_reserved_data_blocks);
92b97816 1490 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1491 ei->i_reserved_meta_blocks);
1492 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493 ei->i_allocated_meta_blocks);
df22291f
AK
1494 return;
1495}
1496
c364b22c 1497static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1498{
c364b22c 1499 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1500}
1501
5356f261
AK
1502/*
1503 * This function is grabs code from the very beginning of
1504 * ext4_map_blocks, but assumes that the caller is from delayed write
1505 * time. This function looks up the requested blocks and sets the
1506 * buffer delay bit under the protection of i_data_sem.
1507 */
1508static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509 struct ext4_map_blocks *map,
1510 struct buffer_head *bh)
1511{
d100eef2 1512 struct extent_status es;
5356f261
AK
1513 int retval;
1514 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1515#ifdef ES_AGGRESSIVE_TEST
1516 struct ext4_map_blocks orig_map;
1517
1518 memcpy(&orig_map, map, sizeof(*map));
1519#endif
5356f261
AK
1520
1521 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522 invalid_block = ~0;
1523
1524 map->m_flags = 0;
1525 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526 "logical block %lu\n", inode->i_ino, map->m_len,
1527 (unsigned long) map->m_lblk);
d100eef2 1528
d3922a77
ZL
1529 ext4_es_lru_add(inode);
1530
d100eef2
ZL
1531 /* Lookup extent status tree firstly */
1532 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1533
1534 if (ext4_es_is_hole(&es)) {
1535 retval = 0;
1536 down_read((&EXT4_I(inode)->i_data_sem));
1537 goto add_delayed;
1538 }
1539
1540 /*
1541 * Delayed extent could be allocated by fallocate.
1542 * So we need to check it.
1543 */
1544 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1545 map_bh(bh, inode->i_sb, invalid_block);
1546 set_buffer_new(bh);
1547 set_buffer_delay(bh);
1548 return 0;
1549 }
1550
1551 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1552 retval = es.es_len - (iblock - es.es_lblk);
1553 if (retval > map->m_len)
1554 retval = map->m_len;
1555 map->m_len = retval;
1556 if (ext4_es_is_written(&es))
1557 map->m_flags |= EXT4_MAP_MAPPED;
1558 else if (ext4_es_is_unwritten(&es))
1559 map->m_flags |= EXT4_MAP_UNWRITTEN;
1560 else
1561 BUG_ON(1);
1562
921f266b
DM
1563#ifdef ES_AGGRESSIVE_TEST
1564 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1565#endif
d100eef2
ZL
1566 return retval;
1567 }
1568
5356f261
AK
1569 /*
1570 * Try to see if we can get the block without requesting a new
1571 * file system block.
1572 */
1573 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1574 if (ext4_has_inline_data(inode)) {
1575 /*
1576 * We will soon create blocks for this page, and let
1577 * us pretend as if the blocks aren't allocated yet.
1578 * In case of clusters, we have to handle the work
1579 * of mapping from cluster so that the reserved space
1580 * is calculated properly.
1581 */
1582 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1583 ext4_find_delalloc_cluster(inode, map->m_lblk))
1584 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1585 retval = 0;
1586 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1587 retval = ext4_ext_map_blocks(NULL, inode, map,
1588 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1589 else
d100eef2
ZL
1590 retval = ext4_ind_map_blocks(NULL, inode, map,
1591 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1592
d100eef2 1593add_delayed:
5356f261 1594 if (retval == 0) {
f7fec032 1595 int ret;
5356f261
AK
1596 /*
1597 * XXX: __block_prepare_write() unmaps passed block,
1598 * is it OK?
1599 */
386ad67c
LC
1600 /*
1601 * If the block was allocated from previously allocated cluster,
1602 * then we don't need to reserve it again. However we still need
1603 * to reserve metadata for every block we're going to write.
1604 */
5356f261 1605 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1606 ret = ext4_da_reserve_space(inode, iblock);
1607 if (ret) {
5356f261 1608 /* not enough space to reserve */
f7fec032 1609 retval = ret;
5356f261 1610 goto out_unlock;
f7fec032 1611 }
386ad67c
LC
1612 } else {
1613 ret = ext4_da_reserve_metadata(inode, iblock);
1614 if (ret) {
1615 /* not enough space to reserve */
1616 retval = ret;
1617 goto out_unlock;
1618 }
5356f261
AK
1619 }
1620
f7fec032
ZL
1621 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1622 ~0, EXTENT_STATUS_DELAYED);
1623 if (ret) {
1624 retval = ret;
51865fda 1625 goto out_unlock;
f7fec032 1626 }
51865fda 1627
5356f261
AK
1628 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1629 * and it should not appear on the bh->b_state.
1630 */
1631 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1632
1633 map_bh(bh, inode->i_sb, invalid_block);
1634 set_buffer_new(bh);
1635 set_buffer_delay(bh);
f7fec032
ZL
1636 } else if (retval > 0) {
1637 int ret;
1638 unsigned long long status;
1639
921f266b
DM
1640#ifdef ES_AGGRESSIVE_TEST
1641 if (retval != map->m_len) {
1642 printk("ES len assertation failed for inode: %lu "
1643 "retval %d != map->m_len %d "
1644 "in %s (lookup)\n", inode->i_ino, retval,
1645 map->m_len, __func__);
1646 }
1647#endif
1648
f7fec032
ZL
1649 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1650 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1651 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1652 map->m_pblk, status);
1653 if (ret != 0)
1654 retval = ret;
5356f261
AK
1655 }
1656
1657out_unlock:
1658 up_read((&EXT4_I(inode)->i_data_sem));
1659
1660 return retval;
1661}
1662
64769240 1663/*
b920c755
TT
1664 * This is a special get_blocks_t callback which is used by
1665 * ext4_da_write_begin(). It will either return mapped block or
1666 * reserve space for a single block.
29fa89d0
AK
1667 *
1668 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1669 * We also have b_blocknr = -1 and b_bdev initialized properly
1670 *
1671 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1672 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1673 * initialized properly.
64769240 1674 */
9c3569b5
TM
1675int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1676 struct buffer_head *bh, int create)
64769240 1677{
2ed88685 1678 struct ext4_map_blocks map;
64769240
AT
1679 int ret = 0;
1680
1681 BUG_ON(create == 0);
2ed88685
TT
1682 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1683
1684 map.m_lblk = iblock;
1685 map.m_len = 1;
64769240
AT
1686
1687 /*
1688 * first, we need to know whether the block is allocated already
1689 * preallocated blocks are unmapped but should treated
1690 * the same as allocated blocks.
1691 */
5356f261
AK
1692 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1693 if (ret <= 0)
2ed88685 1694 return ret;
64769240 1695
2ed88685
TT
1696 map_bh(bh, inode->i_sb, map.m_pblk);
1697 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1698
1699 if (buffer_unwritten(bh)) {
1700 /* A delayed write to unwritten bh should be marked
1701 * new and mapped. Mapped ensures that we don't do
1702 * get_block multiple times when we write to the same
1703 * offset and new ensures that we do proper zero out
1704 * for partial write.
1705 */
1706 set_buffer_new(bh);
c8205636 1707 set_buffer_mapped(bh);
2ed88685
TT
1708 }
1709 return 0;
64769240 1710}
61628a3f 1711
62e086be
AK
1712static int bget_one(handle_t *handle, struct buffer_head *bh)
1713{
1714 get_bh(bh);
1715 return 0;
1716}
1717
1718static int bput_one(handle_t *handle, struct buffer_head *bh)
1719{
1720 put_bh(bh);
1721 return 0;
1722}
1723
1724static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1725 unsigned int len)
1726{
1727 struct address_space *mapping = page->mapping;
1728 struct inode *inode = mapping->host;
3fdcfb66 1729 struct buffer_head *page_bufs = NULL;
62e086be 1730 handle_t *handle = NULL;
3fdcfb66
TM
1731 int ret = 0, err = 0;
1732 int inline_data = ext4_has_inline_data(inode);
1733 struct buffer_head *inode_bh = NULL;
62e086be 1734
cb20d518 1735 ClearPageChecked(page);
3fdcfb66
TM
1736
1737 if (inline_data) {
1738 BUG_ON(page->index != 0);
1739 BUG_ON(len > ext4_get_max_inline_size(inode));
1740 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1741 if (inode_bh == NULL)
1742 goto out;
1743 } else {
1744 page_bufs = page_buffers(page);
1745 if (!page_bufs) {
1746 BUG();
1747 goto out;
1748 }
1749 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1750 NULL, bget_one);
1751 }
62e086be
AK
1752 /* As soon as we unlock the page, it can go away, but we have
1753 * references to buffers so we are safe */
1754 unlock_page(page);
1755
9924a92a
TT
1756 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1757 ext4_writepage_trans_blocks(inode));
62e086be
AK
1758 if (IS_ERR(handle)) {
1759 ret = PTR_ERR(handle);
1760 goto out;
1761 }
1762
441c8508
CW
1763 BUG_ON(!ext4_handle_valid(handle));
1764
3fdcfb66
TM
1765 if (inline_data) {
1766 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1767
3fdcfb66
TM
1768 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1769
1770 } else {
1771 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772 do_journal_get_write_access);
1773
1774 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1775 write_end_fn);
1776 }
62e086be
AK
1777 if (ret == 0)
1778 ret = err;
2d859db3 1779 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1780 err = ext4_journal_stop(handle);
1781 if (!ret)
1782 ret = err;
1783
3fdcfb66
TM
1784 if (!ext4_has_inline_data(inode))
1785 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1786 NULL, bput_one);
19f5fb7a 1787 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1788out:
3fdcfb66 1789 brelse(inode_bh);
62e086be
AK
1790 return ret;
1791}
1792
61628a3f 1793/*
43ce1d23
AK
1794 * Note that we don't need to start a transaction unless we're journaling data
1795 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1796 * need to file the inode to the transaction's list in ordered mode because if
1797 * we are writing back data added by write(), the inode is already there and if
25985edc 1798 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1799 * transaction the data will hit the disk. In case we are journaling data, we
1800 * cannot start transaction directly because transaction start ranks above page
1801 * lock so we have to do some magic.
1802 *
b920c755 1803 * This function can get called via...
20970ba6 1804 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1805 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1806 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1807 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1808 *
1809 * We don't do any block allocation in this function. If we have page with
1810 * multiple blocks we need to write those buffer_heads that are mapped. This
1811 * is important for mmaped based write. So if we do with blocksize 1K
1812 * truncate(f, 1024);
1813 * a = mmap(f, 0, 4096);
1814 * a[0] = 'a';
1815 * truncate(f, 4096);
1816 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1817 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1818 * do_wp_page). So writepage should write the first block. If we modify
1819 * the mmap area beyond 1024 we will again get a page_fault and the
1820 * page_mkwrite callback will do the block allocation and mark the
1821 * buffer_heads mapped.
1822 *
1823 * We redirty the page if we have any buffer_heads that is either delay or
1824 * unwritten in the page.
1825 *
1826 * We can get recursively called as show below.
1827 *
1828 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1829 * ext4_writepage()
1830 *
1831 * But since we don't do any block allocation we should not deadlock.
1832 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1833 */
43ce1d23 1834static int ext4_writepage(struct page *page,
62e086be 1835 struct writeback_control *wbc)
64769240 1836{
f8bec370 1837 int ret = 0;
61628a3f 1838 loff_t size;
498e5f24 1839 unsigned int len;
744692dc 1840 struct buffer_head *page_bufs = NULL;
61628a3f 1841 struct inode *inode = page->mapping->host;
36ade451 1842 struct ext4_io_submit io_submit;
61628a3f 1843
a9c667f8 1844 trace_ext4_writepage(page);
f0e6c985
AK
1845 size = i_size_read(inode);
1846 if (page->index == size >> PAGE_CACHE_SHIFT)
1847 len = size & ~PAGE_CACHE_MASK;
1848 else
1849 len = PAGE_CACHE_SIZE;
64769240 1850
a42afc5f 1851 page_bufs = page_buffers(page);
a42afc5f 1852 /*
fe386132
JK
1853 * We cannot do block allocation or other extent handling in this
1854 * function. If there are buffers needing that, we have to redirty
1855 * the page. But we may reach here when we do a journal commit via
1856 * journal_submit_inode_data_buffers() and in that case we must write
1857 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1858 */
f19d5870
TM
1859 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1860 ext4_bh_delay_or_unwritten)) {
f8bec370 1861 redirty_page_for_writepage(wbc, page);
fe386132
JK
1862 if (current->flags & PF_MEMALLOC) {
1863 /*
1864 * For memory cleaning there's no point in writing only
1865 * some buffers. So just bail out. Warn if we came here
1866 * from direct reclaim.
1867 */
1868 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1869 == PF_MEMALLOC);
f0e6c985
AK
1870 unlock_page(page);
1871 return 0;
1872 }
a42afc5f 1873 }
64769240 1874
cb20d518 1875 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1876 /*
1877 * It's mmapped pagecache. Add buffers and journal it. There
1878 * doesn't seem much point in redirtying the page here.
1879 */
3f0ca309 1880 return __ext4_journalled_writepage(page, len);
43ce1d23 1881
97a851ed
JK
1882 ext4_io_submit_init(&io_submit, wbc);
1883 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1884 if (!io_submit.io_end) {
1885 redirty_page_for_writepage(wbc, page);
1886 unlock_page(page);
1887 return -ENOMEM;
1888 }
36ade451
JK
1889 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1890 ext4_io_submit(&io_submit);
97a851ed
JK
1891 /* Drop io_end reference we got from init */
1892 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1893 return ret;
1894}
1895
4e7ea81d
JK
1896#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1897
61628a3f 1898/*
fffb2739
JK
1899 * mballoc gives us at most this number of blocks...
1900 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1901 * The rest of mballoc seems to handle chunks upto full group size.
61628a3f 1902 */
fffb2739 1903#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1904
4e7ea81d
JK
1905/*
1906 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1907 *
1908 * @mpd - extent of blocks
1909 * @lblk - logical number of the block in the file
1910 * @b_state - b_state of the buffer head added
1911 *
1912 * the function is used to collect contig. blocks in same state
1913 */
1914static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1915 unsigned long b_state)
1916{
1917 struct ext4_map_blocks *map = &mpd->map;
1918
1919 /* Don't go larger than mballoc is willing to allocate */
1920 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1921 return 0;
1922
1923 /* First block in the extent? */
1924 if (map->m_len == 0) {
1925 map->m_lblk = lblk;
1926 map->m_len = 1;
1927 map->m_flags = b_state & BH_FLAGS;
1928 return 1;
1929 }
1930
1931 /* Can we merge the block to our big extent? */
1932 if (lblk == map->m_lblk + map->m_len &&
1933 (b_state & BH_FLAGS) == map->m_flags) {
1934 map->m_len++;
1935 return 1;
1936 }
1937 return 0;
1938}
1939
1940static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1941 struct buffer_head *head,
1942 struct buffer_head *bh,
1943 ext4_lblk_t lblk)
1944{
1945 struct inode *inode = mpd->inode;
1946 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1947 >> inode->i_blkbits;
1948
1949 do {
1950 BUG_ON(buffer_locked(bh));
1951
1952 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1953 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1954 lblk >= blocks) {
1955 /* Found extent to map? */
1956 if (mpd->map.m_len)
1957 return false;
1958 if (lblk >= blocks)
1959 return true;
1960 continue;
1961 }
1962 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1963 return false;
1964 } while (lblk++, (bh = bh->b_this_page) != head);
1965 return true;
1966}
1967
1968static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1969{
1970 int len;
1971 loff_t size = i_size_read(mpd->inode);
1972 int err;
1973
1974 BUG_ON(page->index != mpd->first_page);
1975 if (page->index == size >> PAGE_CACHE_SHIFT)
1976 len = size & ~PAGE_CACHE_MASK;
1977 else
1978 len = PAGE_CACHE_SIZE;
1979 clear_page_dirty_for_io(page);
1980 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1981 if (!err)
1982 mpd->wbc->nr_to_write--;
1983 mpd->first_page++;
1984
1985 return err;
1986}
1987
1988/*
1989 * mpage_map_buffers - update buffers corresponding to changed extent and
1990 * submit fully mapped pages for IO
1991 *
1992 * @mpd - description of extent to map, on return next extent to map
1993 *
1994 * Scan buffers corresponding to changed extent (we expect corresponding pages
1995 * to be already locked) and update buffer state according to new extent state.
