]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
vfs: Add 64 bit i_version support
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af
MC
28#include <linux/ext4_jbd2.h>
29#include <linux/jbd2.h>
ac27a0ec
DK
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
39#include "xattr.h"
40#include "acl.h"
41
ac27a0ec
DK
42/*
43 * Test whether an inode is a fast symlink.
44 */
617ba13b 45static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 46{
617ba13b 47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
48 (inode->i_sb->s_blocksize >> 9) : 0;
49
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51}
52
53/*
617ba13b 54 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
61 */
617ba13b
MC
62int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
64{
65 int err;
66
67 might_sleep();
68
69 BUFFER_TRACE(bh, "enter");
70
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
75
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
80
617ba13b
MC
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 83 if (bh) {
dab291af 84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 85 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
86 }
87 return 0;
88 }
89
90 /*
91 * data!=journal && (is_metadata || should_journal_data(inode))
92 */
617ba13b
MC
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 95 if (err)
617ba13b 96 ext4_abort(inode->i_sb, __FUNCTION__,
ac27a0ec
DK
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
100}
101
102/*
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
105 */
106static unsigned long blocks_for_truncate(struct inode *inode)
107{
725d26d3 108 ext4_lblk_t needed;
ac27a0ec
DK
109
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
617ba13b 115 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
120
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
617ba13b
MC
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 125
617ba13b 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
127}
128
129/*
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
133 *
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
138 */
139static handle_t *start_transaction(struct inode *inode)
140{
141 handle_t *result;
142
617ba13b 143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
144 if (!IS_ERR(result))
145 return result;
146
617ba13b 147 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
148 return result;
149}
150
151/*
152 * Try to extend this transaction for the purposes of truncation.
153 *
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
156 */
157static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158{
617ba13b 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 160 return 0;
617ba13b 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
162 return 0;
163 return 1;
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
617ba13b 171static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
172{
173 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
175}
176
177/*
178 * Called at the last iput() if i_nlink is zero.
179 */
617ba13b 180void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
181{
182 handle_t *handle;
183
184 truncate_inode_pages(&inode->i_data, 0);
185
186 if (is_bad_inode(inode))
187 goto no_delete;
188
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
191 /*
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
195 */
617ba13b 196 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
197 goto no_delete;
198 }
199
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
617ba13b 204 ext4_truncate(inode);
ac27a0ec 205 /*
617ba13b 206 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 207 * AKPM: I think this can be inside the above `if'.
617ba13b 208 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 209 * deletion of a non-existent orphan - this is because we don't
617ba13b 210 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
211 * (Well, we could do this if we need to, but heck - it works)
212 */
617ba13b
MC
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
215
216 /*
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
222 */
617ba13b 223 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
617ba13b
MC
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
ac27a0ec
DK
229 return;
230no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
232}
233
234typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238} Indirect;
239
240static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241{
242 p->key = *(p->p = v);
243 p->bh = bh;
244}
245
ac27a0ec 246/**
617ba13b 247 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
8c55e204
DK
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
ac27a0ec 253 *
617ba13b 254 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
261 *
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
265 */
266
267/*
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
275 */
276
617ba13b 277static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 280{
617ba13b
MC
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
288
289 if (i_block < 0) {
617ba13b 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 295 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 299 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 304 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
e2b46574 310 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 311 "block %lu > max",
e2b46574
ES
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
ac27a0ec
DK
314 }
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
318}
319
320/**
617ba13b 321 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
327 *
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
339 *
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
ac27a0ec
DK
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
346 *
347 * Need to be called with
0e855ac8 348 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 349 */
725d26d3
AK
350static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
ac27a0ec
DK
352 Indirect chain[4], int *err)
353{
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
357
358 *err = 0;
359 /* i_data is not going away, no lock needed */
617ba13b 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
ac27a0ec
DK
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
371 }
372 return NULL;
373
ac27a0ec
DK
374failure:
375 *err = -EIO;
376no_block:
377 return p;
378}
379
380/**
617ba13b 381 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
382 * @inode: owner
383 * @ind: descriptor of indirect block.
384 *
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
392 *
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
397 *
398 * Caller must make sure that @ind is valid and will stay that way.
399 */
617ba13b 400static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 401{
617ba13b 402 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
617ba13b
MC
405 ext4_fsblk_t bg_start;
406 ext4_grpblk_t colour;
ac27a0ec
DK
407
408 /* Try to find previous block */
409 for (p = ind->p - 1; p >= start; p--) {
410 if (*p)
411 return le32_to_cpu(*p);
412 }
413
414 /* No such thing, so let's try location of indirect block */
415 if (ind->bh)
416 return ind->bh->b_blocknr;
417
418 /*
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
421 */
617ba13b 422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
ac27a0ec 423 colour = (current->pid % 16) *
617ba13b 424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
ac27a0ec
DK
425 return bg_start + colour;
426}
427
428/**
617ba13b 429 * ext4_find_goal - find a prefered place for allocation.
ac27a0ec
DK
430 * @inode: owner
431 * @block: block we want
432 * @chain: chain of indirect blocks
433 * @partial: pointer to the last triple within a chain
434 * @goal: place to store the result.
435 *
436 * Normally this function find the prefered place for block allocation,
437 * stores it in *@goal and returns zero.
438 */
439
725d26d3 440static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
ac27a0ec
DK
441 Indirect chain[4], Indirect *partial)
442{
617ba13b 443 struct ext4_block_alloc_info *block_i;
ac27a0ec 444
617ba13b 445 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
446
447 /*
448 * try the heuristic for sequential allocation,
449 * failing that at least try to get decent locality.
450 */
451 if (block_i && (block == block_i->last_alloc_logical_block + 1)
452 && (block_i->last_alloc_physical_block != 0)) {
453 return block_i->last_alloc_physical_block + 1;
454 }
455
617ba13b 456 return ext4_find_near(inode, partial);
ac27a0ec
DK
457}
458
459/**
617ba13b 460 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
461 * of direct blocks need to be allocated for the given branch.
462 *
463 * @branch: chain of indirect blocks
464 * @k: number of blocks need for indirect blocks
465 * @blks: number of data blocks to be mapped.
466 * @blocks_to_boundary: the offset in the indirect block
467 *
468 * return the total number of blocks to be allocate, including the
469 * direct and indirect blocks.
470 */
617ba13b 471static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
472 int blocks_to_boundary)
473{
474 unsigned long count = 0;
475
476 /*
477 * Simple case, [t,d]Indirect block(s) has not allocated yet
478 * then it's clear blocks on that path have not allocated
479 */
480 if (k > 0) {
481 /* right now we don't handle cross boundary allocation */
482 if (blks < blocks_to_boundary + 1)
483 count += blks;
484 else
485 count += blocks_to_boundary + 1;
486 return count;
487 }
488
489 count++;
490 while (count < blks && count <= blocks_to_boundary &&
491 le32_to_cpu(*(branch[0].p + count)) == 0) {
492 count++;
493 }
494 return count;
495}
496
497/**
617ba13b 498 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
499 * @indirect_blks: the number of blocks need to allocate for indirect
500 * blocks
501 *
502 * @new_blocks: on return it will store the new block numbers for
503 * the indirect blocks(if needed) and the first direct block,
504 * @blks: on return it will store the total number of allocated
505 * direct blocks
506 */
617ba13b
MC
507static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
508 ext4_fsblk_t goal, int indirect_blks, int blks,
509 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
510{
511 int target, i;
512 unsigned long count = 0;
513 int index = 0;
617ba13b 514 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
515 int ret = 0;
516
517 /*
518 * Here we try to allocate the requested multiple blocks at once,
519 * on a best-effort basis.
520 * To build a branch, we should allocate blocks for
521 * the indirect blocks(if not allocated yet), and at least
522 * the first direct block of this branch. That's the
523 * minimum number of blocks need to allocate(required)
524 */
525 target = blks + indirect_blks;
526
527 while (1) {
528 count = target;
529 /* allocating blocks for indirect blocks and direct blocks */
617ba13b 530 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
ac27a0ec
DK
531 if (*err)
532 goto failed_out;
533
534 target -= count;
535 /* allocate blocks for indirect blocks */
536 while (index < indirect_blks && count) {
537 new_blocks[index++] = current_block++;
538 count--;
539 }
540
541 if (count > 0)
542 break;
543 }
544
545 /* save the new block number for the first direct block */
546 new_blocks[index] = current_block;
547
548 /* total number of blocks allocated for direct blocks */
549 ret = count;
550 *err = 0;
551 return ret;
552failed_out:
553 for (i = 0; i <index; i++)
617ba13b 554 ext4_free_blocks(handle, inode, new_blocks[i], 1);
ac27a0ec
DK
555 return ret;
556}
557
558/**
617ba13b 559 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
560 * @inode: owner
561 * @indirect_blks: number of allocated indirect blocks
562 * @blks: number of allocated direct blocks
563 * @offsets: offsets (in the blocks) to store the pointers to next.
564 * @branch: place to store the chain in.
565 *
566 * This function allocates blocks, zeroes out all but the last one,
567 * links them into chain and (if we are synchronous) writes them to disk.
568 * In other words, it prepares a branch that can be spliced onto the
569 * inode. It stores the information about that chain in the branch[], in
617ba13b 570 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
571 * we had read the existing part of chain and partial points to the last
572 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 573 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
574 * place chain is disconnected - *branch->p is still zero (we did not
575 * set the last link), but branch->key contains the number that should
576 * be placed into *branch->p to fill that gap.
577 *
578 * If allocation fails we free all blocks we've allocated (and forget
579 * their buffer_heads) and return the error value the from failed
617ba13b 580 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
581 * as described above and return 0.
582 */
617ba13b
MC
583static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
584 int indirect_blks, int *blks, ext4_fsblk_t goal,
725d26d3 585 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
586{
587 int blocksize = inode->i_sb->s_blocksize;
588 int i, n = 0;
589 int err = 0;
590 struct buffer_head *bh;
591 int num;
617ba13b
MC
592 ext4_fsblk_t new_blocks[4];
593 ext4_fsblk_t current_block;
ac27a0ec 594
617ba13b 595 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
ac27a0ec
DK
596 *blks, new_blocks, &err);
597 if (err)
598 return err;
599
600 branch[0].key = cpu_to_le32(new_blocks[0]);
601 /*
602 * metadata blocks and data blocks are allocated.
603 */
604 for (n = 1; n <= indirect_blks; n++) {
605 /*
606 * Get buffer_head for parent block, zero it out
607 * and set the pointer to new one, then send
608 * parent to disk.
609 */
610 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
611 branch[n].bh = bh;
612 lock_buffer(bh);
613 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 614 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
615 if (err) {
616 unlock_buffer(bh);
617 brelse(bh);
618 goto failed;
619 }
620
621 memset(bh->b_data, 0, blocksize);
622 branch[n].p = (__le32 *) bh->b_data + offsets[n];
623 branch[n].key = cpu_to_le32(new_blocks[n]);
624 *branch[n].p = branch[n].key;
625 if ( n == indirect_blks) {
626 current_block = new_blocks[n];
627 /*
628 * End of chain, update the last new metablock of
629 * the chain to point to the new allocated
630 * data blocks numbers
631 */
632 for (i=1; i < num; i++)
633 *(branch[n].p + i) = cpu_to_le32(++current_block);
634 }
635 BUFFER_TRACE(bh, "marking uptodate");
636 set_buffer_uptodate(bh);
637 unlock_buffer(bh);
638
617ba13b
MC
639 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
640 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
641 if (err)
642 goto failed;
643 }
644 *blks = num;
645 return err;
646failed:
647 /* Allocation failed, free what we already allocated */
648 for (i = 1; i <= n ; i++) {
dab291af 649 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 650 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
651 }
652 for (i = 0; i <indirect_blks; i++)
617ba13b 653 ext4_free_blocks(handle, inode, new_blocks[i], 1);
ac27a0ec 654
617ba13b 655 ext4_free_blocks(handle, inode, new_blocks[i], num);
ac27a0ec
DK
656
657 return err;
658}
659
660/**
617ba13b 661 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
662 * @inode: owner
663 * @block: (logical) number of block we are adding
664 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 665 * ext4_alloc_branch)
ac27a0ec
DK
666 * @where: location of missing link
667 * @num: number of indirect blocks we are adding
668 * @blks: number of direct blocks we are adding
669 *
670 * This function fills the missing link and does all housekeeping needed in
671 * inode (->i_blocks, etc.). In case of success we end up with the full
672 * chain to new block and return 0.
673 */
617ba13b 674static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 675 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
676{
677 int i;
678 int err = 0;
617ba13b
MC
679 struct ext4_block_alloc_info *block_i;
680 ext4_fsblk_t current_block;
ac27a0ec 681
617ba13b 682 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
683 /*
684 * If we're splicing into a [td]indirect block (as opposed to the
685 * inode) then we need to get write access to the [td]indirect block
686 * before the splice.
