]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
vfs: Add BUG_ON for delayed and unwritten flags in submit_bh()
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
f73953c0 375 __le32 *p, unsigned int max) {
fe2c8191
TN
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
f73953c0 378 __le32 *bref = p;
fe2c8191 379 while (bref < p+max) {
f73953c0 380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
fe2c8191
TN
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
f73953c0 384 le32_to_cpu(*bref), maxblocks,
fe2c8191
TN
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391}
392
393
394#define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398#define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
ac27a0ec 402/**
617ba13b 403 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
ac27a0ec
DK
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
428 *
429 * Need to be called with
0e855ac8 430 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 431 */
725d26d3
AK
432static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
ac27a0ec
DK
434 Indirect chain[4], int *err)
435{
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
af5bc92d 442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
fe2c8191
TN
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
ac27a0ec 448 goto failure;
fe2c8191
TN
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
af5bc92d 462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
ac27a0ec
DK
469failure:
470 *err = -EIO;
471no_block:
472 return p;
473}
474
475/**
617ba13b 476 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
1cc8dcf5 480 * This function returns the preferred place for block allocation.
ac27a0ec
DK
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
617ba13b 495static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 496{
617ba13b 497 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 499 __le32 *p;
617ba13b 500 ext4_fsblk_t bg_start;
74d3487f 501 ext4_fsblk_t last_block;
617ba13b 502 ext4_grpblk_t colour;
a4912123
TT
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
a4912123
TT
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
a4912123
TT
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
74d3487f
VC
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
617ba13b 538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
541 return bg_start + colour;
542}
543
544/**
1cc8dcf5 545 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
546 * @inode: owner
547 * @block: block we want
ac27a0ec 548 * @partial: pointer to the last triple within a chain
ac27a0ec 549 *
1cc8dcf5 550 * Normally this function find the preferred place for block allocation,
fb01bfda 551 * returns it.
ac27a0ec 552 */
725d26d3 553static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 554 Indirect *partial)
ac27a0ec 555{
ac27a0ec 556 /*
c2ea3fde 557 * XXX need to get goal block from mballoc's data structures
ac27a0ec 558 */
ac27a0ec 559
617ba13b 560 return ext4_find_near(inode, partial);
ac27a0ec
DK
561}
562
563/**
617ba13b 564 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
498e5f24 575static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
576 int blocks_to_boundary)
577{
498e5f24 578 unsigned int count = 0;
ac27a0ec
DK
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599}
600
601/**
617ba13b 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
617ba13b 611static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 615{
815a1130 616 struct ext4_allocation_request ar;
ac27a0ec 617 int target, i;
7061eba7 618 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 619 int index = 0;
617ba13b 620 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
7061eba7
AK
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
ac27a0ec
DK
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
ac27a0ec
DK
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
7061eba7
AK
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
ac27a0ec 656 break;
7061eba7 657 }
ac27a0ec
DK
658 }
659
7061eba7
AK
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
815a1130
TT
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
7061eba7
AK
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
815a1130 691 blk_allocated += ar.len;
7061eba7
AK
692 }
693allocated:
ac27a0ec 694 /* total number of blocks allocated for direct blocks */
7061eba7 695 ret = blk_allocated;
ac27a0ec
DK
696 *err = 0;
697 return ret;
698failed_out:
af5bc92d 699 for (i = 0; i < index; i++)
c9de560d 700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
701 return ret;
702}
703
704/**
617ba13b 705 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
617ba13b 716 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 719 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
617ba13b 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
727 * as described above and return 0.
728 */
617ba13b 729static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
733{
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
617ba13b
MC
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
ac27a0ec 741
7061eba7 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 761 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
af5bc92d 772 if (n == indirect_blks) {
ac27a0ec
DK
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
0390131b
FM
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
dab291af 796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 797 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 798 }
af5bc92d 799 for (i = 0; i < indirect_blks; i++)
c9de560d 800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 801
c9de560d 802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
803
804 return err;
805}
806
807/**
617ba13b 808 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 812 * ext4_alloc_branch)
ac27a0ec
DK
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
617ba13b 821static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 822 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
823{
824 int i;
825 int err = 0;
617ba13b 826 ext4_fsblk_t current_block;
ac27a0ec 827
ac27a0ec
DK
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 835 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
af5bc92d 850 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
851 }
852
ac27a0ec
DK
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
ef7f3835 855 inode->i_ctime = ext4_current_time(inode);
617ba13b 856 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
617ba13b 866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
867 */
868 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882err_out:
883 for (i = 1; i <= num; i++) {
dab291af 884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 885 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 888 }
c9de560d 889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
890
891 return err;
892}
893
894/*
895 * Allocation strategy is simple: if we have to allocate something, we will
896 * have to go the whole way to leaf. So let's do it before attaching anything
897 * to tree, set linkage between the newborn blocks, write them if sync is
898 * required, recheck the path, free and repeat if check fails, otherwise
899 * set the last missing link (that will protect us from any truncate-generated
900 * removals - all blocks on the path are immune now) and possibly force the
901 * write on the parent block.
902 * That has a nice additional property: no special recovery from the failed
903 * allocations is needed - we simply release blocks and do not touch anything
904 * reachable from inode.
905 *
906 * `handle' can be NULL if create == 0.
907 *
ac27a0ec
DK
908 * return > 0, # of blocks mapped or allocated.
909 * return = 0, if plain lookup failed.
910 * return < 0, error case.
c278bfec
AK
911 *
912 *
913 * Need to be called with
0e855ac8
AK
914 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 916 */
498e5f24
TT
917static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918 ext4_lblk_t iblock, unsigned int maxblocks,
919 struct buffer_head *bh_result,
920 int create, int extend_disksize)
ac27a0ec
DK
921{
922 int err = -EIO;
725d26d3 923 ext4_lblk_t offsets[4];
ac27a0ec
DK
924 Indirect chain[4];
925 Indirect *partial;
617ba13b 926 ext4_fsblk_t goal;
ac27a0ec
DK
927 int indirect_blks;
928 int blocks_to_boundary = 0;
929 int depth;
617ba13b 930 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 931 int count = 0;
617ba13b 932 ext4_fsblk_t first_block = 0;
61628a3f 933 loff_t disksize;
ac27a0ec
DK
934
935
a86c6181 936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 937 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
ac27a0ec
DK
940
941 if (depth == 0)
942 goto out;
943
617ba13b 944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 953 ext4_fsblk_t blk;
ac27a0ec 954
ac27a0ec
DK
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
c278bfec 962 goto got_it;
ac27a0ec
DK
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if (!create || err == -EIO)
967 goto cleanup;
968
ac27a0ec 969 /*
c2ea3fde 970 * Okay, we need to do block allocation.
ac27a0ec 971 */
fb01bfda 972 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
617ba13b 981 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
982 maxblocks, blocks_to_boundary);
983 /*
617ba13b 984 * Block out ext4_truncate while we alter the tree
ac27a0ec 985 */
7061eba7
AK
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
ac27a0ec
DK
989
990 /*
617ba13b 991 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
617ba13b 998 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
999 partial, indirect_blks, count);
1000 /*
0e855ac8 1001 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 1002 * protect it if you're about to implement concurrent
617ba13b 1003 * ext4_get_block() -bzzz
ac27a0ec 1004 */
61628a3f
MC
1005 if (!err && extend_disksize) {
1006 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007 if (disksize > i_size_read(inode))
1008 disksize = i_size_read(inode);
1009 if (disksize > ei->i_disksize)
1010 ei->i_disksize = disksize;
1011 }
ac27a0ec
DK
1012 if (err)
1013 goto cleanup;
1014
1015 set_buffer_new(bh_result);
1016got_it:
1017 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018 if (count > blocks_to_boundary)
1019 set_buffer_boundary(bh_result);
1020 err = count;
1021 /* Clean up and exit */
1022 partial = chain + depth - 1; /* the whole chain */
1023cleanup:
1024 while (partial > chain) {
1025 BUFFER_TRACE(partial->bh, "call brelse");
1026 brelse(partial->bh);
1027 partial--;
1028 }
1029 BUFFER_TRACE(bh_result, "returned");
1030out:
1031 return err;
1032}
1033
60e58e0f
MC
1034qsize_t ext4_get_reserved_space(struct inode *inode)
1035{
1036 unsigned long long total;
1037
1038 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039 total = EXT4_I(inode)->i_reserved_data_blocks +
1040 EXT4_I(inode)->i_reserved_meta_blocks;
1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043 return total;
1044}
12219aea
AK
1045/*
1046 * Calculate the number of metadata blocks need to reserve
1047 * to allocate @blocks for non extent file based file
1048 */
1049static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050{
1051 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052 int ind_blks, dind_blks, tind_blks;
1053
1054 /* number of new indirect blocks needed */
1055 ind_blks = (blocks + icap - 1) / icap;
1056
1057 dind_blks = (ind_blks + icap - 1) / icap;
1058
1059 tind_blks = 1;
1060
1061 return ind_blks + dind_blks + tind_blks;
1062}
1063
1064/*
1065 * Calculate the number of metadata blocks need to reserve
1066 * to allocate given number of blocks
1067 */
1068static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069{
cd213226
MC
1070 if (!blocks)
1071 return 0;
1072
12219aea
AK
1073 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076 return ext4_indirect_calc_metadata_amount(inode, blocks);
1077}
1078
1079static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080{
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082 int total, mdb, mdb_free;
1083
1084 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085 /* recalculate the number of metablocks still need to be reserved */
1086 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087 mdb = ext4_calc_metadata_amount(inode, total);
1088
1089 /* figure out how many metablocks to release */
1090 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
6bc6e63f
AK
1093 if (mdb_free) {
1094 /* Account for allocated meta_blocks */
1095 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097 /* update fs dirty blocks counter */
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101 }
12219aea
AK
1102
1103 /* update per-inode reservations */
1104 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1105 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1106 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1107
1108 /*
1109 * free those over-booking quota for metadata blocks
1110 */
60e58e0f
MC
1111 if (mdb_free)
1112 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1113
1114 /*
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1118 */
1119 if (!total && (atomic_read(&inode->i_writecount) == 0))
1120 ext4_discard_preallocations(inode);
12219aea
AK
1121}
1122
f5ab0d1f 1123/*
2b2d6d01
TT
1124 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125 * and returns if the blocks are already mapped.
f5ab0d1f 1126 *
f5ab0d1f
MC
1127 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128 * and store the allocated blocks in the result buffer head and mark it
1129 * mapped.
1130 *
1131 * If file type is extents based, it will call ext4_ext_get_blocks(),
1132 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133 * based files
1134 *
1135 * On success, it returns the number of blocks being mapped or allocate.
1136 * if create==0 and the blocks are pre-allocated and uninitialized block,
1137 * the result buffer head is unmapped. If the create ==1, it will make sure
1138 * the buffer head is mapped.
1139 *
1140 * It returns 0 if plain look up failed (blocks have not been allocated), in
1141 * that casem, buffer head is unmapped
1142 *
1143 * It returns the error in case of allocation failure.
1144 */
0e855ac8 1145int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
498e5f24 1146 unsigned int max_blocks, struct buffer_head *bh,
d2a17637 1147 int create, int extend_disksize, int flag)
0e855ac8
AK
1148{
1149 int retval;
f5ab0d1f
MC
1150
1151 clear_buffer_mapped(bh);
2a8964d6 1152 clear_buffer_unwritten(bh);
f5ab0d1f 1153
4df3d265
AK
1154 /*
1155 * Try to see if we can get the block without requesting
1156 * for new file system block.
1157 */
1158 down_read((&EXT4_I(inode)->i_data_sem));
1159 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161 bh, 0, 0);
0e855ac8 1162 } else {
4df3d265
AK
1163 retval = ext4_get_blocks_handle(handle,
1164 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1165 }
4df3d265 1166 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1167
1168 /* If it is only a block(s) look up */
1169 if (!create)
1170 return retval;
1171
1172 /*
1173 * Returns if the blocks have already allocated
1174 *
1175 * Note that if blocks have been preallocated
1176 * ext4_ext_get_block() returns th create = 0
1177 * with buffer head unmapped.
1178 */
1179 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1180 return retval;
1181
2a8964d6
AK
1182 /*
1183 * When we call get_blocks without the create flag, the
1184 * BH_Unwritten flag could have gotten set if the blocks
1185 * requested were part of a uninitialized extent. We need to
1186 * clear this flag now that we are committed to convert all or
1187 * part of the uninitialized extent to be an initialized
1188 * extent. This is because we need to avoid the combination
1189 * of BH_Unwritten and BH_Mapped flags being simultaneously
1190 * set on the buffer_head.
1191 */
1192 clear_buffer_unwritten(bh);
1193
4df3d265 1194 /*
f5ab0d1f
MC
1195 * New blocks allocate and/or writing to uninitialized extent
1196 * will possibly result in updating i_data, so we take
1197 * the write lock of i_data_sem, and call get_blocks()
1198 * with create == 1 flag.
4df3d265
AK
1199 */
1200 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1201
1202 /*
1203 * if the caller is from delayed allocation writeout path
1204 * we have already reserved fs blocks for allocation
1205 * let the underlying get_block() function know to
1206 * avoid double accounting
1207 */
1208 if (flag)
1209 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1210 /*
1211 * We need to check for EXT4 here because migrate
1212 * could have changed the inode type in between
1213 */
0e855ac8
AK
1214 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216 bh, create, extend_disksize);
1217 } else {
1218 retval = ext4_get_blocks_handle(handle, inode, block,
1219 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1220
1221 if (retval > 0 && buffer_new(bh)) {
1222 /*
1223 * We allocated new blocks which will result in
1224 * i_data's format changing. Force the migrate
1225 * to fail by clearing migrate flags
1226 */
1227 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228 ~EXT4_EXT_MIGRATE;
1229 }
0e855ac8 1230 }
d2a17637
MC
1231
1232 if (flag) {
1233 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234 /*
1235 * Update reserved blocks/metadata blocks
1236 * after successful block allocation
1237 * which were deferred till now
1238 */
1239 if ((retval > 0) && buffer_delay(bh))
12219aea 1240 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1241 }
1242
4df3d265 1243 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1244 return retval;
1245}
1246
f3bd1f3f
MC
1247/* Maximum number of blocks we map for direct IO at once. */
1248#define DIO_MAX_BLOCKS 4096
1249
6873fa0d
ES
1250int ext4_get_block(struct inode *inode, sector_t iblock,
1251 struct buffer_head *bh_result, int create)
ac27a0ec 1252{
3e4fdaf8 1253 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1254 int ret = 0, started = 0;
ac27a0ec 1255 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1256 int dio_credits;
ac27a0ec 1257
7fb5409d
JK
1258 if (create && !handle) {
1259 /* Direct IO write... */
1260 if (max_blocks > DIO_MAX_BLOCKS)
1261 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1262 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1264 if (IS_ERR(handle)) {
ac27a0ec 1265 ret = PTR_ERR(handle);
7fb5409d 1266 goto out;
ac27a0ec 1267 }
7fb5409d 1268 started = 1;
ac27a0ec
DK
1269 }
1270
7fb5409d 1271 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1272 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1273 if (ret > 0) {
1274 bh_result->b_size = (ret << inode->i_blkbits);
1275 ret = 0;
ac27a0ec 1276 }
7fb5409d
JK
1277 if (started)
1278 ext4_journal_stop(handle);
1279out:
ac27a0ec
DK
1280 return ret;
1281}
1282
1283/*
1284 * `handle' can be NULL if create is zero
1285 */
617ba13b 1286struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1287 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1288{
1289 struct buffer_head dummy;
1290 int fatal = 0, err;
1291
1292 J_ASSERT(handle != NULL || create == 0);
1293
1294 dummy.b_state = 0;
1295 dummy.b_blocknr = -1000;
1296 buffer_trace_init(&dummy.b_history);
a86c6181 1297 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1298 &dummy, create, 1, 0);
ac27a0ec 1299 /*
617ba13b 1300 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1301 * mapped. 0 in case of a HOLE.
1302 */
1303 if (err > 0) {
1304 if (err > 1)
1305 WARN_ON(1);
1306 err = 0;
1307 }
1308 *errp = err;
1309 if (!err && buffer_mapped(&dummy)) {
1310 struct buffer_head *bh;
1311 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1312 if (!bh) {
1313 *errp = -EIO;
1314 goto err;
1315 }
1316 if (buffer_new(&dummy)) {
1317 J_ASSERT(create != 0);
ac39849d 1318 J_ASSERT(handle != NULL);
ac27a0ec
DK
1319
1320 /*
1321 * Now that we do not always journal data, we should
1322 * keep in mind whether this should always journal the
1323 * new buffer as metadata. For now, regular file
617ba13b 1324 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1325 * problem.
1326 */
1327 lock_buffer(bh);
1328 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1329 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1330 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1331 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1332 set_buffer_uptodate(bh);
1333 }
1334 unlock_buffer(bh);
0390131b
FM
1335 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1336 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1337 if (!fatal)
1338 fatal = err;
1339 } else {
1340 BUFFER_TRACE(bh, "not a new buffer");
1341 }
1342 if (fatal) {
1343 *errp = fatal;
1344 brelse(bh);
1345 bh = NULL;
1346 }
1347 return bh;
1348 }
1349err:
1350 return NULL;
1351}
1352
617ba13b 1353struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1354 ext4_lblk_t block, int create, int *err)
ac27a0ec 1355{
af5bc92d 1356 struct buffer_head *bh;
ac27a0ec 1357
617ba13b 1358 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1359 if (!bh)
1360 return bh;
1361 if (buffer_uptodate(bh))
1362 return bh;
1363 ll_rw_block(READ_META, 1, &bh);
1364 wait_on_buffer(bh);
1365 if (buffer_uptodate(bh))
1366 return bh;
1367 put_bh(bh);
1368 *err = -EIO;
1369 return NULL;
1370}
1371
af5bc92d
TT
1372static int walk_page_buffers(handle_t *handle,
1373 struct buffer_head *head,
1374 unsigned from,
1375 unsigned to,
1376 int *partial,
1377 int (*fn)(handle_t *handle,
1378 struct buffer_head *bh))
ac27a0ec
DK
1379{
1380 struct buffer_head *bh;
1381 unsigned block_start, block_end;
1382 unsigned blocksize = head->b_size;
1383 int err, ret = 0;
1384 struct buffer_head *next;
1385
af5bc92d
TT
1386 for (bh = head, block_start = 0;
1387 ret == 0 && (bh != head || !block_start);
1388 block_start = block_end, bh = next)
ac27a0ec
DK
1389 {
1390 next = bh->b_this_page;
1391 block_end = block_start + blocksize;
1392 if (block_end <= from || block_start >= to) {
1393 if (partial && !buffer_uptodate(bh))
1394 *partial = 1;
1395 continue;
1396 }
1397 err = (*fn)(handle, bh);
1398 if (!ret)
1399 ret = err;
1400 }
1401 return ret;
1402}
1403
1404/*
1405 * To preserve ordering, it is essential that the hole instantiation and
1406 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1407 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1408 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1409 * prepare_write() is the right place.