1996 * We map delalloc buffers to their physical location, clear unwritten bits,
1997 * and mark buffers as uninit when we perform writes to uninitialized extents
1998 * and do extent conversion after IO is finished. If the last page is not fully
1999 * mapped, we update @map to the next extent in the last page that needs
2000 * mapping. Otherwise we submit the page for IO.
2001 */
2002static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2003{
2004 struct pagevec pvec;
2005 int nr_pages, i;
2006 struct inode *inode = mpd->inode;
2007 struct buffer_head *head, *bh;
2008 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2009 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2010 >> inode->i_blkbits;
2011 pgoff_t start, end;
2012 ext4_lblk_t lblk;
2013 sector_t pblock;
2014 int err;
2015
2016 start = mpd->map.m_lblk >> bpp_bits;
2017 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2018 lblk = start << bpp_bits;
2019 pblock = mpd->map.m_pblk;
2020
2021 pagevec_init(&pvec, 0);
2022 while (start <= end) {
2023 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2024 PAGEVEC_SIZE);
2025 if (nr_pages == 0)
2026 break;
2027 for (i = 0; i < nr_pages; i++) {
2028 struct page *page = pvec.pages[i];
2029
2030 if (page->index > end)
2031 break;
2032 /* Upto 'end' pages must be contiguous */
2033 BUG_ON(page->index != start);
2034 bh = head = page_buffers(page);
2035 do {
2036 if (lblk < mpd->map.m_lblk)
2037 continue;
2038 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2039 /*
2040 * Buffer after end of mapped extent.
2041 * Find next buffer in the page to map.
2042 */
2043 mpd->map.m_len = 0;
2044 mpd->map.m_flags = 0;
2045 add_page_bufs_to_extent(mpd, head, bh,
2046 lblk);
2047 pagevec_release(&pvec);
2048 return 0;
2049 }
2050 if (buffer_delay(bh)) {
2051 clear_buffer_delay(bh);
2052 bh->b_blocknr = pblock++;
2053 }
4e7ea81d
JK
2054 clear_buffer_unwritten(bh);
2055 } while (++lblk < blocks &&
2056 (bh = bh->b_this_page) != head);
2057
2058 /*
2059 * FIXME: This is going to break if dioread_nolock
2060 * supports blocksize < pagesize as we will try to
2061 * convert potentially unmapped parts of inode.
2062 */
2063 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2064 /* Page fully mapped - let IO run! */
2065 err = mpage_submit_page(mpd, page);
2066 if (err < 0) {
2067 pagevec_release(&pvec);
2068 return err;
2069 }
2070 start++;
2071 }
2072 pagevec_release(&pvec);
2073 }
2074 /* Extent fully mapped and matches with page boundary. We are done. */
2075 mpd->map.m_len = 0;
2076 mpd->map.m_flags = 0;
2077 return 0;
2078}
2079
2080static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2081{
2082 struct inode *inode = mpd->inode;
2083 struct ext4_map_blocks *map = &mpd->map;
2084 int get_blocks_flags;
2085 int err;
2086
2087 trace_ext4_da_write_pages_extent(inode, map);
2088 /*
2089 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2090 * to convert an uninitialized extent to be initialized (in the case
2091 * where we have written into one or more preallocated blocks). It is
2092 * possible that we're going to need more metadata blocks than
2093 * previously reserved. However we must not fail because we're in
2094 * writeback and there is nothing we can do about it so it might result
2095 * in data loss. So use reserved blocks to allocate metadata if
2096 * possible.
2097 *
2098 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2099 * in question are delalloc blocks. This affects functions in many
2100 * different parts of the allocation call path. This flag exists
2101 * primarily because we don't want to change *many* call functions, so
2102 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2103 * once the inode's allocation semaphore is taken.
2104 */
2105 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2106 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2107 if (ext4_should_dioread_nolock(inode))
2108 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2109 if (map->m_flags & (1 << BH_Delay))
2110 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2111
2112 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2113 if (err < 0)
2114 return err;
6b523df4
JK
2115 if (map->m_flags & EXT4_MAP_UNINIT) {
2116 if (!mpd->io_submit.io_end->handle &&
2117 ext4_handle_valid(handle)) {
2118 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2119 handle->h_rsv_handle = NULL;
2120 }
3613d228 2121 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2122 }
4e7ea81d
JK
2123
2124 BUG_ON(map->m_len == 0);
2125 if (map->m_flags & EXT4_MAP_NEW) {
2126 struct block_device *bdev = inode->i_sb->s_bdev;
2127 int i;
2128
2129 for (i = 0; i < map->m_len; i++)
2130 unmap_underlying_metadata(bdev, map->m_pblk + i);
2131 }
2132 return 0;
2133}
2134
2135/*
2136 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2137 * mpd->len and submit pages underlying it for IO
2138 *
2139 * @handle - handle for journal operations
2140 * @mpd - extent to map
2141 *
2142 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144 * them to initialized or split the described range from larger unwritten
2145 * extent. Note that we need not map all the described range since allocation
2146 * can return less blocks or the range is covered by more unwritten extents. We
2147 * cannot map more because we are limited by reserved transaction credits. On
2148 * the other hand we always make sure that the last touched page is fully
2149 * mapped so that it can be written out (and thus forward progress is
2150 * guaranteed). After mapping we submit all mapped pages for IO.
2151 */
2152static int mpage_map_and_submit_extent(handle_t *handle,
2153 struct mpage_da_data *mpd)
2154{
2155 struct inode *inode = mpd->inode;
2156 struct ext4_map_blocks *map = &mpd->map;
2157 int err;
2158 loff_t disksize;
2159
2160 mpd->io_submit.io_end->offset =
2161 ((loff_t)map->m_lblk) << inode->i_blkbits;
2162 while (map->m_len) {
2163 err = mpage_map_one_extent(handle, mpd);
2164 if (err < 0) {
2165 struct super_block *sb = inode->i_sb;
2166
2167 /*
2168 * Need to commit transaction to free blocks. Let upper
2169 * layers sort it out.
2170 */
2171 if (err == -ENOSPC && ext4_count_free_clusters(sb))
2172 return -ENOSPC;
2173
2174 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2175 ext4_msg(sb, KERN_CRIT,
2176 "Delayed block allocation failed for "
2177 "inode %lu at logical offset %llu with"
2178 " max blocks %u with error %d",
2179 inode->i_ino,
2180 (unsigned long long)map->m_lblk,
2181 (unsigned)map->m_len, err);
2182 ext4_msg(sb, KERN_CRIT,
2183 "This should not happen!! Data will "
2184 "be lost\n");
2185 if (err == -ENOSPC)
2186 ext4_print_free_blocks(inode);
2187 }
2188 /* invalidate all the pages */
2189 mpage_release_unused_pages(mpd, true);
2190 return err;
2191 }
2192 /*
2193 * Update buffer state, submit mapped pages, and get us new
2194 * extent to map
2195 */
2196 err = mpage_map_and_submit_buffers(mpd);
2197 if (err < 0)
2198 return err;
2199 }
2200
2201 /* Update on-disk size after IO is submitted */
2202 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2203 if (disksize > i_size_read(inode))
2204 disksize = i_size_read(inode);
2205 if (disksize > EXT4_I(inode)->i_disksize) {
2206 int err2;
2207
2208 ext4_update_i_disksize(inode, disksize);
2209 err2 = ext4_mark_inode_dirty(handle, inode);
2210 if (err2)
2211 ext4_error(inode->i_sb,
2212 "Failed to mark inode %lu dirty",
2213 inode->i_ino);
2214 if (!err)
2215 err = err2;
2216 }
2217 return err;
2218}
2219
fffb2739
JK
2220/*
2221 * Calculate the total number of credits to reserve for one writepages
20970ba6 2222 * iteration. This is called from ext4_writepages(). We map an extent of
fffb2739
JK
2223 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2224 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2225 * bpp - 1 blocks in bpp different extents.
2226 */
525f4ed8
MC
2227static int ext4_da_writepages_trans_blocks(struct inode *inode)
2228{
fffb2739 2229 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2230
fffb2739
JK
2231 return ext4_meta_trans_blocks(inode,
2232 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2233}
61628a3f 2234
8e48dcfb 2235/*
4e7ea81d
JK
2236 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2237 * and underlying extent to map
2238 *
2239 * @mpd - where to look for pages
2240 *
2241 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2242 * IO immediately. When we find a page which isn't mapped we start accumulating
2243 * extent of buffers underlying these pages that needs mapping (formed by
2244 * either delayed or unwritten buffers). We also lock the pages containing
2245 * these buffers. The extent found is returned in @mpd structure (starting at
2246 * mpd->lblk with length mpd->len blocks).
2247 *
2248 * Note that this function can attach bios to one io_end structure which are
2249 * neither logically nor physically contiguous. Although it may seem as an
2250 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2251 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2252 */
4e7ea81d 2253static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2254{
4e7ea81d
JK
2255 struct address_space *mapping = mpd->inode->i_mapping;
2256 struct pagevec pvec;
2257 unsigned int nr_pages;
2258 pgoff_t index = mpd->first_page;
2259 pgoff_t end = mpd->last_page;
2260 int tag;
2261 int i, err = 0;
2262 int blkbits = mpd->inode->i_blkbits;
2263 ext4_lblk_t lblk;
2264 struct buffer_head *head;
8e48dcfb 2265
4e7ea81d 2266 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2267 tag = PAGECACHE_TAG_TOWRITE;
2268 else
2269 tag = PAGECACHE_TAG_DIRTY;
2270
4e7ea81d
JK
2271 pagevec_init(&pvec, 0);
2272 mpd->map.m_len = 0;
2273 mpd->next_page = index;
4f01b02c 2274 while (index <= end) {
5b41d924 2275 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2276 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2277 if (nr_pages == 0)
4e7ea81d 2278 goto out;
8e48dcfb
TT
2279
2280 for (i = 0; i < nr_pages; i++) {
2281 struct page *page = pvec.pages[i];
2282
2283 /*
2284 * At this point, the page may be truncated or
2285 * invalidated (changing page->mapping to NULL), or
2286 * even swizzled back from swapper_space to tmpfs file
2287 * mapping. However, page->index will not change
2288 * because we have a reference on the page.
2289 */
4f01b02c
TT
2290 if (page->index > end)
2291 goto out;
8e48dcfb 2292
4e7ea81d
JK
2293 /* If we can't merge this page, we are done. */
2294 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2295 goto out;
78aaced3 2296
8e48dcfb 2297 lock_page(page);
8e48dcfb 2298 /*
4e7ea81d
JK
2299 * If the page is no longer dirty, or its mapping no
2300 * longer corresponds to inode we are writing (which
2301 * means it has been truncated or invalidated), or the
2302 * page is already under writeback and we are not doing
2303 * a data integrity writeback, skip the page
8e48dcfb 2304 */
4f01b02c
TT
2305 if (!PageDirty(page) ||
2306 (PageWriteback(page) &&
4e7ea81d 2307 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2308 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2309 unlock_page(page);
2310 continue;
2311 }
2312
7cb1a535 2313 wait_on_page_writeback(page);
8e48dcfb 2314 BUG_ON(PageWriteback(page));
8e48dcfb 2315
4e7ea81d 2316 if (mpd->map.m_len == 0)
8eb9e5ce 2317 mpd->first_page = page->index;
8eb9e5ce 2318 mpd->next_page = page->index + 1;
f8bec370 2319 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2320 lblk = ((ext4_lblk_t)page->index) <<
2321 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2322 head = page_buffers(page);
4e7ea81d
JK
2323 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2324 goto out;
2325 /* So far everything mapped? Submit the page for IO. */
2326 if (mpd->map.m_len == 0) {
2327 err = mpage_submit_page(mpd, page);
2328 if (err < 0)
4f01b02c 2329 goto out;
8e48dcfb 2330 }
4e7ea81d
JK
2331
2332 /*
2333 * Accumulated enough dirty pages? This doesn't apply
2334 * to WB_SYNC_ALL mode. For integrity sync we have to
2335 * keep going because someone may be concurrently
2336 * dirtying pages, and we might have synced a lot of
2337 * newly appeared dirty pages, but have not synced all
2338 * of the old dirty pages.
2339 */
2340 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2341 mpd->next_page - mpd->first_page >=
2342 mpd->wbc->nr_to_write)
2343 goto out;
8e48dcfb
TT
2344 }
2345 pagevec_release(&pvec);
2346 cond_resched();
2347 }
4f01b02c 2348 return 0;
8eb9e5ce
TT
2349out:
2350 pagevec_release(&pvec);
4e7ea81d 2351 return err;
8e48dcfb
TT
2352}
2353
20970ba6
TT
2354static int __writepage(struct page *page, struct writeback_control *wbc,
2355 void *data)
2356{
2357 struct address_space *mapping = data;
2358 int ret = ext4_writepage(page, wbc);
2359 mapping_set_error(mapping, ret);
2360 return ret;
2361}
2362
2363static int ext4_writepages(struct address_space *mapping,
2364 struct writeback_control *wbc)
64769240 2365{
4e7ea81d
JK
2366 pgoff_t writeback_index = 0;
2367 long nr_to_write = wbc->nr_to_write;
22208ded 2368 int range_whole = 0;
4e7ea81d 2369 int cycled = 1;
61628a3f 2370 handle_t *handle = NULL;
df22291f 2371 struct mpage_da_data mpd;
5e745b04 2372 struct inode *inode = mapping->host;
6b523df4 2373 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2374 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2375 bool done;
1bce63d1 2376 struct blk_plug plug;
61628a3f 2377
20970ba6 2378 trace_ext4_writepages(inode, wbc);
ba80b101 2379
61628a3f
MC
2380 /*
2381 * No pages to write? This is mainly a kludge to avoid starting
2382 * a transaction for special inodes like journal inode on last iput()
2383 * because that could violate lock ordering on umount
2384 */
a1d6cc56 2385 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2386 return 0;
2a21e37e 2387
20970ba6
TT
2388 if (ext4_should_journal_data(inode)) {
2389 struct blk_plug plug;
2390 int ret;
2391
2392 blk_start_plug(&plug);
2393 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2394 blk_finish_plug(&plug);
2395 return ret;
2396 }
2397
2a21e37e
TT
2398 /*
2399 * If the filesystem has aborted, it is read-only, so return
2400 * right away instead of dumping stack traces later on that
2401 * will obscure the real source of the problem. We test
4ab2f15b 2402 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2403 * the latter could be true if the filesystem is mounted
20970ba6 2404 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2405 * *never* be called, so if that ever happens, we would want
2406 * the stack trace.