687 */
688 if (where->bh) {
689 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 690 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
691 if (err)
692 goto err_out;
693 }
694 /* That's it */
695
696 *where->p = where->key;
697
698 /*
699 * Update the host buffer_head or inode to point to more just allocated
700 * direct blocks blocks
701 */
702 if (num == 0 && blks > 1) {
703 current_block = le32_to_cpu(where->key) + 1;
704 for (i = 1; i < blks; i++)
705 *(where->p + i ) = cpu_to_le32(current_block++);
706 }
707
708 /*
709 * update the most recently allocated logical & physical block
710 * in i_block_alloc_info, to assist find the proper goal block for next
711 * allocation
712 */
713 if (block_i) {
714 block_i->last_alloc_logical_block = block + blks - 1;
715 block_i->last_alloc_physical_block =
716 le32_to_cpu(where[num].key) + blks - 1;
717 }
718
719 /* We are done with atomic stuff, now do the rest of housekeeping */
720
ef7f3835 721 inode->i_ctime = ext4_current_time(inode);
617ba13b 722 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
723
724 /* had we spliced it onto indirect block? */
725 if (where->bh) {
726 /*
727 * If we spliced it onto an indirect block, we haven't
728 * altered the inode. Note however that if it is being spliced
729 * onto an indirect block at the very end of the file (the
730 * file is growing) then we *will* alter the inode to reflect
731 * the new i_size. But that is not done here - it is done in
617ba13b 732 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
733 */
734 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
735 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
736 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
737 if (err)
738 goto err_out;
739 } else {
740 /*
741 * OK, we spliced it into the inode itself on a direct block.
742 * Inode was dirtied above.
743 */
744 jbd_debug(5, "splicing direct\n");
745 }
746 return err;
747
748err_out:
749 for (i = 1; i <= num; i++) {
dab291af 750 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b
MC
751 ext4_journal_forget(handle, where[i].bh);
752 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
ac27a0ec 753 }
617ba13b 754 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
ac27a0ec
DK
755
756 return err;
757}
758
759/*
760 * Allocation strategy is simple: if we have to allocate something, we will
761 * have to go the whole way to leaf. So let's do it before attaching anything
762 * to tree, set linkage between the newborn blocks, write them if sync is
763 * required, recheck the path, free and repeat if check fails, otherwise
764 * set the last missing link (that will protect us from any truncate-generated
765 * removals - all blocks on the path are immune now) and possibly force the
766 * write on the parent block.
767 * That has a nice additional property: no special recovery from the failed
768 * allocations is needed - we simply release blocks and do not touch anything
769 * reachable from inode.
770 *
771 * `handle' can be NULL if create == 0.
772 *
773 * The BKL may not be held on entry here. Be sure to take it early.
774 * return > 0, # of blocks mapped or allocated.
775 * return = 0, if plain lookup failed.
776 * return < 0, error case.
c278bfec
AK
777 *
778 *
779 * Need to be called with
0e855ac8
AK
780 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
781 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 782 */
617ba13b 783int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 784 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
785 struct buffer_head *bh_result,
786 int create, int extend_disksize)
787{
788 int err = -EIO;
725d26d3 789 ext4_lblk_t offsets[4];
ac27a0ec
DK
790 Indirect chain[4];
791 Indirect *partial;
617ba13b 792 ext4_fsblk_t goal;
ac27a0ec
DK
793 int indirect_blks;
794 int blocks_to_boundary = 0;
795 int depth;
617ba13b 796 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 797 int count = 0;
617ba13b 798 ext4_fsblk_t first_block = 0;
ac27a0ec
DK
799
800
a86c6181 801 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 802 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
803 depth = ext4_block_to_path(inode, iblock, offsets,
804 &blocks_to_boundary);
ac27a0ec
DK
805
806 if (depth == 0)
807 goto out;
808
617ba13b 809 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
810
811 /* Simplest case - block found, no allocation needed */
812 if (!partial) {
813 first_block = le32_to_cpu(chain[depth - 1].key);
814 clear_buffer_new(bh_result);
815 count++;
816 /*map more blocks*/
817 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 818 ext4_fsblk_t blk;
ac27a0ec 819
ac27a0ec
DK
820 blk = le32_to_cpu(*(chain[depth-1].p + count));
821
822 if (blk == first_block + count)
823 count++;
824 else
825 break;
826 }
c278bfec 827 goto got_it;
ac27a0ec
DK
828 }
829
830 /* Next simple case - plain lookup or failed read of indirect block */
831 if (!create || err == -EIO)
832 goto cleanup;
833
ac27a0ec
DK
834 /*
835 * Okay, we need to do block allocation. Lazily initialize the block
836 * allocation info here if necessary
837 */
838 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 839 ext4_init_block_alloc_info(inode);
ac27a0ec 840
617ba13b 841 goal = ext4_find_goal(inode, iblock, chain, partial);
ac27a0ec
DK
842
843 /* the number of blocks need to allocate for [d,t]indirect blocks */
844 indirect_blks = (chain + depth) - partial - 1;
845
846 /*
847 * Next look up the indirect map to count the totoal number of
848 * direct blocks to allocate for this branch.
849 */
617ba13b 850 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
851 maxblocks, blocks_to_boundary);
852 /*
617ba13b 853 * Block out ext4_truncate while we alter the tree
ac27a0ec 854 */
617ba13b 855 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
ac27a0ec
DK
856 offsets + (partial - chain), partial);
857
858 /*
617ba13b 859 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
860 * on the new chain if there is a failure, but that risks using
861 * up transaction credits, especially for bitmaps where the
862 * credits cannot be returned. Can we handle this somehow? We
863 * may need to return -EAGAIN upwards in the worst case. --sct
864 */
865 if (!err)
617ba13b 866 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
867 partial, indirect_blks, count);
868 /*
0e855ac8 869 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 870 * protect it if you're about to implement concurrent
617ba13b 871 * ext4_get_block() -bzzz
ac27a0ec
DK
872 */
873 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
874 ei->i_disksize = inode->i_size;
ac27a0ec
DK
875 if (err)
876 goto cleanup;
877
878 set_buffer_new(bh_result);
879got_it:
880 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
881 if (count > blocks_to_boundary)
882 set_buffer_boundary(bh_result);
883 err = count;
884 /* Clean up and exit */
885 partial = chain + depth - 1; /* the whole chain */
886cleanup:
887 while (partial > chain) {
888 BUFFER_TRACE(partial->bh, "call brelse");
889 brelse(partial->bh);
890 partial--;
891 }
892 BUFFER_TRACE(bh_result, "returned");
893out:
894 return err;
895}
896
617ba13b 897#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
ac27a0ec 898
0e855ac8
AK
899int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
900 unsigned long max_blocks, struct buffer_head *bh,
901 int create, int extend_disksize)
902{
903 int retval;
4df3d265
AK
904 /*
905 * Try to see if we can get the block without requesting
906 * for new file system block.
907 */
908 down_read((&EXT4_I(inode)->i_data_sem));
909 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
910 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
911 bh, 0, 0);
0e855ac8 912 } else {
4df3d265
AK
913 retval = ext4_get_blocks_handle(handle,
914 inode, block, max_blocks, bh, 0, 0);
0e855ac8 915 }
4df3d265
AK
916 up_read((&EXT4_I(inode)->i_data_sem));
917 if (!create || (retval > 0))
918 return retval;
919
920 /*
921 * We need to allocate new blocks which will result
922 * in i_data update
923 */
924 down_write((&EXT4_I(inode)->i_data_sem));
925 /*
926 * We need to check for EXT4 here because migrate
927 * could have changed the inode type in between
928 */
0e855ac8
AK
929 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
930 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
931 bh, create, extend_disksize);
932 } else {
933 retval = ext4_get_blocks_handle(handle, inode, block,
934 max_blocks, bh, create, extend_disksize);
935 }
4df3d265 936 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
937 return retval;
938}
939
617ba13b 940static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
941 struct buffer_head *bh_result, int create)
942{
3e4fdaf8 943 handle_t *handle = ext4_journal_current_handle();
ac27a0ec
DK
944 int ret = 0;
945 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
946
947 if (!create)
948 goto get_block; /* A read */
949
950 if (max_blocks == 1)
951 goto get_block; /* A single block get */
952
953 if (handle->h_transaction->t_state == T_LOCKED) {
954 /*
955 * Huge direct-io writes can hold off commits for long
956 * periods of time. Let this commit run.
957 */
617ba13b
MC
958 ext4_journal_stop(handle);
959 handle = ext4_journal_start(inode, DIO_CREDITS);
ac27a0ec
DK
960 if (IS_ERR(handle))
961 ret = PTR_ERR(handle);
962 goto get_block;
963 }
964
617ba13b 965 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
ac27a0ec
DK
966 /*
967 * Getting low on buffer credits...
968 */
617ba13b 969 ret = ext4_journal_extend(handle, DIO_CREDITS);
ac27a0ec
DK
970 if (ret > 0) {
971 /*
972 * Couldn't extend the transaction. Start a new one.
973 */
617ba13b 974 ret = ext4_journal_restart(handle, DIO_CREDITS);
ac27a0ec
DK
975 }
976 }
977
978get_block:
979 if (ret == 0) {
a86c6181 980 ret = ext4_get_blocks_wrap(handle, inode, iblock,
ac27a0ec
DK
981 max_blocks, bh_result, create, 0);
982 if (ret > 0) {
983 bh_result->b_size = (ret << inode->i_blkbits);
984 ret = 0;
985 }
986 }
987 return ret;
988}
989
990/*
991 * `handle' can be NULL if create is zero
992 */
617ba13b 993struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 994 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
995{
996 struct buffer_head dummy;
997 int fatal = 0, err;
998
999 J_ASSERT(handle != NULL || create == 0);
1000
1001 dummy.b_state = 0;
1002 dummy.b_blocknr = -1000;
1003 buffer_trace_init(&dummy.b_history);
a86c6181 1004 err = ext4_get_blocks_wrap(handle, inode, block, 1,
ac27a0ec
DK
1005 &dummy, create, 1);
1006 /*
617ba13b 1007 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1008 * mapped. 0 in case of a HOLE.
1009 */
1010 if (err > 0) {
1011 if (err > 1)
1012 WARN_ON(1);
1013 err = 0;
1014 }
1015 *errp = err;
1016 if (!err && buffer_mapped(&dummy)) {
1017 struct buffer_head *bh;
1018 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1019 if (!bh) {
1020 *errp = -EIO;
1021 goto err;
1022 }
1023 if (buffer_new(&dummy)) {
1024 J_ASSERT(create != 0);
ac39849d 1025 J_ASSERT(handle != NULL);
ac27a0ec
DK
1026
1027 /*
1028 * Now that we do not always journal data, we should
1029 * keep in mind whether this should always journal the
1030 * new buffer as metadata. For now, regular file
617ba13b 1031 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1032 * problem.
1033 */
1034 lock_buffer(bh);
1035 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1036 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1037 if (!fatal && !buffer_uptodate(bh)) {
1038 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1039 set_buffer_uptodate(bh);
1040 }
1041 unlock_buffer(bh);
617ba13b
MC
1042 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1043 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1044 if (!fatal)
1045 fatal = err;
1046 } else {
1047 BUFFER_TRACE(bh, "not a new buffer");
1048 }
1049 if (fatal) {
1050 *errp = fatal;
1051 brelse(bh);
1052 bh = NULL;
1053 }
1054 return bh;
1055 }
1056err:
1057 return NULL;
1058}
1059
617ba13b 1060struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1061 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1062{
1063 struct buffer_head * bh;
1064
617ba13b 1065 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1066 if (!bh)
1067 return bh;
1068 if (buffer_uptodate(bh))
1069 return bh;
1070 ll_rw_block(READ_META, 1, &bh);
1071 wait_on_buffer(bh);
1072 if (buffer_uptodate(bh))
1073 return bh;
1074 put_bh(bh);
1075 *err = -EIO;
1076 return NULL;
1077}
1078
1079static int walk_page_buffers( handle_t *handle,
1080 struct buffer_head *head,
1081 unsigned from,
1082 unsigned to,
1083 int *partial,
1084 int (*fn)( handle_t *handle,
1085 struct buffer_head *bh))
1086{
1087 struct buffer_head *bh;
1088 unsigned block_start, block_end;
1089 unsigned blocksize = head->b_size;
1090 int err, ret = 0;
1091 struct buffer_head *next;
1092
1093 for ( bh = head, block_start = 0;
1094 ret == 0 && (bh != head || !block_start);
1095 block_start = block_end, bh = next)
1096 {
1097 next = bh->b_this_page;
1098 block_end = block_start + blocksize;
1099 if (block_end <= from || block_start >= to) {
1100 if (partial && !buffer_uptodate(bh))
1101 *partial = 1;
1102 continue;
1103 }
1104 err = (*fn)(handle, bh);
1105 if (!ret)
1106 ret = err;
1107 }
1108 return ret;
1109}
1110
1111/*
1112 * To preserve ordering, it is essential that the hole instantiation and
1113 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1114 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1115 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1116 * prepare_write() is the right place.