1410 *
617ba13b
MC
1411 * Also, this function can nest inside ext4_writepage() ->
1412 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1413 * has generated enough buffer credits to do the whole page. So we won't
1414 * block on the journal in that case, which is good, because the caller may
1415 * be PF_MEMALLOC.
1416 *
617ba13b 1417 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1418 * quota file writes. If we were to commit the transaction while thus
1419 * reentered, there can be a deadlock - we would be holding a quota
1420 * lock, and the commit would never complete if another thread had a
1421 * transaction open and was blocking on the quota lock - a ranking
1422 * violation.
1423 *
dab291af 1424 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1425 * will _not_ run commit under these circumstances because handle->h_ref
1426 * is elevated. We'll still have enough credits for the tiny quotafile
1427 * write.
1428 */
1429static int do_journal_get_write_access(handle_t *handle,
1430 struct buffer_head *bh)
1431{
1432 if (!buffer_mapped(bh) || buffer_freed(bh))
1433 return 0;
617ba13b 1434 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1435}
1436
bfc1af65
NP
1437static int ext4_write_begin(struct file *file, struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned flags,
1439 struct page **pagep, void **fsdata)
ac27a0ec 1440{
af5bc92d 1441 struct inode *inode = mapping->host;
7479d2b9 1442 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1443 handle_t *handle;
1444 int retries = 0;
af5bc92d 1445 struct page *page;
bfc1af65 1446 pgoff_t index;
af5bc92d 1447 unsigned from, to;
bfc1af65 1448
ba80b101
TT
1449 trace_mark(ext4_write_begin,
1450 "dev %s ino %lu pos %llu len %u flags %u",
1451 inode->i_sb->s_id, inode->i_ino,
1452 (unsigned long long) pos, len, flags);
bfc1af65 1453 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1454 from = pos & (PAGE_CACHE_SIZE - 1);
1455 to = from + len;
ac27a0ec
DK
1456
1457retry:
af5bc92d
TT
1458 handle = ext4_journal_start(inode, needed_blocks);
1459 if (IS_ERR(handle)) {
1460 ret = PTR_ERR(handle);
1461 goto out;
7479d2b9 1462 }
ac27a0ec 1463
ebd3610b
JK
1464 /* We cannot recurse into the filesystem as the transaction is already
1465 * started */
1466 flags |= AOP_FLAG_NOFS;
1467
54566b2c 1468 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1469 if (!page) {
1470 ext4_journal_stop(handle);
1471 ret = -ENOMEM;
1472 goto out;
1473 }
1474 *pagep = page;
1475
bfc1af65 1476 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1477 ext4_get_block);
bfc1af65
NP
1478
1479 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1480 ret = walk_page_buffers(handle, page_buffers(page),
1481 from, to, NULL, do_journal_get_write_access);
1482 }
bfc1af65
NP
1483
1484 if (ret) {
af5bc92d 1485 unlock_page(page);
cf108bca 1486 ext4_journal_stop(handle);
af5bc92d 1487 page_cache_release(page);
ae4d5372
AK
1488 /*
1489 * block_write_begin may have instantiated a few blocks
1490 * outside i_size. Trim these off again. Don't need
1491 * i_size_read because we hold i_mutex.
1492 */
1493 if (pos + len > inode->i_size)
1494 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1495 }
1496
617ba13b 1497 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1498 goto retry;
7479d2b9 1499out:
ac27a0ec
DK
1500 return ret;
1501}
1502
bfc1af65
NP
1503/* For write_end() in data=journal mode */
1504static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1505{
1506 if (!buffer_mapped(bh) || buffer_freed(bh))
1507 return 0;
1508 set_buffer_uptodate(bh);
0390131b 1509 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1510}
1511
1512/*
1513 * We need to pick up the new inode size which generic_commit_write gave us
1514 * `file' can be NULL - eg, when called from page_symlink().
1515 *
617ba13b 1516 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1517 * buffers are managed internally.
1518 */
bfc1af65
NP
1519static int ext4_ordered_write_end(struct file *file,
1520 struct address_space *mapping,
1521 loff_t pos, unsigned len, unsigned copied,
1522 struct page *page, void *fsdata)
ac27a0ec 1523{
617ba13b 1524 handle_t *handle = ext4_journal_current_handle();
cf108bca 1525 struct inode *inode = mapping->host;
ac27a0ec
DK
1526 int ret = 0, ret2;
1527
ba80b101
TT
1528 trace_mark(ext4_ordered_write_end,
1529 "dev %s ino %lu pos %llu len %u copied %u",
1530 inode->i_sb->s_id, inode->i_ino,
1531 (unsigned long long) pos, len, copied);
678aaf48 1532 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1533
1534 if (ret == 0) {
ac27a0ec
DK
1535 loff_t new_i_size;
1536
bfc1af65 1537 new_i_size = pos + copied;
cf17fea6
AK
1538 if (new_i_size > EXT4_I(inode)->i_disksize) {
1539 ext4_update_i_disksize(inode, new_i_size);
1540 /* We need to mark inode dirty even if
1541 * new_i_size is less that inode->i_size
1542 * bu greater than i_disksize.(hint delalloc)
1543 */
1544 ext4_mark_inode_dirty(handle, inode);
1545 }
1546
cf108bca 1547 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1548 page, fsdata);
f8a87d89
RK
1549 copied = ret2;
1550 if (ret2 < 0)
1551 ret = ret2;
ac27a0ec 1552 }
617ba13b 1553 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1554 if (!ret)
1555 ret = ret2;
bfc1af65
NP
1556
1557 return ret ? ret : copied;
ac27a0ec
DK
1558}
1559
bfc1af65
NP
1560static int ext4_writeback_write_end(struct file *file,
1561 struct address_space *mapping,
1562 loff_t pos, unsigned len, unsigned copied,
1563 struct page *page, void *fsdata)
ac27a0ec 1564{
617ba13b 1565 handle_t *handle = ext4_journal_current_handle();
cf108bca 1566 struct inode *inode = mapping->host;
ac27a0ec
DK
1567 int ret = 0, ret2;
1568 loff_t new_i_size;
1569
ba80b101
TT
1570 trace_mark(ext4_writeback_write_end,
1571 "dev %s ino %lu pos %llu len %u copied %u",
1572 inode->i_sb->s_id, inode->i_ino,
1573 (unsigned long long) pos, len, copied);
bfc1af65 1574 new_i_size = pos + copied;
cf17fea6
AK
1575 if (new_i_size > EXT4_I(inode)->i_disksize) {
1576 ext4_update_i_disksize(inode, new_i_size);
1577 /* We need to mark inode dirty even if
1578 * new_i_size is less that inode->i_size
1579 * bu greater than i_disksize.(hint delalloc)
1580 */
1581 ext4_mark_inode_dirty(handle, inode);
1582 }
ac27a0ec 1583
cf108bca 1584 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1585 page, fsdata);
f8a87d89
RK
1586 copied = ret2;
1587 if (ret2 < 0)
1588 ret = ret2;
ac27a0ec 1589
617ba13b 1590 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1591 if (!ret)
1592 ret = ret2;
bfc1af65
NP
1593
1594 return ret ? ret : copied;
ac27a0ec
DK
1595}
1596
bfc1af65
NP
1597static int ext4_journalled_write_end(struct file *file,
1598 struct address_space *mapping,
1599 loff_t pos, unsigned len, unsigned copied,
1600 struct page *page, void *fsdata)
ac27a0ec 1601{
617ba13b 1602 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1603 struct inode *inode = mapping->host;
ac27a0ec
DK
1604 int ret = 0, ret2;
1605 int partial = 0;
bfc1af65 1606 unsigned from, to;
cf17fea6 1607 loff_t new_i_size;
ac27a0ec 1608
ba80b101
TT
1609 trace_mark(ext4_journalled_write_end,
1610 "dev %s ino %lu pos %llu len %u copied %u",
1611 inode->i_sb->s_id, inode->i_ino,
1612 (unsigned long long) pos, len, copied);
bfc1af65
NP
1613 from = pos & (PAGE_CACHE_SIZE - 1);
1614 to = from + len;
1615
1616 if (copied < len) {
1617 if (!PageUptodate(page))
1618 copied = 0;
1619 page_zero_new_buffers(page, from+copied, to);
1620 }
ac27a0ec
DK
1621
1622 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1623 to, &partial, write_end_fn);
ac27a0ec
DK
1624 if (!partial)
1625 SetPageUptodate(page);
cf17fea6
AK
1626 new_i_size = pos + copied;
1627 if (new_i_size > inode->i_size)
bfc1af65 1628 i_size_write(inode, pos+copied);
617ba13b 1629 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1630 if (new_i_size > EXT4_I(inode)->i_disksize) {
1631 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1632 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1633 if (!ret)
1634 ret = ret2;
1635 }
bfc1af65 1636
cf108bca 1637 unlock_page(page);
617ba13b 1638 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1639 if (!ret)
1640 ret = ret2;
bfc1af65
NP
1641 page_cache_release(page);
1642
1643 return ret ? ret : copied;
ac27a0ec 1644}
d2a17637
MC
1645
1646static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1647{
030ba6bc 1648 int retries = 0;
60e58e0f
MC
1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1651
1652 /*
1653 * recalculate the amount of metadata blocks to reserve
1654 * in order to allocate nrblocks
1655 * worse case is one extent per block
1656 */
030ba6bc 1657repeat:
d2a17637
MC
1658 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1659 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1660 mdblocks = ext4_calc_metadata_amount(inode, total);
1661 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1662
1663 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1664 total = md_needed + nrblocks;
1665
60e58e0f
MC
1666 /*
1667 * Make quota reservation here to prevent quota overflow
1668 * later. Real quota accounting is done at pages writeout
1669 * time.
1670 */
1671 if (vfs_dq_reserve_block(inode, total)) {
1672 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1673 return -EDQUOT;
1674 }
1675
a30d542a 1676 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1677 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1678 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1679 yield();
1680 goto repeat;
1681 }
60e58e0f 1682 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1683 return -ENOSPC;
1684 }
d2a17637
MC
1685 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1686 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1687
1688 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1689 return 0; /* success */
1690}
1691
12219aea 1692static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1693{
1694 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1695 int total, mdb, mdb_free, release;
1696
cd213226
MC
1697 if (!to_free)
1698 return; /* Nothing to release, exit */
1699
d2a17637 1700 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1701
1702 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1703 /*
1704 * if there is no reserved blocks, but we try to free some
1705 * then the counter is messed up somewhere.
1706 * but since this function is called from invalidate
1707 * page, it's harmless to return without any action
1708 */
1709 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1710 "blocks for inode %lu, but there is no reserved "
1711 "data blocks\n", to_free, inode->i_ino);
1712 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1713 return;
1714 }
1715
d2a17637 1716 /* recalculate the number of metablocks still need to be reserved */
12219aea 1717 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1718 mdb = ext4_calc_metadata_amount(inode, total);
1719
1720 /* figure out how many metablocks to release */
1721 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1722 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1723
d2a17637
MC
1724 release = to_free + mdb_free;
1725
6bc6e63f
AK
1726 /* update fs dirty blocks counter for truncate case */
1727 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1728
1729 /* update per-inode reservations */
12219aea
AK
1730 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1731 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1732
1733 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1734 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1735 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1736
1737 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1738}
1739
1740static void ext4_da_page_release_reservation(struct page *page,
1741 unsigned long offset)
1742{
1743 int to_release = 0;
1744 struct buffer_head *head, *bh;
1745 unsigned int curr_off = 0;
1746
1747 head = page_buffers(page);
1748 bh = head;
1749 do {
1750 unsigned int next_off = curr_off + bh->b_size;
1751
1752 if ((offset <= curr_off) && (buffer_delay(bh))) {
1753 to_release++;
1754 clear_buffer_delay(bh);
1755 }
1756 curr_off = next_off;
1757 } while ((bh = bh->b_this_page) != head);
12219aea 1758 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1759}
ac27a0ec 1760
64769240
AT
1761/*
1762 * Delayed allocation stuff
1763 */
1764
1765struct mpage_da_data {
1766 struct inode *inode;
8dc207c0
TT
1767 sector_t b_blocknr; /* start block number of extent */
1768 size_t b_size; /* size of extent */
1769 unsigned long b_state; /* state of the extent */
64769240 1770 unsigned long first_page, next_page; /* extent of pages */
64769240 1771 struct writeback_control *wbc;
a1d6cc56 1772 int io_done;
498e5f24 1773 int pages_written;
df22291f 1774 int retval;
64769240
AT
1775};
1776
1777/*
1778 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1779 * them with writepage() call back
64769240
AT
1780 *
1781 * @mpd->inode: inode
1782 * @mpd->first_page: first page of the extent
1783 * @mpd->next_page: page after the last page of the extent
64769240
AT
1784 *
1785 * By the time mpage_da_submit_io() is called we expect all blocks
1786 * to be allocated. this may be wrong if allocation failed.
1787 *
1788 * As pages are already locked by write_cache_pages(), we can't use it
1789 */
1790static int mpage_da_submit_io(struct mpage_da_data *mpd)
1791{
22208ded 1792 long pages_skipped;
791b7f08
AK
1793 struct pagevec pvec;
1794 unsigned long index, end;
1795 int ret = 0, err, nr_pages, i;
1796 struct inode *inode = mpd->inode;
1797 struct address_space *mapping = inode->i_mapping;
64769240
AT
1798
1799 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1800 /*
1801 * We need to start from the first_page to the next_page - 1
1802 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1803 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1804 * at the currently mapped buffer_heads.
1805 */
64769240
AT
1806 index = mpd->first_page;
1807 end = mpd->next_page - 1;
1808
791b7f08 1809 pagevec_init(&pvec, 0);
64769240 1810 while (index <= end) {
791b7f08 1811 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1812 if (nr_pages == 0)
1813 break;
1814 for (i = 0; i < nr_pages; i++) {
1815 struct page *page = pvec.pages[i];
1816
791b7f08
AK
1817 index = page->index;
1818 if (index > end)
1819 break;
1820 index++;
1821
1822 BUG_ON(!PageLocked(page));
1823 BUG_ON(PageWriteback(page));
1824
22208ded 1825 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1826 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1827 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1828 /*
1829 * have successfully written the page
1830 * without skipping the same
1831 */
a1d6cc56 1832 mpd->pages_written++;
64769240
AT
1833 /*
1834 * In error case, we have to continue because
1835 * remaining pages are still locked
1836 * XXX: unlock and re-dirty them?
1837 */
1838 if (ret == 0)
1839 ret = err;
1840 }
1841 pagevec_release(&pvec);
1842 }
64769240
AT
1843 return ret;
1844}
1845
1846/*
1847 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1848 *
1849 * @mpd->inode - inode to walk through
1850 * @exbh->b_blocknr - first block on a disk
1851 * @exbh->b_size - amount of space in bytes
1852 * @logical - first logical block to start assignment with
1853 *
1854 * the function goes through all passed space and put actual disk
1855 * block numbers into buffer heads, dropping BH_Delay
1856 */
1857static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1858 struct buffer_head *exbh)
1859{
1860 struct inode *inode = mpd->inode;
1861 struct address_space *mapping = inode->i_mapping;
1862 int blocks = exbh->b_size >> inode->i_blkbits;
1863 sector_t pblock = exbh->b_blocknr, cur_logical;
1864 struct buffer_head *head, *bh;
a1d6cc56 1865 pgoff_t index, end;
64769240
AT
1866 struct pagevec pvec;
1867 int nr_pages, i;
1868
1869 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1872
1873 pagevec_init(&pvec, 0);
1874
1875 while (index <= end) {
1876 /* XXX: optimize tail */
1877 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1878 if (nr_pages == 0)
1879 break;
1880 for (i = 0; i < nr_pages; i++) {
1881 struct page *page = pvec.pages[i];
1882
1883 index = page->index;
1884 if (index > end)
1885 break;
1886 index++;
1887
1888 BUG_ON(!PageLocked(page));
1889 BUG_ON(PageWriteback(page));
1890 BUG_ON(!page_has_buffers(page));
1891
1892 bh = page_buffers(page);
1893 head = bh;
1894
1895 /* skip blocks out of the range */
1896 do {
1897 if (cur_logical >= logical)
1898 break;
1899 cur_logical++;
1900 } while ((bh = bh->b_this_page) != head);
1901
1902 do {
1903 if (cur_logical >= logical + blocks)
1904 break;
64769240
AT
1905 if (buffer_delay(bh)) {
1906 bh->b_blocknr = pblock;
1907 clear_buffer_delay(bh);
bf068ee2
AK
1908 bh->b_bdev = inode->i_sb->s_bdev;
1909 } else if (buffer_unwritten(bh)) {
1910 bh->b_blocknr = pblock;
1911 clear_buffer_unwritten(bh);
1912 set_buffer_mapped(bh);
1913 set_buffer_new(bh);
1914 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1915 } else if (buffer_mapped(bh))
64769240 1916 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1917
1918 cur_logical++;
1919 pblock++;
1920 } while ((bh = bh->b_this_page) != head);
1921 }
1922 pagevec_release(&pvec);
1923 }
1924}
1925
1926
1927/*
1928 * __unmap_underlying_blocks - just a helper function to unmap
1929 * set of blocks described by @bh
1930 */
1931static inline void __unmap_underlying_blocks(struct inode *inode,
1932 struct buffer_head *bh)
1933{
1934 struct block_device *bdev = inode->i_sb->s_bdev;
1935 int blocks, i;
1936
1937 blocks = bh->b_size >> inode->i_blkbits;
1938 for (i = 0; i < blocks; i++)
1939 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1940}
1941
c4a0c46e
AK
1942static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1943 sector_t logical, long blk_cnt)
1944{
1945 int nr_pages, i;
1946 pgoff_t index, end;
1947 struct pagevec pvec;
1948 struct inode *inode = mpd->inode;
1949 struct address_space *mapping = inode->i_mapping;
1950
1951 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1952 end = (logical + blk_cnt - 1) >>
1953 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1954 while (index <= end) {
1955 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1956 if (nr_pages == 0)
1957 break;
1958 for (i = 0; i < nr_pages; i++) {
1959 struct page *page = pvec.pages[i];
1960 index = page->index;
1961 if (index > end)
1962 break;
1963 index++;
1964
1965 BUG_ON(!PageLocked(page));
1966 BUG_ON(PageWriteback(page));
1967 block_invalidatepage(page, 0);
1968 ClearPageUptodate(page);
1969 unlock_page(page);
1970 }
1971 }
1972 return;
1973}
1974
df22291f
AK
1975static void ext4_print_free_blocks(struct inode *inode)
1976{
1977 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1978 printk(KERN_EMERG "Total free blocks count %lld\n",
1979 ext4_count_free_blocks(inode->i_sb));
1980 printk(KERN_EMERG "Free/Dirty block details\n");
1981 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1982 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1983 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1984 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 1985 printk(KERN_EMERG "Block reservation details\n");
498e5f24 1986 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 1987 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 1988 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
1989 EXT4_I(inode)->i_reserved_meta_blocks);
1990 return;
1991}
1992
ed5bde0b
TT
1993#define EXT4_DELALLOC_RSVED 1
1994static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1995 struct buffer_head *bh_result, int create)
1996{
1997 int ret;
1998 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1999 loff_t disksize = EXT4_I(inode)->i_disksize;
2000 handle_t *handle = NULL;
2001
2002 handle = ext4_journal_current_handle();
2003 BUG_ON(!handle);
2004 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2005 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2006 if (ret <= 0)
2007 return ret;
2008
2009 bh_result->b_size = (ret << inode->i_blkbits);
2010
2011 if (ext4_should_order_data(inode)) {
2012 int retval;
2013 retval = ext4_jbd2_file_inode(handle, inode);
2014 if (retval)
2015 /*
2016 * Failed to add inode for ordered mode. Don't
2017 * update file size
2018 */
2019 return retval;
2020 }
2021
2022 /*
2023 * Update on-disk size along with block allocation we don't
2024 * use 'extend_disksize' as size may change within already
2025 * allocated block -bzzz
2026 */
2027 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2028 if (disksize > i_size_read(inode))
2029 disksize = i_size_read(inode);
2030 if (disksize > EXT4_I(inode)->i_disksize) {
2031 ext4_update_i_disksize(inode, disksize);
2032 ret = ext4_mark_inode_dirty(handle, inode);
2033 return ret;
2034 }
2035 return 0;
2036}
2037
64769240
AT
2038/*
2039 * mpage_da_map_blocks - go through given space
2040 *
8dc207c0 2041 * @mpd - bh describing space
64769240
AT
2042 *
2043 * The function skips space we know is already mapped to disk blocks.