2407 */
4ab2f15b 2408 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2409 return -EROFS;
2410
6b523df4
JK
2411 if (ext4_should_dioread_nolock(inode)) {
2412 /*
2413 * We may need to convert upto one extent per block in
2414 * the page and we may dirty the inode.
2415 */
2416 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2417 }
2418
4e7ea81d
JK
2419 /*
2420 * If we have inline data and arrive here, it means that
2421 * we will soon create the block for the 1st page, so
2422 * we'd better clear the inline data here.
2423 */
2424 if (ext4_has_inline_data(inode)) {
2425 /* Just inode will be modified... */
2426 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2427 if (IS_ERR(handle)) {
2428 ret = PTR_ERR(handle);
2429 goto out_writepages;
2430 }
2431 BUG_ON(ext4_test_inode_state(inode,
2432 EXT4_STATE_MAY_INLINE_DATA));
2433 ext4_destroy_inline_data(handle, inode);
2434 ext4_journal_stop(handle);
2435 }
2436
22208ded
AK
2437 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2438 range_whole = 1;
61628a3f 2439
2acf2c26 2440 if (wbc->range_cyclic) {
4e7ea81d
JK
2441 writeback_index = mapping->writeback_index;
2442 if (writeback_index)
2acf2c26 2443 cycled = 0;
4e7ea81d
JK
2444 mpd.first_page = writeback_index;
2445 mpd.last_page = -1;
5b41d924 2446 } else {
4e7ea81d
JK
2447 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2448 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2449 }
a1d6cc56 2450
4e7ea81d
JK
2451 mpd.inode = inode;
2452 mpd.wbc = wbc;
2453 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2454retry:
6e6938b6 2455 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2456 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2457 done = false;
1bce63d1 2458 blk_start_plug(&plug);
4e7ea81d
JK
2459 while (!done && mpd.first_page <= mpd.last_page) {
2460 /* For each extent of pages we use new io_end */
2461 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2462 if (!mpd.io_submit.io_end) {
2463 ret = -ENOMEM;
2464 break;
2465 }
a1d6cc56
AK
2466
2467 /*
4e7ea81d
JK
2468 * We have two constraints: We find one extent to map and we
2469 * must always write out whole page (makes a difference when
2470 * blocksize < pagesize) so that we don't block on IO when we
2471 * try to write out the rest of the page. Journalled mode is
2472 * not supported by delalloc.
a1d6cc56
AK
2473 */
2474 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2475 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2476
4e7ea81d 2477 /* start a new transaction */
6b523df4
JK
2478 handle = ext4_journal_start_with_reserve(inode,
2479 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2480 if (IS_ERR(handle)) {
2481 ret = PTR_ERR(handle);
1693918e 2482 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2483 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2484 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2485 /* Release allocated io_end */
2486 ext4_put_io_end(mpd.io_submit.io_end);
2487 break;
61628a3f 2488 }
f63e6005 2489
4e7ea81d
JK
2490 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2491 ret = mpage_prepare_extent_to_map(&mpd);
2492 if (!ret) {
2493 if (mpd.map.m_len)
2494 ret = mpage_map_and_submit_extent(handle, &mpd);
2495 else {
2496 /*
2497 * We scanned the whole range (or exhausted
2498 * nr_to_write), submitted what was mapped and
2499 * didn't find anything needing mapping. We are
2500 * done.
2501 */
2502 done = true;
2503 }
f63e6005 2504 }
61628a3f 2505 ext4_journal_stop(handle);
4e7ea81d
JK
2506 /* Submit prepared bio */
2507 ext4_io_submit(&mpd.io_submit);
2508 /* Unlock pages we didn't use */
2509 mpage_release_unused_pages(&mpd, false);
2510 /* Drop our io_end reference we got from init */
2511 ext4_put_io_end(mpd.io_submit.io_end);
2512
2513 if (ret == -ENOSPC && sbi->s_journal) {
2514 /*
2515 * Commit the transaction which would
22208ded
AK
2516 * free blocks released in the transaction
2517 * and try again
2518 */
df22291f 2519 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2520 ret = 0;
4e7ea81d
JK
2521 continue;
2522 }
2523 /* Fatal error - ENOMEM, EIO... */
2524 if (ret)
61628a3f 2525 break;
a1d6cc56 2526 }
1bce63d1 2527 blk_finish_plug(&plug);
4e7ea81d 2528 if (!ret && !cycled) {
2acf2c26 2529 cycled = 1;
4e7ea81d
JK
2530 mpd.last_page = writeback_index - 1;
2531 mpd.first_page = 0;
2acf2c26
AK
2532 goto retry;
2533 }
22208ded
AK
2534
2535 /* Update index */
22208ded
AK
2536 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2537 /*
4e7ea81d 2538 * Set the writeback_index so that range_cyclic
22208ded
AK
2539 * mode will write it back later
2540 */
4e7ea81d 2541 mapping->writeback_index = mpd.first_page;
a1d6cc56 2542
61628a3f 2543out_writepages:
20970ba6
TT
2544 trace_ext4_writepages_result(inode, wbc, ret,
2545 nr_to_write - wbc->nr_to_write);
61628a3f 2546 return ret;
64769240
AT
2547}
2548
79f0be8d
AK
2549static int ext4_nonda_switch(struct super_block *sb)
2550{
5c1ff336 2551 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2552 struct ext4_sb_info *sbi = EXT4_SB(sb);
2553
2554 /*
2555 * switch to non delalloc mode if we are running low
2556 * on free block. The free block accounting via percpu
179f7ebf 2557 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2558 * accumulated on each CPU without updating global counters
2559 * Delalloc need an accurate free block accounting. So switch
2560 * to non delalloc when we are near to error range.
2561 */
5c1ff336
EW
2562 free_clusters =
2563 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2564 dirty_clusters =
2565 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2566 /*
2567 * Start pushing delalloc when 1/2 of free blocks are dirty.
2568 */
5c1ff336 2569 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2570 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2571
5c1ff336
EW
2572 if (2 * free_clusters < 3 * dirty_clusters ||
2573 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2574 /*
c8afb446
ES
2575 * free block count is less than 150% of dirty blocks
2576 * or free blocks is less than watermark
79f0be8d
AK
2577 */
2578 return 1;
2579 }
2580 return 0;
2581}
2582
64769240 2583static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2584 loff_t pos, unsigned len, unsigned flags,
2585 struct page **pagep, void **fsdata)
64769240 2586{
72b8ab9d 2587 int ret, retries = 0;
64769240
AT
2588 struct page *page;
2589 pgoff_t index;
64769240
AT
2590 struct inode *inode = mapping->host;
2591 handle_t *handle;
2592
2593 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2594
2595 if (ext4_nonda_switch(inode->i_sb)) {
2596 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2597 return ext4_write_begin(file, mapping, pos,
2598 len, flags, pagep, fsdata);
2599 }
2600 *fsdata = (void *)0;
9bffad1e 2601 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2602
2603 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2604 ret = ext4_da_write_inline_data_begin(mapping, inode,
2605 pos, len, flags,
2606 pagep, fsdata);
2607 if (ret < 0)
47564bfb
TT
2608 return ret;
2609 if (ret == 1)
2610 return 0;
9c3569b5
TM
2611 }
2612
47564bfb
TT
2613 /*
2614 * grab_cache_page_write_begin() can take a long time if the
2615 * system is thrashing due to memory pressure, or if the page
2616 * is being written back. So grab it first before we start
2617 * the transaction handle. This also allows us to allocate
2618 * the page (if needed) without using GFP_NOFS.
2619 */
2620retry_grab:
2621 page = grab_cache_page_write_begin(mapping, index, flags);
2622 if (!page)
2623 return -ENOMEM;
2624 unlock_page(page);
2625
64769240
AT
2626 /*
2627 * With delayed allocation, we don't log the i_disksize update
2628 * if there is delayed block allocation. But we still need
2629 * to journalling the i_disksize update if writes to the end
2630 * of file which has an already mapped buffer.
2631 */
47564bfb 2632retry_journal:
9924a92a 2633 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2634 if (IS_ERR(handle)) {
47564bfb
TT
2635 page_cache_release(page);
2636 return PTR_ERR(handle);
64769240
AT
2637 }
2638
47564bfb
TT
2639 lock_page(page);
2640 if (page->mapping != mapping) {
2641 /* The page got truncated from under us */
2642 unlock_page(page);
2643 page_cache_release(page);
d5a0d4f7 2644 ext4_journal_stop(handle);
47564bfb 2645 goto retry_grab;
d5a0d4f7 2646 }
47564bfb
TT
2647 /* In case writeback began while the page was unlocked */
2648 wait_on_page_writeback(page);
64769240 2649
6e1db88d 2650 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2651 if (ret < 0) {
2652 unlock_page(page);
2653 ext4_journal_stop(handle);
ae4d5372
AK
2654 /*
2655 * block_write_begin may have instantiated a few blocks
2656 * outside i_size. Trim these off again. Don't need
2657 * i_size_read because we hold i_mutex.
2658 */
2659 if (pos + len > inode->i_size)
b9a4207d 2660 ext4_truncate_failed_write(inode);
47564bfb
TT
2661
2662 if (ret == -ENOSPC &&
2663 ext4_should_retry_alloc(inode->i_sb, &retries))
2664 goto retry_journal;
2665
2666 page_cache_release(page);
2667 return ret;
64769240
AT
2668 }
2669
47564bfb 2670 *pagep = page;
64769240
AT
2671 return ret;
2672}
2673
632eaeab
MC
2674/*
2675 * Check if we should update i_disksize
2676 * when write to the end of file but not require block allocation
2677 */
2678static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2679 unsigned long offset)
632eaeab
MC
2680{
2681 struct buffer_head *bh;
2682 struct inode *inode = page->mapping->host;
2683 unsigned int idx;
2684 int i;
2685
2686 bh = page_buffers(page);
2687 idx = offset >> inode->i_blkbits;
2688
af5bc92d 2689 for (i = 0; i < idx; i++)
632eaeab
MC
2690 bh = bh->b_this_page;
2691
29fa89d0 2692 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2693 return 0;
2694 return 1;
2695}
2696
64769240 2697static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2698 struct address_space *mapping,
2699 loff_t pos, unsigned len, unsigned copied,
2700 struct page *page, void *fsdata)
64769240
AT
2701{
2702 struct inode *inode = mapping->host;
2703 int ret = 0, ret2;
2704 handle_t *handle = ext4_journal_current_handle();
2705 loff_t new_i_size;
632eaeab 2706 unsigned long start, end;
79f0be8d
AK
2707 int write_mode = (int)(unsigned long)fsdata;
2708
74d553aa
TT
2709 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2710 return ext4_write_end(file, mapping, pos,
2711 len, copied, page, fsdata);
632eaeab 2712
9bffad1e 2713 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2714 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2715 end = start + copied - 1;
64769240
AT
2716
2717 /*
2718 * generic_write_end() will run mark_inode_dirty() if i_size
2719 * changes. So let's piggyback the i_disksize mark_inode_dirty
2720 * into that.
2721 */
64769240 2722 new_i_size = pos + copied;
ea51d132 2723 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2724 if (ext4_has_inline_data(inode) ||
2725 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2726 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2727 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2728 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2729 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2730 /* We need to mark inode dirty even if
2731 * new_i_size is less that inode->i_size
2732 * bu greater than i_disksize.(hint delalloc)
2733 */
2734 ext4_mark_inode_dirty(handle, inode);
64769240 2735 }
632eaeab 2736 }
9c3569b5
TM
2737
2738 if (write_mode != CONVERT_INLINE_DATA &&
2739 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2740 ext4_has_inline_data(inode))
2741 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2742 page);
2743 else
2744 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2745 page, fsdata);
9c3569b5 2746
64769240
AT
2747 copied = ret2;
2748 if (ret2 < 0)
2749 ret = ret2;
2750 ret2 = ext4_journal_stop(handle);
2751 if (!ret)
2752 ret = ret2;
2753
2754 return ret ? ret : copied;
2755}
2756
d47992f8
LC
2757static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2758 unsigned int length)
64769240 2759{
64769240
AT
2760 /*
2761 * Drop reserved blocks
2762 */
2763 BUG_ON(!PageLocked(page));
2764 if (!page_has_buffers(page))
2765 goto out;
2766
ca99fdd2 2767 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2768
2769out:
d47992f8 2770 ext4_invalidatepage(page, offset, length);
64769240
AT
2771
2772 return;
2773}
2774
ccd2506b
TT
2775/*
2776 * Force all delayed allocation blocks to be allocated for a given inode.
2777 */
2778int ext4_alloc_da_blocks(struct inode *inode)
2779{
fb40ba0d
TT
2780 trace_ext4_alloc_da_blocks(inode);
2781
ccd2506b
TT
2782 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2783 !EXT4_I(inode)->i_reserved_meta_blocks)
2784 return 0;
2785
2786 /*
2787 * We do something simple for now. The filemap_flush() will
2788 * also start triggering a write of the data blocks, which is
2789 * not strictly speaking necessary (and for users of
2790 * laptop_mode, not even desirable). However, to do otherwise
2791 * would require replicating code paths in:
de9a55b8 2792 *
20970ba6 2793 * ext4_writepages() ->
ccd2506b
TT
2794 * write_cache_pages() ---> (via passed in callback function)
2795 * __mpage_da_writepage() -->
2796 * mpage_add_bh_to_extent()
2797 * mpage_da_map_blocks()
2798 *
2799 * The problem is that write_cache_pages(), located in
2800 * mm/page-writeback.c, marks pages clean in preparation for
2801 * doing I/O, which is not desirable if we're not planning on
2802 * doing I/O at all.
2803 *
2804 * We could call write_cache_pages(), and then redirty all of
380cf090 2805 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2806 * would be ugly in the extreme. So instead we would need to
2807 * replicate parts of the code in the above functions,
25985edc 2808 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2809 * write out the pages, but rather only collect contiguous
2810 * logical block extents, call the multi-block allocator, and
2811 * then update the buffer heads with the block allocations.
de9a55b8 2812 *
ccd2506b
TT
2813 * For now, though, we'll cheat by calling filemap_flush(),
2814 * which will map the blocks, and start the I/O, but not
2815 * actually wait for the I/O to complete.
2816 */
2817 return filemap_flush(inode->i_mapping);
2818}
64769240 2819
ac27a0ec
DK
2820/*
2821 * bmap() is special. It gets used by applications such as lilo and by
2822 * the swapper to find the on-disk block of a specific piece of data.