1117 *
617ba13b
MC
1118 * Also, this function can nest inside ext4_writepage() ->
1119 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1120 * has generated enough buffer credits to do the whole page. So we won't
1121 * block on the journal in that case, which is good, because the caller may
1122 * be PF_MEMALLOC.
1123 *
617ba13b 1124 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1125 * quota file writes. If we were to commit the transaction while thus
1126 * reentered, there can be a deadlock - we would be holding a quota
1127 * lock, and the commit would never complete if another thread had a
1128 * transaction open and was blocking on the quota lock - a ranking
1129 * violation.
1130 *
dab291af 1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1132 * will _not_ run commit under these circumstances because handle->h_ref
1133 * is elevated. We'll still have enough credits for the tiny quotafile
1134 * write.
1135 */
1136static int do_journal_get_write_access(handle_t *handle,
1137 struct buffer_head *bh)
1138{
1139 if (!buffer_mapped(bh) || buffer_freed(bh))
1140 return 0;
617ba13b 1141 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1142}
1143
bfc1af65
NP
1144static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 loff_t pos, unsigned len, unsigned flags,
1146 struct page **pagep, void **fsdata)
ac27a0ec 1147{
bfc1af65 1148 struct inode *inode = mapping->host;
7479d2b9 1149 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1150 handle_t *handle;
1151 int retries = 0;
bfc1af65
NP
1152 struct page *page;
1153 pgoff_t index;
1154 unsigned from, to;
1155
1156 index = pos >> PAGE_CACHE_SHIFT;
1157 from = pos & (PAGE_CACHE_SIZE - 1);
1158 to = from + len;
ac27a0ec
DK
1159
1160retry:
bfc1af65
NP
1161 page = __grab_cache_page(mapping, index);
1162 if (!page)
1163 return -ENOMEM;
1164 *pagep = page;
1165
1166 handle = ext4_journal_start(inode, needed_blocks);
1167 if (IS_ERR(handle)) {
1168 unlock_page(page);
1169 page_cache_release(page);
1170 ret = PTR_ERR(handle);
1171 goto out;
7479d2b9 1172 }
ac27a0ec 1173
bfc1af65
NP
1174 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1175 ext4_get_block);
1176
1177 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1178 ret = walk_page_buffers(handle, page_buffers(page),
1179 from, to, NULL, do_journal_get_write_access);
1180 }
bfc1af65
NP
1181
1182 if (ret) {
7479d2b9 1183 ext4_journal_stop(handle);
bfc1af65
NP
1184 unlock_page(page);
1185 page_cache_release(page);
1186 }
1187
617ba13b 1188 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1189 goto retry;
7479d2b9 1190out:
ac27a0ec
DK
1191 return ret;
1192}
1193
617ba13b 1194int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1195{
dab291af 1196 int err = jbd2_journal_dirty_data(handle, bh);
ac27a0ec 1197 if (err)
617ba13b 1198 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
bfc1af65 1199 bh, handle, err);
ac27a0ec
DK
1200 return err;
1201}
1202
bfc1af65
NP
1203/* For write_end() in data=journal mode */
1204static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1205{
1206 if (!buffer_mapped(bh) || buffer_freed(bh))
1207 return 0;
1208 set_buffer_uptodate(bh);
617ba13b 1209 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1210}
1211
bfc1af65
NP
1212/*
1213 * Generic write_end handler for ordered and writeback ext4 journal modes.
1214 * We can't use generic_write_end, because that unlocks the page and we need to
1215 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1216 * after block_write_end.
1217 */
1218static int ext4_generic_write_end(struct file *file,
1219 struct address_space *mapping,
1220 loff_t pos, unsigned len, unsigned copied,
1221 struct page *page, void *fsdata)
1222{
1223 struct inode *inode = file->f_mapping->host;
1224
1225 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1226
1227 if (pos+copied > inode->i_size) {
1228 i_size_write(inode, pos+copied);
1229 mark_inode_dirty(inode);
1230 }
1231
1232 return copied;
1233}
1234
ac27a0ec
DK
1235/*
1236 * We need to pick up the new inode size which generic_commit_write gave us
1237 * `file' can be NULL - eg, when called from page_symlink().
1238 *
617ba13b 1239 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1240 * buffers are managed internally.
1241 */
bfc1af65
NP
1242static int ext4_ordered_write_end(struct file *file,
1243 struct address_space *mapping,
1244 loff_t pos, unsigned len, unsigned copied,
1245 struct page *page, void *fsdata)
ac27a0ec 1246{
617ba13b 1247 handle_t *handle = ext4_journal_current_handle();
bfc1af65
NP
1248 struct inode *inode = file->f_mapping->host;
1249 unsigned from, to;
ac27a0ec
DK
1250 int ret = 0, ret2;
1251
bfc1af65
NP
1252 from = pos & (PAGE_CACHE_SIZE - 1);
1253 to = from + len;
1254
ac27a0ec 1255 ret = walk_page_buffers(handle, page_buffers(page),
617ba13b 1256 from, to, NULL, ext4_journal_dirty_data);
ac27a0ec
DK
1257
1258 if (ret == 0) {
1259 /*
bfc1af65 1260 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1261 * changes. So let's piggyback the i_disksize mark_inode_dirty
1262 * into that.
1263 */
1264 loff_t new_i_size;
1265
bfc1af65 1266 new_i_size = pos + copied;
617ba13b
MC
1267 if (new_i_size > EXT4_I(inode)->i_disksize)
1268 EXT4_I(inode)->i_disksize = new_i_size;
bfc1af65
NP
1269 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1270 page, fsdata);
1271 if (copied < 0)
1272 ret = copied;
ac27a0ec 1273 }
617ba13b 1274 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1275 if (!ret)
1276 ret = ret2;
bfc1af65
NP
1277 unlock_page(page);
1278 page_cache_release(page);
1279
1280 return ret ? ret : copied;
ac27a0ec
DK
1281}
1282
bfc1af65
NP
1283static int ext4_writeback_write_end(struct file *file,
1284 struct address_space *mapping,
1285 loff_t pos, unsigned len, unsigned copied,
1286 struct page *page, void *fsdata)
ac27a0ec 1287{
617ba13b 1288 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1289 struct inode *inode = file->f_mapping->host;
ac27a0ec
DK
1290 int ret = 0, ret2;
1291 loff_t new_i_size;
1292
bfc1af65 1293 new_i_size = pos + copied;
617ba13b
MC
1294 if (new_i_size > EXT4_I(inode)->i_disksize)
1295 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1296
bfc1af65
NP
1297 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1298 page, fsdata);
1299 if (copied < 0)
1300 ret = copied;
ac27a0ec 1301
617ba13b 1302 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1303 if (!ret)
1304 ret = ret2;
bfc1af65
NP
1305 unlock_page(page);
1306 page_cache_release(page);
1307
1308 return ret ? ret : copied;
ac27a0ec
DK
1309}
1310
bfc1af65
NP
1311static int ext4_journalled_write_end(struct file *file,
1312 struct address_space *mapping,
1313 loff_t pos, unsigned len, unsigned copied,
1314 struct page *page, void *fsdata)
ac27a0ec 1315{
617ba13b 1316 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1317 struct inode *inode = mapping->host;
ac27a0ec
DK
1318 int ret = 0, ret2;
1319 int partial = 0;
bfc1af65 1320 unsigned from, to;
ac27a0ec 1321
bfc1af65
NP
1322 from = pos & (PAGE_CACHE_SIZE - 1);
1323 to = from + len;
1324
1325 if (copied < len) {
1326 if (!PageUptodate(page))
1327 copied = 0;
1328 page_zero_new_buffers(page, from+copied, to);
1329 }
ac27a0ec
DK
1330
1331 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1332 to, &partial, write_end_fn);
ac27a0ec
DK
1333 if (!partial)
1334 SetPageUptodate(page);
bfc1af65
NP
1335 if (pos+copied > inode->i_size)
1336 i_size_write(inode, pos+copied);
617ba13b
MC
1337 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1338 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1339 EXT4_I(inode)->i_disksize = inode->i_size;
1340 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1341 if (!ret)
1342 ret = ret2;
1343 }
bfc1af65 1344
617ba13b 1345 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1346 if (!ret)
1347 ret = ret2;
bfc1af65
NP
1348 unlock_page(page);
1349 page_cache_release(page);
1350
1351 return ret ? ret : copied;
ac27a0ec
DK
1352}
1353
1354/*
1355 * bmap() is special. It gets used by applications such as lilo and by
1356 * the swapper to find the on-disk block of a specific piece of data.
1357 *
1358 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 1359 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
1360 * filesystem and enables swap, then they may get a nasty shock when the
1361 * data getting swapped to that swapfile suddenly gets overwritten by
1362 * the original zero's written out previously to the journal and
1363 * awaiting writeback in the kernel's buffer cache.
1364 *
1365 * So, if we see any bmap calls here on a modified, data-journaled file,
1366 * take extra steps to flush any blocks which might be in the cache.
1367 */
617ba13b 1368static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
1369{
1370 struct inode *inode = mapping->host;
1371 journal_t *journal;
1372 int err;
1373
617ba13b 1374 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
1375 /*
1376 * This is a REALLY heavyweight approach, but the use of
1377 * bmap on dirty files is expected to be extremely rare:
1378 * only if we run lilo or swapon on a freshly made file
1379 * do we expect this to happen.
1380 *
1381 * (bmap requires CAP_SYS_RAWIO so this does not
1382 * represent an unprivileged user DOS attack --- we'd be
1383 * in trouble if mortal users could trigger this path at
1384 * will.)
1385 *
617ba13b 1386 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
1387 * regular files. If somebody wants to bmap a directory
1388 * or symlink and gets confused because the buffer
1389 * hasn't yet been flushed to disk, they deserve
1390 * everything they get.
1391 */
1392
617ba13b
MC
1393 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1394 journal = EXT4_JOURNAL(inode);
dab291af
MC
1395 jbd2_journal_lock_updates(journal);
1396 err = jbd2_journal_flush(journal);
1397 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
1398
1399 if (err)
1400 return 0;
1401 }
1402
617ba13b 1403 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
1404}
1405
1406static int bget_one(handle_t *handle, struct buffer_head *bh)
1407{
1408 get_bh(bh);
1409 return 0;
1410}
1411
1412static int bput_one(handle_t *handle, struct buffer_head *bh)
1413{
1414 put_bh(bh);
1415 return 0;
1416}
1417
dab291af 1418static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1419{
1420 if (buffer_mapped(bh))
617ba13b 1421 return ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1422 return 0;
1423}
1424
1425/*
1426 * Note that we always start a transaction even if we're not journalling
1427 * data. This is to preserve ordering: any hole instantiation within
617ba13b 1428 * __block_write_full_page -> ext4_get_block() should be journalled
ac27a0ec
DK
1429 * along with the data so we don't crash and then get metadata which
1430 * refers to old data.
1431 *
1432 * In all journalling modes block_write_full_page() will start the I/O.
1433 *
1434 * Problem:
1435 *
617ba13b
MC
1436 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1437 * ext4_writepage()
ac27a0ec
DK
1438 *
1439 * Similar for:
1440 *
617ba13b 1441 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 1442 *
617ba13b 1443 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 1444 * lock_journal and i_data_sem
ac27a0ec
DK
1445 *
1446 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1447 * allocations fail.
1448 *
1449 * 16May01: If we're reentered then journal_current_handle() will be
1450 * non-zero. We simply *return*.
1451 *
1452 * 1 July 2001: @@@ FIXME:
1453 * In journalled data mode, a data buffer may be metadata against the
1454 * current transaction. But the same file is part of a shared mapping
1455 * and someone does a writepage() on it.
1456 *
1457 * We will move the buffer onto the async_data list, but *after* it has
1458 * been dirtied. So there's a small window where we have dirty data on
1459 * BJ_Metadata.
1460 *
1461 * Note that this only applies to the last partial page in the file. The
1462 * bit which block_write_full_page() uses prepare/commit for. (That's
1463 * broken code anyway: it's wrong for msync()).
1464 *
1465 * It's a rare case: affects the final partial page, for journalled data
1466 * where the file is subject to bith write() and writepage() in the same
1467 * transction. To fix it we'll need a custom block_write_full_page().
1468 * We'll probably need that anyway for journalling writepage() output.
1469 *
1470 * We don't honour synchronous mounts for writepage(). That would be
1471 * disastrous. Any write() or metadata operation will sync the fs for
1472 * us.
1473 *
1474 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1475 * we don't need to open a transaction here.