2044 *
64769240 2045 */
ed5bde0b 2046static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2047{
a1d6cc56 2048 int err = 0;
030ba6bc 2049 struct buffer_head new;
df22291f 2050 sector_t next;
64769240
AT
2051
2052 /*
2053 * We consider only non-mapped and non-allocated blocks
2054 */
8dc207c0
TT
2055 if ((mpd->b_state & (1 << BH_Mapped)) &&
2056 !(mpd->b_state & (1 << BH_Delay)))
c4a0c46e 2057 return 0;
79ffab34
AK
2058 /*
2059 * We need to make sure the BH_Delay flag is passed down to
2060 * ext4_da_get_block_write(), since it calls
2061 * ext4_get_blocks_wrap() with the EXT4_DELALLOC_RSVED flag.
2062 * This flag causes ext4_get_blocks_wrap() to call
2063 * ext4_da_update_reserve_space() if the passed buffer head
2064 * has the BH_Delay flag set. In the future, once we clean up
2065 * the interfaces to ext4_get_blocks_wrap(), we should pass in
2066 * a separate flag which requests that the delayed allocation
2067 * statistics should be updated, instead of depending on the
2068 * state information getting passed down via the map_bh's
2069 * state bitmasks plus the magic EXT4_DELALLOC_RSVED flag.
2070 */
2071 new.b_state = mpd->b_state & (1 << BH_Delay);
a1d6cc56 2072 new.b_blocknr = 0;
8dc207c0
TT
2073 new.b_size = mpd->b_size;
2074 next = mpd->b_blocknr;
a1d6cc56
AK
2075 /*
2076 * If we didn't accumulate anything
2077 * to write simply return
2078 */
2079 if (!new.b_size)
c4a0c46e 2080 return 0;
c4a0c46e 2081
ed5bde0b
TT
2082 err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2083 if (err) {
2084 /*
2085 * If get block returns with error we simply
2086 * return. Later writepage will redirty the page and
2087 * writepages will find the dirty page again
c4a0c46e
AK
2088 */
2089 if (err == -EAGAIN)
2090 return 0;
df22291f
AK
2091
2092 if (err == -ENOSPC &&
ed5bde0b 2093 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2094 mpd->retval = err;
2095 return 0;
2096 }
2097
c4a0c46e 2098 /*
ed5bde0b
TT
2099 * get block failure will cause us to loop in
2100 * writepages, because a_ops->writepage won't be able
2101 * to make progress. The page will be redirtied by
2102 * writepage and writepages will again try to write
2103 * the same.
c4a0c46e
AK
2104 */
2105 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2106 "at logical offset %llu with max blocks "
2107 "%zd with error %d\n",
2108 __func__, mpd->inode->i_ino,
2109 (unsigned long long)next,
8dc207c0 2110 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2111 printk(KERN_EMERG "This should not happen.!! "
2112 "Data will be lost\n");
030ba6bc 2113 if (err == -ENOSPC) {
df22291f 2114 ext4_print_free_blocks(mpd->inode);
030ba6bc 2115 }
c4a0c46e
AK
2116 /* invlaidate all the pages */
2117 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2118 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2119 return err;
2120 }
a1d6cc56 2121 BUG_ON(new.b_size == 0);
64769240 2122
a1d6cc56
AK
2123 if (buffer_new(&new))
2124 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2125
a1d6cc56
AK
2126 /*
2127 * If blocks are delayed marked, we need to
2128 * put actual blocknr and drop delayed bit
2129 */
8dc207c0
TT
2130 if ((mpd->b_state & (1 << BH_Delay)) ||
2131 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2132 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2133
c4a0c46e 2134 return 0;
64769240
AT
2135}
2136
bf068ee2
AK
2137#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2138 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2139
2140/*
2141 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2142 *
2143 * @mpd->lbh - extent of blocks
2144 * @logical - logical number of the block in the file
2145 * @bh - bh of the block (used to access block's state)
2146 *
2147 * the function is used to collect contig. blocks in same state
2148 */
2149static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2150 sector_t logical, size_t b_size,
2151 unsigned long b_state)
64769240 2152{
64769240 2153 sector_t next;
8dc207c0 2154 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2155
525f4ed8
MC
2156 /* check if thereserved journal credits might overflow */
2157 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2158 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2159 /*
2160 * With non-extent format we are limited by the journal
2161 * credit available. Total credit needed to insert
2162 * nrblocks contiguous blocks is dependent on the
2163 * nrblocks. So limit nrblocks.
2164 */
2165 goto flush_it;
2166 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2167 EXT4_MAX_TRANS_DATA) {
2168 /*
2169 * Adding the new buffer_head would make it cross the
2170 * allowed limit for which we have journal credit
2171 * reserved. So limit the new bh->b_size
2172 */
2173 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2174 mpd->inode->i_blkbits;
2175 /* we will do mpage_da_submit_io in the next loop */
2176 }
2177 }
64769240
AT
2178 /*
2179 * First block in the extent
2180 */
8dc207c0
TT
2181 if (mpd->b_size == 0) {
2182 mpd->b_blocknr = logical;
2183 mpd->b_size = b_size;
2184 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2185 return;
2186 }
2187
8dc207c0 2188 next = mpd->b_blocknr + nrblocks;
64769240
AT
2189 /*
2190 * Can we merge the block to our big extent?
2191 */
8dc207c0
TT
2192 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2193 mpd->b_size += b_size;
64769240
AT
2194 return;
2195 }
2196
525f4ed8 2197flush_it:
64769240
AT
2198 /*
2199 * We couldn't merge the block to our extent, so we
2200 * need to flush current extent and start new one
2201 */
c4a0c46e
AK
2202 if (mpage_da_map_blocks(mpd) == 0)
2203 mpage_da_submit_io(mpd);
a1d6cc56
AK
2204 mpd->io_done = 1;
2205 return;
64769240
AT
2206}
2207
2208/*
2209 * __mpage_da_writepage - finds extent of pages and blocks
2210 *
2211 * @page: page to consider
2212 * @wbc: not used, we just follow rules
2213 * @data: context
2214 *
2215 * The function finds extents of pages and scan them for all blocks.
2216 */
2217static int __mpage_da_writepage(struct page *page,
2218 struct writeback_control *wbc, void *data)
2219{
2220 struct mpage_da_data *mpd = data;
2221 struct inode *inode = mpd->inode;
8dc207c0 2222 struct buffer_head *bh, *head;
64769240
AT
2223 sector_t logical;
2224
a1d6cc56
AK
2225 if (mpd->io_done) {
2226 /*
2227 * Rest of the page in the page_vec
2228 * redirty then and skip then. We will
2229 * try to to write them again after
2230 * starting a new transaction
2231 */
2232 redirty_page_for_writepage(wbc, page);
2233 unlock_page(page);
2234 return MPAGE_DA_EXTENT_TAIL;
2235 }
64769240
AT
2236 /*
2237 * Can we merge this page to current extent?
2238 */
2239 if (mpd->next_page != page->index) {
2240 /*
2241 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2242 * and start IO on them using writepage()
64769240
AT
2243 */
2244 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2245 if (mpage_da_map_blocks(mpd) == 0)
2246 mpage_da_submit_io(mpd);
a1d6cc56
AK
2247 /*
2248 * skip rest of the page in the page_vec
2249 */
2250 mpd->io_done = 1;
2251 redirty_page_for_writepage(wbc, page);
2252 unlock_page(page);
2253 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2254 }
2255
2256 /*
2257 * Start next extent of pages ...
2258 */
2259 mpd->first_page = page->index;
2260
2261 /*
2262 * ... and blocks
2263 */
8dc207c0
TT
2264 mpd->b_size = 0;
2265 mpd->b_state = 0;
2266 mpd->b_blocknr = 0;
64769240
AT
2267 }
2268
2269 mpd->next_page = page->index + 1;
2270 logical = (sector_t) page->index <<
2271 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2272
2273 if (!page_has_buffers(page)) {
8dc207c0
TT
2274 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2275 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2276 if (mpd->io_done)
2277 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2278 } else {
2279 /*
2280 * Page with regular buffer heads, just add all dirty ones
2281 */
2282 head = page_buffers(page);
2283 bh = head;
2284 do {
2285 BUG_ON(buffer_locked(bh));
791b7f08
AK
2286 /*
2287 * We need to try to allocate
2288 * unmapped blocks in the same page.
2289 * Otherwise we won't make progress
2290 * with the page in ext4_da_writepage
2291 */
a1d6cc56 2292 if (buffer_dirty(bh) &&
8dc207c0
TT
2293 (!buffer_mapped(bh) || buffer_delay(bh))) {
2294 mpage_add_bh_to_extent(mpd, logical,
2295 bh->b_size,
2296 bh->b_state);
a1d6cc56
AK
2297 if (mpd->io_done)
2298 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2299 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2300 /*
2301 * mapped dirty buffer. We need to update
2302 * the b_state because we look at
2303 * b_state in mpage_da_map_blocks. We don't
2304 * update b_size because if we find an
2305 * unmapped buffer_head later we need to
2306 * use the b_state flag of that buffer_head.
2307 */
8dc207c0
TT
2308 if (mpd->b_size == 0)
2309 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2310 }
64769240
AT
2311 logical++;
2312 } while ((bh = bh->b_this_page) != head);
2313 }
2314
2315 return 0;
2316}
2317
64769240
AT
2318/*
2319 * this is a special callback for ->write_begin() only
2320 * it's intention is to return mapped block or reserve space
2321 */
2322static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2323 struct buffer_head *bh_result, int create)
2324{
2325 int ret = 0;
33b9817e
AK
2326 sector_t invalid_block = ~((sector_t) 0xffff);
2327
2328 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2329 invalid_block = ~0;
64769240
AT
2330
2331 BUG_ON(create == 0);
2332 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2333
2334 /*
2335 * first, we need to know whether the block is allocated already
2336 * preallocated blocks are unmapped but should treated
2337 * the same as allocated blocks.
2338 */
d2a17637
MC
2339 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2340 if ((ret == 0) && !buffer_delay(bh_result)) {
2341 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2342 /*
2343 * XXX: __block_prepare_write() unmaps passed block,
2344 * is it OK?
2345 */
d2a17637
MC
2346 ret = ext4_da_reserve_space(inode, 1);
2347 if (ret)
2348 /* not enough space to reserve */
2349 return ret;
2350
33b9817e 2351 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2352 set_buffer_new(bh_result);
2353 set_buffer_delay(bh_result);
2354 } else if (ret > 0) {
2355 bh_result->b_size = (ret << inode->i_blkbits);
9c1ee184
AK
2356 /*
2357 * With sub-block writes into unwritten extents
2358 * we also need to mark the buffer as new so that
2359 * the unwritten parts of the buffer gets correctly zeroed.
2360 */
2361 if (buffer_unwritten(bh_result))
2362 set_buffer_new(bh_result);
64769240
AT
2363 ret = 0;
2364 }
2365
2366 return ret;
2367}
61628a3f
MC
2368
2369static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2370{
f0e6c985
AK
2371 /*
2372 * unmapped buffer is possible for holes.
2373 * delay buffer is possible with delayed allocation
2374 */
2375 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2376}
2377
2378static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2379 struct buffer_head *bh_result, int create)
2380{
2381 int ret = 0;
2382 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2383
2384 /*
2385 * we don't want to do block allocation in writepage
2386 * so call get_block_wrap with create = 0
2387 */
2388 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2389 bh_result, 0, 0, 0);
2390 if (ret > 0) {
2391 bh_result->b_size = (ret << inode->i_blkbits);
2392 ret = 0;
2393 }
2394 return ret;
61628a3f
MC
2395}
2396
61628a3f 2397/*
f0e6c985
AK
2398 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2399 * get called via journal_submit_inode_data_buffers (no journal handle)
2400 * get called via shrink_page_list via pdflush (no journal handle)
2401 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2402 */
64769240
AT
2403static int ext4_da_writepage(struct page *page,
2404 struct writeback_control *wbc)
2405{
64769240 2406 int ret = 0;
61628a3f 2407 loff_t size;
498e5f24 2408 unsigned int len;
61628a3f
MC
2409 struct buffer_head *page_bufs;
2410 struct inode *inode = page->mapping->host;
2411
ba80b101
TT
2412 trace_mark(ext4_da_writepage,
2413 "dev %s ino %lu page_index %lu",
2414 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2415 size = i_size_read(inode);
2416 if (page->index == size >> PAGE_CACHE_SHIFT)
2417 len = size & ~PAGE_CACHE_MASK;
2418 else
2419 len = PAGE_CACHE_SIZE;
64769240 2420
f0e6c985 2421 if (page_has_buffers(page)) {
61628a3f 2422 page_bufs = page_buffers(page);
f0e6c985
AK
2423 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2424 ext4_bh_unmapped_or_delay)) {
61628a3f 2425 /*
f0e6c985
AK
2426 * We don't want to do block allocation
2427 * So redirty the page and return
cd1aac32
AK
2428 * We may reach here when we do a journal commit
2429 * via journal_submit_inode_data_buffers.
2430 * If we don't have mapping block we just ignore
f0e6c985
AK
2431 * them. We can also reach here via shrink_page_list
2432 */
2433 redirty_page_for_writepage(wbc, page);
2434 unlock_page(page);
2435 return 0;
2436 }
2437 } else {
2438 /*
2439 * The test for page_has_buffers() is subtle:
2440 * We know the page is dirty but it lost buffers. That means
2441 * that at some moment in time after write_begin()/write_end()
2442 * has been called all buffers have been clean and thus they
2443 * must have been written at least once. So they are all
2444 * mapped and we can happily proceed with mapping them
2445 * and writing the page.
2446 *
2447 * Try to initialize the buffer_heads and check whether
2448 * all are mapped and non delay. We don't want to
2449 * do block allocation here.
2450 */
2451 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2452 ext4_normal_get_block_write);
2453 if (!ret) {
2454 page_bufs = page_buffers(page);
2455 /* check whether all are mapped and non delay */
2456 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2457 ext4_bh_unmapped_or_delay)) {
2458 redirty_page_for_writepage(wbc, page);
2459 unlock_page(page);
2460 return 0;
2461 }
2462 } else {
2463 /*
2464 * We can't do block allocation here
2465 * so just redity the page and unlock
2466 * and return
61628a3f 2467 */
61628a3f
MC
2468 redirty_page_for_writepage(wbc, page);
2469 unlock_page(page);
2470 return 0;
2471 }
ed9b3e33
AK
2472 /* now mark the buffer_heads as dirty and uptodate */
2473 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2474 }
2475
2476 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2477 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2478 else
f0e6c985
AK
2479 ret = block_write_full_page(page,
2480 ext4_normal_get_block_write,
2481 wbc);
64769240 2482
64769240
AT
2483 return ret;
2484}
2485
61628a3f 2486/*
525f4ed8
MC
2487 * This is called via ext4_da_writepages() to
2488 * calulate the total number of credits to reserve to fit
2489 * a single extent allocation into a single transaction,
2490 * ext4_da_writpeages() will loop calling this before
2491 * the block allocation.