2823 *
2824 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2825 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2826 * filesystem and enables swap, then they may get a nasty shock when the
2827 * data getting swapped to that swapfile suddenly gets overwritten by
2828 * the original zero's written out previously to the journal and
2829 * awaiting writeback in the kernel's buffer cache.
2830 *
2831 * So, if we see any bmap calls here on a modified, data-journaled file,
2832 * take extra steps to flush any blocks which might be in the cache.
2833 */
617ba13b 2834static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2835{
2836 struct inode *inode = mapping->host;
2837 journal_t *journal;
2838 int err;
2839
46c7f254
TM
2840 /*
2841 * We can get here for an inline file via the FIBMAP ioctl
2842 */
2843 if (ext4_has_inline_data(inode))
2844 return 0;
2845
64769240
AT
2846 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2847 test_opt(inode->i_sb, DELALLOC)) {
2848 /*
2849 * With delalloc we want to sync the file
2850 * so that we can make sure we allocate
2851 * blocks for file
2852 */
2853 filemap_write_and_wait(mapping);
2854 }
2855
19f5fb7a
TT
2856 if (EXT4_JOURNAL(inode) &&
2857 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2858 /*
2859 * This is a REALLY heavyweight approach, but the use of
2860 * bmap on dirty files is expected to be extremely rare:
2861 * only if we run lilo or swapon on a freshly made file
2862 * do we expect this to happen.
2863 *
2864 * (bmap requires CAP_SYS_RAWIO so this does not
2865 * represent an unprivileged user DOS attack --- we'd be
2866 * in trouble if mortal users could trigger this path at
2867 * will.)
2868 *
617ba13b 2869 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2870 * regular files. If somebody wants to bmap a directory
2871 * or symlink and gets confused because the buffer
2872 * hasn't yet been flushed to disk, they deserve
2873 * everything they get.
2874 */
2875
19f5fb7a 2876 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2877 journal = EXT4_JOURNAL(inode);
dab291af
MC
2878 jbd2_journal_lock_updates(journal);
2879 err = jbd2_journal_flush(journal);
2880 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2881
2882 if (err)
2883 return 0;
2884 }
2885
af5bc92d 2886 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2887}
2888
617ba13b 2889static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2890{
46c7f254
TM
2891 int ret = -EAGAIN;
2892 struct inode *inode = page->mapping->host;
2893
0562e0ba 2894 trace_ext4_readpage(page);
46c7f254
TM
2895
2896 if (ext4_has_inline_data(inode))
2897 ret = ext4_readpage_inline(inode, page);
2898
2899 if (ret == -EAGAIN)
2900 return mpage_readpage(page, ext4_get_block);
2901
2902 return ret;
ac27a0ec
DK
2903}
2904
2905static int
617ba13b 2906ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2907 struct list_head *pages, unsigned nr_pages)
2908{
46c7f254
TM
2909 struct inode *inode = mapping->host;
2910
2911 /* If the file has inline data, no need to do readpages. */
2912 if (ext4_has_inline_data(inode))
2913 return 0;
2914
617ba13b 2915 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2916}
2917
d47992f8
LC
2918static void ext4_invalidatepage(struct page *page, unsigned int offset,
2919 unsigned int length)
ac27a0ec 2920{
ca99fdd2 2921 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2922
4520fb3c
JK
2923 /* No journalling happens on data buffers when this function is used */
2924 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2925
ca99fdd2 2926 block_invalidatepage(page, offset, length);
4520fb3c
JK
2927}
2928
53e87268 2929static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2930 unsigned int offset,
2931 unsigned int length)
4520fb3c
JK
2932{
2933 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2934
ca99fdd2 2935 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2936
ac27a0ec
DK
2937 /*
2938 * If it's a full truncate we just forget about the pending dirtying
2939 */
ca99fdd2 2940 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2941 ClearPageChecked(page);
2942
ca99fdd2 2943 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2944}
2945
2946/* Wrapper for aops... */
2947static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2948 unsigned int offset,
2949 unsigned int length)
53e87268 2950{
ca99fdd2 2951 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2952}
2953
617ba13b 2954static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2955{
617ba13b 2956 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2957
0562e0ba
JZ
2958 trace_ext4_releasepage(page);
2959
e1c36595
JK
2960 /* Page has dirty journalled data -> cannot release */
2961 if (PageChecked(page))
ac27a0ec 2962 return 0;
0390131b
FM
2963 if (journal)
2964 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2965 else
2966 return try_to_free_buffers(page);
ac27a0ec
DK
2967}
2968
2ed88685
TT
2969/*
2970 * ext4_get_block used when preparing for a DIO write or buffer write.
2971 * We allocate an uinitialized extent if blocks haven't been allocated.
2972 * The extent will be converted to initialized after the IO is complete.
2973 */
f19d5870 2974int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2975 struct buffer_head *bh_result, int create)
2976{
c7064ef1 2977 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2978 inode->i_ino, create);
2ed88685
TT
2979 return _ext4_get_block(inode, iblock, bh_result,
2980 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2981}
2982
729f52c6 2983static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2984 struct buffer_head *bh_result, int create)
729f52c6 2985{
8b0f165f
AP
2986 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2987 inode->i_ino, create);
2988 return _ext4_get_block(inode, iblock, bh_result,
2989 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2990}
2991
4c0425ff 2992static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2993 ssize_t size, void *private, int ret,
2994 bool is_async)
4c0425ff 2995{
496ad9aa 2996 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 2997 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2998
97a851ed
JK
2999 /* if not async direct IO just return */
3000 if (!io_end) {
3001 inode_dio_done(inode);
3002 if (is_async)
3003 aio_complete(iocb, ret, 0);
3004 return;
3005 }
4b70df18 3006
88635ca2 3007 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3008 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3009 iocb->private, io_end->inode->i_ino, iocb, offset,
3010 size);
8d5d02e6 3011
b5a7e970 3012 iocb->private = NULL;
4c0425ff
MC
3013 io_end->offset = offset;
3014 io_end->size = size;
5b3ff237
JZ
3015 if (is_async) {
3016 io_end->iocb = iocb;
3017 io_end->result = ret;
3018 }
97a851ed 3019 ext4_put_io_end_defer(io_end);
4c0425ff 3020}
c7064ef1 3021
4c0425ff
MC
3022/*
3023 * For ext4 extent files, ext4 will do direct-io write to holes,
3024 * preallocated extents, and those write extend the file, no need to
3025 * fall back to buffered IO.
3026 *
b595076a 3027 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3028 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3029 * still keep the range to write as uninitialized.
4c0425ff 3030 *
69c499d1 3031 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3032 * For async direct IO, since the IO may still pending when return, we
25985edc 3033 * set up an end_io call back function, which will do the conversion
8d5d02e6 3034 * when async direct IO completed.
4c0425ff
MC
3035 *
3036 * If the O_DIRECT write will extend the file then add this inode to the
3037 * orphan list. So recovery will truncate it back to the original size
3038 * if the machine crashes during the write.
3039 *
3040 */
3041static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3042 const struct iovec *iov, loff_t offset,
3043 unsigned long nr_segs)
3044{
3045 struct file *file = iocb->ki_filp;
3046 struct inode *inode = file->f_mapping->host;
3047 ssize_t ret;
3048 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3049 int overwrite = 0;
3050 get_block_t *get_block_func = NULL;
3051 int dio_flags = 0;
4c0425ff 3052 loff_t final_size = offset + count;
97a851ed 3053 ext4_io_end_t *io_end = NULL;
729f52c6 3054
69c499d1
TT
3055 /* Use the old path for reads and writes beyond i_size. */
3056 if (rw != WRITE || final_size > inode->i_size)
3057 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3058
69c499d1 3059 BUG_ON(iocb->private == NULL);
4bd809db 3060
e8340395
JK
3061 /*
3062 * Make all waiters for direct IO properly wait also for extent
3063 * conversion. This also disallows race between truncate() and
3064 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3065 */
3066 if (rw == WRITE)
3067 atomic_inc(&inode->i_dio_count);
3068
69c499d1
TT
3069 /* If we do a overwrite dio, i_mutex locking can be released */
3070 overwrite = *((int *)iocb->private);
4bd809db 3071
69c499d1 3072 if (overwrite) {
69c499d1
TT
3073 down_read(&EXT4_I(inode)->i_data_sem);
3074 mutex_unlock(&inode->i_mutex);
3075 }
8d5d02e6 3076
69c499d1
TT
3077 /*
3078 * We could direct write to holes and fallocate.
3079 *
3080 * Allocated blocks to fill the hole are marked as
3081 * uninitialized to prevent parallel buffered read to expose
3082 * the stale data before DIO complete the data IO.
3083 *
3084 * As to previously fallocated extents, ext4 get_block will
3085 * just simply mark the buffer mapped but still keep the
3086 * extents uninitialized.
3087 *
3088 * For non AIO case, we will convert those unwritten extents
3089 * to written after return back from blockdev_direct_IO.
3090 *
3091 * For async DIO, the conversion needs to be deferred when the
3092 * IO is completed. The ext4 end_io callback function will be
3093 * called to take care of the conversion work. Here for async
3094 * case, we allocate an io_end structure to hook to the iocb.
3095 */
3096 iocb->private = NULL;
3097 ext4_inode_aio_set(inode, NULL);
3098 if (!is_sync_kiocb(iocb)) {
97a851ed 3099 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3100 if (!io_end) {
3101 ret = -ENOMEM;
3102 goto retake_lock;
8b0f165f 3103 }
69c499d1 3104 io_end->flag |= EXT4_IO_END_DIRECT;
97a851ed
JK
3105 /*
3106 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3107 */
3108 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3109 /*
69c499d1
TT
3110 * we save the io structure for current async direct
3111 * IO, so that later ext4_map_blocks() could flag the
3112 * io structure whether there is a unwritten extents
3113 * needs to be converted when IO is completed.
8d5d02e6 3114 */
69c499d1
TT
3115 ext4_inode_aio_set(inode, io_end);
3116 }
4bd809db 3117
69c499d1
TT
3118 if (overwrite) {
3119 get_block_func = ext4_get_block_write_nolock;
3120 } else {
3121 get_block_func = ext4_get_block_write;
3122 dio_flags = DIO_LOCKING;
3123 }
3124 ret = __blockdev_direct_IO(rw, iocb, inode,
3125 inode->i_sb->s_bdev, iov,
3126 offset, nr_segs,
3127 get_block_func,
3128 ext4_end_io_dio,
3129 NULL,
3130 dio_flags);
3131
69c499d1 3132 /*
97a851ed
JK
3133 * Put our reference to io_end. This can free the io_end structure e.g.
3134 * in sync IO case or in case of error. It can even perform extent
3135 * conversion if all bios we submitted finished before we got here.
3136 * Note that in that case iocb->private can be already set to NULL
3137 * here.
69c499d1 3138 */
97a851ed
JK
3139 if (io_end) {
3140 ext4_inode_aio_set(inode, NULL);
3141 ext4_put_io_end(io_end);
3142 /*
3143 * When no IO was submitted ext4_end_io_dio() was not
3144 * called so we have to put iocb's reference.
3145 */
3146 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3147 WARN_ON(iocb->private != io_end);
3148 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3149 WARN_ON(io_end->iocb);
3150 /*
3151 * Generic code already did inode_dio_done() so we
3152 * have to clear EXT4_IO_END_DIRECT to not do it for
3153 * the second time.
3154 */
3155 io_end->flag = 0;
3156 ext4_put_io_end(io_end);
3157 iocb->private = NULL;
3158 }
3159 }
3160 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3161 EXT4_STATE_DIO_UNWRITTEN)) {
3162 int err;
3163 /*
3164 * for non AIO case, since the IO is already
3165 * completed, we could do the conversion right here
3166 */
6b523df4 3167 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3168 offset, ret);
3169 if (err < 0)
3170 ret = err;
3171 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3172 }
4bd809db 3173
69c499d1 3174retake_lock:
e8340395
JK
3175 if (rw == WRITE)
3176 inode_dio_done(inode);
69c499d1
TT
3177 /* take i_mutex locking again if we do a ovewrite dio */
3178 if (overwrite) {
69c499d1
TT
3179 up_read(&EXT4_I(inode)->i_data_sem);
3180 mutex_lock(&inode->i_mutex);
4c0425ff 3181 }
8d5d02e6 3182
69c499d1 3183 return ret;
4c0425ff
MC
3184}
3185
3186static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3187 const struct iovec *iov, loff_t offset,
3188 unsigned long nr_segs)
3189{
3190 struct file *file = iocb->ki_filp;
3191 struct inode *inode = file->f_mapping->host;
0562e0ba 3192 ssize_t ret;
4c0425ff 3193
84ebd795
TT
3194 /*
3195 * If we are doing data journalling we don't support O_DIRECT
3196 */
3197 if (ext4_should_journal_data(inode))
3198 return 0;
3199
46c7f254
TM
3200 /* Let buffer I/O handle the inline data case. */
3201 if (ext4_has_inline_data(inode))
3202 return 0;
3203
0562e0ba 3204 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3205 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3206 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3207 else
3208 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3209 trace_ext4_direct_IO_exit(inode, offset,
3210 iov_length(iov, nr_segs), rw, ret);
3211 return ret;
4c0425ff
MC
3212}
3213
ac27a0ec 3214/*
617ba13b 3215 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3216 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3217 * much here because ->set_page_dirty is called under VFS locks. The page is
3218 * not necessarily locked.
3219 *
3220 * We cannot just dirty the page and leave attached buffers clean, because the
3221 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3222 * or jbddirty because all the journalling code will explode.
3223 *
3224 * So what we do is to mark the page "pending dirty" and next time writepage
3225 * is called, propagate that into the buffers appropriately.