1476 */
617ba13b 1477static int ext4_ordered_writepage(struct page *page,
ac27a0ec
DK
1478 struct writeback_control *wbc)
1479{
1480 struct inode *inode = page->mapping->host;
1481 struct buffer_head *page_bufs;
1482 handle_t *handle = NULL;
1483 int ret = 0;
1484 int err;
1485
1486 J_ASSERT(PageLocked(page));
1487
1488 /*
1489 * We give up here if we're reentered, because it might be for a
1490 * different filesystem.
1491 */
617ba13b 1492 if (ext4_journal_current_handle())
ac27a0ec
DK
1493 goto out_fail;
1494
617ba13b 1495 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1496
1497 if (IS_ERR(handle)) {
1498 ret = PTR_ERR(handle);
1499 goto out_fail;
1500 }
1501
1502 if (!page_has_buffers(page)) {
1503 create_empty_buffers(page, inode->i_sb->s_blocksize,
1504 (1 << BH_Dirty)|(1 << BH_Uptodate));
1505 }
1506 page_bufs = page_buffers(page);
1507 walk_page_buffers(handle, page_bufs, 0,
1508 PAGE_CACHE_SIZE, NULL, bget_one);
1509
617ba13b 1510 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec
DK
1511
1512 /*
1513 * The page can become unlocked at any point now, and
1514 * truncate can then come in and change things. So we
1515 * can't touch *page from now on. But *page_bufs is
1516 * safe due to elevated refcount.
1517 */
1518
1519 /*
1520 * And attach them to the current transaction. But only if
1521 * block_write_full_page() succeeded. Otherwise they are unmapped,
1522 * and generally junk.
1523 */
1524 if (ret == 0) {
1525 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
dab291af 1526 NULL, jbd2_journal_dirty_data_fn);
ac27a0ec
DK
1527 if (!ret)
1528 ret = err;
1529 }
1530 walk_page_buffers(handle, page_bufs, 0,
1531 PAGE_CACHE_SIZE, NULL, bput_one);
617ba13b 1532 err = ext4_journal_stop(handle);
ac27a0ec
DK
1533 if (!ret)
1534 ret = err;
1535 return ret;
1536
1537out_fail:
1538 redirty_page_for_writepage(wbc, page);
1539 unlock_page(page);
1540 return ret;
1541}
1542
617ba13b 1543static int ext4_writeback_writepage(struct page *page,
ac27a0ec
DK
1544 struct writeback_control *wbc)
1545{
1546 struct inode *inode = page->mapping->host;
1547 handle_t *handle = NULL;
1548 int ret = 0;
1549 int err;
1550
617ba13b 1551 if (ext4_journal_current_handle())
ac27a0ec
DK
1552 goto out_fail;
1553
617ba13b 1554 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1555 if (IS_ERR(handle)) {
1556 ret = PTR_ERR(handle);
1557 goto out_fail;
1558 }
1559
617ba13b
MC
1560 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1561 ret = nobh_writepage(page, ext4_get_block, wbc);
ac27a0ec 1562 else
617ba13b 1563 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1564
617ba13b 1565 err = ext4_journal_stop(handle);
ac27a0ec
DK
1566 if (!ret)
1567 ret = err;
1568 return ret;
1569
1570out_fail:
1571 redirty_page_for_writepage(wbc, page);
1572 unlock_page(page);
1573 return ret;
1574}
1575
617ba13b 1576static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
1577 struct writeback_control *wbc)
1578{
1579 struct inode *inode = page->mapping->host;
1580 handle_t *handle = NULL;
1581 int ret = 0;
1582 int err;
1583
617ba13b 1584 if (ext4_journal_current_handle())
ac27a0ec
DK
1585 goto no_write;
1586
617ba13b 1587 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1588 if (IS_ERR(handle)) {
1589 ret = PTR_ERR(handle);
1590 goto no_write;
1591 }
1592
1593 if (!page_has_buffers(page) || PageChecked(page)) {
1594 /*
1595 * It's mmapped pagecache. Add buffers and journal it. There
1596 * doesn't seem much point in redirtying the page here.
1597 */
1598 ClearPageChecked(page);
1599 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
617ba13b 1600 ext4_get_block);
ac27a0ec 1601 if (ret != 0) {
617ba13b 1602 ext4_journal_stop(handle);
ac27a0ec
DK
1603 goto out_unlock;
1604 }
1605 ret = walk_page_buffers(handle, page_buffers(page), 0,
1606 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1607
1608 err = walk_page_buffers(handle, page_buffers(page), 0,
bfc1af65 1609 PAGE_CACHE_SIZE, NULL, write_end_fn);
ac27a0ec
DK
1610 if (ret == 0)
1611 ret = err;
617ba13b 1612 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
ac27a0ec
DK
1613 unlock_page(page);
1614 } else {
1615 /*
1616 * It may be a page full of checkpoint-mode buffers. We don't
1617 * really know unless we go poke around in the buffer_heads.
1618 * But block_write_full_page will do the right thing.
1619 */
617ba13b 1620 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1621 }
617ba13b 1622 err = ext4_journal_stop(handle);
ac27a0ec
DK
1623 if (!ret)
1624 ret = err;
1625out:
1626 return ret;
1627
1628no_write:
1629 redirty_page_for_writepage(wbc, page);
1630out_unlock:
1631 unlock_page(page);
1632 goto out;
1633}
1634
617ba13b 1635static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 1636{
617ba13b 1637 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
1638}
1639
1640static int
617ba13b 1641ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
1642 struct list_head *pages, unsigned nr_pages)
1643{
617ba13b 1644 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
1645}
1646
617ba13b 1647static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 1648{
617ba13b 1649 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1650
1651 /*
1652 * If it's a full truncate we just forget about the pending dirtying
1653 */
1654 if (offset == 0)
1655 ClearPageChecked(page);
1656
dab291af 1657 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
1658}
1659
617ba13b 1660static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 1661{
617ba13b 1662 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1663
1664 WARN_ON(PageChecked(page));
1665 if (!page_has_buffers(page))
1666 return 0;
dab291af 1667 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
1668}
1669
1670/*
1671 * If the O_DIRECT write will extend the file then add this inode to the
1672 * orphan list. So recovery will truncate it back to the original size
1673 * if the machine crashes during the write.
1674 *
1675 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1676 * crashes then stale disk data _may_ be exposed inside the file.
1677 */
617ba13b 1678static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
1679 const struct iovec *iov, loff_t offset,
1680 unsigned long nr_segs)
1681{
1682 struct file *file = iocb->ki_filp;
1683 struct inode *inode = file->f_mapping->host;
617ba13b 1684 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
1685 handle_t *handle = NULL;
1686 ssize_t ret;
1687 int orphan = 0;
1688 size_t count = iov_length(iov, nr_segs);
1689
1690 if (rw == WRITE) {
1691 loff_t final_size = offset + count;
1692
617ba13b 1693 handle = ext4_journal_start(inode, DIO_CREDITS);
ac27a0ec
DK
1694 if (IS_ERR(handle)) {
1695 ret = PTR_ERR(handle);
1696 goto out;
1697 }
1698 if (final_size > inode->i_size) {
617ba13b 1699 ret = ext4_orphan_add(handle, inode);
ac27a0ec
DK
1700 if (ret)
1701 goto out_stop;
1702 orphan = 1;
1703 ei->i_disksize = inode->i_size;
1704 }
1705 }
1706
1707 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1708 offset, nr_segs,
617ba13b 1709 ext4_get_block, NULL);
ac27a0ec
DK
1710
1711 /*
617ba13b 1712 * Reacquire the handle: ext4_get_block() can restart the transaction
ac27a0ec 1713 */
3e4fdaf8 1714 handle = ext4_journal_current_handle();
ac27a0ec
DK
1715
1716out_stop:
1717 if (handle) {
1718 int err;
1719
1720 if (orphan && inode->i_nlink)
617ba13b 1721 ext4_orphan_del(handle, inode);
ac27a0ec
DK
1722 if (orphan && ret > 0) {
1723 loff_t end = offset + ret;
1724 if (end > inode->i_size) {
1725 ei->i_disksize = end;
1726 i_size_write(inode, end);
1727 /*
1728 * We're going to return a positive `ret'
1729 * here due to non-zero-length I/O, so there's
1730 * no way of reporting error returns from
617ba13b 1731 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
1732 * ignore it.
1733 */
617ba13b 1734 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1735 }
1736 }
617ba13b 1737 err = ext4_journal_stop(handle);
ac27a0ec
DK
1738 if (ret == 0)
1739 ret = err;
1740 }
1741out:
1742 return ret;
1743}
1744
1745/*
617ba13b 1746 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
1747 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1748 * much here because ->set_page_dirty is called under VFS locks. The page is
1749 * not necessarily locked.
1750 *
1751 * We cannot just dirty the page and leave attached buffers clean, because the
1752 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1753 * or jbddirty because all the journalling code will explode.
1754 *
1755 * So what we do is to mark the page "pending dirty" and next time writepage
1756 * is called, propagate that into the buffers appropriately.
1757 */
617ba13b 1758static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
1759{
1760 SetPageChecked(page);
1761 return __set_page_dirty_nobuffers(page);
1762}
1763
617ba13b
MC
1764static const struct address_space_operations ext4_ordered_aops = {
1765 .readpage = ext4_readpage,
1766 .readpages = ext4_readpages,
1767 .writepage = ext4_ordered_writepage,
ac27a0ec 1768 .sync_page = block_sync_page,
bfc1af65
NP
1769 .write_begin = ext4_write_begin,
1770 .write_end = ext4_ordered_write_end,
617ba13b
MC
1771 .bmap = ext4_bmap,
1772 .invalidatepage = ext4_invalidatepage,
1773 .releasepage = ext4_releasepage,
1774 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1775 .migratepage = buffer_migrate_page,
1776};
1777
617ba13b
MC
1778static const struct address_space_operations ext4_writeback_aops = {
1779 .readpage = ext4_readpage,
1780 .readpages = ext4_readpages,
1781 .writepage = ext4_writeback_writepage,
ac27a0ec 1782 .sync_page = block_sync_page,
bfc1af65
NP
1783 .write_begin = ext4_write_begin,
1784 .write_end = ext4_writeback_write_end,
617ba13b
MC
1785 .bmap = ext4_bmap,
1786 .invalidatepage = ext4_invalidatepage,
1787 .releasepage = ext4_releasepage,
1788 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1789 .migratepage = buffer_migrate_page,
1790};
1791
617ba13b
MC
1792static const struct address_space_operations ext4_journalled_aops = {
1793 .readpage = ext4_readpage,
1794 .readpages = ext4_readpages,
1795 .writepage = ext4_journalled_writepage,
ac27a0ec 1796 .sync_page = block_sync_page,
bfc1af65
NP
1797 .write_begin = ext4_write_begin,
1798 .write_end = ext4_journalled_write_end,
617ba13b
MC
1799 .set_page_dirty = ext4_journalled_set_page_dirty,
1800 .bmap = ext4_bmap,
1801 .invalidatepage = ext4_invalidatepage,
1802 .releasepage = ext4_releasepage,
ac27a0ec
DK
1803};
1804
617ba13b 1805void ext4_set_aops(struct inode *inode)
ac27a0ec 1806{
617ba13b
MC
1807 if (ext4_should_order_data(inode))
1808 inode->i_mapping->a_ops = &ext4_ordered_aops;
1809 else if (ext4_should_writeback_data(inode))
1810 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 1811 else
617ba13b 1812 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
1813}
1814
1815/*
617ba13b 1816 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
1817 * up to the end of the block which corresponds to `from'.
1818 * This required during truncate. We need to physically zero the tail end
1819 * of that block so it doesn't yield old data if the file is later grown.
1820 */
a86c6181 1821int ext4_block_truncate_page(handle_t *handle, struct page *page,
ac27a0ec
DK
1822 struct address_space *mapping, loff_t from)
1823{
617ba13b 1824 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 1825 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
1826 unsigned blocksize, length, pos;
1827 ext4_lblk_t iblock;
ac27a0ec
DK
1828 struct inode *inode = mapping->host;
1829 struct buffer_head *bh;
1830 int err = 0;
ac27a0ec
DK
1831
1832 blocksize = inode->i_sb->s_blocksize;
1833 length = blocksize - (offset & (blocksize - 1));
1834 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1835
1836 /*
1837 * For "nobh" option, we can only work if we don't need to
1838 * read-in the page - otherwise we create buffers to do the IO.