61628a3f 2492 */
525f4ed8
MC
2493
2494static int ext4_da_writepages_trans_blocks(struct inode *inode)
2495{
2496 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2497
2498 /*
2499 * With non-extent format the journal credit needed to
2500 * insert nrblocks contiguous block is dependent on
2501 * number of contiguous block. So we will limit
2502 * number of contiguous block to a sane value
2503 */
2504 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2505 (max_blocks > EXT4_MAX_TRANS_DATA))
2506 max_blocks = EXT4_MAX_TRANS_DATA;
2507
2508 return ext4_chunk_trans_blocks(inode, max_blocks);
2509}
61628a3f 2510
64769240 2511static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2512 struct writeback_control *wbc)
64769240 2513{
22208ded
AK
2514 pgoff_t index;
2515 int range_whole = 0;
61628a3f 2516 handle_t *handle = NULL;
df22291f 2517 struct mpage_da_data mpd;
5e745b04 2518 struct inode *inode = mapping->host;
22208ded 2519 int no_nrwrite_index_update;
498e5f24
TT
2520 int pages_written = 0;
2521 long pages_skipped;
2acf2c26 2522 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2523 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2524 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2525
ba80b101
TT
2526 trace_mark(ext4_da_writepages,
2527 "dev %s ino %lu nr_t_write %ld "
2528 "pages_skipped %ld range_start %llu "
2529 "range_end %llu nonblocking %d "
2530 "for_kupdate %d for_reclaim %d "
2531 "for_writepages %d range_cyclic %d",
2532 inode->i_sb->s_id, inode->i_ino,
2533 wbc->nr_to_write, wbc->pages_skipped,
2534 (unsigned long long) wbc->range_start,
2535 (unsigned long long) wbc->range_end,
2536 wbc->nonblocking, wbc->for_kupdate,
2537 wbc->for_reclaim, wbc->for_writepages,
2538 wbc->range_cyclic);
2539
61628a3f
MC
2540 /*
2541 * No pages to write? This is mainly a kludge to avoid starting
2542 * a transaction for special inodes like journal inode on last iput()
2543 * because that could violate lock ordering on umount
2544 */
a1d6cc56 2545 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2546 return 0;
2a21e37e
TT
2547
2548 /*
2549 * If the filesystem has aborted, it is read-only, so return
2550 * right away instead of dumping stack traces later on that
2551 * will obscure the real source of the problem. We test
2552 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2553 * the latter could be true if the filesystem is mounted
2554 * read-only, and in that case, ext4_da_writepages should
2555 * *never* be called, so if that ever happens, we would want
2556 * the stack trace.
2557 */
2558 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2559 return -EROFS;
2560
5e745b04
AK
2561 /*
2562 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2563 * This make sure small files blocks are allocated in
2564 * single attempt. This ensure that small files
2565 * get less fragmented.
2566 */
2567 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2568 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2569 wbc->nr_to_write = sbi->s_mb_stream_request;
2570 }
22208ded
AK
2571 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2572 range_whole = 1;
61628a3f 2573
2acf2c26
AK
2574 range_cyclic = wbc->range_cyclic;
2575 if (wbc->range_cyclic) {
22208ded 2576 index = mapping->writeback_index;
2acf2c26
AK
2577 if (index)
2578 cycled = 0;
2579 wbc->range_start = index << PAGE_CACHE_SHIFT;
2580 wbc->range_end = LLONG_MAX;
2581 wbc->range_cyclic = 0;
2582 } else
22208ded 2583 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2584
df22291f
AK
2585 mpd.wbc = wbc;
2586 mpd.inode = mapping->host;
2587
22208ded
AK
2588 /*
2589 * we don't want write_cache_pages to update
2590 * nr_to_write and writeback_index
2591 */
2592 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2593 wbc->no_nrwrite_index_update = 1;
2594 pages_skipped = wbc->pages_skipped;
2595
2acf2c26 2596retry:
22208ded 2597 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2598
2599 /*
2600 * we insert one extent at a time. So we need
2601 * credit needed for single extent allocation.
2602 * journalled mode is currently not supported
2603 * by delalloc
2604 */
2605 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2606 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2607
61628a3f
MC
2608 /* start a new transaction*/
2609 handle = ext4_journal_start(inode, needed_blocks);
2610 if (IS_ERR(handle)) {
2611 ret = PTR_ERR(handle);
2a21e37e 2612 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2613 "%ld pages, ino %lu; err %d\n", __func__,
2614 wbc->nr_to_write, inode->i_ino, ret);
2615 dump_stack();
61628a3f
MC
2616 goto out_writepages;
2617 }
f63e6005
TT
2618
2619 /*
2620 * Now call __mpage_da_writepage to find the next
2621 * contiguous region of logical blocks that need
2622 * blocks to be allocated by ext4. We don't actually
2623 * submit the blocks for I/O here, even though
2624 * write_cache_pages thinks it will, and will set the
2625 * pages as clean for write before calling
2626 * __mpage_da_writepage().
2627 */
2628 mpd.b_size = 0;
2629 mpd.b_state = 0;
2630 mpd.b_blocknr = 0;
2631 mpd.first_page = 0;
2632 mpd.next_page = 0;
2633 mpd.io_done = 0;
2634 mpd.pages_written = 0;
2635 mpd.retval = 0;
2636 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2637 &mpd);
2638 /*
2639 * If we have a contigous extent of pages and we
2640 * haven't done the I/O yet, map the blocks and submit
2641 * them for I/O.
2642 */
2643 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2644 if (mpage_da_map_blocks(&mpd) == 0)
2645 mpage_da_submit_io(&mpd);
2646 mpd.io_done = 1;
2647 ret = MPAGE_DA_EXTENT_TAIL;
2648 }
2649 wbc->nr_to_write -= mpd.pages_written;
df22291f 2650
61628a3f 2651 ext4_journal_stop(handle);
df22291f 2652
8f64b32e 2653 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2654 /* commit the transaction which would
2655 * free blocks released in the transaction
2656 * and try again
2657 */
df22291f 2658 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2659 wbc->pages_skipped = pages_skipped;
2660 ret = 0;
2661 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2662 /*
2663 * got one extent now try with
2664 * rest of the pages
2665 */
22208ded
AK
2666 pages_written += mpd.pages_written;
2667 wbc->pages_skipped = pages_skipped;
a1d6cc56 2668 ret = 0;
2acf2c26 2669 io_done = 1;
22208ded 2670 } else if (wbc->nr_to_write)
61628a3f
MC
2671 /*
2672 * There is no more writeout needed
2673 * or we requested for a noblocking writeout
2674 * and we found the device congested
2675 */
61628a3f 2676 break;
a1d6cc56 2677 }
2acf2c26
AK
2678 if (!io_done && !cycled) {
2679 cycled = 1;
2680 index = 0;
2681 wbc->range_start = index << PAGE_CACHE_SHIFT;
2682 wbc->range_end = mapping->writeback_index - 1;
2683 goto retry;
2684 }
22208ded
AK
2685 if (pages_skipped != wbc->pages_skipped)
2686 printk(KERN_EMERG "This should not happen leaving %s "
2687 "with nr_to_write = %ld ret = %d\n",
2688 __func__, wbc->nr_to_write, ret);
2689
2690 /* Update index */
2691 index += pages_written;
2acf2c26 2692 wbc->range_cyclic = range_cyclic;
22208ded
AK
2693 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2694 /*
2695 * set the writeback_index so that range_cyclic
2696 * mode will write it back later
2697 */
2698 mapping->writeback_index = index;
a1d6cc56 2699
61628a3f 2700out_writepages:
22208ded
AK
2701 if (!no_nrwrite_index_update)
2702 wbc->no_nrwrite_index_update = 0;
2703 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2704 trace_mark(ext4_da_writepage_result,
2705 "dev %s ino %lu ret %d pages_written %d "
2706 "pages_skipped %ld congestion %d "
2707 "more_io %d no_nrwrite_index_update %d",
2708 inode->i_sb->s_id, inode->i_ino, ret,
2709 pages_written, wbc->pages_skipped,
2710 wbc->encountered_congestion, wbc->more_io,
2711 wbc->no_nrwrite_index_update);
61628a3f 2712 return ret;
64769240
AT
2713}
2714
79f0be8d
AK
2715#define FALL_BACK_TO_NONDELALLOC 1
2716static int ext4_nonda_switch(struct super_block *sb)
2717{
2718 s64 free_blocks, dirty_blocks;
2719 struct ext4_sb_info *sbi = EXT4_SB(sb);
2720
2721 /*
2722 * switch to non delalloc mode if we are running low
2723 * on free block. The free block accounting via percpu
179f7ebf 2724 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2725 * accumulated on each CPU without updating global counters
2726 * Delalloc need an accurate free block accounting. So switch
2727 * to non delalloc when we are near to error range.
2728 */
2729 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2730 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2731 if (2 * free_blocks < 3 * dirty_blocks ||
2732 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2733 /*
2734 * free block count is less that 150% of dirty blocks
2735 * or free blocks is less that watermark
2736 */
2737 return 1;
2738 }
2739 return 0;
2740}
2741
64769240
AT
2742static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2743 loff_t pos, unsigned len, unsigned flags,
2744 struct page **pagep, void **fsdata)
2745{
d2a17637 2746 int ret, retries = 0;
64769240
AT
2747 struct page *page;
2748 pgoff_t index;
2749 unsigned from, to;
2750 struct inode *inode = mapping->host;
2751 handle_t *handle;
2752
2753 index = pos >> PAGE_CACHE_SHIFT;
2754 from = pos & (PAGE_CACHE_SIZE - 1);
2755 to = from + len;
79f0be8d
AK
2756
2757 if (ext4_nonda_switch(inode->i_sb)) {
2758 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2759 return ext4_write_begin(file, mapping, pos,
2760 len, flags, pagep, fsdata);
2761 }
2762 *fsdata = (void *)0;
ba80b101
TT
2763
2764 trace_mark(ext4_da_write_begin,
2765 "dev %s ino %lu pos %llu len %u flags %u",
2766 inode->i_sb->s_id, inode->i_ino,
2767 (unsigned long long) pos, len, flags);
d2a17637 2768retry:
64769240
AT
2769 /*
2770 * With delayed allocation, we don't log the i_disksize update
2771 * if there is delayed block allocation. But we still need
2772 * to journalling the i_disksize update if writes to the end
2773 * of file which has an already mapped buffer.
2774 */
2775 handle = ext4_journal_start(inode, 1);
2776 if (IS_ERR(handle)) {
2777 ret = PTR_ERR(handle);
2778 goto out;
2779 }
ebd3610b
JK
2780 /* We cannot recurse into the filesystem as the transaction is already
2781 * started */
2782 flags |= AOP_FLAG_NOFS;
64769240 2783
54566b2c 2784 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2785 if (!page) {
2786 ext4_journal_stop(handle);
2787 ret = -ENOMEM;
2788 goto out;
2789 }
64769240
AT
2790 *pagep = page;
2791
2792 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2793 ext4_da_get_block_prep);
2794 if (ret < 0) {
2795 unlock_page(page);
2796 ext4_journal_stop(handle);
2797 page_cache_release(page);
ae4d5372
AK
2798 /*
2799 * block_write_begin may have instantiated a few blocks
2800 * outside i_size. Trim these off again. Don't need
2801 * i_size_read because we hold i_mutex.
2802 */
2803 if (pos + len > inode->i_size)
2804 vmtruncate(inode, inode->i_size);
64769240
AT
2805 }
2806
d2a17637
MC
2807 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2808 goto retry;
64769240
AT
2809out:
2810 return ret;
2811}
2812
632eaeab
MC
2813/*
2814 * Check if we should update i_disksize
2815 * when write to the end of file but not require block allocation
2816 */
2817static int ext4_da_should_update_i_disksize(struct page *page,
2818 unsigned long offset)
2819{
2820 struct buffer_head *bh;
2821 struct inode *inode = page->mapping->host;
2822 unsigned int idx;
2823 int i;
2824
2825 bh = page_buffers(page);
2826 idx = offset >> inode->i_blkbits;
2827
af5bc92d 2828 for (i = 0; i < idx; i++)
632eaeab
MC
2829 bh = bh->b_this_page;
2830
2831 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2832 return 0;
2833 return 1;
2834}
2835
64769240
AT
2836static int ext4_da_write_end(struct file *file,
2837 struct address_space *mapping,
2838 loff_t pos, unsigned len, unsigned copied,
2839 struct page *page, void *fsdata)
2840{
2841 struct inode *inode = mapping->host;
2842 int ret = 0, ret2;
2843 handle_t *handle = ext4_journal_current_handle();
2844 loff_t new_i_size;
632eaeab 2845 unsigned long start, end;
79f0be8d
AK
2846 int write_mode = (int)(unsigned long)fsdata;
2847
2848 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2849 if (ext4_should_order_data(inode)) {
2850 return ext4_ordered_write_end(file, mapping, pos,
2851 len, copied, page, fsdata);
2852 } else if (ext4_should_writeback_data(inode)) {
2853 return ext4_writeback_write_end(file, mapping, pos,
2854 len, copied, page, fsdata);
2855 } else {
2856 BUG();
2857 }
2858 }
632eaeab 2859
ba80b101
TT
2860 trace_mark(ext4_da_write_end,
2861 "dev %s ino %lu pos %llu len %u copied %u",
2862 inode->i_sb->s_id, inode->i_ino,
2863 (unsigned long long) pos, len, copied);
632eaeab 2864 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2865 end = start + copied - 1;
64769240
AT
2866
2867 /*
2868 * generic_write_end() will run mark_inode_dirty() if i_size
2869 * changes. So let's piggyback the i_disksize mark_inode_dirty
2870 * into that.
2871 */
2872
2873 new_i_size = pos + copied;
632eaeab
MC
2874 if (new_i_size > EXT4_I(inode)->i_disksize) {
2875 if (ext4_da_should_update_i_disksize(page, end)) {
2876 down_write(&EXT4_I(inode)->i_data_sem);
2877 if (new_i_size > EXT4_I(inode)->i_disksize) {
2878 /*
2879 * Updating i_disksize when extending file
2880 * without needing block allocation
2881 */
2882 if (ext4_should_order_data(inode))
2883 ret = ext4_jbd2_file_inode(handle,
2884 inode);
64769240 2885
632eaeab
MC
2886 EXT4_I(inode)->i_disksize = new_i_size;
2887 }
2888 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2889 /* We need to mark inode dirty even if
2890 * new_i_size is less that inode->i_size
2891 * bu greater than i_disksize.(hint delalloc)
2892 */
2893 ext4_mark_inode_dirty(handle, inode);
64769240 2894 }
632eaeab 2895 }
64769240
AT
2896 ret2 = generic_write_end(file, mapping, pos, len, copied,
2897 page, fsdata);
2898 copied = ret2;
2899 if (ret2 < 0)
2900 ret = ret2;
2901 ret2 = ext4_journal_stop(handle);
2902 if (!ret)
2903 ret = ret2;
2904
2905 return ret ? ret : copied;
2906}
2907
2908static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2909{
64769240
AT
2910 /*
2911 * Drop reserved blocks
2912 */
2913 BUG_ON(!PageLocked(page));
2914 if (!page_has_buffers(page))
2915 goto out;
2916
d2a17637 2917 ext4_da_page_release_reservation(page, offset);
64769240
AT
2918
2919out:
2920 ext4_invalidatepage(page, offset);
2921
2922 return;
2923}
2924
ccd2506b
TT
2925/*
2926 * Force all delayed allocation blocks to be allocated for a given inode.
2927 */
2928int ext4_alloc_da_blocks(struct inode *inode)
2929{
2930 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2931 !EXT4_I(inode)->i_reserved_meta_blocks)
2932 return 0;
2933
2934 /*
2935 * We do something simple for now. The filemap_flush() will
2936 * also start triggering a write of the data blocks, which is
2937 * not strictly speaking necessary (and for users of
2938 * laptop_mode, not even desirable). However, to do otherwise
2939 * would require replicating code paths in:
2940 *
2941 * ext4_da_writepages() ->
2942 * write_cache_pages() ---> (via passed in callback function)
2943 * __mpage_da_writepage() -->
2944 * mpage_add_bh_to_extent()
2945 * mpage_da_map_blocks()
2946 *
2947 * The problem is that write_cache_pages(), located in
2948 * mm/page-writeback.c, marks pages clean in preparation for
2949 * doing I/O, which is not desirable if we're not planning on
2950 * doing I/O at all.
2951 *
2952 * We could call write_cache_pages(), and then redirty all of
2953 * the pages by calling redirty_page_for_writeback() but that
2954 * would be ugly in the extreme. So instead we would need to
2955 * replicate parts of the code in the above functions,
2956 * simplifying them becuase we wouldn't actually intend to
2957 * write out the pages, but rather only collect contiguous
2958 * logical block extents, call the multi-block allocator, and
2959 * then update the buffer heads with the block allocations.
2960 *
2961 * For now, though, we'll cheat by calling filemap_flush(),
2962 * which will map the blocks, and start the I/O, but not
2963 * actually wait for the I/O to complete.
2964 */
2965 return filemap_flush(inode->i_mapping);
2966}
64769240 2967
ac27a0ec
DK
2968/*
2969 * bmap() is special. It gets used by applications such as lilo and by
2970 * the swapper to find the on-disk block of a specific piece of data.
2971 *
2972 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2973 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2974 * filesystem and enables swap, then they may get a nasty shock when the
2975 * data getting swapped to that swapfile suddenly gets overwritten by
2976 * the original zero's written out previously to the journal and
2977 * awaiting writeback in the kernel's buffer cache.
2978 *
2979 * So, if we see any bmap calls here on a modified, data-journaled file,
2980 * take extra steps to flush any blocks which might be in the cache.
2981 */
617ba13b 2982static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2983{
2984 struct inode *inode = mapping->host;
2985 journal_t *journal;
2986 int err;
2987
64769240
AT
2988 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2989 test_opt(inode->i_sb, DELALLOC)) {
2990 /*
2991 * With delalloc we want to sync the file
2992 * so that we can make sure we allocate
2993 * blocks for file
2994 */
2995 filemap_write_and_wait(mapping);
2996 }
2997
0390131b 2998 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2999 /*
3000 * This is a REALLY heavyweight approach, but the use of
3001 * bmap on dirty files is expected to be extremely rare:
3002 * only if we run lilo or swapon on a freshly made file
3003 * do we expect this to happen.
3004 *
3005 * (bmap requires CAP_SYS_RAWIO so this does not
3006 * represent an unprivileged user DOS attack --- we'd be
3007 * in trouble if mortal users could trigger this path at
3008 * will.)
3009 *
617ba13b 3010 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3011 * regular files. If somebody wants to bmap a directory
3012 * or symlink and gets confused because the buffer
3013 * hasn't yet been flushed to disk, they deserve
3014 * everything they get.