3226 */
617ba13b 3227static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3228{
3229 SetPageChecked(page);
3230 return __set_page_dirty_nobuffers(page);
3231}
3232
74d553aa 3233static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3234 .readpage = ext4_readpage,
3235 .readpages = ext4_readpages,
43ce1d23 3236 .writepage = ext4_writepage,
20970ba6 3237 .writepages = ext4_writepages,
8ab22b9a 3238 .write_begin = ext4_write_begin,
74d553aa 3239 .write_end = ext4_write_end,
8ab22b9a
HH
3240 .bmap = ext4_bmap,
3241 .invalidatepage = ext4_invalidatepage,
3242 .releasepage = ext4_releasepage,
3243 .direct_IO = ext4_direct_IO,
3244 .migratepage = buffer_migrate_page,
3245 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3246 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3247};
3248
617ba13b 3249static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3250 .readpage = ext4_readpage,
3251 .readpages = ext4_readpages,
43ce1d23 3252 .writepage = ext4_writepage,
20970ba6 3253 .writepages = ext4_writepages,
8ab22b9a
HH
3254 .write_begin = ext4_write_begin,
3255 .write_end = ext4_journalled_write_end,
3256 .set_page_dirty = ext4_journalled_set_page_dirty,
3257 .bmap = ext4_bmap,
4520fb3c 3258 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3259 .releasepage = ext4_releasepage,
84ebd795 3260 .direct_IO = ext4_direct_IO,
8ab22b9a 3261 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3262 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3263};
3264
64769240 3265static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3266 .readpage = ext4_readpage,
3267 .readpages = ext4_readpages,
43ce1d23 3268 .writepage = ext4_writepage,
20970ba6 3269 .writepages = ext4_writepages,
8ab22b9a
HH
3270 .write_begin = ext4_da_write_begin,
3271 .write_end = ext4_da_write_end,
3272 .bmap = ext4_bmap,
3273 .invalidatepage = ext4_da_invalidatepage,
3274 .releasepage = ext4_releasepage,
3275 .direct_IO = ext4_direct_IO,
3276 .migratepage = buffer_migrate_page,
3277 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3278 .error_remove_page = generic_error_remove_page,
64769240
AT
3279};
3280
617ba13b 3281void ext4_set_aops(struct inode *inode)
ac27a0ec 3282{
3d2b1582
LC
3283 switch (ext4_inode_journal_mode(inode)) {
3284 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3285 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3286 break;
3287 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3288 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3289 break;
3290 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3291 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3292 return;
3d2b1582
LC
3293 default:
3294 BUG();
3295 }
74d553aa
TT
3296 if (test_opt(inode->i_sb, DELALLOC))
3297 inode->i_mapping->a_ops = &ext4_da_aops;
3298 else
3299 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3300}
3301
d863dc36
LC
3302/*
3303 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3304 * up to the end of the block which corresponds to `from'.
3305 * This required during truncate. We need to physically zero the tail end
3306 * of that block so it doesn't yield old data if the file is later grown.
3307 */
3308int ext4_block_truncate_page(handle_t *handle,
3309 struct address_space *mapping, loff_t from)
3310{
3311 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3312 unsigned length;
3313 unsigned blocksize;
3314 struct inode *inode = mapping->host;
3315
3316 blocksize = inode->i_sb->s_blocksize;
3317 length = blocksize - (offset & (blocksize - 1));
3318
3319 return ext4_block_zero_page_range(handle, mapping, from, length);
3320}
3321
3322/*
3323 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3324 * starting from file offset 'from'. The range to be zero'd must
3325 * be contained with in one block. If the specified range exceeds
3326 * the end of the block it will be shortened to end of the block
3327 * that cooresponds to 'from'
3328 */
3329int ext4_block_zero_page_range(handle_t *handle,
3330 struct address_space *mapping, loff_t from, loff_t length)
3331{
3332 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3333 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3334 unsigned blocksize, max, pos;
3335 ext4_lblk_t iblock;
3336 struct inode *inode = mapping->host;
3337 struct buffer_head *bh;
3338 struct page *page;
3339 int err = 0;
3340
3341 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3342 mapping_gfp_mask(mapping) & ~__GFP_FS);
3343 if (!page)
3344 return -ENOMEM;
3345
3346 blocksize = inode->i_sb->s_blocksize;
3347 max = blocksize - (offset & (blocksize - 1));
3348
3349 /*
3350 * correct length if it does not fall between
3351 * 'from' and the end of the block
3352 */
3353 if (length > max || length < 0)
3354 length = max;
3355
3356 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3357
3358 if (!page_has_buffers(page))
3359 create_empty_buffers(page, blocksize, 0);
3360
3361 /* Find the buffer that contains "offset" */
3362 bh = page_buffers(page);
3363 pos = blocksize;
3364 while (offset >= pos) {
3365 bh = bh->b_this_page;
3366 iblock++;
3367 pos += blocksize;
3368 }
d863dc36
LC
3369 if (buffer_freed(bh)) {
3370 BUFFER_TRACE(bh, "freed: skip");
3371 goto unlock;
3372 }
d863dc36
LC
3373 if (!buffer_mapped(bh)) {
3374 BUFFER_TRACE(bh, "unmapped");
3375 ext4_get_block(inode, iblock, bh, 0);
3376 /* unmapped? It's a hole - nothing to do */
3377 if (!buffer_mapped(bh)) {
3378 BUFFER_TRACE(bh, "still unmapped");
3379 goto unlock;
3380 }
3381 }
3382
3383 /* Ok, it's mapped. Make sure it's up-to-date */
3384 if (PageUptodate(page))
3385 set_buffer_uptodate(bh);
3386
3387 if (!buffer_uptodate(bh)) {
3388 err = -EIO;
3389 ll_rw_block(READ, 1, &bh);
3390 wait_on_buffer(bh);
3391 /* Uhhuh. Read error. Complain and punt. */
3392 if (!buffer_uptodate(bh))
3393 goto unlock;
3394 }
d863dc36
LC
3395 if (ext4_should_journal_data(inode)) {
3396 BUFFER_TRACE(bh, "get write access");
3397 err = ext4_journal_get_write_access(handle, bh);
3398 if (err)
3399 goto unlock;
3400 }
d863dc36 3401 zero_user(page, offset, length);
d863dc36
LC
3402 BUFFER_TRACE(bh, "zeroed end of block");
3403
d863dc36
LC
3404 if (ext4_should_journal_data(inode)) {
3405 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3406 } else {
353eefd3 3407 err = 0;
d863dc36 3408 mark_buffer_dirty(bh);
0713ed0c
LC
3409 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3410 err = ext4_jbd2_file_inode(handle, inode);
3411 }
d863dc36
LC
3412
3413unlock:
3414 unlock_page(page);
3415 page_cache_release(page);
3416 return err;
3417}
3418
a87dd18c
LC
3419int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3420 loff_t lstart, loff_t length)
3421{
3422 struct super_block *sb = inode->i_sb;
3423 struct address_space *mapping = inode->i_mapping;
3424 unsigned partial = lstart & (sb->s_blocksize - 1);
3425 ext4_fsblk_t start, end;
3426 loff_t byte_end = (lstart + length - 1);
3427 int err = 0;
3428
3429 start = lstart >> sb->s_blocksize_bits;
3430 end = byte_end >> sb->s_blocksize_bits;
3431
3432 /* Handle partial zero within the single block */
3433 if (start == end) {
3434 err = ext4_block_zero_page_range(handle, mapping,
3435 lstart, length);
3436 return err;
3437 }
3438 /* Handle partial zero out on the start of the range */
3439 if (partial) {
3440 err = ext4_block_zero_page_range(handle, mapping,
3441 lstart, sb->s_blocksize);
3442 if (err)
3443 return err;
3444 }
3445 /* Handle partial zero out on the end of the range */
3446 partial = byte_end & (sb->s_blocksize - 1);
3447 if (partial != sb->s_blocksize - 1)
3448 err = ext4_block_zero_page_range(handle, mapping,
3449 byte_end - partial,
3450 partial + 1);
3451 return err;
3452}
3453
91ef4caf
DG
3454int ext4_can_truncate(struct inode *inode)
3455{
91ef4caf
DG
3456 if (S_ISREG(inode->i_mode))
3457 return 1;
3458 if (S_ISDIR(inode->i_mode))
3459 return 1;
3460 if (S_ISLNK(inode->i_mode))
3461 return !ext4_inode_is_fast_symlink(inode);
3462 return 0;
3463}
3464
a4bb6b64
AH
3465/*
3466 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3467 * associated with the given offset and length
3468 *
3469 * @inode: File inode
3470 * @offset: The offset where the hole will begin
3471 * @len: The length of the hole
3472 *
4907cb7b 3473 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3474 */
3475
aeb2817a 3476int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3477{
26a4c0c6
TT
3478 struct super_block *sb = inode->i_sb;
3479 ext4_lblk_t first_block, stop_block;
3480 struct address_space *mapping = inode->i_mapping;
a87dd18c 3481 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3482 handle_t *handle;
3483 unsigned int credits;
3484 int ret = 0;
3485
a4bb6b64 3486 if (!S_ISREG(inode->i_mode))
73355192 3487 return -EOPNOTSUPP;
a4bb6b64 3488
26a4c0c6 3489 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3490 /* TODO: Add support for bigalloc file systems */
73355192 3491 return -EOPNOTSUPP;
bab08ab9
TT
3492 }
3493
aaddea81
ZL
3494 trace_ext4_punch_hole(inode, offset, length);
3495
26a4c0c6
TT
3496 /*
3497 * Write out all dirty pages to avoid race conditions
3498 * Then release them.
3499 */
3500 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3501 ret = filemap_write_and_wait_range(mapping, offset,
3502 offset + length - 1);
3503 if (ret)
3504 return ret;
3505 }
3506
3507 mutex_lock(&inode->i_mutex);
3508 /* It's not possible punch hole on append only file */
3509 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3510 ret = -EPERM;
3511 goto out_mutex;
3512 }
3513 if (IS_SWAPFILE(inode)) {
3514 ret = -ETXTBSY;
3515 goto out_mutex;
3516 }
3517
3518 /* No need to punch hole beyond i_size */
3519 if (offset >= inode->i_size)
3520 goto out_mutex;
3521
3522 /*
3523 * If the hole extends beyond i_size, set the hole
3524 * to end after the page that contains i_size
3525 */
3526 if (offset + length > inode->i_size) {
3527 length = inode->i_size +
3528 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3529 offset;
3530 }
3531
a87dd18c
LC
3532 first_block_offset = round_up(offset, sb->s_blocksize);
3533 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3534
a87dd18c
LC
3535 /* Now release the pages and zero block aligned part of pages*/
3536 if (last_block_offset > first_block_offset)
3537 truncate_pagecache_range(inode, first_block_offset,
3538 last_block_offset);
26a4c0c6
TT
3539
3540 /* Wait all existing dio workers, newcomers will block on i_mutex */
3541 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3542 inode_dio_wait(inode);
3543
3544 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3545 credits = ext4_writepage_trans_blocks(inode);
3546 else
3547 credits = ext4_blocks_for_truncate(inode);
3548 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3549 if (IS_ERR(handle)) {
3550 ret = PTR_ERR(handle);
3551 ext4_std_error(sb, ret);
3552 goto out_dio;
3553 }
3554
a87dd18c
LC
3555 ret = ext4_zero_partial_blocks(handle, inode, offset,
3556 length);
3557 if (ret)
3558 goto out_stop;
26a4c0c6
TT
3559
3560 first_block = (offset + sb->s_blocksize - 1) >>
3561 EXT4_BLOCK_SIZE_BITS(sb);
3562 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3563
3564 /* If there are no blocks to remove, return now */
3565 if (first_block >= stop_block)
3566 goto out_stop;
3567
3568 down_write(&EXT4_I(inode)->i_data_sem);
3569 ext4_discard_preallocations(inode);
3570
3571 ret = ext4_es_remove_extent(inode, first_block,
3572 stop_block - first_block);
3573 if (ret) {
3574 up_write(&EXT4_I(inode)->i_data_sem);
3575 goto out_stop;
3576 }
3577
3578 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579 ret = ext4_ext_remove_space(inode, first_block,
3580 stop_block - 1);
3581 else
3582 ret = ext4_free_hole_blocks(handle, inode, first_block,
3583 stop_block);
3584
3585 ext4_discard_preallocations(inode);
819c4920 3586 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3587 if (IS_SYNC(inode))
3588 ext4_handle_sync(handle);
26a4c0c6
TT
3589 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3590 ext4_mark_inode_dirty(handle, inode);
3591out_stop:
3592 ext4_journal_stop(handle);
3593out_dio:
3594 ext4_inode_resume_unlocked_dio(inode);
3595out_mutex:
3596 mutex_unlock(&inode->i_mutex);
3597 return ret;
a4bb6b64
AH
3598}
3599
ac27a0ec 3600/*
617ba13b 3601 * ext4_truncate()
ac27a0ec 3602 *
617ba13b
MC
3603 * We block out ext4_get_block() block instantiations across the entire
3604 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3605 * simultaneously on behalf of the same inode.
3606 *
42b2aa86 3607 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3608 * is one core, guiding principle: the file's tree must always be consistent on
3609 * disk. We must be able to restart the truncate after a crash.
3610 *
3611 * The file's tree may be transiently inconsistent in memory (although it
3612 * probably isn't), but whenever we close off and commit a journal transaction,
3613 * the contents of (the filesystem + the journal) must be consistent and
3614 * restartable. It's pretty simple, really: bottom up, right to left (although
3615 * left-to-right works OK too).
3616 *
3617 * Note that at recovery time, journal replay occurs *before* the restart of
3618 * truncate against the orphan inode list.
3619 *
3620 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3621 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3622 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3623 * ext4_truncate() to have another go. So there will be instantiated blocks
3624 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3625 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3626 * ext4_truncate() run will find them and release them.
ac27a0ec 3627 */
617ba13b 3628void ext4_truncate(struct inode *inode)
ac27a0ec 3629{
819c4920
TT
3630 struct ext4_inode_info *ei = EXT4_I(inode);
3631 unsigned int credits;
3632 handle_t *handle;
3633 struct address_space *mapping = inode->i_mapping;
819c4920 3634
19b5ef61
TT
3635 /*
3636 * There is a possibility that we're either freeing the inode
3637 * or it completely new indode. In those cases we might not
3638 * have i_mutex locked because it's not necessary.
3639 */
3640 if (!(inode->i_state & (I_NEW|I_FREEING)))
3641 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3642 trace_ext4_truncate_enter(inode);
3643
91ef4caf 3644 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3645 return;
3646
12e9b892 3647 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3648
5534fb5b 3649 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3650 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3651
aef1c851
TM
3652 if (ext4_has_inline_data(inode)) {
3653 int has_inline = 1;
3654
3655 ext4_inline_data_truncate(inode, &has_inline);
3656 if (has_inline)
3657 return;
3658 }
3659
819c4920
TT
3660 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3661 credits = ext4_writepage_trans_blocks(inode);
3662 else
3663 credits = ext4_blocks_for_truncate(inode);
3664
3665 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3666 if (IS_ERR(handle)) {
3667 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3668 return;
3669 }
3670
eb3544c6
LC
3671 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3672 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3673
3674 /*
3675 * We add the inode to the orphan list, so that if this
3676 * truncate spans multiple transactions, and we crash, we will
3677 * resume the truncate when the filesystem recovers. It also
3678 * marks the inode dirty, to catch the new size.
3679 *
3680 * Implication: the file must always be in a sane, consistent
3681 * truncatable state while each transaction commits.
3682 */
3683 if (ext4_orphan_add(handle, inode))
3684 goto out_stop;
3685
3686 down_write(&EXT4_I(inode)->i_data_sem);
3687
3688 ext4_discard_preallocations(inode);
3689
ff9893dc 3690 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3691 ext4_ext_truncate(handle, inode);
ff9893dc 3692 else
819c4920
TT
3693 ext4_ind_truncate(handle, inode);
3694
3695 up_write(&ei->i_data_sem);
3696
3697 if (IS_SYNC(inode))
3698 ext4_handle_sync(handle);
3699
3700out_stop:
3701 /*
3702 * If this was a simple ftruncate() and the file will remain alive,
3703 * then we need to clear up the orphan record which we created above.
3704 * However, if this was a real unlink then we were called by
3705 * ext4_delete_inode(), and we allow that function to clean up the
3706 * orphan info for us.