1839 */
1840 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 1841 ext4_should_writeback_data(inode) && PageUptodate(page)) {
fc0e15a6 1842 zero_user_page(page, offset, length, KM_USER0);
ac27a0ec
DK
1843 set_page_dirty(page);
1844 goto unlock;
1845 }
1846
1847 if (!page_has_buffers(page))
1848 create_empty_buffers(page, blocksize, 0);
1849
1850 /* Find the buffer that contains "offset" */
1851 bh = page_buffers(page);
1852 pos = blocksize;
1853 while (offset >= pos) {
1854 bh = bh->b_this_page;
1855 iblock++;
1856 pos += blocksize;
1857 }
1858
1859 err = 0;
1860 if (buffer_freed(bh)) {
1861 BUFFER_TRACE(bh, "freed: skip");
1862 goto unlock;
1863 }
1864
1865 if (!buffer_mapped(bh)) {
1866 BUFFER_TRACE(bh, "unmapped");
617ba13b 1867 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
1868 /* unmapped? It's a hole - nothing to do */
1869 if (!buffer_mapped(bh)) {
1870 BUFFER_TRACE(bh, "still unmapped");
1871 goto unlock;
1872 }
1873 }
1874
1875 /* Ok, it's mapped. Make sure it's up-to-date */
1876 if (PageUptodate(page))
1877 set_buffer_uptodate(bh);
1878
1879 if (!buffer_uptodate(bh)) {
1880 err = -EIO;
1881 ll_rw_block(READ, 1, &bh);
1882 wait_on_buffer(bh);
1883 /* Uhhuh. Read error. Complain and punt. */
1884 if (!buffer_uptodate(bh))
1885 goto unlock;
1886 }
1887
617ba13b 1888 if (ext4_should_journal_data(inode)) {
ac27a0ec 1889 BUFFER_TRACE(bh, "get write access");
617ba13b 1890 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1891 if (err)
1892 goto unlock;
1893 }
1894
fc0e15a6 1895 zero_user_page(page, offset, length, KM_USER0);
ac27a0ec
DK
1896
1897 BUFFER_TRACE(bh, "zeroed end of block");
1898
1899 err = 0;
617ba13b
MC
1900 if (ext4_should_journal_data(inode)) {
1901 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 1902 } else {
617ba13b
MC
1903 if (ext4_should_order_data(inode))
1904 err = ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1905 mark_buffer_dirty(bh);
1906 }
1907
1908unlock:
1909 unlock_page(page);
1910 page_cache_release(page);
1911 return err;
1912}
1913
1914/*
1915 * Probably it should be a library function... search for first non-zero word
1916 * or memcmp with zero_page, whatever is better for particular architecture.
1917 * Linus?
1918 */
1919static inline int all_zeroes(__le32 *p, __le32 *q)
1920{
1921 while (p < q)
1922 if (*p++)
1923 return 0;
1924 return 1;
1925}
1926
1927/**
617ba13b 1928 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
1929 * @inode: inode in question
1930 * @depth: depth of the affected branch
617ba13b 1931 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
1932 * @chain: place to store the pointers to partial indirect blocks
1933 * @top: place to the (detached) top of branch
1934 *
617ba13b 1935 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
1936 *
1937 * When we do truncate() we may have to clean the ends of several
1938 * indirect blocks but leave the blocks themselves alive. Block is
1939 * partially truncated if some data below the new i_size is refered
1940 * from it (and it is on the path to the first completely truncated
1941 * data block, indeed). We have to free the top of that path along
1942 * with everything to the right of the path. Since no allocation
617ba13b 1943 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
1944 * finishes, we may safely do the latter, but top of branch may
1945 * require special attention - pageout below the truncation point
1946 * might try to populate it.
1947 *
1948 * We atomically detach the top of branch from the tree, store the
1949 * block number of its root in *@top, pointers to buffer_heads of
1950 * partially truncated blocks - in @chain[].bh and pointers to
1951 * their last elements that should not be removed - in
1952 * @chain[].p. Return value is the pointer to last filled element
1953 * of @chain.
1954 *
1955 * The work left to caller to do the actual freeing of subtrees:
1956 * a) free the subtree starting from *@top
1957 * b) free the subtrees whose roots are stored in
1958 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1959 * c) free the subtrees growing from the inode past the @chain[0].
1960 * (no partially truncated stuff there). */
1961
617ba13b 1962static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 1963 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
1964{
1965 Indirect *partial, *p;
1966 int k, err;
1967
1968 *top = 0;
1969 /* Make k index the deepest non-null offest + 1 */
1970 for (k = depth; k > 1 && !offsets[k-1]; k--)
1971 ;
617ba13b 1972 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
1973 /* Writer: pointers */
1974 if (!partial)
1975 partial = chain + k-1;
1976 /*
1977 * If the branch acquired continuation since we've looked at it -
1978 * fine, it should all survive and (new) top doesn't belong to us.
1979 */
1980 if (!partial->key && *partial->p)
1981 /* Writer: end */
1982 goto no_top;
1983 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1984 ;
1985 /*
1986 * OK, we've found the last block that must survive. The rest of our
1987 * branch should be detached before unlocking. However, if that rest
1988 * of branch is all ours and does not grow immediately from the inode
1989 * it's easier to cheat and just decrement partial->p.
1990 */
1991 if (p == chain + k - 1 && p > chain) {
1992 p->p--;
1993 } else {
1994 *top = *p->p;
617ba13b 1995 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
1996#if 0
1997 *p->p = 0;
1998#endif
1999 }
2000 /* Writer: end */
2001
2002 while(partial > p) {
2003 brelse(partial->bh);
2004 partial--;
2005 }
2006no_top:
2007 return partial;
2008}
2009
2010/*
2011 * Zero a number of block pointers in either an inode or an indirect block.
2012 * If we restart the transaction we must again get write access to the
2013 * indirect block for further modification.
2014 *
2015 * We release `count' blocks on disk, but (last - first) may be greater
2016 * than `count' because there can be holes in there.
2017 */
617ba13b
MC
2018static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2019 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
2020 unsigned long count, __le32 *first, __le32 *last)
2021{
2022 __le32 *p;
2023 if (try_to_extend_transaction(handle, inode)) {
2024 if (bh) {
617ba13b
MC
2025 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2026 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 2027 }
617ba13b
MC
2028 ext4_mark_inode_dirty(handle, inode);
2029 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2030 if (bh) {
2031 BUFFER_TRACE(bh, "retaking write access");
617ba13b 2032 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
2033 }
2034 }
2035
2036 /*
2037 * Any buffers which are on the journal will be in memory. We find
dab291af 2038 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 2039 * on them. We've already detached each block from the file, so
dab291af 2040 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 2041 *
dab291af 2042 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
2043 */
2044 for (p = first; p < last; p++) {
2045 u32 nr = le32_to_cpu(*p);
2046 if (nr) {
1d03ec98 2047 struct buffer_head *tbh;
ac27a0ec
DK
2048
2049 *p = 0;
1d03ec98
AK
2050 tbh = sb_find_get_block(inode->i_sb, nr);
2051 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
2052 }
2053 }
2054
617ba13b 2055 ext4_free_blocks(handle, inode, block_to_free, count);
ac27a0ec
DK
2056}
2057
2058/**
617ba13b 2059 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
2060 * @handle: handle for this transaction
2061 * @inode: inode we are dealing with
2062 * @this_bh: indirect buffer_head which contains *@first and *@last
2063 * @first: array of block numbers
2064 * @last: points immediately past the end of array
2065 *
2066 * We are freeing all blocks refered from that array (numbers are stored as
2067 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2068 *
2069 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2070 * blocks are contiguous then releasing them at one time will only affect one
2071 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2072 * actually use a lot of journal space.
2073 *
2074 * @this_bh will be %NULL if @first and @last point into the inode's direct
2075 * block pointers.
2076 */
617ba13b 2077static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2078 struct buffer_head *this_bh,
2079 __le32 *first, __le32 *last)
2080{
617ba13b 2081 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
2082 unsigned long count = 0; /* Number of blocks in the run */
2083 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2084 corresponding to
2085 block_to_free */
617ba13b 2086 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
2087 __le32 *p; /* Pointer into inode/ind
2088 for current block */
2089 int err;
2090
2091 if (this_bh) { /* For indirect block */
2092 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 2093 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
2094 /* Important: if we can't update the indirect pointers
2095 * to the blocks, we can't free them. */
2096 if (err)
2097 return;
2098 }
2099
2100 for (p = first; p < last; p++) {
2101 nr = le32_to_cpu(*p);
2102 if (nr) {
2103 /* accumulate blocks to free if they're contiguous */
2104 if (count == 0) {
2105 block_to_free = nr;
2106 block_to_free_p = p;
2107 count = 1;
2108 } else if (nr == block_to_free + count) {
2109 count++;
2110 } else {
617ba13b 2111 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
2112 block_to_free,
2113 count, block_to_free_p, p);
2114 block_to_free = nr;
2115 block_to_free_p = p;
2116 count = 1;
2117 }
2118 }
2119 }
2120
2121 if (count > 0)
617ba13b 2122 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
2123 count, block_to_free_p, p);
2124
2125 if (this_bh) {
617ba13b
MC
2126 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2127 ext4_journal_dirty_metadata(handle, this_bh);
ac27a0ec
DK
2128 }
2129}
2130
2131/**
617ba13b 2132 * ext4_free_branches - free an array of branches
ac27a0ec
DK
2133 * @handle: JBD handle for this transaction
2134 * @inode: inode we are dealing with
2135 * @parent_bh: the buffer_head which contains *@first and *@last
2136 * @first: array of block numbers
2137 * @last: pointer immediately past the end of array
2138 * @depth: depth of the branches to free
2139 *
2140 * We are freeing all blocks refered from these branches (numbers are
2141 * stored as little-endian 32-bit) and updating @inode->i_blocks
2142 * appropriately.
2143 */
617ba13b 2144static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2145 struct buffer_head *parent_bh,
2146 __le32 *first, __le32 *last, int depth)
2147{
617ba13b 2148 ext4_fsblk_t nr;
ac27a0ec
DK
2149 __le32 *p;
2150
2151 if (is_handle_aborted(handle))
2152 return;
2153
2154 if (depth--) {
2155 struct buffer_head *bh;
617ba13b 2156 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
2157 p = last;
2158 while (--p >= first) {
2159 nr = le32_to_cpu(*p);
2160 if (!nr)
2161 continue; /* A hole */
2162
2163 /* Go read the buffer for the next level down */
2164 bh = sb_bread(inode->i_sb, nr);
2165
2166 /*
2167 * A read failure? Report error and clear slot
2168 * (should be rare).
2169 */
2170 if (!bh) {
617ba13b 2171 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 2172 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
2173 inode->i_ino, nr);
2174 continue;
2175 }
2176
2177 /* This zaps the entire block. Bottom up. */
2178 BUFFER_TRACE(bh, "free child branches");
617ba13b 2179 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
2180 (__le32*)bh->b_data,
2181 (__le32*)bh->b_data + addr_per_block,
2182 depth);
2183
2184 /*
2185 * We've probably journalled the indirect block several
2186 * times during the truncate. But it's no longer
2187 * needed and we now drop it from the transaction via
dab291af 2188 * jbd2_journal_revoke().
ac27a0ec
DK
2189 *
2190 * That's easy if it's exclusively part of this
2191 * transaction. But if it's part of the committing
dab291af 2192 * transaction then jbd2_journal_forget() will simply
ac27a0ec 2193 * brelse() it. That means that if the underlying
617ba13b 2194 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
2195 * unmap_underlying_metadata() will find this block
2196 * and will try to get rid of it. damn, damn.
2197 *
2198 * If this block has already been committed to the
2199 * journal, a revoke record will be written. And
2200 * revoke records must be emitted *before* clearing
2201 * this block's bit in the bitmaps.
2202 */
617ba13b 2203 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
2204
2205 /*
2206 * Everything below this this pointer has been
2207 * released. Now let this top-of-subtree go.
2208 *
2209 * We want the freeing of this indirect block to be
2210 * atomic in the journal with the updating of the
2211 * bitmap block which owns it. So make some room in
2212 * the journal.
2213 *
2214 * We zero the parent pointer *after* freeing its
2215 * pointee in the bitmaps, so if extend_transaction()
2216 * for some reason fails to put the bitmap changes and
2217 * the release into the same transaction, recovery
2218 * will merely complain about releasing a free block,
2219 * rather than leaking blocks.
2220 */
2221 if (is_handle_aborted(handle))
2222 return;
2223 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
2224 ext4_mark_inode_dirty(handle, inode);
2225 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2226 }
2227
617ba13b 2228 ext4_free_blocks(handle, inode, nr, 1);
ac27a0ec
DK
2229
2230 if (parent_bh) {
2231 /*
2232 * The block which we have just freed is
2233 * pointed to by an indirect block: journal it
2234 */
2235 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 2236 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
2237 parent_bh)){
2238 *p = 0;
2239 BUFFER_TRACE(parent_bh,
617ba13b
MC
2240 "call ext4_journal_dirty_metadata");
2241 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
2242 parent_bh);
2243 }
2244 }
2245 }
2246 } else {
2247 /* We have reached the bottom of the tree. */
2248 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 2249 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
2250 }
2251}
2252
2253/*
617ba13b 2254 * ext4_truncate()
ac27a0ec 2255 *
617ba13b
MC
2256 * We block out ext4_get_block() block instantiations across the entire
2257 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
2258 * simultaneously on behalf of the same inode.