3015 */
3016
617ba13b
MC
3017 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3018 journal = EXT4_JOURNAL(inode);
dab291af
MC
3019 jbd2_journal_lock_updates(journal);
3020 err = jbd2_journal_flush(journal);
3021 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3022
3023 if (err)
3024 return 0;
3025 }
3026
af5bc92d 3027 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3028}
3029
3030static int bget_one(handle_t *handle, struct buffer_head *bh)
3031{
3032 get_bh(bh);
3033 return 0;
3034}
3035
3036static int bput_one(handle_t *handle, struct buffer_head *bh)
3037{
3038 put_bh(bh);
3039 return 0;
3040}
3041
ac27a0ec 3042/*
678aaf48
JK
3043 * Note that we don't need to start a transaction unless we're journaling data
3044 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3045 * need to file the inode to the transaction's list in ordered mode because if
3046 * we are writing back data added by write(), the inode is already there and if
3047 * we are writing back data modified via mmap(), noone guarantees in which
3048 * transaction the data will hit the disk. In case we are journaling data, we
3049 * cannot start transaction directly because transaction start ranks above page
3050 * lock so we have to do some magic.
ac27a0ec 3051 *
678aaf48 3052 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3053 *
3054 * Problem:
3055 *
617ba13b
MC
3056 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3057 * ext4_writepage()
ac27a0ec
DK
3058 *
3059 * Similar for:
3060 *
617ba13b 3061 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3062 *
617ba13b 3063 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3064 * lock_journal and i_data_sem
ac27a0ec
DK
3065 *
3066 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3067 * allocations fail.
3068 *
3069 * 16May01: If we're reentered then journal_current_handle() will be
3070 * non-zero. We simply *return*.
3071 *
3072 * 1 July 2001: @@@ FIXME:
3073 * In journalled data mode, a data buffer may be metadata against the
3074 * current transaction. But the same file is part of a shared mapping
3075 * and someone does a writepage() on it.
3076 *
3077 * We will move the buffer onto the async_data list, but *after* it has
3078 * been dirtied. So there's a small window where we have dirty data on
3079 * BJ_Metadata.
3080 *
3081 * Note that this only applies to the last partial page in the file. The
3082 * bit which block_write_full_page() uses prepare/commit for. (That's
3083 * broken code anyway: it's wrong for msync()).
3084 *
3085 * It's a rare case: affects the final partial page, for journalled data
3086 * where the file is subject to bith write() and writepage() in the same
3087 * transction. To fix it we'll need a custom block_write_full_page().
3088 * We'll probably need that anyway for journalling writepage() output.
3089 *
3090 * We don't honour synchronous mounts for writepage(). That would be
3091 * disastrous. Any write() or metadata operation will sync the fs for
3092 * us.
3093 *
ac27a0ec 3094 */
678aaf48 3095static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3096 struct writeback_control *wbc)
3097{
3098 struct inode *inode = page->mapping->host;
3099
3100 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
3101 return nobh_writepage(page,
3102 ext4_normal_get_block_write, wbc);
cf108bca 3103 else
f0e6c985
AK
3104 return block_write_full_page(page,
3105 ext4_normal_get_block_write,
3106 wbc);
cf108bca
JK
3107}
3108
678aaf48 3109static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3110 struct writeback_control *wbc)
3111{
3112 struct inode *inode = page->mapping->host;
cf108bca
JK
3113 loff_t size = i_size_read(inode);
3114 loff_t len;
3115
ba80b101
TT
3116 trace_mark(ext4_normal_writepage,
3117 "dev %s ino %lu page_index %lu",
3118 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3119 J_ASSERT(PageLocked(page));
cf108bca
JK
3120 if (page->index == size >> PAGE_CACHE_SHIFT)
3121 len = size & ~PAGE_CACHE_MASK;
3122 else
3123 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3124
3125 if (page_has_buffers(page)) {
3126 /* if page has buffers it should all be mapped
3127 * and allocated. If there are not buffers attached
3128 * to the page we know the page is dirty but it lost
3129 * buffers. That means that at some moment in time
3130 * after write_begin() / write_end() has been called
3131 * all buffers have been clean and thus they must have been
3132 * written at least once. So they are all mapped and we can
3133 * happily proceed with mapping them and writing the page.
3134 */
3135 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3136 ext4_bh_unmapped_or_delay));
3137 }
cf108bca
JK
3138
3139 if (!ext4_journal_current_handle())
678aaf48 3140 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3141
3142 redirty_page_for_writepage(wbc, page);
3143 unlock_page(page);
3144 return 0;
3145}
3146
3147static int __ext4_journalled_writepage(struct page *page,
3148 struct writeback_control *wbc)
3149{
3150 struct address_space *mapping = page->mapping;
3151 struct inode *inode = mapping->host;
3152 struct buffer_head *page_bufs;
ac27a0ec
DK
3153 handle_t *handle = NULL;
3154 int ret = 0;
3155 int err;
3156
f0e6c985
AK
3157 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3158 ext4_normal_get_block_write);
cf108bca
JK
3159 if (ret != 0)
3160 goto out_unlock;
3161
3162 page_bufs = page_buffers(page);
3163 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3164 bget_one);
3165 /* As soon as we unlock the page, it can go away, but we have
3166 * references to buffers so we are safe */
3167 unlock_page(page);
ac27a0ec 3168
617ba13b 3169 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3170 if (IS_ERR(handle)) {
3171 ret = PTR_ERR(handle);
cf108bca 3172 goto out;
ac27a0ec
DK
3173 }
3174
cf108bca
JK
3175 ret = walk_page_buffers(handle, page_bufs, 0,
3176 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3177
cf108bca
JK
3178 err = walk_page_buffers(handle, page_bufs, 0,
3179 PAGE_CACHE_SIZE, NULL, write_end_fn);
3180 if (ret == 0)
3181 ret = err;
617ba13b 3182 err = ext4_journal_stop(handle);
ac27a0ec
DK
3183 if (!ret)
3184 ret = err;
ac27a0ec 3185
cf108bca
JK
3186 walk_page_buffers(handle, page_bufs, 0,
3187 PAGE_CACHE_SIZE, NULL, bput_one);
3188 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3189 goto out;
3190
3191out_unlock:
ac27a0ec 3192 unlock_page(page);
cf108bca 3193out:
ac27a0ec
DK
3194 return ret;
3195}
3196
617ba13b 3197static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3198 struct writeback_control *wbc)
3199{
3200 struct inode *inode = page->mapping->host;
cf108bca
JK
3201 loff_t size = i_size_read(inode);
3202 loff_t len;
ac27a0ec 3203
ba80b101
TT
3204 trace_mark(ext4_journalled_writepage,
3205 "dev %s ino %lu page_index %lu",
3206 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3207 J_ASSERT(PageLocked(page));
cf108bca
JK
3208 if (page->index == size >> PAGE_CACHE_SHIFT)
3209 len = size & ~PAGE_CACHE_MASK;
3210 else
3211 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3212
3213 if (page_has_buffers(page)) {
3214 /* if page has buffers it should all be mapped
3215 * and allocated. If there are not buffers attached
3216 * to the page we know the page is dirty but it lost
3217 * buffers. That means that at some moment in time
3218 * after write_begin() / write_end() has been called
3219 * all buffers have been clean and thus they must have been
3220 * written at least once. So they are all mapped and we can
3221 * happily proceed with mapping them and writing the page.
3222 */
3223 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3224 ext4_bh_unmapped_or_delay));
3225 }
ac27a0ec 3226
cf108bca 3227 if (ext4_journal_current_handle())
ac27a0ec 3228 goto no_write;
ac27a0ec 3229
cf108bca 3230 if (PageChecked(page)) {
ac27a0ec
DK
3231 /*
3232 * It's mmapped pagecache. Add buffers and journal it. There
3233 * doesn't seem much point in redirtying the page here.
3234 */
3235 ClearPageChecked(page);
cf108bca 3236 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3237 } else {
3238 /*
3239 * It may be a page full of checkpoint-mode buffers. We don't
3240 * really know unless we go poke around in the buffer_heads.
3241 * But block_write_full_page will do the right thing.
3242 */
f0e6c985
AK
3243 return block_write_full_page(page,
3244 ext4_normal_get_block_write,
3245 wbc);
ac27a0ec 3246 }
ac27a0ec
DK
3247no_write:
3248 redirty_page_for_writepage(wbc, page);
ac27a0ec 3249 unlock_page(page);
cf108bca 3250 return 0;
ac27a0ec
DK
3251}
3252
617ba13b 3253static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3254{
617ba13b 3255 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3256}
3257
3258static int
617ba13b 3259ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3260 struct list_head *pages, unsigned nr_pages)
3261{
617ba13b 3262 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3263}
3264
617ba13b 3265static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3266{
617ba13b 3267 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3268
3269 /*
3270 * If it's a full truncate we just forget about the pending dirtying
3271 */
3272 if (offset == 0)
3273 ClearPageChecked(page);
3274
0390131b
FM
3275 if (journal)
3276 jbd2_journal_invalidatepage(journal, page, offset);
3277 else
3278 block_invalidatepage(page, offset);
ac27a0ec
DK
3279}
3280
617ba13b 3281static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3282{
617ba13b 3283 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3284
3285 WARN_ON(PageChecked(page));
3286 if (!page_has_buffers(page))
3287 return 0;
0390131b
FM
3288 if (journal)
3289 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3290 else
3291 return try_to_free_buffers(page);
ac27a0ec
DK
3292}
3293
3294/*
3295 * If the O_DIRECT write will extend the file then add this inode to the
3296 * orphan list. So recovery will truncate it back to the original size
3297 * if the machine crashes during the write.
3298 *
3299 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3300 * crashes then stale disk data _may_ be exposed inside the file. But current
3301 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3302 */
617ba13b 3303static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3304 const struct iovec *iov, loff_t offset,
3305 unsigned long nr_segs)
3306{
3307 struct file *file = iocb->ki_filp;
3308 struct inode *inode = file->f_mapping->host;
617ba13b 3309 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3310 handle_t *handle;
ac27a0ec
DK
3311 ssize_t ret;
3312 int orphan = 0;
3313 size_t count = iov_length(iov, nr_segs);
3314
3315 if (rw == WRITE) {
3316 loff_t final_size = offset + count;
3317
ac27a0ec 3318 if (final_size > inode->i_size) {
7fb5409d
JK
3319 /* Credits for sb + inode write */
3320 handle = ext4_journal_start(inode, 2);
3321 if (IS_ERR(handle)) {
3322 ret = PTR_ERR(handle);
3323 goto out;
3324 }
617ba13b 3325 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3326 if (ret) {
3327 ext4_journal_stop(handle);
3328 goto out;
3329 }
ac27a0ec
DK
3330 orphan = 1;
3331 ei->i_disksize = inode->i_size;
7fb5409d 3332 ext4_journal_stop(handle);
ac27a0ec
DK
3333 }
3334 }
3335
3336 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3337 offset, nr_segs,
617ba13b 3338 ext4_get_block, NULL);
ac27a0ec 3339
7fb5409d 3340 if (orphan) {
ac27a0ec
DK
3341 int err;
3342
7fb5409d
JK
3343 /* Credits for sb + inode write */
3344 handle = ext4_journal_start(inode, 2);
3345 if (IS_ERR(handle)) {
3346 /* This is really bad luck. We've written the data
3347 * but cannot extend i_size. Bail out and pretend
3348 * the write failed... */
3349 ret = PTR_ERR(handle);
3350 goto out;
3351 }
3352 if (inode->i_nlink)
617ba13b 3353 ext4_orphan_del(handle, inode);
7fb5409d 3354 if (ret > 0) {
ac27a0ec
DK
3355 loff_t end = offset + ret;
3356 if (end > inode->i_size) {
3357 ei->i_disksize = end;
3358 i_size_write(inode, end);
3359 /*
3360 * We're going to return a positive `ret'
3361 * here due to non-zero-length I/O, so there's
3362 * no way of reporting error returns from
617ba13b 3363 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3364 * ignore it.
3365 */
617ba13b 3366 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3367 }
3368 }
617ba13b 3369 err = ext4_journal_stop(handle);
ac27a0ec
DK
3370 if (ret == 0)
3371 ret = err;
3372 }
3373out:
3374 return ret;
3375}
3376
3377/*
617ba13b 3378 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3379 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3380 * much here because ->set_page_dirty is called under VFS locks. The page is
3381 * not necessarily locked.
3382 *
3383 * We cannot just dirty the page and leave attached buffers clean, because the
3384 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3385 * or jbddirty because all the journalling code will explode.
3386 *
3387 * So what we do is to mark the page "pending dirty" and next time writepage
3388 * is called, propagate that into the buffers appropriately.
3389 */
617ba13b 3390static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3391{
3392 SetPageChecked(page);
3393 return __set_page_dirty_nobuffers(page);
3394}
3395
617ba13b 3396static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3397 .readpage = ext4_readpage,
3398 .readpages = ext4_readpages,
3399 .writepage = ext4_normal_writepage,
3400 .sync_page = block_sync_page,
3401 .write_begin = ext4_write_begin,
3402 .write_end = ext4_ordered_write_end,
3403 .bmap = ext4_bmap,
3404 .invalidatepage = ext4_invalidatepage,
3405 .releasepage = ext4_releasepage,
3406 .direct_IO = ext4_direct_IO,
3407 .migratepage = buffer_migrate_page,
3408 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3409};
3410
617ba13b 3411static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3412 .readpage = ext4_readpage,
3413 .readpages = ext4_readpages,
3414 .writepage = ext4_normal_writepage,
3415 .sync_page = block_sync_page,
3416 .write_begin = ext4_write_begin,
3417 .write_end = ext4_writeback_write_end,
3418 .bmap = ext4_bmap,
3419 .invalidatepage = ext4_invalidatepage,
3420 .releasepage = ext4_releasepage,
3421 .direct_IO = ext4_direct_IO,
3422 .migratepage = buffer_migrate_page,
3423 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3424};
3425
617ba13b 3426static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3427 .readpage = ext4_readpage,
3428 .readpages = ext4_readpages,
3429 .writepage = ext4_journalled_writepage,
3430 .sync_page = block_sync_page,
3431 .write_begin = ext4_write_begin,
3432 .write_end = ext4_journalled_write_end,
3433 .set_page_dirty = ext4_journalled_set_page_dirty,
3434 .bmap = ext4_bmap,
3435 .invalidatepage = ext4_invalidatepage,
3436 .releasepage = ext4_releasepage,
3437 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3438};
3439
64769240 3440static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3441 .readpage = ext4_readpage,
3442 .readpages = ext4_readpages,
3443 .writepage = ext4_da_writepage,
3444 .writepages = ext4_da_writepages,
3445 .sync_page = block_sync_page,
3446 .write_begin = ext4_da_write_begin,
3447 .write_end = ext4_da_write_end,
3448 .bmap = ext4_bmap,
3449 .invalidatepage = ext4_da_invalidatepage,
3450 .releasepage = ext4_releasepage,
3451 .direct_IO = ext4_direct_IO,
3452 .migratepage = buffer_migrate_page,
3453 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3454};
3455
617ba13b 3456void ext4_set_aops(struct inode *inode)
ac27a0ec 3457{
cd1aac32
AK
3458 if (ext4_should_order_data(inode) &&
3459 test_opt(inode->i_sb, DELALLOC))
3460 inode->i_mapping->a_ops = &ext4_da_aops;
3461 else if (ext4_should_order_data(inode))
617ba13b 3462 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3463 else if (ext4_should_writeback_data(inode) &&
3464 test_opt(inode->i_sb, DELALLOC))
3465 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3466 else if (ext4_should_writeback_data(inode))
3467 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3468 else
617ba13b 3469 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3470}
3471
3472/*
617ba13b 3473 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3474 * up to the end of the block which corresponds to `from'.
3475 * This required during truncate. We need to physically zero the tail end
3476 * of that block so it doesn't yield old data if the file is later grown.
3477 */
cf108bca 3478int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3479 struct address_space *mapping, loff_t from)
3480{
617ba13b 3481 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3482 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3483 unsigned blocksize, length, pos;
3484 ext4_lblk_t iblock;
ac27a0ec
DK
3485 struct inode *inode = mapping->host;
3486 struct buffer_head *bh;
cf108bca 3487 struct page *page;
ac27a0ec 3488 int err = 0;
ac27a0ec 3489
cf108bca
JK
3490 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3491 if (!page)
3492 return -EINVAL;
3493
ac27a0ec
DK
3494 blocksize = inode->i_sb->s_blocksize;
3495 length = blocksize - (offset & (blocksize - 1));
3496 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3497
3498 /*
3499 * For "nobh" option, we can only work if we don't need to
3500 * read-in the page - otherwise we create buffers to do the IO.
3501 */
3502 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3503 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3504 zero_user(page, offset, length);
ac27a0ec
DK
3505 set_page_dirty(page);
3506 goto unlock;
3507 }
3508
3509 if (!page_has_buffers(page))
3510 create_empty_buffers(page, blocksize, 0);
3511
3512 /* Find the buffer that contains "offset" */
3513 bh = page_buffers(page);
3514 pos = blocksize;
3515 while (offset >= pos) {
3516 bh = bh->b_this_page;
3517 iblock++;
3518 pos += blocksize;
3519 }
3520
3521 err = 0;
3522 if (buffer_freed(bh)) {
3523 BUFFER_TRACE(bh, "freed: skip");
3524 goto unlock;
3525 }
3526
3527 if (!buffer_mapped(bh)) {
3528 BUFFER_TRACE(bh, "unmapped");
617ba13b 3529 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3530 /* unmapped? It's a hole - nothing to do */
3531 if (!buffer_mapped(bh)) {
3532 BUFFER_TRACE(bh, "still unmapped");
3533 goto unlock;
3534 }
3535 }
3536
3537 /* Ok, it's mapped. Make sure it's up-to-date */
3538 if (PageUptodate(page))
3539 set_buffer_uptodate(bh);
3540
3541 if (!buffer_uptodate(bh)) {
3542 err = -EIO;
3543 ll_rw_block(READ, 1, &bh);
3544 wait_on_buffer(bh);
3545 /* Uhhuh. Read error. Complain and punt. */
3546 if (!buffer_uptodate(bh))
3547 goto unlock;
3548 }
3549
617ba13b 3550 if (ext4_should_journal_data(inode)) {
ac27a0ec 3551 BUFFER_TRACE(bh, "get write access");
617ba13b 3552 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3553 if (err)
3554 goto unlock;
3555 }
3556
eebd2aa3 3557 zero_user(page, offset, length);
ac27a0ec
DK
3558
3559 BUFFER_TRACE(bh, "zeroed end of block");
3560
3561 err = 0;
617ba13b 3562 if (ext4_should_journal_data(inode)) {
0390131b 3563 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3564 } else {
617ba13b 3565 if (ext4_should_order_data(inode))
678aaf48 3566 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3567 mark_buffer_dirty(bh);
3568 }
3569
3570unlock:
3571 unlock_page(page);
3572 page_cache_release(page);
3573 return err;
3574}
3575
3576/*
3577 * Probably it should be a library function... search for first non-zero word
3578 * or memcmp with zero_page, whatever is better for particular architecture.