3707 */
3708 if (inode->i_nlink)
3709 ext4_orphan_del(handle, inode);
3710
3711 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3712 ext4_mark_inode_dirty(handle, inode);
3713 ext4_journal_stop(handle);
ac27a0ec 3714
0562e0ba 3715 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3716}
3717
ac27a0ec 3718/*
617ba13b 3719 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3720 * underlying buffer_head on success. If 'in_mem' is true, we have all
3721 * data in memory that is needed to recreate the on-disk version of this
3722 * inode.
3723 */
617ba13b
MC
3724static int __ext4_get_inode_loc(struct inode *inode,
3725 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3726{
240799cd
TT
3727 struct ext4_group_desc *gdp;
3728 struct buffer_head *bh;
3729 struct super_block *sb = inode->i_sb;
3730 ext4_fsblk_t block;
3731 int inodes_per_block, inode_offset;
3732
3a06d778 3733 iloc->bh = NULL;
240799cd
TT
3734 if (!ext4_valid_inum(sb, inode->i_ino))
3735 return -EIO;
ac27a0ec 3736
240799cd
TT
3737 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3738 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3739 if (!gdp)
ac27a0ec
DK
3740 return -EIO;
3741
240799cd
TT
3742 /*
3743 * Figure out the offset within the block group inode table
3744 */
00d09882 3745 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3746 inode_offset = ((inode->i_ino - 1) %
3747 EXT4_INODES_PER_GROUP(sb));
3748 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3749 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3750
3751 bh = sb_getblk(sb, block);
aebf0243 3752 if (unlikely(!bh))
860d21e2 3753 return -ENOMEM;
ac27a0ec
DK
3754 if (!buffer_uptodate(bh)) {
3755 lock_buffer(bh);
9c83a923
HK
3756
3757 /*
3758 * If the buffer has the write error flag, we have failed
3759 * to write out another inode in the same block. In this
3760 * case, we don't have to read the block because we may
3761 * read the old inode data successfully.
3762 */
3763 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3764 set_buffer_uptodate(bh);
3765
ac27a0ec
DK
3766 if (buffer_uptodate(bh)) {
3767 /* someone brought it uptodate while we waited */
3768 unlock_buffer(bh);
3769 goto has_buffer;
3770 }
3771
3772 /*
3773 * If we have all information of the inode in memory and this
3774 * is the only valid inode in the block, we need not read the
3775 * block.
3776 */
3777 if (in_mem) {
3778 struct buffer_head *bitmap_bh;
240799cd 3779 int i, start;
ac27a0ec 3780
240799cd 3781 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3782
240799cd
TT
3783 /* Is the inode bitmap in cache? */
3784 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3785 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3786 goto make_io;
3787
3788 /*
3789 * If the inode bitmap isn't in cache then the
3790 * optimisation may end up performing two reads instead
3791 * of one, so skip it.
3792 */
3793 if (!buffer_uptodate(bitmap_bh)) {
3794 brelse(bitmap_bh);
3795 goto make_io;
3796 }
240799cd 3797 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3798 if (i == inode_offset)
3799 continue;
617ba13b 3800 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3801 break;
3802 }
3803 brelse(bitmap_bh);
240799cd 3804 if (i == start + inodes_per_block) {
ac27a0ec
DK
3805 /* all other inodes are free, so skip I/O */
3806 memset(bh->b_data, 0, bh->b_size);
3807 set_buffer_uptodate(bh);
3808 unlock_buffer(bh);
3809 goto has_buffer;
3810 }
3811 }
3812
3813make_io:
240799cd
TT
3814 /*
3815 * If we need to do any I/O, try to pre-readahead extra
3816 * blocks from the inode table.
3817 */
3818 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3819 ext4_fsblk_t b, end, table;
3820 unsigned num;
0d606e2c 3821 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3822
3823 table = ext4_inode_table(sb, gdp);
b713a5ec 3824 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3825 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3826 if (table > b)
3827 b = table;
0d606e2c 3828 end = b + ra_blks;
240799cd 3829 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3830 if (ext4_has_group_desc_csum(sb))
560671a0 3831 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3832 table += num / inodes_per_block;
3833 if (end > table)
3834 end = table;
3835 while (b <= end)
3836 sb_breadahead(sb, b++);
3837 }
3838
ac27a0ec
DK
3839 /*
3840 * There are other valid inodes in the buffer, this inode
3841 * has in-inode xattrs, or we don't have this inode in memory.
3842 * Read the block from disk.
3843 */
0562e0ba 3844 trace_ext4_load_inode(inode);
ac27a0ec
DK
3845 get_bh(bh);
3846 bh->b_end_io = end_buffer_read_sync;
65299a3b 3847 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3848 wait_on_buffer(bh);
3849 if (!buffer_uptodate(bh)) {
c398eda0
TT
3850 EXT4_ERROR_INODE_BLOCK(inode, block,
3851 "unable to read itable block");
ac27a0ec
DK
3852 brelse(bh);
3853 return -EIO;
3854 }
3855 }
3856has_buffer:
3857 iloc->bh = bh;
3858 return 0;
3859}
3860
617ba13b 3861int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3862{
3863 /* We have all inode data except xattrs in memory here. */
617ba13b 3864 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3865 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3866}
3867
617ba13b 3868void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3869{
617ba13b 3870 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3871
3872 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3873 if (flags & EXT4_SYNC_FL)
ac27a0ec 3874 inode->i_flags |= S_SYNC;
617ba13b 3875 if (flags & EXT4_APPEND_FL)
ac27a0ec 3876 inode->i_flags |= S_APPEND;
617ba13b 3877 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3878 inode->i_flags |= S_IMMUTABLE;
617ba13b 3879 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3880 inode->i_flags |= S_NOATIME;
617ba13b 3881 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3882 inode->i_flags |= S_DIRSYNC;
3883}
3884
ff9ddf7e
JK
3885/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3886void ext4_get_inode_flags(struct ext4_inode_info *ei)
3887{
84a8dce2
DM
3888 unsigned int vfs_fl;
3889 unsigned long old_fl, new_fl;
3890
3891 do {
3892 vfs_fl = ei->vfs_inode.i_flags;
3893 old_fl = ei->i_flags;
3894 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3895 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3896 EXT4_DIRSYNC_FL);
3897 if (vfs_fl & S_SYNC)
3898 new_fl |= EXT4_SYNC_FL;
3899 if (vfs_fl & S_APPEND)
3900 new_fl |= EXT4_APPEND_FL;
3901 if (vfs_fl & S_IMMUTABLE)
3902 new_fl |= EXT4_IMMUTABLE_FL;
3903 if (vfs_fl & S_NOATIME)
3904 new_fl |= EXT4_NOATIME_FL;
3905 if (vfs_fl & S_DIRSYNC)
3906 new_fl |= EXT4_DIRSYNC_FL;
3907 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3908}
de9a55b8 3909
0fc1b451 3910static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3911 struct ext4_inode_info *ei)
0fc1b451
AK
3912{
3913 blkcnt_t i_blocks ;
8180a562
AK
3914 struct inode *inode = &(ei->vfs_inode);
3915 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3916
3917 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3918 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3919 /* we are using combined 48 bit field */
3920 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3921 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3922 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3923 /* i_blocks represent file system block size */
3924 return i_blocks << (inode->i_blkbits - 9);
3925 } else {
3926 return i_blocks;
3927 }
0fc1b451
AK
3928 } else {
3929 return le32_to_cpu(raw_inode->i_blocks_lo);
3930 }
3931}
ff9ddf7e 3932
152a7b0a
TM
3933static inline void ext4_iget_extra_inode(struct inode *inode,
3934 struct ext4_inode *raw_inode,
3935 struct ext4_inode_info *ei)
3936{
3937 __le32 *magic = (void *)raw_inode +
3938 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3939 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3940 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3941 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3942 } else
3943 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3944}
3945
1d1fe1ee 3946struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3947{
617ba13b
MC
3948 struct ext4_iloc iloc;
3949 struct ext4_inode *raw_inode;
1d1fe1ee 3950 struct ext4_inode_info *ei;
1d1fe1ee 3951 struct inode *inode;
b436b9be 3952 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3953 long ret;
ac27a0ec 3954 int block;
08cefc7a
EB
3955 uid_t i_uid;
3956 gid_t i_gid;
ac27a0ec 3957
1d1fe1ee
DH
3958 inode = iget_locked(sb, ino);
3959 if (!inode)
3960 return ERR_PTR(-ENOMEM);
3961 if (!(inode->i_state & I_NEW))
3962 return inode;
3963
3964 ei = EXT4_I(inode);
7dc57615 3965 iloc.bh = NULL;
ac27a0ec 3966
1d1fe1ee
DH
3967 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3968 if (ret < 0)
ac27a0ec 3969 goto bad_inode;
617ba13b 3970 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3971
3972 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3973 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3974 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3975 EXT4_INODE_SIZE(inode->i_sb)) {
3976 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3977 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3978 EXT4_INODE_SIZE(inode->i_sb));
3979 ret = -EIO;
3980 goto bad_inode;
3981 }
3982 } else
3983 ei->i_extra_isize = 0;
3984
3985 /* Precompute checksum seed for inode metadata */
3986 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3987 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3988 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3989 __u32 csum;
3990 __le32 inum = cpu_to_le32(inode->i_ino);
3991 __le32 gen = raw_inode->i_generation;
3992 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3993 sizeof(inum));
3994 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3995 sizeof(gen));
3996 }
3997
3998 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3999 EXT4_ERROR_INODE(inode, "checksum invalid");
4000 ret = -EIO;
4001 goto bad_inode;
4002 }
4003
ac27a0ec 4004 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4005 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4006 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4007 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4008 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4009 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4010 }
08cefc7a
EB
4011 i_uid_write(inode, i_uid);
4012 i_gid_write(inode, i_gid);
bfe86848 4013 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4014
353eb83c 4015 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4016 ei->i_inline_off = 0;
ac27a0ec
DK
4017 ei->i_dir_start_lookup = 0;
4018 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4019 /* We now have enough fields to check if the inode was active or not.
4020 * This is needed because nfsd might try to access dead inodes
4021 * the test is that same one that e2fsck uses
4022 * NeilBrown 1999oct15
4023 */
4024 if (inode->i_nlink == 0) {
393d1d1d
DTB
4025 if ((inode->i_mode == 0 ||
4026 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4027 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4028 /* this inode is deleted */
1d1fe1ee 4029 ret = -ESTALE;
ac27a0ec
DK
4030 goto bad_inode;
4031 }
4032 /* The only unlinked inodes we let through here have
4033 * valid i_mode and are being read by the orphan
4034 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4035 * the process of deleting those.
4036 * OR it is the EXT4_BOOT_LOADER_INO which is
4037 * not initialized on a new filesystem. */
ac27a0ec 4038 }
ac27a0ec 4039 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4040 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4041 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4042 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4043 ei->i_file_acl |=
4044 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4045 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4046 ei->i_disksize = inode->i_size;
a9e7f447
DM
4047#ifdef CONFIG_QUOTA
4048 ei->i_reserved_quota = 0;
4049#endif
ac27a0ec
DK
4050 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4051 ei->i_block_group = iloc.block_group;
a4912123 4052 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4053 /*
4054 * NOTE! The in-memory inode i_data array is in little-endian order
4055 * even on big-endian machines: we do NOT byteswap the block numbers!
4056 */
617ba13b 4057 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4058 ei->i_data[block] = raw_inode->i_block[block];
4059 INIT_LIST_HEAD(&ei->i_orphan);
4060
b436b9be
JK
4061 /*
4062 * Set transaction id's of transactions that have to be committed
4063 * to finish f[data]sync. We set them to currently running transaction
4064 * as we cannot be sure that the inode or some of its metadata isn't
4065 * part of the transaction - the inode could have been reclaimed and
4066 * now it is reread from disk.
4067 */
4068 if (journal) {
4069 transaction_t *transaction;
4070 tid_t tid;
4071
a931da6a 4072 read_lock(&journal->j_state_lock);
b436b9be
JK
4073 if (journal->j_running_transaction)
4074 transaction = journal->j_running_transaction;
4075 else
4076 transaction = journal->j_committing_transaction;
4077 if (transaction)
4078 tid = transaction->t_tid;
4079 else
4080 tid = journal->j_commit_sequence;
a931da6a 4081 read_unlock(&journal->j_state_lock);
b436b9be
JK
4082 ei->i_sync_tid = tid;
4083 ei->i_datasync_tid = tid;
4084 }
4085
0040d987 4086 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4087 if (ei->i_extra_isize == 0) {
4088 /* The extra space is currently unused. Use it. */
617ba13b
MC
4089 ei->i_extra_isize = sizeof(struct ext4_inode) -
4090 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4091 } else {
152a7b0a 4092 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4093 }
814525f4 4094 }
ac27a0ec 4095
ef7f3835
KS
4096 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4097 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4098 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4099 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4100
25ec56b5
JNC
4101 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4102 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4103 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4104 inode->i_version |=
4105 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4106 }
4107
c4b5a614 4108 ret = 0;
485c26ec 4109 if (ei->i_file_acl &&
1032988c 4110 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4111 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4112 ei->i_file_acl);
485c26ec
TT
4113 ret = -EIO;
4114 goto bad_inode;
f19d5870
TM
4115 } else if (!ext4_has_inline_data(inode)) {
4116 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4117 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4118 (S_ISLNK(inode->i_mode) &&
4119 !ext4_inode_is_fast_symlink(inode))))
4120 /* Validate extent which is part of inode */
4121 ret = ext4_ext_check_inode(inode);
4122 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4123 (S_ISLNK(inode->i_mode) &&
4124 !ext4_inode_is_fast_symlink(inode))) {
4125 /* Validate block references which are part of inode */
4126 ret = ext4_ind_check_inode(inode);
4127 }
fe2c8191 4128 }
567f3e9a 4129 if (ret)
de9a55b8 4130 goto bad_inode;
7a262f7c 4131
ac27a0ec 4132 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4133 inode->i_op = &ext4_file_inode_operations;
4134 inode->i_fop = &ext4_file_operations;
4135 ext4_set_aops(inode);
ac27a0ec 4136 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4137 inode->i_op = &ext4_dir_inode_operations;
4138 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4139 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4140 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4141 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4142 nd_terminate_link(ei->i_data, inode->i_size,
4143 sizeof(ei->i_data) - 1);
4144 } else {
617ba13b
MC
4145 inode->i_op = &ext4_symlink_inode_operations;
4146 ext4_set_aops(inode);
ac27a0ec 4147 }
563bdd61
TT
4148 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4149 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4150 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4151 if (raw_inode->i_block[0])
4152 init_special_inode(inode, inode->i_mode,
4153 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4154 else
4155 init_special_inode(inode, inode->i_mode,
4156 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4157 } else if (ino == EXT4_BOOT_LOADER_INO) {
4158 make_bad_inode(inode);
563bdd61 4159 } else {
563bdd61 4160 ret = -EIO;
24676da4 4161 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4162 goto bad_inode;
ac27a0ec 4163 }
af5bc92d 4164 brelse(iloc.bh);
617ba13b 4165 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4166 unlock_new_inode(inode);
4167 return inode;
ac27a0ec
DK
4168
4169bad_inode:
567f3e9a 4170 brelse(iloc.bh);
1d1fe1ee
DH
4171 iget_failed(inode);
4172 return ERR_PTR(ret);
ac27a0ec
DK
4173}
4174
0fc1b451
AK
4175static int ext4_inode_blocks_set(handle_t *handle,
4176 struct ext4_inode *raw_inode,
4177 struct ext4_inode_info *ei)
4178{
4179 struct inode *inode = &(ei->vfs_inode);
4180 u64 i_blocks = inode->i_blocks;
4181 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4182
4183 if (i_blocks <= ~0U) {
4184 /*
4907cb7b 4185 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4186 * as multiple of 512 bytes
4187 */
8180a562 4188 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4189 raw_inode->i_blocks_high = 0;
84a8dce2 4190 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4191 return 0;
4192 }
4193 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4194 return -EFBIG;
4195
4196 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4197 /*
4198 * i_blocks can be represented in a 48 bit variable
4199 * as multiple of 512 bytes
4200 */
8180a562 4201 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4202 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4203 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4204 } else {
84a8dce2 4205 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4206 /* i_block is stored in file system block size */
4207 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4209 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4210 }
f287a1a5 4211 return 0;
0fc1b451
AK
4212}
4213
ac27a0ec
DK
4214/*
4215 * Post the struct inode info into an on-disk inode location in the
4216 * buffer-cache. This gobbles the caller's reference to the
4217 * buffer_head in the inode location struct.