2259 *
2260 * As we work through the truncate and commmit bits of it to the journal there
2261 * is one core, guiding principle: the file's tree must always be consistent on
2262 * disk. We must be able to restart the truncate after a crash.
2263 *
2264 * The file's tree may be transiently inconsistent in memory (although it
2265 * probably isn't), but whenever we close off and commit a journal transaction,
2266 * the contents of (the filesystem + the journal) must be consistent and
2267 * restartable. It's pretty simple, really: bottom up, right to left (although
2268 * left-to-right works OK too).
2269 *
2270 * Note that at recovery time, journal replay occurs *before* the restart of
2271 * truncate against the orphan inode list.
2272 *
2273 * The committed inode has the new, desired i_size (which is the same as
617ba13b 2274 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 2275 * that this inode's truncate did not complete and it will again call
617ba13b
MC
2276 * ext4_truncate() to have another go. So there will be instantiated blocks
2277 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 2278 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 2279 * ext4_truncate() run will find them and release them.
ac27a0ec 2280 */
617ba13b 2281void ext4_truncate(struct inode *inode)
ac27a0ec
DK
2282{
2283 handle_t *handle;
617ba13b 2284 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 2285 __le32 *i_data = ei->i_data;
617ba13b 2286 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 2287 struct address_space *mapping = inode->i_mapping;
725d26d3 2288 ext4_lblk_t offsets[4];
ac27a0ec
DK
2289 Indirect chain[4];
2290 Indirect *partial;
2291 __le32 nr = 0;
2292 int n;
725d26d3 2293 ext4_lblk_t last_block;
ac27a0ec
DK
2294 unsigned blocksize = inode->i_sb->s_blocksize;
2295 struct page *page;
2296
2297 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2298 S_ISLNK(inode->i_mode)))
2299 return;
617ba13b 2300 if (ext4_inode_is_fast_symlink(inode))
ac27a0ec
DK
2301 return;
2302 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2303 return;
2304
2305 /*
2306 * We have to lock the EOF page here, because lock_page() nests
dab291af 2307 * outside jbd2_journal_start().
ac27a0ec
DK
2308 */
2309 if ((inode->i_size & (blocksize - 1)) == 0) {
2310 /* Block boundary? Nothing to do */
2311 page = NULL;
2312 } else {
2313 page = grab_cache_page(mapping,
2314 inode->i_size >> PAGE_CACHE_SHIFT);
2315 if (!page)
2316 return;
2317 }
2318
1d03ec98
AK
2319 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2320 ext4_ext_truncate(inode, page);
2321 return;
2322 }
a86c6181 2323
ac27a0ec
DK
2324 handle = start_transaction(inode);
2325 if (IS_ERR(handle)) {
2326 if (page) {
2327 clear_highpage(page);
2328 flush_dcache_page(page);
2329 unlock_page(page);
2330 page_cache_release(page);
2331 }
2332 return; /* AKPM: return what? */
2333 }
2334
2335 last_block = (inode->i_size + blocksize-1)
617ba13b 2336 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec
DK
2337
2338 if (page)
617ba13b 2339 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
ac27a0ec 2340
617ba13b 2341 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
2342 if (n == 0)
2343 goto out_stop; /* error */
2344
2345 /*
2346 * OK. This truncate is going to happen. We add the inode to the
2347 * orphan list, so that if this truncate spans multiple transactions,
2348 * and we crash, we will resume the truncate when the filesystem
2349 * recovers. It also marks the inode dirty, to catch the new size.
2350 *
2351 * Implication: the file must always be in a sane, consistent
2352 * truncatable state while each transaction commits.
2353 */
617ba13b 2354 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
2355 goto out_stop;
2356
2357 /*
2358 * The orphan list entry will now protect us from any crash which
2359 * occurs before the truncate completes, so it is now safe to propagate
2360 * the new, shorter inode size (held for now in i_size) into the
2361 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 2362 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
2363 */
2364 ei->i_disksize = inode->i_size;
2365
2366 /*
617ba13b 2367 * From here we block out all ext4_get_block() callers who want to
ac27a0ec
DK
2368 * modify the block allocation tree.
2369 */
0e855ac8 2370 down_write(&ei->i_data_sem);
ac27a0ec
DK
2371
2372 if (n == 1) { /* direct blocks */
617ba13b
MC
2373 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2374 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
2375 goto do_indirects;
2376 }
2377
617ba13b 2378 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
2379 /* Kill the top of shared branch (not detached) */
2380 if (nr) {
2381 if (partial == chain) {
2382 /* Shared branch grows from the inode */
617ba13b 2383 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
2384 &nr, &nr+1, (chain+n-1) - partial);
2385 *partial->p = 0;
2386 /*
2387 * We mark the inode dirty prior to restart,
2388 * and prior to stop. No need for it here.
2389 */
2390 } else {
2391 /* Shared branch grows from an indirect block */
2392 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 2393 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
2394 partial->p,
2395 partial->p+1, (chain+n-1) - partial);
2396 }
2397 }
2398 /* Clear the ends of indirect blocks on the shared branch */
2399 while (partial > chain) {
617ba13b 2400 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
2401 (__le32*)partial->bh->b_data+addr_per_block,
2402 (chain+n-1) - partial);
2403 BUFFER_TRACE(partial->bh, "call brelse");
2404 brelse (partial->bh);
2405 partial--;
2406 }
2407do_indirects:
2408 /* Kill the remaining (whole) subtrees */
2409 switch (offsets[0]) {
2410 default:
617ba13b 2411 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 2412 if (nr) {
617ba13b
MC
2413 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2414 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 2415 }
617ba13b
MC
2416 case EXT4_IND_BLOCK:
2417 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 2418 if (nr) {
617ba13b
MC
2419 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2420 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 2421 }
617ba13b
MC
2422 case EXT4_DIND_BLOCK:
2423 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 2424 if (nr) {
617ba13b
MC
2425 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2426 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 2427 }
617ba13b 2428 case EXT4_TIND_BLOCK:
ac27a0ec
DK
2429 ;
2430 }
2431
617ba13b 2432 ext4_discard_reservation(inode);
ac27a0ec 2433
0e855ac8 2434 up_write(&ei->i_data_sem);
ef7f3835 2435 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 2436 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2437
2438 /*
2439 * In a multi-transaction truncate, we only make the final transaction
2440 * synchronous
2441 */
2442 if (IS_SYNC(inode))
2443 handle->h_sync = 1;
2444out_stop:
2445 /*
2446 * If this was a simple ftruncate(), and the file will remain alive
2447 * then we need to clear up the orphan record which we created above.
2448 * However, if this was a real unlink then we were called by
617ba13b 2449 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
2450 * orphan info for us.
2451 */
2452 if (inode->i_nlink)
617ba13b 2453 ext4_orphan_del(handle, inode);
ac27a0ec 2454
617ba13b 2455 ext4_journal_stop(handle);
ac27a0ec
DK
2456}
2457
617ba13b
MC
2458static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2459 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 2460{
fd2d4291
AM
2461 unsigned long desc, group_desc;
2462 ext4_group_t block_group;
ac27a0ec 2463 unsigned long offset;
617ba13b 2464 ext4_fsblk_t block;
ac27a0ec 2465 struct buffer_head *bh;
617ba13b 2466 struct ext4_group_desc * gdp;
ac27a0ec 2467
617ba13b 2468 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
2469 /*
2470 * This error is already checked for in namei.c unless we are
2471 * looking at an NFS filehandle, in which case no error
2472 * report is needed
2473 */
2474 return 0;
2475 }
2476
617ba13b
MC
2477 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2478 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2479 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
ac27a0ec
DK
2480 return 0;
2481 }
2482 smp_rmb();
617ba13b
MC
2483 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2484 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2485 bh = EXT4_SB(sb)->s_group_desc[group_desc];
ac27a0ec 2486 if (!bh) {
617ba13b 2487 ext4_error (sb, "ext4_get_inode_block",
ac27a0ec
DK
2488 "Descriptor not loaded");
2489 return 0;
2490 }
2491
0d1ee42f
AR
2492 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2493 desc * EXT4_DESC_SIZE(sb));
ac27a0ec
DK
2494 /*
2495 * Figure out the offset within the block group inode table
2496 */
617ba13b
MC
2497 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2498 EXT4_INODE_SIZE(sb);
8fadc143
AR
2499 block = ext4_inode_table(sb, gdp) +
2500 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
2501
2502 iloc->block_group = block_group;
617ba13b 2503 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
2504 return block;
2505}
2506
2507/*
617ba13b 2508 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
2509 * underlying buffer_head on success. If 'in_mem' is true, we have all
2510 * data in memory that is needed to recreate the on-disk version of this
2511 * inode.
2512 */
617ba13b
MC
2513static int __ext4_get_inode_loc(struct inode *inode,
2514 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 2515{
617ba13b 2516 ext4_fsblk_t block;
ac27a0ec
DK
2517 struct buffer_head *bh;
2518
617ba13b 2519 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
2520 if (!block)
2521 return -EIO;
2522
2523 bh = sb_getblk(inode->i_sb, block);
2524 if (!bh) {
617ba13b 2525 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2526 "unable to read inode block - "
2ae02107 2527 "inode=%lu, block=%llu",
ac27a0ec
DK
2528 inode->i_ino, block);
2529 return -EIO;
2530 }
2531 if (!buffer_uptodate(bh)) {
2532 lock_buffer(bh);
2533 if (buffer_uptodate(bh)) {
2534 /* someone brought it uptodate while we waited */
2535 unlock_buffer(bh);
2536 goto has_buffer;
2537 }
2538
2539 /*
2540 * If we have all information of the inode in memory and this
2541 * is the only valid inode in the block, we need not read the
2542 * block.
2543 */
2544 if (in_mem) {
2545 struct buffer_head *bitmap_bh;
617ba13b 2546 struct ext4_group_desc *desc;
ac27a0ec
DK
2547 int inodes_per_buffer;
2548 int inode_offset, i;
fd2d4291 2549 ext4_group_t block_group;
ac27a0ec
DK
2550 int start;
2551
2552 block_group = (inode->i_ino - 1) /
617ba13b 2553 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 2554 inodes_per_buffer = bh->b_size /
617ba13b 2555 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 2556 inode_offset = ((inode->i_ino - 1) %
617ba13b 2557 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
2558 start = inode_offset & ~(inodes_per_buffer - 1);
2559
2560 /* Is the inode bitmap in cache? */
617ba13b 2561 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
2562 block_group, NULL);
2563 if (!desc)
2564 goto make_io;
2565
2566 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 2567 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
2568 if (!bitmap_bh)
2569 goto make_io;
2570
2571 /*
2572 * If the inode bitmap isn't in cache then the
2573 * optimisation may end up performing two reads instead
2574 * of one, so skip it.
2575 */
2576 if (!buffer_uptodate(bitmap_bh)) {
2577 brelse(bitmap_bh);
2578 goto make_io;
2579 }
2580 for (i = start; i < start + inodes_per_buffer; i++) {
2581 if (i == inode_offset)
2582 continue;
617ba13b 2583 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
2584 break;
2585 }
2586 brelse(bitmap_bh);
2587 if (i == start + inodes_per_buffer) {
2588 /* all other inodes are free, so skip I/O */
2589 memset(bh->b_data, 0, bh->b_size);
2590 set_buffer_uptodate(bh);
2591 unlock_buffer(bh);
2592 goto has_buffer;
2593 }
2594 }
2595
2596make_io:
2597 /*
2598 * There are other valid inodes in the buffer, this inode
2599 * has in-inode xattrs, or we don't have this inode in memory.
2600 * Read the block from disk.