3579 * Linus?
3580 */
3581static inline int all_zeroes(__le32 *p, __le32 *q)
3582{
3583 while (p < q)
3584 if (*p++)
3585 return 0;
3586 return 1;
3587}
3588
3589/**
617ba13b 3590 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3591 * @inode: inode in question
3592 * @depth: depth of the affected branch
617ba13b 3593 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3594 * @chain: place to store the pointers to partial indirect blocks
3595 * @top: place to the (detached) top of branch
3596 *
617ba13b 3597 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3598 *
3599 * When we do truncate() we may have to clean the ends of several
3600 * indirect blocks but leave the blocks themselves alive. Block is
3601 * partially truncated if some data below the new i_size is refered
3602 * from it (and it is on the path to the first completely truncated
3603 * data block, indeed). We have to free the top of that path along
3604 * with everything to the right of the path. Since no allocation
617ba13b 3605 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3606 * finishes, we may safely do the latter, but top of branch may
3607 * require special attention - pageout below the truncation point
3608 * might try to populate it.
3609 *
3610 * We atomically detach the top of branch from the tree, store the
3611 * block number of its root in *@top, pointers to buffer_heads of
3612 * partially truncated blocks - in @chain[].bh and pointers to
3613 * their last elements that should not be removed - in
3614 * @chain[].p. Return value is the pointer to last filled element
3615 * of @chain.
3616 *
3617 * The work left to caller to do the actual freeing of subtrees:
3618 * a) free the subtree starting from *@top
3619 * b) free the subtrees whose roots are stored in
3620 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3621 * c) free the subtrees growing from the inode past the @chain[0].
3622 * (no partially truncated stuff there). */
3623
617ba13b 3624static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3625 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3626{
3627 Indirect *partial, *p;
3628 int k, err;
3629
3630 *top = 0;
3631 /* Make k index the deepest non-null offest + 1 */
3632 for (k = depth; k > 1 && !offsets[k-1]; k--)
3633 ;
617ba13b 3634 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3635 /* Writer: pointers */
3636 if (!partial)
3637 partial = chain + k-1;
3638 /*
3639 * If the branch acquired continuation since we've looked at it -
3640 * fine, it should all survive and (new) top doesn't belong to us.
3641 */
3642 if (!partial->key && *partial->p)
3643 /* Writer: end */
3644 goto no_top;
af5bc92d 3645 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3646 ;
3647 /*
3648 * OK, we've found the last block that must survive. The rest of our
3649 * branch should be detached before unlocking. However, if that rest
3650 * of branch is all ours and does not grow immediately from the inode
3651 * it's easier to cheat and just decrement partial->p.
3652 */
3653 if (p == chain + k - 1 && p > chain) {
3654 p->p--;
3655 } else {
3656 *top = *p->p;
617ba13b 3657 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3658#if 0
3659 *p->p = 0;
3660#endif
3661 }
3662 /* Writer: end */
3663
af5bc92d 3664 while (partial > p) {
ac27a0ec
DK
3665 brelse(partial->bh);
3666 partial--;
3667 }
3668no_top:
3669 return partial;
3670}
3671
3672/*
3673 * Zero a number of block pointers in either an inode or an indirect block.
3674 * If we restart the transaction we must again get write access to the
3675 * indirect block for further modification.
3676 *
3677 * We release `count' blocks on disk, but (last - first) may be greater
3678 * than `count' because there can be holes in there.
3679 */
617ba13b
MC
3680static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3681 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3682 unsigned long count, __le32 *first, __le32 *last)
3683{
3684 __le32 *p;
3685 if (try_to_extend_transaction(handle, inode)) {
3686 if (bh) {
0390131b
FM
3687 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3688 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3689 }
617ba13b
MC
3690 ext4_mark_inode_dirty(handle, inode);
3691 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3692 if (bh) {
3693 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3694 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3695 }
3696 }
3697
3698 /*
3699 * Any buffers which are on the journal will be in memory. We find
dab291af 3700 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3701 * on them. We've already detached each block from the file, so
dab291af 3702 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3703 *
dab291af 3704 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3705 */
3706 for (p = first; p < last; p++) {
3707 u32 nr = le32_to_cpu(*p);
3708 if (nr) {
1d03ec98 3709 struct buffer_head *tbh;
ac27a0ec
DK
3710
3711 *p = 0;
1d03ec98
AK
3712 tbh = sb_find_get_block(inode->i_sb, nr);
3713 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3714 }
3715 }
3716
c9de560d 3717 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3718}
3719
3720/**
617ba13b 3721 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3722 * @handle: handle for this transaction
3723 * @inode: inode we are dealing with
3724 * @this_bh: indirect buffer_head which contains *@first and *@last
3725 * @first: array of block numbers
3726 * @last: points immediately past the end of array
3727 *
3728 * We are freeing all blocks refered from that array (numbers are stored as
3729 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3730 *
3731 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3732 * blocks are contiguous then releasing them at one time will only affect one
3733 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3734 * actually use a lot of journal space.
3735 *
3736 * @this_bh will be %NULL if @first and @last point into the inode's direct
3737 * block pointers.
3738 */
617ba13b 3739static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3740 struct buffer_head *this_bh,
3741 __le32 *first, __le32 *last)
3742{
617ba13b 3743 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3744 unsigned long count = 0; /* Number of blocks in the run */
3745 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3746 corresponding to
3747 block_to_free */
617ba13b 3748 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3749 __le32 *p; /* Pointer into inode/ind
3750 for current block */
3751 int err;
3752
3753 if (this_bh) { /* For indirect block */
3754 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3755 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3756 /* Important: if we can't update the indirect pointers
3757 * to the blocks, we can't free them. */
3758 if (err)
3759 return;
3760 }
3761
3762 for (p = first; p < last; p++) {
3763 nr = le32_to_cpu(*p);
3764 if (nr) {
3765 /* accumulate blocks to free if they're contiguous */
3766 if (count == 0) {
3767 block_to_free = nr;
3768 block_to_free_p = p;
3769 count = 1;
3770 } else if (nr == block_to_free + count) {
3771 count++;
3772 } else {
617ba13b 3773 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3774 block_to_free,
3775 count, block_to_free_p, p);
3776 block_to_free = nr;
3777 block_to_free_p = p;
3778 count = 1;
3779 }
3780 }
3781 }
3782
3783 if (count > 0)
617ba13b 3784 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3785 count, block_to_free_p, p);
3786
3787 if (this_bh) {
0390131b 3788 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3789
3790 /*
3791 * The buffer head should have an attached journal head at this
3792 * point. However, if the data is corrupted and an indirect
3793 * block pointed to itself, it would have been detached when
3794 * the block was cleared. Check for this instead of OOPSing.
3795 */
e7f07968 3796 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3797 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3798 else
3799 ext4_error(inode->i_sb, __func__,
3800 "circular indirect block detected, "
3801 "inode=%lu, block=%llu",
3802 inode->i_ino,
3803 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3804 }
3805}
3806
3807/**
617ba13b 3808 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3809 * @handle: JBD handle for this transaction
3810 * @inode: inode we are dealing with
3811 * @parent_bh: the buffer_head which contains *@first and *@last
3812 * @first: array of block numbers
3813 * @last: pointer immediately past the end of array
3814 * @depth: depth of the branches to free
3815 *
3816 * We are freeing all blocks refered from these branches (numbers are
3817 * stored as little-endian 32-bit) and updating @inode->i_blocks
3818 * appropriately.
3819 */
617ba13b 3820static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3821 struct buffer_head *parent_bh,
3822 __le32 *first, __le32 *last, int depth)
3823{
617ba13b 3824 ext4_fsblk_t nr;
ac27a0ec
DK
3825 __le32 *p;
3826
0390131b 3827 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3828 return;
3829
3830 if (depth--) {
3831 struct buffer_head *bh;
617ba13b 3832 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3833 p = last;
3834 while (--p >= first) {
3835 nr = le32_to_cpu(*p);
3836 if (!nr)
3837 continue; /* A hole */
3838
3839 /* Go read the buffer for the next level down */
3840 bh = sb_bread(inode->i_sb, nr);
3841
3842 /*
3843 * A read failure? Report error and clear slot
3844 * (should be rare).
3845 */
3846 if (!bh) {
617ba13b 3847 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3848 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3849 inode->i_ino, nr);
3850 continue;
3851 }
3852
3853 /* This zaps the entire block. Bottom up. */
3854 BUFFER_TRACE(bh, "free child branches");
617ba13b 3855 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3856 (__le32 *) bh->b_data,
3857 (__le32 *) bh->b_data + addr_per_block,
3858 depth);
ac27a0ec
DK
3859
3860 /*
3861 * We've probably journalled the indirect block several
3862 * times during the truncate. But it's no longer
3863 * needed and we now drop it from the transaction via
dab291af 3864 * jbd2_journal_revoke().
ac27a0ec
DK
3865 *
3866 * That's easy if it's exclusively part of this
3867 * transaction. But if it's part of the committing
dab291af 3868 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3869 * brelse() it. That means that if the underlying
617ba13b 3870 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3871 * unmap_underlying_metadata() will find this block
3872 * and will try to get rid of it. damn, damn.
3873 *
3874 * If this block has already been committed to the
3875 * journal, a revoke record will be written. And
3876 * revoke records must be emitted *before* clearing
3877 * this block's bit in the bitmaps.
3878 */
617ba13b 3879 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3880
3881 /*
3882 * Everything below this this pointer has been
3883 * released. Now let this top-of-subtree go.
3884 *
3885 * We want the freeing of this indirect block to be
3886 * atomic in the journal with the updating of the
3887 * bitmap block which owns it. So make some room in
3888 * the journal.
3889 *
3890 * We zero the parent pointer *after* freeing its
3891 * pointee in the bitmaps, so if extend_transaction()
3892 * for some reason fails to put the bitmap changes and
3893 * the release into the same transaction, recovery
3894 * will merely complain about releasing a free block,
3895 * rather than leaking blocks.
3896 */
0390131b 3897 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3898 return;
3899 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3900 ext4_mark_inode_dirty(handle, inode);
3901 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3902 }
3903
c9de560d 3904 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3905
3906 if (parent_bh) {
3907 /*
3908 * The block which we have just freed is
3909 * pointed to by an indirect block: journal it
3910 */
3911 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3912 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3913 parent_bh)){
3914 *p = 0;
3915 BUFFER_TRACE(parent_bh,
0390131b
FM
3916 "call ext4_handle_dirty_metadata");
3917 ext4_handle_dirty_metadata(handle,
3918 inode,
3919 parent_bh);
ac27a0ec
DK
3920 }
3921 }
3922 }
3923 } else {
3924 /* We have reached the bottom of the tree. */
3925 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3926 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3927 }
3928}
3929
91ef4caf
DG
3930int ext4_can_truncate(struct inode *inode)
3931{
3932 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3933 return 0;
3934 if (S_ISREG(inode->i_mode))
3935 return 1;
3936 if (S_ISDIR(inode->i_mode))
3937 return 1;
3938 if (S_ISLNK(inode->i_mode))
3939 return !ext4_inode_is_fast_symlink(inode);
3940 return 0;
3941}
3942
ac27a0ec 3943/*
617ba13b 3944 * ext4_truncate()
ac27a0ec 3945 *
617ba13b
MC
3946 * We block out ext4_get_block() block instantiations across the entire
3947 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3948 * simultaneously on behalf of the same inode.
3949 *
3950 * As we work through the truncate and commmit bits of it to the journal there
3951 * is one core, guiding principle: the file's tree must always be consistent on
3952 * disk. We must be able to restart the truncate after a crash.
3953 *
3954 * The file's tree may be transiently inconsistent in memory (although it
3955 * probably isn't), but whenever we close off and commit a journal transaction,
3956 * the contents of (the filesystem + the journal) must be consistent and
3957 * restartable. It's pretty simple, really: bottom up, right to left (although
3958 * left-to-right works OK too).
3959 *
3960 * Note that at recovery time, journal replay occurs *before* the restart of
3961 * truncate against the orphan inode list.
3962 *
3963 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3964 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3965 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3966 * ext4_truncate() to have another go. So there will be instantiated blocks
3967 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3968 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3969 * ext4_truncate() run will find them and release them.
ac27a0ec 3970 */
617ba13b 3971void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3972{
3973 handle_t *handle;
617ba13b 3974 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3975 __le32 *i_data = ei->i_data;
617ba13b 3976 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3977 struct address_space *mapping = inode->i_mapping;
725d26d3 3978 ext4_lblk_t offsets[4];
ac27a0ec
DK
3979 Indirect chain[4];
3980 Indirect *partial;
3981 __le32 nr = 0;
3982 int n;
725d26d3 3983 ext4_lblk_t last_block;
ac27a0ec 3984 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3985
91ef4caf 3986 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3987 return;
3988
afd4672d 3989 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
3990 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3991
1d03ec98 3992 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3993 ext4_ext_truncate(inode);
1d03ec98
AK
3994 return;
3995 }
a86c6181 3996
ac27a0ec 3997 handle = start_transaction(inode);
cf108bca 3998 if (IS_ERR(handle))
ac27a0ec 3999 return; /* AKPM: return what? */
ac27a0ec
DK
4000
4001 last_block = (inode->i_size + blocksize-1)
617ba13b 4002 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4003
cf108bca
JK
4004 if (inode->i_size & (blocksize - 1))
4005 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4006 goto out_stop;
ac27a0ec 4007
617ba13b 4008 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4009 if (n == 0)
4010 goto out_stop; /* error */
4011
4012 /*
4013 * OK. This truncate is going to happen. We add the inode to the
4014 * orphan list, so that if this truncate spans multiple transactions,
4015 * and we crash, we will resume the truncate when the filesystem
4016 * recovers. It also marks the inode dirty, to catch the new size.
4017 *
4018 * Implication: the file must always be in a sane, consistent
4019 * truncatable state while each transaction commits.
4020 */
617ba13b 4021 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4022 goto out_stop;
4023
632eaeab
MC
4024 /*
4025 * From here we block out all ext4_get_block() callers who want to
4026 * modify the block allocation tree.
4027 */
4028 down_write(&ei->i_data_sem);
b4df2030 4029
c2ea3fde 4030 ext4_discard_preallocations(inode);
b4df2030 4031
ac27a0ec
DK
4032 /*
4033 * The orphan list entry will now protect us from any crash which
4034 * occurs before the truncate completes, so it is now safe to propagate
4035 * the new, shorter inode size (held for now in i_size) into the
4036 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4037 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4038 */
4039 ei->i_disksize = inode->i_size;
4040
ac27a0ec 4041 if (n == 1) { /* direct blocks */
617ba13b
MC
4042 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4043 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4044 goto do_indirects;
4045 }
4046
617ba13b 4047 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4048 /* Kill the top of shared branch (not detached) */
4049 if (nr) {
4050 if (partial == chain) {
4051 /* Shared branch grows from the inode */
617ba13b 4052 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4053 &nr, &nr+1, (chain+n-1) - partial);
4054 *partial->p = 0;
4055 /*
4056 * We mark the inode dirty prior to restart,
4057 * and prior to stop. No need for it here.
4058 */
4059 } else {
4060 /* Shared branch grows from an indirect block */
4061 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4062 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4063 partial->p,
4064 partial->p+1, (chain+n-1) - partial);
4065 }
4066 }
4067 /* Clear the ends of indirect blocks on the shared branch */
4068 while (partial > chain) {
617ba13b 4069 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4070 (__le32*)partial->bh->b_data+addr_per_block,
4071 (chain+n-1) - partial);
4072 BUFFER_TRACE(partial->bh, "call brelse");
4073 brelse (partial->bh);
4074 partial--;
4075 }
4076do_indirects:
4077 /* Kill the remaining (whole) subtrees */
4078 switch (offsets[0]) {
4079 default:
617ba13b 4080 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4081 if (nr) {
617ba13b
MC
4082 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4083 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4084 }
617ba13b
MC
4085 case EXT4_IND_BLOCK:
4086 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4087 if (nr) {
617ba13b
MC
4088 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4089 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4090 }
617ba13b
MC
4091 case EXT4_DIND_BLOCK:
4092 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4093 if (nr) {
617ba13b
MC
4094 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4095 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4096 }
617ba13b 4097 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4098 ;
4099 }
4100
0e855ac8 4101 up_write(&ei->i_data_sem);
ef7f3835 4102 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4103 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4104
4105 /*
4106 * In a multi-transaction truncate, we only make the final transaction
4107 * synchronous
4108 */
4109 if (IS_SYNC(inode))
0390131b 4110 ext4_handle_sync(handle);
ac27a0ec
DK
4111out_stop:
4112 /*
4113 * If this was a simple ftruncate(), and the file will remain alive
4114 * then we need to clear up the orphan record which we created above.
4115 * However, if this was a real unlink then we were called by
617ba13b 4116 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4117 * orphan info for us.
4118 */
4119 if (inode->i_nlink)
617ba13b 4120 ext4_orphan_del(handle, inode);
ac27a0ec 4121
617ba13b 4122 ext4_journal_stop(handle);
ac27a0ec
DK
4123}
4124
ac27a0ec 4125/*
617ba13b 4126 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4127 * underlying buffer_head on success. If 'in_mem' is true, we have all
4128 * data in memory that is needed to recreate the on-disk version of this
4129 * inode.
4130 */
617ba13b
MC
4131static int __ext4_get_inode_loc(struct inode *inode,
4132 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4133{
240799cd
TT
4134 struct ext4_group_desc *gdp;
4135 struct buffer_head *bh;
4136 struct super_block *sb = inode->i_sb;
4137 ext4_fsblk_t block;
4138 int inodes_per_block, inode_offset;
4139
3a06d778 4140 iloc->bh = NULL;
240799cd
TT
4141 if (!ext4_valid_inum(sb, inode->i_ino))
4142 return -EIO;
ac27a0ec 4143
240799cd
TT
4144 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4145 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4146 if (!gdp)
ac27a0ec
DK
4147 return -EIO;
4148
240799cd
TT
4149 /*
4150 * Figure out the offset within the block group inode table
4151 */
4152 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4153 inode_offset = ((inode->i_ino - 1) %
4154 EXT4_INODES_PER_GROUP(sb));
4155 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4156 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4157
4158 bh = sb_getblk(sb, block);
ac27a0ec 4159 if (!bh) {
240799cd
TT
4160 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4161 "inode block - inode=%lu, block=%llu",
4162 inode->i_ino, block);
ac27a0ec
DK
4163 return -EIO;
4164 }
4165 if (!buffer_uptodate(bh)) {
4166 lock_buffer(bh);
9c83a923
HK
4167
4168 /*
4169 * If the buffer has the write error flag, we have failed
4170 * to write out another inode in the same block. In this
4171 * case, we don't have to read the block because we may
4172 * read the old inode data successfully.