4218 *
4219 * The caller must have write access to iloc->bh.
4220 */
617ba13b 4221static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4222 struct inode *inode,
830156c7 4223 struct ext4_iloc *iloc)
ac27a0ec 4224{
617ba13b
MC
4225 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4226 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4227 struct buffer_head *bh = iloc->bh;
4228 int err = 0, rc, block;
b71fc079 4229 int need_datasync = 0;
08cefc7a
EB
4230 uid_t i_uid;
4231 gid_t i_gid;
ac27a0ec
DK
4232
4233 /* For fields not not tracking in the in-memory inode,
4234 * initialise them to zero for new inodes. */
19f5fb7a 4235 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4236 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4237
ff9ddf7e 4238 ext4_get_inode_flags(ei);
ac27a0ec 4239 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4240 i_uid = i_uid_read(inode);
4241 i_gid = i_gid_read(inode);
af5bc92d 4242 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4243 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4244 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4245/*
4246 * Fix up interoperability with old kernels. Otherwise, old inodes get
4247 * re-used with the upper 16 bits of the uid/gid intact
4248 */
af5bc92d 4249 if (!ei->i_dtime) {
ac27a0ec 4250 raw_inode->i_uid_high =
08cefc7a 4251 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4252 raw_inode->i_gid_high =
08cefc7a 4253 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4254 } else {
4255 raw_inode->i_uid_high = 0;
4256 raw_inode->i_gid_high = 0;
4257 }
4258 } else {
08cefc7a
EB
4259 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4260 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4261 raw_inode->i_uid_high = 0;
4262 raw_inode->i_gid_high = 0;
4263 }
4264 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4265
4266 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4267 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4268 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4269 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4270
0fc1b451
AK
4271 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4272 goto out_brelse;
ac27a0ec 4273 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4274 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4275 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4276 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4277 raw_inode->i_file_acl_high =
4278 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4279 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4280 if (ei->i_disksize != ext4_isize(raw_inode)) {
4281 ext4_isize_set(raw_inode, ei->i_disksize);
4282 need_datasync = 1;
4283 }
a48380f7
AK
4284 if (ei->i_disksize > 0x7fffffffULL) {
4285 struct super_block *sb = inode->i_sb;
4286 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4287 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4288 EXT4_SB(sb)->s_es->s_rev_level ==
4289 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4290 /* If this is the first large file
4291 * created, add a flag to the superblock.
4292 */
4293 err = ext4_journal_get_write_access(handle,
4294 EXT4_SB(sb)->s_sbh);
4295 if (err)
4296 goto out_brelse;
4297 ext4_update_dynamic_rev(sb);
4298 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4299 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4300 ext4_handle_sync(handle);
b50924c2 4301 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4302 }
4303 }
4304 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4305 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4306 if (old_valid_dev(inode->i_rdev)) {
4307 raw_inode->i_block[0] =
4308 cpu_to_le32(old_encode_dev(inode->i_rdev));
4309 raw_inode->i_block[1] = 0;
4310 } else {
4311 raw_inode->i_block[0] = 0;
4312 raw_inode->i_block[1] =
4313 cpu_to_le32(new_encode_dev(inode->i_rdev));
4314 raw_inode->i_block[2] = 0;
4315 }
f19d5870 4316 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4317 for (block = 0; block < EXT4_N_BLOCKS; block++)
4318 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4319 }
ac27a0ec 4320
25ec56b5
JNC
4321 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4322 if (ei->i_extra_isize) {
4323 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4324 raw_inode->i_version_hi =
4325 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4326 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4327 }
4328
814525f4
DW
4329 ext4_inode_csum_set(inode, raw_inode, ei);
4330
830156c7 4331 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4332 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4333 if (!err)
4334 err = rc;
19f5fb7a 4335 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4336
b71fc079 4337 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4338out_brelse:
af5bc92d 4339 brelse(bh);
617ba13b 4340 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4341 return err;
4342}
4343
4344/*
617ba13b 4345 * ext4_write_inode()
ac27a0ec
DK
4346 *
4347 * We are called from a few places:
4348 *
4349 * - Within generic_file_write() for O_SYNC files.
4350 * Here, there will be no transaction running. We wait for any running
4907cb7b 4351 * transaction to commit.
ac27a0ec
DK
4352 *
4353 * - Within sys_sync(), kupdate and such.
4354 * We wait on commit, if tol to.
4355 *
4356 * - Within prune_icache() (PF_MEMALLOC == true)
4357 * Here we simply return. We can't afford to block kswapd on the
4358 * journal commit.
4359 *
4360 * In all cases it is actually safe for us to return without doing anything,
4361 * because the inode has been copied into a raw inode buffer in
617ba13b 4362 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4363 * knfsd.
4364 *
4365 * Note that we are absolutely dependent upon all inode dirtiers doing the
4366 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4367 * which we are interested.
4368 *
4369 * It would be a bug for them to not do this. The code:
4370 *
4371 * mark_inode_dirty(inode)
4372 * stuff();
4373 * inode->i_size = expr;
4374 *
4375 * is in error because a kswapd-driven write_inode() could occur while
4376 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4377 * will no longer be on the superblock's dirty inode list.
4378 */
a9185b41 4379int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4380{
91ac6f43
FM
4381 int err;
4382
ac27a0ec
DK
4383 if (current->flags & PF_MEMALLOC)
4384 return 0;
4385
91ac6f43
FM
4386 if (EXT4_SB(inode->i_sb)->s_journal) {
4387 if (ext4_journal_current_handle()) {
4388 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4389 dump_stack();
4390 return -EIO;
4391 }
ac27a0ec 4392
a9185b41 4393 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4394 return 0;
4395
4396 err = ext4_force_commit(inode->i_sb);
4397 } else {
4398 struct ext4_iloc iloc;
ac27a0ec 4399
8b472d73 4400 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4401 if (err)
4402 return err;
a9185b41 4403 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4404 sync_dirty_buffer(iloc.bh);
4405 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4406 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4407 "IO error syncing inode");
830156c7
FM
4408 err = -EIO;
4409 }
fd2dd9fb 4410 brelse(iloc.bh);
91ac6f43
FM
4411 }
4412 return err;
ac27a0ec
DK
4413}
4414
53e87268
JK
4415/*
4416 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4417 * buffers that are attached to a page stradding i_size and are undergoing
4418 * commit. In that case we have to wait for commit to finish and try again.
4419 */
4420static void ext4_wait_for_tail_page_commit(struct inode *inode)
4421{
4422 struct page *page;
4423 unsigned offset;
4424 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4425 tid_t commit_tid = 0;
4426 int ret;
4427
4428 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4429 /*
4430 * All buffers in the last page remain valid? Then there's nothing to
4431 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4432 * blocksize case
4433 */
4434 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4435 return;
4436 while (1) {
4437 page = find_lock_page(inode->i_mapping,
4438 inode->i_size >> PAGE_CACHE_SHIFT);
4439 if (!page)
4440 return;
ca99fdd2
LC
4441 ret = __ext4_journalled_invalidatepage(page, offset,
4442 PAGE_CACHE_SIZE - offset);
53e87268
JK
4443 unlock_page(page);
4444 page_cache_release(page);
4445 if (ret != -EBUSY)
4446 return;
4447 commit_tid = 0;
4448 read_lock(&journal->j_state_lock);
4449 if (journal->j_committing_transaction)
4450 commit_tid = journal->j_committing_transaction->t_tid;
4451 read_unlock(&journal->j_state_lock);
4452 if (commit_tid)
4453 jbd2_log_wait_commit(journal, commit_tid);
4454 }
4455}
4456
ac27a0ec 4457/*
617ba13b 4458 * ext4_setattr()
ac27a0ec
DK
4459 *
4460 * Called from notify_change.
4461 *
4462 * We want to trap VFS attempts to truncate the file as soon as
4463 * possible. In particular, we want to make sure that when the VFS
4464 * shrinks i_size, we put the inode on the orphan list and modify
4465 * i_disksize immediately, so that during the subsequent flushing of
4466 * dirty pages and freeing of disk blocks, we can guarantee that any
4467 * commit will leave the blocks being flushed in an unused state on
4468 * disk. (On recovery, the inode will get truncated and the blocks will
4469 * be freed, so we have a strong guarantee that no future commit will
4470 * leave these blocks visible to the user.)
4471 *
678aaf48
JK
4472 * Another thing we have to assure is that if we are in ordered mode
4473 * and inode is still attached to the committing transaction, we must
4474 * we start writeout of all the dirty pages which are being truncated.
4475 * This way we are sure that all the data written in the previous
4476 * transaction are already on disk (truncate waits for pages under
4477 * writeback).
4478 *
4479 * Called with inode->i_mutex down.
ac27a0ec 4480 */
617ba13b 4481int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4482{
4483 struct inode *inode = dentry->d_inode;
4484 int error, rc = 0;
3d287de3 4485 int orphan = 0;
ac27a0ec
DK
4486 const unsigned int ia_valid = attr->ia_valid;
4487
4488 error = inode_change_ok(inode, attr);
4489 if (error)
4490 return error;
4491
12755627 4492 if (is_quota_modification(inode, attr))
871a2931 4493 dquot_initialize(inode);
08cefc7a
EB
4494 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4495 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4496 handle_t *handle;
4497
4498 /* (user+group)*(old+new) structure, inode write (sb,
4499 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4500 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4501 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4502 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4503 if (IS_ERR(handle)) {
4504 error = PTR_ERR(handle);
4505 goto err_out;
4506 }
b43fa828 4507 error = dquot_transfer(inode, attr);
ac27a0ec 4508 if (error) {
617ba13b 4509 ext4_journal_stop(handle);
ac27a0ec
DK
4510 return error;
4511 }
4512 /* Update corresponding info in inode so that everything is in
4513 * one transaction */
4514 if (attr->ia_valid & ATTR_UID)
4515 inode->i_uid = attr->ia_uid;
4516 if (attr->ia_valid & ATTR_GID)
4517 inode->i_gid = attr->ia_gid;
617ba13b
MC
4518 error = ext4_mark_inode_dirty(handle, inode);
4519 ext4_journal_stop(handle);
ac27a0ec
DK
4520 }
4521
e2b46574 4522 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4523
12e9b892 4524 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4525 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4526
0c095c7f
TT
4527 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4528 return -EFBIG;
e2b46574
ES
4529 }
4530 }
4531
ac27a0ec 4532 if (S_ISREG(inode->i_mode) &&
c8d46e41 4533 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4534 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4535 handle_t *handle;
4536
9924a92a 4537 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4538 if (IS_ERR(handle)) {
4539 error = PTR_ERR(handle);
4540 goto err_out;
4541 }
3d287de3
DM
4542 if (ext4_handle_valid(handle)) {
4543 error = ext4_orphan_add(handle, inode);
4544 orphan = 1;
4545 }
617ba13b
MC
4546 EXT4_I(inode)->i_disksize = attr->ia_size;
4547 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4548 if (!error)
4549 error = rc;
617ba13b 4550 ext4_journal_stop(handle);
678aaf48
JK
4551
4552 if (ext4_should_order_data(inode)) {
4553 error = ext4_begin_ordered_truncate(inode,
4554 attr->ia_size);
4555 if (error) {
4556 /* Do as much error cleanup as possible */
9924a92a
TT
4557 handle = ext4_journal_start(inode,
4558 EXT4_HT_INODE, 3);
678aaf48
JK
4559 if (IS_ERR(handle)) {
4560 ext4_orphan_del(NULL, inode);
4561 goto err_out;
4562 }
4563 ext4_orphan_del(handle, inode);
3d287de3 4564 orphan = 0;
678aaf48
JK
4565 ext4_journal_stop(handle);
4566 goto err_out;
4567 }
4568 }
ac27a0ec
DK
4569 }
4570
072bd7ea 4571 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4572 if (attr->ia_size != inode->i_size) {
4573 loff_t oldsize = inode->i_size;
4574
4575 i_size_write(inode, attr->ia_size);
4576 /*
4577 * Blocks are going to be removed from the inode. Wait
4578 * for dio in flight. Temporarily disable
4579 * dioread_nolock to prevent livelock.
4580 */
1b65007e 4581 if (orphan) {
53e87268
JK
4582 if (!ext4_should_journal_data(inode)) {
4583 ext4_inode_block_unlocked_dio(inode);
4584 inode_dio_wait(inode);
4585 ext4_inode_resume_unlocked_dio(inode);
4586 } else
4587 ext4_wait_for_tail_page_commit(inode);
1b65007e 4588 }
53e87268
JK
4589 /*
4590 * Truncate pagecache after we've waited for commit
4591 * in data=journal mode to make pages freeable.
4592 */
4593 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4594 }
afcff5d8 4595 ext4_truncate(inode);
072bd7ea 4596 }
ac27a0ec 4597
1025774c
CH
4598 if (!rc) {
4599 setattr_copy(inode, attr);
4600 mark_inode_dirty(inode);
4601 }
4602
4603 /*
4604 * If the call to ext4_truncate failed to get a transaction handle at
4605 * all, we need to clean up the in-core orphan list manually.
4606 */
3d287de3 4607 if (orphan && inode->i_nlink)
617ba13b 4608 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4609
4610 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4611 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4612
4613err_out:
617ba13b 4614 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4615 if (!error)
4616 error = rc;
4617 return error;
4618}
4619
3e3398a0
MC
4620int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4621 struct kstat *stat)
4622{
4623 struct inode *inode;
8af8eecc 4624 unsigned long long delalloc_blocks;
3e3398a0
MC
4625
4626 inode = dentry->d_inode;
4627 generic_fillattr(inode, stat);
4628
4629 /*
4630 * We can't update i_blocks if the block allocation is delayed
4631 * otherwise in the case of system crash before the real block
4632 * allocation is done, we will have i_blocks inconsistent with
4633 * on-disk file blocks.