2601 */
2602 get_bh(bh);
2603 bh->b_end_io = end_buffer_read_sync;
2604 submit_bh(READ_META, bh);
2605 wait_on_buffer(bh);
2606 if (!buffer_uptodate(bh)) {
617ba13b 2607 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2608 "unable to read inode block - "
2ae02107 2609 "inode=%lu, block=%llu",
ac27a0ec
DK
2610 inode->i_ino, block);
2611 brelse(bh);
2612 return -EIO;
2613 }
2614 }
2615has_buffer:
2616 iloc->bh = bh;
2617 return 0;
2618}
2619
617ba13b 2620int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
2621{
2622 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
2623 return __ext4_get_inode_loc(inode, iloc,
2624 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
2625}
2626
617ba13b 2627void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 2628{
617ba13b 2629 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
2630
2631 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 2632 if (flags & EXT4_SYNC_FL)
ac27a0ec 2633 inode->i_flags |= S_SYNC;
617ba13b 2634 if (flags & EXT4_APPEND_FL)
ac27a0ec 2635 inode->i_flags |= S_APPEND;
617ba13b 2636 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 2637 inode->i_flags |= S_IMMUTABLE;
617ba13b 2638 if (flags & EXT4_NOATIME_FL)
ac27a0ec 2639 inode->i_flags |= S_NOATIME;
617ba13b 2640 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
2641 inode->i_flags |= S_DIRSYNC;
2642}
2643
ff9ddf7e
JK
2644/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2645void ext4_get_inode_flags(struct ext4_inode_info *ei)
2646{
2647 unsigned int flags = ei->vfs_inode.i_flags;
2648
2649 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2650 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2651 if (flags & S_SYNC)
2652 ei->i_flags |= EXT4_SYNC_FL;
2653 if (flags & S_APPEND)
2654 ei->i_flags |= EXT4_APPEND_FL;
2655 if (flags & S_IMMUTABLE)
2656 ei->i_flags |= EXT4_IMMUTABLE_FL;
2657 if (flags & S_NOATIME)
2658 ei->i_flags |= EXT4_NOATIME_FL;
2659 if (flags & S_DIRSYNC)
2660 ei->i_flags |= EXT4_DIRSYNC_FL;
2661}
0fc1b451
AK
2662static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2663 struct ext4_inode_info *ei)
2664{
2665 blkcnt_t i_blocks ;
8180a562
AK
2666 struct inode *inode = &(ei->vfs_inode);
2667 struct super_block *sb = inode->i_sb;
0fc1b451
AK
2668
2669 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2670 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2671 /* we are using combined 48 bit field */
2672 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2673 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
2674 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2675 /* i_blocks represent file system block size */
2676 return i_blocks << (inode->i_blkbits - 9);
2677 } else {
2678 return i_blocks;
2679 }
0fc1b451
AK
2680 } else {
2681 return le32_to_cpu(raw_inode->i_blocks_lo);
2682 }
2683}
ff9ddf7e 2684
617ba13b 2685void ext4_read_inode(struct inode * inode)
ac27a0ec 2686{
617ba13b
MC
2687 struct ext4_iloc iloc;
2688 struct ext4_inode *raw_inode;
2689 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
2690 struct buffer_head *bh;
2691 int block;
2692
617ba13b
MC
2693#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2694 ei->i_acl = EXT4_ACL_NOT_CACHED;
2695 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
2696#endif
2697 ei->i_block_alloc_info = NULL;
2698
617ba13b 2699 if (__ext4_get_inode_loc(inode, &iloc, 0))
ac27a0ec
DK
2700 goto bad_inode;
2701 bh = iloc.bh;
617ba13b 2702 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
2703 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2704 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2705 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2706 if(!(test_opt (inode->i_sb, NO_UID32))) {
2707 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2708 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2709 }
2710 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
2711
2712 ei->i_state = 0;
2713 ei->i_dir_start_lookup = 0;
2714 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2715 /* We now have enough fields to check if the inode was active or not.
2716 * This is needed because nfsd might try to access dead inodes
2717 * the test is that same one that e2fsck uses
2718 * NeilBrown 1999oct15
2719 */
2720 if (inode->i_nlink == 0) {
2721 if (inode->i_mode == 0 ||
617ba13b 2722 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
2723 /* this inode is deleted */
2724 brelse (bh);
2725 goto bad_inode;
2726 }
2727 /* The only unlinked inodes we let through here have
2728 * valid i_mode and are being read by the orphan
2729 * recovery code: that's fine, we're about to complete
2730 * the process of deleting those. */
2731 }
ac27a0ec 2732 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 2733 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 2734 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 2735 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 2736 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
2737 ei->i_file_acl |=
2738 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 2739 }
a48380f7 2740 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
2741 ei->i_disksize = inode->i_size;
2742 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2743 ei->i_block_group = iloc.block_group;
2744 /*
2745 * NOTE! The in-memory inode i_data array is in little-endian order
2746 * even on big-endian machines: we do NOT byteswap the block numbers!
2747 */
617ba13b 2748 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
2749 ei->i_data[block] = raw_inode->i_block[block];
2750 INIT_LIST_HEAD(&ei->i_orphan);
2751
617ba13b
MC
2752 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2753 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
2754 /*
2755 * When mke2fs creates big inodes it does not zero out
617ba13b 2756 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
ac27a0ec
DK
2757 * so ignore those first few inodes.
2758 */
2759 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 2760 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
2761 EXT4_INODE_SIZE(inode->i_sb)) {
2762 brelse (bh);
ac27a0ec 2763 goto bad_inode;
e5d2861f 2764 }
ac27a0ec
DK
2765 if (ei->i_extra_isize == 0) {
2766 /* The extra space is currently unused. Use it. */
617ba13b
MC
2767 ei->i_extra_isize = sizeof(struct ext4_inode) -
2768 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
2769 } else {
2770 __le32 *magic = (void *)raw_inode +
617ba13b 2771 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 2772 ei->i_extra_isize;
617ba13b
MC
2773 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2774 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
2775 }
2776 } else
2777 ei->i_extra_isize = 0;
2778
ef7f3835
KS
2779 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2780 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2781 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2782 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2783
ac27a0ec 2784 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
2785 inode->i_op = &ext4_file_inode_operations;
2786 inode->i_fop = &ext4_file_operations;
2787 ext4_set_aops(inode);
ac27a0ec 2788 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
2789 inode->i_op = &ext4_dir_inode_operations;
2790 inode->i_fop = &ext4_dir_operations;
ac27a0ec 2791 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
2792 if (ext4_inode_is_fast_symlink(inode))
2793 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 2794 else {
617ba13b
MC
2795 inode->i_op = &ext4_symlink_inode_operations;
2796 ext4_set_aops(inode);
ac27a0ec
DK
2797 }
2798 } else {
617ba13b 2799 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
2800 if (raw_inode->i_block[0])
2801 init_special_inode(inode, inode->i_mode,
2802 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2803 else
2804 init_special_inode(inode, inode->i_mode,
2805 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2806 }
2807 brelse (iloc.bh);
617ba13b 2808 ext4_set_inode_flags(inode);
ac27a0ec
DK
2809 return;
2810
2811bad_inode:
2812 make_bad_inode(inode);
2813 return;
2814}
2815
0fc1b451
AK
2816static int ext4_inode_blocks_set(handle_t *handle,
2817 struct ext4_inode *raw_inode,
2818 struct ext4_inode_info *ei)
2819{
2820 struct inode *inode = &(ei->vfs_inode);
2821 u64 i_blocks = inode->i_blocks;
2822 struct super_block *sb = inode->i_sb;
2823 int err = 0;
2824
2825 if (i_blocks <= ~0U) {
2826 /*
2827 * i_blocks can be represnted in a 32 bit variable
2828 * as multiple of 512 bytes
2829 */
8180a562 2830 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2831 raw_inode->i_blocks_high = 0;
8180a562 2832 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
2833 } else if (i_blocks <= 0xffffffffffffULL) {
2834 /*
2835 * i_blocks can be represented in a 48 bit variable
2836 * as multiple of 512 bytes
2837 */
2838 err = ext4_update_rocompat_feature(handle, sb,
2839 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2840 if (err)
2841 goto err_out;
2842 /* i_block is stored in the split 48 bit fields */
8180a562 2843 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2844 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 2845 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 2846 } else {
8180a562
AK
2847 /*
2848 * i_blocks should be represented in a 48 bit variable
2849 * as multiple of file system block size
2850 */
2851 err = ext4_update_rocompat_feature(handle, sb,
2852 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2853 if (err)
2854 goto err_out;
2855 ei->i_flags |= EXT4_HUGE_FILE_FL;
2856 /* i_block is stored in file system block size */
2857 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2858 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2859 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
2860 }
2861err_out:
2862 return err;
2863}
2864
ac27a0ec
DK
2865/*
2866 * Post the struct inode info into an on-disk inode location in the
2867 * buffer-cache. This gobbles the caller's reference to the
2868 * buffer_head in the inode location struct.
2869 *
2870 * The caller must have write access to iloc->bh.
2871 */
617ba13b 2872static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 2873 struct inode *inode,
617ba13b 2874 struct ext4_iloc *iloc)
ac27a0ec 2875{
617ba13b
MC
2876 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2877 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
2878 struct buffer_head *bh = iloc->bh;
2879 int err = 0, rc, block;
2880
2881 /* For fields not not tracking in the in-memory inode,
2882 * initialise them to zero for new inodes. */
617ba13b
MC
2883 if (ei->i_state & EXT4_STATE_NEW)
2884 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 2885
ff9ddf7e 2886 ext4_get_inode_flags(ei);
ac27a0ec
DK
2887 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2888 if(!(test_opt(inode->i_sb, NO_UID32))) {
2889 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2890 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2891/*
2892 * Fix up interoperability with old kernels. Otherwise, old inodes get
2893 * re-used with the upper 16 bits of the uid/gid intact
2894 */
2895 if(!ei->i_dtime) {
2896 raw_inode->i_uid_high =
2897 cpu_to_le16(high_16_bits(inode->i_uid));
2898 raw_inode->i_gid_high =
2899 cpu_to_le16(high_16_bits(inode->i_gid));
2900 } else {
2901 raw_inode->i_uid_high = 0;
2902 raw_inode->i_gid_high = 0;
2903 }
2904 } else {
2905 raw_inode->i_uid_low =
2906 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2907 raw_inode->i_gid_low =
2908 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2909 raw_inode->i_uid_high = 0;
2910 raw_inode->i_gid_high = 0;
2911 }
2912 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
2913
2914 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2915 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2916 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2917 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2918
0fc1b451
AK
2919 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2920 goto out_brelse;
ac27a0ec
DK
2921 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2922 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
2923 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2924 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
2925 raw_inode->i_file_acl_high =
2926 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 2927 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
2928 ext4_isize_set(raw_inode, ei->i_disksize);
2929 if (ei->i_disksize > 0x7fffffffULL) {
2930 struct super_block *sb = inode->i_sb;
2931 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2932 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2933 EXT4_SB(sb)->s_es->s_rev_level ==
2934 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2935 /* If this is the first large file
2936 * created, add a flag to the superblock.
2937 */
2938 err = ext4_journal_get_write_access(handle,
2939 EXT4_SB(sb)->s_sbh);
2940 if (err)
2941 goto out_brelse;
2942 ext4_update_dynamic_rev(sb);
2943 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 2944 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
2945 sb->s_dirt = 1;
2946 handle->h_sync = 1;
2947 err = ext4_journal_dirty_metadata(handle,
2948 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
2949 }
2950 }
2951 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2952 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2953 if (old_valid_dev(inode->i_rdev)) {
2954 raw_inode->i_block[0] =
2955 cpu_to_le32(old_encode_dev(inode->i_rdev));
2956 raw_inode->i_block[1] = 0;
2957 } else {
2958 raw_inode->i_block[0] = 0;
2959 raw_inode->i_block[1] =
2960 cpu_to_le32(new_encode_dev(inode->i_rdev));
2961 raw_inode->i_block[2] = 0;
2962 }
617ba13b 2963 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
2964 raw_inode->i_block[block] = ei->i_data[block];
2965
2966 if (ei->i_extra_isize)
2967 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2968
617ba13b
MC
2969 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2970 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
2971 if (!err)
2972 err = rc;
617ba13b 2973 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
2974
2975out_brelse:
2976 brelse (bh);
617ba13b 2977 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
2978 return err;
2979}
2980
2981/*
617ba13b 2982 * ext4_write_inode()
ac27a0ec
DK
2983 *
2984 * We are called from a few places:
2985 *
2986 * - Within generic_file_write() for O_SYNC files.
2987 * Here, there will be no transaction running. We wait for any running
2988 * trasnaction to commit.
2989 *
2990 * - Within sys_sync(), kupdate and such.
2991 * We wait on commit, if tol to.
2992 *
2993 * - Within prune_icache() (PF_MEMALLOC == true)
2994 * Here we simply return. We can't afford to block kswapd on the
2995 * journal commit.
2996 *
2997 * In all cases it is actually safe for us to return without doing anything,
2998 * because the inode has been copied into a raw inode buffer in
617ba13b 2999 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
3000 * knfsd.
3001 *
3002 * Note that we are absolutely dependent upon all inode dirtiers doing the
3003 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3004 * which we are interested.
3005 *
3006 * It would be a bug for them to not do this. The code:
3007 *
3008 * mark_inode_dirty(inode)
3009 * stuff();
3010 * inode->i_size = expr;
3011 *
3012 * is in error because a kswapd-driven write_inode() could occur while
3013 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3014 * will no longer be on the superblock's dirty inode list.
3015 */
617ba13b 3016int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
3017{
3018 if (current->flags & PF_MEMALLOC)
3019 return 0;
3020
617ba13b 3021 if (ext4_journal_current_handle()) {
b38bd33a 3022 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
3023 dump_stack();
3024 return -EIO;
3025 }
3026
3027 if (!wait)
3028 return 0;
3029
617ba13b 3030 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
3031}
3032
3033/*
617ba13b 3034 * ext4_setattr()
ac27a0ec
DK
3035 *
3036 * Called from notify_change.