4173 */
4174 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4175 set_buffer_uptodate(bh);
4176
ac27a0ec
DK
4177 if (buffer_uptodate(bh)) {
4178 /* someone brought it uptodate while we waited */
4179 unlock_buffer(bh);
4180 goto has_buffer;
4181 }
4182
4183 /*
4184 * If we have all information of the inode in memory and this
4185 * is the only valid inode in the block, we need not read the
4186 * block.
4187 */
4188 if (in_mem) {
4189 struct buffer_head *bitmap_bh;
240799cd 4190 int i, start;
ac27a0ec 4191
240799cd 4192 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4193
240799cd
TT
4194 /* Is the inode bitmap in cache? */
4195 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4196 if (!bitmap_bh)
4197 goto make_io;
4198
4199 /*
4200 * If the inode bitmap isn't in cache then the
4201 * optimisation may end up performing two reads instead
4202 * of one, so skip it.
4203 */
4204 if (!buffer_uptodate(bitmap_bh)) {
4205 brelse(bitmap_bh);
4206 goto make_io;
4207 }
240799cd 4208 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4209 if (i == inode_offset)
4210 continue;
617ba13b 4211 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4212 break;
4213 }
4214 brelse(bitmap_bh);
240799cd 4215 if (i == start + inodes_per_block) {
ac27a0ec
DK
4216 /* all other inodes are free, so skip I/O */
4217 memset(bh->b_data, 0, bh->b_size);
4218 set_buffer_uptodate(bh);
4219 unlock_buffer(bh);
4220 goto has_buffer;
4221 }
4222 }
4223
4224make_io:
240799cd
TT
4225 /*
4226 * If we need to do any I/O, try to pre-readahead extra
4227 * blocks from the inode table.
4228 */
4229 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4230 ext4_fsblk_t b, end, table;
4231 unsigned num;
4232
4233 table = ext4_inode_table(sb, gdp);
b713a5ec 4234 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4235 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4236 if (table > b)
4237 b = table;
4238 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4239 num = EXT4_INODES_PER_GROUP(sb);
4240 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4241 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4242 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4243 table += num / inodes_per_block;
4244 if (end > table)
4245 end = table;
4246 while (b <= end)
4247 sb_breadahead(sb, b++);
4248 }
4249
ac27a0ec
DK
4250 /*
4251 * There are other valid inodes in the buffer, this inode
4252 * has in-inode xattrs, or we don't have this inode in memory.
4253 * Read the block from disk.
4254 */
4255 get_bh(bh);
4256 bh->b_end_io = end_buffer_read_sync;
4257 submit_bh(READ_META, bh);
4258 wait_on_buffer(bh);
4259 if (!buffer_uptodate(bh)) {
240799cd
TT
4260 ext4_error(sb, __func__,
4261 "unable to read inode block - inode=%lu, "
4262 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4263 brelse(bh);
4264 return -EIO;
4265 }
4266 }
4267has_buffer:
4268 iloc->bh = bh;
4269 return 0;
4270}
4271
617ba13b 4272int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4273{
4274 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4275 return __ext4_get_inode_loc(inode, iloc,
4276 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4277}
4278
617ba13b 4279void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4280{
617ba13b 4281 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4282
4283 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4284 if (flags & EXT4_SYNC_FL)
ac27a0ec 4285 inode->i_flags |= S_SYNC;
617ba13b 4286 if (flags & EXT4_APPEND_FL)
ac27a0ec 4287 inode->i_flags |= S_APPEND;
617ba13b 4288 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4289 inode->i_flags |= S_IMMUTABLE;
617ba13b 4290 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4291 inode->i_flags |= S_NOATIME;
617ba13b 4292 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4293 inode->i_flags |= S_DIRSYNC;
4294}
4295
ff9ddf7e
JK
4296/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4297void ext4_get_inode_flags(struct ext4_inode_info *ei)
4298{
4299 unsigned int flags = ei->vfs_inode.i_flags;
4300
4301 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4302 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4303 if (flags & S_SYNC)
4304 ei->i_flags |= EXT4_SYNC_FL;
4305 if (flags & S_APPEND)
4306 ei->i_flags |= EXT4_APPEND_FL;
4307 if (flags & S_IMMUTABLE)
4308 ei->i_flags |= EXT4_IMMUTABLE_FL;
4309 if (flags & S_NOATIME)
4310 ei->i_flags |= EXT4_NOATIME_FL;
4311 if (flags & S_DIRSYNC)
4312 ei->i_flags |= EXT4_DIRSYNC_FL;
4313}
0fc1b451
AK
4314static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4315 struct ext4_inode_info *ei)
4316{
4317 blkcnt_t i_blocks ;
8180a562
AK
4318 struct inode *inode = &(ei->vfs_inode);
4319 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4320
4321 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4322 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4323 /* we are using combined 48 bit field */
4324 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4325 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4326 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4327 /* i_blocks represent file system block size */
4328 return i_blocks << (inode->i_blkbits - 9);
4329 } else {
4330 return i_blocks;
4331 }
0fc1b451
AK
4332 } else {
4333 return le32_to_cpu(raw_inode->i_blocks_lo);
4334 }
4335}
ff9ddf7e 4336
1d1fe1ee 4337struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4338{
617ba13b
MC
4339 struct ext4_iloc iloc;
4340 struct ext4_inode *raw_inode;
1d1fe1ee 4341 struct ext4_inode_info *ei;
ac27a0ec 4342 struct buffer_head *bh;
1d1fe1ee
DH
4343 struct inode *inode;
4344 long ret;
ac27a0ec
DK
4345 int block;
4346
1d1fe1ee
DH
4347 inode = iget_locked(sb, ino);
4348 if (!inode)
4349 return ERR_PTR(-ENOMEM);
4350 if (!(inode->i_state & I_NEW))
4351 return inode;
4352
4353 ei = EXT4_I(inode);
03010a33 4354#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4355 ei->i_acl = EXT4_ACL_NOT_CACHED;
4356 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4357#endif
ac27a0ec 4358
1d1fe1ee
DH
4359 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4360 if (ret < 0)
ac27a0ec
DK
4361 goto bad_inode;
4362 bh = iloc.bh;
617ba13b 4363 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4364 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4365 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4366 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4367 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4368 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370 }
4371 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4372
4373 ei->i_state = 0;
4374 ei->i_dir_start_lookup = 0;
4375 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4376 /* We now have enough fields to check if the inode was active or not.
4377 * This is needed because nfsd might try to access dead inodes
4378 * the test is that same one that e2fsck uses
4379 * NeilBrown 1999oct15
4380 */
4381 if (inode->i_nlink == 0) {
4382 if (inode->i_mode == 0 ||
617ba13b 4383 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4384 /* this inode is deleted */
af5bc92d 4385 brelse(bh);
1d1fe1ee 4386 ret = -ESTALE;
ac27a0ec
DK
4387 goto bad_inode;
4388 }
4389 /* The only unlinked inodes we let through here have
4390 * valid i_mode and are being read by the orphan
4391 * recovery code: that's fine, we're about to complete
4392 * the process of deleting those. */
4393 }
ac27a0ec 4394 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4395 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4396 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4397 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4398 ei->i_file_acl |=
4399 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4400 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4401 ei->i_disksize = inode->i_size;
4402 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4403 ei->i_block_group = iloc.block_group;
a4912123 4404 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4405 /*
4406 * NOTE! The in-memory inode i_data array is in little-endian order
4407 * even on big-endian machines: we do NOT byteswap the block numbers!
4408 */
617ba13b 4409 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4410 ei->i_data[block] = raw_inode->i_block[block];
4411 INIT_LIST_HEAD(&ei->i_orphan);
4412
0040d987 4413 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4414 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4415 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4416 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4417 brelse(bh);
1d1fe1ee 4418 ret = -EIO;
ac27a0ec 4419 goto bad_inode;
e5d2861f 4420 }
ac27a0ec
DK
4421 if (ei->i_extra_isize == 0) {
4422 /* The extra space is currently unused. Use it. */
617ba13b
MC
4423 ei->i_extra_isize = sizeof(struct ext4_inode) -
4424 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4425 } else {
4426 __le32 *magic = (void *)raw_inode +
617ba13b 4427 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4428 ei->i_extra_isize;
617ba13b
MC
4429 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4430 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4431 }
4432 } else
4433 ei->i_extra_isize = 0;
4434
ef7f3835
KS
4435 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4436 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4437 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4438 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4439
25ec56b5
JNC
4440 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4441 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4442 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4443 inode->i_version |=
4444 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4445 }
4446
c4b5a614 4447 ret = 0;
485c26ec
TT
4448 if (ei->i_file_acl &&
4449 ((ei->i_file_acl <
4450 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4451 EXT4_SB(sb)->s_gdb_count)) ||
4452 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4453 ext4_error(sb, __func__,
4454 "bad extended attribute block %llu in inode #%lu",
4455 ei->i_file_acl, inode->i_ino);
4456 ret = -EIO;
4457 goto bad_inode;
4458 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4459 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4460 (S_ISLNK(inode->i_mode) &&
4461 !ext4_inode_is_fast_symlink(inode)))
4462 /* Validate extent which is part of inode */
4463 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4464 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4465 (S_ISLNK(inode->i_mode) &&
4466 !ext4_inode_is_fast_symlink(inode))) {
4467 /* Validate block references which are part of inode */
4468 ret = ext4_check_inode_blockref(inode);
4469 }
4470 if (ret) {
4471 brelse(bh);
4472 goto bad_inode;
7a262f7c
AK
4473 }
4474
ac27a0ec 4475 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4476 inode->i_op = &ext4_file_inode_operations;
4477 inode->i_fop = &ext4_file_operations;
4478 ext4_set_aops(inode);
ac27a0ec 4479 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4480 inode->i_op = &ext4_dir_inode_operations;
4481 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4482 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4483 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4484 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4485 nd_terminate_link(ei->i_data, inode->i_size,
4486 sizeof(ei->i_data) - 1);
4487 } else {
617ba13b
MC
4488 inode->i_op = &ext4_symlink_inode_operations;
4489 ext4_set_aops(inode);
ac27a0ec 4490 }
563bdd61
TT
4491 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4492 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4493 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4494 if (raw_inode->i_block[0])
4495 init_special_inode(inode, inode->i_mode,
4496 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4497 else
4498 init_special_inode(inode, inode->i_mode,
4499 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4500 } else {
4501 brelse(bh);
4502 ret = -EIO;
4503 ext4_error(inode->i_sb, __func__,
4504 "bogus i_mode (%o) for inode=%lu",
4505 inode->i_mode, inode->i_ino);
4506 goto bad_inode;
ac27a0ec 4507 }
af5bc92d 4508 brelse(iloc.bh);
617ba13b 4509 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4510 unlock_new_inode(inode);
4511 return inode;
ac27a0ec
DK
4512
4513bad_inode:
1d1fe1ee
DH
4514 iget_failed(inode);
4515 return ERR_PTR(ret);
ac27a0ec
DK
4516}
4517
0fc1b451
AK
4518static int ext4_inode_blocks_set(handle_t *handle,
4519 struct ext4_inode *raw_inode,
4520 struct ext4_inode_info *ei)
4521{
4522 struct inode *inode = &(ei->vfs_inode);
4523 u64 i_blocks = inode->i_blocks;
4524 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4525
4526 if (i_blocks <= ~0U) {
4527 /*
4528 * i_blocks can be represnted in a 32 bit variable
4529 * as multiple of 512 bytes
4530 */
8180a562 4531 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4532 raw_inode->i_blocks_high = 0;
8180a562 4533 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4534 return 0;
4535 }
4536 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4537 return -EFBIG;
4538
4539 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4540 /*
4541 * i_blocks can be represented in a 48 bit variable
4542 * as multiple of 512 bytes
4543 */
8180a562 4544 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4545 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4546 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4547 } else {
8180a562
AK
4548 ei->i_flags |= EXT4_HUGE_FILE_FL;
4549 /* i_block is stored in file system block size */
4550 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4551 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4552 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4553 }
f287a1a5 4554 return 0;
0fc1b451
AK
4555}
4556
ac27a0ec
DK
4557/*
4558 * Post the struct inode info into an on-disk inode location in the
4559 * buffer-cache. This gobbles the caller's reference to the
4560 * buffer_head in the inode location struct.
4561 *
4562 * The caller must have write access to iloc->bh.
4563 */
617ba13b 4564static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4565 struct inode *inode,
617ba13b 4566 struct ext4_iloc *iloc)
ac27a0ec 4567{
617ba13b
MC
4568 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4569 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4570 struct buffer_head *bh = iloc->bh;
4571 int err = 0, rc, block;
4572
4573 /* For fields not not tracking in the in-memory inode,
4574 * initialise them to zero for new inodes. */
617ba13b
MC
4575 if (ei->i_state & EXT4_STATE_NEW)
4576 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4577
ff9ddf7e 4578 ext4_get_inode_flags(ei);
ac27a0ec 4579 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4580 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4581 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4582 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4583/*
4584 * Fix up interoperability with old kernels. Otherwise, old inodes get
4585 * re-used with the upper 16 bits of the uid/gid intact
4586 */
af5bc92d 4587 if (!ei->i_dtime) {
ac27a0ec
DK
4588 raw_inode->i_uid_high =
4589 cpu_to_le16(high_16_bits(inode->i_uid));
4590 raw_inode->i_gid_high =
4591 cpu_to_le16(high_16_bits(inode->i_gid));
4592 } else {
4593 raw_inode->i_uid_high = 0;
4594 raw_inode->i_gid_high = 0;
4595 }
4596 } else {
4597 raw_inode->i_uid_low =
4598 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4599 raw_inode->i_gid_low =
4600 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4601 raw_inode->i_uid_high = 0;
4602 raw_inode->i_gid_high = 0;
4603 }
4604 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4605
4606 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4607 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4608 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4609 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4610
0fc1b451
AK
4611 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4612 goto out_brelse;
ac27a0ec 4613 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4614 /* clear the migrate flag in the raw_inode */
4615 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4616 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4617 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4618 raw_inode->i_file_acl_high =
4619 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4620 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4621 ext4_isize_set(raw_inode, ei->i_disksize);
4622 if (ei->i_disksize > 0x7fffffffULL) {
4623 struct super_block *sb = inode->i_sb;
4624 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4625 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4626 EXT4_SB(sb)->s_es->s_rev_level ==
4627 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4628 /* If this is the first large file
4629 * created, add a flag to the superblock.
4630 */
4631 err = ext4_journal_get_write_access(handle,
4632 EXT4_SB(sb)->s_sbh);
4633 if (err)
4634 goto out_brelse;
4635 ext4_update_dynamic_rev(sb);
4636 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4637 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4638 sb->s_dirt = 1;
0390131b
FM
4639 ext4_handle_sync(handle);
4640 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4641 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4642 }
4643 }
4644 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4645 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4646 if (old_valid_dev(inode->i_rdev)) {
4647 raw_inode->i_block[0] =
4648 cpu_to_le32(old_encode_dev(inode->i_rdev));
4649 raw_inode->i_block[1] = 0;
4650 } else {
4651 raw_inode->i_block[0] = 0;
4652 raw_inode->i_block[1] =
4653 cpu_to_le32(new_encode_dev(inode->i_rdev));
4654 raw_inode->i_block[2] = 0;
4655 }
617ba13b 4656 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4657 raw_inode->i_block[block] = ei->i_data[block];
4658
25ec56b5
JNC
4659 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4660 if (ei->i_extra_isize) {
4661 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4662 raw_inode->i_version_hi =
4663 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4664 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4665 }
4666
0390131b
FM
4667 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4668 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4669 if (!err)
4670 err = rc;
617ba13b 4671 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4672
4673out_brelse:
af5bc92d 4674 brelse(bh);
617ba13b 4675 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4676 return err;
4677}
4678
4679/*
617ba13b 4680 * ext4_write_inode()
ac27a0ec
DK
4681 *
4682 * We are called from a few places:
4683 *
4684 * - Within generic_file_write() for O_SYNC files.
4685 * Here, there will be no transaction running. We wait for any running
4686 * trasnaction to commit.
4687 *
4688 * - Within sys_sync(), kupdate and such.
4689 * We wait on commit, if tol to.
4690 *
4691 * - Within prune_icache() (PF_MEMALLOC == true)
4692 * Here we simply return. We can't afford to block kswapd on the
4693 * journal commit.
4694 *
4695 * In all cases it is actually safe for us to return without doing anything,
4696 * because the inode has been copied into a raw inode buffer in
617ba13b 4697 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4698 * knfsd.
4699 *
4700 * Note that we are absolutely dependent upon all inode dirtiers doing the
4701 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4702 * which we are interested.
4703 *
4704 * It would be a bug for them to not do this. The code:
4705 *
4706 * mark_inode_dirty(inode)
4707 * stuff();
4708 * inode->i_size = expr;
4709 *
4710 * is in error because a kswapd-driven write_inode() could occur while
4711 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4712 * will no longer be on the superblock's dirty inode list.
4713 */
617ba13b 4714int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4715{
4716 if (current->flags & PF_MEMALLOC)
4717 return 0;
4718
617ba13b 4719 if (ext4_journal_current_handle()) {
b38bd33a 4720 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4721 dump_stack();
4722 return -EIO;
4723 }
4724
4725 if (!wait)
4726 return 0;
4727
617ba13b 4728 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4729}
4730
0390131b
FM
4731int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4732{
4733 int err = 0;
4734
4735 mark_buffer_dirty(bh);
4736 if (inode && inode_needs_sync(inode)) {
4737 sync_dirty_buffer(bh);
4738 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4739 ext4_error(inode->i_sb, __func__,
4740 "IO error syncing inode, "
4741 "inode=%lu, block=%llu",
4742 inode->i_ino,
4743 (unsigned long long)bh->b_blocknr);
4744 err = -EIO;
4745 }
4746 }
4747 return err;
4748}
4749
ac27a0ec 4750/*
617ba13b 4751 * ext4_setattr()
ac27a0ec
DK
4752 *
4753 * Called from notify_change.