4634 * We always keep i_blocks updated together with real
4635 * allocation. But to not confuse with user, stat
4636 * will return the blocks that include the delayed allocation
4637 * blocks for this file.
4638 */
96607551
TM
4639 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4640 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4641
8af8eecc 4642 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4643 return 0;
4644}
ac27a0ec 4645
fffb2739
JK
4646static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4647 int pextents)
a02908f1 4648{
12e9b892 4649 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4650 return ext4_ind_trans_blocks(inode, lblocks);
4651 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4652}
ac51d837 4653
ac27a0ec 4654/*
a02908f1
MC
4655 * Account for index blocks, block groups bitmaps and block group
4656 * descriptor blocks if modify datablocks and index blocks
4657 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4658 *
a02908f1 4659 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4660 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4661 * they could still across block group boundary.
ac27a0ec 4662 *
a02908f1
MC
4663 * Also account for superblock, inode, quota and xattr blocks
4664 */
fffb2739
JK
4665static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4666 int pextents)
a02908f1 4667{
8df9675f
TT
4668 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4669 int gdpblocks;
a02908f1
MC
4670 int idxblocks;
4671 int ret = 0;
4672
4673 /*
fffb2739
JK
4674 * How many index blocks need to touch to map @lblocks logical blocks
4675 * to @pextents physical extents?
a02908f1 4676 */
fffb2739 4677 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4678
4679 ret = idxblocks;
4680
4681 /*
4682 * Now let's see how many group bitmaps and group descriptors need
4683 * to account
4684 */
fffb2739 4685 groups = idxblocks + pextents;
a02908f1 4686 gdpblocks = groups;
8df9675f
TT
4687 if (groups > ngroups)
4688 groups = ngroups;
a02908f1
MC
4689 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4690 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4691
4692 /* bitmaps and block group descriptor blocks */
4693 ret += groups + gdpblocks;
4694
4695 /* Blocks for super block, inode, quota and xattr blocks */
4696 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4697
4698 return ret;
4699}
4700
4701/*
25985edc 4702 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4703 * the modification of a single pages into a single transaction,
4704 * which may include multiple chunks of block allocations.
ac27a0ec 4705 *
525f4ed8 4706 * This could be called via ext4_write_begin()
ac27a0ec 4707 *
525f4ed8 4708 * We need to consider the worse case, when
a02908f1 4709 * one new block per extent.
ac27a0ec 4710 */
a86c6181 4711int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4712{
617ba13b 4713 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4714 int ret;
4715
fffb2739 4716 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4717
a02908f1 4718 /* Account for data blocks for journalled mode */
617ba13b 4719 if (ext4_should_journal_data(inode))
a02908f1 4720 ret += bpp;
ac27a0ec
DK
4721 return ret;
4722}
f3bd1f3f
MC
4723
4724/*
4725 * Calculate the journal credits for a chunk of data modification.
4726 *
4727 * This is called from DIO, fallocate or whoever calling
79e83036 4728 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4729 *
4730 * journal buffers for data blocks are not included here, as DIO
4731 * and fallocate do no need to journal data buffers.
4732 */
4733int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4734{
4735 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4736}
4737
ac27a0ec 4738/*
617ba13b 4739 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4740 * Give this, we know that the caller already has write access to iloc->bh.
4741 */
617ba13b 4742int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4743 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4744{
4745 int err = 0;
4746
c64db50e 4747 if (IS_I_VERSION(inode))
25ec56b5
JNC
4748 inode_inc_iversion(inode);
4749
ac27a0ec
DK
4750 /* the do_update_inode consumes one bh->b_count */
4751 get_bh(iloc->bh);
4752
dab291af 4753 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4754 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4755 put_bh(iloc->bh);
4756 return err;
4757}
4758
4759/*
4760 * On success, We end up with an outstanding reference count against
4761 * iloc->bh. This _must_ be cleaned up later.
4762 */
4763
4764int
617ba13b
MC
4765ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4766 struct ext4_iloc *iloc)
ac27a0ec 4767{
0390131b
FM
4768 int err;
4769
4770 err = ext4_get_inode_loc(inode, iloc);
4771 if (!err) {
4772 BUFFER_TRACE(iloc->bh, "get_write_access");
4773 err = ext4_journal_get_write_access(handle, iloc->bh);
4774 if (err) {
4775 brelse(iloc->bh);
4776 iloc->bh = NULL;
ac27a0ec
DK
4777 }
4778 }
617ba13b 4779 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4780 return err;
4781}
4782
6dd4ee7c
KS
4783/*
4784 * Expand an inode by new_extra_isize bytes.
4785 * Returns 0 on success or negative error number on failure.
4786 */
1d03ec98
AK
4787static int ext4_expand_extra_isize(struct inode *inode,
4788 unsigned int new_extra_isize,
4789 struct ext4_iloc iloc,
4790 handle_t *handle)
6dd4ee7c
KS
4791{
4792 struct ext4_inode *raw_inode;
4793 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4794
4795 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4796 return 0;
4797
4798 raw_inode = ext4_raw_inode(&iloc);
4799
4800 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4801
4802 /* No extended attributes present */
19f5fb7a
TT
4803 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4804 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4805 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4806 new_extra_isize);
4807 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4808 return 0;
4809 }
4810
4811 /* try to expand with EAs present */
4812 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4813 raw_inode, handle);
4814}
4815
ac27a0ec
DK
4816/*
4817 * What we do here is to mark the in-core inode as clean with respect to inode
4818 * dirtiness (it may still be data-dirty).
4819 * This means that the in-core inode may be reaped by prune_icache
4820 * without having to perform any I/O. This is a very good thing,
4821 * because *any* task may call prune_icache - even ones which
4822 * have a transaction open against a different journal.
4823 *
4824 * Is this cheating? Not really. Sure, we haven't written the
4825 * inode out, but prune_icache isn't a user-visible syncing function.
4826 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4827 * we start and wait on commits.
ac27a0ec 4828 */
617ba13b 4829int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4830{
617ba13b 4831 struct ext4_iloc iloc;
6dd4ee7c
KS
4832 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4833 static unsigned int mnt_count;
4834 int err, ret;
ac27a0ec
DK
4835
4836 might_sleep();
7ff9c073 4837 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4838 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4839 if (ext4_handle_valid(handle) &&
4840 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4841 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4842 /*
4843 * We need extra buffer credits since we may write into EA block
4844 * with this same handle. If journal_extend fails, then it will
4845 * only result in a minor loss of functionality for that inode.
4846 * If this is felt to be critical, then e2fsck should be run to
4847 * force a large enough s_min_extra_isize.
4848 */
4849 if ((jbd2_journal_extend(handle,
4850 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4851 ret = ext4_expand_extra_isize(inode,
4852 sbi->s_want_extra_isize,
4853 iloc, handle);
4854 if (ret) {
19f5fb7a
TT
4855 ext4_set_inode_state(inode,
4856 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4857 if (mnt_count !=
4858 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4859 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4860 "Unable to expand inode %lu. Delete"
4861 " some EAs or run e2fsck.",
4862 inode->i_ino);
c1bddad9
AK
4863 mnt_count =
4864 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4865 }
4866 }
4867 }
4868 }
ac27a0ec 4869 if (!err)
617ba13b 4870 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4871 return err;
4872}
4873
4874/*
617ba13b 4875 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4876 *
4877 * We're really interested in the case where a file is being extended.
4878 * i_size has been changed by generic_commit_write() and we thus need
4879 * to include the updated inode in the current transaction.
4880 *
5dd4056d 4881 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4882 * are allocated to the file.
4883 *
4884 * If the inode is marked synchronous, we don't honour that here - doing
4885 * so would cause a commit on atime updates, which we don't bother doing.
4886 * We handle synchronous inodes at the highest possible level.
4887 */
aa385729 4888void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4889{
ac27a0ec
DK
4890 handle_t *handle;
4891
9924a92a 4892 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4893 if (IS_ERR(handle))
4894 goto out;
f3dc272f 4895
f3dc272f
CW
4896 ext4_mark_inode_dirty(handle, inode);
4897
617ba13b 4898 ext4_journal_stop(handle);
ac27a0ec
DK
4899out:
4900 return;
4901}
4902
4903#if 0
4904/*
4905 * Bind an inode's backing buffer_head into this transaction, to prevent
4906 * it from being flushed to disk early. Unlike
617ba13b 4907 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4908 * returns no iloc structure, so the caller needs to repeat the iloc
4909 * lookup to mark the inode dirty later.
4910 */
617ba13b 4911static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4912{
617ba13b 4913 struct ext4_iloc iloc;
ac27a0ec
DK
4914
4915 int err = 0;
4916 if (handle) {
617ba13b 4917 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4918 if (!err) {
4919 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4920 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4921 if (!err)
0390131b 4922 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4923 NULL,
0390131b 4924 iloc.bh);
ac27a0ec
DK
4925 brelse(iloc.bh);
4926 }
4927 }
617ba13b 4928 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4929 return err;
4930}
4931#endif
4932
617ba13b 4933int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4934{
4935 journal_t *journal;
4936 handle_t *handle;
4937 int err;
4938
4939 /*
4940 * We have to be very careful here: changing a data block's
4941 * journaling status dynamically is dangerous. If we write a
4942 * data block to the journal, change the status and then delete
4943 * that block, we risk forgetting to revoke the old log record
4944 * from the journal and so a subsequent replay can corrupt data.
4945 * So, first we make sure that the journal is empty and that
4946 * nobody is changing anything.
4947 */
4948
617ba13b 4949 journal = EXT4_JOURNAL(inode);
0390131b
FM
4950 if (!journal)
4951 return 0;
d699594d 4952 if (is_journal_aborted(journal))
ac27a0ec 4953 return -EROFS;
2aff57b0
YY
4954 /* We have to allocate physical blocks for delalloc blocks
4955 * before flushing journal. otherwise delalloc blocks can not
4956 * be allocated any more. even more truncate on delalloc blocks
4957 * could trigger BUG by flushing delalloc blocks in journal.
4958 * There is no delalloc block in non-journal data mode.
4959 */
4960 if (val && test_opt(inode->i_sb, DELALLOC)) {
4961 err = ext4_alloc_da_blocks(inode);
4962 if (err < 0)
4963 return err;
4964 }
ac27a0ec 4965
17335dcc
DM
4966 /* Wait for all existing dio workers */
4967 ext4_inode_block_unlocked_dio(inode);
4968 inode_dio_wait(inode);
4969
dab291af 4970 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4971
4972 /*
4973 * OK, there are no updates running now, and all cached data is
4974 * synced to disk. We are now in a completely consistent state
4975 * which doesn't have anything in the journal, and we know that
4976 * no filesystem updates are running, so it is safe to modify
4977 * the inode's in-core data-journaling state flag now.
4978 */
4979
4980 if (val)
12e9b892 4981 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4982 else {
4983 jbd2_journal_flush(journal);
12e9b892 4984 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4985 }
617ba13b 4986 ext4_set_aops(inode);
ac27a0ec 4987
dab291af 4988 jbd2_journal_unlock_updates(journal);
17335dcc 4989 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4990
4991 /* Finally we can mark the inode as dirty. */
4992
9924a92a 4993 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4994 if (IS_ERR(handle))
4995 return PTR_ERR(handle);
4996
617ba13b 4997 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4998 ext4_handle_sync(handle);
617ba13b
MC
4999 ext4_journal_stop(handle);
5000 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5001
5002 return err;
5003}
2e9ee850
AK
5004
5005static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5006{
5007 return !buffer_mapped(bh);
5008}
5009
c2ec175c 5010int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5011{
c2ec175c 5012 struct page *page = vmf->page;
2e9ee850
AK
5013 loff_t size;
5014 unsigned long len;
9ea7df53 5015 int ret;
2e9ee850 5016 struct file *file = vma->vm_file;
496ad9aa 5017 struct inode *inode = file_inode(file);
2e9ee850 5018 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5019 handle_t *handle;
5020 get_block_t *get_block;
5021 int retries = 0;
2e9ee850 5022
8e8ad8a5 5023 sb_start_pagefault(inode->i_sb);
041bbb6d 5024 file_update_time(vma->vm_file);
9ea7df53
JK
5025 /* Delalloc case is easy... */
5026 if (test_opt(inode->i_sb, DELALLOC) &&
5027 !ext4_should_journal_data(inode) &&
5028 !ext4_nonda_switch(inode->i_sb)) {
5029 do {
5030 ret = __block_page_mkwrite(vma, vmf,
5031 ext4_da_get_block_prep);
5032 } while (ret == -ENOSPC &&
5033 ext4_should_retry_alloc(inode->i_sb, &retries));
5034 goto out_ret;
2e9ee850 5035 }
0e499890
DW
5036
5037 lock_page(page);
9ea7df53
JK
5038 size = i_size_read(inode);
5039 /* Page got truncated from under us? */
5040 if (page->mapping != mapping || page_offset(page) > size) {
5041 unlock_page(page);
5042 ret = VM_FAULT_NOPAGE;
5043 goto out;
0e499890 5044 }
2e9ee850
AK
5045
5046 if (page->index == size >> PAGE_CACHE_SHIFT)
5047 len = size & ~PAGE_CACHE_MASK;
5048 else
5049 len = PAGE_CACHE_SIZE;
a827eaff 5050 /*
9ea7df53
JK
5051 * Return if we have all the buffers mapped. This avoids the need to do
5052 * journal_start/journal_stop which can block and take a long time
a827eaff 5053 */
2e9ee850 5054 if (page_has_buffers(page)) {
f19d5870
TM
5055 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5056 0, len, NULL,
5057 ext4_bh_unmapped)) {
9ea7df53 5058 /* Wait so that we don't change page under IO */
1d1d1a76 5059 wait_for_stable_page(page);
9ea7df53
JK
5060 ret = VM_FAULT_LOCKED;
5061 goto out;
a827eaff 5062 }
2e9ee850 5063 }
a827eaff 5064 unlock_page(page);
9ea7df53
JK
5065 /* OK, we need to fill the hole... */
5066 if (ext4_should_dioread_nolock(inode))
5067 get_block = ext4_get_block_write;
5068 else
5069 get_block = ext4_get_block;
5070retry_alloc:
9924a92a
TT
5071 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5072 ext4_writepage_trans_blocks(inode));
9ea7df53 5073 if (IS_ERR(handle)) {
c2ec175c 5074 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5075 goto out;
5076 }
5077 ret = __block_page_mkwrite(vma, vmf, get_block);
5078 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5079 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5080 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5081 unlock_page(page);
5082 ret = VM_FAULT_SIGBUS;
fcbb5515 5083 ext4_journal_stop(handle);
9ea7df53
JK
5084 goto out;
5085 }
5086 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5087 }
5088 ext4_journal_stop(handle);
5089 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5090 goto retry_alloc;
5091out_ret:
5092 ret = block_page_mkwrite_return(ret);
5093out:
8e8ad8a5 5094 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5095 return ret;
5096}