3037 *
3038 * We want to trap VFS attempts to truncate the file as soon as
3039 * possible. In particular, we want to make sure that when the VFS
3040 * shrinks i_size, we put the inode on the orphan list and modify
3041 * i_disksize immediately, so that during the subsequent flushing of
3042 * dirty pages and freeing of disk blocks, we can guarantee that any
3043 * commit will leave the blocks being flushed in an unused state on
3044 * disk. (On recovery, the inode will get truncated and the blocks will
3045 * be freed, so we have a strong guarantee that no future commit will
3046 * leave these blocks visible to the user.)
3047 *
3048 * Called with inode->sem down.
3049 */
617ba13b 3050int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
3051{
3052 struct inode *inode = dentry->d_inode;
3053 int error, rc = 0;
3054 const unsigned int ia_valid = attr->ia_valid;
3055
3056 error = inode_change_ok(inode, attr);
3057 if (error)
3058 return error;
3059
3060 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3061 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3062 handle_t *handle;
3063
3064 /* (user+group)*(old+new) structure, inode write (sb,
3065 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
3066 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3067 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
3068 if (IS_ERR(handle)) {
3069 error = PTR_ERR(handle);
3070 goto err_out;
3071 }
3072 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3073 if (error) {
617ba13b 3074 ext4_journal_stop(handle);
ac27a0ec
DK
3075 return error;
3076 }
3077 /* Update corresponding info in inode so that everything is in
3078 * one transaction */
3079 if (attr->ia_valid & ATTR_UID)
3080 inode->i_uid = attr->ia_uid;
3081 if (attr->ia_valid & ATTR_GID)
3082 inode->i_gid = attr->ia_gid;
617ba13b
MC
3083 error = ext4_mark_inode_dirty(handle, inode);
3084 ext4_journal_stop(handle);
ac27a0ec
DK
3085 }
3086
e2b46574
ES
3087 if (attr->ia_valid & ATTR_SIZE) {
3088 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3089 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3090
3091 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3092 error = -EFBIG;
3093 goto err_out;
3094 }
3095 }
3096 }
3097
ac27a0ec
DK
3098 if (S_ISREG(inode->i_mode) &&
3099 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3100 handle_t *handle;
3101
617ba13b 3102 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
3103 if (IS_ERR(handle)) {
3104 error = PTR_ERR(handle);
3105 goto err_out;
3106 }
3107
617ba13b
MC
3108 error = ext4_orphan_add(handle, inode);
3109 EXT4_I(inode)->i_disksize = attr->ia_size;
3110 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3111 if (!error)
3112 error = rc;
617ba13b 3113 ext4_journal_stop(handle);
ac27a0ec
DK
3114 }
3115
3116 rc = inode_setattr(inode, attr);
3117
617ba13b 3118 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
3119 * transaction handle at all, we need to clean up the in-core
3120 * orphan list manually. */
3121 if (inode->i_nlink)
617ba13b 3122 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
3123
3124 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 3125 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
3126
3127err_out:
617ba13b 3128 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
3129 if (!error)
3130 error = rc;
3131 return error;
3132}
3133
3134
3135/*
3136 * How many blocks doth make a writepage()?
3137 *
3138 * With N blocks per page, it may be:
3139 * N data blocks
3140 * 2 indirect block
3141 * 2 dindirect
3142 * 1 tindirect
3143 * N+5 bitmap blocks (from the above)
3144 * N+5 group descriptor summary blocks
3145 * 1 inode block
3146 * 1 superblock.
617ba13b 3147 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
ac27a0ec 3148 *
617ba13b 3149 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
ac27a0ec
DK
3150 *
3151 * With ordered or writeback data it's the same, less the N data blocks.
3152 *
3153 * If the inode's direct blocks can hold an integral number of pages then a
3154 * page cannot straddle two indirect blocks, and we can only touch one indirect
3155 * and dindirect block, and the "5" above becomes "3".
3156 *
3157 * This still overestimates under most circumstances. If we were to pass the
3158 * start and end offsets in here as well we could do block_to_path() on each
3159 * block and work out the exact number of indirects which are touched. Pah.
3160 */
3161
a86c6181 3162int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 3163{
617ba13b
MC
3164 int bpp = ext4_journal_blocks_per_page(inode);
3165 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
ac27a0ec
DK
3166 int ret;
3167
a86c6181
AT
3168 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3169 return ext4_ext_writepage_trans_blocks(inode, bpp);
3170
617ba13b 3171 if (ext4_should_journal_data(inode))
ac27a0ec
DK
3172 ret = 3 * (bpp + indirects) + 2;
3173 else
3174 ret = 2 * (bpp + indirects) + 2;
3175
3176#ifdef CONFIG_QUOTA
3177 /* We know that structure was already allocated during DQUOT_INIT so
3178 * we will be updating only the data blocks + inodes */
617ba13b 3179 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
ac27a0ec
DK
3180#endif
3181
3182 return ret;
3183}
3184
3185/*
617ba13b 3186 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
3187 * Give this, we know that the caller already has write access to iloc->bh.
3188 */
617ba13b
MC
3189int ext4_mark_iloc_dirty(handle_t *handle,
3190 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3191{
3192 int err = 0;
3193
3194 /* the do_update_inode consumes one bh->b_count */
3195 get_bh(iloc->bh);
3196
dab291af 3197 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 3198 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
3199 put_bh(iloc->bh);
3200 return err;
3201}
3202
3203/*
3204 * On success, We end up with an outstanding reference count against
3205 * iloc->bh. This _must_ be cleaned up later.
3206 */
3207
3208int
617ba13b
MC
3209ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3210 struct ext4_iloc *iloc)
ac27a0ec
DK
3211{
3212 int err = 0;
3213 if (handle) {
617ba13b 3214 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
3215 if (!err) {
3216 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 3217 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
3218 if (err) {
3219 brelse(iloc->bh);
3220 iloc->bh = NULL;
3221 }
3222 }
3223 }
617ba13b 3224 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3225 return err;
3226}
3227
6dd4ee7c
KS
3228/*
3229 * Expand an inode by new_extra_isize bytes.
3230 * Returns 0 on success or negative error number on failure.
3231 */
1d03ec98
AK
3232static int ext4_expand_extra_isize(struct inode *inode,
3233 unsigned int new_extra_isize,
3234 struct ext4_iloc iloc,
3235 handle_t *handle)
6dd4ee7c
KS
3236{
3237 struct ext4_inode *raw_inode;
3238 struct ext4_xattr_ibody_header *header;
3239 struct ext4_xattr_entry *entry;
3240
3241 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3242 return 0;
3243
3244 raw_inode = ext4_raw_inode(&iloc);
3245
3246 header = IHDR(inode, raw_inode);
3247 entry = IFIRST(header);
3248
3249 /* No extended attributes present */
3250 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3251 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3252 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3253 new_extra_isize);
3254 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3255 return 0;
3256 }
3257
3258 /* try to expand with EAs present */
3259 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3260 raw_inode, handle);
3261}
3262
ac27a0ec
DK
3263/*
3264 * What we do here is to mark the in-core inode as clean with respect to inode
3265 * dirtiness (it may still be data-dirty).
3266 * This means that the in-core inode may be reaped by prune_icache
3267 * without having to perform any I/O. This is a very good thing,
3268 * because *any* task may call prune_icache - even ones which
3269 * have a transaction open against a different journal.
3270 *
3271 * Is this cheating? Not really. Sure, we haven't written the
3272 * inode out, but prune_icache isn't a user-visible syncing function.
3273 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3274 * we start and wait on commits.
3275 *
3276 * Is this efficient/effective? Well, we're being nice to the system
3277 * by cleaning up our inodes proactively so they can be reaped
3278 * without I/O. But we are potentially leaving up to five seconds'
3279 * worth of inodes floating about which prune_icache wants us to
3280 * write out. One way to fix that would be to get prune_icache()
3281 * to do a write_super() to free up some memory. It has the desired
3282 * effect.
3283 */
617ba13b 3284int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 3285{
617ba13b 3286 struct ext4_iloc iloc;
6dd4ee7c
KS
3287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3288 static unsigned int mnt_count;
3289 int err, ret;
ac27a0ec
DK
3290
3291 might_sleep();
617ba13b 3292 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
3293 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3294 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3295 /*
3296 * We need extra buffer credits since we may write into EA block
3297 * with this same handle. If journal_extend fails, then it will
3298 * only result in a minor loss of functionality for that inode.
3299 * If this is felt to be critical, then e2fsck should be run to
3300 * force a large enough s_min_extra_isize.
3301 */
3302 if ((jbd2_journal_extend(handle,
3303 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3304 ret = ext4_expand_extra_isize(inode,
3305 sbi->s_want_extra_isize,
3306 iloc, handle);
3307 if (ret) {
3308 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
3309 if (mnt_count !=
3310 le16_to_cpu(sbi->s_es->s_mnt_count)) {
6dd4ee7c
KS
3311 ext4_warning(inode->i_sb, __FUNCTION__,
3312 "Unable to expand inode %lu. Delete"
3313 " some EAs or run e2fsck.",
3314 inode->i_ino);
c1bddad9
AK
3315 mnt_count =
3316 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
3317 }
3318 }
3319 }
3320 }
ac27a0ec 3321 if (!err)
617ba13b 3322 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
3323 return err;
3324}
3325
3326/*
617ba13b 3327 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
3328 *
3329 * We're really interested in the case where a file is being extended.
3330 * i_size has been changed by generic_commit_write() and we thus need
3331 * to include the updated inode in the current transaction.
3332 *
3333 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3334 * are allocated to the file.
3335 *
3336 * If the inode is marked synchronous, we don't honour that here - doing
3337 * so would cause a commit on atime updates, which we don't bother doing.
3338 * We handle synchronous inodes at the highest possible level.
3339 */
617ba13b 3340void ext4_dirty_inode(struct inode *inode)
ac27a0ec 3341{
617ba13b 3342 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
3343 handle_t *handle;
3344
617ba13b 3345 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
3346 if (IS_ERR(handle))
3347 goto out;
3348 if (current_handle &&
3349 current_handle->h_transaction != handle->h_transaction) {
3350 /* This task has a transaction open against a different fs */
3351 printk(KERN_EMERG "%s: transactions do not match!\n",
3352 __FUNCTION__);
3353 } else {
3354 jbd_debug(5, "marking dirty. outer handle=%p\n",
3355 current_handle);
617ba13b 3356 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3357 }
617ba13b 3358 ext4_journal_stop(handle);
ac27a0ec
DK
3359out:
3360 return;
3361}
3362
3363#if 0
3364/*
3365 * Bind an inode's backing buffer_head into this transaction, to prevent
3366 * it from being flushed to disk early. Unlike
617ba13b 3367 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
3368 * returns no iloc structure, so the caller needs to repeat the iloc
3369 * lookup to mark the inode dirty later.
3370 */
617ba13b 3371static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 3372{
617ba13b 3373 struct ext4_iloc iloc;
ac27a0ec
DK
3374
3375 int err = 0;
3376 if (handle) {
617ba13b 3377 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
3378 if (!err) {
3379 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 3380 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 3381 if (!err)
617ba13b 3382 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3383 iloc.bh);
3384 brelse(iloc.bh);
3385 }
3386 }
617ba13b 3387 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3388 return err;
3389}
3390#endif
3391
617ba13b 3392int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
3393{
3394 journal_t *journal;
3395 handle_t *handle;
3396 int err;
3397
3398 /*
3399 * We have to be very careful here: changing a data block's
3400 * journaling status dynamically is dangerous. If we write a
3401 * data block to the journal, change the status and then delete
3402 * that block, we risk forgetting to revoke the old log record
3403 * from the journal and so a subsequent replay can corrupt data.
3404 * So, first we make sure that the journal is empty and that
3405 * nobody is changing anything.
3406 */
3407
617ba13b 3408 journal = EXT4_JOURNAL(inode);
d699594d 3409 if (is_journal_aborted(journal))
ac27a0ec
DK
3410 return -EROFS;
3411
dab291af
MC
3412 jbd2_journal_lock_updates(journal);
3413 jbd2_journal_flush(journal);
ac27a0ec
DK
3414
3415 /*
3416 * OK, there are no updates running now, and all cached data is
3417 * synced to disk. We are now in a completely consistent state
3418 * which doesn't have anything in the journal, and we know that
3419 * no filesystem updates are running, so it is safe to modify
3420 * the inode's in-core data-journaling state flag now.
3421 */
3422
3423 if (val)
617ba13b 3424 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 3425 else
617ba13b
MC
3426 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3427 ext4_set_aops(inode);
ac27a0ec 3428
dab291af 3429 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3430
3431 /* Finally we can mark the inode as dirty. */
3432
617ba13b 3433 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
3434 if (IS_ERR(handle))
3435 return PTR_ERR(handle);
3436
617ba13b 3437 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3438 handle->h_sync = 1;
617ba13b
MC
3439 ext4_journal_stop(handle);
3440 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3441
3442 return err;
3443}