4754 *
4755 * We want to trap VFS attempts to truncate the file as soon as
4756 * possible. In particular, we want to make sure that when the VFS
4757 * shrinks i_size, we put the inode on the orphan list and modify
4758 * i_disksize immediately, so that during the subsequent flushing of
4759 * dirty pages and freeing of disk blocks, we can guarantee that any
4760 * commit will leave the blocks being flushed in an unused state on
4761 * disk. (On recovery, the inode will get truncated and the blocks will
4762 * be freed, so we have a strong guarantee that no future commit will
4763 * leave these blocks visible to the user.)
4764 *
678aaf48
JK
4765 * Another thing we have to assure is that if we are in ordered mode
4766 * and inode is still attached to the committing transaction, we must
4767 * we start writeout of all the dirty pages which are being truncated.
4768 * This way we are sure that all the data written in the previous
4769 * transaction are already on disk (truncate waits for pages under
4770 * writeback).
4771 *
4772 * Called with inode->i_mutex down.
ac27a0ec 4773 */
617ba13b 4774int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4775{
4776 struct inode *inode = dentry->d_inode;
4777 int error, rc = 0;
4778 const unsigned int ia_valid = attr->ia_valid;
4779
4780 error = inode_change_ok(inode, attr);
4781 if (error)
4782 return error;
4783
4784 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4785 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4786 handle_t *handle;
4787
4788 /* (user+group)*(old+new) structure, inode write (sb,
4789 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4790 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4791 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4792 if (IS_ERR(handle)) {
4793 error = PTR_ERR(handle);
4794 goto err_out;
4795 }
a269eb18 4796 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4797 if (error) {
617ba13b 4798 ext4_journal_stop(handle);
ac27a0ec
DK
4799 return error;
4800 }
4801 /* Update corresponding info in inode so that everything is in
4802 * one transaction */
4803 if (attr->ia_valid & ATTR_UID)
4804 inode->i_uid = attr->ia_uid;
4805 if (attr->ia_valid & ATTR_GID)
4806 inode->i_gid = attr->ia_gid;
617ba13b
MC
4807 error = ext4_mark_inode_dirty(handle, inode);
4808 ext4_journal_stop(handle);
ac27a0ec
DK
4809 }
4810
e2b46574
ES
4811 if (attr->ia_valid & ATTR_SIZE) {
4812 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4813 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4814
4815 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4816 error = -EFBIG;
4817 goto err_out;
4818 }
4819 }
4820 }
4821
ac27a0ec
DK
4822 if (S_ISREG(inode->i_mode) &&
4823 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4824 handle_t *handle;
4825
617ba13b 4826 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4827 if (IS_ERR(handle)) {
4828 error = PTR_ERR(handle);
4829 goto err_out;
4830 }
4831
617ba13b
MC
4832 error = ext4_orphan_add(handle, inode);
4833 EXT4_I(inode)->i_disksize = attr->ia_size;
4834 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4835 if (!error)
4836 error = rc;
617ba13b 4837 ext4_journal_stop(handle);
678aaf48
JK
4838
4839 if (ext4_should_order_data(inode)) {
4840 error = ext4_begin_ordered_truncate(inode,
4841 attr->ia_size);
4842 if (error) {
4843 /* Do as much error cleanup as possible */
4844 handle = ext4_journal_start(inode, 3);
4845 if (IS_ERR(handle)) {
4846 ext4_orphan_del(NULL, inode);
4847 goto err_out;
4848 }
4849 ext4_orphan_del(handle, inode);
4850 ext4_journal_stop(handle);
4851 goto err_out;
4852 }
4853 }
ac27a0ec
DK
4854 }
4855
4856 rc = inode_setattr(inode, attr);
4857
617ba13b 4858 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4859 * transaction handle at all, we need to clean up the in-core
4860 * orphan list manually. */
4861 if (inode->i_nlink)
617ba13b 4862 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4863
4864 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4865 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4866
4867err_out:
617ba13b 4868 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4869 if (!error)
4870 error = rc;
4871 return error;
4872}
4873
3e3398a0
MC
4874int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4875 struct kstat *stat)
4876{
4877 struct inode *inode;
4878 unsigned long delalloc_blocks;
4879
4880 inode = dentry->d_inode;
4881 generic_fillattr(inode, stat);
4882
4883 /*
4884 * We can't update i_blocks if the block allocation is delayed
4885 * otherwise in the case of system crash before the real block
4886 * allocation is done, we will have i_blocks inconsistent with
4887 * on-disk file blocks.
4888 * We always keep i_blocks updated together with real
4889 * allocation. But to not confuse with user, stat
4890 * will return the blocks that include the delayed allocation
4891 * blocks for this file.
4892 */
4893 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4894 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4895 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4896
4897 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4898 return 0;
4899}
ac27a0ec 4900
a02908f1
MC
4901static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4902 int chunk)
4903{
4904 int indirects;
4905
4906 /* if nrblocks are contiguous */
4907 if (chunk) {
4908 /*
4909 * With N contiguous data blocks, it need at most
4910 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4911 * 2 dindirect blocks
4912 * 1 tindirect block
4913 */
4914 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4915 return indirects + 3;
4916 }
4917 /*
4918 * if nrblocks are not contiguous, worse case, each block touch
4919 * a indirect block, and each indirect block touch a double indirect
4920 * block, plus a triple indirect block
4921 */
4922 indirects = nrblocks * 2 + 1;
4923 return indirects;
4924}
4925
4926static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4927{
4928 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4929 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4930 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4931}
ac51d837 4932
ac27a0ec 4933/*
a02908f1
MC
4934 * Account for index blocks, block groups bitmaps and block group
4935 * descriptor blocks if modify datablocks and index blocks
4936 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4937 *
a02908f1
MC
4938 * If datablocks are discontiguous, they are possible to spread over
4939 * different block groups too. If they are contiugous, with flexbg,
4940 * they could still across block group boundary.
ac27a0ec 4941 *
a02908f1
MC
4942 * Also account for superblock, inode, quota and xattr blocks
4943 */
4944int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4945{
4946 int groups, gdpblocks;
4947 int idxblocks;
4948 int ret = 0;
4949
4950 /*
4951 * How many index blocks need to touch to modify nrblocks?
4952 * The "Chunk" flag indicating whether the nrblocks is
4953 * physically contiguous on disk
4954 *
4955 * For Direct IO and fallocate, they calls get_block to allocate
4956 * one single extent at a time, so they could set the "Chunk" flag
4957 */
4958 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4959
4960 ret = idxblocks;
4961
4962 /*
4963 * Now let's see how many group bitmaps and group descriptors need
4964 * to account
4965 */
4966 groups = idxblocks;
4967 if (chunk)
4968 groups += 1;
4969 else
4970 groups += nrblocks;
4971
4972 gdpblocks = groups;
4973 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4974 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4975 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4976 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4977
4978 /* bitmaps and block group descriptor blocks */
4979 ret += groups + gdpblocks;
4980
4981 /* Blocks for super block, inode, quota and xattr blocks */
4982 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4983
4984 return ret;
4985}
4986
4987/*
4988 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4989 * the modification of a single pages into a single transaction,
4990 * which may include multiple chunks of block allocations.
ac27a0ec 4991 *
525f4ed8 4992 * This could be called via ext4_write_begin()
ac27a0ec 4993 *
525f4ed8 4994 * We need to consider the worse case, when
a02908f1 4995 * one new block per extent.
ac27a0ec 4996 */
a86c6181 4997int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4998{
617ba13b 4999 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5000 int ret;
5001
a02908f1 5002 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5003
a02908f1 5004 /* Account for data blocks for journalled mode */
617ba13b 5005 if (ext4_should_journal_data(inode))
a02908f1 5006 ret += bpp;
ac27a0ec
DK
5007 return ret;
5008}
f3bd1f3f
MC
5009
5010/*
5011 * Calculate the journal credits for a chunk of data modification.
5012 *
5013 * This is called from DIO, fallocate or whoever calling
5014 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
5015 *
5016 * journal buffers for data blocks are not included here, as DIO
5017 * and fallocate do no need to journal data buffers.
5018 */
5019int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5020{
5021 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5022}
5023
ac27a0ec 5024/*
617ba13b 5025 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5026 * Give this, we know that the caller already has write access to iloc->bh.
5027 */
617ba13b
MC
5028int ext4_mark_iloc_dirty(handle_t *handle,
5029 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5030{
5031 int err = 0;
5032
25ec56b5
JNC
5033 if (test_opt(inode->i_sb, I_VERSION))
5034 inode_inc_iversion(inode);
5035
ac27a0ec
DK
5036 /* the do_update_inode consumes one bh->b_count */
5037 get_bh(iloc->bh);
5038
dab291af 5039 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5040 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5041 put_bh(iloc->bh);
5042 return err;
5043}
5044
5045/*
5046 * On success, We end up with an outstanding reference count against
5047 * iloc->bh. This _must_ be cleaned up later.
5048 */
5049
5050int
617ba13b
MC
5051ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5052 struct ext4_iloc *iloc)
ac27a0ec 5053{
0390131b
FM
5054 int err;
5055
5056 err = ext4_get_inode_loc(inode, iloc);
5057 if (!err) {
5058 BUFFER_TRACE(iloc->bh, "get_write_access");
5059 err = ext4_journal_get_write_access(handle, iloc->bh);
5060 if (err) {
5061 brelse(iloc->bh);
5062 iloc->bh = NULL;
ac27a0ec
DK
5063 }
5064 }
617ba13b 5065 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5066 return err;
5067}
5068
6dd4ee7c
KS
5069/*
5070 * Expand an inode by new_extra_isize bytes.
5071 * Returns 0 on success or negative error number on failure.
5072 */
1d03ec98
AK
5073static int ext4_expand_extra_isize(struct inode *inode,
5074 unsigned int new_extra_isize,
5075 struct ext4_iloc iloc,
5076 handle_t *handle)
6dd4ee7c
KS
5077{
5078 struct ext4_inode *raw_inode;
5079 struct ext4_xattr_ibody_header *header;
5080 struct ext4_xattr_entry *entry;
5081
5082 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5083 return 0;
5084
5085 raw_inode = ext4_raw_inode(&iloc);
5086
5087 header = IHDR(inode, raw_inode);
5088 entry = IFIRST(header);
5089
5090 /* No extended attributes present */
5091 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5092 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5093 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5094 new_extra_isize);
5095 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5096 return 0;
5097 }
5098
5099 /* try to expand with EAs present */
5100 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5101 raw_inode, handle);
5102}
5103
ac27a0ec
DK
5104/*
5105 * What we do here is to mark the in-core inode as clean with respect to inode
5106 * dirtiness (it may still be data-dirty).
5107 * This means that the in-core inode may be reaped by prune_icache
5108 * without having to perform any I/O. This is a very good thing,
5109 * because *any* task may call prune_icache - even ones which
5110 * have a transaction open against a different journal.
5111 *
5112 * Is this cheating? Not really. Sure, we haven't written the
5113 * inode out, but prune_icache isn't a user-visible syncing function.
5114 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5115 * we start and wait on commits.
5116 *
5117 * Is this efficient/effective? Well, we're being nice to the system
5118 * by cleaning up our inodes proactively so they can be reaped
5119 * without I/O. But we are potentially leaving up to five seconds'
5120 * worth of inodes floating about which prune_icache wants us to
5121 * write out. One way to fix that would be to get prune_icache()
5122 * to do a write_super() to free up some memory. It has the desired
5123 * effect.
5124 */
617ba13b 5125int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5126{
617ba13b 5127 struct ext4_iloc iloc;
6dd4ee7c
KS
5128 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5129 static unsigned int mnt_count;
5130 int err, ret;
ac27a0ec
DK
5131
5132 might_sleep();
617ba13b 5133 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5134 if (ext4_handle_valid(handle) &&
5135 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5136 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5137 /*
5138 * We need extra buffer credits since we may write into EA block
5139 * with this same handle. If journal_extend fails, then it will
5140 * only result in a minor loss of functionality for that inode.
5141 * If this is felt to be critical, then e2fsck should be run to
5142 * force a large enough s_min_extra_isize.
5143 */
5144 if ((jbd2_journal_extend(handle,
5145 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5146 ret = ext4_expand_extra_isize(inode,
5147 sbi->s_want_extra_isize,
5148 iloc, handle);
5149 if (ret) {
5150 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5151 if (mnt_count !=
5152 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5153 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5154 "Unable to expand inode %lu. Delete"
5155 " some EAs or run e2fsck.",
5156 inode->i_ino);
c1bddad9
AK
5157 mnt_count =
5158 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5159 }
5160 }
5161 }
5162 }
ac27a0ec 5163 if (!err)
617ba13b 5164 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5165 return err;
5166}
5167
5168/*
617ba13b 5169 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5170 *
5171 * We're really interested in the case where a file is being extended.
5172 * i_size has been changed by generic_commit_write() and we thus need
5173 * to include the updated inode in the current transaction.
5174 *
a269eb18 5175 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5176 * are allocated to the file.
5177 *
5178 * If the inode is marked synchronous, we don't honour that here - doing
5179 * so would cause a commit on atime updates, which we don't bother doing.
5180 * We handle synchronous inodes at the highest possible level.
5181 */
617ba13b 5182void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5183{
617ba13b 5184 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5185 handle_t *handle;
5186
0390131b
FM
5187 if (!ext4_handle_valid(current_handle)) {
5188 ext4_mark_inode_dirty(current_handle, inode);
5189 return;
5190 }
5191
617ba13b 5192 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5193 if (IS_ERR(handle))
5194 goto out;
5195 if (current_handle &&
5196 current_handle->h_transaction != handle->h_transaction) {
5197 /* This task has a transaction open against a different fs */
5198 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5199 __func__);
ac27a0ec
DK
5200 } else {
5201 jbd_debug(5, "marking dirty. outer handle=%p\n",
5202 current_handle);
617ba13b 5203 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5204 }
617ba13b 5205 ext4_journal_stop(handle);
ac27a0ec
DK
5206out:
5207 return;
5208}
5209
5210#if 0
5211/*
5212 * Bind an inode's backing buffer_head into this transaction, to prevent
5213 * it from being flushed to disk early. Unlike
617ba13b 5214 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5215 * returns no iloc structure, so the caller needs to repeat the iloc
5216 * lookup to mark the inode dirty later.
5217 */
617ba13b 5218static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5219{
617ba13b 5220 struct ext4_iloc iloc;
ac27a0ec
DK
5221
5222 int err = 0;
5223 if (handle) {
617ba13b 5224 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5225 if (!err) {
5226 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5227 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5228 if (!err)
0390131b
FM
5229 err = ext4_handle_dirty_metadata(handle,
5230 inode,
5231 iloc.bh);
ac27a0ec
DK
5232 brelse(iloc.bh);
5233 }
5234 }
617ba13b 5235 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5236 return err;
5237}
5238#endif
5239
617ba13b 5240int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5241{
5242 journal_t *journal;
5243 handle_t *handle;
5244 int err;
5245
5246 /*
5247 * We have to be very careful here: changing a data block's
5248 * journaling status dynamically is dangerous. If we write a
5249 * data block to the journal, change the status and then delete
5250 * that block, we risk forgetting to revoke the old log record
5251 * from the journal and so a subsequent replay can corrupt data.
5252 * So, first we make sure that the journal is empty and that
5253 * nobody is changing anything.
5254 */
5255
617ba13b 5256 journal = EXT4_JOURNAL(inode);
0390131b
FM
5257 if (!journal)
5258 return 0;
d699594d 5259 if (is_journal_aborted(journal))
ac27a0ec
DK
5260 return -EROFS;
5261
dab291af
MC
5262 jbd2_journal_lock_updates(journal);
5263 jbd2_journal_flush(journal);
ac27a0ec
DK
5264
5265 /*
5266 * OK, there are no updates running now, and all cached data is
5267 * synced to disk. We are now in a completely consistent state
5268 * which doesn't have anything in the journal, and we know that
5269 * no filesystem updates are running, so it is safe to modify
5270 * the inode's in-core data-journaling state flag now.
5271 */
5272
5273 if (val)
617ba13b 5274 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5275 else
617ba13b
MC
5276 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5277 ext4_set_aops(inode);
ac27a0ec 5278
dab291af 5279 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5280
5281 /* Finally we can mark the inode as dirty. */
5282
617ba13b 5283 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5284 if (IS_ERR(handle))
5285 return PTR_ERR(handle);
5286
617ba13b 5287 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5288 ext4_handle_sync(handle);
617ba13b
MC
5289 ext4_journal_stop(handle);
5290 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5291
5292 return err;
5293}
2e9ee850
AK
5294
5295static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5296{
5297 return !buffer_mapped(bh);
5298}
5299
c2ec175c 5300int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5301{
c2ec175c 5302 struct page *page = vmf->page;
2e9ee850
AK
5303 loff_t size;
5304 unsigned long len;
5305 int ret = -EINVAL;
79f0be8d 5306 void *fsdata;
2e9ee850
AK
5307 struct file *file = vma->vm_file;
5308 struct inode *inode = file->f_path.dentry->d_inode;
5309 struct address_space *mapping = inode->i_mapping;
5310
5311 /*
5312 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5313 * get i_mutex because we are already holding mmap_sem.
5314 */
5315 down_read(&inode->i_alloc_sem);
5316 size = i_size_read(inode);
5317 if (page->mapping != mapping || size <= page_offset(page)
5318 || !PageUptodate(page)) {
5319 /* page got truncated from under us? */
5320 goto out_unlock;
5321 }
5322 ret = 0;
5323 if (PageMappedToDisk(page))
5324 goto out_unlock;
5325
5326 if (page->index == size >> PAGE_CACHE_SHIFT)
5327 len = size & ~PAGE_CACHE_MASK;
5328 else
5329 len = PAGE_CACHE_SIZE;
5330
5331 if (page_has_buffers(page)) {
5332 /* return if we have all the buffers mapped */
5333 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5334 ext4_bh_unmapped))
5335 goto out_unlock;
5336 }
5337 /*
5338 * OK, we need to fill the hole... Do write_begin write_end
5339 * to do block allocation/reservation.We are not holding
5340 * inode.i__mutex here. That allow * parallel write_begin,
5341 * write_end call. lock_page prevent this from happening
5342 * on the same page though
5343 */
5344 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5345 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5346 if (ret < 0)
5347 goto out_unlock;
5348 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5349 len, len, page, fsdata);
2e9ee850
AK
5350 if (ret < 0)
5351 goto out_unlock;
5352 ret = 0;
5353out_unlock:
c2ec175c
NP
5354 if (ret)
5355 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5356 up_read(&inode->i_alloc_sem);
5357 return ret;
5358}